Sample records for shale oil processing

  1. Wet separation processes as method to separate limestone and oil shale

    NASA Astrophysics Data System (ADS)

    Nurme, Martin; Karu, Veiko

    2015-04-01

    Biggest oil shale industry is located in Estonia. Oil shale usage is mainly for electricity generation, shale oil generation and cement production. All these processes need certain quality oil shale. Oil shale seam have interlayer limestone layers. To use oil shale in production, it is needed to separate oil shale and limestone. A key challenge is find separation process when we can get the best quality for all product types. In oil shale separation typically has been used heavy media separation process. There are tested also different types of separation processes before: wet separation, pneumatic separation. Now oil shale industry moves more to oil production and this needs innovation methods for separation to ensure fuel quality and the changes in quality. The pilot unit test with Allmineral ALLJIG have pointed out that the suitable new innovation way for oil shale separation can be wet separation with gravity, where material by pulsating water forming layers of grains according to their density and subsequently separates the heavy material (limestone) from the stratified material (oil shale)bed. Main aim of this research is to find the suitable separation process for oil shale, that the products have highest quality. The expected results can be used also for developing separation processes for phosphorite rock or all others, where traditional separation processes doesn't work property. This research is part of the study Sustainable and environmentally acceptable Oil shale mining No. 3.2.0501.11-0025 http://mi.ttu.ee/etp and the project B36 Extraction and processing of rock with selective methods - http://mi.ttu.ee/separation; http://mi.ttu.ee/miningwaste/

  2. 43 CFR 3935.10 - Accounting records.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... processing plant and retort; (3) Mineral products produced and sold; (4) Shale oil products, shale gas, and... mined or processed and of all products including synthetic petroleum, shale oil, shale gas, and shale..., DEPARTMENT OF THE INTERIOR MINERALS MANAGEMENT (3000) MANAGEMENT OF OIL SHALE EXPLORATION AND LEASES...

  3. 43 CFR 3935.10 - Accounting records.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... processing plant and retort; (3) Mineral products produced and sold; (4) Shale oil products, shale gas, and... mined or processed and of all products including synthetic petroleum, shale oil, shale gas, and shale..., DEPARTMENT OF THE INTERIOR MINERALS MANAGEMENT (3000) MANAGEMENT OF OIL SHALE EXPLORATION AND LEASES...

  4. 43 CFR 3935.10 - Accounting records.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... processing plant and retort; (3) Mineral products produced and sold; (4) Shale oil products, shale gas, and... mined or processed and of all products including synthetic petroleum, shale oil, shale gas, and shale..., DEPARTMENT OF THE INTERIOR MINERALS MANAGEMENT (3000) MANAGEMENT OF OIL SHALE EXPLORATION AND LEASES...

  5. 43 CFR 3935.10 - Accounting records.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... processing plant and retort; (3) Mineral products produced and sold; (4) Shale oil products, shale gas, and... mined or processed and of all products including synthetic petroleum, shale oil, shale gas, and shale..., DEPARTMENT OF THE INTERIOR RANGE MANAGEMENT (4000) MANAGEMENT OF OIL SHALE EXPLORATION AND LEASES Production...

  6. Process concept of retorting of Julia Creek oil shale

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sitnai, O.

    1984-06-01

    A process is proposed for the above ground retorting of the Julia Creek oil shale in Queensland. The oil shale characteristics, process description, chemical reactions of the oil shale components, and the effects of variable and operating conditions on process performance are discussed. The process contains a fluidized bed combustor which performs both as a combustor of the spent shales and as a heat carrier generator for the pyrolysis step. 12 references, 5 figures, 5 tables.

  7. A novel energy-efficient pyrolysis process: self-pyrolysis of oil shale triggered by topochemical heat in a horizontal fixed bed.

    PubMed

    Sun, You-Hong; Bai, Feng-Tian; Lü, Xiao-Shu; Li, Qiang; Liu, Yu-Min; Guo, Ming-Yi; Guo, Wei; Liu, Bao-Chang

    2015-02-06

    This paper proposes a novel energy-efficient oil shale pyrolysis process triggered by a topochemical reaction that can be applied in horizontal oil shale formations. The process starts by feeding preheated air to oil shale to initiate a topochemical reaction and the onset of self-pyrolysis. As the temperature in the virgin oil shale increases (to 250-300°C), the hot air can be replaced by ambient-temperature air, allowing heat to be released by internal topochemical reactions to complete the pyrolysis. The propagation of fronts formed in this process, the temperature evolution, and the reaction mechanism of oil shale pyrolysis in porous media are discussed and compared with those in a traditional oxygen-free process. The results show that the self-pyrolysis of oil shale can be achieved with the proposed method without any need for external heat. The results also verify that fractured oil shale may be more suitable for underground retorting. Moreover, the gas and liquid products from this method were characterised, and a highly instrumented experimental device designed specifically for this process is described. This study can serve as a reference for new ideas on oil shale in situ pyrolysis processes.

  8. A Novel Energy-Efficient Pyrolysis Process: Self-pyrolysis of Oil Shale Triggered by Topochemical Heat in a Horizontal Fixed Bed

    PubMed Central

    Sun, You-Hong; Bai, Feng-Tian; Lü, Xiao-Shu; Li, Qiang; Liu, Yu-Min; Guo, Ming-Yi; Guo, Wei; Liu, Bao-Chang

    2015-01-01

    This paper proposes a novel energy-efficient oil shale pyrolysis process triggered by a topochemical reaction that can be applied in horizontal oil shale formations. The process starts by feeding preheated air to oil shale to initiate a topochemical reaction and the onset of self-pyrolysis. As the temperature in the virgin oil shale increases (to 250–300°C), the hot air can be replaced by ambient-temperature air, allowing heat to be released by internal topochemical reactions to complete the pyrolysis. The propagation of fronts formed in this process, the temperature evolution, and the reaction mechanism of oil shale pyrolysis in porous media are discussed and compared with those in a traditional oxygen-free process. The results show that the self-pyrolysis of oil shale can be achieved with the proposed method without any need for external heat. The results also verify that fractured oil shale may be more suitable for underground retorting. Moreover, the gas and liquid products from this method were characterised, and a highly instrumented experimental device designed specifically for this process is described. This study can serve as a reference for new ideas on oil shale in situ pyrolysis processes. PMID:25656294

  9. Method of operating an oil shale kiln

    DOEpatents

    Reeves, Adam A.

    1978-05-23

    Continuously determining the bulk density of raw and retorted oil shale, the specific gravity of the raw oil shale and the richness of the raw oil shale provides accurate means to control process variables of the retorting of oil shale, predicting oil production, determining mining strategy, and aids in controlling shale placement in the kiln for the retorting.

  10. Application of petroleum demulsification technology to shale oil emulsions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Robertson, R.E.

    1983-01-01

    Demulsification, the process of emulsion separation, of water-in-oil shale oil emulsions produced by several methods was accomplished using commercial chemical demulsifiers which are used typically for petroleum demulsification. The shale oil emulsions were produced from Green River shale by one in situ and three different above-ground retorts, an in situ high pressure/high temperature steam process, and by washing both retort-produced and hydrotreated shale oils.

  11. Life cycle greenhouse gas emissions, consumptive water use and levelized costs of unconventional oil in North America

    NASA Astrophysics Data System (ADS)

    Mangmeechai, Aweewan

    Conventional petroleum production in many countries that supply U.S. crude oil as well as domestic production has declined in recent years. Along with instability in the world oil market, this has stimulated the discussion of developing unconventional oil production, e.g., oil sands and oil shale. Expanding the U.S. energy mix to include oil sands and oil shale may be an important component in diversifying and securing the U.S. energy supply. At the same time, life cycle GHG emissions of these energy sources and consumptive water use are a concern. In this study, consumptive water use includes not only fresh water use but entire consumptive use including brackish water and seawater. The goal of this study is to determine the life cycle greenhouse gas (GHG) emissions and consumptive water use of synthetic crude oil (SCO) derived from Canadian oil sands and U.S. oil shale to be compared with U.S. domestic crude oil, U.S. imported crude oil, and coal-to-liquid (CTL). Levelized costs of SCO derived from Canadian oil sands and U.S. oil shale were also estimated. The results of this study suggest that CTL with no carbon capture and sequestration (CCS) and current electricity grid mix is the worst while crude oil imported from United Kingdom is the best in GHG emissions. The life cycle GHG emissions of oil shale surface mining, oil shale in-situ process, oil sands surface mining, and oil sands in-situ process are 43% to 62%, 13% to 32%, 5% to 22%, and 11% to 13% higher than those of U.S. domestic crude oil. Oil shale in-situ process has the largest consumptive water use among alternative fuels, evaluated due to consumptive water use in electricity generation. Life cycle consumptive water use of oil sands in-situ process is the lowest. Specifically, fresh water consumption in the production processes is the most concern given its scarcity. However, disaggregated data on fresh water consumption in the total water consumption of each fuel production process is not available. Given current information, it is inconclusive whether unconventional oil would require more or less consumptive fresh water use than U.S. domestic crude oil production. It depends on the water conservative strategy applied in each process. Increasing import of SCO derived from Canadian oil sands and U.S. oil shale would slightly increase life cycle GHG emissions of the U.S. petroleum status quo. The expected additional 2 million bpd of Canadian SCO from oil sands and U.S. oil shale would increase life cycle GHG emissions of the U.S. petroleum status quo on average only 10 and 40 kg CO2 equiv/bbl, or about 7.5 and 29 million tons CO2 equiv/year. However this increase represents less than 1 and 5% of U.S. transportation emissions in 2007. Because U.S. oil shale resources are located in areas experiencing water scarcity, methods to manage the issue were explored. The result also shows that trading water rights between Upper and Lower Colorado River basin and transporting synthetic crude shale oil to refinery elsewhere is the best scenario for life cycle GHG emissions and consumptive water use of U.S. oil shale production. GHG emissions and costs of water supply system contribute only 1-2% of life cycle GHG emissions and 1-6% of total levelized costs. The levelized costs of using SCO from oil shale as feedstock are greater than SCO from oil sands, and CTL. The levelized costs of producing liquid fuel (gasoline and diesel) using SCO derived from Canadian oil sands as feedstock are approximately 0.80-1.00/gal of liquid fuel. The levelized costs of SCO derived from oil shale are 1.6-4.5/gal of liquid fuel (oil shale surface mining process) and 1.6-5.2/gal of liquid fuel (oil shale in-situ process). From an energy security perspective, increasing the use of Canadian oil sands, U.S. oil shale, and CTL may be preferable to increasing Middle East imports. However, oil shale and CTL has the advantage security wise over Canadian oil sands because oil shale and coal are abundant U.S. resources. From a GHG emissions and consumptive water use perspective, CTL requires less consumptive water use than oil shale in-situ process but produces more GHG emissions than oil shale in-situ and surface mining process, unless CTL plant performs CCS and renewable electricity.

  12. Process for oil shale retorting

    DOEpatents

    Jones, John B.; Kunchal, S. Kumar

    1981-10-27

    Particulate oil shale is subjected to a pyrolysis with a hot, non-oxygenous gas in a pyrolysis vessel, with the products of the pyrolysis of the shale contained kerogen being withdrawn as an entrained mist of shale oil droplets in a gas for a separation of the liquid from the gas. Hot retorted shale withdrawn from the pyrolysis vessel is treated in a separate container with an oxygenous gas so as to provide combustion of residual carbon retained on the shale, producing a high temperature gas for the production of some steam and for heating the non-oxygenous gas used in the oil shale retorting process in the first vessel. The net energy recovery includes essentially complete recovery of the organic hydrocarbon material in the oil shale as a liquid shale oil, a high BTU gas, and high temperature steam.

  13. Research continues on Julia Creek shale oil project

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1986-09-01

    CSR Limited and the CSIRO Division of Mineral Engineering in Australia are working jointly on the development of a new retorting process for Julia Creek oil shale. This paper describes the retorting process which integrates a fluid bed combustor with a retort in which heat is transferred from hot shale ash to cold raw shale. The upgrading of shale oil into transport fuels is also described.

  14. Review of rare earth element concentrations in oil shales of the Eocene Green River Formation

    USGS Publications Warehouse

    Birdwell, Justin E.

    2012-01-01

    Concentrations of the lanthanide series or rare earth elements and yttrium were determined for lacustrine oil shale samples from the Eocene Green River Formation in the Piceance Basin of Colorado and the Uinta Basin of Utah. Unprocessed oil shale, post-pyrolysis (spent) shale, and leached shale samples were examined to determine if oil-shale processing to generate oil or the remediation of retorted shale affects rare earth element concentrations. Results for unprocessed Green River oil shale samples were compared to data published in the literature on reference materials, such as chondritic meteorites, the North American shale composite, marine oil shale samples from two sites in northern Tibet, and mined rare earth element ores from the United States and China. The Green River oil shales had lower rare earth element concentrations (66.3 to 141.3 micrograms per gram, μg g-1) than are typical of material in the upper crust (approximately 170 μg g-1) and were also lower in rare earth elements relative to the North American shale composite (approximately 165 μg g-1). Adjusting for dilution of rare earth elements by organic matter does not account for the total difference between the oil shales and other crustal rocks. Europium anomalies for Green River oil shales from the Piceance Basin were slightly lower than those reported for the North American shale composite and upper crust. When compared to ores currently mined for rare earth elements, the concentrations in Green River oil shales are several orders of magnitude lower. Retorting Green River oil shales led to a slight enrichment of rare earth elements due to removal of organic matter. When concentrations in spent and leached samples were normalized to an original rock basis, concentrations were comparable to those of the raw shale, indicating that rare earth elements are conserved in processed oil shales.

  15. 16 CFR 802.3 - Acquisitions of carbon-based mineral reserves.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... gas, shale or tar sands, or rights to reserves of oil, natural gas, shale or tar sands together with... gas, shale or tar sands, or rights to reserves of oil, natural gas, shale or tar sands and associated... pipeline and pipeline system or processing facility which transports or processes oil and gas after it...

  16. 16 CFR 802.3 - Acquisitions of carbon-based mineral reserves.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... gas, shale or tar sands, or rights to reserves of oil, natural gas, shale or tar sands together with... gas, shale or tar sands, or rights to reserves of oil, natural gas, shale or tar sands and associated... pipeline and pipeline system or processing facility which transports or processes oil and gas after it...

  17. 16 CFR 802.3 - Acquisitions of carbon-based mineral reserves.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... gas, shale or tar sands, or rights to reserves of oil, natural gas, shale or tar sands together with... gas, shale or tar sands, or rights to reserves of oil, natural gas, shale or tar sands and associated... pipeline and pipeline system or processing facility which transports or processes oil and gas after it...

  18. 16 CFR 802.3 - Acquisitions of carbon-based mineral reserves.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... gas, shale or tar sands, or rights to reserves of oil, natural gas, shale or tar sands together with... gas, shale or tar sands, or rights to reserves of oil, natural gas, shale or tar sands and associated... pipeline and pipeline system or processing facility which transports or processes oil and gas after it...

  19. 16 CFR 802.3 - Acquisitions of carbon-based mineral reserves.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... gas, shale or tar sands, or rights to reserves of oil, natural gas, shale or tar sands together with... gas, shale or tar sands, or rights to reserves of oil, natural gas, shale or tar sands and associated... pipeline and pipeline system or processing facility which transports or processes oil and gas after it...

  20. Development of measures to improve technologies of energy recovery from gaseous wastes of oil shale processing

    NASA Astrophysics Data System (ADS)

    Tugov, A. N.; Ots, A.; Siirde, A.; Sidorkin, V. T.; Ryabov, G. A.

    2016-06-01

    Prospects of the use of oil shale are associated with its thermal processing for the production of liquid fuel, shale oil. Gaseous by-products, such as low-calorie generator gas with a calorific value up to 4.3MJ/m3 or semicoke gas with a calorific value up to 56.57 MJ/m3, are generated depending on the oil shale processing method. The main methods of energy recovery from these gases are either their cofiring with oil shale in power boilers or firing only under gaseous conditions in reconstructed or specially designed for this fuel boilers. The possible use of gaseous products of oil shale processing in gas-turbine or gas-piston units is also considered. Experiments on the cofiring of oil shale gas and its gaseous processing products have been carried out on boilers BKZ-75-39FSl in Kohtla-Järve and on the boiler TP-101 of the Estonian power plant. The test results have shown that, in the case of cofiring, the concentration of sulfur oxides in exhaust gases does not exceed the level of existing values in the case of oil shale firing. The low-temperature corrosion rate does not change as compared to the firing of only oil shale, and, therefore, operation conditions of boiler back-end surfaces do not worsen. When implementing measures to reduce the generation of NO x , especially of flue gas recirculation, it has been possible to reduce the emissions of nitrogen oxides in the whole boiler. The operation experience of the reconstructed boilers BKZ-75-39FSl after their transfer to the firing of only gaseous products of oil shale processing is summarized. Concentrations of nitrogen and sulfur oxides in the combustion products of semicoke and generator gases are measured. Technical solutions that made it possible to minimize the damage to air heater pipes associated with the low-temperature sulfur corrosion are proposed and implemented. The technological measures for burners of new boilers that made it possible to burn gaseous products of oil shale processing with low emissions of nitrogen oxides are developed.

  1. Method for maximizing shale oil recovery from an underground formation

    DOEpatents

    Sisemore, Clyde J.

    1980-01-01

    A method for maximizing shale oil recovery from an underground oil shale formation which has previously been processed by in situ retorting such that there is provided in the formation a column of substantially intact oil shale intervening between adjacent spent retorts, which method includes the steps of back filling the spent retorts with an aqueous slurry of spent shale. The slurry is permitted to harden into a cement-like substance which stabilizes the spent retorts. Shale oil is then recovered from the intervening column of intact oil shale by retorting the column in situ, the stabilized spent retorts providing support for the newly developed retorts.

  2. Oil-shale program

    NASA Astrophysics Data System (ADS)

    Bader, B. E.

    1981-10-01

    The principal activities of the Sandia National Laboratories in the Department of Energy Oil shale program during the period April 1 to June 30, 1981 are discussed. Currently, Sandia's activities are focused upon: the development and use of analytical and experimental modeling techniques to describe and predict the retort properties and retorting process parameters that are important to the preparation, operation, and stability of in situ retorts, and the development, deployment, and field use of instrumentation, data acquisition, and process monitoring systems to characterize and evaluate in site up shale oil recovery operations. In-house activities and field activities (at the Geokinetics Oil Shale Project and the Occidental Oil Shale Project) are described under the headings: bed preparation, bed characterization, retorting process, and structural stability.

  3. Oil shale derived pollutant control materials and methods and apparatuses for producing and utilizing the same

    DOEpatents

    Boardman, Richard D.; Carrington, Robert A.

    2010-05-04

    Pollution control substances may be formed from the combustion of oil shale, which may produce a kerogen-based pyrolysis gas and shale sorbent, each of which may be used to reduce, absorb, or adsorb pollutants in pollution producing combustion processes, pyrolysis processes, or other reaction processes. Pyrolysis gases produced during the combustion or gasification of oil shale may also be used as a combustion gas or may be processed or otherwise refined to produce synthetic gases and fuels.

  4. Colorado oil shale: the current status, October 1979

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1979-01-01

    A general background to oil shale and the potential impacts of its development is given. A map containing the names and locations of current oil shale holdings is included. The history, geography, archaeology, ecology, water resources, air quality, energy resources, land use, sociology, transportation, and electric power for the state of Colorado are discussed. The Colorado Joint Review Process Stages I, II, and III-oil shale are explained. Projected shale oil production capacity to 1990 is presented. (DC)

  5. Geotechnical Properties of Oil Shale Retorted by the PARAHO and TOSCO Processes.

    DTIC Science & Technology

    1979-11-01

    literature search was restricted to the Green River formation of oil shale in the tri-state area of Colorado (Piceance Basin ), Utah ( Uinta Basin ), and...it is preheated by combustion gases as it travels downward by gravity. Air and recycling gas are injected at midheight and are burned, bringing the oil ...REFERENCES..................................38 TABLES 1-5 APPENDIX A: OIL SHALE RETORTING PROCESSES................Al Tosco Process Gas Combustion

  6. Liquid oil production from shale gas condensate reservoirs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sheng, James J.

    A process of producing liquid oil from shale gas condensate reservoirs and, more particularly, to increase liquid oil production by huff-n-puff in shale gas condensate reservoirs. The process includes performing a huff-n-puff gas injection mode and flowing the bottom-hole pressure lower than the dew point pressure.

  7. Comparative study on direct burning of oil shale and coal

    NASA Astrophysics Data System (ADS)

    Hammad, Ahmad; Al Asfar, Jamil

    2017-07-01

    A comparative study of the direct burning processes of oil shale and coal in a circulating fluidized bed (CFB) was done in this study using ANSYS Fluent software to solve numerically the governing equations of continuity, momentum, energy and mass diffusion using finite volume method. The model was built based on an existing experimental combustion burner unit. The model was validated by comparing the theoretical results of oil shale with proved experimental results from the combustion unit. It was found that the temperature contours of the combustion process showed that the adiabatic flame temperature was 1080 K for oil shale compared with 2260 K for coal, while the obtained experimental results of temperatures at various locations of burner during the direct burning of oil shale showed that the maximum temperature reached 962 K for oil shale. These results were used in economic and environmental analysis which show that oil shale may be used as alternative fuel for coal in cement industry in Jordan.

  8. Process for recovering products from oil shale

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jacobs, H.R.; Udell, K.S.

    A process is claimed for recovering hydrocarbon products from a body of fragmented or rubblized oil shale. The process includes initiating a combustion zone adjacent the lower end of a body of oil shale and using the thermal energy therefrom for volatilizing the shale oil from the oil shale above the combustion front. Improved recovery of hydrocarbon products is realized by refluxing the heavier fractions in the volatilized shale oil. The heavier fractions are refluxed by condensing the heavier fractions and allowing the resulting condensate to flow downwardly toward the combustion front. Thermal energy from the combustion zone cracks themore » condensate producing additional lower molecular weight fractions and a carbonaceous residue. The carbonaceous residue is burned in the combustion front to supply the thermal energy. The temperature of the combustion front is maintained by regulating input of oxygen to the combustion zone. The process also includes sweeping the volatilized products from the rubblized oil shale with a noncombustible gas. The flow rate of sweep gas is also controlled to regulate the temperature of the combustion front. The recovered products can be enriched with hydrogen by using water vapor as part of the noncombustible sweep gas and cracking the water vapor with the hot carbon in the combustion front to produce hydrogen and an oxide of carbon.« less

  9. Experience and prospects of oil shale utilization for power production in Russia

    NASA Astrophysics Data System (ADS)

    Potapov, O. P.

    2016-09-01

    Due to termination of work at the Leningrad Shale Deposit, the Russian shale industry has been liquidated, including not only shale mining and processing but also research and engineering (including design) activities, because this deposit was the only commercially operated complex in Russia. UTT-3000 plants with solid heat carrier, created mainly by the Russian specialists under scientific guidance of members of Krzhizhanovsky Power Engineering Institute, passed under the control of Estonian engineers, who, alongside with their operation in Narva, construct similar plants in Kohtla-Jarve, having renamed the Galoter Process into the Enifit or Petroter. The main idea of this article is to substantiate the expediency of revival of the oil shale industry in Russia. Data on the UTT-3000 plants' advantages, shale oils, and gas properties is provided. Information on investments in an UTT-3000 plant and estimated cost of Leningrad oil shale mining at the Mezhdurechensk Strip Mine is given. For more detailed technical and economic assessment of construction of a complex for oil shale extraction and processing, it is necessary to develop a feasibility study, which should be the first stage of this work. Creation of such a complex will make it possible to produce liquid and gaseous power fuel from oil shale of Leningrad Deposit and provide the opportunity to direct for export the released volumes of oil and gas for the purposes of Russian budget currency replenishment.

  10. Water and mineral relations of Atriplex canescens and A. cuneata on saline processed oil shale

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Richardson, S.G.

    1979-01-01

    Growth, mineral uptake and water relations of Atriplex canescens and A. cuneata, both native to the arid oil shale region of northeastern Utah, were studied in the greenhouse and laboratory as affected by various salinity levels and specific ions in processed oil shale. Salinity of the shale was manipulated by moistening leached processed oil shale to near field capacity (20% H/sub 2/O by weight) with solutions of shale leachate, sodium sulfate, magnesium sulfate or sodium chloride at equiosmotic concentrations ranging from 0 to -30 bars. Although shale salinity did not affect osmotic adjustment, zero turgor points of A. canescens becamemore » more negative with reductions in shale moisture percentage. Differences in plant growth due to differet ions in the soil solution could not be explained by effects on osmotic adjustment. However, greater growth of A. canescens in Na/sub 2/SO/sub 4/ treated than MgSO/sub 4/ treated leached shale was associated with greater leaf succulence, greater lamina lengths and lamina widths and lower diffusive leaf resistances. Potassium added to leached and unleached processed oil shale increased shoot and root biomass production, shoot/root ratio, leaf K content, and water use efficiency of a sodium-excluding Atriplex canescens biotype but did not increase growth of a sodium-accumulating biotype.« less

  11. Synthesis and analysis of jet fuel from shale oil and coal syncrudes

    NASA Technical Reports Server (NTRS)

    Gallagher, J. P.; Collins, T. A.; Nelson, T. J.; Pedersen, M. J.; Robison, M. G.; Wisinski, L. J.

    1976-01-01

    Thirty-two jet fuel samples of varying properties were produced from shale oil and coal syncrudes, and analyzed to assess their suitability for use. TOSCO II shale oil and H-COAL and COED syncrudes were used as starting materials. The processes used were among those commonly in use in petroleum processing-distillation, hydrogenation and catalytic hydrocracking. The processing conditions required to meet two levels of specifications regarding aromatic, hydrogen, sulfur and nitrogen contents at two yield levels were determined and found to be more demanding than normally required in petroleum processing. Analysis of the samples produced indicated that if the more stringent specifications of 13.5% hydrogen (min.) and 0.02% nitrogen (max.) were met, products similar in properties to conventional jet fuels were obtained. In general, shale oil was easier to process (catalyst deactivation was seen when processing coal syncrudes), consumed less hydrogen and yielded superior products. Based on these considerations, shale oil appears to be preferred to coal as a petroleum substitute for jet fuel production.

  12. Refining of Military Jet Fuels from Shale Oil. Part II. Volume II. (In Situ Shale Oil Process Data).

    DTIC Science & Technology

    1982-03-01

    SPEC Meeting Specifications OXY Test Series on In Situ Shale Oil z P Pressure (P + N) Paraffins and Naphthenes PRO Test Series on Above Ground Shale Oil...LV 6/ 12.0 Naphthenes , LV% (Aromatics, LV %/ 11.8 Gross Heating Value, Btu/lb 19,720 19,068 -73- TABLE 111-29. CRUDE SHALE: OIL HYDROTREATING SERIES M...Wt % - Ramabottomn Carbon -1.34 IParaffins (P-IN), LV % (71.1) -IOlef ins, LV % 9.4 i ~ Naphthenes , LV% - Aromatics, LV % 19.5 - Gross Heating Value

  13. Converting oil shale to liquid fuels: energy inputs and greenhouse gas emissions of the Shell in situ conversion process.

    PubMed

    Brandt, Adam R

    2008-10-01

    Oil shale is a sedimentary rock that contains kerogen, a fossil organic material. Kerogen can be heated to produce oil and gas (retorted). This has traditionally been a CO2-intensive process. In this paper, the Shell in situ conversion process (ICP), which is a novel method of retorting oil shale in place, is analyzed. The ICP utilizes electricity to heat the underground shale over a period of 2 years. Hydrocarbons are produced using conventional oil production techniques, leaving shale oil coke within the formation. The energy inputs and outputs from the ICP, as applied to oil shales of the Green River formation, are modeled. Using these energy inputs, the greenhouse gas (GHG) emissions from the ICP are calculated and are compared to emissions from conventional petroleum. Energy outputs (as refined liquid fuel) are 1.2-1.6 times greater than the total primary energy inputs to the process. In the absence of capturing CO2 generated from electricity produced to fuel the process, well-to-pump GHG emissions are in the range of 30.6-37.1 grams of carbon equivalent per megajoule of liquid fuel produced. These full-fuel-cycle emissions are 21%-47% larger than those from conventionally produced petroleum-based fuels.

  14. Jet fuels from synthetic crudes

    NASA Technical Reports Server (NTRS)

    Antoine, A. C.; Gallagher, J. P.

    1977-01-01

    An investigation was conducted to determine the technical problems in the conversion of a significant portion of a barrel of either a shale oil or a coal synthetic crude oil into a suitable aviation turbine fuel. Three syncrudes were used, one from shale and two from coal, chosen as representative of typical crudes from future commercial production. The material was used to produce jet fuels of varying specifications by distillation, hydrotreating, and hydrocracking. Attention is given to process requirements, hydrotreating process conditions, the methods used to analyze the final products, the conditions for shale oil processing, and the coal liquid processing conditions. The results of the investigation show that jet fuels of defined specifications can be made from oil shale and coal syncrudes using readily available commercial processes.

  15. Characterization of oil shale, isolated kerogen, and post-pyrolysis residues using advanced 13 solid-state nuclear magnetic resonance spectroscopy

    USGS Publications Warehouse

    Cao, Xiaoyan; Birdwell, Justin E.; Chappell, Mark A.; Li, Yuan; Pignatello, Joseph J.; Mao, Jingdong

    2013-01-01

    Characterization of oil shale kerogen and organic residues remaining in postpyrolysis spent shale is critical to the understanding of the oil generation process and approaches to dealing with issues related to spent shale. The chemical structure of organic matter in raw oil shale and spent shale samples was examined in this study using advanced solid-state 13C nuclear magnetic resonance (NMR) spectroscopy. Oil shale was collected from Mahogany zone outcrops in the Piceance Basin. Five samples were analyzed: (1) raw oil shale, (2) isolated kerogen, (3) oil shale extracted with chloroform, (4) oil shale retorted in an open system at 500°C to mimic surface retorting, and (5) oil shale retorted in a closed system at 360°C to simulate in-situ retorting. The NMR methods applied included quantitative direct polarization with magic-angle spinning at 13 kHz, cross polarization with total sideband suppression, dipolar dephasing, CHn selection, 13C chemical shift anisotropy filtering, and 1H-13C long-range recoupled dipolar dephasing. The NMR results showed that, relative to the raw oil shale, (1) bitumen extraction and kerogen isolation by demineralization removed some oxygen-containing and alkyl moieties; (2) unpyrolyzed samples had low aromatic condensation; (3) oil shale pyrolysis removed aliphatic moieties, leaving behind residues enriched in aromatic carbon; and (4) oil shale retorted in an open system at 500°C contained larger aromatic clusters and more protonated aromatic moieties than oil shale retorted in a closed system at 360°C, which contained more total aromatic carbon with a wide range of cluster sizes.

  16. Combustion heater for oil shale

    DOEpatents

    Mallon, R.; Walton, O.; Lewis, A.E.; Braun, R.

    1983-09-21

    A combustion heater for oil shale heats particles of spent oil shale containing unburned char by burning the char. A delayed fall is produced by flowing the shale particles down through a stack of downwardly sloped overlapping baffles alternately extending from opposite sides of a vertical column. The delayed fall and flow reversal occurring in passing from each baffle to the next increase the residence time and increase the contact of the oil shale particles with combustion supporting gas flowed across the column to heat the shale to about 650 to 700/sup 0/C for use as a process heat source.

  17. Combustion heater for oil shale

    DOEpatents

    Mallon, Richard G.; Walton, Otis R.; Lewis, Arthur E.; Braun, Robert L.

    1985-01-01

    A combustion heater for oil shale heats particles of spent oil shale containing unburned char by burning the char. A delayed fall is produced by flowing the shale particles down through a stack of downwardly sloped overlapping baffles alternately extending from opposite sides of a vertical column. The delayed fall and flow reversal occurring in passing from each baffle to the next increase the residence time and increase the contact of the oil shale particles with combustion supporting gas flowed across the column to heat the shale to about 650.degree.-700.degree. C. for use as a process heat source.

  18. Clean and Secure Energy from Domestic Oil Shale and Oil Sands Resources

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Spinti, Jennifer; Birgenheier, Lauren; Deo, Milind

    This report summarizes the significant findings from the Clean and Secure Energy from Domestic Oil Shale and Oil Sands Resources program sponsored by the Department of Energy through the National Energy Technology Laboratory. There were four principle areas of research; Environmental, legal, and policy issues related to development of oil shale and oil sands resources; Economic and environmental assessment of domestic unconventional fuels industry; Basin-scale assessment of conventional and unconventional fuel development impacts; and Liquid fuel production by in situ thermal processing of oil shale Multiple research projects were conducted in each area and the results have been communicated viamore » sponsored conferences, conference presentations, invited talks, interviews with the media, numerous topical reports, journal publications, and a book that summarizes much of the oil shale research relating to Utah’s Uinta Basin. In addition, a repository of materials related to oil shale and oil sands has been created within the University of Utah’s Institutional Repository, including the materials generated during this research program. Below is a listing of all topical and progress reports generated by this project and submitted to the Office of Science and Technical Information (OSTI). A listing of all peer-reviewed publications generated as a result of this project is included at the end of this report; Geomechanical and Fluid Transport Properties 1 (December, 2015); Validation Results for Core-Scale Oil Shale Pyrolysis (February, 2015); and Rates and Mechanisms of Oil Shale Pyrolysis: A Chemical Structure Approach (November, 2014); Policy Issues Associated With Using Simulation to Assess Environmental Impacts (November, 2014); Policy Analysis of the Canadian Oil Sands Experience (September, 2013); V-UQ of Generation 1 Simulator with AMSO Experimental Data (August, 2013); Lands with Wilderness Characteristics, Resource Management Plan Constraints, and Land Exchanges (March, 2012); Conjunctive Surface and Groundwater Management in Utah: Implications for Oil Shale and Oil Sands Development (May, 2012); Development of CFD-Based Simulation Tools for In Situ Thermal Processing of Oil Shale/Sands (February, 2012); Core-Based Integrated Sedimentologic, Stratigraphic, and Geochemical Analysis of the Oil Shale Bearing Green River Formation, Uinta Basin, Utah (April, 2011); Atomistic Modeling of Oil Shale Kerogens and Asphaltenes Along with their Interactions with the Inorganic Mineral Matrix (April, 2011); Pore Scale Analysis of Oil Shale/Sands Pyrolysis (March, 2011); Land and Resource Management Issues Relevant to Deploying In-Situ Thermal Technologies (January, 2011); Policy Analysis of Produced Water Issues Associated with In-Situ Thermal Technologies (January, 2011); and Policy Analysis of Water Availability and Use Issues for Domestic Oil Shale and Oil Sands Development (March, 2010)« less

  19. 43 CFR 3922.10 - Application processing fee.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... MANAGEMENT, DEPARTMENT OF THE INTERIOR MINERALS MANAGEMENT (3000) OIL SHALE LEASING Application Processing... process for a competitive oil shale lease is as follows: (1) The applicant nominating the tract for...

  20. 43 CFR 3922.10 - Application processing fee.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... MANAGEMENT, DEPARTMENT OF THE INTERIOR RANGE MANAGEMENT (4000) OIL SHALE LEASING Application Processing... process for a competitive oil shale lease is as follows: (1) The applicant nominating the tract for...

  1. 43 CFR 3922.10 - Application processing fee.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... MANAGEMENT, DEPARTMENT OF THE INTERIOR MINERALS MANAGEMENT (3000) OIL SHALE LEASING Application Processing... process for a competitive oil shale lease is as follows: (1) The applicant nominating the tract for...

  2. 43 CFR 3922.10 - Application processing fee.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... MANAGEMENT, DEPARTMENT OF THE INTERIOR MINERALS MANAGEMENT (3000) OIL SHALE LEASING Application Processing... process for a competitive oil shale lease is as follows: (1) The applicant nominating the tract for...

  3. Solar heated oil shale pyrolysis process

    NASA Technical Reports Server (NTRS)

    Qader, S. A. (Inventor)

    1985-01-01

    An improved system for recovery of a liquid hydrocarbon fuel from oil shale is presented. The oil shale pyrolysis system is composed of a retort reactor for receiving a bed of oil shale particules which are heated to pyrolyis temperature by means of a recycled solar heated gas stream. The gas stream is separated from the recovered shale oil and a portion of the gas stream is rapidly heated to pyrolysis temperature by passing it through an efficient solar heater. Steam, oxygen, air or other oxidizing gases can be injected into the recycle gas before or after the recycle gas is heated to pyrolysis temperature and thus raise the temperature before it enters the retort reactor. The use of solar thermal heat to preheat the recycle gas and optionally the steam before introducing it into the bed of shale, increases the yield of shale oil.

  4. POLICY ANALYSIS OF PRODUCED WATER ISSUES ASSOCIATED WITH IN-SITU THERMAL TECHNOLOGIES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Robert Keiter; John Ruple; Heather Tanana

    2011-02-01

    Commercial scale oil shale and oil sands development will require water, the amount of which will depend on the technologies adopted and the scale of development that occurs. Water in oil shale and oil sands country is already in scarce supply, and because of the arid nature of the region and limitations on water consumption imposed by interstate compacts and the Endangered Species Act, the State of Utah normally does not issue new water rights in oil shale or oil sands rich areas. Prospective oil shale and oil sands developers that do not already hold adequate water rights can acquiremore » water rights from willing sellers, but large and secure water supplies may be difficult and expensive to acquire, driving oil shale and oil sands developers to seek alternative sources of supply. Produced water is one such potential source of supply. When oil and gas are developed, operators often encounter ground water that must be removed and disposed of to facilitate hydrocarbon extraction. Water produced through mineral extraction was traditionally poor in quality and treated as a waste product rather than a valuable resource. However, the increase in produced water volume and the often-higher quality water associated with coalbed methane development have drawn attention to potential uses of produced water and its treatment under appropriations law. This growing interest in produced water has led to litigation and statutory changes that must be understood and evaluated if produced water is to be harnessed in the oil shale and oil sands development process. Conversely, if water is generated as a byproduct of oil shale and oil sands production, consideration must be given to how this water will be disposed of or utilized in the shale oil production process. This report explores the role produced water could play in commercial oil shale and oil sands production, explaining the evolving regulatory framework associated with produced water, Utah water law and produced water regulation, and the obstacles that must be overcome in order for produced water to support the nascent oil shale and oil sands industries.« less

  5. Processing use, and characterization of shale oil products

    PubMed Central

    Decora, Andrew W.; Kerr, Robert D.

    1979-01-01

    Oil shale is a potential source of oil that will supplement conventional sources for oil as our needs for fossil fuels begin to exceed our supplies. The resource may be mined and processed on the surface or it may be processed in situ. An overview of the potential technologies and environmental issues is presented. PMID:446454

  6. Oil shale as an energy source in Israel

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fainberg, V.; Hetsroni, G.

    1996-01-01

    Reserves, characteristics, energetics, chemistry, and technology of Israeli oil shales are described. Oil shale is the only source of energy and the only organic natural resource in Israel. Its reserves of about 12 billion tons will be enough to meet Israel`s requirements for about 80 years. The heating value of the oil shale is 1,150 kcal/kg, oil yield is 6%, and sulfur content of the oil is 5--7%. A method of oil shale processing, providing exhaustive utilization of its energy and chemical potential, developed in the Technion, is described. The principal feature of the method is a two-stage pyrolysis ofmore » the oil shale. As a result, gas and aromatic liquids are obtained. The gas may be used for energy production in a high-efficiency power unit, or as a source for chemical synthesis. The liquid products can be an excellent source for production of chemicals.« less

  7. Inventory and evaluation of potential oil shale development in Kansas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Angino, E.; Berg, J.; Dellwig, L.

    The University of Kansas Center for Research, Inc. was commissioned by the Kansas Energy Office and the US Department of Energy to conduct a review of certain oil shales in Kansas. The purpose of the study focused on making an inventory and assessing those oil shales in close stratigraphic proximity to coal beds close to the surface and containing significant reserves. The idea was to assess the feasibility of using coal as an economic window to aid in making oil shales economically recoverable. Based on this as a criterion and the work of Runnels, et al., (Runnels, R.T., Kulstead, R.O.,more » McDuffee, C. and Schleicher, J.A., 1952, Oil Shale in Kansas, Kansas Geological Survey Bulletin, No. 96, Part 3.) five eastern Kansas black shale units were selected for study and their areal distribution mapped. The volume of recoverable oil shale in each unit was calculated and translated to reserves. The report concludes that in all probability, extraction of oil shale for shale oil is not feasible at this time due to the cost of extraction, transportation and processing. The report recommends that additional studies be undertaken to provide a more comprehensive and detailed assessment of Kansas oil shales as a potential fuel resource. 49 references, 4 tables.« less

  8. Methods for minimizing plastic flow of oil shale during in situ retorting

    DOEpatents

    Lewis, Arthur E.; Mallon, Richard G.

    1978-01-01

    In an in situ oil shale retorting process, plastic flow of hot rubblized oil shale is minimized by injecting carbon dioxide and water into spent shale above the retorting zone. These gases react chemically with the mineral constituents of the spent shale to form a cement-like material which binds the individual shale particles together and bonds the consolidated mass to the wall of the retort. This relieves the weight burden borne by the hot shale below the retorting zone and thereby minimizes plastic flow in the hot shale. At least a portion of the required carbon dioxide and water can be supplied by recycled product gases.

  9. A nuclear wind/solar oil-shale system for variable electricity and liquid fuels production

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Forsberg, C.

    2012-07-01

    The recoverable reserves of oil shale in the United States exceed the total quantity of oil produced to date worldwide. Oil shale contains no oil, rather it contains kerogen which when heated decomposes into oil, gases, and a carbon char. The energy required to heat the kerogen-containing rock to produce the oil is about a quarter of the energy value of the recovered products. If fossil fuels are burned to supply this energy, the greenhouse gas releases are large relative to producing gasoline and diesel from crude oil. The oil shale can be heated underground with steam from nuclear reactorsmore » leaving the carbon char underground - a form of carbon sequestration. Because the thermal conductivity of the oil shale is low, the heating process takes months to years. This process characteristic in a system where the reactor dominates the capital costs creates the option to operate the nuclear reactor at base load while providing variable electricity to meet peak electricity demand and heat for the shale oil at times of low electricity demand. This, in turn, may enable the large scale use of renewables such as wind and solar for electricity production because the base-load nuclear plants can provide lower-cost variable backup electricity. Nuclear shale oil may reduce the greenhouse gas releases from using gasoline and diesel in half relative to gasoline and diesel produced from conventional oil. The variable electricity replaces electricity that would have been produced by fossil plants. The carbon credits from replacing fossil fuels for variable electricity production, if assigned to shale oil production, results in a carbon footprint from burning gasoline or diesel from shale oil that may half that of conventional crude oil. The U.S. imports about 10 million barrels of oil per day at a cost of a billion dollars per day. It would require about 200 GW of high-temperature nuclear heat to recover this quantity of shale oil - about two-thirds the thermal output of existing nuclear reactors in the United States. With the added variable electricity production to enable renewables, additional nuclear capacity would be required. (authors)« less

  10. CONTROL OF SULFUR EMISSIONS FROM OIL SHALE RETORTING USING SPEND SHALE ABSORPTION

    EPA Science Inventory

    The paper gives results of a detailed engineering evaluation of the potential for using an absorption on spent shale process (ASSP) for controlling sulfur emissions from oil shale plants. The evaluation analyzes the potential effectiveness and cost of absorbing SO2 on combusted s...

  11. Comparative acute toxicity of shale and petroleum derived distillates.

    PubMed

    Clark, C R; Ferguson, P W; Katchen, M A; Dennis, M W; Craig, D K

    1989-12-01

    In anticipation of the commercialization of its shale oil retorting and upgrading process, Unocal Corp. conducted a testing program aimed at better defining potential health impacts of a shale industry. Acute toxicity studies using rats and rabbits compared the effects of naphtha, Jet-A, JP-4, diesel and "residual" distillate fractions of both petroleum derived crude oils and hydrotreated shale oil. No differences in the acute oral (greater than 5 g/kg LD50) and dermal (greater than 2 g/kg LD50) toxicities were noted between the shale and petroleum derived distillates and none of the samples were more than mildly irritating to the eyes. Shale and petroleum products caused similar degrees of mild to moderate skin irritation. None of the materials produced sensitization reactions. The LC50 after acute inhalation exposure to Jet-A, shale naphtha, (greater than 5 mg/L) and JP-4 distillate fractions of petroleum and shale oils was greater than 5 mg/L. The LC50 of petroleum naphtha (greater than 4.8 mg/L) and raw shale oil (greater than 3.95 mg/L) also indicated low toxicity. Results demonstrate that shale oil products are of low acute toxicity, mild to moderately irritating and similar to their petroleum counterparts. The results further demonstrate that hydrotreatment reduces the irritancy of raw shale oil.

  12. FIELD STUDIES ON USBM AND TOSCO II RETORTED OIL SHALES: VEGETATION, MOISTURE, SALINITY, AND RUNOFF, 1977-1980

    EPA Science Inventory

    Field studies were initiated in 1973 to investigate the vegetative stabilization of processed oil shales and to follow moisture and soluble salt movement within the soil/shale profile. Research plots with two types of retorted shales (TOSCO II and USBM) with leaching and soil cov...

  13. Revegetation studies on Tosco II and USBM retorted oil shales

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kilkelly, M.K.; Harbert, H.P.; Berg, W.A.

    1981-01-01

    In 1973 studies on the revegetation of processed oil shales were initiated. The objectives of these studies were to investigate the vegetative stabilization of processed oil shales and to follow moisture and soluble salt movement in the retorted shale profile. Studies involving TOSCO II and USBM retorted shales were established at both a low-elevation (Anvil Points) and a high-elevation (Piceance Basin). Treatments included leaching and various depths of soil cover. After seven growing seasons a good vegetative cover remains with differences between treatments insignificant, with the exception of the TOSCO retorted shale south-aspect, which consistently supported less perennial vegetative covermore » than other treatments. With time, a shift from perennial grasses to dominance by shrubs was observed, especially on south-aspect slopes. 6 refs.« less

  14. Spatial and stratigraphic distribution of water in oil shale of the Green River Formation using Fischer Assay, Piceance Basin, northwestern Colorado

    USGS Publications Warehouse

    Johnson, Ronald C.; Mercier, Tracey J.; Brownfield, Michael E.

    2014-01-01

    The spatial and stratigraphic distribution of water in oil shale of the Eocene Green River Formation in the Piceance Basin of northwestern Colorado was studied in detail using some 321,000 Fischer assay analyses in the U.S. Geological Survey oil-shale database. The oil-shale section was subdivided into 17 roughly time-stratigraphic intervals, and the distribution of water in each interval was assessed separately. This study was conducted in part to determine whether water produced during retorting of oil shale could provide a significant amount of the water needed for an oil-shale industry. Recent estimates of water requirements vary from 1 to 10 barrels of water per barrel of oil produced, depending on the type of retort process used. Sources of water in Green River oil shale include (1) free water within clay minerals; (2) water from the hydrated minerals nahcolite (NaHCO3), dawsonite (NaAl(OH)2CO3), and analcime (NaAlSi2O6.H20); and (3) minor water produced from the breakdown of organic matter in oil shale during retorting. The amounts represented by each of these sources vary both stratigraphically and areally within the basin. Clay is the most important source of water in the lower part of the oil-shale interval and in many basin-margin areas. Nahcolite and dawsonite are the dominant sources of water in the oil-shale and saline-mineral depocenter, and analcime is important in the upper part of the formation. Organic matter does not appear to be a major source of water. The ratio of water to oil generated with retorting is significantly less than 1:1 for most areas of the basin and for most stratigraphic intervals; thus water within oil shale can provide only a fraction of the water needed for an oil-shale industry.

  15. Spatial and stratigraphic distribution of water in oil shale of the Green River Formation using Fischer assay, Piceance Basin, northwestern Colorado

    USGS Publications Warehouse

    Johnson, Ronald C.; Mercier, Tracey J.; Brownfield, Michael E.

    2014-01-01

    The spatial and stratigraphic distribution of water in oil shale of the Eocene Green River Formation in the Piceance Basin of northwestern Colorado was studied in detail using some 321,000 Fischer assay analyses in the U.S. Geological Survey oil-shale database. The oil-shale section was subdivided into 17 roughly time-stratigraphic intervals, and the distribution of water in each interval was assessed separately. This study was conducted in part to determine whether water produced during retorting of oil shale could provide a significant amount of the water needed for an oil-shale industry. Recent estimates of water requirements vary from 1 to 10 barrels of water per barrel of oil produced, depending on the type of retort process used. Sources of water in Green River oil shale include (1) free water within clay minerals; (2) water from the hydrated minerals nahcolite (NaHCO3), dawsonite (NaAl(OH)2CO3), and analcime (NaAlSi2O6.H20); and (3) minor water produced from the breakdown of organic matter in oil shale during retorting. The amounts represented by each of these sources vary both stratigraphically and areally within the basin. Clay is the most important source of water in the lower part of the oil-shale interval and in many basin-margin areas. Nahcolite and dawsonite are the dominant sources of water in the oil-shale and saline-mineral depocenter, and analcime is important in the upper part of the formation. Organic matter does not appear to be a major source of water. The ratio of water to oil generated with retorting is significantly less than 1:1 for most areas of the basin and for most stratigraphic intervals; thus water within oil shale can provide only a fraction of the water needed for an oil-shale industry.

  16. Selling 'Fracking': Legitimation of High Speed Oil and Gas Extraction in the Marcellus Shale Region

    NASA Astrophysics Data System (ADS)

    Matz, Jacob R.

    The advent of horizontal hydraulic fracture drilling, or 'fracking,' a technology used to access oil and natural gas deposits, has allowed for the extraction of deep, unconventional shale gas and oil deposits in various shale seams throughout the United States and world. One such shale seam, the Marcellus shale, extends from New York State, across Pennsylvania, and throughout West Virginia, where shale gas development has significantly increased within the last decade. This boom has created a massive amount of economic activity surrounding the energy industry, creating jobs for workers, income from leases and royalties for landowners, and profits for energy conglomerates. However, this bounty comes with risks to environmental and public health, and has led to divisive community polarization over the issue in the Marcellus shale region. In the face of potential environmental and social disruption, and a great deal of controversy surrounding 'fracking,' the oil and gas industry has had to undertake a myriad of public relations campaigns and initiatives to legitimize their extraction efforts in the Marcellus shale region, and to project the oil and gas industry in a positive light to residents, policy makers, and landowners. This thesis describes one such public relations initiative, the Energy in Depth Northeast Marcellus Initiative. Through qualitative content analysis of Energy in Depth's online web material, this thesis examines the ways in which the oil and gas industry narrates the shale gas boom in the Marcellus shale region, and the ways in which the industry frames the discourse surrounding natural gas development. Through the use of environmental imagery, appeals to scientific reason, and appeals to patriotism, the oil and gas industry uses Energy in Depth to frame the shale gas extraction process in a positive way, all the while framing those who question or oppose the processes of shale gas extraction as irrational obstructionists.

  17. Do Shale Pore Throats Have a Threshold Diameter for Oil Storage?

    PubMed Central

    Zou, Caineng; Jin, Xu; Zhu, Rukai; Gong, Guangming; Sun, Liang; Dai, Jinxing; Meng, Depeng; Wang, Xiaoqi; Li, Jianming; Wu, Songtao; Liu, Xiaodan; Wu, Juntao; Jiang, Lei

    2015-01-01

    In this work, a nanoporous template with a controllable channel diameter was used to simulate the oil storage ability of shale pore throats. On the basis of the wetting behaviours at the nanoscale solid-liquid interfaces, the seepage of oil in nano-channels of different diameters was examined to accurately and systematically determine the effect of the pore diameter on the oil storage capacity. The results indicated that the lower threshold for oil storage was a pore throat of 20 nm, under certain conditions. This proposed pore size threshold provides novel, evidence-based criteria for estimating the geological reserves, recoverable reserves and economically recoverable reserves of shale oil. This new understanding of shale oil processes could revolutionize the related industries. PMID:26314637

  18. Do Shale Pore Throats Have a Threshold Diameter for Oil Storage?

    PubMed

    Zou, Caineng; Jin, Xu; Zhu, Rukai; Gong, Guangming; Sun, Liang; Dai, Jinxing; Meng, Depeng; Wang, Xiaoqi; Li, Jianming; Wu, Songtao; Liu, Xiaodan; Wu, Juntao; Jiang, Lei

    2015-08-28

    In this work, a nanoporous template with a controllable channel diameter was used to simulate the oil storage ability of shale pore throats. On the basis of the wetting behaviours at the nanoscale solid-liquid interfaces, the seepage of oil in nano-channels of different diameters was examined to accurately and systematically determine the effect of the pore diameter on the oil storage capacity. The results indicated that the lower threshold for oil storage was a pore throat of 20 nm, under certain conditions. This proposed pore size threshold provides novel, evidence-based criteria for estimating the geological reserves, recoverable reserves and economically recoverable reserves of shale oil. This new understanding of shale oil processes could revolutionize the related industries.

  19. Development of a sintering process for recycling oil shale fly ash and municipal solid waste incineration bottom ash into glass ceramic composite

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Zhikun; Zhang, Lei; Li, Aimin, E-mail: leeam@dlut.edu.cn

    Highlights: • Glass ceramic composite is prepared from oil shale fly ash and MSWI bottom ash. • A novel method for the production of glass ceramic composite is presented. • It provides simple route and lower energy consumption in terms of recycling waste. • The vitrified slag can promote the sintering densification process of glass ceramic. • The performances of products decrease with the increase of oil shale fly ash content. - Abstract: Oil shale fly ash and municipal solid waste incineration bottom ash are industrial and municipal by-products that require further treatment before disposal to avoid polluting the environment.more » In the study, they were mixed and vitrified into the slag by the melt-quench process. The obtained vitrified slag was then mixed with various percentages of oil shale fly ash and converted into glass ceramic composites by the subsequent sintering process. Differential thermal analysis was used to study the thermal characteristics and determine the sintering temperatures. X-ray diffraction analysis was used to analyze the crystalline phase compositions. Sintering shrinkage, weight loss on ignition, density and compressive strength were tested to determine the optimum preparation condition and study the co-sintering mechanism of vitrified amorphous slag and oil shale fly ash. The results showed the product performances increased with the increase of sintering temperatures and the proportion of vitrified slag to oil shale fly ash. Glass ceramic composite (vitrified slag content of 80%, oil shale fly ash content of 20%, sintering temperature of 1000 °C and sintering time of 2 h) showed the properties of density of 1.92 ± 0.05 g/cm{sup 3}, weight loss on ignition of 6.14 ± 0.18%, sintering shrinkage of 22.06 ± 0.6% and compressive strength of 67 ± 14 MPa. The results indicated that it was a comparable waste-based material compared to previous researches. In particular, the energy consumption in the production process was reduced compared to conventional vitrification and sintering method. Chemical resistance and heavy metals leaching results of glass ceramic composites further confirmed the possibility of its engineering applications.« less

  20. Purifying contaminated water

    DOEpatents

    Daughton, Christian G.

    1983-01-01

    Process for removing biorefractory compounds from contaminated water (e.g., oil shale retort waste-water) by contacting same with fragmented raw oil shale. Biorefractory removal is enhanced by preactivating the oil shale with at least one member of the group of carboxylic, acids, alcohols, aldehydes, ketones, ethers, amines, amides, sulfoxides, mixed ether-esters and nitriles. Further purification is obtained by stripping, followed by biodegradation and removal of the cells.

  1. Method of rubblization for in-situ oil shale processing

    NASA Technical Reports Server (NTRS)

    Yang, Lien C. (Inventor)

    1985-01-01

    A method that produces a uniformly rubblized oil shale bed of desirable porosity for underground, in-situ heat extraction of oil. Rubblization is the generation of rubble of various sized fragments. The method uses explosive loadings lying at different levels in adjacent holes and detonation of the explosives at different levels in sequence to achieve the fracturing and the subsequent expansion of the fractured oil shale into excavated rooms both above and below the hole pattern.

  2. Preparation of grout for stabilization of abandoned in-situ oil shale retorts

    DOEpatents

    Mallon, Richard G.

    1982-01-01

    A process for the preparation of grout from burned shale by treating the burned shale in steam at approximately 700.degree. C. to maximize the production of the materials alite and larnite. Oil shale removed to the surface during the preparation of an in-situ retort is first retorted on the surface and then the carbon is burned off, leaving burned shale. The burned shale is treated in steam at approximately 700.degree. C. for about 70 minutes. The treated shale is then ground and mixed with water to produce a grout which is pumped into an abandoned, processed in-situ retort, flowing into the void spaces and then bonding up to form a rigid, solidified mass which prevents surface subsidence and leaching of the spent shale by ground water.

  3. Investigation of sorption interactions between oil shale principal mineral phases and organic compounds

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bowen, J.M.

    1988-09-01

    The interactions between minerals representative of the bulk composition of oil shales and organic compounds that have been found in oil shale leachates were investigated. The method used to directly determine the type of interactions that could take place between organic compounds and oil shale mineral phases was Fourier transform infrared spectroscopy (FTIR) using several advanced detection methods, including diffuse reflectance (DRIFT) and photoacoustics (PAS). The minerals that were investigated include quartz, calcite, and dolomite, which are known to figure significantly in the composition of processed oil shales. The organic chemical compounds used were chosen from a list of compoundsmore » identified in spent oil shale leachates, and they include pyridine, phenol, p-cresol, and acetone. The sorption interactions for the study were prepared by exposing each of the minerals to the organic compounds by three different methods. These were vapor deposition, direct application, and immersion in an aqueous solution at pH 12. 41 refs., 3 figs., 4 tabs.« less

  4. A study on the Jordanian oil shale resources and utilization

    NASA Astrophysics Data System (ADS)

    Sakhrieh, Ahmad; Hamdan, Mohammed

    2012-11-01

    Jordan has significant oil shale deposits occurring in 26 known localities. Geological surveys indicate that the existing deposits underlie more than 60% of Jordan's territory. The resource consists of 40 to 70 billion tones of oil shale, which may be equivalent to more than 5 million tones of shale oil. Since the 1960s, Jordan has been investigating economical and environmental methods for utilizing oil shale. Due to its high organic content, is considered a suitable source of energy. This paper introduces a circulating fluidized bed combustor that simulates the behavior of full scale municipal oil shale combustors. The inside diameter of the combustor is 500 mm, the height is 3000 mm. The design of the CFB is presented. The main parameters which affect the combustion process are elucidated in the paper. The size of the laboratory scale fluidized bed reactor is 3 kW, which corresponds to a fuel-feeding rate of approximately 1.5 kg/h.

  5. Purifying contaminated water. [DOE patent application

    DOEpatents

    Daughton, C.G.

    1981-10-27

    Process is presented for removing biorefactory compounds from contaminated water (e.g., oil shale retort waste-water) by contacting same with fragmented raw oil shale. Biorefractory removal is enhanced by preactivating the oil shale with at least one member of the group of carboxylic acids, alcohols, aldehydes, ketones, ethers, amines, amides, sulfoxides, mixed ether-esters and nitriles. Further purification is obtained by stripping, followed by biodegradation and removal of the cells.

  6. Refining of Military Jet Fuels from Shale Oil. Volume I. Part II. Preparation of Laboratory-Scale Fuel Samples.

    DTIC Science & Technology

    1982-03-01

    ON SPEC Meeting Specifications *1 OXY Test Series on In Situ Shale Oil P Pressure (P + N) Paraffins and Naphthenes PHO Test Series on Above-Ground...material, the crude shale is heated and processed through caustic desalt- ing similar to conventional technology. The desalted oil is mixed with recycle...with hot regenerated catalyst. Spent catalyst and oil vapors are disengaqed by -.eans of high temperature cyclones. The spent catalyst first passes

  7. Preparation of grout for stabilization of abandoned in-situ oil shale retorts. [Patent application

    DOEpatents

    Mallon, R.G.

