Sample records for shadowgraph illumination techniques

  1. Application of the wide-field shadowgraph technique to rotor wake visualization

    NASA Technical Reports Server (NTRS)

    Norman, Thomas R.; Light, Jeffrey S.

    1989-01-01

    The wide field shadowgraph technique is reviewed along with its application to the visualization of rotor wakes. In particular, current experimental methods and data reduction requirements are discussed. Sample shadowgraphs are presented. These include shadowgraphs of model-scale helicopter main rotors and tilt rotors, and full scale tail rotors, both in hover and in forward flight.

  2. APPARATUS FOR PRODUCING SHADOWGRAPHS

    DOEpatents

    Wilson, R.R.

    1959-08-11

    An apparatus is presented for obtaining shadowgraphs or radiographs of an object exposed to x rays or the like. The device includes the combination of a cloud chamber having the interior illuminated and a portion thereof transparent to light rays and x'rays, a controlled source of x rays spaced therefrom, photographic recording disposed laterally of the linear path intermediate the source and the chamber portion in oblique angularity in aspect to the path. The object to be studied is disposed intermediate the x-ray source and chamber in the linear path to provide an x-ray transmission barrier therebetween. The shadowgraph is produced in the cloud chamber in response to initiation of the x- ray source and recorded photographically.

  3. Imaging of high-pressure fuel sprays in the near-nozzle region with supercontinuum illumination

    NASA Astrophysics Data System (ADS)

    Zheng, Yipeng; Si, Jinhai; Tan, Wenjiang; Wang, Mingxin; Yang, Bo; Hou, Xun

    2018-04-01

    We employ a supercontinuum (SC) illumination to image the high-pressure fuel sprays in the near-nozzle region. The effect of speckles in the images is significantly mitigated using the SC illumination to improve the identifiability of the microstructures in the spray. The microstructures in the near-nozzle region, i.e., lobes, holes, ligaments, and bridges, are clearly imaged for different fuel pressures and nozzle orifice diameters. The shadowgraphs captured in the experiments also show the spray cone angle of spray is strongly dependent on the injection pressures and nozzle orifice diameters.

  4. Low-Cost Flow Visualization for a Supersonic Ejector

    NASA Technical Reports Server (NTRS)

    Olden, George W.; Lineberry, David M.; Linn, Christopher A. B.; Landrum, Brian D.; Hawk, Clark W.

    2005-01-01

    Shadowgraph techniques were applied to the cold flow ejector facility at the Propulsion Research Center at the University of Alabama in Huntsville. The setup for the experiments was relatively simple and was accomplished at very little cost. Series of shadowgraph images were taken of both dual nozzle and single nozzle strut based ejectors operating over a range of chamber pressures. The density gradient patterns in the shadowgraphs were compared to pressure data measured along the top and side walls of the mixing duct. The shadowgraph images showed the presence of barrel shocks emanating from the nozzles which at low pressures terminated in Mach disks and at higher pressures extended beyond the barrel shape and reflected off the walls of the duct. Based on pressure data from previous testing, reflected shocks were expected on the walls of the duct. The shadowgraph images confirmed the locations of these reflected shocks on the top wall of the duct. The shadowgraph images also showed the structure change which correlated to a change in pitch of the ejector noise, and corresponded to a change in trend of the duct wall pressure ratio distributions. The images produced from the setup provided insight into the complex flow behavior inside the ejector duct. In addition, the techniques were a valuable tool as an educational device for students.

  5. Fundamental study of flow field generated by rotorcraft blades using wide-field shadowgraph

    NASA Technical Reports Server (NTRS)

    Parthasarathy, S. P.; Cho, Y. I.; Back, L. H.

    1985-01-01

    The vortex trajectory and vortex wake generated by helicopter rotors are visualized using a wide-field shadowgraph technique. Use of a retro-reflective Scotchlite screen makes it possible to investigate the flow field generated by full-scale rotors. Tip vortex trajectories are visible in shadowgraphs for a range of tip Mach number of 0.38 to 0.60. The effect of the angle of attack is substantial. At an angle of attack greater than 8 degrees, the visibility of the vortex core is significant even at relatively low tip Mach numbers. The theoretical analysis of the sensitivity is carried out for a rotating blade. This analysis demonstrates that the sensitivity decreases with increasing dimensionless core radius and increases with increasing tip Mach number. The threshold value of the sensitivity is found to be 0.0015, below which the vortex core is not visible and above which it is visible. The effect of the optical path length is also discussed. Based on this investigation, it is concluded that the application of this wide-field shadowgraph technique to a large wind tunnel test should be feasible. In addition, two simultaneous shadowgraph views would allow three-dimensional reconstruction of vortex trajectories.

  6. Smartphone schlieren and shadowgraph imaging

    NASA Astrophysics Data System (ADS)

    Settles, Gary S.

    2018-05-01

    Schlieren and shadowgraph techniques are used throughout the realm of scientific experimentation to reveal transparent refractive phenomena, but the requirement of large precise optics has kept them mostly out of reach of the public. New developments, including the ubiquity of smartphones with high-resolution digital cameras and the Background-Oriented Schlieren technique (BOS), which replaces the precise optics with digital image processing, have changed these circumstances. This paper demonstrates a number of different schlieren and shadowgraph setups and image examples based only on a smartphone, its software applications, and some inexpensive accessories. After beginning with a simple traditional schlieren system the emphasis is placed on what can be visualized and measured using BOS and digital slit-scan imaging on the smartphone. Thermal plumes, liquid mixing and glass are used as subjects of investigation. Not only recreational and experimental photography, but also serious scientific imaging can be done.

  7. Visualization of supersonic diesel fuel jets using a shadowgraph technique

    NASA Astrophysics Data System (ADS)

    Pianthong, Kulachate; Behnia, Masud; Milton, Brian E.

    2001-04-01

    High-speed liquid jets have been widely used to cut or penetrate material. It has been recently conjectured that the characteristics of high-speed fuel jets may also be of benefit to engines requiring direct fuel injection into the combustion chamber. Important factors are combustion efficiency and emission control enhancement for better atomization. Fundamental studies of very high velocity liquid jets are therefore very important. The characteristics and behavior of supersonic liquid jets have been studied with the aid of a shadowgraph technique. The high-speed liquid jet (in the supersonic range) is generated by the use of a vertical, single stage powder gun. The performance of the launcher and its relation to the jet exit velocity, with a range of nozzle shapes, has been examined. This paper presents the visual evidence of supersonic diesel fuel jets (velocity around 2000 m/s) investigated by the shadowgraph method. An Argon jet has been used as a light source. With a rise time of 0.07 microseconds, light duration of 0.2 microseconds and the use of high speed Polaroid film, the shadowgraph method can effectively capture the hypersonic diesel fuel jet and its strong leading edge shock waves. This provides a clearer picture of each stage of the generation of hypersonic diesel fuel jets and makes the study of supersonic diesel fuel jet characteristics and the potential for auto-ignition possible. Also, in the experiment, a pressure relief section has been used to minimize the compressed air or blast wave ahead of the projectile. However, the benefit of using a pressure relief section in the design is not clearly known. To investigate this effect, additional experiments have been performed with the use of the shadowgraph method, showing the projectile leaving and traveling inside the nozzle at a velocity around 1100 m/s.

  8. Multifunctional, three-dimensional tomography for analysis of eletrectrohydrodynamic jetting

    NASA Astrophysics Data System (ADS)

    Nguyen, Xuan Hung; Gim, Yeonghyeon; Ko, Han Seo

    2015-05-01

    A three-dimensional optical tomography technique was developed to reconstruct three-dimensional objects using a set of two-dimensional shadowgraphic images and normal gray images. From three high-speed cameras, which were positioned at an offset angle of 45° between each other, number, size, and location of electrohydrodynamic jets with respect to the nozzle position were analyzed using shadowgraphic tomography employing multiplicative algebraic reconstruction technique (MART). Additionally, a flow field inside a cone-shaped liquid (Taylor cone) induced under an electric field was observed using a simultaneous multiplicative algebraic reconstruction technique (SMART), a tomographic method for reconstructing light intensities of particles, combined with three-dimensional cross-correlation. Various velocity fields of circulating flows inside the cone-shaped liquid caused by various physico-chemical properties of liquid were also investigated.

  9. Quantitative Image Analysis Techniques with High-Speed Schlieren Photography

    NASA Technical Reports Server (NTRS)

    Pollard, Victoria J.; Herron, Andrew J.

    2017-01-01

    Optical flow visualization techniques such as schlieren and shadowgraph photography are essential to understanding fluid flow when interpreting acquired wind tunnel test data. Output of the standard implementations of these visualization techniques in test facilities are often limited only to qualitative interpretation of the resulting images. Although various quantitative optical techniques have been developed, these techniques often require special equipment or are focused on obtaining very precise and accurate data about the visualized flow. These systems are not practical in small, production wind tunnel test facilities. However, high-speed photography capability has become a common upgrade to many test facilities in order to better capture images of unsteady flow phenomena such as oscillating shocks and flow separation. This paper describes novel techniques utilized by the authors to analyze captured high-speed schlieren and shadowgraph imagery from wind tunnel testing for quantification of observed unsteady flow frequency content. Such techniques have applications in parametric geometry studies and in small facilities where more specialized equipment may not be available.

  10. Multi-pulse shadowgraphic RGB illumination and detection for flow tracking

    NASA Astrophysics Data System (ADS)

    Menser, Jan; Schneider, Florian; Dreier, Thomas; Kaiser, Sebastian A.

    2018-06-01

    This work demonstrates the application of a multi-color LED and a consumer color camera for visualizing phase boundaries in two-phase flows, in particular for particle tracking velocimetry. The LED emits a sequence of short light pulses, red, green, then blue (RGB), and through its color-filter array, the camera captures all three pulses on a single RGB frame. In a backlit configuration, liquid droplets appear as shadows in each color channel. Color reversal and color cross-talk correction yield a series of three frozen-flow images that can be used for further analysis, e.g., determining the droplet velocity by particle tracking. Three example flows are presented, solid particles suspended in water, the penetrating front of a gasoline direct-injection spray, and the liquid break-up region of an "air-assisted" nozzle. Because of the shadowgraphic arrangement, long path lengths through scattering media lower image contrast, while visualization of phase boundaries with high resolution is a strength of this method. Apart from a pulse-and-delay generator, the overall system cost is very low.

  11. A comprehensive statistical investigation of schlieren image velocimetry (SIV) using high-velocity helium jet

    NASA Astrophysics Data System (ADS)

    Biswas, Sayan; Qiao, Li

    2017-03-01

    A detailed statistical assessment of seedless velocity measurement using Schlieren Image Velocimetry (SIV) was explored using open source Robust Phase Correlation (RPC) algorithm. A well-known flow field, an axisymmetric turbulent helium jet, was analyzed near and intermediate region (0≤ x/d≤ 20) for two different Reynolds numbers, Re d = 11,000 and Re d = 22,000 using schlieren with horizontal knife-edge, schlieren with vertical knife-edge and shadowgraph technique, and the resulted velocity fields from SIV techniques were compared to traditional Particle Image Velocimetry (PIV) measurements. A novel, inexpensive, easy to setup two-camera SIV technique had been demonstrated to measure high-velocity turbulent jet, with jet exit velocities 304 m/s (Mach = 0.3) and 611 m/s (Mach = 0.6), respectively. Several image restoration and enhancement techniques were tested to improve signal to noise ratio (SNR) in schlieren and shadowgraph images. Processing and post-processing parameters for SIV techniques were examined in detail. A quantitative comparison between self-seeded SIV techniques and traditional PIV had been made using correlation statistics. While the resulted flow field from schlieren with horizontal knife-edge and shadowgraph showed excellent agreement with PIV measurements, schlieren with vertical knife-edge performed poorly. The performance of spatial cross-correlations at different jet locations using SIV techniques and PIV was evaluated. Turbulence quantities like turbulence intensity, mean velocity fields, Reynolds shear stress influenced spatial correlations and correlation plane SNR heavily. Several performance metrics such as primary peak ratio (PPR), peak to correlation energy (PCE), the probability distribution of signal and noise were used to compare capability and potential of different SIV techniques.

  12. A shadowgraph study of the National Launch System's 1 1/2 stage vehicle configuration and Heavy Lift Launch Vehicle configuration. [Using the Marshall Space Flight Center's 14-Inch Trisonic Wind Tunnel

    NASA Technical Reports Server (NTRS)

    Pokora, Darlene C.; Springer, Anthony M.

    1994-01-01

    A shadowgraph study of the National Launch System's (NLS's) 1 1/2 stage and heavy lift launch vehicle (HLLV) configurations is presented. Shadowgraphs are shown for the range of Mach numbers from Mach 0.6 to 5.0 at various angles-of-attack and roll angles. Since the 1 1/2 stage configuration is generally symmetric, no shadowgraphs of any roll angle are shown for this configuration. The major flow field phenomena over the NLS 1 1/2 stage and HLLV configurations are shown in the shadowgraphs. These shadowgraphs are used in the aerothermodynamic analysis of the external flow conditions the launch vehicle would encounter during the ascent stage of flight. The shadowgraphs presented in this study were obtained from configurations tested in the Marshall Space Flight Center's 14-Inch Trisonic Wind Tunnel during 1992.

  13. X-ray imaging for security applications

    NASA Astrophysics Data System (ADS)

    Evans, J. Paul

    2004-01-01

    The X-ray screening of luggage by aviation security personnel may be badly hindered by the lack of visual cues to depth in an image that has been produced by transmitted radiation. Two-dimensional "shadowgraphs" with "organic" and "metallic" objects encoded using two different colors (usually orange and blue) are still in common use. In the context of luggage screening there are no reliable cues to depth present in individual shadowgraph X-ray images. Therefore, the screener is required to convert the 'zero depth resolution' shadowgraph into a three-dimensional mental picture to be able to interpret the relative spatial relationship of the objects under inspection. Consequently, additional cognitive processing is required e.g. integration, inference and memory. However, these processes can lead to serious misinterpretations of the actual physical structure being examined. This paper describes the development of a stereoscopic imaging technique enabling the screener to utilise binocular stereopsis and kinetic depth to enhance their interpretation of the actual nature of the objects under examination. Further work has led to the development of a technique to combine parallax data (to calculate the thickness of a target material) with the results of a basis material subtraction technique to approximate the target's effective atomic number and density. This has been achieved in preliminary experiments with a novel spatially interleaved dual-energy sensor which reduces the number of scintillation elements required by 50% in comparison to conventional sensor configurations.

  14. Application of time-resolved shadowgraph imaging and computer analysis to study micrometer-scale response of superfluid helium

    NASA Astrophysics Data System (ADS)

    Sajjadi, Seyed; Buelna, Xavier; Eloranta, Jussi

    2018-01-01

    Application of inexpensive light emitting diodes as backlight sources for time-resolved shadowgraph imaging is demonstrated. The two light sources tested are able to produce light pulse sequences in the nanosecond and microsecond time regimes. After determining their time response characteristics, the diodes were applied to study the gas bubble formation around laser-heated copper nanoparticles in superfluid helium at 1.7 K and to determine the local cavitation bubble dynamics around fast moving metal micro-particles in the liquid. A convolutional neural network algorithm for analyzing the shadowgraph images by a computer is presented and the method is validated against the results from manual image analysis. The second application employed the red-green-blue light emitting diode source that produces light pulse sequences of the individual colors such that three separate shadowgraph frames can be recorded onto the color pixels of a charge-coupled device camera. Such an image sequence can be used to determine the moving object geometry, local velocity, and acceleration/deceleration. These data can be used to calculate, for example, the instantaneous Reynolds number for the liquid flow around the particle. Although specifically demonstrated for superfluid helium, the technique can be used to study the dynamic response of any medium that exhibits spatial variations in the index of refraction.

  15. Experimental Visualizations of a Generic Launch Vehicle Flow Field: Time-Resolved Shadowgraph and Infrared Imaging

    NASA Technical Reports Server (NTRS)

    Garbeff, Theodore J., II; Panda, Jayanta; Ross, James C.

    2017-01-01

    Time-Resolved shadowgraph and infrared (IR) imaging were performed to investigate off-body and on-body flow features of a generic, 'hammer-head' launch vehicle geometry previously tested by Coe and Nute (1962). The measurements discussed here were one part of a large range of wind tunnel test techniques that included steady-state pressure sensitive paint (PSP), dynamic PSP, unsteady surface pressures, and unsteady force measurements. Image data was captured over a Mach number range of 0.6 less than or equal to M less than or equal to 1.2 at a Reynolds number of 3 million per foot. Both shadowgraph and IR imagery were captured in conjunction with unsteady pressures and forces and correlated with IRIG-B timing. High-speed shadowgraph imagery was used to identify wake structure and reattachment behind the payload fairing of the vehicle. Various data processing strategies were employed and ultimately these results correlated well with the location and magnitude of unsteady surface pressure measurements. Two research grade IR cameras were positioned to image boundary layer transition at the vehicle nose and flow reattachment behind the payload fairing. The poor emissivity of the model surface treatment (fast PSP) proved to be challenging for the infrared measurement. Reference image subtraction and contrast limited adaptive histogram equalization (CLAHE) were used to analyze this dataset. Ultimately turbulent boundary layer transition was observed and located forward of the trip dot line at the model sphere-cone junction. Flow reattachment location was identified behind the payload fairing in both steady and unsteady thermal data. As demonstrated in this effort, recent advances in high-speed and thermal imaging technology have modernized classical techniques providing a new viewpoint for the modern researcher

  16. Experimental investigation of shock-cell noise reduction for single-stream nozzles in simulated flight, comprehensive data report. Volume 3: Shadowgraph photos and facility description

    NASA Technical Reports Server (NTRS)

    Yamamoto, K.; Brausch, J. F.; Janardan, B. A.; Hoerst, D. J.; Price, A. O.; Knott, P. R.

    1984-01-01

    A total of 142 shadowgraph photographs were taken on 43 different plumes that were distributed over the six nozzle configurations using the 9.5 inch diameter collimated light beam of the shadowgraph setup. Aerodynamic flow conditions of the shadowgraph test points, the location and identification of each of the photographs, and copies of the pictures are presented.

  17. Determination of Sun Angles for Observations of Shock Waves on a Transport Aircraft

    NASA Technical Reports Server (NTRS)

    Fisher, David F.; Haering, Edward A., Jr.; Noffz, Gregory K.; Aguilar, Juan I.

    1998-01-01

    Wing compression shock shadowgraphs were observed on two flights during banked turns of an L-1011 aircraft at a Mach number of 0.85 and an altitude of 35,000 ft (10,700 m). Photos and video recording of the shadowgraphs were taken during the flights to document the shadowgraphs. Bright sunlight on the aircraft was required. The time of day, aircraft position, speed and attitudes were recorded to determine the sun azimuth and elevation relative to the wing quarter chord-line when the shadowgraphs were visible. Sun elevation and azimuth angles were documented for which the wing compression shock shadowgraphs were visible. The shadowgraph was observed for high to low elevation angles relative to the wing, but for best results high sun angles relative to the wing are desired. The procedures and equations to determine the sun azimuth and elevation angle with respect to the quarter chord-line is included in the Appendix.

  18. Analysis of eletrectrohydrodynamic jetting using multifunctional and three-dimensional tomography

    NASA Astrophysics Data System (ADS)

    Ko, Han Seo; Nguyen, Xuan Hung; Lee, Soo-Hong; Kim, Young Hyun

    2013-11-01

    Three-dimensional optical tomography technique was developed to reconstruct three-dimensional flow fields using a set of two-dimensional shadowgraphic images and normal gray images. From three high speed cameras, which were positioned at an offset angle of 45° relative to one another, number, size and location of electrohydrodynamic jets with respect to the nozzle position were analyzed using shadowgraphic tomography employing a multiplicative algebraic reconstruction technique (MART). Additionally, a flow field inside cone-shaped liquid (Taylor cone) which was induced under electric field was also observed using a simultaneous multiplicative algebraic reconstruction technique (SMART) for reconstructing intensities of particle light and combining with a three-dimensional cross correlation. Various velocity fields of a circulating flow inside the cone-shaped liquid due to different physico-chemical properties of liquid and applied voltages were also investigated. This work supported by the Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Korean government (MEST) (No. S-2011-0023457).

  19. Control of Wind Tunnel Operations Using Neural Net Interpretation of Flow Visualization Records

    NASA Technical Reports Server (NTRS)

    Buggele, Alvin E.; Decker, Arthur J.

    1994-01-01

    Neural net control of operations in a small subsonic/transonic/supersonic wind tunnel at Lewis Research Center is discussed. The tunnel and the layout for neural net control or control by other parallel processing techniques are described. The tunnel is an affordable, multiuser platform for testing instrumentation and components, as well as parallel processing and control strategies. Neural nets have already been tested on archival schlieren and holographic visualizations from this tunnel as well as recent supersonic and transonic shadowgraph. This paper discusses the performance of neural nets for interpreting shadowgraph images in connection with a recent exercise for tuning the tunnel in a subsonic/transonic cascade mode of operation. That mode was operated for performing wake surveys in connection with NASA's Advanced Subsonic Technology (AST) noise reduction program. The shadowgraph was presented to the neural nets as 60 by 60 pixel arrays. The outputs were tunnel parameters such as valve settings or tunnel state identifiers for selected tunnel operating points, conditions, or states. The neural nets were very sensitive, perhaps too sensitive, to shadowgraph pattern detail. However, the nets exhibited good immunity to variations in brightness, to noise, and to changes in contrast. The nets are fast enough so that ten or more can be combined per control operation to interpret flow visualization data, point sensor data, and model calculations. The pattern sensitivity of the nets will be utilized and tested to control wind tunnel operations at Mach 2.0 based on shock wave patterns.

  20. Automation of Some Operations of a Wind Tunnel Using Artificial Neural Networks

    NASA Technical Reports Server (NTRS)

    Decker, Arthur J.; Buggele, Alvin E.

    1996-01-01

    Artificial neural networks were used successfully to sequence operations in a small, recently modernized, supersonic wind tunnel at NASA-Lewis Research Center. The neural nets generated correct estimates of shadowgraph patterns, pressure sensor readings and mach numbers for conditions occurring shortly after startup and extending to fully developed flow. Artificial neural networks were trained and tested for estimating: sensor readings from shadowgraph patterns, shadowgraph patterns from shadowgraph patterns and sensor readings from sensor readings. The 3.81 by 10 in. (0.0968 by 0.254 m) tunnel was operated with its mach 2.0 nozzle, and shadowgraph was recorded near the nozzle exit. These results support the thesis that artificial neural networks can be combined with current workstation technology to automate wind tunnel operations.

  1. Development of a Large Field of View Shadowgraph System for a 16 Ft. Transonic Wind Tunnel

    NASA Technical Reports Server (NTRS)

    Talley, Michael A.; Jones, Stephen B.; Goodman, Wesley L.

    2000-01-01

    A large field of view shadowgraph flow visualization system for the Langley 16 ft. Transonic Tunnel (16 ft.TT) has been developed to provide fast, low cost, aerodynamic design concept evaluation capability to support the development of the next generation of commercial and military aircraft and space launch vehicles. Key features of the 16 ft. TT shadowgraph system are: (1) high resolution (1280 X 1024) digital snap shots and sequences; (2) video recording of shadowgraph at 30 frames per second; (3) pan, tilt, & zoom to find and observe flow features; (4) one microsecond flash for freeze frame images; (5) large field of view approximately 12 X 6 ft; and (6) a low maintenance, high signal/noise ratio, retro-reflective screen to allow shadowgraph imaging while test section lights are on.

  2. A physicist's view of biotechnology. [small molecule crystal growth in space

    NASA Technical Reports Server (NTRS)

    Kroes, Roger L.

    1987-01-01

    Theories and techniques for small molecule crystal growth are reviewed, with emphasis on space processing possibilities, particularly for protein crystal growth. The general principles of nucleation, growth, and mass and heat transport are first discussed. Optical systems using schlieren, shadowgraph, and holographic techniques are considered, and are illustrated with the example of the NASA developed Fluids Experiment System flow aboard Spacelab 3.

  3. Image computing techniques to extrapolate data for dust tracking in case of an experimental accident simulation in a nuclear fusion plant.

    PubMed

    Camplani, M; Malizia, A; Gelfusa, M; Barbato, F; Antonelli, L; Poggi, L A; Ciparisse, J F; Salgado, L; Richetta, M; Gaudio, P

    2016-01-01

    In this paper, a preliminary shadowgraph-based analysis of dust particles re-suspension due to loss of vacuum accident (LOVA) in ITER-like nuclear fusion reactors has been presented. Dust particles are produced through different mechanisms in nuclear fusion devices, one of the main issues is that dust particles are capable of being re-suspended in case of events such as LOVA. Shadowgraph is based on an expanded collimated beam of light emitted by a laser or a lamp that emits light transversely compared to the flow field direction. In the STARDUST facility, the dust moves in the flow, and it causes variations of refractive index that can be detected by using a CCD camera. The STARDUST fast camera setup allows to detect and to track dust particles moving in the vessel and then to obtain information about the velocity field of dust mobilized. In particular, the acquired images are processed such that per each frame the moving dust particles are detected by applying a background subtraction technique based on the mixture of Gaussian algorithm. The obtained foreground masks are eventually filtered with morphological operations. Finally, a multi-object tracking algorithm is used to track the detected particles along the experiment. For each particle, a Kalman filter-based tracker is applied; the particles dynamic is described by taking into account position, velocity, and acceleration as state variable. The results demonstrate that it is possible to obtain dust particles' velocity field during LOVA by automatically processing the data obtained with the shadowgraph approach.

  4. Image computing techniques to extrapolate data for dust tracking in case of an experimental accident simulation in a nuclear fusion plant

    NASA Astrophysics Data System (ADS)

    Camplani, M.; Malizia, A.; Gelfusa, M.; Barbato, F.; Antonelli, L.; Poggi, L. A.; Ciparisse, J. F.; Salgado, L.; Richetta, M.; Gaudio, P.

    2016-01-01

    In this paper, a preliminary shadowgraph-based analysis of dust particles re-suspension due to loss of vacuum accident (LOVA) in ITER-like nuclear fusion reactors has been presented. Dust particles are produced through different mechanisms in nuclear fusion devices, one of the main issues is that dust particles are capable of being re-suspended in case of events such as LOVA. Shadowgraph is based on an expanded collimated beam of light emitted by a laser or a lamp that emits light transversely compared to the flow field direction. In the STARDUST facility, the dust moves in the flow, and it causes variations of refractive index that can be detected by using a CCD camera. The STARDUST fast camera setup allows to detect and to track dust particles moving in the vessel and then to obtain information about the velocity field of dust mobilized. In particular, the acquired images are processed such that per each frame the moving dust particles are detected by applying a background subtraction technique based on the mixture of Gaussian algorithm. The obtained foreground masks are eventually filtered with morphological operations. Finally, a multi-object tracking algorithm is used to track the detected particles along the experiment. For each particle, a Kalman filter-based tracker is applied; the particles dynamic is described by taking into account position, velocity, and acceleration as state variable. The results demonstrate that it is possible to obtain dust particles' velocity field during LOVA by automatically processing the data obtained with the shadowgraph approach.

  5. Optical alignment of electrodes on electrical discharge machines

    NASA Technical Reports Server (NTRS)

    Boissevain, A. G.; Nelson, B. W.

    1972-01-01

    Shadowgraph system projects magnified image on screen so that alignment of small electrodes mounted on electrical discharge machines can be corrected and verified. Technique may be adapted to other machine tool equipment where physical contact cannot be made during inspection and access to tool limits conventional runout checking procedures.

  6. Full-scale high-speed ``Edgerton'' retroreflective shadowgraphy of gunshots

    NASA Astrophysics Data System (ADS)

    Settles, Gary

    2005-11-01

    Almost 1/2 century ago, H. E. ``Doc'' Edgerton demonstrated a simple and elegant direct-shadowgraph technique for imaging large-scale events like explosions and gunshots. Only a retroreflective screen, flashlamp illumination, and an ordinary view camera were required. Retroreflective shadowgraphy has seen occasional use since then, but its unique combination of large scale, simplicity and portability has barely been tapped. It functions well in environments hostile to most optical diagnostics, such as full-scale outdoor daylight ballistics and explosives testing. Here, shadowgrams cast upon a 2.4 m square retroreflective screen are imaged by a Photron Fastcam APX-RS digital camera that is capable of megapixel image resolution at 3000 frames/sec up to 250,000 frames/sec at lower resolution. Microsecond frame exposures are used to examine the external ballistics of several firearms, including a high-powered rifle, an AK-47 submachine gun, and several pistols and revolvers. Muzzle blast phenomena and the mechanism of gunpowder residue deposition on the shooter's hands are clearly visualized. In particular, observing the firing of a pistol with and without a silencer (suppressor) suggests that some of the muzzle blast energy is converted by the silencer into supersonic jet noise.

  7. Dielectric recovery mechanism of pressurized carbon dioxide at liquid and supercritical phases

    NASA Astrophysics Data System (ADS)

    Tanoue, Hiroyuki; Furusato, Tomohiro; Imamichi, Takahiro; Ota, Miyuki; Katsuki, Sunao; Akiyama, Hidenori

    2015-09-01

    Estimates of dielectric recovery rates of supercritical (SC) and liquid carbon dioxide (CO2) were derived with focus on highly-repetitive pulsed power switching mediums. Calculated results suggest that recovery time of SC and liquid CO2 are approximately 50 times shorter than that of water and oils. Prior to 10 µs after breakdown, recovery rates in neither SC nor liquid CO2 reached 100%, though the recovery rate in SC CO2 was higher than that of liquid CO2. To examine causes of recovery rate differences, each dielectric recovery process in SC and liquid CO2 was observed by laser shadowgraph technique. These shadowgraph images suggest two factors explaining dielectric recovery rate differences between these medium conditions: 1) thermodynamic property differences between medium conditions, and 2) differences in the low density region recovery mechanism.

  8. Comparision on dynamic behavior of diesel spray and rapeseed oil spray in diesel engine

    NASA Astrophysics Data System (ADS)

    Sapit, Azwan; Azahari Razali, Mohd; Faisal Hushim, Mohd; Jaat, Norrizam; Nizam Mohammad, Akmal; Khalid, Amir

    2017-04-01

    Fuel-air mixing is important process in diesel combustion. It significantly affects the combustion and emission of diesel engine. Biomass fuel has high viscosity and high distillation temperature and may negatively affect the fuel-air mixing process. Thus, study on the spray development and atomization of this type of fuel is important. This study investigates the atomization characteristics and droplet dynamic behaviors of diesel engine spray fuelled by rapeseed oil (RO) and comparison to diesel fuel (GO). Optical observation of RO spray was carried out using shadowgraph photography technique. Single nano-spark photography technique was used to study the characteristics of the spray while dual nano-spark shadowgraph technique was used to study the spray droplet behavior. Using in-house image processing algorithm, the images were processed and the boundary condition of each spray was also studied. The results show that RO has very poor atomization due to the high viscosity nature of the fuel when compared to GO. This is in agreement with the results from spray droplet dynamic behavior studies that shows due to the high viscosity, the RO spray droplets are large in size and travel downward, with very little influence of entrainment effect due to its large kinematic energy.

  9. Upgrades and Modifications of the NASA Ames HFFAF Ballistic Range

    NASA Technical Reports Server (NTRS)

    Bogdanoff, David W.; Wilder, Michael C.; Cornelison, Charles J.; Perez, Alfredo J.

    2017-01-01

    The NASA Ames Hypervelocity Free Flight Aerodynamics Facility ballistic range is described. The various configurations of the shadowgraph stations are presented. This includes the original stations with film and configurations with two different types of digital cameras. Resolution tests for the 3 shadowgraph station configurations are described. The advantages of the digital cameras are discussed, including the immediate availability of the shadowgraphs. The final shadowgraph station configuration is a mix of 26 Nikon cameras and 6 PI-MAX2 cameras. Two types of trigger light sheet stations are described visible and IR. The two gunpowders used for the NASA Ames 6.251.50 light gas guns are presented. These are the Hercules HC-33-FS powder (no longer available) and the St. Marks Powder WC 886 powder. The results from eight proof shots for the two powders are presented. Both muzzle velocities and piston velocities are 5 9 lower for the new St. Marks WC 886 powder than for the old Hercules HC-33-FS powder (no longer available). The experimental and CFD (computational) piston and muzzle velocities are in good agreement. Shadowgraph-reading software that employs template-matching pattern recognition to locate the ballistic-range model is described. Templates are generated from a 3D solid model of the ballistic-range model. The accuracy of the approach is assessed using a set of computer-generated test images.

  10. Effect of Seeding Particles on the Shock Structure of a Supersonic Jet

    NASA Astrophysics Data System (ADS)

    Porta, David; Echeverría, Carlos; Stern, Catalina

    2012-11-01

    The original goal of our work was to measure. With PIV, the velocity field of a supersonic flow produced by the discharge of air through a 4mm cylindrical nozzle. The results were superposed to a shadowgraph and combined with previous density measurements made with a Rayleigh scattering technique. The idea was to see if there were any changes in the flow field, close to the high density areas near the shocks. Shadowgraphs were made with and without seeding particles, (spheres of titanium dioxide). Surprisingly, it was observed that the flow structure with particles was shifted in the direction opposite to the flow with respect to the flow structure obtained without seeds. This result might contradict the belief that the seeding particles do not affect the flow and that the speed of the seeds correspond to the local speed of the flow. We acknowledge support from DGAPA UNAM through project IN117712 and from Facultad de Ciencias UNAM.

  11. Advanced ballistic range technology

    NASA Technical Reports Server (NTRS)

    Yates, Leslie A.

    1993-01-01

    Experimental interferograms, schlieren, and shadowgraphs are used for quantitative and qualitative flow-field studies. These images are created by passing light through a flow field, and the recorded intensity patterns are functions of the phase shift and angular deflection of the light. As part of the grant NCC2-583, techniques and software have been developed for obtaining phase shifts from finite-fringe interferograms and for constructing optical images from Computational Fluid Dynamics (CFD) solutions. During the period from 1 Nov. 1992 - 30 Jun. 1993, research efforts have been concentrated in improving these techniques.

  12. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cifuentes, A.; Departamento de Física Aplicada I, Escuela Técnica Superior de Ingeniería, Universidad del País Vasco UPV/EHU, Alameda Urquijo s/n, 48013 Bilbao; Alvarado, S.

    Here, we present a novel application of the shadowgraph technique for obtaining the thermal diffusivity of an opaque solid sample, inspired by the orthogonal skimming photothermal beam deflection technique. This new variant utilizes the shadow projected by the sample when put against a collimated light source. The sample is then heated periodically by another light beam, giving rise to thermal waves, which propagate across it and through its surroundings. Changes in the refractive index of the surrounding media due to the heating distort the shadow. This phenomenon is recorded and lock-in amplified in order to determine the sample's thermal diffusivity.

  13. Power Supply For 25-Watt Arc Lamp

    NASA Technical Reports Server (NTRS)

    Leighty, B. D.

    1985-01-01

    Dual-voltage circuitry both strikes and maintains arc. New power supply designed (and several units already in use) that replaces relay/choke combination with solid-state starter. New power supply consists of two main sections. First section (low voltage power supply section) is 84-volt directcurrent supply. Second section (high-voltage starter circuit) is CockroftWalton voltage multiplier. Used as light sources for schlieren, shadowgraph, and other flow-visualization techniques.

  14. Qualitative flow visualization of flame attachment on slopes

    Treesearch

    Torben P. Grumstrup; Sara S. McAllister; Mark A. Finney

    2017-01-01

    Heating of unburned fuel by attached flames and plume of a wildfire can produce high spread rates that have resulted in firefighter fatalities worldwide. Qualitative flow fields of the plume of a gas burner embedded in a table tilted to 0°, 10°, 20°, and 30° above horizontal were imaged using the retroreflective shadowgraph technique as a means to understand plume...

  15. Flow visualization techniques in the Airborne Laser Laboratory program

    NASA Technical Reports Server (NTRS)

    Walterick, R. E.; Vankuren, J. T.

    1980-01-01

    A turret/fairing assembly for laser applications was designed and tested. Wind tunnel testing was conducted using flow visualization techniques. The techniques used have included the methods of tufting, encapsulated liquid crystals, oil flow, sublimation and schlieren and shadowgraph photography. The results were directly applied to the design of fairing shapes for minimum drag and reduced turret buffet. In addition, the results are of primary importance to the study of light propagation paths in the near flow field of the turret cavity. Results indicate that the flow in the vicinity of the turret is an important factor for consideration in the design of suitable turret/fairing or aero-optic assemblies.

  16. Front lighted optical tooling method and apparatus

    DOEpatents

    Stone, William J.

    1985-06-18

    An optical tooling method and apparatus uses a front lighted shadowgraphic technique to enhance visual contrast of reflected light. The apparatus includes an optical assembly including a fiducial mark, such as cross hairs, reflecting polarized light with a first polarization, a polarizing element backing the fiducial mark and a reflective surface backing the polarizing element for reflecting polarized light bypassing the fiducial mark and traveling through the polarizing element. The light reflected by the reflecting surface is directed through a second pass of the polarizing element toward the frontal direction with a polarization differing from the polarization of the light reflected by the fiducial mark. When used as a tooling target, the optical assembly may be mounted directly to a reference surface or may be secured in a mounting, such as a magnetic mounting. The optical assembly may also be mounted in a plane defining structure and used as a spherometer in conjunction with an optical depth measuring instrument. A method of measuring a radius of curvature of an unknown surface includes positioning the spherometer on a surface between the surface and a depth measuring optical instrument. As the spherometer is frontally illuminated, the distance from the depth measuring instrument to the fiducial mark and the underlying surface are alternately measured and the difference in these measurements is used as the sagittal height to calculate a radius of curvature.

  17. Shadowgraphs of air flow over prospective space shuttle configurations at Mach numbers from 0.8 to 1.4

    NASA Technical Reports Server (NTRS)

    Dods, J. B., Jr.; Hanly, R. D.; Efting, J. H.

    1975-01-01

    Shadowgraphs of five space shuttle launch configurations are presented. The model was a 4 percent-scale space shuttle vehicle, tested in the 11- by 11-foot Transonic Wind Tunnel at Ames Research Center. The Mach number was varied from 0.8 to 1.4 with three angles of sideslip (0 deg, 5 deg and -5 deg) that were used in conjunction with three angles of attack (4 deg, -4 deg, and 0 deg). The model configurations included both series-burn and parallel-burn configurations, two canopy configurations, two positions of the orbiter nose relative to the HO tank nose, and two HO tank nose-cones angles (15 deg and 20 deg). The data consist entirely of shadowgraph photographs.

  18. The Dynamics of Agglomerated Ferrofluid in Steady and Pulsatile Flows

    NASA Astrophysics Data System (ADS)

    Williams, Alicia; Stewart, Kelley; Vlachos, Pavlos

    2007-11-01

    Magnetic Drug Targeting (MDT) is a promising technique to deliver medication via functionalized magnetic particles to target sites in the treatment of diseases. In this work, the physics of steady and pulsatile flows laden with superparamagnetic nanoparticles in a square channel under the influence of a magnetic field induced by a 0.6 Tesla permanent magnet is studied. Herein, the dynamics of ferrofluid shedding from an initially accumulated mass in water are examined through shadowgraph imaging using two orthogonal cameras. Fundamental differences in the ferrofluid behavior occur between the steady and pulsatile flow cases, as expected. For steady flows, vortex ring shedding is visualized from the mass, and periodic shedding occurs only for moderate mass sizes where the shear forces in the flow interact with the magnetic forces. At Reynolds numbers below 500 with pulsatile flow, suction and roll up of the ferrofluid is seen during the low and moderate periods of flow, followed by the ejection of ferrofluid during high flow. These shadowgraphs illustrate the beauty and richness of ferrofluid dynamics, an understanding of which is instrumental to furthering MDT as an effective drug delivery device.

  19. Columnar Transitions in Microscale Evaporating Liquid Jets

    NASA Astrophysics Data System (ADS)

    Hunter, Hanif; Glezer, Ari

    2007-11-01

    Microscale evaporating liquid jets that are injected into a quiescent gaseous medium having adjustable ambient pressure are investigated over a range of jet speeds using a shadowgraph technique. The jets are formed by a laser-drilled 10 μm nozzle from a small-scale pressurized reservoir, and sub-atmospheric ambient pressure is maintained using a controllable, metered Venturi pump. The near-field jet features are captured by shadowgraph imaging using a pulsed ND-Yag laser and a 12 bit CCD camera where the field of view measured 200 μm on the side. As the ambient pressure is reduced, the jet column undergoes a series of spectacular transitions that are first marked by the appearance of vapor bubbles within the jet column. The transitions progress from columnar instabilities to series of column bifurcations to high-order branching and film formation and culminate in conical atomization of the jet column. In addition to the effects of the ambient pressure, the present investigation also considers effects of the liquid surface tension and vapor pressure on the onset, evolution, and hysteresis of the columnar transitions.

  20. Experimental investigation of shock-cell noise reduction for dual-stream nozzles in simulated flight comprehensive data report. Volume 2: Laser velocimeter data, static pressures and shadowgraph photos

    NASA Technical Reports Server (NTRS)

    Yamamoto, K.; Janardan, B. A.; Brausch, J. F.; Hoerst, D. J.; Price, A. O.

    1984-01-01

    Parameters which contribute to supersonic jet shock noise were investigated for the purpose of determining means to reduce such noise generation to acceptable levels. Six dual-stream test nozzles with varying flow passage and plug closure designs were evaluated under simulated flight conditions in an anechoic chamber. All nozzles had combined convergent-divergent or convergent flow passages. Mean velocity and turbulence velocity measurements of 25 selected flow conditions were performed employing a laser Doppler velocimeter. Static pressure measurements were made to define the actual convergence-divergence condition. Test point definition, tabulation of aerodynamic test conditions, velocity histograms, and shadowgraph photographs are presented. Flow visualization through shadowgraph photography can contribute to the development of an analytical prediction model for shock noise from coannular plug nozzles.

  1. Modelling and shadowgraph imaging of cocrystal dissolution and assessment of in vitro antimicrobial activity for sulfadimidine/4-aminosalicylic acid cocrystals.

    PubMed

    Serrano, Dolores R; Persoons, Tim; D'Arcy, Deirdre M; Galiana, Carolina; Dea-Ayuela, Maria Auxiliadora; Healy, Anne Marie

    2016-06-30

    The aim of this work was to evaluate the influence of crystal habit on the dissolution and in vitro antibacterial and anitiprotozoal activity of sulfadimidine:4-aminosalicylic acid cocrystals. Cocrystals were produced via milling or solvent mediated processes. In vitro dissolution was carried out in the flow-through apparatus, with shadowgraph imaging and mechanistic mathematical models used to observe and simulate particle dissolution. In vitro activity was tested using agar diffusion assays. Cocrystallisation via milling produced small polyhedral crystals with antimicrobial activity significantly higher than sulfadimidine alone, consistent with a fast dissolution rate which was matched only by cocrystals which were milled following solvent evaporation. Cocrystallisation by solvent evaporation (ethanol, acetone) or spray drying produced flattened, plate-like or quasi-spherical cocrystals, respectively, with more hydrophobic surfaces and greater tendency to form aggregates in aqueous media, limiting both the dissolution rate and in vitro activity. Deviation from predicted dissolution profiles was attributable to aggregation behaviour, supported by observations from shadowgraph imaging. Aggregation behaviour during dissolution of cocrystals with different habits affected the dissolution rate, consistent with in vitro activity. Combining mechanistic models with shadowgraph imaging is a valuable approach for dissolution process analysis. Copyright © 2016 Elsevier B.V. All rights reserved.

  2. Scanning Mode Sensor for Detection of Flow Inhomogeneities

    NASA Technical Reports Server (NTRS)

    Adamovsky, Grigory (Inventor)

    1998-01-01

    A scanning mode sensor and method is provided for detection of flow inhomogeneities such as shock. The field of use of this invention is ground test control and engine control during supersonic flight. Prior art measuring techniques include interferometry. Schlieren, and shadowgraph techniques. These techniques. however, have problems with light dissipation. The present method and sensor utilizes a pencil beam of energy which is passed through a transparent aperture in a flow inlet in a time-sequential manner so as to alter the energy beam. The altered beam or its effects are processed and can be studied to reveal information about flow through the inlet which can in turn be used for engine control.

  3. Scanning Mode Sensor for Detection of Flow Inhomogeneities

    NASA Technical Reports Server (NTRS)

    Adamovsky, Grigory (Inventor)

    1996-01-01

    A scanning mode sensor and method is provided for detection of flow inhomogeneities such as shock. The field of use of this invention is ground test control and engine control during supersonic flight. Prior art measuring techniques include interferometry, Schlieren, and shadowgraph techniques. These techniques, however, have problems with light dissipation. The present method and sensor utilizes a pencil beam of energy which is passed through a transparent aperture in a flow inlet in a time-sequential manner so as to alter the energy beam. The altered beam or its effects are processed and can be studied to reveal information about flow through the inlet which can in turn be used for engine control.

  4. An Experimental Investigation of Fluid Flow and Heating in Various Resonance Tube Modes

    NASA Technical Reports Server (NTRS)

    Sarohia, V.; Back, L. H.; Roschke, E. J.; Pathasarathy, S. P.

    1976-01-01

    Experiments have been performed to study resonance phenomena in tubes excited by underexpanded jet flows. This investigation comprised the following: Study of the various resonance tube modes under a wide range of nozzle pressure, spacing between nozzle and tube mouth, and different tube length; the effects of these modes on the endwall pressure and gas temperature; flow visualization of both jet and tube flows by spark shadowgraph technique; and measurement of wave speed inside the tube by the laser-schlieren techniques. An extensive study of the free-jet flow was undertaken to explain important aspects of various modes of operation of resonance tube flows.

  5. Compressible Vortex Ring

    NASA Astrophysics Data System (ADS)

    Elavarasan, Ramasamy; Arakeri, Jayawant; Krothapalli, Anjaneyulu

    1999-11-01

    The interaction of a high-speed vortex ring with a shock wave is one of the fundamental issues as it is a source of sound in supersonic jets. The complex flow field induced by the vortex alters the propagation of the shock wave greatly. In order to understand the process, a compressible vortex ring is studied in detail using Particle Image Velocimetry (PIV) and shadowgraphic techniques. The high-speed vortex ring is generated from a shock tube and the shock wave, which precedes the vortex, is reflected back by a plate and made to interact with the vortex. The shadowgraph images indicate that the reflected shock front is influenced by the non-uniform flow induced by the vortex and is decelerated while passing through the vortex. It appears that after the interaction the shock is "split" into two. The PIV measurements provided clear picture about the evolution of the vortex at different time interval. The centerline velocity traces show the maximum velocity to be around 350 m/s. The velocity field, unlike in incompressible rings, contains contributions from both the shock and the vortex ring. The velocity distribution across the vortex core, core diameter and circulation are also calculated from the PIV data.

  6. Ultralow-dose, feedback imaging with laser-Compton X-ray and laser-Compton gamma ray sources

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Barty, Christopher P. J.

    Ultralow-dose, x-ray or gamma-ray imaging is based on fast, electronic control of the output of a laser-Compton x-ray or gamma-ray source (LCXS or LCGS). X-ray or gamma-ray shadowgraphs are constructed one (or a few) pixel(s) at a time by monitoring the LCXS or LCGS beam energy required at each pixel of the object to achieve a threshold level of detectability at the detector. An example provides that once the threshold for detection is reached, an electronic or optical signal is sent to the LCXS/LCGS that enables a fast optical switch that diverts, either in space or time the laser pulsesmore » used to create Compton photons. In this way, one prevents the object from being exposed to any further Compton x-rays or gamma-rays until either the laser-Compton beam or the object are moved so that a new pixel location may be illumination.« less

  7. Extended volume and surface scatterometer for optical characterization of 3D-printed elements

    NASA Astrophysics Data System (ADS)

    Dannenberg, Florian; Uebeler, Denise; Weiß, Jürgen; Pescoller, Lukas; Weyer, Cornelia; Hahlweg, Cornelius

    2015-09-01

    The use of 3d printing technology seems to be a promising way for low cost prototyping, not only of mechanical, but also of optical components or systems. It is especially useful in applications where customized equipment repeatedly is subject to immediate destruction, as in experimental detonics and the like. Due to the nature of the 3D-printing process, there is a certain inner texture and therefore inhomogeneous optical behaviour to be taken into account, which also indicates mechanical anisotropy. Recent investigations are dedicated to quantification of optical properties of such printed bodies and derivation of corresponding optimization strategies for the printing process. Beside mounting, alignment and illumination means, also refractive and reflective elements are subject to investigation. The proposed measurement methods are based on an imaging nearfield scatterometer for combined volume and surface scatter measurements as proposed in previous papers. In continuation of last year's paper on the use of near field imaging, which basically is a reflective shadowgraph method, for characterization of glossy surfaces like printed matter or laminated material, further developments are discussed. The device has been extended for observation of photoelasticity effects and therefore homogeneity of polarization behaviour. A refined experimental set-up is introduced. Variation of plane of focus and incident angle are used for separation of various the images of the layers of the surface under test, cross and parallel polarization techniques are applied. Practical examples from current research studies are included.

  8. Laser excited atomic fluorescence spectrometry as a powerful tool for analytical applications and spectroscopic studies

    NASA Astrophysics Data System (ADS)

    Gornushkin, Igor B.

    1997-12-01

    Laser-excited atomic fluorescence spectrometry (LEAFS) with a novel diffusive tube electrothermal atomizer (ETA) has been used for the study of atomization and diffusion processes and for the direct trace analysis of complex matrices. A novel ETA was a graphite tube sealed by two graphite electrodes. A sample was introduced into the tube and the furnace assembly was heated. The vaporized sample diffused through the hot graphite and the atomic fraction of the vapor was excited by a tunable dye laser above the tube. Temporal behavior of atomic fluorescence of Cu, Ag, and Ni atoms, diffused through the furnace tube, was studied at different temperatures; the values for activation energies and diffusion coefficients were derived on the basis of the diffusion/vaporization kinetic model. The femtogram/nanogram concentrations of silver were determined in coastal Atlantic water and soil samples. Use of the new ETA resulted in significant reduction of matrix interferences, ultra-low limits of detection, good accuracy and precision. LEAFS coupled with laser ablation (LA) was studied in terms of its analytical and spectroscopic potential. Low concentrations of lead (0.15 ppm-750 ppm) in metallic matrices (copper, brass, steel, and zinc) were measured in a low pressure argon atmosphere. No matrix effect was observed, providing a universal calibration curve for all samples. A limit of detection of 22 ppb (0.5 fg) was achieved. Also, the lifetime of the metastable 6p21D level of lead was measured and found to be in good agreement with the literature data. A simple open-air LA-LEAFS system was used for the determination of cobalt in solid matrices (graphite, soil, and steel). The fluorescence of cobalt was excited from a level which was already populated in the ablation plasma and was monitored at the Stokes-shifted wavelength. Detection limits in the ppb to ppm range and linearity over four orders of magnitude were achieved. The resonance shadowgraph technique has been developed for time-resolved imaging of laser-produced plasmas. The shadowgraphs were obtained by igniting the plasma on the lead or tin surface and by illuminating the plasma by a laser tuned in resonance with a strong atomic transition. UV-photodecomposition of lead and tin clusters was visualized. The evolution of the plasmas was studied at different pressures of argon. A shock wave produced by the laser ablation was monitored and its speed was measured.

  9. Jet noise suppression by porous plug nozzles

    NASA Technical Reports Server (NTRS)

    Bauer, A. B.; Kibens, V.; Wlezien, R. W.

    1982-01-01

    Jet noise suppression data presented earlier by Maestrello for porous plug nozzles were supplemented by the testing of a family of nozzles having an equivalent throat diameter of 11.77 cm. Two circular reference nozzles and eight plug nozzles having radius ratios of either 0.53 or 0.80 were tested at total pressure ratios of 1.60 to 4.00. Data were taken both with and without a forward motion or coannular flow jet, and some tests were made with a heated jet. Jet thrust was measured. The data were analyzed to show the effects of suppressor geometry on nozzle propulsive efficiency and jet noise. Aerodynamic testing of the nozzles was carried out in order to study the physical features that lead to the noise suppression. The aerodynamic flow phenomena were examined by the use of high speed shadowgraph cinematography, still shadowgraphs, extensive static pressure probe measurements, and two component laser Doppler velocimeter studies. The different measurement techniques correlated well with each other and demonstrated that the porous plug changes the shock cell structure of a standard nozzle into a series of smaller, periodic cell structures without strong shock waves. These structures become smaller in dimension and have reduced pressure variations as either the plug diameter or the porosity is increased, changes that also reduce the jet noise and decrease thrust efficiency.

  10. State and parameter estimation of spatiotemporally chaotic systems illustrated by an application to Rayleigh-Bénard convection.

    PubMed

    Cornick, Matthew; Hunt, Brian; Ott, Edward; Kurtuldu, Huseyin; Schatz, Michael F

    2009-03-01

    Data assimilation refers to the process of estimating a system's state from a time series of measurements (which may be noisy or incomplete) in conjunction with a model for the system's time evolution. Here we demonstrate the applicability of a recently developed data assimilation method, the local ensemble transform Kalman filter, to nonlinear, high-dimensional, spatiotemporally chaotic flows in Rayleigh-Bénard convection experiments. Using this technique we are able to extract the full temperature and velocity fields from a time series of shadowgraph measurements. In addition, we describe extensions of the algorithm for estimating model parameters. Our results suggest the potential usefulness of our data assimilation technique to a broad class of experimental situations exhibiting spatiotemporal chaos.

  11. Study of interfaces in an Axisymmetric Supersonic Jet using Background Oriented Schlieren (BOS)

    NASA Astrophysics Data System (ADS)

    Echeverría, Carlos; Porta, David; Aguayo, Alejandro; Cardoso, Hiroki; Stern, Catalina

    2014-11-01

    We have used several techniques to study a small axisymmetric supersonic jet: Rayleigh scattering, Schlieren Toepler and PIV. Each technique gives different kind of information. In this paper, a BOS set-up is used to study the structure of the shock pattern. A shadowgraph of a dot matrix is obtained with and without a flow. The displacement field of the dots is related to changes in the index of refraction, which can be related, through the Gladstone-Dale equation, to changes in density. Previous results with this technique were not conclusive because of the relative size of the dots compared to the diameter of the nozzle. Measurements have been taken for three different exit speeds. We acknowledge support from UNAM through DGAPA PAPIIT IN117712 and the Graduate Program in Mechanical Engineering.

  12. Ultrashort electron pulses as a four-dimensional diagnosis of plasma dynamics.

    PubMed

    Zhu, P F; Zhang, Z C; Chen, L; Li, R Z; Li, J J; Wang, X; Cao, J M; Sheng, Z M; Zhang, J

    2010-10-01

    We report an ultrafast electron imaging system for real-time examination of ultrafast plasma dynamics in four dimensions. It consists of a femtosecond pulsed electron gun and a two-dimensional single electron detector. The device has an unprecedented capability of acquiring a high-quality shadowgraph image with a single ultrashort electron pulse, thus permitting the measurement of irreversible processes using a single-shot scheme. In a prototype experiment of laser-induced plasma of a metal target under moderate pump intensity, we demonstrated its unique capability of acquiring high-quality shadowgraph images on a micron scale with a-few-picosecond time resolution.

  13. High speed digital holographic interferometry for hypersonic flow visualization

    NASA Astrophysics Data System (ADS)

    Hegde, G. M.; Jagdeesh, G.; Reddy, K. P. J.

    2013-06-01

    Optical imaging techniques have played a major role in understanding the flow dynamics of varieties of fluid flows, particularly in the study of hypersonic flows. Schlieren and shadowgraph techniques have been the flow diagnostic tools for the investigation of compressible flows since more than a century. However these techniques provide only the qualitative information about the flow field. Other optical techniques such as holographic interferometry and laser induced fluorescence (LIF) have been used extensively for extracting quantitative information about the high speed flows. In this paper we present the application of digital holographic interferometry (DHI) technique integrated with short duration hypersonic shock tunnel facility having 1 ms test time, for quantitative flow visualization. Dynamics of the flow fields in hypersonic/supersonic speeds around different test models is visualized with DHI using a high-speed digital camera (0.2 million fps). These visualization results are compared with schlieren visualization and CFD simulation results. Fringe analysis is carried out to estimate the density of the flow field.

  14. Experimental Study of a Pulse Detonation Engine Driven Ejector

    NASA Technical Reports Server (NTRS)

    Santoro, Robert J.; Pal, Sibtosh; Shehadeh, R.; Saretto, S.; Lee, S.-Y.

    2005-01-01

    Results of an experimental effort on pulse detonation driven ejectors are presented and discussed. The experiments were conducted using a pulse detonation engine (PDE)/ejector setup that was specifically designed for the study. The results of various experiments designed to probe different aspects of the PDE/ejector setup are reported. The baseline PDE was operated using ethylene (C2H4) as the fuel and an oxygen/nitrogen (O2 + N2) mixture at an equivalence ratio of one. The PDE only experiments included propellant mixture characterization using a laser absorption technique, high fidelity thrust measurements using an integrated spring-damper system, and shadowgraph imaging of the detonation/shock wave structure emanating from the tube. The baseline PDE thrust measurement results are in excellent agreement with experimental and modeling results reported in the literature. These PDE setup results were then used as a basis for quantifying thrust augmentation for various PDE/ejector setups with constant diameter ejector tubes and various detonation tube/ejector tube overlap distances. The results show that for the geometries studied here, a maximum thrust augmentation of 24% is achieved. Further increases are possible by tailoring the ejector geometry based on CFD predictions conducted elsewhere. The thrust augmentation results are complemented by shadowgraph imaging of the flowfield in the ejector tube inlet area and high frequency pressure transducer measurements along the length of the ejector tube.

  15. Diffraction analysis of customized illumination technique

    NASA Astrophysics Data System (ADS)

    Lim, Chang-Moon; Kim, Seo-Min; Eom, Tae-Seung; Moon, Seung Chan; Shin, Ki S.

    2004-05-01

    Various enhancement techniques such as alternating PSM, chrome-less phase lithography, double exposure, etc. have been considered as driving forces to lead the production k1 factor towards below 0.35. Among them, a layer specific optimization of illumination mode, so-called customized illumination technique receives deep attentions from lithographers recently. A new approach for illumination customization based on diffraction spectrum analysis is suggested in this paper. Illumination pupil is divided into various diffraction domains by comparing the similarity of the confined diffraction spectrum. Singular imaging property of individual diffraction domain makes it easier to build and understand the customized illumination shape. By comparing the goodness of image in each domain, it was possible to achieve the customized shape of illumination. With the help from this technique, it was found that the layout change would not gives the change in the shape of customized illumination mode.

  16. Operational flow visualization techniques in the Langley Unitary Plan Wind Tunnel

    NASA Technical Reports Server (NTRS)

    Corlett, W. A.

    1982-01-01

    The unitary plan wind tunnel (UPWT) uses in daily operation are shown. New ideas for improving the quality of established flow visualization methods are developed and programs on promising new flow visualization techniques are pursued. The unitary plan wind tunnel is a supersonic facility, referred to as a production facility, although the majority of tests are inhouse basic research investigations. The facility has two 4 ft. by 4 ft. test sections which span a Mach range from 1.5 to 4.6. The cost of operation is about $10 per minute. Problems are the time required for a flow visualization test setup and investigation costs and the ability to obtain consistently repeatable results. Examples of sublimation, vapor screen, oil flow, minitufts, schlieren, and shadowgraphs taken in UPWT are presented. All tests in UPWT employ one or more of the flow visualization techniques.

  17. Enhancing multi-spot structured illumination microscopy with fluorescence difference

    NASA Astrophysics Data System (ADS)

    Ward, Edward N.; Torkelsen, Frida H.; Pal, Robert

    2018-03-01

    Structured illumination microscopy is a super-resolution technique used extensively in biological research. However, this technique is limited in the maximum possible resolution increase. Here we report the results of simulations of a novel enhanced multi-spot structured illumination technique. This method combines the super-resolution technique of difference microscopy with structured illumination deconvolution. Initial results give at minimum a 1.4-fold increase in resolution over conventional structured illumination in a low-noise environment. This new technique also has the potential to be expanded to further enhance axial resolution with three-dimensional difference microscopy. The requirement for precise pattern determination in this technique also led to the development of a new pattern estimation algorithm which proved more efficient and reliable than other methods tested.

  18. Enhancing multi-spot structured illumination microscopy with fluorescence difference

    PubMed Central

    Torkelsen, Frida H.

    2018-01-01

    Structured illumination microscopy is a super-resolution technique used extensively in biological research. However, this technique is limited in the maximum possible resolution increase. Here we report the results of simulations of a novel enhanced multi-spot structured illumination technique. This method combines the super-resolution technique of difference microscopy with structured illumination deconvolution. Initial results give at minimum a 1.4-fold increase in resolution over conventional structured illumination in a low-noise environment. This new technique also has the potential to be expanded to further enhance axial resolution with three-dimensional difference microscopy. The requirement for precise pattern determination in this technique also led to the development of a new pattern estimation algorithm which proved more efficient and reliable than other methods tested. PMID:29657751

  19. Comparison of femtosecond laser ablation of aluminum in water and in air by time-resolved optical diagnosis.

    PubMed

    Hu, Haofeng; Liu, Tiegen; Zhai, Hongchen

    2015-01-26

    The dynamic process of material ejection and shock wave evolution during one single femtosecond laser pulse ablation of aluminum target in water and air is experimentally investigated by employing pump-probe technique. Shadowgraphs and digital holograms with high temporal resolution are recorded, which intuitively reveal the characteristics of femtosecond laser ablation in the water-confined environment. The experimental result indicates that the liquid significantly restrict the diffusion of the ejected material, and it has a considerable effect on the attenuation of the shock wave. In addition, the expansion Mach wave generated by the ultrasonic expansion of the shock wave is observed.

  20. Shock waves generated by sudden expansions of a water jet

    NASA Astrophysics Data System (ADS)

    Salinas-Vázquez, M.; Echeverría, C.; Porta, D.; Stern, C. E.; Ascanio, G.; Vicente, W.; Aguayo, J. P.

    2018-07-01

    Direct shadowgraph with parallel light combined with high-speed recording has been used to analyze the water jet of a cutting machine. The use of image processing allowed observing sudden expansions in the jet diameter as well as estimating the jet velocity by means of the Mach angle, obtaining velocities of about 500 m s^{-1}. The technique used here revealed the development of hydrodynamic instabilities in the jet. Additionally, this is the first reporting of the onset of shock waves generated by small fluctuations of a continuous flow of water at high velocity surrounded by air, a result confirmed by a transient computational fluid dynamics simulation.

  1. A comparative study on preprocessing techniques in diabetic retinopathy retinal images: illumination correction and contrast enhancement.

    PubMed

    Rasta, Seyed Hossein; Partovi, Mahsa Eisazadeh; Seyedarabi, Hadi; Javadzadeh, Alireza

    2015-01-01

    To investigate the effect of preprocessing techniques including contrast enhancement and illumination correction on retinal image quality, a comparative study was carried out. We studied and implemented a few illumination correction and contrast enhancement techniques on color retinal images to find out the best technique for optimum image enhancement. To compare and choose the best illumination correction technique we analyzed the corrected red and green components of color retinal images statistically and visually. The two contrast enhancement techniques were analyzed using a vessel segmentation algorithm by calculating the sensitivity and specificity. The statistical evaluation of the illumination correction techniques were carried out by calculating the coefficients of variation. The dividing method using the median filter to estimate background illumination showed the lowest Coefficients of variations in the red component. The quotient and homomorphic filtering methods after the dividing method presented good results based on their low Coefficients of variations. The contrast limited adaptive histogram equalization increased the sensitivity of the vessel segmentation algorithm up to 5% in the same amount of accuracy. The contrast limited adaptive histogram equalization technique has a higher sensitivity than the polynomial transformation operator as a contrast enhancement technique for vessel segmentation. Three techniques including the dividing method using the median filter to estimate background, quotient based and homomorphic filtering were found as the effective illumination correction techniques based on a statistical evaluation. Applying the local contrast enhancement technique, such as CLAHE, for fundus images presented good potentials in enhancing the vasculature segmentation.

  2. Advanced ballistic range technology

    NASA Technical Reports Server (NTRS)

    Yates, Leslie A.

    1993-01-01

    Optical images, such as experimental interferograms, schlieren, and shadowgraphs, are routinely used to identify and locate features in experimental flow fields and for validating computational fluid dynamics (CFD) codes. Interferograms can also be used for comparing experimental and computed integrated densities. By constructing these optical images from flow-field simulations, one-to-one comparisons of computation and experiment are possible. During the period from February 1, 1992, to November 30, 1992, work has continued on the development of CISS (Constructed Interferograms, Schlieren, and Shadowgraphs), a code that constructs images from ideal- and real-gas flow-field simulations. In addition, research connected with the automated film-reading system and the proposed reactivation of the radiation facility has continued.

  3. Interferograms, schlieren, and shadowgraphs constructed from real- and ideal-gas, two- and three-dimensional computed flowfields

    NASA Technical Reports Server (NTRS)

    Yates, Leslie A.

    1993-01-01

    The construction of interferograms, schlieren, and shadowgraphs from computed flowfield solutions permits one-to-one comparisons of computed and experimental results. A method of constructing these images from both ideal- and real-gas, two and three-dimensional computed flowfields is described. The computational grids can be structured or unstructured, and multiple grids are an option. Constructed images are shown for several types of computed flows including nozzle, wake, and reacting flows; comparisons to experimental images are also shown. In addition, th sensitivity of these images to errors in the flowfield solution is demonstrated, and the constructed images can be used to identify problem areas in the computations.

  4. Interferograms, Schlieren, and Shadowgraphs Constructed from Real- and Ideal-Gas, Two- and Three-Dimensional Computed Flowfields

    NASA Technical Reports Server (NTRS)

    Yates, Leslie A.

    1992-01-01

    The construction of interferograms, schlieren, and shadowgraphs from computed flowfield solutions permits one-to-one comparisons of computed and experimental results. A method for constructing these images from both ideal- and real-gas, two- and three-dimensional computed flowfields is described. The computational grids can be structured or unstructured, and multiple grids are an option. Constructed images are shown for several types of computed flows including nozzle, wake, and reacting flows; comparisons to experimental images are also shown. In addition, the sensitivity of these images to errors in the flowfield solution is demonstrated, and the constructed images can be used to identify problem areas in the computations.

