Science.gov

Sample records for shale processing plant

  1. Shale oil recovery process

    DOEpatents

    Zerga, Daniel P.

    1980-01-01

    A process of producing within a subterranean oil shale deposit a retort chamber containing permeable fragmented material wherein a series of explosive charges are emplaced in the deposit in a particular configuration comprising an initiating round which functions to produce an upward flexure of the overburden and to initiate fragmentation of the oil shale within the area of the retort chamber to be formed, the initiating round being followed in a predetermined time sequence by retreating lines of emplaced charges developing further fragmentation within the retort zone and continued lateral upward flexure of the overburden. The initiating round is characterized by a plurality of 5-spot patterns and the retreating lines of charges are positioned and fired along zigzag lines generally forming retreating rows of W's. Particular time delays in the firing of successive charges are disclosed.

  2. Process for oil shale retorting

    DOEpatents

    Jones, John B.; Kunchal, S. Kumar

    1981-10-27

    Particulate oil shale is subjected to a pyrolysis with a hot, non-oxygenous gas in a pyrolysis vessel, with the products of the pyrolysis of the shale contained kerogen being withdrawn as an entrained mist of shale oil droplets in a gas for a separation of the liquid from the gas. Hot retorted shale withdrawn from the pyrolysis vessel is treated in a separate container with an oxygenous gas so as to provide combustion of residual carbon retained on the shale, producing a high temperature gas for the production of some steam and for heating the non-oxygenous gas used in the oil shale retorting process in the first vessel. The net energy recovery includes essentially complete recovery of the organic hydrocarbon material in the oil shale as a liquid shale oil, a high BTU gas, and high temperature steam.

  3. Economic comparison of five process concepts for using eastern oil shale

    SciTech Connect

    Parkinson, W.J.; Phillips, T.T.; Barnes, J.W.

    1984-01-01

    This study compared costs of retorting eastern oil shales using western shale retorting technologies that need no more development with the cost of processing the same shales using technologies designed specifically for eastern shales. The eastern shale technologies need more development. The study was designed to answer the question: Does process development work need to be done for eastern oil shale or will the existing western techniques suffice. A calculation for a power plant that burned eastern oil shale to produce electricity was included in the study. The authors studied the following processes: the Institute of Gas Technology's (IGT) HYTORT (eastern shale process), the Paraho C-H (combination heated) (eastern shale process), the Paraho D-H (direct heated) (western shale process), the TOSCO II (western shale process), and power plant.

  4. Economic comparison of five process concepts for using eastern oil shale

    SciTech Connect

    Parkinson, W.J.; Phillips, T.T.; Barnes, J.W.

    1984-01-01

    This study compared costs of retorting eastern oil shales using western shale retorting technologies that need no more development with the cost of processing the same shales using technologies designed specifically for eastern shales. The eastern shale technologies need more development. The study was designed to answer the question: does process development work need to be done for eastern oil shale or will the existing western techniques suffice. A calculation for a power plant that burned eastern oil shale to produce electricity was included in the study. We studied the following processes: the Institute of Gas Technology's (IGT) HYTORT (eastern shale process), the Paraho C-H (combination heated) (eastern shale process), the Paraho D-H (direct heated) (western shale process), the TOSCO II (western shale process), and power plant. It was concluded that, without further development, western shale retorting processes are not adequate for use with eastern shale. The HYTORT process produces oil at a cost nearly competitive with oil from western shale however.

  5. Chemical kinetics and oil shale process design

    SciTech Connect

    Burnham, A.K.

    1993-07-01

    Oil shale processes are reviewed with the goal of showing how chemical kinetics influences the design and operation of different processes for different types of oil shale. Reaction kinetics are presented for organic pyrolysis, carbon combustion, carbonate decomposition, and sulfur and nitrogen reactions.

  6. Recovery of retorted shale from an oil shale retorting process

    SciTech Connect

    Deering, R.F.; Duir, J.H.

    1984-05-01

    Retorted shale particles are recovered from a retort and delivered to a gas lift for transport to a fluidized combustor by passage, serially, through a sealing vessel, a crusher preferably operating at retort pressure, and a surge vessel. In the sealing vessel, a sealing gas is introduced, and after commingling with the shale, the gas passes counter-currently to the shale and enters the retort, thus sealing the retort gases in the retort while separating the retorted shale from the retort gases. Retorted shale from the sealing vessel is transported to a crusher, wherein the shale is reduced in size to that suitable for combustion under fluidized conditions. To prevent the crushed shale from packing, the shale is passed to a surge vessel, wherein the crushed shale is held as a fluidized bed, from which the crushed shale is continuously withdrawn at a regulated rate and introduced into the gas lift leading to the fluidized combustor.

  7. Plant for retorting oil products contained in shales and sands

    SciTech Connect

    Roma, C.

    1982-07-20

    A plant is described for continuously retorting oil products contained in shales and sands comprising a substantially horizontal retort furnace into which said shales and sands are introduced by means of hoppers and metering devices and placed on metal conveyors moving in counter-current to gases. Means are provided for placing shales and sands onto conveyors with a suitable thickness and for stirring the shales and sands. One or more combustion chambers are arranged outside the retort furnace for producing hot gases, and one or more input zones are located along the retort furnace for admitting hot gases into the retort furnace, causing the hot gases to mix with circulating gases which have been preheated by removing sensible heat from the exhausted shale and sand material. A direct contact condenser at the furnace head utilizes cold fluid to condense distilled oil products, and a decantation tank is arranged beneath the condenser for freeing the process gases from the dust. Uncondensed gases containing carbon dioxide, hydrogen, high hydrocarbon fractions, nitrogen and steam are recycled into the retort. Condensed oils from said distillation step, as well as oil drawn from the tunnel retort in liquid phase, are decanted and submitted to successive treatments.

  8. Oil shale retorting and retort water purification process

    SciTech Connect

    Venardos, D.G.; Grieves, C.G.

    1985-01-22

    An oil shale process is provided to retort oil shale and purify oil shale retort water. In the process, raw oil shale is retorted in an in situ underground retort or in an above ground retort to liberate shale oil, light hydrocarbon gases and oil shale retort water. The retort water is separated from the shale oil and gases in a sump or in a fractionator or quench tower followed by an API oil/water separator. After the retort water is separated from the shale oil, the retort water is steam stripped, carbon adsorbed and biologically treated, preferably by granular carbon adsorbers followed by activated sludge treatment or by activated sludge containing powdered activated carbon. The retort water can be granularly filtered before being steam stripped. The purified retort water can be used in various other oil shale processes, such as dedusting, scrubbing, spent shale moisturing, backfilling, in situ feed gas injection and pulsed combustion.

  9. Oil shale retorting and retort water purification process

    SciTech Connect

    Venardos, D.G.; Grieves, C.G.

    1986-04-29

    An in situ oil shale process is described comprising the steps of: retorting raw oil shale in situ to liberate light hydrocarbon gases, shale oil and shale-laden retort water containing suspended and dissolved impurities including raw and spent oil shale particulates, shale oil, organic carbon, carbonates, ammonia and chemical oxygen demand; separating the light hydrocarbon gases and a substantial portion of the shale oil from the shale-laden retort water by sedimentation in an underground sump; removing a substantial portion of the remaining shale oil and a substantial portion of the suspended raw and spent oil shale particulates from the shale-laden retort water by filtering the shale-laden retort water through a granular filter; steam stripping a substantial amount of the ammonia and carbonates from the shale-laden retort water; and carbon adsorbing and biologically treating the shale-laden retort water to remove a substantial amount of the total and dissolved organic carbon from the shale-laden retort water and simultaneously substantially lower the chemical oxygen demand of the shale-laden retort water so as to substantially purify the shale-laden retort water.

  10. Plan for addressing issues relating to oil shale plant siting

    SciTech Connect

    Noridin, J. S.; Donovan, R.; Trudell, L.; Dean, J.; Blevins, A.; Harrington, L. W.; James, R.; Berdan, G.

    1987-09-01

    The Western Research Institute plan for addressing oil shale plant siting methodology calls for identifying the available resources such as oil shale, water, topography and transportation, and human resources. Restrictions on development are addressed: land ownership, land use, water rights, environment, socioeconomics, culture, health and safety, and other institutional restrictions. Descriptions of the technologies for development of oil shale resources are included. The impacts of oil shale development on the environment, socioeconomic structure, water availability, and other conditions are discussed. Finally, the Western Research Institute plan proposes to integrate these topics to develop a flow chart for oil shale plant siting. Western Research Institute has (1) identified relative topics for shale oil plant siting, (2) surveyed both published and unpublished information, and (3) identified data gaps and research needs. 910 refs., 3 figs., 30 tabs.

  11. STBRSIM. Oil Shale Retorting Process Model

    SciTech Connect

    Braun, R.L.; Diaz, J.C.

    1992-03-02

    STBRSIM simulates an aboveground oil-shale retorting process that utilizes two reactors; a staged, fluidized-bed retort and a lift-pipe combustor. The model calculates the steady-state operating conditions for the retorting system,taking into account the chemical and physical processes occurring in the two reactors and auxiliary equipment. Chemical and physical processes considered in modeling the retort include: kerogen pyrolysis, bound water release, fluidization of solids mixture, and bed pressure drop. Processes accounted for by the combustor model include: combustion of residual organic carbon and hydrogen, combustion of pyrite and pyrrhotite, combustion of nonpyrolized kerogen, decomposition of dolomite and calcite, pneumatic transport, heat transfer between solids and gas streams, pressure drop and change in void fraction, and particle attrition. The release of mineral water and the pyrolysis of kerogen take place in the retort when raw shale is mixed with hot partially-burned shale, and the partial combustion of residual char and sulfur takes place in the combustor as the shale particles are transported pneumatically by preheated air. Auxiliary equipment is modeled to determine its effect on the system. This equipment includes blowers and heat-exchangers for the recycle gas to the retort and air to the combustor, as well as a condensor for the product stream from the retort. Simulation results include stream flow rates, temperatures and pressures, bed dimensions, and heater, cooling, and compressor power requirements.

  12. STBRSIM. Oil Shale Retorting Process Model

    SciTech Connect

    Eyberger, L.R.

    1992-03-02

    STBRSIM simulates an aboveground oil-shale retorting process that utilizes two reactors - a staged, fluidized-bed retort and a lift-pipe combustor. The model calculates the steady-state operating conditions for the retorting system, taking into account the chemical and physical processes occurring in the two reactors and auxiliary equipment. Chemical and physical processes considered in modeling the retort include: kerogen pyrolysis, bound water release, fluidization of solids mixture, and bed pressure drop. Processes accounted for by the combustor model include: combustion of residual organic carbon and hydrogen, combustion of pyrite and pyrrhotite, combustion of nonpyrolized kerogen, decomposition of dolomite and calcite, pneumatic transport, heat transfer between solids and gas streams, pressure drop and change in void fraction, and particle attrition. The release of mineral water and the pyrolysis of kerogen take place in the retort when raw shale is mixed with hot partially-burned shale, and the partial combustion of residual char and sulfur takes place in the combustor as the shale particles are transported pneumatically by preheated air. Auxiliary equipment is modeled to determine its effect on the system. This equipment includes blowers and heat-exchangers for the recycle gas to the retort and air to the combustor, as well as a condensor for the product stream from the retort. Simulation results include stream flow rates, temperatures and pressures, bed dimensions, and heater, cooling, and compressor power requirements.

  13. Beneficiation-hydroretort processing of US oil shales, engineering study

    SciTech Connect

    Johnson, L.R.; Riley, R.H.

    1988-12-01

    This report describes a beneficiation facility designed to process 1620 tons per day of run-of-mine Alabama oil shale containing 12.7 gallons of kerogen per ton of ore (based on Fischer Assay). The beneficiation facility will produce briquettes of oil shale concentrate containing 34.1 gallons of kerogen per ton (based on Fischer Assay). The beneficiation facility will produce briquettes of oil shale concentrate containing 34.1 gallons of kerogen per ton (based on Fischer Assay) suitable for feed to a hydroretort oil extraction facility of nominally 20,000 barrels per day capacity. The beneficiation plant design prepared includes the operations of crushing, grinding, flotation, thickening, filtering, drying, briquetting, conveying and tailings empoundment. A complete oil shale beneficiation plant is described including all anticipated ancillary facilities. For purposes of determining capital and operating costs, the beneficiation facility is assumed to be located on a generic site in the state of Alabama. The facility is described in terms of the individual unit operations with the capital costs being itemized in a similar manner. Additionally, the beneficiation facility estimated operating costs are presented to show operating costs per ton of concentrate produced, cost per barrel of oil contained in concentrate and beneficiation cost per barrel of oil extracted from concentrate by hydroretorting. All costs are presented in fourth quarter of 1988 dollars.

  14. Attrition and abrasion models for oil shale process modeling

    SciTech Connect

    Aldis, D.F.

    1991-10-25

    As oil shale is processed, fine particles, much smaller than the original shale are created. This process is called attrition or more accurately abrasion. In this paper, models of abrasion are presented for oil shale being processed in several unit operations. Two of these unit operations, a fluidized bed and a lift pipe are used in the Lawrence Livermore National Laboratory Hot-Recycle-Solid (HRS) process being developed for the above ground processing of oil shale. In two reports, studies were conducted on the attrition of oil shale in unit operations which are used in the HRS process. Carley reported results for attrition in a lift pipe for oil shale which had been pre-processed either by retorting or by retorting then burning. The second paper, by Taylor and Beavers, reported results for a fluidized bed processing of oil shale. Taylor and Beavers studied raw, retorted, and shale which had been retorted and then burned. In this paper, empirical models are derived, from the experimental studies conducted on oil shale for the process occurring in the HRS process. The derived models are presented along with comparisons with experimental results.

  15. Effects of processed oil shale on the element content of Atriplex cancescens

    USGS Publications Warehouse

    Anderson, B.M.

    1982-01-01

    Samples of four-wing saltbush were collected from the Colorado State University Intensive Oil Shale Revegetation Study Site test plots in the Piceance basin, Colorado. The test plots were constructed to evaluate the effects of processed oil shale geochemistry on plant growth using various thicknesses of soil cover over the processed shale and/or over a gravel barrier between the shale and soil. Generally, the thicker the soil cover, the less the influence of the shale geochemistry on the element concentrations in the plants. Concentrations of 20 elements were larger in the ash of four-wing saltbush growing on the plot with the gravel barrier (between the soil and processed shale) when compared to the sample from the control plot. A greater water content in the soil in this plot has been reported, and the interaction between the increased, percolating water and shale may have increased the availability of these elements for plant uptake. Concentrations of boron, copper, fluorine, lithium, molybdenum, selenium, silicon, and zinc were larger in the samples grown over processed shale, compared to those from the control plot, and concentrations for barium, calcium, lanthanum, niobium, phosphorus, and strontium were smaller. Concentrations for arsenic, boron, fluorine, molybdenum, and selenium-- considered to be potential toxic contaminants--were similar to results reported in the literature for vegetation from the test plots. The copper-to-molybdenum ratios in three of the four samples of four-wing saltbush growing over the processed shale were below the ratio of 2:1, which is judged detrimental to ruminants, particularly cattle. Boron concentrations averaged 140 ppm, well above the phytotoxicity level for most plant species. Arsenic, fluorine, and selenium concentrations were below toxic levels, and thus should not present any problem for revegetation or forage use at this time.

  16. Solar heated oil shale pyrolysis process

    NASA Technical Reports Server (NTRS)

    Qader, S. A. (Inventor)

    1985-01-01

    An improved system for recovery of a liquid hydrocarbon fuel from oil shale is presented. The oil shale pyrolysis system is composed of a retort reactor for receiving a bed of oil shale particules which are heated to pyrolyis temperature by means of a recycled solar heated gas stream. The gas stream is separated from the recovered shale oil and a portion of the gas stream is rapidly heated to pyrolysis temperature by passing it through an efficient solar heater. Steam, oxygen, air or other oxidizing gases can be injected into the recycle gas before or after the recycle gas is heated to pyrolysis temperature and thus raise the temperature before it enters the retort reactor. The use of solar thermal heat to preheat the recycle gas and optionally the steam before introducing it into the bed of shale, increases the yield of shale oil.

  17. Huff and puff process for retorting oil shale

    SciTech Connect

    Russum, L. W.

    1984-06-05

    Greater product yield and quality as well as simplified gas recovery can be attained by a huff and puff process for retorting oil shale. The process can be advantageously carried out in in situ retorts under ground as well as in surface retorts above ground. In the process, an active retort of raw oil shale is retorted without prior combustion of oil shale therein with retort off gases, which have been heated in a spent shale retort. In the preferred mode, retort off gases from the active retort and air are alternately injected into the spent retort to cyclically heat the off gases and combust the coked shale. The retort off gases can be deoiled and optionally scrubbed of carbon dioxide and hydrogen sulfide before being heated in the spent retort.

  18. In vivo cytogenetic effects of oil shale retort process waters.

    PubMed

    Meyne, J; Deaven, L L

    1982-01-01

    The induction of cytogenetic effects by oil shale retort process waters from 3 types of pilot plant retorts were examined in murine bone marrow. Each of the process waters induced increased frequencies of structural aberrations in mice treated with 3 daily intraperitoneal injections of the waters. The same treatment had no effect on the frequency of sister chromatid exchanges. Mice given a 1% solution of an above-ground retort water ad libitum for 8 weeks consumed about 1 ml/kg per day of the process water and had a frequency of aberrations comparable to mice given the same dose intraperitoneally for 3 days. Transplacental exposure of C3H mouse embryos indicated that clastogenic compounds in the above-ground retort process water can cross the placenta and induce chromosomal aberrations in embryonic tissues.

  19. Process for forming an in situ oil shale retort

    SciTech Connect

    Knepper, J.C.

    1984-05-08

    A process is provided for forming an in situ oil shale retort which minimizes channeling, explosion gas turbulence and flame front tilting. In the process, explosives are detonated in an underground formation of oil shale to blast the oil shale into a permeable rubblized mass defining a retort, and gases emitted from the explosion are symmetrically vented. In the preferred form, the gases are vented through vertical vent holes and blast holes which extend through the top of the retort, as well as through a lateral access tunnel which extends into the bottom of the retort.

  20. Cyclone oil shale retorting concept. [Use it all retorting process

    SciTech Connect

    Harak, A.E.; Little, W.E.; Faulders, C.R.

    1984-04-01

    A new concept for above-ground retorting of oil shale was disclosed by A.E. Harak in US Patent No. 4,340,463, dated July 20, 1982, and assigned to the US Department of Energy. This patent titled System for Utilizing Oil Shale Fines, describes a process wherein oil shale fines of one-half inch diameter and less are pyrolyzed in an entrained-flow reactor using hot gas from a cyclone combustor. Spent shale and supplemental fuel are burned at slagging conditions in this combustor. Because of fines utilization, the designation Use It All Retorting Process (UIARP) has been adopted. A preliminary process engineering design of the UIARP, analytical tests on six samples of raw oil shale, and a preliminary technical and economic evaluation of the process were performed. The results of these investigations are summarized in this report. The patent description is included. It was concluded that such changes as deleting air preheating in the slag quench and replacing the condenser with a quench-oil scrubber are recognized as being essential. The addition of an entrained flow raw shale preheater ahead of the cyclone retort is probably required, but final acceptance is felt to be contingent on some verification that adequate reaction time cannot be obtained with only the cyclone, or possibly some other twin-cyclone configuration. Sufficient raw shale preheating could probably be done more simply in another manner, perhaps in a screw conveyor shale transporting system. Results of the technical and economic evaluations of Jacobs Engineering indicate that further investigation of the UIARP is definitely worthwhile. The projected capital and operating costs are competitive with costs of other processes as long as electric power generation and sales are part of the processing facility.

  1. The enrichment behavior of natural radionuclides in pulverized oil shale-fired power plants.

    PubMed

    Vaasma, Taavi; Kiisk, Madis; Meriste, Tõnis; Tkaczyk, Alan Henry

    2014-12-01

    The oil shale industry is the largest producer of NORM (Naturally Occurring Radioactive Material) waste in Estonia. Approximately 11-12 million tons of oil shale containing various amounts of natural radionuclides is burned annually in the Narva oil shale-fired power plants, which accounts for approximately 90% of Estonian electricity production. The radionuclide behavior characteristics change during the fuel combustion process, which redistributes the radionuclides between different ash fractions. Out of 24 operational boilers in the power plants, four use circulating fluidized bed (CFB) technology and twenty use pulverized fuel (PF) technology. Over the past decade, the PF boilers have been renovated, with the main objective to increase the efficiency of the filter systems. Between 2009 and 2012, electrostatic precipitators (ESP) in four PF energy blocks were replaced with novel integrated desulphurization technology (NID) for the efficient removal of fly ash and SO2 from flue gases. Using gamma spectrometry, activity concentrations and enrichment factors for the (238)U ((238)U, (226)Ra, (210)Pb) and (232)Th ((232)Th, (228)Ra) family radionuclides as well as (40)K were measured and analyzed in different PF boiler ash fractions. The radionuclide activity concentrations in the ash samples increased from the furnace toward the back end of the flue gas duct. The highest values in different PF boiler ash fractions were in the last field of the ESP and in the NID ash, where radionuclide enrichment factors were up to 4.2 and 3.3, respectively. The acquired and analyzed data on radionuclide activity concentrations in different PF boiler ashes (operating with an ESP and a NID system) compared to CFB boiler ashes provides an indication that changes in the fuel (oil shale) composition and boiler working parameters, as well as technological enhancements in Estonian oil shale fired power plants, have had a combined effect on the distribution patterns of natural radionuclides

  2. Application of HTGR process heat to oil shale retorting

    NASA Astrophysics Data System (ADS)

    Wadekamper, D. C.; Taylor, I. N.; Gleason, T. E.

    The currently developed oil shale retorting processes depend on some portion of their product to provide heat energy for process operation. In an attempt to increase the fossil fuel reserves of the United States, as well as decrease environmental pollution, it has been suggested that an High Temperature Gas Reactor (HTGR) be used to supply the heat necessary for the retorting oil shale thus freeing additional petroleum products for sale. The TOSCO II process was selected as a typical oil shale retorting process and a detailed evaluation of the energy requirements was made. Various scenarios to replace selected portions of the process energy requirements with HTGR generated heat are described. The improvements in product yields and reductions in environmental pollution levels associated with a HTGR process heat scheme are summarized.

  3. Development of measures to improve technologies of energy recovery from gaseous wastes of oil shale processing

    NASA Astrophysics Data System (ADS)

    Tugov, A. N.; Ots, A.; Siirde, A.; Sidorkin, V. T.; Ryabov, G. A.

    2016-06-01

    Prospects of the use of oil shale are associated with its thermal processing for the production of liquid fuel, shale oil. Gaseous by-products, such as low-calorie generator gas with a calorific value up to 4.3MJ/m3 or semicoke gas with a calorific value up to 56.57 MJ/m3, are generated depending on the oil shale processing method. The main methods of energy recovery from these gases are either their cofiring with oil shale in power boilers or firing only under gaseous conditions in reconstructed or specially designed for this fuel boilers. The possible use of gaseous products of oil shale processing in gas-turbine or gas-piston units is also considered. Experiments on the cofiring of oil shale gas and its gaseous processing products have been carried out on boilers BKZ-75-39FSl in Kohtla-Järve and on the boiler TP-101 of the Estonian power plant. The test results have shown that, in the case of cofiring, the concentration of sulfur oxides in exhaust gases does not exceed the level of existing values in the case of oil shale firing. The low-temperature corrosion rate does not change as compared to the firing of only oil shale, and, therefore, operation conditions of boiler back-end surfaces do not worsen. When implementing measures to reduce the generation of NO x , especially of flue gas recirculation, it has been possible to reduce the emissions of nitrogen oxides in the whole boiler. The operation experience of the reconstructed boilers BKZ-75-39FSl after their transfer to the firing of only gaseous products of oil shale processing is summarized. Concentrations of nitrogen and sulfur oxides in the combustion products of semicoke and generator gases are measured. Technical solutions that made it possible to minimize the damage to air heater pipes associated with the low-temperature sulfur corrosion are proposed and implemented. The technological measures for burners of new boilers that made it possible to burn gaseous products of oil shale processing with low

  4. Processing use, and characterization of shale oil products.

    PubMed

    Decora, A W; Kerr, R D

    1979-06-01

    Oil shale is a potential source of oil that will supplement conventional sources for oil as our needs for fossil fuels begin to exceed our supplies. The resource may be mined and processed on the surface or it may be processed in situ. An overview of the potential technologies and environmental issues is presented.

  5. Processing use, and characterization of shale oil products

    PubMed Central

    Decora, Andrew W.; Kerr, Robert D.

    1979-01-01

    Oil shale is a potential source of oil that will supplement conventional sources for oil as our needs for fossil fuels begin to exceed our supplies. The resource may be mined and processed on the surface or it may be processed in situ. An overview of the potential technologies and environmental issues is presented. PMID:446454

  6. Studying the possibility of separate and joint combustion of Estonian shales and oil shale retort gas at thermal power plants

    NASA Astrophysics Data System (ADS)

    Roslyakov, P. V.; Attikas, Raivo; Zaichenko, M. N.; Pleshanov, K. A.; Ionkin, I. L.

    2015-10-01

    Results from investigations of joint and separate combustion of shale with a low heating value and oil shale retort gas (OSRG) are presented. The question about the possibility of further using shale as basic fuel is presently placed on the agenda. This matter is connected with the fact that the environmental regulations are imposing increasingly more stringent limits on emissions of harmful substances and that a decrease in the shale heating value is predicted. An adequate mathematical model of one of the TP-101 boilers installed at the Estonian power plant was developed and verified for carrying out investigations. Criteria for determining the reliability, efficiency, and environmental safety of equipment operation were formulated based on the operating chart, regulatory documents, and environmental requirements. Assessment of the possibility of boiler operation and the boiler unit as a whole in firing shale with a low calorific value has shown that despite fulfilling the required superheated steam parameters, quite a number of limitations relating to reliable operation of the boiler are not complied with. In addition, normal operation of forced-draft equipment and mills is possible only at low loads. For operation with joint combustion of shale and OSRG, the fractions of degraded-quality shale and OSRG (by heat) at which reliable and efficient operation of the boiler and boiler unit is ensured in the entire working range of loads with fulfilling the environmental standards are determined. Proposals on modifying the equipment for joint combustion of shale and OSRG are formulated. Boiler operation with firing OSRG as main fuel was modeled for three versions of furnace waterwall thermal efficiency with a view to estimate possible changes of boiler operation in carrying out waterwall cleaning operations. Calculation results have shown that operation of the boiler and boiler unit meeting the elaborated criteria is possible in the entire working range of loads with

  7. Comparison of the Acceptability of Various Oil Shale Processes

    SciTech Connect

    Burnham, A K; McConaghy, J R

    2006-03-11

    While oil shale has the potential to provide a substantial fraction of our nation's liquid fuels for many decades, cost and environmental acceptability are significant issues to be addressed. Lawrence Livermore National Laboratory (LLNL) examined a variety of oil shale processes between the mid 1960s and the mid 1990s, starting with retorting of rubble chimneys created from nuclear explosions [1] and ending with in-situ retorting of deep, large volumes of oil shale [2]. In between, it examined modified-in-situ combustion retorting of rubble blocks created by conventional mining and blasting [3,4], in-situ retorting by radio-frequency energy [5], aboveground combustion retorting [6], and aboveground processing by hot-solids recycle (HRS) [7,8]. This paper reviews various types of processes in both generic and specific forms and outlines some of the tradeoffs for large-scale development activities. Particular attention is given to hot-recycled-solids processes that maximize yield and minimize oil shale residence time during processing and true in-situ processes that generate oil over several years that is more similar to natural petroleum.

  8. Process for retorting oil shale with fluidized retorting of shale fines

    SciTech Connect

    Deering, R. F.

    1985-05-07

    Hot particles removed from a retort, preferably retort-sized particles of oil shale removed from a retort operating at superatmospheric pressure, are crushed and fed to a fluidized surge zone maintained under non-oxidizing conditions at substantially the pressure of the retort to forestall escape of retort gases. Raw fines are introduced into the surge zone and retorted without agglomeration by heat transferred from the hot retorted particles and/or a heated fluidizing gas stream to educe hydrocarbonaceous vapors. Educed vapors are scrubbed, condensed and separated into liquid and gaseous product streams, a portion of the latter being recycled to provide fluidizing process gas streams.

  9. Shale depositional processes: Example from the Paleozoic Barnett Shale, Fort Worth Basin, Texas, USA

    NASA Astrophysics Data System (ADS)

    Abouelresh, Mohamed; Slatt, Roger

    2011-12-01

    the strata. These processes and facies reported in this paper are probably present in other organic-rich shales.

  10. Oil shale, tar sand, coal research advanced exploratory process technology, jointly sponsored research

    SciTech Connect

    Speight, J.G.

    1992-01-01

    Accomplishments for the past quarter are presented for the following five tasks: oil shale; tar sand; coal; advanced exploratory process technology; and jointly sponsored research. Oil shale research covers oil shale process studies. Tar sand research is on process development of Recycle Oil Pyrolysis and Extraction (ROPE) Process. Coal research covers: coal combustion; integrated coal processing concepts; and solid waste management. Advanced exploratory process technology includes: advanced process concepts;advanced mitigation concepts; and oil and gas technology. Jointly sponsored research includes: organic and inorganic hazardous waste stabilization; CROW field demonstration with Bell Lumber and Pole; development and validation of a standard test method for sequential batch extraction fluid; PGI demonstration project; operation and evaluation of the CO[sub 2] HUFF-N-PUFF Process; fly ash binder for unsurfaced road aggregates; solid state NMR analysis of Mesaverde Group, Greater Green River Basin, tight gas sands; flow-loop testing of double-wall pipe for thermal applications; characterization of petroleum residue; shallow oil production using horizontal wells with enhanced oil recovery techniques; surface process study for oil recovery using a thermal extraction process; NMR analysis of samples from the ocean drilling program; in situ treatment of manufactured gas plant contaminated soils demonstration program; and solid state NMR analysis of naturally and artificially matured kerogens.

  11. Slow Radio-Frequency Processing of Large Oil Shale Volumes to Produce Petroleum-Like Shale Oil

    SciTech Connect

    Burnham, A K

    2003-08-20

    A process is proposed to convert oil shale by radio frequency heating over a period of months to years to create a product similar to natural petroleum. Electrodes would be placed in drill holes, either vertical or horizontal, and a radio frequency chosen so that the penetration depth of the radio waves is of the order of tens to hundreds of meters. A combination of excess volume production and overburden compaction drives the oil and gas from the shale into the drill holes, where it is pumped to the surface. Electrical energy for the process could be provided initially by excess regional capacity, especially off-peak power, which would generate {approx}3 x 10{sup 5} bbl/day of synthetic crude oil, depending on shale grade. The electricity cost, using conservative efficiency assumptions, is $4.70 to $6.30/bbl, depending on grade and heating rate. At steady state, co-produced gas can generate more than half the electric power needed for the process, with the fraction depending on oil shale grade. This would increase production to 7.3 x 10{sup 5} bbl/day for 104 l/Mg shale and 1.6 x 10{sup 6} bbl/day for 146 l/Mg shale using a combination of off-peak power and power from co-produced gas.

  12. Two-stage oil shale retorting process and disposal of spent oil shale

    SciTech Connect

    Tassoney, J.P.

    1983-04-12

    Formation is excavated from an in situ oil shale retort site for forming at least one void within the retort site, leaving at least one remaining zone of unfragmented formation within the retort site adjacent such a void. The remaining zone is explosively expanded toward such a void for forming a fragmented permeable mass of formation particles containing oil shale in an in situ oil shale retort. Oil shale in the in situ retort is retorted to produce liquid and gaseous products, leaving a mass of spent oil shale particles in the in situ retort. Oil shale particles excavated from the in situ retort site are separately retorted, such as in a surface retorting operation, producing liquid and gaseous products and spent surface retorted oil shale particles. The spent surface retorted particles are disposed of by forming an aqueous slurry of the particles, and pumping the slurry into a spent in situ retort. In one embodiment, the aqueous slurry is introduced into a hot lower portion of the spent retort where contact with hot spent oil shale particles generates steam which, in turn, is withdrawn from the spent retort in usable form. In another embodiment, water from the aqueous slurry introduced into a spent in situ retort collects at a level within the retort. The water can be recovered by drilling a drainage hole upwardly from a lower level drift into the level within the spent retort where the water collects and draining the water through the drainage hole to the lower level drift for recovery.

  13. Wet separation processes as method to separate limestone and oil shale

    NASA Astrophysics Data System (ADS)

    Nurme, Martin; Karu, Veiko

    2015-04-01

    Biggest oil shale industry is located in Estonia. Oil shale usage is mainly for electricity generation, shale oil generation and cement production. All these processes need certain quality oil shale. Oil shale seam have interlayer limestone layers. To use oil shale in production, it is needed to separate oil shale and limestone. A key challenge is find separation process when we can get the best quality for all product types. In oil shale separation typically has been used heavy media separation process. There are tested also different types of separation processes before: wet separation, pneumatic separation. Now oil shale industry moves more to oil production and this needs innovation methods for separation to ensure fuel quality and the changes in quality. The pilot unit test with Allmineral ALLJIG have pointed out that the suitable new innovation way for oil shale separation can be wet separation with gravity, where material by pulsating water forming layers of grains according to their density and subsequently separates the heavy material (limestone) from the stratified material (oil shale)bed. Main aim of this research is to find the suitable separation process for oil shale, that the products have highest quality. The expected results can be used also for developing separation processes for phosphorite rock or all others, where traditional separation processes doesn't work property. This research is part of the study Sustainable and environmentally acceptable Oil shale mining No. 3.2.0501.11-0025 http://mi.ttu.ee/etp and the project B36 Extraction and processing of rock with selective methods - http://mi.ttu.ee/separation; http://mi.ttu.ee/miningwaste/

  14. Mechanistic Processes Controlling Gas Sorption in Shale Reservoirs

    NASA Astrophysics Data System (ADS)

    Schaef, T.; Loring, J.; Ilton, E. S.; Davidson, C. L.; Owen, T.; Hoyt, D.; Glezakou, V. A.; McGrail, B. P.; Thompson, C.

    2014-12-01

    Utilization of CO2 to stimulate natural gas production in previously fractured shale-dominated reservoirs where CO2 remains in place for long-term storage may be an attractive new strategy for reducing the cost of managing anthropogenic CO2. A preliminary analysis of capacities and potential revenues in US shale plays suggests nearly 390 tcf in additional gas recovery may be possible via CO2 driven enhanced gas recovery. However, reservoir transmissivity properties, optimum gas recovery rates, and ultimate fate of CO2 vary among reservoirs, potentially increasing operational costs and environmental risks. In this paper, we identify key mechanisms controlling the sorption of CH4 and CO2 onto phyllosilicates and processes occurring in mixed gas systems that have the potential of impacting fluid transfer and CO2 storage in shale dominated formations. Through a unique set of in situ experimental techniques coupled with molecular-level simulations, we identify structural transformations occurring to clay minerals, optimal CO2/CH4 gas exchange conditions, and distinguish between adsorbed and intercalated gases in a mixed gas system. For example, based on in situ measurements with magic angle spinning NMR, intercalation of CO2 within the montmorillonite structure occurs in CH4/CO2 gas mixtures containing low concentrations (<5 mol%) of CO2. A stable montmorillonite structure dominates during exposure to pure CH4 (90 bar), but expands upon titration of small fractions (1-3 mol%) of CO2. Density functional theory was used to quantify the difference in sorption behavior between CO2 and CH4 and indicates complex interactions occurring between hydrated cations, CH4, and CO2. The authors will discuss potential impacts of these experimental results on CO2-based hydrocarbon recovery processes.

  15. Critical review, comparative evaluation, cost update, and baseline data development services in oil shale mining, in-situ liquefaction, and above ground retorting processes from the environmental, permitting, and licensing viewpoints. Volume I. Oil-shale retorting process engineering

    SciTech Connect

    Not Available

    1980-12-15

    The present volume is the first of a series of three constituting the title study. It provides a brief but thorough description of six Oil Shale Retorting Processes, namely: Paraho, Tosco II, Oxidental Modified In-Situ, Rio Blanco, Union Oil, and Superior Oil. The processes are treated at Unit Operations level, including operations such as Mining, Crushing, Screening, Conveying, Hydrogenation (or Upgrading), Hydrogen Manufacturing Plant, Amine Treating, Low-Btu Gas Treating, Tail Gas Treating, Sulfur Recovery, Wastewater Treatment, Sour Waste Stripping, Refining, Spent Shale Disposal, etc. The present first volume of the study provides most process engineering information required in order for Control Requirements, at specific points of a given unit operations flowsheet, to be fully assessed. Flow sheets for unit operations presented in the present Volume I are only conceptual and qualitative. Some quantitative data on volumeric flow rates of specific flow streams are occasionally given. However, no systematic effort has been presently made to develop a numerical data base on process flow streams. This has been done in a much more systematic and thorough manner in another FMR study performed on behalf of DOE under title Source Terms for the Health and Environmental Effects Document (HEED) for Oil Shale - 1982. Additional original quantitative analysis has been performed by FMR towards developing material balances for specific oil shale feeds into specific retorting processes.

  16. An Exploratory Research and Development Program Leading to Specifications for Aviation Turbine Fuel from Whole Crude Shale Oil. Part I. Preliminary Process Analyses.

    DTIC Science & Technology

    1981-09-01

    Hydrotreated Paraho Shale Oil 24 8 Simplified Flow Diagram of Anhydrous HCl Treating Plant for Processing Hydrotreated Paraho Shale 01 25 9 Simplified Flow...LIST OF SYMBOLS AND ABBREVIATIONS (Cont’d.) FOE Fuel Oil Equivalent H2 Hydrogen Gas HCl Anhydrous Hydrogen Chloride HP Sep High Pressure Separator... anhydrous HC1 can form the hydrochloride salt of either one or both of the nitrogen containing compounds. C5 H1 1 112 + HC ( anhydrous ) - . C5H11 NH2

  17. Application of solvent hydrogen donor process for the conversion of eastern oil shales. Progress report, November 1, 1983-January 31, 1984. [Hilpat shale from Kentucky, Indiana shale, and for reference purposes shale from Rio Blanco County, Colorado

    SciTech Connect

    Cronauer, D.C.; Solash, J.

    1984-01-01

    The overall objective of this project is to develop an understanding of the fundamentals of a solvent hydrogen donor process to convert kerogen in Eastern US shales to useful products. The goals are to determine the effect of donor content on conversion, changes in kerogen and products with conversion conditions, and the fate of the donor solvent including material balances with losses through isomerization, adduction reaction, and physical retention in the rock matrix. In particular, the project is divided into: (1) characterizing the kerogen of two samples of Eastern US shale, (2) hydrogen donor conversion of these shales using model solvents of varying donor content, and (3) characterizing the unreacted kerogen and liquid products. Accomplishments for this reporting period are presented for these tasks. 3 refs., 7 figs., 7 tabs.

  18. Method of rubblization for in-situ oil shale processing

    NASA Technical Reports Server (NTRS)

    Yang, Lien C. (Inventor)

    1985-01-01

    A method that produces a uniformly rubblized oil shale bed of desirable porosity for underground, in-situ heat extraction of oil. Rubblization is the generation of rubble of various sized fragments. The method uses explosive loadings lying at different levels in adjacent holes and detonation of the explosives at different levels in sequence to achieve the fracturing and the subsequent expansion of the fractured oil shale into excavated rooms both above and below the hole pattern.

  19. Removal of heavy metal ions from oil shale beneficiation process water by ferrite process

    SciTech Connect

    Mehta, R.K.; Zhang, L.; Lamont, W.E.; Schultz, C.W. . Mineral Resources Inst.)

    1991-01-01

    The ferrite process is an established technique for removing heavy metals from waste water. Because the process water resulting from oil shale beneficiation falls into the category of industrial waste water, it is anticipated that this process may turn out to be a potential viable treatment for oil shale beneficiation process water containing many heave metal ions. The process is chemoremedial because not only effluent water comply with quality standards, but harmful heavy metals are converted into a valuable, chemically stable by-product known as ferrite. These spinel ferrites have magnetic properties, and therefore can be use in applications such as magnetic marker, ferrofluid, microwave absorbing and scavenging material. Experimental results from this process are presented along with results of treatment technique such as sulfide precipitation.

  20. Removal of heavy metal ions from oil shale beneficiation process water by ferrite process

    SciTech Connect

    Mehta, R.K.; Zhang, L.; Lamont, W.E.; Schultz, C.W.

    1991-12-31

    The ferrite process is an established technique for removing heavy metals from waste water. Because the process water resulting from oil shale beneficiation falls into the category of industrial waste water, it is anticipated that this process may turn out to be a potential viable treatment for oil shale beneficiation process water containing many heave metal ions. The process is chemoremedial because not only effluent water comply with quality standards, but harmful heavy metals are converted into a valuable, chemically stable by-product known as ferrite. These spinel ferrites have magnetic properties, and therefore can be use in applications such as magnetic marker, ferrofluid, microwave absorbing and scavenging material. Experimental results from this process are presented along with results of treatment technique such as sulfide precipitation.

  1. Design, fabrication, operation and Aspen simulation of oil shale pyrolysis and biomass gasification process using a moving bed downdraft reactor

    NASA Astrophysics Data System (ADS)

    Golpour, Hassan

    Energy is the major facilitator of the modern life. Every developed and developing economy requires access to advanced sources of energy to support its growth and prosperity. Declining worldwide crude oil reserves and increasing energy needs has focused attention on developing existing unconventional fossil fuels like oil shale and renewable resources such as biomass. Sustainable, renewable and reliable resources of domestically produced biomass comparing to wind and solar energy is a sensible motivation to establish a small-scale power plant using biomass as feed to supply electricity demand and heat for rural development. The work in Paper I focuses on the possibility of water pollution from spent oil shale which should be studied before any significant commercial production is attempted. In Paper II, the proposed Aspen models for oil shale pyrolysis is to identify the key process parameters for the reactor and optimize the rate of production of syncrude from oil shale. The work in Paper III focuses on (1) Design and operation of a vertical downdraft reactor, (2) Establishing an optimum operating methodology and parameters to maximize syngas production through process testing. Finally in Paper IV, a proposed Aspen model for biomass gasification simulates a real biomass gasification system discussed in Paper III.

  2. Geotechnical Properties of Oil Shale Retorted by the PARAHO and TOSCO Processes.

    DTIC Science & Technology

    1979-11-01

    outlet size set by consideration of particle interlucking, flow rate, etc. 235 .," Material Oil shale B. With vibrating equipment ] Material not suited...AD-AB.a 317 ARMY ENGINEER WATERWAYS EXPERIMENT STATION VICKSBURG--ETC F/S 8/7 GEOTECHNICAL PROPERTIES OF OIL SHALE RETORTED BY THE PARAHO AND-ETC(U...lEEllllElhllIE MEJ I .LEVEL. TECHNICAL REPORT 66-79-22 GEOTECHNICAL PROPERTIES OF OILas SHALE RETORTED BY THE PARAHO AND C TOSCO PROCESSES by ( Frank C

  3. Plants: Novel Developmental Processes.

    ERIC Educational Resources Information Center

    Goldberg, Robert B.

    1988-01-01

    Describes the diversity of plants. Outlines novel developmental and complex genetic processes that are specific to plants. Identifies approaches that can be used to solve problems in plant biology. Cites the advantages of using higher plants for experimental systems. (RT)

  4. Refining of Military Jet Fuels from Shale Oil. Part II. Volume III. Above Ground Shale Oil Process Data.

    DTIC Science & Technology

    1982-03-01

    shale oil was hydro- treated over cobalt molybdate, as well as nickel molybdate catalyst , in order to quickly screen the response of the crude shale...parameter variation data will most probably overstate denitrogenation capabilities of a lined-out catalyst system. 3. CRUDE SHALE OIL HYDROTREATING - 30-DAY...34 Universal reactor in order to examine the rate of activity decay of a commercial hydrotreating catalyst (Co/ Mo) while refining crude Paraho Shale Oil . The

  5. Oil shale mining cost analysis. Volume I. Surface retorting process. Final report

    SciTech Connect

    Resnick, B.S.; English, L.M.; Metz, R.D.; Lewis, A.G.

    1981-01-01

    An Oil Shale Mining Economic Model (OSMEM) was developed and executed for mining scenarios representative of commercially feasible mining operations. Mining systems were evaluated for candidate sites in the Piceance Creek Basin. Mining methods selected included: (1) room-and-pillar; (2) chamber-and-pillar, with spent shale backfilling; (3) sublevel stopping; and (4) sublevel stopping, with spent shale backfilling. Mines were designed to extract oil shale resources to support a 50,000 barrels-per-day surface processing facility. Costs developed for each mining scenario included all capital and operating expenses associated with the underground mining methods. Parametric and sensitivity analyses were performed to determine the sensitivity of mining cost to changes in capital cost, operating cost, return on investment, and cost escalation.

  6. Determining the locus of a processing zone in an oil shale retort by effluent water composition

    SciTech Connect

    Cha, C.Y.

    1980-09-23

    A processing zone advances through a fragmented permeable mass of particles containing oil shale in an in-situ oil shale retort in a subterranean formation containing oil shale. The retort has an effluent water passing therefrom. The effluent water carries a constituent which is formed, by advancement of the processing zone through the fragmented mass, from a precursor contained in the formation. In a first aspect of the invention, the locus of the processing zone is determined by assaying the formation at selected locations in the retort for content of the precursor before processing the selected locations, and effluent water from the retort is monitored for concentration of the selected constituent. For example, the nitrogen content of kerogen can be the precursor and effluent water from the retort can be monitored for the concentration of ammonia and/or ammonium sulfate produced by retorting of kerogen in the oil shale. In the second embodiment of the invention, recognition is made of the correlation between the fischer assay of the oil shale and the amount of water it contains. Core samples of the formation are analyzed prior to processing to determine the water content and the predicted water production rate due to the passage of a processing zone through that location in the formation. Actual water production rate can then be compared with the predicted rate and the locus of the processing zone determined.

  7. Determining the locus of a processing zone in an oil shale retort by effluent off gas heating value

    SciTech Connect

    Cha, C.Y.

    1981-07-21

    A processing zone advances through a fragmented permeable mass of particles containing oil shale in an in situ oil shale retort in a subterranean formation containing oil shale. The retort has an effluent gas passing therefrom. The effluent gas has a heating value which is dependent on the kerogen content of the oil shale then in contact with the processing zone. To determine the locus of the processing zone, the formation is assayed at selected locations in the retort for kerogen content before processing the selected locations, and effluent gas from the retort is monitored for its heating value.

  8. Investigation of the Geokinetics horizontal in-situ oil-shale-retorting process

    NASA Astrophysics Data System (ADS)

    Costimiris, E. C.

    1982-07-01

    The objective of the Geokinetics in situ shale oil project is to develop a true in situ process for recovering shale oil using a fire front moving in a horizontal direction. The project is conducted at a field site, Kamp Kerogen, Utah. During 1981, one full sized retort was blasted and the following three retorts were processed: (1) retort No. 24 operations were continued until July 23; (2) retort No. 23 was ignited and processed during the calendar year; (3) retort No. 25 was ignited and burned for 77 days during 1981.

  9. Investigation of sorption interactions between organic and mineral phases of processed oil shale

    SciTech Connect

    Blanche, M. S.; Bowen, J. M.

    1987-11-01

    Minerals and organic compounds representative of oil shale processing wastes were analyzed for potential sorption interactions. The analysis consisted of Fourier Transform Infrared spectroscopy, high performance liquid chromatography, thermogravimetric and differential scanning calorimetry, and laser Raman spectroscopy. Montmorillonite clay was used as a representative of the smectites found in raw and spent shales, and hematite was used as a representative of iron oxide found in spent shales. Benzene, 2,2,4-trimethylpentane, benzoic acid, sodium benzoate, and pyridine were used as representatives of oil shale process organic wastes. In addition, isopropylamine and dimethyl methylphosphonate, a pesticide model, were studied. A preparation methods comparison study was performed and established the validity of the solid state KBr sample preparation technique upon FTIR spectral quality. The results of this study illustrate the utility of fourier transform infrared spectroscopic analysis to establish and describe the potential for sorption interactions between inorganic and organic phases of oil shale processing wastes. Experimentation with the laser remain system shows promise for significant contributions in this field of research. 43 refs., 3 figs., 6 tabs.

  10. Heat and mass transfer processes during the pyrolysis of antrim oil shale

    NASA Astrophysics Data System (ADS)

    Piccirelli, R. A.

    1980-07-01

    A model of simultaneous heat and mass transfer processes during the pyrolysis of slabs of consolidated Michigan oil shale is presented. The manner in which the transport processes control the yield of pyrolysis product is emphasized; the model parameters are selected to reflect the conditions expected during in situ retorting. A single reaction describes the generation of gaseous pyrolysis product; numerical solution of the model mass transport equations indicates that the pressure and velocity profiles within the shale due to generation of gaseous reaction products can be assumed to be in a quasi-steady state. It is concluded that while the bulk convective transport is not essential to the energy equation, it is important for product yield calculations; the solution also suggests that the heat transfer through the surface convective layer and into the shale slab is the rate limiting process.

  11. Influence of frequency, grade, moisture and temperature on Green River oil shale dielectric properties and electromagnetic heating processes

    SciTech Connect

    Hakala, J. Alexandra; Stanchina, William; Soong, Yee; Hedges, Sheila

    2011-01-01

    Development of in situ electromagnetic (EM) retorting technologies and design of specific EM well logging tools requires an understanding of various process parameters (applied frequency, mineral phases present, water content, organic content and temperature) on oil shale dielectric properties. In this literature review on oil shale dielectric properties, we found that at low temperatures (<200° C) and constant oil shale grade, both the relative dielectric constant (ε') and imaginary permittivity (ε'') decrease with increased frequency and remain constant at higher frequencies. At low temperature and constant frequency, ε' decreases or remains constant with oil shale grade, while ε'' increases or shows no trend with oil shale grade. At higher temperatures (>200º C) and constant frequency, epsilon' generally increases with temperature regardless of grade while ε'' fluctuates. At these temperatures, maximum values for both ε' and ε'' differ based upon oil shale grade. Formation fluids, mineral-bound water, and oil shale varve geometry also affect measured dielectric properties. This review presents and synthesizes prior work on the influence of applied frequency, oil shale grade, water, and temperature on the dielectric properties of oil shales that can aid in the future development of frequency- and temperature-specific in situ retorting technologies and oil shale grade assay tools.

  12. Oil shale, tar sand, coal research, advanced exploratory process technology jointly sponsored research

    SciTech Connect

    Not Available

    1992-01-01

    Accomplishments for the quarter are presented for the following areas of research: oil shale, tar sand, coal, advanced exploratory process technology, and jointly sponsored research. Oil shale research includes; oil shale process studies, environmental base studies for oil shale, and miscellaneous basic concept studies. Tar sand research covers process development. Coal research includes; underground coal gasification, coal combustion, integrated coal processing concepts, and solid waste management. Advanced exploratory process technology includes; advanced process concepts, advanced mitigation concepts, and oil and gas technology. Jointly sponsored research includes: organic and inorganic hazardous waste stabilization; development and validation of a standard test method for sequential batch extraction fluid; operation and evaluation of the CO[sub 2] HUFF-N-PUFF Process; fly ash binder for unsurfaced road aggregates; solid state NMR analysis of Mesa Verde Group, Greater Green River Basin, tight gas sands; flow-loop testing of double-wall pipe for thermal applications; characterization of petroleum residue; shallow oil production using horizontal wells with enhanced recovery techniques; and menu driven access to the WDEQ Hydrologic Data Management Systems.

  13. Modeling of hydrologic conditions and solute movement in processed oil shale waste embankments under simulated climatic conditions

    SciTech Connect

    Reeves, T.L.; Turner, J.P.; Hasfurther, V.R.; Skinner, Q.D.