    1979-12-07

    A process is described for the preparation of grout from burned shale by treating the burned shale in steam at approximately 700/sup 0/C to maximize the production of the materials alite and larnite. Oil shale removed to the surface during the preparation of an in-situ retort is first retorted on the surface and then the carbon is burned off, leaving burned shale. The burned shale is treated in steam at approximately 700/sup 0/C for about 70 minutes. The treated shale is then ground and mixed with water to produce a grout which is pumped into an abandoned, processed in-situ retort, flowing into the void spaces and then bonding up to form a rigid, solidified mass which prevents surface subsidence and leaching of the spent shale by ground water.

  8. Determining the locus of a processing zone in an in situ oil shale retort by sound monitoring

    DOEpatents

    Elkington, W. Brice

    1978-01-01

    The locus of a processing zone advancing through a fragmented permeable mass of particles in an in situ oil shale retort in a subterranean formation containing oil shale is determined by monitoring for sound produced in the retort, preferably by monitoring for sound at at least two locations in a plane substantially normal to the direction of advancement of the processing zone. Monitoring can be effected by placing a sound transducer in a well extending through the formation adjacent the retort and/or in the fragmented mass such as in a well extending into the fragmented mass.

  9. 43 CFR 3922.40 - Tract delineation.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ..., DEPARTMENT OF THE INTERIOR MINERALS MANAGEMENT (3000) OIL SHALE LEASING Application Processing § 3922.40... development of the oil shale resource. (b) The BLM may delineate more or less lands than were covered by an...

  10. 43 CFR 3922.40 - Tract delineation.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ..., DEPARTMENT OF THE INTERIOR MINERALS MANAGEMENT (3000) OIL SHALE LEASING Application Processing § 3922.40... development of the oil shale resource. (b) The BLM may delineate more or less lands than were covered by an...

  11. Military jet fuel from shale oil

    NASA Technical Reports Server (NTRS)

    Coppola, E. N.

    1980-01-01

    Investigations leading to a specification for aviation turbine fuel produced from whole crude shale oil are described. Refining methods involving hydrocracking, hydrotreating, and extraction processes are briefly examined and their production capabilities are assessed.

  12. 43 CFR 3922.40 - Tract delineation.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ..., DEPARTMENT OF THE INTERIOR RANGE MANAGEMENT (4000) OIL SHALE LEASING Application Processing § 3922.40 Tract... the oil shale resource. (b) The BLM may delineate more or less lands than were covered by an...

  13. 43 CFR 3922.40 - Tract delineation.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ..., DEPARTMENT OF THE INTERIOR MINERALS MANAGEMENT (3000) OIL SHALE LEASING Application Processing § 3922.40... development of the oil shale resource. (b) The BLM may delineate more or less lands than were covered by an...

  14. Talaromyces sayulitensis, Acidiella bohemica and Penicillium citrinum in Brazilian oil shale by-products.

    PubMed

    de Goes, Kelly C G P; da Silva, Josué J; Lovato, Gisele M; Iamanaka, Beatriz T; Massi, Fernanda P; Andrade, Diva S

    2017-12-01

    Fine shale particles and retorted shale are waste products generated during the oil shale retorting process. These by-products are small fragments of mined shale rock, are high in silicon and also contain organic matter, micronutrients, hydrocarbons and other elements. The aims of this study were to isolate and to evaluate fungal diversity present in fine shale particles and retorted shale samples collected at the Schist Industrialization Business Unit (Six)-Petrobras in São Mateus do Sul, State of Paraná, Brazil. Combining morphology and internal transcribed spacer (ITS) sequence, a total of seven fungal genera were identified, including Acidiella, Aspergillus, Cladosporium, Ochroconis, Penicillium, Talaromyces and Trichoderma. Acidiella was the most predominant genus found in the samples of fine shale particles, which are a highly acidic substrate (pH 2.4-3.6), while Talaromyces was the main genus in retorted shale (pH 5.20-6.20). Talaromyces sayulitensis was the species most frequently found in retorted shale, and Acidiella bohemica in fine shale particles. The presence of T. sayulitensis, T. diversus and T. stolli in oil shale is described herein for the first time. In conclusion, we have described for the first time a snapshot of the diversity of filamentous fungi colonizing solid oil shale by-products from the Irati Formation in Brazil.

  15. A Transversely Isotropic Thermo-mechanical Framework for Oil Shale

    NASA Astrophysics Data System (ADS)

    Semnani, S. J.; White, J. A.; Borja, R. I.

    2014-12-01

    The present study provides a thermo-mechanical framework for modeling the temperature dependent behavior of oil shale. As a result of heating, oil shale undergoes phase transformations, during which organic matter is converted to petroleum products, e.g. light oil, heavy oil, bitumen, and coke. The change in the constituents and microstructure of shale at high temperatures dramatically alters its mechanical behavior e.g. plastic deformations and strength, as demonstrated by triaxial tests conducted at multiple temperatures [1,2]. Accordingly, the present model formulates the effects of changes in the chemical constituents due to thermal loading. It is well known that due to the layered structure of shale its mechanical properties in the direction parallel to the bedding planes is significantly different from its properties in the perpendicular direction. Although isotropic models simplify the modeling process, they fail to accurately describe the mechanical behavior of these rocks. Therefore, many researchers have studied the anisotropic behavior of rocks, including shale [3]. The current study presents a framework to incorporate the effects of transverse isotropy within a thermo-mechanical formulation. The proposed constitutive model can be readily applied to existing finite element codes to predict the behavior of oil shale in applications such as in-situ retorting process and stability assessment in petroleum reservoirs. [1] Masri, M. et al."Experimental Study of the Thermomechanical Behavior of the Petroleum Reservoir." SPE Eastern Regional/AAPG Eastern Section Joint Meeting. Society of Petroleum Engineers, 2008. [2] Xu, B. et al. "Thermal impact on shale deformation/failure behaviors---laboratory studies." 45th US Rock Mechanics/Geomechanics Symposium. American Rock Mechanics Association, 2011. [3] Crook, AJL et al. "Development of an orthotropic 3D elastoplastic material model for shale." SPE/ISRM Rock Mechanics Conference. Society of Petroleum Engineers, 2002.

  16. Israeli co-retorting of coal and oil shale would break even at 22/barrel

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    Work is being carried out at the Hebrew University of Jerusalem on co-retorting of coal and oil shale. The work is funded under a cooperative agreement with the US Department of Energy. The project is exploring the conversion of US eastern high-sulfur bituminous coal in a split-stage, fluidized-bed reactor. Pyrolysis occurs in the first stage and char combustion in the second stage. These data for coal will be compared with similar data from the same reactor fueled by high-sulfur eastern US oil shale and Israeli oil shales. The project includes research at three major levels: pyrolysis in lab-scale fluidized-bed reactor;more » retorting in split-stage, fluidized-bed bench-scale process (1/4 tpd); and scale-up, preparation of full-size flowchart, and economic evaluation. In the past year's research, a preliminary economic evaluation was completed for a scaled-up process using a feed of high-sulfur coal and carbonate-containing Israeli oil shale. A full-scale plant in Israel was estimated to break even at an equivalent crude oil price of $150/ton ($22/barrel).« less

  17. Biological markers from Green River kerogen decomposition

    NASA Astrophysics Data System (ADS)

    Burnham, A. K.; Clarkson, J. E.; Singleton, M. F.; Wong, C. M.; Crawford, R. W.

    1982-07-01

    Isoprenoid and other carbon skeletons that are formed in living organisms and preserved essentially intact in ancient sediments are often called biological markers. The purpose of this paper is to develop improved methods of using isoprenoid hydrocarbons to relate petroleum or shale oil to its source rock. It is demonstrated that most, but not all, of the isoprenoid hydrocarbon structures are chemically bonded in kerogen (or to minerals) in Green River oil shale. The rate constant for thermally producing isoprenoid, cyclic, and aromatic hydrocarbons is substantially greater than for the bulk of shale oil. This may be related to the substantial quantity of CO 2 which is evolved coincident with the isoprenoid hydrocarbons but prior to substantial oil evolution. Although formation of isoprenoid alkenes is enhanced by rapid heating and high pyrolysis temperatures, the ratio of isoprenoid alkenes plus alkanes to normal alkenes plus alkanes is independent of heating rate. High-temperature laboratory pyrolysis experiments can thus be used to predict the distribution of aliphatic hydrocarbons in low temperature processes such as in situ shale oil production and perhaps petroleum formation. Finally, we demonstrate that significant variation in biological marker ratios occurs as a function of stratigraphy in the Green River formation. This information, combined with methods for measuring process yield from oil composition, enables one to relate time-dependent processing conditions to the corresponding time-dependent oil yield in a vertical modified- in situ retort even if there is a substantial and previously undetermined delay in drainage of shale oil from the retort.

  18. CO2 Sequestration within Spent Oil Shale

    NASA Astrophysics Data System (ADS)

    Foster, H.; Worrall, F.; Gluyas, J.; Morgan, C.; Fraser, J.

    2013-12-01

    Worldwide deposits of oil shales are thought to represent ~3 trillion barrels of oil. Jordanian oil shale deposits are extensive and of high quality, and could represent 100 billion barrels of oil, leading to much interest and activity in the development of these deposits. The exploitation of oil shales has raised a number of environmental concerns including: land use, waste disposal, water consumption, and greenhouse gas emissions. The dry retorting of oil shales can overcome a number of the environmental impacts, but this leaves concerns over management of spent oil shale and CO2 production. In this study we propose that the spent oil shale can be used to sequester CO2 from the retorting process. Here we show that by conducting experiments using high pressure reaction facilities, we can achieve successful carbonation of spent oil shale. High pressure reactor facilities in the Department of Earth Sciences, Durham University, are capable of reacting solids with a range of fluids up to 15 MPa and 350°C, being specially designed for research with supercritical fluids. Jordanian spent oil shale was reacted with high pressure CO2 in order to assess whether there is potential for sequestration. Fresh and reacted materials were then examined by: Inductively Coupled Plasma Mass Spectrometry (ICP-MS), Thermogravimetric Analysis (TGA), X-Ray Fluorescence (XRF) and X-Ray Diffraction (XRD) methods. Jordanian spent oil shale was found to sequester up to 5.8 wt % CO2, on reacting under supercritical conditions, which is 90% of the theoretical carbonation. Jordanian spent oil shale is composed of a large proportion of CaCO3, which on retorting decomposes, forming CaSO4 and Ca-oxides which are the focus of carbonation reactions. A factorially designed experiment was used to test different factors on the extent of carbonation, including: pressure; temperature; duration; and the water content. Analysis of Variance (ANOVA) techniques were then used to determine the significance of each of these. Results show that the duration; temperature; pressure; and the interactions between these significantly affect the extent of carbonation. Reactions carried out for at least 4 hours show significantly more carbonation than those under supercritical conditions for 2 hours or less. However, reacting for 24 hours does not show a significant increase in the extent of reaction, indicating that the reaction has reached equilibrium within a few hours. Maximum carbonation occurred within 4 hours, at higher temperatures and pressures of 80°C and 100 bar although results also show that there is a significant amount of carbonation achieved within 30 minutes, at 40°C and 70 bar. The magnitude of the CO2 sequestration achieved was sufficient that it could lower CO2 emissions by up to 30 kg CO2 /bbl, thereby bringing the emissions from oil shale processing in line with those from conventional oil extraction methods. The determination of optimum conditions to allow for: maximum carbonation, oil recovery and sufficient calcination, is also of importance and is currently under investigation.

  19. Retardation effect of nitrogen compounds and condensed aromatics on shale oil catalytic cracking processing and their characterization.

    PubMed

    Li, Nan; Chen, Chen; Wang, Bin; Li, Shaojie; Yang, Chaohe; Chen, Xiaobo

    Untreated shale oil, shale oil treated with HCl aqueous solution and shale oil treated with HCl and furfural were used to do comparative experiments in fixed bed reactors. Nitrogen compounds and condensed aromatics extracted by HCl and furfural were characterized by electrospray ionization Fourier transform cyclotron resonance mass spectrometry and gas chromatography and mass spectrometry, respectively. Compared with untreated shale oil, the conversion and yield of liquid products increased considerably after removing basic nitrogen compounds by HCl extraction. Furthermore, after removing nitrogen compounds and condensed aromatics by both HCl and furfural, the conversion and yield of liquid products further increased. In addition, N 1 class species are predominant in both basic and non-basic nitrogen compounds, and they are probably indole, carbazole, cycloalkyl-carbazole, pyridine and cycloalkyl-pyridine. As for the condensed aromatics, most of them possess aromatic rings with two to three rings and zero to four carbon atom.

  20. Effects of processed oil shale on the element content of Atriplex cancescens

    USGS Publications Warehouse

    Anderson, B.M.

    1982-01-01

    Samples of four-wing saltbush were collected from the Colorado State University Intensive Oil Shale Revegetation Study Site test plots in the Piceance basin, Colorado. The test plots were constructed to evaluate the effects of processed oil shale geochemistry on plant growth using various thicknesses of soil cover over the processed shale and/or over a gravel barrier between the shale and soil. Generally, the thicker the soil cover, the less the influence of the shale geochemistry on the element concentrations in the plants. Concentrations of 20 elements were larger in the ash of four-wing saltbush growing on the plot with the gravel barrier (between the soil and processed shale) when compared to the sample from the control plot. A greater water content in the soil in this plot has been reported, and the interaction between the increased, percolating water and shale may have increased the availability of these elements for plant uptake. Concentrations of boron, copper, fluorine, lithium, molybdenum, selenium, silicon, and zinc were larger in the samples grown over processed shale, compared to those from the control plot, and concentrations for barium, calcium, lanthanum, niobium, phosphorus, and strontium were smaller. Concentrations for arsenic, boron, fluorine, molybdenum, and selenium-- considered to be potential toxic contaminants--were similar to results reported in the literature for vegetation from the test plots. The copper-to-molybdenum ratios in three of the four samples of four-wing saltbush growing over the processed shale were below the ratio of 2:1, which is judged detrimental to ruminants, particularly cattle. Boron concentrations averaged 140 ppm, well above the phytotoxicity level for most plant species. Arsenic, fluorine, and selenium concentrations were below toxic levels, and thus should not present any problem for revegetation or forage use at this time.

  1. United States Air Force Shale Oil to Fuels. Phase II.

    DTIC Science & Technology

    1981-11-01

    and modified so that any off-gas from the LPS, stripper column, product drums, spent caustic drums, and sample ports would be sent to the caustic ...product, or in the spent caustic . After the desalted Paraho shale oil was processed in Production Run No. 2, the catalyst bed was flushed with light cycle...58 20 First-Stage Hydrotreating of Occidental Shale Oil -- Spent Catalyst Analysis - Run 1 ....... 59 21 First-Stage Hydrotreating of Occidental

  2. A study of pyrolysis of oil shale of the Leningrad deposit by solid heat carrier

    NASA Astrophysics Data System (ADS)

    Gerasimov, G. Ya; Khaskhachikh, V. V.; Potapov, O. P.

    2017-11-01

    The investigation of the oil shale pyrolysis with a solid heat carrier was carried out using the experimental retorting system that simulates the Galoter industrial process. This system allows verifying both fractional composition of the oil shale and solid heat carrier, and their ratio and temperature. The oil shale of the Leningradsky deposit was used in the work, and quartz sand was used as the solid heat carrier. It is shown that the yield of the shale oil under the pyrolysis with solid heat carrier exceeds by more than 20% the results received in the standard Fisher retort. Using ash as the solid heat carrier results in a decrease in the yield of oil and gas with simultaneous increase in the amount of the solid residue. This is due to the chemical interaction of the acid components of the vapor-gas mixture with the oxides of alkaline-earth metals that are part of the ash.

  3. Development of a sintering process for recycling oil shale fly ash and municipal solid waste incineration bottom ash into glass ceramic composite.

    PubMed

    Zhang, Zhikun; Zhang, Lei; Li, Aimin

    2015-04-01

    Oil shale fly ash and municipal solid waste incineration bottom ash are industrial and municipal by-products that require further treatment before disposal to avoid polluting the environment. In the study, they were mixed and vitrified into the slag by the melt-quench process. The obtained vitrified slag was then mixed with various percentages of oil shale fly ash and converted into glass ceramic composites by the subsequent sintering process. Differential thermal analysis was used to study the thermal characteristics and determine the sintering temperatures. X-ray diffraction analysis was used to analyze the crystalline phase compositions. Sintering shrinkage, weight loss on ignition, density and compressive strength were tested to determine the optimum preparation condition and study the co-sintering mechanism of vitrified amorphous slag and oil shale fly ash. The results showed the product performances increased with the increase of sintering temperatures and the proportion of vitrified slag to oil shale fly ash. Glass ceramic composite (vitrified slag content of 80%, oil shale fly ash content of 20%, sintering temperature of 1000 °C and sintering time of 2h) showed the properties of density of 1.92 ± 0.05 g/cm(3), weight loss on ignition of 6.14 ± 0.18%, sintering shrinkage of 22.06 ± 0.6% and compressive strength of 67 ± 14 MPa. The results indicated that it was a comparable waste-based material compared to previous researches. In particular, the energy consumption in the production process was reduced compared to conventional vitrification and sintering method. Chemical resistance and heavy metals leaching results of glass ceramic composites further confirmed the possibility of its engineering applications. Copyright © 2015 Elsevier Ltd. All rights reserved.

  4. An Integrated Environmental Assessment Model for Oil Shale Development

    NASA Astrophysics Data System (ADS)

    Pasqualini, D.; Witkowski, M. S.; Keating, G. N.; Ziock, H.; Wolfsberg, A. V.

    2008-12-01

    Due to the rising prices of conventional fuel, unconventional fossil fuels such as oil shale, tar sands, and coal to liquid have gained attention as an energy resource. The largest reserve of oil shale in the world is located in the western interior of North America, and includes parts of Colorado, Utah, and Wyoming. Development of oil shale in this area could reduce or eliminate the U.S. dependence on foreign fuel sources. However, oil shale production carries a number of potential environmental impacts. Fuel production associated with oil shale will create increasing competition for limited resources such as water, while potentially negatively impacting air quality, water quality, habitat, and wildlife. Water use, wastewater management, greenhouse gas emissions, air pollution, and land use are the main environmental issues that oil shale production involves. A proper analysis of the interrelationships between these factors and those of the new energy needs required for production is necessary to avoid serious negative impacts to the environment and the economies. We have developed a system dynamics integrated assessment model to evaluate potential fuel production capacity from oil shale within the limits of environmental quality, land use, and economics. Recognizing that the impacts of oil shale development are the outcomes of a complex process that involve water, energy, climate, social pressures, economics, regulations, technical advances, etc., and especially their couplings and feedbacks, we developed our model using the system dynamics (SD) modeling approach. Our SD model integrates all of these components and allows us to analyze the interdependencies among them. Our initial focus has been to address industry, regulator, and stakeholder concerns regarding the quantification and management of carbon and water resources impacts. The model focuses on oil shale production in the Piceance Basin in Colorado, but is inherently designed to be extendable to larger regions, levels of production, and different unconventional fuels.

  5. 43 CFR 3000.12 - What is the fee schedule for fixed fees?

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... Processing and Filing Fee Table Document/action FY 2013 fee Oil & Gas (parts 3100, 3110, 3120, 3130, 3150... 320 Lease or lease interest transfer 65 Leasing of Solid Minerals Other Than Coal and Oil Shale (parts...) Adverse claim 105 Protest 65 Oil Shale Management (parts 3900, 3910, 3930) Exploration license application...

  6. Mongolian Oil Shale, hosted in Mesozoic Sedimentary Basins

    NASA Astrophysics Data System (ADS)

    Bat-Orshikh, E.; Lee, I.; Norov, B.; Batsaikhan, M.

    2016-12-01

    Mongolia contains several Mesozoic sedimentary basins, which filled >2000 m thick non-marine successions. Late Triassic-Middle Jurassic foreland basins were formed under compression tectonic conditions, whereas Late Jurassic-Early Cretaceous rift valleys were formed through extension tectonics. Also, large areas of China were affected by these tectonic events. The sedimentary basins in China host prolific petroleum and oil shale resources. Similarly, Mongolian basins contain hundreds meter thick oil shale as well as oil fields. However, petroleum system and oil shale geology of Mongolia remain not well known due to lack of survey. Mongolian oil shale deposits and occurrences, hosted in Middle Jurassic and Lower Cretaceous units, are classified into thirteen oil shale-bearing basins, of which oil shale resources were estimated to be 787 Bt. Jurassic oil shale has been identified in central Mongolia, while Lower Cretaceous oil shale is distributed in eastern Mongolia. Lithologically, Jurassic and Cretaceous oil shale-bearing units (up to 700 m thick) are similar, composed mainly of alternating beds of oil shale, dolomotic marl, siltstone and sandstone, representing lacustrine facies. Both Jurassic and Cretaceous oil shales are characterized by Type I kerogen with high TOC contents, up to 35.6% and low sulfur contents ranging from 0.1% to 1.5%. Moreover, S2 values of oil shales are up to 146 kg/t. The numbers indicate that the oil shales are high quality, oil prone source rocks. The Tmax values of samples range from 410 to 447, suggesting immature to early oil window maturity levels. PI values are consistent with this interpretation, ranging from 0.01 to 0.03. According to bulk geochemistry data, Jurassic and Cretaceous oil shales are identical, high quality petroleum source rocks. However, previous studies indicate that known oil fields in Eastern Mongolia were originated from Lower Cretaceous oil shales. Thus, further detailed studies on Jurassic oil shale and its petroleum potential are required.

  7. Organic Substances from Unconventional Oil and Gas Production in Shale

    NASA Astrophysics Data System (ADS)

    Orem, W. H.; Varonka, M.; Crosby, L.; Schell, T.; Bates, A.; Engle, M.

    2014-12-01

    Unconventional oil and gas (UOG) production has emerged as an important element in the US and world energy mix. Technological innovations in the oil and gas industry, especially horizontal drilling and hydraulic fracturing, allow for the enhanced release of oil and natural gas from shale compared to conventional oil and gas production. This has made commercial exploitation possible on a large scale. Although UOG is enormously successful, there is surprisingly little known about the effects of this technology on the targeted shale formation and on environmental impacts of oil and gas production at the surface. We examined water samples from both conventional and UOG shale wells to determine the composition, source and fate of organic substances present. Extraction of hydrocarbon from shale plays involves the creation and expansion of fractures through the hydraulic fracturing process. This process involves the injection of large volumes of a water-sand mix treated with organic and inorganic chemicals to assist the process and prop open the fractures created. Formation water from a well in the New Albany Shale that was not hydraulically fractured (no injected chemicals) had total organic carbon (TOC) levels that averaged 8 mg/L, and organic substances that included: long-chain fatty acids, alkanes, polycyclic aromatic hydrocarbons, heterocyclic compounds, alkyl benzenes, and alkyl phenols. In contrast, water from UOG production in the Marcellus Shale had TOC levels as high as 5,500 mg/L, and contained a range of organic chemicals including, solvents, biocides, scale inhibitors, and other organic chemicals at thousands of μg/L for individual compounds. These chemicals and TOC decreased rapidly over the first 20 days of water recovery as injected fluids were recovered, but residual organic compounds (some naturally-occurring) remained up to 250 days after the start of water recovery (TOC 10-30 mg/L). Results show how hydraulic fracturing changes the organic composition of shale formation water, and that some injected organic substances are retained on the shale and slowly released. Thus, appropriate safe disposal of produced water is needed long into production. Changes in organic substances in formation water may impact microbial communities. Current work is focused on UOG production in the Permian Basin, Texas.

  8. Field establishment of fourwing saltbush in processed oil shale and disturbed native soil as influenced by vesicular-arbuscular mycorrhizae

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Call, C.A.; McKell, C.M.

    1984-04-30

    Seedlings of fourwing saltbush (Atriplex canescens (Pursh) Nutt.) were inoculated with indigenous vesicular-arbuscular mycorrhizal (VAM) fungi in a containerized system and transplanted into processed oil shale and disturbed native soil in a semiarid rangeland environment in northwestern Colorado. After two growing seasons in the field, plants inoculated with VAM had greater aboveground biomass, cover, and height than noninoculated plants. Mycorrhizal plants were more effective in the uptake of water and phosphorus. Infection levels of inoculated plants were greatly reduced in processed shale (from 13.0 at outplanting to 3.8 at harvest), but functional VAM associations could be found after two growingmore » seasons. Results indicate that VAM help make processed oil shale a more tractable medium for the establishment of plants representative of later successional stages by allowing these plants to make effective use of the natural resources that are limiting under conditions of high stress. 39 references, 1 figure.« less

  9. 43 CFR 3000.12 - What is the fee schedule for fixed fees?

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... Processing and Filing Fee Table Document/action FY 2014 fee Oil & Gas (parts 3100, 3110, 3120, 3130, 3150... 325 Lease or lease interest transfer 65 Leasing of Solid Minerals Other Than Coal and Oil Shale (parts... claims) 1,495 (10 or fewer claims) Adverse claim 105 Protest 65 Oil Shale Management (parts 3900, 3910...

  10. 43 CFR 3000.12 - What is the fee schedule for fixed fees?

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... Processing and Filing Fee Table Document/Action FY 2015 Fee Oil & Gas (parts 3100, 3110, 3120, 3130, 3150... Coal and Oil Shale (parts 3500, 3580) Applications other than those listed below 35. Prospecting permit... adjudication 3,035 (more than 10 claims). 1,520 (10 or fewer claims). Adverse claim 110. Protest 65. Oil Shale...

  11. Effects of processed oil shale on the element content of Atriplex cancescens

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Anderson, B.M.

    1982-01-01

    Samples of four-wing saltbush were collected from the Colorado State University Intensive Oil Shale Revegetation Study Site test plots in the Piceance basin, Colorado. The test plots were constructed to evaluate the effects of processed oil shale geochemistry on plant growth using various thicknesses of soil cover over the processed shale and/or over a gravel barrier between the shale and soil. Generally, the thicker the soil cover, the less the influence of the shale geochemistry on the element concentrations in the plants. Concentrations of 20 elements were larger in the ash of four-wing saltbush growing on the plot with themore » gravel barrier (between the soil and processed shale) when compared to the sample from the control plot. A greater water content in the soil in this plot has been reported, and the interaction between the increased, percolating water and shale may have increased the availability of these elements for plant uptake. Concentrations of boron, copper, fluorine, lithium, molybdenum, selenium, silicon, and zinc were larger in the samples grown over processed shale, compared to those from the control plot, and concentrations for barium, calcium, lanthanum, niobium, phosphorus, and strontium were smaller. Concentrations for arsenic, boron, fluorine, molybdenum, and selenium - considered to be potential toxic contaminants - were similar to results reported in the literature for vegetation from the test plots. The copper-to-molybdenum ratios in three of the four samples of four-wing saltbush growing over the processed shale were below the ratio of 2:1, which is judged detrimental to ruminants, particularly cattle. Boron concentrations averaged 140 ppM, well above the phytotoxicity level for most plant species. Arsenic, fluorine, and selenium concentrations were below toxic levels, and thus should not present any problem for revegetation or forage use at this time.« less

  12. Western Greece unconventional hydrocarbon potential from oil shale and shale gas reservoirs

    NASA Astrophysics Data System (ADS)

    Karakitsios, Vasileios; Agiadi, Konstantina

    2013-04-01

    It is clear that we are gradually running out of new sedimentary basins to explore for conventional oil and gas and that the reserves of conventional oil, which can be produced cheaply, are limited. This is the reason why several major oil companies invest in what are often called unconventional hydrocarbons: mainly oil shales, heavy oil, tar sand and shale gas. In western Greece exist important oil and gas shale reservoirs which must be added to its hydrocarbon potential1,2. Regarding oil shales, Western Greece presents significant underground immature, or close to the early maturation stage, source rocks with black shale composition. These source rock oils may be produced by applying an in-situ conversion process (ICP). A modern technology, yet unproven at a commercial scale, is the thermally conductive in-situ conversion technology, developed by Shell3. Since most of western Greece source rocks are black shales with high organic content, those, which are immature or close to the maturity limit have sufficient thickness and are located below 1500 meters depth, may be converted artificially by in situ pyrolysis. In western Greece, there are several extensive areas with these characteristics, which may be subject of exploitation in the future2. Shale gas reservoirs in Western Greece are quite possibly present in all areas where shales occur below the ground-water level, with significant extent and organic matter content greater than 1%, and during their geological history, were found under conditions corresponding to the gas window (generally at depths over 5,000 to 6,000m). Western Greece contains argillaceous source rocks, found within the gas window, from which shale gas may be produced and consequently these rocks represent exploitable shale gas reservoirs. Considering the inevitable increase in crude oil prices, it is expected that at some point soon Western Greece shales will most probably be targeted. Exploration for conventional petroleum reservoirs, through the interpretation of seismic profiles and the surface geological data, will simultaneously provide the subsurface geometry of the unconventional reservoirs. Their exploitation should follow that of conventional hydrocarbons, in order to benefit from the anticipated technological advances, eliminating environmental repercussions. As a realistic approach, the environmental consequences of the oil shale and shale gas exploitation to the natural environment of western Greece, which holds other very significant natural resources, should be delved into as early as possible. References 1Karakitsios V. & Rigakis N. 2007. Evolution and Petroleum Potential of Western Greece. J.Petroleum Geology, v. 30, no. 3, p. 197-218. 2Karakitsios V. 2013. Western Greece and Ionian Sea petroleum systems. AAPG Bulletin, in press. 3Bartis J.T., Latourrette T., Dixon L., Peterson D.J., Cecchine G. 2005. Oil Shale Development in the United States: Prospect and Policy Issues. Prepared for the National Energy Tech. Lab. of the U.S. Dept Energy. RAND Corporation, 65 p.

  13. Composition, diagenetic transformation and alkalinity potential of oil shale ash sediments.

    PubMed

    Mõtlep, Riho; Sild, Terje; Puura, Erik; Kirsimäe, Kalle

    2010-12-15

    Oil shale is a primary fuel in the Estonian energy sector. After combustion 45-48% of the oil shale is left over as ash, producing about 5-7 Mt of ash, which is deposited on ash plateaus annually almost without any reuse. This study focuses on oil shale ash plateau sediment mineralogy, its hydration and diagenetic transformations, a study that has not been addressed. Oil shale ash wastes are considered as the biggest pollution sources in Estonia and thus determining the composition and properties of oil shale ash sediment are important to assess its environmental implications and also its possible reusability. A study of fresh ash and drillcore samples from ash plateau sediment was conducted by X-ray diffractometry and scanning electron microscopy. The oil shale is highly calcareous, and the ash that remains after combustion is derived from the decomposition of carbonate minerals. It is rich in lime and anhydrite that are unstable phases under hydrous conditions. These processes and the diagenetic alteration of other phases determine the composition of the plateau sediment. Dominant phases in the ash are hydration and associated transformation products: calcite, ettringite, portlandite and hydrocalumite. The prevailing mineral phases (portlandite, ettringite) cause highly alkaline leachates, pH 12-13. Neutralization of these leachates under natural conditions, by rainwater leaching/neutralization and slow transformation (e.g. carbonation) of the aforementioned unstable phases into more stable forms, takes, at best, hundreds or even hundreds of thousands of years. Copyright © 2010 Elsevier B.V. All rights reserved.

  14. 43 CFR 3905.10 - Oil shale lease exchanges.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 43 Public Lands: Interior 2 2014-10-01 2014-10-01 false Oil shale lease exchanges. 3905.10 Section... MANAGEMENT, DEPARTMENT OF THE INTERIOR MINERALS MANAGEMENT (3000) OIL SHALE MANAGEMENT-GENERAL Lease Exchanges § 3905.10 Oil shale lease exchanges. To facilitate the recovery of oil shale, the BLM may consider...

  15. 43 CFR 3905.10 - Oil shale lease exchanges.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 43 Public Lands: Interior 2 2013-10-01 2013-10-01 false Oil shale lease exchanges. 3905.10 Section... MANAGEMENT, DEPARTMENT OF THE INTERIOR MINERALS MANAGEMENT (3000) OIL SHALE MANAGEMENT-GENERAL Lease Exchanges § 3905.10 Oil shale lease exchanges. To facilitate the recovery of oil shale, the BLM may consider...

  16. 43 CFR 3905.10 - Oil shale lease exchanges.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 43 Public Lands: Interior 2 2012-10-01 2012-10-01 false Oil shale lease exchanges. 3905.10 Section... MANAGEMENT, DEPARTMENT OF THE INTERIOR MINERALS MANAGEMENT (3000) OIL SHALE MANAGEMENT-GENERAL Lease Exchanges § 3905.10 Oil shale lease exchanges. To facilitate the recovery of oil shale, the BLM may consider...

  17. 43 CFR 3905.10 - Oil shale lease exchanges.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 43 Public Lands: Interior 2 2011-10-01 2011-10-01 false Oil shale lease exchanges. 3905.10 Section... MANAGEMENT, DEPARTMENT OF THE INTERIOR RANGE MANAGEMENT (4000) OIL SHALE MANAGEMENT-GENERAL Lease Exchanges § 3905.10 Oil shale lease exchanges. To facilitate the recovery of oil shale, the BLM may consider land...

  18. Carbon sequestration in depleted oil shale deposits

    DOEpatents

    Burnham, Alan K; Carroll, Susan A

    2014-12-02

    A method and apparatus are described for sequestering carbon dioxide underground by mineralizing the carbon dioxide with coinjected fluids and minerals remaining from the extraction shale oil. In one embodiment, the oil shale of an illite-rich oil shale is heated to pyrolyze the shale underground, and carbon dioxide is provided to the remaining depleted oil shale while at an elevated temperature. Conditions are sufficient to mineralize the carbon dioxide.

  19. Preliminary Stratigraphic Cross Sections of Oil Shale in the Eocene Green River Formation, Uinta Basin, Utah

    USGS Publications Warehouse

    Dyni, John R.

    2008-01-01

    Oil shale units in the Eocene Green River Formation are shown on two east-west stratigraphic sections across the Uinta Basin in northeastern Utah. Several units have potential value for recovery of shale oil, especially the Mahogany oil shale zone, which is a high grade oil shale that can be traced across most of the Uinta Basin and into the Piceance Basin in northwestern Colorado. Many thin medium to high grade oil shale beds above the Mahogany zone can also be traced for many miles across the basin. Several units below the Mahogany that have slow velocities on sonic logs may be low grade oil shale. These may have value as a source for shale gas.

  20. Fluidized-bed pyrolysis of oil shale: oil yield, composition, and kinetics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Richardson, J H; Huss, E B; Ott, L L

    1982-09-01

    A quartz isothermal fluidized-bed reactor has been used to measure kinetics and oil properties relevant to surface processing of oil shale. The rate of oil formation has been described with two sequential first-order rate equations characterized by two rate constants, k/sub 1/ = 2.18 x 10/sup 10/ exp(-41.6 kcal/RT) s/sup -1/ and k/sub 2/ = 4.4 x 10/sup 6/ exp(-29.7 kcal/RT) s/sup -1/. These rate constants together with an expression for the appropriate weighting coefficients describe approximately 97/sup +/% of the total oil produced. A description is given of the results of different attempts to mathematically describe the data inmore » a manner suitable for modeling applications. Preliminary results are also presented for species-selective kinetics of methane, ethene, ethane and hydrogen, where the latter is clearly distinguished as the product of a distinct intermediate. Oil yields from Western oil shale are approximately 100% Fischer assay. Oil composition is as expected based on previous work and the higher heating rates (temperatures) inherent in fluidized-bed pyrolysis. Neither the oil yield, composition nor the kinetics varied with particle size between 0.2 and 2.0 mm within experimental error. The qualitatively expected change in oil composition due to cracking was observed over the temperature range studied (460 to 540/sup 0/C). Eastern shale exhibited significantly faster kinetics and higher oil yields than did Western shale.« less

  1. Mason’s equation application for prediction of voltage of oil shale treeing breakdown

    NASA Astrophysics Data System (ADS)

    Martemyanov, S. M.

    2017-05-01

    The application of the formula, which is used to calculate the maximum field at the tip of the pin-plane electrode system was proposed to describe the process of electrical treeing and treeing breakdown in an oil shale. An analytical expression for the calculation of the treeing breakdown voltage in the oil shale, as a function of the inter-electrode distance, was taken. A high accuracy of the correspondence of the model to the experimental data in the range of inter-electrode distances from 0.03 to 0.5 m was taken.

  2. Study on nickel and vanadium removal in thermal conversion of oil sludge and oil shale sludge

    NASA Astrophysics Data System (ADS)

    Sombral, L. G. S.; Pickler, A. C.; Aires, J. R.; Riehl, C. A.

    2003-05-01

    The petroleum refining processes and of oil shale industrialization generate solid and semi-solid residues. In those residues heavy metals are found in concentrations that vary according to the production sector. The destination of those residues is encouraging researches looking for new technologies that reach the specifications of environmental organisms, and are being developed and applied to the industry. In this work it is shown that the heavy metals concentrations, previously in the petroleum oily solid residues and in those of the oils shale, treated by low temperature thermal conversion, obtaining in both cases concentrations below Ippm to Nickel and below 5ppm to vanadium.

  3. Reaction rate kinetics for in situ combustion retorting of Michigan Antrim oil shale

    USGS Publications Warehouse

    Rostam-Abadi, M.; Mickelson, R.W.

    1984-01-01

    The intrinsic reaction rate kinetics for the pyrolysis of Michigan Antrim oil shale and the oxidation of the carbonaceous residue of this shale have been determined using a thermogravimetric analysis method. The kinetics of the pyrolysis reaction were evaluated from both isothermal and nonisothermal rate data. The reaction was found to be second-order with an activation energy of 252.2 kJ/mole, and with a frequency factor of 9.25 ?? 1015 sec-1. Pyrolysis kinetics were not affected by heating rates between 0.01 to 0.67??K/s. No evidence of any reactions among the oil shale mineral constituents was observed at temperatures below 1173??K. However, it was found that the presence of pyrite in oil shale reduces the primary devolatilization rate of kerogen and increases the amount of residual char in the spent shale. Carbonaceous residues which were prepared by heating the oil shale at a rate of 0.166??K/s to temperatures between 923??K and 1073??K, had the highest reactivities when oxidized at 0.166??K/s in a gas having 21 volume percent oxygen. Oxygen chemisorption was found to be the initial precursor to the oxidation process. The kinetics governing oxygen chemisorption is (Equation Presented) where X is the fractional coverage. The oxidation of the carbonaceous residue was found also to be second-order. The activation energy and the frequency factor determined from isothermal experiments were 147 kJ/mole and 9.18??107 sec-1 respectively, while the values of these parameters obtained from a nonisothermal experiment were 212 kJ/mole and 1.5??1013 sec-1. The variation in the rate constants is attributed to the fact that isothermal and nonisothermal analyses represent two different aspects of the combustion process.

  4. A Thermoplasticity Model for Oil Shale

    DOE PAGES

    White, Joshua A.; Burnham, Alan K.; Camp, David W.

    2016-03-31

    Several regions of the world have abundant oil shale resources, but accessing this energy supply poses a number of challenges. One particular difficulty is the thermomechanical behavior of the material. When heated to sufficient temperatures, thermal conversion of kerogen to oil, gas, and other products takes place. This alteration of microstructure leads to a complex geomechanical response. In this work, we develop a thermoplasticity model for oil shale. The model is based on critical state plasticity, a framework often used for modeling clays and soft rocks. The model described here allows for both hardening due to mechanical deformation and softeningmore » due to thermal processes. In particular, the preconsolidation pressure—defining the onset of plastic volumetric compaction—is controlled by a state variable representing the kerogen content of the material. As kerogen is converted to other phases, the material weakens and plastic compaction begins. We calibrate and compare the proposed model to a suite of high-temperature uniaxial and triaxial experiments on core samples from a pilot in situ processing operation in the Green River Formation. In conclusion, we also describe avenues for future work to improve understanding and prediction of the geomechanical behavior of oil shale operations.« less

  5. Effects of retorting factors on combustion properties of shale char. 3. Distribution of residual organic matters.

    PubMed

    Han, Xiangxin; Jiang, Xiumin; Cui, Zhigang; Liu, Jianguo; Yan, Junwei

    2010-03-15

    Shale char, formed in retort furnaces of oil shale, is classified as a dangerous waste containing several toxic compounds. In order to retort oil shale to produce shale oil as well as treat shale char efficiently and in an environmentally friendly way, a novel kind of comprehensive utilization system was developed to use oil shale for shale oil production, electricity generation (shale char fired) and the extensive application of oil shale ash. For exploring the combustion properties of shale char further, in this paper organic matters within shale chars obtained under different retorting conditions were extracted and identified using a gas chromatography-mass spectrometry (GC-MS) method. Subsequently, the effects of retorting factors, including retorting temperature, residence time, particle size and heating rate, were analyzed in detail. As a result, a retorting condition with a retorting temperature of 460-490 degrees C, residence time of <40 min and a middle particle size was recommended for both keeping nitrogenous organic matters and aromatic hydrocarbons in shale char and improving the yield and quality of shale oil. In addition, shale char obtained under such retorting condition can also be treated efficiently using a circulating fluidized bed technology with fractional combustion. (c) 2009 Elsevier B.V. All rights reserved.

  6. Study of Cetane Properties of ATJ Blends Based on World Survey of Jet Fuels

    DTIC Science & Technology

    2016-01-28

    49.84 N/A N/A N/A 46.92 N/A N/A N/A 12 (100% Syn.) 1 57.79 N/A N/A N/A 53.48 N/A N/A N/A a - Conventional petroleum based jet fuel; b - Oil Shale ...Australia (% Nitrogen content unknown) c - Oil Shale , Australia (Low Nitrogen); d - Oil Shale , Australia (High Nitrogen) U/A – Unavailable in PQIS...fuel b - Oil Shale , Australia (% Nitrogen content unknown) c - Oil Shale , Australia (Low Nitrogen) d - Oil Shale , Australia (High Nitrogen) U/A

  7. GIS-and Web-based Water Resource Geospatial Infrastructure for Oil Shale Development

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhou, Wei; Minnick, Matthew; Geza, Mengistu

    2012-09-30

    The Colorado School of Mines (CSM) was awarded a grant by the National Energy Technology Laboratory (NETL), Department of Energy (DOE) to conduct a research project en- titled GIS- and Web-based Water Resource Geospatial Infrastructure for Oil Shale Development in October of 2008. The ultimate goal of this research project is to develop a water resource geo-spatial infrastructure that serves as “baseline data” for creating solutions on water resource management and for supporting decisions making on oil shale resource development. The project came to the end on September 30, 2012. This final project report will report the key findings frommore » the project activity, major accomplishments, and expected impacts of the research. At meantime, the gamma version (also known as Version 4.0) of the geodatabase as well as other various deliverables stored on digital storage media will be send to the program manager at NETL, DOE via express mail. The key findings from the project activity include the quantitative spatial and temporal distribution of the water resource throughout the Piceance Basin, water consumption with respect to oil shale production, and data gaps identified. Major accomplishments of this project include the creation of a relational geodatabase, automated data processing scripts (Matlab) for database link with surface water and geological model, ArcGIS Model for hydrogeologic data processing for groundwater model input, a 3D geological model, surface water/groundwater models, energy resource development systems model, as well as a web-based geo-spatial infrastructure for data exploration, visualization and dissemination. This research will have broad impacts of the devel- opment of the oil shale resources in the US. The geodatabase provides a “baseline” data for fur- ther study of the oil shale development and identification of further data collection needs. The 3D geological model provides better understanding through data interpolation and visualization techniques of the Piceance Basin structure spatial distribution of the oil shale resources. The sur- face water/groundwater models quantify the water shortage and better understanding the spatial distribution of the available water resources. The energy resource development systems model reveals the phase shift of water usage and the oil shale production, which will facilitate better planning for oil shale development. Detailed descriptions about the key findings from the project activity, major accomplishments, and expected impacts of the research will be given in the sec- tion of “ACCOMPLISHMENTS, RESULTS, AND DISCUSSION” of this report.« less

  8. Morbidity survey of US oil shale workers employed during 1948-1969

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rom, W.N.; Krueger, G.; Zone, J.

    The health status of 325 oil shale workers employed at the Anvil Points, Colorado, demonstration facility from 1948 to 1969 was evaluated. As a comparison population, 323 Utah coal miners frequency matched for age were studied. The prevalence of respiratory symptoms among oil shale workers who smoked were similar to the coal miners who smoked, although nonsmoking oil shale workers had fewer symptoms compared to nonsmoking coal workers. Four cases of skin cancers were found on the oil shale workers and eight cases in the controls. Similar numbers of nevi, telangiectasiae, possible pitch warts, pigment changes (solar/senile lentigo), and papillomatamore » (seborrheic keratoses and skin tags) were seen in both groups, while actinic keratoses were more frequent in the oil shale workers. The prevalence of actinic keratoses was significantly associated with oil shale work after allowing for age, sun exposure, and other exposures. The prevalence of pulmonary cytology metaplasia was associated with years of production work in oil shale among both smokers and ex-smokers. More of the oil shale workers had atypical cells in the urine, but the excess mostly found among ex-smokers. Although these workers had short-term and limited oil shale exposure work exposure, the authors recommend that medical surveillance of oil shale workers consider the skin, respiratory, and urinary systems for special observation.« less

  9. In-place oil shale resources of the Mahogany zone sorted by grade, overburden thickness and stripping ratio, Green River Formation, Piceance Basin, Colorado and Uinta Basin, Utah

    USGS Publications Warehouse

    Birdwell, Justin E.; Mercier, Tracey J.; Johnson, Ronald C.; Brownfield, Michael E.

    2015-01-01

    A range of geological parameters relevant to mining oil shale have been examined for the Mahogany zone of the Green River Formation in the Piceance Basin, Colorado, and Uinta Basin, Utah, using information available in the U.S. Geological Survey Oil Shale Assessment database. Basinwide discrete and cumulative distributions of resource in-place as a function of (1) oil shale grade, (2) Mahogany zone thickness, (3) overburden thickness, and (4) stripping ratio (overburden divided by zone thickness) were determined for both basins on a per-acre basis, and a resource map showing the areal distribution of these properties was generated. Estimates of how much of the Mahogany zone resource meets various combinations of these parameters were also determined. Of the 191.7 billion barrels of Mahogany zone oil in-place in the Piceance Basin, 32.3 percent (61.8 billion barrels) is associated with oil shale yielding at least 25 gallons of oil per ton (GPT) of rock processed, is covered by overburden 1,000 feet thick or less, and has a stripping ratio of less than 10. In the Uinta Basin, 14.0 percent (29.9 billion barrels) of the 214.5 billion barrels of Mahogany zone oil in-place meets the same overburden and stripping ratio criteria but only for the lower grade cutoff of 15 GPT.

  10. Sedimentary provenance of Maastrichtian oil shales, Central Eastern Desert, Egypt

    NASA Astrophysics Data System (ADS)

    Fathy, Douaa; Wagreich, Michael; Mohamed, Ramadan S.; Zaki, Rafat

    2017-04-01

    Maastrichtian oil shales are distributed within the Central Eastern Desert in Egypt. In this study elemental geochemical data have been applied to investigate the probable provenance of the sedimentary detrital material of the Maastrichtian oil shale beds within the Duwi and the Dakhla formations. The Maastrichtian oil shales are characterized by the enrichment in Ca, P, Mo, Ni, Zn, U, Cr and Sr versus post-Archean Australian shales (PAAS). The chondrite-normalized patterns of the Maastrichtian oil shale samples are showing LREE enrichment, HREE depletion, slightly negative Eu anomaly, no obvious Ce anomaly and typical shale-like PAAS-normalized patterns. The total REE well correlated with Si, Al, Fe, K and Ti, suggesting that the REE of the Maastrichtian oil shales are derived from terrigenous source. Chemical weathering indices such as Chemical Index of Alteration (CIA), Chemical Proxy of Alteration (CPA) and Plagioclase Index of Alteration (PIA) indicate moderate to strong chemical weathering. We suggest that the Maastrichtian oil shale is mainly derived from first cycle rocks especially intermediate rocks without any significant inputs from recycled or mature sources. The proposed data illustrated the impact of the parent material composition on evolution of oil shale chemistry. Furthermore, the paleo-tectonic setting of the detrital source rocks for the Maastrichtian oil shale is probably related to Proterozoic continental island arcs

  11. Shale oil recovery process

    DOEpatents

    Zerga, Daniel P.

    1980-01-01

    A process of producing within a subterranean oil shale deposit a retort chamber containing permeable fragmented material wherein a series of explosive charges are emplaced in the deposit in a particular configuration comprising an initiating round which functions to produce an upward flexure of the overburden and to initiate fragmentation of the oil shale within the area of the retort chamber to be formed, the initiating round being followed in a predetermined time sequence by retreating lines of emplaced charges developing further fragmentation within the retort zone and continued lateral upward flexure of the overburden. The initiating round is characterized by a plurality of 5-spot patterns and the retreating lines of charges are positioned and fired along zigzag lines generally forming retreating rows of W's. Particular time delays in the firing of successive charges are disclosed.

  12. Balanced program plan: analysis for biomedical and environmental research. Volume 5. Oil shale technology

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1976-06-01

    Oil shale technology has been divided into two sub-technologies: surfaceprocessing and in-situ processing. Definition of the research programs is essentially an amplification of the five King-Muir categories: (A) pollutants: characterization, measurement, and monitoring; (B) physical and chemical processes and effects; (C) health effects; (D) ecological processes and effects; and (E) integrated assessment. Twenty-three biomedical and environmental research projects are described as to program title, scope, milestones, technology time frame, program unit priority, and estimated program unit cost.

  13. Shale Oil Value Enhancement Research

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    James W. Bunger

    2006-11-30

    Raw kerogen oil is rich in heteroatom-containing compounds. Heteroatoms, N, S & O, are undesirable as components of a refinery feedstock, but are the basis for product value in agrochemicals, pharmaceuticals, surfactants, solvents, polymers, and a host of industrial materials. An economically viable, technologically feasible process scheme was developed in this research that promises to enhance the economics of oil shale development, both in the US and elsewhere in the world, in particular Estonia. Products will compete in existing markets for products now manufactured by costly synthesis routes. A premium petroleum refinery feedstock is also produced. The technology is nowmore » ready for pilot plant engineering studies and is likely to play an important role in developing a US oil shale industry.« less

  14. Shale-oil-recovery systems incorporating ore beneficiation. Final report.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Weiss, M.A.; Klumpar, I.V.; Peterson, C.R.

    This study analyzed the recovery of oil from oil shale by use of proposed systems which incorporate beneficiation of the shale ore (that is concentration of the kerogen before the oil-recovery step). The objective was to identify systems which could be more attractive than conventional surface retorting of ore. No experimental work was carried out. The systems analyzed consisted of beneficiation methods which could increase kerogen concentrations by at least four-fold. Potentially attractive low-enrichment methods such as density separation were not examined. The technical alternatives considered were bounded by the secondary crusher as input and raw shale oil as output.more » A sequence of ball milling, froth flotation, and retorting concentrate is not attractive for Western shales compared to conventional ore retorting; transporting the concentrate to another location for retorting reduces air emissions in the ore region but cost reduction is questionable. The high capital and energy cost s results largely from the ball milling step which is very inefficient. Major improvements in comminution seem achievable through research and such improvements, plus confirmation of other assumptions, could make high-enrichment beneficiation competitive with conventional processing. 27 figures, 23 tables.« less

  15. 43 CFR 3900.5 - Information collection.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... MANAGEMENT, DEPARTMENT OF THE INTERIOR RANGE MANAGEMENT (4000) OIL SHALE MANAGEMENT-GENERAL Oil Shale... information. (b) Respondents are oil shale lessees and operators. The requirement to respond to the... extent and specific characteristics of the Federal oil shale resource. The BLM will use the information...

  16. EVALUATION OF THE EFFECTS OF WEATHERING ON A 50-YEAR OLD RETORTED OIL-SHALE WASTE PILE, RULISON EXPERIMENTAL RETORT, COLORADO.

    USGS Publications Warehouse

    Tuttle, Michele L.W.; Dean, Walter E.; Ackerman, Daniel J.; ,

    1985-01-01

    An oil-shale mine and experimental retort were operated near Rulison, Colorado by the U. S. Bureau of Mines from 1926 to 1929. Samples from seven drill cores from a retorted oil-shale waste pile were analyzed to determine 1) the chemical and mineral composition of the retorted oil shale and 2) variations in the composition that could be attributed to weathering. Unweathered, freshly-mined samples of oil shale from the Mahogany zone of the Green River Formation and slope wash collected away from the waste pile were also analyzed for comparison. The waste pile is composed of oil shale retorted under either low-temperature (400-500 degree C) or high-temperature (750 degree C) conditions. The results of the analyses show that the spent shale within the waste pile contains higher concentrations of most elements relative to unretorted oil shale.

  17. Multi-scale Multi-dimensional Imaging and Characterization of Oil Shale Pyrolysis

    NASA Astrophysics Data System (ADS)

    Gao, Y.; Saif, T.; Lin, Q.; Al-Khulaifi, Y.; Blunt, M. J.; Bijeljic, B.

    2017-12-01

    The microstructural evaluation of fine grained rocks is challenging which demands the use of several complementary methods. Oil shale, a fine-grained organic-rich sedimentary rock, represents a large and mostly untapped unconventional hydrocarbon resource with global reserves estimated at 4.8 trillion barrels. The largest known deposit is the Eocene Green River Formation in Western Colorado, Eastern Utah, and Southern Wyoming. An improved insight into the mineralogy, organic matter distribution and pore network structure before, during and after oil shale pyrolysis is critical to understanding hydrocarbon flow behaviour and improving recovery. In this study, we image Mahogany zone oil shale samples in two dimensions (2-D) using scanning electron microscopy (SEM), and in three dimensions (3-D) using focused ion beam scanning electron microscopy (FIB-SEM), laboratory-based X-ray micro-tomography (µCT) and synchrotron X-ray µCT to reveal a complex and variable fine grained microstructure dominated by organic-rich parallel laminations which are tightly bound in a highly calcareous and heterogeneous mineral matrix. We report the results of a detailed µCT study of the Mahogany oil shale with increasing pyrolysis temperature. The physical transformation of the internal microstructure and evolution of pore space during the thermal conversion of kerogen in oil shale to produce hydrocarbon products was characterized. The 3-D volumes of pyrolyzed oil shale were reconstructed and image processed to visualize and quantify the volume and connectivity of the pore space. The results show a significant increase in anisotropic porosity associated with pyrolysis between 300-500°C with the formation of micron-scale connected pore channels developing principally along the kerogen-rich lamellar structures.

  18. Solar retorting of oil shale

    DOEpatents

    Gregg, David W.

    1983-01-01

    An apparatus and method for retorting oil shale using solar radiation. Oil shale is introduced into a first retorting chamber having a solar focus zone. There the oil shale is exposed to solar radiation and rapidly brought to a predetermined retorting temperature. Once the shale has reached this temperature, it is removed from the solar focus zone and transferred to a second retorting chamber where it is heated. In a second chamber, the oil shale is maintained at the retorting temperature, without direct exposure to solar radiation, until the retorting is complete.

  19. Updated methodology for nuclear magnetic resonance characterization of shales

    NASA Astrophysics Data System (ADS)

    Washburn, Kathryn E.; Birdwell, Justin E.

    2013-08-01

    Unconventional petroleum resources, particularly in shales, are expected to play an increasingly important role in the world's energy portfolio in the coming years. Nuclear magnetic resonance (NMR), particularly at low-field, provides important information in the evaluation of shale resources. Most of the low-field NMR analyses performed on shale samples rely heavily on standard T1 and T2 measurements. We present a new approach using solid echoes in the measurement of T1 and T1-T2 correlations that addresses some of the challenges encountered when making NMR measurements on shale samples compared to conventional reservoir rocks. Combining these techniques with standard T1 and T2 measurements provides a more complete assessment of the hydrogen-bearing constituents (e.g., bitumen, kerogen, clay-bound water) in shale samples. These methods are applied to immature and pyrolyzed oil shale samples to examine the solid and highly viscous organic phases present during the petroleum generation process. The solid echo measurements produce additional signal in the oil shale samples compared to the standard methodologies, indicating the presence of components undergoing homonuclear dipolar coupling. The results presented here include the first low-field NMR measurements performed on kerogen as well as detailed NMR analysis of highly viscous thermally generated bitumen present in pyrolyzed oil shale.

  20. Updated methodology for nuclear magnetic resonance characterization of shales

    USGS Publications Warehouse

    Washburn, Kathryn E.; Birdwell, Justin E.

    2013-01-01

    Unconventional petroleum resources, particularly in shales, are expected to play an increasingly important role in the world’s energy portfolio in the coming years. Nuclear magnetic resonance (NMR), particularly at low-field, provides important information in the evaluation of shale resources. Most of the low-field NMR analyses performed on shale samples rely heavily on standard T1 and T2 measurements. We present a new approach using solid echoes in the measurement of T1 and T1–T2 correlations that addresses some of the challenges encountered when making NMR measurements on shale samples compared to conventional reservoir rocks. Combining these techniques with standard T1 and T2 measurements provides a more complete assessment of the hydrogen-bearing constituents (e.g., bitumen, kerogen, clay-bound water) in shale samples. These methods are applied to immature and pyrolyzed oil shale samples to examine the solid and highly viscous organic phases present during the petroleum generation process. The solid echo measurements produce additional signal in the oil shale samples compared to the standard methodologies, indicating the presence of components undergoing homonuclear dipolar coupling. The results presented here include the first low-field NMR measurements performed on kerogen as well as detailed NMR analysis of highly viscous thermally generated bitumen present in pyrolyzed oil shale.

  1. The Supercritical CO2 Huff-n-puff Experiment of Shale Oil Utilizing Isopropanol

    NASA Astrophysics Data System (ADS)

    Shang, Shengxiang; Dong, Mingzhe; Gong, Houjian

    2018-01-01

    In this study, the supercritical CO2 huff-n-puff experiment of shale oil has been investigated. Experimental data shows that the addition of isopropanol can greatly improve the recovery of shale oil. And this provides a new way to improve the recovery of shale oil. In this paper, it is also tried to analyze the influencing factor of isopropanol on the recovery of shale oil by analyzing the MMP.

  2. System for utilizing oil shale fines

    DOEpatents

    Harak, Arnold E.

    1982-01-01

    A system is provided for utilizing fines of carbonaceous materials such as particles or pieces of oil shale of about one-half inch or less diameter which are rejected for use in some conventional or prior surface retorting process, which obtains maximum utilization of the energy content of the fines and which produces a waste which is relatively inert and of a size to facilitate disposal. The system includes a cyclone retort (20) which pyrolyzes the fines in the presence of heated gaseous combustion products, the cyclone retort having a first outlet (30) through which vapors can exit that can be cooled to provide oil, and having a second outlet (32) through which spent shale fines are removed. A burner (36) connected to the spent shale outlet of the cyclone retort, burns the spent shale with air, to provide hot combustion products (24) that are carried back to the cyclone retort to supply gaseous combustion products utilized therein. The burner heats the spent shale to a temperature which forms a molten slag, and the molten slag is removed from the burner into a quencher (48) that suddenly cools the molten slag to form granules that are relatively inert and of a size that is convenient to handle for disposal in the ground or in industrial processes.