  5. A Comparative Study on Preprocessing Techniques in Diabetic Retinopathy Retinal Images: Illumination Correction and Contrast Enhancement

    PubMed Central

    Rasta, Seyed Hossein; Partovi, Mahsa Eisazadeh; Seyedarabi, Hadi; Javadzadeh, Alireza

    2015-01-01

    To investigate the effect of preprocessing techniques including contrast enhancement and illumination correction on retinal image quality, a comparative study was carried out. We studied and implemented a few illumination correction and contrast enhancement techniques on color retinal images to find out the best technique for optimum image enhancement. To compare and choose the best illumination correction technique we analyzed the corrected red and green components of color retinal images statistically and visually. The two contrast enhancement techniques were analyzed using a vessel segmentation algorithm by calculating the sensitivity and specificity. The statistical evaluation of the illumination correction techniques were carried out by calculating the coefficients of variation. The dividing method using the median filter to estimate background illumination showed the lowest Coefficients of variations in the red component. The quotient and homomorphic filtering methods after the dividing method presented good results based on their low Coefficients of variations. The contrast limited adaptive histogram equalization increased the sensitivity of the vessel segmentation algorithm up to 5% in the same amount of accuracy. The contrast limited adaptive histogram equalization technique has a higher sensitivity than the polynomial transformation operator as a contrast enhancement technique for vessel segmentation. Three techniques including the dividing method using the median filter to estimate background, quotient based and homomorphic filtering were found as the effective illumination correction techniques based on a statistical evaluation. Applying the local contrast enhancement technique, such as CLAHE, for fundus images presented good potentials in enhancing the vasculature segmentation. PMID:25709940

  6. Thrust Augmentation Measurements Using a Pulse Detonation Engine Ejector

    NASA Technical Reports Server (NTRS)

    Santoro, Robert J.; Pal, Sibtosh

    2005-01-01

    Results of an experimental effort on pulse detonation driven ejectors are presented and discussed. The experiments were conducted using a pulse detonation engine (PDE)/ejector setup that was specifically designed for the study and operated at frequencies up to 50 Hz. The results of various experiments designed to probe different aspects of the PDE/ejector setup are reported. The baseline PDE was operated using ethylene (C2H4) as the fuel and an oxygen/nitrogen O2 + N2) mixture at an equivalence ratio of one. The PDE only experiments included propellant mixture characterization using a laser absorption technique, high fidelity thrust measurements using an integrated spring-damper system, and shadowgraph imaging of the detonation/shock wave structure emanating from the tube. The baseline PDE thrust measurement results at each desired frequency agree with experimental and modeling results reported in the literature. These PDE setup results were then used as a basis for quantifying thrust augmentation for various PDE/ejector setups with constant diameter ejector tubes and various ejector lengths, the radius of curvature for the ejector inlets and various detonation tube/ejector tube overlap distances. For the studied experimental matrix, the results showed a maximum thrust augmentation of 106% at an operational frequency of 30 Hz. The thrust augmentation results are complemented by shadowgraph imaging of the flowfield in the ejector tube inlet area and high frequency pressure transducer measurements along the length of the ejector tube.

  7. Sub- and supercritical jet disintegration

    NASA Astrophysics Data System (ADS)

    DeSouza, Shaun; Segal, Corin

    2017-04-01

    Shadowgraph visualization and Planar Laser Induced Fluorescence (PLIF) are applied to single orifice injection in the same facility and same fluid conditions to analyze sub- to supercritical jet disintegration and mixing. The comparison includes jet disintegration and lateral spreading angle. The results indicate that the shadowgraph data are in agreement with previous visualization studies but differ from the PLIF results that provided quantitative measurement of central jet plane density and density gradients. The study further evaluated the effect of thermodynamic conditions on droplet production and quantified droplet size and distribution. The results indicate an increase in the normalized drop diameter and a decrease in the droplet population with increasing chamber temperatures. Droplet size and distribution were found to be independent of chamber pressure.

  8. Electronic Holography with a Broad Spectrum Laser for Time Gated Imaging Through Highly Scattering Media.

    NASA Astrophysics Data System (ADS)

    Shih, Marian Pei-Ling

    The problem of optical imaging through a highly scattering volume diffuser, in particular, biological tissue, has received renewed interest in recent years because of a search for alternative imaging diagnostics in the optical wavelengths for the early detection of human breast cancer. This dissertation discusses the optical imaging of objects obscured by diffusers that contribute an otherwise overwhelming degree of multiple scatter. Many optical imaging techniques are based on the first-arriving light principle. These methods usually combine a transilluminating optical short pulse with a time windowing gate in order to form a flat shadowgraph image of absorbing objects either embedded within or hidden behind a scattering medium. The gate selectively records an image of the first-arriving light, while simultaneously rejecting the later-arriving scattered light. One set of the many implementations of the first -arriving light principle relies on the gating property of holography. This thesis presents several holographic optical gating experiments that demonstrate the role that the temporal coherence function of the illumination source plays in the imaging of all objects with short coherence length holography, with special emphasis on the application to image through diffusers and its resolution capabilities. Previous researchers have already successfully combined electronic holography, holography in which the recording medium is a two dimensional detector array instead of photographic film, with light-in-flight holography into a short coherence length holography method that images through various types of multiply scattering random media, including chicken breast tissue and wax. This thesis reports further experimental exploration of the short coherence holography method for imaging through severely scattering diffusers. There is a study on the effectiveness of spatial filtering of the first-arriving light, as well as a report of the imaging, by means of the short coherence holographic method, of an absorber through a living human hand. This thesis also includes both theoretical analyses and experimental results of a spectral dispersion holography system which, instead of optically synthesizing the broad spectrum illumination source that is used for the short coherence holography method, digitally synthesizes a broad spectrum hologram from a collection of single frequency component holograms. This system has the time gating properties of short coherence length holography, as well as experimentally demonstrated applications for imaging through multiply scattering media.

  9. ARC-2006-ACD06-0177-012

    NASA Image and Video Library

    2006-10-04

    CEV (Crew Escape Vehicle) capsule Balistic Range testing to examine static and dynamic stability characteristics (at the Hypervelocity Free-Flight Facility) HFF - Chuck Cornelison viewing 8x10 shadowgraph images

  10. ARC-2006-ACD06-0177-018

    NASA Image and Video Library

    2006-09-05

    CEV (Crew Escape Vehicle) capsule Balistic Range testing to examine static and dynamic stability characteristics (at the Hypervelocity Free-Flight Facility) HFF - scans of shadowgraphs from 8x10 film images

  11. ARC-2006-ACD06-0177-025

    NASA Image and Video Library

    2006-10-12

    CEV (Crew Escape Vehicle) capsule Balistic Range testing to examine static and dynamic stability characteristics (at the Hypervelocity Free-Flight Facility) HFF - scans of shadowgraphs from 8x10 film images

  12. ARC-2006-ACD06-0177-020

    NASA Image and Video Library

    2006-09-05

    CEV (Crew Escape Vehicle) capsule Balistic Range testing to examine static and dynamic stability characteristics (at the Hypervelocity Free-Flight Facility) HFF - scans of shadowgraphs from 8x10 film images

  13. ARC-2006-ACD06-0177-017

    NASA Image and Video Library

    2006-09-05

    CEV (Crew Escape Vehicle) capsule Balistic Range testing to examine static and dynamic stability characteristics (at the Hypervelocity Free-Flight Facility) HFF - scans of shadowgraphs from 8x10 film images

  14. ARC-2006-ACD06-0177-022

    NASA Image and Video Library

    2006-09-05

    CEV (Crew Escape Vehicle) capsule Balistic Range testing to examine static and dynamic stability characteristics (at the Hypervelocity Free-Flight Facility) HFF - scans of shadowgraphs from 8x10 film images

  15. Experimental investigation of dynamic fragmentation of laser shock-loaded by soft recovery and X-ray radiography

    NASA Astrophysics Data System (ADS)

    Xin, Jianting; He, Weihua; Chu, Genbai; Gu, Yuqiu

    2017-06-01

    Dynamic fragmentation of metal under shock pressure is an important issue for both fundamental science and practical applications. And in recent decades, laser provides a promising shock loading technique for investigating the process of dynamic fragmentation under extreme condition application of high strain rate. Our group has performed experimental investigation of dynamic fragmentation under laser shock loading by soft recovery and X-ray radiography at SGC / ó prototype laser facility. The fragments under different loading pressures were recovered by PMP foam and analyzed by X-ray micro-tomography and the improved watershed method. The experiment result showed that the bilinear exponential distribution is more appropriate for representing the fragment size distribution. We also developed X-ray radiography technique. Owing to its inherent advantage over shadowgraph technique, X-ray radiography can potentially determine quantitatively material densities by measuring the X-ray transmission. Our group investigated dynamic process of microjetting by X-ray radiography technique, the recorded radiographic images show clear microjetting from the triangular grooves in the free surface of tin sample.

  16. Comparison of two structured illumination techniques based on different 3D illumination patterns

    NASA Astrophysics Data System (ADS)

    Shabani, H.; Patwary, N.; Doblas, A.; Saavedra, G.; Preza, C.

    2017-02-01

    Manipulating the excitation pattern in optical microscopy has led to several super-resolution techniques. Among different patterns, the lateral sinusoidal excitation was used for the first demonstration of structured illumination microscopy (SIM), which provides the fastest SIM acquisition system (based on the number of raw images required) compared to the multi-spot illumination approach. Moreover, 3D patterns that include lateral and axial variations in the illumination have attracted more attention recently as they address resolution enhancement in three dimensions. A threewave (3W) interference technique based on coherent illumination has already been shown to provide super-resolution and optical sectioning in 3D-SIM. In this paper, we investigate a novel tunable technique that creates a 3D pattern from a set of multiple incoherently illuminated parallel slits that act as light sources for a Fresnel biprism. This setup is able to modulate the illumination pattern in the object space both axially and laterally with adjustable modulation frequencies. The 3D forward model for the new system is developed here to consider the effect of the axial modulation due to the 3D patterned illumination. The performance of 3D-SIM based on 3W interference and the tunable system are investigated in simulation and compared based on two different criteria. First, restored images obtained for both 3D-SIM systems using a generalized Wiener filter are compared to determine the effect of the illumination pattern on the reconstruction. Second, the effective frequency response of both systems is studied to determine the axial and lateral resolution enhancement that is obtained in each case.

  17. Quantifying Particle Numbers and Mass Flux in Drifting Snow

    NASA Astrophysics Data System (ADS)

    Crivelli, Philip; Paterna, Enrico; Horender, Stefan; Lehning, Michael

    2016-12-01

    We compare two of the most common methods of quantifying mass flux, particle numbers and particle-size distribution for drifting snow events, the snow-particle counter (SPC), a laser-diode-based particle detector, and particle tracking velocimetry based on digital shadowgraphic imaging. The two methods were correlated for mass flux and particle number flux. For the SPC measurements, the device was calibrated by the manufacturer beforehand. The shadowgrapic imaging method measures particle size and velocity directly from consecutive images, and before each new test the image pixel length is newly calibrated. A calibration study with artificially scattered sand particles and glass beads provides suitable settings for the shadowgraphical imaging as well as obtaining a first correlation of the two methods in a controlled environment. In addition, using snow collected in trays during snowfall, several experiments were performed to observe drifting snow events in a cold wind tunnel. The results demonstrate a high correlation between the mass flux obtained for the calibration studies (r ≥slant 0.93) and good correlation for the drifting snow experiments (r ≥slant 0.81). The impact of measurement settings is discussed in order to reliably quantify particle numbers and mass flux in drifting snow. The study was designed and performed to optimize the settings of the digital shadowgraphic imaging system for both the acquisition and the processing of particles in a drifting snow event. Our results suggest that these optimal settings can be transferred to different imaging set-ups to investigate sediment transport processes.

  18. A study of gas flow pattern, undercutting and torch modification in variable polarity plasma arc welding

    NASA Technical Reports Server (NTRS)

    Mcclure, John C.; Hou, Haihui Ron

    1994-01-01

    A study on the plasma and shield gas flow patterns in variable polarity plasma arc (VPPA) welding was undertaken by shadowgraph techniques. Visualization of gas flow under different welding conditions was obtained. Undercutting is often present with aluminum welds. The effects of torch alignment, shield gas flow rate and gas contamination on undercutting were investigated and suggestions made to minimize the defect. A modified shield cup for the welding torch was fabricated which consumes much less shield gas while maintaining the weld quality. The current torch was modified with a trailer flow for Al-Li welding, in which hot cracking is a critical problem. The modification shows improved weldablility on these alloys.

  19. Ultraviolet excitation of remote phosphor with symmetrical illumination used in dual-sided liquid-crystal display.

    PubMed

    Huang, Hsin-Tao; Tsai, Chuang-Chuang; Huang, Yi-Pai

    2010-08-01

    The UV-excited flat lighting (UFL) technique differs from conventional fluorescent lamp or LED illumination. It involves using a remote phosphor film to convert the wavelength of UV light to visible light, achieving high brightness and planar and uniform illumination. In particular, UFL can accomplish compact size, low power consumption, and symmetrical dual-sided illumination. Additionally, UFL utilizes a thermal radiation mechanism to release the large amount of heat that is generated upon illumination without thermal accumulation. These characteristics of the UFL technique can motivate a wide range of lighting applications in thin-film transistor LCD backlighting or general lighting.

  20. Intraperitoneal photodynamic therapy of the rat CC531 adenocarcinoma.

    PubMed Central

    Veenhuizen, R. B.; Marijnissen, J. P.; Kenemans, P.; Ruevekamp-Helmers, M. C.; 't Mannetje, L. W.; Helmerhorst, T. J.; Stewart, F. A.

    1996-01-01

    The goal of this study was to investigate the efficacy of photodynamic therapy (PDT) of a single tumour growing intraperitoneally. For this purpose the CC531 colon carcinoma, implanted in an intraperitoneal fat pad of Wag/RijA rats, was treated with intraperitoneal photodynamic therapy (IPPDT) using Photofrin as the photosensitiser. Two illumination techniques have been compared. An invasive illumination technique using Perspex blocks to illuminate 30 cm2 of the lower abdomen gave a significant delay in tumour growth with 25 J cm-2 applied 1 day after Photofrin. A minimally invasive illumination technique using a balloon catheter to illuminate 14 cm2 resulted in an equivalent growth delay with 75 J cm-2. The route of administration of the photosensitiser did not influence regrowth times of the tumour. Mitomycin C (MMC), a bioreductive agent, was used to exploit the known PDT-induced hypoxia. The combination of IPPDT with MMC resulted in an increased tumoricidal effect. In conclusion, IPPDT led to a significant growth delay for a single tumour implanted intraperitoneally and repetition of the PDT treatment was possible using a minimally invasive illumination technique. Repeated treatments resulted in increased tumour response. PMID:8645584

  1. Transonic flow about a thick circular-arc airfoil

    NASA Technical Reports Server (NTRS)

    Mcdevitt, J. B.; Levy, L. L., Jr.; Deiwert, G. S.

    1975-01-01

    An experimental and theoretical study of transonic flow over a thick airfoil, prompted by a need for adequately documented experiments that could provide rigorous verification of viscous flow simulation computer codes, is reported. Special attention is given to the shock-induced separation phenomenon in the turbulent regime. Measurements presented include surface pressures, streamline and flow separation patterns, and shadowgraphs. For a limited range of free-stream Mach numbers the airfoil flow field is found to be unsteady. Dynamic pressure measurements and high-speed shadowgraph movies were taken to investigate this phenomenon. Comparisons of experimentally determined and numerically simulated steady flows using a new viscous-turbulent code are also included. The comparisons show the importance of including an accurate turbulence model. When the shock-boundary layer interaction is weak the turbulence model employed appears adequate, but when the interaction is strong, and extensive regions of separation are present, the model is inadequate and needs further development.

  2. Optical design applications for enhanced illumination performance

    NASA Astrophysics Data System (ADS)

    Gilray, Carl; Lewin, Ian

    1995-08-01

    Nonimaging optical design techniques have been applied in the illumination industry for many years. Recently however, powerful software has been developed which allows accurate simulation and optimization of illumination devices. Wide experience has been obtained in using such design techniques for practical situations. These include automotive lighting where safety is of greatest importance, commercial lighting systems designed for energy efficiency, and numerous specialized applications. This presentation will discuss the performance requirements of a variety of illumination devices. It will further cover design methodology and present a variety of examples of practical applications for enhanced system performance.

  3. Laser Illumination Modality of Photoacoustic Imaging Technique for Prostate Cancer

    NASA Astrophysics Data System (ADS)

    Peng, Dong-qing; Peng, Yuan-yuan; Guo, Jian; Li, Hui

    2016-02-01

    Photoacoustic imaging (PAI) has recently emerged as a promising imaging technique for prostate cancer. But there was still a lot of challenge in the PAI for prostate cancer detection, such as laser illumination modality. Knowledge of absorbed light distribution in prostate tissue was essential since the distribution characteristic of absorbed light energy would influence the imaging depth and range of PAI. In order to make a comparison of different laser illumination modality of photoacoustic imaging technique for prostate cancer, optical model of human prostate was established and combined with Monte Carlo simulation method to calculate the light absorption distribution in the prostate tissue. Characteristic of light absorption distribution of transurethral and trans-rectal illumination case, and of tumor at different location was compared with each other.The relevant conclusions would be significant for optimizing the light illumination in a PAI system for prostate cancer detection.

  4. ARC-1958-A-23753

    NASA Image and Video Library

    1958-01-30

    Shadowgraph of Finned Hemispherical model in free-flight show shock waves produced by blunt bodies (H. Julian Allen blunt nose theory) (Used in NASA/AMES publication 'Adventures in Research' A history of Ames Research Center 1940 - 1965 by Edwin P. Hartman - SP-4302)

  5. Fluctuations in diffusion processes in microgravity.

    PubMed

    Mazzoni, Stefano; Cerbino, Roberto; Vailati, Alberto; Giglio, Marzio

    2006-09-01

    It has been shown recently that diffusion processes exhibit giant nonequilibrium fluctuations (NEFs). That is, the diffusing fronts display corrugations whose length scale ranges from the molecular to the macroscopic one. The amplitude of the NEF diverges following a power law behavior proportional to q(-4) (where q is the wave vector). However, fluctuations of wave number smaller than a critical "rolloff" wave vector are quenched by the presence of gravity. It is therefore expected that in microgravity conditions, the amplitude of the NEF should be boosted by the absence of the buoyancy-driven restoring force. This may affect any diffusion process performed in microgravity, such as the crystallization of a protein solution induced by the diffusion of a salt buffer. The aim of GRADFLEX (GRAdient-Driven FLuctuation EXperiment), a joint project of ESA and NASA, is to investigate the presence of NEFs arising in a diffusion process under microgravity conditions. The project consists of two experiments. One is carried out by UNIMI (University of Milan) and INFM (Istituto Nazionale per la Fisica della Materia) and is focused on NEF in a concentration diffusion process. The other experiment is performed by UCSB (University of California at Santa Barbara) concerning temperature NEF in a simple fluid. In the UNIMI part of the GRADFLEX experimental setup, NEFs are induced in a binary mixture by means of the Soret effect. The diagnostic method is an all-optical quantitative shadowgraph technique. The power spectrum of the induced NEFs is obtained by the processing of the shadowgraph images. A detailed description of the experimental apparatus as well as the ground-based experimental results is presented here for the UNIMI-INFM experiment. The GRADFLEX payload is scheduled to fly on the FOTON M3 capsule in April 2007.

  6. Further development of imaging near-field scatterometer

    NASA Astrophysics Data System (ADS)

    Uebeler, Denise; Pescoller, Lukas; Hahlweg, Cornelius

    2015-09-01

    In continuation of last year's paper on the use of near field imaging, which basically is a reflective shadowgraph method, for characterization of glossy surfaces like printed matter or laminated material, further developments are discussed. Beside the identification of several types of surfaces and related features, for which the method is applicable, several refinements are introduced. The theory of the method is extended, based on a mixed Fourier optical and geometrical approach, leading to rules of thumb for the resolution to be expected, giving a framework for design. Further, a refined experimental set-up is introduced. Variation of plane of focus and incident angle are used for separation of various the images of he layers of the surface under test, cross and parallel polarization techniques are applied. Finally, exemplary measurement results and examples are included.

  7. High-Speed Photographic Study of Wave Propagation and Impact Damage in Fused Silica and AlON Using the Edge-On Impact (EOI) Method

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Strassburger, E.; Patel, P.; McCauley, J. W.

    An Edge-on Impact (EOI) technique, developed at the Ernst-Mach-Institute (EMI), coupled with a Cranz-Schardin high-speed camera, has been successfully utilized to visualize dynamic fracture in many brittle materials. In a typical test, the projectile strikes one edge of a specimen and damage formation and fracture propagation is recorded during the first 20 {mu}s after impact. In the present study, stress waves and damage propagation in fused silica and AlON were examined by means of two modified Edge-on Impact arrangements. In one arrangement, fracture propagation was observed simultaneously in side and top views of the specimens by means of two Cranz-Schardinmore » cameras. In another arrangement, the photographic technique was modified by placing the specimen between crossed polarizers and using the photo-elastic effect to visualize the stress waves. Pairs of impact tests at approximately equivalent velocities were carried out in transmitted plane (shadowgraphs) and crossed polarized light.« less

  8. Optical Demonstrations with a Scanning Photodiode Array.

    ERIC Educational Resources Information Center

    Turman, Bobby N.

    1980-01-01

    Describes the photodiode array and the electrical connections necessary for it. Also shows a few of the optical demonstration possibilities-shadowgraphs for measuring small objects, interference and diffraction effects, angular resolution of an optical system, and a simple spectrometer. (Author/DS)

  9. Enhanced weak-signal sensitivity in two-photon microscopy by adaptive illumination.

    PubMed

    Chu, Kengyeh K; Lim, Daryl; Mertz, Jerome

    2007-10-01

    We describe a technique to enhance both the weak-signal relative sensitivity and the dynamic range of a laser scanning optical microscope. The technique is based on maintaining a fixed detection power by fast feedback control of the illumination power, thereby transferring high measurement resolution to weak signals while virtually eliminating the possibility of image saturation. We analyze and demonstrate the benefits of adaptive illumination in two-photon fluorescence microscopy.

  10. Pump-probe imaging of the fs-ps-ns dynamics during femtosecond laser Bessel beam drilling in PMMA.

    PubMed

    Yu, Yanwu; Jiang, Lan; Cao, Qiang; Xia, Bo; Wang, Qingsong; Lu, Yongfeng

    2015-12-14

    A pump-probe shadowgraph imaging technique was used to reveal the femtosecond-picosecond-nanosecond multitimescale fundamentals of high-quality, high-aspect-ratio (up to 287:1) microhole drilling in poly-methyl-meth-acrylate (PMMA) by a single-shot femtosecond laser Bessel beam. The propagation of Bessel beam in PMMA (at 1.98 × 10⁸ m/s) and it induced cylindrical pressure wave expansion (at 3000-3950 m/s in radius) were observed during drilling processes. Also, it was unexpectedly found that the expansion of the cylindrical pressure wave in PMMA showed a linear relation with time and was insensitive to the laser energy fluctuation, quite different from the case in air. It was assumed that the energy insensitivity was due to the anisotropy of wave expansion in PMMA and the ambient air.

  11. Entrainment and thrust augmentation in pulsatile ejector flows

    NASA Technical Reports Server (NTRS)

    Sarohia, V.; Bernal, L.; Bui, T.

    1981-01-01

    This study comprised direct thrust measurements, flow visualization by use of a spark shadowgraph technique, and mean and fluctuating velocity measurements with a pitot tube and linearized constant temperature hot-wire anemometry respectively. A gain in thrust of as much as 10 to 15% was observed for the pulsatile ejector flow as compared to the steady flow configuration. From the velocity profile measurements, it is concluded that this enhanced augmentation for pulsatile flow as compared to a nonpulsatile one was accomplished by a corresponding increased entrainment by the primary jet flow. It is also concluded that the augmentation and total entrainment by a constant area ejector critically depends upon the inlet geometry of the ejector. Experiments were performed to evaluate the influence of primary jet to ejector area ratio, ejector length, and presence of a diffuser on pulsatile ejector performance.

  12. On-Line, Real-Time Diagnostics of a Single Fluid Atomization System

    NASA Technical Reports Server (NTRS)

    DelshadKhatibi, P.; Ilbagi, A.; Henein, H.

    2012-01-01

    A drop tube-Impulse Atomization technique was used to produce copper droplets. In this method, energy is transferred to a liquid by plunger movement resulting in spherical droplets emanating from orifices. A mathematical model of the evolution of droplet velocity and temperature at various heights for different sized droplets was developed. A two-color pyrometer, DPV-2000, and a shadowgraph were used to measure droplets radiant energy, diameter and velocity. The temperature values from the model were used to assess the two color pyrometer assumption over the temperature range of measurement. The DVP 2000 measurements were found to be dependent of droplet size wavelength and position of droplets below the atomizing nozzle. By calibrating the instrument for effective emissivity over the range of measurements, the thermal history of droplets may be recorded using a single color pyrometer approach.

  13. The use of holographic and diffractive optics for optimized machine vision illumination for critical dimension inspection

    NASA Astrophysics Data System (ADS)

    Lizotte, Todd E.; Ohar, Orest

    2004-02-01

    Illuminators used in machine vision applications typically produce non-uniform illumination onto the targeted surface being observed, causing a variety of problems with machine vision alignment or measurement. In most circumstances the light source is broad spectrum, leading to further problems with image quality when viewed through a CCD camera. Configured with a simple light bulb and a mirrored reflector and/or frosted glass plates, these general illuminators are appropriate for only macro applications. Over the last 5 years newer illuminators have hit the market including circular or rectangular arrays of high intensity light emitting diodes. These diode arrays are used to create monochromatic flood illumination of a surface that is to be inspected. The problem with these illumination techniques is that most of the light does not illuminate the desired areas, but broadly spreads across the surface, or when integrated with diffuser elements, tend to create similar shadowing effects to the broad spectrum light sources. In many cases a user will try to increase the performance of these illuminators by adding several of these assemblies together, increasing the intensity or by moving the illumination source closer or farther from the surface being inspected. In this case these non-uniform techniques can lead to machine vision errors, where the computer machine vision may read false information, such as interpreting non-uniform lighting or shadowing effects as defects. This paper will cover a technique involving the use of holographic / diffractive hybrid optical elements that are integrated into standard and customized light sources used in the machine vision industry. The bulk of the paper will describe the function and fabrication of the holographic/diffractive optics and how they can be tailored to improve illuminator design. Further information will be provided a specific design and examples of it in operation will be disclosed.

  14. Widefield fluorescence sectioning with HiLo microscopy.

    PubMed

    Mertz, Jerome; Lim, Daryl; Chu, Kengyeh K; Bozinovic, Nenad; Ford, Timothy

    2009-01-01

    HiLo microscopy is a widefield fluorescence imaging technique that provides depth discrimination by combining two images, one with non-uniform illumination and one with uniform illumination. We discuss the theory of this technique and a variety of practical implementations in brain-tissue imaging and fluorescence endomicroscopy.

  15. Novel experimental technique for 3D investigation of high-speed cavitating diesel fuel flows by X-ray micro computed tomography

    NASA Astrophysics Data System (ADS)

    Lorenzi, M.; Mitroglou, N.; Santini, M.; Gavaises, M.

    2017-03-01

    An experimental technique for the estimation of the temporal-averaged vapour volume fraction within high-speed cavitating flow orifices is presented. The scientific instrument is designed to employ X-ray micro computed tomography (microCT) as a quantitative 3D measuring technique applied to custom designed, large-scale, orifice-type flow channels made from Polyether-ether-ketone (PEEK). The attenuation of the ionising electromagnetic radiation by the fluid under examination depends on its local density; the transmitted radiation through the cavitation volume is compared to the incident radiation, and combination of radiographies from sufficient number of angles leads to the reconstruction of attenuation coefficients versus the spatial position. This results to a 3D volume fraction distribution measurement of the developing multiphase flow. The experimental results obtained are compared against the high speed shadowgraph visualisation images obtained in an optically transparent nozzle with identical injection geometry; comparison between the temporal mean image and the microCT reconstruction shows excellent agreement. At the same time, the real 3D internal channel geometry (possibly eroded) has been measured and compared to the nominal manufacturing CAD drawing of the test nozzle.

  16. Novel experimental technique for 3D investigation of high-speed cavitating diesel fuel flows by X-ray micro computed tomography.

    PubMed

    Lorenzi, M; Mitroglou, N; Santini, M; Gavaises, M

    2017-03-01

    An experimental technique for the estimation of the temporal-averaged vapour volume fraction within high-speed cavitating flow orifices is presented. The scientific instrument is designed to employ X-ray micro computed tomography (microCT) as a quantitative 3D measuring technique applied to custom designed, large-scale, orifice-type flow channels made from Polyether-ether-ketone (PEEK). The attenuation of the ionising electromagnetic radiation by the fluid under examination depends on its local density; the transmitted radiation through the cavitation volume is compared to the incident radiation, and combination of radiographies from sufficient number of angles leads to the reconstruction of attenuation coefficients versus the spatial position. This results to a 3D volume fraction distribution measurement of the developing multiphase flow. The experimental results obtained are compared against the high speed shadowgraph visualisation images obtained in an optically transparent nozzle with identical injection geometry; comparison between the temporal mean image and the microCT reconstruction shows excellent agreement. At the same time, the real 3D internal channel geometry (possibly eroded) has been measured and compared to the nominal manufacturing CAD drawing of the test nozzle.

  17. Fast widefield techniques for fluorescence and phase endomicroscopy

    NASA Astrophysics Data System (ADS)

    Ford, Tim N.

    Endomicroscopy is a recent development in biomedical optics which gives researchers and physicians microscope-resolution views of intact tissue to complement macroscopic visualization during endoscopy screening. This thesis presents HiLo endomicroscopy and oblique back-illumination endomicroscopy, fast wide-field imaging techniques with fluorescence and phase contrast, respectively. Fluorescence imaging in thick tissue is often hampered by strong out-of-focus background signal. Laser scanning confocal endomicroscopy has been developed for optically-sectioned imaging free from background, but reliance on mechanical scanning fundamentally limits the frame rate and represents significant complexity and expense. HiLo is a fast, simple, widefield fluorescence imaging technique which rejects out-of-focus background signal without the need for scanning. It works by acquiring two images of the sample under uniform and structured illumination and synthesizing an optically sectioned result with real-time image processing. Oblique back-illumination microscopy (OBM) is a label-free technique which allows, for the first time, phase gradient imaging of sub-surface morphology in thick scattering tissue with a reflection geometry. OBM works by back-illuminating the sample with the oblique diffuse reflectance from light delivered via off-axis optical fibers. The use of two diametrically opposed illumination fibers allows simultaneous and independent measurement of phase gradients and absorption contrast. Video-rate single-exposure operation using wavelength multiplexing is demonstrated.

  18. Optically sectioned fluorescence endomicroscopy with hybrid-illumination imaging through a flexible fiber bundle.

    PubMed

    Santos, Silvia; Chu, Kengyeh K; Lim, Daryl; Bozinovic, Nenad; Ford, Tim N; Hourtoule, Claire; Bartoo, Aaron C; Singh, Satish K; Mertz, Jerome

    2009-01-01

    We present an endomicroscope apparatus that exhibits out-of-focus background rejection based on wide-field illumination through a flexible imaging fiber bundle. Our technique, called HiLo microscopy, involves acquiring two images, one with grid-pattern illumination and another with standard uniform illumination. An evaluation of the image contrast with grid-pattern illumination provides an optically sectioned image with low resolution. This is complemented with high-resolution information from the uniform illumination image, leading to a full-resolution image that is optically sectioned. HiLo endomicroscope movies are presented of fluorescently labeled rat colonic mucosa.

  19. Optically sectioned fluorescence endomicroscopy with hybrid-illumination imaging through a flexible fiber bundle

    NASA Astrophysics Data System (ADS)

    Santos, Silvia; Chu, Kengyeh K.; Lim, Daryl; Bozinovic, Nenad; Ford, Tim N.; Hourtoule, Claire; Bartoo, Aaron C.; Singh, Satish K.; Mertz, Jerome

    2009-05-01

    We present an endomicroscope apparatus that exhibits out-of-focus background rejection based on wide-field illumination through a flexible imaging fiber bundle. Our technique, called HiLo microscopy, involves acquiring two images, one with grid-pattern illumination and another with standard uniform illumination. An evaluation of the image contrast with grid-pattern illumination provides an optically sectioned image with low resolution. This is complemented with high-resolution information from the uniform illumination image, leading to a full-resolution image that is optically sectioned. HiLo endomicroscope movies are presented of fluorescently labeled rat colonic mucosa.

  20. Growth rate measurement in free jet experiments

    NASA Astrophysics Data System (ADS)

    Charpentier, Jean-Baptiste; Renoult, Marie-Charlotte; Crumeyrolle, Olivier; Mutabazi, Innocent

    2017-07-01

    An experimental method was developed to measure the growth rate of the capillary instability for free liquid jets. The method uses a standard shadow-graph imaging technique to visualize a jet, produced by extruding a liquid through a circular orifice, and a statistical analysis of the entire jet. The analysis relies on the computation of the standard deviation of a set of jet profiles, obtained in the same experimental conditions. The principle and robustness of the method are illustrated with a set of emulated jet profiles. The method is also applied to free falling jet experiments conducted for various Weber numbers and two low-viscosity solutions: a Newtonian and a viscoelastic one. Growth rate measurements are found in good agreement with linear stability theory in the Rayleigh's regime, as expected from previous studies. In addition, the standard deviation curve is used to obtain an indirect measurement of the initial perturbation amplitude and to identify beads on a string structure on the jet. This last result serves to demonstrate the capability of the present technique to explore in the future the dynamics of viscoelastic liquid jets.

  1. Using composite sinusoidal patterns in structured-illumination reflectance imaging (SIRI) for enhanced detection of defects in food

    USDA-ARS?s Scientific Manuscript database

    Structured-illumination reflectance imaging (SIRI) provides a new means for enhanced detection of defects in horticultural products. Implementing the technique relies on retrieving amplitude images by illuminating the object with sinusoidal patterns of single spatial frequencies, which, however, are...

  2. Analysis of security of optical encryption with spatially incoherent illumination technique

    NASA Astrophysics Data System (ADS)

    Cheremkhin, Pavel A.; Evtikhiev, Nikolay N.; Krasnov, Vitaly V.; Rodin, Vladislav G.; Shifrina, Anna V.

    2017-03-01

    Applications of optical methods for encryption purposes have been attracting interest of researchers for decades. The first and the most popular is double random phase encoding (DRPE) technique. There are many optical encryption techniques based on DRPE. Main advantage of DRPE based techniques is high security due to transformation of spectrum of image to be encrypted into white spectrum via use of first phase random mask which allows for encrypted images with white spectra. Downsides are necessity of using holographic registration scheme in order to register not only light intensity distribution but also its phase distribution, and speckle noise occurring due to coherent illumination. Elimination of these disadvantages is possible via usage of incoherent illumination instead of coherent one. In this case, phase registration no longer matters, which means that there is no need for holographic setup, and speckle noise is gone. This technique does not have drawbacks inherent to coherent methods, however, as only light intensity distribution is considered, mean value of image to be encrypted is always above zero which leads to intensive zero spatial frequency peak in image spectrum. Consequently, in case of spatially incoherent illumination, image spectrum, as well as encryption key spectrum, cannot be white. This might be used to crack encryption system. If encryption key is very sparse, encrypted image might contain parts or even whole unhidden original image. Therefore, in this paper analysis of security of optical encryption with spatially incoherent illumination depending on encryption key size and density is conducted.

  3. Development of a New Hypersonic Shock Tunnel Facility to Investigate Electromagnetic Energy Addition for Flow Control and Basic Supersonic Combustion

    NASA Astrophysics Data System (ADS)

    Toro, P. G. P.; Minucci, M. A. S.; Chanes, J. B.; Pereira, A. L.; Nagamatsu, H. T.

    2006-05-01

    A new 0.6-m. diameter Hypersonic Shock Tunnel is been designed, fabricated and will be installed at the Laboratory of Aerothermodynamics and Hypersonics IEAv-CTA, Brazil. The brand new hypersonic facility, designated as T3, is primarily intended to be used as an important tool in the investigation of supersonic combustion management and of electromagnetic energy addition for flow control. The design of the runnel enables relatively long test times, 2-10 milliseconds, suitable for basic supersonic combustion and energy addition by laser experiments. Free stream Mach numbers ranging from 6 to 25 can be produced and stagnation pressures and temperatures of 200 atm. and 5,500 K, respectively, can be generated. Shadowgraph and schlieren optical techniques will be used for flow visualization and the new facility is expected to be commissioned by the end of 2006.

  4. An experimental investigation of the impingement of a planar shock wave on an axisymmetric body at Mach 3

    NASA Technical Reports Server (NTRS)

    Brosh, A.; Kussoy, M. I.

    1983-01-01

    An experimental study of the flow caused by a planar shock wave impinging obliquely on a cylinder is presented. The complex three dimensional shock wave and boundary layer interaction occurring in practical problems, such as the shock wave impingement from the shuttle nose on an external fuel tank, and store carriage interference on a supersonic tactical aircraft were investigated. A data base for numerical computations of complex flows was also investigated. The experimental techniques included pressure measurements and oil flow patterns on the surface of the cylinder, and shadowgraphs and total and static pressure surveys on the leeward and windward planes of symmetry. The complete data is presented in tabular form. The results reveal a highly complex flow field with two separation zones, regions of high crossflow, and multiple reflected shocks and expansion fans.

  5. New Hypersonic Shock Tunnel at the Laboratory of Aerothermodynamics and Hypersonics Prof. Henry T. Nagamatsu

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Toro, P. G. P.; Minucci, M. A. S.; Chanes, J. B. Jr

    The new 0.60-m. nozzle exit diameter hypersonic shock tunnel was designed to study advanced air-breathing propulsion system such as supersonic combustion and/or laser technologies. In addition, it may be used for hypersonic flow studies and investigations of the electromagnetic (laser) energy addition for flow control. This new hypersonic shock tunnel was designed and installed at the Laboratory for of Aerothermodynamics and Hypersonics Prof. Henry T. Nagamatsu, IEAv-CTA, Brazil. The design of the tunnel enables relatively long test times, 2-10 milliseconds, suitable for the experiments performed at the laboratory. Free stream Mach numbers ranging from 6 to 25 can be producedmore » and stagnation pressures and temperatures up to 360 atm. and up to 9,000 K, respectively, can be generated. Shadowgraph and schlieren optical techniques will be used for flow visualization.« less

  6. A midsummer-night's shock wave

    NASA Astrophysics Data System (ADS)

    Hargather, Michael; Liebner, Thomas; Settles, Gary

    2007-11-01

    The aerial pyrotechnic shells used in professional display fireworks explode a bursting charge at altitude in order to disperse the ``stars'' of the display. The shock wave from the bursting charge is heard on the ground as a loud report, though it has by then typically decayed to a mere sound wave. However, viewers seated near the standard safety borders can still be subjected to weak shock waves. These have been visualized using a large, portable, retro-reflective ``Edgerton'' shadowgraph technique and a high-speed digital video camera. Images recorded at 10,000 frames per second show essentially-planar shock waves from 10- and 15-cm firework shells impinging on viewers during the 2007 Central Pennsylvania July 4th Festival. The shock speed is not measurably above Mach 1, but we nonetheless conclude that, if one can sense a shock-like overpressure, then the wave motion is strong enough to be observed by density-sensitive optics.

  7. NASA Dryden flow visualization facility

    NASA Technical Reports Server (NTRS)

    Delfrate, John H.

    1995-01-01

    This report describes the Flow Visualization Facility at NASA Dryden Flight Research Center, Edwards, California. This water tunnel facility is used primarily for visualizing and analyzing vortical flows on aircraft models and other shapes at high-incidence angles. The tunnel is used extensively as a low-cost, diagnostic tool to help engineers understand complex flows over aircraft and other full-scale vehicles. The facility consists primarily of a closed-circuit water tunnel with a 16- x 24-in. vertical test section. Velocity of the flow through the test section can be varied from 0 to 10 in/sec; however, 3 in/sec provides optimum velocity for the majority of flow visualization applications. This velocity corresponds to a unit Reynolds number of 23,000/ft and a turbulence level over the majority of the test section below 0.5 percent. Flow visualization techniques described here include the dye tracer, laser light sheet, and shadowgraph. Limited correlation to full-scale flight data is shown.

  8. Characterization of typical platelet injector flow configurations. [liquid propellant rocket engines

    NASA Technical Reports Server (NTRS)

    Hickox, C. E.

    1975-01-01

    A study to investigate the hydraulic atomization characteristics of several novel injector designs for use in liquid propellant rocket engines is presented. The injectors were manufactured from a series of thin stainless steel platelets through which orifices were very accurately formed by a photoetching process. These individual platelets were stacked together and the orifices aligned so as to produce flow passages of prescribed geometry. After alignment, the platelets were bonded into a single, 'platelet injector', unit by a diffusion bonding process. Because of the complex nature of the flow associated with platelet injectors, it was necessary to use experimental techniques, exclusively, throughout the study. Large scale models of the injectors were constructed from aluminum plates and the appropriate fluids were modeled using a glycerol-water solution. Stop-action photographs of test configurations, using spark-shadowgraph or stroboscopic back-lighting, are shown.

  9. Front lighted optical tooling method and apparatus

    DOEpatents

    Stone, W.J.

    1983-06-30

    An optical tooling method and apparatus uses a front lighted shadowgraphic technique to enhance visual contrast of reflected light. The apparatus includes an optical assembly including a fiducial mark, such as cross hairs, reflecting polarized light with a first polarization, a polarizing element backing the fiducial mark and a reflective surface backing the polarizing element for reflecting polarized light bypassing the fiducial mark and traveling through the polarizing element. The light reflected by the reflecting surface is directed through a second pass of the polarizing element toward the frontal direction with a polarization differing from the polarization of the light reflected by the fiducial mark. When used as a tooling target, the optical assembly may be mounted directly to a reference surface or may be secured in a mounting, such as a magnetic mounting. The optical assembly may also be mounted in a plane defining structure and used as a spherometer in conjunction with an optical depth measuring instrument.

  10. Advanced imaging techniques III: a scalable and modular dome illumination system for scientific microphotography on a budget

    USDA-ARS?s Scientific Manuscript database

    A scalable and modular LED illumination dome for microscopic scientific photography is described and illustrated, and methods for constructing such a dome are detailed. Dome illumination for insect specimens has become standard practice across the field of insect systematics, but many dome designs ...

  11. Temporal focusing-based widefield multiphoton microscopy with spatially modulated illumination for biotissue imaging.

    PubMed

    Chang, Chia-Yuan; Lin, Cheng-Han; Lin, Chun-Yu; Sie, Yong-Da; Hu, Yvonne Yuling; Tsai, Sheng-Feng; Chen, Shean-Jen

    2018-01-01

    A developed temporal focusing-based multiphoton excitation microscope (TFMPEM) has a digital micromirror device (DMD) which is adopted not only as a blazed grating for light spatial dispersion but also for patterned illumination simultaneously. Herein, the TFMPEM has been extended to implement spatially modulated illumination at structured frequency and orientation to increase the beam coverage at the back-focal aperture of the objective lens. The axial excitation confinement (AEC) of TFMPEM can be condensed from 3.0 μm to 1.5 μm for a 50 % improvement. By using the TFMPEM with HiLo technique as two structured illuminations at the same spatial frequency but different orientation, reconstructed biotissue images according to the condensed AEC structured illumination are shown obviously superior in contrast and better scattering suppression. Picture: TPEF images of the eosin-stained mouse cerebellar cortex by conventional TFMPEM (left), and the TFMPEM with HiLo technique as 1.09 μm -1 spatially modulated illumination at 90° (center) and 0° (right) orientations. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Supersonic liquid jets: Their generation and shock wave characteristics

    NASA Astrophysics Data System (ADS)

    Pianthong, K.; Zakrzewski, S.; Behnia, M.; Milton, B. E.

    The generation of high-speed liquid (water and diesel fuel) jets in the supersonic range using a vertical single-stage powder gun is described. The effect of projectile velocity and mass on the jet velocity is investigated experimentally. Jet exit velocities for a set of nozzle inner profiles (e.g. straight cone with different cone angles, exponential, hyperbolic etc.) are compared. The optimum condition to achieve the maximum jet velocity and hence better atomization and mixing is then determined. The visual images of supersonic diesel fuel jets (velocity about 2000 m/s) were obtained by the shadowgraph method. This provides better understanding of each stage of the generation of the jets and makes the study of their characteristics and the potential for auto-ignition possible. In the experiments, a pressure relief section has been used to minimize the compressed air wave ahead of the projectile. To clarify the processes inside the section, additional experiments have been performed with the use of the shadowgraph method, showing the projectile travelling inside and leaving the pressure relief section at a velocity of about 1100 m/s.

  13. Phacoemulsification using a chisel-shaped illuminator: enhanced depth trench, one-shot crack, and phaco cut.

    PubMed

    Wi, Jaemin; Seo, Hyejin; Lee, Jong Yeon; Nam, Dong Heun

    2016-01-01

    To evaluate the efficacy and outcomes of intracameral illuminator-assisted nucleofractis technique in cataract surgery. Since June 2012, this novel technique has been performed in all cataract cases by one surgeon (approximately 300 cases of various densities). Trenching continues until the posterior plate white reflex between an endonucleus and an epinucleus is identified (enhanced depth trench). After trenching, cracking is initiated with minimal separation force, and completion of cracking is confirmed by posterior capsule reflex (one-shot crack). With followability enhanced by an elliptical phaco mode, the divided nucleus is efficiently cut into small fragments by a chisel-shaped illuminator (phaco cut). We have not experienced any capsular bag or zonular complications, and the effective phacoemulsification time seemed to be shorter than that with the conventional technique. This technique simplifies the complete division of the nucleus, which is the most challenging step in safe and efficient phacoemulsification.

  14. New techniques for fluorescence background rejection in microscopy and endoscopy

    NASA Astrophysics Data System (ADS)

    Ventalon, Cathie

    2009-03-01

    Confocal microscopy is a popular technique in the bioimaging community, mainly because it provides optical sectioning. However, its standard implementation requires 3-dimensional scanning of focused illumination throughout the sample. Efficient non-scanning alternatives have been implemented, among which the simple and well-established incoherent structured illumination microscopy (SIM) [1]. We recently proposed a similar technique, called Dynamic Speckle Illumination (DSI) microscopy, wherein the incoherent grid illumination pattern is replaced with a coherent speckle illumination pattern from a laser, taking advantage of the fact that speckle contrast is highly maintained in a scattering media, making the technique well adapted to tissue imaging [2]. DSI microscopy relies on the illumination of a sample with a sequence of dynamic speckle patterns and an image processing algorithm based only on an a priori knowledge of speckle statistics. The choice of this post-processing algorithm is crucial to obtain a good sectioning strength: in particular, we developed a novel post-processing algorithm based one wavelet pre-filtering of the raw images and obtained near-confocal fluorescence sectioning in a mouse brain labeled with GFP, with a good image quality maintained throughout a depth of ˜100 μm [3]. In the purpose of imaging fluorescent tissue at higher depth, we recently applied structured illumination to endoscopy. We used a similar set-up wherein the illumination pattern (a one-dimensional grid) is transported to the sample with an imaging fiber bundle with miniaturized objective and the fluorescence image is collected through the same bundle. Using a post-processing algorithm similar to the one previously described [3], we obtained high-quality images of a fluorescein-labeled rat colonic mucosa [4], establishing the potential of our endomicroscope for bioimaging applications. [4pt] Ref: [0pt] [1] M. A. A. Neil et al, Opt. Lett. 22, 1905 (1997) [0pt] [2] C. Ventalon et al, Opt. Lett. 30, 3350 (2005) [0pt] [3] C. Ventalon et al, Opt. Lett. 32, 1417 (2007) [0pt] [4] N. Bozinovic et al, Opt. Express 16, 8016 (2008)

  15. Beam uniformity analysis of infrared laser illuminators

    NASA Astrophysics Data System (ADS)

    Allik, Toomas H.; Dixon, Roberta E.; Proffitt, R. Patrick; Fung, Susan; Ramboyong, Len; Soyka, Thomas J.

    2015-02-01

    Uniform near-infrared (NIR) and short-wave infrared (SWIR) illuminators are desired in low ambient light detection, recognition, and identification of military applications. Factors that contribute to laser illumination image degradation are high frequency, coherent laser speckle and low frequency nonuniformities created by the laser or external laser cavity optics. Laser speckle analysis and beam uniformity improvements have been independently studied by numerous authors, but analysis to separate these two effects from a single measurement technique has not been published. In this study, profiles of compact, diode laser NIR and SWIR illuminators were measured and evaluated. Digital 12-bit images were recorded with a flat-field calibrated InGaAs camera with measurements at F/1.4 and F/16. Separating beam uniformity components from laser speckle was approximated by filtering the original image. The goal of this paper is to identify and quantify the beam quality variation of illumination prototypes, draw awareness to its impact on range performance modeling, and develop measurement techniques and methodologies for military, industry, and vendors of active sources.

  16. Improving high resolution retinal image quality using speckle illumination HiLo imaging

    PubMed Central

    Zhou, Xiaolin; Bedggood, Phillip; Metha, Andrew

    2014-01-01

    Retinal image quality from flood illumination adaptive optics (AO) ophthalmoscopes is adversely affected by out-of-focus light scatter due to the lack of confocality. This effect is more pronounced in small eyes, such as that of rodents, because the requisite high optical power confers a large dioptric thickness to the retina. A recently-developed structured illumination microscopy (SIM) technique called HiLo imaging has been shown to reduce the effect of out-of-focus light scatter in flood illumination microscopes and produce pseudo-confocal images with significantly improved image quality. In this work, we adopted the HiLo technique to a flood AO ophthalmoscope and performed AO imaging in both (physical) model and live rat eyes. The improvement in image quality from HiLo imaging is shown both qualitatively and quantitatively by using spatial spectral analysis. PMID:25136486

  17. Improving high resolution retinal image quality using speckle illumination HiLo imaging.

    PubMed

    Zhou, Xiaolin; Bedggood, Phillip; Metha, Andrew

    2014-08-01

    Retinal image quality from flood illumination adaptive optics (AO) ophthalmoscopes is adversely affected by out-of-focus light scatter due to the lack of confocality. This effect is more pronounced in small eyes, such as that of rodents, because the requisite high optical power confers a large dioptric thickness to the retina. A recently-developed structured illumination microscopy (SIM) technique called HiLo imaging has been shown to reduce the effect of out-of-focus light scatter in flood illumination microscopes and produce pseudo-confocal images with significantly improved image quality. In this work, we adopted the HiLo technique to a flood AO ophthalmoscope and performed AO imaging in both (physical) model and live rat eyes. The improvement in image quality from HiLo imaging is shown both qualitatively and quantitatively by using spatial spectral analysis.

  18. Integration of non-Lambertian LED and reflective optical element as efficient street lamp.

    PubMed

    Pan, Jui-Wen; Tu, Sheng-Han; Sun, Wen-Shing; Wang, Chih-Ming; Chang, Jenq-Yang

    2010-06-21

    A cost effective, high throughput, and high yield method for the increase of street lamp potency was proposed in this paper. We integrated the imprinting technology and the reflective optical element to obtain a street lamp with high illumination efficiency and without glare effect. The imprinting technique can increase the light extraction efficiency and modulate the intensity distribution in the chip level. The non-Lambertian light source was achieved by using imprinting technique. The compact reflective optical element was added to efficiently suppress the emitting light intensity with small emitting angle for the uniform of illumination intensity and excluded the light with high emitting angle for the prevention of glare. Compared to the conventional street lamp, the novel design has 40% enhancement in illumination intensity, the uniform illumination and the glare effect elimination.

  19. Large Volume, Behaviorally-relevant Illumination for Optogenetics in Non-human Primates.

    PubMed

    Acker, Leah C; Pino, Erica N; Boyden, Edward S; Desimone, Robert

    2017-10-03

    This protocol describes a large-volume illuminator, which was developed for optogenetic manipulations in the non-human primate brain. The illuminator is a modified plastic optical fiber with etched tip, such that the light emitting surface area is > 100x that of a conventional fiber. In addition to describing the construction of the large-volume illuminator, this protocol details the quality-control calibration used to ensure even light distribution. Further, this protocol describes techniques for inserting and removing the large volume illuminator. Both superficial and deep structures may be illuminated. This large volume illuminator does not need to be physically coupled to an electrode, and because the illuminator is made of plastic, not glass, it will simply bend in circumstances when traditional optical fibers would shatter. Because this illuminator delivers light over behaviorally-relevant tissue volumes (≈ 10 mm 3 ) with no greater penetration damage than a conventional optical fiber, it facilitates behavioral studies using optogenetics in non-human primates.

  20. Miniature LED endoilluminators for vitreoretinal surgery

    NASA Astrophysics Data System (ADS)

    Hessling, M.; Koelbl, P. S.; Lingenfelder, C.; Koch, F.

    2015-07-01

    Two innovative approaches for intraocular illumination during vitreoretinal surgery by application of white LEDs are being developed. Both techniques are less harmful to the patient, more convenient for the surgeon and smaller and cheaper compared to conventional illumination by Xenon light sources and optical fibers. These two novel approaches are: I) The miniature LED chandelier endoilluminator consisting of a single white LED with a "light probe" on top of the LED housing that fits in a small incision in the wall of the eye. II) The alternative transscleral LED endoilluminator is integrated into an eye speculum that presses the flat LED top against the eye. The intraocular space is only illuminated by light transmitted through the sclera. In contrast to conventional illumination techniques for vitreoretinal surgery no incision is necessary. Both approaches are evaluated with regard to potential photochemical and thermal risks for the patient's retina and they are tested on porcine eyes.

  1. Structured illumination for wide-field Raman imaging of cell membranes

    NASA Astrophysics Data System (ADS)

    Chen, Houkai; Wang, Siqi; Zhang, Yuquan; Yang, Yong; Fang, Hui; Zhu, Siwei; Yuan, Xiaocong

    2017-11-01

    Although the diffraction limit still restricts their lateral resolution, conventional wide-field Raman imaging techniques offer fast imaging speeds compared with scanning schemes. To extend the lateral resolution of wide-field Raman microscopy using filters, standing-wave illumination technique is used, and an improvement of lateral resolution by a factor of more than two is achieved. Specifically, functionalized surface enhanced Raman scattering nanoparticles are employed to strengthen the desired scattering signals to label cell membranes. This wide-field Raman imaging technique affords various significant opportunities in the biological applications.

  2. Variable bright-darkfield-contrast, a new illumination technique for improved visualizations of complex structured transparent specimens.

    PubMed

    Piper, Timm; Piper, Jörg

    2012-04-01

    Variable bright-darkfield contrast (VBDC) is a new technique in light microscopy which promises significant improvements in imaging of transparent colorless specimens especially when characterized by a high regional thickness and a complex three-dimensional architecture. By a particular light pathway, two brightfield- and darkfield-like partial images are simultaneously superimposed so that the brightfield-like absorption image based on the principal zeroth order maximum interferes with the darkfield-like reflection image which is based on the secondary maxima. The background brightness and character of the resulting image can be continuously modulated from a brightfield-dominated to a darkfield-dominated appearance. When the weighting of the dark- and brightfield components is balanced, medium background brightness will result showing the specimen in a phase- or interference contrast-like manner. Specimens can either be illuminated axially/concentrically or obliquely/eccentrically. In oblique illumination, the angle of incidence and grade of eccentricity can be continuously changed. The condenser aperture diaphragm can be used for improvements of the image quality in the same manner as usual in standard brightfield illumination. By this means, the illumination can be optimally adjusted to the specific properties of the specimen. In VBDC, the image contrast is higher than in normal brightfield illumination, blooming and scattering are lower than in standard darkfield examinations, and any haloing is significantly reduced or absent. Although axial resolution and depth of field are higher than in concurrent standard techniques, the lateral resolution is not visibly reduced. Three dimensional structures, reliefs and fine textures can be perceived in superior clarity. Copyright © 2011 Wiley-Liss, Inc.

  3. A Study of Acoustic Forcing on Gas Centered Swirl Coaxial Reacting Flows (Conference Paper with Briefing Charts)

    DTIC Science & Technology

    2017-01-09

    intensifier with a Semrock filter (FF01-425/26). The reflective surface of this dichroic mirror rejected the blue light portion from the broadband...chemiluminescence was also imaged using a HiCATT intensifier with a Semrock filter (FF01-320/40). The shadowgraph camera was set to a gate of 7 µs

  4. Some failure modes and analysis techniques for terrestrial solar cell modules

    NASA Technical Reports Server (NTRS)

    Shumka, A.; Stern, K. H.

    1978-01-01

    Analysis data are presented on failed/defective silicon solar cell modules of various types and produced by different manufacturers. The failure mode (e.g., internal short and open circuits, output power degradation, isolation resistance degradation, etc.) are discussed in detail and in many cases related to the type of technology used in the manufacture of the modules; wherever applicable, appropriate corrective actions are recommended. Consideration is also given to some failure analysis techniques that are applicable to such modules, including X-ray radiography, capacitance measurement, cell shunt resistance measurement by the shadowing technique, steady-state illumination test station for module performance illumination, laser scanning techniques, and the SEM.

  5. Autonomous facial recognition system inspired by human visual system based logarithmical image visualization technique

    NASA Astrophysics Data System (ADS)

    Wan, Qianwen; Panetta, Karen; Agaian, Sos

    2017-05-01

    Autonomous facial recognition system is widely used in real-life applications, such as homeland border security, law enforcement identification and authentication, and video-based surveillance analysis. Issues like low image quality, non-uniform illumination as well as variations in poses and facial expressions can impair the performance of recognition systems. To address the non-uniform illumination challenge, we present a novel robust autonomous facial recognition system inspired by the human visual system based, so called, logarithmical image visualization technique. In this paper, the proposed method, for the first time, utilizes the logarithmical image visualization technique coupled with the local binary pattern to perform discriminative feature extraction for facial recognition system. The Yale database, the Yale-B database and the ATT database are used for computer simulation accuracy and efficiency testing. The extensive computer simulation demonstrates the method's efficiency, accuracy, and robustness of illumination invariance for facial recognition.

  6. Plane wave analysis of coherent holographic image reconstruction by phase transfer (CHIRPT).

    PubMed

    Field, Jeffrey J; Winters, David G; Bartels, Randy A

    2015-11-01

    Fluorescent imaging plays a critical role in a myriad of scientific endeavors, particularly in the biological sciences. Three-dimensional imaging of fluorescent intensity often requires serial data acquisition, that is, voxel-by-voxel collection of fluorescent light emitted throughout the specimen with a nonimaging single-element detector. While nonimaging fluorescence detection offers some measure of scattering robustness, the rate at which dynamic specimens can be imaged is severely limited. Other fluorescent imaging techniques utilize imaging detection to enhance collection rates. A notable example is light-sheet fluorescence microscopy, also known as selective-plane illumination microscopy, which illuminates a large region within the specimen and collects emitted fluorescent light at an angle either perpendicular or oblique to the illumination light sheet. Unfortunately, scattering of the emitted fluorescent light can cause blurring of the collected images in highly turbid biological media. We recently introduced an imaging technique called coherent holographic image reconstruction by phase transfer (CHIRPT) that combines light-sheet-like illumination with nonimaging fluorescent light detection. By combining the speed of light-sheet illumination with the scattering robustness of nonimaging detection, CHIRPT is poised to have a dramatic impact on biological imaging, particularly for in vivo preparations. Here we present the mathematical formalism for CHIRPT imaging under spatially coherent illumination and present experimental data that verifies the theoretical model.

  7. Improvement of illumination uniformity for LED flat panel light by using micro-secondary lens array.

    PubMed

    Lee, Hsiao-Wen; Lin, Bor-Shyh

    2012-11-05

    LED flat panel light is an innovative lighting product in recent years. However, current flat panel light products still contain some drawbacks, such as narrow lighting areas and hot spots. In this study, a micro-secondary lens array technique was proposed and applied for the design of the light guide surface to improve the illumination uniformity. By using the micro-secondary lens array, the candela distribution of the LED flat panel light can be adjusted to similar to batwing distribution to improve the illumination uniformity. The experimental results show that the enhancement of the floor illumination uniformity is about 61%, and that of the wall illumination uniformity is about 20.5%.

  8. Full resolution hologram-like autostereoscopic display

    NASA Technical Reports Server (NTRS)

    Eichenlaub, Jesse B.; Hutchins, Jamie

    1995-01-01

    Under this program, Dimension Technologies Inc. (DTI) developed a prototype display that uses a proprietary illumination technique to create autostereoscopic hologram-like full resolution images on an LCD operating at 180 fps. The resulting 3D image possesses a resolution equal to that of the LCD along with properties normally associated with holograms, including change of perspective with observer position and lack of viewing position restrictions. Furthermore, this autostereoscopic technique eliminates the need to wear special glasses to achieve the parallax effect. Under the program a prototype display was developed which demonstrates the hologram-like full resolution concept. To implement such a system, DTI explored various concept designs and enabling technologies required to support those designs. Specifically required were: a parallax illumination system with sufficient brightness and control; an LCD with rapid address and pixel response; and an interface to an image generation system for creation of computer graphics. Of the possible parallax illumination system designs, we chose a design which utilizes an array of fluorescent lamps. This system creates six sets of illumination areas to be imaged behind an LCD. This controlled illumination array is interfaced to a lenticular lens assembly which images the light segments into thin vertical light lines to achieve the parallax effect. This light line formation is the foundation of DTI's autostereoscopic technique. The David Sarnoff Research Center (Sarnoff) was subcontracted to develop an LCD that would operate with a fast scan rate and pixel response. Sarnoff chose a surface mode cell technique and produced the world's first large area pi-cell active matrix TFT LCD. The device provided adequate performance to evaluate five different perspective stereo viewing zones. A Silicon Graphics' Iris Indigo system was used for image generation which allowed for static and dynamic multiple perspective image rendering. During the development of the prototype display, we identified many critical issues associated with implementing such a technology. Testing and evaluation enabled us to prove that this illumination technique provides autostereoscopic 3D multi perspective images with a wide range of view, smooth transition, and flickerless operation given suitable enabling technologies.

  9. Investigation of Hypervelocity Impact Phenomena Using Real-Time Concurrent Diagnostics

    NASA Astrophysics Data System (ADS)

    Mihaly, Jonathan Michael

    Hypervelocity impact of meteoroids and orbital debris poses a serious and growing threat to spacecraft. To study hypervelocity impact phenomena, a comprehensive ensemble of real-time concurrently operated diagnostics has been developed and implemented in the Small Particle Hypervelocity Impact Range (SPHIR) facility. This suite of simultaneously operated instrumentation provides multiple complementary measurements that facilitate the characterization of many impact phenomena in a single experiment. The investigation of hypervelocity impact phenomena described in this work focuses on normal impacts of 1.8 mm nylon 6/6 cylinder projectiles and variable thickness aluminum targets. The SPHIR facility two-stage light-gas gun is capable of routinely launching 5.5 mg nylon impactors to speeds of 5 to 7 km/s. Refinement of legacy SPHIR operation procedures and the investigation of first-stage pressure have improved the velocity performance of the facility, resulting in an increase in average impact velocity of at least 0.57 km/s. Results for the perforation area indicate the considered range of target thicknesses represent multiple regimes describing the non-monotonic scaling of target perforation with decreasing target thickness. The laser side-lighting (LSL) system has been developed to provide ultra-high-speed shadowgraph images of the impact event. This novel optical technique is demonstrated to characterize the propagation velocity and two-dimensional optical density of impact-generated debris clouds. Additionally, a debris capture system is located behind the target during every experiment to provide complementary information regarding the trajectory distribution and penetration depth of individual debris particles. The utilization of a coherent, collimated illumination source in the LSL system facilitates the simultaneous measurement of impact phenomena with near-IR and UV-vis spectrograph systems. Comparison of LSL images to concurrent IR results indicates two distinctly different phenomena. A high-speed, pressure-dependent IR-emitting cloud is observed in experiments to expand at velocities much higher than the debris and ejecta phenomena observed using the LSL system. In double-plate target configurations, this phenomena is observed to interact with the rear-wall several micro-seconds before the subsequent arrival of the debris cloud. Additionally, dimensional analysis presented by Whitham for blast waves is shown to describe the pressure-dependent radial expansion of the observed IR-emitting phenomena. Although this work focuses on a single hypervelocity impact configuration, the diagnostic capabilities and techniques described can be used with a wide variety of impactors, materials, and geometries to investigate any number of engineering and scientific problems.

  10. Spray visualization of alternative fuels at hot ambient conditions

    NASA Astrophysics Data System (ADS)

    Kannaiyan, Kumaran; Sadr, Reza

    2017-11-01

    Gas-to-Liquid (GTL) has gained significant interest as drop-in alternative jet fuel owing to its cleaner combustion characteristics. The physical and evaporation properties of GTL fuels are different from those of the conventional jet fuels. Those differences will have an effect on the spray, and in turn, the combustion performance. In this study, the non-reacting near nozzle spray dynamics such as spray cone angle, liquid sheet breakup and liquid velocity of GTL fuel will be investigated and compared with those of the conventional jet fuel. This work is a follow up of the preliminary study performed at atmospheric ambient conditions where differences were observed in the near nozzle spray characteristics between the fuels. Whereas, in this study the spray visualization will be performed in a hot and inert environment to account for the difference in evaporation characteristics of the fuels. The spray visualization images will be captured using the shadowgraph technique. A rigorous statistical analysis of the images will be performed to compare the spray dynamics between the fuels.

  11. Dynamics of bubble collapse under vessel confinement in 2D hydrodynamic experiments

    NASA Astrophysics Data System (ADS)

    Shpuntova, Galina; Austin, Joanna

    2013-11-01

    One trauma mechanism in biomedical treatment techniques based on the application of cumulative pressure pulses generated either externally (as in shock-wave lithotripsy) or internally (by laser-induced plasma) is the collapse of voids. However, prediction of void-collapse driven tissue damage is a challenging problem, involving complex and dynamic thermomechanical processes in a heterogeneous material. We carry out a series of model experiments to investigate the hydrodynamic processes of voids collapsing under dynamic loading in configurations designed to model cavitation with vessel confinement. The baseline case of void collapse near a single interface is also examined. Thin sheets of tissue-surrogate polymer materials with varying acoustic impedance are used to create one or two parallel material interfaces near the void. Shadowgraph photography and two-color, single-frame particle image velocimetry quantify bubble collapse dynamics including jetting, interface dynamics and penetration, and the response of the surrounding material. Research supported by NSF Award #0954769, ``CAREER: Dynamics and damage of void collapse in biological materials under stress wave loading.''

  12. Investigation of solidification in zero-gravity environment; M553 sphere forming experiment. Phase C: Evaluation of Skylab specimens. [physical and mechanical properties of metal spheres formed under weightless conditions

    NASA Technical Reports Server (NTRS)

    Kattamis, T. Z.