    1992-06-01

    The scope of this program is to study interacting hydrologic, geotechnical, and chemical factors affecting the behavior and disposal of combusted processed oil shale. The research combines bench-scale testing with large scale research sufficient to describe commercial scale embankment behavior. The large scale approach was accomplished by establishing five lysimeters, each 7.3 {times} 3.0 {times} 3.0 m deep, filled with processed oil shale that has been retorted and combusted by the Lurgi-Ruhrgas (Lurgi) process. Approximately 400 tons of Lurgi processed oil shale waste was provided by RBOSC to carry out this study. Research objectives were designed to evaluate hydrologic, geotechnical, and chemical properties and conditions which would affect the design and performance of large-scale embankments. The objectives of this research are: assess the unsaturated movement and redistribution of water and the development of potential saturated zones and drainage in disposed processed oil shale under natural and simulated climatic conditions; assess the unsaturated movement of solubles and major chemical constituents in disposed processed oil shale under natural and simulated climatic conditions; assess the physical and constitutive properties of the processed oil shale and determine potential changes in these properties caused by disposal and weathering by natural and simulated climatic conditions; assess the use of previously developed computer model(s) to describe the infiltration, unsaturated movement, redistribution, and drainage of water in disposed processed oil shale; evaluate the stability of field scale processed oil shale solid waste embankments using computer models.

  14. Modeling of hydrologic conditions and solute movement in processed oil shale waste embankments under simulated climatic conditions

    SciTech Connect

    Reeves, T.L.; Turner, J.P.; Hasfurther, V.R.; Skinner, Q.D.

    1992-06-01

    The scope of this program is to study interacting hydrologic, geotechnical, and chemical factors affecting the behavior and disposal of combusted processed oil shale. The research combines bench-scale testing with large scale research sufficient to describe commercial scale embankment behavior. The large scale approach was accomplished by establishing five lysimeters, each 7.3 [times] 3.0 [times] 3.0 m deep, filled with processed oil shale that has been retorted and combusted by the Lurgi-Ruhrgas (Lurgi) process. Approximately 400 tons of Lurgi processed oil shale waste was provided by RBOSC to carry out this study. Research objectives were designed to evaluate hydrologic, geotechnical, and chemical properties and conditions which would affect the design and performance of large-scale embankments. The objectives of this research are: assess the unsaturated movement and redistribution of water and the development of potential saturated zones and drainage in disposed processed oil shale under natural and simulated climatic conditions; assess the unsaturated movement of solubles and major chemical constituents in disposed processed oil shale under natural and simulated climatic conditions; assess the physical and constitutive properties of the processed oil shale and determine potential changes in these properties caused by disposal and weathering by natural and simulated climatic conditions; assess the use of previously developed computer model(s) to describe the infiltration, unsaturated movement, redistribution, and drainage of water in disposed processed oil shale; evaluate the stability of field scale processed oil shale solid waste embankments using computer models.

  15. Process for oil shale retorting using gravity-driven solids flow and solid-solid heat exchange

    DOEpatents

    Lewis, Arthur E.; Braun, Robert L.; Mallon, Richard G.; Walton, Otis R.

    1986-01-01

    A cascading bed retorting process and apparatus in which cold raw crushed shale enters at the middle of a retort column into a mixer stage where it is rapidly mixed with hot recycled shale and thereby heated to pyrolysis temperature. The heated mixture then passes through a pyrolyzer stage where it resides for a sufficient time for complete pyrolysis to occur. The spent shale from the pyrolyzer is recirculated through a burner stage where the residual char is burned to heat the shale which then enters the mixer stage.

  16. Process for oil shale retorting using gravity-driven solids flow and solid-solid heat exchange

    DOEpatents

    Lewis, A.E.; Braun, R.L.; Mallon, R.G.; Walton, O.R.

    1983-09-21

    A cascading bed retorting process and apparatus are disclosed in which cold raw crushed shale enters at the middle of a retort column into a mixer stage where it is rapidly mixed with hot recycled shale and thereby heated to pyrolysis temperature. The heated mixture then passes through a pyrolyzer stage where it resides for a sufficient time for complete pyrolysis to occur. The spent shale from the pyrolyzer is recirculated through a burner stage where the residual char is burned to heat the shale which then enters the mixer stage.

  17. Formation of nanoporous pyrobitumen residues during maturation processes within the Barnett Shale (Fort Worth Basin)

    NASA Astrophysics Data System (ADS)

    Bernard, S.; Wirth, R.; Schreiber, A.; Schulz, H.-M.; Horsfield, B.

    2012-04-01

    Hydrocarbon generation processes occur within organic-rich shales as a response to increases in thermal maturation. Shale gas reservoir quality is thought to be largely dependent on the extent to which solid organic material has been converted to pore space during catagenesis. Although pores may drastically vary in variety and abundance within differing shales, the occurrence of nanopores within organic particles has recently been documented for an important number of gas shale systems (i.e., Barnett, Haynesville, Utica, Eagle Ford, Woodford, Horn River, Marcellus, Posidonia …). However, despite their ubiquitous nature, the formation and the geochemical nature of these nanoporous organic compounds remain unclear. Here, we present the characterization of samples from the organic-rich Mississippian Barnett shale gas system (Fort Worth Basin, Texas, USA) at varying stages of thermal maturation. Using a combination of compositional organic geochemistry and spectromicroscopy techniques, including synchrotron-based scanning transmission X-ray microscopy (STXM - data collected using the CLS 10ID-1 STXM beamline) and transmission electron microscopy (TEM), we document a net increase in sample geochemical heterogeneity with increasing maturity. In addition to the presence of bitumen in samples of oil window maturity, very likely genetically derived from thermally degraded kerogen, the formation of nanoporous pyrobitumen has been inferred for samples of gas window maturity, likely resulting from the formation of gaseous hydrocarbons by secondary cracking of bitumen compounds. By providing in-situ insights into the fate of bitumen and pyrobitumen as a response to the thermal evolution of the macromolecular structure of kerogen, the present contribution constitutes an important step towards better constraining hydrocarbon generation processes occurring within unconventional gas shale systems.

  18. Hydrocarbon transport and shearing processes in the Antelope Shale, Monterey Formation, San Joaquin Valley, California

    SciTech Connect

    Dholakia, S.K.; Aydin, A.; Pollard, D.D. )

    1996-01-01

    An essential component of the development and management of a fractured reservoir is the basic understanding of the fracture system and its effect on hydrocarbon flow. In the Antelope Shale, a siliceous shale member of the Monterey Formation in the Buena Vista Hills field (BVH), San Joaquin Valley (SJV), the relationship between the fracture system and hydrocarbon productivity is poorly understood. An integrative approach, employing both geological and geophysical methods, to fracture characterization in the Antelope Shale is important for a better understanding of the connected fracture network and for identifying hydrocarbon-carrying fractures. This knowledge will aid in future reservoir management plans for the BVH field, specifically CO[sub 2] enhanced oil recovery from the existing reservoir. Field studies of the Antelope Shale at Chico Martinez Creek in the SJV demonstrate the importance of shearing processes for the migration of hydrocarbons. Hydrocarbons primarily occur in brecciated zones which are oriented parallel to bedding. The internal architecture of early stage breccia zones is well-organized with sets of hydrocarbon-stained fractures oriented both at high angles and parallel to bedding. In later stage breccia zones, internal organization is disrupted and consists of fragments of the host rock surrounded by hydrocarbons. Subsurface studies which include core and FMS data demonstrate comparable shear-related features in the Monterey Formation. Oil-stained breccia zones are observed in core from the Antelope Shale from a field near BVH. Breccia zones are documented in FMS data from offshore Monterey fields and similar features are being sought in FMS data from SJV in Antelope Shale.

  19. Hydrocarbon transport and shearing processes in the Antelope Shale, Monterey Formation, San Joaquin Valley, California

    SciTech Connect

    Dholakia, S.K.; Aydin, A.; Pollard, D.D.

    1996-12-31

    An essential component of the development and management of a fractured reservoir is the basic understanding of the fracture system and its effect on hydrocarbon flow. In the Antelope Shale, a siliceous shale member of the Monterey Formation in the Buena Vista Hills field (BVH), San Joaquin Valley (SJV), the relationship between the fracture system and hydrocarbon productivity is poorly understood. An integrative approach, employing both geological and geophysical methods, to fracture characterization in the Antelope Shale is important for a better understanding of the connected fracture network and for identifying hydrocarbon-carrying fractures. This knowledge will aid in future reservoir management plans for the BVH field, specifically CO{sub 2} enhanced oil recovery from the existing reservoir. Field studies of the Antelope Shale at Chico Martinez Creek in the SJV demonstrate the importance of shearing processes for the migration of hydrocarbons. Hydrocarbons primarily occur in brecciated zones which are oriented parallel to bedding. The internal architecture of early stage breccia zones is well-organized with sets of hydrocarbon-stained fractures oriented both at high angles and parallel to bedding. In later stage breccia zones, internal organization is disrupted and consists of fragments of the host rock surrounded by hydrocarbons. Subsurface studies which include core and FMS data demonstrate comparable shear-related features in the Monterey Formation. Oil-stained breccia zones are observed in core from the Antelope Shale from a field near BVH. Breccia zones are documented in FMS data from offshore Monterey fields and similar features are being sought in FMS data from SJV in Antelope Shale.

  20. Migration and enrichment of arsenic in the rock-soil-crop plant system in areas covered with black shale, Korea.

    PubMed

    Yi, Ji-Min; Chon, Hyo-Taek; Park, Min

    2003-04-07

    The Okchon black shale, which is part of the Guryongsan Formation or the Changri Formation of Cambro-Ordovician age in Korea provides a typical example of natural geological materials enriched with potentially toxic elements such as U, V, Mo, As, Se, Cd, and Zn. In this study, the Dukpyung and the Chubu areas were selected to investigate the migration and enrichment of As and other toxic elements in soils and crop plants in areas covered with black shale. Rock and soil samples digested in 4-acid solution (HCl+HNO3+HF+HClO4) were analyzed for As and other heavy metals by ICP-AES and ICP-MS, and plant samples by INAA. Mean concentration of As in Okchon black shale is higher than those of both world average values of shale and black shale. Especially high concentration of 23.2 mg As kg(-1) is found in black shale from the Dukpyung area. Mean concentration of As is highly elevated in agricultural soils from the Dukpyung (28.2 mg kg(-1)) and the Chubu areas (32.6 mg kg(-1)). As is highly elevated in rice leaves from the Dukpyung (1.14 mg kg(-1)) and the Chubu areas (1.35 mg kg(-1)). The biological absorption coefficient (BAC) of As in plant species decreases in the order of rice leaves > corn leaves > red pepper = soybean leaves = sesame leaves > corn stalks > corn grains. This indicates that leafy plants tend to accumulate As from soil to a greater degree than cereal products such as grains.

  1. Oil shale, tar sand, coal research, advanced exploratory process technology, jointly sponsored research

    SciTech Connect

    Not Available

    1992-01-01

    Progress made in five research programs is described. The subtasks in oil shale study include oil shale process studies and unconventional applications and markets for western oil shale.The tar sand study is on recycle oil pyrolysis and extraction (ROPE) process. Four tasks are described in coal research: underground coal gasification; coal combustion; integrated coal processing concepts; and sold waste management. Advanced exploratory process technology includes: advanced process concepts; advanced mitigation concepts; and oil and gas technology. Jointly sponsored research covers: organic and inorganic hazardous waste stabilization; CROW field demonstration with Bell Lumber and Pole; development and validation of a standard test method for sequential batch extraction fluid; PGI demonstration project; operation and evaluation of the CO[sub 2] HUFF-N-PUFF process; fly ash binder for unsurfaced road aggregates; solid state NMR analysis of Mesaverde group, Greater Green River Basin, tight gas sands; flow-loop testing of double-wall pipe for thermal applications; shallow oil production using horizontal wells with enhanced oil recovery techniques; NMR analysis of sample from the ocean drilling program; and menu driven access to the WDEQ hydrologic data management system.

  2. Time Domain Reflectometry for Measuring Volumetric Water Content in Processed Oil Shale Waste

    NASA Astrophysics Data System (ADS)

    Reeves, T. L.; Elgezawi, S. M.

    1992-03-01

    Time domain reflectometry (TDR) was evaluated and developed to monitor volumetric water content (θυ) in oil shale solid waste retorted and combusted by the Lurgi-Ruhrgas process. A TDR probe was designed and tested that could be buried and compacted in waste embankments and provide in situ measurements for θυ in the high-saline and high-alkaline conditions exhibited by this waste. TDR was found to be accurate for measurement of θυ across a broad range of water contents in the processed oil shale waste. A computer algorithm to automate the analysis of TDR traces to determine θυ, was developed and tested. A sensitivity test was performed to analyze differences between three smoothing algorithms on the measurement. No significant differences were found between smoothing algorithms or between the number of points applied for smoothing.

  3. Oil shale, tar sand, coal research advanced exploratory process technology, jointly sponsored research. Quarterly technical progress report, October--December 1992

    SciTech Connect

    Speight, J.G.

    1992-12-31

    Accomplishments for the past quarter are presented for the following five tasks: oil shale; tar sand; coal; advanced exploratory process technology; and jointly sponsored research. Oil shale research covers oil shale process studies. Tar sand research is on process development of Recycle Oil Pyrolysis and Extraction (ROPE) Process. Coal research covers: coal combustion; integrated coal processing concepts; and solid waste management. Advanced exploratory process technology includes: advanced process concepts;advanced mitigation concepts; and oil and gas technology. Jointly sponsored research includes: organic and inorganic hazardous waste stabilization; CROW field demonstration with Bell Lumber and Pole; development and validation of a standard test method for sequential batch extraction fluid; PGI demonstration project; operation and evaluation of the CO{sub 2} HUFF-N-PUFF Process; fly ash binder for unsurfaced road aggregates; solid state NMR analysis of Mesaverde Group, Greater Green River Basin, tight gas sands; flow-loop testing of double-wall pipe for thermal applications; characterization of petroleum residue; shallow oil production using horizontal wells with enhanced oil recovery techniques; surface process study for oil recovery using a thermal extraction process; NMR analysis of samples from the ocean drilling program; in situ treatment of manufactured gas plant contaminated soils demonstration program; and solid state NMR analysis of naturally and artificially matured kerogens.

  4. High efficiency shale oil recovery

    SciTech Connect

    Adams, D.C.

    1993-04-22

    The overall project objective is to demonstrate the high efficiency of the Adams Counter-Current shale oil recovery process. The efficiency will first be demonstrated on a small scale, in the current phase, after which the demonstration will be extended to the operation of a small pilot plant. Thus the immediate project objective is to obtain data on oil shale retorting operations in a small batch rotary kiln that will be representative of operations in the proposed continuous process pilot plant. Although an oil shale batch sample is sealed in the batch kiln from the start until the end of the run, the process conditions for the batch are the same as the conditions that an element of oil shale would encounter in a continuous process kiln. Similar chemical and physical conditions (heating, mixing, pyrolysis, oxidation) exist in both systems.The two most important data objectives in this phase of the project are to demonstrate (1) that the heat recovery projected for this project is reasonable and (2) that an oil shale kiln will run well and not plug up due to sticking and agglomeration. The following was completed this quarter. (1) Twelve pyrolysis runs were made on five different oil shales. All of the runs exhibited a complete absence of any plugging, tendency. Heat transfer for Green River oil shale in the rotary kiln was 84.6 Btu/hr/ft[sup 2]/[degrees]F, and this will provide for ample heat exchange in the Adams kiln. (2) One retorted residue sample was oxidized at 1000[degrees]F. Preliminary indications are that the ash of this run appears to have been completely oxidized. (3) Further minor equipment repairs and improvements were required during the course of the several runs.

  5. Oil shale, tar sand, coal research, advanced exploratory process technology, jointly sponsored research. Quarterly technical progress report, April--June 1993

    SciTech Connect

    Not Available

    1993-09-01

    Progress made in five areas of research is described briefly. The subtask in oil shale research is on oil shale process studies. For tar sand the subtask reported is on process development. Coal research includes the following subtasks: Coal combustion; integrated coal processing concepts; and solid waste management. Advanced exploratory process technology includes the following: Advanced process concepts; advanced mitigation concepts; oil and gas technology. Jointly sponsored research includes: Organic and inorganic hazardous waste stabilization; CROW{sup TM} field demonstration with Bell Lumber and Pole; development and validation of a standard test method for sequential batch extraction fluid; operation and evaluation of the CO{sup 2} HUFF-N-PUFF Process; fly ash binder for unsurfaced road aggregates; solid-state NMR analysis of Mesaverde Group, Greater Green River Basin, tight gas sands; characterization of petroleum residua; shallow oil production using horizontal wells with enhanced oil recovery techniques; surface process study for oil recovery using a thermal extraction process;NMR analysis of samples from the ocean drilling program; oil field waste cleanup using tank bottom recovery process; remote chemical sensor development; in situ treatment of manufactured gas plant contaminated soils demonstration program; solid-state NMR analysis of Mowry formation shale from different sedimentary basins; solid-state NMR analysis of naturally and artificially matured kerogens; and development of effective method for the clean-up of natural gas.

  6. Coal processing plants

    NASA Astrophysics Data System (ADS)

    Bitterlich, W.; Bohn, T.; Eickhoff, H. G.; Geldmacher, H.; Mengis, W.; Oomatia, H.; Stroppel, K. G.

    1980-08-01

    The efficient design of processing plants which combine various coal based technologies in order to maximize the effectiveness of coal utilization is considered. The technical, economical and ecological virtues which compound plants for coal conversion offer are assayed. Twenty-two typical processes of coal conversion and product refinement are selected and described by a standardized method of characterization. An analysis of product market and a qualitative assessment of plant design support six different compound plant propositions. The incorporation of such coal conversion schemes into future energy supply systems was simulated by model calculations. The analysis shows that byproducts and nonconverted materials from individual processes can be processed in a compound plant in a profitable manner. This leads to an improvement in efficiencies. The product spectrum can be adapted to a certain degree to demand variations. Furthermore, the integration of fluidized bed combustion can provide an efficient method of desulfurization. Compound plants are expected to become economic in the 1990's. A necessary condition to compound technologies is high reliability in the functioning of all individual processes.

  7. Investigation of the Geokinetics horizontal in situ oil shale retorting process. Seventh annual report, 1983

    SciTech Connect

    Henderson, K.B.

    1984-08-01

    In the Geokinetics process, a pattern of blast holes is drilled from the surface, through the overburden, and into the oil shale bed. The holes are loaded with explosives and fired using a carefully planned blast system. The blast produces a fragmented mass of oil shale with high permeability. The fragmented zone constitutes an in situ retort. The project site is in the Mahogany Zone oil shale in Utah. During 1983 significant milestones were achieved. The burn of Retort No. 26 was completed on February 22, 1983, having produced 22,889 barrels of oil. By the end of July, 1983, all preparations were complete for the ignition of Retort No. 27. However, ignition was delayed until August 11, 1983, pending completion of the retort off gas processing facility. By early October, final preparations for the ignition of Retort No. 28 were completed and the retort was ignited on October 18, 1983. A facility to remove ammonia and hydrogen sulfide contaminants from Retorts No. 27 and No. 28 off gas was constructed at the site. Numerous environmental tests and experiments were conducted, primarily to gather data for permitting purposes. A pond to hold water produced by Retorts No. 27 and No. 28 was completed during August, 1983. The pond was put into service at the same time as the ignition of Retort No. 27.

  8. The environmental consequences of the oil shale utilization in Jordan: The effect of combustion processes

    NASA Astrophysics Data System (ADS)

    El-Hasan, Tayel

    2015-04-01

    The geochemical analysis of the upper Cretaceous organic rich oil shale of El-Lajjoun revealed that it contains considerable concentrations of trace element when compared to the average world shale. The aim of this study was to deduce the effect of various combustion processes on the geochemical and mineralogical characteristics of the produced ashes.The oil shale powder samples were burned under Aerobic Combustion Process (ACP) at 700˚C, 850˚C and 1000˚C respectively, beside the anaerobic (pyrolysis) combustion process (PCP) at 600, 650, 700, 750 and 800˚C respectively.The ashes produced from the (ACP) caused almost all major oxides contents to increase with increasing burning temperature, particularly SiO2 and CaO were nearly doubled at temperature 1000 ˚C. Moreover, trace elements showed the same trend where ashes at higher temperatures (i.e. 1000 ˚C) have doubled its contents of trace elements such as Cr, Ni, Zn, Cu and U. This was reflected through enrichment of calcite and quartz beside the anhydrite as the main mineral phases in the ACP ashes. As for the PCP ash show similar trend but relatively with lower concentrations as evident from its lowerEnrichment Factor (EF) values. This might be due to the higher organic matter remained in the PCP ashes compared with ACP ashes. However, PCP is more likely associated with toxic Cd and Asgasses as evident from their lowerconcentrations in the ashes.Moreover, recent results using the synchrotron-based XANES technique confirm that toxic elements are found in higher oxidation state due to ACP. The investigation was concerned on As and Cr. Thechromium in the original shales was in the form of Cr (III) and then it was converted to Cr(VI) in the ashes due of the ACP. Similarly, As (III) the XANES results showed that it was converted into As(V) too. These findingsare alarming and should be taken seriously. Because elements with higher oxidation states became more mobile, thus they can easily leached from the ash

  9. Geochemical modeling research related to the surface disposal of processed oil shale solid waste. [Elements and compounds in oil shale wastes

    SciTech Connect

    Reddy, K. J.; Drever, J. I.

    1987-10-01

    Several geochemical codes are available in the literature to model chemical processes such as oxidation-reduction, precipitation-dissolution, formation of solution complex, adsorption, and ion exchange. However, these models differ in the environments to which they apply. The objective of this research was to evaluate the applicability of existing geochemical codes to predict water quality from an oil shale solid waste environment. We selected EQ3/EQ6, GEOCHEM, MINTEQ, PHREEQE, SOLMNEQ, and WATEQFC geochemical models for further evaluation. We concluded that all these models lack thermodynamic data for minerals and solution complexes which are important for oil shale solid waste studies. Selection of any one of the models would require development of a more reliable thermodynamic database, and this report describes the initiation of that work. So far, critical evaluation of thermodynamic data has been completed for Sr, F, Mo, and Se. 64 refs., 15 tabs.

  10. Leaching of polycyclic aromatic hydrocarbons from oil shale processing waste deposit: a long-term field study.

    PubMed

    Jefimova, Jekaterina; Irha, Natalya; Reinik, Janek; Kirso, Uuve; Steinnes, Eiliv

    2014-05-15

    The leaching behavior of selected polycyclic aromatic hydrocarbons (PAHs) from an oil shale processing waste deposit was monitored during 2005-2009. Samples were collected from the deposit using a special device for leachate sampling at field conditions without disturbance of the upper layers. Contents of 16 priority PAHs in leachate samples collected from aged and fresh parts of the deposit were determined by GC-MS. The sum of the detected PAHs in leachates varied significantly throughout the study period: 19-315 μg/l from aged spent shale, and 36-151 μg/l from fresh spent shale. Among the studied PAHs the low-molecular weight compounds phenanthrene, naphthalene, acenaphthylene, and anthracene predominated. Among the high-molecular weight PAHs benzo[a]anthracene and pyrene leached in the highest concentrations. A spent shale deposit is a source of PAHs that could infiltrate into the surrounding environment for a long period of time.

  11. Perform research in process development for hydroretorting of Eastern oil shales: Volume 2, Expansion of the Moving-Bed Hydroretorting Data Base for Eastern oil shales

    SciTech Connect

    Not Available

    1989-11-01

    An extensive data base was developed for six Eastern oil shales: Alabama Chattanooga, Indiana New Albany, Kentucky Sunbury, Michigan Antrim, Ohio Cleveland, and Tennessee Chattanooga shales. The data base included the hydroretorting characteristics of the six shales, as well as the retorting characteristics in the presence of synthesis gas and ionized gas. Shale gasification was also successfully demonstrated. Shale fines (20%) can produce enough hydrogen for the hydroretorting of the remaining 80% of the shale. The amount of fines tolerable in a moving bed was also determined. 16 refs., 59 figs., 43 tabs.

  12. Modeling of hydrologic conditions and solute movement in processed oil shale waste embankments under simulated climatic conditions

    SciTech Connect

    Turner, J.P.; Hasfurther, V.

    1992-05-04

    The scope of the research program and the continuation is to study interacting hydrologic, geotechnical, and chemical factors affecting the behavior and disposal of combusted processed oil shale. The research combines bench-scale testing with large scale research sufficient to describe commercial scale embankment behavior. The large scale approach was accomplished by establishing five lysimeters, each 7.3 [times] 3.0 [times] 3.0 m deep, filled with processed oil shale that has been retorted and combusted by the Lurgi-Ruhrgas (Lurgi) process. Approximately 400 tons of Lurgi processed oil shale waste was provided by Rio Blanco Oil Shale Co., Inc. (RBOSC) through a separate cooperative agreement with the University of Wyoming (UW) to carry out this study. Three of the lysimeters were established at the RBOSC Tract C-a in the Piceance Basin of Colorado. Two lysimeters were established in the Environmental Simulation Laboratory (ESL) at UW. The ESL was specifically designed and constructed so that a large range of climatic conditions could be physically applied to the processed oil shale which was filled in the lysimeter cells.

  13. High efficiency shale oil recovery

    SciTech Connect

    Adams, C.D.

    1992-07-18

    The overall project objective is to demonstrate the high efficiency of the Adams Counter-Current shale oil recovery process. The efficiency will first be demonstrated at bench-scale, in the current phase, after which the demonstration will be extended to the operation of a small pilot plant. Thus the immediate project objective is to obtain data on oil shale retorting operations in a small batch rotary kiln that will be representative of operations in the proposed continuous process pilot plant. Although an oil shale batch sample is sealed in the batch kiln from the start until the end of the run, the process conditions for the batch are the same as the conditions that an element of oil shale would encounter in a larger continuous process kiln. For example, similar conditions of heatup rate, oxidation of the residue and cool-down prevail for the element in both systems. This batch kiln is a unit constructed in a 1987 Phase I SBIR tar sand retorting project. The kiln worked fairly well in that project; however, the need for certain modifications was observed. These modifications are now underway to simplify the operation and make the data and analysis more exact. The second quarter agenda consisted of (a) kiln modifications; (b) sample preparation; and (c) Heat Transfer calibration runs (part of proposal task number 3 -- to be completed by the end of month 7).

  14. Plant hydrocarbon recovery process

    SciTech Connect

    Dzadzic, P.M.; Price, M.C.; Shih, C.J.; Weil, T.A.

    1982-01-26

    A process for production and recovery of hydrocarbons from hydrocarbon-containing whole plants in a form suitable for use as chemical feedstocks or as hydrocarbon energy sources which process comprises: (A) pulverizing by grinding or chopping hydrocarbon-containing whole plants selected from the group consisting of euphorbiaceae, apocynaceae, asclepiadaceae, compositae, cactaceae and pinaceae families to a suitable particle size, (B) drying and preheating said particles in a reducing atmosphere under positive pressure (C) passing said particles through a thermal conversion zone containing a reducing atmosphere and with a residence time of 1 second to about 30 minutes at a temperature within the range of from about 200* C. To about 1000* C., (D) separately recovering the condensable vapors as liquids and the noncondensable gases in a condition suitable for use as chemical feedstocks or as hydrocarbon fuels.

  15. Contaminants from Cretaceous Black Shale Part 1: Natural weathering processes controlling contaminant cycling in Mancos Shale, southwestern United States, with emphasis on salinity and selenium

    USGS Publications Warehouse

    Tuttle, Michele L.W.; Fahy, Juli W.; Elliott, John G.; Grauch, Richard I.; Stillings, Lisa L.

    2013-01-01

    Soils derived from black shale can accumulate high concentrations of elements of environmental concern, especially in regions with semiarid to arid climates. One such region is the Colorado River basin in the southwestern United States where contaminants pose a threat to agriculture, municipal water supplies, endangered aquatic species, and water-quality commitments to Mexico. Exposures of Cretaceous Mancos Shale (MS) in the upper basin are a major contributor of salinity and selenium in the Colorado River. Here, we examine the roles of geology, climate, and alluviation on contaminant cycling (emphasis on salinity and Se) during weathering of MS in a Colorado River tributary watershed. Stage I (incipient weathering) began perhaps as long ago as 20 ka when lowering of groundwater resulted in oxidation of pyrite and organic matter. This process formed gypsum and soluble organic matter that persist in the unsaturated, weathered shale today. Enrichment of Se observed in laterally persistent ferric oxide layers likely is due to selenite adsorption onto the oxides that formed during fluctuating redox conditions at the water table. Stage II weathering (pedogenesis) is marked by a significant decrease in bulk density and increase in porosity as shale disaggregates to soil. Rainfall dissolves calcite and thenardite (Na2SO4) at the surface, infiltrates to about 1 m, and precipitates gypsum during evaporation. Gypsum formation (estimated 390 kg m−2) enriches soil moisture in Na and residual SO4. Transpiration of this moisture to the surface or exposure of subsurface soil (slumping) produces more thenardite. Most Se remains in the soil as selenite adsorbed to ferric oxides, however, some oxidizes to selenate and, during wetter conditions is transported with soil moisture to depths below 3 m. Coupled with little rainfall, relatively insoluble gypsum, and the translocation of soluble Se downward, MS landscapes will be a significant nonpoint source of salinity and Se to the

  16. Method of operating an oil shale kiln

    DOEpatents

    Reeves, Adam A.

    1978-05-23

    Continuously determining the bulk density of raw and retorted oil shale, the specific gravity of the raw oil shale and the richness of the raw oil shale provides accurate means to control process variables of the retorting of oil shale, predicting oil production, determining mining strategy, and aids in controlling shale placement in the kiln for the retorting.

  17. Development of CFD-Based Simulation Tools for In-Situ Thermal Processing of Oil Shale/Sands

    SciTech Connect

    None, None

    2012-02-01

    In our research, we are taking the novel approach of developing and applying high performance computing, computational fluid dynamics (CFD)-based simulation tools to a modified in-situ process for production of oil from oil shale. The simulation tools being developed capture the relevant physical processes and data from a large-scale system. The modified in-situ application is a pilot-scale heat transfer process inside Red Leaf Resources EcoShale capsule. We demonstrate the need to understand fluid flow behavior in the convective channels of the rubblized shale bed as convective heating greatly decreases the time required to heat the oil shale to the production temperature when compared with conductive heating alone. We have developed and implemented a geometry creation strategy for a representative section of the EcoShale capsule, developed a meshing approach to deal with the complicated geometry and produce a well-behaved mesh, analyzed the effects of boundary conditions on the simulation results, and devised a new operator splitting solution algorithm that reduces computational costs by taking advantage of the differing convective and conductive time scales occurring in the simulation. These simulation tools can be applied to a wide range of processes involving convective fluid flow heating in rubblized beds.

  18. Converting oil shale to liquid fuels: energy inputs and greenhouse gas emissions of the Shell in situ conversion process.

    PubMed

    Brandt, Adam R

    2008-10-01

    Oil shale is a sedimentary rock that contains kerogen, a fossil organic material. Kerogen can be heated to produce oil and gas (retorted). This has traditionally been a CO2-intensive process. In this paper, the Shell in situ conversion process (ICP), which is a novel method of retorting oil shale in place, is analyzed. The ICP utilizes electricity to heat the underground shale over a period of 2 years. Hydrocarbons are produced using conventional oil production techniques, leaving shale oil coke within the formation. The energy inputs and outputs from the ICP, as applied to oil shales of the Green River formation, are modeled. Using these energy inputs, the greenhouse gas (GHG) emissions from the ICP are calculated and are compared to emissions from conventional petroleum. Energy outputs (as refined liquid fuel) are 1.2-1.6 times greater than the total primary energy inputs to the process. In the absence of capturing CO2 generated from electricity produced to fuel the process, well-to-pump GHG emissions are in the range of 30.6-37.1 grams of carbon equivalent per megajoule of liquid fuel produced. These full-fuel-cycle emissions are 21%-47% larger than those from conventionally produced petroleum-based fuels.

  19. Monitoring in situ retorting processes of oil shale by reflected and transmitted electromagnetic waves

    NASA Astrophysics Data System (ADS)

    Hong, S. H.; DuBow, J. B.

    1980-07-01

    A theoretical model for an in situ oil shale retort with three distinct vertical zones, all surrounded by a wall of oil shale, overburden and underburden, is considered for the study of potential electromagnetic monitoring of the progression of retorting processes using wave propagation techniques. The overall power reflection and transmission coefficients for both transverse electric and transverse magnetic waves are used for finding the position of a combustion zone in the retort, based upon the assumption of straight-line propagation of monochromatic plane waves through layered lossy dielectric media characterized by the dielectric constants and loss tangents. The behavior of each power coefficient is discussed as a function of burn front positions and signal frequencies. As a result of the relatively moderate signal power for each coefficient required for detection, and the one-to-one correspondence between each power coefficient and burn front position at typical conditions, the feasibility of using low radio-frequency waves to monitor relatively large scale in situ retorting process is established.

  20. Predictive estimation of upward pollutant migration during shale gas production using satellite image processing

    NASA Astrophysics Data System (ADS)

    Lyalko, Vadim; Azimov, Oleksandr; Yakovlev, Yevgen

    2016-07-01

    The report considers the relevance of the application of modern remote aerospace and hydrogeological methods in the problems of the ecological safety for the hydrosphere during shale gas production in Ukraine. Case studies of pilot implementation of these methods are present for the Bilyaivska area adjacent to the Yuzivka licensed site within the Dnieper-Donets Depression. A number of the hydrogeological filtration parameters and the thematic processing for remote sensing data of the Earth enable to obtain the rough estimate of the temporal indices for the upward pollutant migration from the fracturing zone to the groundwater aquifers in the potential process of shale gas production (as an example the 400-Bilyaivska well). It is found that the possible variety of the active permeability in tectonic zone, which may be predicted by using remote sensing of the Earth image interpretation in vicinity of the well, is responsible for the passage time of pollution from the fracturing zone level to the groundwater aquifers one and this time interval spans 50˜5 years.

  1. Pb-210 and Po-210 atmospheric releases via fly ash from oil shale-fired power plants.

    PubMed

    Vaasma, Taavi; Loosaar, Jüri; Gyakwaa, Francis; Kiisk, Madis; Özden, Banu; Tkaczyk, Alan H

    2017-03-01

    During high temperature processes in the furnace volatile and semi-volatile elements and radionuclides are partially emitted to the environment, depending on their chemical form in the original fuel, the technological set-up of the combustion system, and the prevailing combustion conditions. Two of the world's largest oil shale-fired power plants (PPs) have been operational in Estonia from the 1960s, during which time creation of significant environmental emissions and waste containing naturally occurring radionuclides has occurred. Pb-210 and (210)Po are considered natural radionuclides with the highest emission rates from PPs and possess elevated potential radiation exposure risks to humans and the environment. These radionuclides have the highest activity concentration values in fine ash fractions, especially in fractions remaining below 2.5 μm. To determine the activity concentrations of (210)Pb and (210)Po in the PPs' outlet, sampling was conducted from boilers operating on pulverized fuel (PF) technology with novel integrated desulphurization (NID) system and bag filters as well as with electrostatic precipitators (ESPs). The (210)Pb and (210)Po activity concentrations remained around 300 Bq kg(-1) for the NID system compared to 60-80 Bq kg(-1) in the ESP system. The dominant ash fraction in both systems was PM2.5, constituting over 50% of the fly ash mass collected from the outlet. The authors estimate that the total atmospherically emitted activity for the modernized PPs remains dominantly below 1% of the activity that is inserted via fuel. The implementation of higher efficiency purifications systems has significantly reduced the negative effect of these PPs. Based on annually emitted fly ash and boilers' working hours, the (210)Pb and (210)Po activity released relative to energy production were up to 68.3 kBq GWhel(-1) for (210)Pb and 64.6 kBq GWhel(-1) for (210)Po. These values are 1 to 2 orders of magnitude lower compared to the situation in the 1980s

  2. The enrichment of natural radionuclides in oil shale-fired power plants in Estonia--the impact of new circulating fluidized bed technology.

    PubMed

    Vaasma, Taavi; Kiisk, Madis; Meriste, Tõnis; Tkaczyk, Alan Henry

    2014-03-01

    Burning oil shale to produce electricity has a dominant position in Estonia's energy sector. Around 90% of the overall electric energy production originates from the Narva Power Plants. The technology in use has been significantly renovated - two older types of pulverized fuel burning (PF) energy production units were replaced with new circulating fluidized bed (CFB) technology. Additional filter systems have been added to PF boilers to reduce emissions. Oil shale contains various amounts of natural radionuclides. These radionuclides concentrate and become enriched in different boiler ash fractions. More volatile isotopes will be partially emitted to the atmosphere via flue gases and fly ash. To our knowledge, there has been no previous study for CFB boiler systems on natural radionuclide enrichment and their atmospheric emissions. Ash samples were collected from Eesti Power Plant's CFB boiler. These samples were processed and analyzed with gamma spectrometry. Activity concentrations (Bq/kg) and enrichment factors were calculated for the (238)U ((238)U, (226)Ra, (210)Pb) and (232)Th ((232)Th, (228)Ra) family radionuclides and for (40)K in different CFB boiler ash fractions. Results from the CFB boiler ash sample analysis showed an increase in the activity concentrations and enrichment factors (up to 4.5) from the furnace toward the electrostatic precipitator block. The volatile radionuclide ((210)Pb and (40)K) activity concentrations in CFB boilers were evenly distributed in finer ash fractions. Activity balance calculations showed discrepancies between input (via oil shale) and output (via ash fractions) activities for some radionuclides ((238)U, (226)Ra, (210)Pb). This refers to a situation where the missing part of the activity (around 20% for these radionuclides) is emitted to the atmosphere. Also different behavior patterns were detected for the two Ra isotopes, (226)Ra and (228)Ra. A part of (226)Ra input activity, unlike (228)Ra, was undetectable in the

  3. Status of LLNL Hot-Recycled-Solid oil shale retort

    SciTech Connect

    Baldwin, D.E.; Cena, R.J.

    1993-12-31

    We have investigated the technical and economic barriers facing the introduction of an oil shale industry and we have chosen Hot-Recycled-Solid (HRS) oil shale retorting as the primary advanced technology of interest. We are investigating this approach through fundamental research, operation of a 4 tonne-per-day, HRS pilot plant and development of an Oil Shale Process (OSP) mathematical model. Over the last three years, from June 1991 to June 1993, we completed a series of runs (H10--H27) using the 4-TPD pilot plant to demonstrate the technical feasibility of the HRS process and answer key scale-up questions. With our CRADA partners, we seek to further develop the HRS technology, maintain and enhance the knowledge base gained over the past two decades through research and development by Government and industry and determine the follow on steps needed to advance the technology towards commercialization. The LLNL Hot-Recycled-Solid process has the potential to improve existing oil shale technology. It processes oil shale in minutes instead of hours, reducing plant size. It processes all oil shale, including fines rejected by other processes. It provides controls to optimize product quality for different applications. It co-generates electricity to maximize useful energy output. And, it produces negligible SO{sub 2} and NO{sub x} emissions, a non-hazardous waste shale and uses minimal water.

  4. Determining the locus of a processing zone in an in situ oil shale retort by sound monitoring

    DOEpatents

    Elkington, W. Brice

    1978-01-01

    The locus of a processing zone advancing through a fragmented permeable mass of particles in an in situ oil shale retort in a subterranean formation containing oil shale is determined by monitoring for sound produced in the retort, preferably by monitoring for sound at at least two locations in a plane substantially normal to the direction of advancement of the processing zone. Monitoring can be effected by placing a sound transducer in a well extending through the formation adjacent the retort and/or in the fragmented mass such as in a well extending into the fragmented mass.

  5. Processing needs and methodology for wastewaters from the conversion of coal, oil shale, and biomass to synfuels

    SciTech Connect

    Not Available

    1980-05-01

    The workshop identifies needs to be met by processing technology for wastewaters, and evaluates the suitability, approximate costs, and problems associated with current technology. Participation was confined to DOE Environmental Control Technology contractors to pull together and integrate past wastewater-related activities, to assess the status of synfuel wastewater treatability and process options, and to abet technology transfer. Particular attention was paid to probable or possible environmental restrictions which cannot be economically met by present technology. Primary emphasis was focussed upon process-condensate waters from coal-conversion and shale-retorting processes. Due to limited data base and time, the workshop did not deal with transients, upsets, trade-offs and system optimization, or with solids disposal. The report is divided into sections that, respectively, survey the water usage and effluent situation (II); identify the probable and possible water-treatment goals anticipated at the time when large-scale plants will be constructed (III); assess the capabilities, costs and shortcomings of present technology (IV); explore particularly severe environmental-control problems (V); give overall conclusions from the Workshop and recommendations for future research and study (VI); and, finally, present Status Reports of current work from participants in the Workshop (VII).

  6. Oil shale commercialization study

    SciTech Connect

    Warner, M.M.

    1981-09-01

    Ninety four possible oil shale sections in southern Idaho were located and chemically analyzed. Sixty-two of these shales show good promise of possible oil and probable gas potential. Sixty of the potential oil and gas shales represent the Succor Creek Formation of Miocene age in southwestern Idaho. Two of the shales represent Cretaceous formations in eastern Idaho, which should be further investigated to determine their realistic value and areal extent. Samples of the older Mesozonic and paleozoic sections show promise but have not been chemically analyzed and will need greater attention to determine their potential. Geothermal resources are of high potential in Idaho and are important to oil shale prospects. Geothermal conditions raise the geothermal gradient and act as maturing agents to oil shale. They also might be used in the retorting and refining processes. Oil shales at the surface, which appear to have good oil or gas potential should have much higher potential at depth where the geothermal gradient is high. Samples from deep petroleum exploration wells indicate that the succor Creek shales have undergone considerable maturation with depth of burial and should produce gas and possibly oil. Most of Idaho's shales that have been analyzed have a greater potential for gas than for oil but some oil potential is indicated. The Miocene shales of the Succor Creek Formation should be considered as gas and possibly oil source material for the future when technology has been perfectes. 11 refs.

  7. A high liquid yield process for retorting various organic materials including oil shale

    DOEpatents

    Coburn, T.T.

    1988-07-26

    This invention is a continuous retorting process for various high molecular weight organic materials, including oil shale, that yields an enhanced output of liquid product. The organic material, mineral matter, and an acidic catalyst, that appreciably adsorbs alkenes on surface sites at prescribed temperatures, are mixed and introduced into a pyrolyzer. A circulating stream of olefin enriched pyrolysis gas is continuously swept through the organic material and catalyst, whereupon, as the result of pyrolysis, the enhanced liquid product output is provided. Mixed spent organic material, mineral matter, and cool catalyst are continuously withdrawn from the pyrolyzer. Combustion of the spent organic material and mineral matter serves to reheat the catalyst. Olefin depleted pyrolysis gas, from the pyrolyzer, is enriched in olefins and recycled into the pyrolyzer. The reheated acidic catalyst is separated from the mineral matter and again mixed with fresh organic material, to maintain the continuously cyclic process. 2 figs.

  8. High liquid yield process for retorting various organic materials including oil shale

    DOEpatents

    Coburn, Thomas T.

    1990-01-01

    This invention is a continuous retorting process for various high molecular weight organic materials, including oil shale, that yields an enhanced output of liquid product. The organic material, mineral matter, and an acidic catalyst, that appreciably adsorbs alkenes on surface sites at prescribed temperatures, are mixed and introduced into a pyrolyzer. A circulating stream of olefin enriched pyrolysis gas is continuously swept through the organic material and catalyst, whereupon, as the result of pyrolysis, the enhanced liquid product output is provided. Mixed spent organic material, mineral matter, and cool catalyst are continuously withdrawn from the pyrolyzer. Combustion of the spent organic material and mineral matter serves to reheat the catalyst. Olefin depleted pyrolysis gas, from the pyrolyzer, is enriched in olefins and recycled into the pyrolyzer. The reheated acidic catalyst is separated from the mineral matter and again mixed with fresh organic material, to maintain the continuously cyclic process.

  9. Oil shale, tar sand, coal research, advanced exploratory process technology, jointly sponsored research. Quarterly technical progress report, January--March 1993

    SciTech Connect

    Not Available

    1993-09-01

    Accomplishments for the past quarter are briefly described for the following areas of research: oil shale; tar sand; coal; advanced exploratory process technology; and jointly sponsored research. Oil shale and tar sand researches cover processing studies. Coal research includes: coal combustion; integrated coal processing concepts; and solid waste management. Advanced exploratory process technology covers: advanced process concepts; advanced mitigation concepts; and oil and gas technology. Jointly sponsored research includes: organic and inorganic hazardous waste stabilization; CROW{sup TM} field demonstration with Bell Lumber and Pole; development and validation of a standard test method for sequential batch extraction fluid; operation and evaluation of the CO{sub 2} HUFF-N-PUFF Process; fly ash binder for unsurfaced road aggregates; solid-state NMR analysis of Mesaverde Group, Greater Green River Basin tight gas sands; characterization of petroleum residue; shallow oil production using horizontal wells with enhanced oil recovery techniques; surface process study for oil recovery using a thermal extraction process; oil field waste cleanup using tank bottom recovery process; remote chemical sensor development; in situ treatment of manufactured gas plant contaminated soils demonstration program; solid-state NMR analysis of naturally and artificially matured kerogens; and development of an effective method for the clean-up of natural gas.

  10. Fluidized-bed retorting of Colorado oil shale: Topical report. [None

    SciTech Connect

    Albulescu, P.; Mazzella, G.

    1987-06-01

    In support of the research program in converting oil shale into useful forms of energy, the US Department of Energy is developing systems models of oil shale processing plants. These models will be used to project the most attractive combination of process alternatives and identify future direction for R and D efforts. With the objective of providing technical and economic input for such systems models, Foster Wheeler was contracted to develop conceptual designs and cost estimates for commercial scale processing plants to produce syncrude from oil shales via various routes. This topical report summarizes the conceptual design of an integrated oil shale processing plant based on fluidized bed retorting of Colorado oil shale. The plant has a nominal capacity of 50,000 barrels per operating day of syncrude product, derived from oil shale feed having a Fischer Assay of 30 gallons per ton. The scope of the plant encompasses a grassroots facility which receives run of the mine oil shale, delivers product oil to storage, and disposes of the processed spent shale. In addition to oil shale feed, the battery limits input includes raw water, electric power, and natural gas to support plant operations. Design of the individual processing units was based on non-confidential information derived from published literature sources and supplemented by input from selected process licensors. The integrated plant design is described in terms of the individual process units and plant support systems. The estimated total plant investment is similarly detailed by plant section and an estimate of the annual operating requirements and costs is provided. In addition, the process design assumptions and uncertainties are documented and recommendations for process alternatives, which could improve the overall plant economics, are discussed.

  11. Investigation of the Geokinetics Horizontal In Situ Oil Shale Retorting Process. Quarterly report, July, August, September 1981

    SciTech Connect

    Gilbert, J.R.

    1981-11-01

    Progress is reported on developing an in-situ process for recovering shale oil. On July 23, Retort No. 24 was shut-in. Production for the life of Retort No. 24 totaled 12,741 barrels of crude shale oil. A contract was made with the United States Defense Fuel Supply Center to furnish them with 5000 barrels of crude shale oil. Shipments were made by tanker trucks to the Anvil Points Oil Shale Research Facility near Rifle, Colorado to fulfill this contractual agreement. A shipment of 120 barrels of crude shale oil was made to Mobil Research Company. Retort No. 26 was loaded with explosives on August 5 and 6. This operation was carried out totally by Geokinetics' personnel. On August 7, Retort No. 26 was detonated. Again all blasting operations were carried out by Geokinetics personnel. According to initial indications the Retort No. 26 blast was highly successful. Following the blast of Retort No. 26 all efforts were turned to the ignition of Retort No. 25. Equipment and piping were set in place and the instrumentation systems were wired in. Ignition for Retort No. 25 is scheduled for mid to late October. The Retort No. 26 Post-blast Coring Program continued through the end of this quarter. With the ignition of Retort No. 25 the analytical lab began constant monitoring of the retort burn.

  12. High efficiency shale oil recovery

    SciTech Connect

    Adams, D.C.

    1992-01-01

    The overall project objective is to demonstrate the high efficiency of the Adams Counter-Current shale oil recovery process. The efficiency will first be demonstrated at bench-scale, in the current phase, after which the demonstration will be extended to the operation of a small pilot plant. Thus the immediate project objective is to obtain data on oil shale retorting operations in a small batch rotary kiln that will be representative of operations in the proposed continuous process pilot plant. Although a batch oil shale sample will be sealed in the batch kiln from the start until the end of the run, the process conditions for the batch will be the same as the conditions that an element of oil shale would encounter in a large continuous process kiln. For example, similar conditions of heat-up rate (20 deg F/min during the pyrolysis), oxidation of the residue and cool-down will prevail for the element in both systems. This batch kiln is a unit constructed in a 1987 Phase I SBIR tar sand retorting project. The kiln worked fairly well in that project; however, the need for certain modifications was observed. These modifications are now underway to simplify the operation and make the data and analysis more exact. The agenda for the first three months of the project consisted of the first of nine tasks and was specified as the following four items: 1. Sample acquisition and equipment alteration: Obtain seven oil shale samples, of varying grade each 10 lb or more, and samples of quartz sand. Order equipment for kiln modification. 3. Set up and modify kiln for operation, including electric heaters on the ends of the kiln. 4. Connect data logger and make other repairs and changes in rotary batch kiln.

  13. A Novel Energy-Efficient Pyrolysis Process: Self-pyrolysis of Oil Shale Triggered by Topochemical Heat in a Horizontal Fixed Bed

    PubMed Central

    Sun, You-Hong; Bai, Feng-Tian; Lü, Xiao-Shu; Li, Qiang; Liu, Yu-Min; Guo, Ming-Yi; Guo, Wei; Liu, Bao-Chang

    2015-01-01

    This paper proposes a novel energy-efficient oil shale pyrolysis process triggered by a topochemical reaction that can be applied in horizontal oil shale formations. The process starts by feeding preheated air to oil shale to initiate a topochemical reaction and the onset of self-pyrolysis. As the temperature in the virgin oil shale increases (to 250–300°C), the hot air can be replaced by ambient-temperature air, allowing heat to be released by internal topochemical reactions to complete the pyrolysis. The propagation of fronts formed in this process, the temperature evolution, and the reaction mechanism of oil shale pyrolysis in porous media are discussed and compared with those in a traditional oxygen-free process. The results show that the self-pyrolysis of oil shale can be achieved with the proposed method without any need for external heat. The results also verify that fractured oil shale may be more suitable for underground retorting. Moreover, the gas and liquid products from this method were characterised, and a highly instrumented experimental device designed specifically for this process is described. This study can serve as a reference for new ideas on oil shale in situ pyrolysis processes. PMID:25656294

  14. A Novel Energy-Efficient Pyrolysis Process: Self-pyrolysis of Oil Shale Triggered by Topochemical Heat in a Horizontal Fixed Bed

    NASA Astrophysics Data System (ADS)

    Sun, You-Hong; Bai, Feng-Tian; Lü, Xiao-Shu; Li, Qiang; Liu, Yu-Min; Guo, Ming-Yi; Guo, Wei; Liu, Bao-Chang

    2015-02-01

    This paper proposes a novel energy-efficient oil shale pyrolysis process triggered by a topochemical reaction that can be applied in horizontal oil shale formations. The process starts by feeding preheated air to oil shale to initiate a topochemical reaction and the onset of self-pyrolysis. As the temperature in the virgin oil shale increases (to 250-300°C), the hot air can be replaced by ambient-temperature air, allowing heat to be released by internal topochemical reactions to complete the pyrolysis. The propagation of fronts formed in this process, the temperature evolution, and the reaction mechanism of oil shale pyrolysis in porous media are discussed and compared with those in a traditional oxygen-free process. The results show that the self-pyrolysis of oil shale can be achieved with the proposed method without any need for external heat. The results also verify that fractured oil shale may be more suitable for underground retorting. Moreover, the gas and liquid products from this method were characterised, and a highly instrumented experimental device designed specifically for this process is described. This study can serve as a reference for new ideas on oil shale in situ pyrolysis processes.

  15. A novel energy-efficient pyrolysis process: self-pyrolysis of oil shale triggered by topochemical heat in a horizontal fixed bed.