  3. Effect of depletion rate on solution gas drive in shale

    NASA Astrophysics Data System (ADS)

    Zhang, Mingshan; Sang, Qian; Gong, Houjian; Li, Yajun; Dong, Mingzhe

    2018-01-01

    Solution gas drive process has been studied extensively in sand rocks and heavy oil reservoirs for a long time. Oil recovery is affected by several factors, such as depletion rate, initial GOR (gas oil ratio), oil viscosity, and temperature and so on. Before the solution gas drive tests, elastic drive without dissolved gas was carried out as a reference, which shows a limited oil recovery. Solution gas drive experiments were conducted in shale to study oil recovery with various depletion rates. Results show that oil recovery increases with the decrease of depletion rates because of the low permeability and desorption of methane.

  4. BER balanced program plan: oil shale technology. [23 suggested biomedical and environmental research projects

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schulte, H.F.; Stoker, A.K.; Campbell, E.E.

    1976-06-01

    Oil shale technology has been divided into two sub-technologies: surface processing and in-situ processing. Definition of the research programs is essentially an amplification of the five King-Muir categories: (A) pollutants: characterization, measurement, and monitoring; (B) physical and chemical processes and effects; (C) health effects; (D) ecological processes and effects; and (E) integrated assessment. Twenty-three biomedical and environmental research projects are described as to program title, scope, milestones, technolgy time frame, program unit priority, and estimated program unit cost.

  5. Combuston method of oil shale retorting

    DOEpatents

    Jones, Jr., John B.; Reeves, Adam A.

    1977-08-16

    A gravity flow, vertical bed of crushed oil shale having a two level injection of air and a three level injection of non-oxygenous gas and an internal combustion of at least residual carbon on the retorted shale. The injection of air and gas is carefully controlled in relation to the mass flow rate of the shale to control the temperature of pyrolysis zone, producing a maximum conversion of the organic content of the shale to a liquid shale oil. The parameters of the operation provides an economical and highly efficient shale oil production.

  6. 43 CFR 3930.10 - General performance standards.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... MANAGEMENT, DEPARTMENT OF THE INTERIOR RANGE MANAGEMENT (4000) MANAGEMENT OF OIL SHALE EXPLORATION AND LEASES Management of Oil Shale Exploration Licenses and Leases § 3930.10 General performance standards. The operator... adversely affect the recovery of shale oil or other minerals producible under an oil shale lease during...

  7. Study on the microwave catalytic pyrolysis characteristics and energy consumption analysis of oil shale

    NASA Astrophysics Data System (ADS)

    Chen, Chunxiang; Cheng, Zheng; Xu, Qing; Qin, Songheng

    2018-04-01

    In order to explore the high-efficient utilization of oil shale, the effects of different microwave powers and different kinds of catalysts (metal oxides and metal salts) on the temperature characteristics and product yield towards the oil shale are investigated by microwave catalytic pyrolysis. The results show that the effect of microwave power on the heating and pyrolysis rates of oil shale is significant, and the maximum output of shale oil is 5.1% when the microwave power is 1500W; CaO has a certain effect on the temperature rise of oil shale, and MgO and CuO have a certain degree of inhibition, but the addition of three kinds of metal oxidation is beneficial to increase the shale oil production; From the perspective of unit power consumption and gas production, the catalytic effect order of three kinds of metal oxides is MgO> CaO> CuO; The addition of three kinds of metal salts is favorable for the increase of pyrolysis temperature of oil shale, after adding 5% ZnCl2, the unit power consumption of shale oil and pyrolysis gas increases by 62.60% and 81.96% respectively. After adding 5% NaH2PO3, the unit power consumption of shale oil increases by 64.64%, and reduces by 9.56% by adding 5% MgCl2.

  8. Effect of retorted-oil shale leachate on a blue-green alga (Anabaena flos-aquae)

    USGS Publications Warehouse

    McKnight, Diane M.; Pereira, Wilfred E.; Rostad, Colleen E.; Stiles, Eric A.

    1983-01-01

    In the event of the development of the large oil shale reserves of Colorado, Utah, and Wyoming, one of the main environmental concerns will be disposal of retorted-oil shale which will be generated in greater volume than the original volume oI the mined oil shale. Investigators have found that leachates of retorted-oil shale are alkaline and have large concentrations of dissolved solids, molybdenum, boron, and fluoride (STOLLENWERK & RUNNELS 1981). STOLLENWERK & RUNNELS (1981) concluded that drainage from waste shale piles could have deleterious effects on the water quality of streams in northwestern Colorado.

  9. Water mist injection in oil shale retorting

    DOEpatents

    Galloway, T.R.; Lyczkowski, R.W.; Burnham, A.K.

    1980-07-30

    Water mist is utilized to control the maximum temperature in an oil shale retort during processing. A mist of water droplets is generated and entrained in the combustion supporting gas flowing into the retort in order to distribute the liquid water droplets throughout the retort. The water droplets are vaporized in the retort in order to provide an efficient coolant for temperature control.

  10. Process for oil shale retorting using gravity-driven solids flow and solid-solid heat exchange

    DOEpatents

    Lewis, A.E.; Braun, R.L.; Mallon, R.G.; Walton, O.R.

    1983-09-21

    A cascading bed retorting process and apparatus are disclosed in which cold raw crushed shale enters at the middle of a retort column into a mixer stage where it is rapidly mixed with hot recycled shale and thereby heated to pyrolysis temperature. The heated mixture then passes through a pyrolyzer stage where it resides for a sufficient time for complete pyrolysis to occur. The spent shale from the pyrolyzer is recirculated through a burner stage where the residual char is burned to heat the shale which then enters the mixer stage.

  11. Process for oil shale retorting using gravity-driven solids flow and solid-solid heat exchange

    DOEpatents

    Lewis, Arthur E.; Braun, Robert L.; Mallon, Richard G.; Walton, Otis R.

    1986-01-01

    A cascading bed retorting process and apparatus in which cold raw crushed shale enters at the middle of a retort column into a mixer stage where it is rapidly mixed with hot recycled shale and thereby heated to pyrolysis temperature. The heated mixture then passes through a pyrolyzer stage where it resides for a sufficient time for complete pyrolysis to occur. The spent shale from the pyrolyzer is recirculated through a burner stage where the residual char is burned to heat the shale which then enters the mixer stage.

  12. A photometric method for the estimation of the oil yield of oil shale

    USGS Publications Warehouse

    Cuttitta, Frank

    1951-01-01

    A method is presented for the distillation and photometric estimation of the oil yield of oil-bearing shales. The oil shale is distilled in a closed test tube and the oil extracted with toluene. The optical density of the toluene extract is used in the estimation of oil content and is converted to percentage of oil by reference to a standard curve. This curve is obtained by relating the oil yields determined by the Fischer assay method to the optical density of the toluene extract of the oil evolved by the new procedure. The new method gives results similar to those obtained by the Fischer assay method in a much shorter time. The applicability of the new method to oil-bearing shale and phosphatic shale has been tested.

  13. Unconventional shale-gas systems: The Mississippian Barnett Shale of north-central Texas as one model for thermogenic shale-gas assessment

    USGS Publications Warehouse

    Jarvie, D.M.; Hill, R.J.; Ruble, T.E.; Pollastro, R.M.

    2007-01-01

    Shale-gas resource plays can be distinguished by gas type and system characteristics. The Newark East gas field, located in the Fort Worth Basin, Texas, is defined by thermogenic gas production from low-porosity and low-permeability Barnett Shale. The Barnett Shale gas system, a self-contained source-reservoir system, has generated large amounts of gas in the key productive areas because of various characteristics and processes, including (1) excellent original organic richness and generation potential; (2) primary and secondary cracking of kerogen and retained oil, respectively; (3) retention of oil for cracking to gas by adsorption; (4) porosity resulting from organic matter decomposition; and (5) brittle mineralogical composition. The calculated total gas in place (GIP) based on estimated ultimate recovery that is based on production profiles and operator estimates is about 204 bcf/section (5.78 ?? 109 m3/1.73 ?? 104 m3). We estimate that the Barnett Shale has a total generation potential of about 609 bbl of oil equivalent/ac-ft or the equivalent of 3657 mcf/ac-ft (84.0 m3/m3). Assuming a thickness of 350 ft (107 m) and only sufficient hydrogen for partial cracking of retained oil to gas, a total generation potential of 820 bcf/section is estimated. Of this potential, approximately 60% was expelled, and the balance was retained for secondary cracking of oil to gas, if sufficient thermal maturity was reached. Gas storage capacity of the Barnett Shale at typical reservoir pressure, volume, and temperature conditions and 6% porosity shows a maximum storage capacity of 540 mcf/ac-ft or 159 scf/ton. Copyright ?? 2007. The American Association of Petroleum Geologists. All rights reserved.

  14. Tertiary geology and oil-shale resources of the Piceance Creek basin between the Colorado and White Rivers, northwestern Colorado

    USGS Publications Warehouse

    Donnell, John R.

    1961-01-01

    The area of the Piceance Creek basin between the Colorado and White Rivers includes approximately 1,600 square miles and is characterized by an extensive plateau that rises 1,000 to more than 4,000 feet above the surrounding lowlands. Relief is greatest in Naval Oil-Shale Reserves Nos. 1 and 3 near the south margin of the area, where the spectacular Roan Cliffs tower above the valley of the Colorado River. The oldest rocks exposed in the mapped area are sandstone, shale, and coal beds of the Mesaverde group of Late Cretaceous age, which crop out along the east margin of the area. Overlying the Mesaverde is an unnamed sequence of dark-colored sandstone and shale, Paleocene in age. The Ohio Creek conglomerate, composed of black and red chert and quartzite pebbles in a white sandstone matrix, is probably the basal unit in the Paleocene sequence. The Wasatch formation of early Eocene age overlies the Paleocene sedimentary rocks. It is composed of brightly colored shale, lenticular beds of sandstone, and a few thin beds of fresh-water limestone. The Kasatch formation interfingers with and is overlain by the Green River formation of middle Eocene age. The Green River formation has been divided into the Douglas Creek, Garden Gulch, Anvil Points, Parachute Creek, and Evacuation Creek members. The basal and uppermost members, the Douglas Creek and Evacuation Creek, respectively, are predominantly sandy units. The two middle members, the Garden Gulch and Parachute Creek, are composed principally of finer clastic rocks. The Anvil Points member is present only on the southeast, east, and northeast margins of the area. It is a nearshore facies composed principally of sandstone and is the equivalent of the Douglas Creek, Garden Gulch, and the lower part of the Parachute Creek members. All of the richer exposed oil-shale beds are found in the Parachute Creek member, which is divided into two oil-shale zones by a series of low-grade oilshale beds. The upper oil-shale zone has several key beds and zones which can be traced throughout most of the mapped area. One of these, the Mahogany ledge or zone, is a group of very rich oil-shale beds at the base of the upper oil-shale zone. Drilling for oil and gas in the northeastern part of the area has revealed rich oil-shale zones in the Garden Gulch member also.Local unconformities within and at the base of the Evacuation Creek member are exposed at several places along Piceance Creek and at one place near the mouth of Yellow Creek; otherwise, the rock sequence is conformable. The mapped area is the major part of a large syncline, modified by numerous smaller structural features. Fractures, probably associated genetically with the minor structural features, are present in the central part of the area. These fractures are high-angle normal faults with small displacement. They occur in pairs with the intervening block downdropped. Two sets of joints are prominent, one trending northwest and the other northeast. The joint systems control the drainage pattern in the south-central part of the area. More than 20,000 feet of sedimentary rocks underlies the area. Many of the formations yield oil or gas in northwestern Colorado, northeastern Utah, and southwestern Wyoming. The Piceance Creek gas field, in which gas occurs in the Douglas Creek member of the Green River formation, is the largest oil or gas field discovered thus far within the area. About 7,000 million barrels of oil is contained in oil shale that yields an average of 45 gallons per ton from a continuous sequence 5 or more feet thick in the Mahogany zone. Oil shale in the Mahogany zone and adjacent beds that yields an average of 30 gallons of oil per ton from a continuous sequence 15 or more feet thick contains about 91,000 million barrels of oil. Similar shale in deeper zones in the northern part of the area, for which detailed estimates have not been prepared, are now known to contain at least an additional 72,000 million barrels of oil. Oil shale in a sequence 15 or more feet thick that yields an average of 25 gallons of oil per ton contains about 154,000 million barrels of oil in the Mahogany zone and adjacent beds; such shale in deeper zones in the northern part of the area probably contains at least an additional 157,000 million barrels of oil, although detailed estimates were not made. Oil shale in a sequence greater than 15 feet thick that yields an average of 15 gallons of oil per ton contains more than 900,000 million barrels of oil. These estimates of the oil content of the deposit do not take into account any loss in mining or processing of the shale.

  15. Energy trump for Morocco: the oil shales (in French)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rosa, S.D.

    1981-10-01

    The mainstays of the economy in Morocco are still agriculture and phosphates; the latter represent 34% of world exports. Energy demand in 1985 will be probably 3 times that in 1975. Most of the oil, which covers 82% of its energy needs, must be imported. Other possible sources are the rich oil shale deposits and nuclear energy. Four nuclear plants with a total of 600 MW are projected, but shale oil still will play an important role. A contract for building a pilot plant has been met recently. The plant is to be located at Timahdit and cost $13 million,more » for which a loan from the World Bank has been requested. If successful in the pilot plant, the process will be used in full scale plants scheduled to produce 400,000 tons/yr of oil. Tosco also has a contract for a feasibility study.« less

  16. Leaching of polycyclic aromatic hydrocarbons from oil shale processing waste deposit: a long-term field study.

    PubMed

    Jefimova, Jekaterina; Irha, Natalya; Reinik, Janek; Kirso, Uuve; Steinnes, Eiliv

    2014-05-15

    The leaching behavior of selected polycyclic aromatic hydrocarbons (PAHs) from an oil shale processing waste deposit was monitored during 2005-2009. Samples were collected from the deposit using a special device for leachate sampling at field conditions without disturbance of the upper layers. Contents of 16 priority PAHs in leachate samples collected from aged and fresh parts of the deposit were determined by GC-MS. The sum of the detected PAHs in leachates varied significantly throughout the study period: 19-315 μg/l from aged spent shale, and 36-151 μg/l from fresh spent shale. Among the studied PAHs the low-molecular weight compounds phenanthrene, naphthalene, acenaphthylene, and anthracene predominated. Among the high-molecular weight PAHs benzo[a]anthracene and pyrene leached in the highest concentrations. A spent shale deposit is a source of PAHs that could infiltrate into the surrounding environment for a long period of time. Copyright © 2014 Elsevier B.V. All rights reserved.

  17. Review of Emerging Resources: U.S. Shale Gas and Shale Oil Plays

    EIA Publications

    2011-01-01

    To gain a better understanding of the potential U.S. domestic shale gas and shale oil resources, the Energy Information Administration (EIA) commissioned INTEK, Inc. to develop an assessment of onshore lower 48 states technically recoverable shale gas and shale oil resources. This paper briefly describes the scope, methodology, and key results of the report and discusses the key assumptions that underlie the results.

  18. Geology and assessment of unconventional resources of Phitsanulok Basin, Thailand

    USGS Publications Warehouse

    ,

    2014-01-01

    The U.S. Geological Survey (USGS) quantitatively assessed the potential for unconventional oil and gas resources within the Phitsanulok Basin of Thailand. Unconventional resources for the USGS include shale gas, shale oil, tight gas, tight oil, and coalbed gas. In the Phitsanulok Basin, only potential shale-oil and shale-gas resources were quantitatively assessed.

  19. Chemical composition of shale oil. 1; Dependence on oil shale origin

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kesavan, S.; Lee, S.; Polasky, M.E.

    1991-01-01

    This paper reports on shale oils obtained by nitrogen retorting of North Carolina, Cleveland, Ohio, Colorado, Rundle, Stuart, and Condor oil shales that have been chemically characterized by g.c.-m.s. techniques. After species identification, chemical compositions of the shale oils have been related to the geological origins of the parent shales. Based on the characteristics observed in the chromatograms, eight semi-quantitative parameters have been used to describe the chromatograms. Six of these parameters describe the chromatograms. Six of these parameters describe the relative abundance and distribution of straight chain alkanes and alkenes in the chromatograms. The other two parameters represent themore » abundance, relative to the total amount of volatiles in the oil, of alkylbenzenes and alkylphenols.« less

  20. Oil shale retort apparatus

    DOEpatents

    Reeves, Adam A.; Mast, Earl L.; Greaves, Melvin J.

    1990-01-01

    A retorting apparatus including a vertical kiln and a plurality of tubes for delivering rock to the top of the kiln and removal of processed rock from the bottom of the kiln so that the rock descends through the kiln as a moving bed. Distributors are provided for delivering gas to the kiln to effect heating of the rock and to disturb the rock particles during their descent. The distributors are constructed and disposed to deliver gas uniformly to the kiln and to withstand and overcome adverse conditions resulting from heat and from the descending rock. The rock delivery tubes are geometrically sized, spaced and positioned so as to deliver the shale uniformly into the kiln and form symmetrically disposed generally vertical paths, or "rock chimneys", through the descending shale which offer least resistance to upward flow of gas. When retorting oil shale, a delineated collection chamber near the top of the kiln collects gas and entrained oil mist rising through the kiln.

  1. Cocarcinogenicity of phenols from Estonian shale tars (oils).

    PubMed Central

    Bogovski, P A; Mirme, H I

    1979-01-01

    Many phenols have carcinogenic activity. The Estonian shale oils contain up to 40 vol % phenols. The promoting activity after initiation of phenols of Estonian shale oils was tested in mice with a single subthreshold dose (0.36 mg) of benzo(a)pyrene. C57Bl and CC57Br mice were used in skin painting experiments. Weak carcinogenic activity was found in the total crude water-soluble phenols recovered from the wastewater of a shale processing plant. In two-stage experiments a clear promoting action of the total crude phenols was established, whereas the fractions A and B (training reagents), obtained by selective crystallization of the total phenols exerted a considerably weaker promoting action. Epo-glue, a commercial epoxy product produced from unfractionated crude phenols, had no promoting activity, which may be due to the processing of the phenols involving polymerization. The mechanism of action of phenols is not clear. According to some data from the literature, phenol and 5-methylresorcinol reduce the resorption speed of BP in mouse skin, causing prolongation of the action fo the carcinogen. PMID:446449

  2. Cocarcinogenicity of phenols from Estonian shale tars (oils).

    PubMed

    Bogovski, P A; Mirme, H I

    1979-06-01

    Many phenols have carcinogenic activity. The Estonian shale oils contain up to 40 vol % phenols. The promoting activity after initiation of phenols of Estonian shale oils was tested in mice with a single subthreshold dose (0.36 mg) of benzo(a)pyrene. C57Bl and CC57Br mice were used in skin painting experiments. Weak carcinogenic activity was found in the total crude water-soluble phenols recovered from the wastewater of a shale processing plant. In two-stage experiments a clear promoting action of the total crude phenols was established, whereas the fractions A and B (training reagents), obtained by selective crystallization of the total phenols exerted a considerably weaker promoting action. Epo-glue, a commercial epoxy product produced from unfractionated crude phenols, had no promoting activity, which may be due to the processing of the phenols involving polymerization. The mechanism of action of phenols is not clear. According to some data from the literature, phenol and 5-methylresorcinol reduce the resorption speed of BP in mouse skin, causing prolongation of the action fo the carcinogen.

  3. Characterization of raw and burnt oil shale from Dotternhausen: Petrographical and mineralogical evolution with temperature

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Thiéry, Vincent, E-mail: vincent.thiery@mines-douai.fr; Université de Lille; Bourdot, Alexandra, E-mail: alexandra.bourdot@gmail.com

    The Toarcian Posidonia shale from Dotternhausen, Germany, is quarried and burnt in a fluidized bed reactor to produce electricity. The combustion residue, namely burnt oil shale (BOS), is used in the adjacent cement work as an additive in blended cements. The starting material is a typical laminated oil shale with an organic matter content ranging from 6 to 18%. Mineral matter consists principally of quartz, feldspar, pyrite and clays. After calcination in the range, the resulting product, burnt oil shale, keeps the macroscopic layered texture however with different mineralogy (anhydrite, lime, iron oxides) and the formation of an amorphous phase.more » This one, studied under STEM, reveals a typical texture of incipient partial melting due to a long retention time (ca. 30 min) and quenching. An in-situ high temperature X-ray diffraction (HTXRD) allowed studying precisely the mineralogical changes associated with the temperature increase. - Highlights: • We present oil shale/burnt oil shale characterization. • The Posidonia Shale is burnt in a fluidized bed. • Mineralogical evolution with temperature is complex. • The burnt oil shale is used in composite cements.« less

  4. Assessment of potential shale-oil and shale-gas resources in Silurian shales of Jordan, 2014

    USGS Publications Warehouse

    Schenk, Christopher J.; Pitman, Janet K.; Charpentier, Ronald R.; Klett, Timothy R.; Tennyson, Marilyn E.; Mercier, Tracey J.; Nelson, Philip H.; Brownfield, Michael E.; Pawlewicz, Mark J.; Wandrey, Craig J.

    2014-01-01

    Using a geology-based assessment methodology, the U.S. Geological Survey estimated means of 11 million barrels of potential shale-oil and 320 billion cubic feet of shale-gas resources in Silurian shales of Jordan.

  5. An in situ FTIR step-scan photoacoustic investigation of kerogen and minerals in oil shale.

    PubMed

    Alstadt, Kristin N; Katti, Dinesh R; Katti, Kalpana S

    2012-04-01

    Step-scan photoacoustic infrared spectroscopy experiments were performed on Green River oil shale samples obtained from the Piceance Basin located in Colorado, USA. We have investigated the molecular nature of light and dark colored areas of the oil shale core using FTIR photoacoustic step-scan spectroscopy. This technique provided us with the means to analyze the oil shale in its original in situ form with the kerogen-mineral interactions intact. All vibrational bands characteristic of kerogen were found in the dark and light colored oil shale samples confirming that kerogen is present throughout the depth of the core. Depth profiling experiments indicated that there are changes between layers in the oil shale molecular structure at a length scale of micron. Comparisons of spectra from the light and dark colored oil shale core samples suggest that the light colored regions have high kerogen content, with spectra similar to that from isolated kerogen, whereas, the dark colored areas contain more mineral components which include clay minerals, dolomite, calcite, and pyrite. The mineral components of the oil shale are important in understanding how the kerogen is "trapped" in the oil shale. Comparing in situ kerogen spectra with spectra from isolated kerogen indicate significant band shifts suggesting important nonbonded molecular interactions between the kerogen and minerals. Copyright © 2011 Elsevier B.V. All rights reserved.

  6. Apparatus for oil shale retorting

    DOEpatents

    Lewis, Arthur E.; Braun, Robert L.; Mallon, Richard G.; Walton, Otis R.

    1986-01-01

    A cascading bed retorting process and apparatus in which cold raw crushed shale enters at the middle of a retort column into a mixer stage where it is rapidly mixed with hot recycled shale and thereby heated to pyrolysis temperature. The heated mixture then passes through a pyrolyzer stage where it resides for a sufficient time for complete pyrolysis to occur. The spent shale from the pyrolyzer is recirculated through a burner stage where the residual char is burned to heat the shale which then enters the mixer stage.

  7. Fractal Characteristics of Continental Shale Pores and its Significance to the Occurrence of Shale Oil in China: a Case Study of Biyang Depression

    NASA Astrophysics Data System (ADS)

    Li, Jijun; Liu, Zhao; Li, Junqian; Lu, Shuangfang; Zhang, Tongqian; Zhang, Xinwen; Yu, Zhiyuan; Huang, Kaizhan; Shen, Bojian; Ma, Yan; Liu, Jiewen

    Samples from seven major exploration wells in Biyang Depression of Henan Oilfield were compared using low-temperature nitrogen adsorption and shale oil adsorption experiments. Comprehensive analysis of pore development, oiliness and shale oil flowability was conducted by combining fractal dimension. The results show that the fractal dimension of shale in Biyang Depression of Henan Oilfield was negatively correlated with the average pore size and positively correlated with the specific surface area. Compared with the large pore, the small pore has great fractal dimension, indicating the pore structure is more complicated. Using S1 and chloroform bitumen A to evaluate the relationship between shale oiliness and pore structure, it was found that the more heterogeneous the shale pore structure, the higher the complexity and the poorer the oiliness. Clay minerals are the main carriers involved in crude oil adsorption, affecting the mobility of shale oil. When the pore complexity of shale was high, the content of micro- and mesopores was high, and the high specific surface area could enhance the adsorption and reduce the mobility of shale oil.

  8. Oil-shale data, cores, and samples collected by the U.S. geological survey through 1989

    USGS Publications Warehouse

    Dyni, John R.; Gay, Frances; Michalski, Thomas C.; ,

    1990-01-01

    The U.S. Geological Survey has acquired a large collection of geotechnical data, drill cores, and crushed samples of oil shale from the Eocene Green River Formation in Colorado, Wyoming, and Utah. The data include about 250,000 shale-oil analyses from about 600 core holes. Most of the data is from Colorado where the thickest and highest-grade oil shales of the Green River Formation are found in the Piceance Creek basin. Other data on file but not yet in the computer database include hundreds of lithologic core descriptions, geophysical well logs, and mineralogical and geochemical analyses. The shale-oil analyses are being prepared for release on floppy disks for use on microcomputers. About 173,000 lineal feet of drill core of oil shale and associated rocks, as well as 100,000 crushed samples of oil shale, are stored at the Core Research Center, U.S. Geological Survey, Lakewood, Colo. These materials are available to the public for research.

  9. Morbidity and mortality study of shale oil workers in the United States.

    PubMed

    Costello, J

    1979-06-01

    The study of the carcinogenic potential of domestic U. S. shale oil has increased significantly in importance because of the present energy problem and resulting research into alternative sources of fuel. With the increased scope of planned oil shale activity on the Colorado Plateau, it is important that an attempt be made to determine the health effects, if any, of occupational exposure to shale oil. This paper briefly reviews some past work of Soviet and British investigators concerning potential health hazards of shale oil. It reviews the results and conclusions of the 1952-1955 dermatological study of oil shale workers by the U. S. Public Health Service, and it discusses in detail the plans of a NIOSH morbidity and mortality study currently under way.

  10. Ammonia stripping, activated carbon adsorption and anaerobic biological oxidation as process combination for the treatment of oil shale wastewater.

    PubMed

    Alexandre, Verônica M F; do Nascimento, Felipe V; Cammarota, Magali C

    2016-10-01

    Anaerobic biodegradability of oil shale wastewater was investigated after the following pretreatment sequence: ammonia stripping and activated carbon adsorption. Anaerobic biological treatment of oil shale wastewater is technically feasible after stripping at pH 11 for reducing the N-NH3 concentration, adsorption with 5 g/L of activated carbon in order to reduce recalcitrance and pH adjustment with CO2 so that the sulphate concentration in the medium remains low. After this pretreatment sequence, it was possible to submit the wastewater without dilution to an anaerobic treatment with 62.7% soluble chemical oxygen demand removal and specific methane production of 233.2 mL CH4STP/g CODremoved.

  11. Oil shale resources of the Uinta Basin, Utah and Colorado

    USGS Publications Warehouse

    ,

    2010-01-01

    The U.S. Geological Survey (USGS) recently completed a comprehensive assessment of in-place oil in oil shales of the Eocene Green River Formation of the Uinta Basin of eastern Utah and western Colorado. The oil shale interval was subdivided into eighteen roughly time-stratigraphic intervals, and each interval was assessed for variations in gallons per ton, barrels per acre, and total barrels in each township. The Radial Basis Function extrapolation method was used to generate isopach and isoresource maps, and to calculate resources. The total inplace resource for the Uinta Basin is estimated at 1.32 trillion barrels. This is only slightly lower than the estimated 1.53 trillion barrels for the adjacent Piceance Basin, Colorado, to the east, which is thought to be the richest oil shale deposit in the world. However, the area underlain by oil shale in the Uinta Basin is much larger than that of the Piceance Basin, and the average gallons per ton and barrels per acre values for each of the assessed oil shale zones are significantly lower in the depocenter in the Uinta Basin when compared to the Piceance Basin. These relations indicate that the oil shale resources in the Uinta Basin are of lower grade and are more dispersed than the oil shale resources of the Piceance Basin.

  12. Assessment of In-Place Oil Shale Resources of the Green River Formation, Piceance Basin, Western Colorado

    USGS Publications Warehouse

    Johnson, Ronald C.; Mercier, Tracey J.; Brownfield, Michael E.; Pantea, Michael P.; Self, Jesse G.

    2009-01-01

    The U.S. Geological Survey (USGS) recently completed a reassessment of in-place oil shale resources, regardless of richness, in the Eocene Green River Formation in the Piceance Basin, western Colorado. A considerable amount of oil-yield data has been collected after previous in-place assessments were published, and these data were incorporated into this new assessment. About twice as many oil-yield data points were used, and several additional oil shale intervals were included that were not assessed previously for lack of data. Oil yields are measured using the Fischer assay method. The Fischer assay method is a standardized laboratory test for determining the oil yield from oil shale that has been almost universally used to determine oil yields for Green River Formation oil shales. Fischer assay does not necessarily measure the maximum amount of oil that an oil shale can produce, and there are retorting methods that yield more than the Fischer assay yield. However, the oil yields achieved by other technologies are typically reported as a percentage of the Fischer assay oil yield, and thus Fischer assay is still considered the standard by which other methods are compared.

  13. The enrichment behavior of natural radionuclides in pulverized oil shale-fired power plants.

    PubMed

    Vaasma, Taavi; Kiisk, Madis; Meriste, Tõnis; Tkaczyk, Alan Henry

    2014-12-01

    The oil shale industry is the largest producer of NORM (Naturally Occurring Radioactive Material) waste in Estonia. Approximately 11-12 million tons of oil shale containing various amounts of natural radionuclides is burned annually in the Narva oil shale-fired power plants, which accounts for approximately 90% of Estonian electricity production. The radionuclide behavior characteristics change during the fuel combustion process, which redistributes the radionuclides between different ash fractions. Out of 24 operational boilers in the power plants, four use circulating fluidized bed (CFB) technology and twenty use pulverized fuel (PF) technology. Over the past decade, the PF boilers have been renovated, with the main objective to increase the efficiency of the filter systems. Between 2009 and 2012, electrostatic precipitators (ESP) in four PF energy blocks were replaced with novel integrated desulphurization technology (NID) for the efficient removal of fly ash and SO2 from flue gases. Using gamma spectrometry, activity concentrations and enrichment factors for the (238)U ((238)U, (226)Ra, (210)Pb) and (232)Th ((232)Th, (228)Ra) family radionuclides as well as (40)K were measured and analyzed in different PF boiler ash fractions. The radionuclide activity concentrations in the ash samples increased from the furnace toward the back end of the flue gas duct. The highest values in different PF boiler ash fractions were in the last field of the ESP and in the NID ash, where radionuclide enrichment factors were up to 4.2 and 3.3, respectively. The acquired and analyzed data on radionuclide activity concentrations in different PF boiler ashes (operating with an ESP and a NID system) compared to CFB boiler ashes provides an indication that changes in the fuel (oil shale) composition and boiler working parameters, as well as technological enhancements in Estonian oil shale fired power plants, have had a combined effect on the distribution patterns of natural radionuclides in the oil shale combustion products. Copyright © 2014 Elsevier Ltd. All rights reserved.

  14. [Effect of near infrared spectrum on the precision of PLS model for oil yield from oil shale].

    PubMed

    Wang, Zhi-Hong; Liu, Jie; Chen, Xiao-Chao; Sun, Yu-Yang; Yu, Yang; Lin, Jun

    2012-10-01

    It is impossible to use present measurement methods for the oil yield of oil shale to realize in-situ detection and these methods unable to meet the requirements of the oil shale resources exploration and exploitation. But in-situ oil yield analysis of oil shale can be achieved by the portable near infrared spectroscopy technique. There are different correlativities of NIR spectrum data formats and contents of sample components, and the different absorption specialities of sample components shows in different NIR spectral regions. So with the proportioning samples, the PLS modeling experiments were done by 3 formats (reflectance, absorbance and K-M function) and 4 regions of modeling spectrum, and the effect of NIR spectral format and region to the precision of PLS model for oil yield from oil shale was studied. The results show that the best data format is reflectance and the best modeling region is combination spectral range by PLS model method and proportioning samples. Therefore, the appropriate data format and the proper characteristic spectral region can increase the precision of PLS model for oil yield form oil shale.

  15. Analysis of the effectiveness of steam retorting of oil shale

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jacobs, H.R.; Pensel, R.W.; Udell, K.S.

    A numerical model is developed to describe the retorting of oil shale using superheated steam. The model describes not only the temperature history of the shale but predicts the evolution of shale oil from kerogen decomposition and the breakdown of the carbonates existing in the shale matrix. The heat transfer coefficients between the water and the shale are determined from experiments utilizing the model to reduce the data. Similarly the model is used with thermogravimetric analysis experiments to develop an improved kinetics expression for kerogen decomposition in a steam environment. Numerical results are presented which indicate the effect of oilmore » shale particle size and steam temperature on oil production.« less

  16. Oil shale extraction using super-critical extraction

    NASA Technical Reports Server (NTRS)

    Compton, L. E. (Inventor)

    1983-01-01

    Significant improvement in oil shale extraction under supercritical conditions is provided by extracting the shale at a temperature below 400 C, such as from about 250 C to about 350 C, with a solvent having a Hildebrand solubility parameter within 1 to 2 Hb of the solubility parameter for oil shale bitumen.

  17. GIS-based Geospatial Infrastructure of Water Resource Assessment for Supporting Oil Shale Development in Piceance Basin of Northwestern Colorado

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhou, Wei; Minnick, Matthew D; Mattson, Earl D

    Oil shale deposits of the Green River Formation (GRF) in Northwestern Colorado, Southwestern Wyoming, and Northeastern Utah may become one of the first oil shale deposits to be developed in the U.S. because of their richness, accessibility, and extensive prior characterization. Oil shale is an organic-rich fine-grained sedimentary rock that contains significant amounts of kerogen from which liquid hydrocarbons can be produced. Water is needed to retort or extract oil shale at an approximate rate of three volumes of water for every volume of oil produced. Concerns have been raised over the demand and availability of water to produce oilmore » shale, particularly in semiarid regions where water consumption must be limited and optimized to meet demands from other sectors. The economic benefit of oil shale development in this region may have tradeoffs within the local and regional environment. Due to these potential environmental impacts of oil shale development, water usage issues need to be further studied. A basin-wide baseline for oil shale and water resource data is the foundation of the study. This paper focuses on the design and construction of a centralized geospatial infrastructure for managing a large amount of oil shale and water resource related baseline data, and for setting up the frameworks for analytical and numerical models including but not limited to three-dimensional (3D) geologic, energy resource development systems, and surface water models. Such a centralized geospatial infrastructure made it possible to directly generate model inputs from the same database and to indirectly couple the different models through inputs/outputs. Thus ensures consistency of analyses conducted by researchers from different institutions, and help decision makers to balance water budget based on the spatial distribution of the oil shale and water resources, and the spatial variations of geologic, topographic, and hydrogeological Characterization of the basin. This endeavor encountered many technical challenging and hasn't been done in the past for any oil shale basin. The database built during this study remains valuable for any other future studies involving oil shale and water resource management in the Piceance Basin. The methodology applied in the development of the GIS based Geospatial Infrastructure can be readily adapted for other professionals to develop database structure for other similar basins.« less

  18. Indirect and direct tensile behavior of Devonian oil shales

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chong, K.P.; Chen, J.L.; Dana, G.F.

    1984-03-01

    Ultimate indirect tensile strengths of Devonian oil shales across the bedding planes is a mechanical property parameter important to predicting how oil shale will break. This is particularly important to in-situ fragmentation. The Split Cylinder Test was used to determine the indirect tensile strengths between the bedding planes. Test specimens, cored perpendicular to the bedding planes, representing oil shales of different oil yields taken from Silver Point Quad in DeKalb County, Tennessee and Friendship in Scioto County, Ohio, were subjected to the Split Cylinder Test. Linear regression equations relating ultimate tensile strength across the bedding planes to volume percent ofmore » organic matter in the rock were developed from the test data. In addition, direct tensile strengths were obtained between the bedding planes for the Tennessee oil shales. This property is important for the design of horizontal fractures in oil shales. Typical results were presented.« less

  19. Toxicity of Water Accommodated Fractions of Estonian Shale Fuel Oils to Aquatic Organisms.

    PubMed

    Blinova, Irina; Kanarbik, Liina; Sihtmäe, Mariliis; Kahru, Anne

    2016-02-01

    Estonia is the worldwide leading producer of the fuel oils from the oil shale. We evaluated the ecotoxicity of water accommodated fraction (WAF) of two Estonian shale fuel oils ("VKG D" and "VKG sweet") to aquatic species belonging to different trophic levels (marine bacteria, freshwater crustaceans and aquatic plants). Artificial fresh water and natural lake water were used to prepare WAFs. "VKG sweet" (lower density) proved more toxic to aquatic species than "VKG D" (higher density). Our data indicate that though shale oils were very toxic to crustaceans, the short-term exposure of Daphnia magna to sub-lethal concentrations of shale fuel oils WAFs may increase the reproductive potential of survived organisms. The weak correlation between measured chemical parameters (C10-C40 hydrocarbons and sum of 16 PAHs) and WAF's toxicity to studied species indicates that such integrated chemical parameters are not very informative for prediction of shale fuel oils ecotoxicity.

  20. Oil shale and nahcolite resources of the Piceance Basin, Colorado

    USGS Publications Warehouse

    ,

    2010-01-01

    This report presents an in-place assessment of the oil shale and nahcolite resources of the Green River Formation in the Piceance Basin of western Colorado. The Piceance Basin is one of three large structural and sedimentary basins that contain vast amounts of oil shale resources in the Green River Formation of Eocene age. The other two basins, the Uinta Basin of eastern Utah and westernmost Colorado, and the Greater Green River Basin of southwest Wyoming, northwestern Colorado, and northeastern Utah also contain large resources of oil shale in the Green River Formation, and these two basins will be assessed separately. Estimated in-place oil is about 1.5 trillion barrels, based on Fischer a ssay results from boreholes drilled to evaluate oil shale, making it the largest oil shale deposit in the world. The estimated in-place nahcolite resource is about 43.3 billion short tons.

  1. 43 CFR 3830.96 - What if I pay only part of the service charges and fees for oil shale claims or previously...

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... charges and fees for oil shale claims or previously-recorded mining claims or sites? 3830.96 Section 3830... the service charges and fees for oil shale claims or previously-recorded mining claims or sites? (a... maintenance fees, or oil shale fees, for previously-recorded mining claims or sites, or any combination of...

  2. 43 CFR 3830.96 - What if I pay only part of the service charges and fees for oil shale claims or previously...

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... charges and fees for oil shale claims or previously-recorded mining claims or sites? 3830.96 Section 3830... the service charges and fees for oil shale claims or previously-recorded mining claims or sites? (a... maintenance fees, or oil shale fees, for previously-recorded mining claims or sites, or any combination of...

  3. 43 CFR 3830.96 - What if I pay only part of the service charges and fees for oil shale claims or previously...

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... charges and fees for oil shale claims or previously-recorded mining claims or sites? 3830.96 Section 3830... the service charges and fees for oil shale claims or previously-recorded mining claims or sites? (a... maintenance fees, or oil shale fees, for previously-recorded mining claims or sites, or any combination of...

  4. 43 CFR 3830.96 - What if I pay only part of the service charges and fees for oil shale claims or previously...

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... charges and fees for oil shale claims or previously-recorded mining claims or sites? 3830.96 Section 3830... the service charges and fees for oil shale claims or previously-recorded mining claims or sites? (a... maintenance fees, or oil shale fees, for previously-recorded mining claims or sites, or any combination of...

  5. 43 CFR 3501.2 - What is the scope of this part?

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... AND OIL SHALE Leasing of Solid Minerals Other Than Coal and Oil Shale-General § 3501.2 What is the scope of this part? (a) This part applies to minerals other than oil, gas, coal and oil shale, leased...

  6. 43 CFR 3501.2 - What is the scope of this part?

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... AND OIL SHALE Leasing of Solid Minerals Other Than Coal and Oil Shale-General § 3501.2 What is the scope of this part? (a) This part applies to minerals other than oil, gas, coal and oil shale, leased...

  7. 43 CFR 3501.2 - What is the scope of this part?

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... AND OIL SHALE Leasing of Solid Minerals Other Than Coal and Oil Shale-General § 3501.2 What is the scope of this part? (a) This part applies to minerals other than oil, gas, coal and oil shale, leased...

  8. 43 CFR 3501.2 - What is the scope of this part?

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... AND OIL SHALE Leasing of Solid Minerals Other Than Coal and Oil Shale-General § 3501.2 What is the scope of this part? (a) This part applies to minerals other than oil, gas, coal and oil shale, leased...

  9. Isopach and isoresource maps for oil shale deposits in the Eocene Green River Formation for the combined Uinta and Piceance Basins, Utah and Colorado

    USGS Publications Warehouse

    Mercier, Tracey J.; Johnson, Ronald C.

    2012-01-01

    The in-place oil shale resources in the Eocene Green River Formation of the Piceance Basin of western Colorado and the Uinta Basin of western Colorado and eastern Utah are estimated at 1.53 trillion barrels and 1.32 trillion barrels, respectively. The oil shale strata were deposited in a single large saline lake, Lake Uinta, that covered both basins and the intervening Douglas Creek arch, an area of comparatively low rates of subsidence throughout the history of Lake Uinta. Although the Green River Formation is largely eroded for about a 20-mile area along the crest of the arch, the oil shale interval is similar in both basins, and 17 out of 18 of the assessed oil shale zones are common to both basins. Assessment maps for these 17 zones are combined so that the overall distribution of oil shale over the entire extent of Lake Uinta can be studied. The combined maps show that throughout most of the history of Lake Uinta, the richest oil shale was deposited in the depocenter in the north-central part of the Piceance Basin and in the northeast corner of the Uinta Basin where it is closest to the Piceance Basin, which is the only area of the Uinta Basin where all of the rich and lean oil shale zones, originally defined in the Piceance Basin, can be identified. Both the oil shale and saline mineral depocenter in the Piceance Basin and the richest oil shale area in the Uinta Basin were in areas with comparatively low rates of subsidence during Lake Uinta time, but both areas had low rates of clastic influx. Limiting clastic influx rather than maximizing subsidence appears to have been the most important factor in producing rich oil shale.

  10. Effects of organic wastes on water quality from processing of oil shale from the Green River Formation, Colorado, Utah, and Wyoming

    USGS Publications Warehouse

    Leenheer, J.A.; Noyes, T.I.

    1986-01-01

    A series of investigations were conducted during a 6-year research project to determine the nature and effects of organic wastes from processing of Green River Formation oil shale on water quality. Fifty percent of the organic compounds in two retort wastewaters were identified as various aromatic amines, mono- and dicarboxylic acids phenols, amides, alcohols, ketones, nitriles, and hydroxypyridines. Spent shales with carbonaceous coatings were found to have good sorbent properties for organic constituents of retort wastewaters. However, soils sampled adjacent to an in situ retort had only fair sorbent properties for organic constituents or retort wastewater, and application of retort wastewater caused disruption of soil structure characteristics and extracted soil organic matter constituents. Microbiological degradation of organic solutes in retort wastewaters was found to occur preferentially in hydrocarbons and fatty acid groups of compounds. Aromatic amines did not degrade and they inhibited bacterial growth where their concentrations were significant. Ammonia, aromatic amines, and thiocyanate persisted in groundwater contaminated by in situ oil shale retorting, but thiosulfate was quantitatively degraded one year after the burn. Thiocyanate was found to be the best conservative tracer for retort water discharged into groundwater. Natural organic solutes, isolated from groundwater in contact with Green River Formation oil shale and from the White River near Rangely, Colorado, were readily distinguished from organic constituents in retort wastewaters by molecular weight and chemical characteristic differences. (USGS)

  11. Treatment of concentrated industrial wastewaters originating from oil shale and the like by electrolysis polyurethane foam interaction

    DOEpatents

    Tiernan, Joan E.

    1990-01-01

    Highly concentrated and toxic petroleum-based and synthetic fuels wastewaters such as oil shale retort water are treated in a unit treatment process by electrolysis in a reactor containing oleophilic, ionized, open-celled polyurethane foams and subjected to mixing and laminar flow conditions at an average detention time of six hours. Both the polyurethane foams and the foam regenerate solution are re-used. The treatment is a cost-effective process for waste-waters which are not treatable, or are not cost-effectively treatable, by conventional process series.

  12. 43 CFR 3900.10 - Lands subject to leasing.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... MANAGEMENT, DEPARTMENT OF THE INTERIOR MINERALS MANAGEMENT (3000) OIL SHALE MANAGEMENT-GENERAL Oil Shale Management-Introduction § 3900.10 Lands subject to leasing. The BLM may issue oil shale leases under this...

  13. 43 CFR 3900.10 - Lands subject to leasing.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... MANAGEMENT, DEPARTMENT OF THE INTERIOR RANGE MANAGEMENT (4000) OIL SHALE MANAGEMENT-GENERAL Oil Shale Management-Introduction § 3900.10 Lands subject to leasing. The BLM may issue oil shale leases under this...

  14. 43 CFR 3900.10 - Lands subject to leasing.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... MANAGEMENT, DEPARTMENT OF THE INTERIOR MINERALS MANAGEMENT (3000) OIL SHALE MANAGEMENT-GENERAL Oil Shale Management-Introduction § 3900.10 Lands subject to leasing. The BLM may issue oil shale leases under this...

  15. 43 CFR 3900.10 - Lands subject to leasing.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... MANAGEMENT, DEPARTMENT OF THE INTERIOR MINERALS MANAGEMENT (3000) OIL SHALE MANAGEMENT-GENERAL Oil Shale Management-Introduction § 3900.10 Lands subject to leasing. The BLM may issue oil shale leases under this...

  16. In-Place Oil Shale Resources Underlying Federal Lands in the Piceance Basin, Western Colorado

    USGS Publications Warehouse

    Mercier, Tracey J.; Johnson, Ronald C.; Brownfield, Michael E.; Self, Jesse G.

    2010-01-01

    Using a geologic-based assessment methodology, the U.S. Geological Survey estimated an in-place oil shale resource of 1.07 trillion barrels under Federal mineral rights, or 70 percent of the total oil shale in place, in the Piceance Basin, Colorado. More than 67 percent of the total oil shale in-place resource, or 1.027 trillion barrels, is under Federal surface management.

  17. Method for closing a drift between adjacent in situ oil shale retorts

    DOEpatents

    Hines, Alex E.

    1984-01-01

    A row of horizontally spaced-apart in situ oil shale retorts is formed in a subterranean formation containing oil shale. Each row of retorts is formed by excavating development drifts at different elevations through opposite side boundaries of a plurality of retorts in the row of retorts. Each retort is formed by explosively expanding formation toward one or more voids within the boundaries of the retort site to form a fragmented permeable mass of formation particles containing oil shale in each retort. Following formation of each retort, the retort development drifts on the advancing side of the retort are closed off by covering formation particles within the development drift with a layer of crushed oil shale particles having a particle size smaller than the average particle size of oil shale particles in the adjacent retort. In one embodiment, the crushed oil shale particles are pneumatically loaded into the development drift to pack the particles tightly all the way to the top of the drift and throughout the entire cross section of the drift. The closure between adjacent retorts provided by the finely divided oil shale provides sufficient resistance to gas flow through the development drift to effectively inhibit gas flow through the drift during subsequent retorting operations.

  18. Post Retort, Pre Hydro-treat Upgrading of Shale Oil

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gordon, John

    Various oil feedstocks, including oil from oil shale, bitumen from tar sands, heavy oil, and refin- ery streams were reacted with the alkali metals lithium or sodium in the presence of hydrogen or methane at elevated temperature and pressure in a reactor. The products were liquids with sub- stantially reduced metals, sulfur and nitrogen content. The API gravity typically increased. Sodi- um was found to be more effective than lithium in effectiveness. The solids formed when sodium was utilized contained sodium sulfide which could be regenerated electrochemically back to so- dium and a sulfur product using a "Nasicon", sodium ionmore » conducting membrane. In addition, the process was found to be effective reducing total acid number (TAN) to zero, dramatically reduc- ing the asphaltene content and vacuum residual fraction in the product liquid. The process has promise as a means of eliminating sulfur oxide and carbon monoxide emissions. The process al- so opens the possibility of eliminating the coking process from upgrading schemes and upgrad- ing without using hydrogen.« less

  19. Cr(VI)/Cr(III) and As(V)/As(III) ratio assessments in Jordanian spent oil shale produced by aerobic combustion and Anaerobic Pyrolysis.

    PubMed

    El-Hasan, Tayel; Szczerba, Wojciech; Buzanich, Günter; Radtke, Martin; Riesemeier, Heinrich; Kersten, Michael

    2011-11-15

    With the increase in the awareness of the public in the environmental impact of oil shale utilization, it is of interest to reveal the mobility of potentially toxic trace elements in spent oil shale. Therefore, the Cr and As oxidation state in a representative Jordanian oil shale sample from the El-Lajjoun area were investigated upon different lab-scale furnace treatments. The anaerobic pyrolysis was performed in a retort flushed by nitrogen gas at temperatures in between 600 and 800 °C (pyrolytic oil shale, POS). The aerobic combustion was simply performed in porcelain cups heated in a muffle furnace for 4 h at temperatures in between 700 and 1000 °C (burned oil shale, BOS). The high loss-on-ignition in the BOS samples of up to 370 g kg(-1) results from both calcium carbonate and organic carbon degradation. The LOI leads to enrichment in the Cr concentrations from 480 mg kg(-1) in the original oil shale up to 675 mg kg(-1) in the ≥ 850 °C BOS samples. Arsenic concentrations were not much elevated beyond that in the average shale standard (13 mg kg(-1)). Synchrotron-based X-ray absorption near-edge structure (XANES) analysis revealed that within the original oil shale the oxidation states of Cr and As were lower than after its aerobic combustion. Cr(VI) increased from 0% in the untreated or pyrolyzed oil shale up to 60% in the BOS ash combusted at 850 °C, while As(V) increased from 64% in the original oil shale up to 100% in the BOS ash at 700 °C. No Cr was released from original oil shale and POS products by the European compliance leaching test CEN/TC 292 EN 12457-1 (1:2 solid/water ratio, 24 h shaking), whereas leachates from BOS samples showed Cr release in the order of one mmol L(-1). The leachable Cr content is dominated by chromate as revealed by catalytic adsorptive stripping voltammetry (CAdSV) which could cause harmful contamination of surface and groundwater in the semiarid environment of Jordan.

  20. Introduction to special section: China shale gas and shale oil plays

    USGS Publications Warehouse

    Jiang, Shu; Zeng, Hongliu; Zhang, Jinchuan; Fishman, Neil; Bai, Baojun; Xiao, Xianming; Zhang, Tongwei; Ellis, Geoffrey S.; Li, Xinjing; Richards-McClung, Bryony; Cai, Dongsheng; Ma, Yongsheng

    2015-01-01

    Even though China shale gas and shale oil exploration is still in an early stage, limited data are already available. We are pleased to have selected eight high-quality papers from fifteen submitted manuscripts for this timely section on the topic of China shale gas and shale oil plays. These selected papers discuss various subject areas including regional geology, resource potentials, integrated and multidisciplinary characterization of China shale reservoirs (geology, geophysics, geochemistry, and petrophysics) China shale property measurement using new techniques, case studies for marine, lacustrine, and transitional shale deposits in China, and hydraulic fracturing. One paper summarizes the regional geology and different tectonic and depositional settings of the major prospective shale oil and gas plays in China. Four papers concentrate on the geology, geochemistry, reservoir characterization, lithologic heterogeneity, and sweet spot identification in the Silurian Longmaxi marine shale in the Sichuan Basin in southwest China, which is currently the primary focus of shale gas exploration in China. One paper discusses the Ordovician Salgan Shale in the Tarim Basin in northwest China, and two papers focus on the reservoir characterization and hydraulic fracturing of Triassic lacustrine shale in the Ordos Basin in northern China. Each paper discusses a specific area.

  1. Hydrothermal Liquefaction Biocrude Compositions Compared to Petroleum Crude and Shale Oil

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jarvis, Jacqueline M.; Billing, Justin M.; Hallen, Richard T.

    We provide a direct and detailed comparison of the chemical composition of petroleum crude oil (from the Gulf of Mexico), shale oil, and three biocrudes (i.e., clean pine, microalgae Chlorella sp., and sewage sludge feedstocks) generated by hydrothermal liquefaction (HTL). Ultrahigh resolution Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR MS) reveals that HTL biocrudes are compositionally more similar to shale oil than petroleum crude oil and that only a few heteroatom classes (e.g., N1, N2, N1O1, and O1) are common to organic sediment- and biomass-derived oils. All HTL biocrudes contain a diverse range of oxygen-containing compounds when compared tomore » either petroleum crude or shale oil. Overall, petroleum crude and shale oil are compositionally dissimilar to HTL oils, and >85% of the elemental compositions identified within the positive-ion electrospray (ESI) mass spectra of the HTL biocrudes were not present in either the petroleum crude or shale oil (>43% for negative-ion ESI). Direct comparison of the heteroatom classes that are common to both organic sedimentand biomass-derived oils shows that HTL biocrudes generally contain species with both smaller core structures and a lower degree of alkylation relative to either the petroleum crude or the shale oil. Three-dimensional plots of carbon number versus molecular double bond equivalents (with observed abundance as the third dimension) for abundant molecular classes reveal the specific relationship of the composition of HTL biocrudes to petroleum and shale oils to inform the possible incorporation of these oils into refinery operations as a partial amendment to conventional petroleum feeds.« less

  2. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Apelt, B.

    For as long as the people around Rifle, Colo., can remember, the rock that burns has ignited dreams of a boom in that oil shale country. Now the prospect of tapping oil shale to help satisfy man's growing energy demands burns brighter than ever. At the test site of the $7.5 million Paraho project, down the road from Rifle, dark, rich, refinable shale oil is flowing from 2 silver, cylindrical shale kilns operated by Paraho Oil Shale Demonstration, Inc. Sohio and 16 other energy-oriented companies are financing the Paraho experiments in W. Colorado. What they prove could pave the waymore » for a full-scale commercial oil-shale plant in a desert area in Utah, some 75 miles to the northwest. Sohio's holdings in the area and the research that is taking place are described.« less

  3. Modeling of oil mist and oil vapor concentration in the shale shaker area on offshore drilling installations.

    PubMed

    Bråtveit, Magne; Steinsvåg, Kjersti; Lie, Stein Atle; Moen, Bente E

    2009-11-01

    The objective of this study was to develop regression models to predict concentrations of oil mist and oil vapor in the workplace atmosphere in the shale shaker area of offshore drilling installations. Collection of monitoring reports of oil mist and oil vapor in the mud handling areas of offshore drilling installations was done during visits to eight oil companies and five drilling contractors. A questionnaire was sent to the rig owners requesting information about technical design of the shaker area. Linear mixed-effects models were developed using concentration of oil mist or oil vapor measured by stationary sampling as dependent variables, drilling installation as random effect, and potential determinants related to process technical parameters and technical design of the shale shaker area as fixed effects. The dataset comprised stationary measurements of oil mist (n = 464) and oil vapor (n = 462) from the period 1998 to 2004. The arithmetic mean concentrations of oil mist and oil vapor were 3.89 mg/m(3) and 39.7 mg/m(3), respectively. The air concentration models including significant determinants such as viscosity of base oil, mud temperature, well section, type of rig, localization of shaker, mechanical air supply, air grids in outer wall, air curtain in front of shakers, and season explained 35% and 17% of the total variance in oil vapor and oil mist, respectively. The developed models could be used to indicate what impact differences in technical design and changes in process parameters have on air concentrations of oil mist and oil vapor. Thus, the models will be helpful in planning control measures to reduce the potential for occupational exposure.

  4. Production of valuable hydrocarbons by flash pyrolysis of oil shale

    DOEpatents

    Steinberg, M.; Fallon, P.T.

    1985-04-01

    A process for the production of gas and liquid hydrocarbons from particulated oil shale by reaction with a pyrolysis gas at a temperature of from about 700/sup 0/C to about 1100/sup 0/C, at a pressure of from about 400 psi to about 600 psi, for a period of about 0.2 second to about 20 seconds. Such a pyrolysis gas includes methane, helium, or hydrogen. 3 figs., 3 tabs.

  5. Refining of Military Jet Fuels from Shale Oil. Part II. Volume III. Above Ground Shale Oil Process Data.

    DTIC Science & Technology

    1982-03-01

    system. Regenerator flue gas composi- tion, spent catalyst carbon content and regenerated cata- lyst content are monitored for material balance purposes...and good material balance closures obtained. During each run pro- duct gas samples, regenerator flue gas samples, spent and -85- regenerated...TEMPERATURE DEPENDENCE OF DENITROGENATION AT 2 LHSV ON CO/MO ......................... 26 111-2 TEMPERATURE DEPENDENCE OF DESULFURIZATION AT 2 LHSV ON

  6. In-place oil shale resources underlying Federal lands in the Green River and Washakie Basins, southwestern Wyoming

    USGS Publications Warehouse

    Mercier, Tracey J.; Johnson, Ronald C.; Brownfield, Michael E.

    2011-01-01

    Using a geologic-based assessment methodology, the U.S. Geological Survey estimated an in-place oil shale resource of 906 billion barrels under Federal mineral rights, or 62 percent of the total oil shale in place, in the Green River and Washakie Basins, Wyoming. More than 67 percent of the total oil shale in-place resource, or 969 billion barrels, is under Federal surface management.

  7. Nanometer-Scale Pore Characteristics of Lacustrine Shale, Songliao Basin, NE China

    PubMed Central

    Wang, Min; Yang, Jinxiu; Wang, Zhiwei; Lu, Shuangfang

    2015-01-01

    In shale, liquid hydrocarbons are accumulated mainly in nanometer-scale pores or fractures, so the pore types and PSDs (pore size distributions) play a major role in the shale oil occurrence (free or absorbed state), amount of oil, and flow features. The pore types and PSDs of marine shale have been well studied; however, research on lacustrine shale is rare, especially for shale in the oil generation window, although lacustrine shale is deposited widely around the world. To investigate the relationship between nanometer-scale pores and oil occurrence in the lacustrine shale, 10 lacustrine shale core samples from Songliao Basin, NE China were analyzed. Analyses of these samples included geochemical measurements, SEM (scanning electron microscope) observations, low pressure CO2 and N2 adsorption, and high-pressure mercury injection experiments. Analysis results indicate that: (1) Pore types in the lacustrine shale include inter-matrix pores, intergranular pores, organic matter pores, and dissolution pores, and these pores are dominated by mesopores and micropores; (2) There is no apparent correlation between pore volumes and clay content, however, a weak negative correlation is present between total pore volume and carbonate content; (3) Pores in lacustrine shale are well developed when the organic matter maturity (Ro) is >1.0% and the pore volume is positively correlated with the TOC (total organic carbon) content. The statistical results suggest that oil in lacustrine shale mainly occurs in pores with diameters larger than 40 nm. However, more research is needed to determine whether this minimum pore diameter for oil occurrence in lacustrine shale is widely applicable. PMID:26285123

  8. Nanometer-Scale Pore Characteristics of Lacustrine Shale, Songliao Basin, NE China.

    PubMed

    Wang, Min; Yang, Jinxiu; Wang, Zhiwei; Lu, Shuangfang

    2015-01-01

    In shale, liquid hydrocarbons are accumulated mainly in nanometer-scale pores or fractures, so the pore types and PSDs (pore size distributions) play a major role in the shale oil occurrence (free or absorbed state), amount of oil, and flow features. The pore types and PSDs of marine shale have been well studied; however, research on lacustrine shale is rare, especially for shale in the oil generation window, although lacustrine shale is deposited widely around the world. To investigate the relationship between nanometer-scale pores and oil occurrence in the lacustrine shale, 10 lacustrine shale core samples from Songliao Basin, NE China were analyzed. Analyses of these samples included geochemical measurements, SEM (scanning electron microscope) observations, low pressure CO2 and N2 adsorption, and high-pressure mercury injection experiments. Analysis results indicate that: (1) Pore types in the lacustrine shale include inter-matrix pores, intergranular pores, organic matter pores, and dissolution pores, and these pores are dominated by mesopores and micropores; (2) There is no apparent correlation between pore volumes and clay content, however, a weak negative correlation is present between total pore volume and carbonate content; (3) Pores in lacustrine shale are well developed when the organic matter maturity (Ro) is >1.0% and the pore volume is positively correlated with the TOC (total organic carbon) content. The statistical results suggest that oil in lacustrine shale mainly occurs in pores with diameters larger than 40 nm. However, more research is needed to determine whether this minimum pore diameter for oil occurrence in lacustrine shale is widely applicable.