    1973-01-01

    Results on specimen evaluation and discussion of solidification behavior in each case are reported in the following order: (1) specimen SL-1.6, (2) specimen SL-2.8, (3) specimen SL-2.4, (4) specimen SL-1.10 and (5) specimen SL-1.11. Comparison is made with ground-processed specimens of similar composition, whenever pertinent and meaningful. Among the nondestructive evaluation methods the measurement of sphericity was conducted by micrometric and shadowgraphic techniques. The intricate shape of specimens in some cases appeared difficult to define. In measuring the density, liquid penetration inside cavities that outcrop on the surface was avoided by sealing off these cavities. Among the destructive evaluation methods the use of the Quantimet 720 required particular attention, because of the small difference in contrast between second phases and micropores. With regard to microporosity microvoids in the core of some specimens were so fine that X-ray microradiography had to be used.

  13. Convective flows in enclosures with vertical temperature or concentration gradients

    NASA Technical Reports Server (NTRS)

    Wang, L. W.; Chai, A. T.; Sun, D. J.

    1988-01-01

    The transport process in the fluid phase during the growth of a crystal has a profound influence on the structure and quality of the solid phase. In vertical growth techniques the fluid phase is often subjected to vertical temperature and concentration gradients. The main objective is to obtain more experimental data on convective flows in enclosures with vertical temperature or concentration gradients. Among actual crystal systems the parameters vary widely. The parametric ranges studied for mass transfer are mainly dictated by the electrochemical system employed to impose concentration gradients. Temperature or concentration difference are maintained between two horizontal end walls. The other walls are kept insulated. Experimental measurements and observations were made of the heat transfer or mass transfer, flow patterns, and the mean and fluctuating temperature distribution. The method used to visualize the flow pattern in the thermal cases is an electrochemical pH-indicator method. Laser shadowgraphs are employed to visualize flow patterns in the solutal cases.

  14. Convective flows in enclosures with vertical temperature or concentration gradients

    NASA Technical Reports Server (NTRS)

    Wang, L. W.; Chai, A. T.; Sun, D. J.

    1989-01-01

    The transport process in the fluid phase during the growth of a crystal has a profound influence on the structure and quality of the solid phase. In vertical growth techniques the fluid phase is often subjected to vertical temperature and concentration gradients. The main objective is to obtain more experimental data on convective flows in enclosures with vertical temperature or concentration gradients. Among actual crystal systems the parameters vary widely. The parametric ranges studied for mass transfer are mainly dictated by the electrochemical system employed to impose concentration gradients. Temperature or concentration difference are maintained between two horizontal end walls. The other walls are kept insulated. Experimental measurements and observations were made of the heat transfer or mass transfer, flow patterns, and the mean and fluctuating temperature distribution. The method used to visualize the flow pattern in the thermal cases is an electrochemical pH-indicator method. Laser shadowgraphs are employed to visualize flow patterns in the solutal cases.

  15. Interactive Dynamic Volume Illumination with Refraction and Caustics.

    PubMed

    Magnus, Jens G; Bruckner, Stefan

    2018-01-01

    In recent years, significant progress has been made in developing high-quality interactive methods for realistic volume illumination. However, refraction - despite being an important aspect of light propagation in participating media - has so far only received little attention. In this paper, we present a novel approach for refractive volume illumination including caustics capable of interactive frame rates. By interleaving light and viewing ray propagation, our technique avoids memory-intensive storage of illumination information and does not require any precomputation. It is fully dynamic and all parameters such as light position and transfer function can be modified interactively without a performance penalty.

  16. Full color natural light holographic camera.

    PubMed

    Kim, Myung K

    2013-04-22

    Full-color, three-dimensional images of objects under incoherent illumination are obtained by a digital holography technique. Based on self-interference of two beam-split copies of the object's optical field with differential curvatures, the apparatus consists of a beam-splitter, a few mirrors and lenses, a piezo-actuator, and a color camera. No lasers or other special illuminations are used for recording or reconstruction. Color holographic images of daylight-illuminated outdoor scenes and a halogen lamp-illuminated toy figure are obtained. From a recorded hologram, images can be calculated, or numerically focused, at any distances for viewing.

  17. Effects of illumination differences on photometric stereo shape-and-albedo-from-shading for precision lunar surface reconstruction

    NASA Astrophysics Data System (ADS)

    Chung Liu, Wai; Wu, Bo; Wöhler, Christian

    2018-02-01

    Photoclinometric surface reconstruction techniques such as Shape-from-Shading (SfS) and Shape-and-Albedo-from-Shading (SAfS) retrieve topographic information of a surface on the basis of the reflectance information embedded in the image intensity of each pixel. SfS or SAfS techniques have been utilized to generate pixel-resolution digital elevation models (DEMs) of the Moon and other planetary bodies. Photometric stereo SAfS analyzes images under multiple illumination conditions to improve the robustness of reconstruction. In this case, the directional difference in illumination between the images is likely to affect the quality of the reconstruction result. In this study, we quantitatively investigate the effects of illumination differences on photometric stereo SAfS. Firstly, an algorithm for photometric stereo SAfS is developed, and then, an error model is derived to analyze the relationships between the azimuthal and zenith angles of illumination of the images and the reconstruction qualities. The developed algorithm and error model were verified with high-resolution images collected by the Narrow Angle Camera (NAC) of the Lunar Reconnaissance Orbiter Camera (LROC). Experimental analyses reveal that (1) the resulting error in photometric stereo SAfS depends on both the azimuthal and the zenith angles of illumination as well as the general intensity of the images and (2) the predictions from the proposed error model are consistent with the actual slope errors obtained by photometric stereo SAfS using the LROC NAC images. The proposed error model enriches the theory of photometric stereo SAfS and is of significance for optimized lunar surface reconstruction based on SAfS techniques.

  18. Rocket-Engine Injector Development: A Case Study of a Single Injector (Briefing Charts)

    DTIC Science & Technology

    2014-01-01

    model and experiment, not at matching conditions Axisymmetric CFD (VOF in Fluent) results every 1.5 ms Experimental results every 0.5 ms,  MFR  ~10*above...through AFRL funding in an attempt to overcome the challenges of optically dense sprays • Time-gated ballistic imaging provides a shadowgraph of large

  19. Fluid Dynamic Mechanisms and Interactions within Separated Flows

    DTIC Science & Technology

    1993-08-01

    th Mach number, debase Wtohe~M~cbmaKpowt. Un at al. &=md3nd tibecrp I denotme €onditim at die ozze dot for all Mach mumbea from 0.1-0.9, dio nmima eit...I I Figure 4. Typical Scblieren Photograph of PIBLS Flowficld 13 ] I I I I Figure 5. Typical Shadowgraph of PIBLS Flowfeld I" Fiur 6. Reino neeti IL

  20. A New Approach to Measure Contact Angle and Evaporation Rate with Flow Visualization in a Sessile Drop

    NASA Technical Reports Server (NTRS)

    Zhang, Nengli; Chao, David F.

    1999-01-01

    The contact angle and the spreading process of sessile droplet are very crucial in many technological processes, such as painting and coating, material processing, film-cooling applications, lubrication, and boiling. Additionally, as it is well known that the surface free energy of polymers cannot be directly, measured for their elastic and viscous restraints. The measurements of liquid contact angle on the polymer surfaces become extremely important to evaluate the surface free energy of polymers through indirect methods linked with the contact angle data. Due to the occurrence of liquid evaporation is inevitable, the effects of evaporation on the contact angle and the spreading become very important for more complete understanding of these processes. It is of interest to note that evaporation can induce Marangoni-Benard convection in sessile drops. However, the impacts of the inside convection on the wetting and spreading processes are not clear. The experimental methods used by previous investigators cannot simultaneously measure the spreading process and visualize the convection inside. Based on the laser shadowgraphic system used by the present author, a very simple optical procedure has been developed to measure the contact angle, the spreading speed, the evaporation rate, and to visualize inside convection of a sessile drop simultaneously. Two CCD cameras were used to synchronously record the real-time diameter of the sessile drop, which is essential for determination of both spreading speed and evaporation rate, and the shadowgraphic image magnified by the sessile drop acting as a thin plano-convex lens. From the shadowgraph, the inside convection of the drop can be observed if any and the image outer diameter, which linked to the drop profile, can be measured. Simple equations have been derived to calculate the drop profile, including the instantaneous contact angle, height, and volume of the sessile drop, as well as the evaporation rate. The influence of the inside convection on the wetting and spreading processes can be figured out through comparison of the drop profiles with and without inside convection when the sessile drop is placed at different evaporation conditions.

  1. Multiple speckle illumination for optical-resolution photoacoustic imaging

    NASA Astrophysics Data System (ADS)

    Poisson, Florian; Stasio, Nicolino; Moser, Christophe; Psaltis, Demetri; Bossy, Emmanuel

    2017-03-01

    Optical-resolution photoacoustic microscopy offers exquisite and specific contrast to optical absorption. Conventional approaches generally involves raster scanning a focused spot over the sample. Here, we demonstrate that a full-field illumination approach with multiple speckle illumination can also provide diffraction-limited optical-resolution photoacoustic images. Two different proof-of-concepts are demonstrated with micro-structured test samples. The first approach follows the principle of correlation/ghost imaging,1, 2 and is based on cross-correlating photoacoustic signals under multiple speckle illumination with known speckle patterns measured during a calibration step. The second approach is a speckle scanning microscopy technique, which adapts the technique proposed in fluorescence microscopy by Bertolotti and al.:3 in our work, spatially unresolved photoacoustic measurements are performed for various translations of unknown speckle patterns. A phase-retrieval algorithm is used to reconstruct the object from the knowledge of the modulus of its Fourier Transform yielded by the measurements. Because speckle patterns naturally appear in many various situations, including propagation through biological tissue or multi-mode fibers (for which focusing light is either very demanding if not impossible), speckle-illumination-based photoacoustic microscopy provides a powerful framework for the development of novel reconstruction approaches, well-suited to compressed sensing approaches.2

  2. Passive lighting responsive three-dimensional integral imaging

    NASA Astrophysics Data System (ADS)

    Lou, Yimin; Hu, Juanmei

    2017-11-01

    A three dimensional (3D) integral imaging (II) technique with a real-time passive lighting responsive ability and vivid 3D performance has been proposed and demonstrated. Some novel lighting responsive phenomena, including light-activated 3D imaging, and light-controlled 3D image scaling and translation, have been realized optically without updating images. By switching the on/off state of a point light source illuminated on the proposed II system, the 3D images can show/hide independent of the diffused illumination background. By changing the position or illumination direction of the point light source, the position and magnification of the 3D image can be modulated in real time. The lighting responsive mechanism of the 3D II system is deduced analytically and verified experimentally. A flexible thin film lighting responsive II system with a 0.4 mm thickness was fabricated. This technique gives some additional degrees of freedom in order to design the II system and enable the virtual 3D image to interact with the real illumination environment in real time.

  3. High-resolution light-sheet microscopy: a simulation of an optical illumination system for oil immersion

    NASA Astrophysics Data System (ADS)

    Lu, Xiang; Heintzmann, Rainer; Leischner, Ulrich

    2015-09-01

    Light sheet microscopy is a microscopy technique characterized by an illumination from the side, perpendicular to the direction of observation. While this is often used and easy to implement for imaging samples with water-immersion, the application in combination with oil-immersion is less often used and requires a specific optimization. In this paper we present our design of a light-sheet illumination optical system with a ~1μm illumination thickness, a long working distance through the immersion oil, and including a focusing system allowing for moving the focus-spot of the lightsheet laterally through the field of view. This optical design allows for the acquisition of fluorescence images in 3D with isotropic resolution of below 1 micrometer of whole-mount samples with a size of ~1mm diameter. This technique enables high-resolution insights in the 3D structure of biological samples, e.g. for research of insect anatomy or for imaging of biopsies in medical diagnostics.

  4. Optical diffraction tomography with fully and partially coherent illumination in high numerical aperture label-free microscopy [Invited].

    PubMed

    Soto, Juan M; Rodrigo, José A; Alieva, Tatiana

    2018-01-01

    Quantitative label-free imaging is an important tool for the study of living microorganisms that, during the last decade, has attracted wide attention from the optical community. Optical diffraction tomography (ODT) is probably the most relevant technique for quantitative label-free 3D imaging applied in wide-field microscopy in the visible range. The ODT is usually performed using spatially coherent light illumination and specially designed holographic microscopes. Nevertheless, the ODT is also compatible with partially coherent illumination and can be realized in conventional wide-field microscopes by applying refocusing techniques, as it has been recently demonstrated. Here, we compare these two ODT modalities, underlining their pros and cons and discussing the optical setups for their implementation. In particular, we pay special attention to a system that is compatible with a conventional wide-field microscope that can be used for both ODT modalities. It consists of two easily attachable modules: the first for sample illumination engineering based on digital light processing technology; the other for focus scanning by using an electrically driven tunable lens. This hardware allows for a programmable selection of the wavelength and the illumination design, and provides fast data acquisition as well. Its performance is experimentally demonstrated in the case of ODT with partially coherent illumination providing speckle-free 3D quantitative imaging.

  5. Standard surface-reflectance model and illuminant estimation

    NASA Technical Reports Server (NTRS)

    Tominaga, Shoji; Wandell, Brian A.

    1989-01-01

    A vector analysis technique was adopted to test the standard reflectance model. A computational model was developed to determine the components of the observed spectra and an estimate of the illuminant was obtained without using a reference white standard. The accuracy of the standard model is evaluated.

  6. Screen Space Ambient Occlusion Based Multiple Importance Sampling for Real-Time Rendering

    NASA Astrophysics Data System (ADS)

    Zerari, Abd El Mouméne; Babahenini, Mohamed Chaouki

    2018-03-01

    We propose a new approximation technique for accelerating the Global Illumination algorithm for real-time rendering. The proposed approach is based on the Screen-Space Ambient Occlusion (SSAO) method, which approximates the global illumination for large, fully dynamic scenes at interactive frame rates. Current algorithms that are based on the SSAO method suffer from difficulties due to the large number of samples that are required. In this paper, we propose an improvement to the SSAO technique by integrating it with a Multiple Importance Sampling technique that combines a stratified sampling method with an importance sampling method, with the objective of reducing the number of samples. Experimental evaluation demonstrates that our technique can produce high-quality images in real time and is significantly faster than traditional techniques.

  7. A method of solving tilt illumination for multiple distance phase retrieval

    NASA Astrophysics Data System (ADS)

    Guo, Cheng; Li, Qiang; Tan, Jiubin; Liu, Shutian; Liu, Zhengjun

    2018-07-01

    Multiple distance phase retrieval is a technique of using a series of intensity patterns to reconstruct a complex-valued image of object. However, tilt illumination originating from the off-axis displacement of incident light significantly impairs its imaging quality. To eliminate this affection, we use cross-correlation calibration to estimate oblique angle of incident light and a Fourier-based strategy to correct tilted illumination effect. Compared to other methods, binary and biological object are both stably reconstructed in simulation and experiment. This work provides a simple but beneficial method to solve the problem of tilt illumination for lens-free multi-distance system.

  8. Fundus spectroscopy and studies in retinal oximetry using intravitreal illumination

    NASA Astrophysics Data System (ADS)

    Salyer, David Alan

    This dissertation documents the development of a new illumination technique for use in the studies of retinal oximetry and fundus spectroscopy. Intravitreal illumination is a technique where the back of the eye is illuminated trans-sclerally using a scanning monochromator coupled into a fiber optic illuminator. Retinal oximetry is the process of measuring the oxygen saturation of blood contained in retinal vessels by quantitative measurement of the characteristic color shift seen as blood oxygen saturation changes from oxygenated blood (reddish) to deoxygenated blood (bluish). Retinal oximetry was first attempted in 1963 but due to a variety of problems with accuracy and difficulty of measurement, has not matured to the point of clinical acceptability or commercial viability. Accurate retinal oximetry relies in part on an adequate understanding of the spectral reflectance characteristics of the fundus. The use of intravitreal illumination allows new investigations into the spectral reflectance properties of the fundus. The results of much research in fundus reflectance and retinal oximetry is detailed in this document, providing new insight into both of these related fields of study. Intravitreal illumination has been used to study retinal vessel oximetry and fundus reflectometry resulting in several important findings that are presented in this document. Studies on enucleated swine eyes have provided new insight into the bidirectional reflectance distribution function of the fundus. Research on live swine has shown accurate measurement of retinal vessel oxygen saturation and provided the first in vivo spectral transmittance measurement of the sensory retina. A secondary discovery during this research suggests that vitrectomy alters the retinal vasculature, an finding that should spawn new research in its own right.

  9. Chroma key without color restrictions based on asynchronous amplitude modulation of background illumination on retroreflective screens

    NASA Astrophysics Data System (ADS)

    Vidal, Borja; Lafuente, Juan A.

    2016-03-01

    A simple technique to avoid color limitations in image capture systems based on chroma key video composition using retroreflective screens and light-emitting diodes (LED) rings is proposed and demonstrated. The combination of an asynchronous temporal modulation onto the background illumination and simple image processing removes the usual restrictions on foreground colors in the scene. The technique removes technical constraints in stage composition, allowing its design to be purely based on artistic grounds. Since it only requires adding a very simple electronic circuit to widely used chroma keying hardware based on retroreflective screens, the technique is easily applicable to TV and filming studios.

  10. Structured-illumination reflectance imaging coupled with spiral phase transform for bruise detection and three-dimensional geometry reconstruction of apples

    USDA-ARS?s Scientific Manuscript database

    Structured-illumination reflectance imaging (SIRI) is a new, promising imaging technique with enhanced, versatile capabilities for quality evaluation of food products. SIRI enables simultaneous acquisition of higher-contrast/resolution and better depth-controlled intensity and phase images for detec...

  11. Extending the use of ultraviolet light for fruit quality sorting in citrus packinghouses

    USDA-ARS?s Scientific Manuscript database

    Illumination with ultraviolet light (UV) is commonly used in citrus packinghouses as a means to aid in the identification and removal of decayed oranges from the packline. This technique is effective because areas of decay strongly fluoresce under UV illumination. It was observed that oranges often ...

  12. Structured-illumination reflectance imaging (SIRI) for enhanced detection of fresh bruises in apples

    USDA-ARS?s Scientific Manuscript database

    A structured-illumination reflectance imaging technique was developed for the detection of fresh bruises in apples. Experiments were first conducted on a strongly scattering nylon sample embedded with foreign objects of different sizes at different depths, and then on apples of two different cultiva...

  13. Autoignition and Burning Speeds of JP-8 Fuel at High Temperatures and Pressures

    DTIC Science & Technology

    2004-08-25

    Editorial Board of the International Journal of Exergy . He is also a member of the Scientific Council of International Center for Applied Thermodynamics...for Schlieren and Shadowgraph Images of Transient Expanding Spherical Thin Flames, ASME International Journal of Engineering for Gas Turbines and...Measurements of Methane-Oxygen-Argon Mixtures and Its Application to Extend the Methane-Air Burning Velocity Measurements”, International Journal of Engine

  14. Evaluation tests of platinum resistance thermometers for a cryogenic wind tunnel application

    NASA Technical Reports Server (NTRS)

    Germain, E. F.; Compton, E. C.

    1984-01-01

    Thirty-one commercially designed platinum resistance thermometers were evaluated for applicability to stagnation temperature measurements between -190 C and +65 C in the Langley Research Center's National Transonic Facility. Evaluation tests included X-ray shadowgraphs, calibrations before and after aging, and time constant measurements. Two wire-wound low thermal mass probes of a conventional design were chosen as most suitable for this cryogenic wind tunnel application.

  15. Influences of Light-emitting Diode Illumination Bleaching Technique on Nanohardness of Computer-aided Design and Computer-aided Manufacturing Ceramic Restorative Materials.

    PubMed

    Juntavee, Niwut; Juntavee, Apa; Saensutthawijit, Phuwiwat

    2018-02-01

    This study evaluated the effect of light-emitting diode (LED) illumination bleaching technique on the surface nanohardness of various computer-aided design and computer-aided manufacturing (CAD/CAM) ceramic materials. Twenty disk-shaped samples (width, length, and thickness = 10, 15, and 2 mm) were prepared from each of the ceramic materials for CAD/CAM, including Lava™ Ultimate (L V ), Vita Enamic® (E n ) IPS e.max® CAD (M e ), inCoris® TZI (I C ), and Prettau® zirconia (P r ). The samples from each type of ceramic were randomly divided into two groups based on the different bleaching techniques to be used on them, using 35% hydrogen peroxide with and without LED illumination. The ceramic disk samples were bleached according to the manufacturer's instruction. Surface hardness test was performed before and after bleaching using nanohardness tester with a Berkovich diamond indenter. The respective Vickers hardness number upon no bleaching and bleaching without or with LED illumination [mean ± standard deviation (SD)] for each type of ceramic were as follows: 102.52 ± 2.09, 101.04 ± 1.18, and 98.17 ± 1.15 for L V groups; 274.96 ± 5.41, 271.29 ± 5.94, and 268.20 ± 7.02 for E n groups; 640.74 ± 31.02, 631.70 ± 22.38, and 582.32 ± 33.88 for M e groups; 1,442.09 ± 35.07, 1,431.32 ± 28.80, and 1,336.51 ± 34.03 for I C groups; and 1,383.82 ± 33.87, 1,343.51 ± 38.75, and 1,295.96 ± 31.29 for P r groups. The results indicated surface hardness reduction following the bleaching procedure of varying degrees for different ceramic materials. Analysis of variance (ANOVA) revealed a significant reduction in surface hardness due to the effect of bleaching technique, ceramic material, and the interaction between bleaching technique and ceramic material (p < 0.05). Bleaching resulted in a diminution of the surface hardness of dental ceramic for CAD/CAM. Using 35% hydrogen peroxide bleaching agent with LED illumination exhibited more reduction in surface hardness of dental ceramic than what was observed without LED illumination. Clinicians should consider protection of the existing restoration while bleaching.

  16. Characterization and improvement of highly inclined optical sheet microscopy

    NASA Astrophysics Data System (ADS)

    Vignolini, T.; Curcio, V.; Gardini, L.; Capitanio, M.; Pavone, F. S.

    2018-02-01

    Highly Inclined and Laminated Optical sheet (HILO) microscopy is an optical technique that employs a highly inclined laser beam to illuminate the sample with a thin sheet of light that can be scanned through the sample volume1 . HILO is an efficient illumination technique when applied to fluorescence imaging of thick samples owing to the confined illumination volume that allows high contrast imaging while retaining deep scanning capability in a wide-field configuration. The restricted illumination volume is crucial to limit background fluorescence originating from portions of the sample far from the focal plane, especially in applications such as single molecule localization and super-resolution imaging2-4. Despite its widespread use, current literature lacks comprehensive reports of the actual advantages of HILO in these kinds of microscopies. Here, we thoroughly characterize the propagation of a highly inclined beam through fluorescently labeled samples and implement appropriate beam shaping for optimal application to single molecule and super-resolution imaging. We demonstrate that, by reducing the beam size along the refracted axis only, the excitation volume is consequently reduced while maintaining a field of view suitable for single cell imaging. We quantify the enhancement in signal-tobackground ratio with respect to the standard HILO technique and apply our illumination method to dSTORM superresolution imaging of the actin and vimentin cytoskeleton. We define the conditions to achieve localization precisions comparable to state-of-the-art reports, obtain a significant improvement in the image contrast, and enhanced plane selectivity within the sample volume due to the further confinement of the inclined beam.

  17. Quantitative high dynamic range beam profiling for fluorescence microscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mitchell, T. J., E-mail: t.j.mitchell@dur.ac.uk; Saunter, C. D.; O’Nions, W.

    2014-10-15

    Modern developmental biology relies on optically sectioning fluorescence microscope techniques to produce non-destructive in vivo images of developing specimens at high resolution in three dimensions. As optimal performance of these techniques is reliant on the three-dimensional (3D) intensity profile of the illumination employed, the ability to directly record and analyze these profiles is of great use to the fluorescence microscopist or instrument builder. Though excitation beam profiles can be measured indirectly using a sample of fluorescent beads and recording the emission along the microscope detection path, we demonstrate an alternative approach where a miniature camera sensor is used directly withinmore » the illumination beam. Measurements taken using our approach are solely concerned with the illumination optics as the detection optics are not involved. We present a miniature beam profiling device and high dynamic range flux reconstruction algorithm that together are capable of accurately reproducing quantitative 3D flux maps over a large focal volume. Performance of this beam profiling system is verified within an optical test bench and demonstrated for fluorescence microscopy by profiling the low NA illumination beam of a single plane illumination microscope. The generality and success of this approach showcases a widely flexible beam amplitude diagnostic tool for use within the life sciences.« less

  18. Nano-Optics for Chemical and Materials Characterization

    NASA Astrophysics Data System (ADS)

    Beversluis, Michael; Stranick, Stephan

    2007-03-01

    Light microscopy can provide non-destructive, real-time, three-dimensional imaging with chemically-specific contrast, but diffraction frequently limits the resolution to roughly 200 nm. Recently, structured illumination techniques have allowed fluorescence imaging to reach 50 nm resolution [1]. Since these fluorescence techniques were developed for use in microbiology, a key challenge is to take the resolution-enhancing features and apply them to contrast mechanisms like vibrational spectroscopy (e.g., Raman and CARS microscopy) that provide morphological and chemically specific imaging.. We are developing a new hybrid technique that combines the resolution enhancement of structured illumination microscopy with scanning techniques that can record hyperspectral images with 100 nm spatial resolution. We will show such superresolving images of semiconductor nanostructures and discuss the advantages and requirements for this technique. Referenence: 1. M. G. L. Gustafsson, P. Natl. Acad. Sci. USA 102, 13081-13086 (2005).

  19. Polycrystalline BiFeO{sub 3} thin film synthesized via sol-gel assisted spin coating technique for photosensitive application

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bogle, K. A., E-mail: kashinath.bogle@gmail.com; Narwade, R. D.; Mahabole, M. P.

    2016-05-06

    We are reporting photosensitivity property of BiFeO{sub 3} thin film under optical illumination. The thin film used for photosensitivity work was fabricated via sol-gel assisted spin coating technique. I-V measurements on the Cu/BiFeO{sub 3}/Al structure under dark condition show a good rectifying property and show dramatic blue shit in threshold voltage under optical illumination. The microstructure, morphology and elemental analysis of the films were characterized by using XRD, UV-Vis, FTIR, SEM and EDS.

  20. Scanning light-sheet microscopy in the whole mouse brain with HiLo background rejection.

    PubMed

    Mertz, Jerome; Kim, Jinhyun

    2010-01-01

    It is well known that light-sheet illumination can enable optically sectioned wide-field imaging of macroscopic samples. However, the optical sectioning capacity of a light-sheet macroscope is undermined by sample-induced scattering or aberrations that broaden the thickness of the sheet illumination. We present a technique to enhance the optical sectioning capacity of a scanning light-sheet microscope by out-of-focus background rejection. The technique, called HiLo microscopy, makes use of two images sequentially acquired with uniform and structured sheet illumination. An optically sectioned image is then synthesized by fusing high and low spatial frequency information from both images. The benefits of combining light-sheet macroscopy and HiLo background rejection are demonstrated in optically cleared whole mouse brain samples, using both green fluorescent protein (GFP)-fluorescence and dark-field scattered light contrast.

  1. Scanning light-sheet microscopy in the whole mouse brain with HiLo background rejection

    NASA Astrophysics Data System (ADS)

    Mertz, Jerome; Kim, Jinhyun

    2010-01-01

    It is well known that light-sheet illumination can enable optically sectioned wide-field imaging of macroscopic samples. However, the optical sectioning capacity of a light-sheet macroscope is undermined by sample-induced scattering or aberrations that broaden the thickness of the sheet illumination. We present a technique to enhance the optical sectioning capacity of a scanning light-sheet microscope by out-of-focus background rejection. The technique, called HiLo microscopy, makes use of two images sequentially acquired with uniform and structured sheet illumination. An optically sectioned image is then synthesized by fusing high and low spatial frequency information from both images. The benefits of combining light-sheet macroscopy and HiLo background rejection are demonstrated in optically cleared whole mouse brain samples, using both green fluorescent protein (GFP)-fluorescence and dark-field scattered light contrast.

  2. Constraints on drivers for visible light communications emitters based on energy efficiency.

    PubMed

    Del Campo-Jimenez, Guillermo; Perez-Jimenez, Rafael; Lopez-Hernandez, Francisco Jose

    2016-05-02

    In this work we analyze the energy efficiency constraints on drivers for Visible light communication (VLC) emitters. This is the main reason why LED is becoming the main source of illumination. We study the effect of the waveform shape and the modulation techniques on the overall energy efficiency of an LED lamp. For a similar level of illumination, we calculate the emitter energy efficiency ratio η (PLED/PTOTAL) for different signals. We compare switched and sinusoidal signals and analyze the effect of both OOK and OFDM modulation techniques depending on the power supply adjustment, level of illumination and signal amplitude distortion. Switched and OOK signals present higher energy efficiency behaviors (0.86≤η≤0.95) than sinusoidal and OFDM signals (0.53≤η≤0.79).

  3. Illuminative Evaluation: Meeting the Special Needs of Feminist Projects.

    ERIC Educational Resources Information Center

    Shapiro, Joan P.; Reed, Beth

    "Illuminative evaluation," as defined by Parlett and Hamilton, "is not a standard methodological package but a general strategy. It aims to be both adaptable and eclectic. The choice of research tactics follows not from research doctrine, but from decisions in each case as to the best available techniques; the problem defines the…

  4. Smartphone snapshot mapping of skin chromophores under triple-wavelength laser illumination

    NASA Astrophysics Data System (ADS)

    Spigulis, Janis; Oshina, Ilze; Berzina, Anna; Bykov, Alexander

    2017-09-01

    Chromophore distribution maps are useful tools for skin malformation severity assessment and for monitoring of skin recovery after burns, surgeries, and other interactions. The chromophore maps can be obtained by processing several spectral images of skin, e.g., captured by hyperspectral or multispectral cameras during seconds or even minutes. To avoid motion artifacts and simplify the procedure, a single-snapshot technique for mapping melanin, oxyhemoglobin, and deoxyhemoglobin of in-vivo skin by a smartphone under simultaneous three-wavelength (448-532-659 nm) laser illumination is proposed and examined. Three monochromatic spectral images related to the illumination wavelengths were extracted from the smartphone camera RGB image data set with respect to crosstalk between the RGB detection bands. Spectral images were further processed accordingly to Beer's law in a three chromophore approximation. Photon absorption path lengths in skin at the exploited wavelengths were estimated by means of Monte Carlo simulations. The technique was validated clinically on three kinds of skin lesions: nevi, hemangiomas, and seborrheic keratosis. Design of the developed add-on laser illumination system, image-processing details, and the results of clinical measurements are presented and discussed.

  5. Peering through the flames: imaging techniques for reacting aluminum powders

    DOE PAGES

    Zepper, Ethan T.; Pantoya, Michelle L.; Bhattacharya, Sukalyan; ...

    2017-03-17

    Combusting metals burn at high temperatures and emit high-intensity radiation in the visible spectrum which can over-saturate regular imaging sensors and obscure the field of view. Filtering the luminescence can result in limited information and hinder thorough combustion characterization. A method for “seeing through the flames” of a highly luminescent aluminum powder reaction is presented using copper vapor laser (CVL) illumination synchronized with a high-speed camera. A statistical comparison of combusting aluminum particle agglomerate between filtered halogen and CVL illumination shows the effectiveness of this diagnostic approach. When ignited by an electrically induced plasma, aluminum particles are entrained as solidmore » agglomerates that rotate about their centers of mass and are surrounded by emitted, burning gases. Furthermore, the average agglomerate diameter appears to be 160 micrometers when viewed with standard illumination and a high-speed camera. But, a significantly lower diameter of 50 micrometers is recorded when imaged with CVL illumination. Our results advocate that alternative imaging techniques are required to resolve the complexities of metal particle combustion.« less

  6. Programmable Colored Illumination Microscopy (PCIM): A practical and flexible optical staining approach for microscopic contrast enhancement

    NASA Astrophysics Data System (ADS)

    Zuo, Chao; Sun, Jiasong; Feng, Shijie; Hu, Yan; Chen, Qian

    2016-03-01

    Programmable colored illumination microscopy (PCIM) has been proposed as a flexible optical staining technique for microscopic contrast enhancement. In this method, we replace the condenser diaphragm of a conventional microscope with a programmable thin film transistor-liquid crystal display (TFT-LCD). By displaying different patterns on the LCD, numerous established imaging modalities can be realized, such as bright field, dark field, phase contrast, oblique illumination, and Rheinberg illuminations, which conventionally rely on intricate alterations in the respective microscope setups. Furthermore, the ease of modulating both the color and the intensity distribution at the aperture of the condenser opens the possibility to combine multiple microscopic techniques, or even realize completely new methods for optical color contrast staining, such as iridescent dark-field and iridescent phase-contrast imaging. The versatility and effectiveness of PCIM is demonstrated by imaging of several transparent colorless specimens, such as unstained lung cancer cells, diatom, textile fibers, and a cryosection of mouse kidney. Finally, the potentialities of PCIM for RGB-splitting imaging with stained samples are also explored by imaging stained red blood cells and a histological section.

  7. Active illumination using a digital micromirror device for quantitative phase imaging.

    PubMed

    Shin, Seungwoo; Kim, Kyoohyun; Yoon, Jonghee; Park, YongKeun

    2015-11-15

    We present a powerful and cost-effective method for active illumination using a digital micromirror device (DMD) for quantitative phase-imaging techniques. Displaying binary illumination patterns on a DMD with appropriate spatial filtering, plane waves with various illumination angles are generated and impinged onto a sample. Complex optical fields of the sample obtained with various incident angles are then measured via Mach-Zehnder interferometry, from which a high-resolution 2D synthetic aperture phase image and a 3D refractive index tomogram of the sample are reconstructed. We demonstrate the fast and stable illumination-control capability of the proposed method by imaging colloidal spheres and biological cells. The capability of high-speed optical diffraction tomography is also demonstrated by measuring 3D Brownian motion of colloidal particles with the tomogram acquisition rate of 100 Hz.

  8. An experimental study of perforated muzzle brakes

    NASA Astrophysics Data System (ADS)

    Dillon, R. E., Jr.; Nagamatsu, H. T.

    1984-06-01

    A firing test was conducted to examine the recoil efficiency and blast characteristics of perforated muzzle brakes fitted to a 20 mm cannon. Recoil impulse blast overpressures, muzzle velocity, sequential spark shadowgraphs, and photographs of the muzzle flash structure were obtained. Three different nuzzle devices were used with one device equipped with pressure transducers to measure the static pressure in the brake. Experimental results are compared with the earlier predictions of Dillon and Nagamatsu.

  9. A parametric study of perforated muzzle brakes

    NASA Astrophysics Data System (ADS)

    Dillon, Robert E., Jr.; Nagamatsu, H. T.

    1993-07-01

    A firing test was conducted to study the parameters influencing the recoil efficiency and the blast characteristics of perforated muzzle brakes. Several scaled (20 mm) devices were tested as candidates for the 105 mm Armored Gun System (AGS). Recoil impulse, blast overpressures, muzzle velocity, sequential spark shadowgraphs, and photographs of the muzzle flash were obtained. A total of nine different perforated brakes were tested as well as a scaled M 198 double muzzle brake.

  10. Scintillating plastic fibers as light pipes for a cosmic ray hodoscope: Feasibility calculations and measured attenuation characteristics

    NASA Technical Reports Server (NTRS)

    1976-01-01

    A candidate hodoscope uses arrays of scintillator fibers, followed by an image intensifier and imaging system such as that proposed for the X-ray shadowgraph. A literature search was performed to ascertain the experience of other workers with hodoscopes using this or similar principles. Calculations were performed to determine the feasibility of candidate systems and some laboratory experiments were performed to attempt to check these numbers.

  11. Measuring Flow With Laser-Speckle Velocimetry

    NASA Technical Reports Server (NTRS)

    Smith, C. A.; Lourenco, L. M. M.; Krothapalli, A.

    1988-01-01

    Spatial resolution sufficient for calculation of vorticity.In laser-speckle velocimetry, pulsed or chopped laser beam expanded in one dimension by cylindrical lens to illuminate thin, fan-shaped region of flow measured. Flow seeded by small particles. Lens with optical axis perpendicular to illuminating beam forms image of illuminated particles on photographic plate. Speckle pattern of laser-illuminiated, seeded flow recorded in multiple-exposure photographs and processed to extract data on velocity field. Technique suited for study of vortical flows like those about helicopter rotor blades or airplane wings at high angles of attack.

  12. Chandelier Illumination for Descemet Membrane Endothelial Keratoplasty

    PubMed Central

    Hayashi, Takahiko; Yuda, Kentaro; Tsuchiya, Ayako; Oyakawa, Itaru; Mizuki, Nobuhisa; Kato, Naoko

    2017-01-01

    Purpose: To describe a simple technique that uses posterior chandelier illumination during Descemet membrane endothelial keratoplasty in cases of severe bullous keratopathy (BK). Methods: Five eyes of 4 patients with advanced BK undergoing Descemet membrane endothelial keratoplasty were retrospectively analyzed. The pupil of the host eye was not treated with mydriatic or miotic agents. The chandelier illuminator was inserted transconjunctivally into the vitreous cavity from the pars plana. Results: In all eyes, BK was secondary to laser iridotomy, which was performed for prevention or treatment of angle closure glaucoma. The implanted graft was clearly confirmed in the anterior chamber using activated chandelier illumination. The graft was immediately attached to the host cornea, with eventual healing of BK in all eyes. No complication involving insertion or removal of the 25-gauge trocar and the chandelier illuminator was observed. No vision-threatening complication was observed in any of the 5 eyes. Conclusions: The chandelier illuminator provided good visibility of the anterior chamber and enhanced the safety of surgery by preventing formation of an inverted graft. PMID:28644235

  13. Direct design of achromatic lens for Lambertian sources in collimating illumination

    NASA Astrophysics Data System (ADS)

    Yin, Peng; Xu, Xiping; Jiang, Zhaoguo; Wang, Hongshu

    2017-10-01

    Illumination design used to redistribute the spatial energy distribution of light source is a key technique in lighting applications. However, there is still no effective illumination design method for the removing of the chromatic dispersion. What we present here is an achromatic lens design to enhance the efficiency and uniform illumination of white light-emitting diode (LED) with diffractive optical element (DOE). We employ the chromatic aberration value (deg) to measure the degree of chromatic dispersion in illumination systems. Monte Carlo ray tracing simulation results indicate that the chromatic dispersion of the modified achromatic collimator significantly decreases from 0.5 to 0.1 with LED chip size of 1.0mm×1.0mm and simulation efficiency of 90.73%, compared with the traditional collimator. Moreover, with different corrected wavelengths we compared different chromatic aberration values that followed with the changing pupil percent. The achromatic collimator provided an effective way to achieve white LED with low chromatic dispersion at high efficiency and uniform illumination.

  14. Digital micromirror based near-infrared illumination system for plasmonic photothermal neuromodulation.

    PubMed

    Jung, Hyunjun; Kang, Hongki; Nam, Yoonkey

    2017-06-01

    Light-mediated neuromodulation techniques provide great advantages to investigate neuroscience due to its high spatial and temporal resolution. To generate a spatial pattern of neural activity, it is necessary to develop a system for patterned-light illumination to a specific area. Digital micromirror device (DMD) based patterned illumination system have been used for neuromodulation due to its simple configuration and design flexibility. In this paper, we developed a patterned near-infrared (NIR) illumination system for region specific photothermal manipulation of neural activity using NIR-sensitive plasmonic gold nanorods (GNRs). The proposed system had high power transmission efficiency for delivering power density up to 19 W/mm 2 . We used a GNR-coated microelectrode array (MEA) to perform biological experiments using E18 rat hippocampal neurons and showed that it was possible to inhibit neural spiking activity of specific area in neural circuits with the patterned NIR illumination. This patterned NIR illumination system can serve as a promising neuromodulation tool to investigate neuroscience in a wide range of physiological and clinical applications.

  15. Wavelet filtered shifted phase-encoded joint transform correlation for face recognition

    NASA Astrophysics Data System (ADS)

    Moniruzzaman, Md.; Alam, Mohammad S.

    2017-05-01

    A new wavelet-filtered-based Shifted- phase-encoded Joint Transform Correlation (WPJTC) technique has been proposed for efficient face recognition. The proposed technique uses discrete wavelet decomposition for preprocessing and can effectively accommodate various 3D facial distortions, effects of noise, and illumination variations. After analyzing different forms of wavelet basis functions, an optimal method has been proposed by considering the discrimination capability and processing speed as performance trade-offs. The proposed technique yields better correlation discrimination compared to alternate pattern recognition techniques such as phase-shifted phase-encoded fringe-adjusted joint transform correlator. The performance of the proposed WPJTC has been tested using the Yale facial database and extended Yale facial database under different environments such as illumination variation, noise, and 3D changes in facial expressions. Test results show that the proposed WPJTC yields better performance compared to alternate JTC based face recognition techniques.

  16. Scanning light-sheet microscopy in the whole mouse brain with HiLo background rejection

    PubMed Central

    Mertz, Jerome; Kim, Jinhyun

    2010-01-01

    It is well known that light-sheet illumination can enable optically sectioned wide-field imaging of macroscopic samples. However, the optical sectioning capacity of a light-sheet macroscope is undermined by sample-induced scattering or aberrations that broaden the thickness of the sheet illumination. We present a technique to enhance the optical sectioning capacity of a scanning light-sheet microscope by out-of-focus background rejection. The technique, called HiLo microscopy, makes use of two images sequentially acquired with uniform and structured sheet illumination. An optically sectioned image is then synthesized by fusing high and low spatial frequency information from both images. The benefits of combining light-sheet macroscopy and HiLo background rejection are demonstrated in optically cleared whole mouse brain samples, using both green fluorescent protein (GFP)-fluorescence and dark-field scattered light contrast. PMID:20210471

  17. 3D endoscopic imaging using structured illumination technique (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Le, Hanh N. D.; Nguyen, Hieu; Wang, Zhaoyang; Kang, Jin U.

    2017-02-01

    Surgeons have been increasingly relying on minimally invasive surgical guidance techniques not only to reduce surgical trauma but also to achieve accurate and objective surgical risk evaluations. A typical minimally invasive surgical guidance system provides visual assistance in two-dimensional anatomy and pathology of internal organ within a limited field of view. In this work, we propose and implement a structure illumination endoscope to provide a simple, inexpensive 3D endoscopic imaging to conduct high resolution 3D imagery for use in surgical guidance system. The system is calibrated and validated for quantitative depth measurement in both calibrated target and human subject. The system exhibits a depth of field of 20 mm, depth resolution of 0.2mm and a relative accuracy of 0.1%. The demonstrated setup affirms the feasibility of using the structured illumination endoscope for depth quantization and assisting medical diagnostic assessments

  18. Microwave quantum illumination.

    PubMed

    Barzanjeh, Shabir; Guha, Saikat; Weedbrook, Christian; Vitali, David; Shapiro, Jeffrey H; Pirandola, Stefano

    2015-02-27

    Quantum illumination is a quantum-optical sensing technique in which an entangled source is exploited to improve the detection of a low-reflectivity object that is immersed in a bright thermal background. Here, we describe and analyze a system for applying this technique at microwave frequencies, a more appropriate spectral region for target detection than the optical, due to the naturally occurring bright thermal background in the microwave regime. We use an electro-optomechanical converter to entangle microwave signal and optical idler fields, with the former being sent to probe the target region and the latter being retained at the source. The microwave radiation collected from the target region is then phase conjugated and upconverted into an optical field that is combined with the retained idler in a joint-detection quantum measurement. The error probability of this microwave quantum-illumination system, or quantum radar, is shown to be superior to that of any classical microwave radar of equal transmitted energy.

  19. 3D topography of biologic tissue by multiview imaging and structured light illumination

    NASA Astrophysics Data System (ADS)

    Liu, Peng; Zhang, Shiwu; Xu, Ronald

    2014-02-01

    Obtaining three-dimensional (3D) information of biologic tissue is important in many medical applications. This paper presents two methods for reconstructing 3D topography of biologic tissue: multiview imaging and structured light illumination. For each method, the working principle is introduced, followed by experimental validation on a diabetic foot model. To compare the performance characteristics of these two imaging methods, a coordinate measuring machine (CMM) is used as a standard control. The wound surface topography of the diabetic foot model is measured by multiview imaging and structured light illumination methods respectively and compared with the CMM measurements. The comparison results show that the structured light illumination method is a promising technique for 3D topographic imaging of biologic tissue.

  20. Image correlation microscopy for uniform illumination.

    PubMed

    Gaborski, T R; Sealander, M N; Ehrenberg, M; Waugh, R E; McGrath, J L

    2010-01-01

    Image cross-correlation microscopy is a technique that quantifies the motion of fluorescent features in an image by measuring the temporal autocorrelation function decay in a time-lapse image sequence. Image cross-correlation microscopy has traditionally employed laser-scanning microscopes because the technique emerged as an extension of laser-based fluorescence correlation spectroscopy. In this work, we show that image correlation can also be used to measure fluorescence dynamics in uniform illumination or wide-field imaging systems and we call our new approach uniform illumination image correlation microscopy. Wide-field microscopy is not only a simpler, less expensive imaging modality, but it offers the capability of greater temporal resolution over laser-scanning systems. In traditional laser-scanning image cross-correlation microscopy, lateral mobility is calculated from the temporal de-correlation of an image, where the characteristic length is the illuminating laser beam width. In wide-field microscopy, the diffusion length is defined by the feature size using the spatial autocorrelation function. Correlation function decay in time occurs as an object diffuses from its original position. We show that theoretical and simulated comparisons between Gaussian and uniform features indicate the temporal autocorrelation function depends strongly on particle size and not particle shape. In this report, we establish the relationships between the spatial autocorrelation function feature size, temporal autocorrelation function characteristic time and the diffusion coefficient for uniform illumination image correlation microscopy using analytical, Monte Carlo and experimental validation with particle tracking algorithms. Additionally, we demonstrate uniform illumination image correlation microscopy analysis of adhesion molecule domain aggregation and diffusion on the surface of human neutrophils.

  1. Coloured computational imaging with single-pixel detectors based on a 2D discrete cosine transform

    NASA Astrophysics Data System (ADS)

    Liu, Bao-Lei; Yang, Zhao-Hua; Liu, Xia; Wu, Ling-An

    2017-02-01

    We propose and demonstrate a computational imaging technique that uses structured illumination based on a two-dimensional discrete cosine transform to perform imaging with a single-pixel detector. A scene is illuminated by a projector with two sets of orthogonal patterns, then by applying an inverse cosine transform to the spectra obtained from the single-pixel detector a full-colour image is retrieved. This technique can retrieve an image from sub-Nyquist measurements, and the background noise is easily cancelled to give excellent image quality. Moreover, the experimental set-up is very simple.

  2. Employing lighting techniques during on-orbit operations

    NASA Technical Reports Server (NTRS)

    Wheelwright, Charles D.; Toole, Jennifer R.

    1991-01-01

    As a result of past space missions and evaluations, many procedures have been established and shown to be prudent applications for use in present and future space environment scenarios. However, recent procedures to employ the use of robotics to assist crewmembers in performing tasks which require viewing remote and obstructed locations have led to a need to pursue alternative methods to assist in these operations. One of those techniques which is under development entails incorporating the use of suitable lighting aids/techniques with a closed circuit television (CCTV) camera/monitor system to supervise the robotics operations. The capability to provide adequate lighting during grappling, deploying, docking and berthing operations under all on-orbit illumination conditions is essential to a successful mission. Using automated devices such as the Remote Manipulator System (RMS) to dock and berth a vehicle during payload retrieval, under nighttime, earthshine, solar, or artificial illumination conditions can become a cumbersome task without first incorporating lighting techniques that provide the proper target illumination, orientation, and alignment cues. Studies indicate that the use of visual aids such as the CCTV with a pretested and properly oriented lighting system can decrease the time necessary to accomplish grappling tasks. Evaluations have been and continue to be performed to assess the various on-orbit conditions in order to predict and determine the appropriate lighting techniques and viewing angles necessary to assist crewmembers in payload operations.

  3. Employing lighting techniques during on-orbit operations

    NASA Astrophysics Data System (ADS)

    Wheelwright, Charles D.; Toole, Jennifer R.

    As a result of past space missions and evaluations, many procedures have been established and shown to be prudent applications for use in present and future space environment scenarios. However, recent procedures to employ the use of robotics to assist crewmembers in performing tasks which require viewing remote and obstructed locations have led to a need to pursue alternative methods to assist in these operations. One of those techniques which is under development entails incorporating the use of suitable lighting aids/techniques with a closed circuit television (CCTV) camera/monitor system to supervise the robotics operations. The capability to provide adequate lighting during grappling, deploying, docking and berthing operations under all on-orbit illumination conditions is essential to a successful mission. Using automated devices such as the Remote Manipulator System (RMS) to dock and berth a vehicle during payload retrieval, under nighttime, earthshine, solar, or artificial illumination conditions can become a cumbersome task without first incorporating lighting techniques that provide the proper target illumination, orientation, and alignment cues. Studies indicate that the use of visual aids such as the CCTV with a pretested and properly oriented lighting system can decrease the time necessary to accomplish grappling tasks. Evaluations have been and continue to be performed to assess the various on-orbit conditions in order to predict and determine the appropriate lighting techniques and viewing angles necessary to assist crewmembers in payload operations.

  4. Results of tests of a 0.010- and 0.015-scale models of space shuttle orbiter configurations 3 and 3A in the Ames Research Center 3.5 foot hypersonic wind tunnel (OA23)

    NASA Technical Reports Server (NTRS)

    Dziubala, T. J.; Milam, M. D.; Cleary, J. W.; Mellenthin, J. A.

    1974-01-01

    Longitudinal and lateral-directional stability and control characteristics were evaluated at Mach numbers of 5.3, 7.3 and 10.3 at angles of attack up to 50 degrees with Beta = 0 degrees and, for a few cases, Beta = 5 degrees. Component force data, fuselage base pressures and shadowgraph patterns were recorded.

  5. QR code optical encryption using spatially incoherent illumination

    NASA Astrophysics Data System (ADS)

    Cheremkhin, P. A.; Krasnov, V. V.; Rodin, V. G.; Starikov, R. S.

    2017-02-01

    Optical encryption is an actively developing field of science. The majority of encryption techniques use coherent illumination and suffer from speckle noise, which severely limits their applicability. The spatially incoherent encryption technique does not have this drawback, but its effectiveness is dependent on the Fourier spectrum properties of the image to be encrypted. The application of a quick response (QR) code in the capacity of a data container solves this problem, and the embedded error correction code also enables errorless decryption. The optical encryption of digital information in the form of QR codes using spatially incoherent illumination was implemented experimentally. The encryption is based on the optical convolution of the image to be encrypted with the kinoform point spread function, which serves as an encryption key. Two liquid crystal spatial light modulators were used in the experimental setup for the QR code and the kinoform imaging, respectively. The quality of the encryption and decryption was analyzed in relation to the QR code size. Decryption was conducted digitally. The successful decryption of encrypted QR codes of up to 129  ×  129 pixels was demonstrated. A comparison with the coherent QR code encryption technique showed that the proposed technique has a signal-to-noise ratio that is at least two times higher.

  6. Smartphone snapshot mapping of skin chromophores under triple-wavelength laser illumination.

    PubMed

    Spigulis, Janis; Oshina, Ilze; Berzina, Anna; Bykov, Alexander

    2017-09-01

    Chromophore distribution maps are useful tools for skin malformation severity assessment and for monitoring of skin recovery after burns, surgeries, and other interactions. The chromophore maps can be obtained by processing several spectral images of skin, e.g., captured by hyperspectral or multispectral cameras during seconds or even minutes. To avoid motion artifacts and simplify the procedure, a single-snapshot technique for mapping melanin, oxyhemoglobin, and deoxyhemoglobin of in-vivo skin by a smartphone under simultaneous three-wavelength (448–532–659 nm) laser illumination is proposed and examined. Three monochromatic spectral images related to the illumination wavelengths were extracted from the smartphone camera RGB image data set with respect to crosstalk between the RGB detection bands. Spectral images were further processed accordingly to Beer’s law in a three chromophore approximation. Photon absorption path lengths in skin at the exploited wavelengths were estimated by means of Monte Carlo simulations. The technique was validated clinically on three kinds of skin lesions: nevi, hemangiomas, and seborrheic keratosis. Design of the developed add-on laser illumination system, image-processing details, and the results of clinical measurements are presented and discussed.

  7. Resolution enhancement using simultaneous couple illumination

    NASA Astrophysics Data System (ADS)

    Hussain, Anwar; Martínez Fuentes, José Luis

    2016-10-01

    A super-resolution technique based on structured illumination created by a liquid crystal on silicon spatial light modulator (LCOS-SLM) is presented. Single and simultaneous pairs of tilted beams are generated to illuminate a target object. Resolution enhancement of an optical 4f system is demonstrated by using numerical simulations. The resulting intensity images are recorded at a charged couple device (CCD) and stored in the computer memory for further processing. One dimension enhancement can be performed with only 15 images. Two dimensional complete improvement requires 153 different images. The resolution of the optical system is extended three times compared to the band limited system.

  8. Demosaiced pixel super-resolution in digital holography for multiplexed computational color imaging on-a-chip (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Wu, Yichen; Zhang, Yibo; Luo, Wei; Ozcan, Aydogan

    2017-03-01

    Digital holographic on-chip microscopy achieves large space-bandwidth-products (e.g., >1 billion) by making use of pixel super-resolution techniques. To synthesize a digital holographic color image, one can take three sets of holograms representing the red (R), green (G) and blue (B) parts of the spectrum and digitally combine them to synthesize a color image. The data acquisition efficiency of this sequential illumination process can be improved by 3-fold using wavelength-multiplexed R, G and B illumination that simultaneously illuminates the sample, and using a Bayer color image sensor with known or calibrated transmission spectra to digitally demultiplex these three wavelength channels. This demultiplexing step is conventionally used with interpolation-based Bayer demosaicing methods. However, because the pixels of different color channels on a Bayer image sensor chip are not at the same physical location, conventional interpolation-based demosaicing process generates strong color artifacts, especially at rapidly oscillating hologram fringes, which become even more pronounced through digital wave propagation and phase retrieval processes. Here, we demonstrate that by merging the pixel super-resolution framework into the demultiplexing process, such color artifacts can be greatly suppressed. This novel technique, termed demosaiced pixel super-resolution (D-PSR) for digital holographic imaging, achieves very similar color imaging performance compared to conventional sequential R,G,B illumination, with 3-fold improvement in image acquisition time and data-efficiency. We successfully demonstrated the color imaging performance of this approach by imaging stained Pap smears. The D-PSR technique is broadly applicable to high-throughput, high-resolution digital holographic color microscopy techniques that can be used in resource-limited-settings and point-of-care offices.

  9. Evaluation of Particle Image Velocimetry Measurement Using Multi-wavelength Illumination

    NASA Astrophysics Data System (ADS)

    Lai, HC; Chew, TF; Razak, NA

    2018-05-01

    In past decades, particle image velocimetry (PIV) has been widely used in measuring fluid flow and a lot of researches have been done to improve the PIV technique. Many researches are conducted on high power light emitting diode (HPLED) to replace the traditional laser illumination system in PIV. As an extended work to the research in PIV illumination system, two high power light emitting diodes (HPLED) with different wavelength are introduced as PIV illumination system. The objective of this research is using dual colours LED to directly replace laser as illumination system in order for a single frame to be captured by a normal camera instead of a high speed camera. Dual colours HPLEDs PIV are capable with single frame double pulses mode which able to plot the velocity vector of the particles after correlation. An illumination system is designed and fabricated and evaluated by measuring water flow in a small tank. The results indicates that HPLEDs promises a few advantages in terms of cost, safety and performance. It has a high potential to be develop into an alternative for PIV in the near future.

  10. Digital micromirror based near-infrared illumination system for plasmonic photothermal neuromodulation

    PubMed Central

    Jung, Hyunjun; Kang, Hongki; Nam, Yoonkey

    2017-01-01

    Light-mediated neuromodulation techniques provide great advantages to investigate neuroscience due to its high spatial and temporal resolution. To generate a spatial pattern of neural activity, it is necessary to develop a system for patterned-light illumination to a specific area. Digital micromirror device (DMD) based patterned illumination system have been used for neuromodulation due to its simple configuration and design flexibility. In this paper, we developed a patterned near-infrared (NIR) illumination system for region specific photothermal manipulation of neural activity using NIR-sensitive plasmonic gold nanorods (GNRs). The proposed system had high power transmission efficiency for delivering power density up to 19 W/mm2. We used a GNR-coated microelectrode array (MEA) to perform biological experiments using E18 rat hippocampal neurons and showed that it was possible to inhibit neural spiking activity of specific area in neural circuits with the patterned NIR illumination. This patterned NIR illumination system can serve as a promising neuromodulation tool to investigate neuroscience in a wide range of physiological and clinical applications. PMID:28663912

  11. Detection technique for artificially illuminated objects in the outer solar system and beyond.

    PubMed

    Loeb, Abraham; Turner, Edwin L

    2012-04-01

    Existing and planned optical telescopes and surveys can detect artificially illuminated objects, comparable in total brightness to a major terrestrial city, at the outskirts of the Solar System. Orbital parameters of Kuiper belt objects (KBOs) are routinely measured to exquisite precisions of<10(-3). Here, we propose to measure the variation of the observed flux F from such objects as a function of their changing orbital distances D. Sunlight-illuminated objects will show a logarithmic slope α ≡ (d log F/d log D)=-4, whereas artificially illuminated objects should exhibit α=-2. The proposed Large Synoptic Survey Telescope (LSST) and other planned surveys will provide superb data and allow measurement of α for thousands of KBOs. If objects with α=-2 are found, follow-up observations could measure their spectra to determine whether they are illuminated by artificial lighting. The search can be extended beyond the Solar System with future generations of telescopes on the ground and in space that would have the capacity to detect phase modulation due to very strong artificial illumination on the nightside of planets as they orbit their parent stars.

  12. Fiber Optical Improvements for a Device Used in Laparoscopic Hysterectomy Surgery

    NASA Astrophysics Data System (ADS)

    Hernández Garcia, Ricardo; Vázquez Mercado, Liliana; García-Torales, G.; Flores, Jorge L.; Barcena-Soto, Maximiliano; Casillas Santana, Norberto; Casillas Santana, Juan Manuel

    2006-09-01

    Hysterectomy removes uterus from patients suffering different pathologies. One of the most common techniques for performing it is the laparoscopically-assisted vaginal hysterectomy (LAVH). In the final stage of the procedure, surgeons face the need to unambiguously identify the vaginal cuff before uterus removal. The aim of this research is to adapt a local source of illumination to a polymer cup-like device adapted to a stainless steel shaft that surgeons nowadays use to manipulate the uterus in LAVH. Our proposal consists in implementing a set of optical fiber illuminators along the border of the cup-like device to illuminate the exact vaginal cupola, using an external light source. We present experimental results concerning temperature increases in quasi adiabatic conditions in cow meat under different light intensity illumination.

  13. Fabrication and testing of mis solar cells on a-Si:F:H. Final report, September 15, 1979-September 15, 1980

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Han, M. K.; Anderson, W. A.

    1980-11-03

    Fabrication techniques and improved a-Si:H film processing have been achieved to produce a short circuit current density of 7.5 mA/cm/sup 2/ and open circuit voltage of 740 mV on large area (2cm/sup 2/) a-Si cells by the deposition of an inexpensive semitransparent metal (Cr) as a top electrode on a N-I-P structure. This corresponds to a 2% efficiency using AMl illumination. A V/sub oc/ of 830 mV and fill factor of 0.54 have also been separately obtained. A relatively simple and inexpensive deposition technique using a one pumpdown vacuum system, Al grid and thin metal film structure have been appliedmore » to reduce the cost of a-Si:H cell fabrication. A SEM study of a-Si film quality shows the substrate texture to greatly influence the film morphology. This in turn serves to influence the uniformity of photovoltaic response on completed solar cells. The studies of optical transmittance of various thin metal films promote the utilization of Cr and Cu as a top electrode. Dark and illuminated I-V characteristics show that current conduction mechanisms and recombination pheonomena are not the same under dark and illuminated conditions. Furthermore, spectral response analysis and reverse illuminated saturation current under different illumination levels show photoconductivity and collection efficiency to be a function of illumination level. Significant differences in spectral response are observed when comparing P-I-N, N-I-P and I-N structures. A Schottky barrier lowering effect is proposed to explain some spectral response data. The importance of the top junction region to carrier collection is also discussed.« less

  14. High-Speed Transmission Shadowgraphic and Dynamic Photoelasticity Study of Stress Wave and Impact Damage Propagation in Transparent Materials and Laminates Using the Edge-On Impact (EOI) Method

    DTIC Science & Technology

    2008-03-01

    oxynitride spinel (ALONTM), fused silica , StarphireTM, a soda - lime - 2 silica glass , and borofloat glass . Once the baseline glass materials were...results on monolithic and laminated glass (Starphire™) and AlON, a polycrystalline transparent ceramic. Crack, damage and stress wave velocities...monolithic and laminated glass (Starphire™) and AlON, a polycrystalline transparent ceramic. Crack, damage and stress wave velocities have been

  15. Toward Active Control of Noise from Hot Supersonic Jets

    DTIC Science & Technology

    2014-04-21

    regions of the jet. A retro -reflective shadowgraph setup was used to record the images. The near-nozzle region exhibits a large number of shock-like...jet exit plane; nearly identical observations have been made in the rocket noise community [15, 29| . The only discrepancies in figure 9b are with the...noise surveys of solid-fuel rocket engines for a range of nozzle exit pressures," NASA TN D-21, August, 1959. [16] Potter, R.C. and Jones, J.H., "An

  16. High dynamic range fringe acquisition: A novel 3-D scanning technique for high-reflective surfaces

    NASA Astrophysics Data System (ADS)

    Jiang, Hongzhi; Zhao, Huijie; Li, Xudong

    2012-10-01

    This paper presents a novel 3-D scanning technique for high-reflective surfaces based on phase-shifting fringe projection method. High dynamic range fringe acquisition (HDRFA) technique is developed to process the fringe images reflected from the shiny surfaces, and generates a synthetic fringe image by fusing the raw fringe patterns, acquired with different camera exposure time and the illumination fringe intensity from the projector. Fringe image fusion algorithm is introduced to avoid saturation and under-illumination phenomenon by choosing the pixels in the raw fringes with the highest fringe modulation intensity. A method of auto-selection of HDRFA parameters is developed and largely increases the measurement automation. The synthetic fringes have higher signal-to-noise ratio (SNR) under ambient light by optimizing HDRFA parameters. Experimental results show that the proposed technique can successfully measure objects with high-reflective surfaces and is insensitive to ambient light.

  17. Biotechnology Apprenticeship for Secondary-Level Students: Teaching Advanced Cell Culture Techniques for Research.

    ERIC Educational Resources Information Center

    Lewis, Jennifer R.; Kotur, Mark S.; Butt, Omar; Kulcarni, Sumant; Riley, Alyssa A.; Ferrell, Nick; Sullivan, Kathryn D.; Ferrari, Mauro

    2002-01-01

    Discusses small-group apprenticeships (SGAs) as a method for introducing cell culture techniques to high school participants. Teaches cell culture practices and introduces advance imaging techniques to solve various biomedical engineering problems. Clarifies and illuminates the value of small-group laboratory apprenticeships. (Author/KHR)

  18. Accuracy and performance of 3D mask models in optical projection lithography

    NASA Astrophysics Data System (ADS)

    Agudelo, Viviana; Evanschitzky, Peter; Erdmann, Andreas; Fühner, Tim; Shao, Feng; Limmer, Steffen; Fey, Dietmar

    2011-04-01

    Different mask models have been compared: rigorous electromagnetic field (EMF) modeling, rigorous EMF modeling with decomposition techniques and the thin mask approach (Kirchhoff approach) to simulate optical diffraction from different mask patterns in projection systems for lithography. In addition, each rigorous model was tested for two different formulations for partially coherent imaging: The Hopkins assumption and rigorous simulation of mask diffraction orders for multiple illumination angles. The aim of this work is to closely approximate results of the rigorous EMF method by the thin mask model enhanced with pupil filtering techniques. The validity of this approach for different feature sizes, shapes and illumination conditions is investigated.

  19. Novel technique for solar power illumination using plastic optical fibres

    NASA Astrophysics Data System (ADS)

    Munisami, J.; Kalymnios, D.

    2008-09-01

    Plastic Optical Fibres (POF) were developed almost 3 decades ago. They are mainly used for short haul data communications (up to 1 km with data rates up to 1 Gbps). Over the years, POF has found applications in many other areas including solar energy transport for illumination. In such an application, light is collected from the sun and is directed into a space which needs to be illuminated. The use of fibres and more specifically POF, in daylighting systems, started only a few years ago. Several approaches have been investigated and we have seen the development of a few commercial products. The market however, has not really taken off for these technologies simply because of their enormous price tags. It is important to note that the use of POF in these designs has been limited to the function of POF as the transmission medium only. We propose a novel solar illumination technique using POF as both the light collecting/concentrating mechanism and the transmission medium. By modifying the structure of the fibre, solar light can be directed into the fibre by using an analogous process to fibre side emission but, in the reverse. We shall report on the solar light capturing efficiency of POF as modified by several types of external imperfections introduced onto the fibre. One major advantage of our proposed approach lies in the fact that we aim to eliminate at least one of the two axes of sun tracking that is currently used in existing solar illumination systems.

  20. Optically Sectioned Imaging of Microvasculature of In-Vivo and Ex-Vivo Thick Tissue Models with Speckle-illumination HiLo Microscopy and HiLo Image Processing Implementation in MATLAB Architecture

    NASA Astrophysics Data System (ADS)

    Suen, Ricky Wai

    The work described in this thesis covers the conversion of HiLo image processing into MATLAB architecture and the use of speckle-illumination HiLo microscopy for use of ex-vivo and in-vivo imaging of thick tissue models. HiLo microscopy is a wide-field fluorescence imaging technique and has been demonstrated to produce optically sectioned images comparable to confocal in thin samples. The imaging technique was developed by Jerome Mertz and the Boston University Biomicroscopy Lab and has been implemented in our lab as a stand-alone optical setup and a modification to a conventional fluorescence microscope. Speckle-illumination HiLo microscopy combines two images taken under speckle-illumination and standard uniform-illumination to generate an optically sectioned image that reject out-of-focus fluorescence. The evaluated speckle contrast in the images is used as a weighting function where elements that move out-of-focus have a speckle contrast that decays to zero. The experiments shown here demonstrate the capability of our HiLo microscopes to produce optically-sectioned images of the microvasculature of ex-vivo and in-vivo thick tissue models. The HiLo microscope were used to image the microvasculature of ex-vivo mouse heart sections prepared for optical histology and the microvasculature of in-vivo rodent dorsal window chamber models. Studies in label-free surface profiling with HiLo microscopy is also presented.

  1. Combined illumination cylindrical millimeter-wave imaging technique for concealed weapon detection

    NASA Astrophysics Data System (ADS)

    Sheen, David M.; McMakin, Douglas L.; Hall, Thomas E.