    PubMed

    Sun, You-Hong; Bai, Feng-Tian; Lü, Xiao-Shu; Li, Qiang; Liu, Yu-Min; Guo, Ming-Yi; Guo, Wei; Liu, Bao-Chang

    2015-02-06

    This paper proposes a novel energy-efficient oil shale pyrolysis process triggered by a topochemical reaction that can be applied in horizontal oil shale formations. The process starts by feeding preheated air to oil shale to initiate a topochemical reaction and the onset of self-pyrolysis. As the temperature in the virgin oil shale increases (to 250-300°C), the hot air can be replaced by ambient-temperature air, allowing heat to be released by internal topochemical reactions to complete the pyrolysis. The propagation of fronts formed in this process, the temperature evolution, and the reaction mechanism of oil shale pyrolysis in porous media are discussed and compared with those in a traditional oxygen-free process. The results show that the self-pyrolysis of oil shale can be achieved with the proposed method without any need for external heat. The results also verify that fractured oil shale may be more suitable for underground retorting. Moreover, the gas and liquid products from this method were characterised, and a highly instrumented experimental device designed specifically for this process is described. This study can serve as a reference for new ideas on oil shale in situ pyrolysis processes.

  16. Leaching and selected hydraulic properties of processed oil shales. Environmental research brief

    SciTech Connect

    McWhorter, D.B.; Nazareth, V.A.

    1984-10-01

    This report describes a column leaching test procedure developed to simulate the leaching of high-volume wastes under semi-arid field conditions. The report also presents results obtained when retorted oil shales (Tosco, Paraho, Lurgi) are leached by this procedure. Selected hydraulic properties are also discussed for these retorted shales including permeability and water-holding capacity.

  17. Trace elements in oil shale. Progress report, 1979-1980

    SciTech Connect

    Chappell, W R

    1980-01-01

    The purpose of this research program is to understand the potential impact of an oil shale industry on environmental levels of trace contaminants in the region. The program involves a comprehensive study of the sources, release mechanisms, transport, fate, and effects of toxic trace chemicals, principally the trace elements, in an oil shale industry. The overall objective of the program is to evaluate the environmental and health consequences of the release of toxic trace elements by shale and oil production and use. The baseline geochemical survey shows that stable trace elements maps can be constructed for numerous elements and that the trends observed are related to geologic and climatic factors. Shale retorted by above-ground processes tends to be very homogeneous (both in space and in time) in trace element content. Leachate studies show that significant amounts of B, F, and Mo are released from retorted shales and while B and Mo are rapidly flushed out, F is not. On the other hand, As, Se, and most other trace elements are not present in significant quantities. Significant amounts of F and B are also found in leachates of raw shales. Very large concentrations of reduced sulfur species are found in leachates of processed shale. Very high levels of B and Mo are taken up in some plants growing on processed shale with and without soil cover. There is a tendency for some trace elements to associate with specific organic fractions, indicating that organic chelation or complexation may play an important role. Many of the so-called standard methods for analyzing trace elements in oil shale-related materials are inadequate. A sampling manual is being written for the environmental scientist and practicing engineer. A new combination of methods is developed for separating the minerals in oil shale into different density fractions. Microbial investigations have tentatively identified the existence of thiobacilli in oil shale materials such as leachates. (DC)

  18. Pollution control technical manual: modified 'in situ' oil shale retorting combined with Lurgi surface retorting. Final report

    SciTech Connect

    Not Available

    1983-04-01

    The oil shale PCTM for Modified In Situ Oil Shale Retorting combined with Lurgi Surface Retorting addresses the application of this combination of technologies to the development of oil shale resources in the western United States. This manual describes the combined plant using Lurgi surface retorting technology (developed by Lurgi Kohle and Mineralotechnik GmbH, West Germany) and the Modified In Situ process (developed by Occidental Oil Shale, Inc.) proposed by Occidental Oil Shale, Inc. and Tenneco Shale Oil Company for use in the development of their Federal oil shale lease Tract C-b in western Colorado. Since details regarding waste streams and control technologies for the Lurgi process are presented in a separate PCTM, this document focuses principally on the Modified In Situ process.

  19. Cytotoxic and mutagenic properties of shale oil byproducts. I. Activation of retort process waters with near ultraviolet light.

    PubMed

    Strniste, G F; Chen, D J

    1981-01-01

    Cultured Chinese hamster ovary (CHO) cells were exposed to dilutions of shale oil retort process waters obtained from three different retorting processes located in the Green River oil shale formations in the western part of the United States. Although the intensity of the response was dictated by thd process water used, all induced a cytotoxic (reduction in colony-forming ability) and mutagenic (induced at the hypoxanthine-guanine phosphoribosyl transferase (HGPRT) locus) response in cells pretreated with dilutions of the waters and subsequent exposure to near ultraviolet light (NUV). Combinations of process water plus NUV yielded mutation frequencies as great as 50% that witnessed for the mutation frequency induced by the potent carcinogen far ultraviolet light. NUV alone was nontoxic and nonmutagenic at the doses of radiation used. Exposure of CHO cells in the dark to nontoxic dilutions of the process waters resulted in small but significant increases in 6-thioguanine resistant mutants. (1-2 time background rates). The biological consequences resulting from the disposal of retort process waters into the delicate environment present in this oil shale region could be further complicated by this photoactivating process.

  20. Chemical and physical interactions of an in situ oil-shale process water with a surface soil

    SciTech Connect

    Leenheer, J.A.; Stuber, H.A.; Noyes, T.I.

    1981-01-01

    Chemical and physical interactions of an in situ oil-shale process (retort) water with a surface soil were investigated by soil and effluent analyses of three soil-column experiments whereby soil was leached with: (1) Distilled water, (2) a synthetic retort water containing only inorganic solutes, and (3) an actual retort water produced by in situ processing of oil shale. Major findings of this study include an ion exchange-precipitation reaction, in which exchangeable calcium in the soil is displaced by ammonium from retort water and precipitated as carbonate by inorganic carbon in retort water. This precipitation process affects soil permeability. Ammonium was strongly adsorbed from retort water by the soil, and was not removed by subsequent distilled-water leaching and drying. 26 refs.

  1. Assessment and control of water contamination associated with shale oil extraction and processing. Progress report, October 1, 1979-September 30, 1980

    SciTech Connect

    Peterson, E.J.; Henicksman, A.V.; Fox, J.P.; O'Rourke, J.A.; Wagner, P.

    1982-04-01

    The Los Alamos National Laboratory's research on assessment and control of water contamination associated with oil shale operations is directed toward the identification of potential water contamination problems and the evaluation of alternative control strategies for controlling contaminants released into the surface and underground water systems from oil-shale-related sources. Laboratory assessment activities have focused on the mineralogy, trace element concentrations in solids, and leaching characteristics of raw and spent shales from field operations and laboratory-generated spent shales. This report details the chemical, mineralogic, and solution behavior of major, minor, and trace elements in a variety of shale materials (spent shales from Occidental retort 3E at Logan Wash, raw shale from the Colony mine, and laboratory heat-treated shales generated from Colony mine raw shale). Control technology research activities have focused on the definition of control technology requirements based on assessment activities and the laboratory evaluation of alternative control strategies for mitigation of identified problems. Based on results obtained with Logan Wash materials, it appears that the overall impact of in situ processing on groundwater quality (leaching and aquifer bridging) may be less significant than previously believed. Most elements leached from MIS spent shales are already elevated in most groundwaters. Analysis indicates that solubility controls by major cations and anions will aid in mitigating water quality impacts. The exceptions include the trace elements vanadium, lead, and selenium. With respect to in situ retort leaching, process control and multistaged counterflow leaching are evaluated as alternative control strategies for mitigation of quality impacts. The results of these analyses are presented in this report.

  2. Role of spent shale in oil shale processing and the management of environmental residues. Final technical report, January 1979-May 1980

    SciTech Connect

    Hines, A.L.

    1980-08-15

    The adsorption of hydrogen sulfide on retorted oil shale was studied at 10, 25, and 60/sup 0/C using a packed bed method. Equilibrium isotherms were calculated from the adsorption data and were modeled by the Langmuir, Freundlich, and Polanyi equations. The isosteric heat of adsorption was calculated at three adsorbent loadings and was found to increase with increased loading. A calculated heat of adsorption less than the heat of condensation indicated that the adsorption was primarily due to Van der Waals' forces. Adsorption capacities were also found as a function of oil shale retorting temperature with the maximum uptake occurring on shale that was retorted at 750/sup 0/C.

  3. Migration through soil of organic solutes in an oil-shale process water

    USGS Publications Warehouse

    Leenheer, J.A.; Stuber, H.A.

    1981-01-01

    The migration through soil of organic solutes in an oil-shale process water (retort water) was studied by using soil columns and analyzing leachates for various organic constituents. Retort water extracted significant quantities of organic anions leached from ammonium-saturated-soil organic matter, and a distilled-water rinse, which followed retort-water leaching, released additional organic acids from the soil. After being corrected for organic constitutents extracted from soil by retort water, dissolved-organic-carbon fractionation analyses of effluent fractions showed that the order of increasing affinity of six organic compound classes for the soil was as follows: hydrophilic neutrals nearly equal to hydrophilic acids, followed by the sequence of hydrophobic acids, hydrophilic bases, hydrophobic bases, and hydrophobic neutrals. Liquid-chromatographic analysis of the aromatic amines in the hydrophobic- and hydrophilic-base fractions showed that the relative order of the rates of migration through the soil column was the same as the order of migration on a reversed-phase, octadecylsilica liquid-chromatographic column.

  4. Energy from true in situ processing of Antrim oil shale: initial in situ extraction trials

    SciTech Connect

    McNamara, P.H.

    1980-04-01

    This report covers the three in situ extraction trials performed at The Dow Chemical Company's existing oil shale site near Peck, Michigan, from August 11, 1977 to May 24, 1978 and the subsequent analysis. The trials were conducted at a depth of 1200 to 1300 feet for a total operating time of 109 days. Ignition was achieved by an electric heater and by a propane burner using coal and charcoal to increase the input of energy. Gas having an energy value of 50 to 55 Btu/scf was prodcued. The energy recovered in the third and most productive trial compared to the energy used for ignition reached a ratio of 4.8. A cyclic operation, called Huff and Puff, gave a 47 to 65% improvement in energy recovery compared to a single forward combustion. No sulfur compounds were detected in the production gas. Particulate measurement was not of value in monitoring the burning process. The trials reported, and the information gathered for them, provide a basis for a trial at a new site adjacent to the existing site.

  5. Energy trump for Morocco: the oil shales

    SciTech Connect

    Rosa, S.D.

    1981-10-01

    The mainstays of the economy in Morocco are still agriculture and phosphates; the latter represent 34% of world exports. Energy demand in 1985 will be probably 3 times that in 1975. Most of the oil, which covers 82% of its energy needs, must be imported. Other possible sources are the rich oil shale deposits and nuclear energy. Four nuclear plants with a total of 600 MW are projected, but shale oil still will play an important role. A contract for building a pilot plant has been met recently. The plant is to be located at Timahdit and cost $13 million, for which a loan from the World Bank has been requested. If successful in the pilot plant, the process will be used in full scale plants scheduled to produce 400,000 tons/yr of oil. Tosco also has a contract for a feasibility study.

  6. Experience and prospects of oil shale utilization for power production in Russia

    NASA Astrophysics Data System (ADS)

    Potapov, O. P.

    2016-09-01

    Due to termination of work at the Leningrad Shale Deposit, the Russian shale industry has been liquidated, including not only shale mining and processing but also research and engineering (including design) activities, because this deposit was the only commercially operated complex in Russia. UTT-3000 plants with solid heat carrier, created mainly by the Russian specialists under scientific guidance of members of Krzhizhanovsky Power Engineering Institute, passed under the control of Estonian engineers, who, alongside with their operation in Narva, construct similar plants in Kohtla-Jarve, having renamed the Galoter Process into the Enifit or Petroter. The main idea of this article is to substantiate the expediency of revival of the oil shale industry in Russia. Data on the UTT-3000 plants' advantages, shale oils, and gas properties is provided. Information on investments in an UTT-3000 plant and estimated cost of Leningrad oil shale mining at the Mezhdurechensk Strip Mine is given. For more detailed technical and economic assessment of construction of a complex for oil shale extraction and processing, it is necessary to develop a feasibility study, which should be the first stage of this work. Creation of such a complex will make it possible to produce liquid and gaseous power fuel from oil shale of Leningrad Deposit and provide the opportunity to direct for export the released volumes of oil and gas for the purposes of Russian budget currency replenishment.

  7. Combustion heater for oil shale

    DOEpatents

    Mallon, Richard G.; Walton, Otis R.; Lewis, Arthur E.; Braun, Robert L.

    1985-01-01

    A combustion heater for oil shale heats particles of spent oil shale containing unburned char by burning the char. A delayed fall is produced by flowing the shale particles down through a stack of downwardly sloped overlapping baffles alternately extending from opposite sides of a vertical column. The delayed fall and flow reversal occurring in passing from each baffle to the next increase the residence time and increase the contact of the oil shale particles with combustion supporting gas flowed across the column to heat the shale to about 650.degree.-700.degree. C. for use as a process heat source.

  8. Combustion heater for oil shale

    DOEpatents

    Mallon, R.; Walton, O.; Lewis, A.E.; Braun, R.

    1983-09-21

    A combustion heater for oil shale heats particles of spent oil shale containing unburned char by burning the char. A delayed fall is produced by flowing the shale particles down through a stack of downwardly sloped overlapping baffles alternately extending from opposite sides of a vertical column. The delayed fall and flow reversal occurring in passing from each baffle to the next increase the residence time and increase the contact of the oil shale particles with combustion supporting gas flowed across the column to heat the shale to about 650 to 700/sup 0/C for use as a process heat source.

  9. Investigation of the geokinetics horizontal in situ oil shale retorting process. Quarterly report, April, May, June 1980

    SciTech Connect

    Hutchinson, D.L.

    1980-08-01

    The Retort No. 18 burn was terminated on May 11, 1980. A total of 5547 barrels of shale oil or 46 percent of in-place resource was recovered from the retort. The EPA-DOE/LETC post-burn core sampling program is underway on Retort No. 16. Eleven core holes (of 18 planned) have been completed to date. Preliminary results indicate excellent core recovery has been achieved. Recovery of 702 ft of core was accomplished. The Prevention of Significant Deterioration (PSD) permit application was submitted to the EPA regional office in Denver for review by EPA and Utah air quality officials. The application for an Underground Injection Control (UIC) permit to authorize GKI to inject retort wastewater into the Mesa Verde Formation is being processed by the State of Utah. A hearing before the Board of Oil, Gas and Mining is scheduled in Salt Lake City, Utah, for July 22, 1980. Re-entry drilling on Retort No. 24 is progressing and placement of surface equipment is underway. Retort No. 25 blasthole drilling was completed and blast preparations are ongoing. Retort No. 25 will be blasted on July 18, 1980. The retort will be similar to Retort No. 24, with improvements in blasthole loading and detonation. US Patent No. 4,205,610 was assigned to GKI for a shale oil recovery process. Rocky Mountain Energy Company (RME) is evaluating oil shale holdings in Wyoming for application of the GKI process there.

  10. Shale Oil Value Enhancement Research

    SciTech Connect

    James W. Bunger

    2006-11-30

    Raw kerogen oil is rich in heteroatom-containing compounds. Heteroatoms, N, S & O, are undesirable as components of a refinery feedstock, but are the basis for product value in agrochemicals, pharmaceuticals, surfactants, solvents, polymers, and a host of industrial materials. An economically viable, technologically feasible process scheme was developed in this research that promises to enhance the economics of oil shale development, both in the US and elsewhere in the world, in particular Estonia. Products will compete in existing markets for products now manufactured by costly synthesis routes. A premium petroleum refinery feedstock is also produced. The technology is now ready for pilot plant engineering studies and is likely to play an important role in developing a US oil shale industry.

  11. Determining the locus of a processing zone in an in situ oil shale retort through a well in the formation adjacent the retort

    SciTech Connect

    Ridley, R.D.

    1982-08-17

    The locus of a processing zone advancing through a fragmented permeable mass of formation particles in an in situ oil shale retort in a subterranean formation containing oil shale is determined by monitoring in a well extending through unfragmented formation adjacent the retort, for condition in the retort affected by the advancement of such a processing zone through the retort. Monitoring can be effected by placing means for monitoring such a condition in such a well extending through unfragmented formation adjacent the retort.

  12. Oil-shale program

    NASA Astrophysics Data System (ADS)

    Bader, B. E.

    1981-10-01

    The principal activities of the Sandia National Laboratories in the Department of Energy Oil shale program during the period April 1 to June 30, 1981 are discussed. Currently, Sandia's activities are focused upon: the development and use of analytical and experimental modeling techniques to describe and predict the retort properties and retorting process parameters that are important to the preparation, operation, and stability of in situ retorts, and the development, deployment, and field use of instrumentation, data acquisition, and process monitoring systems to characterize and evaluate in site up shale oil recovery operations. In-house activities and field activities (at the Geokinetics Oil Shale Project and the Occidental Oil Shale Project) are described under the headings: bed preparation, bed characterization, retorting process, and structural stability.

  13. Multispectral Image Processing for Plants

    NASA Technical Reports Server (NTRS)

    Miles, Gaines E.

    1991-01-01

    The development of a machine vision system to monitor plant growth and health is one of three essential steps towards establishing an intelligent system capable of accurately assessing the state of a controlled ecological life support system for long-term space travel. Besides a network of sensors, simulators are needed to predict plant features, and artificial intelligence algorithms are needed to determine the state of a plant based life support system. Multispectral machine vision and image processing can be used to sense plant features, including health and nutritional status.

  14. Gas shale/oil shale

    USGS Publications Warehouse

    Fishman, N.S.; Bereskin, S.R.; Bowker, K.A.; Cardott, B.J.; Chidsey, T.C.; Dubiel, R.F.; Enomoto, C.B.; Harrison, W.B.; Jarvie, D.M.; Jenkins, C.L.; LeFever, J.A.; Li, Peng; McCracken, J.N.; Morgan, C.D.; Nordeng, S.H.; Nyahay, R.E.; Schamel, Steven; Sumner, R.L.; Wray, L.L.

    2011-01-01

    This report provides information about specific shales across North America and Europe from which gas (biogenic or thermogenic), oil, or natural gas liquids are produced or is actively being explored. The intent is to re?ect the recently expanded mission of the Energy Minerals Division (EMD) Gas Shales Committee to serve as a single point of access to technical information on shales regardless of the type of hydrocarbon produced from them. The contents of this report were drawn largely from contributions by numerous members of the EMD Gas Shales Advisory Committee, with much of the data being available from public websites such as state or provincial geological surveys or other public institutions. Shales from which gas or oil is being produced in the United States are listed in alphabetical order by shale name. Information for Canada is presented by province, whereas for Europe, it is presented by country.

  15. Environmental data from laboratory- and bench-scale Pressurized Fluidized-Bed Hydroretorting of Eastern oil shale

    SciTech Connect

    Mensinger, M.C.; Rue, D.M.; Roberts, M.J.

    1991-01-01

    As part of a 3-year program to develop the Pressurized Fluidized-Bed Hydroretorting (PFH) Process for Eastern oil shales, IGT conducted tests in laboratory-scale batch and continuous units as well as a 45-kg/h bench-scale unit to generate a data base for 6 Eastern shales. Data were collected during PFH processing of raw Alabama and Indiana shales and a beneficiated Indiana shale for environmental mitigation analyses. The data generated include trace element analyses of the raw feeds and spent shales, product oils, and sour waters. The sulfur compounds present in the product gas and trace components in the sour water were also determined. In addition, the leaching characteristics of the feed and residue solids were determined. The data obtained were used to evaluate the environmental impact of a shale processing plant based on the PFH process. This paper presents the environmental data obtained from bench-scale tests conducted during the program.

  16. Environmental data from laboratory- and bench-scale Pressurized Fluidized-Bed Hydroretorting of Eastern oil shale

    SciTech Connect

    Mensinger, M.C.; Rue, D.M.; Roberts, M.J.

    1991-12-31

    As part of a 3-year program to develop the Pressurized Fluidized-Bed Hydroretorting (PFH) Process for Eastern oil shales, IGT conducted tests in laboratory-scale batch and continuous units as well as a 45-kg/h bench-scale unit to generate a data base for 6 Eastern shales. Data were collected during PFH processing of raw Alabama and Indiana shales and a beneficiated Indiana shale for environmental mitigation analyses. The data generated include trace element analyses of the raw feeds and spent shales, product oils, and sour waters. The sulfur compounds present in the product gas and trace components in the sour water were also determined. In addition, the leaching characteristics of the feed and residue solids were determined. The data obtained were used to evaluate the environmental impact of a shale processing plant based on the PFH process. This paper presents the environmental data obtained from bench-scale tests conducted during the program.

  17. Synthetic fuels from US oil shales: a technical and economic verification of the HYTORT Process. Project 61040 quarterly report, April 1-June 30, 1980

    SciTech Connect

    1980-11-01

    Progress is reported on the HYTORT Process development work conducted from April 1 through June 30, 1980. Thermobalance tests have been conducted on samples of shale from each large multiton sample prior to large-scale tests and these test results have been fit with specific kinetic expressions. Approximately 80% of the instrumentation for the laboratory-scale reactor has been received. Fabrication of the reactor, feed hopper, and residue receiver is about 95% complete. Two successful moving-bed tests were conducted in the bench-scale reactor during this quarter. A large, 50-ton sample of the Lower Huron member of the Ohio Shale was mined and readied for shipment to IGT. Modification of the bench-scale steam-oxygen unit was completed. Spent shale from PDU tests was prepared for use in these tests. A set of five screening runs on New Albany shale oil and a set of four screening runs on Sunbury shale oil were conducted during this quarter. The nitrogen content of these oils was reduced to the 0.16 to 0.30 weight percent range in the bench-scale hydrotreating unit. Design of the laboratory test system for mist-size control studies was completed. Methods are being studied for measuring mist particle size. Shakedown and initial testing of the liquid-sealed lockhopper were performed during this quarter. Two runs were made in the PDU with Kentucky shales using a sample of the Cleveland member of the Ohio shale and a sample of New Albany shale. Samples for environmental analysis were taken during the PDU runs discussed above. On-line sampling equipment was installed prior to the PDU run with New Albany shale and samples were taken of the Stage 2 raw product gases.

  18. Environmental research on a modified in situ oil shale task process. Progress report

    SciTech Connect

    Not Available

    1980-05-01

    This report summarizes the progress of the US Department of Energy's Oil Shale Task Force in its research program at the Occidental Oil Shale, Inc. facility at Logan Wash, Colorado. More specifically, the Task Force obtained samples from Retort 3E and Retort 6 and submitted these samples to a variety of analyses. The samples collected included: crude oil (Retort 6); light oil (Retort 6); product water (Retort 6); boiler blowdown (Retort 6); makeup water (Retort 6); mine sump water; groundwater; water from Retorts 1 through 5; retort gas (Retort 6); mine air; mine dust; and spent shale core (Retort 3E). The locations of the sampling points and methods used for collection and storage are discussed in Chapter 2 (Characterization). These samples were then distributed to the various laboratories and universities participating in the Task Force. For convenience in organizing the data, it is useful to group the work into three categories: Characterization, Leaching, and Health Effects. While many samples still have not been analyzed and much of the data remains to be interpreted, there are some preliminary conclusions the Task Force feels will be helpful in defining future needs and establishing priorities. It is important to note that drilling agents other than water were used in the recovery of the core from Retort 3E. These agents have been analyzed (see Table 12 in Chapter 2) for several constituents of interest. As a result some of the analyses of this core sample and leachates must be considered tentative.

  19. Synthetic fuels from US oil shales: a technical and economic verification of the HYTORT Process. Quarterly report, January 1-March 31, 1980

    SciTech Connect

    1980-06-01

    Objective is to demonstrate the technical and economic feasibility of the HYTORT process for both Eocene and Devonian shales. The program is divided into five major task areas: laboratory program, bench-scale program, process development unit tests, process environmental assessment, and process design and economics. (DLC)

  20. Modeling of hydrologic conditions and solute movement in processed oil shale waste embankments under simulated climatic conditions. Final report, November 1995

    SciTech Connect

    1995-12-31

    A study is described on the hydrological and geotechnical behavior of an oil shale solid waste. The objective was to obtain information which can be used to assess the environmental impacts of oil shale solid waste disposal in the Green River Basin. The spent shale used in this study was combusted by the Lurgi-Ruhrgas process by Rio Blanco Oil Shale Company, Inc. Laboratory bench-scale testing included index properties, such as grain size distribution and Atterberg limits, and tests for engineering properties including hydraulic conductivity and shear strength. Large-scale tests were conducted on model spent shale waste embankments to evaluate hydrological response, including infiltration, runoff, and seepage. Large-scale tests were conducted at a field site in western Colorado and in the Environmental Simulation Laboratory (ESL)at the University of Wyoming. The ESL tests allowed the investigators to control rainfall and temperature, providing information on the hydrological response of spent shale under simulated severe climatic conditions. All experimental methods, materials, facilities, and instrumentation are described in detail, and results are given and discussed. 34 refs.

  1. Oil shale processing as a source of aquatic pollution: monitoring of the biologic effects in caged and feral freshwater fish.

    PubMed Central

    Tuvikene, A; Huuskonen, S; Koponen, K; Ritola, O; Mauer, U; Lindström-Seppä, P

    1999-01-01

    The biologic effects of the oil shale industry on caged rainbow trout (Oncorhynchus mykiss) as well as on feral perch (Perca fluviatilis) and roach (Rutilus rutilus) were studied in the River Narva in northeast Estonia. The River Narva passes the oil shale mining and processing area and thus receives elevated amounts of polycyclic aromatic hydrocarbons (PAHs), heavy metals, and sulfates. The effects of the chemical load were monitored by measuring cytochrome P4501A (CYP1A)-dependent monooxygenase (MO) activities [7-ethoxyresorufin O-deethylase and aryl hydrocarbon hydroxylase (AHH)] as well as conjugation enzyme activities [glutathione S-transferase (GST) and UDP-glucuronosyltransferase] in the liver of fish. CYP1A induction was further studied by detecting the amount and occurrence of the CYP1A protein. Histopathology of tissues (liver, kidney, spleen, and intestine) and the percentage of micronuclei in fish erythrocytes were also determined. Selected PAHs and heavy metals (Cd, Cu, Hg, and Pb) were measured from fish muscle and liver. In spite of the significant accumulation of PAHs, there was no induction of MO activities in any studied fish species. When compared to reference samples, AHH activities were even decreased in feral fish at some of the exposed sites. Detection of CYP1A protein content and the distribution of the CYP1A enzyme by immunohistochemistry also did not show extensive CYP1A induction. Instead, GST activities were significantly increased at exposed sites. Detection of histopathology did not reveal major changes in the morphology of tissues. The micronucleus test also did not show any evidence of genotoxicity. Thus, from the parameters studied, GST activity was most affected. The lack of catalytic CYP1A induction in spite of the heavy loading of PAHs was not studied but has been attributed to the elevated content of other compounds such as heavy metals, some of which can act as inhibitors for MOs. Another possible explanation of this lack of

  2. Oil shale processing as a source of aquatic pollution: monitoring of the biologic effects in caged and feral freshwater fish.

    PubMed

    Tuvikene, A; Huuskonen, S; Koponen, K; Ritola, O; Mauer, U; Lindström-Seppä, P

    1999-09-01

    The biologic effects of the oil shale industry on caged rainbow trout (Oncorhynchus mykiss) as well as on feral perch (Perca fluviatilis) and roach (Rutilus rutilus) were studied in the River Narva in northeast Estonia. The River Narva passes the oil shale mining and processing area and thus receives elevated amounts of polycyclic aromatic hydrocarbons (PAHs), heavy metals, and sulfates. The effects of the chemical load were monitored by measuring cytochrome P4501A (CYP1A)-dependent monooxygenase (MO) activities [7-ethoxyresorufin O-deethylase and aryl hydrocarbon hydroxylase (AHH)] as well as conjugation enzyme activities [glutathione S-transferase (GST) and UDP-glucuronosyltransferase] in the liver of fish. CYP1A induction was further studied by detecting the amount and occurrence of the CYP1A protein. Histopathology of tissues (liver, kidney, spleen, and intestine) and the percentage of micronuclei in fish erythrocytes were also determined. Selected PAHs and heavy metals (Cd, Cu, Hg, and Pb) were measured from fish muscle and liver. In spite of the significant accumulation of PAHs, there was no induction of MO activities in any studied fish species. When compared to reference samples, AHH activities were even decreased in feral fish at some of the exposed sites. Detection of CYP1A protein content and the distribution of the CYP1A enzyme by immunohistochemistry also did not show extensive CYP1A induction. Instead, GST activities were significantly increased at exposed sites. Detection of histopathology did not reveal major changes in the morphology of tissues. The micronucleus test also did not show any evidence of genotoxicity. Thus, from the parameters studied, GST activity was most affected. The lack of catalytic CYP1A induction in spite of the heavy loading of PAHs was not studied but has been attributed to the elevated content of other compounds such as heavy metals, some of which can act as inhibitors for MOs. Another possible explanation of this lack of

  3. Modeling of hydrologic conditions and solute movement in processed oil shale waste embankments under simulated climatic conditions. Third quarterly report, April 1993--June 1993

    SciTech Connect

    Reeves, T.L.; Turner, J.P.; Rangarajan, S.; Skinner, Q.D.; Hasfurther, V.

    1993-08-11

    This report presents research objectives, discusses activities, and presents technical progress for the period April 1, 1993 through June 31, 1993 on Contract No. DE-FC21-86LC11084 with the Department of Energy, Laramie Project Office. The scope of the research program and the continuation is to study interacting hydrologic, geotechnical, and chemical factors affecting the behavior and disposal of combusted processed oil shale. The research combines bench-scale testing with large scale research sufficient to describe commercial scale embankment behavior. The large scale approach was accomplished by establishing five lysimeters, each 7.3 {times} 3.0 {times} 3.0 m deep, filled with processed oil shale that has been retorted and combusted by the Lurgi-Ruhrgas (Lurgi) process. Approximately 400 tons of Lurgi processed oil shale waste was provided by Rio Blanco Oil Shale Co., Inc. (RBOSC) through a separate cooperative agreement with the University of Wyoming (UW) to carry out this study. Three of the lysimeters were established at the RBOSC Tract C-a in the Piceance Basin of Colorado. Two lysimeters were established in the Environmental Simulation Laboratory (ESL) at UW. The ESL was specifically designed and constructed so that a large range of climatic conditions could be physically applied to the processed oil shale which was filled in the lysimeter cells.

  4. Modeling of hydrologic conditions and solute movement in processed oil shale waste embankments under simulated climatic conditions. Annual report, October 1991--September 1992

    SciTech Connect

    Turner, J.P.; Reeves, T.L.; Skinner, Q.D.; Hasfurther, V.

    1992-11-01

    The scope of the original research program and of its continuation is to study interacting hydrologic, geotechnical, and chemical factors affecting the behavior and disposal of combusted processed oil shale. The research combines bench-scale testing with large-scale testing sufficient to describe commercial-scale embankment behavior. The large-scale testing was accomplished by constructing five lysimeters, each 7.3{times}3.0{times}3.0 m deep, filled with processed oil shale that has been retorted and combusted by the Lurgi-Ruhrgas (Lurgi) process (Schmalfield 1975). Approximately 400 tons of Lurgi processed oil shale waste was provided by Rio Blanco Oil Shale Co., Inc. to carry out this study. Three of the lysimeters were established at the RBOSC Tract C-a in the Piceance Basin near Rifle, Colorado. Two lysimeters were established in the Environmental Simulation Laboratory (ESL) at UW. The ESL was specifically designed and constructed so that a large range of climatic conditions could be physically applied to the processed oil shale which was placed in the lysimeter cells. This report discusses and summarizes results from scientific efforts conducted between October 1991 and September 1992 for Fiscal Year 1992.

  5. Modeling of hydrologic conditions and solute movement in processed oil shale waste embankments under simulated climatic conditions. Fourth quarterly report, July--September 1993

    SciTech Connect

    Turner, J.P.; Hasfurther, V.

    1993-10-08

    The scope of the research program and the continuation is to study interacting hydrologic, geotechnical, and chemical factors affecting the behavior and disposal of combusted processed oil shale. The research combines bench-scale testing with large scale research sufficient to describe commercial scale embankment behavior. The large scale approach was accomplished by establishing five lysimeters, each 7.3 {times} 3.0 {times} 3.0 m deep, filled with processed oil shale that has been retorted and combusted by the Lurgi-Ruhrgas (Lurgi) process. Approximately 400 tons of Lurgi processed oil shale waste was provided by Rio Blanco Oil Shale Co., Inc. (RBOSC) through a separate cooperative agreement with the University of Wyoming (UW) to carry out this study. Three of the lysimeters were established at the RBOSC Tract C-a in the Piceance Basin of Colorado. Two lysimeters were established in the Environmental Simulation Laboratory (ESL) at UW. The ESL was specifically designed and constructed so that a large range of climatic conditions could be physically applied to the processed oil shale which was filled in the lysimeter cells.

  6. Modeling of hydrologic conditions and solute movement in processed oil shale waste embankments under simulated climatic conditions. Second quarterly report, January 1, 1992--March 31, 1992

    SciTech Connect

    Turner, J.P.; Hasfurther, V.

    1992-05-04

    The scope of the research program and the continuation is to study interacting hydrologic, geotechnical, and chemical factors affecting the behavior and disposal of combusted processed oil shale. The research combines bench-scale testing with large scale research sufficient to describe commercial scale embankment behavior. The large scale approach was accomplished by establishing five lysimeters, each 7.3 {times} 3.0 {times} 3.0 m deep, filled with processed oil shale that has been retorted and combusted by the Lurgi-Ruhrgas (Lurgi) process. Approximately 400 tons of Lurgi processed oil shale waste was provided by Rio Blanco Oil Shale Co., Inc. (RBOSC) through a separate cooperative agreement with the University of Wyoming (UW) to carry out this study. Three of the lysimeters were established at the RBOSC Tract C-a in the Piceance Basin of Colorado. Two lysimeters were established in the Environmental Simulation Laboratory (ESL) at UW. The ESL was specifically designed and constructed so that a large range of climatic conditions could be physically applied to the processed oil shale which was filled in the lysimeter cells.

  7. Apparatus for oil shale retorting

    DOEpatents

    Lewis, Arthur E.; Braun, Robert L.; Mallon, Richard G.; Walton, Otis R.

    1986-01-01

    A cascading bed retorting process and apparatus in which cold raw crushed shale enters at the middle of a retort column into a mixer stage where it is rapidly mixed with hot recycled shale and thereby heated to pyrolysis temperature. The heated mixture then passes through a pyrolyzer stage where it resides for a sufficient time for complete pyrolysis to occur. The spent shale from the pyrolyzer is recirculated through a burner stage where the residual char is burned to heat the shale which then enters the mixer stage.

  8. Investigation of the geokinetics horizontal in situ oil shale retorting process. Quarterly report, April-June 1981

    SciTech Connect

    Gilbert, J.R.

    1981-08-01

    Oil production from Retort No. 23 began on April 6, 1981. The retort burn front remained uniform with good vertical distribution as it advanced through the retort. During the burn various amounts of recycled off gas were introduced into the inlet injection stream. This was done to observe the effect on the retort burn. Preliminary indications are that the gas recycling had no obvious effect on the burn. Further evaluation from Sandia National Laboratories will be forthcoming. After burning 106 days, Retort No. 23 shut in at 9:30 A.M. on June 30, 1981. Total production for the life of Retort No. 23 was 991 barrels of shale oil. Total shale oil production from Retort No. 24 to date is 11,233 barrels. Retort No. 24 produced a total of 4701 barrels during the second quarter, an average of 52 barrels per day. Retort No. 24 has now burned for 211 days. On June 26, a new production well was drilled on Retort No. 24. This well was drilled slightly outside the retort boundary on the off gas end. The purpose of this action was to increase production life of the retort. During June the fire front advanced to the far off gas wells. Shale oil production totaled 5523 barrels during the second quarter. Blasthole drilling began on Retort No. 26. By the end of June 202 blastholes had been drilled. Four additional instrumentation wells were drilled on Retort No. 25. These wells will be used by Lawrence Livermore National Laboratory personnel during electromagnetic testing which will assist in monitoring the burn front. Fabrication of the Retort No. 25 process equipment proceeded. Design of the Retort No. 25 instrumentation system was finalized and physical work began.

  9. OCCIDENTAL VERTICAL MODIFIED IN SITU PROCESS FOR THE RECOVERY OF OIL FROM OIL SHALE. PHASE II

    SciTech Connect

    Nelson, Reid M.

    1980-09-01

    The progress presented in this report covers the period June 1, 1980 through August 31, 1980 under the work scope for.Phase II of the DOE/Occidental Oil Shale, Inc. (OOSI) Cooperative Agreement. The major activities at OOSI 1s Logan Wash site during the quarter were: mining the voids at all levels for Retorts 7, 8 and 8x; completing Mini-Retort (MR) construction; continuing surface facility construction; tracer testing the MR 1 s; conducting Retorts 7 & 8 related Rock Fragmentation tests; setting up and debugging the Sandia B-61 trailer; and preparing the Phase II instrumentation plan.

  10. Influence of uraniferous black shales on cadmium, molybdenum and selenium in soils and crop plants in the Deog-Pyoun-g area of Korea.

    PubMed

    Kim, K W; Thornton, I

    1993-09-01

    The influence of naturally occurring uraniferous black shales on cadmium, molybdenum and selenium concentrations in soils and plants is examined. The possible implications of element concentrations to animal and human health are considered for the Deog-Pyoung area.Geochemical surveys have been undertaken within 13 river tributary valleys in the area underlain by uraniferous black shales and black slates or grey chlorite schists. Sampling of rocks, soils and plants has been carried out along transect lines within each valley. Samples were analysed for trace elements by Inductively Coupled Plasma Atomic Emission Spectrometry (ICP-AES) and for uranium by Neutron Activation Analysis (NAA). Soil pH, cation exchange capacity, loss on ignition and particle size distribution have been measured for selected samples.Average trace element concentrations of the Okchon uraniferous black shales were 6.3 μg g(-1) Cd, 136 μg g(-1) Mo and 8.6 μg g(-1) Se. Soils derived from these rocks tend to reflect their extreme geochemical composition. Trace element concentrations in alluvial soils derived in part from these black shales averaged 1.2 μg g(-1) Cd, 20 μg g(-1) Mo and 1.5 μg g(-1) Se. Trace element concentrations in plants were found to be influenced by those of soils. Cadmium accumulated in tobacco leaves up to 46 μg g(-1) (D.M.) and leafy plants such as lettuce contain up to 0.5 μg g(-1) Se (D.M.).In addition to total concentrations in soils, soil pH is a major factor influencing uptake of Mo into crop plants and soil texture for Se. Concentrations of trace elements in plants also varied between plant species. The relative concentrations of Cd were found to vary in the order tobacco > lettuce > red pepper > rice grain.Elevated concentrations of Cd in crop plants and in tobacco may possibly have deleterious effects on human health in this area. The low Cu:Mo ratio in rice stalk of 2.65:1 may be associated with disturbed Cu metabolism in ruminant animals which regularly

  11. Energy from true in situ processing of Antrim Shale: extraction trials in an explosively fractured site

    SciTech Connect

    VanDerPloeg, M.L.; Peil, C.A.; Kinkel, C.G.; Pihlaja, R.K.; Murdick, D.A.; Frost, J.R.; Lund, M.M.

    1980-08-01

    Three in situ energy extraction trials were conducted at The Dow Chemical Company's oil shale site, in Michigan's Sanilac County, near the town of Peck. Here the Antrim shale layer occurs between 1200 and 1400 feet underground. The trials began on October 14, 1979, and ended on April 1, 1980. The three trials, lasting 7, 60 and 17 days respectively, were conducted in a formation prepared by explosive fracturing. Ignition energy was generated with a methane burner. Some energy in the form of a dilute fuel gas (5 to 50 btu/scf) was recovered in each trial but upon ignition drastic decreases in flow communication occurred between injection and production wells. That problem prevented the planned exploration of techniques which would raise the energy value of the production gas. Upon cool down of the formation after each trial, air permeability tests showed inter-well communication levels returning to near preburn levels. Thermal expansion is the most likely cause of the reduced permeability experienced under retorting conditions.

  12. Time-capsule concretions: Unlocking burial diagenetic processes in the Mancos Shale using carbonate clumped isotopes

    NASA Astrophysics Data System (ADS)

    Dale, Annabel; John, Cédric M.; Mozley, Peter S.; Smalley, P. C.; Muggeridge, Ann H.

    2014-05-01

    Septarian carbonate concretions contain carbonate precipitated during progressive growth of the concretion and subsequent fracture-filling. As such, they have been used to track variations in δ13C and δ18O of pore waters during diagenesis and to define diagenetic zones in clastic rocks. However, the δ18O value of the carbonate is dependent on precipitation temperature and the δ18O value of the pore fluid from which it precipitated. Interpretations must assume one of these parameters, both of which are highly variable through time in diagenetic settings. Carbonate clumped isotopes of the cement can provide independent estimates of temperature of precipitation, allowing the pore-water δ18O to be back-calculated. Here, we use this technique on carbonate concretions and fracture fills of the Upper Cretaceous Prairie Canyon Member, Mancos Shale, Colorado. We sampled concretions from two permeable horizons separated by a 5 m shale layer, with one permeable horizon containing concretions with septarian fractures. We show cores precipitated at cooler temperatures (31 °C, ˜660 m burial depth) than the rims (68 °C (˜1980 m burial depth) and relate that to the δ13Ccarbonate values to suggest the concretion core precipitated in the methanogenic zone, with increasing input from thermogenically produced CO2. The two concretion-bearing horizons have different back-calculated δ18Oporewater values (mean -2.65‰ and 1.13‰ VSMOW) for cements formed at the same temperature and similar δ13C values, suggesting the shale layer present between the two horizons acted as a barrier to fluid mixing. Additionally, the δ18Ocarbonate of the septarian fractures (-13.8‰ VPBD) are due to precipitation at high temperatures (102 to 115 °C) from a fluid with a mean δ18Oporewater of 0.32‰ (VSMOW). Therefore, we can tie in the cementation history of the formation to temporal and spatial variations in δ18Oporewater.

  13. Method for in situ shale oil recovery

    SciTech Connect

    McKee, J.M.; Horton, R.L.

    1986-03-25

    A method is described of in situ processing of oil shale in a subterranean formation. The method consists of: rubblizing a section of oil shale in the subterranean formation, wherein the section has boundaries which form a retort chamber having a top end and a bottom end; removing the rubblized shale from the retort chamber; crushing the rubblized shale so as to produce shale particles of various sizes within a certain overall size range; separating the shale particles according to size into a plurality of shale particle groups, wherein each group includes shale particles within a predetermined group size range, and wherein each group size range makes up a portion of the overall size range; sequentially reloading substantially all of the shale particle groups into the retort chamber so that the shale particle groups are graded according to particle size within the chamber, wherein the largest shale particles are at the bottom end of the retort chamber and the smallest shale particles are at the top end of the retort chamber, the particles being evenly distributed throughout the retort chamber during reloading; retorting the reloaded shale particles such that liquid hydrocarbon products are produced; removing the liquid hydrocarbon products from the retort chamber.

  14. Certain generalizations regarding the behavior of group components of shale oil in thermal processing, on the basis of derivatographic analysis

    SciTech Connect

    Georgiev, I.

    1992-05-20

    Derivatographic analysis is a frequently used method for obtaining supplementary information on the structure, structural changes, and processes taking place in thermal processing of substances. It is also extensively in studying solid fuels. The work reported here was aimed at studying the changes taking place under the conditions of derivatographic analysis in the group components of the residue (distilling above 350{degrees}C) from the liquid product obtained after thermal breakdown of Bulgarian oil shales in a unit with a solid heat-carrier. The group components - oils, resins, and asphaltenes - were obtained by separating the residue by means of procedures given. The derivatographic studies were performed in Paulik-Paulik-Erdey MOM apparatus in an inert medium with a heating rate of 6{degrees}/min, and DTA 1/10, DTG 1/10, and TG 1000 mg. 8 refs., 3 figs.

  15. Oil shale, tar sand, coal research, advanced exploratory process technology jointly sponsored research. Quarterly technical progress report, April--June 1992

    SciTech Connect

    Not Available

    1992-12-01

    Accomplishments for the quarter are presented for the following areas of research: oil shale, tar sand, coal, advanced exploratory process technology, and jointly sponsored research. Oil shale research includes; oil shale process studies, environmental base studies for oil shale, and miscellaneous basic concept studies. Tar sand research covers process development. Coal research includes; underground coal gasification, coal combustion, integrated coal processing concepts, and solid waste management. Advanced exploratory process technology includes; advanced process concepts, advanced mitigation concepts, and oil and gas technology. Jointly sponsored research includes: organic and inorganic hazardous waste stabilization; development and validation of a standard test method for sequential batch extraction fluid; operation and evaluation of the CO{sub 2} HUFF-N-PUFF Process; fly ash binder for unsurfaced road aggregates; solid state NMR analysis of Mesa Verde Group, Greater Green River Basin, tight gas sands; flow-loop testing of double-wall pipe for thermal applications; characterization of petroleum residue; shallow oil production using horizontal wells with enhanced recovery techniques; and menu driven access to the WDEQ Hydrologic Data Management Systems.

  16. Pressurized fluidized-bed hydroretorting of eastern oil shales. Volume 2, Task 3, Testing of process improvement concepts: Final report, September 1987--May 1991

    SciTech Connect

    Not Available

    1992-03-01

    This final report, Volume 2, on ``Process Improvement Concepts`` presents the results of work conducted by the Institute of Gas Technology (IGT), the Illinois Institute of Technology (IIT), and the Ohio State University (OSU) to develop three novel approaches for desulfurization that have shown good potential with coal and could be cost-effective for oil shales. These are (1) In-Bed Sulfur Capture using different sorbents (IGT), (2) Electrostatic Desulfurization (IIT), and (3) Microbial Desulfurization and Denitrification (OSU and IGT). Results of work on electroseparation of shale oil and fines conducted by IIT is included in this report, as well as work conducted by IGT to evaluate the restricted pipe discharge system. The work was conducted as part of the overall program on ``Pressurized Fluidized-Bed Hydroretorting of Eastern Oil Shales.``

  17. Oil shale retort apparatus

    SciTech Connect

    Reeves, Adam A.; Mast, Earl L.; Greaves, Melvin J.

    1990-01-01

    A retorting apparatus including a vertical kiln and a plurality of tubes for delivering rock to the top of the kiln and removal of processed rock from the bottom of the kiln so that the rock descends through the kiln as a moving bed. Distributors are provided for delivering gas to the kiln to effect heating of the rock and to disturb the rock particles during their descent. The distributors are constructed and disposed to deliver gas uniformly to the kiln and to withstand and overcome adverse conditions resulting from heat and from the descending rock. The rock delivery tubes are geometrically sized, spaced and positioned so as to deliver the shale uniformly into the kiln and form symmetrically disposed generally vertical paths, or "rock chimneys", through the descending shale which offer least resistance to upward flow of gas. When retorting oil shale, a delineated collection chamber near the top of the kiln collects gas and entrained oil mist rising through the kiln.

  18. Application of hydropyrolysis to the hydroconversion of Eastern oil shale. Final technical report

    SciTech Connect

    Falk, A.Y.; Garey, M.P.; Rosemary, J.K.

    1983-11-01

    The two major objectives of the project were: (1) testing, data reduction, and chemical analysis to determine the performance of Eastern oil shale in a hydropyrolysis reactor; and (2) selection of an operating point suited to high yields of shale oil and performance of a preliminary process analysis and economic assessment of the process. Six tests were conducted in the 1-TPH process development unit (PDU) at 1100 and 1400/sup 0/F, nominal reactor residence times of 75 and 200 ms, and a reactor pressure of 1000 psig. A blend of Cleveland Member of the Ohio shale, pulverized to 70% through 200 mesh, was used as feedstock. Excellent material balances were obtained for the test series, which had an average test duration of 68 min and an average shale throughput of 1688 lb. Total carbon conversions as high as 70.0% and carbon conversions to liquids as high as 55.5% were found. Production of raw shale oil ranged from approximately 13.5 to 19.0 gal/ton of shale fed compared with a Fischer assay of approximately 13 gal/ton. Nitrogen and sulfur concentrations in the untreated whole oil were approximately 2.2 and 1.6 wt. %, respectively, and very low hydrogen consumption in the reactor was observed. Excellent data correlation was obtained as a function of reactor severity, expressed as carbon conversion to methane. Based on a selected operating point, a conceptual design was developed for a commercial-scale plant producing 50,000 bbl/day of partially hydrotreated shale oil, suitable as refinery feedstock. Product oil yield is approximately 21 gal/ton of dry shale. Input to the plant consists of 4150 TPH of dry shale and imported methane. The estimated plant investment is approximately $2 billion in first-quarter 1983 dollars, including a 15% project contingency. The calculated average product selling price is $35.20/bbl.

  19. Investigation of the Geokinetics horizontal in situ oil shale retorting process. Quarterly report, July, August, September 1980

    SciTech Connect

    Hutchinson, D.L.

    1980-11-01

    Progress is reported by Geokinetics on the successful blasting of Retort No. 25. Preparations are described for the ignition of Retort No. 24 nearing completion. This will be the largest retort processing facility utilized to date. Meteorological data of the area was obtained for permit applications from the Utah Air Conservation Committee and the US EPA. These must be obtained before ignition of retort No. 24. Drilling for the post-burn core sampling program (Retorts No. 16 and No. 17) was completed during the quarter. Approval to inject effluent water into the Mesa Verde Formation through a deep well was obtained. Construction of a new 1 1/2 acre evaporating pond has begun. The DOE Oil Shale Task Force will aid in the environmental research program; its role is described. A new vibro-rotary hammer was tested. Drilling penetration rates increased by 35%. A patent on horizontal fracturing methods was obtained. (DMC)

  20. Denitrification in marine shales in northeastern Colorado

    USGS Publications Warehouse

    McMahon, P.B.; Böhlke, J.K.; Bruce, B.W.

    1999-01-01

    Parts of the South Platte River alluvial aquifer in northeastern Colorado are underlain by the Pierre Shale, a marine deposit of Late Cretaceous age that is <1000 m thick. Ground water in the aquifer is contaminated with NO3/-, and the shale contains abundant potential electron donors for denitrification in the forms of organic carbon and sulfide minerals. Nested piezometers were sampled, pore water was squeezed from cores of shale, and an injection test was conducted to determine if denitrification in the shale was a sink for alluvial NO3/- and to measure denitrification rates in the shale. Measured values of NO3/-, N2, NH4/+, ??15[NO3/-], ??15N[N2], and ??15N[NH4/+] in the alluvial and shale pore water indicated that denitrification in the shale was a sink for alluvial NO3/-. Chemical gradients, reaction rate constants, and hydraulic head data indicated that denitrification in the shale was limited by the slow rate of NO3/- transport (possibly by diffusion) into the shale. The apparent in situ first-order rate constant for denitrification in the shale based on diffusion calculations was of the order of 0.04-0.4 yr-1, whereas the potential rate constant in the shale based on injection tests was of the order of 60 yr-1. Chemical data and mass balance calculations indicate that organic carbon was the primary electron donor for denitrification in the shale during the injection test, and ferrous iron was a minor electron donor in the process. Flux calculations for the conditions encountered at the site indicate that denitrification in the shale could remove only a small fraction of the annual agricultural NO3/- input to the alluvial aquifer. However, the relatively large potential first-order rate constant for denitrification in the shale indicated that the percentage of NO3/- uptake by the shale could be considerably larger in areas where NO3/- is transported more rapidly into the shale by advection.

  1. Influence of Topography on Root Processes in the Shale Hills-Susquehanna Critical Zone Observatory

    NASA Astrophysics Data System (ADS)

    Eissenstat, D. M.; Orr, A. S.; Adams, T. S.; Chen, W.; Gaines, K.

    2015-12-01

    Topography can strongly influence root and associated mycorrhizal fungal function in the Critical Zone. In the Shale Hills-Susquehanna Critical Zone Observatory (SSCZO), soil depths range from more than 80 cm deep in the valley floor to about 25 cm on the ridge top. Tree height varies from about 28 m tall at the valley floor to about 17 m tall at the ridge top. Yet total absorptive root length to depth of refusal is quite similar across the hillslope. We find root length density to vary as much at locations only 1-2 m apart as at scales of hundreds of meters across the catchment. Tree community composition also varies along the hillslope, including tree species that vary widely in thickness of their absorptive roots and type of mycorrhiza (arbuscular mycorrhizal and ectomycorrhizal). Studies of trees in a common garden of 16 tree species and in forests near SSCZO indicate that both root morphology and mycorrhizal type can strongly influence root foraging. Species that form thick absorptive roots appear more dependent on mycorrhizal fungi and thin-root species forage more by root proliferation. Ectomycorrhizal trees show more variation in foraging precision (proliferation in a nutrient-rich patch relative to that in an unenriched patch) of their mycorrhizal hyphae whereas AM trees show more variation in foraging precision by root proliferation, indicating alternative strategies among trees of different mycorrhizal types. Collectively, the results provide insight into how topography can influence foraging belowground.