  9. Field studies on USBM and TOSCO II retorted oil shales: vegetation, moisture, salinity, and runoff, 1977-1980. Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kilkelly, M.K.; Berg, W.A.; Harbert, H.P. III

    1981-08-01

    Field studies were initiated in 1973 to investigate the vegetative stabilization of processed oil shales and to follow moisture and soluble salt movement within the soil/shale profile. Research plots with two types of retorted shales (TOSCO II and USBM) with leaching and soil cover treatments were established at two locations: low-elevation (Anvil Points) and high-elevation (Piceance Basin) in western Colorado. Vegetation was established by intensive management including leaching, N and P fertilization, seeding, mulching, and irrigation. After seven growing seasons, a good vegetative cover remained with few differences between treatments, with the exception of the TOSCO retorted shale, south-aspect, whichmore » consistently supported less perennial vegetative cover than other treatments. With time, a shift from perennial grasses to dominance by shrubs was observed. Rodent activity on some treatments had a significantly negative effect on vegetative cover.« less

  10. Oil-source correlations between the Mississippian Heath Shales and the reservoired oils in the Pennsylvanian Tyler Sands, Montana

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cole, G.A.; Drozd, R.J.; Daniel, J.A.

    The Mississippi Heath Formation exposed in Fergus County, central Montana, is comprised predominantly of nearshore, marine, black, calcareous shales and carbonates with minor anhydrite and coal beds. The black shales and limestones have been considered as sources for shale oil via Fischer Assay and pyrolysis analysis. These shales are potential source units for the oils reservoired in the overlying Pennsylvanian Tyler Formation sands located 50 mi (80 km) to the east of the Fergus County Heath sediment studied. Heath Formation rocks from core holes were selectively sampled in 2-ft increments and analyzed for their source rock characteristics. Analyses include percentmore » total organic carbon (%TOC), Rock-Eval pyrolysis, pyrolysis-gas chromatography, and characterization of the total soluble extracts using carbon isotopes and gas chromatography-mass Spectrometry. Results indicated that the Heath was an excellent potential source unit that contained oil-prone, organic-rich (maximum of 17.6% TOC), calcareous, black shale intervals. The Heath and Tyler formations also contained intervals dominated by gas-prone, organic-rich shales of terrestrial origin. Three oils from the Tyler Formation sands in Musselshell and Rosebud counties were characterized by similar methods as the extracts. The oils were normally mature, moderate API gravity, moderate sulfur, low asphaltene crudes. Oil to source correlations between the Heath shale extracts and the oils indicated the Heath was an excellent candidate source rock for the Tyler reservoired oils. Conclusions were based on excellent matches between the carbon isotopes of the oils and the kerogen-kerogen pyrolyzates, and from the biomarkers.« less

  11. In-situ laser retorting of oil shale

    NASA Technical Reports Server (NTRS)

    Bloomfield, H. S. (Inventor)

    1977-01-01

    Oil shale formations are retorted in situ and gaseous hydrocarbon products are recovered by drilling two or more wells into an oil shale formation underneath the surface of the ground. A high energy laser beam is directed into the well and fractures the region of the shale formation. A compressed gas is forced into the well that supports combustion in the flame front ignited by the laser beam, thereby retorting the oil shale. Gaseous hydrocarbon products which permeate through the fractured region are recovered from one of the wells that were not exposed to the laser system.

  12. Formation resistivity as an indicator of oil generation in black shales

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hester, T.C.; Schmoker, J.W.

    1987-08-01

    Black, organic-rich shales of Late Devonian-Early Mississippi age are present in many basins of the North American craton and, where mature, have significant economic importance as hydrocarbon source rocks. Examples drawn from the upper and lower shale members of the Bakken Formation, Williston basin, North Dakota, and the Woodford Shale, Anadarko basin, Oklahoma, demonstrate the utility of formation resistivity as a direct in-situ indicator of oil generation in black shales. With the onset of oil generation, nonconductive hydrocarbons begin to replace conductive pore water, and the resistivity of a given black-shale interval increases from low levels associated with thermal immaturitymore » to values approaching infinity. Crossplots of a thermal-maturity index (R/sub 0/ or TTI) versus formation resistivity define two populations representing immature shales and shales that have generated oil. A resistivity of 35 ohm-m marks the boundary between immature and mature source rocks for each of the three shales studied. Thermal maturity-resistivity crossplots make possible a straightforward determination of thermal maturity at the onset of oil generation, and are sufficiently precise to detect subtle differences in source-rock properties. For example, the threshold of oil generation in the upper Bakken shale occurs at R/sub 0/ = 0.43-0.45% (TTI = 10-12). The threshold increases to R/sub 0/ = 0.48-0.51% (TTI = 20-26) in the lower Bakken shale, and to R/sub 0/ = 0.56-0.57% (TTI = 33-48) in the most resistive Woodford interval.« less

  13. Cytotoxic and mutagenic properties of shale oil byproducts. II. Comparison of mutagenic effects at five genetic markers induced by retort process water plus near ultraviolet light in Chinese hamster ovary cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, D.J.C.; Strniste, G.F.

    1982-01-01

    A Chinese hamster ovary (CHO) cell line heterozygous at the adenine phosphoribosyl transferase (APRT) locus was used for selection of induced mutants resistant to 8-azaadenine (8AA), 6-thioguanine (6TG), ouabain (OUA), emetine (EMT) and diphtheria toxin (DIP). The expression times necessary for optimizing the number of mutants recovered at the different loci have been determined using the known direct acting mutagen, far ultraviolet light (FUV), and a complex aqueous organic mixture (shale oil process water) activated with near ultraviolet light (NUV). The results indicate that optimal expression times following treatment with either mutagen was between 2 and 8 days. For CHOmore » cells treated with shale oil process water and subsequently exposed to NUV a linear dose response for mutant induction was observed for all five genetic loci. At 10% surviving fraction of cells, between 35- and 130-fold increases above backgound mutation frequencies were observed for the various markers examined.« less

  14. Molecular characterization and comparison of shale oils generated by different pyrolysis methods using FT-ICR mass spectrometry

    USGS Publications Warehouse

    Jin, J.M.; Kim, S.; Birdwell, J.E.

    2011-01-01

    Fourier transform ion cyclotron resonance mass spectrometry (FT ICR-MS) was applied in the analysis of shale oils generated using two different pyrolysis systems under laboratory conditions meant to simulate surface and in situ oil shale retorting. Significant variations were observed in the shale oils, particularly the degree of conjugation of the constituent molecules. Comparison of FT ICR-MS results to standard oil characterization methods (API gravity, SARA fractionation, gas chromatography-flame ionization detection) indicated correspondence between the average Double Bond Equivalence (DBE) and asphaltene content. The results show that, based on the average DBE values and DBE distributions of the shale oils examined, highly conjugated species are enriched in samples produced under low pressure, high temperature conditions and in the presence of water.

  15. Organic petrology of selected oil shale samples from lower Carboniferous Albert Formation, New Brunswick, Canada

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kalkreuth, W.; Macauley, G.

    1984-04-01

    Incident light microscopy was used to describe maturation and composition of organic material in oil shale samples from the Lower Carboniferous Albert Formation of New Brunswick. The maturation level was determined in normal (white) light by measuring vitrinite reflectance and in fluorescent light by measuring fluorescence spectral of alginite B. Results indicate low to intermediate maturation for all of the samples. Composition was determined by maceral analysis. Alginite B is the major organic component in all samples having significant oil potential. Oil yields obtained from the Fischer Assay process, and oil and gas potentials from Rock-Eval analyses correlate to themore » amounts of alginite B and bituminite determined in the samples. In some of the samples characterized by similar high concentrations of alginite B, decrease in Fischer Assay yields and oil and gas potentials is related to an increase in maturation, as expected by increase in the fluorescence parameter lambda/sub max/ and red/green quotient of alginite B. Incident light microscopy, particularly with fluorescent light, offers a valuable tool for the identification of the organic matter in oil shales and for the evaluation of their oil and gas potentials.« less

  16. Water pollution potential of spent oil shale residues. [From USBM, UOC, and TOSCO processes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1971-12-01

    Physical properties, including porosity, permeability, particle size distribution, and density of spent shale from three different retorting operations, (TOSCO, USBM, and UOC) have been determined. Slurry experiments were conducted on each of the spent shales and the slurry analyzed for leachable dissolved solids. Percolation experiments were conducted on the TOSCO spent shale and the quantities of dissolved solids leachable determined. The concentrations of the various ionic species in the initial leachate from the column were high. The major constituents, SO/sub 4//sup 2 -/ and Na/sup +/, were present in concentrations of 90,000 and 35,000 mg/l in the initial leachate; howevermore » the succeeding concentrations dropped markedly during the course of the experiment. A computer program was utilized to predict equilibrium concentrations in the leachate from the column. The extent of leaching and erosion of spent shale and the composition and concentration of natural drainage from spent shale have been determined using oil shale residue and simulated rainfall. Concentrations in the runoff from the spent shale have been correlated with runoff rate, precipitation intensity, flow depth, application time, slope, and water temperature. 18 tables, 32 figures.« less

  17. Indirect heating pyrolysis of oil shale

    DOEpatents

    Jones, Jr., John B.; Reeves, Adam A.

    1978-09-26

    Hot, non-oxygenous gas at carefully controlled quantities and at predetermined depths in a bed of lump oil shale provides pyrolysis of the contained kerogen of the oil shale, and cool non-oxygenous gas is passed up through the bed to conserve the heat

  18. 43 CFR 3930.30 - Diligent development milestones.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... MANAGEMENT, DEPARTMENT OF THE INTERIOR MINERALS MANAGEMENT (3000) MANAGEMENT OF OIL SHALE EXPLORATION AND LEASES Management of Oil Shale Exploration Licenses and Leases § 3930.30 Diligent development milestones. (a) Operators must diligently develop the oil shale resources consistent with the terms and...

  19. 43 CFR 3930.30 - Diligent development milestones.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... MANAGEMENT, DEPARTMENT OF THE INTERIOR MINERALS MANAGEMENT (3000) MANAGEMENT OF OIL SHALE EXPLORATION AND LEASES Management of Oil Shale Exploration Licenses and Leases § 3930.30 Diligent development milestones. (a) Operators must diligently develop the oil shale resources consistent with the terms and...

  20. 43 CFR 3930.30 - Diligent development milestones.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... MANAGEMENT, DEPARTMENT OF THE INTERIOR MINERALS MANAGEMENT (3000) MANAGEMENT OF OIL SHALE EXPLORATION AND LEASES Management of Oil Shale Exploration Licenses and Leases § 3930.30 Diligent development milestones. (a) Operators must diligently develop the oil shale resources consistent with the terms and...

  1. In situ oil shale retort with a generally T-shaped vertical cross section

    DOEpatents

    Ricketts, Thomas E.

    1981-01-01

    An in situ oil shale retort is formed in a subterranean formation containing oil shale. The retort contains a fragmented permeable mass of formation particles containing oil shale and has a production level drift in communication with a lower portion of the fragmented mass for withdrawing liquid and gaseous products of retorting during retorting of oil shale in the fragmented mass. The principal portion of the fragmented mass is spaced vertically above a lower production level portion having a generally T-shaped vertical cross section. The lower portion of the fragmented mass has a horizontal cross sectional area smaller than the horizontal cross sectional area of the upper principal portion of the fragmented mass above the production level.

  2. Geochemistry of Israeli oil shales: a review

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shirav, M.; Ginzburg, D.

    1983-01-01

    The oil shales of Israel are widely distributed throughout the country and have current reserves of about 3500 million tons located in the following deposits: Zin, Oron, Ef'e, Hartuv, and Nabi-Musa. The geochemistry and chemical analysis of these shales are discussed, along with the calorific value, oil yield, and trace elements. The main components influencing the quality of the oil shales are organic matter, carbonate, clay minerals, and apatite. Compositional variations within the organic matter are responsible for changes in the relative calorific value and retorted oil yield while fluidized bed combustion is affected by the inorganic components. (JMT)

  3. Assessment of undiscovered shale gas and shale oil resources in the Mississippian Barnett Shale, Bend Arch–Fort Worth Basin Province, North-Central Texas

    USGS Publications Warehouse

    Marra, Kristen R.; Charpentier, Ronald R.; Schenk, Christopher J.; Lewan, Michael D.; Leathers-Miller, Heidi M.; Klett, Timothy R.; Gaswirth, Stephanie B.; Le, Phuong A.; Mercier, Tracey J.; Pitman, Janet K.; Tennyson, Marilyn E.

    2015-12-17

    Using a geology-based assessment methodology, the U.S. Geological Survey estimated mean volumes of 53 trillion cubic feet of shale gas, 172 million barrels of shale oil, and 176 million barrels of natural gas liquids in the Barnett Shale of the Bend Arch–Fort Worth Basin Province of Texas.

  4. 43 CFR 3930.10 - General performance standards.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... MANAGEMENT, DEPARTMENT OF THE INTERIOR MINERALS MANAGEMENT (3000) MANAGEMENT OF OIL SHALE EXPLORATION AND LEASES Management of Oil Shale Exploration Licenses and Leases § 3930.10 General performance standards... drill holes that could adversely affect the recovery of shale oil or other minerals producible under an...

  5. 43 CFR 3930.10 - General performance standards.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... MANAGEMENT, DEPARTMENT OF THE INTERIOR MINERALS MANAGEMENT (3000) MANAGEMENT OF OIL SHALE EXPLORATION AND LEASES Management of Oil Shale Exploration Licenses and Leases § 3930.10 General performance standards... drill holes that could adversely affect the recovery of shale oil or other minerals producible under an...

  6. 43 CFR 3930.10 - General performance standards.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... MANAGEMENT, DEPARTMENT OF THE INTERIOR MINERALS MANAGEMENT (3000) MANAGEMENT OF OIL SHALE EXPLORATION AND LEASES Management of Oil Shale Exploration Licenses and Leases § 3930.10 General performance standards... drill holes that could adversely affect the recovery of shale oil or other minerals producible under an...

  7. 40 CFR 60.101 - Definitions.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... crude oil removed from the earth and the oils derived from tar sands, shale, and coal. (c) Process gas..., or react with a contact material suspended in a fluidized bed to improve feedstock quality for...

  8. Thermally-driven Coupled THM Processes in Shales

    NASA Astrophysics Data System (ADS)

    Rutqvist, J.

    2017-12-01

    Temperature changes can trigger strongly coupled thermal-hydrological-mechanical (THM) processes in shales that are important to a number of subsurface energy applications, including geologic nuclear waste disposal and hydrocarbon extraction. These coupled processes include (1) direct pore-volume couplings, by thermal expansion of trapped pore-fluid that triggers instantaneous two-way couplings between pore fluid pressure and mechanical deformation, and (2) indirect couplings in terms of property changes, such as changes in mechanical stiffness, strength, and permeability. Direct pore-volume couplings have been studied in situ during borehole heating experiments in shale (or clay stone) formations at Mont Terri and Bure underground research laboratories in Switzerland and France. Typically, the temperature changes are accompanied with a rapid increase in pore pressure followed by a slower decrease towards initial (pre-heating) pore pressure. Coupled THM modeling of these heater tests shows that the pore pressure increases because the thermal expansion coefficient of the fluid is much higher than that of the porous clay stone. Such thermal pressurization induces fluid flow away from the pressurized area towards areas of lower pressure. The rate of pressure increase and magnitude of peak pressure depends on the rate of heating, pore-compressibility, and permeability of the shale. Modeling as well as laboratory experiments have shown that if the pore pressure increase is sufficiently large it could lead to fracturing of the shale or shear slip along pre-existing bedding planes. Another set of data and observations have been collected associated with studies related to concentrated heating and cooling of oil-shales and shale-gas formations. Heating may be used to enhance production from tight oil-shale, whereas thermal stimulation has been attempted for enhanced shale-gas extraction. Laboratory experiments on shale have shown that strength and elastic deformation modulus decreases with temperature while the rate creep deformations increase with temperature. Such temperature dependency also affects the well stability and zonal sealing across shale layers.

  9. Oil Shale

    USGS Publications Warehouse

    Birdwell, Justin E.

    2017-01-01

    Oil shales are fine-grained sedimentary rocks formed in many different depositional environments (terrestrial, lacustrine, marine) containing large quantities of thermally immature organic matter in the forms of kerogen and bitumen. If defined from an economic standpoint, a rock containing a sufficient concentration of oil-prone kerogen to generate economic quantities of synthetic crude oil upon heating to high temperatures (350–600 °C) in the absence of oxygen (pyrolysis) can be considered an oil shale.

  10. Multivariate analysis relating oil shale geochemical properties to NMR relaxometry

    USGS Publications Warehouse

    Birdwell, Justin E.; Washburn, Kathryn E.

    2015-01-01

    Low-field nuclear magnetic resonance (NMR) relaxometry has been used to provide insight into shale composition by separating relaxation responses from the various hydrogen-bearing phases present in shales in a noninvasive way. Previous low-field NMR work using solid-echo methods provided qualitative information on organic constituents associated with raw and pyrolyzed oil shale samples, but uncertainty in the interpretation of longitudinal-transverse (T1–T2) relaxometry correlation results indicated further study was required. Qualitative confirmation of peaks attributed to kerogen in oil shale was achieved by comparing T1–T2 correlation measurements made on oil shale samples to measurements made on kerogen isolated from those shales. Quantitative relationships between T1–T2 correlation data and organic geochemical properties of raw and pyrolyzed oil shales were determined using partial least-squares regression (PLSR). Relaxometry results were also compared to infrared spectra, and the results not only provided further confidence in the organic matter peak interpretations but also confirmed attribution of T1–T2 peaks to clay hydroxyls. In addition, PLSR analysis was applied to correlate relaxometry data to trace element concentrations with good success. The results of this work show that NMR relaxometry measurements using the solid-echo approach produce T1–T2 peak distributions that correlate well with geochemical properties of raw and pyrolyzed oil shales.

  11. Generation and migration of Bitumen and oil from the oil shale interval of the Eocene Green River formation, Uinta Basin, Utah

    USGS Publications Warehouse

    Johnson, Ronald C.; Birdwell, Justin E.; Mercier, Tracey J.

    2016-01-01

    The results from the recent U.S. Geological Survey assessment of in-place oil shale resources of the Eocene Green River Formation, based primarily on the Fischer assay method, are applied herein to define areas where the oil shale interval is depleted of some of its petroleum-generating potential along the deep structural trough of the basin and to make: (1) a general estimates of the amount of this depletion, and (2) estimate the total volume of petroleum generated. Oil yields (gallons of oil per ton of rock, GPT) and in-place oil (barrels of oil per acre, BPA) decrease toward the structural trough of the basin, which represents an offshore lacustrine area that is believed to have originally contained greater petroleum-generating potential than is currently indicated by measured Fischer assay oil yields. Although this interval is considered to be largely immature for oil generation based on vitrinite reflectance measurements, the oil shale interval is a likely source for the gilsonite deposits and much of the tar sands in the basin. Early expulsion of petroleum may have occurred due to the very high organic carbon content and oil-prone nature of the Type I kerogen present in Green River oil shale. In order to examine the possible sources and migration pathways for the tar sands and gilsonite deposits, we have created paleogeographic reconstructions of several oil shale zones in the basin as part of this study.

  12. 43 CFR 3834.13 - Will BLM prorate annual maintenance or oil shale fees?

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... FOR MINING CLAIMS OR SITES Fee Payment § 3834.13 Will BLM prorate annual maintenance or oil shale fees? BLM will not prorate annual maintenance or oil shale fees if you hold a mining claim or site for only... 43 Public Lands: Interior 2 2012-10-01 2012-10-01 false Will BLM prorate annual maintenance or oil...

  13. 43 CFR 3834.13 - Will BLM prorate annual maintenance or oil shale fees?

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... FOR MINING CLAIMS OR SITES Fee Payment § 3834.13 Will BLM prorate annual maintenance or oil shale fees? BLM will not prorate annual maintenance or oil shale fees if you hold a mining claim or site for only... 43 Public Lands: Interior 2 2014-10-01 2014-10-01 false Will BLM prorate annual maintenance or oil...

  14. 43 CFR 3834.13 - Will BLM prorate annual maintenance or oil shale fees?

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... FOR MINING CLAIMS OR SITES Fee Payment § 3834.13 Will BLM prorate annual maintenance or oil shale fees? BLM will not prorate annual maintenance or oil shale fees if you hold a mining claim or site for only... 43 Public Lands: Interior 2 2013-10-01 2013-10-01 false Will BLM prorate annual maintenance or oil...

  15. 43 CFR 3834.13 - Will BLM prorate annual maintenance or oil shale fees?

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... FOR MINING CLAIMS OR SITES Fee Payment § 3834.13 Will BLM prorate annual maintenance or oil shale fees? BLM will not prorate annual maintenance or oil shale fees if you hold a mining claim or site for only... 43 Public Lands: Interior 2 2011-10-01 2011-10-01 false Will BLM prorate annual maintenance or oil...

  16. Volatile-organic molecular characterization of shale-oil produced water from the Permian Basin

    USGS Publications Warehouse

    Khan, Naima A.; Engle, Mark A.; Dungan, Barry; Holguin, F. Omar; Xu, Pei; Carroll, Kenneth C.

    2016-01-01

    Growth in unconventional oil and gas has spurred concerns on environmental impact and interest in beneficial uses of produced water (PW), especially in arid regions such as the Permian Basin, the largest U.S. tight-oil producer. To evaluate environmental impact, treatment, and reuse potential, there is a need to characterize the compositional variability of PW. Although hydraulic fracturing has caused a significant increase in shale-oil production, there are no high-resolution organic composition data for the shale-oil PW from the Permian Basin or other shale-oil plays (Eagle Ford, Bakken, etc.). PW was collected from shale-oil wells in the Midland sub-basin of the Permian Basin. Molecular characterization was conducted using high-resolution solid phase micro extraction gas chromatography time-of-flight mass spectrometry. Approximately 1400 compounds were identified, and 327 compounds had a >70% library match. PW contained alkane, cyclohexane, cyclopentane, BTEX (benzene, toluene, ethylbenzene, and xylene), alkyl benzenes, propyl-benzene, and naphthalene. PW also contained heteroatomic compounds containing nitrogen, oxygen, and sulfur. 3D van Krevelen and double bond equivalence versus carbon number analyses were used to evaluate molecular variability. Source composition, as well as solubility, controlled the distribution of volatile compounds found in shale-oil PW. The salinity also increased with depth, ranging from 105 to 162 g/L total dissolved solids. These data fill a gap for shale-oil PW composition, the associated petroleomics plots provide a fingerprinting framework, and the results for the Permian shale-oil PW suggest that partial treatment of suspended solids and organics would support some beneficial uses such as onsite reuse and bio-energy production.

  17. Volatile-organic molecular characterization of shale-oil produced water from the Permian Basin.

    PubMed

    Khan, Naima A; Engle, Mark; Dungan, Barry; Holguin, F Omar; Xu, Pei; Carroll, Kenneth C

    2016-04-01

    Growth in unconventional oil and gas has spurred concerns on environmental impact and interest in beneficial uses of produced water (PW), especially in arid regions such as the Permian Basin, the largest U.S. tight-oil producer. To evaluate environmental impact, treatment, and reuse potential, there is a need to characterize the compositional variability of PW. Although hydraulic fracturing has caused a significant increase in shale-oil production, there are no high-resolution organic composition data for the shale-oil PW from the Permian Basin or other shale-oil plays (Eagle Ford, Bakken, etc.). PW was collected from shale-oil wells in the Midland sub-basin of the Permian Basin. Molecular characterization was conducted using high-resolution solid phase micro extraction gas chromatography time-of-flight mass spectrometry. Approximately 1400 compounds were identified, and 327 compounds had a >70% library match. PW contained alkane, cyclohexane, cyclopentane, BTEX (benzene, toluene, ethylbenzene, and xylene), alkyl benzenes, propyl-benzene, and naphthalene. PW also contained heteroatomic compounds containing nitrogen, oxygen, and sulfur. 3D van Krevelen and double bond equivalence versus carbon number analyses were used to evaluate molecular variability. Source composition, as well as solubility, controlled the distribution of volatile compounds found in shale-oil PW. The salinity also increased with depth, ranging from 105 to 162 g/L total dissolved solids. These data fill a gap for shale-oil PW composition, the associated petroleomics plots provide a fingerprinting framework, and the results for the Permian shale-oil PW suggest that partial treatment of suspended solids and organics would support some beneficial uses such as onsite reuse and bio-energy production. Copyright © 2016 Elsevier Ltd. All rights reserved.

  18. Assessment of potential unconventional lacustrine shale-oil and shale-gas resources, Phitsanulok Basin, Thailand, 2014

    USGS Publications Warehouse

    Schenk, Christopher J.; Charpentier, Ronald R.; Klett, Timothy R.; Mercier, Tracey J.; Tennyson, Marilyn E.; Pitman, Janet K.; Brownfield, Michael E.

    2014-01-01

    Using a geology-based assessment methodology, the U.S. Geological Survey assessed potential technically recoverable mean resources of 53 million barrels of shale oil and 320 billion cubic feet of shale gas in the Phitsanulok Basin, onshore Thailand.

  19. Map of assessed shale gas in the United States, 2012

    USGS Publications Warehouse

    ,; Biewick, Laura R. H.

    2013-01-01

    The U.S. Geological Survey has compiled a map of shale-gas assessments in the United States that were completed by 2012 as part of the National Assessment of Oil and Gas Project. Using a geology-based assessment methodology, the U.S. Geological Survey quantitatively estimated potential volumes of undiscovered gas within shale-gas assessment units. These shale-gas assessment units are mapped, and square-mile cells are shown to represent proprietary shale-gas wells. The square-mile cells include gas-producing wells from shale intervals. In some cases, shale-gas formations contain gas in deeper parts of a basin and oil at shallower depths (for example, the Woodford Shale and the Eagle Ford Shale). Because a discussion of shale oil is beyond the scope of this report, only shale-gas assessment units and cells are shown. The map can be printed as a hardcopy map or downloaded for interactive analysis in a Geographic Information System data package using the ArcGIS map document (file extension MXD) and published map file (file extension PMF). Also available is a publications access table with hyperlinks to current U.S. Geological Survey shale gas assessment publications and web pages. Assessment results and geologic reports are available as completed at the U.S. Geological Survey Energy Resources Program Web Site, http://energy.usgs.gov/OilGas/AssessmentsData/NationalOilGasAssessment.aspx. A historical perspective of shale gas activity in the United States is documented and presented in a video clip included as a PowerPoint slideshow.

  20. 4D petroleum system model of the Mississippian System in the Anadarko Basin Province, Oklahoma, Kansas, Texas, and Colorado, U.S.A.

    USGS Publications Warehouse

    Higley, Debra K.

    2013-01-01

    The Upper Devonian and Lower Mississippian Woodford Shale is an important petroleum source rock for Mississippian reservoirs in the Anadarko Basin Province of Oklahoma, Kansas, Texas, and Colorado, based on results from a 4D petroleum system model of the basin. The Woodford Shale underlies Mississippian strata over most of the Anadarko Basin portions of Oklahoma and northeastern Texas. The Kansas and Colorado portions of the province are almost entirely thermally immature for oil generation from the Woodford Shale or potential Mississippian source rocks, based mainly on measured vitrinite reflectance and modeled thermal maturation. Thermal maturities of the Woodford Shale range from mature for oil to overmature for gas generation at present-day depths of about 5,000 to 20,000 ft. Oil generation began at burial depths of about 6,000 to 6,500 ft. Modeled onset of Woodford Shale oil generation was about 330 million years ago (Ma); peak oil generation was from 300 to 220 Ma.Mississippian production, including horizontal wells of the informal Mississippi limestone, is concentrated within and north of the Sooner Trend area in the northeast Oklahoma portion of the basin. This large pod of oil and gas production is within the area modeled as thermally mature for oil generation from the Woodford Shale. The southern boundary of the trend approximates the 99% transformation ratio of the Woodford Shale, which marks the end of oil generation. Because most of the Sooner Trend area is thermally mature for oil generation from the Woodford Shale, the trend probably includes short- and longer-distance vertical and lateral migration. The Woodford Shale is absent in the Mocane-Laverne Field area of the eastern Oklahoma panhandle; because of this, associated oil migrated from the south into the field. If the Springer Formation or deeper Mississippian strata generated oil, then the southern field area is within the oil window for associated petroleum source rocks. Mississippian fields along the western boundary of the study area were supplied by oil that flowed northward from the Panhandle Field area and westward from the deep basin.

  1. Treatment of concentrated industrial wastewaters originating from oil shale and the like by electrolysis polyurethane foam interaction

    DOEpatents

    Tiernan, Joan E.

    1991-01-01

    Highly concentrated and toxic petroleum-based and synthetic fuels wastewaters such as oil shale retort water are treated in a unit treatment process by electrolysis in a reactor containing oleophilic, ionized, open-celled polyurethane foams and subjected to mixing and l BACKGROUND OF THE INVENTION The invention described herein arose in the course of, or under, Contract No. DE-AC03-76SF00098 between the U.S. Department of Energy and the University of California.

  2. 43 CFR 3900.40 - Multiple use development of leased or licensed lands.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... (Continued) BUREAU OF LAND MANAGEMENT, DEPARTMENT OF THE INTERIOR MINERALS MANAGEMENT (3000) OIL SHALE MANAGEMENT-GENERAL Oil Shale Management-Introduction § 3900.40 Multiple use development of leased or licensed... production of deposits of oil shale does not preclude the BLM from issuing other exploration licenses or...

  3. 43 CFR 3900.40 - Multiple use development of leased or licensed lands.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... (Continued) BUREAU OF LAND MANAGEMENT, DEPARTMENT OF THE INTERIOR RANGE MANAGEMENT (4000) OIL SHALE MANAGEMENT-GENERAL Oil Shale Management-Introduction § 3900.40 Multiple use development of leased or licensed... production of deposits of oil shale does not preclude the BLM from issuing other exploration licenses or...

  4. 43 CFR 3930.13 - Performance standards for surface mines.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... OF LAND MANAGEMENT, DEPARTMENT OF THE INTERIOR RANGE MANAGEMENT (4000) MANAGEMENT OF OIL SHALE EXPLORATION AND LEASES Management of Oil Shale Exploration Licenses and Leases § 3930.13 Performance standards for surface mines. (a) Pit widths for each oil shale seam must be engineered and designed to eliminate...

  5. 43 CFR 3900.40 - Multiple use development of leased or licensed lands.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... (Continued) BUREAU OF LAND MANAGEMENT, DEPARTMENT OF THE INTERIOR MINERALS MANAGEMENT (3000) OIL SHALE MANAGEMENT-GENERAL Oil Shale Management-Introduction § 3900.40 Multiple use development of leased or licensed... production of deposits of oil shale does not preclude the BLM from issuing other exploration licenses or...

  6. 77 FR 59415 - Renewal of Approved Information Collection

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-09-27

    ... regarding leases of solid minerals other than coal and oil shale. The Office of Management and Budget (OMB... Than Coal and Oil Shale (43 CFR Parts 3500, 3580, and 3590). OMB Control Number: 1004-0121. Abstract... solid minerals other than coal or oil shale. The information activities currently approved under control...

  7. 43 CFR 3930.13 - Performance standards for surface mines.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... OF LAND MANAGEMENT, DEPARTMENT OF THE INTERIOR MINERALS MANAGEMENT (3000) MANAGEMENT OF OIL SHALE EXPLORATION AND LEASES Management of Oil Shale Exploration Licenses and Leases § 3930.13 Performance standards for surface mines. (a) Pit widths for each oil shale seam must be engineered and designed to eliminate...

  8. 43 CFR 3930.13 - Performance standards for surface mines.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... OF LAND MANAGEMENT, DEPARTMENT OF THE INTERIOR MINERALS MANAGEMENT (3000) MANAGEMENT OF OIL SHALE EXPLORATION AND LEASES Management of Oil Shale Exploration Licenses and Leases § 3930.13 Performance standards for surface mines. (a) Pit widths for each oil shale seam must be engineered and designed to eliminate...

  9. 43 CFR 3930.13 - Performance standards for surface mines.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... OF LAND MANAGEMENT, DEPARTMENT OF THE INTERIOR MINERALS MANAGEMENT (3000) MANAGEMENT OF OIL SHALE EXPLORATION AND LEASES Management of Oil Shale Exploration Licenses and Leases § 3930.13 Performance standards for surface mines. (a) Pit widths for each oil shale seam must be engineered and designed to eliminate...

  10. 43 CFR 3900.40 - Multiple use development of leased or licensed lands.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... (Continued) BUREAU OF LAND MANAGEMENT, DEPARTMENT OF THE INTERIOR MINERALS MANAGEMENT (3000) OIL SHALE MANAGEMENT-GENERAL Oil Shale Management-Introduction § 3900.40 Multiple use development of leased or licensed... production of deposits of oil shale does not preclude the BLM from issuing other exploration licenses or...

  11. 78 FR 6831 - Renewal of Approved Information Collection

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-01-31

    ... leases of solid minerals other than coal and oil shale. The Office of Management and Budget (OMB... information collection: Title: Leasing of Solid Minerals Other Than Coal and Oil Shale (43 CFR Parts 3500... other legal requirements relating to the leasing of solid minerals other than coal or oil shale; Gather...

  12. In-place oil shale resources in the saline-mineral and saline-leached intervals, Parachute Creek Member of the Green River Formation, Piceance Basin, Colorado

    USGS Publications Warehouse

    Birdwell, Justin E.; Mercier, Tracey J.; Johnson, Ronald C.; Brownfield, Michael E.; Dietrich, John D.

    2014-01-01

    A recent U.S. Geological Survey analysis of the Green River Formation of the Piceance Basin in western Colorado shows that about 920 and 352 billion barrels of oil are potentially recoverable from oil shale resources using oil-yield cutoffs of 15 and 25 gallons per ton (GPT), respectively. This represents most of the high-grade oil shale in the United States. Much of this rich oil shale is found in the dolomitic Parachute Creek Member of the Green River Formation and is associated with the saline minerals nahcolite and halite, or in the interval where these minerals have been leached by groundwater. The remaining high-grade resource is located primarily in the underlying illitic Garden Gulch Member of the Green River Formation. Of the 352 billion barrels of potentially recoverable oil resources in high-grade (≥25 GPT) oil shale, the relative proportions present in the illitic interval, non-saline R-2 zone, saline-mineral interval, leached interval (excluding leached Mahogany zone), and Mahogany zone were 3.1, 4.5, 36.6, 23.9, and 29.9 percent of the total, respectively. Only 2 percent of high-grade oil shale is present in marginal areas where saline minerals were never deposited.

  13. Assessment of unconventional oil and gas resources in the Jurassic Sargelu Formation of Iraq, 2014

    USGS Publications Warehouse

    Schenk, Christopher J.; Pitman, Janet K.; Charpentier, Ronald R.; Klett, Timothy R.; Gaswirth, Stephanie B.; Brownfield, Michael E.; Leathers, Heidi M.; Mercier, Tracey J.; Tennyson, Marilyn E.

    2015-01-01

    The USGS assessment methodology consists of a well-performance approach that recognizes the geologic variability within assessed reservoirs. For non-U.S. assessments, the USGS assesses shale-gas or shale-oil reservoirs that (1) contain greater than 2 weight percent total organic carbon (TOC), (2) are within the proper thermal maturity window for oil or gas generation, (3) have greater than 15-m thickness of organic-rich shale, and (4) contain Type I or II organic matter. These specific USGS criteria when applied to any given shale-oil or shale-gas reservoir might significantly reduce the potential resource assessment area compared to maps made with greater than 1 weight percent TOC.

  14. 40 CFR 60.101 - Definitions.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... crude oil removed from the earth and the oils derived from tar sands, shale, and coal. (c) Process gas means any gas generated by a petroleum refinery process unit, except fuel gas and process upset gas as defined in this section. (d) Fuel gas means any gas which is generated at a petroleum refinery and which...

  15. 40 CFR 60.101 - Definitions.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... crude oil removed from the earth and the oils derived from tar sands, shale, and coal. (c) Process gas means any gas generated by a petroleum refinery process unit, except fuel gas and process upset gas as defined in this section. (d) Fuel gas means any gas which is generated at a petroleum refinery and which...

  16. 40 CFR 60.101 - Definitions.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... crude oil removed from the earth and the oils derived from tar sands, shale, and coal. (c) Process gas means any gas generated by a petroleum refinery process unit, except fuel gas and process upset gas as defined in this section. (d) Fuel gas means any gas which is generated at a petroleum refinery and which...

  17. 40 CFR 60.101 - Definitions.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... crude oil removed from the earth and the oils derived from tar sands, shale, and coal. (c) Process gas means any gas generated by a petroleum refinery process unit, except fuel gas and process upset gas as defined in this section. (d) Fuel gas means any gas which is generated at a petroleum refinery and which...

  18. Validation Results for Core-Scale Oil Shale Pyrolysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Staten, Josh; Tiwari, Pankaj

    2015-03-01

    This report summarizes a study of oil shale pyrolysis at various scales and the subsequent development a model for in situ production of oil from oil shale. Oil shale from the Mahogany zone of the Green River formation was used in all experiments. Pyrolysis experiments were conducted at four scales, powdered samples (100 mesh) and core samples of 0.75”, 1” and 2.5” diameters. The batch, semibatch and continuous flow pyrolysis experiments were designed to study the effect of temperature (300°C to 500°C), heating rate (1°C/min to 10°C/min), pressure (ambient and 500 psig) and size of the sample on product formation.more » Comprehensive analyses were performed on reactants and products - liquid, gas and spent shale. These experimental studies were designed to understand the relevant coupled phenomena (reaction kinetics, heat transfer, mass transfer, thermodynamics) at multiple scales. A model for oil shale pyrolysis was developed in the COMSOL multiphysics platform. A general kinetic model was integrated with important physical and chemical phenomena that occur during pyrolysis. The secondary reactions of coking and cracking in the product phase were addressed. The multiscale experimental data generated and the models developed provide an understanding of the simultaneous effects of chemical kinetics, and heat and mass transfer on oil quality and yield. The comprehensive data collected in this study will help advance the move to large-scale in situ oil production from the pyrolysis of oil shale.« less

  19. Comparative dermal carcinogenesis of shale and petroleum-derived distillates.

    PubMed

    Clark, C R; Walter, M K; Ferguson, P W; Katchen, M

    1988-03-01

    Ten test materials derived from petroleum or hydrotreated shale oils were applied 3 times/week for up to 105 weeks to the shaved skin of 25 male and 25 female C3H/HeN mice per group. Mineral oil and benzo(a) pyrene (0.15%) were control materials. Clinical observations were recorded during the study. At death, histopathologic examination was conducted on skin, internal organs and any gross lesions. Exposures to some materials were ended midway in the study due to severe irritation. Chronic toxicity of all materials was limited to inflammatory and degenerative skin changes. Significant increases over control incidence of skin tumors (squamous cell carcinoma and fibrosarcoma) occurred with both petroleum and shale-derived naphtha (21%, 50%), Jet A (26%, 28%), JP-4 (26%, 50%), and crude oils (84%, 54%). Severely hydrotreated shale oil and petroleum and shale-derived diesel distillates were not considered tumorigenic. Results indicate that toxicity of comparable petroleum and shale-derived fractions was qualitatively similar and confirm earlier findings that hydrotreating reduces or eliminates carcinogenicity of raw shale oil.

  20. Assessment of potential shale gas and shale oil resources of the Norte Basin, Uruguay, 2011

    USGS Publications Warehouse

    Schenk, Christopher J.; Kirschbaum, Mark A.; Charpentier, Ronald R.; Cook, Troy; Klett, Timothy R.; Gautier, Donald L.; Pollastro, Richard M.; Weaver, Jean N.; Brownfield, Michael

    2011-01-01

    Using a performance-based geological assessment methodology, the U.S. Geological Survey estimated mean volumes of 13.4 trillion cubic feet of potential technically recoverable shale gas and 0.5 billion barrels of technically recoverable shale oil resources in the Norte Basin of Uruguay.

  1. Trace element partitioning during the retorting of Julia Creek oil shale

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Patterson, J.H.; Dale, L.S.; Chapman, J.f.

    1987-05-01

    A bulk sample of oil shale from the Julia Creek deposit in Queensland was retorted under Fischer assay conditions at temperatures ranging from 250 to 550 /sup 0/C. The distributions of the trace elements detected in the shale oil and retort water were determined at each temperature. Oil distillation commenced at 300 /sup 0/C and was essentially complete at 500 /sup 0/C. A number of trace elements were progressively mobilized with increasing retort temperature up to 450 /sup 0/C. The following trace elements partitioned mainly to the oil: vanadium, arsenic, selenium, iron, nickel, titanium, copper, cobalt, and aluminum. Elements thatmore » also partitioned to the retort waters included arsenic, selenium, chlorine, and bromine. Element mobilization is considered to be caused by the volatilization of organometallic compounds, sulfide minerals, and sodium halides present in the oil shale. The results have important implications for shale oil refining and for the disposal of retort waters. 22 references, 5 tables.« less

  2. Identification of crude oil source facies in Railroad Valley, Nevada, using multivariate analysis of crude oil and hydrous pyrolysis data from the Meridian Spencer Federal 32-29 well

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Conlan, L.M.; Francis, R.D.

    Comparison of biological markers of a hydrous pyrolyzate of Mississippian-Chainman Shale from the Meridian Spencer Federal 32-29 well with two crude oils produced from the same well and crude oils produced from Trap Springs, Grant Canyon, Bacon Flats, and Eagle Springs fields indicate the possibility of three distinct crude oil source facies within Railroad Valley, Nevada. The two crude oil samples produced in the Meridian Spencer Federal 32-29 well are from the Eocene Sheep Pass Formation (MSF-SP) at 10,570 ft and the Joana Limestone (MSF-J) at 13,943 ft; the pyrolyzate is from the Chainman Shale at 10,700 ft. The Chainmanmore » Shale pyrolyzate has a similar composition to oils produced in Trap Springs and Grant Canyon fields. Applying multivariate statistical analysis to biological marker data shows that the Chainman Shale is a possible source for oil produced at Trap Springs because of the similarities between Trap Springs oils and the Chainman Shale pyrolyzate. It is also apparent that MSF-SP and oils produced in the Eagle Springs field have been generated from a different source (probably the Sheep Pass Formation) because of the presence of gammacerane (C{sub 30}). MSF-J and Bacon Flats appear to be either sourced from a pre-Mississippian unit or from a different facies within the Chainman Shale because of the apparent differences between MSF-J and Chainman Shale pyrolyzate.« less

  3. Concept for Underground Disposal of Nuclear Waste

    NASA Technical Reports Server (NTRS)

    Bowyer, J. M.

    1987-01-01

    Packaged waste placed in empty oil-shale mines. Concept for disposal of nuclear waste economically synergistic with earlier proposal concerning backfilling of oil-shale mines. New disposal concept superior to earlier schemes for disposal in hard-rock and salt mines because less uncertainty about ability of oil-shale mine to contain waste safely for millenium.

  4. 43 CFR 3834.10 - Paying maintenance, location, and oil shale fees.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... FOR MINING CLAIMS OR SITES Fee Payment § 3834.10 Paying maintenance, location, and oil shale fees. ... 43 Public Lands: Interior 2 2012-10-01 2012-10-01 false Paying maintenance, location, and oil shale fees. 3834.10 Section 3834.10 Public Lands: Interior Regulations Relating to Public Lands...

  5. 43 CFR 3834.10 - Paying maintenance, location, and oil shale fees.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... FOR MINING CLAIMS OR SITES Fee Payment § 3834.10 Paying maintenance, location, and oil shale fees. ... 43 Public Lands: Interior 2 2011-10-01 2011-10-01 false Paying maintenance, location, and oil shale fees. 3834.10 Section 3834.10 Public Lands: Interior Regulations Relating to Public Lands...

  6. 43 CFR 3834.10 - Paying maintenance, location, and oil shale fees.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... FOR MINING CLAIMS OR SITES Fee Payment § 3834.10 Paying maintenance, location, and oil shale fees. ... 43 Public Lands: Interior 2 2014-10-01 2014-10-01 false Paying maintenance, location, and oil shale fees. 3834.10 Section 3834.10 Public Lands: Interior Regulations Relating to Public Lands...

  7. 43 CFR 3834.10 - Paying maintenance, location, and oil shale fees.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... FOR MINING CLAIMS OR SITES Fee Payment § 3834.10 Paying maintenance, location, and oil shale fees. ... 43 Public Lands: Interior 2 2013-10-01 2013-10-01 false Paying maintenance, location, and oil shale fees. 3834.10 Section 3834.10 Public Lands: Interior Regulations Relating to Public Lands...

  8. Assessment of in-place oil shale resources of the Green River Formation, Greater Green River Basin in Wyoming, Colorado, and Utah

    USGS Publications Warehouse

    Johnson, R.C.; Mercier, T.J.; Brownfield, M.E.

    2011-01-01

    The U.S. Geological Survey (USGS) recently (2011) completed an assessment of in-place oil shale resources, regardless of grade, in the Eocene Green River Formation of the Greater Green River Basin in southwestern Wyoming, northwestern Colorado, and northeastern Utah. Green River Formation oil shale also is present in the Piceance Basin of western Colorado and in the Uinta Basin of eastern Utah and western Colorado, and the results of these assessments are published separately. No attempt was made to estimate the amount of oil that is economically recoverable because there has not yet been an economic method developed to recover the oil from Green River Formation oil shale.

  9. Effect of drilling fluid systems and temperature on oil mist and vapour levels generated from shale shaker.

    PubMed

    Steinsvåg, Kjersti; Galea, Karen S; Krüger, Kirsti; Peikli, Vegard; Sánchez-Jiménez, Araceli; Sætvedt, Esther; Searl, Alison; Cherrie, John W; van Tongeren, Martie

    2011-05-01

    Workers in the drilling section of the offshore petroleum industry are exposed to air pollutants generated by drilling fluids. Oil mist and oil vapour concentrations have been measured in the drilling fluid processing areas for decades; however, little work has been carried out to investigate exposure determinants such as drilling fluid viscosity and temperature. A study was undertaken to investigate the effect of two different oil-based drilling fluid systems and their temperature on oil mist, oil vapour, and total volatile organic compounds (TVOC) levels in a simulated shale shaker room at a purpose-built test centre. Oil mist and oil vapour concentrations were sampled simultaneously using a sampling arrangement consisting of a Millipore closed cassette loaded with glass fibre and cellulose acetate filters attached to a backup charcoal tube. TVOCs were measured by a PhoCheck photo-ionization detector direct reading instrument. Concentrations of oil mist, oil vapour, and TVOC in the atmosphere surrounding the shale shaker were assessed during three separate test periods. Two oil-based drilling fluids, denoted 'System 2.0' and 'System 3.5', containing base oils with a viscosity of 2.0 and 3.3-3.7 mm(2) s(-1) at 40°C, respectively, were used at temperatures ranging from 40 to 75°C. In general, the System 2.0 yielded low oil mist levels, but high oil vapour concentrations, while the opposite was found for the System 3.5. Statistical significant differences between the drilling fluid systems were found for oil mist (P = 0.025),vapour (P < 0.001), and TVOC (P = 0.011). Increasing temperature increased the oil mist, oil vapour, and TVOC levels. Oil vapour levels at the test facility exceeded the Norwegian oil vapour occupational exposure limit (OEL) of 30 mg m(-3) when the drilling fluid temperature was ≥50°C. The practice of testing compliance of oil vapour exposure from drilling fluids systems containing base oils with viscosity of ≤2.0 mm(2) s(-1) at 40°C against the Norwegian oil vapour OEL is questioned since these base oils are very similar to white spirit. To reduce exposures, relevant technical control measures in this area are to cool the drilling fluid <50°C before it enters the shale shaker units, enclose shale shakers and related equipment, in addition to careful consideration of which fluid system to use.

  10. Integrated oil production and upgrading using molten alkali metal

    DOEpatents

    Gordon, John Howard

    2016-10-04

    A method that combines the oil retorting process (or other process needed to obtain/extract heavy oil or bitumen) with the process for upgrading these materials using sodium or other alkali metals. Specifically, the shale gas or other gases that are obtained from the retorting/extraction process may be introduced into the upgrading reactor and used to upgrade the oil feedstock. Also, the solid materials obtained from the reactor may be used as a fuel source, thereby providing the heat necessary for the retorting/extraction process. Other forms of integration are also disclosed.

  11. Geology and sequence stratigraphy of undiscovered oil and gas resources in conventional and continuous petroleum systems in the Upper Cretaceous Eagle Ford Group and related strata, U.S. Gulf Coast Region

    USGS Publications Warehouse

    Dubiel, Russell F.; Pearson, Ofori N.; Pitman, Janet K.; Pearson, Krystal M.; Kinney, Scott A.

    2012-01-01

    The U.S. Geological Survey (USGS) recently assessed the technically recoverable undiscovered oil and gas onshore and in State waters of the Gulf Coast region of the United States. The USGS defined three assessment units (AUs) with potential undiscovered conventional and continuous oil and gas resources in Upper Cretaceous (Cenomanian to Turonian) strata of the Eagle Ford Group and correlative rocks. The assessment is based on geologic elements of a total petroleum system, including hydrocarbon source rocks (source rock maturation, hydrocarbon generation and migration), reservoir rocks (sequence stratigraphy and petrophysical properties), and traps (formation, timing, and seals). Conventional oil and gas undiscovered resources are in updip sandstone reservoirs in the Upper Cretaceous Tuscaloosa and Woodbine Formations (or Groups) in Louisiana and Texas, respectively, whereas continuous oil and continuous gas undiscovered resources reside in the middip and downdip Upper Cretaceous Eagle Ford Shale in Texas and the Tuscaloosa marine shale in Louisiana. Conventional resources in the Tuscaloosa and Woodbine are included in the Eagle Ford Updip Sandstone Oil and Gas AU, in an area where the Eagle Ford Shale and Tuscaloosa marine shale display vitrinite reflectance (Ro) values less than 0.6%. The continuous Eagle Ford Shale Oil AU lies generally south of the conventional AU, is primarily updip of the Lower Cretaceous shelf edge, and is defined by thermal maturity values within shales of the Eagle Ford and Tuscaloosa that range from 0.6 to 1.2% Ro. Similarly, the Eagle Ford Shale Gas AU is defined downdip of the shelf edge where source rocks have Ro values greater than 1.2%. For undiscovered oil and gas resources, the USGS assessed means of: 1) 141 million barrels of oil (MMBO), 502 billion cubic feet of natural gas (BCFG), and 4 million barrels of natural gas liquids (MMBNGL) in the Eagle Ford Updip Sandstone Oil and Gas AU; 2) 853 MMBO, 1707 BCFG, and 34 MMBNGL in the Eagle Ford Shale Oil AU; and 3) 50,219 BCFG and 2009 MMBNGL in the Eagle Ford Shale Gas AU.

  12. System for producing a uniform rubble bed for in situ processes

    DOEpatents

    Galloway, T.R.

    1983-07-05

    A method and a cutter are disclosed for producing a large cavity filled with a uniform bed of rubblized oil shale or other material, for in situ processing. A raise drill head has a hollow body with a generally circular base and sloping upper surface. A hollow shaft extends from the hollow body. Cutter teeth are mounted on the upper surface of the body and relatively small holes are formed in the body between the cutter teeth. Relatively large peripheral flutes around the body allow material to drop below the drill head. A pilot hole is drilled into the oil shale deposit. The pilot hole is reamed into a large diameter hole by means of a large diameter raise drill head or cutter to produce a cavity filled with rubble. A flushing fluid, such as air, is circulated through the pilot hole during the reaming operation to remove fines through the raise drill, thereby removing sufficient material to create sufficient void space, and allowing the larger particles to fill the cavity and provide a uniform bed of rubblized oil shale. 4 figs.

  13. Pore-Scale X-ray Micro-CT Imaging and Analysis of Oil Shales

    NASA Astrophysics Data System (ADS)

    Saif, T.

    2015-12-01

    The pore structure and the connectivity of the pore space during the pyrolysis of oil shales are important characteristics which determine hydrocarbon flow behaviour and ultimate recovery. We study the effect of temperature on the evolution of pore space and subsequent permeability on five oil shale samples: (1) Vernal Utah United States, (2) El Lajjun Al Karak Jordan, (3) Gladstone Queensland Australia (4) Fushun China and (5) Kimmerdige United Kingdom. Oil Shale cores of 5mm in diameter were pyrolized at 300, 400 and 500 °C. 3D imaging of 5mm diameter core samples was performed at 1μm voxel resolution using X-ray micro computed tomography (CT) and the evolution of the pore structures were characterized. The experimental results indicate that the thermal decomposition of kerogen at high temperatures is a major factor causing micro-scale changes in the internal structure of oil shales. At the early stage of pyrolysis, micron-scale heterogeneous pores were formed and with a further increase in temperature, the pores expanded and became interconnected by fractures. Permeability for each oil shale sample at each temperature was computed by simulation directly on the image voxels and by pore network extraction and simulation. Future work will investigate different samples and pursue insitu micro-CT imaging of oil shale pyrolysis to characterize the time evolution of the pore space.

  14. Coupled Thermo-Hydro-Mechanical Numerical Framework for Simulating Unconventional Formations

    NASA Astrophysics Data System (ADS)

    Garipov, T. T.; White, J. A.; Lapene, A.; Tchelepi, H.

    2016-12-01

    Unconventional deposits are found in all world oil provinces. Modeling these systems is challenging, however, due to complex thermo-hydro-mechanical processes that govern their behavior. As a motivating example, we consider in situ thermal processing of oil shale deposits. When oil shale is heated to sufficient temperatures, kerogen can be converted to oil and gas products over a relatively short timespan. This phase change dramatically impact both the mechanical and hydrologic properties of the rock, leading to strongly coupled THMC interactions. Here, we present a numerical framework for simulating tightly-coupled chemistry, geomechanics, and multiphase flow within a reservoir simulator (the AD-GPRS General Purpose Research Simulator). We model changes in constitutive behavior of the rock using a thermoplasticity model that accounts for microstructural evolution. The multi-component, multiphase flow and transport processes of both mass and heat are modeled at the macroscopic (e.g., Darcy) scale. The phase compositions and properties are described by a cubic equation of state; Arrhenius-type chemical reactions are used to represent kerogen conversion. The system of partial differential equations is discretized using a combination of finite-volumes and finite-elements, respectively, for the flow and mechanics problems. Fully implicit and sequentially implicit method are used to solve resulting nonlinear problem. The proposed framework is verified against available analytical and numerical benchmark cases. We demonstrate the efficiency, performance, and capabilities of the proposed simulation framework by analyzing near well deformation in an oil shale formation.

  15. 77 FR 67663 - Notice of Availability of the Proposed Land Use Plan Amendments for Allocation of Oil Shale and...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-11-13

    ... quality, climate change, water quality and quantity, socio- economic concerns, wildlife concerns, and...] Notice of Availability of the Proposed Land Use Plan Amendments for Allocation of Oil Shale and Tar Sands... (BLM) has prepared the Proposed Resource Management Plan (RMP) Amendments for Allocation of Oil Shale...

  16. 77 FR 5833 - Notice of Availability of the Draft Programmatic Environmental Impact Statement for Allocation of...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-02-06

    ... of the Draft Programmatic Environmental Impact Statement for Allocation of Oil Shale and Tar Sands... of Oil Shale and Tar Sands Resources on Lands Administered by the BLM in Colorado, Utah, and Wyoming... preferred method of commenting. Mail: Addressed to: Oil Shale and Tar Sands Resources Draft Programmatic EIS...

  17. Parameters Affecting the Characteristics of Oil Shale-Derived Fuels.

    DTIC Science & Technology

    1981-03-01

    rock with essentially no organic matter. The oil shale of the Uinta Basin in Utah and extreme western Colorado is richer than the Wyoming shales, but...could be used in several areas of the Uinta Basin . Once the oil shale is mined, it must be heated to about 900’F to hreak down the kerogen. A variety... Uinta Basin of eastern Utah. The sections presented above d.l not exhaust the supply of retorting tech- niques that are in various stages of

  18. Oil shale combustor model developed by Greek researchers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1986-09-01

    Work carried out in the Department of Chemical Engineering at the University of Thessaloniki, Thessaloniki, Greece has resulted in a model for the combustion of retorted oil shale in a fluidized bed combustor. The model is generally applicable to any hot-solids retorting process, whereby raw oil shale is retorted by mixing with a hot solids stream (usually combusted spent shale), and then the residual carbon is burned off the spent shale in a fluidized bed. Based on their modelling work, the following conclusions were drawn by the researchers. (1) For the retorted particle size distribution selected (average particle diameter 1600more » microns) complete carbon conversion is feasible at high pressures (2.7 atmosphere) and over the entire temperature range studied (894 to 978 K). (2) Bubble size was found to have an important effect, especially at conditions where reaction rates are high (high temperature and pressure). (3) Carbonate decomposition increases with combustor temperature and residence time. Complete carbon conversion is feasible at high pressures (2.7 atmosphere) with less than 20 percent carbonate decomposition. (4) At the preferred combustor operating conditions (high pressure, low temperature) the main reaction is dolomite decomposition while calcite decomposition is negligible. (5) Recombination of CO/sub 2/ with MgO occurs at low temperatures, high pressures, and long particle residence times.« less

  19. Unconventional oil and gas extraction and animal health.

    PubMed

    Bamberger, M; Oswald, R E

    2014-08-01

    The extraction of hydrocarbons from shale formations using horizontal drilling with high volume hydraulic fracturing (unconventional shale gas and tight oil extraction), while derived from methods that have been used for decades, is a relatively new innovation that was introduced first in the United States and has more recently spread worldwide. Although this has led to the availability of new sources of fossil fuels for domestic consumption and export, important issues have been raised concerning the safety of the process relative to public health, animal health, and our food supply. Because of the multiple toxicants used and generated, and because of the complexity of the drilling, hydraulic fracturing, and completion processes including associated infrastructure such as pipelines, compressor stations and processing plants, impacts on the health of humans and animals are difficult to assess definitively. We discuss here findings concerning the safety of unconventional oil and gas extraction from the perspectives of public health, veterinary medicine, and food safety.

  20. Method for rubblizing an oil shale deposit for in situ retorting

    DOEpatents

    Lewis, Arthur E.