    2000-07-01

    A novel millimeter-wave imaging technique has been developed for personnel surveillance applications, including the detection of concealed weapons, explosives, drugs, and other contraband material. Millimeter-waves are high-frequency radio waves in the frequency band of 30 - 300 GHz, and pose no health threat to humans at moderate power levels. These waves readily penetrate common clothing materials, and are reflected by the human body and by concealed items. The combined illumination cylindrical imaging concept consists of a vertical, high-resolution, millimeter-wave array of antennas which is scanned in a cylindrical manner about the person under surveillance. Using a computer, the data from this scan is mathematically reconstructed into a series of focused 3D images of the person. After reconstruction, the images are combined into a single high-resolution 3D image of the person under surveillance. This combined image is then rendered using 3D computer graphics techniques. The combined cylindrical illumination is critical as it allows the display of information from all angles. This is necessary because millimeter-waves do not penetrate the body. Ultimately, the images displayed to the operate will be icon-based to protect the privacy of the person being screened. Novel aspects of this technique include the cylindrical scanning concept and the image reconstruction algorithm, which was developed specifically for this imaging system. An engineering prototype based on this cylindrical imaging technique has been fabricated and tested. This work has been sponsored by the Federal Aviation Administration.

  2. Improved illumination system of laparoscopes using an aspherical lens array.

    PubMed

    Wu, Rengmao; Qin, Yi; Hua, Hong

    2016-06-01

    The current fiber-based illumination systems of laparoscopes are unable to uniformly illuminate a large enough area in abdomen due to the limited numerical aperture (NA) of the fiber bundle. Most energy is concentrated in a small region at the center of the illumination area. This limitation becomes problematic in laparoscopes which require capturing a wide field of view. In this paper, we propose an aspherical lens array which is used to direct the outgoing rays from the fiber bundle of laparoscope to produce a more uniformly illuminated, substantially larger field coverage than standalone fiber source. An intensity feedback method is developed to design the aspherical lens unit for extended non-Lambertian sources, which is the key to the design of this lens array. By this method, the lens unit is obtained after only one iteration, and the lens array is constructed by Boolean operation. Then, the ray-tracing technique is used to verify the design. Further, the lens array is fabricated and experimental tests are performed. The results clearly show that the well-illuminated area is increased to about 0.107m(2) from 0.02m(2) (about 5x larger than a standard fiber illumination source). More details of the internal organs can be clearly observed under this improved illumination condition, which also reflects the significant improvement in the optical performance of the laparoscope.

  3. Illumination normalization of face image based on illuminant direction estimation and improved Retinex.

    PubMed

    Yi, Jizheng; Mao, Xia; Chen, Lijiang; Xue, Yuli; Rovetta, Alberto; Caleanu, Catalin-Daniel

    2015-01-01

    Illumination normalization of face image for face recognition and facial expression recognition is one of the most frequent and difficult problems in image processing. In order to obtain a face image with normal illumination, our method firstly divides the input face image into sixteen local regions and calculates the edge level percentage in each of them. Secondly, three local regions, which meet the requirements of lower complexity and larger average gray value, are selected to calculate the final illuminant direction according to the error function between the measured intensity and the calculated intensity, and the constraint function for an infinite light source model. After knowing the final illuminant direction of the input face image, the Retinex algorithm is improved from two aspects: (1) we optimize the surround function; (2) we intercept the values in both ends of histogram of face image, determine the range of gray levels, and stretch the range of gray levels into the dynamic range of display device. Finally, we achieve illumination normalization and get the final face image. Unlike previous illumination normalization approaches, the method proposed in this paper does not require any training step or any knowledge of 3D face and reflective surface model. The experimental results using extended Yale face database B and CMU-PIE show that our method achieves better normalization effect comparing with the existing techniques.

  4. A chandelier-illuminated anterior chamber maintainer for use during descemet stripping automated endothelial keratoplasty in patients with advanced bullous keratopathy.

    PubMed

    Inoue, Tomoyuki; Oshima, Yusuke; Hori, Yuich; Maeda, Naoyuki

    2010-08-01

    A new 25-gauge illuminated anterior chamber maintainer composed of a 25-gauge infusion cannula through which a 29-gauge chandelier fiber probe passes was developed for use during Descemet stripping automated endothelial keratoplasty to treat patients with advanced bullous keratopathy. This device, which is compatible with a xenon or mercury vapor illuminator to generate powerful wide-angle illumination from the cone-shaped chandelier fiber tip, is self-retained at the corneal limbus after insertion of the infusion cannula through a corneal side port. Because of its bifunctionality, that is, bright illumination and adequate irrigation flow, excellent visibility with stable anterior chamber maintenance can be concurrently obtained for Descemet stripping, endothelial graft insertion, and subsequent intraocular manipulations without the need for use of a biologic staining technique or ophthalmic viscosurgical products even in patients with severe corneal haze. This new device facilitates safe and simple intraocular manipulation during Descemet stripping automated endothelial keratoplasty.

  5. Back-side hydrogenation technique for defect passivation in silicon solar cells

    DOEpatents

    Sopori, Bhushan L.

    1994-01-01

    A two-step back-side hydrogenation process includes the steps of first bombarding the back side of the silicon substrate with hydrogen ions with intensities and for a time sufficient to implant enough hydrogen atoms into the silicon substrate to potentially passivate substantially all of the defects and impurities in the silicon substrate, and then illuminating the silicon substrate with electromagnetic radiation to activate the implanted hydrogen, so that it can passivate the defects and impurities in the substrate. The illumination step also annihilates the hydrogen-induced defects. The illumination step is carried out according to a two-stage illumination schedule, the first or low-power stage of which subjects the substrate to electromagnetic radiation that has sufficient intensity to activate the implanted hydrogen, yet not drive the hydrogen from the substrate. The second or high-power illumination stage subjects the substrate to higher intensity electromagnetic radiation, which is sufficient to annihilate the hydrogen-induced defects and sinter/alloy the metal contacts.

  6. Back-side hydrogenation technique for defect passivation in silicon solar cells

    DOEpatents

    Sopori, B.L.

    1994-04-19

    A two-step back-side hydrogenation process includes the steps of first bombarding the back side of the silicon substrate with hydrogen ions with intensities and for a time sufficient to implant enough hydrogen atoms into the silicon substrate to potentially passivate substantially all of the defects and impurities in the silicon substrate, and then illuminating the silicon substrate with electromagnetic radiation to activate the implanted hydrogen, so that it can passivate the defects and impurities in the substrate. The illumination step also annihilates the hydrogen-induced defects. The illumination step is carried out according to a two-stage illumination schedule, the first or low-power stage of which subjects the substrate to electromagnetic radiation that has sufficient intensity to activate the implanted hydrogen, yet not drive the hydrogen from the substrate. The second or high-power illumination stage subjects the substrate to higher intensity electromagnetic radiation, which is sufficient to annihilate the hydrogen-induced defects and sinter/alloy the metal contacts. 3 figures.

  7. Spatially-controlled illumination with rescan confocal microscopy enhances image quality, resolution and reduces photodamage

    NASA Astrophysics Data System (ADS)

    Krishnaswami, Venkataraman; De Luca, Giulia M. R.; Breedijk, Ronald M. P.; Van Noorden, Cornelis J. F.; Manders, Erik M. M.; Hoebe, Ron A.

    2017-02-01

    Fluorescence microscopy is an important tool in biomedical imaging. An inherent trade-off lies between image quality and photodamage. Recently, we have introduced rescan confocal microscopy (RCM) that improves the lateral resolution of a confocal microscope down to 170 nm. Previously, we have demonstrated that with controlled-light exposure microscopy, spatial control of illumination reduces photodamage without compromising image quality. Here, we show that the combination of these two techniques leads to high resolution imaging with reduced photodamage without compromising image quality. Implementation of spatially-controlled illumination was carried out in RCM using a line scanning-based approach. Illumination is spatially-controlled for every line during imaging with the help of a prediction algorithm that estimates the spatial profile of the fluorescent specimen. The estimation is based on the information available from previously acquired line images. As a proof-of-principle, we show images of N1E-115 neuroblastoma cells, obtained by this new setup with reduced illumination dose, improved resolution and without compromising image quality.

  8. Measurement potential of laser speckle velocimetry

    NASA Technical Reports Server (NTRS)

    Adrian, R. J.

    1982-01-01

    Laser speckle velocimetry, the measurement of fluid velocity by measuring the translation of speckle pattern or individual particles that are moving with the fluid, is described. The measurement is accomplished by illuminating the fluid with consecutive pulses of Laser Light and recording the images of the particles or the speckles on a double exposed photographic plate. The plate contains flow information throughout the image plane so that a single double exposure may provide data at hundreds or thousands of points in the illuminated region of the fluid. Conventional interrogation of the specklegram involves illuminating the plate to form Young's fringes, whose spacing is inversely proportional to the speckle separation. Subsequently the fringes are digitized and analyzed in a computer to determine their frequency and orientation, yielding the velocity magnitude and orientation. The Young's fringe technique is equivalent to performing a 2-D spatial correlation of the double exposed specklegram intensity pattern, and this observation suggests that correlation should be considered as an alternative processing method. The principle of the correlation technique is examined.

  9. Radar transponder apparatus and signal processing technique

    DOEpatents

    Axline, Jr., Robert M.; Sloan, George R.; Spalding, Richard E.

    1996-01-01

    An active, phase-coded, time-grating transponder and a synthetic-aperture radar (SAR) and signal processor means, in combination, allow the recognition and location of the transponder (tag) in the SAR image and allow communication of information messages from the transponder to the SAR. The SAR is an illuminating radar having special processing modifications in an image-formation processor to receive an echo from a remote transponder, after the transponder receives and retransmits the SAR illuminations, and to enhance the transponder's echo relative to surrounding ground clutter by recognizing special transponder modulations from phase-shifted from the transponder retransmissions. The remote radio-frequency tag also transmits information to the SAR through a single antenna that also serves to receive the SAR illuminations. Unique tag-modulation and SAR signal processing techniques, in combination, allow the detection and precise geographical location of the tag through the reduction of interfering signals from ground clutter, and allow communication of environmental and status information from said tag to be communicated to said SAR.

  10. Radar transponder apparatus and signal processing technique

    DOEpatents

    Axline, R.M. Jr.; Sloan, G.R.; Spalding, R.E.

    1996-01-23

    An active, phase-coded, time-grating transponder and a synthetic-aperture radar (SAR) and signal processor means, in combination, allow the recognition and location of the transponder (tag) in the SAR image and allow communication of information messages from the transponder to the SAR. The SAR is an illuminating radar having special processing modifications in an image-formation processor to receive an echo from a remote transponder, after the transponder receives and retransmits the SAR illuminations, and to enhance the transponder`s echo relative to surrounding ground clutter by recognizing special transponder modulations from phase-shifted from the transponder retransmissions. The remote radio-frequency tag also transmits information to the SAR through a single antenna that also serves to receive the SAR illuminations. Unique tag-modulation and SAR signal processing techniques, in combination, allow the detection and precise geographical location of the tag through the reduction of interfering signals from ground clutter, and allow communication of environmental and status information from said tag to be communicated to said SAR. 4 figs.

  11. Detection Technique for Artificially Illuminated Objects in the Outer Solar System and Beyond

    PubMed Central

    Loeb, Abraham

    2012-01-01

    Abstract Existing and planned optical telescopes and surveys can detect artificially illuminated objects, comparable in total brightness to a major terrestrial city, at the outskirts of the Solar System. Orbital parameters of Kuiper belt objects (KBOs) are routinely measured to exquisite precisions of<10−3. Here, we propose to measure the variation of the observed flux F from such objects as a function of their changing orbital distances D. Sunlight-illuminated objects will show a logarithmic slope α ≡ (d log F/d log D)=−4, whereas artificially illuminated objects should exhibit α=−2. The proposed Large Synoptic Survey Telescope (LSST) and other planned surveys will provide superb data and allow measurement of α for thousands of KBOs. If objects with α=−2 are found, follow-up observations could measure their spectra to determine whether they are illuminated by artificial lighting. The search can be extended beyond the Solar System with future generations of telescopes on the ground and in space that would have the capacity to detect phase modulation due to very strong artificial illumination on the nightside of planets as they orbit their parent stars. Key Words: Astrobiology—SETI—Kuiper belt objects—Artificial illumination. Astrobiology 12, 290–294. PMID:22490065

  12. A Physics-Based Deep Learning Approach to Shadow Invariant Representations of Hyperspectral Images.

    PubMed

    Windrim, Lloyd; Ramakrishnan, Rishi; Melkumyan, Arman; Murphy, Richard J

    2018-02-01

    This paper proposes the Relit Spectral Angle-Stacked Autoencoder, a novel unsupervised feature learning approach for mapping pixel reflectances to illumination invariant encodings. This work extends the Spectral Angle-Stacked Autoencoder so that it can learn a shadow-invariant mapping. The method is inspired by a deep learning technique, Denoising Autoencoders, with the incorporation of a physics-based model for illumination such that the algorithm learns a shadow invariant mapping without the need for any labelled training data, additional sensors, a priori knowledge of the scene or the assumption of Planckian illumination. The method is evaluated using datasets captured from several different cameras, with experiments to demonstrate the illumination invariance of the features and how they can be used practically to improve the performance of high-level perception algorithms that operate on images acquired outdoors.

  13. Two-photon speckle illumination for super-resolution microscopy.

    PubMed

    Negash, Awoke; Labouesse, Simon; Chaumet, Patrick C; Belkebir, Kamal; Giovannini, Hugues; Allain, Marc; Idier, Jérôme; Sentenac, Anne

    2018-06-01

    We present a numerical study of a microscopy setup in which the sample is illuminated with uncontrolled speckle patterns and the two-photon excitation fluorescence is collected on a camera. We show that, using a simple deconvolution algorithm for processing the speckle low-resolution images, this wide-field imaging technique exhibits resolution significantly better than that of two-photon excitation scanning microscopy or one-photon excitation bright-field microscopy.

  14. Optical Linear Algebra for Computational Light Transport

    NASA Astrophysics Data System (ADS)

    O'Toole, Matthew

    Active illumination refers to optical techniques that use controllable lights and cameras to analyze the way light propagates through the world. These techniques confer many unique imaging capabilities (e.g. high-precision 3D scanning, image-based relighting, imaging through scattering media), but at a significant cost; they often require long acquisition and processing times, rely on predictive models for light transport, and cease to function when exposed to bright ambient sunlight. We develop a mathematical framework for describing and analyzing such imaging techniques. This framework is deeply rooted in numerical linear algebra, and models the transfer of radiant energy through an unknown environment with the so-called light transport matrix. Performing active illumination on a scene equates to applying a numerical operator on this unknown matrix. The brute-force approach to active illumination follows a two-step procedure: (1) optically measure the light transport matrix and (2) evaluate the matrix operator numerically. This approach is infeasible in general, because the light transport matrix is often much too large to measure, store, and analyze directly. Using principles from optical linear algebra, we evaluate these matrix operators in the optical domain, without ever measuring the light transport matrix in the first place. Specifically, we explore numerical algorithms that can be implemented partially or fully with programmable optics. These optical algorithms provide solutions to many longstanding problems in computer vision and graphics, including the ability to (1) photo-realistically change the illumination conditions of a given photo with only a handful of measurements, (2) accurately capture the 3D shape of objects in the presence of complex transport properties and strong ambient illumination, and (3) overcome the multipath interference problem associated with time-of-flight cameras. Most importantly, we introduce an all-new imaging regime---optical probing---that provides unprecedented control over which light paths contribute to a photo.

  15. Resolving Fast, Confined Diffusion in Bacteria with Image Correlation Spectroscopy.

    PubMed

    Rowland, David J; Tuson, Hannah H; Biteen, Julie S

    2016-05-24

    By following single fluorescent molecules in a microscope, single-particle tracking (SPT) can measure diffusion and binding on the nanometer and millisecond scales. Still, although SPT can at its limits characterize the fastest biomolecules as they interact with subcellular environments, this measurement may require advanced illumination techniques such as stroboscopic illumination. Here, we address the challenge of measuring fast subcellular motion by instead analyzing single-molecule data with spatiotemporal image correlation spectroscopy (STICS) with a focus on measurements of confined motion. Our SPT and STICS analysis of simulations of the fast diffusion of confined molecules shows that image blur affects both STICS and SPT, and we find biased diffusion rate measurements for STICS analysis in the limits of fast diffusion and tight confinement due to fitting STICS correlation functions to a Gaussian approximation. However, we determine that with STICS, it is possible to correctly interpret the motion that blurs single-molecule images without advanced illumination techniques or fast cameras. In particular, we present a method to overcome the bias due to image blur by properly estimating the width of the correlation function by directly calculating the correlation function variance instead of using the typical Gaussian fitting procedure. Our simulation results are validated by applying the STICS method to experimental measurements of fast, confined motion: we measure the diffusion of cytosolic mMaple3 in living Escherichia coli cells at 25 frames/s under continuous illumination to illustrate the utility of STICS in an experimental parameter regime for which in-frame motion prevents SPT and tight confinement of fast diffusion precludes stroboscopic illumination. Overall, our application of STICS to freely diffusing cytosolic protein in small cells extends the utility of single-molecule experiments to the regime of fast confined diffusion without requiring advanced microscopy techniques. Copyright © 2016 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  16. Synchro-ballistic recording of detonation phenomena

    NASA Astrophysics Data System (ADS)

    Critchfield, Robert R.; Asay, Blaine W.; Bdzil, John B.; Davis, William C.; Ferm, Eric N.; Idar, Deanne J.

    1997-12-01

    Synchro-ballistic use of rotating-mirror streak cameras allows for detailed recording of high-speed events of known velocity and direction. After an introduction to the synchro-ballistic technique, this paper details two diverse applications of the technique as applied in the field of high-explosives research. In the first series of experiments detonation-front shape is recorded as the arriving detonation shock wave tilts an obliquely mounted mirror, causing reflected light to be deflected from the imaging lens. These tests were conducted for the purpose of calibrating and confirming the asymptotic detonation shock dynamics (DSD) theory of Bdzil and Stewart. The phase velocities of the events range from ten to thirty millimeters per microsecond. Optical magnification is set for optimal use of the film's spatial dimension and the phase velocity is adjusted to provide synchronization at the camera's maximum writing speed. Initial calibration of the technique is undertaken using a cylindrical HE geometry over a range of charge diameters and of sufficient length-to- diameter ratio to insure a stable detonation wave. The final experiment utilizes an arc-shaped explosive charge, resulting in an asymmetric denotation-front record. The second series of experiments consists of photographing a shaped-charge jet having a velocity range of two to nine millimeters per microsecond. To accommodate the range of velocities it is necessary to fire several tests, each synchronized to a different section of the jet. The experimental apparatus consists of a vacuum chamber to preclude atmospheric ablation of the jet tip with shocked-argon back lighting to produce a shadow-graph image.

  17. Synchro-ballistic recording of detonation phenomena

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Critchfield, R.R.; Asay, B.W.; Bdzil, J.B.

    1997-09-01

    Synchro-ballistic use of rotating-mirror streak cameras allows for detailed recording of high-speed events of known velocity and direction. After an introduction to the synchro-ballistic technique, this paper details two diverse applications of the technique as applied in the field of high-explosives research. In the first series of experiments detonation-front shape is recorded as the arriving detonation shock wave tilts an obliquely mounted mirror, causing reflected light to be deflected from the imaging lens. These tests were conducted for the purpose of calibrating and confirming the asymptotic Detonation Shock Dynamics (DSD) theory of Bdzil and Stewart. The phase velocities of themore » events range from ten to thirty millimeters per microsecond. Optical magnification is set for optimal use of the film`s spatial dimension and the phase velocity is adjusted to provide synchronization at the camera`s maximum writing speed. Initial calibration of the technique is undertaken using a cylindrical HE geometry over a range of charge diameters and of sufficient length-to-diameter ratio to insure a stable detonation wave. The final experiment utilizes an arc-shaped explosive charge, resulting in an asymmetric detonation-front record. The second series of experiments consists of photographing a shaped-charge jet having a velocity range of two to nine millimeters per microsecond. To accommodate the range of velocities it is necessary to fire several tests, each synchronized to a different section of the jet. The experimental apparatus consists of a vacuum chamber to preclude atmospheric ablation of the jet tip with shocked-argon back lighting to produce a shadow-graph image.« less

  18. Shaping plasmon beams via the controlled illumination of finite-size plasmonic crystals

    PubMed Central

    Bouillard, J.-S.; Segovia, P.; Dickson, W.; Wurtz, G. A.; Zayats, A. V.

    2014-01-01

    Plasmonic crystals provide many passive and active optical functionalities, including enhanced sensing, optical nonlinearities, light extraction from LEDs and coupling to and from subwavelength waveguides. Here we study, both experimentally and numerically, the coherent control of SPP beam excitation in finite size plasmonic crystals under focussed illumination. The correct combination of the illuminating spot size, its position relative to the plasmonic crystal, wavelength and polarisation enables the efficient shaping and directionality of SPP beam launching. We show that under strongly focussed illumination, the illuminated part of the crystal acts as an antenna, launching surface plasmon waves which are subsequently filtered by the surrounding periodic lattice. Changing the illumination conditions provides rich opportunities to engineer the SPP emission pattern. This offers an alternative technique to actively modulate and control plasmonic signals, either via micro- and nano-electromechanical switches or with electro- and all-optical beam steering which have direct implications for the development of new integrated nanophotonic devices, such as plasmonic couplers and switches and on-chip signal demultiplexing. This approach can be generalised to all kinds of surface waves, either for the coupling and discrimination of light in planar dielectric waveguides or the generation and control of non-diffractive SPP beams. PMID:25429786

  19. Effects of illumination on image reconstruction via Fourier ptychography

    NASA Astrophysics Data System (ADS)

    Cao, Xinrui; Sinzinger, Stefan

    2017-12-01

    The Fourier ptychographic microscopy (FPM) technique provides high-resolution images by combining a traditional imaging system, e.g. a microscope or a 4f-imaging system, with a multiplexing illumination system, e.g. an LED array and numerical image processing for enhanced image reconstruction. In order to numerically combine images that are captured under varying illumination angles, an iterative phase-retrieval algorithm is often applied. However, in practice, the performance of the FPM algorithm degrades due to the imperfections of the optical system, the image noise caused by the camera, etc. To eliminate the influence of the aberrations of the imaging system, an embedded pupil function recovery (EPRY)-FPM algorithm has been proposed [Opt. Express 22, 4960-4972 (2014)]. In this paper, we study how the performance of FPM and EPRY-FPM algorithms are affected by imperfections of the illumination system using both numerical simulations and experiments. The investigated imperfections include varying and non-uniform intensities, and wavefront aberrations. Our study shows that the aberrations of the illumination system significantly affect the performance of both FPM and EPRY-FPM algorithms. Hence, in practice, aberrations in the illumination system gain significant influence on the resulting image quality.

  20. Open-source do-it-yourself multi-color fluorescence smartphone microscopy

    PubMed Central

    Sung, Yulung; Campa, Fernando; Shih, Wei-Chuan

    2017-01-01

    Fluorescence microscopy is an important technique for cellular and microbiological investigations. Translating this technique onto a smartphone can enable particularly powerful applications such as on-site analysis, on-demand monitoring, and point-of-care diagnostics. Current fluorescence smartphone microscope setups require precise illumination and imaging alignment which altogether limit its broad adoption. We report a multi-color fluorescence smartphone microscope with a single contact lens-like add-on lens and slide-launched total-internal-reflection guided illumination for three common tasks in investigative fluorescence microscopy: autofluorescence, fluorescent stains, and immunofluorescence. The open-source, simple and cost-effective design has the potential for do-it-yourself fluorescence smartphone microscopy. PMID:29188104

  1. Study of curved and planar frequency-selective surfaces with nonplanar illumination

    NASA Technical Reports Server (NTRS)

    Caroglanian, Armen; Webb, Kevin J.

    1991-01-01

    A locally planar technique (LPT) is investigated for determining the forward-scattered field from a generally shaped inductive frequency-selective surface (FSS) with nonplanar illumination. The results of an experimental study are presented to assess the LPT accuracy. The effects of a nonplanar incident field are determined by comparing the LPT numerical results with a series of experiments with the feed source placed at varying distances from the planar FSS. The limitations of the LPT model due to surface curvature are investigated in an experimental study of the scattered fields from a set of hyperbolic cylinders of different curvatures. From these comparisons, guidelines for applying the locally planar technique are developed.

  2. A relative performance analysis of atmospheric Laser Doppler Velocimeter methods.

    NASA Technical Reports Server (NTRS)

    Farmer, W. M.; Hornkohl, J. O.; Brayton, D. B.

    1971-01-01

    Evaluation of the effectiveness of atmospheric applications of a Laser Doppler Velocimeter (LDV) at a wavelength of about 0.5 micrometer in conjunction with dual scatter LDV illuminating techniques, or at a wavelength of 10.6 micrometer with local oscillator LDV illuminating techniques. Equations and examples are given to provide a quantitative basis for LDV system selection and performance criteria in atmospheric research. The comparative study shows that specific ranges and conditions exist where performance of one of the methods is superior to that of the other. It is also pointed out that great care must be exercised in choosing system parameters that optimize a particular LDV designed for atmospheric applications.

  3. Velocimetry of fast microscopic liquid jets by nanosecond dual-pulse laser illumination for megahertz X-ray free-electron lasers.

    PubMed

    Grünbein, Marie Luise; Shoeman, Robert L; Doak, R Bruce

    2018-03-19

    To conduct X-ray Free-Electron Laser (XFEL) measurements at megahertz (MHz) repetition rates, sample solution must be delivered in a micron-sized liquid free-jet moving at up to 100 m/s. This exceeds by over a factor of two the jet speeds measurable with current high-speed camera techniques. Accordingly we have developed and describe herein an alternative jet velocimetry based on dual-pulse nanosecond laser illumination. Three separate implementations are described, including a small laser-diode system that is inexpensive and highly portable. We have also developed and describe analysis techniques to automatically and rapidly extract jet speed from dual-pulse images.

  4. Optically controlled electrophoresis with a photoconductive substrate

    NASA Astrophysics Data System (ADS)

    Inami, Wataru; Nagashima, Taiki; Kawata, Yoshimasa

    2018-05-01

    A photoconductive substrate is used to perform electrophoresis. Light-induced micro-particle flow manipulation is demonstrated without using a fabricated flow channel. The path along which the particles were moved was formed by an illuminated light pattern on the substrate. Because the substrate conductivity and electric field distribution can be modified by light illumination, the forces acting on the particles can be controlled. This technique has potential applications as a high functionality analytical device.

  5. Optomechanical Coatings for High-Power Mirrors and Adaptive Optics

    DTIC Science & Technology

    2009-03-24

    micromirror under illumination is to increase the reflectance of the mirror. A multi-layer dielectric mirror becomes a necessity at moderate to high energies...structure. This technique was successfully demonstrated on a micromirror array fabricated by Sandia National Laboratory. Fig. 2-(1) shows the curvature of...a micromirror roughly 500 1-1m in diameter under varying laser illumination, with and without a 3-pair DBR mirror designed and fabricated by our

  6. Resolution improvement by nonconfocal theta microscopy.

    PubMed

    Lindek, S; Stelzer, E H

    1999-11-01

    We present a novel scanning fluorescence microscopy technique, nonconfocal theta microscopy (NCTM), that provides almost isotropic resolution. In NCTM, multiphoton absorption from two orthogonal illumination directions is used to induce fluorescence emission. Therefore the point-spread function of the microscope is described by the product of illumination point-spread functions with reduced spatial overlap, which provides the resolution improvement and the more isotropic observation volume. We discuss the technical details of this new method.

  7. Green light may improve diagnostic accuracy of nailfold capillaroscopy with a simple digital videomicroscope.

    PubMed

    Weekenstroo, Harm H A; Cornelissen, Bart M W; Bernelot Moens, Hein J

    2015-06-01

    Nailfold capillaroscopy is a non-invasive and safe technique for the analysis of microangiopathologies. Imaging quality of widely used simple videomicroscopes is poor. The use of green illumination instead of the commonly used white light may improve contrast. The aim of the study was to compare the effect of green illumination with white illumination, regarding capillary density, the number of microangiopathologies, and sensitivity and specificity for systemic sclerosis. Five rheumatologists have evaluated 80 images; 40 images acquired with green light, and 40 images acquired with white light. A larger number of microangiopathologies were found in images acquired with green light than in images acquired with white light. This results in slightly higher sensitivity with green light in comparison with white light, without reducing the specificity. These findings suggest that green instead of white illumination may facilitate evaluation of capillaroscopic images obtained with a low-cost digital videomicroscope.

  8. Nonlinear plasmonic imaging techniques and their biological applications

    NASA Astrophysics Data System (ADS)

    Deka, Gitanjal; Sun, Chi-Kuang; Fujita, Katsumasa; Chu, Shi-Wei

    2017-01-01

    Nonlinear optics, when combined with microscopy, is known to provide advantages including novel contrast, deep tissue observation, and minimal invasiveness. In addition, special nonlinearities, such as switch on/off and saturation, can enhance the spatial resolution below the diffraction limit, revolutionizing the field of optical microscopy. These nonlinear imaging techniques are extremely useful for biological studies on various scales from molecules to cells to tissues. Nevertheless, in most cases, nonlinear optical interaction requires strong illumination, typically at least gigawatts per square centimeter intensity. Such strong illumination can cause significant phototoxicity or even photodamage to fragile biological samples. Therefore, it is highly desirable to find mechanisms that allow the reduction of illumination intensity. Surface plasmon, which is the collective oscillation of electrons in metal under light excitation, is capable of significantly enhancing the local field around the metal nanostructures and thus boosting up the efficiency of nonlinear optical interactions of the surrounding materials or of the metal itself. In this mini-review, we discuss the recent progress of plasmonics in nonlinear optical microscopy with a special focus on biological applications. The advancement of nonlinear imaging modalities (including incoherent/coherent Raman scattering, two/three-photon luminescence, and second/third harmonic generations that have been amalgamated with plasmonics), as well as the novel subdiffraction limit imaging techniques based on nonlinear behaviors of plasmonic scattering, is addressed.

  9. Fluorescence Imaging Reveals Surface Contamination

    NASA Technical Reports Server (NTRS)

    Schirato, Richard; Polichar, Raulf

    1992-01-01

    In technique to detect surface contamination, object inspected illuminated by ultraviolet light to make contaminants fluoresce; low-light-level video camera views fluorescence. Image-processing techniques quantify distribution of contaminants. If fluorescence of material expected to contaminate surface is not intense, tagged with low concentration of dye.

  10. Onset of hexagons in surface-tension-driven Benard convection

    NASA Technical Reports Server (NTRS)

    Schatz, Michael F.; Vanhook, Stephen J.; Swift, John B.; Mccormick, William D.; Swinney, Harry L.

    1994-01-01

    High resolution laboratory experiments with large aspect ratio are being conducted for thin fluid layers heated from below and bounded from above by a free surface. The fluid depths are chosen sufficiently small (less than 0.06 cm) so that surface tension is the dominant driving mechanisms; the Rayleigh number is less than 5 for the results reported here. Shadowgraph visualization reveals that the primary instability leading to hexagons is slightly hysteretic (approximately 1 percent). Preliminary measurements of the convection amplitude using infrared imaging are also presented.

  11. Note: Quasi-real-time analysis of dynamic near field scattering data using a graphics processing unit

    NASA Astrophysics Data System (ADS)

    Cerchiari, G.; Croccolo, F.; Cardinaux, F.; Scheffold, F.

    2012-10-01

    We present an implementation of the analysis of dynamic near field scattering (NFS) data using a graphics processing unit. We introduce an optimized data management scheme thereby limiting the number of operations required. Overall, we reduce the processing time from hours to minutes, for typical experimental conditions. Previously the limiting step in such experiments, the processing time is now comparable to the data acquisition time. Our approach is applicable to various dynamic NFS methods, including shadowgraph, Schlieren and differential dynamic microscopy.

  12. Calibration of a shock wave position sensor using artificial neural networks

    NASA Technical Reports Server (NTRS)

    Decker, Arthur J.; Weiland, Kenneth E.

    1993-01-01

    This report discusses the calibration of a shock wave position sensor. The position sensor works by using artificial neural networks to map cropped CCD frames of the shadows of the shock wave into the value of the shock wave position. This project was done as a tutorial demonstration of method and feasibility. It used a laboratory shadowgraph, nozzle, and commercial neural network package. The results were quite good, indicating that artificial neural networks can be used efficiently to automate the semi-quantitative applications of flow visualization.

  13. Results of an aerodynamic force and moment investigation of an 0.015-scale configuration 3 space shuttle orbiter in the NASA/ARC 3.5-foot hypersonic wind tunnel (OA58)

    NASA Technical Reports Server (NTRS)

    Dziubala, T. J.; Cleary, J. W.

    1974-01-01

    The primary objective of the test was to obtain stability and control data for the basic configuration and an alternate configuration for the Space Shuttle Orbiter. Pitch runs were made with 0 deg of sideslip at Mach numbers of 5.3, 7.3 and 10.3. Six-component force data and fuselage base pressures were recorded for each run. Shadowgraph pictures were taken at selected points. Model 420 was used for the tests.

  14. Astrophysical blast wave data

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Riley, Nathan; Geissel, Matthias; Lewis, Sean M

    2015-03-01

    The data described in this document consist of image files of shadowgraphs of astrophysically relevant laser driven blast waves. Supporting files include Mathematica notebooks containing design calculations, tabulated experimental data and notes, and relevant publications from the open research literature. The data was obtained on the Z-Beamlet laser from July to September 2014. Selected images and calculations will be published as part of a PhD dissertation and in associated publications in the open research literature, with Sandia credited as appropriate. The authors are not aware of any restrictions that could affect the release of the data.

  15. A systematic study of supersonic jet noise.

    NASA Technical Reports Server (NTRS)

    Louis, J. F.; Letty, R. P.; Patel, J. R.

    1972-01-01

    The acoustic fields for a rectangular and for an axisymmetric nozzle configuration are studied. Both nozzles are designed for identical flow parameters. It is tried to identify the dominant noise mechanisms. The other objective of the study is to establish scaling laws of supersonic jet noise. A shock tunnel is used in the investigations. Measured sound directivity, propagation direction of Mach waves obtained by shadowgraphs, and the slight dependence of the acoustic efficiency on the level of expansion indicate that Mach waves contribute significantly to the noise produced by a rectangular jet.

  16. Extending Whole Slide Imaging: Color Darkfield Internal Reflection Illumination (DIRI) for Biological Applications

    PubMed Central

    Namiki, Kana; Miyawaki, Atsushi; Ishikawa, Takuji

    2017-01-01

    Whole slide imaging (WSI) is a useful tool for multi-modal imaging, and in our work, we have often combined WSI with darkfield microscopy. However, traditional darkfield microscopy cannot use a single condenser to support high- and low-numerical-aperture objectives, which limits the modality of WSI. To overcome this limitation, we previously developed a darkfield internal reflection illumination (DIRI) microscope using white light-emitting diodes (LEDs). Although the developed DIRI is useful for biological applications, substantial problems remain to be resolved. In this study, we propose a novel illumination technique called color DIRI. The use of three-color LEDs dramatically improves the capability of the system, such that color DIRI (1) enables optimization of the illumination color; (2) can be combined with an oil objective lens; (3) can produce fluorescence excitation illumination; (4) can adjust the wavelength of light to avoid cell damage or reactions; and (5) can be used as a photostimulator. These results clearly illustrate that the proposed color DIRI can significantly extend WSI modalities for biological applications. PMID:28085892

  17. Adaptive enhancement for nonuniform illumination images via nonlinear mapping

    NASA Astrophysics Data System (ADS)

    Wang, Yanfang; Huang, Qian; Hu, Jing

    2017-09-01

    Nonuniform illumination images suffer from degenerated details because of underexposure, overexposure, or a combination of both. To improve the visual quality of color images, underexposure regions should be lightened, whereas overexposure areas need to be dimmed properly. However, discriminating between underexposure and overexposure is troublesome. Compared with traditional methods that produce a fixed demarcation value throughout an image, the proposed demarcation changes as local luminance varies, thus is suitable for manipulating complicated illumination. Based on this locally adaptive demarcation, a nonlinear modification is applied to image luminance. Further, with the modified luminance, we propose a nonlinear process to reconstruct a luminance-enhanced color image. For every pixel, this nonlinear process takes the luminance change and the original chromaticity into account, thus trying to avoid exaggerated colors at dark areas and depressed colors at highly bright regions. Finally, to improve image contrast, a local and image-dependent exponential technique is designed and applied to the RGB channels of the obtained color image. Experimental results demonstrate that our method produces good contrast and vivid color for both nonuniform illumination images and images with normal illumination.

  18. Bessel light sheet structured illumination microscopy

    NASA Astrophysics Data System (ADS)

    Noshirvani Allahabadi, Golchehr

    Biomedical study researchers using animals to model disease and treatment need fast, deep, noninvasive, and inexpensive multi-channel imaging methods. Traditional fluorescence microscopy meets those criteria to an extent. Specifically, two-photon and confocal microscopy, the two most commonly used methods, are limited in penetration depth, cost, resolution, and field of view. In addition, two-photon microscopy has limited ability in multi-channel imaging. Light sheet microscopy, a fast developing 3D fluorescence imaging method, offers attractive advantages over traditional two-photon and confocal microscopy. Light sheet microscopy is much more applicable for in vivo 3D time-lapsed imaging, owing to its selective illumination of tissue layer, superior speed, low light exposure, high penetration depth, and low levels of photobleaching. However, standard light sheet microscopy using Gaussian beam excitation has two main disadvantages: 1) the field of view (FOV) of light sheet microscopy is limited by the depth of focus of the Gaussian beam. 2) Light-sheet images can be degraded by scattering, which limits the penetration of the excitation beam and blurs emission images in deep tissue layers. While two-sided sheet illumination, which doubles the field of view by illuminating the sample from opposite sides, offers a potential solution, the technique adds complexity and cost to the imaging system. We investigate a new technique to address these limitations: Bessel light sheet microscopy in combination with incoherent nonlinear Structured Illumination Microscopy (SIM). Results demonstrate that, at visible wavelengths, Bessel excitation penetrates up to 250 microns deep in the scattering media with single-side illumination. Bessel light sheet microscope achieves confocal level resolution at a lateral resolution of 0.3 micron and an axial resolution of 1 micron. Incoherent nonlinear SIM further reduces the diffused background in Bessel light sheet images, resulting in confocal quality images in thick tissue. The technique was applied to live transgenic zebra fish tg(kdrl:GFP), and the sub-cellular structure of fish vasculature genetically labeled with GFP was captured in 3D. The superior speed of the microscope enables us to acquire signal from 200 layers of a thick sample in 4 minutes. The compact microscope uses exclusively off-the-shelf components and offers a low-cost imaging solution for studying small animal models or tissue samples.

  19. Time-gated ballistic imaging using a large aperture switching beam.

    PubMed

    Mathieu, Florian; Reddemann, Manuel A; Palmer, Johannes; Kneer, Reinhold

    2014-03-24

    Ballistic imaging commonly denotes the formation of line-of-sight shadowgraphs through turbid media by suppression of multiply scattered photons. The technique relies on a femtosecond laser acting as light source for the images and as switch for an optical Kerr gate that separates ballistic photons from multiply scattered ones. The achievable image resolution is one major limitation for the investigation of small objects. In this study, practical influences on the optical Kerr gate and image quality are discussed theoretically and experimentally applying a switching beam with large aperture (D = 19 mm). It is shown how switching pulse energy and synchronization of switching and imaging pulse in the Kerr cell influence the gate's transmission. Image quality of ballistic imaging and standard shadowgraphy is evaluated and compared, showing that the present ballistic imaging setup is advantageous for optical densities in the range of 8 < OD < 13. Owing to the spatial transmission characteristics of the optical Kerr gate, a rectangular aperture stop is formed, which leads to different resolution limits for vertical and horizontal structures in the object. Furthermore, it is reported how to convert the ballistic imaging setup into a schlieren-type system with an optical schlieren edge.

  20. Interior flow and near-nozzle spray development in a marine-engine diesel fuel injector

    NASA Astrophysics Data System (ADS)

    Hult, J.; Simmank, P.; Matlok, S.; Mayer, S.; Falgout, Z.; Linne, M.

    2016-04-01

    A consolidated effort at optically characterising flow patterns, in-nozzle cavitation, and near-nozzle jet structure of a marine diesel fuel injector is presented. A combination of several optical techniques was employed to fully transparent injector models, compound metal-glass and full metal injectors. They were all based on a common real-scale dual nozzle hole geometry for a marine two-stroke diesel engine. In a stationary flow rig, flow velocities in the sac-volume and nozzle holes were measured using PIV, and in-nozzle cavitation visualized using high-resolution shadowgraphs. The effect of varying cavitation number was studied and results compared to CFD predictions. In-nozzle cavitation and near-nozzle jet structure during transient operation were visualized simultaneously, using high-speed imaging in an atmospheric pressure spray rig. Near-nozzle spray formation was investigated using ballistic imaging. Finally, the injector geometry was tested on a full-scale marine diesel engine, where the dynamics of near-nozzle jet development was visualized using high-speed shadowgraphy. The range of studies focused on a single common geometry allows a comprehensive survey of phenomena ranging from first inception of cavitation under well-controlled flow conditions to fuel jet structure at real engine conditions.

  1. Multiple pulsed hypersonic liquid diesel fuel jetsdriven by projectile impact

    NASA Astrophysics Data System (ADS)

    Pianthong, K.; Takayama, K.; Milton, B. E.; Behnia, M.

    2005-06-01

    Further studies on high-speed liquid diesel fuel jets injected into ambient air conditions have been carried out. Projectile impact has been used as the driving mechanism. A vertical two-stage light gas gun was used as a launcher to provide the high-speed impact. This paper describes the experimental technique and visualization methods that provided a rapid series of jet images in the one shot. A high-speed video camera (106 fps) and shadowgraph optical system were used to obtain visualization. Very interesting and unique phenomena have been discovered and confirmed in this study. These are that multiple high frequency jet pulses are generated within the duration of a single shot impact. The associated multiple jet shock waves have been clearly captured. This characteristic consistently occurs with the smaller conical angle, straight cone nozzles but not with those with a very wide cone angle or curved nozzle profile. An instantaneous jet tip velocity of 2680 m/s (Mach number of 7.86) was the maximum obtained with the 40^circ nozzle. However, this jet tip velocity can only be sustained for a few microseconds as attenuation is very rapid.

  2. Contamination detection NDE for cleaning process inspection

    NASA Technical Reports Server (NTRS)

    Marinelli, W. J.; Dicristina, V.; Sonnenfroh, D.; Blair, D.

    1995-01-01

    In the joining of multilayer materials, and in welding, the cleanliness of the joining surface may play a large role in the quality of the resulting bond. No non-intrusive techniques are currently available for the rapid measurement of contamination on large or irregularly shaped structures prior to the joining process. An innovative technique for the measurement of contaminant levels in these structures using laser based imaging is presented. The approach uses an ultraviolet excimer laser to illuminate large and/or irregular surface areas. The UV light induces fluorescence and is scattered from the contaminants. The illuminated area is viewed by an image-intensified CCD (charge coupled device) camera interfaced to a PC-based computer. The camera measures the fluorescence and/or scattering from the contaminants for comparison with established standards. Single shot measurements of contamination levels are possible. Hence, the technique may be used for on-line NDE testing during manufacturing processes.

  3. A Simple low-cost device enables four epi-illumination techniques on standard light microscopes.

    PubMed

    Ishmukhametov, Robert R; Russell, Aidan N; Wheeler, Richard J; Nord, Ashley L; Berry, Richard M

    2016-02-08

    Back-scattering darkfield (BSDF), epi-fluorescence (EF), interference reflection contrast (IRC), and darkfield surface reflection (DFSR) are advanced but expensive light microscopy techniques with limited availability. Here we show a simple optical design that combines these four techniques in a simple low-cost miniature epi-illuminator, which inserts into the differential interference-contrast (DIC) slider bay of a commercial microscope, without further additions required. We demonstrate with this device: 1) BSDF-based detection of Malarial parasites inside unstained human erythrocytes; 2) EF imaging with and without dichroic components, including detection of DAPI-stained Leishmania parasite without using excitation or emission filters; 3) RIC of black lipid membranes and other thin films, and 4) DFSR of patterned opaque and transparent surfaces. We believe that our design can expand the functionality of commercial bright field microscopes, provide easy field detection of parasites and be of interest to many users of light microscopy.

  4. A Simple low-cost device enables four epi-illumination techniques on standard light microscopes

    NASA Astrophysics Data System (ADS)

    Ishmukhametov, Robert R.; Russell, Aidan N.; Wheeler, Richard J.; Nord, Ashley L.; Berry, Richard M.

    2016-02-01

    Back-scattering darkfield (BSDF), epi-fluorescence (EF), interference reflection contrast (IRC), and darkfield surface reflection (DFSR) are advanced but expensive light microscopy techniques with limited availability. Here we show a simple optical design that combines these four techniques in a simple low-cost miniature epi-illuminator, which inserts into the differential interference-contrast (DIC) slider bay of a commercial microscope, without further additions required. We demonstrate with this device: 1) BSDF-based detection of Malarial parasites inside unstained human erythrocytes; 2) EF imaging with and without dichroic components, including detection of DAPI-stained Leishmania parasite without using excitation or emission filters; 3) RIC of black lipid membranes and other thin films, and 4) DFSR of patterned opaque and transparent surfaces. We believe that our design can expand the functionality of commercial bright field microscopes, provide easy field detection of parasites and be of interest to many users of light microscopy.

  5. Implementation of laser speckle contrast analysis as connection kit for mobile phone for assessment of skin blood flow

    NASA Astrophysics Data System (ADS)

    Jakovels, Dainis; Saknite, Inga; Spigulis, Janis

    2014-05-01

    Laser speckle contrast analysis (LASCA) offers a non-contact, full-field, and real-time mapping of capillary blood flow and can be considered as an alternative method to Laser Doppler perfusion imaging. LASCA technique has been implemented in several commercial instruments. However, these systems are still too expensive and bulky to be widely available. Several optical techniques have found new implementations as connection kits for mobile phones thus offering low cost screening devices. In this work we demonstrate simple implementation of LASCA imaging technique as connection kit for mobile phone for primary low-cost assessment of skin blood flow. Stabilized 650 nm and 532 nm laser diode modules were used for LASCA illumination. Dual wavelength illumination could provide additional information about skin hemoglobin and oxygenation level. The proposed approach was tested for arterial occlusion and heat test. Besides, blood flow maps of injured and provoked skin were demonstrated.

  6. Detection of fresh bruises in apples by structured-illumination reflectance imaging

    NASA Astrophysics Data System (ADS)

    Lu, Yuzhen; Li, Richard; Lu, Renfu

    2016-05-01

    Detection of fresh bruises in apples remains a challenging task due to the absence of visual symptoms and significant chemical alterations of fruit tissues during the initial stage after the fruit have been bruised. This paper reports on a new structured-illumination reflectance imaging (SIRI) technique for enhanced detection of fresh bruises in apples. Using a digital light projector engine, sinusoidally-modulated illumination at the spatial frequencies of 50, 100, 150 and 200 cycles/m was generated. A digital camera was then used to capture the reflectance images from `Gala' and `Jonagold' apples, immediately after they had been subjected to two levels of bruising by impact tests. A conventional three-phase demodulation (TPD) scheme was applied to the acquired images for obtaining the planar (direct component or DC) and amplitude (alternating component or AC) images. Bruises were identified in the amplitude images with varying image contrasts, depending on spatial frequency. The bruise visibility was further enhanced through post-processing of the amplitude images. Furthermore, three spiral phase transform (SPT)-based demodulation methods, using single and two images and two phase-shifted images, were proposed for obtaining AC images. Results showed that the demodulation methods greatly enhanced the contrast and spatial resolution of the AC images, making it feasible to detect the fresh bruises that, otherwise, could not be achieved by conventional imaging technique with planar or uniform illumination. The effectiveness of image enhancement, however, varied with spatial frequency. Both 2-image and 2-phase SPT methods achieved the performance similar to that by conventional TPD. SIRI technique has demonstrated the capability of detecting fresh bruises in apples, and it has the potential as a new imaging modality for enhancing food quality and safety detection.

  7. Evaluation of shear bond strength of orthodontic brackets using trans-illumination technique with different curing profiles of LED light-curing unit in posterior teeth.

    PubMed

    Heravi, Farzin; Moazzami, Saied Mostafa; Ghaffari, Negin; Jalayer, Javad; Bozorgnia, Yasaman

    2013-11-21

    Although using light-cured composites for bonding orthodontic brackets has become increasingly popular, curing light cannot penetrate the metallic bulk of brackets and polymerization of composites is limited to the edges. Limited access and poor direct sight may be a problem in the posterior teeth. Meanwhile, effectiveness of the trans-illumination technique is questionable due to increased bucco-lingual thickness of the posterior teeth. Light-emitting diode (LED) light-curing units cause less temperature rise and lower risk to the pulpal tissue. The purpose of this study was to evaluate the clinical effectiveness of trans-illumination technique in bonding metallic brackets to premolars, using different light intensities and curing times of an LED light-curing unit. Sixty premolars were randomly divided into six groups. Bonding of brackets was done with 40- and 80-s light curing from the buccal or lingual aspect with different intensities. Shear bond strengths of brackets were measured using a universal testing machine. Data were analyzed by one-way analysis of variance test and Duncan's post hoc test. The highest shear bond belonged to group 2 (high intensity, 40 s, buccal) and the lowest belonged to group 3 (low intensity, 40 s, lingual). Bond strength means in control groups were significantly higher than those in experimental groups. In all experimental groups except group 6 (80 s, high intensity, lingual), shear bond strength was below the clinically accepted values. In clinical limitations where light curing from the same side of the bracket is not possible, doubling the curing time and increasing the light intensity during trans-illumination are recommended for achieving acceptable bond strengths.

  8. Experimental verification of PSM polarimetry: monitoring polarization at 193nm high-NA with phase shift masks

    NASA Astrophysics Data System (ADS)

    McIntyre, Gregory; Neureuther, Andrew; Slonaker, Steve; Vellanki, Venu; Reynolds, Patrick

    2006-03-01

    The initial experimental verification of a polarization monitoring technique is presented. A series of phase shifting mask patterns produce polarization dependent signals in photoresist and are capable of monitoring the Stokes parameters of any arbitrary illumination scheme. Experiments on two test reticles have been conducted. The first reticle consisted of a series of radial phase gratings (RPG) and employed special apertures to select particular illumination angles. Measurement sensitivities of about 0.3 percent of the clear field per percent change in polarization state were observed. The second test reticle employed the more sensitive proximity effect polarization analyzers (PEPA), a more robust experimental setup, and a backside pinhole layer for illumination angle selection and to enable characterization of the full illuminator. Despite an initial complication with the backside pinhole alignment, the results correlate with theory. Theory suggests that, once the pinhole alignment is corrected in the near future, the second reticle should achieve a measurement sensitivity of about 1 percent of the clear field per percent change in polarization state. This corresponds to a measurement of the Stokes parameters after test mask calibration, to within about 0.02 to 0.03. Various potential improvements to the design, fabrication of the mask, and experimental setup are discussed. Additionally, to decrease measurement time, a design modification and double exposure technique is proposed to enable electrical detection of the measurement signal.

  9. Computational and design methods for advanced imaging

    NASA Astrophysics Data System (ADS)

    Birch, Gabriel C.

    This dissertation merges the optical design and computational aspects of imaging systems to create novel devices that solve engineering problems in optical science and attempts to expand the solution space available to the optical designer. This dissertation is divided into two parts: the first discusses a new active illumination depth sensing modality, while the second part discusses a passive illumination system called plenoptic, or lightfield, imaging. The new depth sensing modality introduced in part one is called depth through controlled aberration. This technique illuminates a target with a known, aberrated projected pattern and takes an image using a traditional, unmodified imaging system. Knowing how the added aberration in the projected pattern changes as a function of depth, we are able to quantitatively determine depth of a series of points from the camera. A major advantage this method permits is the ability for illumination and imaging axes to be coincident. Plenoptic cameras capture both spatial and angular data simultaneously. This dissertation present a new set of parameters that permit the design and comparison of plenoptic devices outside the traditionally published plenoptic 1.0 and plenoptic 2.0 configurations. Additionally, a series of engineering advancements are presented, including full system raytraces of raw plenoptic images, Zernike compression techniques of raw image files, and non-uniform lenslet arrays to compensate for plenoptic system aberrations. Finally, a new snapshot imaging spectrometer is proposed based off the plenoptic configuration.

  10. Optically sectioned in vivo imaging with speckle illumination HiLo microscopy

    PubMed Central

    Lim, Daryl; Ford, Tim N.; Chu, Kengyeh K.; Mertz, Jerome

    2011-01-01

    We present a simple wide-field imaging technique, called HiLo microscopy, that is capable of producing optically sectioned images in real time, comparable in quality to confocal laser scanning microscopy. The technique is based on the fusion of two raw images, one acquired with speckle illumination and another with standard uniform illumination. The fusion can be numerically adjusted, using a single parameter, to produce optically sectioned images of varying thicknesses with the same raw data. Direct comparison between our HiLo microscope and a commercial confocal laser scanning microscope is made on the basis of sectioning strength and imaging performance. Specifically, we show that HiLo and confocal 3-D imaging of a GFP-labeled mouse brain hippocampus are comparable in quality. Moreover, HiLo microscopy is capable of faster, near video rate imaging over larger fields of view than attainable with standard confocal microscopes. The goal of this paper is to advertise the simplicity, robustness, and versatility of HiLo microscopy, which we highlight with in vivo imaging of common model organisms including planaria, C. elegans, and zebrafish. PMID:21280920

  11. Optically sectioned in vivo imaging with speckle illumination HiLo microscopy.

    PubMed

    Lim, Daryl; Ford, Tim N; Chu, Kengyeh K; Mertz, Jerome

    2011-01-01

    We present a simple wide-field imaging technique, called HiLo microscopy, that is capable of producing optically sectioned images in real time, comparable in quality to confocal laser scanning microscopy. The technique is based on the fusion of two raw images, one acquired with speckle illumination and another with standard uniform illumination. The fusion can be numerically adjusted, using a single parameter, to produce optically sectioned images of varying thicknesses with the same raw data. Direct comparison between our HiLo microscope and a commercial confocal laser scanning microscope is made on the basis of sectioning strength and imaging performance. Specifically, we show that HiLo and confocal 3-D imaging of a GFP-labeled mouse brain hippocampus are comparable in quality. Moreover, HiLo microscopy is capable of faster, near video rate imaging over larger fields of view than attainable with standard confocal microscopes. The goal of this paper is to advertise the simplicity, robustness, and versatility of HiLo microscopy, which we highlight with in vivo imaging of common model organisms including planaria, C. elegans, and zebrafish.

  12. Optically sectioned in vivo imaging with speckle illumination HiLo microscopy

    NASA Astrophysics Data System (ADS)

    Lim, Daryl; Ford, Tim N.; Chu, Kengyeh K.; Mertz, Jerome

    2011-01-01

    We present a simple wide-field imaging technique, called HiLo microscopy, that is capable of producing optically sectioned images in real time, comparable in quality to confocal laser scanning microscopy. The technique is based on the fusion of two raw images, one acquired with speckle illumination and another with standard uniform illumination. The fusion can be numerically adjusted, using a single parameter, to produce optically sectioned images of varying thicknesses with the same raw data. Direct comparison between our HiLo microscope and a commercial confocal laser scanning microscope is made on the basis of sectioning strength and imaging performance. Specifically, we show that HiLo and confocal 3-D imaging of a GFP-labeled mouse brain hippocampus are comparable in quality. Moreover, HiLo microscopy is capable of faster, near video rate imaging over larger fields of view than attainable with standard confocal microscopes. The goal of this paper is to advertise the simplicity, robustness, and versatility of HiLo microscopy, which we highlight with in vivo imaging of common model organisms including planaria, C. elegans, and zebrafish.

  13. A fast feedback method to design easy-molding freeform optical system with uniform illuminance and high light control efficiency.

    PubMed

    Hongtao, Li; Shichao, Chen; Yanjun, Han; Yi, Luo

    2013-01-14

    A feedback method combined with fitting technique based on variable separation mapping is proposed to design freeform optical systems for an extended LED source with prescribed illumination patterns, especially with uniform illuminance distribution. Feedback process performs well with extended sources, while fitting technique contributes not only to the decrease of pieces of sub-surfaces in discontinuous freeform lenses which may cause loss in manufacture, but also the reduction in the number of feedback iterations. It is proved that light control efficiency can be improved by 5%, while keeping a high uniformity of 82%, with only two feedback iterations and one fitting operation can improve. Furthermore, the polar angle θ and azimuthal angle φ is used to specify the light direction from the light source, and the (θ,φ)-(x,y) based mapping and feedback strategy makes sure that even few discontinuous sections along the equi-φ plane exist in the system, they are perpendicular to the base plane, making it eligible for manufacturing the surfaces using injection molding.

  14. Trick or Technique?

    ERIC Educational Resources Information Center

    Sheard, Michael

    2009-01-01

    More often than one might at first imagine, a simple trick involving integration by parts can be used to compute indefinite integrals in unexpected and amusing ways. A systematic look at the trick illuminates the question of whether the trick is useful enough to be called an actual technique of integration.

  15. Two-dimensional tracking of a motile micro-organism allowing high-resolution observation with various imaging techniques

    NASA Astrophysics Data System (ADS)

    Oku, H.; Ogawa, N.; Ishikawa, M.; Hashimoto, K.

    2005-03-01

    In this article, a micro-organism tracking system using a high-speed vision system is reported. This system two dimensionally tracks a freely swimming micro-organism within the field of an optical microscope by moving a chamber of target micro-organisms based on high-speed visual feedback. The system we developed could track a paramecium using various imaging techniques, including bright-field illumination, dark-field illumination, and differential interference contrast, at magnifications of 5 times and 20 times. A maximum tracking duration of 300s was demonstrated. Also, the system could track an object with a velocity of up to 35 000μm/s (175diameters/s), which is significantly faster than swimming micro-organisms.

  16. Structured illumination assisted microdeflectometry with optical depth scanning capability

    PubMed Central

    Lu, Sheng-Huei; Hua, Hong

    2018-01-01

    Microdeflectometry is a powerful noncontact tool for measuring nanometer defects on a freeform surface. However, it requires a time-consuming process to take measurements at different depths for an extended depth of field (EDOF) and lacks surface information for integrating the measured gradient data to height. We propose an optical depth scanning technique to speed up the measurement process and introduce the structured illumination technique to efficiently determine the focused data among 3D observation and provide surface orientations for reconstructing an unknown surface shape. We demonstrated 3D measurements with an equivalent surface height sensitivity of 7.21 nm and an EDOF of at least 250 μm, which is 15 times that of the diffraction limited depth range. PMID:27607986

  17. Coherent x-ray diffraction imaging with nanofocused illumination.

    PubMed

    Schroer, C G; Boye, P; Feldkamp, J M; Patommel, J; Schropp, A; Schwab, A; Stephan, S; Burghammer, M; Schöder, S; Riekel, C

    2008-08-29

    Coherent x-ray diffraction imaging is an x-ray microscopy technique with the potential of reaching spatial resolutions well beyond the diffraction limits of x-ray microscopes based on optics. However, the available coherent dose at modern x-ray sources is limited, setting practical bounds on the spatial resolution of the technique. By focusing the available coherent flux onto the sample, the spatial resolution can be improved for radiation-hard specimens. A small gold particle (size <100 nm) was illuminated with a hard x-ray nanobeam (E=15.25 keV, beam dimensions approximately 100 x 100 nm2) and is reconstructed from its coherent diffraction pattern. A resolution of about 5 nm is achieved in 600 s exposure time.

  18. High-speed Fourier ptychographic microscopy based on programmable annular illuminations.

    PubMed

    Sun, Jiasong; Zuo, Chao; Zhang, Jialin; Fan, Yao; Chen, Qian

    2018-05-16

    High-throughput quantitative phase imaging (QPI) is essential to cellular phenotypes characterization as it allows high-content cell analysis and avoids adverse effects of staining reagents on cellular viability and cell signaling. Among different approaches, Fourier ptychographic microscopy (FPM) is probably the most promising technique to realize high-throughput QPI by synthesizing a wide-field, high-resolution complex image from multiple angle-variably illuminated, low-resolution images. However, the large dataset requirement in conventional FPM significantly limits its imaging speed, resulting in low temporal throughput. Moreover, the underlying theoretical mechanism as well as optimum illumination scheme for high-accuracy phase imaging in FPM remains unclear. Herein, we report a high-speed FPM technique based on programmable annular illuminations (AIFPM). The optical-transfer-function (OTF) analysis of FPM reveals that the low-frequency phase information can only be correctly recovered if the LEDs are precisely located at the edge of the objective numerical aperture (NA) in the frequency space. By using only 4 low-resolution images corresponding to 4 tilted illuminations matching a 10×, 0.4 NA objective, we present the high-speed imaging results of in vitro Hela cells mitosis and apoptosis at a frame rate of 25 Hz with a full-pitch resolution of 655 nm at a wavelength of 525 nm (effective NA = 0.8) across a wide field-of-view (FOV) of 1.77 mm 2 , corresponding to a space-bandwidth-time product of 411 megapixels per second. Our work reveals an important capability of FPM towards high-speed high-throughput imaging of in vitro live cells, achieving video-rate QPI performance across a wide range of scales, both spatial and temporal.

  19. Revealing Shadows 1

    NASA Image and Video Library

    2012-07-23

    These images from NASA Dawn spacecraft, located in Vesta Caparronia quadrangle, in Vesta northern hemisphere, demonstrate a special analytical technique, which results in shadowed areas of Vesta surface becoming illuminated.

  20. A pathway of nanocrystallite fabrication by photo-assisted growth in pure water

    NASA Astrophysics Data System (ADS)

    Jeem, Melbert; Bin Julaihi, Muhammad Rafiq Mirza; Ishioka, Junya; Yatsu, Shigeo; Okamoto, Kazumasa; Shibayama, Tamaki; Iwasaki, Tomio; Kato, Takahiko; Watanabe, Seiichi

    2015-06-01

    We report a new production pathway for a variety of metal oxide nanocrystallites via submerged illumination in water: submerged photosynthesis of crystallites (SPSC). Similar to the growth of green plants by photosynthesis, nanocrystallites shaped as nanoflowers and nanorods are hereby shown to grow at the protruded surfaces via illumination in pure, neutral water. The process is photocatalytic, accompanied with hydroxyl radical generation via water splitting; hydrogen gas is generated in some cases, which indicates potential for application in green technologies. Together with the aid of ab initio calculation, it turns out that the nanobumped surface, as well as aqueous ambience and illumination are essential for the SPSC method. Therefore, SPSC is a surfactant-free, low-temperature technique for metal oxide nanocrystallites fabrication.

  1. Finite element simulation of light transfer in turbid media under structured illumination

    USDA-ARS?s Scientific Manuscript database

    Spatial-frequency domain (SFD) imaging technique allows to estimate the optical properties of biological tissues in a wide field of view. The technique is, however, prone to error in measurement because the two crucial assumptions used for deriving the analytical solution to diffusion approximation ...

  2. Structured Illumination Diffuse Optical Tomography for Mouse Brain Imaging

    NASA Astrophysics Data System (ADS)

    Reisman, Matthew David

    As advances in functional magnetic resonance imaging (fMRI) have transformed the study of human brain function, they have also widened the divide between standard research techniques used in humans and those used in mice, where high quality images are difficult to obtain using fMRI given the small volume of the mouse brain. Optical imaging techniques have been developed to study mouse brain networks, which are highly valuable given the ability to study brain disease treatments or development in a controlled environment. A planar imaging technique known as optical intrinsic signal (OIS) imaging has been a powerful tool for capturing functional brain hemodynamics in rodents. Recent wide field-of-view implementations of OIS have provided efficient maps of functional connectivity from spontaneous brain activity in mice. However, OIS requires scalp retraction and is limited to imaging a 2-dimensional view of superficial cortical tissues. Diffuse optical tomography (DOT) is a non-invasive, volumetric neuroimaging technique that has been valuable for bedside imaging of patients in the clinic, but previous DOT systems for rodent neuroimaging have been limited by either sparse spatial sampling or by slow speed. My research has been to develop diffuse optical tomography for whole brain mouse neuroimaging by expanding previous techniques to achieve high spatial sampling using multiple camera views for detection and high speed using structured illumination sources. I have shown the feasibility of this method to perform non-invasive functional neuroimaging in mice and its capabilities of imaging the entire volume of the brain. Additionally, the system has been built with a custom, flexible framework to accommodate the expansion to imaging multiple dynamic contrasts in the brain and populations that were previously difficult or impossible to image, such as infant mice and awake mice. I have contributed to preliminary feasibility studies of these more advanced techniques using OIS, which can now be carried out using the structured illumination diffuse optical tomography technique to perform longitudinal, non-invasive studies of the whole volume of the mouse brain.

  3. Study of mass transfer in supercritical carbon dioxide (SCCO2) using optical methods

    NASA Astrophysics Data System (ADS)

    Hu, M.; Benning, R.; Ertunç, Ö.; Delgado, A.; Nercissian, V.; Berger, M.

    2017-12-01

    The purpose of this work is to design and develop a type of experiment setup that would enable the direct observation of steady diffusion process in situ. Two different optical methods - shadowgraph and shearing interferometry - were used for the first time to visualise and quantitatively analyse the diffusion around a droplet of organic substance in supercritical carbon dioxide (SCCO2) as well as in its direct vicinity. We constructed and tested a cylindrical high-pressure chamber and an experiment system with a high speed camera. The solute/solvent combination of DL- α-tocopherol/SCCO2 was applied using shadowgraph. The diffusion coefficients at temperatures of 40o C, 50o C and 60o C and pressures between 75 bar and 90 bar were calculated based on the displacement of the droplet contour in the captured images. The shearing interferometry with a Wollaston-prism was then applied not only for the combination of DL- α-tocopherol/SCCO2, but also for other substances in SCCO2, for example for a type of rose oil and lubricant oil as well as for acetone, benzene, toluene and naphthalene. The changes of the refractive index gradient were directly measured and evaluated with the interferograms; afterwards changes of the density gradients and the diffusion coefficients were determined. We propose then a multivariate regression model to capture the relationship between the diffusion coefficient, the pressure and the temperature. To minimize the influence of gravity-driven convections in the solvent during diffusion, the experiments were also carried out under microgravity condition, i.e. in two parabolic flight campaigns.

  4. Improving the opto-microwave performance of SiGe/Si phototransistor through edge-illuminated structure

    NASA Astrophysics Data System (ADS)

    Tegegne, Z. G.; Viana, C.; Polleux, J. L.; Grzeskowiak, M.; Richalot, E.