  2. Shales and swelling soils

    NASA Astrophysics Data System (ADS)

    Franklin, J. A.; Dimillio, A. F.; Strohm, W. E., Jr.; Vandre, B. C.; Anderson, L. R.

    The thirteen (13) papers in this report deal with the following areas: a shale rating system and tentative applications to shale performance; technical guidelines for the design and construction of shale embankments; stability of waste shale embankments; dynamic response of raw and stabilized Oklahoma shales; laboratory studies of the stabilization of nondurable shales; swelling shale and collapsing soil; development of a laboratory compaction degradation test for shales; soil section approach for evaluation of swelling potential soil moisture properties of subgrade soils; volume changes in compacted clays and shales on saturation; characterization of expansive soils; pavement roughness on expansive clays; and deep vertical fabric moisture barriers in swelling soils.

  3. Development of a sintering process for recycling oil shale fly ash and municipal solid waste incineration bottom ash into glass ceramic composite

    SciTech Connect

    Zhang, Zhikun; Zhang, Lei; Li, Aimin

    2015-04-15

    Highlights: • Glass ceramic composite is prepared from oil shale fly ash and MSWI bottom ash. • A novel method for the production of glass ceramic composite is presented. • It provides simple route and lower energy consumption in terms of recycling waste. • The vitrified slag can promote the sintering densification process of glass ceramic. • The performances of products decrease with the increase of oil shale fly ash content. - Abstract: Oil shale fly ash and municipal solid waste incineration bottom ash are industrial and municipal by-products that require further treatment before disposal to avoid polluting the environment. In the study, they were mixed and vitrified into the slag by the melt-quench process. The obtained vitrified slag was then mixed with various percentages of oil shale fly ash and converted into glass ceramic composites by the subsequent sintering process. Differential thermal analysis was used to study the thermal characteristics and determine the sintering temperatures. X-ray diffraction analysis was used to analyze the crystalline phase compositions. Sintering shrinkage, weight loss on ignition, density and compressive strength were tested to determine the optimum preparation condition and study the co-sintering mechanism of vitrified amorphous slag and oil shale fly ash. The results showed the product performances increased with the increase of sintering temperatures and the proportion of vitrified slag to oil shale fly ash. Glass ceramic composite (vitrified slag content of 80%, oil shale fly ash content of 20%, sintering temperature of 1000 °C and sintering time of 2 h) showed the properties of density of 1.92 ± 0.05 g/cm{sup 3}, weight loss on ignition of 6.14 ± 0.18%, sintering shrinkage of 22.06 ± 0.6% and compressive strength of 67 ± 14 MPa. The results indicated that it was a comparable waste-based material compared to previous researches. In particular, the energy consumption in the production process was reduced

  4. Jet Fuel Looks to Shale Oil: 1980 Technology Review.

    DTIC Science & Technology

    1981-05-01

    and iron, and high unsaturates content make conventional front-end refining processes unusable without pretreatment . Thus, the first step in the UOP...used to reduce metals content and to sta- bilize the shale oil. This pretreated material is then charged to a high pressure circuit. In this section...2000 to 5000 ppm result in lower plant investments than predicted in Phase 1. As in Phase I, the main hydrotreater and the TPO hydrogen plant account for

  5. Development of a sintering process for recycling oil shale fly ash and municipal solid waste incineration bottom ash into glass ceramic composite.

    PubMed

    Zhang, Zhikun; Zhang, Lei; Li, Aimin

    2015-04-01

    Oil shale fly ash and municipal solid waste incineration bottom ash are industrial and municipal by-products that require further treatment before disposal to avoid polluting the environment. In the study, they were mixed and vitrified into the slag by the melt-quench process. The obtained vitrified slag was then mixed with various percentages of oil shale fly ash and converted into glass ceramic composites by the subsequent sintering process. Differential thermal analysis was used to study the thermal characteristics and determine the sintering temperatures. X-ray diffraction analysis was used to analyze the crystalline phase compositions. Sintering shrinkage, weight loss on ignition, density and compressive strength were tested to determine the optimum preparation condition and study the co-sintering mechanism of vitrified amorphous slag and oil shale fly ash. The results showed the product performances increased with the increase of sintering temperatures and the proportion of vitrified slag to oil shale fly ash. Glass ceramic composite (vitrified slag content of 80%, oil shale fly ash content of 20%, sintering temperature of 1000 °C and sintering time of 2h) showed the properties of density of 1.92 ± 0.05 g/cm(3), weight loss on ignition of 6.14 ± 0.18%, sintering shrinkage of 22.06 ± 0.6% and compressive strength of 67 ± 14 MPa. The results indicated that it was a comparable waste-based material compared to previous researches. In particular, the energy consumption in the production process was reduced compared to conventional vitrification and sintering method. Chemical resistance and heavy metals leaching results of glass ceramic composites further confirmed the possibility of its engineering applications.

  6. Effects of organic wastes on water quality from processing of oil shale from the Green River Formation, Colorado, Utah, and Wyoming

    USGS Publications Warehouse

    Leenheer, J.A.; Noyes, T.I.

    1986-01-01

    A series of investigations were conducted during a 6-year research project to determine the nature and effects of organic wastes from processing of Green River Formation oil shale on water quality. Fifty percent of the organic compounds in two retort wastewaters were identified as various aromatic amines, mono- and dicarboxylic acids phenols, amides, alcohols, ketones, nitriles, and hydroxypyridines. Spent shales with carbonaceous coatings were found to have good sorbent properties for organic constituents of retort wastewaters. However, soils sampled adjacent to an in situ retort had only fair sorbent properties for organic constituents or retort wastewater, and application of retort wastewater caused disruption of soil structure characteristics and extracted soil organic matter constituents. Microbiological degradation of organic solutes in retort wastewaters was found to occur preferentially in hydrocarbons and fatty acid groups of compounds. Aromatic amines did not degrade and they inhibited bacterial growth where their concentrations were significant. Ammonia, aromatic amines, and thiocyanate persisted in groundwater contaminated by in situ oil shale retorting, but thiosulfate was quantitatively degraded one year after the burn. Thiocyanate was found to be the best conservative tracer for retort water discharged into groundwater. Natural organic solutes, isolated from groundwater in contact with Green River Formation oil shale and from the White River near Rangely, Colorado, were readily distinguished from organic constituents in retort wastewaters by molecular weight and chemical characteristic differences. (USGS)

  7. Retardation effect of nitrogen compounds and condensed aromatics on shale oil catalytic cracking processing and their characterization.

    PubMed

    Li, Nan; Chen, Chen; Wang, Bin; Li, Shaojie; Yang, Chaohe; Chen, Xiaobo

    Untreated shale oil, shale oil treated with HCl aqueous solution and shale oil treated with HCl and furfural were used to do comparative experiments in fixed bed reactors. Nitrogen compounds and condensed aromatics extracted by HCl and furfural were characterized by electrospray ionization Fourier transform cyclotron resonance mass spectrometry and gas chromatography and mass spectrometry, respectively. Compared with untreated shale oil, the conversion and yield of liquid products increased considerably after removing basic nitrogen compounds by HCl extraction. Furthermore, after removing nitrogen compounds and condensed aromatics by both HCl and furfural, the conversion and yield of liquid products further increased. In addition, N1 class species are predominant in both basic and non-basic nitrogen compounds, and they are probably indole, carbazole, cycloalkyl-carbazole, pyridine and cycloalkyl-pyridine. As for the condensed aromatics, most of them possess aromatic rings with two to three rings and zero to four carbon atom.

  8. Oil shale, tar sand, coal research, advanced exploratory process technology, jointly sponsored research. Quarterly technical progress report, July--September 1992

    SciTech Connect

    Not Available

    1992-12-31

    Progress made in five research programs is described. The subtasks in oil shale study include oil shale process studies and unconventional applications and markets for western oil shale.The tar sand study is on recycle oil pyrolysis and extraction (ROPE) process. Four tasks are described in coal research: underground coal gasification; coal combustion; integrated coal processing concepts; and sold waste management. Advanced exploratory process technology includes: advanced process concepts; advanced mitigation concepts; and oil and gas technology. Jointly sponsored research covers: organic and inorganic hazardous waste stabilization; CROW field demonstration with Bell Lumber and Pole; development and validation of a standard test method for sequential batch extraction fluid; PGI demonstration project; operation and evaluation of the CO{sub 2} HUFF-N-PUFF process; fly ash binder for unsurfaced road aggregates; solid state NMR analysis of Mesaverde group, Greater Green River Basin, tight gas sands; flow-loop testing of double-wall pipe for thermal applications; shallow oil production using horizontal wells with enhanced oil recovery techniques; NMR analysis of sample from the ocean drilling program; and menu driven access to the WDEQ hydrologic data management system.

  9. Oil shales and carbon dioxide.

    PubMed

    Sundquist, E T; Miller, G A

    1980-05-16

    During retorting of oil shales in the western United States, carbonate minerals are calcined, releasing significant amounts of carbon dioxide. Residual organic matter in the shales may also be burned, adding more carbon dioxide to the atmosphere. The amount of carbon dioxide produced depends on the retort process and the grade and mineralogy of the shale. Preliminary calculations suggest that retorting of oil shales from the Green River Formation and burning of the product oil could release one and one-half to five times more carbon dioxide than burning of conventional oil to obtain the same amount of usable energy. The largest carbon dioxide releases are associated with retorting processes that operate at temperatures greater than about 600 degrees C.

  10. FINGERPRINTING INORGANIC ARSENIC AND ORGANOARSENIC COMPOUNDS IN IN SITU OIL SHALE RETORT AND PROCESS VOTERS USING A LIQUID CHROMATOGRAPH COUPLED WITH AN ATOMIC ABSORPTION SPECTROMETER AS A DETECTOR

    SciTech Connect

    Fish, Richard H.; Brinckman, Frederick E.; Jewett, Kenneth L.

    1981-07-01

    Inorganic arsenic and organoarsenic compounds were speciated in seven oil shale retort and process waters, including samples from simulated, true and modified in situ processes, using a high performance liquid chromatograph automatically coupled to a graphite furnace atomic absorption detector. The molecular forms of arsenic at ppm levels (({micro}g/mL) in these waters are identified for the first time, and shown to include arsenate, methylarsonic acid and phenylarsonic acid. An arsenic-specific fingerprint chromatogram of each retort or process water studied has significant impliestions regarding those arsenical species found and those marginally detected, such as dimethylarsinic acid and the suspected carcinogen arsenite. The method demonstrated suggests future means for quantifying environmental impacts of bioactive organometal species involved in oil shale retorting technology.

  11. Making a black shale shine: the interaction of hydrothermal fluids and diagenetic processes

    NASA Astrophysics Data System (ADS)

    Gleeson, Sarah; Magnall, Joe; Reynolds, Merilie

    2016-04-01

    Hydrothermal fluids are important agents of mass and thermal transfer in the upper crust. This is exemplified by shale-hosted massive sulphide deposits (SHMS), which are anomalous accumulations of Zn and Pb sulphides (± barite) in sedimentary basins created by hydrothermal fluids. These deposits occur in passive margin settings and, typically, there is no direct evidence of magmatic input. Recent studies of Paleozoic deposits in the North American Cordillera (MacMillan Pass and Red Dog Districts) have shown that the deposits are formed in a sub-seafloor setting, where the potential for thermal and chemical gradients is high. Mineralization is characterized by the replacement and displacement of unconsolidated, partially lithified and lithified biosiliceous mudstones (± carbonates), and commonly the sulphide mineralization post-dates, and replaces, bedded barite units in the sediments. The Red Dog District (Alaska, USA) contain some of the largest Zn-Pb deposits ever discovered. The host-rocks are dominantly carbonaceous mudstones, with carbonate units and some radiolarites. The ore forms massive sulphide bodies that replace pyritized mudstones, barite and carbonate units. Lithological and textural relationships provide evidence that much of the ore formed in bioturbated, biosiliceous zones that may have had high primary porosity and/or permeability. Sediment permeability may have been further modified by aging of the silica rich sediments and the dissolution/replacement of carbonate and barite beds. At the Tom and Jason deposits (MacMillan Pass, Yukon) the fault-controlled hydrothermal upflow zone is uniquely preserved as an unequivocal vent complex. Here, the metal bearing fluids are hot (300°C), low salinity (6 wt% NaCl equiv.) and acidic (pH < 4.5). These fluids were initially in thermal and chemical disequilibrium with a partially lithified organic rich host-rock but cooled rapidly during fluid rock interaction and the input of diagenetic pore fluids

  12. Investigation of the Geokinetics horizontal in-situ oil-shale-retorting process. Quarterly report, October, November, December 1981

    SciTech Connect

    Bartlett, S.F.

    1982-08-01

    The ignition of Retort No. 25 took place on October 15, 1981. The operation was a success and the fire front remained uniform throughout the quarter. Production of crude shale oil from Retort No. 25 was 7153 barrels during the quarter. Stack gas analysis began on Retort No. 25 as part of normal air quality studies. The re-entry drilling program began on Retort No. 26 and all process wells were completed in December. Blasthole drilling began on the Retort No. 27 site in November. By the end of December, 16,416 feet had been drilled and an early February shot date is scheduled. Retort No. 27 will be twice the size of Retort No. 26. Lab personnel were involved in the testing of retort water for scrubbing purposes and the removal of H/sub 2/S gas. The new Kamp Kerogen water well was completed and put into service. Three mobile homes were relocated on the new mobile home park. Hook-ups were made and services provided.

  13. Investigation of the Geokinetics horizontal in-situ oil-shale-retorting process. Quarterly report, January, February, March 1982

    SciTech Connect

    Bartlett, S.F.

    1982-08-01

    At the end of March 1982, Retort No. 25 was in its 167th day of burning with a total oil production of 16,599 barrels, an average of 99 barrels per day for this five month burn period. Total oil production for the first quarter was 9187 barrels, an average of 3062 barrels per month or 102 barrels per day. Various environmental studies were carried out on Retort No. 25 during this burn period, as defined in the Environment Research Plan. Stack gas analyses show that the retort operated within the PSD established emission levels. Lab and field experiments continued on a wet scrubber to remove H/sub 2/S and NH/sub 3/ from the process gas. Process and instrumentation wells were drilled on Retort No. 26. All process holes were completed in February and all instrumentation holes were finished in March. Installment of process manifolding, surface piping and thermocouples is continuing. The Retort No. 27 site was prepared for blasting during January and February with detonation of the retort accomplished on February 25. Retort No. 27, the first 2 acre retort, used 283,000 pounds of Ireco explosive loaded into 354 blast holes. Important data concerning the effect of retort size increase, early overburden motion and the effects of blast design modifications upon shale fracturing characteristics were obtained from this blast. Preliminary indications show that the blast was a success and post blast analysis is presently in progress to evaluate the characteristics of the blast. During the quarter, the second and third suite of samples for the Retort No. 25 fugitive emissions study were gathered. From this study, it was concluded that more sampling will be required before fugitive emission rates can be properly characterized.

  14. Developments in Oil Shale

    DTIC Science & Technology

    2008-11-17

    retorting Chevron CO Piceance Basin, Rio Blanco In situ/ heated gas injection EGL CO Piceance Basin, Rio Blanco In situ/ steam injection Shell CO Oil...Shale Test Site (1); Piceance Basin, Rio Blanco In situ Conversion Process (ICP) using self-contained heaters. Shell CO Nahcolite Test Site (2...Piceance Basin, Rio Blanco Two-Step ICP using hot water injection Shell CO Advanced Heater Test Site (3); Picenace Basin, Rio Blanco Electric-ICP using

  15. Investigation of the Geokinetics horizontal in situ oil shale retorting process. Quarterly report, January-March 1980

    SciTech Connect

    Hutchinson, D.L.

    1980-05-01

    Retort No. 18 produced 3479 barrels of oil during the quarter for a total of 4528 barrels to date. Chromatographic analyses of Retort No. 18 shale oil by the GKI analytical laboratory indicated variation in the oil from the wells near the air-in end and from the air-out end of the retort. Shale oil has been blended with Altamont crude (the Roosevelt refinery's normal feedstock); the distillation, API gravity, pour point, flash point, Naptha and Cat Gas were not affected by the shale oil. The diesel off the crude unit changed from water white to yellow, however, and a fine grayish-brown precipitate formed. Re-entry drilling was performed on Retorts No. 21, No. 22, and No. 23 during the quarter; tracer tests were run by Sandia Laboratories on Retorts No. 19, No. 21, No. 22, and No. 23. Blasthole drilling began on Retort No. 25.

  16. Oil shale compaction experimental results

    SciTech Connect

    Fahy, L.J.

    1985-11-01

    Oil shale compaction reduces the void volume available for gas flow in vertical modified in situ (VMIS) retorts. The mechanical forces caused by the weight of the overlying shale can equal 700 kPa near the bottom of commercial retorts. Clear evidence of shale compaction was revealed during postburn investigation of the Rio Blanco retorts at the C-a lease tract in Colorado. Western Research Institute conducted nine laboratory experiments to measure the compaction of Green River oil shale rubble during retorting. The objectives of these experiments were (1) to determine the effects of particle size, (2) to measure the compaction of different shale grades with 12 to 25 percent void volume and (3) to study the effects of heating rate on compaction. The compaction recorded in these experiments can be separated into the compaction that occurred during retorting and the compaction that occurred as the retort cooled down. The leaner oil shale charges compacted about 3 to 4 percent of the bed height at the end of retorting regardless of the void volume or heating rate. The richer shale charges compacted by 6.6 to 22.9 percent of the bed height depending on the shale grade and void volume used. Additional compaction of approximately 1.5 to 4.3 percent of the bed height was measured as the oil shale charges cooled down. Compaction increased with an increase in void volume for oil shale grades greater than 125 l/Mg. The particle size of the oil shale brick and the heating rate did not have a significant effect on the amount of compaction measured. Kerogen decomposition is a major factor in the compaction process. The compaction may be influenced by the bitumen intermediate acting as a lubricant, causing compaction to occur over a narrow temperature range between 315 and 430/sup 0/C. While the majority of the compaction occurs early in the retorting phase, mineral carbonate decomposition may also increase the amount of compaction. 14 refs., 12 figs., 4 tabs.

  17. Method for maximizing shale oil recovery from an underground formation

    DOEpatents

    Sisemore, Clyde J.

    1980-01-01

    A method for maximizing shale oil recovery from an underground oil shale formation which has previously been processed by in situ retorting such that there is provided in the formation a column of substantially intact oil shale intervening between adjacent spent retorts, which method includes the steps of back filling the spent retorts with an aqueous slurry of spent shale. The slurry is permitted to harden into a cement-like substance which stabilizes the spent retorts. Shale oil is then recovered from the intervening column of intact oil shale by retorting the column in situ, the stabilized spent retorts providing support for the newly developed retorts.

  18. Vegetation canopy cover effects on sediment erosion processes in the upper Colorado River Basin mancos shale formation, Price, Utah

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This study provides new parameterizations for applying the Rangeland Hydrology and Erosion Model (RHEM) on the highly erosive, rangeland saline soils of the Mancos Shale formation in the Price-San Rafael River Basin in east central Utah. Calibrated hydrologic parameters (Kss and K') values are gener...

  19. Investigation of the geokinetics horizontal in situ oil shale retorting process. Quarterly report, October-December 1979

    SciTech Connect

    Hutchinson, D.L.

    1980-02-01

    The burn of Retort 17 was terminated December 10. Retort 18 was ignited November 12. Retort 17 produced 510 bbl during the quarter for the total of 3,775 bbl, while Retort 18 produced 1,187 bbl. The shale oil was analyzed. Environmental studies were done.

  20. Oil shale retort apparatus

    SciTech Connect

    Reeves, A.A.; Mast, E.L.; Greaves, M.J.

    1990-08-14

    A retorting apparatus is described including a vertical kiln and a plurality of tubes for delivering rock to the top of the kiln and removal of processed rock from the bottom of the kiln so that the rock descends through the kiln as a moving bed. Distributors are provided for delivering gas to the kiln to effect heating of the rock and to disturb the rock particles during their descent. The distributors are constructed and disposed to deliver gas uniformly to the kiln and to withstand and overcome adverse conditions resulting from heat and from the descending rock. The rock delivery tubes are geometrically sized, spaced and positioned so as to deliver the shale uniformly into the kiln and form symmetrically disposed generally vertical paths, or rock chimneys'', through the descending shale which offer least resistance to upward flow of gas. When retorting oil shale, a delineated collection chamber near the top of the kiln collects gas and entrained oil mist rising through the kiln. 29 figs.

  1. RETORT. Oil Shale Retorting Simulation

    SciTech Connect

    Eyberger, L.R.

    1992-02-26

    RETORT is a one-dimensional mathematical model for simulating the chemical and physical processes involved in the vertical retorting of a fixed or moving rubbled bed of oil shale. The model includes those processes believed to have the most important effects in either the hot-gas retorting mode or the forward combustion retorting mode. The physical processes are: axial convective transport of heat and mass, axial thermal dispersion, axial pressure drop, gas-solid heat transfer, intraparticle thermal conductivity, water evaporation and condensation, wall heat loss, and movement of shale countercurrent to flow of gas. The chemical reactions within the shale particles are: release of bound water, pyrolysis of kerogen, coking of oil, pyrolysis of char, decomposition of carbonate minerals, and gasification of residual organic carbon with CO2, H2O, and O2. The chemical reactions in the bulk-gas stream are: combustion and cracking of oil vapor, combustion of H2, CH4, CHx, and CO, and the water-gas shift. The RETORT model is meant to simulate adiabatic laboratory retorts and in situ retorts that have been prepared with fairly uniform lateral distribution of shale particle sizes, void volume, and permeability. The model`s main role is to calculate, as a function of time and axial location in the retort, the flow rate of the bulk-gas stream and the composition and temperature of both the fluid stream and the shale particles.

  2. RETORT. Oil Shale Retorting Simulation

    SciTech Connect

    Braun, R.L.

    1992-02-26

    RETORT is a one-dimensional mathematical model for simulating the chemical and physical processes involved in the vertical retorting of a fixed or moving rubbled bed of oil shale. The model includes those processes believed to have the most important effects in either the hot-gas retorting mode or the forward combustion retorting mode. The physical processes are: axial convective transport of heat and mass, axial thermal dispersion, axial pressure drop, gas-solid heat transfer, intraparticle thermal conductivity, water evaporation and condensation, wall heat loss, and movement of shale countercurrent to flow of gas. The chemical reactions within the shale particles are: release of bound water, pyrolysis of kerogen, coking of oil, pyrolysis of char, decomposition of carbonate minerals, and gasification of residual organic carbon with CO2, H2O, and O2. The chemical reactions in the bulk-gas stream are: combustion and cracking of oil vapor, combustion of H2, CH4, CHx, and CO, and the water- gas shift. The RETORT model is meant to simulate adiabatic laboratory retorts and in situ retorts that have been prepared with fairly uniform lateral distribution of shale particle sizes, void volume, and permeability. The model`s main role is to calculate, as a function of time and axial location in the retort, the flow rate of the bulk-gas stream and the composition and temperature of both the fluid stream and the shale particles.

  3. Investigation of the geokinetics horizontal in situ oil shale retorting process. Quarterly report, July, August, September 1983

    SciTech Connect

    Henderson, K.B.

    1984-01-01

    Retort No. 27 was ignited using a new procedure and 47 days of operation were completed in the quarter. For retort No. 28 air injection and off gas piping and manifolding was completed along with the installation of electrical and instrumentation wiring. The off gas processing plant for the two retorts was completed and an initial shakedown run made.

  4. The Devonian Marcellus Shale and Millboro Shale

    USGS Publications Warehouse

    Soeder, Daniel J.; Enomoto, Catherine B.; Chermak, John A.

    2014-01-01

    The recent development of unconventional oil and natural gas resources in the United States builds upon many decades of research, which included resource assessment and the development of well completion and extraction technology. The Eastern Gas Shales Project, funded by the U.S. Department of Energy in the 1980s, investigated the gas potential of organic-rich, Devonian black shales in the Appalachian, Michigan, and Illinois basins. One of these eastern shales is the Middle Devonian Marcellus Shale, which has been extensively developed for natural gas and natural gas liquids since 2007. The Marcellus is one of the basal units in a thick Devonian shale sedimentary sequence in the Appalachian basin. The Marcellus rests on the Onondaga Limestone throughout most of the basin, or on the time-equivalent Needmore Shale in the southeastern parts of the basin. Another basal unit, the Huntersville Chert, underlies the Marcellus in the southern part of the basin. The Devonian section is compressed to the south, and the Marcellus Shale, along with several overlying units, grades into the age-equivalent Millboro Shale in Virginia. The Marcellus-Millboro interval is far from a uniform slab of black rock. This field trip will examine a number of natural and engineered exposures in the vicinity of the West Virginia–Virginia state line, where participants will have the opportunity to view a variety of sedimentary facies within the shale itself, sedimentary structures, tectonic structures, fossils, overlying and underlying formations, volcaniclastic ash beds, and to view a basaltic intrusion.

  5. Stabilizing in situ oil shale retorts with injected grout

    NASA Astrophysics Data System (ADS)

    1980-03-01

    A retort grouting process has been developed which would solve certain problems associated with in situ recovery of crude oil by retorting oil shale, such as surface subsidence, disturbance of groundwater flow, and accumulation of spent shale at the surface. Essentially, the process consists of using the spent shale to make a grout that can be injected into the retort after processing is completed. Bench-scale experiments using a high-temperature process show that grout can be prepared with sufficient strength, mobility, and permeability to stabilize processed in situ oil shale retorts. By reducing the need for surface disposal of spent shale and by increasing the quantity of shale that can be retorted in a given area, the grouting method should significantly improve the economics of the oil recovery process while also offering environmental advantages over surface processing of the shale.

  6. Corn plant locating by image processing

    NASA Astrophysics Data System (ADS)

    Jia, Jiancheng; Krutz, Gary W.; Gibson, Harry W.

    1991-02-01

    The feasibility investigation of using machine vision technology to locate corn plants is an important issue for field production automation in the agricultural industry. This paper presents an approach which was developed to locate the center of a corn plant using image processing techniques. Corn plants were first identified using a main vein detection algorithm by detecting a local feature of corn leaves leaf main veins based on the spectral difference between mains and leaves then the center of the plant could be located using a center locating algorithm by tracing and extending each detected vein line and evaluating the center of the plant from intersection points of those lines. The experimental results show the usefulness of the algorithm for machine vision applications related to corn plant identification. Such a technique can be used for pre. cisc spraying of pesticides or biotech chemicals. 1.

  7. High efficiency shale oil recovery. Fifth quarterly report, January 1, 1993--March 31, 1993

    SciTech Connect

    Adams, D.C.

    1993-04-22

    The overall project objective is to demonstrate the high efficiency of the Adams Counter-Current shale oil recovery process. The efficiency will first be demonstrated on a small scale, in the current phase, after which the demonstration will be extended to the operation of a small pilot plant. Thus the immediate project objective is to obtain data on oil shale retorting operations in a small batch rotary kiln that will be representative of operations in the proposed continuous process pilot plant. Although an oil shale batch sample is sealed in the batch kiln from the start until the end of the run, the process conditions for the batch are the same as the conditions that an element of oil shale would encounter in a continuous process kiln. Similar chemical and physical conditions (heating, mixing, pyrolysis, oxidation) exist in both systems.The two most important data objectives in this phase of the project are to demonstrate (1) that the heat recovery projected for this project is reasonable and (2) that an oil shale kiln will run well and not plug up due to sticking and agglomeration. The following was completed this quarter. (1) Twelve pyrolysis runs were made on five different oil shales. All of the runs exhibited a complete absence of any plugging, tendency. Heat transfer for Green River oil shale in the rotary kiln was 84.6 Btu/hr/ft{sup 2}/{degrees}F, and this will provide for ample heat exchange in the Adams kiln. (2) One retorted residue sample was oxidized at 1000{degrees}F. Preliminary indications are that the ash of this run appears to have been completely oxidized. (3) Further minor equipment repairs and improvements were required during the course of the several runs.

  8. Investigation of the geokinetics horizontal in situ oil shale retorting process. Quarterly report, October, November, December 1983

    SciTech Connect

    Henderson, K.B.

    1984-03-01

    Retort No. 27 was ignited on August 11, 1983 and by December 31 had completed 139 days of operation and produced 11,420 barrels of oil. Retort No. 28 was ignited on October 18, 1983 and on December 31 had completed 74 days of operation and produced 5,285 barrels of oil. The off-gas processing plants for the two retorts was completed and put through a shakedown run. Concentration levels of H/sub 2/S and NH/sub 3/ in the retort off gas did not warrant plant operation in the fourth quarter. Environmental studies are reported.

  9. Enzymes in bast fibrous plant processing.

    PubMed

    Kozlowski, Ryszard; Batog, Jolanta; Konczewicz, Wanda; Mackiewicz-Talarczyk, Maria; Muzyczek, Malgorzata; Sedelnik, Natalia; Tanska, Bogumila

    2006-05-01

    The program COST Action 847 Textile Quality and Biotechnology (2000-2005) has given an excellent chance to review the possibilities of the research, aiming at development of the industrial application of enzymes for bast fibrous plant degumming and primary processing. The recent advancements in enzymatic processing of bast fibrous plants (flax, hemp, jute, ramie and alike plants) and related textiles are given. The performance of enzymes in degumming, modification of bast fibres, roving, yarn, related fabrics as well as enzymatic bonding of lignocellulosic composites is provided.

  10. Ammonia stripping, activated carbon adsorption and anaerobic biological oxidation as process combination for the treatment of oil shale wastewater.

    PubMed

    Alexandre, Verônica M F; do Nascimento, Felipe V; Cammarota, Magali C

    2016-10-01

    Anaerobic biodegradability of oil shale wastewater was investigated after the following pretreatment sequence: ammonia stripping and activated carbon adsorption. Anaerobic biological treatment of oil shale wastewater is technically feasible after stripping at pH 11 for reducing the N-NH3 concentration, adsorption with 5 g/L of activated carbon in order to reduce recalcitrance and pH adjustment with CO2 so that the sulphate concentration in the medium remains low. After this pretreatment sequence, it was possible to submit the wastewater without dilution to an anaerobic treatment with 62.7% soluble chemical oxygen demand removal and specific methane production of 233.2 mL CH4STP/g CODremoved.

  11. Oil shale technology. Final report

    SciTech Connect

    1995-03-01

    This collaborative project with industrial participants studied oil shale retorting through an integrated program of fundamental research, mathematical model development and operation of a 4-tonne-per-day solid recirculation oil shale test unit. Quarterly, project personnel presented progress and findings to a Project Guidance Committee consisting of company representatives and DOE program management. We successfully operated the test unit, developed the oil shale process (OSP) mathematical model, evaluated technical plans for process scale up and determined economics for a successful small scale commercial deployment, producing premium motor fuel, specility chemicals along with electricity co-production. In budget negotiations, DOE funding for this three year CRADA was terminated, 17 months prematurely, as of October 1993. Funds to restore the project and continue the partnership have not been secured.

  12. Remedial processing of oil shale fly ash (OSFA) and its value-added conversion into glass-ceramics.

    PubMed

    Zhang, Zhikun; Zhang, Lei; Li, Aimin

    2015-12-01

    Recently, various solid wastes such as sewage sludge, coal fly ash and slag have been recycled into various products such as sintered bricks, ceramics and cement concrete. Application of these recycling approaches is much better and greener than conventional landfills since it can solve the problems of storage of industrial wastes and reduce exploration of natural resources for construction materials to protect the environment. Therefore, in this study, an attempt was made to recycle oil shale fly ash (OSFA), a by-product obtained from the extracting of shale oil in the oil shale industry, into a value-added glass-ceramic material via melting and sintering method. The influence of basicity (CaO/SiO2 ratio) by adding calcium oxide on the performance of glass-ceramics was studied in terms of phase transformation, mechanical properties, chemical resistances and heavy metals leaching tests. Crystallization kinetics results showed that the increase of basicity reduced the activation energies of crystallization but did not change the crystallization mechanism. When increasing the basicity from 0.2 to 0.5, the densification of sintering body was enhanced due to the promotion of viscous flow of glass powders, and therefore the compression strength and bending strength of glass-ceramics were increased. Heavy metals leaching results indicated that the produced OSFA-based glass-ceramics could be taken as non-hazardous materials. The maximum mechanical properties of compression strength of 186 ± 3 MPa, bending strength of 78 ± 6 MPa, good chemical resistances and low heavy metals leaching concentrations showed that it could be used as a substitute material for construction applications. The proposed approach will be one of the potential sustainable solutions in reducing the storage of oil shale fly ash as well as converting it into a value-added product.

  13. Scales over Shale: How Pennsylvania Got Fracked

    NASA Astrophysics Data System (ADS)

    Sica, Carlo E.

    Shale gas has become one of Pennsylvania's major resources in recent years and the gas boom has proceeded in spite of uncertainty over the environmental risks of its production process. This thesis argues that location alone cannot explain why shale gas boomed in Pennsylvania. Using interviews with corporate and state executives, I argue that the scalar dimensions of the neoliberal environmental governance of shale gas were critical to understanding why shale gas boomed in Pennsylvania. These actors supported the preemption of local scales of governance by the state as a scalar fix for capital accumulation from shale gas development. They also legitimated the scalar fix by assembling a neat stack of scale frames that made shale gas seem to benefit everyone. These scale frames made shale gas appear as if it would provide local employment, regional supplies of cheap gas, national energy security, abundant gas for tight global markets, and a mitigating strategy for global climate change. In arguing this point, I present a history of how shale gas became a resource that outlines the critical role of the state in that process.

  14. Modeling of oil shale compaction during retorting

    SciTech Connect

    Schreiber, J.D.

    1986-06-01

    A model of oil shale compacting during retorting has been developed and incorporated into a one-dimensional retorting model. The model calculates the vertical stress distribution in a column of oil shale rubble and the degree of compaction that these stresses cause. A correlation was developed that relates shale grade, initial void volume, and vertical stress to the final compaction of the shale bed. The model then determines the gas pressure drip through the retort and the effects of the varying pressure on the retorting process. The model has been tested by simulating the Rio Blanco Oil Shale Company's Tract C-a Retort 1. The model calculates 8.1% compaction, whereas 12 to 16 compaction was measured in the retort; causes of the discrepancy between calculated and measured values are discussed. 14 refs., 10 figs., 2 tabs.

  15. Epigenetic processes in flowering plant reproduction.

    PubMed

    Wang, Guifeng; Köhler, Claudia

    2017-01-06

    Seeds provide up to 70% of the energy intake of the human population, emphasizing the relevance of understanding the genetic and epigenetic mechanisms controlling seed formation. In flowering plants, seeds are the product of a double fertilization event, leading to the formation of the embryo and the endosperm surrounded by maternal tissues. Analogous to mammals, plants undergo extensive epigenetic reprogramming during both gamete formation and early seed development, a process that is supposed to be required to enforce silencing of transposable elements and thus to maintain genome stability. Global changes of DNA methylation, histone modifications, and small RNAs are closely associated with epigenome programming during plant reproduction. Here, we review current knowledge on chromatin changes occurring during sporogenesis and gametogenesis, as well as early seed development in major flowering plant models.

  16. Radionuclide concentration variations in the fuel and residues of oil shale-fired power plants: Estimations of the radiological characteristics over a 2-year period.

    PubMed

    Vaasma, Taavi; Loosaar, Jüri; Kiisk, Madis; Tkaczyk, Alan Henry

    2016-10-19

    Several multi-day samplings were conducted over a 2-year period from an oil shale-fired power plant operating with pulverized fuel type of boilers that were equipped with either novel integrated desulphurization system and bag filters or with electrostatic precipitators. Oil shale, bottom ash and fly ash samples were collected and radionuclides from the (238)U and (232)Th series as well as (40)K were determined. The work aimed at determining possible variations in the concentrations of naturally occurring radionuclides within the collected samples and detect the sources of these fluctuations. During the continuous multi-day samplings, various boiler parameters were recorded as well. With couple of exceptions, no statistically significant differences were detected (significance level 0.05) between the measured radionuclide mean values in various ash samples within the same sampling. When comparing the results between multiple years and samplings, no statistically significant variations were observed between (238)U and (226)Ra values. However, there were significant differences between the values in the fly ashes when comparing (210)Pb, (40)K, (228)Ra and (232)Th values between the various samplings. In all cases the radionuclide activity concentrations in the specific fly ash remained under 100 Bq kg(-1), posing no radiological concerns when using this material as an additive in construction or building materials. Correlation analysis between the registered boiler parameters and measured radionuclide activity concentrations showed weak or no correlation. The obtained results suggest that the main sources of variations are due to the characteristics of the used fuel. The changes in the radionuclide activity concentrations between multiple years were in general rather modest. The radionuclide activity concentrations varied dominantly between 4% and 15% from the measured mean within the same sampling. The relative standard deviation was however within the same range

  17. Comparison of naturally occurring shale bitumen asphaltene and retorted shale oil asphaltene

    SciTech Connect

    Shue, F.F.; Yen, T.F.

    1980-01-01

    Asphaltene is ubiquitously present in both the natural occurring bitumen and the retorted shale oil. Very few cases for the comparison of asphaltene properties are available in the literature. In this research, a comparison of the shale bitumen asphaltene and the retorted shale oil asphaltene was undertaken to investigate structural changes during thermal cracking. This was accomplished by means of elemental chemical analysis, infrared spectra, proton nmr spectra, and carbon-13 spectra of the bitumen asphaltenes and asphaltenes derived from shale oil retorted at 425 and 500/sup 0/C. Elemental analysis indicated that asphaltenes derived from retorted shale oils have smaller H/C ratio and smaller oxygen and sulfur contents, but greater nitrogen content than that derived from shale bitumen. Infrared spectra revealed that the retorted shale oil asphaltenes have greater pyrrolic N-H and hydrogen bonded O-H or N-H absorption than the shale bitumen asphaltene. Retorted shale oil asphaltenes have relatively higher aromaticity, lower degree of substitution of the aromatic sheet, and shorter alkyl substituents, which indicated that the main reactions in the retorting process are carbon-carbon bond fission and intramolecular aromatization.

  18. Springfield Processing Plant (SPP) Facility Information

    SciTech Connect

    Leach, Janice; Torres, Teresa M.

    2012-10-01

    The Springfield Processing Plant is a hypothetical facility. It has been constructed for use in training workshops. Information is provided about the facility and its surroundings, particularly security-related aspects such as target identification, threat data, entry control, and response force data.

  19. Socioeconomic Impacts of Agricultural Processing Plants.

    ERIC Educational Resources Information Center

    Leistritz, F. Larry; Sell, Randall S.

    2001-01-01

    Studies in four North Dakota communities that had suffered economic and population decline in the 1980s examined the economic and community impacts of new agricultural processing plants in the late 1990s, including effects on residents' incomes, total and school-age population, needs for day care and community services, housing needs, public…

  20. Pretreatment of shale gas drilling flowback fluid (SGDF) by the microscale Fe(0)/persulfate/O3 process (mFe(0)/PS/O3).

    PubMed

    Zhang, Heng; Xiong, Zhaokun; Ji, Fangzhou; Lai, Bo; Yang, Ping

    2017-06-01

    Shale gas drilling flowback fluid (SGDF) generated during shale gas extraction is of great concern due to its high total dissolved solid, radioactive elements and organic matter. To remove the toxic and refractory pollutants in SGDF and improve its biodegradability, a microsacle Fe(0)/Persulfate/O3 process (mFe(0)/PS/O3) was developed to pretreat this wastewater obtained from a shale gas well in southwestern China. First, effects of mFe(0) dosage, O3 flow rate, PS dosage, pH values on the treatment efficiency of mFe(0)/PS/O3 process were investigated through single-factor experiments. Afterward, the optimal conditions (i.e., pH = 6.7, mFe(0) dosage = 6.74 g/L, PS = 16.89 mmol/L, O3 flow rate = 0.73 L/min) were obtained by using response surface methodology (RSM). Under the optimal conditions, high COD removal (75.3%) and BOD5/COD ratio (0.49) were obtained after 120 min treatment. Moreover, compared with control experiments (i.e., mFe(0), O3, PS, mFe(0)/O3, mFe(0)/PS, O3/PS), mFe(0)/PS/O3 system exerted better performance for pollutants removal in SGDF due to strong synergistic effect between mFe(0), PS and O3. In addition, the decomposition or transformation of the organic pollutants in SGDF was analyzed by using GC-MS. Finally, the reaction mechanism of the mFe(0)/PS/O3 process was proposed according to the analysis results of SEM-EDS and XRD. It can be concluded that high-efficient mFe(0)/PS/O3 process was mainly resulted from the combination effect of direct oxidation by ozone and persulfate, heterogeneous and homogeneous catalytic oxidation, Fenton-like reaction and adsorption. Therefore, mFe(0)/PS/O3 process was proven to be an effective method for pretreatment of SGDF prior to biological treatment.

  1. Military jet fuel from shale oil

    NASA Technical Reports Server (NTRS)

    Coppola, E. N.

    1980-01-01

    Investigations leading to a specification for aviation turbine fuel produced from whole crude shale oil are described. Refining methods involving hydrocracking, hydrotreating, and extraction processes are briefly examined and their production capabilities are assessed.

  2. Integrated Use of Fluidized Bed Technology for Oil Production from Oil Shale

    NASA Astrophysics Data System (ADS)

    Siirde, Andres; Martins, Ants

    The plant unit which consists of a fluidized bed retort and CFB furnace for burning the by-products of retorting (semicoke and semicoke gas) is presented in this paper. The oil shale retort consists of a fast fluidized bed shaft, coarse semicoke bit, semicoke separation chamber and cyclone for the separation of fine semicoke particles. The crashed oil shale and hot ash from the CFB ash separator are fed concurrently into the fast fluidized bed shaft. For fluidizing the mixture of oil shale and hot ash particles, the recycle semicoke gas is used. The pyrolysis of oil shale begins in fluidized bed and is completed in the semicoke separation chamber. The coarse semicoke particles are separated from fluidized bed directly while the medium size particles are separated from the gases in the semicoke separation chamber and the finest semicoke particles in the cyclone. All the fractions of semicoke from the fluidized bed retort and semicoke gas from the oil fractionator are burnt in the CFB furnace. The semicoke ash is separated from flue gases in the CFB ash separator. A part of separated hot ash is fed into the fluidized bed retort as a solid heat carrier material and the rest into the furnace through the ash cooler or separated from the process. The retention of sulphur dioxide formed during the semicoke and semicoke gas combustion, is guaranteed for about 99 % due to the high CaO content in the semicoke ash and convenient temperature (about 850°C) in the CFB furnace. The described plant unit is useful for retorting oil shale and other solid hydrocarbon-containing fuels. The advantages of the present retorting process and system are: improved oil yield, greater throughput, lower retorting time, avoidance of moving parts in the retorting zones, reduced downtime, etc. A new plant unit for oil shale oil production has been elaborated and defended by the Estonian Utility Model EE 200700671 UI.

  3. High efficiency shale oil recovery. Fourth quarterly report, October 1, 1992--December 31, 1992

    SciTech Connect

    Adams, D.C.

    1992-12-31

    The overall project objective is to demonstrate the high efficiency of the Adams Counter-Current shale oil recovery process. The efficiency will first be demonstrated on a small scale, in the current phase, after which the demonstration will be extended to the operation of a small pilot plant. Thus the immediate project objective is to obtain data on oil shale retorting operations in a small batch rotary kiln that will be representative of operations in the proposed continuous process pilot plant. Although an oil shale batch sample is sealed in the batch kiln from the start until the end of the run, the process conditions for the batch are the same as the conditions that an element of oil shale would encounter in a continuous process kiln. Similar chemical and physical (heating, mixing) conditions exist in both systems. The two most important data objectives in this phase of the project are to demonstrate (1) that the heat recovery projected for this project is reasonable and (2) that an oil shale kiln will run well and not plug up due to sticking and agglomeration. The following was completed and is reported on this quarter: (1) A software routine was written to eliminate intermittently inaccurate temperature readings. (2) We completed the quartz sand calibration runs, resolving calibration questions from the 3rd quarter. (3) We also made low temperature retorting runs to identify the need for certain kiln modifications and kiln modifications were completed. (4) Heat Conductance data on two Pyrolysis runs were completed on two samples of Occidental oil shale.

  4. Thermal Effects by Firing Oil Shale Fuel in CFB Boilers

    NASA Astrophysics Data System (ADS)

    Neshumayev, D.; Ots, A.; Parve, T.; Pihu, T.; Plamus, K.; Prikk, A.

    It is well known that during firing of oil shale fuel the amount of heat released during its combustion per kg of fuel is significantly affected by the endothermic and exothermic processes taking place in mineral matter. These thermal effects are calcite and dolomite decomposing, marcasite FeS2 oxidising, CaO sulphation and formation of the new minerals. The given paper deals with the experimental study of the influence of these thermal effects of oil shale fuel having different heating value on total amount of heat released during combustion in calorimetric bomb, circulating fluidized bed (CFB) and pulverized-firing boiler (PFB). The large-scale (250 MWth) experiments were performed in the K11-1 CFB boiler of the Balti Power Plant. During experiments low heating value of a fuel varied within the range 8.5-11 MJ/kg. At the end some conclusions were drawn.

  5. Methods for minimizing plastic flow of oil shale during in situ retorting

    DOEpatents

    Lewis, Arthur E.; Mallon, Richard G.

    1978-01-01

    In an in situ oil shale retorting process, plastic flow of hot rubblized oil shale is minimized by injecting carbon dioxide and water into spent shale above the retorting zone. These gases react chemically with the mineral constituents of the spent shale to form a cement-like material which binds the individual shale particles together and bonds the consolidated mass to the wall of the retort. This relieves the weight burden borne by the hot shale below the retorting zone and thereby minimizes plastic flow in the hot shale. At least a portion of the required carbon dioxide and water can be supplied by recycled product gases.

  6. Common clay and shale

    USGS Publications Warehouse

    Virta, R.L.

    2011-01-01

    The article discusses the latest developments in the global common clay and shale industry, particularly in the U.S. It claims that common clay and shale is mainly used in the manufacture of heavy clay products like brick, flue tile and sewer pipe. The main producing states in the U.S. include North Carolina, New York and Oklahoma. Among the firms that manufacture clay and shale-based products are Mid America Brick & Structural Clay Products LLC and Boral USA.

  7. Pinellas Plant facts. [Products, processes, laboratory facilities

    SciTech Connect

    Not Available

    1986-09-01

    This plant was built in 1956 in response to a need for the manufacture of neutron generators, a principal component in nuclear weapons. The neutron generators consist of a miniaturized linear ion accelerator assembled with the pulsed electrical power supplies required for its operation. The ion accelerator, or neutron tube, requires ultra clean, high vacuum technology: hermetic seals between glass, ceramic, glass-ceramic, and metal materials: plus high voltage generation and measurement technology. The existence of these capabilities at the Pinellas Plant has led directly to the assignment of the lightning arrester connector, specialty capacitor, vacuum switch, and crystal resonator. Active and reserve batteries and the radioisotopically-powered thermoelectric generator draw on the materials measurement and controls technologies which are required to ensure neutron generator life. A product development and production capability in alumina ceramics, cermet (electrical) feedthroughs, and glass ceramics has become a specialty of the plant; the laboratories monitor the materials and processes used by the plant's commercial suppliers of ferroelectric ceramics. In addition to the manufacturing facility, a production development capability is maintained at the Pinellas Plant.

  8. On wettability of shale rocks.

    PubMed

    Roshan, H; Al-Yaseri, A Z; Sarmadivaleh, M; Iglauer, S

    2016-08-01

    The low recovery of hydraulic fracturing fluid in unconventional shale reservoirs has been in the centre of attention from both technical and environmental perspectives in the last decade. One explanation for the loss of hydraulic fracturing fluid is fluid uptake by the shale matrix; where capillarity is the dominant process controlling this uptake. Detailed understanding of the rock wettability is thus an essential step in analysis of loss of the hydraulic fracturing fluid in shale reservoirs, especially at reservoir conditions. We therefore performed a suit of contact angle measurements on a shale sample with oil and aqueous ionic solutions, and tested the influence of different ion types (NaCl, KCl, MgCl2, CaCl2), concentrations (0.1, 0.5 and 1M), pressures (0.1, 10 and 20MPa) and temperatures (35 and 70°C). Furthermore, a physical model was developed based on the diffuse double layer theory to provide a framework for the observed experimental data. Our results show that the water contact angle for bivalent ions is larger than for monovalent ions; and that the contact angle (of both oil and different aqueous ionic solutions) increases with increase in pressure and/or temperature; these increases are more pronounced at higher ionic concentrations. Finally, the developed model correctly predicted the influence of each tested variable on contact angle. Knowing contact angle and therefore wettability, the contribution of the capillary process in terms of water uptake into shale rocks and the possible impairment of hydrocarbon production due to such uptake can be quantified.

  9. Shale gas development impacts on surface water quality in Pennsylvania

    PubMed Central

    Olmstead, Sheila M.; Muehlenbachs, Lucija A.; Shih, Jhih-Shyang; Chu, Ziyan; Krupnick, Alan J.

    2013-01-01

    Concern has been raised in the scientific literature about the environmental implications of extracting natural gas from deep shale formations, and published studies suggest that shale gas development may affect local groundwater quality. The potential for surface water quality degradation has been discussed in prior work, although no empirical analysis of this issue has been published. The potential for large-scale surface water quality degradation has affected regulatory approaches to shale gas development in some US states, despite the dearth of evidence. This paper conducts a large-scale examination of the extent to which shale gas development activities affect surface water quality. Focusing on the Marcellus Shale in Pennsylvania, we estimate the effect of shale gas wells and the release of treated shale gas waste by permitted treatment facilities on observed downstream concentrations of chloride (Cl−) and total suspended solids (TSS), controlling for other factors. Results suggest that (i) the treatment of shale gas waste by treatment plants in a watershed raises downstream Cl− concentrations but not TSS concentrations, and (ii) the presence of shale gas wells in a watershed raises downstream TSS concentrations but not Cl− concentrations. These results can inform future voluntary measures taken by shale gas operators and policy approaches taken by regulators to protect surface water quality as the scale of this economically important activity increases. PMID:23479604

  10. Shale gas development impacts on surface water quality in Pennsylvania.

    PubMed

    Olmstead, Sheila M; Muehlenbachs, Lucija A; Shih, Jhih-Shyang; Chu, Ziyan; Krupnick, Alan J

    2013-03-26

    Concern has been raised in the scientific literature about the environmental implications of extracting natural gas from deep shale formations, and published studies suggest that shale gas development may affect local groundwater quality. The potential for surface water quality degradation has been discussed in prior work, although no empirical analysis of this issue has been published. The potential for large-scale surface water quality degradation has affected regulatory approaches to shale gas development in some US states, despite the dearth of evidence. This paper conducts a large-scale examination of the extent to which shale gas development activities affect surface water quality. Focusing on the Marcellus Shale in Pennsylvania, we estimate the effect of shale gas wells and the release of treated shale gas waste by permitted treatment facilities on observed downstream concentrations of chloride (Cl(-)) and total suspended solids (TSS), controlling for other factors. Results suggest that (i) the treatment of shale gas waste by treatment plants in a watershed raises downstream Cl(-) concentrations but not TSS concentrations, and (ii) the presence of shale gas wells in a watershed raises downstream TSS concentrations but not Cl(-) concentrations. These results can inform future voluntary measures taken by shale gas operators and policy approaches taken by regulators to protect surface water quality as the scale of this economically important activity increases.

  11. High efficiency shale oil recovery. Second quarterly report, April 1, 1992--June 30, 1992

    SciTech Connect

    Adams, C.D.