    1977-01-01

    A method for rubblizing an oil shale deposit that has been formed in alternate horizontal layers of rich and lean shale, including the steps of driving a horizontal tunnel along the lower edge of a rich shale layer of the deposit, sublevel caving by fan drilling and blasting of both rich and lean overlying shale layers at the distal end of the tunnel to rubblize the layers, removing a substantial amount of the accessible rubblized rich shale to permit the overlying rubblized lean shale to drop to tunnel floor level to form a column of lean shale, performing additional sublevel caving of rich and lean shale towards the proximate end of the tunnel, removal of a substantial amount of the additionally rubblized rich shale to allow the overlying rubblized lean shale to drop to tunnel floor level to form another column of rubblized lean shale, similarly performing additional steps of sublevel caving and removal of rich rubble to form additional columns of lean shale rubble in the rich shale rubble in the tunnel, and driving additional horizontal tunnels in the deposit and similarly rubblizing the overlying layers of rich and lean shale and forming columns of rubblized lean shale in the rich, thereby forming an in situ oil shale retort having zones of lean shale that remain permeable to hot retorting fluids in the presence of high rubble pile pressures and high retorting temperatures.

  1. On-line Analysis of Nitrogen Containing Compounds in Complex Hydrocarbon Matrixes.

    PubMed

    Ristic, Nenad D; Djokic, Marko R; Van Geem, Kevin M; Marin, Guy B

    2016-08-05

    The shift to heavy crude oils and the use of alternative fossil resources such as shale oil are a challenge for the petrochemical industry. The composition of heavy crude oils and shale oils varies substantially depending on the origin of the mixture. In particular they contain an increased amount of nitrogen containing compounds compared to the conventionally used sweet crude oils. As nitrogen compounds have an influence on the operation of thermal processes occurring in coker units and steam crackers, and as some species are considered as environmentally hazardous, a detailed analysis of the reactions involving nitrogen containing compounds under pyrolysis conditions provides valuable information. Therefore a novel method has been developed and validated with a feedstock containing a high nitrogen content, i.e., a shale oil. First, the feed was characterized offline by comprehensive two-dimensional gas chromatography (GC × GC) coupled with a nitrogen chemiluminescence detector (NCD). In a second step the on-line analysis method was developed and tested on a steam cracking pilot plant by feeding pyridine dissolved in heptane. The former being a representative compound for one of the most abundant classes of compounds present in shale oil. The composition of the reactor effluent was determined via an in-house developed automated sampling system followed by immediate injection of the sample on a GC × GC coupled with a time-of-flight mass spectrometer (TOF-MS), flame ionization detector (FID) and NCD. A novel method for quantitative analysis of nitrogen containing compounds using NCD and 2-chloropyridine as an internal standard has been developed and demonstrated.

  2. Gas seal for an in situ oil shale retort and method of forming thermal barrier

    DOEpatents

    Burton, III, Robert S.

    1982-01-01

    A gas seal is provided in an access drift excavated in a subterranean formation containing oil shale. The access drift is adjacent an in situ oil shale retort and is in gas communication with the fragmented permeable mass of formation particles containing oil shale formed in the in situ oil shale retort. The mass of formation particles extends into the access drift, forming a rubble pile of formation particles having a face approximately at the angle of repose of fragmented formation. The gas seal includes a temperature barrier which includes a layer of heat insulating material disposed on the face of the rubble pile of formation particles and additionally includes a gas barrier. The gas barrier is a gas-tight bulkhead installed across the access drift at a location in the access drift spaced apart from the temperature barrier.

  3. Analysis of river pollution data from low-flow period by means of multivariate techniques: a case study from the oil-shale industry region, northeastern Estonia.

    PubMed

    Truu, Jaak; Heinaru, Eeva; Talpsep, Ene; Heinaru, Ain

    2002-01-01

    The oil-shale industry has created serious pollution problems in northeastern Estonia. Untreated, phenol-rich leachate from semi-coke mounds formed as a by-product of oil-shale processing is discharged into the Baltic Sea via channels and rivers. An exploratory analysis of water chemical and microbiological data sets from the low-flow period was carried out using different multivariate analysis techniques. Principal component analysis allowed us to distinguish different locations in the river system. The riverine microbial community response to water chemical parameters was assessed by co-inertia analysis. Water pH, COD and total nitrogen were negatively related to the number of biodegradative bacteria, while oxygen concentration promoted the abundance of these bacteria. The results demonstrate the utility of multivariate statistical techniques as tools for estimating the magnitude and extent of pollution based on river water chemical and microbiological parameters. An evaluation of river chemical and microbiological data suggests that the ambient natural attenuation mechanisms only partly eliminate pollutants from river water, and that a sufficient reduction of more recalcitrant compounds could be achieved through the reduction of wastewater discharge from the oil-shale chemical industry into the rivers.

  4. Development of Nuclear Renewable Oil Shale Systems for Flexible Electricity and Reduced Fossil Fuel Emissions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Daniel Curtis; Charles Forsberg; Humberto Garcia

    2015-05-01

    We propose the development of Nuclear Renewable Oil Shale Systems (NROSS) in northern Europe, China, and the western United States to provide large supplies of flexible, dispatchable, very-low-carbon electricity and fossil fuel production with reduced CO2 emissions. NROSS are a class of large hybrid energy systems in which base-load nuclear reactors provide the primary energy used to produce shale oil from kerogen deposits and simultaneously provide flexible, dispatchable, very-low-carbon electricity to the grid. Kerogen is solid organic matter trapped in sedimentary shale, and large reserves of this resource, called oil shale, are found in northern Europe, China, and the westernmore » United States. NROSS couples electricity generation and transportation fuel production in a single operation, reduces lifecycle carbon emissions from the fuel produced, improves revenue for the nuclear plant, and enables a major shift toward a very-low-carbon electricity grid. NROSS will require a significant development effort in the United States, where kerogen resources have never been developed on a large scale. In Europe, however, nuclear plants have been used for process heat delivery (district heating), and kerogen use is familiar in certain countries. Europe, China, and the United States all have the opportunity to use large scale NROSS development to enable major growth in renewable generation and either substantially reduce or eliminate their dependence on foreign fossil fuel supplies, accelerating their transitions to cleaner, more efficient, and more reliable energy systems.« less

  5. Staged fluidized bed

    DOEpatents

    Mallon, R.G.

    1983-05-13

    The invention relates to oil shale retorting and more particularly to staged fluidized bed oil shale retorting. Method and apparatus are disclosed for narrowing the distribution of residence times of any size particle and equalizing the residence times of large and small particles in fluidized beds. Particles are moved up one fluidized column and down a second fluidized column with the relative heights selected to equalize residence times of large and small particles. Additional pairs of columns are staged to narrow the distribution of residence times and provide complete processing of the material.

  6. Getting Over the Barrel- Achieving Independence from Foreign Oil in 2018

    DTIC Science & Technology

    2009-02-03

    material called kerogen. Kerogen can be converted into oil via heating in the chemical process of pyrolysis .44 Depending on the richness of oil shale, it...vegetable oil, animal fat, corn , soybeans, jatropha seed oil, palm oil, switch grass and even algae. Biofuel production techniques and technologies...vary widely based on the input source – sugar-based, starch-based or oil-based. This document only examines corn -based ethanol production. The other

  7. 76 FR 21003 - Notice of Intent To Prepare a Programmatic Environmental Impact Statement (EIS) and Possible Land...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-04-14

    ... Allocation of Oil Shale and Tar Sands Resources on Lands Administered by the Bureau of Land Management in... to prepare a Programmatic EIS for Allocation of Oil Shale and Tar Sands Resources on Lands... following methods: Web site: http://blm.gov/st5c . Mail: BLM Oil Shale and Tar Sands Resources Leasing...

  8. Geochemistry of Israeli oil shales - A review

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shirav, M.; Ginzbury, D.

    1983-02-01

    The oil shales in Israel are widely distributed throughout the country. Outcrops are rare and the information is based on boreholes data. The oil shale sequence is of UpperCampanian - Maastrichtian age and belongs to the Chareb Formation. In places, part of the phosphorite layer below the oil shales is also rich in kerogen. The host rocks are biomicritic limestones and marls, in which the organic matter is generally homogeneously and finely dispersed. The occurrence of authigenic feldspar and the preservation of the organic matter (up to 26% of the total rock) indicate euxinic hypersaline conditions which prevailed in themore » relative closed basins of deposition during the Maastrichtian. Current reserves of oil shales in Israel are about 3,500 million tons, located in the following deposits: Zin, Oron, Ef'e, Hartuv and Nabi-Musa. The 'En Bokek deposit, although thoroughly investigated, is of limited reserves and is not considered for future exploitation. Other potential areas, in the Northern Negev and along the Coastal Plain are under investigation. Future successful utilization of the Israeli oil shales, either by fluidizid-bed combustion or by retorting will contribute to the state's energy balance.« less

  9. Gas shale/oil shale

    USGS Publications Warehouse

    Fishman, N.S.; Bereskin, S.R.; Bowker, K.A.; Cardott, B.J.; Chidsey, T.C.; Dubiel, R.F.; Enomoto, C.B.; Harrison, W.B.; Jarvie, D.M.; Jenkins, C.L.; LeFever, J.A.; Li, Peng; McCracken, J.N.; Morgan, C.D.; Nordeng, S.H.; Nyahay, R.E.; Schamel, Steven; Sumner, R.L.; Wray, L.L.

    2011-01-01

    The production of natural gas from shales continues to increase in North America, and shale gas exploration is on the rise in other parts of the world since the previous report by this committee was published by American Association of Petroleum Geologists, Energy Minerals Division (2009). For the United States, the volume of proved reserves of natural gas increased 11% from 2008 to 2009, the increase driven largely by shale gas development (Energy Information Administration 2010c). Furthermore, shales have increasingly become targets of exploration for oil and condensate as well as gas, which has served to greatly expand their significance as ‘‘unconventional’’ petroleum reservoirs.This report provides information about specific shales across North America and Europe from which gas (biogenic or thermogenic), oil, or natural gas liquids are produced or is actively being explored. The intent is to reflect the recently expanded mission of the Energy Minerals Division (EMD) Gas Shales Committee to serve as a single point of access to technical information on shales regardless of the type of hydrocarbon produced from them. The contents of this report were drawn largely from contributions by numerous members of the EMD Gas Shales Advisory Committee, with much of the data being available from public websites such as state or provincial geological surveys or other public institutions. Shales from which gas or oil is being produced in the United States are listed in alphabetical order by shale name. Information for Canada is presented by province, whereas for Europe, it is presented by country.

  10. 32 CFR 643.35 - Policy-Mineral leasing on lands controlled by the Department of the Army.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... lease deposits of coal, phosphate, oil, oil shale, gas, sodium, potassium and sulfur which are within..., oil, oil shale, native asphalt, solid and semi-solid bitumen, bituminous rock and gas located on...

  11. 32 CFR 643.35 - Policy-Mineral leasing on lands controlled by the Department of the Army.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... lease deposits of coal, phosphate, oil, oil shale, gas, sodium, potassium and sulfur which are within..., oil, oil shale, native asphalt, solid and semi-solid bitumen, bituminous rock and gas located on...

  12. 32 CFR 643.35 - Policy-Mineral leasing on lands controlled by the Department of the Army.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... lease deposits of coal, phosphate, oil, oil shale, gas, sodium, potassium and sulfur which are within..., oil, oil shale, native asphalt, solid and semi-solid bitumen, bituminous rock and gas located on...

  13. 32 CFR 643.35 - Policy-Mineral leasing on lands controlled by the Department of the Army.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... lease deposits of coal, phosphate, oil, oil shale, gas, sodium, potassium and sulfur which are within..., oil, oil shale, native asphalt, solid and semi-solid bitumen, bituminous rock and gas located on...

  14. 32 CFR 643.35 - Policy-Mineral leasing on lands controlled by the Department of the Army.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... lease deposits of coal, phosphate, oil, oil shale, gas, sodium, potassium and sulfur which are within..., oil, oil shale, native asphalt, solid and semi-solid bitumen, bituminous rock and gas located on...

  15. Marketable transport fuels made from Julia Creek shale oil

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1987-03-01

    CSR Limited and the CSIRO Division of Energy Chemistry have been working on the problem of producing refined products from the Julia Creek deposit in Queensland, Australia. Two samples of shale oil, retorted at different temperatures from Julia Creek oil shale, were found to differ markedly in aromaticity. Using conventional hydrotreating technology, high quality jet and diesel fuels could be made from the less aromatic oil. Naphtha suitable for isomerization and reforming to gasoline could be produced from both oils. This paper discusses oil properties, stabilization of topped crudes, second stage hydrotreatment, and naphtha hydrotreating. 1 figure, 4 tables.

  16. Pit and backfill: Getty's plan for a diatomite zone in an oil patch. [Dravo Process

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1981-06-01

    Getty Oil Co. is investigating the recovery of oil from a diatomite deposit in California's McKittrick oil field, using a pair of newly built pilot plants - one a Dravo solvent extraction train and the other a Lurgi-Ruhrgas retort-condenser system. Both are sized to process approximately 240 short tons/day of mined feed, and each will be separately campaigned for a year during the evaluation program. The diatomite project has a number of advantages as a mine and materials-handling project compared to oil shale and tar sands. The deposit is soft, and in-transit handling will probably perform much of the necessarymore » crushing for the plant. The material is light, approximately 100 lb/cu ft in place and 90 lb/cu ft broken. The near-surface location contrasts to the more deeply buried oil shale deposits in other areas of the nation. At the same time, the traction surface and structural bearing strength for heavy earth movers should be somewhat better in diatomite.« less

  17. Shale Gas and Oil in Germany - Resources and Environmental Impacts

    NASA Astrophysics Data System (ADS)

    Ladage, Stefan; Blumenberg, Martin; Houben, Georg; Pfunt, Helena; Gestermann, Nicolai; Franke, Dieter; Erbacher, Jochen

    2017-04-01

    In light of the controversial debate on "unconventional" oil and gas resources and the environmental impacts of "fracking", the Federal Institute for Geosciences and Natural Resources (BGR) conducted a comprehensive resource assessment of shale gas and light tight oil in Germany and studied the potential environmental impacts of shale gas development and hydraulic fracturing from a geoscientific perspective. Here, we present our final results (BGR 2016), incorporating the majority of potential shale source rock formations in Germany. Besides shale gas, light tight oil has been assessed. According to our set of criteria - i.e. thermal maturity 0.6-1.2 %vitrinite reflectance (VR; oil) and >1.2 % VR (gas) respectively, organic carbon content > 2%, depth between 500/1000 m and 5000 m as well as a net thickness >20 m - seven potentially generative shale formations were indentified, the most important of them being the Lower Jurassic (Toarcian) Posidonia shale with both shale gas and tight oil potential. The North German basin is by far the most prolific basin. The resource assessment was carried out using a volumetric in-place approach. Variability inherent in the input parameters was accounted for using Monte-Carlo simulations. Technically recoverable resources (TRR) were estimated using recent, production-based recovery factors of North American shale plays and also employing Monte-Carlo simulations. In total, shale gas TRR range between 320 and 2030 bcm and tight oil TRR between 13 and 164 Mio. t in Germany. Tight oil potential is therefore considered minor, whereas the shale gas potential exceeds that of conventional resources by far. Furthermore an overview of numerical transport modelling approaches concerning environmental impacts of the hydraulic fracturing is given. These simulations are based on a representative lithostratigraphy model of the North-German basin, where major shale plays can be expected. Numerical hydrogeological modelling of frac fluid migration in the subsurface has been conducted, as well as stress modelling to estimate frac dimension magnitudes and the potential frequency of induced seismity. The results of these simulations reveal that the probabiltiy of impacts on shallow groundwater by the upward migration of fracking fluids from a deep shale formation through the geological underground in the North German basin is small. BGR 2016 - Schieferöl und Schiefergas in Deutschland - Potenziale und Umweltaspekte, 197p, Hannover, 2016: http://www.bgr.bund.de/DE/Themen/Energie/Downloads/Abschlussbericht_13MB_Schieferoelgaspotenzial_Deutschland_2016.pdf?__blob=publicationFile&v=5.

  18. Class I cultural resource overview for oil shale and tar sands areas in Colorado, Utah and Wyoming.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    O'Rourke, D.; Kullen, D.; Gierek, L.

    2007-11-01

    In August 2005, the U.S. Congress enacted the Energy Policy Act of 2005, Public Law 109-58. In Section 369 of this Act, also known as the 'Oil Shale, Tar Sands, and Other Strategic Unconventional Fuels Act of 2005', Congress declared that oil shale and tar sands (and other unconventional fuels) are strategically important domestic energy resources that should be developed to reduce the nation's growing dependence on oil from politically and economically unstable foreign sources. The Bureau of Land Management (BLM) is developing a Programmatic Environmental Impact Statement (PEIS) to evaluate alternatives for establishing commercial oil shale and tar sandsmore » leasing programs in Colorado, Wyoming, and Utah. This PEIS evaluates the potential impacts of alternatives identifying BLM-administered lands as available for application for commercial leasing of oil shale resources within the three states and of tar sands resources within Utah. The scope of the analysis of the PEIS also includes an assessment of the potential effects of future commercial leasing. This Class I cultural resources study is in support of the Draft Oil Shale and Tar Sands Resource Management Plan Amendments to Address Land Use Allocations in Colorado, Utah, and Wyoming and Programmatic Environmental Impact Statement and is an attempt to synthesize archaeological data covering the most geologically prospective lands for oil shale and tar sands in Colorado, Utah, and Wyoming. This report is based solely on geographic information system (GIS) data held by the Colorado, Utah, and Wyoming State Historic Preservation Offices (SHPOs). The GIS data include the information that the BLM has provided to the SHPOs. The primary purpose of the Class I cultural resources overview is to provide information on the affected environment for the PEIS. Furthermore, this report provides recommendations to support planning decisions and the management of cultural resources that could be impacted by future oil shale and tar sands resource development.« less

  19. Energy Intensity and Greenhouse Gas Emissions from Oil Production in the Eagle Ford Shale

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yeh, Sonia; Ghandi, Abbas; Scanlon, Bridget R.

    A rapid increase in horizontal drilling and hydraulic fracturing in shale and “tight” formations that began around 2000 has resulted in record increases in oil and natural gas production in the U.S. This study examines energy consumption and greenhouse gas (GHG) emissions from crude oil and natural gas produced from ~8,200 wells in the Eagle Ford Shale in southern Texas from 2009 to 2013. Our system boundary includes processes from primary exploration wells to the refinery entrance gate (henceforth well-to-refinery or WTR). The Eagle Ford includes four distinct production zones—black oil (BO), volatile oil (VO), condensate (C), and dry gasmore » (G) zones—with average monthly gas-to-liquids ratios (thousand cubic feet per barrel—Mcf/bbl) varying from 0.91 in the BO zone to 13.9 in the G zone. Total energy consumed in drilling, extracting, processing, and operating an Eagle Ford well is ~1.5% of the energy content of the produced crude and gas in the BO and VO zones, compared with 2.2% in the C and G zones. On average, the WTR GHG emissions of gasoline, diesel, and jet fuel derived from crude oil produced in the BO and VO zones in the Eagle Ford play are 4.3, 5.0, and 5.1 gCO2e/MJ, respectively. Comparing with other known conventional and unconventional crude production where upstream GHG emissions are in the range 5.9–30 gCO2e/MJ, oil production in the Eagle Ford has lower WTR GHG emissions.« less

  20. Strategies for displacing oil

    NASA Astrophysics Data System (ADS)

    Rao, Vikram; Gupta, Raghubir

    2015-03-01

    Oil currently holds a monopoly on transportation fuels. Until recently biofuels were seen as the means to break this stranglehold. They will still have a part to play, but the lead role has been handed to natural gas, almost solely due to the increased availability of shale gas. The spread between oil and gas prices, unprecedented in its scale and duration, will cause a secular shift away from oil as a raw material. In the transport fuel sector, natural gas will gain traction first in the displacement of diesel fuel. Substantial innovation is occurring in the methods of producing liquid fuel from shale gas at the well site, in particular in the development of small scale distributed processes. In some cases, the financing of such small-scale plants may require new business models.

  1. Current knowledge and potential applications of cavitation technologies for the petroleum industry.

    PubMed

    Avvaru, Balasubrahmanyam; Venkateswaran, Natarajan; Uppara, Parasuveera; Iyengar, Suresh B; Katti, Sanjeev S

    2018-04-01

    Technologies based on cavitation, produced by either ultrasound or hydrodynamic means, are part of growing literature for individual refinery unit processes. In this review, we have explained the mechanism through which these cavitation technologies intensify individual unit processes such as enhanced oil recovery, demulsification of water in oil emulsions during desalting stage, crude oil viscosity reduction, oxidative desulphurisation/demetallization, and crude oil upgrading. Apart from these refinery processes, applications of this technology are also mentioned for other potential crude oil sources such as oil shale and oil sand extraction. The relative advantages and current situation of each application/process at commercial scale is explained. Copyright © 2017 Elsevier B.V. All rights reserved.

  2. Input-form data for the U.S. Geological Survey assessment of the Mississippian Barnett Shale of the Bend Arch–Fort Worth Basin Province, 2015

    USGS Publications Warehouse

    Marra, Kristen R.; Charpentier, Ronald R.; Schenk, Christopher J.; Lewan, Michael D.; Leathers-Miller, Heidi M.; Klett, Timothy R.; Gaswirth, Stephanie B.; Le, Phuong A.; Mercier, Tracey J.; Pitman, Janet K.; Tennyson, Marilyn E.

    2016-07-15

    In 2015, the U.S. Geological Survey (USGS) released an updated assessment of undiscovered, technically recoverable shale gas and shale oil resources of the Mississippian Barnett Shale in north-central Texas (Marra and others, 2015). The Barnett Shale was assessed using the standard continuous (unconventional) methodology established by the USGS for two assessment units (AUs): (1) Barnett Continuous Gas AU, and (2) Barnett Mixed Continuous Gas and Oil AU. A third assessment unit, the Western Barnett Continuous Oil AU, was also defined but was not quantitatively assessed because of limited data within the extent of the AU. The purpose of this report is to provide supplemental documentation of the quantitative input parameters applied in the Barnett Shale assessment.

  3. Preliminary report on Bureau of Mines Yellow Creek core hole No. 1, Rio Blanco County, Colorado

    USGS Publications Warehouse

    Carroll, R.D.; Coffin, D.L.; Ege, J.R.; Welder, F.A.

    1967-01-01

    Analysis of geologic, hydrologic , and geophysical data obtained in and around Yellow Creek core hole No. 1, Rio Blanco County, Colorado, indicate a 1,615-foot section of oil shale was penetrated by the hole. Geophysical log data indicate the presence of 25 gallons per ton shale for a thickness of 500 feet my be marginal. The richest section of oil shale is indicated to be centered around a depth of 2,260 feet. Within the oil shale the interval 1,182 to 1,737 feet is indicated to be relatively structurally incompetent and probably permeable. Extension of available regional hydrologic data indicate the oil shale section is probably water bearing and may yield as much as 1,000 gallons per minute. Hydrologic testing in the hole is recommended.

  4. The Water-Energy-Food Nexus of Unconventional Fossil Fuels.

    NASA Astrophysics Data System (ADS)

    Rosa, L.; Davis, K. F.; Rulli, M. C.; D'Odorico, P.

    2017-12-01

    Extraction of unconventional fossil fuels has increased human pressure on freshwater resources. Shale formations are globally abundant and widespread. Their extraction through hydraulic fracturing, a water-intensive process, may be limited by water availability, especially in arid and semiarid regions where stronger competition is expected to emerge with food production. It is unclear to what extent and where shale resource extraction could compete with local water and food security. Although extraction of shale deposits materializes economic gains and increases energy security, in some regions it may exacerbate the reliance on food imports, thereby decreasing regional food security. We consider the global distribution of known shale deposits suitable for oil and gas extraction and evaluate their impacts on water resources for food production and other human and environmental needs. We find that 17% of the world's shale deposits are located in areas affected by both surface water and groundwater stress, 50% in areas with surface water stress, and about 30% in irrigated areas. In these regions shale oil and shale gas production will likely threaten water and food security. These results highlight the importance of hydrologic analyses in the extraction of fossil fuels. Indeed, neglecting water availability as one of the possible factors constraining the development of shale deposits around the world could lead to unaccounted environmental impacts and business risks for firms and investors. Because several shale deposits in the world stretch across irrigated agricultural areas in arid regions, an adequate development of these resources requires appropriate environmental, economic and political decisions.

  5. [Application of wavelet transform and neural network in the near-infrared spectrum analysis of oil shale].

    PubMed

    Li, Su-Yi; Ji, Yan-Ju; Liu, Wei-Yu; Wang, Zhi-Hong

    2013-04-01

    In the present study, an innovative method is proposed, employing both wavelet transform and neural network, to analyze the near-infrared spectrum data in oil shale survey. The method entails using db8 wavelet at 3 levels decomposition to process raw data, using the transformed data as the input matrix, and creating the model through neural network. To verify the validity of the method, this study analyzes 30 synthesized oil shale samples, in which 20 samples are randomly selected for network training, the other 10 for model prediction, and uses the full spectrum and the wavelet transformed spectrum to carry out 10 network models, respectively. Results show that the mean speed of the full spectrum neural network modeling is 570.33 seconds, and the predicted residual sum of squares (PRESS) and correlation coefficient of prediction are 0.006 012 and 0.843 75, respectively. In contrast, the mean speed of the wavelet network modeling method is 3.15 seconds, and the mean PRESS and correlation coefficient of prediction are 0.002 048 and 0.953 19, respectively. These results demonstrate that the wavelet neural network modeling method is significantly superior to the full spectrum neural network modeling method. This study not only provides a new method for more efficient and accurate detection of the oil content of oil shale, but also indicates the potential for applying wavelet transform and neutral network in broad near-infrared spectrum analysis.

  6. Comparing Laser Desorption Ionization and Atmospheric Pressure Photoionization Coupled to Fourier Transform Ion Cyclotron Resonance Mass Spectrometry To Characterize Shale Oils at the Molecular Level

    USGS Publications Warehouse

    Cho, Yunjo; Jin, Jang Mi; Witt, Matthias; Birdwell, Justin E.; Na, Jeong-Geol; Roh, Nam-Sun; Kim, Sunghwan

    2013-01-01

    Laser desorption ionization (LDI) coupled to Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR MS) was used to analyze shale oils. Previous work showed that LDI is a sensitive ionization technique for assessing aromatic nitrogen compounds, and oils generated from Green River Formation oil shales are well-documented as being rich in nitrogen. The data presented here demonstrate that LDI is effective in ionizing high-double-bond-equivalent (DBE) compounds and, therefore, is a suitable method for characterizing compounds with condensed structures. Additionally, LDI generates radical cations and protonated ions concurrently, the distribution of which depends upon the molecular structures and elemental compositions, and the basicity of compounds is closely related to the generation of protonated ions. This study demonstrates that LDI FT-ICR MS is an effective ionization technique for use in the study of shale oils at the molecular level. To the best of our knowledge, this is the first time that LDI FT-ICR MS has been applied to shale oils.

  7. Assessment of undiscovered oil and gas resources of the Mississippian Sunbury shale and Devonian–Mississippian Chattanooga shale in the Appalachian Basin Province, 2016

    USGS Publications Warehouse

    Higley, Debra K.; Rouse, William A.; Enomoto, Catherine B.; Trippi, Michael H.; Klett, Timothy R.; Mercier, Tracey J.; Brownfield, Michael E.; Tennyson, Marilyn E.; Drake, Ronald M.; Finn, Thomas M.; Gianoutsos, Nicholas J.; Pearson, Ofori N.; Doolan, Colin A.; Le, Phuong A.; Schenk, Christopher J.

    2016-11-08

    Using a geology-based assessment methodology, the U.S. Geological Survey estimated mean undiscovered, technically recoverable continuous resources that total 464 million barrels of oil and 4.08 trillion cubic feet of gas in the Lower Mississippian Sunbury Shale and Middle Devonian–Lower Mississippian Chattanooga Shale of the Appalachian Basin Province.

  8. Fischer Assays of Oil Shale Drill Cores and Rotary Cuttings from the Piceance Basin, Colorado - 2009 Update

    USGS Publications Warehouse

    Mercier, Tracey J.; Brownfield, Michael E.; Johnson, Ronald C.; Self, Jesse G.

    1998-01-01

    This CD-ROM includes updated files containing Fischer assays of samples of core holes and cuttings from exploration drill holes drilled in the Eocene Green River Formation in the Piceance Basin of northwestern Colorado. A database was compiled that includes more than 321,380 Fischer assays from 782 boreholes. Most of the oil yield data were analyzed by the former U.S. Bureau of Mines oil shale laboratory in Laramie, Wyoming, and some analyses were made by private laboratories. Location data for 1,042 core and rotary holes, oil and gas tests, as well as a few surface sections are listed in a spreadsheet and included in the CD-ROM. These assays are part of a larger collection of subsurface information held by the U.S. Geological Survey, including geophysical and lithologic logs, water data, and chemical and X-ray diffraction analyses having to do with the Green River oil shale deposits in Colorado, Wyoming, and Utah. Because of an increased interest in oil shale, this CD-ROM disc containing updated Fischer assay data for the Piceance Basin oil shale deposits in northwestern Colorado is being released to the public.

  9. System for producing a uniform rubble bed for in situ processes

    DOEpatents

    Galloway, Terry R.

    1983-01-01

    A method and a cutter for producing a large cavity filled with a uniform bed of rubblized oil shale or other material, for in situ processing. A raise drill head (72) has a hollow body (76) with a generally circular base and sloping upper surface. A hollow shaft (74) extends from the hollow body (76). Cutter teeth (78) are mounted on the upper surface of the body (76) and relatively small holes (77) are formed in the body (76) between the cutter teeth (78). Relatively large peripheral flutes (80) around the body (76) allow material to drop below the drill head (72). A pilot hole is drilled into the oil shale deposit. The pilot hole is reamed into a large diameter hole by means of a large diameter raise drill head or cutter to produce a cavity filled with rubble. A flushing fluid, such as air, is circulated through the pilot hole during the reaming operation to remove fines through the raise drill, thereby removing sufficient material to create sufficient void space, and allowing the larger particles to fill the cavity and provide a uniform bed of rubblized oil shale.

  10. Oil shale resources in the Eocene Green River Formation, Greater Green River Basin, Wyoming, Colorado, and Utah

    USGS Publications Warehouse

    ,

    2011-01-01

    The U.S. Geological Survey (USGS) recently completed a comprehensive assessment of in-place oil in oil shales in the Eocene Green River in the Greater Green River Basin, Wyoming, Colorado, and Utah. This CD-ROM includes reports, data, and an ArcGIS project describing the assessment. A database was compiled that includes about 47,000 Fischer assays from 186 core holes and 240 rotary drill holes. Most of the oil yield data were analyzed by the former U.S. Bureau of Mines oil shale laboratory in Laramie, Wyoming, and some analyses were made by private laboratories. Location data for 971 Wyoming oil-shale drill holes are listed in a spreadsheet and included in the CD-ROM. Total in-place resources for the three assessed units in the Green River Formation are: (1) Tipton Shale Member, 362,816 million barrels of oil (MMBO), (2) Wilkins Peak Member, 704,991 MMBO, and (3) LaClede Bed of the Laney Member, 377,184 MMBO, for a total of 1.44 trillion barrels of oil in place. This compares with estimated in-place resources for the Piceance Basin of Colorado of 1.53 trillion barrels and estimated in-place resources for the Uinta Basin of Utah and Colorado of 1.32 trillion barrels.

  11. Mineral content prediction for unconventional oil and gas reservoirs based on logging data

    NASA Astrophysics Data System (ADS)

    Maojin, Tan; Youlong, Zou; Guoyue

    2012-09-01

    Coal bed methane and shale oil &gas are both important unconventional oil and gas resources, whose reservoirs are typical non-linear with complex and various mineral components, and the logging data interpretation model are difficult to establish for calculate the mineral contents, and the empirical formula cannot be constructed due to various mineral. The radial basis function (RBF) network analysis is a new method developed in recent years; the technique can generate smooth continuous function of several variables to approximate the unknown forward model. Firstly, the basic principles of the RBF is discussed including net construct and base function, and the network training is given in detail the adjacent clustering algorithm specific process. Multi-mineral content for coal bed methane and shale oil &gas, using the RBF interpolation method to achieve a number of well logging data to predict the mineral component contents; then, for coal-bed methane reservoir parameters prediction, the RBF method is used to realized some mineral contents calculation such as ash, volatile matter, carbon content, which achieves a mapping from various logging data to multimineral. To shale gas reservoirs, the RBF method can be used to predict the clay content, quartz content, feldspar content, carbonate content and pyrite content. Various tests in coalbed and gas shale show the method is effective and applicable for mineral component contents prediction

  12. Waste oil shale ash as a novel source of calcium for precipitated calcium carbonate: carbonation mechanism, modeling, and product characterization.

    PubMed

    Velts, O; Uibu, M; Kallas, J; Kuusik, R

    2011-11-15

    In this paper, a method for converting lime-containing oil shale waste ash into precipitated calcium carbonate (PCC), a valuable commodity is elucidated. The mechanism of ash leachates carbonation was experimentally investigated in a stirred semi-batch barboter-type reactor by varying the CO(2) partial pressure, gas flow rate, and agitation intensity. A consistent set of model equations and physical-chemical parameters is proposed to describe the CaCO(3) precipitation process from oil shale ash leachates of complex composition. The model enables the simulation of reactive species (Ca(2+), CaCO(3), SO(4)(2-), CaSO(4), OH(-), CO(2), HCO(3)(-), H(+), CO(3)(2-)) concentration profiles in the liquid, gas, and solid phases as well as prediction of the PCC formation rate. The presence of CaSO(4) in the product may also be evaluated and used to assess the purity of the PCC product. A detailed characterization of the PCC precipitates crystallized from oil shale ash leachates is also provided. High brightness PCC (containing up to ∼ 96% CaCO(3)) with mean particle sizes ranging from 4 to 10 μm and controllable morphology (such as rhombohedral calcite or coexisting calcite and spherical vaterite phases) was obtained under the conditions studied. Copyright © 2011 Elsevier B.V. All rights reserved.

  13. Thermal maturity map of Devonian shale in the Illinois, Michigan, and Appalachian basins of North America

    USGS Publications Warehouse

    East, Joseph A.; Swezey, Christopher S.; Repetski, John E.; Hayba, Daniel O.

    2012-01-01

    Much of the oil and gas in the Illinois, Michigan, and Appalachian basins of eastern North America is thought to be derived from Devonian shale that is within these basins (for example, Milici and others, 2003; Swezey, 2002, 2008, 2009; Swezey and others, 2005, 2007). As the Devonian strata were buried by younger sediments, the Devonian shale was subjected to great temperature and pressure, and in some areas the shale crossed a thermal maturity threshold and began to generate oil. With increasing burial (increasing temperature and pressure), some of this oil-generating shale crossed another thermal maturity threshold and began to generate natural gas. Knowledge of the thermal maturity of the Devonian shale is therefore useful for predicting the occurrence and the spatial distribution of oil and gas within these three basins. This publication presents a thermal maturity map of Devonian shale in the Illinois, Michigan, and Appalachian basins. The map shows outlines of the three basins (dashed black lines) and an outline of Devonian shale (solid black lines). The basin outlines are compiled from Thomas and others (1989) and Swezey (2008, 2009). The outline of Devonian shale is a compilation from Freeman (1978), Thomas and others (1989), de Witt and others (1993), Dart (1995), Nicholson and others (2004), Dicken and others (2005a,b), and Stoeser and others (2005).

  14. Assessment of undiscovered oil and gas resources of the Ordovician Utica Shale of the Appalachian Basin Province, 2012

    USGS Publications Warehouse

    Kirschbaum, Mark A.; Schenk, Christopher J.; Cook, Troy A.; Ryder, Robert T.; Charpentier, Ronald R.; Klett, Timothy R.; Gaswirth, Stephanie B.; Tennyson, Marilyn E.; Whidden, Katherine J.

    2012-01-01

    The U.S. Geological Survey assessed unconventional oil and gas resources of the Upper Ordovician Utica Shale and adjacent units in the Appalachian Basin Province. The assessment covers parts of Maryland, New York, Ohio, Pennsylvania, Virginia, and West Virginia. The geologic concept is that black shale of the Utica Shale and adjacent units generated hydrocarbons from Type II organic material in areas that are thermally mature for oil and gas. The source rocks generated petroleum that migrated into adjacent units, but also retained significant hydrocarbons within the matrix and adsorbed to organic matter of the shale. These are potentially technically recoverable resources that can be exploited by using horizontal drilling combined with hydraulic fracturing techniques.

  15. In-place oil shale resources examined by grade in the major basins of the Green River Formation, Colorado, Utah, and Wyoming

    USGS Publications Warehouse

    Birdwell, Justin E.; Mercier, Tracey J.; Johnson, Ronald C.; Brownfield, Michael E.

    2013-01-01

    Using a geology-based assessment methodology, the U.S. Geological Survey estimated a total of 4.285 trillion barrels of oil in-place in the oil shale of the three principal basins of the Eocene Green River Formation. Using oil shale cutoffs of potentially viable (15 gallons per ton) and high grade (25 gallons per ton), it is estimated that between 353 billion and 1.146 trillion barrels of the in-place resource have a high potential for development.

  16. High-resolution mass spectrometry of nitrogenous compounds of the Colorado Green River formation oil shale.

    NASA Technical Reports Server (NTRS)

    Simoneit, B. R.; Schnoes, H. K.; Haug, P.; Burlingame, A. L.

    1971-01-01

    Basic nitrogenous compounds isolated from extracts of Green River Formation oil shale were analyzed. The major homologous constituents found were the compositional types - namely, quinolines, tetrahydrequinolines with minor amounts of pyridines and indoles series and traces of more aromatized nitrogen compounds. These results are correlated with nitrogen compounds isolated from Green River Formation retort oil and are a survey of the unaltered nitrogen compounds indigeneous to the shale.

  17. Distribution of Hydroxyl Groups in Kukersite Shale Oil: Quantitative Determination Using Fourier Transform Infrared (FT-IR) Spectroscopy.

    PubMed

    Baird, Zachariah Steven; Oja, Vahur; Järvik, Oliver

    2015-05-01

    This article describes the use of Fourier transform infrared (FT-IR) spectroscopy to quantitatively measure the hydroxyl concentrations among narrow boiling shale oil cuts. Shale oil samples were from an industrial solid heat carrier retort. Reference values were measured by titration and were used to create a partial least squares regression model from FT-IR data. The model had a root mean squared error (RMSE) of 0.44 wt% OH. This method was then used to study the distribution of hydroxyl groups among more than 100 shale oil cuts, which showed that hydroxyl content increased with the average boiling point of the cut up to about 350 °C and then leveled off and decreased.

  18. Utah Heavy Oil Program

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    J. Bauman; S. Burian; M. Deo

    The Utah Heavy Oil Program (UHOP) was established in June 2006 to provide multidisciplinary research support to federal and state constituents for addressing the wide-ranging issues surrounding the creation of an industry for unconventional oil production in the United States. Additionally, UHOP was to serve as an on-going source of unbiased information to the nation surrounding technical, economic, legal and environmental aspects of developing heavy oil, oil sands, and oil shale resources. UHOP fulGilled its role by completing three tasks. First, in response to the Energy Policy Act of 2005 Section 369(p), UHOP published an update report to the 1987more » technical and economic assessment of domestic heavy oil resources that was prepared by the Interstate Oil and Gas Compact Commission. The UHOP report, entitled 'A Technical, Economic, and Legal Assessment of North American Heavy Oil, Oil Sands, and Oil Shale Resources' was published in electronic and hard copy form in October 2007. Second, UHOP developed of a comprehensive, publicly accessible online repository of unconventional oil resources in North America based on the DSpace software platform. An interactive map was also developed as a source of geospatial information and as a means to interact with the repository from a geospatial setting. All documents uploaded to the repository are fully searchable by author, title, and keywords. Third, UHOP sponsored Give research projects related to unconventional fuels development. Two projects looked at issues associated with oil shale production, including oil shale pyrolysis kinetics, resource heterogeneity, and reservoir simulation. One project evaluated in situ production from Utah oil sands. Another project focused on water availability and produced water treatments. The last project considered commercial oil shale leasing from a policy, environmental, and economic perspective.« less

  19. Histograms showing variations in oil yield, water yield, and specific gravity of oil from Fischer assay analyses of oil-shale drill cores and cuttings from the Piceance Basin, northwestern Colorado

    USGS Publications Warehouse

    Dietrich, John D.; Brownfield, Michael E.; Johnson, Ronald C.; Mercier, Tracey J.

    2014-01-01

    Recent studies indicate that the Piceance Basin in northwestern Colorado contains over 1.5 trillion barrels of oil in place, making the basin the largest known oil-shale deposit in the world. Previously published histograms display oil-yield variations with depth and widely correlate rich and lean oil-shale beds and zones throughout the basin. Histograms in this report display oil-yield data plotted alongside either water-yield or oil specific-gravity data. Fischer assay analyses of core and cutting samples collected from exploration drill holes penetrating the Eocene Green River Formation in the Piceance Basin can aid in determining the origins of those deposits, as well as estimating the amount of organic matter, halite, nahcolite, and water-bearing minerals. This report focuses only on the oil yield plotted against water yield and oil specific gravity.

  20. Model for refining operations

    NASA Technical Reports Server (NTRS)

    Dunbar, D. N.; Tunnah, B. G.

    1979-01-01

    Program predicts production volumes of petroleum refinery products, with particular emphasis on aircraft-turbine fuel blends and their key properties. It calculates capital and operating costs for refinery and its margin of profitability. Program also includes provisions for processing of synthetic crude oils from oil shale and coal liquefaction processes and contains highly-detailed blending computations for alternative jet-fuel blends of varying endpoint specifications.

  1. Sedimentology of gas-bearing Devonian shales of the Appalachian Basin

    NASA Astrophysics Data System (ADS)

    Potter, P. E.; Maynard, J. B.; Pryor, W. A.

    1981-01-01

    Sedimentology of the Devonian shales and its relationship to gas, oil, and uranium are reported. Information about the gas bearing Devonian shales of the Appalachian Basin is organized in the following sections: paleogeography and basin analysis; lithology and internal stratigraphy; paleontology; mineralogy, petrology, and chemistry; and gas oil, and uranium.

  2. Integrated geostatistics for modeling fluid contacts and shales in Prudhoe Bay

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Perez, G.; Chopra, A.K.; Severson, C.D.

    1997-12-01

    Geostatistics techniques are being used increasingly to model reservoir heterogeneity at a wide range of scales. A variety of techniques is now available with differing underlying assumptions, complexity, and applications. This paper introduces a novel method of geostatistics to model dynamic gas-oil contacts and shales in the Prudhoe Bay reservoir. The method integrates reservoir description and surveillance data within the same geostatistical framework. Surveillance logs and shale data are transformed to indicator variables. These variables are used to evaluate vertical and horizontal spatial correlation and cross-correlation of gas and shale at different times and to develop variogram models. Conditional simulationmore » techniques are used to generate multiple three-dimensional (3D) descriptions of gas and shales that provide a measure of uncertainty. These techniques capture the complex 3D distribution of gas-oil contacts through time. The authors compare results of the geostatistical method with conventional techniques as well as with infill wells drilled after the study. Predicted gas-oil contacts and shale distributions are in close agreement with gas-oil contacts observed at infill wells.« less

  3. The environmental consequences of the oil shale utilization in Jordan: The effect of combustion processes

    NASA Astrophysics Data System (ADS)

    El-Hasan, Tayel

    2015-04-01

    The geochemical analysis of the upper Cretaceous organic rich oil shale of El-Lajjoun revealed that it contains considerable concentrations of trace element when compared to the average world shale. The aim of this study was to deduce the effect of various combustion processes on the geochemical and mineralogical characteristics of the produced ashes.The oil shale powder samples were burned under Aerobic Combustion Process (ACP) at 700˚C, 850˚C and 1000˚C respectively, beside the anaerobic (pyrolysis) combustion process (PCP) at 600, 650, 700, 750 and 800˚C respectively.The ashes produced from the (ACP) caused almost all major oxides contents to increase with increasing burning temperature, particularly SiO2 and CaO were nearly doubled at temperature 1000 ˚C. Moreover, trace elements showed the same trend where ashes at higher temperatures (i.e. 1000 ˚C) have doubled its contents of trace elements such as Cr, Ni, Zn, Cu and U. This was reflected through enrichment of calcite and quartz beside the anhydrite as the main mineral phases in the ACP ashes. As for the PCP ash show similar trend but relatively with lower concentrations as evident from its lowerEnrichment Factor (EF) values. This might be due to the higher organic matter remained in the PCP ashes compared with ACP ashes. However, PCP is more likely associated with toxic Cd and Asgasses as evident from their lowerconcentrations in the ashes.Moreover, recent results using the synchrotron-based XANES technique confirm that toxic elements are found in higher oxidation state due to ACP. The investigation was concerned on As and Cr. Thechromium in the original shales was in the form of Cr (III) and then it was converted to Cr(VI) in the ashes due of the ACP. Similarly, As (III) the XANES results showed that it was converted into As(V) too. These findingsare alarming and should be taken seriously. Because elements with higher oxidation states became more mobile, thus they can easily leached from the ash tailing into the nearby water resources. The most important species is Cr(VI) because itis easily leachable and very harmful species. It could cause pollution to surface and ground water resources.Therefore, allot of concerns should be paid on the ongoing oil shale utilization enterprises due to its pollution potential.Further investigation regarding the speciation of vanadium and cadmium are on the way.

  4. Fungal diversity in major oil-shale mines in China.

    PubMed

    Jiang, Shaoyan; Wang, Wenxing; Xue, Xiangxin; Cao, Chengyou; Zhang, Ying

    2016-03-01

    As an insufficiently utilized energy resource, oil shale is conducive to the formation of characteristic microbial communities due to its special geological origins. However, little is known about fungal diversity in oil shale. Polymerase chain reaction cloning was used to construct the fungal ribosomal deoxyribonucleic acid internal transcribed spacer (rDNA ITS) clone libraries of Huadian Mine in Jilin Province, Maoming Mine in Guangdong Province, and Fushun Mine in Liaoning Province. Pure culture and molecular identification were applied for the isolation of cultivable fungi in fresh oil shale of each mine. Results of clone libraries indicated that each mine had over 50% Ascomycota (58.4%-98.9%) and 1.1%-13.5% unidentified fungi. Fushun Mine and Huadian Mine had 5.9% and 28.1% Basidiomycota, respectively. Huadian Mine showed the highest fungal diversity, followed by Fushun Mine and Maoming Mine. Jaccard indexes showed that the similarities between any two of three fungal communities at the genus level were very low, indicating that fungi in each mine developed independently during the long geological adaptation and formed a community composition fitting the environment. In the fresh oil-shale samples of the three mines, cultivable fungal phyla were consistent with the results of clone libraries. Fifteen genera and several unidentified fungi were identified as Ascomycota and Basidiomycota using pure culture. Penicillium was the only genus found in all three mines. These findings contributed to gaining a clear understanding of current fungal resources in major oil-shale mines in China and provided useful information for relevant studies on isolation of indigenous fungi carrying functional genes from oil shale. Copyright © 2015. Published by Elsevier B.V.

  5. Projecting the Water Footprint Associated with Shale Resource Production: Eagle Ford Shale Case Study.

    PubMed

    Ikonnikova, Svetlana A; Male, Frank; Scanlon, Bridget R; Reedy, Robert C; McDaid, Guinevere

    2017-12-19

    Production of oil from shale and tight reservoirs accounted for almost 50% of 2016 total U.S. production and is projected to continue growing. The objective of our analysis was to quantify the water outlook for future shale oil development using the Eagle Ford Shale as a case study. We developed a water outlook model that projects water use for hydraulic fracturing (HF) and flowback and produced water (FP) volumes based on expected energy prices; historical oil, natural gas, and water-production decline data per well; projected well spacing; and well economics. The number of wells projected to be drilled in the Eagle Ford through 2045 is almost linearly related to oil price, ranging from 20 000 wells at $30/barrel (bbl) oil to 97 000 wells at $100/bbl oil. Projected FP water volumes range from 20% to 40% of HF across the play. Our base reference oil price of $50/bbl would result in 40 000 additional wells and related HF of 265 × 10 9 gal and FP of 85 × 10 9 gal. The presented water outlooks for HF and FP water volumes can be used to assess future water sourcing and wastewater disposal or reuse, and to inform policy discussions.

  6. The first data on the porous space structure of the Domanik shales as a potential object for EOR applying

    NASA Astrophysics Data System (ADS)

    Kadyrov, R.; Statsenko, E.

    2018-05-01

    The resources of shale oil, contained in the organic matter of the wood deposits, can be considered as a source of profitable production of hydrocarbons, when modern EOR technologies are used. As a result of the primary studies of the pore space structure, it is revealed that two types of porous space are prevailing in the studied samples of the Domanik oil shales. The most prevailing is intrakerogen porosity with pore volumes of 5 × 10-8 1 × 10-6 mm3. The volumetric reconstruction of the structure of this pore space shows that the voids are confined directly to micro lenses of organic matter. The second type of the found void is represented by leaching cracks. It is characteristic of more carbonate varieties of the Dominik oil shale with spotted structure. It is the oil shale intervals with such cracks that are of greatest interest to the EOR, since they consist of a large area with smaller pores and through which pressurization and spread of various agents are possible to occur in order to increase the oil recovery.

  7. Black shale source rocks and oil generation in the Cambrian and Ordovician of the central Appalachian Basin, USA

    USGS Publications Warehouse

    Ryder, R.T.; Burruss, R.C.; Hatch, J.R.

    1998-01-01

    Nearly 600 million bbl of oil (MMBO) and 1 to 1.5 trillion ft3 (tcf) of gas have been produced from Cambrian and Ordovician reservoirs (carbonate and sandstone) in the Ohio part of the Appalachian basin and on adjoining arches in Ohio, Indiana, and Ontario, Canada. Most of the oil and gas is concentrated in the giant Lima-Indiana field on the Findlay and Kankakee arches and in small fields distributed along the Knox unconformity. Based on new geochemical analyses of oils, potential source rocks, bitumen extracts, and previously published geochemical data, we conclude that the oils in both groups of fields originated from Middle and Upper Ordovician blcak shale (Utica and Antes shales) in the Appalachian basin. Moroever, we suggest that approximately 300 MMBO and many trillions of cubic feet of gas in the Lower Silurian Clinton sands of eastern Ohio originated in the same source rocks. Oils from the Cambrian and Ordovician reservoirs have similar saturated hydrocarbon compositions, biomarker distributions, and carbon isotope signatures. Regional variations in the oils are attributed to differences in thermal maturation rather than to differences in source. Total organic carbon content, genetic potential, regional extent, and bitument extract geochemistry identify the balck shale of the Utica and Antes shales as the most plausible source of the oils. Other Cambrian and Ordovician shale and carbonate units, such as the Wells Creek formation, which rests on the Knox unconformity, and the Rome Formation and Conasauga Group in the Rome trough, are considered to be only local petroleum sources. Tmax, CAI, and pyrolysis yields from drill-hole cuttings and core indicate that the Utica Shale in eastern and central Ohio is mature with respect to oil generation. Burial, thermal, and hydrocarbon-generation history models suggest that much of the oil was generated from the Utica-Antes source in the late Paleozoic during the Alleghanian orogeny. A pervasive fracture network controlled by basement tectonics aided in the distribution of oil from the source to the trap. This fracture network permitted oil to move laterally and stratigraphically downsection through eastward-dipping, impermeable carbonate sequences to carrier zones such as the Middle Ordovician Knox unconformity, and to reservoirs such as porous dolomite in the Middle Ordovician Trenton Limestone in the Lima-Indiana field. Some of the oil and gas from the Utica-Antes source escaped vertically through a partially fractured, leaky Upper Ordovician shale seal into widespread Lower Silurian sandstone reservoirs.Nearly 600 million bbl of oil (MMBO) and 1 to 1.5 trillion ft3 (tcf) of gas have been produced from Cambrian and Ordovician reservoirs (carbonate and sandstone) in the Ohio part of the Appalachian basin and on adjoining arches in Ohio, Indiana, and Ontario, Canada. Most of the oil and gas is concentrated in the giant Lima-Indiana field on the Findlay and Kankakee arches and in small fields distributed along the Knox unconformity. Based on new geochemical analyses of oils, potential source rocks, bitumen extracts, and previously published geochemical data, we conclude that the oils in both groups of fields originated from Middle and Upper Ordovician black shale (Utica and Antes shales) in the Appalachian basin. Moreover, we suggest that approximately 300 MMBO and many trillions of cubic feet of gas in the Lower Silurian Clinton sands of eastern Ohio originated in these same source rocks.

  8. Pore Characterization of Shale Rock and Shale Interaction with Fluids at Reservoir Pressure-Temperature Conditions Using Small-Angle Neutron Scattering

    NASA Astrophysics Data System (ADS)

    Ding, M.; Hjelm, R.; Watkins, E.; Xu, H.; Pawar, R.

    2015-12-01

    Oil/gas produced from unconventional reservoirs has become strategically important for the US domestic energy independence. In unconventional realm, hydrocarbons are generated and stored in nanopores media ranging from a few to hundreds of nanometers. Fundamental knowledge of coupled thermo-hydro-mechanical-chemical (THMC) processes that control fluid flow and propagation within nano-pore confinement is critical for maximizing unconventional oil/gas production. The size and confinement of the nanometer pores creates many complex rock-fluid interface interactions. It is imperative to promote innovative experimental studies to decipher physical and chemical processes at the nanopore scale that govern hydrocarbon generation and mass transport of hydrocarbon mixtures in tight shale and other low permeability formations at reservoir pressure-temperature conditions. We have carried out laboratory investigations exploring quantitative relationship between pore characteristics of the Wolfcamp shale from Western Texas and the shale interaction with fluids at reservoir P-T conditions using small-angle neutron scattering (SANS). We have performed SANS measurements of the shale rock in single fluid (e.g., H2O and D2O) and multifluid (CH4/(30% H2O+70% D2O)) systems at various pressures up to 20000 psi and temperature up to 150 oF. Figure 1 shows our SANS data at different pressures with H2O as the pressure medium. Our data analysis using IRENA software suggests that the principal changes of pore volume in the shale occurred on smaller than 50 nm pores and pressure at 5000 psi (Figure 2). Our results also suggest that with increasing P, more water flows into pores; with decreasing P, water is retained in the pores.

  9. Evaluating the oxidation of shale during hydraulic fracturing using SEM-EDS and spectrocolorimetry

    NASA Astrophysics Data System (ADS)

    Tan, X. Y.; Nakashima, S.

    2017-12-01

    During hydraulic fracturing (fracking) for shale gas/oil extraction, oxygen is introduced into deep oxygen-poor environments, and Fe2+-bearing minerals in rocks can be oxidized thus leading to the degradation of rock quality. Akita diatomaceous shale is considered to be one of the source rocks for oil and gas fields in northwestern Japan. Outcrops of Akita shale often show presence of jarosite (Fe sulfate: yellow) and/or goethite (Fe hydroxide: brown to orange) as oxidation products of pyrite (FeS2). Several series of oxidation experiments of Akita shale under dry, humid, and wet conditions were conducted at temperatures of around 30 oC and 50oC for 30-40 days. Portable color spectro-colorimeters were used to monitor color changes of the rock surfaces every hour. SEM-EDS, UV-Vis, and Raman spectroscopic analyses were performed on the rock sample surface to examine the chemical and mineralogical compositions of Akita shale before and after the dry, humid, and wet experiments. In SEM-EDS analyses before the humid experiment, Fe and S containing phases show their atomic ratio close to 1:2 indicating that this is pyrite (FeS2). After the experiment, the ratio changed to around 1:1 suggesting a conversion from pyrite (FeS2) to mackinawite-like mineral (FeS). In addition, the formation of Ca sulfate (possibly gypsum: CaSO4.2H2O) and goethite-like Fe hydroxide were identified which were not present initially. Therefore, oxidation pathways of iron sulfide (pyrite: FeS2) via FeS to sulfate is confirmed by our humid experiments around 30oC on Akita shale. These oxidation processes might occur during the fracking of shale within relatively short time periods associated with precipitation of sulfates and hydroxides. Therefore, further studies are needed for their effects on rock properties and gas/oil production.

  10. Environmental research on a modified in situ oil shale task process. Progress report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1980-05-01

    This report summarizes the progress of the US Department of Energy's Oil Shale Task Force in its research program at the Occidental Oil Shale, Inc. facility at Logan Wash, Colorado. More specifically, the Task Force obtained samples from Retort 3E and Retort 6 and submitted these samples to a variety of analyses. The samples collected included: crude oil (Retort 6); light oil (Retort 6); product water (Retort 6); boiler blowdown (Retort 6); makeup water (Retort 6); mine sump water; groundwater; water from Retorts 1 through 5; retort gas (Retort 6); mine air; mine dust; and spent shale core (Retort 3E).more » The locations of the sampling points and methods used for collection and storage are discussed in Chapter 2 (Characterization). These samples were then distributed to the various laboratories and universities participating in the Task Force. For convenience in organizing the data, it is useful to group the work into three categories: Characterization, Leaching, and Health Effects. While many samples still have not been analyzed and much of the data remains to be interpreted, there are some preliminary conclusions the Task Force feels will be helpful in defining future needs and establishing priorities. It is important to note that drilling agents other than water were used in the recovery of the core from Retort 3E. These agents have been analyzed (see Table 12 in Chapter 2) for several constituents of interest. As a result some of the analyses of this core sample and leachates must be considered tentative.« less

  11. 43 CFR 3927.50 - Diligent development.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ..., DEPARTMENT OF THE INTERIOR MINERALS MANAGEMENT (3000) OIL SHALE LEASING Lease Terms § 3927.50 Diligent development. Oil shale lessees must meet: (a) Diligent development milestones; (b) Annual minimum production...

  12. 43 CFR 3927.50 - Diligent development.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ..., DEPARTMENT OF THE INTERIOR MINERALS MANAGEMENT (3000) OIL SHALE LEASING Lease Terms § 3927.50 Diligent development. Oil shale lessees must meet: (a) Diligent development milestones; (b) Annual minimum production...

  13. 43 CFR 3927.50 - Diligent development.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ..., DEPARTMENT OF THE INTERIOR MINERALS MANAGEMENT (3000) OIL SHALE LEASING Lease Terms § 3927.50 Diligent development. Oil shale lessees must meet: (a) Diligent development milestones; (b) Annual minimum production...

  14. Molecular characterization and comparison of shale oils generated by different pyrolysis methods

    USGS Publications Warehouse

    Birdwell, Justin E.; Jin, Jang Mi; Kim, Sunghwan

    2012-01-01

    Shale oils generated using different laboratory pyrolysis methods have been studied using standard oil characterization methods as well as Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR MS) with electrospray ionization (ESI) and atmospheric photoionization (APPI) to assess differences in molecular composition. The pyrolysis oils were generated from samples of the Mahogany zone oil shale of the Eocene Green River Formation collected from outcrops in the Piceance Basin, Colorado, using three pyrolysis systems under conditions relevant to surface and in situ retorting approaches. Significant variations were observed in the shale oils, particularly the degree of conjugation of the constituent molecules and the distribution of nitrogen-containing compound classes. Comparison of FT-ICR MS results to other oil characteristics, such as specific gravity; saturate, aromatic, resin, asphaltene (SARA) distribution; and carbon number distribution determined by gas chromatography, indicated correspondence between higher average double bond equivalence (DBE) values and increasing asphaltene content. The results show that, based on the shale oil DBE distributions, highly conjugated species are enriched in samples produced under low pressure, high temperature conditions, and under high pressure, moderate temperature conditions in the presence of water. We also report, for the first time in any petroleum-like substance, the presence of N4 class compounds based on FT-ICR MS data. Using double bond equivalence and carbon number distributions, structures for the N4 class and other nitrogen-containing compounds are proposed.