    2016-03-01

    This paper demonstrates the experimental study of edge and top illuminated SiGe phototransistors (HPT) implemented using the existing industrial SiGe2RF Telefunken GmbH BiCMOS technology for opto-microwave (OM) applications using 850nm Multi-Mode Fibers (MMF). Its technology and structure are described. Two different optical window size HPTs with top illumination (5x5μm2, 10x10μm2) and an edge illuminated HPTs having 5μm x5μm size are presented and compared. A two-step post fabrication process was used to create an optical access on the edge of the HPT for lateral illumination with a lensed MMF through simple polishing and dicing techniques. We perform Opto-microwave Scanning Near-field Optical Microscopy (OM-SNOM) analysis on edge and top illuminated HPTs in order to observe the fastest and the highest sensitive regions of the HPTs. This analysis also allows understanding the parasitic effect from the substrate, and thus draws a conclusion on the design aspect of SiGe/Si HPT. A low frequency OM responsivity of 0.45A/W and a cutoff frequency, f-3dB, of 890MHz were measured for edge illuminated HPT. Compared to the top illuminated HPT of the same size, the edge illuminated HPT improves the f-3dB by a factor of more than two and also improves the low frequency responsivity by a factor of more than four. These results demonstrate that a simple etched HPT is still enough to achieve performance improvements compared to the top illuminated HPT without requiring a complex coupling structure. Indeed, it also proves the potential of edge coupled SiGe HPT in the ultra-low-cost silicon based optoelectronics circuits with a new approach of the optical packaging and system integration to 850nm MMF.

  5. Electronic imaging system and technique

    DOEpatents

    Bolstad, J.O.

    1984-06-12

    A method and system for viewing objects obscurred by intense plasmas or flames (such as a welding arc) includes a pulsed light source to illuminate the object, the peak brightness of the light reflected from the object being greater than the brightness of the intense plasma or flame; an electronic image sensor for detecting a pulsed image of the illuminated object, the sensor being operated as a high-speed shutter; and electronic means for synchronizing the shutter operation with the pulsed light source.

  6. Electronic imaging system and technique

    DOEpatents

    Bolstad, Jon O.

    1987-01-01

    A method and system for viewing objects obscurred by intense plasmas or flames (such as a welding arc) includes a pulsed light source to illuminate the object, the peak brightness of the light reflected from the object being greater than the brightness of the intense plasma or flame; an electronic image sensor for detecting a pulsed image of the illuminated object, the sensor being operated as a high-speed shutter; and electronic means for synchronizing the shutter operation with the pulsed light source.

  7. Numerical and experimental study of curved and planar frequency selective surfaces with arbitrary illumination. M.S. Thesis - Maryland Univ., 1989

    NASA Technical Reports Server (NTRS)

    Caroglanian, Armen

    1991-01-01

    A frequency selective surface (FSS) composed of apertures in a metallic sheet is known as the inductive FSS. The infinite inductive FSS theory is derived and the aperture fields are solved by a spectral domain formulation with method of moments solution. Both full domain and subsectional basis functions are studied. A locally planar technique (LPT) is used to determine the forward scattered field from a generally shaped inductive FSS with arbitrary illumination.

  8. Revealing Shadows 6

    NASA Image and Video Library

    2012-07-30

    These images from NASA Dawn spacecraft, located in asteroid Vesta Caparronia quadrangle, in Vesta northern hemisphere, demonstrate a special analytical technique, which results in shadowed areas of Vesta surface becoming illuminated.

  9. Revealing Shadows 3

    NASA Image and Video Library

    2012-07-25

    These images from NASA Dawn spacecraft, located in asteroid Vesta Marcia quadrangle, in Vesta northern hemisphere, demonstrate a special analytical technique, which results in shadowed areas of Vesta surface becoming illuminated.

  10. Revealing Shadows 2

    NASA Image and Video Library

    2012-07-24

    These images from NASA Dawn spacecraft, located in asteroid Vesta Oppia quadrangle, in Vesta northern hemisphere, demonstrate a special analytical technique, which results in shadowed areas of Vesta surface becoming illuminated.

  11. Revealing Shadows 7

    NASA Image and Video Library

    2012-07-31

    These images from NASA Dawn spacecraft, located in asteroid VestaFloronia quadrangle, in Vesta northern hemisphere, demonstrate a special analytical technique, which results in shadowed areas of Vesta surface becoming illuminated.

  12. Revealing Shadows 5

    NASA Image and Video Library

    2012-07-27

    These images from NASA Dawn spacecraft, located in asteroid Vesta Floronia quadrangle, in Vesta northern hemisphere, demonstrate a special analytical technique, which results in shadowed areas of Vesta surface becoming illuminated.

  13. Revealing Shadows 4

    NASA Image and Video Library

    2012-07-26

    These images from NASA Dawn spacecraft, located in asteroid Vesta Marcia quadrangle, in Vesta northern hemisphere, demonstrate a special analytical technique, which results in shadowed areas of Vesta surface becoming illuminated.

  14. 2D DOST based local phase pattern for face recognition

    NASA Astrophysics Data System (ADS)

    Moniruzzaman, Md.; Alam, Mohammad S.

    2017-05-01

    A new two dimensional (2-D) Discrete Orthogonal Stcokwell Transform (DOST) based Local Phase Pattern (LPP) technique has been proposed for efficient face recognition. The proposed technique uses 2-D DOST as preliminary preprocessing and local phase pattern to form robust feature signature which can effectively accommodate various 3D facial distortions and illumination variations. The S-transform, is an extension of the ideas of the continuous wavelet transform (CWT), is also known for its local spectral phase properties in time-frequency representation (TFR). It provides a frequency dependent resolution of the time-frequency space and absolutely referenced local phase information while maintaining a direct relationship with the Fourier spectrum which is unique in TFR. After utilizing 2-D Stransform as the preprocessing and build local phase pattern from extracted phase information yield fast and efficient technique for face recognition. The proposed technique shows better correlation discrimination compared to alternate pattern recognition techniques such as wavelet or Gabor based face recognition. The performance of the proposed method has been tested using the Yale and extended Yale facial database under different environments such as illumination variation and 3D changes in facial expressions. Test results show that the proposed technique yields better performance compared to alternate time-frequency representation (TFR) based face recognition techniques.

  15. Synchronous Stroboscopic Electronic Speckle Pattern Interferometry

    NASA Astrophysics Data System (ADS)

    Soares, Oliverio D. D.

    1986-10-01

    Electronic Speckle Pattern Interferometry (E.S.P.I) oftenly called Electronic Holography is a practical powerful technique in non-destructive testing. Practical capabilities of the technique have been improved by fringe betterment and the control of analysis in the time domain, in particular, the scanning of the vibration cycle, with introduction of: synchronized amplitude and phase modulated pulse illumination, microcomputer control, fibre optics design, and moire evaluation techniques.

  16. Gaussian vs. Bessel light-sheets: performance analysis in live large sample imaging

    NASA Astrophysics Data System (ADS)

    Reidt, Sascha L.; Correia, Ricardo B. C.; Donnachie, Mark; Weijer, Cornelis J.; MacDonald, Michael P.

    2017-08-01

    Lightsheet fluorescence microscopy (LSFM) has rapidly progressed in the past decade from an emerging technology into an established methodology. This progress has largely been driven by its suitability to developmental biology, where it is able to give excellent spatial-temporal resolution over relatively large fields of view with good contrast and low phototoxicity. In many respects it is superseding confocal microscopy. However, it is no magic bullet and still struggles to image deeply in more highly scattering samples. Many solutions to this challenge have been presented, including, Airy and Bessel illumination, 2-photon operation and deconvolution techniques. In this work, we show a comparison between a simple but effective Gaussian beam illumination and Bessel illumination for imaging in chicken embryos. Whilst Bessel illumination is shown to be of benefit when a greater depth of field is required, it is not possible to see any benefits for imaging into the highly scattering tissue of the chick embryo.

  17. Use of light absorbers to alter optical interrogation with epi-illumination and transillumination in three-dimensional cardiac models

    NASA Astrophysics Data System (ADS)

    Ramshesh, Venkat K.; Knisley, Stephen B.

    2006-03-01

    Cardiac optical mapping currently provides 2-D maps of transmembrane voltage-sensitive fluorescence localized near the tissue surface. Methods for interrogation at different depths are required for studies of arrhythmias and the effects of defibrillation shocks in 3-D cardiac tissue. We model the effects of coloading with a dye that absorbs excitation or fluorescence light on the radius and depth of the interrogated region with specific illumination and collection techniques. Results indicate radii and depths of interrogation are larger for transillumination versus epi-illumination, an effect that is more pronounced for broad-field excitation versus laser scanner. Coloading with a fluorescence absorber lessens interrogated depth for epi-illumination and increases it for transillumination, which is confirmed with measurements using transillumination of heart tissue slices. Coloading with an absorber of excitation light consistently decreases the interrogated depths. Transillumination and coloading also decrease the intensities of collected fluorescence. Thus, localization can be modified with wavelength-specific absorbers at the expense of a reduction in fluorescence intensity.

  18. Optically-sectioned two-shot structured illumination microscopy with Hilbert-Huang processing.

    PubMed

    Patorski, Krzysztof; Trusiak, Maciej; Tkaczyk, Tomasz

    2014-04-21

    We introduce a fast, simple, adaptive and experimentally robust method for reconstructing background-rejected optically-sectioned images using two-shot structured illumination microscopy. Our innovative data demodulation method needs two grid-illumination images mutually phase shifted by π (half a grid period) but precise phase displacement between two frames is not required. Upon frames subtraction the input pattern with increased grid modulation is obtained. The first demodulation stage comprises two-dimensional data processing based on the empirical mode decomposition for the object spatial frequency selection (noise reduction and bias term removal). The second stage consists in calculating high contrast image using the two-dimensional spiral Hilbert transform. Our algorithm effectiveness is compared with the results calculated for the same input data using structured-illumination (SIM) and HiLo microscopy methods. The input data were collected for studying highly scattering tissue samples in reflectance mode. Results of our approach compare very favorably with SIM and HiLo techniques.

  19. Super-resolved microsphere-assisted Mirau digital holography by oblique illumination

    NASA Astrophysics Data System (ADS)

    Abbasian, Vahid; Ganjkhani, Yasaman; Akhlaghi, Ehsan A.; Anand, Arun; Javidi, Bahram; Moradi, Ali-Reza

    2018-06-01

    In this paper, oblique illumination is used to improve the lateral resolution and edge sharpness in microsphere (MS)-assisted Mirau digital holographic microscopy (Mirau-DHM). Abbe showed that tilting the illumination light allows entrance of higher spatial frequencies into the imaging system thus increasing the resolution power. We extended the idea to common-path DHM, based on Mirau objective, toward super-resolved 3D imaging. High magnification Mirau objectives are very expensive and low-magnification ones suffer from low resolution, therefore, any attempt to increase the effective resolution of the system may be of a great interest. We have already demonstrated the effective resolution increasing of a Mirau-DHM system by incorporating a transparent MS within the working distance of the objective. Here, we show that by integrating a MS-assisted Mirau-DHM with the oblique illumination even higher resolutions can be achieved. We have applied the technique for various samples and have shown the increase in the lateral resolution for the both cases of Mirau-DHM with and without the MS.

  20. Assessment of illumination conditions in a single-pixel imaging configuration

    NASA Astrophysics Data System (ADS)

    Garoi, Florin; Udrea, Cristian; Damian, Cristian; Logofǎtu, Petre C.; Colţuc, Daniela

    2016-12-01

    Single-pixel imaging based on multiplexing is a promising technique, especially in applications where 2D detectors or raster scanning imaging are not readily applicable. With this method, Hadamard masks are projected on a spatial light modulator to encode an incident scene and a signal is recorded at the photodiode detector for each of these masks. Ultimately, the image is reconstructed on the computer by applying the inverse transform matrix. Thus, various algorithms were optimized and several spatial light modulators already characterized for such a task. This work analyses the imaging quality of such a single-pixel arrangement, when various illumination conditions are used. More precisely, the main comparison is made between coherent and incoherent ("white light") illumination and between two multiplexing methods, namely Hadamard and Scanning. The quality of the images is assessed by calculating their SNR, using two relations. The results show better images are obtained with "white light" illumination for the first method and coherent one for the second.

  1. DMD-based LED-illumination super-resolution and optical sectioning microscopy.

    PubMed

    Dan, Dan; Lei, Ming; Yao, Baoli; Wang, Wen; Winterhalder, Martin; Zumbusch, Andreas; Qi, Yujiao; Xia, Liang; Yan, Shaohui; Yang, Yanlong; Gao, Peng; Ye, Tong; Zhao, Wei

    2013-01-01

    Super-resolution three-dimensional (3D) optical microscopy has incomparable advantages over other high-resolution microscopic technologies, such as electron microscopy and atomic force microscopy, in the study of biological molecules, pathways and events in live cells and tissues. We present a novel approach of structured illumination microscopy (SIM) by using a digital micromirror device (DMD) for fringe projection and a low-coherence LED light for illumination. The lateral resolution of 90 nm and the optical sectioning depth of 120 μm were achieved. The maximum acquisition speed for 3D imaging in the optical sectioning mode was 1.6×10(7) pixels/second, which was mainly limited by the sensitivity and speed of the CCD camera. In contrast to other SIM techniques, the DMD-based LED-illumination SIM is cost-effective, ease of multi-wavelength switchable and speckle-noise-free. The 2D super-resolution and 3D optical sectioning modalities can be easily switched and applied to either fluorescent or non-fluorescent specimens.

  2. DMD-based LED-illumination Super-resolution and optical sectioning microscopy

    PubMed Central

    Dan, Dan; Lei, Ming; Yao, Baoli; Wang, Wen; Winterhalder, Martin; Zumbusch, Andreas; Qi, Yujiao; Xia, Liang; Yan, Shaohui; Yang, Yanlong; Gao, Peng; Ye, Tong; Zhao, Wei

    2013-01-01

    Super-resolution three-dimensional (3D) optical microscopy has incomparable advantages over other high-resolution microscopic technologies, such as electron microscopy and atomic force microscopy, in the study of biological molecules, pathways and events in live cells and tissues. We present a novel approach of structured illumination microscopy (SIM) by using a digital micromirror device (DMD) for fringe projection and a low-coherence LED light for illumination. The lateral resolution of 90 nm and the optical sectioning depth of 120 μm were achieved. The maximum acquisition speed for 3D imaging in the optical sectioning mode was 1.6×107 pixels/second, which was mainly limited by the sensitivity and speed of the CCD camera. In contrast to other SIM techniques, the DMD-based LED-illumination SIM is cost-effective, ease of multi-wavelength switchable and speckle-noise-free. The 2D super-resolution and 3D optical sectioning modalities can be easily switched and applied to either fluorescent or non-fluorescent specimens. PMID:23346373

  3. Online tracking of outdoor lighting variations for augmented reality with moving cameras.

    PubMed

    Liu, Yanli; Granier, Xavier

    2012-04-01

    In augmented reality, one of key tasks to achieve a convincing visual appearance consistency between virtual objects and video scenes is to have a coherent illumination along the whole sequence. As outdoor illumination is largely dependent on the weather, the lighting condition may change from frame to frame. In this paper, we propose a full image-based approach for online tracking of outdoor illumination variations from videos captured with moving cameras. Our key idea is to estimate the relative intensities of sunlight and skylight via a sparse set of planar feature-points extracted from each frame. To address the inevitable feature misalignments, a set of constraints are introduced to select the most reliable ones. Exploiting the spatial and temporal coherence of illumination, the relative intensities of sunlight and skylight are finally estimated by using an optimization process. We validate our technique on a set of real-life videos and show that the results with our estimations are visually coherent along the video sequences.

  4. Dynamic placement of plasmonic hotspots for super-resolution surface-enhanced Raman scattering.

    PubMed

    Ertsgaard, Christopher T; McKoskey, Rachel M; Rich, Isabel S; Lindquist, Nathan C

    2014-10-28

    In this paper, we demonstrate dynamic placement of locally enhanced plasmonic fields using holographic laser illumination of a silver nanohole array. To visualize these focused "hotspots", the silver surface was coated with various biological samples for surface-enhanced Raman spectroscopy (SERS) imaging. Due to the large field enhancements, blinking behavior of the SERS hotspots was observed and processed using a stochastic optical reconstruction microscopy algorithm enabling super-resolution localization of the hotspots to within 10 nm. These hotspots were then shifted across the surface in subwavelength (<100 nm for a wavelength of 660 nm) steps using holographic illumination from a spatial light modulator. This created a dynamic imaging and sensing surface, whereas static illumination would only have produced stationary hotspots. Using this technique, we also show that such subwavelength shifting and localization of plasmonic hotspots has potential for imaging applications. Interestingly, illuminating the surface with randomly shifting SERS hotspots was sufficient to completely fill in a wide field of view for super-resolution chemical imaging.

  5. Plasmonics and metamaterials based super-resolution imaging (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Liu, Zhaowei

    2017-05-01

    In recent years, surface imaging of various biological dynamics and biomechanical phenomena has seen a surge of interest. Imaging of processes such as exocytosis and kinesin motion are most effective when depth is limited to a very thin region of interest at the edge of the cell or specimen. However, many objects and processes of interest are of size scales below the diffraction limit for safe, visible wavelength illumination. Super-resolution imaging methods such as structured illumination microscopy and others have offered various compromises between resolution, imaging speed, and bio-compatibility. In this talk, I will present our most recent progress in plasmonic structured illumination microscopy (PSIM) and localized plasmonic structured illumination microscopy (LPSIM), and their applications in bio-imaging. We have achieved wide-field surface imaging with resolution down to 75 nm while maintaining reasonable speed and compatibility with biological specimens. These plasmonic enhanced super resolution techniques offer unique solutions to obtain 50nm spatial resolution and 50 frames per second wide imaging speed at the same time.

  6. Determination of washout performance of various monochrome displays under simulated flight ambient and solar lighting conditions

    NASA Technical Reports Server (NTRS)

    Batson, Vernon M.; Robertson, James B.; Parrish, Russell V.

    1990-01-01

    The aircraft cockpit ambient lighting simulation system (ACALSS) has been developed to study display readability and associated pilot/vehicle performance effects in a part-task simulator cockpit. In the study reported here, the ACALSS was used to determine the illumination levels at which subjects lose the ability to maintain aircraft states when using three display technologies as display media for primary flight displays: a standard monochrome EL (electroluminescent) flat-panel, a laboratory-class monochrome CRT, and an enhanced-brightness EL flat-panel. The multivariate statistical technique of modified profile analysis was used to test for performance differences between display devices as functions of illumination levels. The standard monochrome EL flat-panel display began to washout after the 2500 foot-candle level of illumination. The monochrome CRT began to washout after the 5500 foot-candle level of illumination. No performance decrements by increased illumination up to the 12,000 foot-candle level were found for the enhanced-brightness EL flat-panel display. What was not anticipated was that half the subjects would subjectively prefer the CRT over the enhanced-brightness EL, even though their performance errors would have indicated the opposite.

  7. Effect of ultraviolet illumination on the charge trapping behaviour in SiN(x)/InP metal-insulator-semiconductor structure provided by plasma enhanced chemical vapour deposition

    NASA Astrophysics Data System (ADS)

    Kim, C. H.; Han, I. K.; Lee, J. I.; Kang, K. N.; Kwon, S. D.; Choe, B.; Park, H. L.; Her, J.; Lim, H.

    1994-04-01

    In this work, we investigated the effect of ultraviolet illumination, which is known to generate silicon dangling bonds, on the charge trapping behaviors, utilizing the constant capacitance technique in SiN(x)/InP structure where conventional PE CVD was used to form the SiN films on InP. We found different behaviors of this structure with ultraviolet illumination compared to the case of SiN(x)/Si structure. Both the Si-rich condition during PE CVD and ultraviolet illumination seem to not only increase the number of traps but also broaden the energy level of the traps in the insulator near the SiN(x)/InP interface. In all cases (N-rich, Si-rich, with and without ultraviolet illumination) the amphoteric nature of the traps has been observed, which is a characteristic of Si-dangling bonds. Also, the effect of ultraviolet photons on the interface of SiN(x)/InP, especially in correlation with the deficiency of phosphorus at the interface, is discussed considering the existence of net negative fixed charges at the interface.

  8. Multispectral image fusion for illumination-invariant palmprint recognition

    PubMed Central

    Zhang, Xinman; Xu, Xuebin; Shang, Dongpeng

    2017-01-01

    Multispectral palmprint recognition has shown broad prospects for personal identification due to its high accuracy and great stability. In this paper, we develop a novel illumination-invariant multispectral palmprint recognition method. To combine the information from multiple spectral bands, an image-level fusion framework is completed based on a fast and adaptive bidimensional empirical mode decomposition (FABEMD) and a weighted Fisher criterion. The FABEMD technique decomposes the multispectral images into their bidimensional intrinsic mode functions (BIMFs), on which an illumination compensation operation is performed. The weighted Fisher criterion is to construct the fusion coefficients at the decomposition level, making the images be separated correctly in the fusion space. The image fusion framework has shown strong robustness against illumination variation. In addition, a tensor-based extreme learning machine (TELM) mechanism is presented for feature extraction and classification of two-dimensional (2D) images. In general, this method has fast learning speed and satisfying recognition accuracy. Comprehensive experiments conducted on the PolyU multispectral palmprint database illustrate that the proposed method can achieve favorable results. For the testing under ideal illumination, the recognition accuracy is as high as 99.93%, and the result is 99.50% when the lighting condition is unsatisfied. PMID:28558064

  9. Multispectral image fusion for illumination-invariant palmprint recognition.

    PubMed

    Lu, Longbin; Zhang, Xinman; Xu, Xuebin; Shang, Dongpeng

    2017-01-01

    Multispectral palmprint recognition has shown broad prospects for personal identification due to its high accuracy and great stability. In this paper, we develop a novel illumination-invariant multispectral palmprint recognition method. To combine the information from multiple spectral bands, an image-level fusion framework is completed based on a fast and adaptive bidimensional empirical mode decomposition (FABEMD) and a weighted Fisher criterion. The FABEMD technique decomposes the multispectral images into their bidimensional intrinsic mode functions (BIMFs), on which an illumination compensation operation is performed. The weighted Fisher criterion is to construct the fusion coefficients at the decomposition level, making the images be separated correctly in the fusion space. The image fusion framework has shown strong robustness against illumination variation. In addition, a tensor-based extreme learning machine (TELM) mechanism is presented for feature extraction and classification of two-dimensional (2D) images. In general, this method has fast learning speed and satisfying recognition accuracy. Comprehensive experiments conducted on the PolyU multispectral palmprint database illustrate that the proposed method can achieve favorable results. For the testing under ideal illumination, the recognition accuracy is as high as 99.93%, and the result is 99.50% when the lighting condition is unsatisfied.

  10. Lit appearance modeling of illumination systems

    NASA Astrophysics Data System (ADS)

    Koshel, R. John

    2002-09-01

    In illumination systems the look and feel are often more important than objective criterion, such as uniformity and efficiency. The reason for this is two fold: the lit appearance often sells an item and substantial variation in the illumination distribution (up to 50%) over a broad region is not noticeable to an observer. Therefore, subjective criterion, such as the lit appearance, typically plays a crucial role in the development of an illumination system. Additionally, by using computer models to ascertain the lit appearance before manufacture of the system, it allows the designer to modify the system while not demanding investment to produce prototypes. I discuss methods of determining the lit appearance for illumination systems. This modeling includes the inclusion of material and surface properties, such as surface finish, spectral transmission, and internal scattering; the response of the human eye; and the amount of rays that must be traced. By archiving the ray data, animations as a function of position and angle can be developed. Examples are developed to highlight the utility of this technique. These examples include taillights for the automotive industry and a backlit LCD screen for a laptop. Animations of these models demonstrate their luminance.

  11. Generation of realistic scene using illuminant estimation and mixed chromatic adaptation

    NASA Astrophysics Data System (ADS)

    Kim, Jae-Chul; Hong, Sang-Gi; Kim, Dong-Ho; Park, Jong-Hyun

    2003-12-01

    The algorithm of combining a real image with a virtual model was proposed to increase the reality of synthesized images. Currently, synthesizing a real image with a virtual model facilitated the surface reflection model and various geometric techniques. In the current methods, the characteristics of various illuminants in the real image are not sufficiently considered. In addition, despite the chromatic adaptation plays a vital role for accommodating different illuminants in the two media viewing conditions, it is not taken into account in the existing methods. Thus, it is hardly to get high-quality synthesized images. In this paper, we proposed the two-phase image synthesis algorithm. First, the surface reflectance of the maximum high-light region (MHR) was estimated using the three eigenvectors obtained from the principal component analysis (PCA) applied to the surface reflectances of 1269 Munsell samples. The combined spectral value, i.e., the product of surface reflectance and the spectral power distributions (SPDs) of an illuminant, of MHR was then estimated using the three eigenvectors obtained from PCA applied to the products of surface reflectances of Munsell 1269 samples and the SPDs of four CIE Standard Illuminants (A, C, D50, D65). By dividing the average combined spectral values of MHR by the average surface reflectances of MHR, we could estimate the illuminant of a real image. Second, the mixed chromatic adaptation (S-LMS) using an estimated and an external illuminants was applied to the virtual-model image. For evaluating the proposed algorithm, experiments with synthetic and real scenes were performed. It was shown that the proposed method was effective in synthesizing the real and the virtual scenes under various illuminants.

  12. Efficient calculation of luminance variation of a luminaire that uses LED light sources

    NASA Astrophysics Data System (ADS)

    Goldstein, Peter

    2007-09-01

    Many luminaires have an array of LEDs that illuminate a lenslet-array diffuser in order to create the appearance of a single, extended source with a smooth luminance distribution. Designing such a system is challenging because luminance calculations for a lenslet array generally involve tracing millions of rays per LED, which is computationally intensive and time-consuming. This paper presents a technique for calculating an on-axis luminance distribution by tracing only one ray per LED per lenslet. A multiple-LED system is simulated with this method, and with Monte Carlo ray-tracing software for comparison. Accuracy improves, and computation time decreases by at least five orders of magnitude with this technique, which has applications in LED-based signage, displays, and general illumination.

  13. High resolution and deep tissue imaging using a near infrared acoustic resolution photoacoustic microscopy

    NASA Astrophysics Data System (ADS)

    Moothanchery, Mohesh; Sharma, Arunima; Periyasamy, Vijitha; Pramanik, Manojit

    2018-02-01

    It is always a great challenge for pure optical techniques to maintain good resolution and imaging depth at the same time. Photoacoustic imaging is an emerging technique which can overcome the limitation by pulsed light illumination and acoustic detection. Here, we report a Near Infrared Acoustic-Resolution Photoacoustic Microscopy (NIR-AR-PAM) systm with 30 MHz transducer and 1064 nm illumination which can achieve a lateral resolution of around 88 μm and imaging depth of 9.2 mm. Compared to visible light NIR beam can penetrate deeper in biological tissue due to weaker optical attenuation. In this work, we also demonstrated the in vivo imaging capabilty of NIRARPAM by near infrared detection of SLN with black ink as exogenous photoacoustic contrast agent in a rodent model.

  14. Coma measurement by transmission image sensor with a PSM

    NASA Astrophysics Data System (ADS)

    Wang, Fan; Wang, Xiangzhao; Ma, Mingying; Zhang, Dongqing; Shi, Weijie; Hu, Jianming

    2005-01-01

    As feature size decreases, especially with the use of resolution enhancement technique such as off axis illumination and phase shifting mask, fast and accurate in-situ measurement of coma has become very important in improving the performance of modern lithographic tools. The measurement of coma can be achieved by the transmission image sensor, which is an aerial image measurement device. The coma can be determined by measuring the positions of the aerial image at multiple illumination settings. In the present paper, we improve the measurement accuracy of the above technique with an alternating phase shifting mask. Using the scalar diffraction theory, we analyze the effect of coma on the aerial image. To analyze the effect of the alternating phase shifting mask, we compare the pupil filling of the mark used in the above technique with that of the phase-shifted mark used in the new technique. We calculate the coma-induced image displacements of the marks at multiple partial coherence and NA settings, using the PROLITH simulation program. The simulation results show that the accuracy of coma measurement can increase approximately 20 percent using the alternating phase shifting mask.

  15. Coherent and incoherent imaging through scattering media (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Edrei, Eitan

    2017-02-01

    The shower-curtain effect is a familiar phenomenon, routinely observed in our everyday life: an object placed behind a scattering layer appears blurred but if the object is attached to the scattering layer it can be clearly resolved. The optical system we developed takes advantage of the shower-curtain effect properties and generalizes them to achieve high-resolution imaging of objects placed at a nearly arbitrary distance behind the scattering medium. The imaging procedure is based on retrieving the object Fourier transform from the turbid medium (used as the shower-curtain) through a correlography technique based on speckle illumination. Illuminating the object with a speckle pattern rather than a coherent beam, we show that the correlography principles can be effectively applied in the near field. While the far-field condition is usually known as z<(2D^2)⁄λ (D, size of the object; λ wavelength); by tuning the spatial coherence of the illumination beam, as one can do with speckle illumination, the "far-field" condition can be written as z<(2DRc)⁄λ where Rc is the correlation radius of the speckle pattern. Using our method we present high-resolution imaging of objects hidden behind millimeter-thick tissue or dense lens cataracts, and demonstrate our imaging technique to be insensitive to rapid medium movements (<5 m/s) beyond any biologically relevant motion. Furthermore, we show this method can be extended to several contrast mechanisms and imaging configurations.

  16. Mode transition of plasma expansion for laser induced breakdown in Air

    NASA Astrophysics Data System (ADS)

    Shimamura, Kohei; Matsui, Kohei; Ofosu, Joseph A.; Yokota, Ippei; Komurasaki, Kimiya

    2017-03-01

    High-speed shadowgraph visualization experiments conducted using a 10 J pulse transversely excited atmospheric (TEA) CO2 laser in ambient air provided a state transition from overdriven to Chapman-Jouguet in the laser-supported detonation regime. At the state transition, the propagation velocity of the laser-supported detonation wave and the threshold laser intensity were 10 km/s and 1011 W/m2, respectively. State transition information, such as the photoionization caused by plasma UV radiation, of the avalanche ionization ahead of the ionization wave front can be elucidated from examination of the source seed electrons.

  17. Background Oriented Schlieren (BOS) and other Flow Visualization Developments and Applications at GRC

    NASA Technical Reports Server (NTRS)

    Clem, Michelle; Woike, Mark

    2013-01-01

    This is a presentation to be given at an internal NASA Advanced Schlieren Working Group Meeting. The presentation will cover the recent developments and applications of flow visualization methods at GRC. The topics being discussed will include the use of Background Oriented Schlieren (BOS) in the study of screech and its associated shock spacing as well as in the investigation of broadband shock noise reduction in the Jet-Surface Interaction Tests. In addition, other flow visualiztion methods will be discussed in an on-going study comparing schlieren, shadowgraph, BOS, and focusing schlieren.

  18. Eckhaus-Benjamin-Feir Instability in Rotating Convection

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Y.; Ecke, R.E.

    1997-06-01

    We report experimental measurements of a traveling-wave state in rotating Rayleigh-B{acute e}nard convection. The fluid was water with a Prandtl number of 6.3 and a dimensionless rotation rate of 274. The marginal and Eckhaus-Benjamin-Feir stability boundaries were determined and the local amplitude and wave number were obtained from demodulation of shadowgraph images. The phase-diffusion coefficient and group velocity were measured in the stable wave number band. This system was found to be well described by the one-dimensional complex Ginzburg-Landau equation. {copyright} {ital 1997} {ital The American Physical Society}

  19. Nonlinear Structured Illumination Using a Fluorescent Protein Activating at the Readout Wavelength

    PubMed Central

    Hou, Wenya; Kielhorn, Martin; Arai, Yoshiyuki; Nagai, Takeharu; Kessels, Michael M.; Qualmann, Britta; Heintzmann, Rainer

    2016-01-01

    Structured illumination microscopy (SIM) is a wide-field technique in fluorescence microscopy that provides fast data acquisition and two-fold resolution improvement beyond the Abbe limit. We observed a further resolution improvement using the nonlinear emission response of a fluorescent protein. We demonstrated a two-beam nonlinear structured illumination microscope by introducing only a minor change into the system used for linear SIM (LSIM). To achieve the required nonlinear dependence in nonlinear SIM (NL-SIM) we exploited the photoswitching of the recently introduced fluorophore Kohinoor. It is particularly suitable due to its positive contrast photoswitching characteristics. Contrary to other reversibly photoswitchable fluorescent proteins which only have high photostability in living cells, Kohinoor additionally showed little degradation in fixed cells over many switching cycles. PMID:27783656

  20. Single-shot quantitative phase microscopy with color-multiplexed differential phase contrast (cDPC).

    PubMed

    Phillips, Zachary F; Chen, Michael; Waller, Laura

    2017-01-01

    We present a new technique for quantitative phase and amplitude microscopy from a single color image with coded illumination. Our system consists of a commercial brightfield microscope with one hardware modification-an inexpensive 3D printed condenser insert. The method, color-multiplexed Differential Phase Contrast (cDPC), is a single-shot variant of Differential Phase Contrast (DPC), which recovers the phase of a sample from images with asymmetric illumination. We employ partially coherent illumination to achieve resolution corresponding to 2× the objective NA. Quantitative phase can then be used to synthesize DIC and phase contrast images or extract shape and density. We demonstrate amplitude and phase recovery at camera-limited frame rates (50 fps) for various in vitro cell samples and c. elegans in a micro-fluidic channel.

  1. Micromirror structured illumination microscope for high-speed in vivo drosophila brain imaging.

    PubMed

    Masson, A; Pedrazzani, M; Benrezzak, S; Tchenio, P; Preat, T; Nutarelli, D

    2014-01-27

    Genetic tools and especially genetically encoded fluorescent reporters have given a special place to optical microscopy in drosophila neurobiology research. In order to monitor neural networks activity, high speed and sensitive techniques, with high spatial resolution are required. Structured illumination microscopies are wide-field approaches with optical sectioning ability. Despite the large progress made with the introduction of the HiLo principle, they did not meet the criteria of speed and/or spatial resolution for drosophila brain imaging. We report on a new implementation that took advantage of micromirror matrix technology to structure the illumination. Thus, we showed that the developed instrument exhibits a spatial resolution close to that of confocal microscopy but it can record physiological responses with a speed improved by more than an order a magnitude.

  2. Multiscale morphological filtering for analysis of noisy and complex images

    NASA Astrophysics Data System (ADS)

    Kher, A.; Mitra, S.

    Images acquired with passive sensing techniques suffer from illumination variations and poor local contrasts that create major difficulties in interpretation and identification tasks. On the other hand, images acquired with active sensing techniques based on monochromatic illumination are degraded with speckle noise. Mathematical morphology offers elegant techniques to handle a wide range of image degradation problems. Unlike linear filters, morphological filters do not blur the edges and hence maintain higher image resolution. Their rich mathematical framework facilitates the design and analysis of these filters as well as their hardware implementation. Morphological filters are easier to implement and are more cost effective and efficient than several conventional linear filters. Morphological filters to remove speckle noise while maintaining high resolution and preserving thin image regions that are particularly vulnerable to speckle noise were developed and applied to SAR imagery. These filters used combination of linear (one-dimensional) structuring elements in different (typically four) orientations. Although this approach preserves more details than the simple morphological filters using two-dimensional structuring elements, the limited orientations of one-dimensional elements approximate the fine details of the region boundaries. A more robust filter designed recently overcomes the limitation of the fixed orientations. This filter uses a combination of concave and convex structuring elements. Morphological operators are also useful in extracting features from visible and infrared imagery. A multiresolution image pyramid obtained with successive filtering and a subsampling process aids in the removal of the illumination variations and enhances local contrasts. A morphology-based interpolation scheme was also introduced to reduce intensity discontinuities created in any morphological filtering task. The generality of morphological filtering techniques in extracting information from a wide variety of images obtained with active and passive sensing techniques is discussed. Such techniques are particularly useful in obtaining more information from fusion of complex images by different sensors such as SAR, visible, and infrared.

  3. Multiscale Morphological Filtering for Analysis of Noisy and Complex Images

    NASA Technical Reports Server (NTRS)

    Kher, A.; Mitra, S.

    1993-01-01

    Images acquired with passive sensing techniques suffer from illumination variations and poor local contrasts that create major difficulties in interpretation and identification tasks. On the other hand, images acquired with active sensing techniques based on monochromatic illumination are degraded with speckle noise. Mathematical morphology offers elegant techniques to handle a wide range of image degradation problems. Unlike linear filters, morphological filters do not blur the edges and hence maintain higher image resolution. Their rich mathematical framework facilitates the design and analysis of these filters as well as their hardware implementation. Morphological filters are easier to implement and are more cost effective and efficient than several conventional linear filters. Morphological filters to remove speckle noise while maintaining high resolution and preserving thin image regions that are particularly vulnerable to speckle noise were developed and applied to SAR imagery. These filters used combination of linear (one-dimensional) structuring elements in different (typically four) orientations. Although this approach preserves more details than the simple morphological filters using two-dimensional structuring elements, the limited orientations of one-dimensional elements approximate the fine details of the region boundaries. A more robust filter designed recently overcomes the limitation of the fixed orientations. This filter uses a combination of concave and convex structuring elements. Morphological operators are also useful in extracting features from visible and infrared imagery. A multiresolution image pyramid obtained with successive filtering and a subsampling process aids in the removal of the illumination variations and enhances local contrasts. A morphology-based interpolation scheme was also introduced to reduce intensity discontinuities created in any morphological filtering task. The generality of morphological filtering techniques in extracting information from a wide variety of images obtained with active and passive sensing techniques is discussed. Such techniques are particularly useful in obtaining more information from fusion of complex images by different sensors such as SAR, visible, and infrared.

  4. Shadowgraph Study of Gradient Driven Fluctuations

    NASA Technical Reports Server (NTRS)

    Cannell, David; Nikolaenko, Gennady; Giglio, Marzio; Vailati, Alberto; Croccolo, Fabrizio; Meyer, William

    2002-01-01

    A fluid or fluid mixture, subjected to a vertical temperature and/or concentration gradient in a gravitational field, exhibits greatly enhanced light scattering at small angles. This effect is caused by coupling between the vertical velocity fluctuations due to thermal energy and the vertically varying refractive index. Physically, small upward or downward moving regions will be displaced into fluid having a refractive index different from that of the moving region, thus giving rise to the enhanced scattering. The scattered intensity is predicted to vary with scattering wave vector q, as q(sup -4), for sufficiently large q, but the divergence is quenched by gravity at small q. In the absence of gravity, the long wavelength fluctuations responsible for the enhanced scattering are predicted to grow until limited by the sample dimensions. It is thus of interest to measure the mean-squared amplitude of such fluctuations in the microgravity environment for comparison with existing theory and ground based measurements. The relevant wave vectors are extremely small, making traditional low-angle light scattering difficult or impossible because of stray elastically scattered light generated by optical surfaces. An alternative technique is offered by the shadowgraph method, which is normally used to visualize fluid flows, but which can also serve as a quantitative tool to measure fluctuations. A somewhat novel shadowgraph apparatus and the necessary data analysis methods will be described. The apparatus uses a spatially coherent, but temporally incoherent, light source consisting of a super-luminescent diode coupled to a single-mode optical fiber in order to achieve extremely high spatial resolution, while avoiding effects caused by interference of light reflected from the various optical surfaces that are present when using laser sources. Results obtained for a critical mixture of aniline and cyclohexane subjected to a vertical temperature gradient will be presented. The sample was confined between two horizontal parallel sapphire plates with a vertical spacing of 1 mm. The temperatures of the sapphire plates were controlled by independent circulating water loops that used Peltier devices to add or remove heat from the room air as required. For a mixture with a temperature gradient, two effects are involved in generating the vertical refractive index gradient, namely thermal expansion and the Soret effect, which generates a concentration gradient in response to the applied temperature gradient. For the aniline/cyclohexane system, the denser component (aniline) migrates toward the colder surface. Consequently, when heating from above, both effects result in the sample density decreasing with altitude and are stabilizing in the sense that no convective motion occurs regardless of the magnitude of the applied temperature gradient. The Soret effect is strong near a binary liquid critical point, and thus the dominant effect is due to the induced concentration gradient. The results clearly show the divergence at low q and the predicted gravitational quenching. Results obtained for different applied temperature gradients at varying temperature differences from the critical temperature, clearly demonstrate the predicted divergence of the thermal diffusion ratio. Thus, the more closely the critical point is approached, the smaller becomes the temperature gradient required to generate the same signal. Two different methods have been used to generate pure concentration gradients. In the first, a sample cell was filled with a single fluid, ethylene glycol, and a denser miscible fluid, water, was added from below thus establishing a sharp interface to begin the experiment. As time went on the two fluids diffused into each other, and large amplitude fluctuations were clearly observed at low q. The effects of gravitational quenching were also evident. In the second method, the aniline/cyclohexane sample was used, and after applying a vertical temperature gradient for several hours, the top and bottom temperatures were set equal and the thermal gradient died on a time scale of seconds, leaving the Soret induced concentration gradient in place. Again, large-scale fluctuations were observed and died away slowly in amplitude as diffusion destroyed the initial concentration gradient.

  5. The study on surface characteristics of high transmission components by 3D printing technique

    NASA Astrophysics Data System (ADS)

    Kuo, Hui-Jean; Huang, Chien-Yao; Wang, Wan-Hsuan; Lin, Ping-Hung; Tsay, Ho-Lin; Hsu, Wei-Yao

    2017-06-01

    3D printing is a high freedom fabrication technique. Any components, which designed by 3D design software or scanned from real parts, can be printed. The printing materials include metals, plastics and biocompatible materials etc. Especially for those high transmission components used in optical system or biomedical field can be printed, too. High transmission lens increases the performances of optical system. And high transmission cover or shell using in biomedical field helps observers to see the structures inside, such as brain, bone, and vessels. But the surface of printed components is not transparent, even the inside layer is transparent. If we increase the transmittance of surface, the components which fabricated by 3D printing process could have high transmission. In this paper, we using illuminating and polishing methods to improve the transmittance of printing surface. The illuminating time is the experiment parameters in illuminating method. The roughness and transmission of printing components are the evaluating targets. A 3D printing machine, Stratasys Connex 500, has been used to print high transmittance components in this paper. The surface transmittance of printing components is increasing above 80 % by polishing method.

  6. Fast, label-free super-resolution live-cell imaging using rotating coherent scattering (ROCS) microscopy

    NASA Astrophysics Data System (ADS)

    Jünger, Felix; Olshausen, Philipp V.; Rohrbach, Alexander

    2016-07-01

    Living cells are highly dynamic systems with cellular structures being often below the optical resolution limit. Super-resolution microscopes, usually based on fluorescence cell labelling, are usually too slow to resolve small, dynamic structures. We present a label-free microscopy technique, which can generate thousands of super-resolved, high contrast images at a frame rate of 100 Hertz and without any post-processing. The technique is based on oblique sample illumination with coherent light, an approach believed to be not applicable in life sciences because of too many interference artefacts. However, by circulating an incident laser beam by 360° during one image acquisition, relevant image information is amplified. By combining total internal reflection illumination with dark-field detection, structures as small as 150 nm become separable through local destructive interferences. The technique images local changes in refractive index through scattered laser light and is applied to living mouse macrophages and helical bacteria revealing unexpected dynamic processes.

  7. Fast, label-free super-resolution live-cell imaging using rotating coherent scattering (ROCS) microscopy

    PubMed Central

    Jünger, Felix; Olshausen, Philipp v.; Rohrbach, Alexander

    2016-01-01

    Living cells are highly dynamic systems with cellular structures being often below the optical resolution limit. Super-resolution microscopes, usually based on fluorescence cell labelling, are usually too slow to resolve small, dynamic structures. We present a label-free microscopy technique, which can generate thousands of super-resolved, high contrast images at a frame rate of 100 Hertz and without any post-processing. The technique is based on oblique sample illumination with coherent light, an approach believed to be not applicable in life sciences because of too many interference artefacts. However, by circulating an incident laser beam by 360° during one image acquisition, relevant image information is amplified. By combining total internal reflection illumination with dark-field detection, structures as small as 150 nm become separable through local destructive interferences. The technique images local changes in refractive index through scattered laser light and is applied to living mouse macrophages and helical bacteria revealing unexpected dynamic processes. PMID:27465033

  8. Non-Linearity in Wide Dynamic Range CMOS Image Sensors Utilizing a Partial Charge Transfer Technique.

    PubMed

    Shafie, Suhaidi; Kawahito, Shoji; Halin, Izhal Abdul; Hasan, Wan Zuha Wan

    2009-01-01

    The partial charge transfer technique can expand the dynamic range of a CMOS image sensor by synthesizing two types of signal, namely the long and short accumulation time signals. However the short accumulation time signal obtained from partial transfer operation suffers of non-linearity with respect to the incident light. In this paper, an analysis of the non-linearity in partial charge transfer technique has been carried, and the relationship between dynamic range and the non-linearity is studied. The results show that the non-linearity is caused by two factors, namely the current diffusion, which has an exponential relation with the potential barrier, and the initial condition of photodiodes in which it shows that the error in the high illumination region increases as the ratio of the long to the short accumulation time raises. Moreover, the increment of the saturation level of photodiodes also increases the error in the high illumination region.

  9. Measurement of thermal deformation of an engine piston using a conical mirror and ESPI

    NASA Astrophysics Data System (ADS)

    Albertazzi, Armando, Jr.; Melao, Iza; Devece, Eugenio

    1998-07-01

    An experimental technique is developed to measure the radial displacement component of cylindrical surfaces using a conical mirror for normal illumination and observation. Single illumination ESPI is used to obtain fringe patterns related to the radial displacement field. Some data processing strategies are presented and discussed to properly extract the measurement data. Data reduction algorithms are developed to quantify and compensate the rigid body displacements: translations and rotations. The displacement component responsible for shape distortion (deformation) can be separated from the total displacement field. The thermal radial deformation of an aluminum engine piston with a steel sash is measured by this technique. A temperature change of about 2 degrees Celsius was applied to the engine piston by means of an electrical wire wrapped up in the first engine piston grove. The fringe patterns are processed and the results are presented as polar graphics and 3D representation. The main advantages and limitations of the developed technique are discussed.

  10. In situ TEM near-field optical probing of nanoscale silicon crystallization.

    PubMed

    Xiang, Bin; Hwang, David J; In, Jung Bin; Ryu, Sang-Gil; Yoo, Jae-Hyuck; Dubon, Oscar; Minor, Andrew M; Grigoropoulos, Costas P

    2012-05-09

    Laser-based processing enables a wide variety of device configurations comprising thin films and nanostructures on sensitive, flexible substrates that are not possible with more traditional thermal annealing schemes. In near-field optical probing, only small regions of a sample are illuminated by the laser beam at any given time. Here we report a new technique that couples the optical near-field of the laser illumination into a transmission electron microscope (TEM) for real-time observations of the laser-materials interactions. We apply this technique to observe the transformation of an amorphous confined Si volume to a single crystal of Si using laser melting. By confinement of the material volume to nanometric dimensions, the entire amorphous precursor is within the laser spot size and transformed into a single crystal. This observation provides a path for laser processing of single-crystal seeds from amorphous precursors, a potentially transformative technique for the fabrication of solar cells and other nanoelectronic devices.

  11. Fast imaging of live organisms with sculpted light sheets

    NASA Astrophysics Data System (ADS)

    Chmielewski, Aleksander K.; Kyrsting, Anders; Mahou, Pierre; Wayland, Matthew T.; Muresan, Leila; Evers, Jan Felix; Kaminski, Clemens F.

    2015-04-01

    Light-sheet microscopy is an increasingly popular technique in the life sciences due to its fast 3D imaging capability of fluorescent samples with low photo toxicity compared to confocal methods. In this work we present a new, fast, flexible and simple to implement method to optimize the illumination light-sheet to the requirement at hand. A telescope composed of two electrically tuneable lenses enables us to define thickness and position of the light-sheet independently but accurately within milliseconds, and therefore optimize image quality of the features of interest interactively. We demonstrated the practical benefit of this technique by 1) assembling large field of views from tiled single exposure each with individually optimized illumination settings; 2) sculpting the light-sheet to trace complex sample shapes within single exposures. This technique proved compatible with confocal line scanning detection, further improving image contrast and resolution. Finally, we determined the effect of light-sheet optimization in the context of scattering tissue, devising procedures for balancing image quality, field of view and acquisition speed.

  12. Laryngoscope illuminance in a tertiary children's hospital: implications for quality laryngoscopy.

    PubMed

    Volsky, Peter G; Murphy, Michael K; Darrow, David H

    2014-07-01

    Laryngoscopes are used by otolaryngologists in a variety of hospital emergency and critical care settings. However, only rarely have quality-related aspects of laryngoscope function and application been studied. To compare the illuminance of laryngoscopes commonly used in a hospital setting to established standards and to assess the potential effects of maintenance practices on laryngoscope illuminance. Observational study of laryngoscope light output and cross-sectional survey of individuals charged with laryngoscope maintenance in a tertiary care children's hospital. Illuminance was chosen as the unit of measurement (lux). Laryngoscopes in the operating room, emergency department, and pediatric intensive care unit were tested according to a standard technique. Illuminance standards for laryngoscopes, published by the International Organization for Standardization (ISO) (500 lux) and in the medical literature (867 lux) were used as benchmarks. Mean laryngoscope illuminance by type of laryngoscope and light source and percentage of laryngoscopes with illuminance below established standards as well as nonfunctioning units. Maintenance practices were evaluated as a secondary outcome. A total of 319 laryngoscopes were tested; 283 were incandescent bulb units used by anesthesiologists, emergency physicians, and intensivists and 36 were xenon light units used by otolaryngologists. Mean (SD) illuminance was 1330 (1160) lux in the incandescent group and 16,600 (13,000) lux in the xenon group (P < .001). Substandard illuminance was observed only in the incandescent group, in 29% to 43% of laryngoscopes; 5% of the incandescent group did not turn on at all. Maintenance of laryngoscopes was performed on a reactive rather than a preventive basis. At our facility, approximately one-third of incandescent laryngoscopes exhibited substandard light output. On the basis of these findings, our hospital has converted all of its incandescent laryngoscopes to light-emitting diode (LED) devices. Such changes, as well as the institution of a quality-control program including scheduled laryngoscope inspection and battery and bulb replacement for incandescent laryngoscopes, may reduce adverse events associated with poor-quality direct laryngoscopy.

  13. Laryngoscope Illuminance in a Tertiary Care Medical Center: Industry Standards and Implications for Quality Laryngoscopy.

    PubMed

    Murphy, Michael K; Volsky, Peter G; Darrow, David H

    2015-11-01

    To test the hypothesis that a substantial proportion of laryngoscopes exhibit substandard illuminance by comparing laryngoscope illuminance in a tertiary-level medical center to established standards and identifying features associated with poor illuminance. Cross-sectional observational study. Academic tertiary care medical center (level 1 trauma center, specialty cardiac hospital, and general hospital). Laryngoscopes from main, cardiac, and outpatient operating rooms; emergency department; and code carts were tested using a standard technique. Illuminance (lux) was chosen as the outcome measure. Benchmarks were derived from the International Standards Organization and medical literature. Light types included incandescent bulb, light-emitting diode, and xenon. Personnel were surveyed regarding maintenance practices. Across all hospitals, 691 laryngoscopes were tested. Mean (SD) illuminance was 810 (700) lux for incandescent bulb-on-blade designs (n = 237), 1860 (1220) lux for incandescent bulb in-handle designs (n = 79), 4730 (3210) lux for LED (n = 354), and 28,800 (34,500) lux for xenon (n = 21). Seven percent of units failed to turn on (n = 45). Using an established threshold of 867 lux, 28% of devices (47% of incandescent, 12% of LED, and 10% of xenon) were substandard. All laryngoscopes were cleaned according to standard protocols following use; no preventive maintenance was reported. Twenty-eight percent of laryngoscopes in a tertiary care hospital exhibit substandard illuminance; these results corroborate the findings of our inaugural study on this subject. Consequently, our hospital is instituting changes to reduce the likelihood of substandard performance by laryngoscopes in circulation. © American Academy of Otolaryngology—Head and Neck Surgery Foundation 2015.

  14. Super-resolution chemical imaging with dynamic placement of plasmonic hotspots

    NASA Astrophysics Data System (ADS)

    Olson, Aeli P.; Ertsgaard, Christopher T.; McKoskey, Rachel M.; Rich, Isabel S.; Lindquist, Nathan C.

    2015-08-01

    We demonstrate dynamic placement of plasmonic "hotspots" for super-resolution chemical imaging via Surface Enhanced Raman Spectroscopy (SERS). A silver nanohole array surface was coated with biological samples and illuminated with a laser. Due to the large plasmonic field enhancements, blinking behavior of the SERS hotspots was observed and processed using a Stochastic Optical Reconstruction Microscopy (STORM) algorithm enabling localization to within 10 nm. However, illumination of the sample with a single static laser beam (i.e., a slightly defocused Gaussian beam) only produced SERS hotspots in fixed locations on the surface, leaving noticeable gaps in any final image. But, by using a spatial light modulator (SLM), the illumination profile of the beam could be altered, shifting any hotspots across the nanohole array surface in sub-wavelength steps. Therefore, by properly structuring an illuminating light field with the SLM, we show the possibility of positioning plasmonic hotspots over a metallic nanohole surface on-the-fly. Using this and our SERS-STORM imaging technique, we show potential for high-resolution chemical imaging without the noticeable gaps that were present with static laser illumination. Interestingly, even illuminating the surface with randomly shifting SLM phase profiles was sufficient to completely fill in a wide field of view for super-resolution SERS imaging of a single strand of 100-nm thick collagen protein fibrils. Images were then compared to those obtained with a scanning electron microscope (SEM). Additionally, we explored alternative methods of phase shifting other than holographic illumination through the SLM to create localization of hotspots necessary for SERS-STORM imaging.

  15. Ultrasound Thermal Field Imaging of Opaque Fluids

    NASA Technical Reports Server (NTRS)

    Andereck, C. David

    1999-01-01

    We have initiated an experimental program to develop an ultrasound system for non-intrusively imaging the thermal field in opaque fluids under an externally imposed temperature gradient. Many industrial processes involve opaque fluids, such as molten metals, semiconductors, and polymers, often in situations in which thermal gradients are important. For example, one may wish to understand semiconductor crystal growth dynamics in a Bridgman apparatus. Destructive testing of the crystal after the process is completed gives only indirect information about the fluid dynamics of the formation process. Knowledge of the coupled thermal and velocity fields during the growth process is then essential. Most techniques for non-intrusive velocity and temperature measurement in fluids are optical in nature, and hence the fluids studied must be transparent. In some cases (for example, LDV (laser Doppler velocimetry) and PIV (particle imaging velocimetry)) the velocities of small neutrally buoyant seed particles suspended in the fluid, are measured. Without particle seeding one can use the variation of the index of refraction of the fluid with temperature to visualize, through interferometric, Schlieren or shadowgraph techniques, the thermal field. The thermal field in turn gives a picture of the pattern existing in the fluid. If the object of study is opaque, non-optical techniques must be used. In this project we focus on the use of ultrasound, which propagates easily through opaque liquids and solids. To date ultrasound measurements have almost exclusively relied on the detection of sound scattered from density discontinuities inside the opaque material of interest. In most cases it has been used to visualize structural properties, but more recently the ultrasound Doppler velocimeter has become available. As in the optical case, it relies on seed particles that scatter Doppler shifted sound back to the detector. Doppler ultrasound techniques are, however, not useful for studying convective fluid flow in crystal growth, because particle seeding is unacceptable and flow velocities are typically too low to be resolved, and may be even lower in microgravity conditions where buoyancy forces are negligible. We will investigate a different use of ultrasound to probe the flows of opaque fluids non-intrusively and without the use of seed particles: our goal is to ultrasonically visualize the thermal field of opaque fluids with relatively high spatial resolution. The proposed technique relies upon the variation of sound speed with temperature of the fluid. A high frequency ultra-sound pulse passing through a fluid-filled chamber will traverse the chamber in a time determined by the relevant chamber dimension and the temperature of the fluid through which the pulse passes. With high time-resolution instrumentation that compares the excitation signal with the received pulse we can detect the influence of the fluid temperature on the pulse travel time. This is effectively an interferometric system, which in its optical form is an extremely sensitive approach to measuring thermal fields in fluids. Moreover, the temperature dependence of sound velocity in liquid metals is comparable to the temperature dependence of the speed of light required for accurate interferometric thermal images in transparent fluids. With an array of transducers scanned electronically a map of the thermal field over the chamber could be produced. An alternative approach would be to use the ultrasound analog of the shadowgraph technique. In the optical version, collimated light passes through the fluid, where it is focused or defocused locally by temperature field induced variations of the index of refraction. The resulting image reveals the thermal field through the spatial pattern of light intensity variations. By analogy, an ultrasound plane wave traversing an opaque fluid sample would be also locally focused or defocused depending on the speed of sound variations, giving rise to spatial variations in sound intensity that will reveal the thermal field pattern. These approaches could be applied to any situation in which temperature differences are expected to occur, and will rapidly provide information about the flow that simply cannot be obtained by any current intrusive or non-intrusive diagnostic technique. As materials processing in microgravity matures it will become increasingly important to have available simple and versatile diagnostic tools, such as we will develop, for studying the flows of opaque fluids under thermal forcing.

  16. Effect of small and large animal skull bone on photoacoustic signal

    NASA Astrophysics Data System (ADS)

    Xu, Qiuyun; Volinski, Bridget; Hariri, Ali; Fatima, Afreen; Nasiriavanaki, Mohammadreza

    2017-03-01

    Photoacoustic imaging (PAI) has proved to be a promising non-invasive technique for diagnosis, prognosis and treatment monitoring of neurological disorders in small and large animals. Skull bone effects both light illumination and ultrasound propagation. Hence, the PA signal is largely affected. This study aims to quantify and compare the attenuation of PA signal due to the skull obstacle in the light illumination path, in the ultrasound propagation path, or in both. The effect of mouse, rat, and mesocephalic dog skull bones, ex-vivo, is quantitatively studied.

  17. Generating realistic images using Kray

    NASA Astrophysics Data System (ADS)

    Tanski, Grzegorz

    2004-07-01

    Kray is an application for creating realistic images. It is written in C++ programming language, has a text-based interface, solves global illumination problem using techniques such as radiosity, path tracing and photon mapping.

  18. Illuminating the Past: The Neutron as a Tool in Archaeology

    ERIC Educational Resources Information Center

    Kockelmann, W.; Kirfel, A.; Siano, S.; Frost, C. D.

    2004-01-01

    Neutrons can be produced in nuclear reactions and used as very versatile probes for condensed matter research. Since their introduction in the 1950s neutron scattering techniques have evolved to be very powerful tools for investigating the properties of condensed matter. Here we present the concept of neutron diffraction and how this technique can…

  19. Nondestructive evaluation of turbine blades vibrating in resonant modes

    NASA Astrophysics Data System (ADS)

    Sciammarella, Cesar A.; Ahmadshahi, Mansour A.

    1991-12-01

    The paper presents the analysis of the strain distribution of turbine blades. The holographic moire technique is used in conjunction with computer analysis of the fringes. The application of computer fringe analysis technique reduces the number of holograms to be recorded to two. Stroboscopic illumination is used to record the patterns. Strains and stresses are computed.

  20. Comparison of spectral radiance responsivity calibration techniques used for backscatter ultraviolet satellite instruments

    NASA Astrophysics Data System (ADS)

    Kowalewski, M. G.; Janz, S. J.

    2015-02-01

    Methods of absolute radiometric calibration of backscatter ultraviolet (BUV) satellite instruments are compared as part of an effort to minimize pre-launch calibration uncertainties. An internally illuminated integrating sphere source has been used for the Shuttle Solar BUV, Total Ozone Mapping Spectrometer, Ozone Mapping Instrument, and Global Ozone Monitoring Experiment 2 using standardized procedures traceable to national standards. These sphere-based spectral responsivities agree to within the derived combined standard uncertainty of 1.87% relative to calibrations performed using an external diffuser illuminated by standard irradiance sources, the customary spectral radiance responsivity calibration method for BUV instruments. The combined standard uncertainty for these calibration techniques as implemented at the NASA Goddard Space Flight Center’s Radiometric Calibration and Development Laboratory is shown to less than 2% at 250 nm when using a single traceable calibration standard.

  1. A method to generate soft shadows using a layered depth image and warping.

    PubMed

    Im, Yeon-Ho; Han, Chang-Young; Kim, Lee-Sup

    2005-01-01

    We present an image-based method for propagating area light illumination through a Layered Depth Image (LDI) to generate soft shadows from opaque and nonrefractive transparent objects. In our approach, using the depth peeling technique, we render an LDI from a reference light sample on a planar light source. Light illumination of all pixels in an LDI is then determined for all the other sample points via warping, an image-based rendering technique, which approximates ray tracing in our method. We use an image-warping equation and McMillan's warp ordering algorithm to find the intersections between rays and polygons and to find the order of intersections. Experiments for opaque and nonrefractive transparent objects are presented. Results indicate our approach generates soft shadows fast and effectively. Advantages and disadvantages of the proposed method are also discussed.

  2. High-Speed Edge-Detecting Line Scan Smart Camera

    NASA Technical Reports Server (NTRS)

    Prokop, Norman F.

    2012-01-01

    A high-speed edge-detecting line scan smart camera was developed. The camera is designed to operate as a component in a NASA Glenn Research Center developed inlet shock detection system. The inlet shock is detected by projecting a laser sheet through the airflow. The shock within the airflow is the densest part and refracts the laser sheet the most in its vicinity, leaving a dark spot or shadowgraph. These spots show up as a dip or negative peak within the pixel intensity profile of an image of the projected laser sheet. The smart camera acquires and processes in real-time the linear image containing the shock shadowgraph and outputting the shock location. Previously a high-speed camera and personal computer would perform the image capture and processing to determine the shock location. This innovation consists of a linear image sensor, analog signal processing circuit, and a digital circuit that provides a numerical digital output of the shock or negative edge location. The smart camera is capable of capturing and processing linear images at over 1,000 frames per second. The edges are identified as numeric pixel values within the linear array of pixels, and the edge location information can be sent out from the circuit in a variety of ways, such as by using a microcontroller and onboard or external digital interface to include serial data such as RS-232/485, USB, Ethernet, or CAN BUS; parallel digital data; or an analog signal. The smart camera system can be integrated into a small package with a relatively small number of parts, reducing size and increasing reliability over the previous imaging system..

  3. Laser Light Scattering by Shock Waves

    NASA Technical Reports Server (NTRS)

    Panda, J.; Adamovsky, G.

    1995-01-01

    Scattering of coherent light as it propagates parallel to a shock wave, formed in front of a bluff cylindrical body placed in a supersonic stream, is studied experimentally and numerically. Two incident optical fields are considered. First, a large diameter collimated beam is allowed to pass through the shock containing flow. The light intensity distribution in the resultant shadowgraph image, measured by a low light CCD camera, shows well-defined fringes upstream and downstream of the shadow cast by the shock. In the second situation, a narrow laser beam is brought to a grazing incidence on the shock and the scattered light, which appears as a diverging sheet from the point of interaction, is visualized and measured on a screen placed normal to the laser path. Experiments are conducted on shocks formed at various free-stream Mach numbers, M, and total pressures, P(sub 0). It is found that the widths of the shock shadows in a shadowgraph image become independent of M and P(sub 0) when plotted against the jump in the refractive index, (Delta)n, created across the shock. The total scattered light measured from the narrow laser beam and shock interaction also follows the same trend. In the numerical part of the study, the shock is assumed to be a 'phase object', which introduces phase difference between the upstream and downstream propagating parts of the light disturbances. For a given shape and (Delta)n of the bow shock the phase and amplitude modulations are first calculated by ray tracing. The wave front is then propagated to the screen using the Fresnet diffraction equation. The calculated intensity distribution, for both of the incident optical fields, shows good agreement with the experimental data.

  4. Pigment analysis by Raman microscopy and portable X-ray fluorescence (pXRF) of thirteenth to fourteenth century illuminations and cuttings from Bologna

    PubMed Central

    Clark, Robin J. H.; Jones, Richard; Gibbs, Robert

    2016-01-01

    Non-destructive pigment analysis by Raman microscopy (RM) and portable X-ray fluorescence (pXRF) has been carried out on some Bolognese illuminations and cuttings chosen to represent the beginnings, evolution and height of Bolognese illuminated manuscript production. Dating to the thirteenth and fourteenth centuries and held in a private collection, the study provides evidence for the pigments generally used in this period. The results, which are compared with those obtained for other north Italian artwork, show the developments in usage of artistic materials and technique. Also addressed in this study is an examination of the respective roles of RM and pXRF analysis in this area of technical art history. This article is part of the themed issue ‘Raman spectroscopy in art and archaeology’. PMID:27799427

  5. Virtual fringe projection system with nonparallel illumination based on iteration

    NASA Astrophysics Data System (ADS)

    Zhou, Duo; Wang, Zhangying; Gao, Nan; Zhang, Zonghua; Jiang, Xiangqian

    2017-06-01

    Fringe projection profilometry has been widely applied in many fields. To set up an ideal measuring system, a virtual fringe projection technique has been studied to assist in the design of hardware configurations. However, existing virtual fringe projection systems use parallel illumination and have a fixed optical framework. This paper presents a virtual fringe projection system with nonparallel illumination. Using an iterative method to calculate intersection points between rays and reference planes or object surfaces, the proposed system can simulate projected fringe patterns and captured images. A new explicit calibration method has been presented to validate the precision of the system. Simulated results indicate that the proposed iterative method outperforms previous systems. Our virtual system can be applied to error analysis, algorithm optimization, and help operators to find ideal system parameter settings for actual measurements.

  6. Single-shot quantitative phase microscopy with color-multiplexed differential phase contrast (cDPC)

    PubMed Central

    2017-01-01

    We present a new technique for quantitative phase and amplitude microscopy from a single color image with coded illumination. Our system consists of a commercial brightfield microscope with one hardware modification—an inexpensive 3D printed condenser insert. The method, color-multiplexed Differential Phase Contrast (cDPC), is a single-shot variant of Differential Phase Contrast (DPC), which recovers the phase of a sample from images with asymmetric illumination. We employ partially coherent illumination to achieve resolution corresponding to 2× the objective NA. Quantitative phase can then be used to synthesize DIC and phase contrast images or extract shape and density. We demonstrate amplitude and phase recovery at camera-limited frame rates (50 fps) for various in vitro cell samples and c. elegans in a micro-fluidic channel. PMID:28152023

  7. Raman imaging of molecular dynamics during cellular events

    NASA Astrophysics Data System (ADS)

    Fujita, Katsumasa

    2017-07-01

    To overcome the speed limitation in Raman imaging, we have developed a microscope system that detects Raman spectra from hundreds of points in a sample simultaneously. The sample was illuminated by a line-shaped focus, and Raman scattering from the illuminated positions was measured simultaneously by an imaging spectrophotometer. We applied the line-illumination technique to observe the dynamics of intracellular molecules during cellular events. We found that intracellular cytochrome c can be clearly imaged by resonant Raman scattering. We demonstrated label-free imaging of redistribution of cytochrome c during apoptosis and osteoblastic mineralization. We also proposed alkyne-tagged Raman imaging to observe small molecules in living cells. Due to its small size and the unique Raman band, alkyne can tag molecules without strong perturbation to molecular functions and with the capability to be detected separately from endogenous molecules.