    1992-07-18

    The overall project objective is to demonstrate the high efficiency of the Adams Counter-Current shale oil recovery process. The efficiency will first be demonstrated at bench-scale, in the current phase, after which the demonstration will be extended to the operation of a small pilot plant. Thus the immediate project objective is to obtain data on oil shale retorting operations in a small batch rotary kiln that will be representative of operations in the proposed continuous process pilot plant. Although an oil shale batch sample is sealed in the batch kiln from the start until the end of the run, the process conditions for the batch are the same as the conditions that an element of oil shale would encounter in a larger continuous process kiln. For example, similar conditions of heatup rate, oxidation of the residue and cool-down prevail for the element in both systems. This batch kiln is a unit constructed in a 1987 Phase I SBIR tar sand retorting project. The kiln worked fairly well in that project; however, the need for certain modifications was observed. These modifications are now underway to simplify the operation and make the data and analysis more exact. The second quarter agenda consisted of (a) kiln modifications; (b) sample preparation; and (c) Heat Transfer calibration runs (part of proposal task number 3 -- to be completed by the end of month 7).

  12. A nuclear wind/solar oil-shale system for variable electricity and liquid fuels production

    SciTech Connect

    Forsberg, C.

    2012-07-01

    The recoverable reserves of oil shale in the United States exceed the total quantity of oil produced to date worldwide. Oil shale contains no oil, rather it contains kerogen which when heated decomposes into oil, gases, and a carbon char. The energy required to heat the kerogen-containing rock to produce the oil is about a quarter of the energy value of the recovered products. If fossil fuels are burned to supply this energy, the greenhouse gas releases are large relative to producing gasoline and diesel from crude oil. The oil shale can be heated underground with steam from nuclear reactors leaving the carbon char underground - a form of carbon sequestration. Because the thermal conductivity of the oil shale is low, the heating process takes months to years. This process characteristic in a system where the reactor dominates the capital costs creates the option to operate the nuclear reactor at base load while providing variable electricity to meet peak electricity demand and heat for the shale oil at times of low electricity demand. This, in turn, may enable the large scale use of renewables such as wind and solar for electricity production because the base-load nuclear plants can provide lower-cost variable backup electricity. Nuclear shale oil may reduce the greenhouse gas releases from using gasoline and diesel in half relative to gasoline and diesel produced from conventional oil. The variable electricity replaces electricity that would have been produced by fossil plants. The carbon credits from replacing fossil fuels for variable electricity production, if assigned to shale oil production, results in a carbon footprint from burning gasoline or diesel from shale oil that may half that of conventional crude oil. The U.S. imports about 10 million barrels of oil per day at a cost of a billion dollars per day. It would require about 200 GW of high-temperature nuclear heat to recover this quantity of shale oil - about two-thirds the thermal output of existing

  13. Oil shale, shale oil, shale gas and non-conventional hydrocarbons

    NASA Astrophysics Data System (ADS)

    Clerici, A.; Alimonti, G.

    2015-08-01

    In recent years there has been a world "revolution" in the field of unconventional hydrocarbon reserves, which goes by the name of "shale gas", gas contained inside clay sediments micropores. Shale gas finds particular development in the United States, which are now independent of imports and see a price reduction to less than one third of that in Europe. With the high oil prices, in addition to the non-conventional gas also "oil shales" (fine-grained sedimentary rocks that contain a large amount of organic material to be used both to be directly burned or to extract liquid fuels which go under the name of shale oil), extra heavy oils and bitumen are becoming an industrial reality. Both unconventional gas and oil reserves far exceed in the world the conventional oil and gas reserves, subverting the theory of fossil fuels scarcity. Values and location of these new fossil reserves in different countries and their production by comparison with conventional resources are presented. In view of the clear advantages of unconventional fossil resources, the potential environmental risks associated with their extraction and processing are also highlighted.

  14. Oil shale ash-layer thickness and char combustion kinetics

    SciTech Connect

    Aldis, D.F.; Singleton, M.F.; Watkins, B.E.; Thorsness, C.B.; Cena, R.J.

    1992-04-15

    A Hot-Recycled-Solids (HRS) oil shale retort is being studied at Lawrence Livermore National Laboratory. In the HRS process, raw shale is heated by mixing it with burnt retorted shale. Retorted shale is oil shale which has been heated in an oxygen deficient atmosphere to pyrolyze organic carbon, as kerogen into oil, gas, and a nonvolatile carbon rich residue, char. In the HRS retort process, the char in the spent shale is subsequently exposed to an oxygen environment. Some of the char, starting on the outer surface of the shale particle, is burned, liberating heat. In the HRS retort, the endothermic pyrolysis step is supported by heat from the exothermic char combustion step. The rate of char combustion is controlled by three resistances; the resistance of oxygen mass transfer through the gas film surrounding the solid particle, resistance to mass transfer through a ash layer which forms on the outside of the solid particles as the char is oxidized and the resistance due to the intrinsic chemical reaction rate of char and oxygen. In order to estimate the rate of combustion of the char in a typical oil shale particle, each of these resistances must be accurately estimated. We begin by modeling the influence of ash layer thickness on the over all combustion rate of oil shale char. We then present our experimental measurements of the ash layer thickness of oil shale which has been processed in the HRS retort.

  15. Investigation of the Geokinetics horizontal in situ oil shale retorting process. Quarterly report, October, November, December 1980

    SciTech Connect

    Hutchinson, D.L.

    1981-02-01

    The ignition of Geokinetics first full-sized prototype retort (Retort 24) was completed on December 1, 1980. Recovery of oil from Retort No. 24 began about midway through December, and 531 barrels of oil had been recovered by the end of the quarter. A cold oil effect resulted in the accumulation of oil within the retort. Five thousand one ninety one barrels of oil were shipped to WESRECO, Salt Lake City, Utah during the quarter, and the shale oil was blended into No. 5 fuel oil, which was sold to industrial users. The Retort No. 25 post-blast core drilling program was completed in October. A total of seven core holes were drilled. Evaluation of the core samples was underway. Preliminary analysis indicated good breakage in the lower portion of Retort No. 25. A new technique for sealing retort surface fractures was designed and implemented on Retort No. 25. A layer of bentonite with gas and steam retention properties was applied to the retort surface and covered with a layer of topsoil.

  16. Elevated Atmospheric Levels of Benzene and Benzene-Related Compounds from Unconventional Shale Extraction and Processing: Human Health Concern for Residential Communities

    PubMed Central

    Rich, Alisa L.; Orimoloye, Helen T.

    2016-01-01

    BACKGROUND The advancement of natural gas (NG) extraction across the United States (U.S.) raises concern for potential exposure to hazardous air pollutants (HAPs). Benzene, a HAP and a primary chemical of concern due to its classification as a known human carcinogen, is present in petroleum-rich geologic formations and is formed during the combustion of bypass NG. It is a component in solvents, paraffin breakers, and fuels used in NG extraction and processing (E&P). OBJECTIVES The objectives of this study are to confirm the presence of benzene and benzene-related compounds (benzene[s]) in residential areas, where unconventional shale E&P is occurring, and to determine if benzene[s] exists in elevated atmospheric concentrations when compared to national background levels. METHODS Ambient air sampling was conducted in six counties in the Dallas/Fort Worth Metroplex with passive samples collected in evacuated 6-L Summa canisters. Samples were analyzed by gas chromatography/mass spectrometry, with sampling performed at variable distances from the facility fence line. RESULTS Elevated concentrations of benzene[s] in the atmosphere were identified when compared to U.S. Environmental Protection Agency’s Urban Air Toxics Monitoring Program. The 24-hour benzene concentrations ranged from 0.6 parts per billion by volume (ppbv) to 592 ppbv, with 1-hour concentrations from 2.94 ppbv to 2,900.20 ppbv. CONCLUSION Benzene is a known human carcinogen capable of multisystem health effects. Exposure to benzene is correlated with bone marrow and blood-forming organ damage and immune system depression. Sensitive populations (children, pregnant women, elderly, immunocompromised) and occupational workers are at increased risk for adverse health effects from elevated atmospheric levels of benzene[s] in residential areas with unconventional shale E&P. PMID:27199565

  17. International developments in oil shale

    SciTech Connect

    Uthus, D.B.

    1985-08-01

    An overview of oil shale research and development outside the US provides a status report on technology approaches under active consideration in Australia, Brazil, Canada, China, West Germany, Israel, Jordan, Morocco, Soviet Union, Thailand, Turkey, and Yugoslavia. The status report covers the development plans and project costs of industrial projects. The technologies under consideration include the Fushun, Galoter, Kiviter, Lurgi, and Petrosix processes. 10 references.

  18. Developments in CO2 mineral carbonation of oil shale ash.

    PubMed

    Uibu, M; Velts, O; Kuusik, R

    2010-02-15

    Solid waste and atmospheric emissions originating from power production are serious problems worldwide. In the Republic of Estonia, the energy sector is predominantly based on combustion of a low-grade carbonaceous fossil fuel: Estonian oil shale. Depending on the combustion technology, oil shale ash contains 10-25% free lime. To transport the ash to wet open-air deposits, a hydraulic system is used in which 10(7)-10(8) cubic meters of Ca(2+)-ion-saturated alkaline water (pH level 12-13) is recycled between the plant and sedimentation ponds. The goals of the current work were to design an ash-water suspension carbonation process in a continuous mode laboratory-scale plant and to search for potential means of intensifying the water neutralization process. The carbonation process was optimized by cascading reactor columns in which the pH progressed from alkaline to almost neutral. The amount of CO(2) captured from flue gases can reach 1-1.2 million ton at the 2007 production level of the SC Narva Power Plants. Laboratory-scale neutralization experiments were carried out to compare two reactor designs. Sedimentation of PCC particles of rhombohedral crystalline structure was demonstrated and their main characteristics were determined. A new method providing 50x greater specific intensity is also discussed.

  19. Oil shale loss from a laboratory fluidized bed

    SciTech Connect

    Taylor, R.W.; Beavers, P.L.

    1989-03-01

    The rate of loss of dust from a laboratory scale fluidized bed of Green River oil shale has been measured. The rate of loss of dust from raw shale in the bed was approximately 1%/min for the first few minutes, and then decreased. The loss rate for retorted or burnt shale was 5 to 10 times higher. The rate for retorted and burned shale were nearly the same. The time required for a 10 wt% loss of mass was approximately 3 min for processed shale and 1 hour for raw shale. Particles left in the bed during fluidization lost sharp corners, but kept the original elongation. Dust lost by the bed has a very wide range of sizes, and demonstrated a strong bimodal distribution of sizes. The bimodal distribution of particles is interpreted as resulting from two mechanisms of dust generation: fracture and wear. Fracture of large particles sometimes produced fragments which were small enough to be blown out of the bed. These fragments were much larger than the individual mineral grains in the shale. The fracture mechanism was dominant in the case of raw shale. Dust in the smaller particle-size range was generated by wear. Wear was the dominant mechanisms in the case of burned shale, whereas, for retorted shale, nearly equal amounts of dust were generated by each mechanism. 13 refs., 8 figs., 6 tabs.

  20. Pressurized fluidized-bed hydroretorting of Eastern oil shales -- Beneficiation

    SciTech Connect

    Roberts, M.J.; Lau, F.S.; Mensinger, M.C. ); Schultz, C.W.; Mehta, R.K.; Lamont, W.E. ); Chiang, S.H.; Venkatadri, R. ); Misra, M. )

    1992-05-01

    The Mineral Resources Institute at the University of Alabama, along with investigators from the University of Pittsburgh and the University of Nevada-Reno, have conducted a research program on the beneficiation, of Eastern oil shales. The objective of the research program was to evaluate and adapt those new and emerging technologies that have the potential to improve the economics of recovering oil from Eastern oil shales. The technologies evaluated in this program can be grouped into three areas: fine grinding kerogen/mineral matter separation, and waste treatment and disposal. Four subtasks were defined in the area of fine grinding. They were as follows: Ultrasonic Grinding, Pressure Cycle Comminution, Stirred Ball Mill Grinding, and Grinding Circuit Optimization. The planned Ultrasonic grinding research was terminated when the company that had contracted to do the research failed. Three technologies for effecting a separation of kerogen from its associated mineral matter were evaluated: column flotation, the air-sparged hydrocyclone, and the LICADO process. Column flotation proved to be the most effective means of making the kerogen/mineral matter separation. No problems are expected in the disposal of oil shale tailings. It is assumed that the tailings will be placed in a sealed pond and the water recycled to the plant as is the normal practice. It may be advantageous, however, to conduct further research on the recovery of metals as by-products and to assess the market for tailings as an ingredient in cement making.

  1. Methanogenic archaea in marcellus shale: a possible mechanism for enhanced gas recovery in unconventional shale resources.

    PubMed

    Tucker, Yael Tarlovsky; Kotcon, James; Mroz, Thomas

    2015-06-02

    Marcellus Shale occurs at depths of 1.5-2.5 km (5000 to 8000 feet) where most geologists generally assume that thermogenic processes are the only source of natural gas. However, methanogens in produced fluids and isotopic signatures of biogenic methane in this deep shale have recently been discovered. This study explores whether those methanogens are indigenous to the shale or are introduced during drilling and hydraulic fracturing. DNA was extracted from Marcellus Shale core samples, preinjected fluids, and produced fluids and was analyzed using Miseq sequencing of 16s rRNA genes. Methanogens present in shale cores were similar to methanogens in produced fluids. No methanogens were detected in injected fluids, suggesting that this is an unlikely source and that they may be native to the shale itself. Bench-top methane production tests of shale core and produced fluids suggest that these organisms are alive and active under simulated reservoir conditions. Growth conditions designed to simulate the hydrofracture processes indicated somewhat increased methane production; however, fluids alone produced relatively little methane. Together, these results suggest that some biogenic methane may be produced in these wells and that hydrofracture fluids currently used to stimulate gas recovery could stimulate methanogens and their rate of producing methane.

  2. Tensile strengths of problem shales and clays. Master's thesis

    SciTech Connect

    Rechner, F.J.

    1990-01-01

    The greatest single expense faced by oil companies involved in the exploration for crude oil is that of drilling wells. The most abundant rock drilled is shale. Some of these shales cause wellbore stability problems during the drilling process. These can range from slow rate of penetration and high torque up to stuck pipe and hole abandonment. The mechanical integrity of the shale must be known when the shalers are subjected to drilling fluids to develop an effective drilling plan.

  3. Common clay and shale

    USGS Publications Warehouse

    Virta, R.L.

    2000-01-01

    Part of the 1999 Industrial Minerals Review. The clay and shale market in 1999 is reviewed. In the U.S., sales or use of clay and shale increased from 26.4 million st in 1998 to 27.3 million st in 1999, with an estimated 1999 value of production of $143 million. These materials were used to produce structural clay products, lightweight aggregates, cement, and ceramics and refractories. Production statistics for clays and shales and for their uses in 1999 are presented.

  4. Process simulation and modeling for gas processing plant

    NASA Astrophysics Data System (ADS)

    Alhameli, Falah Obaid Kenish Mubarak

    Natural gas is one of the major energy sources and its demand is increasing rapidly due to its environmental and economic advantages over other fuels. Gas processing is an essential component of natural gas system. In this work, gas processing plant is introduced with the objective of meeting pipeline gas quality. It consists of separation, sweetening and dehydration units. The separation unit contains phase separators along with stabilizer (conventional distillation column). The sweetening unit is an amine process with MDEA (Methyl DiEthanol Amine) solvent. The dehydration unit is glycol absorption with TEG (TriEthyleneGlycol) solvent. ProMaxRTM 3.2 was used to simulate the plant. Box-Behnken design was applied to build a black-box model using design of experiments (DoE). MinitabRTM 15 was used to generate and analyse the design. The chosen variables for the model were 10. They represent the gas feed conditions and units' parameters. The total runs were 170. They were successfully implemented and analysed. Total energy of the plant and water content for the product gas models were obtained. Case study was conducted to investigate the impact of H2S composition increase in the feed gas. The models were used for the case study with the objective of total energy minimization and constraint of 4 lb/MMscf for water content in the product gas. Lingo 13 was used for the optimization. It was observed that the feed pressure had the highest influence among the other parameters. Finally, some recommendations were pointed out for the future works.

  5. Research investigations in oil shale, tar sand, coal research, advanced exploratory process technology, and advanced fuels research: Volume 1 -- Base program. Final report, October 1986--September 1993

    SciTech Connect

    Smith, V.E.

    1994-05-01

    Numerous studies have been conducted in five principal areas: oil shale, tar sand, underground coal gasification, advanced process technology, and advanced fuels research. In subsequent years, underground coal gasification was broadened to be coal research, under which several research activities were conducted that related to coal processing. The most significant change occurred in 1989 when the agreement was redefined as a Base Program and a Jointly Sponsored Research Program (JSRP). Investigations were conducted under the Base Program to determine the physical and chemical properties of materials suitable for conversion to liquid and gaseous fuels, to test and evaluate processes and innovative concepts for such conversions, to monitor and determine environmental impacts related to development of commercial-sized operations, and to evaluate methods for mitigation of potential environmental impacts. This report is divided into two volumes: Volume 1 consists of 28 summaries that describe the principal research efforts conducted under the Base Program in five topic areas. Volume 2 describes tasks performed within the JSRP. Research conducted under this agreement has resulted in technology transfer of a variety of energy-related research information. A listing of related publications and presentations is given at the end of each research topic summary. More specific and detailed information is provided in the topical reports referenced in the related publications listings.

  6. High efficiency shale oil recovery. First quarter report, January 1, 1992--March 31, 1992

    SciTech Connect

    Adams, D.C.

    1992-12-01

    The overall project objective is to demonstrate the high efficiency of the Adams Counter-Current shale oil recovery process. The efficiency will first be demonstrated at bench-scale, in the current phase, after which the demonstration will be extended to the operation of a small pilot plant. Thus the immediate project objective is to obtain data on oil shale retorting operations in a small batch rotary kiln that will be representative of operations in the proposed continuous process pilot plant. Although a batch oil shale sample will be sealed in the batch kiln from the start until the end of the run, the process conditions for the batch will be the same as the conditions that an element of oil shale would encounter in a large continuous process kiln. For example, similar conditions of heat-up rate (20 deg F/min during the pyrolysis), oxidation of the residue and cool-down will prevail for the element in both systems. This batch kiln is a unit constructed in a 1987 Phase I SBIR tar sand retorting project. The kiln worked fairly well in that project; however, the need for certain modifications was observed. These modifications are now underway to simplify the operation and make the data and analysis more exact. The agenda for the first three months of the project consisted of the first of nine tasks and was specified as the following four items: 1. Sample acquisition and equipment alteration: Obtain seven oil shale samples, of varying grade each 10 lb or more, and samples of quartz sand. Order equipment for kiln modification. 3. Set up and modify kiln for operation, including electric heaters on the ends of the kiln. 4. Connect data logger and make other repairs and changes in rotary batch kiln.

  7. Energy and valuable material by-product from firing Estonian oil shale

    SciTech Connect

    Hanni, R.

    1996-12-31

    Power plants of Eesti Energia burn Estonian oil shale, known geologically as kukersite, to produce electrical and heat energy. The burnt shale, or oil shale ash, secondary product is collected and stored in increasing quantities. It is a high calcium content material with a low particle size range. Limited investment and international support have minimized development; however, some possibilities for the use of the ash have been found with consequent improvement to the environment. This paper describes different ways in which this burnt ash may be used. In particular, research has shown that it is most effective as an addition to Portland cement production. An Estonian Standard for the use of burnt shale in the production of rapid hardening portland cement and shale Portland cement has been developed. Characteristic data for burnt shale and burnt shale cellular concrete, collation of shale Portland cement and ordinary Portland cements are given.

  8. Plan and justification for a Proof-of-Concept oil shale facility

    SciTech Connect

    Not Available

    1990-12-01

    The technology being evaluated is the Modified In-Situ (MIS) retorting process for raw shale oil production, combined with a Circulating Fluidized Bed Combustor (CFBC), for the recovery of energy from the mined shale. (VC)

  9. Plan and justification for a Proof-of-Concept oil shale facility. Final report

    SciTech Connect

    Not Available

    1990-12-01

    The technology being evaluated is the Modified In-Situ (MIS) retorting process for raw shale oil production, combined with a Circulating Fluidized Bed Combustor (CFBC), for the recovery of energy from the mined shale. (VC)

  10. Oil shale loss from a laboratory fluidized bed

    SciTech Connect

    Taylor, R.W.; Beavers, P.L. )

    1989-01-01

    The rate of loss of dust from a laboratory-scale fluidized bed of Greenriver oil shale has been measured. The rate of loss of dust form raw shale in the bed was approximately 1%/min for the first few minutes and then decreased. The loss rate for retorted or burnt shale was 5 to 10 times higher. The rates for retorted and burned shale were nearly the same. The time required for a 10 wt% loss of mass was approximately 3 min for processed shale and 1 hour for raw shale. Particles left in the bed during fluidization lost sharp corners, but kept the original elongation. Dust lost by the bed has a very wide range of sizes and demonstrated a strong bimodal distribution of sizes. The bimodal distribution of particles is interpreted as resulting from two mechanisms of dust generation; fracture and wear.

  11. Common clay and shale

    USGS Publications Warehouse

    Virta, R.L.

    2004-01-01

    Part of the 2003 industrial minerals review. The legislation, production, and consumption of common clay and shale are discussed. The average prices of the material and outlook for the market are provided.

  12. Process control graphics for petrochemical plants

    SciTech Connect

    Lieber, R.E.

    1982-12-01

    Describes many specialized features of a computer control system, schematic/graphics in particular, which are vital to effectively run today's complex refineries and chemical plants. Illustrates such control systems as a full-graphic control house panel of the 60s, a European refinery control house of the early 70s, and the Ingolstadt refinery control house. Presents diagram showing a shape library. Implementation of state-of-the-art control theory, distributed control, dual hi-way digital instrument systems, and many other person-machine interface developments have been prime factors in process control. Further developments in person-machine interfaces are in progress including voice input/output, touch screen, and other entry devices. Color usage, angle of projection, control house lighting, and pattern recognition are all being studied by vendors, users, and academics. These studies involve psychologists concerned with ''quality of life'' factors, employee relations personnel concerned with labor contracts or restrictions, as well as operations personnel concerned with just getting the plant to run better.

  13. Unsaturated flow modeling of a retorted oil shale pile.

    SciTech Connect

    Bond, F.W.; Freshley, M.D.; Gee, G.W.

    1982-10-01

    The objective of this study was to demonstrate the capabilities of the UNSAT1D model for assessing this potential threat to the environment by understanding water movement through spent shale piles. Infiltration, redistribution, and drainage of water in a spent shale pile were simulated with the UNSAT1D model for two test cases: (1) an existing 35 m pile; and (2) a transient pile growing at a rate of 10 m/year for 5 years. The first test case simulated three different layering scenarios with each one being run for 1 year. The second test case simulated two different initial moisture contents in the pile with each simulation being run for 30 years. Grand Junction and Rifle, Colorado climatological data were used to provide precipitation and potential evapotranspiration for a wet (1979) and dry (1976) year, respectively. Hydraulic properties obtained from the literature on Paraho process spent shale soil, and clay were used as model input parameters to describe water retention and hydraulic conductivity characteristics. Plant water uptake was not simulated in either test case. The two test cases only consider the evaporation component of evapotranspiration, thereby maximizing the amount of water infiltrating into the pile. The results of the two test cases demonstrated that the UNSAT1D model can adequately simulate flow in a spent shale pile for a variety of initial and boundary conditions, hydraulic properties, and pile configurations. The test cases provided a preliminary sensitivity analysis in which it was shown that the material hydraulic properties, material layering, and initial moisture content are the principal parameters influencing drainage from the base of a pile. 34 figures, 4 tables.

  14. Common clay and shale

    USGS Publications Warehouse

    Virta, R.L.

    2006-01-01

    At present, 150 companies produce common clay and shale in 41 US states. According to the United States Geological Survey (USGS), domestic production in 2005 reached 24.8 Mt valued at $176 million. In decreasing order by tonnage, the leading producer states include North Carolina, Texas, Alabama, Georgia and Ohio. For the whole year, residential and commercial building construction remained the major market for common clay and shale products such as brick, drain tile, lightweight aggregate, quarry tile and structural tile.

  15. Development of Nuclear Renewable Oil Shale Systems for Flexible Electricity and Reduced Fossil Fuel Emissions

    SciTech Connect

    Daniel Curtis; Charles Forsberg; Humberto Garcia

    2015-05-01

    We propose the development of Nuclear Renewable Oil Shale Systems (NROSS) in northern Europe, China, and the western United States to provide large supplies of flexible, dispatchable, very-low-carbon electricity and fossil fuel production with reduced CO2 emissions. NROSS are a class of large hybrid energy systems in which base-load nuclear reactors provide the primary energy used to produce shale oil from kerogen deposits and simultaneously provide flexible, dispatchable, very-low-carbon electricity to the grid. Kerogen is solid organic matter trapped in sedimentary shale, and large reserves of this resource, called oil shale, are found in northern Europe, China, and the western United States. NROSS couples electricity generation and transportation fuel production in a single operation, reduces lifecycle carbon emissions from the fuel produced, improves revenue for the nuclear plant, and enables a major shift toward a very-low-carbon electricity grid. NROSS will require a significant development effort in the United States, where kerogen resources have never been developed on a large scale. In Europe, however, nuclear plants have been used for process heat delivery (district heating), and kerogen use is familiar in certain countries. Europe, China, and the United States all have the opportunity to use large scale NROSS development to enable major growth in renewable generation and either substantially reduce or eliminate their dependence on foreign fossil fuel supplies, accelerating their transitions to cleaner, more efficient, and more reliable energy systems.

  16. Review of rare earth element concentrations in oil shales of the Eocene Green River Formation

    USGS Publications Warehouse

    Birdwell, Justin E.

    2012-01-01

    Concentrations of the lanthanide series or rare earth elements and yttrium were determined for lacustrine oil shale samples from the Eocene Green River Formation in the Piceance Basin of Colorado and the Uinta Basin of Utah. Unprocessed oil shale, post-pyrolysis (spent) shale, and leached shale samples were examined to determine if oil-shale processing to generate oil or the remediation of retorted shale affects rare earth element concentrations. Results for unprocessed Green River oil shale samples were compared to data published in the literature on reference materials, such as chondritic meteorites, the North American shale composite, marine oil shale samples from two sites in northern Tibet, and mined rare earth element ores from the United States and China. The Green River oil shales had lower rare earth element concentrations (66.3 to 141.3 micrograms per gram, μg g-1) than are typical of material in the upper crust (approximately 170 μg g-1) and were also lower in rare earth elements relative to the North American shale composite (approximately 165 μg g-1). Adjusting for dilution of rare earth elements by organic matter does not account for the total difference between the oil shales and other crustal rocks. Europium anomalies for Green River oil shales from the Piceance Basin were slightly lower than those reported for the North American shale composite and upper crust. When compared to ores currently mined for rare earth elements, the concentrations in Green River oil shales are several orders of magnitude lower. Retorting Green River oil shales led to a slight enrichment of rare earth elements due to removal of organic matter. When concentrations in spent and leached samples were normalized to an original rock basis, concentrations were comparable to those of the raw shale, indicating that rare earth elements are conserved in processed oil shales.

  17. Idaho Chemical Processing Plant failure rate database

    SciTech Connect

    Alber, T.G.; Hunt, C.R.; Fogarty, S.P.; Wilson, J.R.

    1995-08-01

    This report represents the first major upgrade to the Idaho Chemical Processing Plant (ICPP) Failure Rate Database. This upgrade incorporates additional site-specific and generic data while improving on the previous data reduction techniques. In addition, due to a change in mission at the ICPP, the status of certain equipment items has changed from operating to standby or off-line. A discussion of how this mission change influenced the relevance of failure data also has been included. This report contains two data sources: the ICPP Failure Rate Database and a generic failure rate database. A discussion is presented on the approaches and assumptions used to develop the data in the ICPP Failure Rate Database. The generic database is included along with a short discussion of its application. A brief discussion of future projects recommended to strengthen and lend credibility to the ICPP Failure Rate Database also is included.

  18. Enhancing Elementary Pre-service Teachers' Plant Processes Conceptions

    NASA Astrophysics Data System (ADS)

    Thompson, Stephen L.; Lotter, Christine; Fann, Xumei; Taylor, Laurie

    2016-06-01

    Researchers examined how an inquiry-based instructional treatment emphasizing interrelated plant processes influenced 210 elementary pre-service teachers' (PTs) conceptions of three plant processes, photosynthesis, cellular respiration, and transpiration, and the interrelated nature of these processes. The instructional treatment required PTs to predict the fate of a healthy plant in a sealed terrarium (Plant-in-a-Jar), justify their predictions, observe the plant over a 5-week period, and complete guided inquiry activities centered on one of the targeted plant processes each week. Data sources included PTs' pre- and post-predictions with accompanying justifications, course artifacts such as weekly terrarium observations and science journal entries, and group models of the interrelated plant processes occurring within the sealed terraria. A subset of 33 volunteer PTs also completed interviews the week the Plant-in-a-Jar scenario was introduced and approximately 4 months after the instructional intervention ended. Pre- and post-predictions from all PTs as well as interview responses from the subgroup of PTs, were coded into categories based on key plant processes emphasized in the Next Generation Science Standards. Study findings revealed that PTs developed more accurate conceptions of plant processes and their interrelated nature as a result of the instructional intervention. Primary patterns of change in PTs' plant process conceptions included development of more accurate conceptions of how water is used by plants, more accurate conceptions of photosynthesis features, and more accurate conceptions of photosynthesis and cellular respiration as transformative processes.

  19. Market analysis of shale oil co-products. Summary report

    SciTech Connect

    Not Available

    1980-12-01

    This study examines the potential for separating, upgrading and marketing sodium mineral co-products together with shale oil production. The co-products investigated are soda ash and alumina which are derived from the minerals nahcolite and dawsonite. Five cases were selected to reflect the variance in mineral and shale oil content in the identified resource. In the five cases examined, oil content of the shale was varied from 20 to 30 gallons per ton. Two sizes of facilities were analyzed for each resource case to determine economies of scale between a 15,000 barrel per day demonstration unit and a 50,000 barrel per day full sized plant. Three separate pieces of analysis were conducted in this study: analysis of manufacturing costs for shale oil and co-products; projection of potential world markets for alumina, soda ash, and nahcolite; and determination of economic viability and market potential for shale co-products.

  20. System for utilizing oil shale fines

    DOEpatents

    Harak, Arnold E.

    1982-01-01

    A system is provided for utilizing fines of carbonaceous materials such as particles or pieces of oil shale of about one-half inch or less diameter which are rejected for use in some conventional or prior surface retorting process, which obtains maximum utilization of the energy content of the fines and which produces a waste which is relatively inert and of a size to facilitate disposal. The system includes a cyclone retort (20) which pyrolyzes the fines in the presence of heated gaseous combustion products, the cyclone retort having a first outlet (30) through which vapors can exit that can be cooled to provide oil, and having a second outlet (32) through which spent shale fines are removed. A burner (36) connected to the spent shale outlet of the cyclone retort, burns the spent shale with air, to provide hot combustion products (24) that are carried back to the cyclone retort to supply gaseous combustion products utilized therein. The burner heats the spent shale to a temperature which forms a molten slag, and the molten slag is removed from the burner into a quencher (48) that suddenly cools the molten slag to form granules that are relatively inert and of a size that is convenient to handle for disposal in the ground or in industrial processes.

  1. Microporoelastic Modeling of Organic-Rich Shales

    NASA Astrophysics Data System (ADS)

    Khosh Sokhan Monfared, S.; Abedi, S.; Ulm, F. J.

    2014-12-01

    Organic-rich shale is an extremely complex, naturally occurring geo-composite. The heterogeneous nature of organic-rich shale and its anisotropic behavior pose grand challenges for characterization, modeling and engineering design The intricacy of organic-rich shale, in the context of its mechanical and poromechanical properties, originates in the presence of organic/inorganic constituents and their interfaces as well as the occurrence of porosity and elastic anisotropy, at multiple length scales. To capture the contributing mechanisms, of 1st order, responsible for organic-rich shale complex behavior, we introduce an original approach for micromechanical modeling of organic-rich shales which accounts for the effect of maturity of organics on the overall elasticity through morphology considerations. This morphology contribution is captured by means of an effective media theory that bridges the gap between immature and mature systems through the choice of system's microtexture; namely a matrix-inclusion morphology (Mori-Tanaka) for immature systems and a polycrystal/granular morphology for mature systems. Also, we show that interfaces play a role on the effective elasticity of mature, organic-rich shales. The models are calibrated by means of ultrasonic pulse velocity measurements of elastic properties and validated by means of nanoindentation results. Sensitivity analyses using Spearman's Partial Rank Correlation Coefficient shows the importance of porosity and Total Organic Carbon (TOC) as key input parameters for accurate model predictions. These modeling developments pave the way to reach a "unique" set of clay properties and highlight the importance of depositional environment, burial and diagenetic processes on overall mechanical and poromechanical behavior of organic-rich shale. These developments also emphasize the importance of understanding and modeling clay elasticity and organic maturity on the overall rock behavior which is of critical importance for a

  2. Potential small-scale development of western oil shale

    SciTech Connect

    Smith, V.; Renk, R.; Nordin, J.; Chatwin, T.; Harnsberger, M.; Fahy, L.J.; Cha, C.Y.; Smith, E.; Robertson, R.

    1989-10-01

    Several studies have been undertaken in an effort to determine ways to enhance development of western oil shale under current market conditions for energy resources. This study includes a review of the commercial potential of western oil shale products and byproducts, a review of retorting processes, an economic evaluation of a small-scale commercial operation, and a description of the environmental requirements of such an operation. Shale oil used as a blend in conventional asphalt appears to have the most potential for entering today's market. Based on present prices for conventional petroleum, other products from oil shale do not appear competitive at this time or will require considerable marketing to establish a position in the marketplace. Other uses for oil shale and spent shale, such as for sulfur sorbtion, power generation, cement, aggregate, and soil stabilization, are limited economically by transportation costs. The three-state area area consisting of Colorado, Utah, and Wyoming seems reasonable for the entry of shale oil-blended asphalt into the commercial market. From a review of retorting technologies and the product characteristics from various retorting processes it was determined that the direct heating Paraho and inclined fluidized-bed processes produce a high proportion of heavy material with a high nitrogen content. The two processes are complementary in that they are each best suited to processing different size ranges of materials. An economic evaluation of a 2000-b/d shale oil facility shows that the operation is potentially viable, if the price obtained for the shale oil residue is in the top range of prices projected for this product. Environmental requirements for building and operating an oil shale processing facility are concerned with permitting, control of emissions and discharges, and monitoring. 62 refs., 6 figs., 10 tabs.

  3. Population Processes and Plant Virus Evolution

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The number of studies detailing levels of sequence diversity within plant virus populations are growing at a rapid pace. At the same time, recent work has provided empirical estimates of parameters important in the life cycle of plant viruses, which in turn can help in understanding observed pattern...

  4. Shale: Measurement of thermal properties

    SciTech Connect

    Gilliam, T.M.; Morgan, I.L.

    1987-07-01

    Thermal conductivity and heat capacity measurements were made on samples of Devonian shale, Pierre shale, and oil shale from the Green River Formation. Thermal expansion measurements were made on selected samples of Devonian shale. Measurements were obtained over the temperature range of ambient to 473 K. Average values for thermal conductivity and heat capacity for the samples studied were within two standard deviations of all data over this temperature range. 15 refs., 12 figs., 4 tabs.

  5. Enhancing Elementary Pre-Service Teachers' Plant Processes Conceptions

    ERIC Educational Resources Information Center

    Thompson, Stephen L.; Lotter, Christine; Fann, Xumei; Taylor, Laurie

    2016-01-01

    Researchers examined how an inquiry-based instructional treatment emphasizing interrelated plant processes influenced 210 elementary pre-service teachers' (PTs) conceptions of three plant processes, photosynthesis, cellular respiration, and transpiration, and the interrelated nature of these processes. The instructional treatment required PTs to…

  6. LPG-recovery processes for baseload LNG plants examined

    SciTech Connect

    Chiu, C.H.

    1997-11-24

    With demand on the rise, LPG produced from a baseload LNG plant becomes more attractive as a revenue-earning product similar to LNG. Efficient use of gas expanders in baseload LNG plants for LPG production therefore becomes more important. Several process variations for LPG recovery in baseload LNG plants are reviewed here. Exergy analysis (based on the Second Law of Thermodynamics) is applied to three cases to compare energy efficiency resulting from integration with the main liquefaction process. The paper discusses extraction in a baseload plant, extraction requirements, process recovery parameters, extraction process variations, and exergy analysis.

  7. Use of coals for cocombustion with Estonian shale oil

    NASA Astrophysics Data System (ADS)

    Roslyakov, P. V.; Zaichenko, M. N.; Melnikov, D. A.; Vereshetin, V. A.; Attikas, Raivo

    2016-03-01

    The article reports the results of investigation into the possibility of using off-design coals as an additional fuel in connection with predicted reduction in the heat of combustion of shale oil and more stringent environmental regulations on harmful emissions. For this purpose, a mathematical model of a TP-101 boiler at the Estonian Power Plant has been constructed and verified; the model describes the boiler's current state. On the basis of the process flow chart, the experience of operating the boiler, the relevant regulations, and the environmental requirement criteria for evaluation of the equipment operation in terms of reliability, efficiency, and environmental safety have been developed. These criteria underlie the analysis of the calculated operating parameters of the boiler and the boiler plant as a whole upon combustion with various shale-oil-to-coal ratios. The computational study shows that, at the minimal load, the normal operation of the boiler is ensured almost within the entire range of the parts by the heat rate of coal. With the decreasing load on the boiler, the normal equipment operation region narrows. The basic limitation factors are the temperature of the steam in the superheater, the temperature of the combustion products at the furnace outlet and the flow rate of the combustion air and flue gases. As a result, the parts by heat rate of lignite and bituminous coal have been determined that ensure reliable and efficient operation of the equipment. The efficiency of the boiler with the recommended lignite-to-coal ratio is higher than that achieved when burning the design shale oil. Based on the evaluation of the environmental performance of the boiler, the necessary additional measures to reduce emissions of harmful substances into the atmosphere have been determined.

  8. Fracture-permeability behavior of shale

    SciTech Connect

    Carey, J. William; Lei, Zhou; Rougier, Esteban; Mori, Hiroko; Viswanathan, Hari

    2015-05-08

    The fracture-permeability behavior of Utica shale, an important play for shale gas and oil, was investigated using a triaxial coreflood device and X-ray tomography in combination with finite-discrete element modeling (FDEM). Fractures generated in both compression and in a direct-shear configuration allowed permeability to be measured across the faces of cylindrical core. Shale with bedding planes perpendicular to direct-shear loading developed complex fracture networks and peak permeability of 30 mD that fell to 5 mD under hydrostatic conditions. Shale with bedding planes parallel to shear loading developed simple fractures with peak permeability as high as 900 mD. In addition to the large anisotropy in fracture permeability, the amount of deformation required to initiate fractures was greater for perpendicular layering (about 1% versus 0.4%), and in both cases activation of existing fractures are more likely sources of permeability in shale gas plays or damaged caprock in CO₂ sequestration because of the significant deformation required to form new fracture networks. FDEM numerical simulations were able to replicate the main features of the fracturing processes while showing the importance of fluid penetration into fractures as well as layering in determining fracture patterns.

  9. Fracture-permeability behavior of shale

    DOE PAGES

    Carey, J. William; Lei, Zhou; Rougier, Esteban; ...

    2015-05-08

    The fracture-permeability behavior of Utica shale, an important play for shale gas and oil, was investigated using a triaxial coreflood device and X-ray tomography in combination with finite-discrete element modeling (FDEM). Fractures generated in both compression and in a direct-shear configuration allowed permeability to be measured across the faces of cylindrical core. Shale with bedding planes perpendicular to direct-shear loading developed complex fracture networks and peak permeability of 30 mD that fell to 5 mD under hydrostatic conditions. Shale with bedding planes parallel to shear loading developed simple fractures with peak permeability as high as 900 mD. In addition tomore » the large anisotropy in fracture permeability, the amount of deformation required to initiate fractures was greater for perpendicular layering (about 1% versus 0.4%), and in both cases activation of existing fractures are more likely sources of permeability in shale gas plays or damaged caprock in CO₂ sequestration because of the significant deformation required to form new fracture networks. FDEM numerical simulations were able to replicate the main features of the fracturing processes while showing the importance of fluid penetration into fractures as well as layering in determining fracture patterns.« less

  10. Open systems for plant process computers

    SciTech Connect

    Norris, D.L.; Pate, R.L.

    1995-03-01

    Arizona Public Service (APS) Company recently upgraded the Emergency Response Facility (ERF) computer at the Palo Verde Nuclear Generating Stations (PVNGS). The project was initiated to provide the ability to record and display plant data for later analysis of plant events and operational problems (one of the great oversights at nearly every nuclear plant constructed) and to resolve a commitment to correct performance problems on the display side of the system. A major forming objective for the project was to lay a foundation with ample capability and flexibility to provide solutions for future real-time data needs at the plants. The Halliburton NUS Corporation`s Idaho Center (NUS) was selected to develop the system. Because of the constant changes occurring in the computer hardware and software industry, NUS designed and implemented a distributed Open Systems solution based on the UNIX Operating System. This Open System is highly portable across a variety of computer architectures and operating systems and is based on NUS` R*TIME{reg_sign}, a mature software system successfully operating in 14 nuclear plants and over 80 fossil plants. Along with R*TIME, NUS developed two Man-Machine Interface (MMI) versions: R*TIME/WIN, a Microsoft Windows application designed for INTEL-based personal computers operating either Microsoft`s Windows 3.1 or Windows NT operating systems; and R*TIME/X, based on the standard X Window System utilizing the Motif Window Manager.

  11. Investigation of the Geokinetics horizontal in-situ oil-shale-retorting process. Quarterly report, April, May, June 1982

    SciTech Connect

    Bartlett, S.

    1982-10-01

    The Retort No. 25 burn was terminated on June 15, 1982. Total oil production for the second quarter was 6506 barrels during a 76 day production period. Final oil production for Retort No. 25 was 20,956 barrels. Final oil recovery was calculated to be 59% of the total in-place oil. Fugitive emissions, stack and process gas data indicated that all Retort No. 25 pollutants, except NO/sub x/, were below the allowable PSD limits. The Retort No. 25 process water characterization study was completed in April to determine the changes in retort produced water as the retort burn progressed. Results of the study are pending the completion of laboratory analysis. Retort No. 26 was prepared for ignition during the second quarter. Process manifolding and instrumentation were being completed so that ignition might occur shortly after the termination of the Retort No. 25 burn. Post blast core drilling and analysis was completed on Retort No. 27 during early April. The core samples indicated improved fracturing over previous retorts, especially near the bottom. Increasing the size of Retort No. 27 from one acre to two acres showed an increase in blast efficiency based on the criteria of fragmentation, quantity of explosives used per volume of void induced and percent void when compared with Retort No. 24. In June initial site preparation began on Retort No. 28 for blast hole drilling which will start in July. 17 figures, 16 tables.

  12. Carbon Disulfide (CS2) Mechanisms in Formation of Atmospheric Carbon Dioxide (CO2) Formation from Unconventional Shale Gas Extraction and Processing Operations and Global Climate Change.

    PubMed

    Rich, Alisa L; Patel, Jay T

    2015-01-01

    Carbon disulfide (CS2) has been historically associated with the production of rayon, cellophane, and carbon tetrachloride. This study identifies multiple mechanisms by which CS2 contributes to the formation of CO2 in the atmosphere. CS2 and other associated sulfide compounds were found by this study to be present in emissions from unconventional shale gas extraction and processing (E&P) operations. The breakdown products of CS2; carbonyl sulfide (COS), carbon monoxide (CO), and sulfur dioxide (SO2) are indirect greenhouse gases (GHGs) that contribute to CO2 levels in the atmosphere. The heat-trapping nature of CO2 has been found to increase the surface temperature, resulting in regional and global climate change. The purpose of this study is to identify five mechanisms by which CS2 and the breakdown products of CS2 contribute to atmospheric concentrations of CO2. The five mechanisms of CO2 formation are as follows: Chemical Interaction of CS2 and hydrogen sulfide (H2S) present in natural gas at high temperatures, resulting in CO2 formation;Combustion of CS2 in the presence of oxygen producing SO2 and CO2;Photolysis of CS2 leading to the formation of COS, CO, and SO2, which are indirect contributors to CO2 formation;One-step hydrolysis of CS2, producing reactive intermediates and ultimately forming H2S and CO2;Two-step hydrolysis of CS2 forming the reactive COS intermediate that reacts with an additional water molecule, ultimately forming H2S and CO2. CS2 and COS additionally are implicated in the formation of SO2 in the stratosphere and/or troposphere. SO2 is an indirect contributor to CO2 formation and is implicated in global climate change.

  13. Solar retorting of oil shale

    DOEpatents

    Gregg, David W.

    1983-01-01

    An apparatus and method for retorting oil shale using solar radiation. Oil shale is introduced into a first retorting chamber having a solar focus zone. There the oil shale is exposed to solar radiation and rapidly brought to a predetermined retorting temperature. Once the shale has reached this temperature, it is removed from the solar focus zone and transferred to a second retorting chamber where it is heated. In a second chamber, the oil shale is maintained at the retorting temperature, without direct exposure to solar radiation, until the retorting is complete.

  14. Energy conservation study on Simplot potato processing plant, Heyburn, Idaho

    SciTech Connect

    Not Available

    1985-03-01

    This report presents the findings of an energy study done at the Simplot potato processing plant in Heyburn, Idaho. The study includes all electrical energy using systems at the plant but does not address specific modifications to process equipment. The plant receives raw potatoes and produces a mixture of pre-fried and frozen potato products including french fries and pre-formed patties, a dehydrated frozen product, starch, and processes and ships raw potatoes. The plant also contains a box line that makes cardboard cartons for all Simplot plants. The plant contains all necessary equipment and processes to produce a finished product and has long-term cold storage. 13 figs., 16 tabs.

  15. Experimental investigation of the effect of vegetation on soil, sediment erosion, and salt transport processes in the Upper Colorado River Basin Mancos Shale formation, Price, Utah, USA.

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Because of concerns about salinity in the Colorado River, this study focused on saline and sodic soils associated with the Mancos Shale formation with the objective of investigating mechanisms driving sediment yield and salinity loads and the role of vegetation in altering soil chemistry in the Pric...

  16. Common clay and shale

    USGS Publications Warehouse

    Virta, R.L.

    2003-01-01

    Part of the 2002 industrial minerals review. The production, consumption, and price of shale and common clay in the U.S. during 2002 are discussed. The impact of EPA regulations on brick and structural clay product manufacturers is also outlined.

  17. Common clay and shale

    USGS Publications Warehouse

    Virta, R.L.

    2001-01-01

    Part of the 2000 annual review of the industrial minerals sector. A general overview of the common clay and shale industry is provided. In 2000, U.S. production increased by 5 percent, while sales or use declined to 23.6 Mt. Despite the slowdown in the economy, no major changes are expected for the market.

  18. Oil shale retorting with steam and produced gas

    SciTech Connect

    Merrill, L.S. Jr.; Wheaton, L.D.

    1991-08-20

    This patent describes a process for retorting oil shale in a vertical retort. It comprises introducing particles of oil shale into the retort, the particles of oil shale having a minimum size such that the particles are retained on a screen having openings 1/4 inch in size; contacting the particles of oil shale with hot gas to heat the particles of oil shale to a state of pyrolysis, thereby producing retort off-gas; removing the off-gas from the retort; cooling the off-gas; removing oil from the cooled off-gas; separating recycle gas from the off-gas, the recycle gas comprising steam and produced gas, the steam being present in amount, by volume, of at least 50% of the recycle gas so as to increase the yield of sand oil; and heating the recycle gas to form the hot gas.

  19. 3. VIEW OF THE PROCESSING PLANT TO THE WEST. THE ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    3. VIEW OF THE PROCESSING PLANT TO THE WEST. THE PROCESSING PLANT IS LEFT CENTER. THE BLACKSMITH/MINE CAR REPAIR SHOP AND PARTS/SUPPLIES BUILDINGS ARE RIGHT CENTER. - Smith Mine, Bear Creek 1.5 miles West of Town of Bear Creek, Red Lodge, Carbon County, MT

  20. Updated methodology for nuclear magnetic resonance characterization of shales

    USGS Publications Warehouse

    Washburn, Kathryn E.; Birdwell, Justin E.

    2013-01-01

    Unconventional petroleum resources, particularly in shales, are expected to play an increasingly important role in the world’s energy portfolio in the coming years. Nuclear magnetic resonance (NMR), particularly at low-field, provides important information in the evaluation of shale resources. Most of the low-field NMR analyses performed on shale samples rely heavily on standard T1 and T2 measurements. We present a new approach using solid echoes in the measurement of T1 and T1–T2 correlations that addresses some of the challenges encountered when making NMR measurements on shale samples compared to conventional reservoir rocks. Combining these techniques with standard T1 and T2 measurements provides a more complete assessment of the hydrogen-bearing constituents (e.g., bitumen, kerogen, clay-bound water) in shale samples. These methods are applied to immature and pyrolyzed oil shale samples to examine the solid and highly viscous organic phases present during the petroleum generation process. The solid echo measurements produce additional signal in the oil shale samples compared to the standard methodologies, indicating the presence of components undergoing homonuclear dipolar coupling. The results presented here include the first low-field NMR measurements performed on kerogen as well as detailed NMR analysis of highly viscous thermally generated bitumen present in pyrolyzed oil shale.

  1. Updated methodology for nuclear magnetic resonance characterization of shales

    NASA Astrophysics Data System (ADS)

    Washburn, Kathryn E.; Birdwell, Justin E.

    2013-08-01

    Unconventional petroleum resources, particularly in shales, are expected to play an increasingly important role in the world's energy portfolio in the coming years. Nuclear magnetic resonance (NMR), particularly at low-field, provides important information in the evaluation of shale resources. Most of the low-field NMR analyses performed on shale samples rely heavily on standard T1 and T2 measurements. We present a new approach using solid echoes in the measurement of T1 and T1-T2 correlations that addresses some of the challenges encountered when making NMR measurements on shale samples compared to conventional reservoir rocks. Combining these techniques with standard T1 and T2 measurements provides a more complete assessment of the hydrogen-bearing constituents (e.g., bitumen, kerogen, clay-bound water) in shale samples. These methods are applied to immature and pyrolyzed oil shale samples to examine the solid and highly viscous organic phases present during the petroleum generation process. The solid echo measurements produce additional signal in the oil shale samples compared to the standard methodologies, indicating the presence of components undergoing homonuclear dipolar coupling. The results presented here include the first low-field NMR measurements performed on kerogen as well as detailed NMR analysis of highly viscous thermally generated bitumen present in pyrolyzed oil shale.

  2. Chemically assisted in situ recovery of oil shale

    SciTech Connect

    Ramierz, W.F.

    1993-12-31

    The purpose of the research project was to investigate the feasibility of the chemically assisted in situ retort method for recovering shale oil from Colorado oil shale. The chemically assisted in situ procedure uses hydrogen chloride (HCl), steam (H{sub 2}O), and carbon dioxide (CO{sub 2}) at moderate pressure to recovery shale oil from Colorado oil shale at temperatures substantially lower than those required for the thermal decomposition of kerogen. The process had been previously examined under static, reaction-equilibrium conditions, and had been shown to achieve significant shale oil recoveries from powdered oil shale. The purpose of this research project was to determine if these results were applicable to a dynamic experiment, and achieve penetration into and recovery of shale oil from solid oil shale. Much was learned about how to perform these experiments. Corrosion, chemical stability, and temperature stability problems were discovered and overcome. Engineering and design problems were discovered and overcome. High recovery (90% of estimated Fischer Assay) was observed in one experiment. Significant recovery (30% of estimated Fischer Assay) was also observed in another experiment. Minor amounts of freed organics were observed in two more experiments. Penetration and breakthrough of solid cores was observed in six experiments.

  3. Shale Gas in Europe: pragmatic perspectives and actions

    NASA Astrophysics Data System (ADS)

    Hübner, A.; Horsfield, B.; Kapp, I.

    2012-10-01

    Natural gas will continue to play a key role in the EU's energy mix in the coming years, with unconventional gas' role increasing in importance as new resources are exploited worldwide. As far as Europe's own shale gas resources are concerned, it is especially the public's perception and level of acceptance that will make or break shale gas in the near-term. Both the pros and cons need to be discussed based on factual argument rather than speculation. Research organizations such as ours (GFZ German Research Centre for Geosciences) have an active and defining role to play in remedying this deficiency. As far as science and technology developments are concerned, the project "Gas Shales in Europe" (GASH) and the shale gas activities of "GeoEnergie" (GeoEn) are the first major initiatives in Europe focused on shale gas. Basic and applied geoscientific research is conducted to understand the fundamental nature and interdependencies of the processes leading to shale gas formation. When it comes to knowledge transfer, the perceived and real risks associated with shale gas exploitation need immediate evaluation in Europe using scientific analysis. To proactively target these issues, the GFZ and partners are launching the European sustainable Operating Practices (E-SOP) Initiative for Unconventional Resources. The web-based Shale Gas Information Platform (SHIP) brings these issues into the public domain.