  15. Pilot-Scale Demonstration of a Fully Integrated Commercial Process for Converting Woody Biomass into Clean Biomass Diesel Fuel

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lucero, Andrew; Gale, Tom; Woolcock, Patrick

    The economic recovery of petroleum, like other fossil fuels, is limited. Although the current price of oil has dramatically dropped due to increased production and new production methods, it is not expected to remain low for an extended period of time as demand increases. While new methods of obtaining these fossil energy reserves are constantly being invented and introduced, the cost of production generally continues to increase. New sources of energy such as fracking and oil shale or oil sands recovery can produce enormous amounts of energy, but at a severe cost. The current estimate on energy return for energymore » invested for oil shale for instance is just barely over 1, meaning that for every barrel of energy produced by oil shale there was nearly a barrel of energy invested to recover it. Furthermore, these new technologies are often constantly under attack for environmental concerns (especially given the poor ratio of energy conversion), while conventional oil is regarded as dangerous due to lack of domestic supply and susceptibility to foreign intervention that compromises overall national security. Alternatives to a petroleum-based supply of fuel are a potential route to address these issues, although they must also be economically feasible. The fuels industry is forced to consider these issues in addition to federal mandates intended to gradually diversify our fuel sources.« less

  16. Oil shale processing as a source of aquatic pollution: monitoring of the biologic effects in caged and feral freshwater fish.

    PubMed Central

    Tuvikene, A; Huuskonen, S; Koponen, K; Ritola, O; Mauer, U; Lindström-Seppä, P

    1999-01-01

    The biologic effects of the oil shale industry on caged rainbow trout (Oncorhynchus mykiss) as well as on feral perch (Perca fluviatilis) and roach (Rutilus rutilus) were studied in the River Narva in northeast Estonia. The River Narva passes the oil shale mining and processing area and thus receives elevated amounts of polycyclic aromatic hydrocarbons (PAHs), heavy metals, and sulfates. The effects of the chemical load were monitored by measuring cytochrome P4501A (CYP1A)-dependent monooxygenase (MO) activities [7-ethoxyresorufin O-deethylase and aryl hydrocarbon hydroxylase (AHH)] as well as conjugation enzyme activities [glutathione S-transferase (GST) and UDP-glucuronosyltransferase] in the liver of fish. CYP1A induction was further studied by detecting the amount and occurrence of the CYP1A protein. Histopathology of tissues (liver, kidney, spleen, and intestine) and the percentage of micronuclei in fish erythrocytes were also determined. Selected PAHs and heavy metals (Cd, Cu, Hg, and Pb) were measured from fish muscle and liver. In spite of the significant accumulation of PAHs, there was no induction of MO activities in any studied fish species. When compared to reference samples, AHH activities were even decreased in feral fish at some of the exposed sites. Detection of CYP1A protein content and the distribution of the CYP1A enzyme by immunohistochemistry also did not show extensive CYP1A induction. Instead, GST activities were significantly increased at exposed sites. Detection of histopathology did not reveal major changes in the morphology of tissues. The micronucleus test also did not show any evidence of genotoxicity. Thus, from the parameters studied, GST activity was most affected. The lack of catalytic CYP1A induction in spite of the heavy loading of PAHs was not studied but has been attributed to the elevated content of other compounds such as heavy metals, some of which can act as inhibitors for MOs. Another possible explanation of this lack of induction is that through adaptation processes the fish could have lost some of their sensitivity to PAHs. Either complex pollution caused by oil shale processing masked part of the harmful effects measured in this study, or oil shale industry did not have any severe effects on fish in the River Narva. Our study illustrates the difficulties in estimating risk in cases where there are numerous various contaminants affecting the biota. Images Figure 1 Figure 2 PMID:10464075

  17. 43 CFR 3926.10 - Conversion of an R, D and D lease to a commercial lease.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... (Continued) BUREAU OF LAND MANAGEMENT, DEPARTMENT OF THE INTERIOR MINERALS MANAGEMENT (3000) OIL SHALE...) Documentation that there have been commercial quantities of oil shale produced from the lease, including the... application, in whole or in part, if it determines that: (1) There have been commercial quantities of shale...

  18. 43 CFR 3926.10 - Conversion of an R, D and D lease to a commercial lease.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... (Continued) BUREAU OF LAND MANAGEMENT, DEPARTMENT OF THE INTERIOR MINERALS MANAGEMENT (3000) OIL SHALE...) Documentation that there have been commercial quantities of oil shale produced from the lease, including the... application, in whole or in part, if it determines that: (1) There have been commercial quantities of shale...

  19. 43 CFR 3926.10 - Conversion of an R, D and D lease to a commercial lease.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... (Continued) BUREAU OF LAND MANAGEMENT, DEPARTMENT OF THE INTERIOR RANGE MANAGEMENT (4000) OIL SHALE LEASING...) Documentation that there have been commercial quantities of oil shale produced from the lease, including the... application, in whole or in part, if it determines that: (1) There have been commercial quantities of shale...

  20. 43 CFR 3926.10 - Conversion of an R, D and D lease to a commercial lease.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... (Continued) BUREAU OF LAND MANAGEMENT, DEPARTMENT OF THE INTERIOR MINERALS MANAGEMENT (3000) OIL SHALE...) Documentation that there have been commercial quantities of oil shale produced from the lease, including the... application, in whole or in part, if it determines that: (1) There have been commercial quantities of shale...

  1. Chapter 5: Geologic Assessment of Undiscovered Petroleum Resources in the Waltman Shale Total Petroleum System,Wind River Basin Province, Wyoming

    USGS Publications Warehouse

    Roberts, Steve B.; Roberts, Laura N.R.; Cook, Troy

    2007-01-01

    The Waltman Shale Total Petroleum System encompasses about 3,400 square miles in the Wind River Basin Province, Wyoming, and includes accumulations of oil and associated gas that were generated and expelled from oil-prone, lacustrine shale source rocks in the Waltman Shale Member of the Paleocene Fort Union Formation. Much of the petroleum migrated and accumulated in marginal lacustrine (deltaic) and fluvial sandstone reservoirs in the Shotgun Member of the Fort Union, which overlies and intertongues with the Waltman Shale Member. Additional petroleum accumulations derived from Waltman source rocks are present in fluvial deposits in the Eocene Wind River Formation overlying the Shotgun Member, and also might be present within fan-delta deposits included in the Waltman Shale Member, and in fluvial sandstone reservoirs in the uppermost part of the lower member of the Fort Union Formation immediately underlying the Waltman. To date, cumulative production from 53 wells producing Waltman-sourced petroleum exceeds 2.8 million barrels of oil and 5.8 billion cubic feet of gas. Productive horizons range from about 1,770 feet to 5,800 feet in depth, and average about 3,400 to 3,500 feet in depth. Formations in the Waltman Shale Total Petroleum System (Fort Union and Wind River Formations) reflect synorogenic deposition closely related to Laramide structural development of the Wind River Basin. In much of the basin, the Fort Union Formation is divided into three members (ascending order): the lower unnamed member, the Waltman Shale Member, and the Shotgun Member. These members record the transition from deposition in dominantly fluvial, floodplain, and mire environments in the early Paleocene (lower member) to a depositional setting characterized by substantial lacustrine development (Waltman Shale Member) and contemporaneous fluvial, and marginal lacustrine (deltaic) deposition (Shotgun Member) during the middle and late Paleocene. Waltman Shale Member source rocks have total organic carbon values ranging from 0.93 to 6.21 weight percent, averaging about 2.71 weight percent. The hydrocarbon generative potential of the source rocks typically exceeds 2.5 milligrams of hydrocarbon per gram of rock and numerous samples had generative potentials exceeding 6.0 milligrams of hydrocarbon per gram of rock. Waltman source rocks are oil prone, and contain a mix of Type-II and Type-III kerogen, indicating organic input from a mix of algal and terrestrial plant matter, or a mix of algal and reworked or recycled material. Thermal maturity at the base of the Waltman Shale Member ranges from a vitrinite reflectance value of less than 0.60 percent along the south basin margin to projected values exceeding 1.10 percent in the deep basin west of Madden anticline. Burial history reconstructions for three wells in the northern part of the Wind River Basin indicate that the Waltman Shale Member was well within the oil window (Ro equal to or greater than 0.65 percent) by the time of maximum burial about 15 million years ago; maximum burial depths exceeded 10,000 feet. Onset of oil generation calculated for the base of the Waltman Shale member took place from about 49 million years ago to about 20 million years ago. Peak oil generation occurred from about 31 million years ago to 26 million years ago in the deep basin west of Madden anticline. Two assessment units were defined in the Waltman Shale Total Petroleum System: the Upper Fort Union Sandstones Conventional Oil and Gas Assessment Unit (50350301) and the Waltman Fractured Shale Continuous Oil Assessment Unit (50350361). The conventional assessment unit primarily relates to the potential for undiscovered petroleum accumulations that are derived from source rocks in the Waltman Shale Member and trapped within sandstone reservoirs in the Shotgun Member (Fort Union Formation) and in the lower part of the overlying Wind River Formation. The potential for Waltman-sourced oil accumulations in fan-delta depos

  2. Hydrologic-information needs for oil-shale development, northwestern Colorado

    USGS Publications Warehouse

    Taylor, O.J.

    1982-01-01

    Hydrologic information is not adequate for proper development of the large oil-shale reserves of Piceance basin in northwestern Colorado. Exploratory drilling and aquifer testing are needed to define the hydrologic system, to provide wells for aquifer testing, to design mine-drainage techniques, and to explore for additional water supplies. Sampling networks are needed to supply hydrologic data on the quantity and quality of surface water, ground water, and springs. A detailed sampling network is proposed for the White River basin because of expected impacts related to water supplies and waste disposal. Emissions from oil-shale retorts to the atmosphere need additional study because of possible resulting corrosion problems and the destruction of fisheries. Studies of the leachate materials and the stability of disposed retorted shale piles are needed to insure that these materials will not cause problems. Hazards related to in-situ retorts, and the wastes related to oil-shale development in general also need further investigation. (USGS)

  3. The Kingak shale of northern Alaska-regional variations in organic geochemical properties and petroleum source rock quality

    USGS Publications Warehouse

    Magoon, L.B.; Claypool, G.E.

    1984-01-01

    The Kingak Shale, a thick widespread rock unit in northern Alaska that ranges in age from Early Jurassic through Early Cretaceous, has adequate to good oil source rock potential. This lenticular-shaped rock unit is as much as 1200 m thick near the Jurassic shelf edge, where its present-day burial depth is about 5000 m. Kingak sediment, transported in a southerly direction, was deposited on the then marine continental shelf. The rock unit is predominantly dark gray Shale with some interbeds of thick sandstone and siltstone. The thermal maturity of organic matter in the Kingak Shale ranges from immature (2.0%R0) in the Colville basin toward the south. Its organic carbon and hydrogen contents are highest in the eastern part of northern Alaska south of and around the Kuparuk and Prudhoe Bay oil fields. Carbon isotope data of oils and rock extracts indicate that the Kingak Shale is a source of some North Slope oil, but is probably not the major source. ?? 1984.

  4. On wettability of shale rocks.

    PubMed

    Roshan, H; Al-Yaseri, A Z; Sarmadivaleh, M; Iglauer, S

    2016-08-01

    The low recovery of hydraulic fracturing fluid in unconventional shale reservoirs has been in the centre of attention from both technical and environmental perspectives in the last decade. One explanation for the loss of hydraulic fracturing fluid is fluid uptake by the shale matrix; where capillarity is the dominant process controlling this uptake. Detailed understanding of the rock wettability is thus an essential step in analysis of loss of the hydraulic fracturing fluid in shale reservoirs, especially at reservoir conditions. We therefore performed a suit of contact angle measurements on a shale sample with oil and aqueous ionic solutions, and tested the influence of different ion types (NaCl, KCl, MgCl2, CaCl2), concentrations (0.1, 0.5 and 1M), pressures (0.1, 10 and 20MPa) and temperatures (35 and 70°C). Furthermore, a physical model was developed based on the diffuse double layer theory to provide a framework for the observed experimental data. Our results show that the water contact angle for bivalent ions is larger than for monovalent ions; and that the contact angle (of both oil and different aqueous ionic solutions) increases with increase in pressure and/or temperature; these increases are more pronounced at higher ionic concentrations. Finally, the developed model correctly predicted the influence of each tested variable on contact angle. Knowing contact angle and therefore wettability, the contribution of the capillary process in terms of water uptake into shale rocks and the possible impairment of hydrocarbon production due to such uptake can be quantified. Copyright © 2016 Elsevier Inc. All rights reserved.

  5. Potential water resource impacts of hydraulic fracturing from unconventional oil production in the Bakken shale.

    PubMed

    Shrestha, Namita; Chilkoor, Govinda; Wilder, Joseph; Gadhamshetty, Venkataramana; Stone, James J

    2017-01-01

    Modern drilling techniques, notably horizontal drilling and hydraulic fracturing, have enabled unconventional oil production (UOP) from the previously inaccessible Bakken Shale Formation located throughout Montana, North Dakota (ND) and the Canadian province of Saskatchewan. The majority of UOP from the Bakken shale occurs in ND, strengthening its oil industry and businesses, job market, and its gross domestic product. However, similar to UOP from other low-permeability shales, UOP from the Bakken shale can result in environmental and human health effects. For example, UOP from the ND Bakken shale generates a voluminous amount of saline wastewater including produced and flowback water that are characterized by unusual levels of total dissolved solids (350 g/L) and elevated levels of toxic and radioactive substances. Currently, 95% of the saline wastewater is piped or trucked onsite prior to disposal into Class II injection wells. Oil and gas wastewater (OGW) spills that occur during transport to injection sites can potentially result in drinking water resource contamination. This study presents a critical review of potential water resource impacts due to deterministic (freshwater withdrawals and produced water management) and probabilistic events (spills due to leaking pipelines and truck accidents) related to UOP from the Bakken shale in ND. Copyright © 2016 Elsevier Ltd. All rights reserved.

  6. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Murphey, P. C.; Daitch, D.; Environmental Science Division

    In August 2005, the U.S. Congress enacted the Energy Policy Act of 2005, Public Law 109-58. In Section 369 of this Act, also known as the ''Oil Shale, Tar Sands, and Other Strategic Unconventional Fuels Act of 2005,'' Congress declared that oil shale and tar sands (and other unconventional fuels) are strategically important domestic energy resources that should be developed to reduce the nation's growing dependence on oil from politically and economically unstable foreign sources. In addition, Congress declared that both research- and commercial-scale development of oil shale and tar sands should (1) be conducted in an environmentally sound mannermore » using management practices that will minimize potential impacts, (2) occur with an emphasis on sustainability, and (3) benefit the United States while taking into account concerns of the affected states and communities. To support this declaration of policy, Congress directed the Secretary of the Interior to undertake a series of steps, several of which are directly related to the development of a commercial leasing program for oil shale and tar sands. One of these steps was the completion of a programmatic environmental impact statement (PEIS) to analyze the impacts of a commercial leasing program for oil shale and tar sands resources on public lands, with an emphasis on the most geologically prospective lands in Colorado, Utah, and Wyoming. For oil shale, the scope of the PEIS analysis includes public lands within the Green River, Washakie, Uinta, and Piceance Creek Basins. For tar sands, the scope includes Special Tar Sand Areas (STSAs) located in Utah. This paleontological resources overview report was prepared in support of the Oil Shale and Tar Sands Resource Management Plan Amendments to Address Land Use Allocations in Colorado, Utah, and Wyoming and PEIS, and it is intended to be used by Bureau of Land Management (BLM) regional paleontologists and field office staff to support future projectspecific analyses. Additional information about the PEIS can be found at http://ostseis.anl.gov.« less

  7. Oil and the Future of Marine Corps Aviation

    DTIC Science & Technology

    2007-01-01

    World Oil Consumption by Sector 2003-2030 21 2 World Oil Consumption by Region and Country Group 2003-2030 21 3 Hubbert’s Original 1956...is increasing. This theory will be examined in more detail below. Unconventional fuels created from coal , tar sands, and oil shale are a potential...produce liquid hydrocarbon fuel from coal . The so called Fischer-Tropsch (FT) process supplied a substantial amount of Germany’s fuels during World War II

  8. 43 CFR 3900.50 - Land use plans and environmental considerations.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ...) BUREAU OF LAND MANAGEMENT, DEPARTMENT OF THE INTERIOR MINERALS MANAGEMENT (3000) OIL SHALE MANAGEMENT-GENERAL Oil Shale Management-Introduction § 3900.50 Land use plans and environmental considerations. (a...

  9. 43 CFR 3900.50 - Land use plans and environmental considerations.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ...) BUREAU OF LAND MANAGEMENT, DEPARTMENT OF THE INTERIOR RANGE MANAGEMENT (4000) OIL SHALE MANAGEMENT-GENERAL Oil Shale Management-Introduction § 3900.50 Land use plans and environmental considerations. (a...

  10. 43 CFR 3900.50 - Land use plans and environmental considerations.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ...) BUREAU OF LAND MANAGEMENT, DEPARTMENT OF THE INTERIOR MINERALS MANAGEMENT (3000) OIL SHALE MANAGEMENT-GENERAL Oil Shale Management-Introduction § 3900.50 Land use plans and environmental considerations. (a...

  11. 43 CFR 3900.50 - Land use plans and environmental considerations.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ...) BUREAU OF LAND MANAGEMENT, DEPARTMENT OF THE INTERIOR MINERALS MANAGEMENT (3000) OIL SHALE MANAGEMENT-GENERAL Oil Shale Management-Introduction § 3900.50 Land use plans and environmental considerations. (a...

  12. Rapid estimation of organic nitrogen in oil shale waste waters

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jones, B.M.; Daughton, C.G.; Harris, G.J.

    1984-04-01

    Many of the characteristics of oil shale process waste waters (e.g., malodors, color, and resistance to biotreatment) are imparted by numerous nitrogenous heterocycles and aromatic amines. For the frequent performance assessment of waste treatment processes designed to remove these nitrogenous organic compounds, a rapid and colligative measurement of organic nitrogen is essential. Quantification of organic nitrogen in biological and agricultural samples is usually accomplished using the time-consuming, wet-chemical Kjeldahl method. For oil shale waste waters, whose primary inorganic nitorgen constituent is amonia, organic Kjeldahl nitrogen (OKN) is determined by first eliminating the endogenous ammonia by distillation and then digesting themore » sample in boiling H/sub 2/SO/sub 4/. The organic material is oxidized, and most forms of organically bound nitrogen are released as ammonium ion. After the addition of base, the ammonia is separated from the digestate by distillation and quantified by acidimetric titrimetry or colorimetry. The major failings of this method are the loss of volatile species such as aliphatic amines (during predistillation) and the inability to completely recover nitrogen from many nitrogenous heterocycles (during digestion). Within the last decade, a new approach has been developed for the quantification of total nitrogen (TN). The sample is first combusted, a« less

  13. Assessment of In-Place Oil Shale Resources of the Green River Formation, Uinta Basin, Utah and Colorado

    USGS Publications Warehouse

    Johnson, Ronald C.; Mercier, Tracey J.; Brownfield, Michael E.; Self, Jesse G.

    2010-01-01

    Using a geology-based assessment methodology, the U.S. Geological Survey estimated a total of 1.32 trillion barrels of oil in place in 18 oil shale zones in the Eocene Green River Formation in the Uinta Basin, Utah and Colorado.

  14. Remedial processing of oil shale fly ash (OSFA) and its value-added conversion into glass-ceramics.

    PubMed

    Zhang, Zhikun; Zhang, Lei; Li, Aimin

    2015-12-01

    Recently, various solid wastes such as sewage sludge, coal fly ash and slag have been recycled into various products such as sintered bricks, ceramics and cement concrete. Application of these recycling approaches is much better and greener than conventional landfills since it can solve the problems of storage of industrial wastes and reduce exploration of natural resources for construction materials to protect the environment. Therefore, in this study, an attempt was made to recycle oil shale fly ash (OSFA), a by-product obtained from the extracting of shale oil in the oil shale industry, into a value-added glass-ceramic material via melting and sintering method. The influence of basicity (CaO/SiO2 ratio) by adding calcium oxide on the performance of glass-ceramics was studied in terms of phase transformation, mechanical properties, chemical resistances and heavy metals leaching tests. Crystallization kinetics results showed that the increase of basicity reduced the activation energies of crystallization but did not change the crystallization mechanism. When increasing the basicity from 0.2 to 0.5, the densification of sintering body was enhanced due to the promotion of viscous flow of glass powders, and therefore the compression strength and bending strength of glass-ceramics were increased. Heavy metals leaching results indicated that the produced OSFA-based glass-ceramics could be taken as non-hazardous materials. The maximum mechanical properties of compression strength of 186 ± 3 MPa, bending strength of 78 ± 6 MPa, good chemical resistances and low heavy metals leaching concentrations showed that it could be used as a substitute material for construction applications. The proposed approach will be one of the potential sustainable solutions in reducing the storage of oil shale fly ash as well as converting it into a value-added product. Copyright © 2015 Elsevier Ltd. All rights reserved.

  15. Fischer Assays of Oil-Shale Drill Cores and Rotary Cuttings from the Greater Green River Basin, Southwestern Wyoming

    USGS Publications Warehouse

    ,

    2008-01-01

    Chapter 1 of this CD-ROM is a database of digitized Fischer (shale-oil) assays of cores and cuttings from boreholes drilled in the Eocene Green River oil shale deposits in southwestern Wyoming. Assays of samples from some surface sections are also included. Most of the Fischer assay analyses were made by the former U.S. Bureau of Mines (USBM) at its laboratory in Laramie, Wyoming. Other assays, made by institutional or private laboratories, were donated to the U.S. Geological Survey (USGS) and are included in this database as well as Adobe PDF-scanned images of some of the original laboratory assay reports and lithologic logs prepared by USBM geologists. The size of this database is 75.2 megabytes and includes information on 971 core holes and rotary-drilled boreholes and numerous surface sections. Most of these data were released previously by the USBM and the USGS through the National Technical Information Service but are no longer available from that agency. Fischer assays for boreholes in northeastern Utah and northwestern Colorado have been published by the USGS. Additional data include geophysical logs, groundwater data, chemical and X-ray diffraction analyses, and other data. These materials are available for inspection in the office of the USGS Central Energy Resources Team in Lakewood, Colorado. The digitized assays were checked with the original laboratory reports, but some errors likely remain. Other information, such as locations and elevations of core holes and oil and gas tests, were not thoroughly checked. However, owing to the current interest in oil-shale development, it was considered in the public interest to make this preliminary database available at this time. Chapter 2 of this CD-ROM presents oil-yield histograms of samples of cores and cuttings from exploration drill holes in the Eocene Green River Formation in the Great Divide, Green River, and Washakie Basins of southwestern Wyoming. A database was compiled that includes about 47,000 Fischer assays from 186 core holes and 240 rotary drill holes. Most of the oil yield data are from analyses performed by the former U.S. Bureau of Mines oil shale laboratory in Laramie, Wyoming, with some analyses made by private laboratories. Location data for 971 Wyoming oil-shale drill holes are listed in a spreadsheet that is included in the CD-ROM. These Wyoming Fischer assays and histograms are part of a much larger collection of oil-shale information, including geophysical and lithologic logs, water data, chemical and X-ray diffraction analyses on the Green River oil-shale deposits in Colorado, Utah, and Wyoming held by the U.S. Geological Survey. Because of an increased interest in oil shale, this CD-ROM containing Fischer assay data and oil-yield histograms for the Green River oil-shale deposits in southwestern Wyoming is being released to the public. Microsoft Excel spreadsheets included with Chapter 2 contain the Fischer assay data from the 426 holes and data on the company name and drill-hole name, and location. Histograms of the oil yields obtained from the Fischer assays are presented in both Grapher and PDF format. Fischer assay text data files are also included in the CD-ROM.

  16. Shale Gas and Tight Oil: A Panacea for the Energy Woes of America?

    NASA Astrophysics Data System (ADS)

    Hughes, J. D.

    2012-12-01

    Shale gas has been heralded as a "game changer" in the struggle to meet America's demand for energy. The "Pickens Plan" of Texas oil and gas pioneer T.Boone Pickens suggests that gas can replace coal for much of U.S. electricity generation, and oil for, at least, truck transportation1. Industry lobby groups such as ANGA declare "that the dream of clean, abundant, home grown energy is now reality"2. In Canada, politicians in British Columbia are racing to export the virtual bounty of shale gas via LNG to Asia (despite the fact that Canadian gas production is down 16 percent from its 2001 peak). And the EIA has forecast that the U.S. will become a net exporter of gas by 20213. Similarly, recent reports from Citigroup and Harvard suggest that an oil glut is on the horizon thanks in part to the application of fracking technology to formerly inaccessible low permeability tight oil plays. The fundamentals of well costs and declines belie this optimism. Shale gas is expensive gas. In the early days it was declared that "continuous plays" like shale gas were "manufacturing operations", and that geology didn't matter. One could drill a well anywhere, it was suggested, and expect consistent production. Unfortunately, Mother Nature always has the last word, and inevitably the vast expanses of purported potential shale gas resources contracted to "core" areas, where geological conditions were optimal. The cost to produce shale gas ranges from 4.00 per thousand cubic feet (mcf) to 10.00, depending on the play. Natural gas production is a story about declines which now amount to 32% per year in the U.S. So 22 billion cubic feet per day of production now has to be replaced each year to keep overall production flat. At current prices of 2.50/mcf, industry is short about 50 billion per year in cash flow to make this happen4. As a result I expect falling production and rising prices in the near to medium term. Similarly, tight oil plays in North Dakota and Texas have been heralded as a new "Saudi Arabia" of oil. Growth in production has been spectacular, but currently amounts to just one million barrels per day which is less than 15 percent of US oil and other liquids production. Tight oil is offsetting declines in conventional crude oil production as well as contributing to a modest production increase from the 40-year US crude oil production low of 2008. The mantra that natural gas is a "transition fuel" to a low carbon future is false. The environmental costs of shale gas extraction have been documented in legions of anecdotal and scientific reports. Methane and fracture fluid contamination of groundwater, induced seismicity from fracture water injection, industrialized landscapes and air emissions, and the fact that near term emissions from shale gas generation of electricity are worse than coal. Tight oil also comes with environmental costs but has been a saviour in that it at least temporarily arrested a terminal decline in US oil production. A sane energy security strategy for America must focus on radically reducing energy consumption through investments in infrastructure that provides alternatives to our current high energy throughput. Shale gas and tight oil will be an important contributors to future energy requirements, given that other gas and oil sources are declining, but there is no free lunch.

  17. The Architecture and Frictional Properties of Faults in Shale

    NASA Astrophysics Data System (ADS)

    De Paola, N.; Imber, J.; Murray, R.; Holdsworth, R.

    2015-12-01

    The geometry of brittle fault zones in shale rocks, as well as their frictional properties at reservoir conditions, are still poorly understood. Nevertheless, these factors may control the very low recovery factors (25% for gas and 5% for oil) obtained during fracking operations. Extensional brittle fault zones (maximum displacement < 3 m) cut exhumed oil mature black shales in the Cleveland Basin (UK). Fault cores up to 50 cm wide accommodated most of the displacement, and are defined by a stair-step geometry. Their internal architecture is characterised by four distinct fault rock domains: foliated gouges; breccias; hydraulic breccias; and a slip zone up to 20 mm thick, composed of a fine-grained black gouge. Hydraulic breccias are located within dilational jogs with aperture of up to 20 cm. Brittle fracturing and cataclastic flow are the dominant deformation mechanisms in the fault core of shale faults. Velocity-step and slide-hold-slide experiments at sub-seismic slip rates (microns/s) were performed in a rotary shear apparatus under dry, water and brine-saturated conditions, for displacements of up to 46 cm. Both the protolith shale and the slip zone black gouge display shear localization, velocity strengthening behaviour and negative healing rates, suggesting that slow, stable sliding faulting should occur within the protolith rocks and slip zone gouges. Experiments at seismic speed (1.3 m/s), performed on the same materials under dry conditions, show that after initial friction values of 0.5-0.55, friction decreases to steady-state values of 0.1-0.15 within the first 10 mm of slip. Contrastingly, water/brine saturated gouge mixtures, exhibit almost instantaneous attainment of very low steady-state sliding friction (0.1), suggesting that seismic ruptures may efficiently propagate in the slip zone of fluid-saturated shale faults. Stable sliding in faults in shale can cause slow fault/fracture propagation, affecting the rate at which new fracture areas are created and, hence, limiting oil and gas production during reservoir stimulation. However, fluid saturated conditions can favour seismic slip propagation, with fast and efficient creation of new fracture areas. These processes are very effective at dilational jogs, where fluid circulation may be enhanced, facilitating oil and gas production.

  18. Experimental Study and Numerical Modeling of Fracture Propagation in Shale Rocks During Brazilian Disk Test

    NASA Astrophysics Data System (ADS)

    Mousavi Nezhad, Mohaddeseh; Fisher, Quentin J.; Gironacci, Elia; Rezania, Mohammad

    2018-06-01

    Reliable prediction of fracture process in shale-gas rocks remains one of the most significant challenges for establishing sustained economic oil and gas production. This paper presents a modeling framework for simulation of crack propagation in heterogeneous shale rocks. The framework is on the basis of a variational approach, consistent with Griffith's theory. The modeling framework is used to reproduce the fracture propagation process in shale rock samples under standard Brazilian disk test conditions. Data collected from the experiments are employed to determine the testing specimens' tensile strength and fracture toughness. To incorporate the effects of shale formation heterogeneity in the simulation of crack paths, fracture properties of the specimens are defined as spatially random fields. A computational strategy on the basis of stochastic finite element theory is developed that allows to incorporate the effects of heterogeneity of shale rocks on the fracture evolution. A parametric study has been carried out to better understand how anisotropy and heterogeneity of the mechanical properties affect both direction of cracks and rock strength.

  19. Micronucleus test and observation of nuclear alterations in erythrocytes of Nile tilapia exposed to waters affected by refinery effluent.

    PubMed

    da Silva Souza, Tatiana; Fontanetti, Carmem S

    2006-06-16

    Micronuclei and nuclear alterations tests were performed on erythrocytes of Oreochromis niloticus (Perciformes, Cichlidae) in order to evaluate the water quality from Paraíba do Sul river, in an area affected by effluents from an oil shale processing plant, located in the city of São José dos Campos, Brazil-SP. Water samples were collected on 2004 May and August (dry season) and on 2004 November and 2005 January (rain season), in three distinct sites, comprising 12 samples. It was possible to detect substances of clastogenic and/or aneugenic potential, as well as cytotoxic substances, chiefly at the point corresponding to the drainage of oil shale plant wastes along the river. The highest incidence of micronuclei and nuclear alterations was detected during May and August, whereas the results obtained in November and January were insignificant. This work shows that the effluent treatment provided by the oil shale plant was not fully efficient to minimize the effect of cytotoxic and mutagenic substances in the test organism surveyed.

  20. Alkaline modified oil shale fly ash: optimal synthesis conditions and preliminary tests on CO2 adsorption.

    PubMed

    Reinik, Janek; Heinmaa, Ivo; Kirso, Uuve; Kallaste, Toivo; Ritamäki, Johannes; Boström, Dan; Pongrácz, Eva; Huuhtanen, Mika; Larsson, William; Keiski, Riitta; Kordás, Krisztián; Mikkola, Jyri-Pekka

    2011-11-30

    Environmentally friendly product, calcium-silica-aluminum hydrate, was synthesized from oil shale fly ash, which is rendered so far partly as an industrial waste. Reaction conditions were: temperature 130 and 160°C, NaOH concentrations 1, 3, 5 and 8M and synthesis time 24h. Optimal conditions were found to be 5M at 130°C at given parameter range. Original and activated ash samples were characterized by XRD, XRF, SEM, EFTEM, (29)Si MAS-NMR, BET and TGA. Semi-quantitative XRD and MAS-NMR showed that mainly tobermorites and katoite are formed during alkaline hydrothermal treatment. Physical adsorption of CO(2) on the surface of the original and activated ash samples was measured with thermo-gravimetric analysis. TGA showed that the physical adsorption of CO(2) on the oil shale fly ash sample increases from 0.06 to 3-4 mass% after alkaline hydrothermal activation with NaOH. The activated product has a potential to be used in industrial processes for physical adsorption of CO(2) emissions. Copyright © 2011 Elsevier B.V. All rights reserved.

  1. 43 CFR 3930.40 - Assessments for missing diligence milestones.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ...) BUREAU OF LAND MANAGEMENT, DEPARTMENT OF THE INTERIOR RANGE MANAGEMENT (4000) MANAGEMENT OF OIL SHALE EXPLORATION AND LEASES Management of Oil Shale Exploration Licenses and Leases § 3930.40 Assessments for...

  2. 43 CFR 3930.40 - Assessments for missing diligence milestones.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ...) BUREAU OF LAND MANAGEMENT, DEPARTMENT OF THE INTERIOR MINERALS MANAGEMENT (3000) MANAGEMENT OF OIL SHALE EXPLORATION AND LEASES Management of Oil Shale Exploration Licenses and Leases § 3930.40 Assessments for...

  3. 43 CFR 3930.40 - Assessments for missing diligence milestones.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ...) BUREAU OF LAND MANAGEMENT, DEPARTMENT OF THE INTERIOR MINERALS MANAGEMENT (3000) MANAGEMENT OF OIL SHALE EXPLORATION AND LEASES Management of Oil Shale Exploration Licenses and Leases § 3930.40 Assessments for...

  4. 43 CFR 3930.40 - Assessments for missing diligence milestones.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ...) BUREAU OF LAND MANAGEMENT, DEPARTMENT OF THE INTERIOR MINERALS MANAGEMENT (3000) MANAGEMENT OF OIL SHALE EXPLORATION AND LEASES Management of Oil Shale Exploration Licenses and Leases § 3930.40 Assessments for...

  5. Effect of fuel properties on performance of a single aircraft turbojet combustor. [from coal and oil-shale derived syncrudes

    NASA Technical Reports Server (NTRS)

    Butze, H. F.; Ehlers, R. C.

    1975-01-01

    The performance of a single-can JT8D combustor was investigated with a number of fuels exhibiting wide variations in chemical composition and volatility. Performance parameters investigated were combustion efficiency, emissions of CO, unburned hydrocarbons and NOx, as well as liner temperatures and smoke. At the simulated idle condition no significant differences in performance were observed. At cruise, liner temperatures and smoke increased sharply with decreasing hydrogen content of the fuel. No significant differences were observed in the performance of an oil-shale derived JP-5 and a petroleum-based Jet A fuel except for emissions of NOx which were higher with the oil-shale JP-5. The difference is attributed to the higher concentration of fuel-bound nitrogen in the oil-shale JP-5.

  6. Detailed description of oil shale organic and mineralogical heterogeneity via fourier transform infrared mircoscopy

    USGS Publications Warehouse

    Washburn, Kathryn E.; Birdwell, Justin E.; Foster, Michael; Gutierrez, Fernando

    2015-01-01

    Mineralogical and geochemical information on reservoir and source rocks is necessary to assess and produce from petroleum systems. The standard methods in the petroleum industry for obtaining these properties are bulk measurements on homogenized, generally crushed, and pulverized rock samples and can take from hours to days to perform. New methods using Fourier transform infrared (FTIR) spectroscopy have been developed to more rapidly obtain information on mineralogy and geochemistry. However, these methods are also typically performed on bulk, homogenized samples. We present a new approach to rock sample characterization incorporating multivariate analysis and FTIR microscopy to provide non-destructive, spatially resolved mineralogy and geochemistry on whole rock samples. We are able to predict bulk mineralogy and organic carbon content within the same margin of error as standard characterization techniques, including X-ray diffraction (XRD) and total organic carbon (TOC) analysis. Validation of the method was performed using two oil shale samples from the Green River Formation in the Piceance Basin with differing sedimentary structures. One sample represents laminated Green River oil shales, and the other is representative of oil shale breccia. The FTIR microscopy results on the oil shales agree with XRD and LECO TOC data from the homogenized samples but also give additional detail regarding sample heterogeneity by providing information on the distribution of mineral phases and organic content. While measurements for this study were performed on oil shales, the method could also be applied to other geological samples, such as other mudrocks, complex carbonates, and soils.

  7. Assessment of in-place oil shale resources of the Eocene Green River Formation, a foundation for calculating recoverable resources

    USGS Publications Warehouse

    Johnson, Ronald C.; Mercier, Tracy

    2011-01-01

    The recently completed assessment of in-place resources of the Eocene Green River Formation in the Piceance Basin, Colorado; the Uinta Basin, Utah and Colorado; and the Greater Green River Basin Wyoming, Colorado, and Utah and their accompanying ArcGIS projects will form the foundation for estimating technically-recoverable resources in those areas. Different estimates will be made for each of the various above-ground and in-situ recovery methodologies currently being developed. Information required for these estimates include but are not limited to (1) estimates of the amount of oil shale that exceeds various grades, (2) overburden calculations, (3) a better understanding of oil shale saline facies, and (4) a better understanding of the distribution of various oil shale mineral facies. Estimates for the first two are on-going, and some have been published. The present extent of the saline facies in all three basins is fairly well understood, however, their original extent prior to ground water leaching has not been studied in detail. These leached intervals, which have enhanced porosity and permeability due to vugs and fractures and contain significant ground water resources, are being studied from available core descriptions. A database of all available xray mineralogy data for the oil shale interval is being constructed to better determine the extents of the various mineral facies. Once these studies are finished, the amount of oil shale with various mineralogical and physical properties will be determined.

  8. Pressurized fluidized-bed hydroretorting of Eastern oil shales -- Sulfur control

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Roberts, M.J.; Abbasian, J.; Akin, C.

    1992-05-01

    This topical report on Sulfur Control'' presents the results of work conducted by the Institute of Gas Technology (IGT), the Illinois Institute of Technology (IIT), and the Ohio State University (OSU) to develop three novel approaches for desulfurization that have shown good potential with coal and could be cost-effective for oil shales. These are (1) In-Bed Sulfur Capture using different sorbents (IGT), (2) Electrostatic Desulfurization (IIT), and (3) Microbial Desulfurization and Denitrification (OSU and IGT). The objective of the task on In-Bed Sulfur Capture was to determine the effectiveness of different sorbents (that is, limestone, calcined limestone, dolomite, and siderite)more » for capturing sulfur (as H{sub 2}S) in the reactor during hydroretorting. The objective of the task on Electrostatic Desulfurization was to determine the operating conditions necessary to achieve a high degree of sulfur removal and kerogen recovery in IIT's electrostatic separator. The objectives of the task on Microbial Desulfurization and Denitrification were to (1) isolate microbial cultures and evaluate their ability to desulfurize and denitrify shale, (2) conduct laboratory-scale batch and continuous tests to improve and enhance microbial removal of these components, and (3) determine the effects of processing parameters, such as shale slurry concentration, solids settling characteristics, agitation rate, and pH on the process.« less

  9. Residents’ Self-Reported Health Effects and Annoyance in Relation to Air Pollution Exposure in an Industrial Area in Eastern-Estonia

    PubMed Central

    Idavain, Jane; Pindus, Mihkel; Orru, Kati; Kesanurm, Kaisa; Lang, Aavo; Tomasova, Jelena

    2018-01-01

    Eastern Estonia has large oil shale mines and industrial facilities mainly focused on electricity generation from oil shale and shale oil extraction, which produce high air pollution emissions. The “Study of the health impact of the oil shale sector—SOHOS” was aimed at identifying the impacts on residents’ health and annoyance due to the industrial processing. First, a population-wide survey about health effects and annoyance was carried out. Second, the total and oil shale sectors’ emitted concentrations of benzene, phenol, and PM2.5 were modelled. Third, the differences between groups were tested and relationships between health effects and environmental pollution studied using multiple regression analysis. Compared to the control groups from non-industrial areas in Tartu or Lääne-Viru, residents of Ida-Viru more frequently (p < 0.05) reported wheezing, chest tightness, shortness of breath, asthma attacks, a long-term cough, hypertension, heart diseases, myocardial infarction, stroke, and diabetes. All health effects except asthma were reported more frequently among non-Estonians. People living in regions with higher levels of PM2.5, had significantly higher odds (p < 0.05) of experiencing chest tightness (OR = 1.13, 95% CI 1.02–1.26), shortness of breath (1.16, 1.03–1.31) or an asthma attack (1.22, 1.04–1.42) during the previous year. People living in regions with higher levels of benzene had higher odds of experiencing myocardial infarction (1.98, 1.11–3.53) and with higher levels of phenol chest tightness (1.44, 1.03–2.00), long-term cough (1.48, 1.06–2.07) and myocardial infarction (2.17, 1.23–3.83). The prevalence of adverse health effects was also higher among those who had been working in the oil shale sector. Next to direct health effects, up to a quarter of the residents of Ida-Viru County were highly annoyed about air pollution. Perceived health risk from air pollution increased the odds of being annoyed. Annoyed people in Ida-Viru had significantly higher odds of experiencing respiratory symptoms during the last 12 months, e.g., wheezing (2.30, 1.31–4.04), chest tightness (2.88, 1.91–4.33 or attack of coughing (1.99, 1.34–2.95). PMID:29393920

  10. Residents' Self-Reported Health Effects and Annoyance in Relation to Air Pollution Exposure in an Industrial Area in Eastern-Estonia.

    PubMed

    Orru, Hans; Idavain, Jane; Pindus, Mihkel; Orru, Kati; Kesanurm, Kaisa; Lang, Aavo; Tomasova, Jelena

    2018-02-02

    Eastern Estonia has large oil shale mines and industrial facilities mainly focused on electricity generation from oil shale and shale oil extraction, which produce high air pollution emissions. The "Study of the health impact of the oil shale sector-SOHOS" was aimed at identifying the impacts on residents' health and annoyance due to the industrial processing. First, a population-wide survey about health effects and annoyance was carried out. Second, the total and oil shale sectors' emitted concentrations of benzene, phenol, and PM 2.5 were modelled. Third, the differences between groups were tested and relationships between health effects and environmental pollution studied using multiple regression analysis. Compared to the control groups from non-industrial areas in Tartu or Lääne-Viru, residents of Ida-Viru more frequently ( p < 0.05) reported wheezing, chest tightness, shortness of breath, asthma attacks, a long-term cough, hypertension, heart diseases, myocardial infarction, stroke, and diabetes. All health effects except asthma were reported more frequently among non-Estonians. People living in regions with higher levels of PM 2.5 , had significantly higher odds ( p < 0.05) of experiencing chest tightness (OR = 1.13, 95% CI 1.02-1.26), shortness of breath (1.16, 1.03-1.31) or an asthma attack (1.22, 1.04-1.42) during the previous year. People living in regions with higher levels of benzene had higher odds of experiencing myocardial infarction (1.98, 1.11-3.53) and with higher levels of phenol chest tightness (1.44, 1.03-2.00), long-term cough (1.48, 1.06-2.07) and myocardial infarction (2.17, 1.23-3.83). The prevalence of adverse health effects was also higher among those who had been working in the oil shale sector. Next to direct health effects, up to a quarter of the residents of Ida-Viru County were highly annoyed about air pollution. Perceived health risk from air pollution increased the odds of being annoyed. Annoyed people in Ida-Viru had significantly higher odds of experiencing respiratory symptoms during the last 12 months, e.g., wheezing (2.30, 1.31-4.04), chest tightness (2.88, 1.91-4.33 or attack of coughing (1.99, 1.34-2.95).

  11. The systematic geologic mapping program and a quadrangle-by-quadrangle analysis of time-stratigraphic relations within oil shale-bearing rocks of the Piceance Basin, western Colorado

    USGS Publications Warehouse

    Johnson, Ronald C.

    2012-01-01

    During the 1960s, 1970s, and 1980s, the U.S. Geological Survey mapped the entire area underlain by oil shale of the Eocene Green River Formation in the Piceance Basin of western Colorado. The Piceance Basin contains the largest known oil shale deposit in the world, with an estimated 1.53 trillion barrels of oil in place and as much as 400,000 barrels of oil per acre. This report places the sixty-nine 7½-minute geologic quadrangle maps and one 15-minute quadrangle map published during this period into a comprehensive time-stratigraphic framework based on the alternating rich and lean oil shale zones. The quadrangles are placed in their respective regional positions on one large stratigraphic chart so that tracking the various stratigraphic unit names that have been applied can be followed between adjacent quadrangles. Members of the Green River Formation were defined prior to the detailed mapping, and many inconsistencies and correlation problems had to be addressed as mapping progressed. As a result, some of the geologic units that were defined prior to mapping were modified or discarded. The extensive body of geologic data provided by the detailed quadrangle maps contributes to a better understanding of the distribution and characteristics of the oil shale-bearing rocks across the Piceance Basin.

  12. Tectonic setting of Jurassic basins in Central Mongolia: Insights from the geochemistry of Tsagaan-Ovoo oil shale

    NASA Astrophysics Data System (ADS)

    Erdenetsogt, B. O.; Hong, S. K.; Choi, J.; Odgerel, N.; Lee, I.; Ichinnorov, N.; Tsolmon, G.; Munkhnasan, B.

    2017-12-01

    Tsagaan-Ovoo syncline hosting Lower-Middle Jurassic oil shale is a part of Saikhan-Ovoo the largest Jurassic sedimentary basin in Central Mongolia. It is generally accepted that early Mesozoic basins are foreland basins. In total, 18 oil shale samples were collected from an open-pit mine. The contents of organic carbon, and total nitrogen and their isotopic compositions as well as major element concentrations were analyzed. The average TOC content is 12.4±1.2 %, indicating excellent source rock potential. C/N ratios show an average of 30.0±1.2, suggesting terrestrial OM. The average value of δ15N is +3.9±0.2‰, while that of δ13Corg is -25.7±0.1‰. The isotopic compositions argue for OM derived dominantly from land plant. Moreover, changes in δ15N values of analyzed samples reflect variations in algal OM concentration of oil shale. The lowest δ15N value (+2.5‰) was obtained from base section, representing the highest amount of terrestrial OM, whereas higher δ15N values (up to +5.2‰) are recorded at top section, reflecting increased amount of algal OM. On the other hand, changes in δ15N value may also represent changes in redox state of water column in paleolake. The oil shale at bottom of section with low δ15N value was accumulated under oxic condition, when the delivery of land plant OM was high. With increase in subsidence rate through time, lake was deepened and water column was depleted in oxygen probably due to extensive phytoplankton growth, which results increase in algae derived OM contents as well as bulk δ15N of oil shale. The average value of CAI for Tsagan-Ovoo oil shale is 81.6±1.3, reflecting intensive weathering in the source area. The plotted data on A-CN-K diagram displays that oil shale was sourced mainly from Early Permian granodiorite and diorite, which are widely distributed around Tsagaan-Ovoo syncline. To infer tectonic setting, two multi-dimensional discrimination diagrams were used. The results suggest that the tectonic setting of Tsagaan-Ovoo syncline, in which the studied oil shale was deposited, was continental rift. This finding contradicts with generally accepted contractile deformation during early Mesozoic in Mongolia and China. Further detailed study is required to decipher the tectonic settings of central Mongolian Jurassic basins.

  13. Composition of pyrolysis gas from oil shale at various stages of heating

    NASA Astrophysics Data System (ADS)

    Martemyanov, S. M.; Bukharkin, A. A.; Koryashov, I. A.; Ivanov, A. A.

    2017-05-01

    Underground, the pyrolytic conversion of an oil shale in the nearest future may become an alternative source of a fuel gas and a synthetic oil. The main scientific problem in designing this technology is to provide a methodology for determination of the optimal mode of heating the subterranean formation. Such a methodology must allow predicting the composition of the pyrolysis products and the energy consumption at a given heating rate of the subterranean formation. The paper describes the results of heating of the oil shale fragments in conditions similar to the underground. The dynamics of composition of the gaseous products of pyrolysis are presented and analyzed.

  14. Hydrated calcareous oil-shale ash as potential filter media for phosphorus removal in constructed wetlands.

    PubMed

    Kaasik, Ago; Vohla, Christina; Mõtlep, Riho; Mander, Ulo; Kirsimäe, Kalle

    2008-02-01

    The P-retention in hydrated calcareous ash sediment from oil-shale burning thermal power plants in Estonia was studied. Batch experiments indicate good (up to 65 mg P g(-1)) P-binding capacity of the hydrated oil-shale ash sediment, with a removal effectiveness of 67-85%. The high phosphorus sorption potential of hydrated oil-shale ash is considered to be due to the high content of reactive Ca-minerals, of which ettringite Ca6Al2(SO4)3(OH)12.26H2O and portlandite Ca(OH)2 are the most important. The equilibrium dissolution of ettringite provides free calcium ions that act as stable nuclei for phosphate precipitation. The precipitation mechanism of phosphorus removal in hydrated ash plateau sediment is suggested by Ca-phosphate formation in batch experiments at different P-loadings. Treatment with a P-containing solution causes partial-to-complete dissolution of ettringite and portlandite, and precipitation of Ca-carbonate and Ca-phosphate phases, which was confirmed by X-ray diffraction (XRD) and scanning electron microscope (SEM)-EDS studies. Thus, the hydrated oil-shale ash sediment can be considered as a potential filtration material for P removal in constructed wetlands for wastewater treatment.

  15. Self-cementing properties of oil shale solid heat carrier retorting residue.

    PubMed

    Talviste, Peeter; Sedman, Annette; Mõtlep, Riho; Kirsimäe, Kalle

    2013-06-01

    Oil shale-type organic-rich sedimentary rocks can be pyrolysed to produce shale oil. The pyrolysis of oil shale using solid heat carrier (SHC) technology is accompanied by large amount of environmentally hazardous solid residue-black ash-which needs to be properly landfilled. Usage of oil shale is growing worldwide, and the employment of large SHC retorts increases the amount of black ash type of waste, but little is known about its physical and chemical properties. The objectives of this research were to study the composition and self-cementing properties of black ash by simulating different disposal strategies in order to find the most appropriate landfilling method. Three disposal methods were simulated in laboratory experiment: hydraulic disposal with and without grain size separation, and dry dumping of moist residue. Black ash exhibited good self-cementing properties with maximum compressive strength values of >6 MPa after 90 days. About 80% of strength was gained in 30 days. However, the coarse fraction (>125 µm) did not exhibit any cementation, thus the hydraulic disposal with grain size separation should be avoided. The study showed that self-cementing properties of black ash are governed by the hydration of secondary calcium silicates (e.g. belite), calcite and hydrocalumite.

  16. 43 CFR 3900.62 - Special requirements to protect the lands and resources.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... (Continued) BUREAU OF LAND MANAGEMENT, DEPARTMENT OF THE INTERIOR RANGE MANAGEMENT (4000) OIL SHALE MANAGEMENT-GENERAL Oil Shale Management-Introduction § 3900.62 Special requirements to protect the lands and...

  17. 43 CFR 3900.62 - Special requirements to protect the lands and resources.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... (Continued) BUREAU OF LAND MANAGEMENT, DEPARTMENT OF THE INTERIOR MINERALS MANAGEMENT (3000) OIL SHALE MANAGEMENT-GENERAL Oil Shale Management-Introduction § 3900.62 Special requirements to protect the lands and...

  18. 43 CFR 3900.62 - Special requirements to protect the lands and resources.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... (Continued) BUREAU OF LAND MANAGEMENT, DEPARTMENT OF THE INTERIOR MINERALS MANAGEMENT (3000) OIL SHALE MANAGEMENT-GENERAL Oil Shale Management-Introduction § 3900.62 Special requirements to protect the lands and...

  19. 43 CFR 3900.62 - Special requirements to protect the lands and resources.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... (Continued) BUREAU OF LAND MANAGEMENT, DEPARTMENT OF THE INTERIOR MINERALS MANAGEMENT (3000) OIL SHALE MANAGEMENT-GENERAL Oil Shale Management-Introduction § 3900.62 Special requirements to protect the lands and...

  20. Iridium contents in the Late Cretaceous-Early Tertiary clays in relation to the K/T boundary, North Jordan

    NASA Astrophysics Data System (ADS)

    Abboud, Iyad Ahmed

    2016-06-01

    The mineralogy, lithology, and geochemistry of five discrete laminations across the K/T boundary of clayey shale at the Yarmouk River area, Jordan, were examined. There were no marked changes in the mineralogy of the clayey shale within the K/T boundary. This outcrop consists of more than 100 m of Maastrichtian oil shale overlying about 20 m limestone. Marly limestone included many clay laminations from organic and volcanic origins, which are considered an evidence of the K/T boundary through detected iridium anomalies. Any of these particular lamellae range from 2 mm to 5 mm in thickness. Smectite was the predominant clay mineral in smectitic shale laminations. It was located at eight meters above the K/T boundary and includes some anomalous concentrations of iridium and traces of other elements. The analysis of geochemical platinum group at the K/T boundary clays showed anomalous enrichments of iridium, compared with other carbonate rocks as a result of weathering processes of oil shale, or through concentration from weathering of basalt flows, but not pointing to an impact process. The clays in late Maastrichtian have Ir-Sc prevailed anomalies and synchronize with increasing of terrigenous and volcanogenic traced elements. Kaolin, smectite, and volkonskoite were the dominant clay minerals at the K/T boundary with high concentrations of iridium. The concentration levels of iridium in some laminations of the Yarmouk sediments ranged between 1.6 and 7.8 ppb.

  1. Fossil fuel furnace reactor

    DOEpatents

    Parkinson, William J.

    1987-01-01

    A fossil fuel furnace reactor is provided for simulating a continuous processing plant with a batch reactor. An internal reaction vessel contains a batch of shale oil, with the vessel having a relatively thin wall thickness for a heat transfer rate effective to simulate a process temperature history in the selected continuous processing plant. A heater jacket is disposed about the reactor vessel and defines a number of independent controllable temperature zones axially spaced along the reaction vessel. Each temperature zone can be energized to simulate a time-temperature history of process material through the continuous plant. A pressure vessel contains both the heater jacket and the reaction vessel at an operating pressure functionally selected to simulate the continuous processing plant. The process yield from the oil shale may be used as feedback information to software simulating operation of the continuous plant to provide operating parameters, i.e., temperature profiles, ambient atmosphere, operating pressure, material feed rates, etc., for simulation in the batch reactor.

  2. 43 CFR 3141.0-5 - Definitions.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... lease means a lease issued in a Special Tar Sand Area for the removal of any gas and nongaseous hydrocarbon substance other than coal, oil shale or gilsonite. (b) For purposes of this subpart, “oil and gas... coal, oil shale or gilsonite) that either: (1) Contains a hydrocarbonaceous material with a gas-free...

  3. 43 CFR 3141.0-5 - Definitions.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... lease means a lease issued in a Special Tar Sand Area for the removal of any gas and nongaseous hydrocarbon substance other than coal, oil shale or gilsonite. (b) For purposes of this subpart, “oil and gas... coal, oil shale or gilsonite) that either: (1) Contains a hydrocarbonaceous material with a gas-free...

  4. 43 CFR 3141.0-5 - Definitions.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... lease means a lease issued in a Special Tar Sand Area for the removal of any gas and nongaseous hydrocarbon substance other than coal, oil shale or gilsonite. (b) For purposes of this subpart, “oil and gas... coal, oil shale or gilsonite) that either: (1) Contains a hydrocarbonaceous material with a gas-free...

  5. 43 CFR 3141.0-5 - Definitions.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... lease means a lease issued in a Special Tar Sand Area for the removal of any gas and nongaseous hydrocarbon substance other than coal, oil shale or gilsonite. (b) For purposes of this subpart, “oil and gas... coal, oil shale or gilsonite) that either: (1) Contains a hydrocarbonaceous material with a gas-free...

  6. Integrating Nuclear Energy to Oilfield Operations – Two Case Studies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Eric P. Robertson; Lee O. Nelson; Michael G. McKellar

    2011-11-01

    Fossil fuel resources that require large energy inputs for extraction, such as the Canadian oil sands and the Green River oil shale resource in the western USA, could benefit from the use of nuclear power instead of power generated by natural gas combustion. This paper discusses the technical and economic aspects of integrating nuclear energy with oil sands operations and the development of oil shale resources. A high temperature gas reactor (HTGR) that produces heat in the form of high pressure steam (no electricity production) was selected as the nuclear power source for both fossil fuel resources. Both cases weremore » based on 50,000 bbl/day output. The oil sands case was a steam-assisted, gravity-drainage (SAGD) operation located in the Canadian oil sands belt. The oil shale development was an in-situ oil shale retorting operation located in western Colorado, USA. The technical feasibility of the integrating nuclear power was assessed. The economic feasibility of each case was evaluated using a discounted cash flow, rate of return analysis. Integrating an HTGR to both the SAGD oil sands operation and the oil shale development was found to be technically feasible for both cases. In the oil sands case, integrating an HTGR eliminated natural gas combustion and associated CO2 emissions, although there were still some emissions associated with imported electrical power. In the in situ oil shale case, integrating an HTGR reduced CO2 emissions by 88% and increased natural gas production by 100%. Economic viabilities of both nuclear integrated cases were poorer than the non-nuclear-integrated cases when CO2 emissions were not taxed. However, taxing the CO2 emissions had a significant effect on the economics of the non-nuclear base cases, bringing them in line with the economics of the nuclear-integrated cases. As we move toward limiting CO2 emissions, integrating non-CO2-emitting energy sources to the development of energy-intense fossil fuel resources is becoming increasingly important. This paper attempts to reduce the barriers that have traditionally separated fossil fuel development and application of nuclear power and to promote serious discussion of ideas about hybrid energy systems.« less

  7. High liquid yield process for retorting various organic materials including oil shale

    DOEpatents

    Coburn, Thomas T.

    1990-01-01

    This invention is a continuous retorting process for various high molecular weight organic materials, including oil shale, that yields an enhanced output of liquid product. The organic material, mineral matter, and an acidic catalyst, that appreciably adsorbs alkenes on surface sites at prescribed temperatures, are mixed and introduced into a pyrolyzer. A circulating stream of olefin enriched pyrolysis gas is continuously swept through the organic material and catalyst, whereupon, as the result of pyrolysis, the enhanced liquid product output is provided. Mixed spent organic material, mineral matter, and cool catalyst are continuously withdrawn from the pyrolyzer. Combustion of the spent organic material and mineral matter serves to reheat the catalyst. Olefin depleted pyrolysis gas, from the pyrolyzer, is enriched in olefins and recycled into the pyrolyzer. The reheated acidic catalyst is separated from the mineral matter and again mixed with fresh organic material, to maintain the continuously cyclic process.

  8. A high liquid yield process for retorting various organic materials including oil shale

    DOEpatents

    Coburn, T.T.

    1988-07-26

    This invention is a continuous retorting process for various high molecular weight organic materials, including oil shale, that yields an enhanced output of liquid product. The organic material, mineral matter, and an acidic catalyst, that appreciably adsorbs alkenes on surface sites at prescribed temperatures, are mixed and introduced into a pyrolyzer. A circulating stream of olefin enriched pyrolysis gas is continuously swept through the organic material and catalyst, whereupon, as the result of pyrolysis, the enhanced liquid product output is provided. Mixed spent organic material, mineral matter, and cool catalyst are continuously withdrawn from the pyrolyzer. Combustion of the spent organic material and mineral matter serves to reheat the catalyst. Olefin depleted pyrolysis gas, from the pyrolyzer, is enriched in olefins and recycled into the pyrolyzer. The reheated acidic catalyst is separated from the mineral matter and again mixed with fresh organic material, to maintain the continuously cyclic process. 2 figs.