  8. Three-dimensional fluorescent microscopy via simultaneous illumination and detection at multiple planes.

    PubMed

    Ma, Qian; Khademhosseinieh, Bahar; Huang, Eric; Qian, Haoliang; Bakowski, Malina A; Troemel, Emily R; Liu, Zhaowei

    2016-08-16

    The conventional optical microscope is an inherently two-dimensional (2D) imaging tool. The objective lens, eyepiece and image sensor are all designed to capture light emitted from a 2D 'object plane'. Existing technologies, such as confocal or light sheet fluorescence microscopy have to utilize mechanical scanning, a time-multiplexing process, to capture a 3D image. In this paper, we present a 3D optical microscopy method based upon simultaneously illuminating and detecting multiple focal planes. This is implemented by adding two diffractive optical elements to modify the illumination and detection optics. We demonstrate that the image quality of this technique is comparable to conventional light sheet fluorescent microscopy with the advantage of the simultaneous imaging of multiple axial planes and reduced number of scans required to image the whole sample volume.

  9. High resolution microendoscopy with structured illumination and Lugol's iodine staining for evaluation of breast cancer architecture

    NASA Astrophysics Data System (ADS)

    Dobbs, Jessica; Kyrish, Matthew; Krishnamurthy, Savitri; Grant, Benjamin; Kuerer, Henry; Yang, Wei; Tkaczyk, Tomasz; Richards-Kortum, Rebecca

    2016-03-01

    Intraoperative margin assessment to evaluate resected tissue margins for neoplastic tissue is performed to prevent reoperations following breast-conserving surgery. High resolution microendoscopy (HRME) can rapidly acquire images of fresh tissue specimens, but is limited by low image contrast in tissues with high optical scattering. In this study we evaluated two techniques to reduce out-of-focus light: HRME image acquisition with structured illumination (SI-HRME) and topical application of Lugol's Iodine. Fresh breast tissue specimens from 19 patients were stained with proflavine alone or Lugol's Iodine and proflavine. Images of tissue specimens were acquired using a confocal microscope and an HRME system with and without structured illumination. Images were evaluated based on visual and quantitative assessment of image contrast. The highest mean contrast was measured in confocal images stained with proflavine. Contrast was significantly lower in HRME images stained with proflavine; however, incorporation of structured illumination significantly increased contrast in HRME images to levels comparable to that in confocal images. The addition of Lugol's Iodine did not increase mean contrast significantly for HRME or SI-HRME images. These findings suggest that structured illumination could potentially be used to increase contrast in HRME images of breast tissue for rapid image acquisition.

  10. Structured illumination 3D microscopy using adaptive lenses and multimode fibers

    NASA Astrophysics Data System (ADS)

    Czarske, Jürgen; Philipp, Katrin; Koukourakis, Nektarios

    2017-06-01

    Microscopic techniques with high spatial and temporal resolution are required for in vivo studying biological cells and tissues. Adaptive lenses exhibit strong potential for fast motion-free axial scanning. However, they also lead to a degradation of the achievable resolution because of aberrations. This hurdle can be overcome by digital optical technologies. We present a novel High-and-Low-frequency (HiLo) 3D-microscope using structured illumination and an adaptive lens. Uniform illumination is used to obtain optical sectioning for the high-frequency (Hi) components of the image, and nonuniform illumination is needed to obtain optical sectioning for the low-frequency (Lo) components of the image. Nonuniform illumination is provided by a multimode fiber. It ensures robustness against optical aberrations of the adaptive lens. The depth-of-field of our microscope can be adjusted a-posteriori by computational optics. It enables to create flexible scans, which compensate for irregular axial measurement positions. The adaptive HiLo 3D-microscope provides an axial scanning range of 1 mm with an axial resolution of about 4 microns and sub-micron lateral resolution over the full scanning range. In result, volumetric measurements with high temporal and spatial resolution are provided. Demonstration measurements of zebrafish embryos with reporter gene-driven fluorescence in the thyroid gland are presented.

  11. Ejection of Metal Particles into Superfluid 4He by Laser Ablation.

    PubMed

    Buelna, Xavier; Freund, Adam; Gonzalez, Daniel; Popov, Evgeny; Eloranta, Jussi

    2016-10-05

    The dynamics following laser ablation of a metal target immersed in superfluid $^4$He is studied by time-resolved shadowgraph photography. The delayed ejection of hot micrometer-sized particles from the target surface into the liquid was indirectly observed by monitoring the formation and growth of gaseous bubbles around the particles. The experimentally determined particle average velocity distribution appears similar as previously measured in vacuum but exhibits a sharp cutoff at the speed of sound of the liquid. The propagation of the subsonic particles terminates in slightly elongated non-spherical gas bubbles residing near the target whereas faster particles reveal an unusual hydrodynamic response of the liquid. Based on the previously established semi-empirical model developed for macroscopic objects, the ejected transonic particles exhibit supercavitating flow to reduce their hydrodynamic drag. Supersonic particles appear to follow a completely different propagation mechanism as they leave discrete and semi-continuous bubble trails in the liquid. The relatively low number density of the observed non-spherical gas bubbles indicates that only large micron-sized particles are visualized in the experiments. Although the unique properties of superfluid helium allow a detailed characterization of these processes, the developed technique can be used to study the hydrodynamic response of any liquid to fast propagating objects on the micrometer-scale.

  12. Mass transport properties of the tetrahydronaphthalene/n-dodecane mixture measured by investigating non-equilibrium fluctuations

    NASA Astrophysics Data System (ADS)

    Croccolo, Fabrizio; Scheffold, Frank; Bataller, Henri

    2013-04-01

    We present preliminary near-field light scattering (NFS) data concerning the analysis of the static power spectrum and of the relaxation time constant as a function of the wave vector for non-equilibrium fluctuations (NEFs). The goal of these measurements is to obtain information about the Soret and the mass diffusion coefficients of a binary mixture undergoing thermodiffusion. In particular, we show how the interaction between NEFs and the gravity force gives rise to a critical wavelength that provides additional information about the Soret coefficient. We suggest that a quantitative analysis can be performed by means of this non-invasive optical technique. In our setup, the sample is monitored parallel to the imposed temperature gradient, thus being insensitive to the refractive index profile along the vertical axis, while at the same time we are able to detect the light scattered by the refractive index fluctuations in horizontal planes. We select a shadowgraph layout for the NFS setup due to the extremely small wave vectors we aim to analyze. From a double-frame differential analysis of the acquired images, we obtain both the static power spectrum and the dynamics of NEFs. As a proof-of-principle experiment, we present Soret and diffusion coefficient data on a liquid mixture of tetrahydronaphthalene/n-dodecane.

  13. Investigation of Flow Separation in a Transonic-fan Linear Cascade Using Visualization Methods

    NASA Technical Reports Server (NTRS)

    Lepicovsky, Jan; Chima, Rodrick V.; Jett, Thomas A.; Bencic, Timothy J.; Weiland, Kenneth E.

    2000-01-01

    An extensive study into the nature of the separated flows on the suction side of modem transonic fan airfoils at high incidence is described in the paper. Suction surface.flow separation is an important flow characteristic that may significantly contribute to stall flutter in transonic fans. Flutter in axial turbomachines is a highly undesirable and dangerous self-excited mode of blade oscillations that can result in high cycle fatigue blade failure. The study basically focused on two visualization techniques: surface flow visualization using dye oils, and schlieren (and shadowgraph) flow visualization. The following key observations were made during the study. For subsonic inlet flow, the flow on the suction side of the blade is separated over a large portion of the blade, and the separated area increases with increasing inlet Mach number. For the supersonic inlet flow condition, the flow is attached from the leading edge up to the point where a bow shock from the upper neighboring blade hits the blade surface. Low cascade solidity, for the subsonic inlet flow, results in an increased area of separated flow. For supersonic flow conditions, a low solidity results in an improvement in flow over the suction surface. Finally, computational results modeling the transonic cascade flowfield illustrate our ability to simulate these flows numerically.

  14. Volumetric bioimaging based on light field microscopy with temporal focusing illumination

    NASA Astrophysics Data System (ADS)

    Hsu, Feng-Chun; Sie, Yong Da; Lai, Feng-Jie; Chen, Shean-Jen

    2018-02-01

    Light field technique at a single shot can get the whole volume image of observed sample. Therefore, the original frame rate of the optical system can be taken as the volumetric image rate. For dynamically imaging whole micron-scale biosample, a light field microscope with temporal focusing illumination has been developed. In the light field microscope, the f-number of the microlens array (MLA) is adopted to match that of the objective; hence, the subimages via adjacent lenslets do not overlay each other. A three-dimensional (3D) deconvolution algorithm is utilized to deblur the out-of-focusing part. Conventional light field microscopy (LFM) illuminates whole volume sample even noninteresting parts; nevertheless, whole volume excitation causes even more damage on bio-sample and also increase the background noise from the out of range. Therefore, temporal focusing is integrated into the light field microscope for selecting the illumination volume. Herein, a slit on the back focal plane of the objective is utilized to control the axial excitation confinement for selecting the illumination volume. As a result, the developed light field microscope with the temporal focusing multiphoton illumination (TFMPI) can reconstruct 3D images within the selected volume, and the lateral resolution approaches to the theoretical value. Furthermore, the 3D Brownian motion of two-micron fluorescent beads is observed as the criterion of dynamic sample. With superior signal-to-noise ratio and less damage to tissue, the microscope is potential to provide volumetric imaging for vivo sample.

  15. Joint estimation of motion and illumination change in a sequence of images

    NASA Astrophysics Data System (ADS)

    Koo, Ja-Keoung; Kim, Hyo-Hun; Hong, Byung-Woo

    2015-09-01

    We present an algorithm that simultaneously computes optical flow and estimates illumination change from an image sequence in a unified framework. We propose an energy functional consisting of conventional optical flow energy based on Horn-Schunck method and an additional constraint that is designed to compensate for illumination changes. Any undesirable illumination change that occurs in the imaging procedure in a sequence while the optical flow is being computed is considered a nuisance factor. In contrast to the conventional optical flow algorithm based on Horn-Schunck functional, which assumes the brightness constancy constraint, our algorithm is shown to be robust with respect to temporal illumination changes in the computation of optical flows. An efficient conjugate gradient descent technique is used in the optimization procedure as a numerical scheme. The experimental results obtained from the Middlebury benchmark dataset demonstrate the robustness and the effectiveness of our algorithm. In addition, comparative analysis of our algorithm and Horn-Schunck algorithm is performed on the additional test dataset that is constructed by applying a variety of synthetic bias fields to the original image sequences in the Middlebury benchmark dataset in order to demonstrate that our algorithm outperforms the Horn-Schunck algorithm. The superior performance of the proposed method is observed in terms of both qualitative visualizations and quantitative accuracy errors when compared to Horn-Schunck optical flow algorithm that easily yields poor results in the presence of small illumination changes leading to violation of the brightness constancy constraint.

  16. A spatially augmented reality sketching interface for architectural daylighting design.

    PubMed

    Sheng, Yu; Yapo, Theodore C; Young, Christopher; Cutler, Barbara

    2011-01-01

    We present an application of interactive global illumination and spatially augmented reality to architectural daylight modeling that allows designers to explore alternative designs and new technologies for improving the sustainability of their buildings. Images of a model in the real world, captured by a camera above the scene, are processed to construct a virtual 3D model. To achieve interactive rendering rates, we use a hybrid rendering technique, leveraging radiosity to simulate the interreflectance between diffuse patches and shadow volumes to generate per-pixel direct illumination. The rendered images are then projected on the real model by four calibrated projectors to help users study the daylighting illumination. The virtual heliodon is a physical design environment in which multiple designers, a designer and a client, or a teacher and students can gather to experience animated visualizations of the natural illumination within a proposed design by controlling the time of day, season, and climate. Furthermore, participants may interactively redesign the geometry and materials of the space by manipulating physical design elements and see the updated lighting simulation. © 2011 IEEE Published by the IEEE Computer Society

  17. Three dimensional HiLo-based structured illumination for a digital scanned laser sheet microscopy (DSLM) in thick tissue imaging

    PubMed Central

    Bhattacharya, Dipanjan; Singh, Vijay Raj; Zhi, Chen; So, Peter T. C.; Matsudaira, Paul; Barbastathis, George

    2012-01-01

    Laser sheet based microscopy has become widely accepted as an effective active illumination method for real time three-dimensional (3D) imaging of biological tissue samples. The light sheet geometry, where the camera is oriented perpendicular to the sheet itself, provides an effective method of eliminating some of the scattered light and minimizing the sample exposure to radiation. However, residual background noise still remains, limiting the contrast and visibility of potentially interesting features in the samples. In this article, we investigate additional structuring of the illumination for improved background rejection, and propose a new technique, “3D HiLo” where we combine two HiLo images processed from orthogonal directions to improve the condition of the 3D reconstruction. We present a comparative study of conventional structured illumination based demodulation methods, namely 3Phase and HiLo with a newly implemented 3D HiLo approach and demonstrate that the latter yields superior signal-to-background ratio in both lateral and axial dimensions, while simultaneously suppressing image processing artifacts. PMID:23262684

  18. Three dimensional HiLo-based structured illumination for a digital scanned laser sheet microscopy (DSLM) in thick tissue imaging.

    PubMed

    Bhattacharya, Dipanjan; Singh, Vijay Raj; Zhi, Chen; So, Peter T C; Matsudaira, Paul; Barbastathis, George

    2012-12-03

    Laser sheet based microscopy has become widely accepted as an effective active illumination method for real time three-dimensional (3D) imaging of biological tissue samples. The light sheet geometry, where the camera is oriented perpendicular to the sheet itself, provides an effective method of eliminating some of the scattered light and minimizing the sample exposure to radiation. However, residual background noise still remains, limiting the contrast and visibility of potentially interesting features in the samples. In this article, we investigate additional structuring of the illumination for improved background rejection, and propose a new technique, "3D HiLo" where we combine two HiLo images processed from orthogonal directions to improve the condition of the 3D reconstruction. We present a comparative study of conventional structured illumination based demodulation methods, namely 3Phase and HiLo with a newly implemented 3D HiLo approach and demonstrate that the latter yields superior signal-to-background ratio in both lateral and axial dimensions, while simultaneously suppressing image processing artifacts.

  19. Thermal radiation scanning tunnelling microscopy

    NASA Astrophysics Data System (ADS)

    de Wilde, Yannick; Formanek, Florian; Carminati, Rémi; Gralak, Boris; Lemoine, Paul-Arthur; Joulain, Karl; Mulet, Jean-Philippe; Chen, Yong; Greffet, Jean-Jacques

    2006-12-01

    In standard near-field scanning optical microscopy (NSOM), a subwavelength probe acts as an optical `stethoscope' to map the near field produced at the sample surface by external illumination. This technique has been applied using visible, infrared, terahertz and gigahertz radiation to illuminate the sample, providing a resolution well beyond the diffraction limit. NSOM is well suited to study surface waves such as surface plasmons or surface-phonon polaritons. Using an aperture NSOM with visible laser illumination, a near-field interference pattern around a corral structure has been observed, whose features were similar to the scanning tunnelling microscope image of the electronic waves in a quantum corral. Here we describe an infrared NSOM that operates without any external illumination: it is a near-field analogue of a night-vision camera, making use of the thermal infrared evanescent fields emitted by the surface, and behaves as an optical scanning tunnelling microscope. We therefore term this instrument a `thermal radiation scanning tunnelling microscope' (TRSTM). We show the first TRSTM images of thermally excited surface plasmons, and demonstrate spatial coherence effects in near-field thermal emission.

  20. Subwavelength resolution Fourier ptychography with hemispherical digital condensers

    NASA Astrophysics Data System (ADS)

    Pan, An; Zhang, Yan; Li, Maosen; Zhou, Meiling; Lei, Ming; Yao, Baoli

    2018-02-01

    Fourier ptychography (FP) is a promising computational imaging technique that overcomes the physical space-bandwidth product (SBP) limit of a conventional microscope by applying angular diversity illuminations. However, to date, the effective imaging numerical aperture (NA) achievable with a commercial LED board is still limited to the range of 0.3-0.7 with a 4×/0.1NA objective due to the constraint of planar geometry with weak illumination brightness and attenuated signal-to-noise ratio (SNR). Thus the highest achievable half-pitch resolution is usually constrained between 500-1000 nm, which cannot fulfill some needs of high-resolution biomedical imaging applications. Although it is possible to improve the resolution by using a higher magnification objective with larger NA instead of enlarging the illumination NA, the SBP is suppressed to some extent, making the FP technique less appealing, since the reduction of field-of-view (FOV) is much larger than the improvement of resolution in this FP platform. Herein, in this paper, we initially present a subwavelength resolution Fourier ptychography (SRFP) platform with a hemispherical digital condenser to provide high-angle programmable plane-wave illuminations of 0.95NA, attaining a 4×/0.1NA objective with the final effective imaging performance of 1.05NA at a half-pitch resolution of 244 nm with a wavelength of 465 nm across a wide FOV of 14.60 mm2 , corresponding to an SBP of 245 megapixels. Our work provides an essential step of FP towards high-NA imaging applications without scarfing the FOV, making it more practical and appealing.

  1. Computational diffraction tomographic microscopy with transport of intensity equation using a light-emitting diode array

    NASA Astrophysics Data System (ADS)

    Li, Jiaji; Chen, Qian; Zhang, Jialin; Zuo, Chao

    2017-10-01

    Optical diffraction tomography (ODT) is an effective label-free technique for quantitatively refractive index imaging, which enables long-term monitoring of the internal three-dimensional (3D) structures and molecular composition of biological cells with minimal perturbation. However, existing optical tomographic methods generally rely on interferometric configuration for phase measurement and sophisticated mechanical systems for sample rotation or beam scanning. Thereby, the measurement is suspect to phase error coming from the coherent speckle, environmental vibrations, and mechanical error during data acquisition process. To overcome these limitations, we present a new ODT technique based on non-interferometric phase retrieval and programmable illumination emitting from a light-emitting diode (LED) array. The experimental system is built based on a traditional bright field microscope, with the light source replaced by a programmable LED array, which provides angle-variable quasi-monochromatic illumination with an angular coverage of +/-37 degrees in both x and y directions (corresponding to an illumination numerical aperture of ˜ 0.6). Transport of intensity equation (TIE) is utilized to recover the phase at different illumination angles, and the refractive index distribution is reconstructed based on the ODT framework under first Rytov approximation. The missing-cone problem in ODT is addressed by using the iterative non-negative constraint algorithm, and the misalignment of the LED array is further numerically corrected to improve the accuracy of refractive index quantification. Experiments on polystyrene beads and thick biological specimens show that the proposed approach allows accurate refractive index reconstruction while greatly reduced the system complexity and environmental sensitivity compared to conventional interferometric ODT approaches.

  2. Optical diffraction tomography microscopy with transport of intensity equation using a light-emitting diode array

    NASA Astrophysics Data System (ADS)

    Li, Jiaji; Chen, Qian; Zhang, Jialin; Zhang, Zhao; Zhang, Yan; Zuo, Chao

    2017-08-01

    Optical diffraction tomography (ODT) is an effective label-free technique for quantitatively refractive index imaging, which enables long-term monitoring of the internal three-dimensional (3D) structures and molecular composition of biological cells with minimal perturbation. However, existing optical tomographic methods generally rely on interferometric configuration for phase measurement and sophisticated mechanical systems for sample rotation or beam scanning. Thereby, the measurement is suspect to phase error coming from the coherent speckle, environmental vibrations, and mechanical error during data acquisition process. To overcome these limitations, we present a new ODT technique based on non-interferometric phase retrieval and programmable illumination emitting from a light-emitting diode (LED) array. The experimental system is built based on a traditional bright field microscope, with the light source replaced by a programmable LED array, which provides angle-variable quasi-monochromatic illumination with an angular coverage of ±37 degrees in both x and y directions (corresponding to an illumination numerical aperture of ∼0.6). Transport of intensity equation (TIE) is utilized to recover the phase at different illumination angles, and the refractive index distribution is reconstructed based on the ODT framework under first Rytov approximation. The missing-cone problem in ODT is addressed by using the iterative non-negative constraint algorithm, and the misalignment of the LED array is further numerically corrected to improve the accuracy of refractive index quantification. Experiments on polystyrene beads and thick biological specimens show that the proposed approach allows accurate refractive index reconstruction while greatly reduced the system complexity and environmental sensitivity compared to conventional interferometric ODT approaches.

  3. Xenon lighting adjusted to plant requirements

    NASA Technical Reports Server (NTRS)

    Koefferlein, M.; Doehring, T.; Payer, Hans D.; Seidlitz, H. K.

    1994-01-01

    Xenon lamps are available as low and high power lamps with relatively high efficiency and a relatively long lifetime up to several thousand hours. Different construction types of short-arc and long-arc lamps permit a good adaptation to various applications in projection and illumination techniques without substantial changes of the spectral quality. Hence, the xenon lamp was the best choice for professional technical purposes where high power at simultaneously good spectral quality of the light was required. However, technical development does not stand still. Between the luminous efficacy of xenon lamps of 25-50 lm/W and the theoretical limit for 'white light' of 250 lm/W is still much room for improvement. The present development mainly favors other lamp types, like metal halide lamps and fluorescent lamps for commercial lighting purposes. The enclosed sections deal with some of the properties of xenon lamps relevant to plant illumination; particularly the spectral aspects, the temporal characteristics of the emission, and finally the economy of xenon lamps will be addressed. Due to radiation exceeding the natural global radiation in both the ultraviolet (UV) and the infrared (IR) regions, filter techniques have to be included into the discussion referring to the requirements of plant illumination. Most of the presented results were obtained by investigations in the GSF phytotron or in the closed Phytocell chambers of the University of Erlangen. As our experiences are restricted to area plant illumination rather than spot lights our discussion will concentrate on low pressure long-arc xenon lamps which are commonly used for such plant illuminations. As the spectral properties of short-arc lamps do not differ much from those of long-arc lamps most of our conclusions will be valid for high pressure xenon lamps too. These lamps often serve as light sources for small sun simulators and for monochromators which are used for action spectroscopy of plant responses.

  4. Fabrication and applications of electrets

    NASA Technical Reports Server (NTRS)

    Pillai, P. K. C.; Shriver, E. L.

    1977-01-01

    Permanently charged dielectrics can be made less expensively, faster, and more effectively using improved techniques and materials. Methods include charge injection, Tesla-coil charging, and molten spray. Possible uses include pollution control, low-power sensors, and illumination control.

  5. Accurate Rapid Lifetime Determination on Time-Gated FLIM Microscopy with Optical Sectioning

    PubMed Central

    Silva, Susana F.; Domingues, José Paulo

    2018-01-01

    Time-gated fluorescence lifetime imaging microscopy (FLIM) is a powerful technique to assess the biochemistry of cells and tissues. When applied to living thick samples, it is hampered by the lack of optical sectioning and the need of acquiring many images for an accurate measurement of fluorescence lifetimes. Here, we report on the use of processing techniques to overcome these limitations, minimizing the acquisition time, while providing optical sectioning. We evaluated the application of the HiLo and the rapid lifetime determination (RLD) techniques for accurate measurement of fluorescence lifetimes with optical sectioning. HiLo provides optical sectioning by combining the high-frequency content from a standard image, obtained with uniform illumination, with the low-frequency content of a second image, acquired using structured illumination. Our results show that HiLo produces optical sectioning on thick samples without degrading the accuracy of the measured lifetimes. We also show that instrument response function (IRF) deconvolution can be applied with the RLD technique on HiLo images, improving greatly the accuracy of the measured lifetimes. These results open the possibility of using the RLD technique with pulsed diode laser sources to determine accurately fluorescence lifetimes in the subnanosecond range on thick multilayer samples, providing that offline processing is allowed. PMID:29599938

  6. Accurate Rapid Lifetime Determination on Time-Gated FLIM Microscopy with Optical Sectioning.

    PubMed

    Silva, Susana F; Domingues, José Paulo; Morgado, António Miguel

    2018-01-01

    Time-gated fluorescence lifetime imaging microscopy (FLIM) is a powerful technique to assess the biochemistry of cells and tissues. When applied to living thick samples, it is hampered by the lack of optical sectioning and the need of acquiring many images for an accurate measurement of fluorescence lifetimes. Here, we report on the use of processing techniques to overcome these limitations, minimizing the acquisition time, while providing optical sectioning. We evaluated the application of the HiLo and the rapid lifetime determination (RLD) techniques for accurate measurement of fluorescence lifetimes with optical sectioning. HiLo provides optical sectioning by combining the high-frequency content from a standard image, obtained with uniform illumination, with the low-frequency content of a second image, acquired using structured illumination. Our results show that HiLo produces optical sectioning on thick samples without degrading the accuracy of the measured lifetimes. We also show that instrument response function (IRF) deconvolution can be applied with the RLD technique on HiLo images, improving greatly the accuracy of the measured lifetimes. These results open the possibility of using the RLD technique with pulsed diode laser sources to determine accurately fluorescence lifetimes in the subnanosecond range on thick multilayer samples, providing that offline processing is allowed.

  7. Extension of electronic speckle correlation interferometry to large deformations

    NASA Astrophysics Data System (ADS)

    Sciammarella, Cesar A.; Sciammarella, Federico M.

    1998-07-01

    The process of fringe formation under simultaneous illumination in two orthogonal directions is analyzed. Procedures to extend the applicability of this technique to large deformation and high density of fringes are introduced. The proposed techniques are applied to a number of technical problems. Good agreement is obtained when the experimental results are compared with results obtained by other methods.

  8. High-speed and ultrahigh-speed cinematographic recording techniques

    NASA Astrophysics Data System (ADS)

    Miquel, J. C.

    1980-12-01

    A survey is presented of various high-speed and ultrahigh-speed cinematographic recording systems (covering a range of speeds from 100 to 14-million pps). Attention is given to the functional and operational characteristics of cameras and to details of high-speed cinematography techniques (including image processing, and illumination). A list of cameras (many of them French) available in 1980 is presented

  9. The development of optical microscopy techniques for the advancement of single-particle studies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Marchuk, Kyle

    2013-05-15

    Single particle orientation and rotational tracking (SPORT) has recently become a powerful optical microscopy tool that can expose many molecular motions. Unfortunately, there is not yet a single microscopy technique that can decipher all particle motions in all environmental conditions, thus there are limitations to current technologies. Within, the two powerful microscopy tools of total internal reflection and interferometry are advanced to determine the position, orientation, and optical properties of metallic nanoparticles in a variety of environments. Total internal reflection is an optical phenomenon that has been applied to microscopy to produce either fluorescent or scattered light. The non-invasive far-fieldmore » imaging technique is coupled with a near-field illumination scheme that allows for better axial resolution than confocal microscopy and epi-fluorescence microscopy. By controlling the incident illumination angle using total internal reflection fluorescence (TIRF) microscopy, a new type of imaging probe called “non-blinking” quantum dots (NBQDs) were super-localized in the axial direction to sub-10-nm precision. These particles were also used to study the rotational motion of microtubules being propelled by the motor protein kinesin across the substrate surface. The same instrument was modified to function under total internal reflection scattering (TIRS) microscopy to study metallic anisotropic nanoparticles and their dynamic interactions with synthetic lipid bilayers. Utilizing two illumination lasers with opposite polarization directions at wavelengths corresponding to the short and long axis surface plasmon resonance (SPR) of the nanoparticles, both the in-plane and out-of-plane movements of many particles could be tracked simultaneously. When combined with Gaussian point spread function (PSF) fitting for particle super-localization, the binding status and rotational movement could be resolved without degeneracy. TIRS microscopy was also used to find the 3D orientation of stationary metallic anisotropic nanoparticles utilizing only long-axis SPR enhancement. The polarization direction of the illuminating light was rotated causing the relative intensity of p-polarized and s-polarized light within the evanescent field to change. The interaction of the evanescent field with the particles is dependent on the orientation of the particle producing an intensity curve. This curve and the in-plane angle can be compared with simulations to accurately determine the 3D orientation. Differential interference contrast (DIC) microscopy is another non-invasive far-field technique based upon interferometry that does not rely on staining or other contrast enhancing techniques. In addition, high numerical aperture condensers and objectives can be used to give a very narrow depth of field allowing for the optical tomography of samples, which makes it an ideal candidate to study biological systems. DIC microscopy has also proven itself in determining the orientation of gold nanorods in both engineered environments and within cells. Many types of nanoparticles and nanostructures have been synthesized using lithographic techniques on silicon wafer substrates. Traditionally, reflective mode DIC microscopes have been developed and applied to the topographical study of reflective substrates and the imaging of chips on silicon wafers. Herein, a laser-illuminated reflected-mode DIC was developed for studying nanoparticles on reflective surfaces.« less

  10. The development of optical microscopy techniques for the advancement of single-particle studies

    NASA Astrophysics Data System (ADS)

    Marchuk, Kyle

    Single particle orientation and rotational tracking (SPORT) has recently become a powerful optical microscopy tool that can expose many molecular motions. Unfortunately, there is not yet a single microscopy technique that can decipher all particle motions in all environmental conditions, thus there are limitations to current technologies. Within, the two powerful microscopy tools of total internal reflection and interferometry are advanced to determine the position, orientation, and optical properties of metallic nanoparticles in a variety of environments. Total internal reflection is an optical phenomenon that has been applied to microscopy to produce either fluorescent or scattered light. The non-invasive far-field imaging technique is coupled with a near-field illumination scheme that allows for better axial resolution than confocal microscopy and epi-fluorescence microscopy. By controlling the incident illumination angle using total internal reflection fluorescence (TIRF) microscopy, a new type of imaging probe called "non-blinking" quantum dots (NBQDs) were super-localized in the axial direction to sub-10-nm precision. These particles were also used to study the rotational motion of microtubules being propelled by the motor protein kinesin across the substrate surface. The same instrument was modified to function under total internal reflection scattering (TIRS) microscopy to study metallic anisotropic nanoparticles and their dynamic interactions with synthetic lipid bilayers. Utilizing two illumination lasers with opposite polarization directions at wavelengths corresponding to the short and long axis surface plasmon resonance (SPR) of the nanoparticles, both the in-plane and out-of-plane movements of many particles could be tracked simultaneously. When combined with Gaussian point spread function (PSF) fitting for particle super-localization, the binding status and rotational movement could be resolved without degeneracy. TIRS microscopy was also used to find the 3D orientation of stationary metallic anisotropic nanoparticles utilizing only long-axis SPR enhancement. The polarization direction of the illuminating light was rotated causing the relative intensity of p-polarized and s-polarized light within the evanescent field to change. The interaction of the evanescent field with the particles is dependent on the orientation of the particle producing an intensity curve. This curve and the in-plane angle can be compared with simulations to accurately determine the 3D orientation. Differential interference contrast (DIC) microscopy is another non-invasive far-field technique based upon interferometry that does not rely on staining or other contrast enhancing techniques. In addition, high numerical aperture condensers and objectives can be used to give a very narrow depth of field allowing for the optical tomography of samples, which makes it an ideal candidate to study biological systems. DIC microscopy has also proven itself in determining the orientation of gold nanorods in both engineered environments and within cells. Many types of nanoparticles and nanostructures have been synthesized using lithographic techniques on silicon wafer substrates. Traditionally, reflective mode DIC microscopes have been developed and applied to the topographical study of reflective substrates and the imaging of chips on silicon wafers. Herein, a laser-illuminated reflected-mode DIC was developed for studying nanoparticles on reflective surfaces.

  11. Aerothermodynamic measurements for space shuttle configuration in hypersonic wind tunnels

    NASA Technical Reports Server (NTRS)

    Bertin, J. J.; Williams, F. E.; Baker, R. C.; Goodrich, W. D.; Kessler, W. C.

    1972-01-01

    The effect of shuttle configuration geometry, angle of attack, and free stream flow conditions on the heat-transfer distribution as influenced by three-dimensional effects, the wing-fuselage shock-interaction, and resultant wing-impingement phenomena are examined. In addition, the data provided information regarding the flow field in the vicinity of the nose and boundary layer transition in the plane of symmetry of the fuselage. The data included measurements of the surface pressure, the heat transfer rate distributions, (using models instrumented with thermocouples and models painted with thermographic phosphor) and schlieren and shadowgraph photographs. Posttest photographs of the painted models supplemented the heat transfer data.

  12. Hypervelocity impact studies using a rotating mirror framing laser shadowgraph camera

    NASA Technical Reports Server (NTRS)

    Parker, Vance C.; Crews, Jeanne Lee

    1988-01-01

    The need to study the effects of the impact of micrometeorites and orbital debris on various space-based systems has brought together the technologies of several companies and individuals in order to provide a successful instrumentation package. A light gas gun was employed to accelerate small projectiles to speeds in excess of 7 km/sec. Their impact on various targets is being studied with the help of a specially designed continuous-access rotating-mirror framing camera. The camera provides 80 frames of data at up to 1 x 10 to the 6th frames/sec with exposure times of 20 nsec.

  13. Study of Injection of Helium into Supersonic Air Flow Using Rayleigh Scattering

    NASA Technical Reports Server (NTRS)

    Seaholtz, Richard G.; Buggele, Alvin E.

    1997-01-01

    A study of the transverse injection of helium into a Mach 3 crossflow is presented. Filtered Rayleigh scattering is used to measure penetration and helium mole fraction in the mixing region. The method is based on planar molecular Rayleigh scattering using an injection-seeded, frequency-doubled ND:YAG pulsed laser and a cooled CCD camera. The scattered light is filtered with an iodine absorption cell to suppress stray laser light. Preliminary data are presented for helium mole fraction and penetration. Flow visualization images obtained with a shadowgraph and wall static pressure data in the vicinity of the injection are also presented.

  14. Development of an automated film-reading system for ballistic ranges

    NASA Technical Reports Server (NTRS)

    Yates, Leslie A.

    1992-01-01

    Software for an automated film-reading system that uses personal computers and digitized shadowgraphs is described. The software identifies pixels associated with fiducial-line and model images, and least-squares procedures are used to calculate the positions and orientations of the images. Automated position and orientation readings for sphere and cone models are compared to those obtained using a manual film reader. When facility calibration errors are removed from these readings, the accuracy of the automated readings is better than the pixel resolution, and it is equal to, or better than, the manual readings. The effects of film-reading and facility-calibration errors on calculated aerodynamic coefficients is discussed.

  15. Endoscopic techniques in aesthetic plastic surgery.

    PubMed

    McCain, L A; Jones, G

    1995-01-01

    There has been an explosive interest in endoscopic techniques by plastic surgeons over the past two years. Procedures such as facial rejuvenation, breast augmentation and abdominoplasty are being performed with endoscopic assistance. Endoscopic operations require a complex setup with components such as video camera, light sources, cables and hard instruments. The Hopkins Rod Lens system consists of optical fibers for illumination, an objective lens, an image retrieval system, a series of rods and lenses, and an eyepiece for image collection. Good illumination of the body cavity is essential for endoscopic procedures. Placement of the video camera on the eyepiece of the endoscope gives a clear, brightly illuminated large image on the monitor. The video monitor provides the surgical team with the endoscopic image. It is important to become familiar with the equipment before actually doing cases. Several options exist for staff education. In the operating room the endoscopic cart needs to be positioned to allow a clear unrestricted view of the video monitor by the surgeon and the operating team. Fogging of the endoscope may be prevented during induction by using FREDD (a fog reduction/elimination device) or a warm bath. The camera needs to be white balanced. During the procedure, the nurse monitors the level of dissection and assesses for clogging of the suction.

  16. Automated imaging of cellular spheroids with selective plane illumination microscopy on a chip (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Paiè, Petra; Bassi, Andrea; Bragheri, Francesca; Osellame, Roberto

    2017-02-01

    Selective plane illumination microscopy (SPIM) is an optical sectioning technique that allows imaging of biological samples at high spatio-temporal resolution. Standard SPIM devices require dedicated set-ups, complex sample preparation and accurate system alignment, thus limiting the automation of the technique, its accessibility and throughput. We present a millimeter-scaled optofluidic device that incorporates selective plane illumination and fully automatic sample delivery and scanning. To this end an integrated cylindrical lens and a three-dimensional fluidic network were fabricated by femtosecond laser micromachining into a single glass chip. This device can upgrade any standard fluorescence microscope to a SPIM system. We used SPIM on a CHIP to automatically scan biological samples under a conventional microscope, without the need of any motorized stage: tissue spheroids expressing fluorescent proteins were flowed in the microchannel at constant speed and their sections were acquired while passing through the light sheet. We demonstrate high-throughput imaging of the entire sample volume (with a rate of 30 samples/min), segmentation and quantification in thick (100-300 μm diameter) cellular spheroids. This optofluidic device gives access to SPIM analyses to non-expert end-users, opening the way to automatic and fast screening of a high number of samples at subcellular resolution.

  17. Colour computer-generated holography for point clouds utilizing the Phong illumination model.

    PubMed

    Symeonidou, Athanasia; Blinder, David; Schelkens, Peter

    2018-04-16

    A technique integrating the bidirectional reflectance distribution function (BRDF) is proposed to generate realistic high-quality colour computer-generated holograms (CGHs). We build on prior work, namely a fast computer-generated holography method for point clouds that handles occlusions. We extend the method by integrating the Phong illumination model so that the properties of the objects' surfaces are taken into account to achieve natural light phenomena such as reflections and shadows. Our experiments show that rendering holograms with the proposed algorithm provides realistic looking objects without any noteworthy increase to the computational cost.

  18. Generation and analysis of chemical compound libraries

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gregoire, John M.; Jin, Jian; Kan, Kevin S.

    2017-10-03

    Various samples are generated on a substrate. The samples each includes or consists of one or more analytes. In some instances, the samples are generated through the use of gels or through vapor deposition techniques. The samples are used in an instrument for screening large numbers of analytes by locating the samples between a working electrode and a counter electrode assembly. The instrument also includes one or more light sources for illuminating each of the samples. The instrument is configured to measure the photocurrent formed through a sample as a result of the illumination of the sample.

  19. Midline sclerotomy approach for intraocular foreign body removal in phakic eyes using endoilluminator: A novel technique

    PubMed Central

    Ravani, Raghav; Chawla, Rohan; Azad, Shorya Vardhan; Gupta, Yogita; Kumar, Vinod; Kumar, Atul

    2018-01-01

    Purpose: The objective of this study is to describe the removal of retained intraocular foreign body (RIOFB) by bimanual pars plana vitrectomy through midline sclerotomy in phakic patients. Technique: Four eyes with RIOFB and clear lens underwent microincision vitrectomy surgery. A chandelier illumination was placed through one of the existing ports. The foreign body (FB) was localized by direct visualization (intravitreal) or indentation (pars plana), stabilized using an intraocular magnet/FB forceps introduced through a midline sclerotomy and freed of vitreous from all sides using a vitrectomy cutter through the other port bimanually, reoriented along their long axis and extracted through the midline sclerotomy. Results: All four FBs were removed successfully without slippage or damage to the clear lens. Conclusion: Chandelier illumination-assisted removal of FB through midline sclerotomy helps in easier localization, stabilization and removal, avoiding lens touch even in anteriorly located FBs such as at pars plana. PMID:29676316

  20. Tip-enhanced Raman mapping with top-illumination AFM.

    PubMed

    Chan, K L Andrew; Kazarian, Sergei G

    2011-04-29

    Tip-enhanced Raman mapping is a powerful, emerging technique that offers rich chemical information and high spatial resolution. Currently, most of the successes in tip-enhanced Raman scattering (TERS) measurements are based on the inverted configuration where tips and laser are approaching the sample from opposite sides. This results in the limitation of measurement for transparent samples only. Several approaches have been developed to obtain tip-enhanced Raman mapping in reflection mode, many of which involve certain customisations of the system. We have demonstrated in this work that it is also possible to obtain TERS nano-images using an upright microscope (top-illumination) with a gold-coated Si atomic force microscope (AFM) cantilever without significant modification to the existing integrated AFM/Raman system. A TERS image of a single-walled carbon nanotube has been achieved with a spatial resolution of ∼ 20-50 nm, demonstrating the potential of this technique for studying non-transparent nanoscale materials.

  1. Caking and characterizing graphene oxide thin films via electrodeposition technique for possible application in photoelectrochemical spliting of water

    NASA Astrophysics Data System (ADS)

    Singh, Nirupama; Kumar, Pushpendra; Upadhyay, Sumant; Choudhary, Surbhi; Satsangi, Vibha R.; Dass, Sahab; Shrivastav, Rohit

    2013-06-01

    In the present study Readymade Graphene oxide (GO) has been coated using electrochemical deposition technique [1] on to the conducting glass (ITO) substrate. Raman spectra generated D and G Peaks obtained at 1346 and 1575 cm-1 confirmed the presence of GO [2]. The UV-Visible absorption measurements provided absorption peak at 262 nm and the Tauc plots yielded band-gap energy of sample around 3.9 eV. The PEC measurements involved determination of current-voltage (I-V) characteristics, both under darkness as well as under illumination. The photocurrent of 1.21 mA/cm-2 at 0.5 V applied voltage (vs. saturated calomel electrode), was recorded under the illumination of 150 Wcm-2 (Xenon arc lamp; Oriel, USA). The photocurrent values were utilized further to calculate applied bias photon-to-current efficiency (% ABPE), which was estimated to 0.98 % at 0.5 V bias.

  2. On a PLIF quantification methodology in a nonlinear dye response regime

    NASA Astrophysics Data System (ADS)

    Baj, P.; Bruce, P. J. K.; Buxton, O. R. H.

    2016-06-01

    A new technique of planar laser-induced fluorescence calibration is presented in this work. It accounts for a nonlinear dye response at high concentrations, an illumination light attenuation and a secondary fluorescence's influence in particular. An analytical approximation of a generic solution of the Beer-Lambert law is provided and utilized for effective concentration evaluation. These features make the technique particularly well suited for high concentration measurements, or those with a large range of concentration values, c, present (i.e. a high dynamic range of c). The method is applied to data gathered in a water flume experiment where a stream of a fluorescent dye (rhodamine 6G) was released into a grid-generated turbulent flow. Based on these results, it is shown that the illumination attenuation and the secondary fluorescence introduce a significant error into the data quantification (up to 15 and 80 %, respectively, for the case considered in this work) unless properly accounted for.

  3. An aviation security (AVSEC) screening demonstrator for the detection of non-metallic threats at 28-33 GHz

    NASA Astrophysics Data System (ADS)

    Salmon, Neil A.; Bowring, Nick; Hutchinson, Simon; Southgate, Matthew; O'Reilly, Dean

    2013-10-01

    The unique selling proposition of millimetre wave technology for security screening is that it provides a stand-off or portal scenario sensing capability for non-metallic threats. The capabilities to detect some non-metallic threats are investigated in this paper, whilst recommissioning the AVSEC portal screening system at the Manchester Metropolitan University. The AVSEC system is a large aperture (1.6 m) portal screening imager which uses spatially incoherent illumination at 28-33 GHz from mode scrambling cavities to illuminate the subject. The imaging capability is critically analysed in terms of this illumination. A novel technique for the measurement of reflectance, refractive index and extinction coefficient is investigated and this then use to characterise the signatures of nitromethane, hexane, methanol, bees wax and baking flour. Millimetre wave images are shown how these liquids in polycarbonate bottles and the other materials appear against the human body.

  4. X-ray lasers and methods utilizing two component driving illumination provided by optical laser means of relatively low energy and small physical size

    DOEpatents

    Rosen, Mordecai D.; Matthews, Dennis L.

    1991-01-01

    An X-ray laser (10), and related methodology, are disclosed wherein an X-ray laser target (12) is illuminated with a first pulse of optical laser radiation (14) of relatively long duration having scarcely enough energy to produce a narrow and linear cool plasma of uniform composition (38). A second, relatively short pulse of optical laser radiation (18) is uniformly swept across the length, from end to end, of the plasma (38), at about the speed of light, to consecutively illuminate continuously succeeding portions of the plasma (38) with optical laser radiation having scarcely enough energy to heat, ionize, and invert them into the continuously succeeding portions of an X-ray gain medium. This inventive double pulse technique results in a saving of more than two orders of magnitude in driving optical laser energy, when compared to the conventional single pulse approach.

  5. Highly Resolved Intravital Striped-illumination Microscopy of Germinal Centers

    PubMed Central

    Andresen, Volker; Sporbert, Anje

    2014-01-01

    Monitoring cellular communication by intravital deep-tissue multi-photon microscopy is the key for understanding the fate of immune cells within thick tissue samples and organs in health and disease. By controlling the scanning pattern in multi-photon microscopy and applying appropriate numerical algorithms, we developed a striped-illumination approach, which enabled us to achieve 3-fold better axial resolution and improved signal-to-noise ratio, i.e. contrast, in more than 100 µm tissue depth within highly scattering tissue of lymphoid organs as compared to standard multi-photon microscopy. The acquisition speed as well as photobleaching and photodamage effects were similar to standard photo-multiplier-based technique, whereas the imaging depth was slightly lower due to the use of field detectors. By using the striped-illumination approach, we are able to observe the dynamics of immune complex deposits on secondary follicular dendritic cells – on the level of a few protein molecules in germinal centers. PMID:24748007

  6. Shack-Hartmann reflective micro profilometer

    NASA Astrophysics Data System (ADS)

    Gong, Hai; Soloviev, Oleg; Verhaegen, Michel; Vdovin, Gleb

    2018-01-01

    We present a quantitative phase imaging microscope based on a Shack-Hartmann sensor, that directly reconstructs the optical path difference (OPD) in reflective mode. Comparing with the holographic or interferometric methods, the SH technique needs no reference beam in the setup, which simplifies the system. With a preregistered reference, the OPD image can be reconstructed from a single shot. Also, the method has a rather relaxed requirement on the illumination coherence, thus a cheap light source such as a LED is feasible in the setup. In our previous research, we have successfully verified that a conventional transmissive microscope can be transformed into an optical path difference microscope by using a Shack-Hartmann wavefront sensor under incoherent illumination. The key condition is that the numerical aperture of illumination should be smaller than the numerical aperture of imaging lens. This approach is also applicable to characterization of reflective and slightly scattering surfaces.

  7. Optimization of instrumental colour analysis in dry-cured ham.

    PubMed

    García-Esteban, Marta; Ansorena, Diana; Gimeno, Olga; Astiasarán, Iciar

    2003-03-01

    Colour of dry cured ham was measured by instrumental techniques in order to determine the optimum measurement index. Five different colour systems were used: CIE L(∗)a(∗)b(∗), Hunter Lab, CIE L(∗)u(∗)v(∗), xyY and XYZ, each with illuminants D65, C and A, and with both 10 and 2° observer angles. Measurements were taken in both Semimembranosus (SM) and Biceps femoris (BF) muscles. Hunter Lab system with illuminant A gave the most reproducible results within muscles for the three colour parameters evaluated. A further comparison of results obtained with 10 and 2° observer angles of Hunter Lab with illuminant A showed there were no significant differences between the angles. Significant differences between results from SM and BF muscles were found in all the hams, the BF always showing higher values than SM for every colour parameter.

  8. Wide-field depth-sectioning fluorescence microscopy using projector-generated patterned illumination

    NASA Astrophysics Data System (ADS)

    Delica, Serafin; Mar Blanca, Carlo

    2007-10-01

    We present a simple and cost-effective wide-field, depth-sectioning, fluorescence microscope utilizing a commercial multimedia projector to generate excitation patterns on the sample. Highly resolved optical sections of fluorescent pollen grains at 1.9 μm axial resolution are constructed using the structured illumination technique. This requires grid excitation patterns to be scanned across the sample, which is straightforwardly implemented by creating slideshows of gratings at different phases, projecting them onto the sample, and synchronizing camera acquisition with slide transition. In addition to rapid dynamic pattern generation, the projector provides high illumination power and spectral excitation selectivity. We exploit these properties by imaging mouse neural cells in cultures multistained with Alexa 488 and Cy3. The spectral and structural neural information is effectively resolved in three dimensions. The flexibility and commercial availability of this light source is envisioned to open multidimensional imaging to a broader user base.

  9. Atmospheric effects on active illumination

    NASA Astrophysics Data System (ADS)

    Shaw, Scot E. J.; Kansky, Jan E.

    2005-08-01

    For some beam-control applications, we can rely on the cooperation of the target when gathering information about the target location and the state of the atmosphere between the target and the beam-control system. The typical example is a cooperative point-source beacon on the target. Light from such a beacon allows the beam-control system to track the target accurately, and, if higher-order adaptive optics is to be employed, to make wave-front measurements and apply appropriate corrections with a deformable mirror. In many applications, including directed-energy weapons, the target is not cooperative. In the absence of a cooperative beacon, we must find other ways to collect the relevant information. This can be accomplished with an active-illumination system. Typically, this means shining one or more lasers at the target and observing the reflected light. In this paper, we qualitatively explore a number of difficulties inherent to active illumination, and suggest some possible mitigation techniques.

  10. 3D fluorescence anisotropy imaging using selective plane illumination microscopy.

    PubMed

    Hedde, Per Niklas; Ranjit, Suman; Gratton, Enrico

    2015-08-24

    Fluorescence anisotropy imaging is a popular method to visualize changes in organization and conformation of biomolecules within cells and tissues. In such an experiment, depolarization effects resulting from differences in orientation, proximity and rotational mobility of fluorescently labeled molecules are probed with high spatial resolution. Fluorescence anisotropy is typically imaged using laser scanning and epifluorescence-based approaches. Unfortunately, those techniques are limited in either axial resolution, image acquisition speed, or by photobleaching. In the last decade, however, selective plane illumination microscopy has emerged as the preferred choice for three-dimensional time lapse imaging combining axial sectioning capability with fast, camera-based image acquisition, and minimal light exposure. We demonstrate how selective plane illumination microscopy can be utilized for three-dimensional fluorescence anisotropy imaging of live cells. We further examined the formation of focal adhesions by three-dimensional time lapse anisotropy imaging of CHO-K1 cells expressing an EGFP-paxillin fusion protein.

  11. The Direct Lighting Computation in Global Illumination Methods

    NASA Astrophysics Data System (ADS)

    Wang, Changyaw Allen

    1994-01-01

    Creating realistic images is a computationally expensive process, but it is very important for applications such as interior design, product design, education, virtual reality, and movie special effects. To generate realistic images, state-of-art rendering techniques are employed to simulate global illumination, which accounts for the interreflection of light among objects. In this document, we formalize the global illumination problem into a eight -dimensional integral and discuss various methods that can accelerate the process of approximating this integral. We focus on the direct lighting computation, which accounts for the light reaching the viewer from the emitting sources after exactly one reflection, Monte Carlo sampling methods, and light source simplification. Results include a new sample generation method, a framework for the prediction of the total number of samples used in a solution, and a generalized Monte Carlo approach for computing the direct lighting from an environment which for the first time makes ray tracing feasible for highly complex environments.

  12. Patient-specific bronchoscopy visualization through BRDF estimation and disocclusion correction.

    PubMed

    Chung, Adrian J; Deligianni, Fani; Shah, Pallav; Wells, Athol; Yang, Guang-Zhong

    2006-04-01

    This paper presents an image-based method for virtual bronchoscope with photo-realistic rendering. The technique is based on recovering bidirectional reflectance distribution function (BRDF) parameters in an environment where the choice of viewing positions, directions, and illumination conditions are restricted. Video images of bronchoscopy examinations are combined with patient-specific three-dimensional (3-D) computed tomography data through two-dimensional (2-D)/3-D registration and shading model parameters are then recovered by exploiting the restricted lighting configurations imposed by the bronchoscope. With the proposed technique, the recovered BRDF is used to predict the expected shading intensity, allowing a texture map independent of lighting conditions to be extracted from each video frame. To correct for disocclusion artefacts, statistical texture synthesis was used to recreate the missing areas. New views not present in the original bronchoscopy video are rendered by evaluating the BRDF with different viewing and illumination parameters. This allows free navigation of the acquired 3-D model with enhanced photo-realism. To assess the practical value of the proposed technique, a detailed visual scoring that involves both real and rendered bronchoscope images is conducted.

  13. Flame-Vortex Interactions Imaged in Microgravity - To Assess the Theory Flame Stretch

    NASA Technical Reports Server (NTRS)

    Driscoll, James F.

    2001-01-01

    The goals of this research are to: 1) Assess the Theory of Flame Stretch by operating a unique flame-vortex experiment under microgravity conditions in the NASA Glenn 2.2 Second Drop Tower (drops to identify operating conditions have been completed); 2) Obtain high speed shadowgraph images (500-1000 frames/s) using the drop rig (images were obtained at one-g, and the NASA Kodak RO camera is being mounted on the drop rig); 3) Obtain shadowgraph and PIV images at 1-g while varying the effects of buoyancy by controlling the Froude number (completed); 4) Numerically model the inwardly-propagating spherical flame that is observed in the experiment using full chemistry and the RUN 1DL code (completed); 5) Send images of the flame shape to Dr. G. Patniak at NRL who is numerically simulating the entire flame-vortex interaction of the present experiment (data transfer completed); and 6) Assess the feasibility of obtaining PIV velocity field images in the drop rig, which would be useful (but not required) for our assessment of the Theory of Flame Stretch (PIV images were obtained at one-g using same low laser power that is available from fiber optic cable in drop tower). The motivation for the work is to obtain novel measurement needed to develop a physically accurate model of turbulent combustion that can help in the control of engine pollutants. The unique experiment allows, for the first time, the detailed study of a negatively-curved (negatively stretched) flame, which is one of the five fundamental types of premixed flames. While there have been studies of flat flames, positively-curved (outwardly-propagating) cases and positively-strained (counterflow) cases, this is the first detailed study of a negatively-curved (inwardly-propagating) flame. The first set of drops in the 2.2 Second Drop Tower showed that microgravity provides more favorable conditions for achieving inwardly-propagating flames (IPFs) than 1-g. A vortex interacts with a flame and creates a spherical pocket, which burns inwardly. Shadowgraphs at 1000 frames/sec quantify the Markstein number and flame speed. A Low-Laser Power PIV System was developed and is being added to the drop package. Numerical computations were required to explain why the Markstein numbers measured for the inwardly-propagating flames differ from those of outward propagating flames; this is an important research issue in the assessment of the Theory of Flame Stretch. The RUN-1DL code (developed by Prof. B. Rogg) was run for IPF and OPFs with complex methane and propane chemistry. Results confirmed that Ma for the IPFs are larger than for OPFs as was observed experimentally. Physical reasons for these new findings about the Theory of Flame Stretch are being determined from the experiments and the computations. Several journal papers have been published; the drop package is described in the AIAA Journal, while the one-g results appear in three other journal papers.

  14. Condenser-free contrast methods for transmitted-light microscopy

    PubMed Central

    WEBB, K F

    2015-01-01

    Phase contrast microscopy allows the study of highly transparent yet detail-rich specimens by producing intensity contrast from phase objects within the sample. Presented here is a generalized phase contrast illumination schema in which condenser optics are entirely abrogated, yielding a condenser-free yet highly effective method of obtaining phase contrast in transmitted-light microscopy. A ring of light emitting diodes (LEDs) is positioned within the light-path such that observation of the objective back focal plane places the illuminating ring in appropriate conjunction with the phase ring. It is demonstrated that true Zernike phase contrast is obtained, whose geometry can be flexibly manipulated to provide an arbitrary working distance between illuminator and sample. Condenser-free phase contrast is demonstrated across a range of magnifications (4–100×), numerical apertures (0.13–1.65NA) and conventional phase positions. Also demonstrated is condenser-free darkfield microscopy as well as combinatorial contrast including Rheinberg illumination and simultaneous, colour-contrasted, brightfield, darkfield and Zernike phase contrast. By providing enhanced and arbitrary working space above the preparation, a range of concurrent imaging and electrophysiological techniques will be technically facilitated. Condenser-free phase contrast is demonstrated in conjunction with scanning ion conductance microscopy (SICM), using a notched ring to admit the scanned probe. The compact, versatile LED illumination schema will further lend itself to novel next-generation transmitted-light microscopy designs. The condenser-free illumination method, using rings of independent or radially-scanned emitters, may be exploited in future in other electromagnetic wavebands, including X-rays or the infrared. PMID:25226859

  15. Reflectance, illumination, and appearance in color constancy

    PubMed Central

    McCann, John J.; Parraman, Carinna; Rizzi, Alessandro

    2013-01-01

    We studied color constancy using a pair of identical 3-D Color Mondrian displays. We viewed one 3-D Mondrian in nearly uniform illumination, and the other in directional, nonuniform illumination. We used the three dimensional structures to modulate the light falling on the painted surfaces. The 3-D structures in the displays were a matching set of wooden blocks. Across Mondrian displays, each corresponding facet had the same paint on its surface. We used only 6 chromatic, and 5 achromatic paints applied to 104 block facets. The 3-D blocks add shadows and multiple reflections not found in flat Mondrians. Both 3-D Mondrians were viewed simultaneously, side-by-side. We used two techniques to measure correlation of appearance with surface reflectance. First, observers made magnitude estimates of changes in the appearances of identical reflectances. Second, an author painted a watercolor of the 3-D Mondrians. The watercolor's reflectances quantified the changes in appearances. While constancy generalizations about illumination and reflectance hold for flat Mondrians, they do not for 3-D Mondrians. A constant paint does not exhibit perfect color constancy, but rather shows significant shifts in lightness, hue and chroma in response to the structure in the nonuniform illumination. Color appearance depends on the spatial information in both the illumination and the reflectances of objects. The spatial information of the quanta catch from the array of retinal receptors generates sensations that have variable correlation with surface reflectance. Models of appearance in humans need to calculate the departures from perfect constancy measured here. This article provides a dataset of measurements of color appearances for computational models of sensation. PMID:24478738

  16. A fast color image enhancement algorithm based on Max Intensity Channel

    PubMed Central

    Sun, Wei; Han, Long; Guo, Baolong; Jia, Wenyan; Sun, Mingui

    2014-01-01

    In this paper, we extend image enhancement techniques based on the retinex theory imitating human visual perception of scenes containing high illumination variations. This extension achieves simultaneous dynamic range modification, color consistency, and lightness rendition without multi-scale Gaussian filtering which has a certain halo effect. The reflection component is analyzed based on the illumination and reflection imaging model. A new prior named Max Intensity Channel (MIC) is implemented assuming that the reflections of some points in the scene are very high in at least one color channel. Using this prior, the illumination of the scene is obtained directly by performing a gray-scale closing operation and a fast cross-bilateral filtering on the MIC of the input color image. Consequently, the reflection component of each RGB color channel can be determined from the illumination and reflection imaging model. The proposed algorithm estimates the illumination component which is relatively smooth and maintains the edge details in different regions. A satisfactory color rendition is achieved for a class of images that do not satisfy the gray-world assumption implicit to the theoretical foundation of the retinex. Experiments are carried out to compare the new method with several spatial and transform domain methods. Our results indicate that the new method is superior in enhancement applications, improves computation speed, and performs well for images with high illumination variations than other methods. Further comparisons of images from National Aeronautics and Space Administration and a wearable camera eButton have shown a high performance of the new method with better color restoration and preservation of image details. PMID:25110395

  17. A fast color image enhancement algorithm based on Max Intensity Channel.

    PubMed

    Sun, Wei; Han, Long; Guo, Baolong; Jia, Wenyan; Sun, Mingui

    2014-03-30

    In this paper, we extend image enhancement techniques based on the retinex theory imitating human visual perception of scenes containing high illumination variations. This extension achieves simultaneous dynamic range modification, color consistency, and lightness rendition without multi-scale Gaussian filtering which has a certain halo effect. The reflection component is analyzed based on the illumination and reflection imaging model. A new prior named Max Intensity Channel (MIC) is implemented assuming that the reflections of some points in the scene are very high in at least one color channel. Using this prior, the illumination of the scene is obtained directly by performing a gray-scale closing operation and a fast cross-bilateral filtering on the MIC of the input color image. Consequently, the reflection component of each RGB color channel can be determined from the illumination and reflection imaging model. The proposed algorithm estimates the illumination component which is relatively smooth and maintains the edge details in different regions. A satisfactory color rendition is achieved for a class of images that do not satisfy the gray-world assumption implicit to the theoretical foundation of the retinex. Experiments are carried out to compare the new method with several spatial and transform domain methods. Our results indicate that the new method is superior in enhancement applications, improves computation speed, and performs well for images with high illumination variations than other methods. Further comparisons of images from National Aeronautics and Space Administration and a wearable camera eButton have shown a high performance of the new method with better color restoration and preservation of image details.

  18. A fast color image enhancement algorithm based on Max Intensity Channel

    NASA Astrophysics Data System (ADS)

    Sun, Wei; Han, Long; Guo, Baolong; Jia, Wenyan; Sun, Mingui

    2014-03-01

    In this paper, we extend image enhancement techniques based on the retinex theory imitating human visual perception of scenes containing high illumination variations. This extension achieves simultaneous dynamic range modification, color consistency, and lightness rendition without multi-scale Gaussian filtering which has a certain halo effect. The reflection component is analyzed based on the illumination and reflection imaging model. A new prior named Max Intensity Channel (MIC) is implemented assuming that the reflections of some points in the scene are very high in at least one color channel. Using this prior, the illumination of the scene is obtained directly by performing a gray-scale closing operation and a fast cross-bilateral filtering on the MIC of the input color image. Consequently, the reflection component of each RGB color channel can be determined from the illumination and reflection imaging model. The proposed algorithm estimates the illumination component which is relatively smooth and maintains the edge details in different regions. A satisfactory color rendition is achieved for a class of images that do not satisfy the gray-world assumption implicit to the theoretical foundation of the retinex. Experiments are carried out to compare the new method with several spatial and transform domain methods. Our results indicate that the new method is superior in enhancement applications, improves computation speed, and performs well for images with high illumination variations than other methods. Further comparisons of images from National Aeronautics and Space Administration and a wearable camera eButton have shown a high performance of the new method with better color restoration and preservation of image details.

  19. Quantitative phase imaging of retinal cells (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    LaForest, Timothé; Carpentras, Dino; Kowalczuk, Laura; Behar-Cohen, Francine; Moser, Christophe

    2017-02-01

    Vision process is ruled by several cells layers of the retina. Before reaching the photoreceptors, light entering the eye has to pass through a few hundreds of micrometers thick layer of ganglion and neurons cells. Macular degeneration is a non-curable disease of themacula occurring with age. This disease can be diagnosed at an early stage by imaging neuronal cells in the retina and observing their death chronically. These cells are phase objects locatedon a background that presents an absorption pattern and so difficult to see with standard imagingtechniques in vivo. Phase imaging methods usually need the illumination system to be on the opposite side of the sample with respect to theimaging system. This is a constraintand a challenge for phase imaging in-vivo. Recently, the possibility of performing phase contrast imaging from one side using properties of scattering media has been shown. This phase contrast imaging is based on the back illumination generated by the sample itself. Here, we present a reflection phase imaging technique based on oblique back-illumination. The oblique back-illumination creates a dark field image of the sample. Generating asymmetric oblique illumination allows obtaining differential phase contrast image, which in turn can be processed to recover a quantitative phase image. In the case of the eye, a transcleral illumination can generate oblique incident light on the retina and the choroidal layer.The back reflected light is then collected by the eye lens to produce dark field image. We show experimental results of retinal phase imagesin ex vivo samples of human and pig retina.

  20. EUV microexposures at the ALS using the 0.3-NA MET projectionoptics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Naulleau, Patrick; Goldberg, Kenneth A.; Anderson, Erik

    2005-09-01

    The recent development of high numerical aperture (NA) EUV optics such as the 0.3-NA Micro Exposure Tool (MET) optic has given rise to a new class of ultra-high resolution microexposure stations. Once such printing station has been developed and implemented at Lawrence Berkeley National Laboratory's Advanced Light Source. This flexible printing station utilizes a programmable coherence illuminator providing real-time pupil-fill control for advanced EUV resist and mask development. The Berkeley exposure system programmable illuminator enables several unique capabilities. Using dipole illumination out to {sigma}=1, the Berkeley tool supports equal-line-space printing down to 12 nm, well beyond the capabilities of similarmore » tools. Using small-sigma illumination combined with the central obscuration of the MET optic enables the system to print feature sizes that are twice as small as those coded on the mask. In this configuration, the effective 10x-demagnification for equal lines and spaces reduces the mask fabrication burden for ultra-high-resolution printing. The illuminator facilitates coherence studies such as the impact of coherence on line-edge roughness (LER) and flare. Finally the illuminator enables novel print-based aberration monitoring techniques as described elsewhere in these proceedings. Here we describe the capabilities of the new MET printing station and present system characterization results. Moreover, we present the latest printing results obtained in experimental resists. Limited by the availability of high-resolution photoresists, equal line-space printing down to 25 nm has been demonstrated as well as isolated line printing down to 29 nm with an LER of approaching 3 nm.« less

  1. Compression and information recovery in ptychography

    NASA Astrophysics Data System (ADS)

    Loetgering, L.; Treffer, D.; Wilhein, T.

    2018-04-01

    Ptychographic coherent diffraction imaging (PCDI) is a scanning microscopy modality that allows for simultaneous recovery of object and illumination information. This ability renders PCDI a suitable technique for x-ray lensless imaging and optics characterization. Its potential for information recovery typically relies on large amounts of data redundancy. However, the field of view in ptychography is practically limited by the memory and the computational facilities available. We describe techniques that achieve robust ptychographic information recovery at high compression rates. The techniques are compared and tested with experimental data.

  2. Optical sectioning microscopy using two-frame structured illumination and Hilbert-Huang data processing

    NASA Astrophysics Data System (ADS)

    Trusiak, M.; Patorski, K.; Tkaczyk, T.

    2014-12-01

    We propose a fast, simple and experimentally robust method for reconstructing background-rejected optically-sectioned microscopic images using two-shot structured illumination approach. Innovative data demodulation technique requires two grid-illumination images mutually phase shifted by π (half a grid period) but precise phase displacement value is not critical. Upon subtraction of the two frames the input pattern with increased grid modulation is computed. The proposed demodulation procedure comprises: (1) two-dimensional data processing based on the enhanced, fast empirical mode decomposition (EFEMD) method for the object spatial frequency selection (noise reduction and bias term removal), and (2) calculating high contrast optically-sectioned image using the two-dimensional spiral Hilbert transform (HS). The proposed algorithm effectiveness is compared with the results obtained for the same input data using conventional structured-illumination (SIM) and HiLo microscopy methods. The input data were collected for studying highly scattering tissue samples in reflectance mode. In comparison with the conventional three-frame SIM technique we need one frame less and no stringent requirement on the exact phase-shift between recorded frames is imposed. The HiLo algorithm outcome is strongly dependent on the set of parameters chosen manually by the operator (cut-off frequencies for low-pass and high-pass filtering and η parameter value for optically-sectioned image reconstruction) whereas the proposed method is parameter-free. Moreover very short processing time required to efficiently demodulate the input pattern predestines proposed method for real-time in-vivo studies. Current implementation completes full processing in 0.25s using medium class PC (Inter i7 2,1 GHz processor and 8 GB RAM). Simple modification employed to extract only first two BIMFs with fixed filter window size results in reducing the computing time to 0.11s (8 frames/s).