  4. Updated methodology for nuclear magnetic resonance characterization of shales.

    PubMed

    Washburn, Kathryn E; Birdwell, Justin E

    2013-08-01

    Unconventional petroleum resources, particularly in shales, are expected to play an increasingly important role in the world's energy portfolio in the coming years. Nuclear magnetic resonance (NMR), particularly at low-field, provides important information in the evaluation of shale resources. Most of the low-field NMR analyses performed on shale samples rely heavily on standard T1 and T2 measurements. We present a new approach using solid echoes in the measurement of T1 and T1-T2 correlations that addresses some of the challenges encountered when making NMR measurements on shale samples compared to conventional reservoir rocks. Combining these techniques with standard T1 and T2 measurements provides a more complete assessment of the hydrogen-bearing constituents (e.g., bitumen, kerogen, clay-bound water) in shale samples. These methods are applied to immature and pyrolyzed oil shale samples to examine the solid and highly viscous organic phases present during the petroleum generation process. The solid echo measurements produce additional signal in the oil shale samples compared to the standard methodologies, indicating the presence of components undergoing homonuclear dipolar coupling. The results presented here include the first low-field NMR measurements performed on kerogen as well as detailed NMR analysis of highly viscous thermally generated bitumen present in pyrolyzed oil shale.

  5. Water mist injection in oil shale retorting

    DOEpatents

    Galloway, T.R.; Lyczkowski, R.W.; Burnham, A.K.

    1980-07-30

    Water mist is utilized to control the maximum temperature in an oil shale retort during processing. A mist of water droplets is generated and entrained in the combustion supporting gas flowing into the retort in order to distribute the liquid water droplets throughout the retort. The water droplets are vaporized in the retort in order to provide an efficient coolant for temperature control.

  6. Organic constituents in process water from the in-situ retorting of oil from oil-shale kerogen

    SciTech Connect

    Raphaelian, L A; Harrison, W

    1981-02-01

    Capillary-column gas-chromatography/mass-spectrometry (GC/MS) was performed on the acid, base, and neutral fractions of liquid- and particulate-phase methylene chloride extracts of a composite sample of raw process water collected from separator Tank 6 by the Laramie Energy Technology Center. Of the 160 extractable and chromatographable organic compounds tentatively identified, the following compound classes were found (listed in decreasing order of abundance): quinolines and lower fatty acids, aminoindoles, neutral oxygenated heterocyclics, pyridines, pyrroles, pyrazoles, phenols, and alkanes. Noticeably absent or in low concentration were alkyl benzenes and alkenes. Assuming 100% extraction efficiency, these organics constitute approximately 0.035% of the retort water; approximately 50% of this amount is represented by the quinolines, fatty acids, aminoindoles, and oxygenated heterocyclics. The following differences were noted in the composition of the particulate and liquid extracts of the neutral and base fractions, respectively: (1) alkanes are a major portion of the particulates, whereas oxygenated hereocyclics are most prominent in the liquid; and (2) aminoindoles are only a minor portion of the particulates, but are prominent in the liquid phase. The concentration of a compound occurring in both the liquid and particulate extracts is approximately 40 to 100 times higher in the liquid than in the particulate extract.

  7. Shale seismic anisotropy vs. compaction trend

    NASA Astrophysics Data System (ADS)

    Pervukhina, M.

    2015-12-01

    Shales comprise more than 60% of sedimentary rocks and form natural seals above hydrocarbon reservoirs. Their sealing capacity is also used for storage of nuclear wastes. Shales are notorious for their strong elastic anisotropy, so-called, vertical transverse isotropy or VTI. This VTI anisotropy is of practical importance as it is required for correct surface seismic data interpretation, seismic to well tie and azimuth versus offset analysis. A number of competing factors are responsible for VTI anisotropy in shales, namely, (1) micro-scale elastic anisotropy of clay particles, (2) anisotropic orientation distribution function of clay particles, (3) anisotropic orientation of pores and organic matter. On the contrary, silt (non-clay mineralogy grains with size between 0.06 -0.002 mm) is known to reduce elastic anisotropy of shales. Methods developed for calculations of anisotropy in polycrystalline materials can be used to estimate elastic anisotropy of shales from orientation distribution function (ODF) of clay platelets if elastic properties of individual clay platelets are known. Unfortunately, elastic properties of individual clay platelets cannot be directly measured. Recently, elastic properties of properties of individual clay platelets with different mineralogy were calculated from first principles based on density functional theory. In this work we use these elastic properties of individual platelets of muscovite, illite-smectite and kaolinite to obtain correlations between elastic anisotropy and Legendre coefficients W200 and W400 of different ODFs. Comparison of the Legendre coefficients calculated for more than 800 shales from depths 0 - 6 km (www.rockphysicists.org/data) with those of compaction ODFs shows that compaction has no first order effect on elastic anisotropy. Thus, elastic anisotropy is to large extent determined by factors other than compaction processes, such as depositional environment, chemical composition of fluid, silt fraction, etc.

  8. Coal gasification power plant and process

    DOEpatents

    Woodmansee, Donald E.

    1979-01-01

    In an integrated coal gasification power plant, a humidifier is provided for transferring as vapor, from the aqueous blowdown liquid into relatively dry air, both (I) at least a portion of the water contained in the aqueous liquid and (II) at least a portion of the volatile hydrocarbons therein. The resulting humidified air is advantageously employed as at least a portion of the hot air and water vapor included in the blast gas supplied via a boost compressor to the gasifier.

  9. Phase I: the pipeline gas demonstration plant. Demonstration plant process design. Volume 1. Executive summary

    SciTech Connect

    Not Available

    1981-01-01

    Conoco's process for manufacturing high-Btu gas from high-sulfur, bituminous, caking coals combines the British Gas/Lurgi slagging gasification technology and Conoco's own shift/methanation expertise. The 1245-acre site in Ohio selected for the demonstration plant is large enough to allow scale-up to a commercial venture. The plant will consist of 12 processing units and 8 offsite units. Conoco will use the plant data to evaluate the economic, environmental, and safety aspects of the process. The preliminary budget places the erected plant cost at $187 million (not including a contingency).

  10. The origin of Cretaceous black shales: a change in the surface ocean ecosystem and its triggers.

    PubMed

    Ohkouchi, Naohiko; Kuroda, Junichiro; Taira, Asahiko

    2015-01-01

    Black shale is dark-colored, organic-rich sediment, and there have been many episodes of black shale deposition over the history of the Earth. Black shales are source rocks for petroleum and natural gas, and thus are both geologically and economically important. Here, we review our recent progress in understanding of the surface ocean ecosystem during periods of carbonaceous sediment deposition, and the factors triggering black shale deposition. The stable nitrogen isotopic composition of geoporphyrins (geological derivatives of chlorophylls) strongly suggests that N2-fixation was a major process for nourishing the photoautotrophs. A symbiotic association between diatoms and cyanobacteria may have been a major primary producer during episodes of black shale deposition. The timing of black shale formation in the Cretaceous is strongly correlated with the emplacement of large igneous provinces such as the Ontong Java Plateau, suggesting that black shale deposition was ultimately induced by massive volcanic events. However, the process that connects these events remains to be solved.

  11. Preparation of grout for stabilization of abandoned in-situ oil shale retorts

    DOEpatents

    Mallon, Richard G.

    1982-01-01

    A process for the preparation of grout from burned shale by treating the burned shale in steam at approximately 700.degree. C. to maximize the production of the materials alite and larnite. Oil shale removed to the surface during the preparation of an in-situ retort is first retorted on the surface and then the carbon is burned off, leaving burned shale. The burned shale is treated in steam at approximately 700.degree. C. for about 70 minutes. The treated shale is then ground and mixed with water to produce a grout which is pumped into an abandoned, processed in-situ retort, flowing into the void spaces and then bonding up to form a rigid, solidified mass which prevents surface subsidence and leaching of the spent shale by ground water.

  12. Preparation of grout for stabilization of abandoned in-situ oil shale retorts. [Patent application

    DOEpatents

    Mallon, R.G.

    1979-12-07

    A process is described for the preparation of grout from burned shale by treating the burned shale in steam at approximately 700/sup 0/C to maximize the production of the materials alite and larnite. Oil shale removed to the surface during the preparation of an in-situ retort is first retorted on the surface and then the carbon is burned off, leaving burned shale. The burned shale is treated in steam at approximately 700/sup 0/C for about 70 minutes. The treated shale is then ground and mixed with water to produce a grout which is pumped into an abandoned, processed in-situ retort, flowing into the void spaces and then bonding up to form a rigid, solidified mass which prevents surface subsidence and leaching of the spent shale by ground water.

  13. Oil shale derived pollutant control materials and methods and apparatuses for producing and utilizing the same

    DOEpatents

    Boardman, Richard D.; Carrington, Robert A.

    2010-05-04

    Pollution control substances may be formed from the combustion of oil shale, which may produce a kerogen-based pyrolysis gas and shale sorbent, each of which may be used to reduce, absorb, or adsorb pollutants in pollution producing combustion processes, pyrolysis processes, or other reaction processes. Pyrolysis gases produced during the combustion or gasification of oil shale may also be used as a combustion gas or may be processed or otherwise refined to produce synthetic gases and fuels.

  14. In situ retorting of oil shale with pulsed water purge

    SciTech Connect

    Forgac, J.M.; Hoekstra, G.R.

    1987-01-20

    A process is described for retorting oil shale, comprising the steps of: heating a portion of a rubblized mass of oil shale in a retorting zone of an underground retort to a retorting temperature to liberate shale oil and retort water from the oil shale leaving retorted shale containing residual carbon; combusting the residual carbon in the oil shale in a combustion zone behind the retorting zone in the underground retort with a flame front fed by an oxygen-containing, combustion-sustaining, feed gas to provide a substantial portion of the heating, the flame front advancing generally in the direction of flow of the feed gas; injecting a purge liquid comprising retort water in the absence of the oxygen-containing, combustion-sustaining, feed gas into the underground retort to quench the flame front while substantially stopping and blocking the flow of the oxygen-containing, combustion-sustaining, feed gas into the retort while simultaneously continuing to liberate shale oil and retort water in the underground retort; the retort water liberated from the retort and injected into the underground retort as the purge liquid, comprising raw, retorted and spent oil shale particulates ranging in size from less than 1 micron to 1000 microns, water, shale oil, phenols, organic carbon, ammonia, sodium, iron, sulfur, magnesium, calcium, nitrogen, nickel, copper, phosphorus, zinc, and arsenic; reigniting the flame front with the oxygen-containing, combustion-sustaining, feed gas by feeding the oxygen-containing feed gas into the retort in the absence of the retort water purge liquid while simultaneously substantially stopping and preventing the flow of the retort water purge liquid into the retort; and withdrawing the liberated shale oil and retort water from the underground retort.

  15. CO2 Sequestration within Spent Oil Shale

    NASA Astrophysics Data System (ADS)

    Foster, H.; Worrall, F.; Gluyas, J.; Morgan, C.; Fraser, J.

    2013-12-01

    Worldwide deposits of oil shales are thought to represent ~3 trillion barrels of oil. Jordanian oil shale deposits are extensive and of high quality, and could represent 100 billion barrels of oil, leading to much interest and activity in the development of these deposits. The exploitation of oil shales has raised a number of environmental concerns including: land use, waste disposal, water consumption, and greenhouse gas emissions. The dry retorting of oil shales can overcome a number of the environmental impacts, but this leaves concerns over management of spent oil shale and CO2 production. In this study we propose that the spent oil shale can be used to sequester CO2 from the retorting process. Here we show that by conducting experiments using high pressure reaction facilities, we can achieve successful carbonation of spent oil shale. High pressure reactor facilities in the Department of Earth Sciences, Durham University, are capable of reacting solids with a range of fluids up to 15 MPa and 350°C, being specially designed for research with supercritical fluids. Jordanian spent oil shale was reacted with high pressure CO2 in order to assess whether there is potential for sequestration. Fresh and reacted materials were then examined by: Inductively Coupled Plasma Mass Spectrometry (ICP-MS), Thermogravimetric Analysis (TGA), X-Ray Fluorescence (XRF) and X-Ray Diffraction (XRD) methods. Jordanian spent oil shale was found to sequester up to 5.8 wt % CO2, on reacting under supercritical conditions, which is 90% of the theoretical carbonation. Jordanian spent oil shale is composed of a large proportion of CaCO3, which on retorting decomposes, forming CaSO4 and Ca-oxides which are the focus of carbonation reactions. A factorially designed experiment was used to test different factors on the extent of carbonation, including: pressure; temperature; duration; and the water content. Analysis of Variance (ANOVA) techniques were then used to determine the significance of

  16. Reduction in waste load from a meat processing plant: Beef

    SciTech Connect

    1986-10-31

    ;Contents: Introduction (Randolph Packing Company, Meat Plant Wastewaters, Slaughterhouses, Packing Houses, Sources of Wastewater, Secondary Manufacturing Processes, An Example of Water Conservation and Waste Control, Water Conservation Program); Plant Review and Survey (Survey for Product Losses and Wastes, Water Use and Waste Load, Wastewater Discharge Limitations and Costs); Waste Centers, Changes, Costs and Results (In-Plant Control Measures, Water Conservation, Recovery Products, By-Products and Reducing Waste Load, Blood Conservation, Paunch Handling and Processing, Summary of Process Changes, Pretreatment, Advantages and Disadvantages of Pretreatment, Pretreatment Systems).

  17. Western Greece unconventional hydrocarbon potential from oil shale and shale gas reservoirs

    NASA Astrophysics Data System (ADS)

    Karakitsios, Vasileios; Agiadi, Konstantina

    2013-04-01

    It is clear that we are gradually running out of new sedimentary basins to explore for conventional oil and gas and that the reserves of conventional oil, which can be produced cheaply, are limited. This is the reason why several major oil companies invest in what are often called unconventional hydrocarbons: mainly oil shales, heavy oil, tar sand and shale gas. In western Greece exist important oil and gas shale reservoirs which must be added to its hydrocarbon potential1,2. Regarding oil shales, Western Greece presents significant underground immature, or close to the early maturation stage, source rocks with black shale composition. These source rock oils may be produced by applying an in-situ conversion process (ICP). A modern technology, yet unproven at a commercial scale, is the thermally conductive in-situ conversion technology, developed by Shell3. Since most of western Greece source rocks are black shales with high organic content, those, which are immature or close to the maturity limit have sufficient thickness and are located below 1500 meters depth, may be converted artificially by in situ pyrolysis. In western Greece, there are several extensive areas with these characteristics, which may be subject of exploitation in the future2. Shale gas reservoirs in Western Greece are quite possibly present in all areas where shales occur below the ground-water level, with significant extent and organic matter content greater than 1%, and during their geological history, were found under conditions corresponding to the gas window (generally at depths over 5,000 to 6,000m). Western Greece contains argillaceous source rocks, found within the gas window, from which shale gas may be produced and consequently these rocks represent exploitable shale gas reservoirs. Considering the inevitable increase in crude oil prices, it is expected that at some point soon Western Greece shales will most probably be targeted. Exploration for conventional petroleum reservoirs

  18. Assessment of potential shale-oil and shale-gas resources in Silurian shales of Jordan, 2014

    USGS Publications Warehouse

    Schenk, Christopher J.; Pitman, Janet K.; Charpentier, Ronald R.; Klett, Timothy R.; Tennyson, Marilyn E.; Mercier, Tracey J.; Nelson, Philip H.; Brownfield, Michael E.; Pawlewicz, Mark J.; Wandrey, Craig J.

    2014-01-01

    Using a geology-based assessment methodology, the U.S. Geological Survey estimated means of 11 million barrels of potential shale-oil and 320 billion cubic feet of shale-gas resources in Silurian shales of Jordan.

  19. Energy conservation in small meat, poultry and dairy processing plants

    SciTech Connect

    Hausen, C.L.; Fields, E.L.; Huff, R.C.

    1983-06-01

    Energy audits were performed in twenty-three small (generally under 50 employees) meat, poultry and dairy processing plants. Energy conservation opportunities with the greatest potential for net gain in a plant are listed and discussed. Relationships between product throughput and energy consumption are reported.

  20. Interior. Apparatus used in crushing and processing plant fibers to ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Interior. Apparatus used in crushing and processing plant fibers to extract latex from the sap during experiments to find native North American plant which would yield sufficiently high percentage of latex to produce natural rubber. - Thomas A. Edison Laboratories, Building No. 2, Main Street & Lakeside Avenue, West Orange, Essex County, NJ

  1. Weathering of the New Albany Shale, Kentucky: II. Redistribution of minor and trace elements

    USGS Publications Warehouse

    Tuttle, M.L.W.; Breit, G.N.; Goldhaber, M.B.

    2009-01-01

    During weathering, elements enriched in black shale are dispersed in the environment by aqueous and mechanical transport. Here a unique evaluation of the differential release, transport, and fate of Fe and 15 trace elements during progressive weathering of the Devonian New Albany Shale in Kentucky is presented. Results of chemical analyses along a weathering profile (unweathered through progressively weathered shale to soil) describe the chemically distinct pathways of the trace elements and the rate that elements are transferred into the broader, local environment. Trace elements enriched in the unweathered shale are in massive or framboidal pyrite, minor sphalerite, CuS and NiS phases, organic matter and clay minerals. These phases are subject to varying degrees and rates of alteration along the profile. Cadmium, Co, Mn, Ni, and Zn are removed from weathered shale during sulfide-mineral oxidation and transported primarily in aqueous solution. The aqueous fluxes for these trace elements range from 0.1 g/ha/a (Cd) to 44 g/ha/a (Mn). When hydrologic and climatic conditions are favorable, solutions seep to surface exposures, evaporate, and form Fe-sulfate efflorescent salts rich in these elements. Elements that remain dissolved in the low pH (<4) streams and groundwater draining New Albany Shale watersheds become fixed by reactions that increase pH. Neutralization of the weathering solution in local streams results in elements being adsorbed and precipitated onto sediment surfaces, resulting in trace element anomalies. Other elements are strongly adsorbed or structurally bound to solid phases during weathering. Copper and U initially are concentrated in weathering solutions, but become fixed to modern plant litter in soil formed on New Albany Shale. Molybdenum, Pb, Sb, and Se are released from sulfide minerals and organic matter by oxidation and accumulate in Fe-oxyhydroxide clay coatings that concentrate in surface soil during illuviation. Chromium, Ti, and V are

  2. Pressurized fluidized-bed hydroretorting of eastern oil shales

    SciTech Connect

    Lau, F.S.; Mensinger, M.C.; Roberts, M.J.; Rue, D.M.

    1991-12-01

    The overall objective of this project is to perform the research necessary to develop the pressurized fluidized-bed hydroretorting (PFH) process for producing oil from Eastern oil shales. The program also incorporates research on technologies in areas such as raw shale preparation, beneficiation, product separation, and waste disposal that the potential of improving the economics and/or environmental acceptability of recovering oil from oil shales using the PFH process. The program is divided into the following tasks: Testing of Process Improvement Concepts; Beneficiation Research; Operation of PFH on Beneficiated Shale; Environmental Data and Mitigation Analyses; Sample Procurement, Preparation, and Characterization; and Project Management and Reporting. Accomplishments for this period for these tasks are presented.

  3. Pelletization process of postproduction plant waste

    NASA Astrophysics Data System (ADS)

    Obidziński, S.

    2012-07-01

    The results of investigations on the influence of material, process, and construction parameters on the densification process and density of pellets received from different mixtures of tobacco and fine-grained waste of lemon balm are presented. The conducted research makes it possible to conclude that postproduction waste eg tobacco and lemon balm wastes can be successfully pelletized and used as an ecological, solid fuels.

  4. Pressurized fluidized-bed hydroretorting of raw and beneficiated Eastern oil shales

    SciTech Connect

    Roberts, M.J.; Rue, D.M.; Lau, F.S.

    1991-12-31

    The Institute of Gas Technology (IGT) with US Department of Energy (DOE) support has developed a pressurized fluidized-bed hydroretorting (PFH) process for Eastern oil shales. Bench-scale tests have been conducted with raw and beneficiated shales in an advanced multipurpose research reactor (AMRR). Raw Alabama shale and raw and beneficiated Indiana shales were retorted at 515{degrees}C using hydrogen pressures of 4 and 7 MPa. Shale feed rates to the AMRR were 15 to 34 kg/h. High oils yields and carbon conversions were achieved in all tests. Oil yield from Alabama shale hydroretorted at 7 MPa was 200% of Fischer Assay. Raw and beneficiated Indiana shales hydroretorted at 7 MPa produced oil yields of 170% to 195% of Fischer Assay, respectively. Total carbon conversions were greater than 70% for all tests conducted at 7 MPa.

  5. Pressurized fluidized-bed hydroretorting of raw and beneficiated Eastern oil shales

    SciTech Connect

    Roberts, M.J.; Rue, D.M.; Lau, F.S.

    1991-01-01

    The Institute of Gas Technology (IGT) with US Department of Energy (DOE) support has developed a pressurized fluidized-bed hydroretorting (PFH) process for Eastern oil shales. Bench-scale tests have been conducted with raw and beneficiated shales in an advanced multipurpose research reactor (AMRR). Raw Alabama shale and raw and beneficiated Indiana shales were retorted at 515{degrees}C using hydrogen pressures of 4 and 7 MPa. Shale feed rates to the AMRR were 15 to 34 kg/h. High oils yields and carbon conversions were achieved in all tests. Oil yield from Alabama shale hydroretorted at 7 MPa was 200% of Fischer Assay. Raw and beneficiated Indiana shales hydroretorted at 7 MPa produced oil yields of 170% to 195% of Fischer Assay, respectively. Total carbon conversions were greater than 70% for all tests conducted at 7 MPa.

  6. Reaction kinetics and diagnostics for oil-shale retorting

    NASA Astrophysics Data System (ADS)

    Burnham, A. K.

    1981-10-01

    The advances in pyrolysis chemistry and kinetics and the resulting diagnostic methods based on effluent products for determining retort performance were reviewed. Kerogen pyrolysis kinetics and stoichiometry were generalized by further measurements on a larger number of samples. Analysis by capillary colunn gas chromatography of shale oil samples produced under a variety of field and laboratory conditions resulted in a method for determining the oil yield from a combustion retort. Measurement of sulfur products under a variety of conditions led to an understanding sulfur reactions both those of processing and environmental importance. Equations for estimating the heat of combustion of spent shale were developed by understanding oil shale composition and reactions.

  7. 64. SOUTH PLANT PROCESS PIPING, CHEMICAL STORAGE TANKS AND BUILDINGS. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    64. SOUTH PLANT PROCESS PIPING, CHEMICAL STORAGE TANKS AND BUILDINGS. VIEW TO NORTHEAST. - Rocky Mountain Arsenal, Bounded by Ninety-sixth Avenue & Fifty-sixth Avenue, Buckley Road, Quebec Street & Colorado Highway 2, Commerce City, Adams County, CO

  8. B Plant process piping replacement feasibility study

    SciTech Connect

    Howden, G.F.

    1996-02-07

    Reports on the feasibility of replacing existing embedded process piping with new more corrosion resistant piping between cells and between cells and a hot pipe trench of a Hanford Site style canyon facility. Provides concepts for replacement piping installation, and use of robotics to replace the use of the canyon crane as the primary means of performing/supporting facility modifications (eg, cell lining, pipe replacement, equipment reinstallation) and operational maintenenace.

  9. H-Coal process and plant design

    DOEpatents

    Kydd, Paul H.; Chervenak, Michael C.; DeVaux, George R.

    1983-01-01

    A process for converting coal and other hydrocarbonaceous materials into useful and more valuable liquid products. The process comprises: feeding coal and/or other hydrocarbonaceous materials with a hydrogen-containing gas into an ebullated catalyst bed reactor; passing the reaction products from the reactor to a hot separator where the vaporous and distillate products are separated from the residuals; introducing the vaporous and distillate products from the separator directly into a hydrotreater where they are further hydrogenated; passing the residuals from the separator successively through flash vessels at reduced pressures where distillates are flashed off and combined with the vaporous and distillate products to be hydrogenated; transferring the unseparated residuals to a solids concentrating and removal means to remove a substantial portion of solids therefrom and recycling the remaining residual oil to the reactor; and passing the hydrogenated vaporous and distillate products to an atmospheric fractionator where the combined products are fractionated into separate valuable liquid products. The hydrogen-containing gas is generated from sources within the process.

  10. Pipeline Gas Demonstration Plant. Phase I. Process evaluation report, conceptual commercial plant

    SciTech Connect

    Eby, R.J.

    1980-05-01

    This Process Evaluation Report (PER) contains the results and recommendations of comprehensive analyses and studies which were made to optimize the ICGG Commercial Plant Baseline Process Concept for producing synthetic pipeline gas (SPG) from coal. Design studies to optimize the thermal efficiency and economic attractiveness of the COGAS Process Areas of the plant were conducted along with design studies and trade-off studies of available process subsystems to complement the COGAS Process Areas. The results, recommendations and description of the work accomplished in developing the PER are contained in six separately bound sections. Section 4 describes those trade-off studies which were made to select processes which would best complement the COGAS Process Areas and provide the most efficient and economical Commercial Plant Concept.

  11. Oil-shale mining in Maoming basin of China

    SciTech Connect

    Mitchell-Tapping, H.J.

    1989-03-01

    The Maoming basin in Guangdong Province is one of the major oil-shale mining areas of China and is situated about 300 km southwest of Hong Kong. This Tertiary basin produces oil from shales mined from a 5-km long open-faced pit on the crest of an anticline in the center of an uplifted and tilted graben. The oil shale extends about 30 km in a northwest-southeast line, and the beds dip as much as 10/degree/ toward metamorphic mountains to the northeast. In the surrounding area are numerous oil seeps, especially in ponds, water wells, and at the foundations of buildings. Holes with oil shows, made to test the extent of the oil shale, have been drilled to a depth of 1000 m. At the base of the mine face is a limestone hardground on top of which is a coal seam about 0.5 m thick that can be traced throughout the basin. Atop this Paleocene coal bed are Eocene oil-shale and thin sandstone beds in five repeated sections, each about 15 m thick, called the Youganwou formation. All kinds of freshwater fossils - fish, insects, plants, turtles, and tree trunks - are found in a near-perfect state of preservation in these oil-rich shales and coal sections. The estimated oil content of the rock is about 8% of good-quality oil with plenty of light ends.

  12. Oil shale in the United States: prospects for development

    SciTech Connect

    Drabenstott, M.; Duncan, M.; Borowski, M.

    1984-05-01

    The development of an oil shale industry has had its ups and downs throughout this century. Despite vast reserves of recoverable shale oil, energy prices usually have been high enough to make extraction of that oil commercially viable. The tripling and then tripling again of world oil prices in the 1970s gave initial promise that development had become economically feasible. After only a few years of rapid development activity, however, the effort was brought to a near-halt by falling world oil prices. The results were a substantial reduction in economic activity for northwestern Colorado and, maybe more importantly, sharply lower expectations for the region's future economic growth. In both the upturn and the downturn, the local public sector was essentially shielded from financial stress because the energy companies helped fund public spending on infrastructure and services. The future for oil shale remains uncertain. A few energy companies continue to pursue their development plans. To spur development of commercial scale plants, Synthetic Fuels Corporation has made loan and price guarantees to energy firms. Some projects may soon be extracting oil, providing needed technological and financial information on various techniques of oil extraction. But the future for oil shale remains clouded by uncertainties regarding the cost of producing syncrude and future oil prices. Environmental issues could also hamper oil shale development. Therefore, oil shale remains, as it has for more than a century, a technical and economic enigma that has only begun to be understood and developed. 8 references, 3 figures, 3 tables

  13. IMPROVING TACONITE PROCESSING PLANT EFFICIENCY BY COMPUTER SIMULATION, Final Report

    SciTech Connect

    William M. Bond; Salih Ersayin

    2007-03-30

    This project involved industrial scale testing of a mineral processing simulator to improve the efficiency of a taconite processing plant, namely the Minorca mine. The Concentrator Modeling Center at the Coleraine Minerals Research Laboratory, University of Minnesota Duluth, enhanced the capabilities of available software, Usim Pac, by developing mathematical models needed for accurate simulation of taconite plants. This project provided funding for this technology to prove itself in the industrial environment. As the first step, data representing existing plant conditions were collected by sampling and sample analysis. Data were then balanced and provided a basis for assessing the efficiency of individual devices and the plant, and also for performing simulations aimed at improving plant efficiency. Performance evaluation served as a guide in developing alternative process strategies for more efficient production. A large number of computer simulations were then performed to quantify the benefits and effects of implementing these alternative schemes. Modification of makeup ball size was selected as the most feasible option for the target performance improvement. This was combined with replacement of existing hydrocyclones with more efficient ones. After plant implementation of these modifications, plant sampling surveys were carried out to validate findings of the simulation-based study. Plant data showed very good agreement with the simulated data, confirming results of simulation. After the implementation of modifications in the plant, several upstream bottlenecks became visible. Despite these bottlenecks limiting full capacity, concentrator energy improvement of 7% was obtained. Further improvements in energy efficiency are expected in the near future. The success of this project demonstrated the feasibility of a simulation-based approach. Currently, the Center provides simulation-based service to all the iron ore mining companies operating in northern

  14. Situation awareness acquired from monitoring process plants - the Process Overview concept and measure.

    PubMed

    Lau, Nathan; Jamieson, Greg A; Skraaning, Gyrd

    2016-07-01

    We introduce Process Overview, a situation awareness characterisation of the knowledge derived from monitoring process plants. Process Overview is based on observational studies of process control work in the literature. The characterisation is applied to develop a query-based measure called the Process Overview Measure. The goal of the measure is to improve coupling between situation and awareness according to process plant properties and operator cognitive work. A companion article presents the empirical evaluation of the Process Overview Measure in a realistic process control setting. The Process Overview Measure demonstrated sensitivity and validity by revealing significant effects of experimental manipulations that corroborated with other empirical results. The measure also demonstrated adequate inter-rater reliability and practicality for measuring SA based on data collected by process experts. Practitioner Summary: The Process Overview Measure is a query-based measure for assessing operator situation awareness from monitoring process plants in representative settings.

  15. Cytotoxic and mutagenic properties of shale oil byproducts II. Comparison of mutagenic effects at five genetic markers induced by retort process water plus near ultraviolet light in Chinese hamster ovary cells.

    PubMed

    Chen, D J; Strniste, G F

    1982-01-01

    A chinese hamster ovary (CHO) cell line heterozygous at the adenine phosphoribosyl transferase (APRT) locus was used for selection of induced mutants resistant to 8-azaadenine (8AA), 6-thioguanine (6TG), ouabain (OUA), emetine (EMT) and diphtheria toxin (DIP). The expression times necessary for optimizing the number of mutants recovered at the different loci have been determined using the know direct acting mutagen, far ultraviolet light (FUV), and a complex aqueous organic mixture (shale oil process water) activated with near ultraviolet light (NUV). Our results indicate that optimal expression times following treatment with either mutagen was between 2 and 8 days (depending on the genetic marker examined). For CHO cells treated with shale oil process water and subsequently exposed to NUV a linear dose response for mutant induction was observed for all five genetic loci. At 10% surviving fraction of cells, between 35- and 130-fold increases above background mutation frequencies were observed for the various markers examined. Among the five genetic loci tested, OUAR was the most sensitive marker tested.

  16. Pressurized fluidized-bed hydroretorting of Eastern oil shales. Progress report, December 1991--February 1992

    SciTech Connect

    Lau, F.S.; Mensinger, M.C.; Roberts, M.J.; Rue, D.M.

    1992-03-01

    The objective is to perform the research necessary to develop the pressurized fluidized-bed hydroretorting (PFH) process for producing oil from Easter oil shales. The program also incorporates research on technologies in areas such as raw shale preparation, beneficiation, product separation, and waste disposal that have the potential of improving the economics and/or environmental acceptability of recovering oil from oil shales using the PFH process. Accomplishments for this period are presented for the following tasks: Testing of Process Improvement Concepts; Beneficiation Research; Operation of PFH on Beneficiated Shale; Environmental Data and Mitigation Analyses; Sample Procurement, Preparation, and Characterization; and Project Management and Reporting. 24 figs., 19 tabs. (AT)

  17. Nuclear processes associated with plant immunity and pathogen susceptibility

    PubMed Central

    Motion, Graham B.; Amaro, Tiago M.M.M.; Kulagina, Natalja

    2015-01-01

    Plants are sessile organisms that have evolved exquisite and sophisticated mechanisms to adapt to their biotic and abiotic environment. Plants deploy receptors and vast signalling networks to detect, transmit and respond to a given biotic threat by inducing properly dosed defence responses. Genetic analyses and, more recently, next-generation -omics approaches have allowed unprecedented insights into the mechanisms that drive immunity. Similarly, functional genomics and the emergence of pathogen genomes have allowed reciprocal studies on the mechanisms governing pathogen virulence and host susceptibility, collectively allowing more comprehensive views on the processes that govern disease and resistance. Among others, the identification of secreted pathogen molecules (effectors) that modify immunity-associated processes has changed the plant–microbe interactions conceptual landscape. Effectors are now considered both important factors facilitating disease and novel probes, suited to study immunity in plants. In this review, we will describe the various mechanisms and processes that take place in the nucleus and help regulate immune responses in plants. Based on the premise that any process required for immunity could be targeted by pathogen effectors, we highlight and describe a number of functional assays that should help determine effector functions and their impact on immune-related processes. The identification of new effector functions that modify nuclear processes will help dissect nuclear signalling further and assist us in our bid to bolster immunity in crop plants. PMID:25846755

  18. FLUORINE IN COLORADO OIL SHALE.

    USGS Publications Warehouse

    Dyni, John R.; ,

    1985-01-01

    Oil shale from the lower part of the Eocene Green River Formation in the Piceance Creek Basin, Colorado, averages 0. 13 weight percent fluorine, which is about twice that found in common shales, but is the same as the average amount found in some oil shales from other parts of the world. Some fluorine may reside in fluorapatite; however, limited data suggest that cryolite may be quantitatively more important. To gain a better understanding of the detailed distribution of fluorine in the deeper nahcolite-bearing oil shales, cores were selected for study from two exploratory holes drilled in the northern part of the Piceance Creek Basin where the oil shales reach their maximum thickness and grade.

  19. An assessment of using oil shale for power production in the Hashemite Kingdom of Jordan

    SciTech Connect

    Hill, L.J.; Holcomb, R.S.; Petrich, C.H.; Roop, R.D.

    1990-11-01

    This report addresses the oil shale-for-power-production option in Jordan. Under consideration are 20- and 50-MW demonstration units and a 400-MW, commercial-scale plant with, at the 400-MW scale, a mining operation capable of supplying 7.8 million tonnes per year of shale fuel and also capable of disposal of up to 6.1 million tonnes per year of wetted ash. The plant would be a direct combustion facility, burning crushed oil shale through use of circulating fluidized bed combustion technology. The report emphasizes four areas: (1) the need for power in Jordan, (2) environmental aspects of the proposed oil shale-for-power plant(s), (3) the engineering feasibility of using Jordan's oil shale in circulating fluidized bed combustion (CFBC) boiler, and (4) the economic feasibility of the proposed plant(s). A sensitivity study was conducted to determine the economic feasibility of the proposed plant(s) under different cost assumptions and revenue flows over the plant's lifetime. The sensitivity results are extended to include the major extra-firm benefits of the shale-for-power option: (1) foreign exchange savings from using domestic energy resources, (2) aggregate income effects of using Jordan's indigenous labor force, and (3) a higher level of energy security. 14 figs., 47 tabs.

  20. Process monitoring in international safeguards for reprocessing plants: A demonstration

    SciTech Connect

    Ehinger, M.H.

    1989-01-01

    In the period 1985--1987, the Oak Ridge National Laboratory investigated the possible role of process monitoring for international safeguards applications in fuel reprocessing plants. This activity was conducted under Task C.59, ''Review of Process Monitoring Safeguards Technology for Reprocessing Facilities'' of the US program of Technical Assistance to the International Atomic Energy Agency (IAEA) Safeguards program. The final phase was a demonstration of process monitoring applied in a prototypical reprocessing plant test facility at ORNL. This report documents the demonstration and test results. 35 figs.

  1. [Autophagic processes in plants: mechanisms, regulation and function].

    PubMed

    Guiboileau, Anne; Masclaux-Daubresse, Céline

    2012-06-01

    Large numbers of publications investigating the molecular details, the regulation and the physiological roles of autophagic processes have appeared over the last few years, dealing with animals, plants and unicellular eukaryotic organisms. This strong interest is caused by the fact that autophagic processes are ubiquitous in eukaryotic organisms. They are involved in the adaptation of organisms to their environment and to stressful conditions, thereby contributing to cell and organism survival and longevity. This review article aims to describe the discovery of autophagy, the molecular details of this complex process, its regulation, and its specific functions in plants.

  2. Milk Processing Plant Employee. Agricultural Cooperative Training. Vocational Agriculture.

    ERIC Educational Resources Information Center

    Blaschke, Nolan; Page, Foy

    This course of study is designed for the vocational agricultural student enrolled in an agricultural cooperative part-time training program in the area of milk processing occupations. The course consists of 11 units, each with 4 to 13 individual topics that milk processing plant employees should know. Subjects covered by the units are the…

  3. The shielding design process--new plants to decommissioning.

    PubMed

    Jeffries, Graham; Cooper, Andrew; Hobson, John

    2005-01-01

    BNFL have over 25 years experience of designing nuclear plant for the whole-fuel cycle. In the UK, a Nuclear Decommissioning Authority (NDA) is to be set up to ensure that Britain's nuclear legacy is cleaned up safely, securely and cost effectively. The resulting challenges and opportunities for shielding design will be substantial as the shielding design process was originally devised for the design of new plants. Although its underlying principles are equally applicable to decommissioning and remediation of old plants, there are many aspects of detailed application that need to adapt to this radically different operating environment. The paper describes both the common issues and the different challenges of shielding design at different operational phases. Sample applications will be presented of both new plant and decommissioning projects that illustrate not only the robust nature of the processes being used, but also how they lead to cost-effective solutions making a substantive and appropriate contribution to radiological protection goals.

  4. More gaps than shale: stratigraphic incompleteness of marine shale successions using a Toarcian example

    NASA Astrophysics Data System (ADS)

    Trabucho-Alexandre, J. P.

    2014-12-01

    Marine shale successions are probably the best archives of earth history. The degree of completeness of a marine shale succession is a critical factor in the interpretation of the geologic record of climatic, oceanic, and biogeochemical processes, in the prediction of timescales of those processes, in the determination of the duration of events, and in the establishment of correlations between successions. The sedimentation rates of marine shale successions are often calculated by dividing the thickness of a succession by the duration of the stratigraphic interval it occupies. Sedimentation rates calculated this way are always much lower than rates measured directly in equivalent modern environments. When we apply modern rates to the deposits left behind by their ancient equivalents, and correct for compaction due to overburden and time, we find that the entire succession can be deposited in a relatively short time. Since we know that the stratigraphic interval occupied by such ancient deposits is much longer, we must conclude that the succession is very incomplete. In this presentation, I will use a few different methods to show that 65 to >80% of the duration of the Toarcian oceanic anoxic event in Yorkshire, U.K., is represented by gaps rather than shale. This means that the Toarcian oceanic anoxic event is not as short as proposed by authors who studied the cyclostratigraphy of the Yorkshire succession, and that it probably represents a much longer-term history of environmental change driven by processes acting on longer time scales.

  5. Underground oil-shale retort monitoring using geotomography

    SciTech Connect

    Daily, W.

    1984-10-01

    Geophysical tomographs (geotomographs) were made of two underground oil-shale retorts: (1) the Occidental Oil Shale Inc. miniretort constructed for ignition tests at the demonstration mine at Logan Wash, Colorado; and (2) the Geokinetics Oil Shale Inc. Retort 25 near Vernal, Utah. These experiments demonstrate that geotomography may be a valuable diagnostic tool for underground oil-shale retorting processes. At the Geokinetics in-situ retort, the technique delineated the zones of high permeability in a cross-section of the retort. At the Occidental modified in-situ miniretort, the technique imaged the high temperature zone of the retort with a spatial resolution of about 2 m, and showed its temporal development over a period of eleven days.

  6. Contamination of salmon fillets and processing plants with spoilage bacteria.

    PubMed

    Møretrø, Trond; Moen, Birgitte; Heir, Even; Hansen, Anlaug Å; Langsrud, Solveig

    2016-11-21

    The processing environment of salmon processing plants represents a potential major source of bacteria causing spoilage of fresh salmon. In this study, we have identified major contamination routes of important spoilage associated species within the genera Pseudomonas, Shewanella and Photobacterium in pre-rigor processing of salmon. Bacterial counts and culture-independent 16S rRNA gene analysis on salmon fillet from seven processing plants showed higher levels of Pseudomonas spp. and Shewanella spp. in industrially processed fillets compared to salmon processed under strict hygienic conditions. Higher levels of Pseudomonas spp. and Shewanella spp. were found on fillets produced early on the production day compared to later processed fillets. The levels of Photobacterium spp. were not dependent on the processing method or time of processing. In follow-up studies of two plants, bacterial isolates (n=2101) from the in-plant processing environments (sanitized equipment/machines and seawater) and from salmon collected at different sites in the production were identified by partial 16S rRNA gene sequencing. Pseudomonas spp. dominated in equipment/machines after sanitation with 72 and 91% of samples from the two plants being Pseudomonas-positive. The phylogenetic analyses, based on partial 16S rRNA gene sequencing, showed 48 unique sequence profiles of Pseudomonas of which two were dominant. Only six profiles were found on both machines and in fillets in both plants. Shewanella spp. were found on machines after sanitation in the slaughter department while Photobacterium spp. were not detected after sanitation in any parts of the plants. Shewanella spp. and Photobacterium spp. were found on salmon in the slaughter departments. Shewanella was frequently present in seawater tanks used for bleeding/short term storage. In conclusion, this study provides new knowledge on the processing environment as a source of contamination of salmon fillets with Pseudomonas spp. and

  7. Radiation processing of minimally processed vegetables and aromatic plants

    NASA Astrophysics Data System (ADS)

    Trigo, M. J.; Sousa, M. B.; Sapata, M. M.; Ferreira, A.; Curado, T.; Andrada, L.; Botelho, M. L.; Veloso, M. G.

    2009-07-01

    Vegetables are an essential part of people's diet all around the world. Due to cultivate techniques and handling after harvest, these products, may contain high microbial load that can cause food borne outbreaks. The irradiation of minimally processed vegetables is an efficient way to reduce the level of microorganisms and to inhibit parasites, helping a safe global trade. Evaluation of the irradiation's effects was carried out in minimal processed vegetables, as coriander ( Coriandrum sativum L .), mint ( Mentha spicata L.), parsley ( Petroselinum crispum Mill, (A.W. Hill)), lettuce ( Lactuca sativa L.) and watercress ( Nasturium officinale L.). The inactivation level of natural microbiota and the D 10 values of Escherichia coli O157:H7 and Listeria innocua in these products were determined. The physical-chemical and sensorial characteristics before and after irradiation at a range of 0.5 up to 2.0 kGy applied doses were also evaluated. No differences were verified in the overall of sensorial and physical properties after irradiation up to 1 kGy, a decrease of natural microbiota was noticed (⩾2 log). Based on the determined D10, the amount of radiation necessary to kill 10 5E. coli and L. innocua was between 0.70 and 1.55 kGy. Shelf life of irradiated coriander, mint and lettuce at 0.5 kGy increased 2, 3 and 4 days, respectively, when compared with non-irradiated.

  8. A Transversely Isotropic Thermo-mechanical Framework for Oil Shale

    NASA Astrophysics Data System (ADS)

    Semnani, S. J.; White, J. A.; Borja, R. I.

    2014-12-01

    The present study provides a thermo-mechanical framework for modeling the temperature dependent behavior of oil shale. As a result of heating, oil shale undergoes phase transformations, during which organic matter is converted to petroleum products, e.g. light oil, heavy oil, bitumen, and coke. The change in the constituents and microstructure of shale at high temperatures dramatically alters its mechanical behavior e.g. plastic deformations and strength, as demonstrated by triaxial tests conducted at multiple temperatures [1,2]. Accordingly, the present model formulates the effects of changes in the chemical constituents due to thermal loading. It is well known that due to the layered structure of shale its mechanical properties in the direction parallel to the bedding planes is significantly different from its properties in the perpendicular direction. Although isotropic models simplify the modeling process, they fail to accurately describe the mechanical behavior of these rocks. Therefore, many researchers have studied the anisotropic behavior of rocks, including shale [3]. The current study presents a framework to incorporate the effects of transverse isotropy within a thermo-mechanical formulation. The proposed constitutive model can be readily applied to existing finite element codes to predict the behavior of oil shale in applications such as in-situ retorting process and stability assessment in petroleum reservoirs. [1] Masri, M. et al."Experimental Study of the Thermomechanical Behavior of the Petroleum Reservoir." SPE Eastern Regional/AAPG Eastern Section Joint Meeting. Society of Petroleum Engineers, 2008. [2] Xu, B. et al. "Thermal impact on shale deformation/failure behaviors---laboratory studies." 45th US Rock Mechanics/Geomechanics Symposium. American Rock Mechanics Association, 2011. [3] Crook, AJL et al. "Development of an orthotropic 3D elastoplastic material model for shale." SPE/ISRM Rock Mechanics Conference. Society of Petroleum Engineers

  9. Favorable conditions noted for Australia shale oil

    SciTech Connect

    Not Available

    1986-09-01

    After brief descriptions of the Rundle, Condor, and Stuart/Kerosene Creek oil shale projects in Queensland, the competitive advantages of oil shale development and the state and federal governments' attitudes towards an oil shale industry in Australia are discussed. It is concluded that Australia is the ideal country in which to start an oil shale industry.

  10. Fire and explosion hazards of oil shale

    SciTech Connect

    Not Available

    1989-01-01

    The US Bureau of Mines publication presents the results of investigations into the fire and explosion hazards of oil shale rocks and dust. Three areas have been examined: the explosibility and ignitability of oil shale dust clouds, the fire hazards of oil shale dust layers on hot surfaces, and the ignitability and extinguishment of oil shale rubble piles. 10 refs., 54 figs., 29 tabs.

  11. 4D imaging of fluid escape in low permeability shales during heating

    NASA Astrophysics Data System (ADS)

    Renard, F.; Kobchenko, M.

    2012-04-01

    The coupling between thermal effects and deformation is relevant in many natural geological environments (rising magma, primary migration of hydrocarbons, vents) and has many industrial applications (storage of nuclear wastes, enhanced hydrocarbon recovery, coal exploitation, geothermic plants). When thermal effects involve phase transformation in the rock and production of fluids, a strong coupling may emerge between the processes of fluid escape and the ability of the rock to deform and transport fluids. To better understand the mechanisms of fracture pattern development and fluid escape in low permeability rocks, we performed time-resolved in situ X-ray tomography imaging to investigate the processes that occur during the slow heating (from 60° to 400°C) of organic-rich Green River shale. At about 350°C cracks nucleated in the sample, and as the temperature continued to increase, these cracks propagated parallel to shale bedding and coalesced, thus cutting across the sample. Thermogravimetry and gas chromatography revealed that the fracturing occurring at ~350°C was associated with significant mass loss and release of light hydrocarbons generated by the decomposition of immature organic matter. Kerogen decomposition is thought to cause an internal pressure build up sufficient to form cracks in the shale, thus providing pathways for the outgoing hydrocarbons. We show that a 2D numerical model based on this idea qualitatively reproduces the experimentally observed dynamics of crack nucleation, growth and coalescence, as well as the irregular outlines of the cracks. Our results provide a new description of fracture pattern formation in low permeability shales.

  12. High-autonomy control of space resource processing plants

    NASA Technical Reports Server (NTRS)

    Schooley, Larry C.; Zeigler, Bernard P.; Cellier, Francois E.; Wang, Fei-Yue

    1993-01-01

    A highly autonomous intelligent command/control architecture has been developed for planetary surface base industrial process plants and Space Station Freedom experimental facilities. The architecture makes use of a high-level task-oriented mode with supervisory control from one or several remote sites, and integrates advanced network communications concepts and state-of-the-art man/machine interfaces with the most advanced autonomous intelligent control. Attention is given to the full-dynamics model of a Martian oxygen-production plant, event-based/fuzzy-logic process control, and fault management practices.

  13. Process and apparatus for detecting presence of plant substances

    SciTech Connect

    Kirby, J.A.

    1990-01-01

    Disclosed is a process for detecting the presence of plant substances in a particular environment which comprises the steps of: (1) Measuring the background K40 gamma ray radiation level in a particular environment with a 1.46 MeV gamma ray counter system; (2) measuring the amount of K40 gamma ray radiation emanating from a package containing said plant substance being passed through said environment with said counter; and (3) generating an alarm signal when the total K40 gamma ray radiation reaches a predetermined level over and above the background level. Also disclosed is the apparatus and system used to conduct the process.

  14. Characterization of process air emissions in automotive production plants.

    PubMed

    D'Arcy, J B; Dasch, J M; Gundrum, A B; Rivera, J L; Johnson, J H; Carlson, D H; Sutherland, J W

    2016-01-01

    During manufacturing, particles produced from industrial processes become airborne. These airborne emissions represent a challenge from an industrial hygiene and environmental standpoint. A study was undertaken to characterize the particles associated with a variety of manufacturing processes found in the auto industry. Air particulates were collected in five automotive plants covering ten manufacturing processes in the areas of casting, machining, heat treatment and assembly. Collection procedures provided information on air concentration, size distribution, and chemical composition of the airborne particulate matter for each process and insight into the physical and chemical processes that created those particles.

  15. Optimisation of the steel plant dust recycling process

    NASA Astrophysics Data System (ADS)

    Popescu, Darius-Alexandru; Hepuť, Teodor; Puťan, Vasile

    2016-06-01

    The widespread use of oxygen in the EAF steel-making process led to the increase of furnace productivity and reduction of specific energy consumption. Following the increase of the metal bath temperature, the brown smoke exhaust process is intensified, which requires mandatory gas treatment. The steel plant dust resulting from the treatment of waste gases is a manufacturing waste which must be recycled in the steel plant. Due to the fineness of the waste, when conducting the researches we processed it through pelletization. The processing of this waste aims not only its granulometric composition, but also the chemical composition (mainly the zinc content). After processing the data, we choose the optimal waste recycling technology based on the resistance of pellets and final content of zinc.

  16. Mercury emissions from a modified in-situ oil shale retort

    NASA Astrophysics Data System (ADS)

    Hodgson, Alfred T.; Pollard, Martin J.; Brown, Nancy J.

    Gaseous Hg emissions were measured during the processing of a large modified in-situ oil shale retort (4×10 4 m 3) in Colorado. A continuous, on-line, gas monitor based upon the principal of Zeeman atomic absorption spectroscopy was the primary analytical method. The on-line monitor technique was shown to be well suited for this application and compared favorably with an independent reference method which collects gaseous Hg by Au-amalgamation. Forty-two hours of on-line data were obtained over a 35-day period during the latter half of the retort burn. Hg emission rates in g day -1 were calculated from Hg concentration and offgas flow rate data. The predicted total gaseous Hg mass emission for the retort was 4 kg. Extrapolation of the data to a hypothetical modified in-situ oil shale facility with a daily production of 8× 10 61 (5 × 10 4 bbl) of oil results in a projected emission rate of ≈ 8 kg day -1. This estimated value is higher than Hg emission rates recorded for coal fired power plants. Emission rates were found to be highly variable both within and between days. Factors which may limit Hg emissions from a modified in-situ retort are discussed. Adsorption losses to unretorted shale at the bottom of a retort are suggested as a major sink for Hg. Losses of Hg to the extensive offgas plumbing system may also be substantial.