  9. 40 CFR 60.101a - Definitions.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... suspended in a fluidized bed to improve feedstock quality for additional processing and the catalyst or... the oils derived from tar sands, shale, and coal. Petroleum refinery means any facility engaged in...

  10. 43 CFR 3903.51 - Minimum production and payments in lieu of production.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ...) BUREAU OF LAND MANAGEMENT, DEPARTMENT OF THE INTERIOR MINERALS MANAGEMENT (3000) OIL SHALE MANAGEMENT...) Each lease must meet its minimum annual production amount of shale oil or make a payment in lieu of...

  11. 43 CFR 3903.51 - Minimum production and payments in lieu of production.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ...) BUREAU OF LAND MANAGEMENT, DEPARTMENT OF THE INTERIOR RANGE MANAGEMENT (4000) OIL SHALE MANAGEMENT...) Each lease must meet its minimum annual production amount of shale oil or make a payment in lieu of...

  12. 43 CFR 3903.51 - Minimum production and payments in lieu of production.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ...) BUREAU OF LAND MANAGEMENT, DEPARTMENT OF THE INTERIOR MINERALS MANAGEMENT (3000) OIL SHALE MANAGEMENT...) Each lease must meet its minimum annual production amount of shale oil or make a payment in lieu of...

  13. 43 CFR 3903.51 - Minimum production and payments in lieu of production.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ...) BUREAU OF LAND MANAGEMENT, DEPARTMENT OF THE INTERIOR MINERALS MANAGEMENT (3000) OIL SHALE MANAGEMENT...) Each lease must meet its minimum annual production amount of shale oil or make a payment in lieu of...

  14. Synthetic fuel development creates problems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schmit, M.

    The development of the oil shale in Colorado is discussed specifically. Governor Lamm points out that this is not a well-proven technology; and both he and Harris D. Sherman, Executive Director of the Colorado Dept. of Natural Resources, are seriously concerned with the social, economic, and environmental disruptions that oil shale commercialization will bring to the state. With production at maximum capacity (8 oil shale plants at 50,000 barrels a day each), only 2.5 to 5% of the nation's petroleum needs could be supplied. However, both Gov. Lamm and Mr. Sherman realize that because the present administration has the synfuelsmore » bandwagon rolling - and 70% of the nation's high-grade oil shale is found in Colorado - it is not a question of if, but when, there will be development in the state. Therefore, they favor a phased approach to circumvent or mitigate the social, economic, and environmental impacts.« less

  15. Western oil shale development: a technology assessment. Volume 1. Main report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1981-11-01

    The general goal of this study is to present the prospects of shale oil within the context of (1) environmental constraints, (2) available natural and economic resources, and (3) the characteristics of existing and emerging technology. The objectives are: to review shale oil technologies objectively as a means of supplying domestically produced fuels within environmental, social, economic, and legal/institutional constraints; using available data, analyses, and experienced judgment, to examine the major points of uncertainty regarding potential impacts of oil shale development; to resolve issues where data and analyses are compelling or where conclusions can be reached on judgmental grounds; tomore » specify issues which cannot be resolved on the bases of the data, analyses, and experienced judgment currently available; and when appropriate and feasible, to suggest ways for the removal of existing uncertainties that stand in the way of resolving outstanding issues.« less

  16. Method for forming an in situ oil shale retort with horizontal free faces

    DOEpatents

    Ricketts, Thomas E.; Fernandes, Robert J.

    1983-01-01

    A method for forming a fragmented permeable mass of formation particles in an in situ oil shale retort is provided. A horizontally extending void is excavated in unfragmented formation containing oil shale and a zone of unfragmented formation is left adjacent the void. An array of explosive charges is formed in the zone of unfragmented formation. The array of explosive charges comprises rows of central explosive charges surrounded by a band of outer explosive charges which are adjacent side boundaries of the retort being formed. The powder factor of each outer explosive charge is made about equal to the powder factor of each central explosive charge. The explosive charges are detonated for explosively expanding the zone of unfragmented formation toward the void for forming the fragmented permeable mass of formation particles having a reasonably uniformly distributed void fraction in the in situ oil shale retort.

  17. A dual-porosity model for simulating solute transport in oil shale

    USGS Publications Warehouse

    Glover, K.C.

    1987-01-01

    A model is described for simulating three-dimensional groundwater flow and solute transport in oil shale and associated geohydrologic units. The model treats oil shale as a dual-porosity medium by simulating flow and transport within fractures using the finite-element method. Diffusion of solute between fractures and the essentially static water of the shale matrix is simulated by including an analytical solution that acts as a source-sink term to the differential equation of solute transport. While knowledge of fracture orientation and spacing is needed to effectively use the model, it is not necessary to map the locations of individual fractures. The computer program listed in the report incorporates many of the features of previous dual-porosity models while retaining a practical approach to solving field problems. As a result the theory of solute transport is not extended in any appreciable way. The emphasis is on bringing together various aspects of solute transport theory in a manner that is particularly suited to the unusual groundwater flow and solute transport characteristics of oil shale systems. (Author 's abstract)

  18. Numerical Simulation of Potential Groundwater Contaminant Pathways from Hydraulically Fractured Oil Shale in the Nevada Basin and Range Province

    NASA Astrophysics Data System (ADS)

    Rybarski, S.; Pohll, G.; Pohlmann, K.; Plume, R.

    2014-12-01

    In recent years, hydraulic fracturing (fracking) has become an increasingly popular method for extraction of oil and natural gas from tight formations. Concerns have been raised over a number of environmental risks associated with fracking, including contamination of groundwater by fracking fluids, upwelling of deep subsurface brines, and methane migration. Given the potentially long time scale for contaminant transport associated with hydraulic fracturing, numerical modeling remains the best practice for risk assessment. Oil shale in the Humboldt basin of northeastern Nevada has now become a target for hydraulic fracturing operations. Analysis of regional and shallow groundwater flow is used to assess several potential migration pathways specific to the geology and hydrogeology of this basin. The model domain in all simulations is defined by the geologic structure of the basin as determined by deep oil and gas well bores and formation outcrops. Vertical transport of gaseous methane along a density gradient is simulated in TOUGH2, while fluid transport along faults and/or hydraulic fractures and lateral flow through more permeable units adjacent to the targeted shale are modeled in FEFLOW. Sensitivity analysis considers basin, fault, and hydraulic fracturing parameters, and results highlight key processes that control fracking fluid and methane migration and time scales under which it might occur.

  19. Jordan: Background and U.S. Relations

    DTIC Science & Technology

    2014-05-08

    an oil shale exploration agreement with the Jordanian government. Estonia’s Enefit Eesti Energia AS also has signed agreements on oil shale...of sectors including democracy assistance, water preservation, and education (particularly building and renovating public schools). In the democracy

  20. Assessment of potential shale oil and tight sandstone gas resources of the Assam, Bombay, Cauvery, and Krishna-Godavari Provinces, India, 2013

    USGS Publications Warehouse

    Klett, Timothy R.; Schenk, Christopher J.; Wandrey, Craig J.; Brownfield, Michael E.; Charpentier, Ronald R.; Tennyson, Marilyn E.; Gautier, Donald L.

    2014-01-01

    Using a well performance-based geologic assessment methodology, the U.S. Geological Survey estimated a technically recoverable mean volume of 62 million barrels of oil in shale oil reservoirs, and more than 3,700 billion cubic feet of gas in tight sandstone gas reservoirs in the Bombay and Krishna-Godavari Provinces of India. The term “provinces” refer to geologically defined units assessed by the USGS for the purposes of this report and carries no political or diplomatic connotation. Shale oil and tight sandstone gas reservoirs were evaluated in the Assam and Cauvery Provinces, but these reservoirs were not quantitatively assessed.

  1. Jordan Country Analysis Brief

    EIA Publications

    2014-01-01

    Jordan, unlike its immediate neighbors, does not possess significant energy resources. As of January 2014, the Oil & Gas Journal estimated Jordan's proved oil reserves at just 1 million barrels and its proved natural gas reserves at slightly more than 200 billion cubic feet (Bcf). Oil shale resources have the potential to increase Jordan's reserves significantly, and the country plans to build the first oil shale-fired electricity generation facility in the Middle East after 2017.

  2. Oil/source rock correlations in the Polish Flysch Carpathians and Mesozoic basement and organic facies of the Oligocene Menilite Shales: Insights from hydrous pyrolysis experiments

    USGS Publications Warehouse

    Curtis, John B.; Kotarba, M.J.; Lewan, M.D.; Wieclaw, D.

    2004-01-01

    The Oligocene Menilite Shales in the study area in the Polish Flysch Carpathians are organic-rich and contain varying mixtures of Type-II, Type-IIS and Type-III kerogen. The kerogens are thermally immature to marginally mature based on atomic H/C ratios and Rock-Eval data. This study defined three organic facies, i.e., sedimentary strata with differing hydrocarbon-generation potentials due to varying types and concentrations of organic matter. These facies correspond to the Silesian Unit and the eastern and western portions of the Skole Unit. Analysis of oils generated by hydrous pyrolysis of outcrop samples of Menilite Shales demonstrates that natural crude oils reservoired in the flysch sediments appear to have been generated from the Menilite Shales. Natural oils reservoired in the Mesozoic basement of the Carpathian Foredeep appear to be predominantly derived and migrated from Menilite Shales, with a minor contribution from at least one other source rock most probably within Middle Jurassic strata. Definition of organic facies may have been influenced by the heterogeneous distribution of suitable Menilite Shales outcrops and producing wells, and subsequent sample selection during the analytical phases of the study. ?? 2004 Elsevier Ltd. All rights reserved.

  3. Upgrading platform using alkali metals

    DOEpatents

    Gordon, John Howard

    2014-09-09

    A process for removing sulfur, nitrogen or metals from an oil feedstock (such as heavy oil, bitumen, shale oil, etc.) The method involves reacting the oil feedstock with an alkali metal and a radical capping substance. The alkali metal reacts with the metal, sulfur or nitrogen content to form one or more inorganic products and the radical capping substance reacts with the carbon and hydrogen content to form a hydrocarbon phase. The inorganic products may then be separated out from the hydrocarbon phase.

  4. Ecological risks of shale oil and gas development to wildlife, aquatic resources and their habitats

    USGS Publications Warehouse

    Brittingham, Margaret C.; Maloney, Kelly O.; Farag, Aïda M.; Harper, David D.; Bowen, Zachary H.

    2014-01-01

    Technological advances in hydraulic fracturing and horizontal drilling have led to the exploration and exploitation of shale oil and gas both nationally and internationally. Extensive development of shale resources has occurred within the United States over the past decade, yet full build out is not expected to occur for years. Moreover, countries across the globe have large shale resources and are beginning to explore extraction of these resources. Extraction of shale resources is a multistep process that includes site identification, well pad and infrastructure development, well drilling, high-volume hydraulic fracturing and production; each with its own propensity to affect associated ecosystems. Some potential effects, for example from well pad, road and pipeline development, will likely be similar to other anthropogenic activities like conventional gas drilling, land clearing, exurban and agricultural development and surface mining (e.g., habitat fragmentation and sedimentation). Therefore, we can use the large body of literature available on the ecological effects of these activities to estimate potential effects from shale development on nearby ecosystems. However, other effects, such as accidental release of wastewaters, are novel to the shale gas extraction process making it harder to predict potential outcomes. Here, we review current knowledge of the effects of high-volume hydraulic fracturing coupled with horizontal drilling on terrestrial and aquatic ecosystems in the contiguous United States, an area that includes 20 shale plays many of which have experienced extensive development over the past decade. We conclude that species and habitats most at risk are ones where there is an extensive overlap between a species range or habitat type and one of the shale plays (leading to high vulnerability) coupled with intrinsic characteristics such as limited range, small population size, specialized habitat requirements, and high sensitivity to disturbance. Examples include core forest habitat and forest specialists, sagebrush habitat and specialists, vernal pond inhabitants and stream biota. We suggest five general areas of research and monitoring that could aid in development of effective guidelines and policies to minimize negative impacts and protect vulnerable species and ecosystems: (1) spatial analyses, (2) species-based modeling, (3) vulnerability assessments, (4) ecoregional assessments, and (5) threshold and toxicity evaluations.

  5. Ecological risks of shale oil and gas development to wildlife, aquatic resources and their habitats.

    PubMed

    Brittingham, Margaret C; Maloney, Kelly O; Farag, Aïda M; Harper, David D; Bowen, Zachary H

    2014-10-07

    Technological advances in hydraulic fracturing and horizontal drilling have led to the exploration and exploitation of shale oil and gas both nationally and internationally. Extensive development of shale resources has occurred within the United States over the past decade, yet full build out is not expected to occur for years. Moreover, countries across the globe have large shale resources and are beginning to explore extraction of these resources. Extraction of shale resources is a multistep process that includes site identification, well pad and infrastructure development, well drilling, high-volume hydraulic fracturing and production; each with its own propensity to affect associated ecosystems. Some potential effects, for example from well pad, road and pipeline development, will likely be similar to other anthropogenic activities like conventional gas drilling, land clearing, exurban and agricultural development and surface mining (e.g., habitat fragmentation and sedimentation). Therefore, we can use the large body of literature available on the ecological effects of these activities to estimate potential effects from shale development on nearby ecosystems. However, other effects, such as accidental release of wastewaters, are novel to the shale gas extraction process making it harder to predict potential outcomes. Here, we review current knowledge of the effects of high-volume hydraulic fracturing coupled with horizontal drilling on terrestrial and aquatic ecosystems in the contiguous United States, an area that includes 20 shale plays many of which have experienced extensive development over the past decade. We conclude that species and habitats most at risk are ones where there is an extensive overlap between a species range or habitat type and one of the shale plays (leading to high vulnerability) coupled with intrinsic characteristics such as limited range, small population size, specialized habitat requirements, and high sensitivity to disturbance. Examples include core forest habitat and forest specialists, sagebrush habitat and specialists, vernal pond inhabitants and stream biota. We suggest five general areas of research and monitoring that could aid in development of effective guidelines and policies to minimize negative impacts and protect vulnerable species and ecosystems: (1) spatial analyses, (2) species-based modeling, (3) vulnerability assessments, (4) ecoregional assessments, and (5) threshold and toxicity evaluations.

  6. Horizontal drilling potential of the Cane Creek Shale, Paradox Formation, Utah

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Morgan, C.D.; Chidsey, T.C.

    1991-06-01

    The Cane Creek shale of the Pennsylvanian Paradox Formation is a well-defined target for horizontal drilling. This unit is naturally fractures and consists of organic-rich marine shale with interbedded dolomitic siltstone and anhydrite. Six fields have produced oil from the Cane Creek shale in the Paradox basin fold-and-fault belt. The regional structural trend is north-northwest with productive fractures occurring along the crest and flanks of both the larger and more subtle smaller anticlines. The Long Canyon, Cane Creek, Bartlett Flat, and Shafer Canyon fields are located on large anticlines, while Lion Mesa and Wilson Canyon fields produce from subtle structuralmore » noses. The Cane Creek shale is similar to the highly productive Bakken Shale in the Williston basin. Both are (1) proven producers of high-gravity oil, (2) highly fractured organic-rich source rocks, (3) overpressured, (4) regionally extensive, and (5) solution-gas driven with little or no associated water. Even though all production from the Cane Creek shale has been from conventional vertical wells, the Long Canyon 1 well has produced nearly 1 million bbl of high-gravity, low-sulfur oil. Horizontal drilling may result in the development of new fields, enhance recovery in producing fields, and revive production in abandoned fields. In addition, several other regionally extensive organic-rich shale beds occur in the Paradox Formation. The Gothic and Chimney Rock shales for example, offer additional potential lying above the Cane Creek shale.« less

  7. Effects of smectite on the oil-expulsion efficiency of the Kreyenhagen Shale, San Joaquin Basin, California, based on hydrous-pyrolysis experiments

    USGS Publications Warehouse

    Lewan, Michael D.; Dolan, Michael P.; Curtis, John B.

    2014-01-01

    The amount of oil that maturing source rocks expel is expressed as their expulsion efficiency, which is usually stated in milligrams of expelled oil per gram of original total organic carbon (TOCO). Oil-expulsion efficiency can be determined by heating thermally immature source rocks in the presence of liquid water (i.e., hydrous pyrolysis) at temperatures between 350°C and 365°C for 72 hr. This pyrolysis method generates oil that is compositionally similar to natural crude oil and expels it by processes operative in the subsurface. Consequently, hydrous pyrolysis provides a means to determine oil-expulsion efficiencies and the rock properties that influence them. Smectite in source rocks has previously been considered to promote oil generation and expulsion and is the focus of this hydrous-pyrolysis study involving a representative sample of smectite-rich source rock from the Eocene Kreyenhagen Shale in the San Joaquin Basin of California. Smectite is the major clay mineral (31 wt. %) in this thermally immature sample, which contains 9.4 wt. % total organic carbon (TOC) comprised of type II kerogen. Compared to other immature source rocks that lack smectite as their major clay mineral, the expulsion efficiency of the Kreyenhagen Shale was significantly lower. The expulsion efficiency of the Kreyenhagen whole rock was reduced 88% compared to that of its isolated kerogen. This significant reduction is attributed to bitumen impregnating the smectite interlayers in addition to the rock matrix. Within the interlayers, much of the bitumen is converted to pyrobitumen through crosslinking instead of oil through thermal cracking. As a result, smectite does not promote oil generation but inhibits it. Bitumen impregnation of the rock matrix and smectite interlayers results in the rock pore system changing from water wet to bitumen wet. This change prevents potassium ion (K+) transfer and dissolution and precipitation reactions needed for the conversion of smectite to illite. As a result, illitization only reaches 35% to 40% at 310°C for 72 hr and remains unchanged to 365°C for 72 hr. Bitumen generation before or during early illitization in these experiments emphasizes the importance of knowing when and to what degree illitization occurs in natural maturation of a smectite-rich source rock to determine its expulsion efficiency. Complete illitization prior to bitumen generation is common for Paleozoic source rocks (e.g., Woodford Shale and Retort Phosphatic Shale Member of the Phosphoria Formation), and expulsion efficiencies can be determined on immature samples by hydrous pyrolysis. Conversely, smectite is more common in Cenozoic source rocks like the Kreyenhagen Shale, and expulsion efficiencies determined by hydrous pyrolysis need to be made on samples that reflect the level of illitization at or near bitumen generation in the subsurface.

  8. Feasibilities of a Coal-Biomass to Liquids Plant in Southern West Virginia

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bhattacharyya, Debangsu; DVallance, David; Henthorn, Greg

    This project has generated comprehensive and realistic results of feasibilities for a coal-biomass to liquids (CBTL) plant in southern West Virginia; and evaluated the sensitivity of the analyses to various anticipated scenarios and parametric uncertainties. Specifically the project has addressed economic feasibility, technical feasibility, market feasibility, and financial feasibility. In the economic feasibility study, a multi-objective siting model was developed and was then used to identify and rank the suitable facility sites. Spatial models were also developed to assess the biomass and coal feedstock availabilities and economics. Environmental impact analysis was conducted mainly to assess life cycle analysis and greenhousemore » gas emission. Uncertainty and sensitivity analysis were also investigated in this study. Sensitivity analyses on required selling price (RSP) and greenhouse gas (GHG) emissions of CBTL fuels were conducted according to feedstock availability and price, biomass to coal mix ratio, conversion rate, internal rate of return (IRR), capital cost, operational and maintenance cost. The study of siting and capacity showed that feedstock mixed ratio limited the CBTL production. The price of coal had a more dominant effect on RSP than that of biomass. Different mix ratios in the feedstock and conversion rates led to RSP ranging from $104.3 - $157.9/bbl. LCA results indicated that GHG emissions ranged from 80.62 kg CO 2 eq to 101.46 kg CO2 eq/1,000 MJ of liquid fuel at various biomass to coal mix ratios and conversion rates if carbon capture and storage (CCS) was applied. Most of water and fossil energy were consumed in conversion process. Compared to petroleum-derived-liquid fuels, the reduction in GHG emissions could be between -2.7% and 16.2% with CBTL substitution. As for the technical study, three approaches of coal and biomass to liquids, direct, indirect and hybrid, were considered in the analysis. The process models including conceptual design, process modeling and process validation were developed and validated for different cases. Equipment design and capital costs were investigated on capital coast estimation and economical model validation. Material and energy balances and techno-economic analysis on base case were conducted for evaluation of projects. Also, sensitives studies of direct and indirect approaches were both used to evaluate the CBTL plant economic performance. In this study, techno-economic analysis were conducted in Aspen Process Economic Analyzer (APEA) environment for indirect, direct, and hybrid CBTL plants with CCS based on high fidelity process models developed in Aspen Plus and Excel. The process thermal efficiency ranges from 45% to 67%. The break-even oil price ranges from $86.1 to $100.6 per barrel for small scale (10000 bbl/day) CBTL plants and from $65.3 to $80.5 per barrel for large scale (50000 bbl/day) CBTL plants. Increasing biomass/coal ratio from 8/92 to 20/80 would increase the break-even oil price of indirect CBTL plant by $3/bbl and decrease the break-even oil price of direct CBTL plant by about $1/bbl. The order of carbon capture penalty is direct > indirect > hybrid. The order of capital investment is hybrid (with or without shale gas utilization) > direct (without shale gas utilization) > indirect > direct (with shale gas utilization). The order of thermal efficiency is direct > hybrid > indirect. The order of break-even oil price is hybrid (without shale gas utilization) > direct (without shale gas utilization) > hybrid (with shale gas utilization) > indirect > direct (with shale gas utilization).« less

  9. 77 FR 47668 - Agency Information Collection Activities; Submission for OMB Review; Comment Request; Underground...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-08-09

    ... extract oil from shale in underground metal and nonmetal I-A and I-B mines (those that operate in a... underground oil shale mines. The standard requires that, prior to ignition of underground retorts, mine...

  10. Jordan: Background and U.S. Relations

    DTIC Science & Technology

    2014-12-02

    Estonia’s Enefit Eesti Energia AS also has signed agreements on oil shale projects. In 2012, the Canadian company, Global Oil Shale Holdings (GOSH...variety of sectors including democracy assistance, water preservation, and education (particularly building and renovating public schools). In the

  11. Jordan: Background and U.S. Relations

    DTIC Science & Technology

    2014-01-27

    Estonia’s Enefit Eesti Energia AS also has signed agreements on oil shale projects. In 2012, the Canadian company, Global Oil Shale Holdings (GOSH...variety of sectors including democracy assistance, water preservation, and education (particularly building and renovating public schools). In the

  12. Proceedings of the symposium on assessing the industrial hygiene monitoring needs for the coal conversion and oil shale industries

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    White, O. Jr.

    1979-03-01

    This work was supported by the United States Department of Energy, Division of Biomedical and Environmental Research, Analysis and Assessment Program, through the Safety and Environmental Protection Division at Brookhaven National Laboratory. The symposium program included presentations centering around the themes: Recognition of Occupational Health Monitoring Requirements for the Coal Conversion and Oil Shale Industries and Status of Dosimetry Technology for Occupational Health Monitoring for the Coal Conversion and Oil Shale Industries. Sixteen papers have been entered individually into EDB and ERA; six had been entered previously from other sources. (LTN)

  13. Liquid-Rich Shale Potential of Utah’s Uinta and Paradox Basins: Reservoir Characterization and Development Optimization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vanden Berg, Michael; Morgan, Craig; Chidsey, Thomas

    The enclosed report is the culmination of a multi-year and multi-faceted research project investigating Utah’s unconventional tight oil potential. From the beginning, the project team focused efforts on two different plays: (1) the basal Green River Formation’s (GRF) Uteland Butte unconventional play in the Uinta Basin and (2) the more established but understudied Cane Creek shale play in the Paradox Basin. The 2009-2014 high price of crude oil, coupled with lower natural gas prices, generated renewed interest in exploration and development of liquid hydrocarbon reserves. Following the success of the mid-2000s shale gas boom and employing many of the samemore » well completion techniques, petroleum companies started exploring for liquid petroleum in shale formations. In fact, many shales targeted for natural gas include areas in which the shale is more prone to liquid production. In Utah, organic-rich shales in the Uinta and Paradox Basins have been the source of significant hydrocarbon generation, with companies traditionally targeting the interbedded sands or carbonates for their conventional resource recovery. Because of the advances in horizontal drilling and hydraulic fracturing techniques, operators in these basins started to explore the petroleum production potential of the shale units themselves. The GRF in the Uinta Basin has been studied for over 50 years, since the first hydrocarbon discoveries. However, those studies focused on the many conventional sandstone reservoirs currently producing oil and gas. In contrast, less information was available about the more unconventional crude oil production potential of thinner carbonate/shale units, most notably the basal Uteland Butte member. The Cane Creek shale of the Paradox Basin has been a target for exploration periodically since the 1960s and produces oil from several small fields. The play generated much interest in the early 1990s with the successful use of horizontal drilling. Recently, the USGS assessed the undiscovered oil resource in the Cane Creek shale of the Paradox Basin at 103 million barrels at a 95 percent confidence level and 198 million barrels at a 50 percent confidence level. Nonetheless, limited research was available or published to further define the play and the reservoir characteristics. The specific objectives of the enclosed research were to (1) characterize geologic, geochemical, and geomechanical rock properties of target zones in the two designated basins by compiling data and by analyzing available cores, cuttings, and well logs; (2) describe outcrop reservoir analogs of GRF plays (Cane Creek shale is not exposed) and compare them to subsurface data; (3) map major regional trends for targeted intervals and identify “sweet spots” that have the greatest oil potential; (4) reduce exploration costs and drilling risks, especially in environmentally sensitive areas; (5) improve drilling and fracturing effectiveness by determining optimal well completion design; and (6) reduce field development costs, maximize oil recovery, and increase reserves. These objectives are all addressed in a series of nine publications that resulted from this extensive research project. Each publication is included in this report as an independent appendix.« less

  14. Characterization of Unconventional Reservoirs: CO2 Induced Petrophysics

    NASA Astrophysics Data System (ADS)

    Verba, C.; Goral, J.; Washburn, A.; Crandall, D.; Moore, J.

    2017-12-01

    As concerns about human-driven CO2 emissions grow, it is critical to develop economically and environmentally effective strategies to mitigate impacts associated with fossil energy. Geologic carbon storage (GCS) is a potentially promising technique which involves the injection of captured CO2 into subsurface formations. Unconventional shale formations are attractive targets for GCS while concurrently improving gas recovery. However, shales are inherently heterogeneous, and minor differences can impact the ability of the shale to effectively adsorb and store CO2. Understanding GCS capacity from such endemic heterogeneities is further complicated by the complex geochemical processes which can dynamically alter shale petrophysics. We investigated the size distribution, connectivity, and type (intraparticle, interparticle, and organic) of pores in shale; the mineralogy of cores from unconventional shale (e.g. Bakken); and the changes to these properties under simulated GCS conditions. Electron microscopy and dual beam focused ion beam scanning electron microscopy were used to reconstruct 2D/3D digital matrix and pore structures. Comparison of pre and post-reacted samples gives insights into CO2-shale interactions - such as the mechanism of CO2 sorption in shales- intended for enhanced oil recovery and GCS initiatives. These comparisons also show how geochemical processes proceed differently across shales based on their initial diagenesis. Results show that most shale pore sizes fall within meso-macro pore classification (> 2 nm), but have variable porosity and organic content. The formation of secondary minerals (calcite, gypsum, and halite) may play a role in the infilling of fractures and pore spaces in the shale, which may reduce permeability and inhibit the flow of fluids.

  15. Joint DoD/DoE Shale Oil Project. Volume 3. Testing of Refined Shale Oil Fuels.

    DTIC Science & Technology

    1983-12-01

    inches displacement NO Nitric oxide CLR Cooperative Lubrication Research NOX Oxides of nitrogen CO Carbon monoxide CO2 Carbon dioxide cSt Centistokes... composition and properties, and evaluation of toxicity. This report summarizes the results of these test and evalua- tion studies. The Paraho/Sohio effort...TABLE 11-1. DOE ALTERNATIVE FUELS PROGRAM DIESEL ENGINE TESTS WITH SHALE FUELS ............................... 11-11 TABLE 11-2. COMPOSITION OF

  16. 43 CFR 3900.61 - Federal minerals where the surface is owned or administered by other Federal agencies, by state...

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... (Continued) BUREAU OF LAND MANAGEMENT, DEPARTMENT OF THE INTERIOR MINERALS MANAGEMENT (3000) OIL SHALE MANAGEMENT-GENERAL Oil Shale Management-Introduction § 3900.61 Federal minerals where the surface is owned or...

  17. 43 CFR 3900.61 - Federal minerals where the surface is owned or administered by other Federal agencies, by state...

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... (Continued) BUREAU OF LAND MANAGEMENT, DEPARTMENT OF THE INTERIOR MINERALS MANAGEMENT (3000) OIL SHALE MANAGEMENT-GENERAL Oil Shale Management-Introduction § 3900.61 Federal minerals where the surface is owned or...

  18. 43 CFR 3900.61 - Federal minerals where the surface is owned or administered by other Federal agencies, by state...

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... (Continued) BUREAU OF LAND MANAGEMENT, DEPARTMENT OF THE INTERIOR RANGE MANAGEMENT (4000) OIL SHALE MANAGEMENT-GENERAL Oil Shale Management-Introduction § 3900.61 Federal minerals where the surface is owned or...

  19. 43 CFR 3900.61 - Federal minerals where the surface is owned or administered by other Federal agencies, by state...

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... (Continued) BUREAU OF LAND MANAGEMENT, DEPARTMENT OF THE INTERIOR MINERALS MANAGEMENT (3000) OIL SHALE MANAGEMENT-GENERAL Oil Shale Management-Introduction § 3900.61 Federal minerals where the surface is owned or...

  20. Sequence Stratigraphic Analysis and Facies Architecture of the Cretaceous Mancos Shale on and Near the Jicarilla Apache Indian Reservation, New Mexico-their relation to Sites of Oil Accumulation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ridgley, Jennie

    2001-08-21

    The purpose of phase 1 and phase 2 of the Department of Energy funded project Analysis of oil- bearing Cretaceous Sandstone Hydrocarbon Reservoirs, exclusive of the Dakota Sandstone, on the Jicarilla Apache Indian Reservation, New Mexico was to define the facies of the oil producing units within the Mancos Shale and interpret the depositional environments of these facies within a sequence stratigraphic context. The focus of this report will center on (1) redefinition of the area and vertical extent of the ''Gallup sandstone'' or El Vado Sandstone Member of the Mancos Shale, (2) determination of the facies distribution within themore » ''Gallup sandstone'' and other oil-producing sandstones within the lower Mancos, placing these facies within the overall depositional history of the San Juan Basin, (3) application of the principals of sequence stratigraphy to the depositional units that comprise the Mancos Shale, and (4) evaluation of the structural features on the Reservation as they may control sites of oil accumulation.« less

  1. Synthesis and analysis of jet fuels from shale oil and coal syncrudes

    NASA Technical Reports Server (NTRS)

    Antoine, A. C.; Gallagher, J. P.

    1976-01-01

    The technical problems involved in converting a significant portion of a barrel of either a shale oil or coal syncrude into a suitable aviation turbine fuel were studied. TOSCO shale oil, H-Coal and COED coal syncrudes were the starting materials. They were processed by distillation and hydrocracking to produce two levels of yield (20 and 40 weight percent) of material having a distillation range of approximately 422 to 561 K (300 F to 550 F). The full distillation range 311 to 616 K (100 F to 650 F) materials were hydrotreated to meet two sets of specifications (20 and 40 volume percent aromatics, 13.5 and 12.75 weight percent H, 0.2 and 0.5 weight percent S, and 0.1 and 0.2 weight percent N). The hydrotreated materials were distilled to meet given end point and volatility requirements. The syntheses were carried out in laboratory and pilot plant equipment scaled to produce thirty-two 0.0757 cu m (2-gal)samples of jet fuel of varying defined specifications. Detailed analyses for physical and chemical properties were made on the crude starting materials and on the products.

  2. Rates and Mechanisms of Oil Shale Pyrolysis: A Chemical Structure Approach

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fletcher, Thomas; Pugmire, Ronald

    2015-01-01

    Three pristine Utah Green River oil shale samples were obtained and used for analysis by the combined research groups at the University of Utah and Brigham Young University. Oil shale samples were first demineralized and the separated kerogen and extracted bitumen samples were then studied by a host of techniques including high resolution liquid-state carbon-13 NMR, solid-state magic angle sample spinning 13C NMR, GC/MS, FTIR, and pyrolysis. Bitumen was extracted from the shale using methanol/dichloromethane and analyzed using high resolution 13C NMR liquid state spectroscopy, showing carbon aromaticities of 7 to 11%. The three parent shales and the demineralized kerogensmore » were each analyzed with solid-state 13C NMR spectroscopy. Carbon aromaticity of the kerogen was 23-24%, with 10-12 aromatic carbons per cluster. Crushed samples of Green River oil shale and its kerogen extract were pyrolyzed at heating rates from 1 to 10 K/min at pressures of 1 and 40 bar and temperatures up to 1000°C. The transient pyrolysis data were fit with a first-order model and a Distributed Activation Energy Model (DAEM). The demineralized kerogen was pyrolyzed at 10 K/min in nitrogen at atmospheric pressure at temperatures up to 525°C, and the pyrolysis products (light gas, tar, and char) were analyzed using 13C NMR, GC/MS, and FTIR. Details of the kerogen pyrolysis have been modeled by a modified version of the chemical percolation devolatilization (CPD) model that has been widely used to model coal combustion/pyrolysis. This refined CPD model has been successful in predicting the char, tar, and gas yields of the three shale samples during pyrolysis. This set of experiments and associated modeling represents the most sophisticated and complete analysis available for a given set of oil shale samples.« less

  3. Application of fluid-rock reaction studies to in situ recovery from oil sand deposits, Alberta, Canada - I. Aqueous phase results for an experimental-statistical study of water-bitumen-shale reactions

    NASA Astrophysics Data System (ADS)

    Boon, J. A.; Hitchon, Brian

    1983-02-01

    In situ recovery operations in oil sand deposits effectively represent man-imposed low to intermediate temperature metamorphism of the sediments in the deposit. In order to evaluate some of the reactions which occur, a factorial experiment was earned out in which a shale from the Lower Cretaceous McMurray Formation in the Athabasca oil sand deposit of Alberta, in the presence or absence of bitumen, was subjected to hydrothermal treatment with aqueous fluids of varying pH and salinity, at two different temperatures, for periods up to 92 hours. The aqueous fluid was analyzed and the analytical data subjected to statistical factor analysis and analysis of variance, which enabled identification of the main processes, namely, cation exchange, the production of two types of colloidal material, and the dissolution of quartz There is also saturation of the aqueous phase by. as yet unidentified, "total organic carbon" and complete conversion and removal of all nitrogen in the shale to the aqueous phase. These reactions have implications with regards to the economics of the in situ recovery process, specifically with respect to the reuse and/or disposal of the produced water and the plugging of the pore space and hence of reduction of permeability between the injection and production wells. As a result of these experiments it is suggested that monitoring of the composition of the produced water from in situ recovery operations in oil sand deposits would be advisable.

  4. Assessment of continuous (unconventional) oil and gas resources in the Late Cretaceous Mancos Shale of the Piceance Basin, Uinta-Piceance Province, Colorado and Utah, 2016

    USGS Publications Warehouse

    Hawkins, Sarah J.; Charpentier, Ronald R.; Schenk, Christopher J.; Leathers-Miller, Heidi M.; Klett, Timothy R.; Brownfield, Michael E.; Finn, Tom M.; Gaswirth, Stephanie B.; Marra, Kristen R.; Le, Phoung A.; Mercier, Tracey J.; Pitman, Janet K.; Tennyson, Marilyn E.

    2016-06-08

    The U.S. Geological Survey (USGS) completed a geology-based assessment of the continuous (unconventional) oil and gas resources in the Late Cretaceous Mancos Shale within the Piceance Basin of the Uinta-Piceance Province (fig. 1). The previous USGS assessment of the Mancos Shale in the Piceance Basin was completed in 2003 as part of a comprehensive assessment of the greater UintaPiceance Province (U.S. Geological Survey Uinta-Piceance Assessment Team, 2003). Since the last assessment, more than 2,000 wells have been drilled and completed in one or more intervals within the Mancos Shale of the Piceance Basin (IHS Energy Group, 2015). In addition, the USGS Energy Resources Program drilled a research core in the southern Piceance Basin that provided significant new geologic and geochemical data that were used to refine the 2003 assessment of undiscovered, technically recoverable oil and gas in the Mancos Shale.

  5. 43 CFR 3900.30 - Filing documents.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 43 Public Lands: Interior 2 2013-10-01 2013-10-01 false Filing documents. 3900.30 Section 3900.30 Public Lands: Interior Regulations Relating to Public Lands (Continued) BUREAU OF LAND MANAGEMENT, DEPARTMENT OF THE INTERIOR MINERALS MANAGEMENT (3000) OIL SHALE MANAGEMENT-GENERAL Oil Shale Management...

  6. 43 CFR 3900.30 - Filing documents.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 43 Public Lands: Interior 2 2011-10-01 2011-10-01 false Filing documents. 3900.30 Section 3900.30 Public Lands: Interior Regulations Relating to Public Lands (Continued) BUREAU OF LAND MANAGEMENT, DEPARTMENT OF THE INTERIOR RANGE MANAGEMENT (4000) OIL SHALE MANAGEMENT-GENERAL Oil Shale Management...

  7. 43 CFR 3900.30 - Filing documents.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 43 Public Lands: Interior 2 2012-10-01 2012-10-01 false Filing documents. 3900.30 Section 3900.30 Public Lands: Interior Regulations Relating to Public Lands (Continued) BUREAU OF LAND MANAGEMENT, DEPARTMENT OF THE INTERIOR MINERALS MANAGEMENT (3000) OIL SHALE MANAGEMENT-GENERAL Oil Shale Management...

  8. 43 CFR 3501.17 - Are there any general planning or environmental considerations that affect issuance of my permit...

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... INTERIOR MINERALS MANAGEMENT (3000) LEASING OF SOLID MINERALS OTHER THAN COAL AND OIL SHALE Leasing of Solid Minerals Other Than Coal and Oil Shale-General § 3501.17 Are there any general planning or...

  9. 43 CFR 3501.17 - Are there any general planning or environmental considerations that affect issuance of my permit...

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... INTERIOR MINERALS MANAGEMENT (3000) LEASING OF SOLID MINERALS OTHER THAN COAL AND OIL SHALE Leasing of Solid Minerals Other Than Coal and Oil Shale-General § 3501.17 Are there any general planning or...

  10. 43 CFR 3900.30 - Filing documents.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 43 Public Lands: Interior 2 2014-10-01 2014-10-01 false Filing documents. 3900.30 Section 3900.30 Public Lands: Interior Regulations Relating to Public Lands (Continued) BUREAU OF LAND MANAGEMENT, DEPARTMENT OF THE INTERIOR MINERALS MANAGEMENT (3000) OIL SHALE MANAGEMENT-GENERAL Oil Shale Management...

  11. 43 CFR 3501.17 - Are there any general planning or environmental considerations that affect issuance of my permit...

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... INTERIOR MINERALS MANAGEMENT (3000) LEASING OF SOLID MINERALS OTHER THAN COAL AND OIL SHALE Leasing of Solid Minerals Other Than Coal and Oil Shale-General § 3501.17 Are there any general planning or...

  12. 43 CFR 3501.17 - Are there any general planning or environmental considerations that affect issuance of my permit...

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... INTERIOR MINERALS MANAGEMENT (3000) LEASING OF SOLID MINERALS OTHER THAN COAL AND OIL SHALE Leasing of Solid Minerals Other Than Coal and Oil Shale-General § 3501.17 Are there any general planning or...

  13. METHOD OF CHEMICAL ANALYSIS FOR OIL SHALE WASTES

    EPA Science Inventory

    Several methods of chemical analysis are described for oil shale wastewaters and retort gases. These methods are designed to support the field testing of various pollution control systems. As such, emphasis has been placed on methods which are rapid and sufficiently rugged to per...

  14. Assessment of shale-oil resources of the Central Sumatra Basin, Indonesia, 2015

    USGS Publications Warehouse

    Schenk, Christopher J.; Charpentier, Ronald R.; Klett, Timothy R.; Tennyson, Marilyn E.; Mercier, Tracey J.; Brownfield, Michael E.; Pitman, Janet K.; Gaswirth, Stephanie B.; Leathers-Miller, Heidi M.

    2015-11-12

    Using a geology-based assessment methodology, the U.S. Geological Survey estimated means of 459 million barrels of shale oil, 275 billion cubic feet of associated gas, and 23 million barrels of natural gas liquids in the Central Sumatra Basin, Indonesia.

  15. Method for attenuating seismic shock from detonating explosive in an in situ oil shale retort

    DOEpatents

    Studebaker, Irving G.; Hefelfinger, Richard

    1980-01-01

    In situ oil shale retorts are formed in formation containing oil shale by excavating at least one void in each retort site. Explosive is placed in a remaining portion of unfragmented formation within each retort site adjacent such a void, and such explosive is detonated in a single round for explosively expanding formation within the retort site toward such a void for forming a fragmented permeable mass of formation particles containing oil shale in each retort. This produces a large explosion which generates seismic shock waves traveling outwardly from the blast site through the underground formation. Sensitive equipment which could be damaged by seismic shock traveling to it straight through unfragmented formation is shielded from such an explosion by placing such equipment in the shadow of a fragmented mass in an in situ retort formed prior to the explosion. The fragmented mass attenuates the velocity and magnitude of seismic shock waves traveling toward such sensitive equipment prior to the shock wave reaching the vicinity of such equipment.

  16. The effect of deformation on two-phase flow through proppant-packed fractured shale samples: A micro-scale experimental investigation

    NASA Astrophysics Data System (ADS)

    Arshadi, Maziar; Zolfaghari, Arsalan; Piri, Mohammad; Al-Muntasheri, Ghaithan A.; Sayed, Mohammed

    2017-07-01

    We present the results of an extensive micro-scale experimental investigation of two-phase flow through miniature, fractured reservoir shale samples that contained different packings of proppant grains. We investigated permeability reduction in the samples by conducting experiments under a wide range of net confining pressures. Three different proppant grain distributions in three individual fractured shale samples were studied: i) multi-layer, ii) uniform mono-layer, and iii) non-uniform mono-layer. We performed oil-displacing-brine (drainage) and brine-displacing-oil (imbibition) flow experiments in the proppant packs under net confining pressures ranging from 200 to 6000 psi. The flow experiments were performed using a state-of-the-art miniature core-flooding apparatus integrated with a high-resolution, X-ray microtomography system. We visualized fluid occupancies, proppant embedment, and shale deformation under different flow and stress conditions. We examined deformation of pore space within the proppant packs and its impact on permeability and residual trapping, proppant embedment due to changes in net confining stress, shale surface deformation, and disintegration of proppant grains at high stress conditions. In particular, geometrical deformation and two-phase flow effects within the proppant pack impacting hydraulic conductivity of the medium were probed. A significant reduction in effective oil permeability at irreducible water saturation was observed due to increase in confining pressure. We propose different mechanisms responsible for the observed permeability reduction in different fracture packings. Samples with dissimilar proppant grain distributions showed significantly different proppant embedment behavior. Thinner proppant layer increased embedment significantly and lowered the onset confining pressure of embedment. As confining stress was increased, small embedments caused the surface of the shale to fracture. The produced shale fragments were then entrained by the flow and partially blocked pore-throat connections within the proppant pack. Deformation of proppant packs resulted in significant changes in waterflood residual oil saturation. In-situ contact angles measured using micro-CT images showed that proppant grains had experienced a drastic alteration of wettability (from strong water-wet to weakly oil-wet) after the medium had been subjected to flow of oil and brine for multiple weeks. Nanometer resolution SEM images captured nano-fractures induced in the shale surfaces during the experiments with mono-layer proppant packing. These fractures improved the effective permeability of the medium and shale/fracture interactions.

  17. Correlation between electron spin resonance spectra and oil yield in eastern oil shales

    USGS Publications Warehouse

    Choudhury, M.; Rheams, K.F.; Harrell, J.W.

    1986-01-01

    Organic free radical spin concentrations were measured in 60 raw oil shale samples from north Alabama and south Tennessee and compared with Fischer assays and uranium concentrations. No correlation was found between spin concentration and oil yield for the complete set of samples. However, for a 13 sample set taken from a single core hole, a linear correlation was obtained. No correlation between spin concentration and uranium concentration was found. ?? 1986.

  18. Adsorption of chromium ions from aqueous solution by using activated carbo-aluminosilicate material from oil shale.

    PubMed

    Shawabkeh, Reyad Awwad

    2006-07-15

    A novel activated carbo-aluminosilicate material was prepared from oil shale by chemical activation. The chemicals used in the activation process were 95 wt% sulfuric and 5 wt% nitric acids. The produced material combines the sorption properties and the mechanical strength of both activated carbon and zeolite. An X-ray diffraction analysis shows the formation of zeolite Y, Na-X, and A-types, sodalite, sodium silicate, mullite, and cancrinite. FT-IR spectrum shows the presence of carboxylic, phenolic, and lactonic groups on the surface of this material. The zero point of charge estimated at different mass to solution ratio ranged from 7.9 to 8.3. Chromium removal by this material showed sorption capacity of 92 mg/g.

  19. Assessment of undiscovered oil and gas resources of the Taoudeni Basin Province, Mali and Mauritania, 2015

    USGS Publications Warehouse

    Brownfield, Michael E.; Schenk, Christopher J.; Klett, Timothy R.; Tennyson, Marilyn E.; Pitman, Janet K.; Gaswirth, Stephanie B.; Le, Phuong A.; Leathers-Miller, Heidi M.; Mercier, Tracey J.; Marra, Kristen R.; Hawkins, Sarah J.

    2016-03-31

    Using a geology-based assessment methodology, the U.S. Geological Survey estimated undiscovered, technically recoverable mean resources of 160 million barrels of conventional oil, 1,880 billion cubic feet of conventional gas, 602 million barrels of shale oil, and 6,395 billion cubic feet of shale gas in the Taoudeni Basin Province in Mali and Mauritania.

  20. Combined fluidized bed retort and combustor

    DOEpatents

    Shang, Jer-Yu; Notestein, John E.; Mei, Joseph S.; Zeng, Li-Wen

    1984-01-01

    The present invention is directed to a combined fluidized bed retorting and combustion system particularly useful for extracting energy values from oil shale. The oil-shale retort and combustor are disposed side-by-side and in registry with one another through passageways in a partition therebetween. The passageways in the partition are submerged below the top of the respective fluid beds to preclude admixing or the product gases from the two chambers. The solid oil shale or bed material is transported through the chambers by inclining or slanting the fluidizing medium distributor so that the solid bed material, when fluidized, moves in the direction of the downward slope of the distributor.

  1. Decaking of coal or oil shale during pyrolysis in the presence of iron oxides

    DOEpatents

    Khan, M. Rashid

    1989-01-01

    A method for producing a fuel from the pyrolysis of coal or oil shale in the presence of iron oxide in an inert gas atmosphere. The method includes the steps of pulverizing feed coal or oil shale, pulverizing iron oxide, mixing the pulverized feed and iron oxide, and heating the mixture in a gas atmosphere which is substantially inert to the mixture so as to form a product fuel, which may be gaseous, liquid and/or solid. The method of the invention reduces the swelling of coals, such as bituminous coal and the like, which are otherwise known to swell during pyrolysis.

  2. Method oil shale pollutant sorption/NO.sub.x reburning multi-pollutant control

    DOEpatents

    Boardman, Richard D [Idaho Falls, ID; Carrington, Robert A [Idaho Falls, ID

    2008-06-10

    A method of decreasing pollutants produced in a combustion process. The method comprises combusting coal in a combustion chamber to produce at least one pollutant selected from the group consisting of a nitrogen-containing pollutant, sulfuric acid, sulfur trioxide, carbonyl sulfide, carbon disulfide, chlorine, hydroiodic acid, iodine, hydrofluoric acid, fluorine, hydrobromic acid, bromine, phosphoric acid, phosphorous pentaoxide, elemental mercury, and mercuric chloride. Oil shale particles are introduced into the combustion chamber and are combusted to produce sorbent particulates and a reductant. The at least one pollutant is contacted with at least one of the sorbent particulates and the reductant to decrease an amount of the at least one pollutant in the combustion chamber. The reductant may chemically reduce the at least one pollutant to a benign species. The sorbent particulates may adsorb or absorb the at least one pollutant. A combustion chamber that produces decreased pollutants in a combustion process is also disclosed.

  3. Rehabilitation potential and practices of Colorado oil shale lands. Progress report, June 1, 1978--May 31, 1979

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cook, C.W.

    The following document is a third-year progress report for the period June 1, 1978 to May 31, 1979. The overall objective of the project is to study the effects of seeding techniques, species mixtures, fertilizer, ecotypes, improved plant materials, mycorrhizal fungi, and soil microorganisms on the initial and final stages of reclamation obtained through seeding and subsequent succession on disturbed oil shale lands. Plant growth medias that are being used in field-established test plots include retorted shale, soil over retorted shale, subsoil materials, and surface disturbed topsoils. Because of the long-term nature of successional and ecologically oriented studies the projectmore » is just beginning to generate significant publications. Several of the studies associated with the project have some phases being conducted principally in the laboratories and greenhouses at Colorado State Univerisity. The majority of the research, however, is being conducted on a 20 hectare Intensive Study Site located near the focal points of oil shale activity in the Piceance Basin. The site is at an elevation of 2,042 m, receives approximately 30 to 55 cm of precipitation annually, and encompasses the plant communities most typical of the Piceance Basin. Most of the information contained in this report originated from the monitoring and sampling of research plots established in either the fall of 1976 or 1977. Therefore, data that have been obtained from the Intensive Study Site represent only first- or second-year results. However, many trends have been identified in thesuccessional process and the soil microorganisms and mycorrhizal studies continue to contribute significant information to the overall results. The phytosociological study has progressed to a point where field sampling is complete and the application and publication of this materials will be forthcoming in 1979.« less

  4. 43 CFR 3900.20 - Appealing the BLM's decision.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 43 Public Lands: Interior 2 2012-10-01 2012-10-01 false Appealing the BLM's decision. 3900.20 Section 3900.20 Public Lands: Interior Regulations Relating to Public Lands (Continued) BUREAU OF LAND MANAGEMENT, DEPARTMENT OF THE INTERIOR MINERALS MANAGEMENT (3000) OIL SHALE MANAGEMENT-GENERAL Oil Shale...

  5. 43 CFR 3900.20 - Appealing the BLM's decision.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 43 Public Lands: Interior 2 2011-10-01 2011-10-01 false Appealing the BLM's decision. 3900.20 Section 3900.20 Public Lands: Interior Regulations Relating to Public Lands (Continued) BUREAU OF LAND MANAGEMENT, DEPARTMENT OF THE INTERIOR RANGE MANAGEMENT (4000) OIL SHALE MANAGEMENT-GENERAL Oil Shale...

  6. 43 CFR 3501.20 - If BLM approves my application for a use authorization under this part, when does it become...

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... MINERALS MANAGEMENT (3000) LEASING OF SOLID MINERALS OTHER THAN COAL AND OIL SHALE Leasing of Solid Minerals Other Than Coal and Oil Shale-General § 3501.20 If BLM approves my application for a use...

  7. 43 CFR 3501.20 - If BLM approves my application for a use authorization under this part, when does it become...

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... MINERALS MANAGEMENT (3000) LEASING OF SOLID MINERALS OTHER THAN COAL AND OIL SHALE Leasing of Solid Minerals Other Than Coal and Oil Shale-General § 3501.20 If BLM approves my application for a use...

  8. 43 CFR 3501.20 - If BLM approves my application for a use authorization under this part, when does it become...

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... MINERALS MANAGEMENT (3000) LEASING OF SOLID MINERALS OTHER THAN COAL AND OIL SHALE Leasing of Solid Minerals Other Than Coal and Oil Shale-General § 3501.20 If BLM approves my application for a use...

  9. 43 CFR 3900.20 - Appealing the BLM's decision.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 43 Public Lands: Interior 2 2014-10-01 2014-10-01 false Appealing the BLM's decision. 3900.20 Section 3900.20 Public Lands: Interior Regulations Relating to Public Lands (Continued) BUREAU OF LAND MANAGEMENT, DEPARTMENT OF THE INTERIOR MINERALS MANAGEMENT (3000) OIL SHALE MANAGEMENT-GENERAL Oil Shale...

  10. 43 CFR 3900.20 - Appealing the BLM's decision.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 43 Public Lands: Interior 2 2013-10-01 2013-10-01 false Appealing the BLM's decision. 3900.20 Section 3900.20 Public Lands: Interior Regulations Relating to Public Lands (Continued) BUREAU OF LAND MANAGEMENT, DEPARTMENT OF THE INTERIOR MINERALS MANAGEMENT (3000) OIL SHALE MANAGEMENT-GENERAL Oil Shale...

  11. 43 CFR 3501.20 - If BLM approves my application for a use authorization under this part, when does it become...

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... MINERALS MANAGEMENT (3000) LEASING OF SOLID MINERALS OTHER THAN COAL AND OIL SHALE Leasing of Solid Minerals Other Than Coal and Oil Shale-General § 3501.20 If BLM approves my application for a use...

  12. 43 CFR 3501.10 - What types of mineral use authorizations can I get under these rules?

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ...) LEASING OF SOLID MINERALS OTHER THAN COAL AND OIL SHALE Leasing of Solid Minerals Other Than Coal and Oil Shale-General § 3501.10 What types of mineral use authorizations can I get under these rules? BLM issues...

  13. 43 CFR 3501.10 - What types of mineral use authorizations can I get under these rules?

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ...) LEASING OF SOLID MINERALS OTHER THAN COAL AND OIL SHALE Leasing of Solid Minerals Other Than Coal and Oil Shale-General § 3501.10 What types of mineral use authorizations can I get under these rules? BLM issues...

  14. 43 CFR 3501.10 - What types of mineral use authorizations can I get under these rules?

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ...) LEASING OF SOLID MINERALS OTHER THAN COAL AND OIL SHALE Leasing of Solid Minerals Other Than Coal and Oil Shale-General § 3501.10 What types of mineral use authorizations can I get under these rules? BLM issues...

  15. 43 CFR 3501.10 - What types of mineral use authorizations can I get under these rules?

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ...) LEASING OF SOLID MINERALS OTHER THAN COAL AND OIL SHALE Leasing of Solid Minerals Other Than Coal and Oil Shale-General § 3501.10 What types of mineral use authorizations can I get under these rules? BLM issues...

  16. Geology and assessment of unconventional oil and gas resources of northeastern Mexico

    USGS Publications Warehouse

    ,

    2015-01-01

    The U.S. Geological Survey, in cooperation with the U.S. Department of State, quantitatively assessed the potential for unconventional oil and gas resources within the onshore portions of the Tampico-Misantla Basin, Burgos Basin, and Sabinas Basin provinces of northeastern Mexico. Unconventional resources of the Veracruz Basin were not quantitatively assessed because of a current lack of required geological information. Unconventional resources include shale gas, shale oil, tight gas, tight oil, and coalbed gas. Undiscovered conventional oil and gas resources were assessed in Mexico in 2012.

  17. Quantifying Emissions from the Eagle Ford Shale Using Ethane Enhancement

    NASA Astrophysics Data System (ADS)

    Roest, G. S.; Schade, G. W.

    2014-12-01

    Emissions from unconventional oil and natural gas exploration in the Eagle Ford Shale have been conjectured as a contributing factor to increasing ozone concentrations in the San Antonio Metropolitan Area, which is on track to be designated as a nonattainment area by the EPA. Primary species found in natural gas emissions are alkanes, with C3 and heavier alkanes acting as short-lived VOCs contributing to regional ozone formation. Methane emissions from the industry are also a forcing mechanism for climate change as methane is a potent greenhouse gas. Recent studies have highlighted a high variability and uncertainties in oil and natural gas emissions estimates in emissions inventories. Thus, accurately quantifying oil and natural gas emissions from the Eagle Ford Shale is necessary to assess the industry's impacts on climate forcing and regional air quality. We estimate oil and natural gas emissions in the Eagle Ford Shale using in situ ethane measurements along southwesterly trajectories from the Gulf of Mexico, dominantly during the summertime. Ethane enhancement within the drilling area is estimated by comparing ethane concentrations upwind of the shale, near the Texas coastline, to downwind measurements in the San Antonio Metropolitan Area, Odessa, and Amarillo. Upwind ethane observations indicate low background levels entering Texas in the Gulf of Mexico air masses. Significant ethane enhancement is observed between the coast and San Antonio, and is attributed to oil and natural gas operations due to the concurrent enhancements of heavier alkanes. Using typical boundary layer depths and presuming homogenous emissions across the Eagle Ford shale area, the observed ethane enhancements are used to extrapolate an estimate of oil and natural gas industry emissions in the Eagle Ford. As oil and natural gas production in the area is projected to grow rapidly over the coming years, the impacts of these emissions on regional air quality will need to be thoroughly studied.

  18. Fracture patterns and their origin in the upper Devonian Antrim Shale gas reservoir of the Michigan basin; a review

    USGS Publications Warehouse

    Ryder, Robert T.

    1996-01-01

    INTRODUCTION: Black shale members of the Upper Devonian Antrim Shale are both the source and reservoir for a regional gas accumulation that presently extends across parts of six counties in the northern part of the Michigan basin (fig. 1). Natural fractures are considered by most petroleum geologists and oil and gas operators who work the Michigan basin to be a necessary condition for commercial gas production in the Antrim Shale. Fractures provide the conduits for free gas and associated water to flow to the borehole through the black shale which, otherwise, has a low matrix permeability. Moreover, the fractures assist in the release of gas adsorbed on mineral and(or) organic matter in the shale (Curtis, 1992). Depths to the gas-producing intervals (Norwood and Lachine Members) generally range from 1,200 to 1,800 ft (Oil and Gas Journal, 1994). Locally, wells that produce gas from the accumulation are as deep as 2,200 (Oil and Gas Journal, 1994). Even though natural fractures are an important control on Antrim Shale gas production, most wells require stimulation by hydraulic fracturing to attain commercial production rates (Kelly, 1992). In the U.S. Geological Survey's National Assessment of United States oil and gas, Dolton (1995) estimates that, at a mean value, 4.45 trillion cubic feet (TCF) of gas are recoverable as additions to already discovered quantities from the Antrim Shale in the productive area of the northern Michigan trend. Dolton (1995) also suggests that undiscovered Antrim Shale gas accumulations exist in other parts of the Michigan basin. The character, distribution, and origin of natural fractures in the Antrim Shale gas accumulation have been studied recently by academia and industry. The intent of these investigations is to: 1) predict 'sweet spots', prior to drilling, in the existing gas-producing trend, 2) improve production practices in the existing trend, 3) predict analogous fracture-controlled gas accumulations in other parts of the Michigan basin, and 4) improve estimates of the recoverable gas in the Antrim Shale gas plays (Dolton, 1995). This review of published literature on the characteristics of Antrim Shale fractures, their origin, and their controls on gas production will help to define objectives and goals in future U.S. Geological Survey studies of Antrim Shale gas resources.