  3. Techniques in Broadband Interferometry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Erskine, D J

    2004-01-04

    This is a compilation of my patents issued from 1997 to 2002, generally describing interferometer techniques that modify the coherence properties of broad-bandwidth light and other waves, with applications to Doppler velocimetry, range finding, imaging and spectroscopy. Patents are tedious to read in their original form. In an effort to improve their readability I have embedded the Figures throughout the manuscript, put the Figure captions underneath the Figures, and added section headings. Otherwise I have resisted the temptation to modify the words, though I found many places which could use healthy editing. There may be minor differences with the officialmore » versions issued by the US Patent and Trademark Office, particularly in the claims sections. In my shock physics work I measured the velocities of targets impacted by flyer plates by illuminating them with laser light and analyzing the reflected light with an interferometer. Small wavelength changes caused by the target motion (Doppler effect) were converted into fringe shifts by the interferometer. Lasers having long coherence lengths were required for the illumination. While lasers are certainly bright sources, and their collimated beams are convenient to work with, they are expensive. Particularly if one needs to illuminate a wide surface area, then large amounts of power are needed. Orders of magnitude more power per dollar can be obtained from a simple flashlamp, or for that matter, a 50 cent light bulb. Yet these inexpensive sources cannot practically be used for Doppler velocimetry because their coherence length is extremely short, i.e. their bandwidth is much too wide. Hence the motivation for patents 1 & 2 is a method (White Light Velocimetry) for allowing use of these powerful but incoherent lamps for interferometry. The coherence of the illumination is modified by passing it through a preparatory interferometer.« less

  4. Webcam mouse using face and eye tracking in various illumination environments.

    PubMed

    Lin, Yuan-Pin; Chao, Yi-Ping; Lin, Chung-Chih; Chen, Jyh-Horng

    2005-01-01

    Nowadays, due to enhancement of computer performance and popular usage of webcam devices, it has become possible to acquire users' gestures for the human-computer-interface with PC via webcam. However, the effects of illumination variation would dramatically decrease the stability and accuracy of skin-based face tracking system; especially for a notebook or portable platform. In this study we present an effective illumination recognition technique, combining K-Nearest Neighbor classifier and adaptive skin model, to realize the real-time tracking system. We have demonstrated that the accuracy of face detection based on the KNN classifier is higher than 92% in various illumination environments. In real-time implementation, the system successfully tracks user face and eyes features at 15 fps under standard notebook platforms. Although KNN classifier only initiates five environments at preliminary stage, the system permits users to define and add their favorite environments to KNN for computer access. Eventually, based on this efficient tracking algorithm, we have developed a "Webcam Mouse" system to control the PC cursor using face and eye tracking. Preliminary studies in "point and click" style PC web games also shows promising applications in consumer electronic markets in the future.

  5. A smartphone-based chip-scale microscope using ambient illumination.

    PubMed

    Lee, Seung Ah; Yang, Changhuei

    2014-08-21

    Portable chip-scale microscopy devices can potentially address various imaging needs in mobile healthcare and environmental monitoring. Here, we demonstrate the adaptation of a smartphone's camera to function as a compact lensless microscope. Unlike other chip-scale microscopy schemes, this method uses ambient illumination as its light source and does not require the incorporation of a dedicated light source. The method is based on the shadow imaging technique where the sample is placed on the surface of the image sensor, which captures direct shadow images under illumination. To improve the image resolution beyond the pixel size, we perform pixel super-resolution reconstruction with multiple images at different angles of illumination, which are captured while the user is manually tilting the device around any ambient light source, such as the sun or a lamp. The lensless imaging scheme allows for sub-micron resolution imaging over an ultra-wide field-of-view (FOV). Image acquisition and reconstruction are performed on the device using a custom-built Android application, constructing a stand-alone imaging device for field applications. We discuss the construction of the device using a commercial smartphone and demonstrate the imaging capabilities of our system.

  6. A smartphone-based chip-scale microscope using ambient illumination

    PubMed Central

    Lee, Seung Ah; Yang, Changhuei

    2014-01-01

    Portable chip-scale microscopy devices can potentially address various imaging needs in mobile healthcare and environmental monitoring. Here, we demonstrate the adaptation of a smartphone’s camera to function as a compact lensless microscope. Unlike other chip-scale microscopy schemes, this method uses ambient illumination as its light source and does not require the incorporation of a dedicated light source. The method is based on the shadow imaging technique where the sample is placed on the surface of the image sensor, which captures direct shadow images under illumination. To improve the imaging resolution beyond the pixel size, we perform pixel super-resolution reconstruction with multiple images at different angles of illumination, which are captured while the user is manually tilting the device around any ambient light source, such as the sun or a lamp. The lensless imaging scheme allows for sub-micron resolution imaging over an ultra-wide field-of-view (FOV). Image acquisition and reconstruction is performed on the device using a custom-built android application, constructing a stand-alone imaging device for field applications. We discuss the construction of the device using a commercial smartphone and demonstrate the imaging capabilities of our system. PMID:24964209

  7. Super-resolved Mirau digital holography by structured illumination

    NASA Astrophysics Data System (ADS)

    Ganjkhani, Yasaman; Charsooghi, Mohammad A.; Akhlaghi, Ehsan A.; Moradi, Ali-Reza

    2017-12-01

    In this paper, we apply structured illumination toward super-resolved 3D imaging in a common-path digital holography arrangement. Digital holographic microscopy (DHM) provides non-invasive 3D images of transparent samples as well as 3D profiles of reflective surfaces. A compact and vibration-immune arrangement for DHM may be obtained through the use of a Mirau microscope objective. However, high-magnification Mirau objectives have a low working distance and are expensive. Low-magnification ones, on the other hand, suffer from low lateral resolution. Structured illumination has been widely used for resolution improvement of intensity images, but the technique can also be readily applied to DHM. We apply structured illumination to Mirau DHM by implementing successive sinusoidal gratings with different orientations onto a spatial light modulator (SLM) and forming its image on the specimen. Moreover, we show that, instead of different orientations of 1D gratings, alternative single 2D gratings, e.g. checkerboard or hexagonal patterns, can provide resolution enhancement in multiple directions. Our results show a 35% improvement in the resolution power of the DHM. The presented arrangement has the potential to serve as a table-top device for high resolution holographic microscopy.

  8. Computational microscopy: illumination coding and nonlinear optimization enables gigapixel 3D phase imaging

    NASA Astrophysics Data System (ADS)

    Tian, Lei; Waller, Laura

    2017-05-01

    Microscope lenses can have either large field of view (FOV) or high resolution, not both. Computational microscopy based on illumination coding circumvents this limit by fusing images from different illumination angles using nonlinear optimization algorithms. The result is a Gigapixel-scale image having both wide FOV and high resolution. We demonstrate an experimentally robust reconstruction algorithm based on a 2nd order quasi-Newton's method, combined with a novel phase initialization scheme. To further extend the Gigapixel imaging capability to 3D, we develop a reconstruction method to process the 4D light field measurements from sequential illumination scanning. The algorithm is based on a 'multislice' forward model that incorporates both 3D phase and diffraction effects, as well as multiple forward scatterings. To solve the inverse problem, an iterative update procedure that combines both phase retrieval and 'error back-propagation' is developed. To avoid local minimum solutions, we further develop a novel physical model-based initialization technique that accounts for both the geometric-optic and 1st order phase effects. The result is robust reconstructions of Gigapixel 3D phase images having both wide FOV and super resolution in all three dimensions. Experimental results from an LED array microscope were demonstrated.

  9. Demosaiced pixel super-resolution for multiplexed holographic color imaging

    PubMed Central

    Wu, Yichen; Zhang, Yibo; Luo, Wei; Ozcan, Aydogan

    2016-01-01

    To synthesize a holographic color image, one can sequentially take three holograms at different wavelengths, e.g., at red (R), green (G) and blue (B) parts of the spectrum, and digitally merge them. To speed up the imaging process by a factor of three, a Bayer color sensor-chip can also be used to demultiplex three wavelengths that simultaneously illuminate the sample and digitally retrieve individual set of holograms using the known transmission spectra of the Bayer color filters. However, because the pixels of different channels (R, G, B) on a Bayer color sensor are not at the same physical location, conventional demosaicing techniques generate color artifacts in holographic imaging using simultaneous multi-wavelength illumination. Here we demonstrate that pixel super-resolution can be merged into the color de-multiplexing process to significantly suppress the artifacts in wavelength-multiplexed holographic color imaging. This new approach, termed Demosaiced Pixel Super-Resolution (D-PSR), generates color images that are similar in performance to sequential illumination at three wavelengths, and therefore improves the speed of holographic color imaging by 3-fold. D-PSR method is broadly applicable to holographic microscopy applications, where high-resolution imaging and multi-wavelength illumination are desired. PMID:27353242

  10. Optical super resolution using tilted illumination coupled with object rotation

    NASA Astrophysics Data System (ADS)

    Hussain, Anwar; Mudassar, Asloob A.

    2015-03-01

    In conventional imaging systems, the resolution of the final image is mainly distorted due to diffraction of higher spatial frequencies of the target object. To overcome the diffraction limit, imaging techniques which synthetically enlarge the aperture of the system are used. In this paper, synthesized aperture is produced by means of a three fiber illumination assembly coupled with an in-plane object rotation. The high order diffracted spatial frequencies of the object are brought into the pass band of optical system by illuminating the object with tilted beams. The tilt produced at the fiber assembly plane is related to the dimension of the aperture, placed at the Fourier plane of the system. To span the 2D object spectrum at the Fourier plane, an in-plane object rotation procedure is applied at the object plane. The spectrum of the object is rotated as the object is rotated and illuminated with tilted beams. The corresponding object beam is interfered with a reference beam from the same source to record interferograms. All the recorded interferograms are stored in computer and de-convolution algorithm is applied to recover the synthesized spectrum. The image of the synthesized spectrum has three times improved resolution compared to the conventional image.

  11. Real-Time High-Dynamic Range Texture Mapping

    DTIC Science & Technology

    2001-01-01

    the renderings produced by radiosity and global illumination algorithms. As a particular example, Greg Ward’s RADIANCE synthetic imaging system [32...in soft- ware only. [26] presented a technique for performing Ward’s tone reproduction algo- rithm interactively to visualize radiosity solutions

  12. Long-range time-of-flight scanning sensor based on high-speed time-correlated single-photon counting

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McCarthy, Aongus; Collins, Robert J.; Krichel, Nils J.

    2009-11-10

    We describe a scanning time-of-flight system which uses the time-correlated single-photon counting technique to produce three-dimensional depth images of distant, noncooperative surfaces when these targets are illuminated by a kHz to MHz repetition rate pulsed laser source. The data for the scene are acquired using a scanning optical system and an individual single-photon detector. Depth images have been successfully acquired with centimeter xyz resolution, in daylight conditions, for low-signature targets in field trials at distances of up to 325 m using an output illumination with an average optical power of less than 50 {mu}W.

  13. Analyzing speckle contrast for HiLo microscopy optimization.

    PubMed

    Mazzaferri, J; Kunik, D; Belisle, J M; Singh, K; Lefrançois, S; Costantino, S

    2011-07-18

    HiLo microscopy is a recently developed technique that provides both optical sectioning and fast imaging with a simple implementation and at a very low cost. The methodology combines widefield and speckled illumination images to obtain one optically sectioned image. Hence, the characteristics of such speckle illumination ultimately determine the quality of HiLo images and the overall performance of the method. In this work, we study how speckle contrast influence local variations of fluorescence intensity and brightness profiles of thick samples. We present this article as a guide to adjust the parameters of the system for optimizing the capabilities of this novel technology.

  14. Analyzing speckle contrast for HiLo microscopy optimization

    NASA Astrophysics Data System (ADS)

    Mazzaferri, J.; Kunik, D.; Belisle, J. M.; Singh, K.; Lefrançois, S.; Costantino, S.

    2011-07-01

    HiLo microscopy is a recently developed technique that provides both optical sectioning and fast imaging with a simple implementation and at a very low cost. The methodology combines widefield and speckled illumination images to obtain one optically sectioned image. Hence, the characteristics of such speckle illumination ultimately determine the quality of HiLo images and the overall performance of the method. In this work, we study how speckle contrast influence local variations of fluorescence intensity and brightness profiles of thick samples. We present this article as a guide to adjust the parameters of the system for optimizing the capabilities of this novel technology.

  15. Vacuum Ultraviolet Radiation Desorption of Molecular Contaminants Deposited on Quartz Crystal Microbalances

    NASA Technical Reports Server (NTRS)

    Albyn, Keith; Burns, Dewitt

    2006-01-01

    Recent quartz crystal microbalance measurements made in the Marshall Space Flight Center, Photo-Deposition Facility, for several materials, recorded a significant loss of deposited contaminants when the deposition surface of the microbalance was illuminated by a deuterium lamp. These measurements differ from observations made by other investigators in which the rate of deposition increased significantly when the deposition surface was illuminated with vacuum ultraviolet radiation. These observations suggest that the accelerated deposition of molecular contaminants on optically sensitive surfaces is dependant upon the contaminant being deposited and must be addressed during the materials selection process by common material screening techniques.

  16. Laser line illumination scheme allowing the reduction of background signal and the correction of absorption heterogeneities effects for fluorescence reflectance imaging.

    PubMed

    Fantoni, Frédéric; Hervé, Lionel; Poher, Vincent; Gioux, Sylvain; Mars, Jérôme I; Dinten, Jean-Marc

    2015-10-01

    Intraoperative fluorescence imaging in reflectance geometry is an attractive imaging modality as it allows to noninvasively monitor the fluorescence targeted tumors located below the tissue surface. Some drawbacks of this technique are the background fluorescence decreasing the contrast and absorption heterogeneities leading to misinterpretations concerning fluorescence concentrations. We propose a correction technique based on a laser line scanning illumination scheme. We scan the medium with the laser line and acquire, at each position of the line, both fluorescence and excitation images. We then use the finding that there is a relationship between the excitation intensity profile and the background fluorescence one to predict the amount of signal to subtract from the fluorescence images to get a better contrast. As the light absorption information is contained both in fluorescence and excitation images, this method also permits us to correct the effects of absorption heterogeneities. This technique has been validated on simulations and experimentally. Fluorescent inclusions are observed in several configurations at depths ranging from 1 mm to 1 cm. Results obtained with this technique are compared with those obtained with a classical wide-field detection scheme for contrast enhancement and with the fluorescence by an excitation ratio approach for absorption correction.

  17. Videogrammetric Model Deformation Measurement Technique

    NASA Technical Reports Server (NTRS)

    Burner, A. W.; Liu, Tian-Shu

    2001-01-01

    The theory, methods, and applications of the videogrammetric model deformation (VMD) measurement technique used at NASA for wind tunnel testing are presented. The VMD technique, based on non-topographic photogrammetry, can determine static and dynamic aeroelastic deformation and attitude of a wind-tunnel model. Hardware of the system includes a video-rate CCD camera, a computer with an image acquisition frame grabber board, illumination lights, and retroreflective or painted targets on a wind tunnel model. Custom software includes routines for image acquisition, target-tracking/identification, target centroid calculation, camera calibration, and deformation calculations. Applications of the VMD technique at five large NASA wind tunnels are discussed.

  18. Simple technique for observing subsurface damage in machining of ceramics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xu, H.H.K.; Jahanmir, S.

    1994-05-01

    A simple technique is proposed for directly observing subsurface damage in the machining of ceramics. The technique requires two polished specimens and an optical microscope with Nomarski illumination for examination. The subsurface damage created by the grinding of an alumina ceramic is investigated using this technique. The mode of damage is identified as intragrain twinning/slip, and intergranular and transgranular cracking. Chipping along the twinned planes and along the transgranular crack planes, and dislodgement of the intergranularly debonded grains are suggested to be the mechanisms of material removal in the machining of this alumina ceramic.

  19. A Novel Technique for Performing PID Susceptibility Screening during the Solar Cell Fabrication Process

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Oh, Jaewon; Dahal, Som; Dauksher, Bill

    2016-11-21

    Various characterization techniques have historically been developed in order to screen potential induced degradation (PID)-susceptible cells, but those techniques require final solar cells. We present a new characterization technique for screening PID-susceptible cells during the cell fabrication process. Illuminated Lock-In Thermography (ILIT) was used to image PID shunting of the cell without metallization and clearly showed PID-affected areas. PID-susceptible cells can be screened by ILIT, and the sample structure can advantageously be simplified as long as the sample has the silicon nitride antireflection coating and an aluminum back surface field.

  20. Extremely simple holographic projection of color images

    NASA Astrophysics Data System (ADS)

    Makowski, Michal; Ducin, Izabela; Kakarenko, Karol; Suszek, Jaroslaw; Kolodziejczyk, Andrzej; Sypek, Maciej

    2012-03-01

    A very simple scheme of holographic projection is presented with some experimental results showing good quality image projection without any imaging lens. This technique can be regarded as an alternative to classic projection methods. It is based on the reconstruction real images from three phase iterated Fourier holograms. The illumination is performed with three laser beams of primary colors. A divergent wavefront geometry is used to achieve an increased throw angle of the projection, compared to plane wave illumination. Light fibers are used as light guidance in order to keep the setup as simple as possible and to provide point-like sources of high quality divergent wave-fronts at optimized position against the light modulator. Absorbing spectral filters are implemented to multiplex three holograms on a single phase-only spatial light modulator. Hence color mixing occurs without any time-division methods, which cause rainbow effects and color flicker. The zero diffractive order with divergent illumination is practically invisible and speckle field is effectively suppressed with phase optimization and time averaging techniques. The main advantages of the proposed concept are: a very simple and highly miniaturizable configuration; lack of lens; a single LCoS (Liquid Crystal on Silicon) modulator; a strong resistance to imperfections and obstructions of the spatial light modulator like dead pixels, dust, mud, fingerprints etc.; simple calculations based on Fast Fourier Transform (FFT) easily processed in real time mode with GPU (Graphic Programming).

  1. LASER BIOLOGY AND MEDICINE: Effect of repetitive laser pulses on the electrical conductivity of intervertebral disc tissue

    NASA Astrophysics Data System (ADS)

    Omel'chenko, A. I.; Sobol', E. N.

    2009-03-01

    The thermomechanical effect of 1.56-μm fibre laser pulses on intervertebral disc cartilage has been studied using ac conductivity measurements with coaxial electrodes integrated with an optical fibre for laser radiation delivery to the tissue. The observed time dependences of tissue conductivity can be interpreted in terms of hydraulic effects and thermomechanical changes in tissue structure. The laserinduced changes in the electrical parameters of the tissue are shown to correlate with the structural changes, which were visualised using shadowgraph imaging. Local ac conductivity measurements in the bulk of tissue can be used to develop a diagnostic/monitoring system for laser regeneration of intervertebral discs.

  2. Improved accuracy in ground-based facilities - Development of an automated film-reading system for ballistic ranges

    NASA Technical Reports Server (NTRS)

    Yates, Leslie A.

    1992-01-01

    Software for an automated film-reading system that uses personal computers and digitized shadowgraphs is described. The software identifies pixels associated with fiducial-line and model images, and least-squares procedures are used to calculate the positions and orientations of the images. Automated position and orientation readings for sphere and cone models are compared to those obtained using a manual film reader. When facility calibration errors are removed from these readings, the accuracy of the automated readings is better than the pixel resolution, and it is equal to, or better than, the manual readings. The effects of film-reading and facility-calibration errors on calculated aerodynamic coefficients is discussed.

  3. First Observation of Bright Solitons in Bulk Superfluid ^{4}He.

    PubMed

    Ancilotto, Francesco; Levy, David; Pimentel, Jessica; Eloranta, Jussi

    2018-01-19

    The existence of bright solitons in bulk superfluid ^{4}He is demonstrated by time-resolved shadowgraph imaging experiments and density functional theory (DFT) calculations. The initial liquid compression that leads to the creation of nonlinear waves is produced by rapidly expanding plasma from laser ablation. After the leading dissipative period, these waves transform into bright solitons, which exhibit three characteristic features: dispersionless propagation, negligible interaction in a two-wave collision, and direct dependence between soliton amplitude and the propagation velocity. The experimental observations are supported by DFT calculations, which show rapid evolution of the initially compressed liquid into bright solitons. At high amplitudes, solitons become unstable and break down into dispersive shock waves.

  4. Swimming of the Honey Bees

    NASA Astrophysics Data System (ADS)

    Roh, Chris; Gharib, Morteza

    2016-11-01

    When the weather gets hot, nursing honey bees nudge foragers to collect water for thermoregulation of their hive. While on their mission to collect water, foragers sometimes get trapped on the water surface, forced to interact with a different fluid environment. In this study, we present the survival strategy of the honey bees at the air-water interface. A high-speed videography and shadowgraph were used to record the honey bees swimming. A unique thrust mechanism through rapid vibration of their wings at 60 to 150 Hz was observed. This material is based upon work supported by the National Science Foundation under Grant No. CBET-1511414; additional support by the National Science Foundation Graduate Research Fellowship under Grant No. DGE-1144469.

  5. Multitarget tracking in cluttered environment for a multistatic passive radar system under the DAB/DVB network

    NASA Astrophysics Data System (ADS)

    Shi, Yi Fang; Park, Seung Hyo; Song, Taek Lyul

    2017-12-01

    The target tracking using multistatic passive radar in a digital audio/video broadcast (DAB/DVB) network with illuminators of opportunity faces two main challenges: the first challenge is that one has to solve the measurement-to-illuminator association ambiguity in addition to the conventional association ambiguity between the measurements and targets, which introduces a significantly complex three-dimensional (3-D) data association problem among the target-measurement illuminator, this is because all the illuminators transmit the same carrier frequency signals and signals transmitted by different illuminators but reflected via the same target become indistinguishable; the other challenge is that only the bistatic range and range-rate measurements are available while the angle information is unavailable or of very poor quality. In this paper, the authors propose a new target tracking algorithm directly in three-dimensional (3-D) Cartesian coordinates with the capability of track management using the probability of target existence as a track quality measure. The proposed algorithm is termed sequential processing-joint integrated probabilistic data association (SP-JIPDA), which applies the modified sequential processing technique to resolve the additional association ambiguity between measurements and illuminators. The SP-JIPDA algorithm sequentially operates the JIPDA tracker to update each track for each illuminator with all the measurements in the common measurement set at each time. For reasons of fair comparison, the existing modified joint probabilistic data association (MJPDA) algorithm that addresses the 3-D data association problem via "supertargets" using gate grouping and provides tracks directly in 3-D Cartesian coordinates, is enhanced by incorporating the probability of target existence as an effective track quality measure for track management. Both algorithms deal with nonlinear observations using the extended Kalman filtering. A simulation study is performed to verify the superiority of the proposed SP-JIPDA algorithm over the MJIPDA in this multistatic passive radar system.

  6. Inferring Caravaggio's studio lighting and praxis in The calling of St. Matthew by computer graphics modeling

    NASA Astrophysics Data System (ADS)

    Stork, David G.; Nagy, Gabor

    2010-02-01

    We explored the working methods of the Italian Baroque master Caravaggio through computer graphics reconstruction of his studio, with special focus on his use of lighting and illumination in The calling of St. Matthew. Although he surely took artistic liberties while constructing this and other works and did not strive to provide a "photographic" rendering of the tableau before him, there are nevertheless numerous visual clues to the likely studio conditions and working methods within the painting: the falloff of brightness along the rear wall, the relative brightness of the faces of figures, and the variation in sharpness of cast shadows (i.e., umbrae and penumbrae). We explored two studio lighting hypotheses: that the primary illumination was local (and hence artificial) and that it was distant solar. We find that the visual evidence can be consistent with local (artificial) illumination if Caravaggio painted his figures separately, adjusting the brightness on each to compensate for the falloff in illumination. Alternatively, the evidence is consistent with solar illumination only if the rear wall had particular reflectance properties, as described by a bi-directional reflectance distribution function, BRDF. (Ours is the first research applying computer graphics to the understanding of artists' praxis that models subtle reflectance properties of surfaces through BRDFs, a technique that may find use in studies of other artists.) A somewhat puzzling visual feature-unnoted in the scholarly literature-is the upward-slanting cast shadow in the upper-right corner of the painting. We found this shadow is naturally consistent with a local illuminant passing through a small window perpendicular to the viewer's line of sight, but could also be consistent with solar illumination if the shadow was due to a slanted, overhanging section of a roof outside the artist's studio. Our results place likely conditions upon any hypotheses concerning Caravaggio's working methods and point to new sources of evidence that could be confirmed or disconfirmed by future art historical research.

  7. Investigating the performance of reconstruction methods used in structured illumination microscopy as a function of the illumination pattern's modulation frequency

    NASA Astrophysics Data System (ADS)

    Shabani, H.; Sánchez-Ortiga, E.; Preza, C.

    2016-03-01

    Surpassing the resolution of optical microscopy defined by the Abbe diffraction limit, while simultaneously achieving optical sectioning, is a challenging problem particularly for live cell imaging of thick samples. Among a few developing techniques, structured illumination microscopy (SIM) addresses this challenge by imposing higher frequency information into the observable frequency band confined by the optical transfer function (OTF) of a conventional microscope either doubling the spatial resolution or filling the missing cone based on the spatial frequency of the pattern when the patterned illumination is two-dimensional. Standard reconstruction methods for SIM decompose the low and high frequency components from the recorded low-resolution images and then combine them to reach a high-resolution image. In contrast, model-based approaches rely on iterative optimization approaches to minimize the error between estimated and forward images. In this paper, we study the performance of both groups of methods by simulating fluorescence microscopy images from different type of objects (ranging from simulated two-point sources to extended objects). These simulations are used to investigate the methods' effectiveness on restoring objects with various types of power spectrum when modulation frequency of the patterned illumination is changing from zero to the incoherent cut-off frequency of the imaging system. Our results show that increasing the amount of imposed information by using a higher modulation frequency of the illumination pattern does not always yield a better restoration performance, which was found to be depended on the underlying object. Results from model-based restoration show performance improvement, quantified by an up to 62% drop in the mean square error compared to standard reconstruction, with increasing modulation frequency. However, we found cases for which results obtained with standard reconstruction methods do not always follow the same trend.

  8. Quantitative comparison of organic photovoltaic bulk heterojunction photostability under laser illumination

    DOE PAGES

    Lesoine, Michael D.; Bobbitt, Jonathan M.; Carr, John A.; ...

    2014-11-20

    The photostability of bulk heterojunction organic photovoltaic films containing a polymer donor and a fullerene-derivative acceptor was examined using resonance Raman spectroscopy and controlled laser power densities. The polymer donors were poly(3-hexylthiophene-2,5-diyl) (P3HT), poly[[9-(1-octylnonyl)-9H-carbazole-2,7-diyl]-2,5-thiophenediyl-2,1,3-benzothiadiazole-4,7-diyl-2,5-thiophenediyl] (PCDTBT), or poly({4,8-bis[(2-ethylhexyl)oxy]benzo[1,2-b:4,5-b']dithiophene-2,6-diyl}{3-fluoro-2-[(2-ethylhexyl)carbonyl]thieno[3,4-b]thiophenediyl}) (PTB7). Four sample preparation methods were studied: (i) thin or (ii) thick films with fast solvent evaporation under nitrogen, (iii) thick films with slow solvent evaporation under nitrogen, and (iv) thin films dried under nitrogen followed by thermal annealing. Polymer order was assessed by monitoring a Raman peak’s full width at half-maximum and location as a function of illumination time and laser powermore » densities from 2.5 × 10 3 to 2.5 × 10 5 W cm –2. Resonance Raman spectroscopy measurements show that before prolonged illumination, PCDTBT and PTB7 have the same initial order for all preparation conditions, while P3HT order improves with slow solvent drying or thermal annealing. All films exhibited changes to bulk heterojunction structure with 2.5 × 10 5 Wcm –2 laser illumination as measured by resonance Raman spectroscopy, and atomic force microscopy images show evidence of sample heating that affects the polymer over an area greater than the illumination profile. Furthermore, photostability data are important for proper characterization by techniques involving illumination and the development of devices suitable for real-world applications.« less

  9. Characterizing the energy output generated by a standard electric detonator using shadowgraph imaging

    NASA Astrophysics Data System (ADS)

    Petr, V.; Lozano, E.

    2017-09-01

    This paper overviews a complete method for the characterization of the explosive energy output from a standard detonator. Measurements of the output of explosives are commonly based upon the detonation parameters of the chemical energy content of the explosive. These quantities provide a correct understanding of the energy stored in an explosive, but they do not provide a direct measure of the different modes in which the energy is released. This optically based technique combines high-speed and ultra-high-speed imaging to characterize the casing fragmentation and the detonator-driven shock load. The procedure presented here could be used as an alternative to current indirect methods—such as the Trauzl lead block test—because of its simplicity, high data accuracy, and minimum demand for test repetition. This technique was applied to experimentally measure air shock expansion versus time and calculating the blast wave energy from the detonation of the high explosive charge inside the detonator. Direct measurements of the shock front geometry provide insight into the physics of the initiation buildup. Because of their geometry, standard detonators show an initial ellipsoidal shock expansion that degenerates into a final spherical wave. This non-uniform shape creates variable blast parameters along the primary blast wave. Additionally, optical measurements are validated using piezoelectric pressure transducers. The energy fraction spent in the acceleration of the metal shell is experimentally measured and correlated with the Gurney model, as well as to several empirical formulations for blasts from fragmenting munitions. The fragment area distribution is also studied using digital particle imaging analysis and correlated with the Mott distribution. Understanding the fragmentation distribution plays a critical role when performing hazard evaluation from these types of devices. In general, this technique allows for characterization of the detonator within 6-8% error with no knowledge of the amount or type of explosive contained within the shell, making it also suitable for the study of unknown improvised explosive devices.

  10. Modeling ultrafast laser-induced nanocavitation around plasmonic nanoparticles (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Meunier, Michel; Dagallier, Adrien; Lachaine, Rémi; Boutopoulos, Christos; Boulais, Étienne

    2017-03-01

    Vapor nanobubbles generated around plasmonic nanoparticles (NPs) by ultrafast laser irradiation are efficient for inducing localized damage to living cells. Killing targeted cancer cells or gene delivery can therefore be envisioned using this new technology [1,2]. The extent of the damage and its non-lethal character are linked to the size of the nanobubble. Precise understanding of the mechanisms leading to bubble formation around plasmonic nanostructures is necessary to optimize the technique. In this presentation, we present a complete model that successfully describes all interactions occurring during the irradiation of plasmonics nanostructures by an ultrafast laser of various pulse widths and fluences. Nanoavitation is caused by the interplay between heat conduction at the NP-medium interface and non-linear plasmon-enhanced photoionization of a nanoplasma in the near-field [3-5], the former being dominant for in-resonance and the latter for off-resonance irradiation. Modeling of the whole laser-nanoparticle interaction, together with the help of the shadowgraphic imaging and scattering techniques [3-5], give valuable insight on the mechanisms of cavitation at the nanoscale, leading to possible optimization of the nanostructure for bubble-based nanomedicine applications. 1- E. Boulais, R. Lachaine, A. Hatef, and M. Meunier, Journal of Photochemistry and Photobiology C: Photochemistry Reviews 17, 26-49 (2013). 2- E. Bergeron, S. Patskovsky, D. Rioux, and M. Meunier, Nanoscale 7,17836-17847 (2015). 3- E. Boulais, R. Lachaine, and M. Meunier, Nano Letters 12, 4763-4769 (2012). 4- R. Lachaine, E. Boulais, and M. Meunier, ACS Photonics 1, 331-336 (2014). 5- C. Boutopoulos, A. Hatef, M. Fortin-Deschênes, and M. Meunier Nanoscale 7,11758-11765 (2015).

  11. Two-dimensional Imaging Velocity Interferometry: Technique and Data Analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Erskine, D J; Smith, R F; Bolme, C

    2011-03-23

    We describe the data analysis procedures for an emerging interferometric technique for measuring motion across a two-dimensional image at a moment in time, i.e. a snapshot 2d-VISAR. Velocity interferometers (VISAR) measuring target motion to high precision have been an important diagnostic in shockwave physics for many years Until recently, this diagnostic has been limited to measuring motion at points or lines across a target. We introduce an emerging interferometric technique for measuring motion across a two-dimensional image, which could be called a snapshot 2d-VISAR. If a sufficiently fast movie camera technology existed, it could be placed behind a traditional VISARmore » optical system and record a 2d image vs time. But since that technology is not yet available, we use a CCD detector to record a single 2d image, with the pulsed nature of the illumination providing the time resolution. Consequently, since we are using pulsed illumination having a coherence length shorter than the VISAR interferometer delay ({approx}0.1 ns), we must use the white light velocimetry configuration to produce fringes with significant visibility. In this scheme, two interferometers (illuminating, detecting) having nearly identical delays are used in series, with one before the target and one after. This produces fringes with at most 50% visibility, but otherwise has the same fringe shift per target motion of a traditional VISAR. The 2d-VISAR observes a new world of information about shock behavior not readily accessible by traditional point or 1d-VISARS, simultaneously providing both a velocity map and an 'ordinary' snapshot photograph of the target. The 2d-VISAR has been used to observe nonuniformities in NIF related targets (polycrystalline diamond, Be), and in Si and Al.« less

  12. Analysis of the color rendition of flexible endoscopes

    NASA Astrophysics Data System (ADS)

    Murphy, Edward M.; Hegarty, Francis J.; McMahon, Barry P.; Boyle, Gerard

    2003-03-01

    Endoscopes are imaging devices routinely used for the diagnosis of disease within the human digestive tract. Light is transmitted into the body cavity via incoherent fibreoptic bundles and is controlled by a light feedback system. Fibreoptic endoscopes use coherent fibreoptic bundles to provide the clinician with an image. It is also possible to couple fibreoptic endoscopes to a clip-on video camera. Video endoscopes consist of a small CCD camera, which is inserted into gastrointestinal tract, and associated image processor to convert the signal to analogue RGB video signals. Images from both types of endoscope are displayed on standard video monitors. Diagnosis is dependent upon being able to determine changes in the structure and colour of tissues and biological fluids, and therefore is dependent upon the ability of the endoscope to reproduce the colour of these tissues and fluids with fidelity. This study investigates the colour reproduction of flexible optical and video endoscopes. Fibreoptic and video endoscopes alter image colour characteristics in different ways. The colour rendition of fibreoptic endoscopes was assessed by coupling them to a video camera and applying video colorimetric techniques. These techniques were then used on video endoscopes to assess how the colour rendition of video endoscopes compared with that of optical endoscopes. In both cases results were obtained at fixed illumination settings. Video endoscopes were then assessed with varying levels of illumination. Initial results show that at constant luminance endoscopy systems introduce non-linear shifts in colour. Techniques for examining how this colour shift varies with illumination intensity were developed and both methodology and results will be presented. We conclude that more rigorous quality assurance is required to reduce colour error and are developing calibration procedures applicable to medical endoscopes.

  13. Anti-aliasing techniques in photon-counting depth imaging using GHz clock rates

    NASA Astrophysics Data System (ADS)

    Krichel, Nils J.; McCarthy, Aongus; Collins, Robert J.; Buller, Gerald S.

    2010-04-01

    Single-photon detection technologies in conjunction with low laser illumination powers allow for the eye-safe acquisition of time-of-flight range information on non-cooperative target surfaces. We previously presented a photon-counting depth imaging system designed for the rapid acquisition of three-dimensional target models by steering a single scanning pixel across the field angle of interest. To minimise the per-pixel dwelling times required to obtain sufficient photon statistics for accurate distance resolution, periodic illumination at multi- MHz repetition rates was applied. Modern time-correlated single-photon counting (TCSPC) hardware allowed for depth measurements with sub-mm precision. Resolving the absolute target range with a fast periodic signal is only possible at sufficiently short distances: if the round-trip time towards an object is extended beyond the timespan between two trigger pulses, the return signal cannot be assigned to an unambiguous range value. Whereas constructing a precise depth image based on relative results may still be possible, problems emerge for large or unknown pixel-by-pixel separations or in applications with a wide range of possible scene distances. We introduce a technique to avoid range ambiguity effects in time-of-flight depth imaging systems at high average pulse rates. A long pseudo-random bitstream is used to trigger the illuminating laser. A cyclic, fast-Fourier supported analysis algorithm is used to search for the pattern within return photon events. We demonstrate this approach at base clock rates of up to 2 GHz with varying pattern lengths, allowing for unambiguous distances of several kilometers. Scans at long stand-off distances and of scenes with large pixel-to-pixel range differences are presented. Numerical simulations are performed to investigate the relative merits of the technique.

  14. Study on the effect of measuring methods on incident photon-to-electron conversion efficiency of dye-sensitized solar cells by home-made setup.

    PubMed

    Guo, Xiao-Zhi; Luo, Yan-Hong; Zhang, Yi-Duo; Huang, Xiao-Chun; Li, Dong-Mei; Meng, Qing-Bo

    2010-10-01

    An experimental setup is built for the measurement of monochromatic incident photon-to-electron conversion efficiency (IPCE) of solar cells. With this setup, three kinds of IPCE measuring methods as well as the convenient switching between them are achieved. The setup can also measure the response time and waveform of the short-circuit current of solar cell. Using this setup, IPCE results of dye-sensitized solar cells (DSCs) are determined and compared under different illumination conditions with each method. It is found that the IPCE values measured by AC method involving the lock-in technique are sincerely influenced by modulation frequency and bias illumination. Measurements of the response time and waveform of short-circuit current have revealed that this effect can be explained by the slow response of DSCs. To get accurate IPCE values by this method, the measurement should be carried out with a low modulation frequency and under bias illumination. The IPCE values measured by DC method under the bias light illumination will be disturbed since the short-circuit current increased with time continuously due to the temperature rise of DSC. Therefore, temperature control of DSC is considered necessary for IPCE measurement especially in DC method with bias light illumination. Additionally, high bias light intensity (>2 sun) is found to decrease the IPCE values due to the ion transport limitation of the electrolyte.

  15. Monte Carlo simulation for coherent backscattering with diverging illumination (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Wu, Wenli; Radosevich, Andrew J.; Eshein, Adam; Nguyen, The-Quyen; Backman, Vadim

    2016-03-01

    Diverging beam illumination is widely used in many optical techniques especially in fiber optic applications and coherence phenomenon is one of the most important properties to consider for these applications. Until now, people have used Monte Carlo simulations to study the backscattering coherence phenomenon in collimated beam illumination only. We are the first one to study the coherence phenomenon under the exact diverging beam geometry by taking into account the impossibility of the existence for the exact time-reversed path pairs of photons, which is the main contribution to the backscattering coherence pattern in collimated beam. In this work, we present a Monte Carlo simulation that considers the influence of the illumination numerical aperture. The simulation tracks the electric field for the unique paths of forward path and reverse path in time-reversed pairs of photons as well as the same path shared by them. With this approach, we can model the coherence pattern formed between the pairs by considering their phase difference at the collection plane directly. To validate this model, we use the Low-coherence Enhanced Backscattering Spectroscopy, one of the instruments looking at the coherence pattern using diverging beam illumination, as the benchmark to compare with. In the end, we show how this diverging configuration would significantly change the coherent pattern under coherent light source and incoherent light source. This Monte Carlo model we developed can be used to study the backscattering phenomenon in both coherence and non-coherence situation with both collimated beam and diverging beam setups.

  16. Light-field-characterization in a continuous hydrogen-producing photobioreactor by optical simulation and computational fluid dynamics.

    PubMed

    Krujatz, Felix; Illing, Rico; Krautwer, Tobias; Liao, Jing; Helbig, Karsten; Goy, Katharina; Opitz, Jörg; Cuniberti, Gianaurelio; Bley, Thomas; Weber, Jost

    2015-12-01

    Externally illuminated photobioreactors (PBRs) are widely used in studies on the use of phototrophic microorganisms as sources of bioenergy and other photobiotechnology research. In this work, straightforward simulation techniques were used to describe effects of varying fluid flow conditions in a continuous hydrogen-producing PBR on the rate of photofermentative hydrogen production (rH2 ) by Rhodobacter sphaeroides DSM 158. A ZEMAX optical ray tracing simulation was performed to quantify the illumination intensity reaching the interior of the cylindrical PBR vessel. 24.2% of the emitted energy was lost through optical effects, or did not reach the PBR surface. In a dense culture of continuously producing bacteria during chemostatic cultivation, the illumination intensity became completely attenuated within the first centimeter of the PBR radius as described by an empirical three-parametric model implemented in Mathcad. The bacterial movement in chemostatic steady-state conditions was influenced by varying the fluid Reynolds number. The "Computational Fluid Dynamics" and "Particle Tracing" tools of COMSOL Multiphysics were used to visualize the fluid flow pattern and cellular trajectories through well-illuminated zones near the PBR periphery and dark zones in the center of the PBR. A moderate turbulence (Reynolds number = 12,600) and fluctuating illumination of 1.5 Hz were found to yield the highest continuous rH2 by R. sphaeroides DSM 158 (170.5 mL L(-1) h(-1) ) in this study. © 2015 Wiley Periodicals, Inc.

  17. Introduction to the local enhancement of underwater imagery

    NASA Astrophysics Data System (ADS)

    Schmalz, Mark S.

    1995-06-01

    Image-based detection of submerged objects is frequently confounded by optical distortions in the aqueous medium. For example, scattering can severly degrade contrast and resolution in underwater (UW) images when illumination systems and cameras are not range-gated. Prior to the development of range-gated imaging, much research emphasis was placed upon the analysis of greyscale imagery acquired under incoherent illumination. Primarily as a result of current emphasis on coherent optical technologies, the progress of image processing (IP) research that pertains to UW imagery has lagged IP hardware and software development. In this paper, we summarize methods for the digital clarification of images that portray actively illuminated UW scenes, i.e., images of floodlit objects. We model the primary UW image components as: a) contrast degradation resulting from illuminant backscattering from the water column, b) a return signal that results from backscattering of the illuminant from the object of regard, and c) resolution loss, due to forward scattering of the return signal. Letting items a) and c) consititute error sources, one can locally apply the appropriate filters to reduce the contribution of such errors. Our technique emphasized local enhancement, as opposed to the global methods used in previous imaging practice. Our enhancement filters are based upon image-algebraic templates that are designed to compensate for the effects of single and multiple scattering as well as absorption within the water column. Discussion is based upon image clarity, algorithmic complexity, and computational efficiency.

  18. Microwave Triggered Laser Ionization of Air

    NASA Astrophysics Data System (ADS)

    Vadiee, Ehsan; Prasad, Sarita; Jerald Buchenauer, C.; Schamiloglu, Edl

    2012-10-01

    The goal of this work is to study the evolution and dynamics of plasma expansion when a high power microwave (HPM) pulse is overlapped in time and space on a very small, localized region of plasma formed by a high energy laser pulse. The pulsed Nd:YAG laser (8 ns, 600mJ, repetition rate 10 Hz) is focused to generate plasma filaments in air with electron density of 10^17/cm^3. When irradiated with a high power microwave pulse these electrons would gain enough kinetic energy and further escalate avalanche ionization of air due to elastic electron-neutral collisions thereby causing an increased volumetric discharge region. An X-band relativistic backward wave oscillator(RBWO) at the Pulsed Power,Beams and Microwaves laboratory at UNM is constructed as the microwave source. The RBWO produces a microwave pulse of maximum power 400 MW, frequency of 10.1 GHz, and energy of 6.8 Joules. Special care is being given to synchronize the RBWO and the pulsed laser system in order to achieve a high degree of spatial and temporal overlap. A photodiode and a microwave waveguide detector will be used to ensure the overlap. Also, a new shadowgraph technique with a nanosecond time resolution will be used to detect changes in the shock wave fronts when the HPM signal overlaps the laser pulse in time and space.

  19. Speckle techniques for determining stresses in moving objects

    NASA Technical Reports Server (NTRS)

    Murphree, E. A.; Wilson, T. F.; Ranson, W. F.; Swinson, W. F.

    1978-01-01

    Laser speckle interferometry is a relatively new experimental technique which shows promise of alleviating many difficult problems in experimental mechanics. The method utilizes simple high-resolution photographs of the surface which is illuminated by coherent light. The result is a real-time or permanently stored whole-field record of interference fringes which yields a map of displacements in the object. In this thesis, the time-average theory using the Fourier transform is developed to present the application of this technique to measurement of in-plane displacement induced by the vibration of an object.

  20. Forensic photography. Ultraviolet imaging of wounds on skin.

    PubMed

    Barsley, R E; West, M H; Fair, J A

    1990-12-01

    The use of ultraviolet light (UVL) to study and document patterned injuries on human skin has opened a new frontier for law enforcement. This article discusses the photographic techniques involved in reflective and fluorescent UVL. Documentation of skin wounds via still photography and dynamic video photographic techniques, which utilize various methods of UV illumination, are covered. Techniques important for courtroom presentation of evidence gathered from lacerations, contusions, abrasions, and bite marks are presented through case studies and controlled experiments. Such injuries are common sequelae in the crimes of child abuse, rape, and assault.

  1. Optical diffraction for measurements of nano-mechanical bending

    NASA Astrophysics Data System (ADS)

    Hermans, Rodolfo I.; Dueck, Benjamin; Ndieyira, Joseph Wafula; McKendry, Rachel A.; Aeppli, Gabriel

    2016-06-01

    We explore and exploit diffraction effects that have been previously neglected when modelling optical measurement techniques for the bending of micro-mechanical transducers such as cantilevers for atomic force microscopy. The illumination of a cantilever edge causes an asymmetric diffraction pattern at the photo-detector affecting the calibration of the measured signal in the popular optical beam deflection technique (OBDT). The conditions that avoid such detection artefacts conflict with the use of smaller cantilevers. Embracing diffraction patterns as data yields a potent detection technique that decouples tilt and curvature and simultaneously relaxes the requirements on the illumination alignment and detector position through a measurable which is invariant to translation and rotation. We show analytical results, numerical simulations and physiologically relevant experimental data demonstrating the utility of the diffraction patterns. We offer experimental design guidelines and quantify possible sources of systematic error in OBDT. We demonstrate a new nanometre resolution detection method that can replace OBDT, where diffraction effects from finite sized or patterned cantilevers are exploited. Such effects are readily generalized to cantilever arrays, and allow transmission detection of mechanical curvature, enabling instrumentation with simpler geometry. We highlight the comparative advantages over OBDT by detecting molecular activity of antibiotic Vancomycin.

  2. Multiview photometric stereo.

    PubMed

    Hernández Esteban, Carlos; Vogiatzis, George; Cipolla, Roberto

    2008-03-01

    This paper addresses the problem of obtaining complete, detailed reconstructions of textureless shiny objects. We present an algorithm which uses silhouettes of the object, as well as images obtained under changing illumination conditions. In contrast with previous photometric stereo techniques, ours is not limited to a single viewpoint but produces accurate reconstructions in full 3D. A number of images of the object are obtained from multiple viewpoints, under varying lighting conditions. Starting from the silhouettes, the algorithm recovers camera motion and constructs the object's visual hull. This is then used to recover the illumination and initialise a multi-view photometric stereo scheme to obtain a closed surface reconstruction. There are two main contributions in this paper: Firstly we describe a robust technique to estimate light directions and intensities and secondly, we introduce a novel formulation of photometric stereo which combines multiple viewpoints and hence allows closed surface reconstructions. The algorithm has been implemented as a practical model acquisition system. Here, a quantitative evaluation of the algorithm on synthetic data is presented together with complete reconstructions of challenging real objects. Finally, we show experimentally how even in the case of highly textured objects, this technique can greatly improve on correspondence-based multi-view stereo results.

  3. Global Pressure- and Temperature-Measurements in 1.27-m JAXA Hypersonic Wind Tunnel

    NASA Astrophysics Data System (ADS)

    Yamada, Y.; Miyazaki, T.; Nakagawa, M.; Tsuda, S.; Sakaue, H.

    Pressure-sensitive paint (PSP) technique has been widely used in aerodynamic measurements. A PSP is a global optical sensor, which consists of a luminophore and binding material. The luminophore gives a luminescence related to an oxygen concentration known as oxygen quenching. In an aerodynamic measurement, the oxygen concentration is related to a partial pressure of oxygen and a static pressure, thus the luminescent signal can be related to a static pressure [1]. The PSP measurement system consists of a PSP coated model, an image acquisition unit, and an image processing unit (Fig. 1). For the image acquisition, an illumination source and a photo-detector are required. To separate the illumination and PSP emission detected by a photo-detector, appropriate band-pass filters are placed in front of the illumination and photo-detector. The image processing unit includes the calibration and computation. The calibration relates the luminescent signal to pressures and temperatures. Based on these calibrations, luminescent images are converted to a pressure map.

  4. Super-resolution imaging of multiple cells by optimized flat-field epi-illumination

    NASA Astrophysics Data System (ADS)

    Douglass, Kyle M.; Sieben, Christian; Archetti, Anna; Lambert, Ambroise; Manley, Suliana

    2016-11-01

    Biological processes are inherently multi-scale, and supramolecular complexes at the nanoscale determine changes at the cellular scale and beyond. Single-molecule localization microscopy (SMLM) techniques have been established as important tools for studying cellular features with resolutions of the order of around 10 nm. However, in their current form these modalities are limited by a highly constrained field of view (FOV) and field-dependent image resolution. Here, we develop a low-cost microlens array (MLA)-based epi-illumination system—flat illumination for field-independent imaging (FIFI)—that can efficiently and homogeneously perform simultaneous imaging of multiple cells with nanoscale resolution. The optical principle of FIFI, which is an extension of the Köhler integrator, is further elucidated and modelled with a new, free simulation package. We demonstrate FIFI's capabilities by imaging multiple COS-7 and bacteria cells in 100 × 100 μm2 SMLM images—more than quadrupling the size of a typical FOV and producing near-gigapixel-sized images of uniformly high quality.

  5. "Crypto-Display" in Dual-Mode Metasurfaces by Simultaneous Control of Phase and Spectral Responses.

    PubMed

    Yoon, Gwanho; Lee, Dasol; Nam, Ki Tae; Rho, Junsuk

    2018-06-26

    Although conventional metasurfaces have demonstrated many promising functionalities in light control by tailoring either phase or spectral responses of subwavelength structures, simultaneous control of both responses has not been explored yet. Here, we propose a concept of dual-mode metasurfaces that enables simultaneous control of phase and spectral responses for two kinds of operation modes of transmission and reflection, respectively. In the transmission mode, the dual-mode metasurface acts as conventional metasurfaces by tailoring phase distribution of incident light. In the reflection mode, a reflected colored image is produced under white light illumination. We also experimentally demonstrate a crypto-display as one application of the dual-mode metasurface. The crypto-display looks a normal reflective display under white light illumination but generates a hologram that reveals the encrypted phase information under single-wavelength coherent light illumination. Because two operation modes do not affect each other, the crypto-display can have applications in security techniques.

  6. Real-time color measurement using active illuminant

    NASA Astrophysics Data System (ADS)

    Tominaga, Shoji; Horiuchi, Takahiko; Yoshimura, Akihiko

    2010-01-01

    This paper proposes a method for real-time color measurement using active illuminant. A synchronous measurement system is constructed by combining a high-speed active spectral light source and a high-speed monochrome camera. The light source is a programmable spectral source which is capable of emitting arbitrary spectrum in high speed. This system is the essential advantage of capturing spectral images without using filters in high frame rates. The new method of real-time colorimetry is different from the traditional method based on the colorimeter or the spectrometers. We project the color-matching functions onto an object surface as spectral illuminants. Then we can obtain the CIE-XYZ tristimulus values directly from the camera outputs at every point on the surface. We describe the principle of our colorimetric technique based on projection of the color-matching functions and the procedure for realizing a real-time measurement system of a moving object. In an experiment, we examine the performance of real-time color measurement for a static object and a moving object.

  7. A phase space model of Fourier ptychographic microscopy

    PubMed Central

    Horstmeyer, Roarke; Yang, Changhuei

    2014-01-01

    A new computational imaging technique, termed Fourier ptychographic microscopy (FPM), uses a sequence of low-resolution images captured under varied illumination to iteratively converge upon a high-resolution complex sample estimate. Here, we propose a mathematical model of FPM that explicitly connects its operation to conventional ptychography, a common procedure applied to electron and X-ray diffractive imaging. Our mathematical framework demonstrates that under ideal illumination conditions, conventional ptychography and FPM both produce datasets that are mathematically linked by a linear transformation. We hope this finding encourages the future cross-pollination of ideas between two otherwise unconnected experimental imaging procedures. In addition, the coherence state of the illumination source used by each imaging platform is critical to successful operation, yet currently not well understood. We apply our mathematical framework to demonstrate that partial coherence uniquely alters both conventional ptychography’s and FPM’s captured data, but up to a certain threshold can still lead to accurate resolution-enhanced imaging through appropriate computational post-processing. We verify this theoretical finding through simulation and experiment. PMID:24514995

  8. Enhanced photoelectrochemical performance of inorganic-organic hybrid consisting of BiVO4 and PEDOT:PSS

    NASA Astrophysics Data System (ADS)

    Trzciński, K.; Szkoda, M.; Siuzdak, K.; Sawczak, M.; Lisowska-Oleksiak, A.

    2016-12-01

    The PEDOT:PSS (poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate)) was electrodeposited on a thin layer of bismuth vanadate (BiVO4) prepared using the pulsed laser deposition technique onto FTO. The inorganic-organic junction was characterized by Raman spectroscopy, UV-vis spectroscopy and scanning electron microscopy. Chronoamperometry curves, recorded under simulated solar light illumination, were performed to determine generated photocurrent during water and hydroquinone oxidation at the electrode surface. Experiments were performed for three types of electrode materials: (i) FTO/BiVO4, (ii) FTO/PEDOT:PSS and (iii) FTO/BiVO4/PEDOT:PSS in aqueous electrolyte. Almost 5 times higher photocurrent in electrolyte containing hole scavenger was generated after modification of BiVO4 photoanode with electrodeposited polymer. It is noteworthy that anodic photocurrent was stable even after 4 h of illumination. Cyclic voltammetry curves of FTO/BiVO4/PEDOT:PSS recorded before and after experiments performed under electrode illumination indicated that the organic part in tested junction is photo-corrosion resistant.

  9. A calibrated iterative reconstruction for quantitative photoacoustic tomography using multi-angle light-sheet illuminations

    NASA Astrophysics Data System (ADS)

    Wang, Yihan; Lu, Tong; Zhang, Songhe; Song, Shaoze; Wang, Bingyuan; Li, Jiao; Zhao, Huijuan; Gao, Feng

    2018-02-01

    Quantitative photoacoustic tomography (q-PAT) is a nontrivial technique can be used to reconstruct the absorption image with a high spatial resolution. Several attempts have been investigated by setting point sources or fixed-angle illuminations. However, in practical applications, these schemes normally suffer from low signal-to-noise ratio (SNR) or poor quantification especially for large-size domains, due to the limitation of the ANSI-safety incidence and incompleteness in the data acquisition. We herein present a q-PAT implementation that uses multi-angle light-sheet illuminations and a calibrated iterative multi-angle reconstruction. The approach can acquire more complete information on the intrinsic absorption and SNR-boosted photoacoustic signals at selected planes from the multi-angle wide-field excitations of light-sheet. Therefore, the sliced absorption maps over whole body can be recovered in a measurementflexible, noise-robust and computation-economic way. The proposed approach is validated by the phantom experiment, exhibiting promising performances in image fidelity and quantitative accuracy.

  10. LITE microscopy: Tilted light-sheet excitation of model organisms offers high resolution and low photobleaching

    PubMed Central

    Gerbich, Therese M.; Rana, Kishan; Suzuki, Aussie; Schaefer, Kristina N.; Heppert, Jennifer K.; Boothby, Thomas C.; Allbritton, Nancy L.; Gladfelter, Amy S.; Maddox, Amy S.

    2018-01-01

    Fluorescence microscopy is a powerful approach for studying subcellular dynamics at high spatiotemporal resolution; however, conventional fluorescence microscopy techniques are light-intensive and introduce unnecessary photodamage. Light-sheet fluorescence microscopy (LSFM) mitigates these problems by selectively illuminating the focal plane of the detection objective by using orthogonal excitation. Orthogonal excitation requires geometries that physically limit the detection objective numerical aperture (NA), thereby limiting both light-gathering efficiency (brightness) and native spatial resolution. We present a novel live-cell LSFM method, lateral interference tilted excitation (LITE), in which a tilted light sheet illuminates the detection objective focal plane without a sterically limiting illumination scheme. LITE is thus compatible with any detection objective, including oil immersion, without an upper NA limit. LITE combines the low photodamage of LSFM with high resolution, high brightness, and coverslip-based objectives. We demonstrate the utility of LITE for imaging animal, fungal, and plant model organisms over many hours at high spatiotemporal resolution. PMID:29490939

  11. Extended surface parallel coating inspection method

    DOEpatents

    Naulleau, Patrick P.

    2006-03-21

    Techniques for rapidly characterizing reflective surfaces and especially multi-layer EUV reflective surfaces of optical components involve illuminating the entire reflective surface instantaneously and detecting the image far field. The technique provides a mapping of points on the reflective surface to corresponding points on a detector, e.g., CCD. This obviates the need to scan a probe over the entire surface of the optical component. The reflective surface can be flat, convex, or concave.

  12. Cardiac Light-Sheet Fluorescent Microscopy for Multi-Scale and Rapid Imaging of Architecture and Function

    NASA Astrophysics Data System (ADS)

    Fei, Peng; Lee, Juhyun; Packard, René R. Sevag; Sereti, Konstantina-Ioanna; Xu, Hao; Ma, Jianguo; Ding, Yichen; Kang, Hanul; Chen, Harrison; Sung, Kevin; Kulkarni, Rajan; Ardehali, Reza; Kuo, C.-C. Jay; Xu, Xiaolei; Ho, Chih-Ming; Hsiai, Tzung K.

    2016-03-01

    Light Sheet Fluorescence Microscopy (LSFM) enables multi-dimensional and multi-scale imaging via illuminating specimens with a separate thin sheet of laser. It allows rapid plane illumination for reduced photo-damage and superior axial resolution and contrast. We hereby demonstrate cardiac LSFM (c-LSFM) imaging to assess the functional architecture of zebrafish embryos with a retrospective cardiac synchronization algorithm for four-dimensional reconstruction (3-D space + time). By combining our approach with tissue clearing techniques, we reveal the entire cardiac structures and hypertrabeculation of adult zebrafish hearts in response to doxorubicin treatment. By integrating the resolution enhancement technique with c-LSFM to increase the resolving power under a large field-of-view, we demonstrate the use of low power objective to resolve the entire architecture of large-scale neonatal mouse hearts, revealing the helical orientation of individual myocardial fibers. Therefore, our c-LSFM imaging approach provides multi-scale visualization of architecture and function to drive cardiovascular research with translational implication in congenital heart diseases.

  13. Note: On-chip multifunctional fluorescent-magnetic Janus helical microswimmers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hwang, G., E-mail: gilgueng.hwang@lpn.cnrs.fr; Decanini, D.; Leroy, L.

    Microswimmers integrated into microfluidic devices that are capable of self-illumination through fluorescence could revolutionize many aspects of technology, especially for biological applications. Few illumination and propulsion techniques of helical microswimmers inside microfluidic channels have been demonstrated. This paper presents the fabrication, detachment, and magnetic propulsions of multifunctional fluorescent-magnetic helical microswimmers integrated inside microfluidics. The fabrication process is based on two-photon laser lithography to pattern 3-D nanostructures from fluorescent photoresist coupled with conventional microfabrication techniques for magnetic thin film deposition by shadowing. After direct integration inside a microfluidic device, injected gas bubble allows gentle detachment of the integrated helical microswimmers whosemore » magnetic propulsion can then be directly applied inside the microfluidic channel using external electromagnetic coil setup. With their small scale, fluorescence, excellent resistance to liquid/gas surface tension, and robust propulsion capability inside the microfluidic channel, the microswimmers can be used as high-resolution and large-range mobile micromanipulators inside microfluidic channels.« less

  14. Measurement of replication structures at the nanometer scale using super-resolution light microscopy

    PubMed Central

    Baddeley, D.; Chagin, V. O.; Schermelleh, L.; Martin, S.; Pombo, A.; Carlton, P. M.; Gahl, A.; Domaing, P.; Birk, U.; Leonhardt, H.; Cremer, C.; Cardoso, M. C.

    2010-01-01

    DNA replication, similar to other cellular processes, occurs within dynamic macromolecular structures. Any comprehensive understanding ultimately requires quantitative data to establish and test models of genome duplication. We used two different super-resolution light microscopy techniques to directly measure and compare the size and numbers of replication foci in mammalian cells. This analysis showed that replication foci vary in size from 210 nm down to 40 nm. Remarkably, spatially modulated illumination (SMI) and 3D-structured illumination microscopy (3D-SIM) both showed an average size of 125 nm that was conserved throughout S-phase and independent of the labeling method, suggesting a basic unit of genome duplication. Interestingly, the improved optical 3D resolution identified 3- to 5-fold more distinct replication foci than previously reported. These results show that optical nanoscopy techniques enable accurate measurements of cellular structures at a level previously achieved only by electron microscopy and highlight the possibility of high-throughput, multispectral 3D analyses. PMID:19864256

  15. Ghost Particle Velocimetry: Accurate 3D Flow Visualization Using Standard Lab Equipment

    NASA Astrophysics Data System (ADS)

    Buzzaccaro, Stefano; Secchi, Eleonora; Piazza, Roberto

    2013-07-01

    We describe and test a new approach to particle velocimetry, based on imaging and cross correlating the scattering speckle pattern generated on a near-field plane by flowing tracers with a size far below the diffraction limit, which allows reconstructing the velocity pattern in microfluidic channels without perturbing the flow. As a matter of fact, adding tracers is not even strictly required, provided that the sample displays sufficiently refractive-index fluctuations. For instance, phase separation in liquid mixtures in the presence of shear is suitable to be directly investigated by this “ghost particle velocimetry” technique, which just requires a microscope with standard lamp illumination equipped with a low-cost digital camera. As a further bonus, the peculiar spatial coherence properties of the illuminating source, which displays a finite longitudinal coherence length, allows for a 3D reconstruction of the profile with a resolution of few tenths of microns and makes the technique suitable to investigate turbid samples with negligible multiple scattering effects.

  16. Structured illumination microscopy for dual-modality 3D sub-diffraction resolution fluorescence and refractive-index reconstruction

    PubMed Central

    Chowdhury, Shwetadwip; Eldridge, Will J.; Wax, Adam; Izatt, Joseph A.

    2017-01-01

    Though structured illumination (SI) microscopy is a popular imaging technique conventionally associated with fluorescent super-resolution, recent works have suggested its applicability towards sub-diffraction resolution coherent imaging with quantitative endogenous biological contrast. Here, we demonstrate that SI can efficiently integrate together the principles of fluorescent super-resolution and coherent synthetic aperture to achieve 3D dual-modality sub-diffraction resolution, fluorescence and refractive-index (RI) visualizations of biological samples. We experimentally demonstrate this framework by introducing a SI microscope capable of 3D sub-diffraction resolution fluorescence and RI imaging, and verify its biological visualization capabilities by experimentally reconstructing 3D RI/fluorescence visualizations of fluorescent calibration microspheres as well as alveolar basal epithelial adenocarcinoma (A549) and human colorectal adenocarcinmoa (HT-29) cells, fluorescently stained for F-actin. This demonstration may suggest SI as an especially promising imaging technique to enable future biological studies that explore synergistically operating biophysical/biochemical and molecular mechanisms at sub-diffraction resolutions. PMID:29296504

  17. A new hue capturing technique for the quantitative interpretation of liquid crystal images used in convective heat transfer studies

    NASA Technical Reports Server (NTRS)

    Camci, C.; Kim, K.; Hippensteele, S. A.

    1992-01-01

    A new image processing based color capturing technique for the quantitative interpretation of liquid crystal images used in convective heat transfer studies is presented. This method is highly applicable to the surfaces exposed to convective heating in gas turbine engines. It is shown that, in the single-crystal mode, many of the colors appearing on the heat transfer surface correlate strongly with the local temperature. A very accurate quantitative approach using an experimentally determined linear hue vs temperature relation is found to be possible. The new hue-capturing process is discussed in terms of the strength of the light source illuminating the heat transfer surface, the effect of the orientation of the illuminating source with respect to the surface, crystal layer uniformity, and the repeatability of the process. The present method is more advantageous than the multiple filter method because of its ability to generate many isotherms simultaneously from a single-crystal image at a high resolution in a very time-efficient manner.

  18. Concept of contrast transfer function for edge illumination x-ray phase-contrast imaging and its comparison with the free-space propagation technique.

    PubMed

    Diemoz, Paul C; Vittoria, Fabio A; Olivo, Alessandro

    2016-05-16

    Previous studies on edge illumination (EI) X-ray phase-contrast imaging (XPCi) have investigated the nature and amplitude of the signal provided by this technique. However, the response of the imaging system to different object spatial frequencies was never explicitly considered and studied. This is required in order to predict the performance of a given EI setup for different classes of objects. To this scope, in the present work we derive analytical expressions for the contrast transfer function of an EI imaging system, using the approximation of near-field regime, and study its dependence upon the main experimental parameters. We then exploit these results to compare the frequency response of an EI system with respect of that of a free-space propagation XPCi one. The results achieved in this work can be useful for predicting the signals obtainable for different types of objects and also as a basis for new retrieval methods.

  19. 3D shape measurement of automotive glass by using a fringe reflection technique

    NASA Astrophysics Data System (ADS)

    Skydan, O. A.; Lalor, M. J.; Burton, D. R.

    2007-01-01

    In automotive and glass making industries, there is a need for accurately measuring the 3D shapes of reflective surfaces to speed up and ensure product development and manufacturing quality by using non-contact techniques. This paper describes a technique for the measurement of non-full-field reflective surfaces of automotive glass by using a fringe reflection technique. Physical properties of the measurement surfaces do not allow us to apply optical geometries used in existing techniques for surface measurement based upon direct fringe pattern illumination. However, this property of surface reflectivity can be used to implement similar ideas from existing techniques in a new improved method. In other words, the reflective surface can be used as a mirror to reflect illuminated fringe patterns onto a screen behind. It has been found that in the case of implementing the reflective fringe technique, the phase-shift distribution depends not only on the height of the object but also on the slope at each measurement point. This requires the solving of differential equations to find the surface slope and height distributions in the x and y directions and development of the additional height reconstruction algorithms. The main focus has been made on developing a mathematical model of the optical sub-system and discussing ways for its practical implementation including calibration procedures. A number of implemented image processing algorithms for system calibration and data analysis are discussed and two experimental results are given for automotive glass surfaces with different shapes and defects. The proposed technique showed the ability to provide accurate non-destructive measurement of 3D shapes of the reflective automotive glass surfaces and can be used as a key element for a glass shape quality control system on-line or in a laboratory environment.