  17. Combustion of Australian spent shales compared

    SciTech Connect

    Not Available

    1986-12-01

    The combustion kinetics of spent oil shales from seven major Australian deposits have been examined using a fluidized bed batch technique. Chemical rate constants were shown to vary between the shales and to be less than extrapolations of data from American spent oil shales. The effective diffusivity also varies widely among the shales. The seven oil shales were from the Condor, Duaringa, Lowmead, Nagoorin, Nagoorin South, Rundle and Stuart deposits in Queensland. Results are briefly described. 1 figure, 1 table.

  18. Carbon sequestration in depleted oil shale deposits

    DOEpatents

    Burnham, Alan K; Carroll, Susan A

    2014-12-02

    A method and apparatus are described for sequestering carbon dioxide underground by mineralizing the carbon dioxide with coinjected fluids and minerals remaining from the extraction shale oil. In one embodiment, the oil shale of an illite-rich oil shale is heated to pyrolyze the shale underground, and carbon dioxide is provided to the remaining depleted oil shale while at an elevated temperature. Conditions are sufficient to mineralize the carbon dioxide.

  19. Revegetation research on oil shale lands in the Piceance Basin

    SciTech Connect

    Redente, E.F.; Cook, C.W.

    1981-02-01

    The overall objective of this project is to study the effects of various reclamation practices on above- and belowground ecosystem development associated with disturbed oil shale lands in northwestern Colorado. Plant growth media that are being used in field test plots include retorted shale, soil over retorted shale, subsoil materials, and surface disturbed topsoils. Satisfactory stands of vegetation failed to establish on unleached retorted shale during two successive years of seeding. All seedings with soil over retorted shale were judged to be successful at the end of three growing seasons, but deep-rooted shrubs that depend upon subsoil moisture may have their growth hampered by the retorted shale substrate. Natural revegetation on areas with various degrees of disturbance shows that natural invasion and succession was slow at best. Invasion of species on disturbed topsoil plots showed that after three years introduced seed mixtures were more effective than native mixtures in occupying space and closing the community to invading species. Fertilizer appears to encourage the invasion of annual plants even after the third year following application. Long-term storage of topsoil without vegetation significantly decreases the mycorrhizal infection potential and, therefore, decreases the relative success of aboveground vegetation and subsequent succession. Ecotypic differentation related to growth and competitive ability, moisture stress tolerance, and reproductive potential have been found in five native shrub species. Germplasm sources of two grasses and two legumes, that have shown promise as revegetation species, have been collected and evaluated for the production of test seed. Fertilizer (nitrogen) when added to the soil at the time of planting may encourage competition from annual weeds to the detriment of seeded species.

  20. A Thermoplasticity Model for Oil Shale

    NASA Astrophysics Data System (ADS)

    White, Joshua A.; Burnham, Alan K.; Camp, David W.

    2017-03-01

    Several regions of the world have abundant oil shale resources, but accessing this energy supply poses a number of challenges. One particular difficulty is the thermomechanical behavior of the material. When heated to sufficient temperatures, thermal conversion of kerogen to oil, gas, and other products takes place. This alteration of microstructure leads to a complex geomechanical response. In this work, we develop a thermoplasticity model for oil shale. The model is based on critical state plasticity, a framework often used for modeling clays and soft rocks. The model described here allows for both hardening due to mechanical deformation and softening due to thermal processes. In particular, the preconsolidation pressure—defining the onset of plastic volumetric compaction—is controlled by a state variable representing the kerogen content of the material. As kerogen is converted to other phases, the material weakens and plastic compaction begins. We calibrate and compare the proposed model to a suite of high-temperature uniaxial and triaxial experiments on core samples from a pilot in situ processing operation in the Green River Formation. We also describe avenues for future work to improve understanding and prediction of the geomechanical behavior of oil shale operations.

  1. Idaho Chemical Processing Plant and Plutonium-Uranium Extraction Plant phaseout/deactivation study

    SciTech Connect

    Patterson, M.W.; Thompson, R.J.

    1994-01-01

    The decision to cease all US Department of Energy (DOE) reprocessing of nuclear fuels was made on April 28, 1992. This study provides insight into and a comparison of the management, technical, compliance, and safety strategies for deactivating the Idaho Chemical Processing Plant (ICPP) at Westinghouse Idaho Nuclear Company (WINCO) and the Westinghouse Hanford Company (WHC) Plutonium-Uranium Extraction (PUREX) Plant. The purpose of this study is to ensure that lessons-learned and future plans are coordinated between the two facilities.

  2. W-waves Explain Gravitropism, Phototropism, Sap Flow, Plant Structure, and other Plant Processes

    NASA Astrophysics Data System (ADS)

    Wagner, Raymond E.; Wagner, Orvin E.

    1996-11-01

    Eight years of research here confirm that plants act as wave guides for W-waves: The wavelengths of these longitudinal plant waves depend on the angle with which they are traveling with respect to the gravitational field. A structure grows tuned to a particular angle under the influence of genetics. If a structure is displaced from this angle plant action produces a correction. (2) Light waves produce certain W-wave modes in the W-wave medium and a plant's response to light results. (3) Wave action produces forces in the plant (that cancel gravity in the vertical case), combined with other affects, and sap flow results. (4) Plant structures are determined by genetics and environment from a set of quantized wavelengths available to all plants. The quantized values available to plants and all life provide templates for life to develop. Compare with quantum mechanics as a template for the structure of matter. Life processes suggest that templates also influence the development and stability of all structures in the universe (see www.chatlink.com/ oedphd/ for references).

  3. Viscous Creep in Dry Unconsolidated Gulf of Mexico Shale

    NASA Astrophysics Data System (ADS)

    Chang, C.; Zoback, M. D.

    2002-12-01

    We conducted laboratory experiments to investigate creep characteristics of dry unconsolidated shale recovered from the pathfinder well, Gulf of Mexico (GOM). We subjected jacketed cylindrical specimens (25.4 mm diameter) to hydrostatic pressure that increased from 10 to 50 MPa in steps of 5 MPa. We kept the pressure constant in each step for at least 6 hours and measured axial and lateral strains (provided by LVDTs) and ultrasonic velocities (provided by seismic-wave transducers). The dry shale exhibited pronounced creep strain at all pressure levels, indicating that the dry frame of the shale possesses an intrinsic viscous property. Interestingly, the creep behavior of the shale is different above and below 30 MPa confining pressure. Above 30 MPa, the amount of creep strain in 6 hours is nearly constant with equal pressurization steps, indicating a linear viscous rheology. Below 30 MPa, the amount of creep increases linearly as pressure is raised in constant incremental steps, suggesting that the creep deformation accelerates as pressure increases within this pressure range. Thus, the general creep behavior of the GOM shale is characterized by a bilinear dependence on pressure magnitude. This creep characteristic is quite different from that observed in unconsolidated reservoir sands (Hagin and Zoback, 2002), which exhibited nearly constant amount of creep regardless of the pressure magnitude for equal increasing steps of pressure. The shale exhibits a lack of creep (and nearly negligible strain recovery) when unloaded, suggesting that the creep strain is irrecoverable and can be considered viscoplastic deformation. SEM observations show that the major mechanism of compaction of the dry shale appears to be packing of clay and a progressive collapse of pore (void) spaces. Creep compaction is considerably more significant than compaction that occurs instantaneously, indicating that the process of shale compaction is largely time-dependent.

  4. Investigations of biological processes in Austrian MBT plants

    SciTech Connect

    Tintner, J.; Smidt, E.; Boehm, K.; Binner, E.

    2010-10-15

    Mechanical biological treatment (MBT) of municipal solid waste (MSW) has become an important technology in waste management during the last decade. The paper compiles investigations of mechanical biological processes in Austrian MBT plants. Samples from all plants representing different stages of degradation were included in this study. The range of the relevant parameters characterizing the materials and their behavior, e.g. total organic carbon, total nitrogen, respiration activity and gas generation sum, was determined. The evolution of total carbon and nitrogen containing compounds was compared and related to process operation. The respiration activity decreases in most of the plants by about 90% of the initial values whereas the ammonium release is still ongoing at the end of the biological treatment. If the biogenic waste fraction is not separated, it favors humification in MBT materials that is not observed to such extent in MSW. The amount of organic carbon is about 15% dry matter at the end of the biological treatment.

  5. Distribution and Molecular Characterization of Campylobacter Species at Different Processing Stages in Two Poultry Processing Plants.

    PubMed

    Lee, Soo-Kyoung; Park, Hyun-Jung; Lee, Jin-Hee; Lim, Jong-Soo; Seo, Kun-Ho; Heo, Eun-Jeong; Kim, Young-Jo; Wee, Sung-Hwan; Moon, Jin-San

    2017-03-01

    The present study analyzed the prevalence and molecular characterization of Campylobacter at different processing steps in poultry slaughterhouses to determine where contamination mainly occurs. A total of 1,040 samples were collected at four different stages (preprocessing cloacal swabs, postevisceration, postwashing, and postchilling) in two processing plants. Campylobacter was detected in 5.8% (15 of 260) of the cloacal swabs and in 13.3% (104 of 780) of the processing samples. In both plants, the sampling points with the greatest contamination rates were after evisceration (20.5% and 15.4% for plants A and B, respectively) and significantly decreased after chilling (p < 0.05, from 20.5% to 10.9%) in plant A and after washing (from 15.4% to 2.9%) in plants B. In the result, however, the reduction in Campylobacter contamination was achieved through the sequential processing procedures in both plants. Campylobacter loads (>10(3) colony-forming units [CFUs]/mL) also decreased from 41.7% at evisceration to 20.0% in final carcasses. The genetic relationships of isolates were analyzed by the automated repetitive sequence-based polymerase chain reaction (rep-PCR) system, and the rep-PCR banding pattern was found to be unrelated to the processing plants, species, sampling point, or sampling day. As the gap in the intervention efficacy remains between plant A and B despite several consistencies, a national program for monitoring critical processing stages in poultry processing plants is recommended for the successful exportation of Korean-processed white mini broiler meat.

  6. Life-cycle analysis of shale gas and natural gas.

    SciTech Connect

    Clark, C.E.; Han, J.; Burnham, A.; Dunn, J.B.; Wang, M.

    2012-01-27

    The technologies and practices that have enabled the recent boom in shale gas production have also brought attention to the environmental impacts of its use. Using the current state of knowledge of the recovery, processing, and distribution of shale gas and conventional natural gas, we have estimated up-to-date, life-cycle greenhouse gas emissions. In addition, we have developed distribution functions for key parameters in each pathway to examine uncertainty and identify data gaps - such as methane emissions from shale gas well completions and conventional natural gas liquid unloadings - that need to be addressed further. Our base case results show that shale gas life-cycle emissions are 6% lower than those of conventional natural gas. However, the range in values for shale and conventional gas overlap, so there is a statistical uncertainty regarding whether shale gas emissions are indeed lower than conventional gas emissions. This life-cycle analysis provides insight into the critical stages in the natural gas industry where emissions occur and where opportunities exist to reduce the greenhouse gas footprint of natural gas.

  7. Environmental baselines: preparing for shale gas in the UK

    NASA Astrophysics Data System (ADS)

    Bloomfield, John; Manamsa, Katya; Bell, Rachel; Darling, George; Dochartaigh, Brighid O.; Stuart, Marianne; Ward, Rob

    2014-05-01

    and thermal waters, for example from the Carboniferous and Triassic which have concentrations in excess of 1500 micrograms per litre. It is important to understand the spatial relationships between potential shale gas source rocks and overlying aquifers if shale gas is to be developed in a safe and sustainable manner. The BGS and the Environment Agency have undertaken a national-scale study of the UK to assess the vertical separation between potential shale gas source rocks and major aquifers (iHydrogeology project). Aquifer - shale separations have been documented in the range <200m to >2km. The geological modelling process will be presented and discussed along with maps combining the results of the methane baseline study, the distribution of Principal Aquifers and shale/clay units, and aquifer - shale separation maps for the UK.

  8. Western oil-shale development: a technology assessment. Volume 2: technology characterization and production scenarios

    SciTech Connect

    Not Available

    1982-01-01

    A technology characterization of processes that may be used in the oil shale industry is presented. The six processes investigated are TOSCO II, Paraho Direct, Union B, Superior, Occidental MIS, and Lurgi-Ruhrgas. A scanario of shale oil production to the 300,000 BPD level by 1990 is developed. (ACR)

  9. Overpressure generation by load transfer following shale framework weakening due to smectite diagenesis

    USGS Publications Warehouse

    Lahann, R.W.; Swarbrick, R.E.

    2011-01-01

    Basin model studies which have addressed the importance of smectite conversion to illite as a source of overpressure in the Gulf of Mexico have principally relied on a single-shale compaction model and treated the smectite reaction as only a fluid-source term. Recent fluid pressure interpretation and shale petrology studies indicate that conversion of bound water to mobile water, dissolution of load-bearing grains, and increased preferred orientation change the compaction properties of the shale. This results in substantial changes in effective stress and fluid pressure. The resulting fluid pressure can be 1500-3000psi higher than pressures interpreted from models based on shallow compaction trends. Shale diagenesis changes the mineralogy, volume, and orientation of the load-bearing grains in the shale as well as the volume of bound water. This process creates a weaker (more compactable) grain framework. When these changes occur without fluid export from the shale, some of the stress is transferred from the grains onto the fluid. Observed relationships between shale density and calculated effective stress in Gulf of Mexico shelf wells confirm these changes in shale properties with depth. Further, the density-effective stress changes cannot be explained by fluid-expansion or fluid-source processes or by prediagenesis compaction, but are consistent with a dynamic diagenetic modification of the shale mineralogy, texture, and compaction properties during burial. These findings support the incorporation of diagenetic modification of compaction properties as part of the fluid pressure interpretation process. ?? 2011 Blackwell Publishing Ltd.

  10. Invasive plant ecology and management: Linking processes to practice

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This book brings together 10 chapters from renowned researchers that study how ecosystems operate and how to adopt the principles of ecology to manage invasive plants. This book taps this expertise by seeking to bridge the inherent disconnect between processes operating within ecosystems and the pr...

  11. Indicator system for a process plant control complex

    DOEpatents

    Scarola, Kenneth; Jamison, David S.; Manazir, Richard M.; Rescorl, Robert L.; Harmon, Daryl L.

    1993-01-01

    An advanced control room complex for a nuclear power plant, including a discrete indicator and alarm system (72) which is nuclear qualified for rapid response to changes in plant parameters and a component control system (64) which together provide a discrete monitoring and control capability at a panel (14-22, 26, 28) in the control room (10). A separate data processing system (70), which need not be nuclear qualified, provides integrated and overview information to the control room and to each panel, through CRTs (84) and a large, overhead integrated process status overview board (24). The discrete indicator and alarm system (72) and the data processing system (70) receive inputs from common plant sensors and validate the sensor outputs to arrive at a representative value of the parameter for use by the operator during both normal and accident conditions, thereby avoiding the need for him to assimilate data from each sensor individually. The integrated process status board (24) is at the apex of an information hierarchy that extends through four levels and provides access at each panel to the full display hierarchy. The control room panels are preferably of a modular construction, permitting the definition of inputs and outputs, the man machine interface, and the plant specific algorithms, to proceed in parallel with the fabrication of the panels, the installation of the equipment and the generic testing thereof.

  12. 26. PROCESS PIPING AND CHEMICAL STORAGE TANKS AT SOUTH PLANT ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    26. PROCESS PIPING AND CHEMICAL STORAGE TANKS AT SOUTH PLANT NORTH EDGE FROM DECEMBER 7TH AVENUE. VIEW TO SOUTHWEST. - Rocky Mountain Arsenal, Bounded by Ninety-sixth Avenue & Fifty-sixth Avenue, Buckley Road, Quebec Street & Colorado Highway 2, Commerce City, Adams County, CO

  13. Secondary cleanup of Idaho Chemical Processing Plant solvent

    SciTech Connect

    Mailen, J.C.

    1985-01-01

    Solvent from the Idaho Chemical Processing Plant (ICPP) (operated by Westinghouse Idaho Nuclear Company, Inc.) has been tested to determine the ability of activated alumina to remove secondary degradation products - those degradation products which are not removed by scrubbing with sodium carbonate.

  14. A Competency-Based Instructional Program for Plant Process Operations.

    ERIC Educational Resources Information Center

    McDaniel, Joy; Mills, Steven

    This program guide provides materials to prepare learners for employment as Process Plant Operators through classroom instruction and practical shop experience. Contents include instructional goal and subgoals, an instructional analysis that describes development of the materials and instructional equipment and supplies and facilities…

  15. Pressurized fluidized-bed hydroretorting of Eastern oil shales

    SciTech Connect

    Roberts, M.J.; Mensinger, M.C.; Rue, D.M.; Lau, F.S. ); Schultz, C.W. ); Parekh, B.K. ); Misra, M. ); Bonner, W.P. )

    1992-11-01

    The Devonian oil shales of the Eastern United States are a significant domestic energy resource. The overall objective of the multi-year program, initiated in October 1987 by the US Department of Energy is to perform the research necessary to develop the Pressurized Fluidized-Bed Hydroretorting (PFH) process for producing oil from Eastern oil shales. The program also incorporates research on technologies in areas such as raw shale preparation, beneficiation, product separation, and waste disposal that have the potential of improving the economics and/or environmental acceptability of recovering oil from oil shales using the PFH process. The results of the original 3-year program, which was concluded in May 1991, have been summarized in a four-volume final report published by IGT. DOE subsequently approved a 1-year extension to the program to further develop the PFH process specifically for application to beneficiated shale as feedstock. Studies have shown that beneficiated shale is the preferred feedstock for pressurized hydroretorting. The program extension is divided into the following active tasks. Task 3. testing of process improvement concepts; Task 4. beneficiation research; Task 5. operation of PFH on beneficiated shale; Task 6. environmental data and mitigation analyses; Task 7. sample procurement, preparation, and characterization; and Task 8. project management and reporting. In order to accomplish all the program objectives, the Institute of Gas Technology (IGT), the prime contractor, worked with four other institutions: the University of Alabama/Mineral Resources Institute (MRI), the University of Kentucky Center for Applied Energy Research (UK-CAER), the University of Nevada (UN) at Reno, and Tennessee Technological University (TTU). This report presents the work performed during the program extension from June 1, 1991 through May 31, 1992.

  16. Occidental vertical modified in situ process for the recovery of oil from oil shale, Phase 2. Construction, operation, testing, and environmental impact. Final report, August 1981-December 1982. Volume 1

    SciTech Connect

    Stevens, A.L.; Zahradnik, R.L.; Kaleel, R.J.

    1984-01-01

    Occidential Oil Shale, Inc. (OOSI) recently completed the demonstration of mining, rubblization, ignition, and simulataneous processing of two commericalized modified in situ (MIS) retorts at the Logas Wash facility near DeBeque, Colorado. Upon completion of Retort 6 in 1978, Occidential began incorporating all of the knowledge previously acquired in an effort to design two more commercial-sized MIS retorts. Any commercial venture of the future would require the ability to operate simultaneously more than one retort. Thus, Retorts 7 and 8 were developed during 1980 and 1981 through joint funding of the DOE and OOSI in Phase II. Rubblization of the retorts produced an average rubble void of 18.5% in the low grade shale (17 gallons per ton) at the Logan Wash site. After rubblization, bulkheads were constructed, inlet and offgas pipes were installed and connected to surface processing facilities and liquid product handling systems were connected to the retorts. Extensive instrumentation was installed in cooperation with Sandia National Laboratories for monitoring the complete operation of the retorts. After pre-ignition testing, Retort 8 was ignited in December of 1981 and Retort 7 was ignited in January of 1982. The retorts were operated without interruption from ignition until mid- November of 1982 at which time inlet gas injection was terminated and water quenching was begun. Total product yield from the two retorts was approximately 200,000 barrels of oil, or 70% of the Fischer Assay oil-in-place in the rubblized rock in the two retrots. Water quenching studies were conducted over a period of several months, with the objective of determining the rate of heat extraction from the retorts as well as determining the quantity and quality of offgas and water coming out from the quenching process. Data from these studies are also included in this Summary Report. 62 figs., 18 tabs.

  17. Design of self-processing antimicrobial peptides for plant protection.

    PubMed

    Powell, W A; Catranis, C M; Maynard, C A

    2000-08-01

    Small antimicrobial peptides are excellent candidates for inclusion in self-processing proteins that could be used to confer pathogen resistance in transgenic plants. Antimicrobial peptides as small as 22 amino acids in length have been designed to incorporate the residual amino acids left from protein processing by the tobacco etch virus'(TEVs') NIa protease. Also, by minimizing the length of these peptides and the number of highly hydrophobic residues, haemolytic activity was reduced without affecting the peptide's antimicrobial activity.

  18. Magnetic fluids effect upon growth processes in plants

    NASA Astrophysics Data System (ADS)

    Sala, F.

    1999-07-01

    The metabolic processes of plants growth and development take place according to some organic rules which are specific to their genetic potential. These processes may exhibit modifications of intensity, rhythm, sense, under the influence of the environmental conditions of agricultural systems, through certain factors and bioregulators artificially introduced by man. The results of some investigations regarding effects of biocompatible magnetic fluids (LMW 100 G) on the vegetal organism's (growth, development, fructifying, the level and quality of the yield precocity) are presented.

  19. USAF shale oil program status

    NASA Technical Reports Server (NTRS)

    Delaney, C. L.

    1984-01-01

    The test and evaluation program on shale derived fuel being conducted by the Air Force is intended to accomplish the minimum amount of testing necessary to assure both the safe use of shale oil derived turbine fuels in operational USAF aircraft and its compatibility with USAF handling systems. This program, which was designed to take advantage of existing R&D testing programs, began in 1981. However, due to a problem in acquiring the necessary fuel, the testing program was suspended until July 1983 when an additional sample of shale derived fuel was received. Tentatively, the Air Force is planning to make three relatively minor revisions to the procurement specifications requirements for the production shale derived fuel. These are: (1) Aromatic Contest (min) - 9% (by volume); (2) Nitrogen (max - 20 ppm by weight); and (3) Antioxidants - 9.1 g/100 gal (U.S.)

  20. Minor-element composition and organic carbon content of marine and nonmarine shales of Late Cretaceous age in the western interior of the United States

    USGS Publications Warehouse

    Tourtelot, H.A.

    1964-01-01

    The composition of nonmarine shales of Cretaceous age that contain less than 1 per cent organic carbon is assumed to represent the inherited minor-element composition of clayey sediments delivered to the Cretaceous sea that occupied the western interior region of North America. Differences in minor-element content between these samples and samples of 1. (a) nonmarine carbonaceous shales (1 to 17 per cent organic carbon), 2. (b) nearshore marine shales (less than 1 per cent organic carbon), and 3. (c) offshore marine shales (as much as 8 per cent organic carbon), all of the same age, reveal certain aspects of the role played by clay minerals and organic materials in affecting the minor-element composition of the rocks. The organic carbon in the nonmarine rocks occurs in disseminated coaly plant remains. The organic carbon in the marine rocks occurs predominantly in humic material derived from terrestrial plants. The close similarity in composition between the organic isolates from the marine samples and low-rank coal suggests that the amount of marine organic material in these rocks is small. The minor-element content of the two kinds of nonmarine shales is the same despite the relatively large amount of organic carbon in the carbonaceous shales. The nearshore marine shales, however, contain larger median amounts of arsenic, boron, chromium, vanadium and zinc than do the nonmarine rocks; and the offshore marine shales contain even larger amounts of these elements. Cobalt, molybdenum, lead and zirconium show insignificant differences in median content between the nonmarine and marine rocks, although as much as 25 ppm molybdenum is present in some offshore marine samples. The gallium content is lower in the marine than in the nonmarine samples. Copper and selenium contents of the two kinds of nonmarine rocks and the nearshore marine samples are the same, but those of the offshore samples are larger. In general, arsenic, chromium, copper, molybdenum, selenium, vanadium

  1. Coal-shale interface detection

    NASA Technical Reports Server (NTRS)

    Broussard, P. H.; Burch, J. L.; Drost, E. J.; Stein, R. J. (Inventor)

    1979-01-01

    A penetrometer for coal-shale interface detection is presented. It is used with coal cutting equipment consisting of a reciprocating hammer, having an accelerometer mounted thereon to measure the impact of the hammer as it penetrates the ceiling or floor surface of a mine. Additionally, a pair of reflectometers simultaneously view the same surface, and the outputs from the accelerometer and reflectometers are detected and jointly registered to determine when an interface between coal and shale is being cut through.

  2. Coal-shale interface detector

    NASA Technical Reports Server (NTRS)

    Reid, H., Jr. (Inventor)

    1980-01-01

    A coal-shale interface detector for use with coal cutting equipment is described. The detector consists of a reciprocating hammer with an accelerometer to measure the impact of the hammer as it penetrates the ceiling or floor surface of a mine. Additionally, a pair of reflectometers simultaneously view the same surface, and the outputs from the accelerometer and reflectometers are detected and jointly registered to determine when an interface between coal and shale is being cut through.

  3. Investigation of the extraction of hydrocarbons from shale ore using supercritical carbon dioxide. Final technical report

    SciTech Connect

    Not Available

    1984-02-01

    Using supercritical carbon dioxide as a solvent, hydrocarbons were extracted from oil shale at low temperature under moderate pressure. Operational variables were studied. The average amount of oil removed corresponded to about 1% of the organic matter of the shale. The maximum yield was 0.73 gallons of oil per ton of shale or about 1.3%. Water was extracted from the shale in greater amounts than was oil. Extraction at temperatures below 400/sup 0/F did not produce high enough yields for the process to be commercially viable. Yield did increase with smaller particle size, increased time of extraction, increased temperature, and increased density of the solvent.

  4. Fracture toughness anisotropy in shale

    NASA Astrophysics Data System (ADS)

    Chandler, Michael R.; Meredith, Philip G.; Brantut, Nicolas; Crawford, Brian R.

    2016-03-01

    The use of hydraulic fracturing to recover shale gas has focused attention on the fundamental fracture properties of gas-bearing shales, but there remains a paucity of available experimental data on their mechanical and physical properties. Such shales are strongly anisotropic, so that their fracture propagation trajectories depend on the interaction between their anisotropic mechanical properties and the anisotropic in situ stress field in the shallow crust. Here we report fracture toughness measurements on Mancos shale determined in all three principal fracture orientations: Divider, Short Transverse, and Arrester, using a modified short-rod methodology. Experimental results for a range of other sedimentary and carbonate rocks are also reported for comparison purposes. Significant anisotropy is observed in shale fracture toughness measurements at ambient conditions, with values, as high as 0.72 MPa m1/2 where the crack plane is normal to the bedding, and values as low as 0.21 MPa m1/2 where the crack plane is parallel to the bedding. For cracks propagating nonparallel to bedding, we observe a tendency for deviation toward the bedding-parallel orientation. Applying a maximum energy release rate criterion, we determined the conditions under which such deviations are more or less likely to occur under more generalized mixed-mode loading conditions. We find for Mancos shale that the fracture should deviate toward the plane with lowest toughness regardless of the loading conditions.

  5. Characterization of shales using sink float procedures

    SciTech Connect

    Vadovic, C.J.

    1983-01-01

    The analysis of the organic fraction in shale leads to important processing insights. However, the analysis is complicated by the presence of a substantial fraction of rock. The rock often contains carbon, as carbonates, and hydrogen, as water of hydration, which make it extremely difficult to obtain a true organic analysis. The route used most often to obtain organic analyses is to isolate the kerogen by acid removal of the inorganics. This poses numerous problems in that the acids used, HCl and HF, can interact with and be incorporated into the organic matrix. Also basic nitrogen compounds are easily extracted from the shale. It has been observed that up to 20% of the organic carbon and up to 50% of the total nitrogen may be removed by acid extraction. To obviate these difficulties a procedure has been developed which utilizes the analyses of raw sink float shale samples to calculate the ratios of organic hydrogen and nitrogen to organic carbon. In addition an estimate of the hydrogen and nitrogen content of the mineral matter is obtained. (JMT)

  6. Characterization of shales using sink float procedures

    SciTech Connect

    Vadovic, C.J.

    1983-02-01

    The analysis of the organic fraction in shale leads to important processing insights. However, the analysis is complicated by the presence of a substantial fraction of rock. The rock often contains carbon, as carbonates, and hydrogen, as water of hydration, which make it extremely difficult to obtain a true organic analysis. The route used most often to obtain organic analyses is to isolate the kerogen by acid removal of the inorganics. This poses numerous problems in that the acids used, HCl and HF, can interact with and be incorporated into the organic matrix. Also basic nitrogen compounds are easily extracted from the shale. It has been observed that up to 20% of the organic carbon and up to 50% of the total nitrogen may be removed by acid extraction. To obviate these difficulties a procedure has been developed which utilizes the analyses of raw sink float shale samples to calculate the ratios of organic hydrogen and nitrogen to organic carbon. In addition an estimate of the hydrogen and nitrogen content of the mineral matter is obtained.

  7. Microfracturing during primary migration in shales

    NASA Astrophysics Data System (ADS)

    Teixeira, Marcello Goulart; Donzé, Frédéric; Renard, François; Panahi, Hamed; Papachristos, Efthymios; Scholtès, Luc

    2017-01-01

    In several geological environments, chemical reactions are coupled to rock deformation and the associated stresses induced locally interact with the far field loading. This is the case in immature shales that undergo burial and diagenesis, where the organic matter evolves with temperature into hydrocarbons which induces local volume expansion. At large scale, this mechanism is responsible for the transport of hydrocarbons from source to reservoir rocks, a process referred to as primary migration. However, how the interactions between local fluid production, microfracturing, and transport are coupled remain to be understood. Here, we analyze this coupling phenomenon by developing a discrete element model where the generation of local overpressures occurring in kerogen patches is simulated, while the surrounding rock is subjected to external loading. It is shown that, due to local fluid overpressure; microfracturing occurs and brings the fluids to migrate through the medium. The numerical results are confirmed by laboratory experiments where the network of microfractures induced in an immature Green River shale sample heated under small differential stress was imaged in three dimensions using X-ray microtomography. Moreover, the numerical simulations identify that the state of differential stress and the initial kerogen distribution constitute two key parameters that control the formation of the three-dimensional percolating microfracture network and could thus explain primary migration in shale rocks.

  8. Process and apparatus for detecting presence of plant substances

    SciTech Connect

    Kirby, J.A.

    1991-04-16

    This patent describes an apparatus and process for detecting the presence of plant substances in a particular environment. It comprises: measuring the background K40 gamma ray radiation level in a particular environment with a 1.46 MeV gamma ray counter system; measuring the amount of K40 gamma ray radiation emanating from a package containing a plant substance being passed through an environment with a counter; and generating an alarm signal when the total K40 gamma ray radiation reaches a predetermined level over and above the background level.

  9. Process and apparatus for detecting presence of plant substances

    DOEpatents

    Kirby, John A.

    1991-01-01

    An apparatus and process for detecting the presence of plant substances in a particular environment which comprises the steps of: measuring the background K40 gamma ray radiation level in a particular environment with a 1.46 MeV gamma ray counter system; measuring the amount of K40 gamma ray radiation emanating from a package containing a plant substance being passed through an environment with a counter; and generating an alarm signal when the total K40 gamma ray radiation reaches a predetermined level over and above the background level.

  10. Import, targeting, and processing of a plant polyphenol oxidase.

    PubMed Central

    Sommer, A; Ne'eman, E; Steffens, J C; Mayer, A M; Harel, E

    1994-01-01

    A tomato (Lycopersicon esculentum L.) gene encoding a precursor of polyphenol oxidase (PPO) was transcribed and translated in vitro. The import, targeting, and processing of the [35S]methionine-labeled precursor protein (pPPO) were studied in isolated chloroplasts. The protein was routed to the thylakoid lumen in two steps. The 67-kD precursor was first imported into the stroma in an ATP-dependent step. It was processed to a 62-kD intermediate by a stromal peptidase. Translocation into the lumen was light dependent and involved processing of the 62-kD to the 59-kD mature form. The mature polypeptide was soluble in the lumen and not bound to thylakoids. This two-step targeting pattern was observed in plastids from a variety of plants including pea (Pisum sativum L.), tomato, and maize (Zea mays L.). The ratio between the intermediate and mature forms observed depended on the plant species, leaf age, growth conditions, and illumination regime to which the plants had been subjected. Cu2+ was not required for pPPO import or processing. Furthermore, low concentrations of Cu2+ (1-5 microM) markedly inhibited the first import step. Tentoxin specifically inhibited pPPO import, leaving the precursor bound to the envelope membrane. The two-step routing of pPPO into chloroplasts, typical of thylakoid lumen proteins, is consistent with the two-domain structure of the transit peptide and appears to be a feature of all plant PPO genes isolated so far. No evidence was found for unorthodox routing mechanisms, which have been suggested to be involved in the import of plant PPOs. The two-step routing may account for some of the multiplicity of PPO observed in vivo. PMID:7972497

  11. Plant uprooting by flow as a fatigue mechanical process

    NASA Astrophysics Data System (ADS)

    Perona, Paolo; Edmaier, Katharina; Crouzy, Benoît

    2015-04-01

    In river corridors, plant uprooting by flow mostly occurs as a delayed process where flow erosion first causes root exposure until residual anchoring balances hydrodynamic forces on the part of the plant that is exposed to the stream. Because a given plant exposure time to the action of the stream is needed before uprooting occurs (time-to-uprooting), this uprooting mechanism has been denominated Type II, in contrast to Type I, which mostly affect early stage seedlings and is rather instantaneous. In this work, we propose a stochastic framework that describes a (deterministic) mechanical fatigue process perturbed by a (stochastic) process noise, where collapse occurs after a given exposure time. We test the model using the experimental data of Edmaier (2014) and Edmaier et al. (submitted), who investigated vegetation uprooting by flow in the limit of low plant stem-to-sediment size ratio by inducing parallel riverbed erosion within an experimental flume. We first identify the proper timescale and lengthscale for rescaling the model. Then, we show that it describes well all the empirical cumulative distribution functions (cdf) of time-to-uprooting obtained under constant riverbed erosion rate and assuming additive gaussian process noise. By this mean, we explore the level of determinism and stochasticity affecting the time-to-uprooting for Avena sativa in relation to root anchoring and flow drag forces. We eventually ascribe the overall dynamics of the Type II uprooting mechanism to the memory of the plant-soil system that is stored by root anchoring, and discuss related implications thereof. References Edmaier, K., Uprooting mechansims of juvenile vegetation by flow erosion, Ph.D. thesis, EPFL, 2014. Edmaier, K., Crouzy, B. and P. Perona. Experimental characterization of vegetation uprooting by flow. J. of Geophys. Res. - Biogeosci., submitted

  12. Traces in the dark: sedimentary processes and facies gradients in the upper shale member of the Upper Devonian-Lower Mississippian Bakken Formation, Williston Basin, North Dakota, U.S.A.

    USGS Publications Warehouse

    Egenhoff, Sven O.; Fishman, Neil S.

    2013-01-01

    Black, organic-rich rocks of the upper shale member of the Upper Devonian–Lower Mississippian Bakken Formation, a world-class petroleum source rock in the Williston Basin of the United States and Canada, contain a diverse suite of mudstone lithofacies that were deposited in distinct facies belts. The succession consists of three discrete facies associations (FAs). These comprise: 1) siliceous mudstones; 2) quartz- and carbonate-bearing, laminated mudstones; and 3) macrofossil-debris-bearing massive mudstones. These FAs were deposited in three facies belts that reflect proximal to distal relationships in this mudstone system. The macrofossil-debris-bearing massive mudstones (FA 3) occur in the proximal facies belt and contain erosion surfaces, some with overlying conodont and phosphate–lithoclast lag deposits, mudstones with abundant millimeter-scale siltstone laminae showing irregular lateral thickness changes, and shell debris. In the medial facies belt, quartz- and carbonate-bearing, laminated mudstones dominate, exhibiting sub-millimeter-thick siltstone layers with variable lateral thicknesses and localized mudstone ripples. In the distal siliceous mudstone facies belt, radiolarites, radiolarian-bearing mudstones, and quartz- and carbonate-bearing, laminated mudstones dominate. Overall, total organic carbon (TOC) contents range between about 3 and 10 wt %, with a general proximal to distal decrease in TOC content. Abundant evidence of bioturbation exists in all FAs, and the lithological and TOC variations are paralleled by changes in burrowing style and trace-fossil abundance. While two horizontal traces and two types of fecal strings are recognized in the proximal facies belt, only a single horizontal trace fossil and one type of fecal string characterize mudstones in the distal facies belt. Radiolarites intercalated into the most distal mudstones are devoid of traces and fecal strings. Bedload transport processes, likely caused by storm-induced turbidity

  13. Thirty thousand-year-old evidence of plant food processing

    PubMed Central

    Revedin, Anna; Aranguren, Biancamaria; Becattini, Roberto; Longo, Laura; Marconi, Emanuele; Lippi, Marta Mariotti; Skakun, Natalia; Sinitsyn, Andrey; Spiridonova, Elena; Svoboda, Jiří

    2010-01-01

    European Paleolithic subsistence is assumed to have been largely based on animal protein and fat, whereas evidence for plant consumption is rare. We present evidence of starch grains from various wild plants on the surfaces of grinding tools at the sites of Bilancino II (Italy), Kostenki 16–Uglyanka (Russia), and Pavlov VI (Czech Republic). The samples originate from a variety of geographical and environmental contexts, ranging from northeastern Europe to the central Mediterranean, and dated to the Mid-Upper Paleolithic (Gravettian and Gorodtsovian). The three sites suggest that vegetal food processing, and possibly the production of flour, was a common practice, widespread across Europe from at least ~30,000 y ago. It is likely that high energy content plant foods were available and were used as components of the food economy of these mobile hunter–gatherers. PMID:20956317

  14. Toxicity of Water Accommodated Fractions of Estonian Shale Fuel Oils to Aquatic Organisms.

    PubMed

    Blinova, Irina; Kanarbik, Liina; Sihtmäe, Mariliis; Kahru, Anne

    2016-02-01

    Estonia is the worldwide leading producer of the fuel oils from the oil shale. We evaluated the ecotoxicity of water accommodated fraction (WAF) of two Estonian shale fuel oils ("VKG D" and "VKG sweet") to aquatic species belonging to different trophic levels (marine bacteria, freshwater crustaceans and aquatic plants). Artificial fresh water and natural lake water were used to prepare WAFs. "VKG sweet" (lower density) proved more toxic to aquatic species than "VKG D" (higher density). Our data indicate that though shale oils were very toxic to crustaceans, the short-term exposure of Daphnia magna to sub-lethal concentrations of shale fuel oils WAFs may increase the reproductive potential of survived organisms. The weak correlation between measured chemical parameters (C10-C40 hydrocarbons and sum of 16 PAHs) and WAF's toxicity to studied species indicates that such integrated chemical parameters are not very informative for prediction of shale fuel oils ecotoxicity.

  15. Empirical evaluation of the Process Overview Measure for assessing situation awareness in process plants.

    PubMed

    Lau, Nathan; Jamieson, Greg A; Skraaning, Gyrd

    2016-03-01

    The Process Overview Measure is a query-based measure developed to assess operator situation awareness (SA) from monitoring process plants. A companion paper describes how the measure has been developed according to process plant properties and operator cognitive work. The Process Overview Measure demonstrated practicality, sensitivity, validity and reliability in two full-scope simulator experiments investigating dramatically different operational concepts. Practicality was assessed based on qualitative feedback of participants and researchers. The Process Overview Measure demonstrated sensitivity and validity by revealing significant effects of experimental manipulations that corroborated with other empirical results. The measure also demonstrated adequate inter-rater reliability and practicality for measuring SA in full-scope simulator settings based on data collected on process experts. Thus, full-scope simulator studies can employ the Process Overview Measure to reveal the impact of new control room technology and operational concepts on monitoring process plants. Practitioner Summary: The Process Overview Measure is a query-based measure that demonstrated practicality, sensitivity, validity and reliability for assessing operator situation awareness (SA) from monitoring process plants in representative settings.

  16. Habitat Fragmentation Drives Plant Community Assembly Processes across Life Stages

    PubMed Central

    Hu, Guang; Feeley, Kenneth J.; Yu, Mingjian

    2016-01-01

    Habitat fragmentation is one of the principal causes of biodiversity loss and hence understanding its impacts on community assembly and disassembly is an important topic in ecology. We studied the relationships between fragmentation and community assembly processes in the land-bridge island system of Thousand Island Lake in East China. We focused on the changes in species diversity and phylogenetic diversity that occurred between life stages of woody plants growing on these islands. The observed diversities were compared with the expected diversities from random null models to characterize assembly processes. Regression tree analysis was used to illustrate the relationships between island attributes and community assembly processes. We found that different assembly processes predominate in the seedlings-to-saplings life-stage transition (SS) vs. the saplings-to-trees transition (ST). Island area was the main attribute driving the assembly process in SS. In ST, island isolation was more important. Within a fragmented landscape, the factors driving community assembly processes were found to differ between life stage transitions. Environmental filtering had a strong effect on the seedlings-to-saplings life-stage transition. Habitat isolation and dispersal limitation influenced all plant life stages, but had a weaker effect on communities than area. These findings add to our understanding of the processes driving community assembly and species coexistence in the context of pervasive and widespread habitat loss and fragmentation. PMID:27427960

  17. Modifications to a cyclone oil shale retorting concept

    SciTech Connect

    Carpenter, H.C.; Harak, A.E.

    1989-10-01

    A system for utilizing oil shale fines, in which the fines, instead of being rejected as wastes, are crushed even finer and then are used in a cyclone retort is described. This patented process uses high combustion temperature that removes all of the organic material from the spent shale and converts it into an inert, granulated slag. The primary advantages of this retorting system over more conventional aboveground retorting processes are the ability to use finely divided oil shales as charge stock and the production of an essentially inert slag from the retorted shale. A series of calculations were made to evaluate variations of the original concept. The original process design was based on a cyclone furnace temperature of 2800{degree}F and the use of hot combustion gases as the retorting medium. A recent study of retorted and burned oil shale properties showed that molten slag could be produced at temperatures lower than 2800{degree}F; therefore, additional calculations were made using a furnace temperature of 2300{degree}F. 11 refs., 6 figs., 11 tabs.

  18. Combuston method of oil shale retorting

    DOEpatents

    Jones, Jr., John B.; Reeves, Adam A.

    1977-08-16

    A gravity flow, vertical bed of crushed oil shale having a two level injection of air and a three level injection of non-oxygenous gas and an internal combustion of at least residual carbon on the retorted shale. The injection of air and gas is carefully controlled in relation to the mass flow rate of the shale to control the temperature of pyrolysis zone, producing a maximum conversion of the organic content of the shale to a liquid shale oil. The parameters of the operation provides an economical and highly efficient shale oil production.

  19. The pilot plant for electron beam food processing

    NASA Astrophysics Data System (ADS)

    Migdal, W.; Walis, L.; Chmielewski, A. G.

    1993-07-01

    In the frames of the national programme on the application of irradiation for food preservation and hygienization an experimental plant for electron beam processing has been established in INCT. The pilot plant has been constructed inside an old fort what decreases significantly the cost of the investment. The pilot plant is equipped with a small research accelerator Pilot (10 MeV, 1 kW) and an industrial unit Elektronika (10 MeV, 10 kW). This allows both laboratory and full technological scale testing of the elaborated process to be conducted. The industrial unit is being equipped with e-/X conversion target, for high density products irradiation. On the basis of the research there were performed at different scientific institutions in Poland, health authorities have issued permissions for permanent treatment of spices, garlic, onions and temporary permissions for mushrooms, and potatoes. Dosimetric methods have been elaborated for the routine use at the plant. In the INCT laboratory methods for the control of e-/X treated food have been established.

  20. Evaluation of western and eastern shale oil residua as asphalt pavement recycling agents

    SciTech Connect

    Harnsberger, P.M.; Robertson, R.E.

    1990-03-01

    The objective of this investigation was to perform a preliminary evaluation of the utility of residual materials prepared from Green River Formation (western) and New Albany Shale (eastern) shale oils as recycling agents for aged asphalt pavement. Four petroleum asphalts were first aged by a thin-film accelerated-aging test, which simulates long service life of asphalt in pavement. The aged asphalts were mixed (recycled) with Green River Formation shale oil distillation residua to restore the original viscosities. Separately, for comparison, a commercial recycling agent was used to recycle the aged asphalts under the same circumstances. The recycled asphalts were reaged and the properties of both binder and asphalt-aggregate mixtures studied. Originally, the same study was intended for an eastern shale residua. However, the eastern shale oil distillation residua with the required flash point specification also had the properties of a viscosity builder; therefore, it was studied as such with asphalts that do not achieve sufficient viscosity during processing to serve as usable binders. Results show that Green River Formation shale oil residuum can be used to restore the original asphalt properties with favorable rheological properties, the shale oil residuum has a beneficial effect on resistance to moisture damage, the low-temperature properties of the shale oil residuum recycled asphalts are not adversely affected, and the low-temperature properties of the shale oil residuum recycled asphalts are dependent upon the chemistry of the mixture. The eastern shale oil residua was blended with soft petroleum asphalts. Results show the products have higher viscosities than the starting materials, the rheological properties of the soft asphalt-eastern shale oil residue blends are acceptable, and the eastern shale oil residue has dispersant properties despite its high viscosity. 11 refs., 3 figs., 9 tabs.

  1. Investigating Rare Earth Element Systematics in the Marcellus Shale

    NASA Astrophysics Data System (ADS)

    Yang, J.; Torres, M. E.; Kim, J. H.; Verba, C.

    2014-12-01

    The lanthanide series of elements (the 14 rare earth elements, REEs) have similar chemical properties and respond to different chemical and physical processes in the natural environment by developing unique patterns in their concentration distribution when normalized to an average shale REE content. The interpretation of the REE content in a gas-bearing black shale deposited in a marine environment must therefore take into account the paleoredox conditions of deposition as well as any diagenetic remobilization and authigenic mineral formation. We analyzed 15 samples from a core of the Marcellus Shale (Whipkey ST1, Greene Co., PA) for REEs, TOC, gas-producing potential, trace metal content, and carbon isotopes of organic matter in order to determine the REE systematics of a black shale currently undergoing shale gas development. We also conducted a series of sequential leaching experiments targeting the phosphatic fractions in order to evaluate the dominant host phase of REEs in a black shale. Knowledge of the REE system in the Marcellus black shale will allow us to evaluate potential REE release and behavior during hydraulic fracturing operations. Total REE content of the Whipkey ST1 core ranged from 65-185 μg/g and we observed three distinct REE shale-normalized patterns: middle-REE enrichment (MREE/MREE* ~2) with heavy-REE enrichment (HREE/LREE ~1.8-2), flat patterns, and a linear enrichment towards the heavy-REE (HREE/LREE ~1.5-2.5). The MREE enrichment occurred in the high carbonate samples of the Stafford Member overlying the Marcellus Formation. The HREE enrichment occurred in the Union Springs Member of the Marcellus Formation, corresponding to a high TOC peak (TOC ~4.6-6.2 wt%) and moderate carbonate levels (CaCO3 ~4-53 wt%). Results from the sequential leaching experiments suggest that the dominant host of the REEs is the organic fraction of the black shale and that the detrital and authigenic fractions have characteristic MREE enrichments. We present our

  2. Process simulation and economical evaluation of enzymatic biodiesel production plant.

    PubMed

    Sotoft, Lene Fjerbaek; Rong, Ben-Guang; Christensen, Knud V; Norddahl, Birgir

    2010-07-01

    Process simulation and economical evaluation of an enzymatic biodiesel production plant has been carried out. Enzymatic biodiesel production from high quality rapeseed oil and methanol has been investigated for solvent free and cosolvent production processes. Several scenarios have been investigated with different production scales (8 and 200 mio. kg biodiesel/year) and enzyme price. The cosolvent production process is found to be most expensive and is not a viable choice, while the solvent free process is viable for the larger scale production of 200 mio. kg biodiesel/year with the current enzyme price. With the suggested enzyme price of the future, both the small and large scale solvent free production proved viable. The product price was estimated to be 0.73-1.49 euro/kg biodiesel with the current enzyme price and 0.05-0.75 euro/kg with the enzyme price of the future for solvent free process.

  3. Water Resources Management for Shale Energy Development

    NASA Astrophysics Data System (ADS)

    Yoxtheimer, D.

    2015-12-01

    The increase in the exploration and extraction of hydrocarbons, especially natural gas, from shale formations has been facilitated by advents in horizontal drilling and hydraulic fracturing technologies. Shale energy resources are very promising as an abundant energy source, though environmental challenges exist with their development, including potential adverse impacts to water quality. The well drilling and construction process itself has the potential to impact groundwater quality, however if proper protocols are followed and well integrity is established then impacts such as methane migration or drilling fluids releases can be minimized. Once a shale well has been drilled and hydraulically fractured, approximately 10-50% of the volume of injected fluids (flowback fluids) may flow out of the well initially with continued generation of fluids (produced fluids) throughout the well's productive life. Produced fluid TDS concentrations often exceed 200,000 mg/L, with elevated levels of strontium (Sr), bromide (Br), sodium (Na), calcium (Ca), barium (Ba), chloride (Cl), radionuclides originating from the shale formation as well as fracturing additives. Storing, managing and properly disposisng of these fluids is critical to ensure water resources are not impacted by unintended releases. The most recent data in Pennsylvania suggests an estimated 85% of the produced fluids were being recycled for hydraulic fracturing operations, while many other states reuse less than 50% of these fluids and rely moreso on underground injection wells for disposal. Over the last few years there has been a shift to reuse more produced fluids during well fracturing operations in shale plays around the U.S., which has a combination of economic, regulatory, environmental, and technological drivers. The reuse of water is cost-competitive with sourcing of fresh water and disposal of flowback, especially when considering the costs of advanced treatment to or disposal well injection and lessens

  4. Shale gas wastewater management under uncertainty.

    PubMed

    Zhang, Xiaodong; Sun, Alexander Y; Duncan, Ian J

    2016-01-01

    This work presents an optimization framework for evaluating different wastewater treatment/disposal options for water management during hydraulic fracturing (HF) operations. This framework takes into account both cost-effectiveness and system uncertainty. HF has enabled rapid development of shale gas resources. However, wastewater management has been one of the most contentious and widely publicized issues in shale gas production. The flowback and produced water (known as FP water) generated by HF may pose a serious risk to the surrounding environment and public health because this wastewater usually contains many toxic chemicals and high levels of total dissolved solids (TDS). Various treatment/disposal options are available for FP water management, such as underground injection, hazardous wastewater treatment plants, and/or reuse. In order to cost-effectively plan FP water management practices, including allocating FP water to different options and planning treatment facility capacity expansion, an optimization model named UO-FPW is developed in this study. The UO-FPW model can handle the uncertain information expressed in the form of fuzzy membership functions and probability density functions in the modeling parameters. The UO-FPW model is applied to a representative hypothetical case study to demonstrate its applicability in practice. The modeling results reflect the tradeoffs between economic objective (i.e., minimizing total-system cost) and system reliability (i.e., risk of violating fuzzy and/or random constraints, and meeting FP water treatment/disposal requirements). Using the developed optimization model, decision makers can make and adjust appropriate FP water management strategies through refining the values of feasibility degrees for fuzzy constraints and the probability levels for random constraints if the solutions are not satisfactory. The optimization model can be easily integrated into decision support systems for shale oil/gas lifecycle

  5. Estimating The CO2 Sequestration Capacity of Fractured Shale Formations Using Methane Production Rates: The Case of the Utica Shale

    NASA Astrophysics Data System (ADS)

    Tao, Z.; Clarens, A. F.

    2014-12-01

    how this modeling framework, which captures the underlying physical transport processes, is computationally efficient and it can be run using readily available data sources, will compare to more complex models of sequestration in shales.

  6. INNOVATIVE FRESH WATER PRODUCTION PROCESS FOR FOSSIL FUEL PLANTS

    SciTech Connect

    James F. Klausner; Renwei Mei; Yi Li; Jessica Knight

    2004-09-01

    An innovative Diffusion Driven Desalination (DDD) process was recently described where evaporation of mineralized water is driven by diffusion within a packed bed. The energy source to drive the process is derived from low pressure condensing steam within the main condenser of a steam power generating plant. Since waste heat is used to drive the process, the main cost of fresh water production is attributed to the energy cost of pumping air and water through the packed bed. This report describes the annual progress made in the development and analysis of a Diffusion Driven Desalination (DDD) system. A combined thermodynamic and dynamic analysis demonstrates that the DDD process can yield a fresh water production of 1.03 million gallon/day by utilizing waste heat from a 100 MW steam power plant based on a condensing steam pressure of only 3'' Hg. Throughout the past year, the main focus of the desalination process has been on the diffusion tower and direct contact condenser. Detailed heat and mass transfer analyses required to size and analyze these heat and mass transfer devices are described. An experimental DDD facility has been fabricated, and temperature and humidity data have been collected over a range of flow and thermal conditions. The analyses agree quite well with the current data and the information available in the literature. Direct contact condensers with and without packing have been investigated. It has been experimentally observed that the fresh water production rate is significantly enhanced when packing is added to the direct contact condensers.