  19. Thickening compositions, and related materials and processes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    O'Brien, Michael Joseph; Perry, Robert James; Enick, Robert Michael

    A silicone polymer is provided, modified with at least one functional group from the class of anthraquinone amide groups; anthraquinone sulfonamide groups; thioxanthone amide groups; or thioxanthone sulfone amide groups. The polymer can be combined with a hydrocarbon solvent or with supercritical carbon dioxide (CO.sub.2), and is very effective for increasing the viscosity of either medium. A process for the recovery of oil from a subterranean, oil-bearing formation is also described, using supercritical carbon dioxide modified with the functionalized silicone polymer. A process for extracting natural gas or oil from a bedrock-shale formation is also described, again using the modifiedmore » silicone polymer.« less

  20. Estimates of in-place oil shale of various grades in federal lands, Piceance Basin, Colorado

    USGS Publications Warehouse

    Mercier, Tracey J.; Johnson, Ronald C.; Brownfield, Michael E.

    2010-01-01

    The entire oil shale interval in the Piceance Basin is subdivided into seventeen “rich” and “lean” zones that were assessed separately. These zones are roughly time-stratigraphic units consisting of distinctive, laterally continuous sequences of oil shale beds that can be traced throughout much of the Piceance Basin. Several subtotals of the 1.5 trillion barrels total were calculated: (1) about 920 billion barrels (60 percent) exceed 15 gallons per ton (GPT); (2) about 352 billion barrels (23 percent) exceed 25 GPT; (3) more than one trillion barrels (70 percent) underlie Federally-managed lands; and (4) about 689 billion barrels (75 percent) of the 15 GPT total and about 284 billion barrels (19 percent) of the 25 GPT total are under Federal mineral (subsurface) ownership. These 15 and 25 GPT estimates include only those areas where the weighted average of an entire zone exceeds those minimum cutoffs. In areas where the entire zone does not meet the minimum criteria, some oil shale intervals of significant thicknesses could exist within the zone that exceed these minimum cutoffs. For example, a 30-ft interval within an oil shale zone might exceed 25 GPT but if the entire zone averages less than 25 GPT, these resources are not included in the 15 and 25 GPT subtotals, although they might be exploited in the future.

  1. Mass and heat transfer in crushed oil shale

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Carley, J.F.; Straub, J.S.; Ott, L.L.

    1984-04-01

    Heat and mass transfer between gases and oil-shale particles are both important for all proposed retorting processes. Past studies of transfer in packed beds, which have disagreed substantially in their results, have nearly all been done with beds of regular particles of uniform size, whereas oil-shale retorting involves particles of diverse shapes and widely ranging sizes. To resolve these questions, we have made 349 runs in which we measured mass-transfer rates from naphthalene particles of diverse shapes buried in packed beds through which air was passed at room temperature. This technique permits calculation of the mass-transfer coefficient for each activemore » particle in the bed rather than, as in most past studies, for the bed as a whole. The data were analyzed in two ways: (1) by the traditional correlation of Colburn j/sub D/ vs Reynolds number and (2) by multiple regression of the mass-transfer coefficient on air rate, traditional correlation of Colburn j/sub D/ vs Reynolds number and (3) by multiple regression of the mass-transfer coefficient on air rate, sizes of active and inert particles, void fraction, and temperature. Principal findings are: (1) local Reynolds number should be based on active particle size rather than average size for the bed; (2) no appreciable differences were seen between shallow beds and deep ones; (3) mass transfer was 26% faster for spheres and lozenges buried in shale than for all-sphere beds; (4) orientation of lozenges in shale beds has little effect on mass-transfer rate; (5) a useful summarizing equation for either mass or heat transfer in shale beds is log j.epsilon = -.0747 - .6344 log Re + .0592 log/sup 2/Re where j = either j/sub D/ or j/sub H/, the Chilton-Colburn j-factors for mass and heat transfer, Re = the Reynolds number defined for packed beds, and epsilon = the void fraction in the bed. 12 references, 15 figures.« less

  2. Evaluation of comprehensive two-dimensional gas chromatography with flame photometric detection: potential application for sulfur speciation in shale oil.

    PubMed

    Mitrevski, Blagoj; Amer, Mohammad W; Chaffee, Alan L; Marriott, Philip J

    2013-11-25

    Flame photometric detection in the sulfur channel has been evaluated for sulfur speciation and quantification in comprehensive two-dimensional gas chromatography [GC × GC-FPD(S)] for S-compound speciation in shale extracts. Signal non-linearity and potential quenching effects were reportedly major limitations of this detector for analysis of sulfur in complex matrices. However, reliable linear relationships with correlation coefficient >0.99 can be obtained if the sum of the square root of each modulation slice in GC × GC is plotted vs. sulfur concentration. Furthermore, the quenching effects are reduced due to essentially complete separation of S-containing components from the hydrocarbon matrix. An increase of S/N of up to 150 times has been recorded for benzothiophene and dibenzothiophene in GC × GC-FPD when compared to GC-FPD due to the modulation process. As a consequence, 10 times lower detection limits were observed in the former mode. The applicability of the method was demonstrated using shale oil sample extracts. Three sulfur classes were completely separated and the target class (thiophenes) was successfully quantified after the rest of the sample was diverted to the second detector by using a heart-cut strategy. Based on the proposed method, 70% of the sulfur in the shale oil was assigned to the thiophenes, 24% to benzothiophenes, and 5% to dibenzothiophene compounds. Copyright © 2013 Elsevier B.V. All rights reserved.

  3. Halogens in oil and gas production-associated wastewater.

    NASA Astrophysics Data System (ADS)

    Harkness, J.; Warner, N. R.; Dwyer, G. S.; Mitch, W.; Vengosh, A.

    2014-12-01

    Elevated chloride and bromide in oil and gas wastewaters that are released to the environment are one of the major environmental risks in areas impacted by shale gas development [Olmstead et al.,2013]. In addition to direct contamination of streams, the potential for formation of highly toxic disinfection by-products (DBPs) in drinking water in utilities located downstream from disposal sites poses a serious risk to human health. Here we report on the occurrence of iodide in oil and gas wastewater. We conducted systematic measurements of chloride, bromide, and iodide in (1) produced waters from conventional oil and gas wells from the Appalachian Basin; (2) hydraulic fracturing flowback fluids from unconventional Marcellus and Fayetteville shale gas, (3) effluents from a shale gas spill site in West Virginia; (4) effluents of oil and gas wastewater disposed to surface water from three brine treatment facilities in western Pennsylvania; and (5) surface waters downstream from the brine treatment facilities. Iodide concentration was measured by isotope dilution-inductively coupled plasma-mass spectrometry, which allowed for a more accurate measurement of iodide in a salt-rich matrix. Iodide in both conventional and unconventional oil and gas produced and flowback waters varied from 1 mg/L to 55 mg/L, with no systematic enrichment in hydraulic fracturing fluids. The similarity in iodide content between the unconventional Marcellus flowback waters and the conventional Appalachian produced waters clearly indicate that the hydraulic fracturing process does not induce additional iodide and the iodide content is related to natural variations in the host formations. Our data show that effluents from the brine treatment facilities have elevated iodide (mean = 20.9±1 mg/L) compared to local surface waters (0.03± 0.1 mg/L). These results indicate that iodide, in addition to chloride and bromide in wastewater from oil and gas production, poses an additional risk to downstream surface water quality and drinking water utilities given the potential of formation of iodate-DBPs in drinking water. Olmstead, S.M. et al. (2013). Shale gas development impacts on surface water quality in Pennsylvania, PNAS, 110, 4962-4967.

  4. Kerogen extraction from subterranean oil shale resources

    DOEpatents

    Looney, Mark Dean; Lestz, Robert Steven; Hollis, Kirk; Taylor, Craig; Kinkead, Scott; Wigand, Marcus

    2010-09-07

    The present invention is directed to methods for extracting a kerogen-based product from subsurface (oil) shale formations, wherein such methods rely on fracturing and/or rubblizing portions of said formations so as to enhance their fluid permeability, and wherein such methods further rely on chemically modifying the shale-bound kerogen so as to render it mobile. The present invention is also directed at systems for implementing at least some of the foregoing methods. Additionally, the present invention is also directed to methods of fracturing and/or rubblizing subsurface shale formations and to methods of chemically modifying kerogen in situ so as to render it mobile.

  5. Kerogen extraction from subterranean oil shale resources

    DOEpatents

    Looney, Mark Dean [Houston, TX; Lestz, Robert Steven [Missouri City, TX; Hollis, Kirk [Los Alamos, NM; Taylor, Craig [Los Alamos, NM; Kinkead, Scott [Los Alamos, NM; Wigand, Marcus [Los Alamos, NM

    2009-03-10

    The present invention is directed to methods for extracting a kerogen-based product from subsurface (oil) shale formations, wherein such methods rely on fracturing and/or rubblizing portions of said formations so as to enhance their fluid permeability, and wherein such methods further rely on chemically modifying the shale-bound kerogen so as to render it mobile. The present invention is also directed at systems for implementing at least some of the foregoing methods. Additionally, the present invention is also directed to methods of fracturing and/or rubblizing subsurface shale formations and to methods of chemically modifying kerogen in situ so as to render it mobile.

  6. Determination of polar organic solutes in oil-shale retort water

    USGS Publications Warehouse

    Leenheer, J.A.; Noyes, T.I.; Stuber, H.A.

    1982-01-01

    A variety of analytical methods were used to quantitatively determine polar organic solutes in process retort water and a gas-condensate retort water produced in a modified in situ oil-shale retort. Specific compounds accounting for 50% of the dissolved organic carbon were identified in both retort waters. In the process water, 42% of the dissolved organic carbon consisted of a homologous series of fatty acids from C2 to C10. Dissolved organic carbon percentages for other identified compound classes were as follows: aliphatic dicarboxylic acids, 1.4%; phenols, 2.2%; hydroxypyridines, 1.1%; aliphatic amides, 1.2%. In the gas-condensate retort water, aromatic amines were most abundant at 19.3% of the dissolved organic carbon, followed by phenols (17.8%), nitriles (4.3%), aliphatic alcohols (3.5%), aliphatic ketones (2.4%), and lactones (1.3%). Steam-volatile organic solutes were enriched in the gas-condensate retort water, whereas nonvolatile acids and polyfunctional neutral compounds were predominant organic constituents of the process retort water.

  7. VEGETATIVE REHABILITATION OF ARID LAND DISTURBED IN THE DEVELOPMENT OF OIL SHALE AND COAL

    EPA Science Inventory

    Field experiments were established on sites disturbed by exploratory drilling in the oil shale region of northeastern Utah and on disturbed sites on a potential coal mine in south central Utah. Concurrently, greenhouse studies were carried out using soil samples from disturbed si...

  8. Fossil Platygastroidea in the National Museum of Natural History, Smithsonian Institution

    USDA-ARS?s Scientific Manuscript database

    Platygastroid wasps preserved in Dominican amber and oil shale from the Kishenehn formation (Montana, USA) in the National Museum of Natural History are catalogued. Compression fossils in Kishenehn oil shale yield a specimen of Fidiobia, a specimen of Telenominae, and a specimen with a Scelio-type o...

  9. 43 CFR 3501.16 - Does my permit or lease grant me an exclusive right to develop the lands covered by the permit or...

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... INTERIOR MINERALS MANAGEMENT (3000) LEASING OF SOLID MINERALS OTHER THAN COAL AND OIL SHALE Leasing of Solid Minerals Other Than Coal and Oil Shale-General § 3501.16 Does my permit or lease grant me an...

  10. 43 CFR 3501.16 - Does my permit or lease grant me an exclusive right to develop the lands covered by the permit or...

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... INTERIOR MINERALS MANAGEMENT (3000) LEASING OF SOLID MINERALS OTHER THAN COAL AND OIL SHALE Leasing of Solid Minerals Other Than Coal and Oil Shale-General § 3501.16 Does my permit or lease grant me an...

  11. 43 CFR 3501.16 - Does my permit or lease grant me an exclusive right to develop the lands covered by the permit or...

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... INTERIOR MINERALS MANAGEMENT (3000) LEASING OF SOLID MINERALS OTHER THAN COAL AND OIL SHALE Leasing of Solid Minerals Other Than Coal and Oil Shale-General § 3501.16 Does my permit or lease grant me an...

  12. 43 CFR 3501.16 - Does my permit or lease grant me an exclusive right to develop the lands covered by the permit or...

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... INTERIOR MINERALS MANAGEMENT (3000) LEASING OF SOLID MINERALS OTHER THAN COAL AND OIL SHALE Leasing of Solid Minerals Other Than Coal and Oil Shale-General § 3501.16 Does my permit or lease grant me an...

  13. 78 FR 35601 - Oil Shale Management-General

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-06-13

    ... DEPARTMENT OF THE INTERIOR Bureau of Land Management 43 CFR Parts 3900, 3920, and 3930 [LLWO-3200000. L13100000.PP00000 L.X.EMOSHL000.241A] RIN 1004-AE28 Oil Shale Management--General AGENCY: Bureau of Land Management, Interior. ACTION: Proposed rule; reopening of the comment period. SUMMARY: The...

  14. 78 FR 18547 - Oil Shale Management-General

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-03-27

    ... DEPARTMENT OF THE INTERIOR Bureau of Land Management 43 CFR Parts 3900, 3920, and 3930 [LLWO-3200000 L13100000.PP0000 L.X.EMOSHL000.241A] RIN 1004-AE28 Oil Shale Management--General AGENCY: Bureau of Land Management, Interior. ACTION: Proposed rule. SUMMARY: The Bureau of Land Management (BLM) is...

  15. Assessment of continuous oil and gas resources of the South Sumatra Basin Province, Indonesia, 2016

    USGS Publications Warehouse

    Schenk, Christopher J.; Tennyson, Marilyn E.; Klett, Timothy R.; Finn, Thomas M.; Mercier, Tracey J.; Gaswirth, Stephanie B.; Marra, Kristen R.; Le, Phuong A.; Hawkins, Sarah J.

    2016-12-09

    Using a geology-based assessment methodology, the U.S. Geological Survey estimated undiscovered, technically recoverable mean resources of 689 million barrels of continuous shale oil and 3.9 trillion cubic feet of shale gas in the South Sumatra Basin Province in Indonesia.

  16. Assessment of continuous oil resources in the Wolfcamp shale of the Midland Basin, Permian Basin Province, Texas, 2016

    USGS Publications Warehouse

    Gaswirth, Stephanie B.

    2017-03-06

    The U.S. Geological Survey completed a geology-based assessment of undiscovered, technically recoverable continuous petroleum resources in the Wolfcamp shale in the Midland Basin part of the Permian Basin Province of west Texas. This is the first U.S. Geological Survey evaluation of continuous resources in the Wolfcamp shale in the Midland Basin. Since the 1980s, the Wolfcamp shale in the Midland Basin has been part of the “Wolfberry” play. This play has traditionally been developed using vertical wells that are completed and stimulated in multiple productive stratigraphic intervals that include the Wolfcamp shale and overlying Spraberry Formation. Since the shift to horizontal wells targeting the organic-rich shale of the Wolfcamp, more than 3,000 horizontal wells have been drilled and completed in the Midland Basin Wolfcamp section. The U.S. Geological Survey assessed technically recoverable mean resources of 20 billion barrels of oil and 16 trillion cubic feet of associated gas in the Wolfcamp shale in the Midland Basin.

  17. Wellbore stability in oil and gas drilling with chemical-mechanical coupling.

    PubMed

    Yan, Chuanliang; Deng, Jingen; Yu, Baohua

    2013-01-01

    Wellbore instability in oil and gas drilling is resulted from both mechanical and chemical factors. Hydration is produced in shale formation owing to the influence of the chemical property of drilling fluid. A new experimental method to measure diffusion coefficient of shale hydration is given, and the calculation method of experimental results is introduced. The diffusion coefficient of shale hydration is measured with the downhole temperature and pressure condition, then the penetration migrate law of drilling fluid filtrate around the wellbore is calculated. Furthermore, the changing rules of shale mechanical properties affected by hydration and water absorption are studied through experiments. The relationships between shale mechanical parameters and the water content are established. The wellbore stability model chemical-mechanical coupling is obtained based on the experimental results. Under the action of drilling fluid, hydration makes the shale formation softened and produced the swelling strain after drilling. This will lead to the collapse pressure increases after drilling. The study results provide a reference for studying hydration collapse period of shale.

  18. Wellbore Stability in Oil and Gas Drilling with Chemical-Mechanical Coupling

    PubMed Central

    Deng, Jingen

    2013-01-01

    Wellbore instability in oil and gas drilling is resulted from both mechanical and chemical factors. Hydration is produced in shale formation owing to the influence of the chemical property of drilling fluid. A new experimental method to measure diffusion coefficient of shale hydration is given, and the calculation method of experimental results is introduced. The diffusion coefficient of shale hydration is measured with the downhole temperature and pressure condition, then the penetration migrate law of drilling fluid filtrate around the wellbore is calculated. Furthermore, the changing rules of shale mechanical properties affected by hydration and water absorption are studied through experiments. The relationships between shale mechanical parameters and the water content are established. The wellbore stability model chemical-mechanical coupling is obtained based on the experimental results. Under the action of drilling fluid, hydration makes the shale formation softened and produced the swelling strain after drilling. This will lead to the collapse pressure increases after drilling. The study results provide a reference for studying hydration collapse period of shale. PMID:23935430

  19. Deliberating the perceived risks, benefits, and societal implications of shale gas and oil extraction by hydraulic fracturing in the US and UK

    NASA Astrophysics Data System (ADS)

    Thomas, Merryn; Partridge, Tristan; Harthorn, Barbara Herr; Pidgeon, Nick

    2017-04-01

    Shale gas and oil production in the US has increased rapidly in the past decade, while interest in prospective development has also arisen in the UK. In both countries, shale resources and the method of their extraction (hydraulic fracturing, or 'fracking') have been met with opposition amid concerns about impacts on water, greenhouse gas emissions, and health effects. Here we report the findings of a qualitative, cross-national deliberation study of public perceptions of shale development in UK and US locations not yet subject to extensive shale development. When presented with a carefully calibrated range of risks and benefits, participants' discourse focused on risks or doubts about benefits, and potential impacts were viewed as inequitably distributed. Participants drew on direct, place-based experiences as well as national contexts in deliberating shale development. These findings suggest that shale gas development already evokes a similar 'signature' of risk across the US and UK.

  20. Major and trace elements in Mahogany zone oil shale in two cores from the Green River Formation, piceance basin, Colorado

    USGS Publications Warehouse

    Tuttle, M.L.; Dean, W.E.; Parduhn, N.L.

    1983-01-01

    The Parachute Creek Member of the lacustrine Green River Formation contains thick sequences of rich oil-shale. The richest sequence and the richest oil-shale bed occurring in the member are called the Mahogany zone and the Mahogany bed, respectively, and were deposited in ancient Lake Uinta. The name "Mahogany" is derived from the red-brown color imparted to the rock by its rich-kerogen content. Geochemical abundance and distribution of eight major and 18 trace elements were determined in the Mahogany zone sampled from two cores, U. S. Geological Survey core hole CR-2 and U. S. Bureau of Mines core hole O1-A (Figure 1). The oil shale from core hole CR-2 was deposited nearer the margin of Lake Uinta than oil shale from core hole O1-A. The major- and trace-element chemistry of the Mahogany zone from each of these two cores is compared using elemental abundances and Q-mode factor modeling. The results of chemical analyses of 44 CR-2 Mahogany samples and 76 O1-A Mahogany samples are summarized in Figure 2. The average geochemical abundances for shale (1) and black shale (2) are also plotted on Figure 2 for comparison. The elemental abundances in the samples from the two cores are similar for the majority of elements. Differences at the 95% probability level are higher concentrations of Ca, Cu, La, Ni, Sc and Zr in the samples from core hole CR-2 compared to samples from core hole O1-A and higher concentrations of As and Sr in samples from core hole O1-A compared to samples from core hole CR-2. These differences presumably reflect slight differences in depositional conditions or source material at the two sites. The Mahogany oil shale from the two cores has lower concentrations of most trace metals and higher concentrations of carbonate-related elements (Ca, Mg, Sr and Na) compared to the average shale and black shale. During deposition of the Mahogany oil shale, large quantities of carbonates were precipitated resulting in the enrichment of carbonate-related elements and dilution of most trace elements as pointed out in several previous studies. Q-mode factor modeling is a statistical method used to group samples on the basis of compositional similarities. Factor end-member samples are chosen by the model. All other sample compositions are represented by varying proportions of the factor end-members and grouped as to their highest proportion. The compositional similarities defined by the Q-mode model are helpful in understanding processes controlling multi-element distributions. The models for each core are essentially identical. A four-factor model explains 70% of the variance in the CR-2 data and 64% of the O1-A data (the average correlation coefficients are 0. 84 and 0. 80, respectively). Increasing the number of factors above 4 results in the addition of unique instead of common factors. Table I groups the elements based on high factor-loading scores (the amount of influence each element has in defining the model factors). Similar elemental associations are found in both cores. Elemental abundances are plotted as a function of core depth using a five-point weighted moving average of the original data to smooth the curve (Figure 3 and 4). The plots are grouped according to the four factors defined by the Q-mode models and show similar distributions for elements within the same factor. Factor 1 samples are rich in most trace metals. High oil yield and the presence of illite characterize the end-member samples for this factor (3, 4) suggesting that adsorption of metals onto clay particles or organic matter is controlling the distribution of the metals. Precipitation of some metals as sulfides is possible (5). Factor 2 samples are high in elements commonly associated with minerals of detrital or volcanogenic origin. Altered tuff beds and lenses are prevalent within the Mahogany zone. The CR-2 end-member samples for this factor contain analcime (3) which is an alteration product within the tuff beds of the Green River Formation. Th

  1. Fracking: Unintended Consequences for Local Communities

    DTIC Science & Technology

    2016-12-01

    holistic impact of fracking on the environment and socioeconomics of local communities at the epicenter of shale oil production . This study included...socioeconomics of local communities at the epicenter of shale oil production . This study included an evaluation of crucial environmental issues...un ts M ill io n Ba rr el s Annual Oil Production North Dakota Annual Average Rig Count 38 biggest daily drop ever, a 6% decrease, producing 1.04

  2. Developments in Oil Shale

    DTIC Science & Technology

    2008-11-17

    shale oil.7 The Mahogany zone can reach 200 feet in thickness in the Uinta Basin of Utah, and thus could represent a technical potential of producing...undiscovered technically recoverable conventional oil and natural gas liquids are estimated to underlie the Uinta -Piceance Basin of Utah-Colorado and...River formation over maps of access categories prepared for the EPCA inventory (Figure 6). The Uinta basin in Utah is shown as being subject to

  3. Microbial production of natural gas from coal and organic-rich shale

    USGS Publications Warehouse

    Orem, William

    2013-01-01

    Natural gas is an important component of the energy mix in the United States, producing greater energy yield per unit weight and less pollution compared to coal and oil. Most of the world’s natural gas resource is thermogenic, produced in the geologic environment over time by high temperature and pressure within deposits of oil, coal, and shale. About 20 percent of the natural gas resource, however, is produced by microorganisms (microbes). Microbes potentially could be used to generate economic quantities of natural gas from otherwise unexploitable coal and shale deposits, from coal and shale from which natural gas has already been recovered, and from waste material such as coal slurry. Little is known, however, about the microbial production of natural gas from coal and shale.

  4. Maximize Liquid Oil Production from Shale Oil and Gas Condensate Reservoirs by Cyclic Gas Injection

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sheng, James; Li, Lei; Yu, Yang

    The current technology to produce shale oil reservoirs is the primary depletion using fractured wells (generally horizontal wells). The oil recovery is less than 10%. The prize to enhance oil recovery (EOR) is big. Based on our earlier simulation study, huff-n-puff gas injection has the highest EOR potential. This project was to explore the potential extensively and from broader aspects. The huff-n-puff gas injection was compared with gas flooding, water huff-n-puff and waterflooding. The potential to mitigate liquid blockage was also studied and the gas huff-n-puff method was compared with other solvent methods. Field pilot tests were initiated but terminatedmore » owing to the low oil price and the operator’s budget cut. To meet the original project objectives, efforts were made to review existing and relevant field projects in shale and tight reservoirs. The fundamental flow in nanopores was also studied.« less

  5. Oil shale retorting and combustion system

    DOEpatents

    Pitrolo, Augustine A.; Mei, Joseph S.; Shang, Jerry Y.

    1983-01-01

    The present invention is directed to the extraction of energy values from l shale containing considerable concentrations of calcium carbonate in an efficient manner. The volatiles are separated from the oil shale in a retorting zone of a fluidized bed where the temperature and the concentration of oxygen are maintained at sufficiently low levels so that the volatiles are extracted from the oil shale with minimal combustion of the volatiles and with minimal calcination of the calcium carbonate. These gaseous volatiles and the calcium carbonate flow from the retorting zone into a freeboard combustion zone where the volatiles are burned in the presence of excess air. In this zone the calcination of the calcium carbonate occurs but at the expense of less BTU's than would be required by the calcination reaction in the event both the retorting and combustion steps took place simultaneously. The heat values in the products of combustion are satisfactorily recovered in a suitable heat exchange system.

  6. Fracking in Tight Shales: What Is It, What Does It Accomplish, and What Are Its Consequences?

    NASA Astrophysics Data System (ADS)

    Norris, J. Quinn; Turcotte, Donald L.; Moores, Eldridge M.; Brodsky, Emily E.; Rundle, John B.

    2016-06-01

    Fracking is a popular term referring to hydraulic fracturing when it is used to extract hydrocarbons. We distinguish between low-volume traditional fracking and the high-volume modern fracking used to recover large volumes of hydrocarbons from shales. Shales are fine-grained rocks with low granular permeabilities. During the formation of oil and gas, large fluid pressures are generated. These pressures result in natural fracking, and the resulting fracture permeability allows oil and gas to escape, reducing the fluid pressures. These fractures may subsequently be sealed by mineral deposition, resulting in tight shale formations. The objective of modern fracking is to reopen these fractures and/or create new fractures on a wide range of scales. Modern fracking has had a major impact on the availability of oil and gas globally; however, there are serious environmental objections to modern fracking, which should be weighed carefully against its benefits.

  7. Application of organic petrography in North American shale petroleum systems: A review

    USGS Publications Warehouse

    Hackley, Paul C.; Cardott, Brian J.

    2016-01-01

    Organic petrography via incident light microscopy has broad application to shale petroleum systems, including delineation of thermal maturity windows and determination of organo-facies. Incident light microscopy allows practitioners the ability to identify various types of organic components and demonstrates that solid bitumen is the dominant organic matter occurring in shale plays of peak oil and gas window thermal maturity, whereas oil-prone Type I/II kerogens have converted to hydrocarbons and are not present. High magnification SEM observation of an interconnected organic porosity occurring in the solid bitumen of thermally mature shale reservoirs has enabled major advances in our understanding of hydrocarbon migration and storage in shale, but suffers from inability to confirm the type of organic matter present. Herein we review organic petrography applications in the North American shale plays through discussion of incident light photographic examples. In the first part of the manuscript we provide basic practical information on the measurement of organic reflectance and outline fluorescence microscopy and other petrographic approaches to the determination of thermal maturity. In the second half of the paper we discuss applications of organic petrography and SEM in all of the major shale petroleum systems in North America including tight oil plays such as the Bakken, Eagle Ford and Niobrara, and shale gas and condensate plays including the Barnett, Duvernay, Haynesville-Bossier, Marcellus, Utica, and Woodford, among others. Our review suggests systematic research employing correlative high resolution imaging techniques and in situ geochemical probing is needed to better document hydrocarbon storage, migration and wettability properties of solid bitumen at the pressure and temperature conditions of shale reservoirs.

  8. An overview on source rocks and the petroleum system of the central Upper Rhine Graben

    NASA Astrophysics Data System (ADS)

    Böcker, Johannes; Littke, Ralf; Forster, Astrid

    2017-03-01

    The petroleum system of the Upper Rhine Graben (URG) comprises multiple reservoir rocks and four major oil families, which are represented by four distinct source rock intervals. Based on geochemical analyses of new oil samples and as a review of chemical parameter of former oil fields, numerous new oil-source rock correlations were obtained. The asymmetric graben resulted in complex migration pathways with several mixed oils as well as migration from source rocks into significantly older stratigraphic units. Oldest oils originated from Liassic black shales with the Posidonia Shale as main source rock (oil family C). Bituminous shales of the Arietenkalk-Fm. (Lias α) show also significant source rock potential representing the second major source rock interval of the Liassic sequence. Within the Tertiary sequence several source rock intervals occur. Early Tertiary coaly shales generated high wax oils that accumulated in several Tertiary as well as Mesozoic reservoirs (oil family B). The Rupelian Fish Shale acted as important source rock, especially in the northern URG (oil family D). Furthermore, early mature oils from the evaporitic-salinar Corbicula- and Lower Hydrobienschichten occur especially in the area of the Heidelberg-Mannheim-Graben (oil family A). An overview on potential source rocks in the URG is presented including the first detailed geochemical source rock characterization of Middle Eocene sediments (equivalents to the Bouxwiller-Fm.). At the base of this formation a partly very prominent sapropelic coal layer or coaly shale occurs. TOC values of 20-32 % (cuttings) and Hydrogen Index (HI) values up to 640-760 mg HC/g TOC indicate an extraordinary high source rock potential, but a highly variable lateral distribution in terms of thickness and source rock facies is also supposed. First bulk kinetic data of the sapropelic Middle Eocene coal and a coaly layer of the `Lymnäenmergel' are presented and indicate oil-prone organic matter characterized by low activation energies. These sediments are considered as most important source rocks of numerous high wax oils (oil family B) in addition to the coaly source rocks from the (Lower) Pechelbronn-Schichten (Late Eocene). Migration pathways are significantly influenced by the early graben evolution. A major erosion period occurred during the latest Cretaceous. The uplift center was located in the northern URG area, resulting in SSE dipping Mesozoic strata in the central URG. During Middle Eocene times a second uplift center in the Eifel area resulted in SW-NE-directed shore lines in the central URG and contemporaneous south-southeastern depocenters during marine transgression from the south. This structural setting resulted in a major NNW-NW-directed and topography-driven migration pattern for expelled Liassic oil in the fractured Mesozoic subcrop below sealing Dogger α clays and basal Tertiary marls.

  9. Thermal stability of some aircraft turbine fuels derived from oil shale and coal

    NASA Technical Reports Server (NTRS)

    Reynolds, T. W.

    1977-01-01

    Thermal stability breakpoint temperatures are shown for 32 jet fuels prepared from oil shale and coal syncrudes by various degrees of hydrogenation. Low severity hydrotreated shale oils, with nitrogen contents of 0.1 to 0.24 weight percent, had breakpoint temperatures in the 477 to 505 K (400 to 450 F) range. Higher severity treatment, lowering nitrogen levels to 0.008 to 0.017 weight percent, resulted in breakpoint temperatures in the 505 to 533 K (450 to 500 F) range. Coal derived fuels showed generally increasing breakpoint temperatures with increasing weight percent hydrogen, fuels below 13 weight percent hydrogen having breakpoints below 533 K (500 F). Comparisons are shown with similar literature data.

  10. Decaking of coal or oil shale during pyrolysis in the presence of iron oxides

    DOEpatents

    Rashid Khan, M.

    1988-05-05

    A method for producing a fuel from the pyrolysis of coal or oil shale in the presence of iron oxide in an inert gas atmosphere is described. The method includes the steps of pulverizing feed coal or oil shale, pulverizing iron oxide, mixing the pulverized feed and iron oxide, and heating the mixture in a gas atmosphere which is substantially inert to the mixture so as to form a product fuel, which may be gaseous, liquid and/or solid. The method of the invention reduces the swelling of coals, such as bituminous coal and the like, which are otherwise known to swell during pyrolysis. 4 figs., 8 tabs.

  11. Map of assessed continuous (unconventional) oil resources in the United States, 2014

    USGS Publications Warehouse

    ,; Biewick, Laura R. H.

    2015-01-01

    The U.S. Geological Survey (USGS) conducts quantitative assessments of potential oil and gas resources of the onshore United States and associated coastal State waters. Since 2000, the USGS has completed assessments of continuous (unconventional) resources in the United States based on geologic studies and analysis of well-production data and has compiled digital maps of the assessment units classified into four categories: shale gas, tight gas, coalbed gas, and shale oil or tight oil (continuous oil). This is the fourth digital map product in a series of USGS unconventional oil and gas resource maps; its focus being shale-oil or tight-oil (continuous-oil) assessments. The map plate included in this report can be printed in hardcopy form or downloaded in a Geographic Information System (GIS) data package, which includes an ArcGIS ArcMap document (.mxd), geodatabase (.gdb), and a published map file (.pmf). Supporting geologic studies of total petroleum systems and assessment units, as well as studies of the methodology used in the assessment of continuous-oil resources in the United States, are listed with hyperlinks in table 1. Assessment results and geologic reports are available at the USGS websitehttp://energy.usgs.gov/OilGas/AssessmentsData/NationalOilGasAssessment.aspx.

  12. Pressurized fluidized-bed hydroretorting of Eastern oil shales -- Sulfur control. Topical report for Subtask 3.1, In-bed sulfur capture tests; Subtask 3.2, Electrostatic desulfurization; Subtask 3.3, Microbial desulfurization and denitrification

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Roberts, M.J.; Abbasian, J.; Akin, C.

    1992-05-01

    This topical report on ``Sulfur Control`` presents the results of work conducted by the Institute of Gas Technology (IGT), the Illinois Institute of Technology (IIT), and the Ohio State University (OSU) to develop three novel approaches for desulfurization that have shown good potential with coal and could be cost-effective for oil shales. These are (1) In-Bed Sulfur Capture using different sorbents (IGT), (2) Electrostatic Desulfurization (IIT), and (3) Microbial Desulfurization and Denitrification (OSU and IGT). The objective of the task on In-Bed Sulfur Capture was to determine the effectiveness of different sorbents (that is, limestone, calcined limestone, dolomite, and siderite)more » for capturing sulfur (as H{sub 2}S) in the reactor during hydroretorting. The objective of the task on Electrostatic Desulfurization was to determine the operating conditions necessary to achieve a high degree of sulfur removal and kerogen recovery in IIT`s electrostatic separator. The objectives of the task on Microbial Desulfurization and Denitrification were to (1) isolate microbial cultures and evaluate their ability to desulfurize and denitrify shale, (2) conduct laboratory-scale batch and continuous tests to improve and enhance microbial removal of these components, and (3) determine the effects of processing parameters, such as shale slurry concentration, solids settling characteristics, agitation rate, and pH on the process.« less

  13. Source apportionment of hydrocarbons measured in the Eagle Ford shale

    NASA Astrophysics Data System (ADS)

    Roest, G. S.; Schade, G. W.

    2016-12-01

    The rapid development of unconventional oil and gas in the US has led to hydrocarbon emissions that are yet to be accurately quantified. Emissions from the Eagle Ford Shale in southern Texas, one of the most productive shale plays in the U.S., have received little attention due to a sparse air quality monitoring network, thereby limiting studies of air quality within the region. We use hourly atmospheric hydrocarbon and meteorological data from three locations in the Eagle Ford Shale to assess their sources. Data are available from the Texas commission of environmental quality (TCEQ) air quality monitors in Floresville, a small town southeast of San Antonio and just north of the shale area; and Karnes city, a midsize rural city in the center of the shale. Our own measurements were carried out at a private ranch in rural Dimmit County in southern Texas from April to November of 2015. Air quality monitor data from the TCEQ were selected for the same time period. Non-negative matrix factorization in R (package NMF) was used to determine likely sources and their contributions above background. While the TCEQ monitor data consisted mostly of hydrocarbons, our own data include both CO, CO2, O3, and NOx. We find that rural Dimmit County hydrocarbons are dominated by oil and gas development sources, while central shale hydrocarbons at the TCEQ monitoring sites have a mix of sources including car traffic. However, oil and gas sources also dominate hydrocarbons at Floresville and Karnes City. Toxic benzene is nearly exclusively due to oil and gas development sources, including flaring, which NMF identifies as a major hydrocarbon source in Karnes City. Other major sources include emissions of light weight alkanes (C2-C5) from raw natural gas emissions and a larger set of alkanes (C2-C10) from oil sources, including liquid storage tanks.

  14. A lithology identification method for continental shale oil reservoir based on BP neural network

    NASA Astrophysics Data System (ADS)

    Han, Luo; Fuqiang, Lai; Zheng, Dong; Weixu, Xia

    2018-06-01

    The Dongying Depression and Jiyang Depression of the Bohai Bay Basin consist of continental sedimentary facies with a variable sedimentary environment and the shale layer system has a variety of lithologies and strong heterogeneity. It is difficult to accurately identify the lithologies with traditional lithology identification methods. The back propagation (BP) neural network was used to predict the lithology of continental shale oil reservoirs. Based on the rock slice identification, x-ray diffraction bulk rock mineral analysis, scanning electron microscope analysis, and the data of well logging and logging, the lithology was divided with carbonate, clay and felsic as end-member minerals. According to the core-electrical relationship, the frequency histogram was then used to calculate the logging response range of each lithology. The lithology-sensitive curves selected from 23 logging curves (GR, AC, CNL, DEN, etc) were chosen as the input variables. Finally, the BP neural network training model was established to predict the lithology. The lithology in the study area can be divided into four types: mudstone, lime mudstone, lime oil-mudstone, and lime argillaceous oil-shale. The logging responses of lithology were complicated and characterized by the low values of four indicators and medium values of two indicators. By comparing the number of hidden nodes and the number of training times, we found that the number of 15 hidden nodes and 1000 times of training yielded the best training results. The optimal neural network training model was established based on the above results. The lithology prediction results of BP neural network of well XX-1 showed that the accuracy rate was over 80%, indicating that the method was suitable for lithology identification of continental shale stratigraphy. The study provided the basis for the reservoir quality and oily evaluation of continental shale reservoirs and was of great significance to shale oil and gas exploration.

  15. 43 CFR 3501.5 - What terms do I need to know to understand this part?

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... hardrock minerals as used here includes mineral deposits that are found in sedimentary and other rocks...) BUREAU OF LAND MANAGEMENT, DEPARTMENT OF THE INTERIOR MINERALS MANAGEMENT (3000) LEASING OF SOLID MINERALS OTHER THAN COAL AND OIL SHALE Leasing of Solid Minerals Other Than Coal and Oil Shale-General...

  16. 43 CFR 3501.5 - What terms do I need to know to understand this part?

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... hardrock minerals as used here includes mineral deposits that are found in sedimentary and other rocks...) BUREAU OF LAND MANAGEMENT, DEPARTMENT OF THE INTERIOR MINERALS MANAGEMENT (3000) LEASING OF SOLID MINERALS OTHER THAN COAL AND OIL SHALE Leasing of Solid Minerals Other Than Coal and Oil Shale-General...

  17. 43 CFR 3501.5 - What terms do I need to know to understand this part?

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... hardrock minerals as used here includes mineral deposits that are found in sedimentary and other rocks...) BUREAU OF LAND MANAGEMENT, DEPARTMENT OF THE INTERIOR MINERALS MANAGEMENT (3000) LEASING OF SOLID MINERALS OTHER THAN COAL AND OIL SHALE Leasing of Solid Minerals Other Than Coal and Oil Shale-General...

  18. 43 CFR 3501.5 - What terms do I need to know to understand this part?

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... hardrock minerals as used here includes mineral deposits that are found in sedimentary and other rocks...) BUREAU OF LAND MANAGEMENT, DEPARTMENT OF THE INTERIOR MINERALS MANAGEMENT (3000) LEASING OF SOLID MINERALS OTHER THAN COAL AND OIL SHALE Leasing of Solid Minerals Other Than Coal and Oil Shale-General...

  19. 43 CFR 3830.20 - Payment of service charges, location fees, initial maintenance fees, annual maintenance fees and...

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 43 Public Lands: Interior 2 2012-10-01 2012-10-01 false Payment of service charges, location fees, initial maintenance fees, annual maintenance fees and oil shale fees. 3830.20 Section 3830.20 Public Lands..., initial maintenance fees, annual maintenance fees and oil shale fees. ...

  20. 43 CFR 3830.20 - Payment of service charges, location fees, initial maintenance fees, annual maintenance fees and...

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 43 Public Lands: Interior 2 2014-10-01 2014-10-01 false Payment of service charges, location fees, initial maintenance fees, annual maintenance fees and oil shale fees. 3830.20 Section 3830.20 Public Lands..., initial maintenance fees, annual maintenance fees and oil shale fees. ...

  1. 43 CFR 3830.20 - Payment of service charges, location fees, initial maintenance fees, annual maintenance fees and...

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 43 Public Lands: Interior 2 2013-10-01 2013-10-01 false Payment of service charges, location fees, initial maintenance fees, annual maintenance fees and oil shale fees. 3830.20 Section 3830.20 Public Lands..., initial maintenance fees, annual maintenance fees and oil shale fees. ...

  2. 43 CFR 3830.20 - Payment of service charges, location fees, initial maintenance fees, annual maintenance fees and...

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 43 Public Lands: Interior 2 2011-10-01 2011-10-01 false Payment of service charges, location fees, initial maintenance fees, annual maintenance fees and oil shale fees. 3830.20 Section 3830.20 Public Lands..., initial maintenance fees, annual maintenance fees and oil shale fees. ...

  3. Transportation infrastructure asset damage cost recovery correlated with shale oil/gas recovery operations in Louisiana : research project capsule : technology transfer program.

    DOT National Transportation Integrated Search

    2016-10-01

    Due to shale oil/gas recovery : operations, a large number : of truck trips on Louisiana : roadways are required for : transporting equipment and : materials to and from the : recovery sites. As a result, : roads and bridges that were : designed for ...

  4. GROUNDWATER QUALITY MONITORING OF WESTERN OIL SHALE DEVELOPMENT: IDENTIFICATION AND PRIORITY RANKING OF POTENTIAL POLLUTION SOURCES

    EPA Science Inventory

    This report presents the development of a preliminary priority ranking of potential pollution sources with respect to groundwater quality and the associated pollutants for oil shale operations such as proposed for Federal Prototype Leases U-a and U-b in Eastern Utah. The methodol...

  5. 77 FR 58775 - Oil Shale Management-General

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-09-24

    ... DEPARTMENT OF THE INTERIOR Bureau of Land Management 43 CFR Parts 3900, 3910, 3920, 3930, and 4100 Oil Shale Management--General CFR Correction In Title 43 of the Code of Federal Regulations, Part 1000 to End, revised as of October 1, 2011, on page 857, the Subchapter D heading and the Group 4100...

  6. 76 FR 44600 - Renewal of Approved Information Collection, OMB Control Number 1004-0201

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-07-26

    ..., production, resource recovery and protection, operations under oil shale leases, and exploration under leases... requirements in 43 CFR parts 3900, 3910, 3920, and 3930, which pertain to management of oil shale. DATES... the agency's burden estimates; (3) ways to enhance the quality, utility, and clarity of the...

  7. Environmental risks and problems of the optimal management of an oil shale semi-coke and ash landfill in Kohtla-Järve, Estonia.

    PubMed

    Vallner, Leo; Gavrilova, Olga; Vilu, Raivo

    2015-08-15

    The main wastes of the Estonian shale oil industry - oil shale semi-coke and ashes - are deposited in landfills. The Kohtla-Järve oil shale semi-coke and ash landfill, which is likely the largest of its kind in the World, was started in 1938. The environmental risks connected with the landfill were assessed and prioritized. The most significant hazard to human health is emission of harmful landfill gases and the water contamination in the local river network is harmful for aqueous organisms. The spatial expansion of subsurface contamination predicted by the groundwater transport model completed is practically insignificant from the viewpoint of health services. The landfill's leachates must be captured and purified, and the closed part of the landfill should be covered by greenery. The partial landfill capping recently executed is useless. The EU Landfill Directive requirements imposed on the hydraulic resistance of geological barriers cannot prevent the leakage of contaminants from a landfill. Copyright © 2015 Elsevier B.V. All rights reserved.

  8. Hydrologic analysis of the U.S. Bureau of Mines' underground oil-shale research-facility site, Piceance Creek Basin, Rio Blanco County, Colorado

    USGS Publications Warehouse

    Dale, R.H.; Weeks, John B.

    1978-01-01

    The U.S. Bureau of Mines plans to develop an underground oil-shale research facility near the center of Piceance Creek basin in Colorado. The oil-shale zone, which is to be penetrated by a shaft, is overlain by 1,400 feet of sedimentary rocks, primarily sandstone and marlstone, consisting of two aquifers separated by a confining layer. Three test holes were drilled by the U.S. Bureau of Mines to obtain samples of the oil shale, and to test the hydraulic properties of the two aquifers. The data collected during construction of the test holes were used to update an existing ground-water-flow computer model. The model was used to estimate the maximum amount of water that would have to be pumped to dewater the shaft during its construction. It is estimated that it would be necessary to pump as much as 3,080 gallons per minute to keep the shaft dry. Disposal of waste water and rock are the principal hydrologic problems associated with constructing the shaft. (Woodard-USGS)

  9. A Fractal Permeability Model for Shale Oil Reservoir

    NASA Astrophysics Data System (ADS)

    Zhang, Tao; Dong, Mingzhe; Li, Yajun

    2018-01-01

    In this work, a fractal analytical model is proposed to predict the permeability of shale reservoir. The proposed model explicitly relates the permeability to the micro-structural parameters (tortuosity, pore area fractal dimensions, porosity and slip velocity coefficient) of shale.

  10. Preparation and characterization of nanosilica from oil shale ash.

    PubMed

    Li, Jinhong; Qian, Tingting; Tong, Lingxin; Shen, Jie

    2014-05-01

    Nano-sized silica powders was prepared using oil shale ash (OSA) as starting materials. A combined process was proposed for the utilization of OSA in the production of the nanosilica, including three stages: calcination, alkaline leaching and carbon dioxide separation. Effects of the calcining temperature, sodium hydroxide concentration and holding time on the desilication ratio were investigated. The microstructure and morphologies of the nano-sized silica were characterized by X-ray diffraction, transmission electron microscopy, and Brunauer-Emmett-Teller nitrogen-gas adsorption method. The results indicated that the obtained powders with particle size of about 40 nm are homegeneously dispersed and its specific surface area is 387 m2/g. The properties of the nano-sized silica powder meet the requirements of the Chinese Chemical Industry Standard HG/T 3061-1999.

  11. Explosively produced fracture of oil shale

    NASA Astrophysics Data System (ADS)

    Morris, W. A.

    1982-05-01

    Rock fragmentation research in oil shale to develop the blasting technologies and designs required to prepare a rubble bed for a modified in situ retort is reported. Experimental work is outlined, proposed studies in explosive characterization are detailed and progress in numerical calculation techniques to predict fracture of the shale is described. A detailed geologic characterization of two Anvil Points experiment sites is related to previous work at Colony Mine. The second section focuses on computer modeling and theory. The latest generation of the stress wave code SHALE, its three dimensional potential, and the slide line package for it are described. A general stress rate equation that takes energy dependence into account is discussed.

  12. Real-time detection of dielectric anisotropy or isotropy in unconventional oil-gas reservoir rocks supported by the oblique-incidence reflectivity difference technique

    NASA Astrophysics Data System (ADS)

    Zhan, Honglei; Wang, Jin; Zhao, Kun; Lű, Huibin; Jin, Kuijuan; He, Liping; Yang, Guozhen; Xiao, Lizhi

    2016-12-01

    Current geological extraction theory and techniques are very limited to adequately characterize the unconventional oil-gas reservoirs because of the considerable complexity of the geological structures. Optical measurement has the advantages of non-interference with the earth magnetic fields, and is often useful in detecting various physical properties. One key parameter that can be detected using optical methods is the dielectric permittivity, which reflects the mineral and organic properties. Here we reported an oblique-incidence reflectivity difference (OIRD) technique that is sensitive to the dielectric and surface properties and can be applied to characterization of reservoir rocks, such as shale and sandstone core samples extracted from subsurface. The layered distribution of the dielectric properties in shales and the uniform distribution in sandstones are clearly identified using the OIRD signals. In shales, the micro-cracks and particle orientation result in directional changes of the dielectric and surface properties, and thus, the isotropy and anisotropy of the rock can be characterized by OIRD. As the dielectric and surface properties are closely related to the hydrocarbon-bearing features in oil-gas reservoirs, we believe that the precise measurement carried with OIRD can help in improving the recovery efficiency in well-drilling process.

  13. Real-time detection of dielectric anisotropy or isotropy in unconventional oil-gas reservoir rocks supported by the oblique-incidence reflectivity difference technique

    PubMed Central

    Zhan, Honglei; Wang, Jin; Zhao, Kun; Lű, Huibin; Jin, Kuijuan; He, Liping; Yang, Guozhen; Xiao, Lizhi

    2016-01-01

    Current geological extraction theory and techniques are very limited to adequately characterize the unconventional oil-gas reservoirs because of the considerable complexity of the geological structures. Optical measurement has the advantages of non-interference with the earth magnetic fields, and is often useful in detecting various physical properties. One key parameter that can be detected using optical methods is the dielectric permittivity, which reflects the mineral and organic properties. Here we reported an oblique-incidence reflectivity difference (OIRD) technique that is sensitive to the dielectric and surface properties and can be applied to characterization of reservoir rocks, such as shale and sandstone core samples extracted from subsurface. The layered distribution of the dielectric properties in shales and the uniform distribution in sandstones are clearly identified using the OIRD signals. In shales, the micro-cracks and particle orientation result in directional changes of the dielectric and surface properties, and thus, the isotropy and anisotropy of the rock can be characterized by OIRD. As the dielectric and surface properties are closely related to the hydrocarbon-bearing features in oil-gas reservoirs, we believe that the precise measurement carried with OIRD can help in improving the recovery efficiency in well-drilling process. PMID:27976746

  14. Eastern Devonian shales: Organic geochemical studies, past and present

    USGS Publications Warehouse

    Breger, I.A.; Hatcher, P.G.; Romankiw, L.A.; Miknis, F.P.

    1983-01-01

    The Eastern Devonian shales are represented by a sequence of sediments extending from New York state, south to the northern regions of Georgia and Alabama, and west into Ohio and to the Michigan and Ilinois Basins. Correlatives are known in Texas. The shale is regionally known by a number of names: Chattanooga, Dunkirk, Rhinestreet, Huron, Antrim, Ohio, Woodford, etc. These shales, other than those in Texas, have elicited much interest because they have been a source of unassociated natural gas. It is of particular interest, however, that most of these shales have no associated crude oil, in spite of the fact that they have some of the characteristics normally attributed to source beds. This paper addresses some of the organic geochemical aspects of the kerogen in these shales, in relation to their oil generating potential. Past organic geochemical studies on Eastern Devonian shales will be reviewed. Recent solid state 13C NMR studies on the nature of the organic matter in Eastern Devonian shales show that Eastern Devonian shales contain a larger fraction of aromatic carbon in their chemical composition. Thus, despite their high organic matter contents, their potential as a petroleum source rock is low, because the kerogen in these shales is of a "coaly" nature and hence more prone to producing natural gas.

  15. Eastern Devonian shales: Organic geochemical studies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Berger, I.A.; Hatchner, P.G.; Miknis, F.P.

    The Eastern Devonian shales are represented by a sequence of sediments extending from New York state, south to the northern regions of Georgia and Alabama, and west into Ohio and to the Michigan and Illinois Basins. Correlatives are known in Texas. The shale is regionally known by a number of names: Chattanooga, Dunkirk, Rhinestreet, Huron, Antrim, Ohio, Woodford, etc. These shales, other than those in Texas, have elicited much interest because they have been a source of unassociated natural gas. It is of particular interest, however, that most of these shales have no associated crude oil, in spite of themore » fact that they have some of the characteristics normally attributed to source beds. This paper addresses some of the organic geochemical aspects of the kerogen in these shales, in relation to their oil generating potential. Past organic geochemical studies on Eastern Devonian shales are reviewed. Recent solid state /sup 13/C NMR studies on the nature of the organic matter in Eastern Devonian shales show that Eastern Devonian shales contain a larger fraction of aromatic carbon in their chemical composition. Thus, despite their high organic matter contents, their potential as a petroleum source rock is low, because the kerogen in these shales is of a ''coaly'' nature and hence more prone to producing natural gas.« less

  16. Reservoir Characterization for Unconventional Resource Potential, Pitsanulok Basin, Onshore Thailand

    NASA Astrophysics Data System (ADS)

    Boonyasatphan, Prat

    The Pitsanulok Basin is the largest onshore basin in Thailand. Located within the basin is the largest oil field in Thailand, the Sirikit field. As conventional oil production has plateaued and EOR is not yet underway, an unconventional play has emerged as a promising alternative to help supply the energy needs. Source rocks in the basin are from the Oligocene lacustrine shale of the Chum Saeng Formation. This study aims to quantify and characterize the potential of shale gas/oil development in the Chum Saeng Formation using advanced reservoir characterization techniques. The study starts with rock physics analysis to determine the relationship between geophysical, lithological, and geomechanical properties of rocks. Simultaneous seismic inversion is later performed. Seismic inversion provides spatial variation of geophysical properties, i.e. P-impedance, S-impedance, and density. With results from rock physics analysis and from seismic inversion, the reservoir is characterized by applying analyses from wells to the inverted seismic data. And a 3D lithofacies cube is generated. TOC is computed from inverted AI. Static moduli are calculated. A seismic derived brittleness cube is calculated from Poisson's ratio and Young's modulus. The reservoir characterization shows a spatial variation in rock facies and shale reservoir properties, including TOC, brittleness, and elastic moduli. From analysis, the most suitable location for shale gas/oil pilot exploration and development are identified. The southern area of the survey near the MD-1 well with an approximate depth around 650-850 m has the highest shale reservoir potential. The shale formation is thick, with intermediate brittleness and high TOC. These properties make it as a potential sweet spot for a future shale reservoir exploration and development.

  17. Oil shale development and its environmental considerations

    USGS Publications Warehouse

    Stone, R.T.; Johnson, H.; Decora, A.

    1974-01-01

    The petroleum shortage recently experienced by many nations throughout the world has created an intense interest in obtaining new and supplemental energy sources. In the United States, this interest has been centered on oil shale. Any major action by the federal government having significant environmental effects requires compliance with the National Environmental Policy Act of 1969 (NEPA). Since most oil shale is found on federal lands, and since its development involves significant environmental impacts, leasing oil shale lands to private interests must be in compliance with NEPA. For oil shale, program planning began at approximately the same time that NEPA was signed into law. By structuring the program to permit a resource and technological inventory by industry and the federal agencies, the Department of the Interior was able simultaneously to conduct the environmental assessments required by the act. This required: 1. Clearly defined program objections; 2. An organization which could integrate public policy with diverse scientific disciplines and environmental concerns; and 3. Flexible decisionmaking to adjust to policy changes as well as to evolving interpretations on EPA as clarified by court decisions. This paper outlines the program, the organization structure that was created for this specific task, and the environmental concerns which were investigated. The success of the program has been demonstrated by meeting the requirements of NEPA, without court challenge, and by industry's acceptance of a leasing program that included the most stringent environmental protection provisions ever required. The need for energy development has spurred the acceptance of the program. However, by its awareness and willingness to meet the environmental challenges of the future, industry has shown a reasonable understanding of its commitments. The pros and cons of development were publicly considered in hearings and analyzed in the final environmental statement. This action aided greatly in preventing legal challenges. The prototype oil shale program is now under way and this new energy source, developed with strict environmental safeguards, may soon be available to our nation.

  18. Petroleum geochemistry of oils and rocks in Arctic National Wildlife Refuge, Alaska

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Magoon, L.B.; Anders, D.E.

    1987-05-01

    Thirteen oil seeps or oil-stained outcrops in or adjacent to the coastal plain of the Arctic National Wildlife Refuge (ANWR) in northeastern Alaska indicate that commercial quantities of hydrocarbons may be present in the subsurface. The area is flanked by two important petroleum provinces: the Prudhoe Bay area on the west and the Mackenzie delta on the east. Organic carbon content (wt. %), organic matter type, and pyrolysis hydrocarbon yield show that rock units such as the Kingak Shale (average 1.3 wt. %), pebble shale unit (2.1 wt. %), and Canning Formation (1.9 wt. %) contain predominantly type III organicmore » matter. The exception is the Hue Shale (5.9 wt. %), which contains type II organic matter. Pre-Cretaceous rocks that crop out in the Brooks Range could not be adequately evaluated because of high thermal maturity. Thermal maturity thresholds for oil, condensate, and gas calculated from vitrinite reflectance gradients in the Point Thomson area are 4000, 7300, and 9330 m, respectively (12,000, 22,500, and 28,000 ft). Time-temperature index (TTI) calculations for the Beli-1 and Point Thomson-1 wells immediately west of ANWR indicate that maturity first occurred in the south and progressed north. The Cretaceous Hue Shale matured in the Beli-1 well during the Eocene and in the Point Thomson-1 well in the late Miocene to early Pliocene. In the Point Thomson area, the condensate and gas recovered from the Thomson sandstone and basement complex based on API gravity and gas/oil ratio (GOR) probably originated from the pebble shale unit, and on the same basis, the oil recovered from the Canning Formation probably originated from the Hue Shale. The gas recovered from the three wells in the Kavik area is probably thermal gas from overmature source rocks in the immediate area.« less

  19. Fuel quality/processing study. Volume 2: Appendix. Task 1 literature survey

    NASA Technical Reports Server (NTRS)

    Ohara, J. B.; Bela, A.; Jentz, N. E.; Klumpe, H. W.; Kessler, H. E.; Kotzot, H. T.; Loran, B. L.

    1981-01-01

    The results of a literature survey of fuel processing and fuel quality are given. Liquid synfuels produced from coal and oil shale are discussed. Gas turbine fuel property specifications are discussed. On-site fuel pretreatment and emissions from stationary gas turbines are discussed. Numerous data tables and abstracts are given.

  20. Investigating GHGs and VOCs emissions from a shale gas industry in Germany and the UK

    NASA Astrophysics Data System (ADS)

    Cremonese, L.; Weger, L.; Denier Van Der Gon, H.; Bartels, M. P.; Butler, T. M.

    2017-12-01

    The shale gas and shale oil production boom experienced in the US led the country to a significant reduction of foreign fuel imports and an increase in domestic energy security. Several European countries are considering to extract domestic shale gas reserves that might serve as a bridge in the transition to renewables. Nevertheless, the generation of shale gas leads to emissions of CH4 and pollutants such as PM, NOx and VOCs, which in turn impact local and regional air quality and climate. Results from numerous studies investigating greenhouse gas and pollutant emissions from shale oil and shale gas extraction in North America can help in estimating the impact of such industrial activity elsewhere, when local regulations are taken into consideration. In order to investigate the extent of emissions and their distribution from a potential shale gas industry in Germany and the United Kingdom, we develop three drilling scenarios compatible with desired national gas outputs based on available geological information on potential productivity ranges of the reservoirs. Subsequently we assign activity data and emissions factors to wells under development, as well as to producing wells (from activities at the well site up until processing plants) to enable emissions quantification. We then define emissions scenarios to explore different shale gas development pathways: 1) implementation of "high-technology" devices and recovery practices (low emissions); 2) implementation of "low-technology" devices and recovery practices (high emissions), and 3) intermediate scenarios reflecting assumptions on local and national settings, or extremely high emission events (e.g. super-emitters); all with high and low boundaries of confidence driven by uncertainties. A comparison of these unconventional gas production scenarios to conventional natural gas production in Germany and the United Kingdom is also planned. The aim of this work is to highlight important variables and their ranges, to promote discussion and communication of potential impacts, and to construct possible visions for a future shale gas development in the two study countries. In a follow-up study, the impact of pollutant emissions from these scenarios on air quality will be explored using the Weather Research and Forecasting model with chemistry (WRF-Chem) model.

Top