  20. Current-voltage characteristics in macroporous silicon/SiOx/SnO2:F heterojunctions.

    PubMed

    Garcés, Felipe A; Urteaga, Raul; Acquaroli, Leandro N; Koropecki, Roberto R; Arce, Roberto D

    2012-07-25

    We study the electrical characteristics of macroporous silicon/transparent conductor oxide junctions obtained by the deposition of fluorine doped-SnO2 onto macroporous silicon thin films using the spray pyrolysis technique. Macroporous silicon was prepared by the electrochemical anodization of a silicon wafer to produce pore sizes ranging between 0.9 to 1.2 μm in diameter. Scanning electronic microscopy was performed to confirm the pore filling and surface coverage. The transport of charge carriers through the interface was studied by measuring the current-voltage curves in the dark and under illumination. In the best configuration, we obtain a modest open-circuit voltage of about 70 mV and a short-circuit current of 3.5 mA/cm2 at an illumination of 110 mW/cm2. In order to analyze the effects of the illumination on the electrical properties of the junction, we proposed a model of two opposing diodes, each one associated with an independent current source. We obtain a good accordance between the experimental data and the model. The current-voltage curves in illuminated conditions are well fitted with the same parameters obtained in the dark where only the photocurrent intensities in the diodes are free parameters.

  1. Scanning thin-sheet laser imaging microscopy (sTSLIM) with structured illumination and HiLo background rejection.

    PubMed Central

    Schröter, Tobias J.; Johnson, Shane B.; John, Kerstin; Santi, Peter A.

    2011-01-01

    We report replacement of one side of a static illumination, dual sided, thin-sheet laser imaging microscope (TSLIM) with an intensity modulated laser scanner in order to implement structured illumination (SI) and HiLo image demodulation techniques for background rejection. The new system is equipped with one static and one scanned light-sheet and is called a scanning thin-sheet laser imaging microscope (sTSLIM). It is an optimized version of a light-sheet fluorescent microscope that is designed to image large specimens (<15 mm in diameter). In this paper we describe the hardware and software modifications to TSLIM that allow for static and uniform light-sheet illumination with SI and HiLo image demodulation. The static light-sheet has a thickness of 3.2 µm; whereas, the scanned side has a light-sheet thickness of 4.2 µm. The scanned side images specimens with subcellular resolution (<1 µm lateral and <4 µm axial resolution) with a size up to 15 mm. SI and HiLo produce superior contrast compared to both the uniform static and scanned light-sheets. HiLo contrast was greater than SI and is faster and more robust than SI because as it produces images in two-thirds of the time and exhibits fewer intensity streaking artifacts. PMID:22254177

  2. An investigation of the direct-drive method of susceptibility testing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bonn, R.H.

    1992-07-01

    The Naval Surface Weapons Laboratory has constructed a small electrical subsystem for the purpose of evaluating electrical upset from various electromagnetic sources. The subsystem consists of three boxes, two of which are intended to be illuminated by electromagnetic waves. The two illuminated boxes are connected by two unshielded cable bundles. The goal of the Navy test series is to expose the subsystem to electromagnetic illumination from several different types of excitation, document upset levels, and compare the results. Before its arrival at Sandia National Laboratories (SNL) the system was illuminated in a mode stirred chamber and in an anechoic chamber.more » This effort was a continuation of that test program. The Sandia tests involved the test methodology referred to as bulk current injection (BCI). Because this is a poorly-shielded, multiple-aperture system, the method was not expected to compare closely to the other test methods. The test results show that. The BCI test methodology is a useful test technique for a subset of limited aperture systems; the methodology will produce incorrect answers when used improperly on complex systems; the methodology can produce accurate answers on simple systems with a well-controlled electromagnetic topology. This is a preliminary study and the results should be interpreted carefully.« less

  3. Tomographic diffractive microscopy with a wavefront sensor.

    PubMed

    Ruan, Y; Bon, P; Mudry, E; Maire, G; Chaumet, P C; Giovannini, H; Belkebir, K; Talneau, A; Wattellier, B; Monneret, S; Sentenac, A

    2012-05-15

    Tomographic diffractive microscopy is a recent imaging technique that reconstructs quantitatively the three-dimensional permittivity map of a sample with a resolution better than that of conventional wide-field microscopy. Its main drawbacks lie in the complexity of the setup and in the slowness of the image recording as both the amplitude and the phase of the field scattered by the sample need to be measured for hundreds of successive illumination angles. In this Letter, we show that, using a wavefront sensor, tomographic diffractive microscopy can be implemented easily on a conventional microscope. Moreover, the number of illuminations can be dramatically decreased if a constrained reconstruction algorithm is used to recover the sample map of permittivity.

  4. Improved measurement linearity and precision for AMCW time-of-flight range imaging cameras.

    PubMed

    Payne, Andrew D; Dorrington, Adrian A; Cree, Michael J; Carnegie, Dale A

    2010-08-10

    Time-of-flight range imaging systems utilizing the amplitude modulated continuous wave (AMCW) technique often suffer from measurement nonlinearity due to the presence of aliased harmonics within the amplitude modulation signals. Typically a calibration is performed to correct these errors. We demonstrate an alternative phase encoding approach that attenuates the harmonics during the sampling process, thereby improving measurement linearity in the raw measurements. This mitigates the need to measure the system's response or calibrate for environmental changes. In conjunction with improved linearity, we demonstrate that measurement precision can also be increased by reducing the duty cycle of the amplitude modulated illumination source (while maintaining overall illumination power).

  5. Time-resolved wide-field optically sectioned fluorescence microscopy

    NASA Astrophysics Data System (ADS)

    Dupuis, Guillaume; Benabdallah, Nadia; Chopinaud, Aurélien; Mayet, Céline; Lévêque-Fort, Sandrine

    2013-02-01

    We present the implementation of a fast wide-field optical sectioning technique called HiLo microscopy on a fluorescence lifetime imaging microscope. HiLo microscopy is based on the fusion of two images, one with structured illumination and another with uniform illumination. Optically sectioned images are then digitally generated thanks to a fusion algorithm. HiLo images are comparable in quality with confocal images but they can be acquired faster over larger fields of view. We obtain 4D imaging by combining HiLo optical sectioning, time-gated detection, and z-displacement. We characterize the performances of this set-up in terms of 3D spatial resolution and time-resolved capabilities in both fixed- and live-cell imaging modes.

  6. Self-powered p-NiO/n-ZnO heterojunction ultraviolet photodetectors fabricated on plastic substrates

    PubMed Central

    Hasan, Md Rezaul; Xie, Ting; Barron, Sara C.; Liu, Guannan; Nguyen, Nhan V.; Motayed, Abhishek; Rao, Mulpuri V.; Debnath, Ratan

    2016-01-01

    A self-powered ultraviolet (UV) photodetector (PD) based on p-NiO and n-ZnO was fabricated using low-temperature sputtering technique on indium doped tin oxide (ITO) coated plastic polyethylene terephthalate (PET) substrates. The p-n heterojunction showed very fast temporal photoresponse with excellent quantum efficiency of over 63% under UV illumination at an applied reverse bias of 1.2 V. The engineered ultrathin Ti/Au top metal contacts and UV transparent PET/ITO substrates allowed the PDs to be illuminated through either front or back side. Morphology, structural, chemical and optical properties of sputtered NiO and ZnO films were also investigated. PMID:26900532

  7. Circumventing photodamage in live-cell microscopy

    PubMed Central

    Magidson, Valentin; Khodjakov, Alexey

    2013-01-01

    Fluorescence microscopy has become an essential tool in cell biology. This technique allows researchers to visualize the dynamics of tissue, cells, individual organelles and macromolecular assemblies inside the cell. Unfortunately, fluorescence microscopy is not completely ‘non-invasive’ as the high-intensity excitation light required for excitation of fluorophores is inherently toxic for live cells. Physiological changes induced by excessive illumination can lead to artifacts and abnormal responses. In this chapter we review major factors that contribute to phototoxicity and discuss practical solutions for circumventing photodamage. These solutions include the proper choice of image acquisition parameters, optimization of filter sets, hardware synchronization, and the use of intelligent illumination to avoid unnecessary light exposure. PMID:23931522

  8. The albedo of particles in reflection nebulae

    NASA Technical Reports Server (NTRS)

    Rush, W. F.

    1974-01-01

    The relation between the apparent angular extent of a reflection nebula and the apparent magnitude of its illuminating star was reconsidered under a less restrictive set of assumptions. A computational technique was developed which permits the use of fits to the observed m-log a values to determine the albedo of particles composing reflection nebulae, providing only that a phase function and average optical thickness are assumed. Multiple scattering, anisotropic phase functions, and illumination by the general star field are considered, and the albedo of reflection nebular particles appears to be the same as that for interstellar particles in general. The possibility of continuous fluorescence contributions to the surface brightness is also considered.

  9. Delayed Luminescence and Biophotons from Biological Materials

    NASA Astrophysics Data System (ADS)

    Knoesel, Ernst; Hann, Patrick; Garzon, Maria; Pfeiffer, Erik; Lofland, Samuel

    2008-03-01

    There has recently been increased interest in the field of biophotonics, since it is a non-invasive technique. Many biological systems, such as yeast, bacteria, leaves, seeds, and algae display the unusual phenomenon of a weak, delayed luminescence on the timescale of seconds to minutes after transient illumination. It is also observed that the time decay of the biophotonic emission is not exponential, even after the delay, and that there can be oscillations in intensity with time, which depend on the duration of the illumination. Results from two types of yeast, i.e. bread yeast, and saccharomyces, as well as those from several types of algae are presented. Possible mechanisms for the source of the ultraweak photon emission are discussed.

  10. Optimization of solar cells for air mass zero operation and a study of solar cells at high temperatures, phase 2

    NASA Technical Reports Server (NTRS)

    Hovel, H.; Woodall, J. M.

    1976-01-01

    Crystal growth procedures, fabrication techniques, and theoretical analysis were developed in order to make GaAlAs-GaAs solar cell structures which exhibit high performance at air mass 0 illumination and high temperature conditions.

  11. Automated inspection of bread and loaves

    NASA Astrophysics Data System (ADS)

    Batchelor, Bruce G.

    1993-08-01

    The prospects for building practical automated inspection machines, capable of detecting the following faults in ordinary, everyday loaves are reviewed: (1) foreign bodies, using X-rays, (2) texture changes, using glancing illumination, mathematical morphology and Neural Net learning techniques, and (3) shape deformations, using structured lighting and simple geometry.

  12. Neurobiology Research Findings: How the Brain Works during Reading

    ERIC Educational Resources Information Center

    Kweldju, Siusana

    2015-01-01

    In the past, neurobiology for reading was identical with neuropathology. Today, however, the advancement of modern neuroimaging techniques has contributed to the understanding of the reading processes of normal individuals. Neurobiology findings today have uncovered and illuminated the fundamental neural mechanism of reading. The findings have…

  13. Near-field three-dimensional radar imaging techniques and applications.

    PubMed

    Sheen, David; McMakin, Douglas; Hall, Thomas

    2010-07-01

    Three-dimensional radio frequency imaging techniques have been developed for a variety of near-field applications, including radar cross-section imaging, concealed weapon detection, ground penetrating radar imaging, through-barrier imaging, and nondestructive evaluation. These methods employ active radar transceivers that operate at various frequency ranges covering a wide range, from less than 100 MHz to in excess of 350 GHz, with the frequency range customized for each application. Computational wavefront reconstruction imaging techniques have been developed that optimize the resolution and illumination quality of the images. In this paper, rectilinear and cylindrical three-dimensional imaging techniques are described along with several application results.

  14. A new dimension in endo surgery: Micro endo surgery

    PubMed Central

    Pecora, Gabriele Edoardo; Pecora, Camilla Nicole

    2015-01-01

    There is an immense difference between tradizional Endodontic Surgery and Micro-Endo Surgery. Microsurgical techniques made possible and accessible results,that were unimaginable before. Under microscopic control,the operative techniques reached continous changes,allowing a better precision and quality standards. The dramatic evolution from Endo Surgery to Micro-Endo Surgery has enlarged the horizon of therapeutic options. Illumination and magnification through the Microscope has fundamentally and radically changed the way endo surgery can be performed. PMID:25657519

  15. Novel Engineered Compound Semiconductor Heterostructures for Advanced Electronics Applications

    DTIC Science & Technology

    1992-06-22

    Mechanism of light -induced reactivation of acceptors in p-type hydrogenated gallium arsenide. I. Szafranek, M. Szafranek, and G.E. Stillman. Phys. Rev.B...observed in these data. The heterojunc- techniques employed were first developed in tion is illuminated through the InP substrate with the light of GaAs-Al... light . The photocurrent was detected using conventional chopper and lock-in amplifier ’ 1h s techniques. A pyroelectric detector was used as a reference

  16. Whole-organ atlas imaged by label-free high-resolution photoacoustic microscopy assisted by a microtome

    NASA Astrophysics Data System (ADS)

    Wong, Terence T. W.; Zhang, Ruiying; Hsu, Hsun-Chia; Maslov, Konstantin I.; Shi, Junhui; Chen, Ruimin; Shung, K. Kirk; Zhou, Qifa; Wang, Lihong V.

    2018-02-01

    In biomedical imaging, all optical techniques face a fundamental trade-off between spatial resolution and tissue penetration. Therefore, obtaining an organelle-level resolution image of a whole organ has remained a challenging and yet appealing scientific pursuit. Over the past decade, optical microscopy assisted by mechanical sectioning or chemical clearing of tissue has been demonstrated as a powerful technique to overcome this dilemma, one of particular use in imaging the neural network. However, this type of techniques needs lengthy special preparation of the tissue specimen, which hinders broad application in life sciences. Here, we propose a new label-free three-dimensional imaging technique, named microtomy-assisted photoacoustic microscopy (mPAM), for potentially imaging all biomolecules with 100% endogenous natural staining in whole organs with high fidelity. We demonstrate the first label-free mPAM, using UV light for label-free histology-like imaging, in whole organs (e.g., mouse brains), most of them formalin-fixed and paraffin- or agarose-embedded for minimal morphological deformation. Furthermore, mPAM with dual wavelength illuminations is also employed to image a mouse brain slice, demonstrating the potential for imaging of multiple biomolecules without staining. With visible light illumination, mPAM also shows its deep tissue imaging capability, which enables less slicing and hence reduces sectioning artifacts. mPAM could potentially provide a new insight for understanding complex biological organs.

  17. Two-Dimensional Standing Wave Total Internal Reflection Fluorescence Microscopy: Superresolution Imaging of Single Molecular and Biological Specimens

    PubMed Central

    Chung, Euiheon; Kim, Daekeun; Cui, Yan; Kim, Yang-Hyo; So, Peter T. C.

    2007-01-01

    The development of high resolution, high speed imaging techniques allows the study of dynamical processes in biological systems. Lateral resolution improvement of up to a factor of 2 has been achieved using structured illumination. In a total internal reflection fluorescence microscope, an evanescence excitation field is formed as light is total internally reflected at an interface between a high and a low index medium. The <100 nm penetration depth of evanescence field ensures a thin excitation region resulting in low background fluorescence. We present even higher resolution wide-field biological imaging by use of standing wave total internal reflection fluorescence (SW-TIRF). Evanescent standing wave (SW) illumination is used to generate a sinusoidal high spatial frequency fringe pattern on specimen for lateral resolution enhancement. To prevent thermal drift of the SW, novel detection and estimation of the SW phase with real-time feedback control is devised for the stabilization and control of the fringe phase. SW-TIRF is a wide-field superresolution technique with resolution better than a fifth of emission wavelength or ∼100 nm lateral resolution. We demonstrate the performance of the SW-TIRF microscopy using one- and two-directional SW illumination with a biological sample of cellular actin cytoskeleton of mouse fibroblast cells as well as single semiconductor nanocrystal molecules. The results confirm the superior resolution of SW-TIRF in addition to the merit of a high signal/background ratio from TIRF microscopy. PMID:17483188

  18. The development and progress of XeCl Excimer laser system

    NASA Astrophysics Data System (ADS)

    Zhang, Yongsheng; Ma, Lianying; Wang, Dahui; Zhao, Xueqing; Zhu, Yongxiang; Hu, Yun; Qian, Hang; Shao, Bibo; Yi, Aiping; Liu, Jingru

    2015-05-01

    A large angularly multiplexed XeCl Excimer laser system is under development at the Northwest Institute of Nuclear Technology (NINT). It is designed to explore the technical issues of uniform and controllable target illumination. Short wavelength, uniform and controllable target illumination is the fundamental requirement of high energy density physics research using large laser facility. With broadband, extended light source and multi-beam overlapping techniques, rare gas halide Excimer laser facility will provide uniform target illumination theoretically. Angular multiplexing and image relay techniques are briefly reviewed and some of the limitations are examined to put it more practical. The system consists of a commercial oscillator front end, three gas discharge amplifiers, two electron beam pumped amplifiers and the optics required to relay, encode and decode the laser beam. An 18 lens array targeting optics direct and focus the laser in the vacuum target chamber. The system is operational and currently undergoing tests. The total 18 beams output energy is more than 100J and the pulse width is 7ns (FWHM), the intensities on the target will exceed 1013W/cm2. The aberration of off-axis imaging optics at main amplifier should be minimized to improve the final image quality at the target. Automatic computer controlled alignment of the whole system is vital to efficiency and stability of the laser system, an array of automatic alignment model is under test and will be incorporated in the system soon.

  19. Assessing resolution in live cell structured illumination microscopy

    NASA Astrophysics Data System (ADS)

    Pospíšil, Jakub; Fliegel, Karel; Klíma, Miloš

    2017-12-01

    Structured Illumination Microscopy (SIM) is a powerful super-resolution technique, which is able to enhance the resolution of optical microscope beyond the Abbe diffraction limit. In the last decade, numerous SIM methods that achieve the resolution of 100 nm in the lateral dimension have been developed. The SIM setups with new high-speed cameras and illumination pattern generators allow rapid acquisition of the live specimen. Therefore, SIM is widely used for investigation of the live structures in molecular and live cell biology. Quantitative evaluation of resolution enhancement in a real sample is essential to describe the efficiency of super-resolution microscopy technique. However, measuring the resolution of a live cell sample is a challenging task. Based on our experimental findings, the widely used Fourier ring correlation (FRC) method does not seem to be well suited for measuring the resolution of SIM live cell video sequences. Therefore, the resolution assessing methods based on Fourier spectrum analysis are often used. We introduce a measure based on circular average power spectral density (PSDca) estimated from a single SIM image (one video frame). PSDca describes the distribution of the power of a signal with respect to its spatial frequency. Spatial resolution corresponds to the cut-off frequency in Fourier space. In order to estimate the cut-off frequency from a noisy signal, we use a spectral subtraction method for noise suppression. In the future, this resolution assessment approach might prove useful also for single-molecule localization microscopy (SMLM) live cell imaging.

  20. LiNbO{sub 3}: A photovoltaic substrate for massive parallel manipulation and patterning of nano-objects

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Carrascosa, M.; García-Cabañes, A.; Jubera, M.

    The application of evanescent photovoltaic (PV) fields, generated by visible illumination of Fe:LiNbO{sub 3} substrates, for parallel massive trapping and manipulation of micro- and nano-objects is critically reviewed. The technique has been often referred to as photovoltaic or photorefractive tweezers. The main advantage of the new method is that the involved electrophoretic and/or dielectrophoretic forces do not require any electrodes and large scale manipulation of nano-objects can be easily achieved using the patterning capabilities of light. The paper describes the experimental techniques for particle trapping and the main reported experimental results obtained with a variety of micro- and nano-particles (dielectricmore » and conductive) and different illumination configurations (single beam, holographic geometry, and spatial light modulator projection). The report also pays attention to the physical basis of the method, namely, the coupling of the evanescent photorefractive fields to the dielectric response of the nano-particles. The role of a number of physical parameters such as the contrast and spatial periodicities of the illumination pattern or the particle deposition method is discussed. Moreover, the main properties of the obtained particle patterns in relation to potential applications are summarized, and first demonstrations reviewed. Finally, the PV method is discussed in comparison to other patterning strategies, such as those based on the pyroelectric response and the electric fields associated to domain poling of ferroelectric materials.« less

  1. eduSPIM: Light Sheet Microscopy in the Museum.

    PubMed

    Jahr, Wiebke; Schmid, Benjamin; Weber, Michael; Huisken, Jan

    2016-01-01

    Light sheet microscopy (or selective plane illumination microscopy) is an important imaging technique in the life sciences. At the same time, this technique is also ideally suited for community outreach projects, because it produces visually appealing, highly dynamic images of living organisms and its working principle can be understood with basic optics knowledge. Still, the underlying concepts are widely unknown to the non-scientific public. On the occasion of the UNESCO International Year of Light, a technical museum in Dresden, Germany, launched a special, interactive exhibition. We built a fully functional, educational selective plane illumination microscope (eduSPIM) to demonstrate how developments in microscopy promote discoveries in biology. To maximize educational impact, we radically reduced a standard light sheet microscope to its essential components without compromising functionality and incorporated stringent safety concepts beyond those needed in the lab. Our eduSPIM system features one illumination and one detection path and a sealed sample chamber. We image fixed zebrafish embryos with fluorescent vasculature, because the structure is meaningful to laymen and visualises the optical principles of light sheet microscopy. Via a simplified interface, visitors acquire fluorescence and transmission data simultaneously. The universal concepts presented here may also apply to other scientific approaches that are communicated to laymen in interactive settings. The specific eduSPIM design is adapted easily for various outreach and teaching activities. eduSPIM may even prove useful for labs needing a simple SPIM. A detailed parts list and schematics to rebuild eduSPIM are provided.

  2. Empirical, metagenomic, and computational techniques illuminate the mechanisms by which fungicides compromise bee health

    USDA-ARS?s Scientific Manuscript database

    Because disease can be devastating to crops, growers often spray fungicides as preventative measures. Unfortunately, many sprays are applied to in-bloom crops, which expose bees to fungicide residues. Generally considered “bee-safe,” fungicides are applied globally on flowering crops. However, there...

  3. Interpretive Responses in Reading History and Biology: An Exploratory Study

    ERIC Educational Resources Information Center

    Fareed, Ahmed A.

    1971-01-01

    Explores the interpretive processes of 12 sixth-grade pupils, using the recorded interview technique. Concludes that readers use the processes of reproduction, inquiry, emotional reaction, rational judgment, appreciation, association, and illumination, and that the nature of the reading material influences the types of interpretive responses. (VJ)

  4. Evaluation of pavement edge inset and low level illumination lights in fog : interim report no. 1.

    DOT National Transportation Integrated Search

    1973-01-01

    The Virginia Highway Research Council was asked to search for ways of making travel safer on fogbound highways. All literature obtainable on fog research was reviewed and after an in-depth review of fog abatement techniques it became apparent that ne...

  5. How Does Professional Development Improve Teaching?

    ERIC Educational Resources Information Center

    Kennedy, Mary M.

    2016-01-01

    Professional development programs are based on different theories of how students learn and different theories of how teachers learn. Reviewers often sort programs according to design features such as program duration, intensity, or the use of specific techniques such as coaches or online lessons, but these categories do not illuminate the…

  6. Particle detection for patterned wafers of 100nm design rule by evanescent light illumination: analysis of evanescent light scattering using Finite-Difference Time-Domain (FDTD) method

    NASA Astrophysics Data System (ADS)

    Yoshioka, Toshie; Miyoshi, Takashi; Takaya, Yasuhiro

    2005-12-01

    To realize high productivity and reliability of the semiconductor, patterned wafers inspection technology to maintain high yield becomes essential in modern semiconductor manufacturing processes. As circuit feature is scaled below 100nm, the conventional imaging and light scattering methods are impossible to apply to the patterned wafers inspection technique, because of diffraction limit and lower S/N ratio. So, we propose a new particle detection method using annular evanescent light illumination. In this method, a converging annular light used as a light source is incident on a micro-hemispherical lens. When the converging angle is larger than critical angle, annular evanescent light is generated under the bottom surface of the hemispherical lens. Evanescent light is localized near by the bottom surface and decays exponentially away from the bottom surface. So, the evanescent light selectively illuminates the particles on the patterned wafer surface, because it can't illuminate the patterned wafer surface. The proposed method evaluates particles on a patterned wafer surface by detecting scattered evanescent light distribution from particles. To analyze the fundamental characteristics of the proposed method, the computer simulation was performed using FDTD method. The simulation results show that the proposed method is effective for detecting 100nm size particle on patterned wafer of 100nm lines and spaces, particularly under the condition that the evanescent light illumination with p-polarization and parallel incident to the line orientation. Finally, the experiment results suggest that 220nm size particle on patterned wafer of about 200nm lines and spaces can be detected.

  7. Trypsin treatment of reaction centers from Rhodobacter sphaeroides in the dark and under illumination: protein structural changes follow charge separation.

    PubMed

    Brzezinski, P; Andréasson, L E

    1995-06-06

    Reaction centers from Rhodobacter sphaeroides R-26 were treated with trypsin in the dark and during illumination (in the charge-separated state). Trypsination resulted in a time-dependent modification of the reaction centers, reflected in changes in the charge recombination rate, in the inhibition of QA- to QB electron transfer, and eventually to inhibition of charge separation. Comparisons of centers with ubiquinone or anthraquinone in the QA site, in which the charge recombination pathways are different, indicate that trypsination affects charges close to the QA(-)-binding site. Studies of light-induced voltage changes from moving charges in reaction centers incorporated in lipid layers on a Teflon film, a technique which allows the discrimination of effects on donor and acceptor sides, indicate that the acceptor side is preferentially degraded by trypsin in the dark. Tryptic digestion during illumination generally resulted in a marked strengthening and acceleration of the effects seen already during dark treatment, but new effects were also detected in gel electrophoretic peptide patterns, in optical spectra, and in the kinetic measurements. Optical kinetic measurements revealed that the donor side of the reaction centers became susceptible to modification by trypsin during illumination as seen in the value of the binding constant for soluble cytochrome c2 which increased by a factor of 2, whereas it was much less affected after trypsination of reaction centers in the dark. The influence of illumination on the rate and mode by which trypsin acts on reaction centers indicates that changes in the protein conformation follow charge separation.(ABSTRACT TRUNCATED AT 250 WORDS)

  8. Optimization of low-level light therapy's illumination parameters for spinal cord injury in a rat model

    NASA Astrophysics Data System (ADS)

    Shuaib, Ali; Bourisly, Ali

    2018-02-01

    Spinal cord injury (SCI) can result in complete or partial loss of sensation and motor function due to interruption along the severed axonal tract(s). SCI can result in tetraplegia or paraplegia, which can have prohibitive lifetime medical costs and result in shorter life expectancy. A promising therapeutic technique that is currently in experimental phase and that has the potential to be used to treat SCI is Low-level light therapy (LLLT). Preclinical studies have shown that LLLT has reparative and regenerative capabilities on transected spinal cords, and that LLLT can enhance axonal sprouting in animal models. However, despite the promising effects of LLLT as a therapy for SCI, it remains difficult to compare published results due to the use of a wide range of illumination parameters (i.e. different wavelengths, fluences, beam types, and beam diameter), and due to the lack of a standardized experimental protocol(s). Before any clinical applications of LLLT for SCI treatment, it is crucial to standardize illumination parameters and efficacy of light delivery. Therefore, in this study we aim to evaluate the light fluence distribution on a 3D voxelated SCI rat model with different illumination parameters (wavelengths: 660, 810, and 980 nm; beam types: Gaussian and Flat; and beam diameters: 0.1, 0.2, and 0.3 cm) for LLLT using Monte Carlo simulation. This study provides an efficient approach to guide researchers in optimizing the illumination parameters for LLLT spinal cord injury in an experimental model and will aid in quantitative and qualitative standardization of LLLT-SCI treatment.

  9. Developing new optical imaging techniques for single particle and molecule tracking in live cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sun, Wei

    Differential interference contrast (DIC) microscopy is a far-field as well as wide-field optical imaging technique. Since it is non-invasive and requires no sample staining, DIC microscopy is suitable for tracking the motion of target molecules in live cells without interfering their functions. In addition, high numerical aperture objectives and condensers can be used in DIC microscopy. The depth of focus of DIC is shallow, which gives DIC much better optical sectioning ability than those of phase contrast and dark field microscopies. In this work, DIC was utilized to study dynamic biological processes including endocytosis and intracellular transport in live cells.more » The suitability of DIC microscopy for single particle tracking in live cells was first demonstrated by using DIC to monitor the entire endocytosis process of one mesoporous silica nanoparticle (MSN) into a live mammalian cell. By taking advantage of the optical sectioning ability of DIC, we recorded the depth profile of the MSN during the endocytosis process. The shape change around the nanoparticle due to the formation of a vesicle was also captured. DIC microscopy was further modified that the sample can be illuminated and imaged at two wavelengths simultaneously. By using the new technique, noble metal nanoparticles with different shapes and sizes were selectively imaged. Among all the examined metal nanoparticles, gold nanoparticles in rod shapes were found to be especially useful. Due to their anisotropic optical properties, gold nanorods showed as diffraction-limited spots with disproportionate bright and dark parts that are strongly dependent on their orientation in the 3D space. Gold nanorods were developed as orientation nanoprobes and were successfully used to report the self-rotation of gliding microtubules on kinesin coated substrates. Gold nanorods were further used to study the rotational motions of cargoes during the endocytosis and intracellular transport processes in live mammalian cells. New rotational information was obtained: (1) during endocytosis, cargoes lost their rotation freedom at the late stage of internalization; (2) cargoes performed train-like motion when they were transported along the microtubule network by motor proteins inside live cells; (3) During the pause stage of fast axonal transport, cargoes were still bound to the microtubule tracks by motor proteins. Total internal reflection fluorescence microscopy (TIRFM) is another non-invasive and far-field optical imaging technique. Because of its near-field illumination mechanism, TIRFM has better axial resolution than epi-fluorescence microscopy and confocal microscopy. In this work, an auto-calibrated, prism type, angle-scanning TIRFM instrument was built. The incident angle can range from subcritical angles to nearly 90°, with an angle interval less than 0.2°. The angle precision of the new instrument was demonstrated through the finding of the surface plasmon resonance (SPR) angle of metal film coated glass slide. The new instrument improved significantly the precision in determining the axial position. As a result, the best obtained axial resolution was ~ 8 nm, which is better than current existing instruments similar in function. The instrument was further modified to function as a pseudo TIRF microscope. The illumination depth can be controlled by changing the incident angle of the excitation laser beam or adjusting the horizontal position of the illumination laser spot on the prism top surface. With the new technique, i.e., variable-illumination-depth pseudo TIRF microscopy, the whole cell body from bottom to top was scanned.« less

  10. Design methodology for micro-discrete planar optics with minimum illumination loss for an extended source.

    PubMed

    Shim, Jongmyeong; Park, Changsu; Lee, Jinhyung; Kang, Shinill

    2016-08-08

    Recently, studies have examined techniques for modeling the light distribution of light-emitting diodes (LEDs) for various applications owing to their low power consumption, longevity, and light weight. The energy mapping technique, a design method that matches the energy distributions of an LED light source and target area, has been the focus of active research because of its design efficiency and accuracy. However, these studies have not considered the effects of the emitting area of the LED source. Therefore, there are limitations to the design accuracy for small, high-power applications with a short distance between the light source and optical system. A design method for compensating for the light distribution of an extended source after the initial optics design based on a point source was proposed to overcome such limits, but its time-consuming process and limited design accuracy with multiple iterations raised the need for a new design method that considers an extended source in the initial design stage. This study proposed a method for designing discrete planar optics that controls the light distribution and minimizes the optical loss with an extended source and verified the proposed method experimentally. First, the extended source was modeled theoretically, and a design method for discrete planar optics with the optimum groove angle through energy mapping was proposed. To verify the design method, design for the discrete planar optics was achieved for applications in illumination for LED flash. In addition, discrete planar optics for LED illuminance were designed and fabricated to create a uniform illuminance distribution. Optical characterization of these structures showed that the design was optimal; i.e., we plotted the optical losses as a function of the groove angle, and found a clear minimum. Simulations and measurements showed that an efficient optical design was achieved for an extended source.

  11. a Positron 2D-ACAR Study of the Silicon-Dioxide Interface and the Point Defects in the Semi-Insulating Gallium Arsenide

    NASA Astrophysics Data System (ADS)

    Peng, Jianping

    The SiO_2-Si system has been the subject of extensive study for several decades. Particular interest has been paid to the interface between Si single crystal and the amorphous SiO_2 which determines the properties and performances of devices. This is significant because of the importance of Si technology in the semiconductor industry. The development of the high-intensity slow positron beam at Brookhaven National Laboratory make it possible to study this system for the first time using the positron two-dimensional angular correlation of annihilation radiation (2D-ACAR) technique. 2D-ACAR is a well established and is a non-destructive microscopic probe for studying the electronic structure of materials, and for doing the depth-resolved measurements. Some unique information was obtained from the measurements performed on the SiO_2-Si system: Positronium (Ps) atoms formation and trapping in microvoids in both oxide and interface regions; and positron annihilation at vacancy-like defects in the interface region which can be attributed to the famous Pb centers. The discovery of the microvoids in the interface region may have some impact on the fabrication of the next generation electronic devices. Using the conventional 2D-ACAR setup with a ^{22}Na as positron source, we also studied the native arsenic (As) vacancy in the semi -insulating gallium-arsenide (SI-GaAs), coupled with in situ infrared light illumination. The defect spectrum was obtained by comparing the spectrum taken without photo -illumination to the spectrum taken with photo-illumination. The photo-illumination excited electrons from valence band to the defect level so that positrons can become localized in the defects. The two experiments may represent a new direction of the application of positron 2D-ACAR technique on the solid state physics and materials sciences.

  12. Fast functional imaging of multiple brain regions in intact zebrafish larvae using selective plane illumination microscopy.

    PubMed

    Panier, Thomas; Romano, Sebastián A; Olive, Raphaël; Pietri, Thomas; Sumbre, Germán; Candelier, Raphaël; Debrégeas, Georges

    2013-01-01

    The optical transparency and the small dimensions of zebrafish at the larval stage make it a vertebrate model of choice for brain-wide in-vivo functional imaging. However, current point-scanning imaging techniques, such as two-photon or confocal microscopy, impose a strong limit on acquisition speed which in turn sets the number of neurons that can be simultaneously recorded. At 5 Hz, this number is of the order of one thousand, i.e., approximately 1-2% of the brain. Here we demonstrate that this limitation can be greatly overcome by using Selective-plane Illumination Microscopy (SPIM). Zebrafish larvae expressing the genetically encoded calcium indicator GCaMP3 were illuminated with a scanned laser sheet and imaged with a camera whose optical axis was oriented orthogonally to the illumination plane. This optical sectioning approach was shown to permit functional imaging of a very large fraction of the brain volume of 5-9-day-old larvae with single- or near single-cell resolution. The spontaneous activity of up to 5,000 neurons was recorded at 20 Hz for 20-60 min. By rapidly scanning the specimen in the axial direction, the activity of 25,000 individual neurons from 5 different z-planes (approximately 30% of the entire brain) could be simultaneously monitored at 4 Hz. Compared to point-scanning techniques, this imaging strategy thus yields a ≃20-fold increase in data throughput (number of recorded neurons times acquisition rate) without compromising the signal-to-noise ratio (SNR). The extended field of view offered by the SPIM method allowed us to directly identify large scale ensembles of neurons, spanning several brain regions, that displayed correlated activity and were thus likely to participate in common neural processes. The benefits and limitations of SPIM for functional imaging in zebrafish as well as future developments are briefly discussed.

  13. Jet oscillations caused by vorticity interactions with shock waves

    NASA Technical Reports Server (NTRS)

    Parthasarathy, S. P.; Harstad, K.; Massier, P. F.

    1981-01-01

    A linear theory is developed for the amplification of disturbances along a jet containing shock waves. The theory indicates that near grazing angles (i.e., wave angles near 90 deg) horizontal vorticity is greatly amplified after passing through the two shock waves that exist in a shock cell. The cumulative amplification and the mode that is amplified most can be obtained if the changes in shock parameters from cell to cell are known. Rapid rates of growth of disturbances are exhibited by shadowgraphs and rates of angular displacement of about 10 are observed. The linear two-dimensional theory also indicates that such rates of amplification occur, and that the behavior of a two-dimensional jet is qualitatively similar to that of a round jet.

  14. Microgravity

    NASA Image and Video Library

    1995-10-25

    The Isothermal Dendritic Growth Experiment (IDGE), flown on three Space Shuttle missions, is yielding new insights into virtually all industrially relevant metal and alloy forming operations. IDGE used transparent organic liquids that form dendrites (treelike structures) similar to the crystals that form inside metal alloys. Comparing Earth-based and space-based dentrite growth velocity, tip size and shape provid a better understanding of the fundamentals of dentritic growth, including gravity's effects. These shadowgraphic images show succinonitrile (SCN) dentrites growing in a melt (liquid). The space-grown crystals also have cleaner, better defined sidebranches. IDGE was developed by Rensselaer Polytechnic Institude (RPI) and NASA/ Glenn Research Center(GRC). Advanced follow-on experiments are being developed for flight on the International Space Station. Photo gredit: NASA/Glenn Research Center

  15. Numerical study of supersonic combustors by multi-block grids with mismatched interfaces

    NASA Technical Reports Server (NTRS)

    Moon, Young J.

    1990-01-01

    A three dimensional, finite rate chemistry, Navier-Stokes code was extended to a multi-block code with mismatched interface for practical calculations of supersonic combustors. To ensure global conservation, a conservative algorithm was used for the treatment of mismatched interfaces. The extended code was checked against one test case, i.e., a generic supersonic combustor with transverse fuel injection, examining solution accuracy, convergence, and local mass flux error. After testing, the code was used to simulate the chemically reacting flow fields in a scramjet combustor with parallel fuel injectors (unswept and swept ramps). Computational results were compared with experimental shadowgraph and pressure measurements. Fuel-air mixing characteristics of the unswept and swept ramps were compared and investigated.

  16. Profiling of barrier capacitance and spreading resistance using a transient linearly increasing voltage technique.

    PubMed

    Gaubas, E; Ceponis, T; Kusakovskij, J

    2011-08-01

    A technique for the combined measurement of barrier capacitance and spreading resistance profiles using a linearly increasing voltage pulse is presented. The technique is based on the measurement and analysis of current transients, due to the barrier and diffusion capacitance, and the spreading resistance, between a needle probe and sample. To control the impact of deep traps in the barrier capacitance, a steady state bias illumination with infrared light was employed. Measurements of the spreading resistance and barrier capacitance profiles using a stepwise positioned probe on cross sectioned silicon pin diodes and pnp structures are presented.

  17. Photochemical internalisation of chemotherapy potentiates killing of multidrug-resistant breast and bladder cancer cells.

    PubMed

    Adigbli, D K; Wilson, D G G; Farooqui, N; Sousi, E; Risley, P; Taylor, I; Macrobert, A J; Loizidou, M

    2007-08-20

    Multidrug resistance (MDR) is the major confounding factor in adjuvant solid tumour chemotherapy. Increasing intracellular amounts of chemotherapeutics to circumvent MDR may be achieved by a novel delivery method, photochemical internalisation (PCI). PCI consists of the co-administration of drug and photosensitiser; upon light activation the latter induces intracellular release of organelle-bound drug. We investigated whether co-administration of hypericin (photosensitiser) with mitoxantrone (MTZ, chemotherapeutic) plus illumination potentiates cytotoxicity in MDR cancer cells. We mapped the extent of intracellular co-localisation of drug/photosensitiser. We determined whether PCI altered drug-excreting efflux pump P-glycoprotein (Pgp) expression or function in MDR cells. Bladder and breast cancer cells and their Pgp-overexpressing MDR subclones (MGHU1, MGHU1/R, MCF-7, MCF-7/R) were given hypericin/MTZ combinations, with/without blue-light illumination. Pilot experiments determined appropriate sublethal doses for each. Viability was determined by the 3-[4,5-dimethylthiazolyl]-2,5-diphenyltetrazolium bromide assay. Intracellular localisation was mapped by confocal microscopy. Pgp expression was detected by immunofluorescence and Pgp function investigated by Rhodamine123 efflux on confocal microscopy. MTZ alone (0.1-0.2 microg ml(-1)) killed up to 89% of drug-sensitive cells; MDR cells exhibited less cytotoxicity (6-28%). Hypericin (0.1-0.2 microM) effects were similar for all cells; light illumination caused none or minimal toxicity. In combination, MTZ /hypericin plus illumination, potentiated MDR cell killing, vs hypericin or MTZ alone. (MGHU1/R: 38.65 and 36.63% increase, P<0.05; MCF-7/R: 80.2 and 46.1% increase, P<0.001). Illumination of combined MTZ/hypericin increased killing by 28.15% (P<0.05 MGHU1/R) compared to dark controls. Intracytoplasmic vesicular co-localisation of MTZ/hypericin was evident before illumination and at serial times post-illumination. MTZ was always found in sensitive cell nuclei, but not in dark resistant cell nuclei. In illuminated resistant cells there was some mobilisation of MTZ into the nucleus. Pgp expression remained unchanged, regardless of drug exposure. Pgp efflux was blocked by the Pgp inhibitor verapamil (positive control) but not impeded by hypericin. The increased killing of MDR cancer cells demonstrated is consistent with PCI. PCI is a promising technique for enhancing treatment efficacy.

  18. Photochemical internalisation of chemotherapy potentiates killing of multidrug-resistant breast and bladder cancer cells

    PubMed Central

    Adigbli, D K; Wilson, D G G; Farooqui, N; Sousi, E; Risley, P; Taylor, I; MacRobert, A J; Loizidou, M

    2007-01-01

    Multidrug resistance (MDR) is the major confounding factor in adjuvant solid tumour chemotherapy. Increasing intracellular amounts of chemotherapeutics to circumvent MDR may be achieved by a novel delivery method, photochemical internalisation (PCI). PCI consists of the co-administration of drug and photosensitiser; upon light activation the latter induces intracellular release of organelle-bound drug. We investigated whether co-administration of hypericin (photosensitiser) with mitoxantrone (MTZ, chemotherapeutic) plus illumination potentiates cytotoxicity in MDR cancer cells. We mapped the extent of intracellular co-localisation of drug/photosensitiser. We determined whether PCI altered drug-excreting efflux pump P-glycoprotein (Pgp) expression or function in MDR cells. Bladder and breast cancer cells and their Pgp-overexpressing MDR subclones (MGHU1, MGHU1/R, MCF-7, MCF-7/R) were given hypericin/MTZ combinations, with/without blue-light illumination. Pilot experiments determined appropriate sublethal doses for each. Viability was determined by the 3-[4,5-dimethylthiazolyl]-2,5-diphenyltetrazolium bromide assay. Intracellular localisation was mapped by confocal microscopy. Pgp expression was detected by immunofluorescence and Pgp function investigated by Rhodamine123 efflux on confocal microscopy. MTZ alone (0.1–0.2 μg ml−1) killed up to 89% of drug-sensitive cells; MDR cells exhibited less cytotoxicity (6–28%). Hypericin (0.1–0.2 μM) effects were similar for all cells; light illumination caused none or minimal toxicity. In combination, MTZ /hypericin plus illumination, potentiated MDR cell killing, vs hypericin or MTZ alone. (MGHU1/R: 38.65 and 36.63% increase, P<0.05; MCF-7/R: 80.2 and 46.1% increase, P<0.001). Illumination of combined MTZ/hypericin increased killing by 28.15% (P<0.05 MGHU1/R) compared to dark controls. Intracytoplasmic vesicular co-localisation of MTZ/hypericin was evident before illumination and at serial times post-illumination. MTZ was always found in sensitive cell nuclei, but not in dark resistant cell nuclei. In illuminated resistant cells there was some mobilisation of MTZ into the nucleus. Pgp expression remained unchanged, regardless of drug exposure. Pgp efflux was blocked by the Pgp inhibitor verapamil (positive control) but not impeded by hypericin. The increased killing of MDR cancer cells demonstrated is consistent with PCI. PCI is a promising technique for enhancing treatment efficacy. PMID:17667930

  19. White light velocity interferometer

    DOEpatents

    Erskine, D.J.

    1999-06-08

    The invention is a technique that allows the use of broadband and incoherent illumination. Although denoted white light velocimetry, this principle can be applied to any wave phenomenon. For the first time, powerful, compact or inexpensive sources can be used for remote target velocimetry. These include flash and arc lamps, light from detonations, pulsed lasers, chirped frequency lasers, and lasers operating simultaneously in several wavelengths. The technique is demonstrated with white light from an incandescent source to measure a target moving at 16 m/s. 41 figs.

  20. Bioprinting Living Biofilms through Optogenetic Manipulation.

    PubMed

    Huang, Yajia; Xia, Aiguo; Yang, Guang; Jin, Fan

    2018-04-18

    In this paper, we present a new strategy for microprinting dense bacterial communities with a prescribed organization on a substrate. Unlike conventional bioprinting techniques that require bioinks, through optogenetic manipulation, we directly manipulated the behaviors of Pseudomonas aeruginosa to allow these living bacteria to autonomically form patterned biofilms following prescribed illumination. The results showed that through optogenetic manipulation, patterned bacterial communities with high spatial resolution (approximately 10 μm) could be constructed in 6 h. Thus, optogenetic manipulation greatly increases the range of available bioprinting techniques.

  1. 3D reconstruction techniques made easy: know-how and pictures.

    PubMed

    Luccichenti, Giacomo; Cademartiri, Filippo; Pezzella, Francesca Romana; Runza, Giuseppe; Belgrano, Manuel; Midiri, Massimo; Sabatini, Umberto; Bastianello, Stefano; Krestin, Gabriel P

    2005-10-01

    Three-dimensional reconstructions represent a visual-based tool for illustrating the basis of three-dimensional post-processing such as interpolation, ray-casting, segmentation, percentage classification, gradient calculation, shading and illumination. The knowledge of the optimal scanning and reconstruction parameters facilitates the use of three-dimensional reconstruction techniques in clinical practise. The aim of this article is to explain the principles of multidimensional image processing in a pictorial way and the advantages and limitations of the different possibilities of 3D visualisation.

  2. White light velocity interferometer

    DOEpatents

    Erskine, David J.

    1997-01-01

    The invention is a technique that allows the use of broadband and incoherent illumination. Although denoted white light velocimetry, this principle can be applied to any wave phenomenon. For the first time, powerful, compact or inexpensive sources can be used for remote target velocimetry. These include flash and arc lamps, light from detonations, pulsed lasers, chirped frequency lasers, and lasers operating simultaneously in several wavelengths. The technique is demonstrated with white light from an incandescent source to measure a target moving at 16 m/s.

  3. White light velocity interferometer

    DOEpatents

    Erskine, David J.

    1999-01-01

    The invention is a technique that allows the use of broadband and incoherent illumination. Although denoted white light velocimetry, this principle can be applied to any wave phenomenon. For the first time, powerful, compact or inexpensive sources can be used for remote target velocimetry. These include flash and arc lamps, light from detonations, pulsed lasers, chirped frequency lasers, and lasers operating simultaneously in several wavelengths. The technique is demonstrated with white light from an incandescent source to measure a target moving at 16 m/s.

  4. White light velocity interferometer

    DOEpatents

    Erskine, D.J.

    1997-06-24

    The invention is a technique that allows the use of broadband and incoherent illumination. Although denoted white light velocimetry, this principle can be applied to any wave phenomenon. For the first time, powerful, compact or inexpensive sources can be used for remote target velocimetry. These include flash and arc lamps, light from detonations, pulsed lasers, chirped frequency lasers, and lasers operating simultaneously in several wavelengths. The technique is demonstrated with white light from an incandescent source to measure a target moving at 16 m/s. 41 figs.

  5. Measuring the Photocatalytic Breakdown of Crystal Violet Dye using a Light Emitting Diode Approach

    NASA Technical Reports Server (NTRS)

    Ryan, Robert E.; Underwood, Lauren W.; O'Neal, Duane; Pagnutti, Mary; Davis, Bruce A.

    2009-01-01

    A simple method to estimate the photocatalytic reactivity performance of spray-on titanium dioxide coatings for transmissive glass surfaces was developed. This novel technique provides a standardized method to evaluate the efficiency of photocatalytic material systems over a variety of illumination levels. To date, photocatalysis assessments have generally been conducted using mercury black light lamps. Illumination levels for these types of lamps are difficult to vary, consequently limiting their use for assessing material performance under a diverse range of simulated environmental conditions. This new technique uses an ultraviolet (UV) gallium nitride (GaN) light emitting diode (LED) array instead of a traditional black light to initiate and sustain photocatalytic breakdown. This method was tested with a UV-resistant dye (crystal violet) applied to a titanium dioxide coated glass slide. Experimental control is accomplished by applying crystal violet to both titanium dioxide coated slides and uncoated control slides. A slide is illuminated by the UV LED array, at various light levels representative of outdoor and indoor conditions, from the dye side of the slide. To monitor degradation of the dye over time, a temperature-stabilized white light LED, whose emission spectrum overlaps with the dye absorption spectrum, is used to illuminate the opposite side of the slide. Using a spectrometer, the amount of light from the white light LED transmitted through the slide as the dye degrades is monitored as a function of wavelength and time and is subsequently analyzed. In this way, the rate of degradation for photocatalytically coated versus uncoated slide surfaces can be compared. Results demonstrate that the dye absorption decreased much more rapidly on the photocatalytically coated slides than on the control uncoated slides, and that dye degradation is dependent on illumination level. For photocatalytic activity assessment purposes, this experimental configuration and methodology minimizes many external variable effects and enables small changes in absorption to be measured. This research also compares the advantages of this innovative LED light source design over traditional mercury black light systems and non- LED lamp approaches. This novel technology begins to address the growing need for a standard method that can assess the performance of photocatalytic materials before deployment for large scale, real world use.

  6. Generation of light-sheet at the end of multimode fibre (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Plöschner, Martin; Kollárová, Véra; Dostál, Zbyněk.; Nylk, Jonathan; Barton-Owen, Thomas; Ferrier, David E. K.; Chmelik, Radim; Dholakia, Kishan; Cizmár, TomáÅ.¡

    2017-02-01

    Light-sheet fluorescence microscopy is quickly becoming one of the cornerstone imaging techniques in biology as it provides rapid, three-dimensional sectioning of specimens at minimal levels of phototoxicity. It is very appealing to bring this unique combination of imaging properties into an endoscopic setting and be able to perform optical sectioning deep in tissues. Current endoscopic approaches for delivery of light-sheet illumination are based on single-mode optical fibre terminated by cylindrical gradient index lens. Such configuration generates a light-sheet plane that is axially fixed and a mechanical movement of either the sample or the endoscope is required to acquire three-dimensional information about the sample. Furthermore, the axial resolution of this technique is limited to 5um. The delivery of the light-sheet through the multimode fibre provides better axial resolution limited only by its numerical aperture, the light-sheet is scanned holographically without any mechanical movement, and multiple advanced light-sheet imaging modalities, such as Bessel and structured illumination Bessel beam, are intrinsically supported by the system due to the cylindrical symmetry of the fibre. We discuss the holographic techniques for generation of multiple light-sheet types and demonstrate the imaging on a sample of fluorescent beads fixed in agarose gel, as well as on a biological sample of Spirobranchus Lamarcki.

  7. Structured illumination diffuse optical tomography for noninvasive functional neuroimaging in mice.

    PubMed

    Reisman, Matthew D; Markow, Zachary E; Bauer, Adam Q; Culver, Joseph P

    2017-04-01

    Optical intrinsic signal (OIS) imaging has been a powerful tool for capturing functional brain hemodynamics in rodents. Recent wide field-of-view implementations of OIS have provided efficient maps of functional connectivity from spontaneous brain activity in mice. However, OIS requires scalp retraction and is limited to superficial cortical tissues. Diffuse optical tomography (DOT) techniques provide noninvasive imaging, but previous DOT systems for rodent neuroimaging have been limited either by sparse spatial sampling or by slow speed. Here, we develop a DOT system with asymmetric source-detector sampling that combines the high-density spatial sampling (0.4 mm) detection of a scientific complementary metal-oxide-semiconductor camera with the rapid (2 Hz) imaging of a few ([Formula: see text]) structured illumination (SI) patterns. Analysis techniques are developed to take advantage of the system's flexibility and optimize trade-offs among spatial sampling, imaging speed, and signal-to-noise ratio. An effective source-detector separation for the SI patterns was developed and compared with light intensity for a quantitative assessment of data quality. The light fall-off versus effective distance was also used for in situ empirical optimization of our light model. We demonstrated the feasibility of this technique by noninvasively mapping the functional response in the somatosensory cortex of the mouse following electrical stimulation of the forepaw.

  8. Bright field segmentation tomography (BFST) for use as surface identification in stereomicroscopy

    NASA Astrophysics Data System (ADS)

    Thiesse, Jacqueline R.; Namati, Eman; de Ryk, Jessica; Hoffman, Eric A.; McLennan, Geoffrey

    2004-07-01

    Stereomicroscopy is an important method for use in image acquisition because it provides a 3D image of an object when other microscopic techniques can only provide the image in 2D. One challenge that is being faced with this type of imaging is determining the top surface of a sample that has otherwise indistinguishable surface and planar characteristics. We have developed a system that creates oblique illumination and in conjunction with image processing, the top surface can be viewed. The BFST consists of the Leica MZ12 stereomicroscope with a unique attached lighting source. The lighting source consists of eight light emitting diodes (LED's) that are separated by 45-degree angles. Each LED in this system illuminates with a 20-degree viewing angle once per cycle with a shadow over the rest of the sample. Subsequently, eight segmented images are taken per cycle. After the images are captured they are stacked through image addition to achieve the full field of view, and the surface is then easily identified. Image processing techniques, such as skeletonization can be used for further enhancement and measurement. With the use of BFST, advances can be made in detecting surface features from metals to tissue samples, such as in the analytical assessment of pulmonary emphysema using the technique of mean linear intercept.

  9. Hyperspectral wide gap second derivative analysis for in vivo detection of cervical intraepithelial neoplasia

    NASA Astrophysics Data System (ADS)

    Zheng, Wenli; Wang, Chaojian; Chang, Shufang; Zhang, Shiwu; Xu, Ronald X.

    2015-12-01

    Hyperspectral reflectance imaging technique has been used for in vivo detection of cervical intraepithelial neoplasia. However, the clinical outcome of this technique is suboptimal owing to multiple limitations such as nonuniform illumination, high-cost and bulky setup, and time-consuming data acquisition and processing. To overcome these limitations, we acquired the hyperspectral data cube in a wavelength ranging from 600 to 800 nm and processed it by a wide gap second derivative analysis method. This method effectively reduced the image artifacts caused by nonuniform illumination and background absorption. Furthermore, with second derivative analysis, only three specific wavelengths (620, 696, and 772 nm) are needed for tissue classification with optimal separability. Clinical feasibility of the proposed image analysis and classification method was tested in a clinical trial where cervical hyperspectral images from three patients were used for classification analysis. Our proposed method successfully classified the cervix tissue into three categories of normal, inflammation and high-grade lesion. These classification results were coincident with those by an experienced gynecology oncologist after applying acetic acid. Our preliminary clinical study has demonstrated the technical feasibility for in vivo and noninvasive detection of cervical neoplasia without acetic acid. Further clinical research is needed in order to establish a large-scale diagnostic database and optimize the tissue classification technique.

  10. Hyperspectral wide gap second derivative analysis for in vivo detection of cervical intraepithelial neoplasia.

    PubMed

    Zheng, Wenli; Wang, Chaojian; Chang, Shufang; Zhang, Shiwu; Xu, Ronald X

    2015-12-01

    Hyperspectral reflectance imaging technique has been used for in vivo detection of cervical intraepithelial neoplasia. However, the clinical outcome of this technique is suboptimal owing to multiple limitations such as nonuniform illumination, high-cost and bulky setup, and time-consuming data acquisition and processing. To overcome these limitations, we acquired the hyperspectral data cube in a wavelength ranging from 600 to 800 nm and processed it by a wide gap second derivative analysis method. This method effectively reduced the image artifacts caused by nonuniform illumination and background absorption. Furthermore, with second derivative analysis, only three specific wavelengths (620, 696, and 772 nm) are needed for tissue classification with optimal separability. Clinical feasibility of the proposed image analysis and classification method was tested in a clinical trial where cervical hyperspectral images from three patients were used for classification analysis. Our proposed method successfully classified the cervix tissue into three categories of normal, inflammation and high-grade lesion. These classification results were coincident with those by an experienced gynecology oncologist after applying acetic acid. Our preliminary clinical study has demonstrated the technical feasibility for in vivo and noninvasive detection of cervical neoplasia without acetic acid. Further clinical research is needed in order to establish a large-scale diagnostic database and optimize the tissue classification technique.

  11. Two-dimensional microsphere quasi-crystal: fabrication and properties

    NASA Astrophysics Data System (ADS)

    Noginova, Natalia E.; Venkateswarlu, Putcha; Kukhtarev, Nickolai V.; Sarkisov, Sergey S.; Noginov, Mikhail A.; Caulfield, H. John; Curley, Michael J.

    1996-11-01

    2D quasi-crystals were fabricated from polystyrene microspheres and characterized for their structural, diffraction, and non-linear optics properties. The quasi- crystals were produced with the method based on Langmuir- Blodgett thin film technique. Illuminating the crystal with the laser beam, we observed the diffraction pattern in the direction of the beam propagation and in the direction of the back scattering, similar to the x-ray Laue pattern observed in regular crystals with hexagonal structure. The absorption spectrum of the quasi-crystal demonstrated two series of regular maxima and minima, with the spacing inversely proportional to the microspheres diameter. Illumination of the dye-doped microspheres crystal with Q- switched radiation of Nd:YAG laser showed the enhancement of non-linear properties, in particular, second harmonic generation.

  12. Non-destructive evaluation of water ingress in photovoltaic modules

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bora, Mihail; Kotovsky, Jack

    Systems and techniques for non-destructive evaluation of water ingress in photovoltaic modules include and/or are configured to illuminate a photovoltaic module comprising a photovoltaic cell and an encapsulant with at least one beam of light having a wavelength in a range from about 1400 nm to about 2700 nm; capture one or more images of the illuminated photovoltaic module, each image relating to a water content of the photovoltaic module; and determine a water content of the photovoltaic module based on the one or more images. Systems preferably include one or more of a light source, a moving mirror, amore » focusing lens, a beam splitter, a stationary mirror, an objective lens and an imaging module.« less

  13. Comprehensive study of unexpected microscope condensers formed in sample arrangements commonly used in optical microscopy.

    PubMed

    Desai, Darshan B; Aldawsari, Mabkhoot Mudith S; Alharbi, Bandar Mohammed H; Sen, Sanchari; Grave de Peralta, Luis

    2015-09-01

    We show that various setups for optical microscopy which are commonly used in biomedical laboratories behave like efficient microscope condensers that are responsible for observed subwavelength resolution. We present a series of experiments and simulations that reveal how inclined illumination from such unexpected condensers occurs when the sample is perpendicularly illuminated by a microscope's built-in white-light source. In addition, we demonstrate an inexpensive add-on optical module that serves as an efficient and lightweight microscope condenser. Using such add-on optical module in combination with a low-numerical-aperture objective lens and Fourier plane imaging microscopy technique, we demonstrate detection of photonic crystals with a period nearly eight times smaller than the Rayleigh resolution limit.

  14. Empirical mode decomposition-based facial pose estimation inside video sequences

    NASA Astrophysics Data System (ADS)

    Qing, Chunmei; Jiang, Jianmin; Yang, Zhijing

    2010-03-01

    We describe a new pose-estimation algorithm via integration of the strength in both empirical mode decomposition (EMD) and mutual information. While mutual information is exploited to measure the similarity between facial images to estimate poses, EMD is exploited to decompose input facial images into a number of intrinsic mode function (IMF) components, which redistribute the effect of noise, expression changes, and illumination variations as such that, when the input facial image is described by the selected IMF components, all the negative effects can be minimized. Extensive experiments were carried out in comparisons to existing representative techniques, and the results show that the proposed algorithm achieves better pose-estimation performances with robustness to noise corruption, illumination variation, and facial expressions.

  15. Intensity correlation imaging with sunlight-like source

    NASA Astrophysics Data System (ADS)

    Wang, Wentao; Tang, Zhiguo; Zheng, Huaibin; Chen, Hui; Yuan, Yuan; Liu, Jinbin; Liu, Yanyan; Xu, Zhuo

    2018-05-01

    We show a method of intensity correlation imaging of targets illuminated by a sunlight-like source both theoretically and experimentally. With a Faraday anomalous dispersion optical filter (FADOF), we have modulated the coherence time of a thermal source up to 0.167 ns. And we carried out measurements of temporal and spatial correlations, respectively, with an intensity interferometer setup. By skillfully using the even Fourier fitting on the very sparse sampling data, the images of targets are successfully reconstructed from the low signal-noise-ratio(SNR) interference pattern by applying an iterative phase retrieval algorithm. The resulting imaging quality is as well as the one obtained by the theoretical fitting. The realization of such a case will bring this technique closer to geostationary satellite imaging illuminated by sunlight.

  16. Direct assessment of p-n junctions in single GaN nanowires by Kelvin probe force microscopy.

    PubMed

    Minj, Albert; Cros, Ana; Auzelle, Thomas; Pernot, Julien; Daudin, Bruno

    2016-09-23

    Making use of Kelvin probe force microscopy, in dark and under ultraviolet illumination, we study the characteristics of p-n junctions formed along the axis of self-organized GaN nanowires (NWs). We map the contact potential difference of the single NW p-n junctions to locate the space charge region and directly measure the depletion width and the junction voltage. Simulations indicate a shrinkage of the built-in potential for NWs with small diameter due to surface band bending, in qualitative agreement with the measurements. The photovoltage of the NW/substrate contact is studied by analyzing the response of NW segments with p- and n-type doping under illumination. Our results show that the shifts of the Fermi levels, and not the changes in surface band bending, are the most important effects under above band-gap illumination. The quantitative electrical information obtained here is important for the use of NW p-n junctions as photovoltaic or rectifying devices at the nanoscale, and is especially relevant since the technique does not require the formation of ohmic contacts to the NW junction.

  17. Low cost, p-ZnO/n-Si, rectifying, nano heterojunction diode: Fabrication and electrical characterization.

    PubMed

    Kabra, Vinay; Aamir, Lubna; Malik, M M

    2014-01-01

    A low cost, highly rectifying, nano heterojunction (p-ZnO/n-Si) diode was fabricated using solution-processed, p-type, ZnO nanoparticles and an n-type Si substrate. p-type ZnO nanoparticles were synthesized using a chemical synthesis route and characterized by XRD and a Hall effect measurement system. The device was fabricated by forming thin film of synthesized p-ZnO nanoparticles on an n-Si substrate using a dip coating technique. The device was then characterized by current-voltage (I-V) and capacitance-voltage (C-V) measurements. The effect of UV illumination on the I-V characteristics was also explored and indicated the formation of a highly rectifying, nano heterojunction with a rectification ratio of 101 at 3 V, which increased nearly 2.5 times (232 at 3 V) under UV illumination. However, the cut-in voltage decreases from 1.5 V to 0.9 V under UV illumination. The fabricated device could be used in switches, rectifiers, clipper and clamper circuits, BJTs, MOSFETs and other electronic circuitry.

  18. Optical levitation and translation of a microscopic particle by use of multiple beams generated by vertical-cavity surface-emitting laser array sources.

    PubMed

    Ogura, Yusuke; Shirai, Nobuhiro; Tanida, Jun

    2002-09-20

    An optical levitation and translation method for a microscopic particle by use of the resultant force induced by multiple light beams is studied. We show dependence of the radiation pressure force on the illuminating distribution by numerical calculation, and we find that the strongest axial force is obtained by a specific spacing period of illuminating beams. Extending the optical manipulation technique by means of vertical-cavity surface-emitting laser (VCSEL) array sources [Appl. Opt. 40, 5430 (2001)], we are the first, to our knowledge, to demonstrate levitation of a particle and its translation while levitated by using a VCSEL array. The vertical position of the target particle can be controlled in a range of a few tens of micrometers with an accuracy of 2 microm or less. The analytical and experimental results suggest that use of multiple beams is an effective method to levitate a particle with low total illumination power. Some issues on the manipulation method that uses multiple beams are discussed.

  19. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Miranda, Adelaide; De Beule, Pieter A. A., E-mail: pieter.de-beule@inl.int; Martins, Marco

    Combined microscopy techniques offer the life science research community a powerful tool to investigate complex biological systems and their interactions. Here, we present a new combined microscopy platform based on fluorescence optical sectioning microscopy through aperture correlation microscopy with a Differential Spinning Disk (DSD) and nanomechanical mapping with an Atomic Force Microscope (AFM). The illumination scheme of the DSD microscope unit, contrary to standard single or multi-point confocal microscopes, provides a time-independent illumination of the AFM cantilever. This enables a distortion-free simultaneous operation of fluorescence optical sectioning microscopy and atomic force microscopy with standard probes. In this context, we discussmore » sample heating due to AFM cantilever illumination with fluorescence excitation light. Integration of a DSD fluorescence optical sectioning unit with an AFM platform requires mitigation of mechanical noise transfer of the spinning disk. We identify and present two solutions to almost annul this noise in the AFM measurement process. The new combined microscopy platform is applied to the characterization of a DOPC/DOPS (4:1) lipid structures labelled with a lipophilic cationic indocarbocyanine dye deposited on a mica substrate.« less

  20. sideSPIM - selective plane illumination based on a conventional inverted microscope.

    PubMed

    Hedde, Per Niklas; Malacrida, Leonel; Ahrar, Siavash; Siryaporn, Albert; Gratton, Enrico

    2017-09-01

    Previously described selective plane illumination microscopy techniques typically offset ease of use and sample handling for maximum imaging performance or vice versa . Also, to reduce cost and complexity while maximizing flexibility, it is highly desirable to implement light sheet microscopy such that it can be added to a standard research microscope instead of setting up a dedicated system. We devised a new approach termed sideSPIM that provides uncompromised imaging performance and easy sample handling while, at the same time, offering new applications of plane illumination towards fluidics and high throughput 3D imaging of multiple specimen. Based on an inverted epifluorescence microscope, all of the previous functionality is maintained and modifications to the existing system are kept to a minimum. At the same time, our implementation is able to take full advantage of the speed of the employed sCMOS camera and piezo stage to record data at rates of up to 5 stacks/s. Additionally, sample handling is compatible with established methods and switching magnification to change the field of view from single cells to whole organisms does not require labor intensive adjustments of the system.

Top