  7. An Exploratory Research and Development Program Leading to Specifications for Aviation Turbine Fuel from Whole Crude Shale Oil. Part V.

    DTIC Science & Technology

    1982-03-01

    Naphtha Hydrotreater and Fractionator Simplified Flow Diagram 43 6 Anhydrous HCl Extraction Plant Simplified Flow Diagram 44 7 Gas Oil Hydrocracker...Plants 47 10 Schematic Flow Diagram of Naphtha Hydrotreater 48 11 Schematic Flow Diagram of Anhydrous HCI Extraction Plant 49 12 Schematic Flow...Schematic Flow Diagram for Refining Raw Shale Oil Using Anhydrous HCl Extraction, JP-4 Operation 55 18 Schematic Flow Diagram fo-- Refining Raw Shale Oil

  8. Selling 'Fracking': Legitimation of High Speed Oil and Gas Extraction in the Marcellus Shale Region

    NASA Astrophysics Data System (ADS)

    Matz, Jacob R.

    The advent of horizontal hydraulic fracture drilling, or 'fracking,' a technology used to access oil and natural gas deposits, has allowed for the extraction of deep, unconventional shale gas and oil deposits in various shale seams throughout the United States and world. One such shale seam, the Marcellus shale, extends from New York State, across Pennsylvania, and throughout West Virginia, where shale gas development has significantly increased within the last decade. This boom has created a massive amount of economic activity surrounding the energy industry, creating jobs for workers, income from leases and royalties for landowners, and profits for energy conglomerates. However, this bounty comes with risks to environmental and public health, and has led to divisive community polarization over the issue in the Marcellus shale region. In the face of potential environmental and social disruption, and a great deal of controversy surrounding 'fracking,' the oil and gas industry has had to undertake a myriad of public relations campaigns and initiatives to legitimize their extraction efforts in the Marcellus shale region, and to project the oil and gas industry in a positive light to residents, policy makers, and landowners. This thesis describes one such public relations initiative, the Energy in Depth Northeast Marcellus Initiative. Through qualitative content analysis of Energy in Depth's online web material, this thesis examines the ways in which the oil and gas industry narrates the shale gas boom in the Marcellus shale region, and the ways in which the industry frames the discourse surrounding natural gas development. Through the use of environmental imagery, appeals to scientific reason, and appeals to patriotism, the oil and gas industry uses Energy in Depth to frame the shale gas extraction process in a positive way, all the while framing those who question or oppose the processes of shale gas extraction as irrational obstructionists.

  9. Life cycle water consumption for shale gas and conventional natural gas.

    PubMed

    Clark, Corrie E; Horner, Robert M; Harto, Christopher B

    2013-10-15

    Shale gas production represents a large potential source of natural gas for the nation. The scale and rapid growth in shale gas development underscore the need to better understand its environmental implications, including water consumption. This study estimates the water consumed over the life cycle of conventional and shale gas production, accounting for the different stages of production and for flowback water reuse (in the case of shale gas). This study finds that shale gas consumes more water over its life cycle (13-37 L/GJ) than conventional natural gas consumes (9.3-9.6 L/GJ). However, when used as a transportation fuel, shale gas consumes significantly less water than other transportation fuels. When used for electricity generation, the combustion of shale gas adds incrementally to the overall water consumption compared to conventional natural gas. The impact of fuel production, however, is small relative to that of power plant operations. The type of power plant where the natural gas is utilized is far more important than the source of the natural gas.

  10. Geochemistry of Brazilian oil shales

    SciTech Connect

    Neto, C.C.

    1983-02-01

    A general survey of the main brazilian oil shale formations presenting their location, oil reserve, age and stratigraphy introduces this paper. It is followed by a comparative survey of the data on chemical composition (elementary, minerals and organic constituents/biological markers) and of thermal alteration indexes in order to define their maturity. The geochemical phenomena involved with a large diabase intrusion in the Irati formation is particularly stressed. The analytical methods of Solid Phase Extraction and Functional Group Marker developed for the analysis of bitumens and kerogens and the results obtained from the application of these methods to brazilian oil shales are discussed. The paper ends with a brief description of a comprehensive analytical bibliography on brazilian oil shales prepared to serve as a data base for these organites.

  11. The economic valuation of improved process plant decision support technology.

    PubMed

    White, Douglas C

    2007-06-01

    How can investments that would potentially improve a manufacturing plant's decision process be economically justified? What is the value of "better information," "more flexibility," or "improved integration" and the technologies that provide these effects? Technology investments such as improved process modelling, new real time historians and other databases, "smart" instrumentation, better data analysis and visualization software, and/or improved user interfaces often include these benefits as part of their valuation. How are these "soft" benefits to be converted to a quantitative economic return? Quantification is important if rational management decisions are to be made about the correct amount of money to invest in the technologies, and which technologies to choose among the many available ones. Modelling the plant operational decision cycle-detect, analyse, forecast, choose and implement--provides a basis for this economic quantification. In this paper a new economic model is proposed for estimation of the value of decision support investments based on their effect upon the uncertainty in forecasting plant financial performance. This model leads to quantitative benefit estimates that have a realistic financial basis. An example is presented demonstrating the application of the method.

  12. Signal processing by protein tyrosine phosphorylation in plants

    PubMed Central

    2011-01-01

    Protein phosphorylation is a reversible post-translational modification controlling many biological processes. Most phosphorylation occurs on serine and threonine, and to a less extend on tyrosine (Tyr). In animals, Tyr phosphorylation is crucial for the regulation of many responses such as growth or differentiation. Only recently with the development of mass spectrometry, it has been reported that Tyr phosphorylation is as important in plants as in animals. The genes encoding protein Tyr kinases and protein Tyr phosphatases have been identified in the Arabidopsis thaliana genome. Putative substrates of these enzymes, and thus Tyr-phosphorylated proteins have been reported by proteomic studies based on accurate mass spectrometry analysis of the phosphopeptides and phosphoproteins. Biochemical approaches, pharmacology and genetic manipulations have indicated that responses to stress and developmental processes involve changes in protein Tyr phosphorylation. The aim of this review is to present an update on Tyr phosphorylation in plants in order to better assess the role of this post-translational modification in plant physiology. PMID:21628997

  13. Laboratory plant study on the melting process of asbestos waste

    SciTech Connect

    Sakai, Shinichi; Terazono, Atsushi; Takatsuki, Hiroshi; Tsunemi, Takeshi

    1996-12-31

    The melting process was studied as a method of changing asbestos into non-hazardous waste and recovering it as a reusable resource. In an initial effort, the thermal behaviors of asbestos waste in terms of physical and chemical structure have been studied. Then, 10 kg/h-scale laboratory plant experiments were carried out. By X-ray diffraction analysis, the thermal behaviors of sprayed-on asbestos waste revealed that chrysotile asbestos waste change in crystal structure at around 800 C, and becomes melted slag, mainly composed of magnesium silicate, at around 1,500 C. Laboratory plant experiments on the melting process of sprayed-on asbestos have shown that melted slag can be obtained. X-ray diffraction analysis of the melted slag revealed crystal structure change, and SEM analysis showed the slag to have a non-fibrous form. And more, TEM analysis proved the very high treatment efficiency of the process, that is, reduction of the asbestos content to 1/10{sup 6} as a weight basis. These analytical results indicate the effectiveness of the melting process for asbestos waste treatment.

  14. Acid mine drainage potential of raw, retorted, and combusted Eastern oil shale: Final report

    SciTech Connect

    Sullivan, P.J.; Yelton, J.L.; Reddy, K.J.

    1987-09-01

    In order to manage the oxidation of pyritic materials effectively, it is necessary to understand the chemistry of both the waste and its disposal environment. The objective of this two-year study was to characterize the acid production of Eastern oil shale waste products as a function of process conditions, waste properties, and disposal practice. Two Eastern oil shales were selected, a high pyrite shale (unweathered 4.6% pyrite) and a low pyrite shale (weathered 1.5% pyrite). Each shale was retorted and combusted to produce waste products representative of potential mining and energy conversion processes. By using the standard EPA leaching tests (TCLP), each waste was characterized by determining (1) mineralogy, (2) trace element residency, and (3) acid-base account. Characterizing the acid producing potential of each waste and potential trace element hazards was completed with laboratory weathering studies. 32 refs., 21 figs., 12 tabs.

  15. Black shale - its deposition and diagenesis.

    USGS Publications Warehouse

    Tourtelot, H.A.

    1979-01-01

    Depositional processes involve a range of relationships among such factors as organic productivity, clastic sedimentation rate, and the intensity of oxidation by which organic matter is destroyed. If enough organic material is present to exhaust the oxygen in the environment, black shale results. During diagenesis for a thickness of a few meters beneath the surface, sulfate is reduced and sulfide minerals may be deposited. Fermentation reactions in the next several hundred meters result in biogenic methane, followed successively at greater depths by decarboxylation reactions and thermal maturation that form additional hydrocarbons. -from Author

  16. Weathering characteristics of the Lower Paleozoic black shale in northwestern Guizhou Province, south China

    NASA Astrophysics Data System (ADS)

    Liu, Yang; Zhang, Jinchuan; Tang, Xuan; Yang, Chao; Tang, Shuai

    2016-07-01

    The northwestern Guizhou in the Yangtze Craton of south China has a tremendous potential of shale gas resource. In this paper, we present results from major and trace elements, total organic carbon, mineralogical composition analysis and petrophysical parameters to characterise shale weathering features. Further, the differences of black shale between underground and outcrops have also been presented to examine the changes of black shale after weathering. Our results show that the trace elements of shale have varying degrees of loss in the weathering leaching process, both in Niutitang shale and Longmaxi shale, the loss of B, V, Ni, Cu, Zn and Ba is obvious, but the element migration quantity in the former is greater than in the latter. Decomposition of minerals such as pyrite, feldspar and calcite result in the leaching of Na, Ca, Mg and Fe. The loss rate of total organic carbon (TOC) in black shales ranges from 18% to 70% with an average of 43%; moreover, the loss of organic carbon in samples with high TOC content is larger than in those samples with low TOC content. Results following the testing of porosity and permeability show that porosity increases significantly after weathering but permeability changes little. Furthermore, the increment of porosity is greater in the Niutitang shale (with more sulphide minerals) than in the Longmaxi shale, suggesting that the oxidation of sulphide minerals may have led to the formation of an acidic environment, causing the other minerals in the black shale to weather more quickly, thus resulting in increased porosity. The content of clay minerals in the core samples is slightly lesser than the outcrop samples, but the TOC content in the core samples is greater and has a larger specific surface area. This suggest that the TOC content played a decisive role on the specific surface area of shale. In addition, changes in the black shale caused by the weathering process mainly depend on the mineral composition and the TOC content

  17. Prevalence of Campylobacter jejuni in two California chicken processing plants.

    PubMed Central

    Wempe, J M; Genigeorgis, C A; Farver, T B; Yusufu, H I

    1983-01-01

    Two federally inspected California chicken processing plants participated in Campylobacter jejuni prevalence studies. Twelve sampling sites were included in each of four groups. Groups were based on bird age, scald water temperature, and plant sampled. Scald water temperatures of 60 degrees C (140 degrees F) did not contribute to a lower prevalence of C. jejuni in edible parts, as did temperatures of 53 degrees C (127 degrees F) and 49 degrees C (120 degrees F). The feather picker and chilling tank were areas of major cross-contamination. C. jejuni was isolated from 68% of the ready-for-market products. The organism was recovered from 60 to 100% of the ceca in the four groups, and some numbers in the fecal material exceeded 10(6)/g. The level of C. jejuni in intestinal tracts seemed to correlate with the presence of the organism in the edible parts. PMID:6830212

  18. Maquoketa Shale Caprock Integrity Evaluation

    SciTech Connect

    Leetaru, Hannes

    2014-09-30

    The Knox Project objective is to evaluate the potential of formations within the Cambrian-Ordovician strata above the Mt. Simon Sandstone (St. Peter Sandstone and Potosi Dolomite) as potential targets for carbon dioxide (CO2) sequestration in the Illinois and Michigan Basins. The suitability of the St. Peter Sandstone and Potosi Dolomite to serve as reservoirs for CO2 sequestration is discussed in separate reports. In this report the data gathered from the Knox project, the Illinois Basin – Decatur Project (IBDP) and Illinois Industrial Carbon Capture and Sequestration project (IL-ICCS) are used to make some conclusions about the suitability of the Maquoketa shale as a confining layer for CO2 sequestration. These conclusions are then upscaled to basin-wide inferences based on regional knowledge. Data and interpretations (stratigraphic, petrophysical, fractures, geochemical, risk, seismic) applicable to the Maquoketa Shale from the above mentioned projects was inventoried and summarized. Based on the analysis of these data and interpretations, the Maquoketa Shale is considered to be an effective caprock for a CO2 injection project in either the Potosi Dolomite or St. Peter Sandstone because it has a suitable thickness (~200ft. ~61m), advantageous petrophysical properties (low effective porosity and low permeability), favorable geomechanical properties, an absence of observable fractures and is regionally extensive. Because it is unlikely that CO2 would migrate upward through the Maquoketa Shale, CO2, impact to above lying fresh water aquifers is unlikely. Furthermore, the observations indicate that CO2 injected into the St. Peter Sandstone or Potosi Dolomite may never even migrate up into the Maquoketa Shale at a high enough concentrations or pressure to threaten the integrity of the caprock. Site specific conclusions were reached by unifying the data and conclusions from the IBDP, ICCS and the Knox projects. In the Illinois Basin, as one looks further away from

  19. Experimental drilling in Chattanooga shale

    USGS Publications Warehouse

    Brown, Andrew

    1948-01-01

    Information on which specifications were originally drawn for drilling the Chattanooga shale was obtained largely from the TVA, whose geologists and driller laid great stress on the difficulties of maintaining circulation in their ho;es. The stated that the shale itself was not particularly difficult to core, the trouble being in the overburden. They did not use deep casing, depending on cementing to hold the holes open. On this basis, the Survey's specifications called for mid casing only, it being assumed that solid rock would be encountered at relatively shallow depths. This belief was borne out by examination of such road cuts and other exposures as were available.

  20. Plant and soil reactions to nickel ore processed tailings

    SciTech Connect

    Sheets, P.J.; Volk, V.V.; Gardner, E.H.

    1982-07-01

    Greenhouse and laboratory experiments were conducted to determine the effect that tailings, produced during the processing of nickeliferous laterite ores by a proposed U.S. Bureau of Mines Process, would have on plant growth and soil properties. The tailings contained soluble salts (7.6 mmhos/cm), NH/sub 4/-N (877 ..mu..g/g), Ni (0.28%), Mn (82 ..mu..g/g DTPA-extractable), Cr (0.44%), P (2 and 6 ..mu..g/g acid F- and NaHCO/sub 3/-extractable, respectively), and Ca and Mg (1.0 and 20.7 meq/100 g NH/sub 4/Ac-extractable, respectively). Water leaching decreased the NH/sub 4/-N concentration to 53 ..mu..g/g and the EC to 0.4 mmhos/cm by removal of (NH/sub 4/)/sub 2/SO/sub 4/ and MgSO/sub 4/ salts. Tall fescue (Festuca arundinacea Schreb.) was grown on Eightlar clay soil (skeletal, serpentinitic, mesic Typic Xerochrept) amended with 0, 223, 446, and 669 g tailings/kg soil and pure, unleached tailings for 32 weeks in the greenhouse. Seedling establishment of plants grown on soil amended at the highest tailings rate and the pure tailings was initially slow, but plants grown on soil amended at lower rates established readily and grew well. Plant P was <0.24%, while plant Ca concentrations were <0.45% throughout the growth period even though Ca(H/sub 2/PO/sub 2/)/sub 2/ and gypsum had been added. Ammonium acetate-extractable Ca at the end of the growth period was <5.0 meq/100 g on all amended soils.The Mn, Ni, and Cr concentrations of plants grown on treated soils were within normal ranges, although soil-analysis values were higher than commonly found. It is recommended that the tailings be washed to reduce NH/sub 4/-N and soluble salts prior to revegetation, and that native soil be added to the surface to reduce crusting.

  1. The Lower Jurassic Posidonia Shale in southern Germany: results of a shale gas analogue study

    NASA Astrophysics Data System (ADS)

    Biermann, Steffen; Schulz, Hans-Martin; Horsfield, Brian

    2013-04-01

    The shale gas potential of Germany was recently assessed by the Federal Institute for Geosciences and Natural Resources (2012 NiKo-Project) and is - in respect of the general natural gas occurrence in Germany - regarded as a good alternative hydrocarbon source. The Posidonia Shale in northern and southern Germany is one of the evaluated rock formation and easily accessible in outcrops in the Swabian Alps (southern Germany). The area of interest in this work is located in such an outcrop that is actively used for open pit mining next to the town of Dotternhausen, 70 km southwest of Stuttgart. 31 samples from the quarry of Dotternhausen were analyzed in order to characterize the immature Posidonia Shale (Lower Toarcian, Lias ɛ) of southern Germany as a gas shale precursor. Methods included are Rock Eval, Open Pyrolysis GC, SEM, Mercury Intrusion Porosimetry, XRD, and other. The samples of Dotternhausen contain exclusively type II kerogen. The majority of the organic matter is structureless and occurs in the argillaceous-calcareous matrix. Structured organic matter appears predominantly as alginite, in particular the algae "tasmanite" is noticeable. The TOC content ranges up to 16 wt% with a high bitumen content. The mineral content characterizes the Posidonia Shale as a marlstone or mudstone with varying clay-calcite ratios. The quartz and pyrite content reaches up to 20 wt% and 9 wt%, respectively. The rock fabric is characterized by a fine grained and laminated matrix. The mean porosity lies between 4 and 12 %. Fractures other than those introduced by sample preparation were not observed. The Posidonia Shale is predicted to have an excellent source rock potential and will generate intermediate, P-N-A low wax oil when exposed to higher P-T-conditions ("oil kitchen"). Contact surfaces between the kerogen and matrix will be vulnerable to pressure induced fracturing caused by hydrocarbon formation. Additional porosity will be formed during maturation due to the

  2. Pollution control technical manual: Lurgi oil shale retorting with open pit mining. Final report

    SciTech Connect

    Not Available

    1983-04-01

    The Lurgi oil shale PCTM addresses the Lurgi retorting technology, developed by Lurgi Kohle and Mineralotechnik GmbH, West Germany, in the manner in which this technology may be applied to the oil shales of the western United States. This manual proceeds through a description of the Lurgi oil shale plant proposed by Rio Blanco Oil Shale Company, characterizes the waste streams produced in each medium, and discusses the array of commercially available controls which can be applied to the Lurgi plant waste streams. From these generally characterized controls, several are examined in more detail for each medium in order to illustrate typical control technology operation. Control technology cost and performance estimates are presented, together with descriptions of the discharge streams, secondary waste streams and energy requirements. A summary of data limitations and needs for environmental and control technology considerations is presented.

  3. Research investigations in oil shale, tar sand, coal research, advanced exploratory process technology, and advanced fuels research: Volume 2 -- Jointly sponsored research program. Final report, October 1986--September 1993

    SciTech Connect

    Smith, V.E.

    1994-09-01

    Numerous studies have been conducted in five principal areas: oil shale, tar sand, underground coal gasification, advanced process technology, and advanced fuels research. In subsequent years, underground coal gasification was broadened to be coal research, under which several research activities were conducted that related to coal processing. The most significant change occurred in 1989 when the agreement was redefined as a Base Program and a Jointly Sponsored Research Program (JSRP). Investigations were conducted under the Base Program to determine the physical and chemical properties of materials suitable for conversion to liquid and gaseous fuels, to test and evaluate processes and innovative concepts for such conversions, to monitor and determine environmental impacts related to development of commercial-sized operations, and to evaluate methods for mitigation of potential environmental impacts. This report is divided into two volumes: Volume 1 consists of 28 summaries that describe the principal research efforts conducted under the Base Program in five topic areas. Volume 2 describes tasks performed within the JSRP. Research conducted under this agreement has resulted in technology transfer of a variety of energy-related research information. A listing of related publications and presentations is given at the end of each research topic summary. More specific and detailed information is provided in the topical reports referenced in the related publications listings.

  4. Selecting the process for your next MMA plant

    SciTech Connect

    Porcelli, R.V.; Juran, B.

    1986-03-01

    This article is a look at today's MMA commercial picture. It is also a discussion of new uses, a review of the acetone cyanohydrin process and some of the many new chemical pathways to MMA. It also presents economics for the best of these to help in selecting the next process. The primary focus is on the U.S., but Western Europe, Japan and other parts of the world are covered as well. New processes based on four-carbon feedstocks are in commercial operation today in Japan, and similar routes will be chosen for new plants in the U.S. and Western Europe. New applications are emerging that will revitalize the growth that has slowed in traditional markets for cast and sheet material and in surface coating applications.

  5. Technical and economic feasibility of oil shale beneficiation by heavy media

    SciTech Connect

    Sareen, S.S.; Albayrak, F.A.; Protopapas, T.E.; Uthus, D.B.

    1985-01-01

    A study to evaluate physical beneficiation processes was undertaken to assess the efficiency of beneficiating oil shale, and to measure its impact on the economics of shale oil production. This study evaluated the effect of crusher types and degree of crushing on beneficiation of oil shales, the natural beneficiation that occurs due to particle size distribution, different beneficiation techniques (heavy liquid sink-float, heavy media cyclones, the Dyna Whirlpool Process, and froth flotation), and the costs associated with beneficiating low grade oil shales. Every effort was made to incorporate all test data available in published reports for both the Green River and Eastern Oil Shales. Results of beneficiation tests show that within the scatter in data, there is no effect of shale particle size (between 45 microns to -3''), method of beneficiation, grade of feed material 13 to 3/GPT), or type of crusher used on oil recovery. The geochemical nature of the oil shale clearly shows that maximum separation of kerogen and inorganic materials occur at particle size below 20 microns. This was verified when the froth flotation technique was used on these fine particle sizes; the oil recovery increased dramatically with much lower oil losses. Analysis of the data shows that froth flotation is the preferred technique for beneficiating oil shales as opposed to heavy media separation.

  6. Western oil shale development: a technology assessment. Volume 7: an ecosystem simulation of perturbations applied to shale oil development

    SciTech Connect

    Not Available

    1982-05-01

    Progress is outlined on activities leading toward evaluation of ecological and agricultural impacts of shale oil development in the Piceance Creek Basin region of northwestern Colorado. After preliminary review of the problem, it was decided to use a model-based calculation approach in the evaluation. The general rationale and objectives of this approach are discussed. Previous studies were examined to characterize climate, soils, vegetation, animals, and ecosystem response units. System function was methodically defined by developing a master list of variables and flows, structuring a generalized system flow diagram, constructing a flow-effects matrix, and conceptualizing interactive spatial units through spatial matrices. The process of developing individual mathematical functions representing the flow of matter and energy through the various system variables in different submodels is discussed. The system model diagram identified 10 subsystems which separately account for flow of soil temperatures, soil water, herbaceous plant biomass, shrubby plant biomass, tree cover, litter biomass, shrub numbers, animal biomass, animal numbers, and land area. Among these coupled subsystems there are 45 unique kinds of state variables and 150 intra-subsystem flows. The model is generalizeable and canonical so that it can be expanded, if required, by disaggregating some of the system state variables and allowing for multiple ecological response units. It integrates information on climate, surface water, ecology, land reclamation, air quality, and solid waste as it is being developed by several other task groups.

  7. CO₂ Capture Membrane Process for Power Plant Flue Gas

    SciTech Connect

    Toy, Lora; Kataria, Atish; Gupta, Raghubir

    2012-04-01

    Because the fleet of coal-fired power plants is of such importance to the nation's energy production while also being the single largest emitter of CO₂, the development of retrofit, post-combustion CO₂ capture technologies for existing and new, upcoming coal power plants will allow coal to remain a major component of the U.S. energy mix while mitigating global warming. Post-combustion carbon capture technologies are an attractive option for coal-fired power plants as they do not require modification of major power-plant infrastructures, such as fuel processing, boiler, and steam-turbine subsystems. In this project, the overall objective was to develop an advanced, hollow-fiber, polymeric membrane process that could be cost-effectively retrofitted into current pulverized coal-fired power plants to capture at least 90% of the CO₂ from plant flue gas with 95% captured CO₂ purity. The approach for this project tackled the technology development on three different fronts in parallel: membrane materials R&D, hollow-fiber membrane module development, and process development and engineering. The project team consisted of RTI (prime) and two industrial partners, Arkema, Inc. and Generon IGS, Inc. Two CO₂-selective membrane polymer platforms were targeted for development in this project. For the near term, a next-generation, high-flux polycarbonate membrane platform was spun into hollow-fiber membranes that were fabricated into both lab-scale and larger prototype (~2,200 ft²) membrane modules. For the long term, a new fluoropolymer membrane platform based on poly(vinylidene fluoride) [PVDF] chemistry was developed using a copolymer approach as improved capture membrane materials with superior chemical resistance to flue-gas contaminants (moisture, SO₂, NOx, etc.). Specific objectives were: - Development of new, highly chemically resistant, fluorinated polymers as membrane materials with minimum selectivity of 30 for CO₂ over N₂ and CO₂ permeance

  8. INNOVATIVE FRESH WATER PRODUCTION PROCESS FOR FOSSIL FUEL PLANTS

    SciTech Connect

    James F. Klausner; Renwei Mei; Yi Li; Mohamed Darwish; Diego Acevedo; Jessica Knight

    2003-09-01

    This report describes the annual progress made in the development and analysis of a Diffusion Driven Desalination (DDD) system, which is powered by the waste heat from low pressure condensing steam in power plants. The desalination is driven by water vapor saturating dry air flowing through a diffusion tower. Liquid water is condensed out of the air/vapor mixture in a direct contact condenser. A thermodynamic analysis demonstrates that the DDD process can yield a fresh water production efficiency of 4.5% based on a feed water inlet temperature of only 50 C. An example is discussed in which the DDD process utilizes waste heat from a 100 MW steam power plant to produce 1.51 million gallons of fresh water per day. The main focus of the initial development of the desalination process has been on the diffusion tower. A detailed mathematical model for the diffusion tower has been described, and its numerical implementation has been used to characterize its performance and provide guidance for design. The analysis has been used to design a laboratory scale diffusion tower, which has been thoroughly instrumented to allow detailed measurements of heat and mass transfer coefficient, as well as fresh water production efficiency. The experimental facility has been described in detail.

  9. SignalPlant: an open signal processing software platform.

    PubMed

    Plesinger, F; Jurco, J; Halamek, J; Jurak, P

    2016-07-01

    The growing technical standard of acquisition systems allows the acquisition of large records, often reaching gigabytes or more in size as is the case with whole-day electroencephalograph (EEG) recordings, for example. Although current 64-bit software for signal processing is able to process (e.g. filter, analyze, etc) such data, visual inspection and labeling will probably suffer from rather long latency during the rendering of large portions of recorded signals. For this reason, we have developed SignalPlant-a stand-alone application for signal inspection, labeling and processing. The main motivation was to supply investigators with a tool allowing fast and interactive work with large multichannel records produced by EEG, electrocardiograph and similar devices. The rendering latency was compared with EEGLAB and proves significantly faster when displaying an image from a large number of samples (e.g. 163-times faster for 75  ×  10(6) samples). The presented SignalPlant software is available free and does not depend on any other computation software. Furthermore, it can be extended with plugins by third parties ensuring its adaptability to future research tasks and new data formats.

  10. Plant senescence and proteolysis: two processes with one destiny

    PubMed Central

    Diaz-Mendoza, Mercedes; Velasco-Arroyo, Blanca; Santamaria, M. Estrella; González-Melendi, Pablo; Martinez, Manuel; Diaz, Isabel

    2016-01-01

    Abstract Senescence-associated proteolysis in plants is a complex and controlled process, essential for mobilization of nutrients from old or stressed tissues, mainly leaves, to growing or sink organs. Protein breakdown in senescing leaves involves many plastidial and nuclear proteases, regulators, different subcellular locations and dynamic protein traffic to ensure the complete transformation of proteins of high molecular weight into transportable and useful hydrolysed products. Protease activities are strictly regulated by specific inhibitors and through the activation of zymogens to develop their proteolytic activity at the right place and at the proper time. All these events associated with senescence have deep effects on the relocation of nutrients and as a consequence, on grain quality and crop yield. Thus, it can be considered that nutrient recycling is the common destiny of two processes, plant senescence and, proteolysis. This review article covers the most recent findings about leaf senescence features mediated by abiotic and biotic stresses as well as the participants and steps required in this physiological process, paying special attention to C1A cysteine proteases, their specific inhibitors, known as cystatins, and their potential targets, particularly the chloroplastic proteins as source for nitrogen recycling. PMID:27505308

  11. Oil shale programs. Sixteenth quarterly report, October-December 1979

    SciTech Connect

    Stevens, A. L.

    1980-06-01

    This document is the sixteenth in a continuing series of quarterly reports, and describes the Sandia National Laboratories oil shale activities during the period between October 1, 1979 and December 31, 1979. Sandia's major responsibility to the DOE in situ oil shale program is to provide a quantitative evaluation to DOE of the various field projects being supported by DOE in the development of commercial in situ oil shale processes. This requires the deployment of instrumentation systems and analysis techniques to evaluate key procedures and operations. In order to fulfill this responsibility, it is necessary to develop new and advanced instrumentation systems and associated deployment, recording and analysis techniques that are unique to the field projects. In addition, a rock mechanics program provides material properties, material response models, and computational methods to support the design and evaluation functions. This report describes detailed activities in these project areas over the last quarter.

  12. Wastewater treatment in the oil-shale industry

    SciTech Connect

    Fox, J.P.; Phillips, T.E.

    1980-08-01

    Because of the stringent state and federal standards governing the discharge of wastes into local waters and the limited water supplies in this area, an oil shale industry will probably reuse process effluents to the maximum extent possible and evaporate the residuals. Therefore, discharge of effluents into surface and ground waters may not be necessary. This paper reviews the subject of wastewater treatment for an oil shale industry and identifies key issues and research priorities that must be resolved before a large-scale commercial industry can be developed. It focuses on treatment of the waters unique to an oil shale industry: retort water, gas condensate, and mine water. Each presents a unique set of challenges.

  13. Idaho Chemical Processing Plant safety document ICPP hazardous chemical evaluation

    SciTech Connect

    Harwood, B.J.

    1993-01-01

    This report presents the results of a hazardous chemical evaluation performed for the Idaho Chemical Processing Plant (ICPP). ICPP tracks chemicals on a computerized database, Haz Track, that contains roughly 2000 individual chemicals. The database contains information about each chemical, such as its form (solid, liquid, or gas); quantity, either in weight or volume; and its location. The Haz Track database was used as the primary starting point for the chemical evaluation presented in this report. The chemical data and results presented here are not intended to provide limits, but to provide a starting point for nonradiological hazards analysis.

  14. Evolution of porosity and geochemistry in Marcellus Formation black shale during weathering

    SciTech Connect

    Jin, Lixin; Mathur, Ryan; Rother, Gernot; Cole, David; Bazilevskaya, Ekaterina; Williams, Jennifer; Carone, Alex; Brantley, Susan L

    2013-01-01

    unweathered sample. This work highlights the impact of shale-water-O2 interactions in near-surface environments: (1) black shale weathering is important for global carbon cycles as previously buried organic matter is quickly oxidized; and (2) black shales weather more quickly than less organic- and sulfide-rich shales, leading to high porosity and mineral surface areas exposed for clay weathering. The fast rates of shale gas exploitation that are ongoing in Pennsylvania, Texas and other regions in the United States may furthermore lead to release of metals to the environment if reactions between water and black shale are accelerated by gas development activities in the subsurface just as they are by low-temperature processes in our field study.

  15. Evolution of porosity and geochemistry in Marcellus Formation black shale during weathering

    SciTech Connect

    Jin, Lixin; Ryan, Mathur; Rother, Gernot; Cole, David; Bazilevskaya, Ekaterina; Williams, Jennifer; Alex, Carone; Brantley, S. L.

    2013-01-01

    sample. This work highlights the impact of shale water O2interactions in near-surface environments: (1) black shale weathering is important for global carbon cycles as previously buried organic matter is quickly oxidized; and (2) black shales weather more quickly than less organic- and sulfide-rich shales, leading to high porosity and mineral surface areas exposed for clay weathering. The fast rates of shale gas exploitation that are ongoing in Pennsylvania, Texas and other regions in the United States may furthermore lead to release of metals to the environment if reactions between water and black shale are accelerated by gas development activities in the subsurface just as they are by low-temperature processes in ourfield study.

  16. Environmental control technology for shale oil wastewaters

    SciTech Connect

    Mercer, B.W.; Wakamiya, W.; Bell, N.E.; Mason, M.J.; Spencer, R.R.; English, C.J.; Riley, R.G.

    1982-09-01

    This report summarizes the results of studies conducted at Pacific Northwest Laboratory from 1976 to 1982 on environmental control technology for shale oil wastewaters. Experimental studies conducted during the course of the program were focused largely on the treatment and disposal of retort water, particularly water produced by in situ retorting of oil shale. Alternative methods were evaluated for the treatment and disposal of retort water and minewater. Treatment and disposal processes evaluated for retort water include evaporation for separation of water from both inorganic and organic pollutants; steam stripping for ammonia and volatile organics removal; activated sludge and anaerobic digestion for removal of biodegradable organics and other oxidizable substances; carbon adsorption for removal of nonbiodegradable organics; chemical coagulation for removal of suspended matter and heavy metals; wet air oxidation and solvent extraction for removal of organics; and land disposal and underground injection for disposal of retort water. Methods for the treatment of minewater include chemical processing and ion exchange for fluoride and boron removal. Preliminary cost estimates are given for several retort water treatment processes.

  17. Vacuolar processing enzyme in plant programmed cell death

    PubMed Central

    Hatsugai, Noriyuki; Yamada, Kenji; Goto-Yamada, Shino; Hara-Nishimura, Ikuko

    2015-01-01

    Vacuolar processing enzyme (VPE) is a cysteine proteinase originally identified as the proteinase responsible for the maturation and activation of vacuolar proteins in plants, and it is known to be an ortholog of animal asparaginyl endopeptidase (AEP/VPE/legumain). VPE has been shown to exhibit enzymatic properties similar to that of caspase 1, which is a cysteine protease that mediates the programmed cell death (PCD) pathway in animals. Although there is limited sequence identity between VPE and caspase 1, their predicted three-dimensional structures revealed that the essential amino-acid residues for these enzymes form similar pockets for the substrate peptide YVAD. In contrast to the cytosolic localization of caspases, VPE is localized in vacuoles. VPE provokes vacuolar rupture, initiating the proteolytic cascade leading to PCD in the plant immune response. It has become apparent that the VPE-dependent PCD pathway is involved not only in the immune response, but also in the responses to a variety of stress inducers and in the development of various tissues. This review summarizes the current knowledge on the contribution of VPE to plant PCD and its role in vacuole-mediated cell death, and it also compares VPE with the animal cell death executor caspase 1. PMID:25914711

  18. Scaling root processes based on plant functional traits (Invited)

    NASA Astrophysics Data System (ADS)

    Eissenstat, D. M.; McCormack, M. L.; Gaines, K.; Adams, T.

    2013-12-01

    There are great challenges to scaling root processes as variation across species and variation of a particular species over different spatial and temporal scales is poorly understood. We have examined tree species variation using multispecies plantings, often referred to by ecologists as 'common gardens'. Choosing species with wide variation in growth rate, root morphology (diameter, branching intensity) and root chemistry (root N and Ca concentration), we found that variation in root lifespan was well correlated with plant functional traits across 12 species. There was also evidence that localized liquid N addition could increase root lifespan and localized water addition diminished root lifespan over untreated controls, with effects strongest in the species of finest root diameter. In an adjacent forest, we have also seen tree species variation in apparent depth of rooting using water isotopes. In particular species of wood anatomy that was ring porous (e.g. oaks) typically had the deepest rooting depth, whereas those that had either diffuse-porous sapwood (maples) or tracheid sapwood (pines) were shallower rooted. These differences in rooting depth were related to sap flux of trees during and immediately after periods of drought. The extent that the patterns observed in central Pennsylvania are modulated by environment or indicative of other plant species will be discussed.

  19. Downstream processing of biopharmaceutical proteins produced in plants

    PubMed Central

    Buyel, Johannes Felix; Fischer, Rainer

    2014-01-01

    All biological platforms for the manufacture of biopharmaceutical proteins produce an initially turbid extract that must be clarified to avoid fouling sensitive media such as chromatography resins. Clarification is more challenging if the feed stream contains large amounts of dispersed particles, because these rapidly clog the filter media typically used to remove suspended solids. Charged polymers (flocculants) can increase the apparent size of the dispersed particles by aggregation, facilitating the separation of solids and liquids, and thus reducing process costs. However, many different factors can affect the behavior of flocculants, including the pH and conductivity of the medium, the size and charge distribution of the particulates, and the charge density and molecular mass of the polymer. Importantly, these properties can also affect the recovery of the target protein and the overall safety profile of the process. We therefore used a design of experiments approach to establish reliable predictive models that characterize the impact of flocculants during the downstream processing of biopharmaceutical proteins. We highlight strategies for the selection of flocculants during process optimization. These strategies will contribute to the quality by design aspects of process development and facilitate the development of safe and efficient downstream processes for plant-derived pharmaceutical proteins. PMID:24637706

  20. Design and test of two-step solar oil shale retort

    NASA Astrophysics Data System (ADS)

    Gregg, D. W.; Taylor, R. W.; Aiman, W. R.; Ruiz, R.

    1981-09-01

    A design of a two step solar retort, the logic for the design, and the results from a preliminary test of the design at the White Sands Solar Furnace, New Mexico are presented. Solar retorting of oil shale is a technically feasible process where focused solar energy can displace fossil energy in the production of liquid fuels. The predicted result is a 10 to 40% improvement in the exportable fuel (oil + gas) production per ton of raw shale. Greater improvements are achieved with the lower grade shales where with nonsolar processes a larger fraction of the fuel content has to be used in the processing.

  1. Mechanical Characterization of Mancos Shale

    NASA Astrophysics Data System (ADS)

    Broome, S.; Ingraham, M. D.; Dewers, T. A.

    2015-12-01

    A series of tests on Mancos shale have been undertaken to determine the failure surface and to characterize anisotropy. This work supports additional studies which are being performed on the same block of shale; fracture toughness, permeability, and chemical analysis. Mechanical tests are being conducted after specimens were conditioned for at least two weeks at 70% constant relative humidity conditions. Specimens are tested under drained conditions, with the constant relative humidity condition maintained on the downstream side of the specimen. The upstream is sealed. Anisotropy is determined through testing specimens that have been cored parallel and perpendicular to the bedding plane. Preliminary results show that when loaded parallel to bedding the shale is roughly 50% weaker. Test are run under constant mean stress conditions when possible (excepting indirect tension, unconfined compression, and hydrostatic). Tests are run in hydrostatic compaction to the desired mean stress, then differential stress is applied axially in displacement control to failure. The constant mean stress condition is maintained by decreasing the confining pressure by half of the increase in the axial stress. Results will be compared to typical failure criteria to investigate the effectiveness of capturing the behavior of the shale with traditional failure theory. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000. SAND2015-6107 A.

  2. Geochemistry of Graywackes and Shales.

    PubMed

    Weber, J N

    1960-03-04

    Sixty-nine graywackes and 33 shales were analyzed spectrographically for 14 minor elements to illustrate the variation of composition within a graywacke bed, between beds in one section, between sections, and between formations. Analyses of several fractions of a graywacke indicate what each contributes chemically to the rock.

  3. Geomechanical Characterization of Marcellus Shale

    NASA Astrophysics Data System (ADS)

    Villamor Lora, Rafael; Ghazanfari, Ehsan; Asanza Izquierdo, Enrique

    2016-09-01

    Understanding the reservoir conditions and material properties that govern the geomechanical behavior of shale formations under in situ conditions is of vital importance for many geomechanical applications. The development of new numerical codes and advanced multi-physical (thermo-hydro-chemo-mechanical) constitutive models has led to an increasing demand for fundamental material property data. Previous studies have shown that deformational rock properties are not single-value, well-defined, linear parameters. This paper reports on an experimental program that explores geomechanical properties of Marcellus Shale through a series of isotropic compression (i.e. σ 1 = σ 2 = σ 3) and triaxial (i.e. σ 1 > σ 2 = σ 3) experiments. Deformational and failure response of these rocks, as well as anisotropy evolution, were studied under different stress and temperature conditions using single- and multi-stage triaxial tests. Laboratory results revealed significant nonlinear and pressure-dependent mechanical response as a consequence of the rock fabric and the occurrence of microcracks in these shales. Moreover, multi-stage triaxial tests proved to be useful tools for obtaining failure envelopes using a single specimen. Furthermore, the anisotropic nature of Marcellus Shale was successfully characterized using a three-parameter coupled model.

  4. Investigation of the kinetics of water uptake into partially saturated shales

    NASA Astrophysics Data System (ADS)

    Roshan, H.; Andersen, M. S.; Rutlidge, H.; Marjo, C. E.; Acworth, R. I.

    2016-04-01

    Several processes have been proposed to describe the low recovery of hydraulic fracturing fluid in unconventional shale reservoirs which has caused both technical and environmental concerns. This study describes novel hydraulic experiments to quantitatively investigate the kinetics of water uptake into partially saturated shale through investigating the pressure response of injecting fluids (NaCl, KCl, MgCl2, and CaCl2 with different ionic concentrations) into crushed and sieved shale fragments. The results of the study indicate that the cumulative water uptake under pressure is likely to be controlled by three processes: surface hydration, capillary hydration including advective flow, and osmotic hydration. Each of these processes is a function of the differences between the in situ pore fluid and the injection fluid (solution chemistry and concentration) and the shale physicochemical properties, in particular the contact surface area, pore diameter, and the Cation Exchange Capacity (CEC). The uptake is not instantaneous, but is diffusion limited, with the rate governed by a number of kinetic processes. Uptake proceeds in three stages, each associated with a different process: (1) predominantly surface hydration, (2) predominantly capillary hydration and finally, (3) predominantly osmotic hydration. It was also shown that shale can take up a significant amount of water compared to its available solid volume. However, contrary to the conventional understanding, the increase in salinity of the injection fluid does not necessarily lead to reduced water uptake into shales, but is dependent on the type and concentration of cations within the shale and injecting fluid.

  5. Organic Substances from Unconventional Oil and Gas Production in Shale

    NASA Astrophysics Data System (ADS)

    Orem, W. H.; Varonka, M.; Crosby, L.; Schell, T.; Bates, A.; Engle, M.

    2014-12-01

    Unconventional oil and gas (UOG) production has emerged as an important element in the US and world energy mix. Technological innovations in the oil and gas industry, especially horizontal drilling and hydraulic fracturing, allow for the enhanced release of oil and natural gas from shale compared to conventional oil and gas production. This has made commercial exploitation possible on a large scale. Although UOG is enormously successful, there is surprisingly little known about the effects of this technology on the targeted shale formation and on environmental impacts of oil and gas production at the surface. We examined water samples from both conventional and UOG shale wells to determine the composition, source and fate of organic substances present. Extraction of hydrocarbon from shale plays involves the creation and expansion of fractures through the hydraulic fracturing process. This process involves the injection of large volumes of a water-sand mix treated with organic and inorganic chemicals to assist the process and prop open the fractures created. Formation water from a well in the New Albany Shale that was not hydraulically fractured (no injected chemicals) had total organic carbon (TOC) levels that averaged 8 mg/L, and organic substances that included: long-chain fatty acids, alkanes, polycyclic aromatic hydrocarbons, heterocyclic compounds, alkyl benzenes, and alkyl phenols. In contrast, water from UOG production in the Marcellus Shale had TOC levels as high as 5,500 mg/L, and contained a range of organic chemicals including, solvents, biocides, scale inhibitors, and other organic chemicals at thousands of μg/L for individual compounds. These chemicals and TOC decreased rapidly over the first 20 days of water recovery as injected fluids were recovered, but residual organic compounds (some naturally-occurring) remained up to 250 days after the start of water recovery (TOC 10-30 mg/L). Results show how hydraulic fracturing changes the organic

  6. Composition of the products of conversion of the oil shale from Chim-Loptyugskoye shale field in supercritical benzene

    NASA Astrophysics Data System (ADS)

    Kovalenko, Elena Yu.; Mel'nikov, Yaroslav Yu.; Sagachenko, Tatiana A.; Min, Raisa S.; Patrakov, Yury F.

    2016-11-01

    Methods of adsorption chromatography, NMR and IR-spectroscopy and GC-MS are used to analyze the liquid products of thermal decomposition of organic matter in the oil shale sample from Chim-Loptyugskoye field in benzene under supercritical conditions within the temperature range 200, 200-300, 300-400°C are used. The data on the structure of resin-asphaltene compounds and composition of oil components of resulting pyrolysates are presented. This investigation is important for the choice of optimal methods of processing of oil shale liquefaction products.

  7. The Influence of Shales on Slope Instability

    NASA Astrophysics Data System (ADS)

    Stead, Doug

    2016-02-01

    Shales play a major role in the stability of slopes, both natural and engineered. This paper attempts to provide a review of the state-of-the-art in shale slope stability. The complexities of shale terminology and classification are first reviewed followed by a brief discussion of the important physical and mechanical properties of relevance to shale slope stability. The varied mechanisms of shale slope stability are outlined and their importance highlighted by reference to international shale slope failures. Stability analysis and modelling of anisotropic rock slope masses are briefly discussed and the potential role of brittle rock fracture and damage highlighted. A short review of shale slopes in open pits is presented.

  8. Estimating reprocessing plant in-process inventories by simulation

    SciTech Connect

    Coulter, C.A.; Burr, T.L.; Hakkila, E.A.; Ai, H.; Kadokura, I.; Fujimaki, K.

    1995-09-01

    The Safeguards Systems Group`s generic simulation program FacSim was used to model the operation of the proposed Rokkasho Reprocessing Plant during an operating cycle consisting of a start-up phase, a period of steady-state operation, and a flush-out phase. The simulation results give a detailed account of nuclear material inventories in various process vessels as a function of time. As expected, it is found that the pulsed columns and the concentrator determine the rate at which the system responds to feed variations and transients; but the in-process inventory is dominated by the contents of the concentrator and tanks, and particularly by the contents of the tanks downstream from the concentrator. The results of the simulation were used for statistical studies of diversion detection, as described elsewhere in the Proceedings.

  9. Trace element partitioning during the retorting of Condor and Rundle oil shales

    SciTech Connect

    Patterson, J.H.; Dale, L.S.; Chapman, J.F. )

    1988-05-01

    Composite oil shale samples from the Condor and Rundle deposits in Queensland were retorted under Fischer assay conditions at temperatures ranging from 300 to 545{degree}C. Trace elements mobilized to the shale oil and retort water were determined at each temperature. The results were comparable for both oil shales. Several elements including arsenic, selenium, chlorine, bromine, cobalt, nickel, copper, and zinc were progressively mobilized as the retort temperature was increased. Most elements partition mainly to the oil and to a lesser extent to the retort water in a similar manner to other oil shales. For Rundle oil shales, trace element abundances in oils, and the proportions of elements mobilized, generally increased with oil shale grade. This was attributed to the reduced effect of adsorption and/or coking of heavier oil fractions during retorting of higher grade samples. Nickel porphyrins, unidentified organometallic compounds, pyrite, and halite are considered to be the sources of mobile trace elements. The results are relatively favorable for oil shale processing and show that arsenic is the most significant element in relation to both shale oil refining and disposal of retort waters.

  10. Identifying organic-rich Marcellus Shale lithofacies by support vector machine classifier in the Appalachian basin

    NASA Astrophysics Data System (ADS)

    Wang, Guochang; Carr, Timothy R.; Ju, Yiwen; Li, Chaofeng

    2014-03-01

    Unconventional shale reservoirs as the result of extremely low matrix permeability, higher potential gas productivity requires not only sufficient gas-in-place, but also a high concentration of brittle minerals (silica and/or carbonate) that is amenable to hydraulic fracturing. Shale lithofacies is primarily defined by mineral composition and organic matter richness, and its representation as a 3-D model has advantages in recognizing productive zones of shale-gas reservoirs, designing horizontal wells and stimulation strategy, and aiding in understanding depositional process of organic-rich shale. A challenging and key step is to effectively recognize shale lithofacies from well conventional logs, where the relationship is very complex and nonlinear. In the recognition of shale lithofacies, the application of support vector machine (SVM), which underlies statistical learning theory and structural risk minimization principle, is superior to the traditional empirical risk minimization principle employed by artificial neural network (ANN). We propose SVM classifier combined with learning algorithms, such as grid searching, genetic algorithm and particle swarm optimization, and various kernel functions the approach to identify Marcellus Shale lithofacies. Compared with ANN classifiers, the experimental results of SVM classifiers showed higher cross-validation accuracy, better stability and less computational time cost. The SVM classifier with radius basis function as kernel worked best as it is trained by particle swarm optimization. The lithofacies predicted using the SVM classifier are used to build a 3-D Marcellus Shale lithofacies model, which assists in identifying higher productive zones, especially with thermal maturity and natural fractures.

  11. Energy conservation study on Agripac Processing Plant, Salem, Oregon

    SciTech Connect

    Not Available

    1985-01-15

    An energy study on electrical energy using systems was performed at Agripac plant No. 1 in Salem, Oregon, in the late summer and fall of 1984. The plant processes mainly green beans, corn and squash. The respective products are inspected, prepared and graded, after which they are either canned or frozen in freeze tunnels or cold storage cells. The canned products are sent through pressure cookers. In the case of green beans and corn, some of the product is frozen in freeze tunnels and dumped into tote bins for the repack operation, while some is packaged in cartons and quick frozen in blast freeze cells. For squash, all the product processed is put into cartons and frozen in the cells. Energy conservation measures were calculated using a simple payback analysis. Conservation measures have been evaluated interactively to avoid overestimating savings, assuming that measures that are cost effective will be implemented as a package. In some cases, mutually exclusive conservation measures have been considered for a single application. These have been presented as an either/or measure. Details of the options are included in the text and the calculation sheets.

  12. Pressurized fluidized-bed hydroretorting of Eastern oil shales -- Beneficiation. Topical report for Task 4, Beneficiation research

    SciTech Connect

    Roberts, M.J.; Lau, F.S.; Mensinger, M.C.; Schultz, C.W.; Mehta, R.K.; Lamont, W.E.; Chiang, S.H.; Venkatadri, R.; Misra, M.

    1992-05-01

    The Mineral Resources Institute at the University of Alabama, along with investigators from the University of Pittsburgh and the University of Nevada-Reno, have conducted a research program on the beneficiation, of Eastern oil shales. The objective of the research program was to evaluate and adapt those new and emerging technologies that have the potential to improve the economics of recovering oil from Eastern oil shales. The technologies evaluated in this program can be grouped into three areas: fine grinding kerogen/mineral matter separation, and waste treatment and disposal. Four subtasks were defined in the area of fine grinding. They were as follows: Ultrasonic Grinding, Pressure Cycle Comminution, Stirred Ball Mill Grinding, and Grinding Circuit Optimization. The planned Ultrasonic grinding research was terminated when the company that had contracted to do the research failed. Three technologies for effecting a separation of kerogen from its associated mineral matter were evaluated: column flotation, the air-sparged hydrocyclone, and the LICADO process. Column flotation proved to be the most effective means of making the kerogen/mineral matter separation. No problems are expected in the disposal of oil shale tailings. It is assumed that the tailings will be placed in a sealed pond and the water recycled to the plant as is the normal practice. It may be advantageous, however, to conduct further research on the recovery of metals as by-products and to assess the market for tailings as an ingredient in cement making.

  13. Assessment of combustion of oil shale refinery by-products in a TP-101 boiler

    NASA Astrophysics Data System (ADS)

    Sidorkin, V. T.; Tugov, A. N.; Vereshchetin, V. A.; Mel'nikov, D. A.

    2015-04-01

    The most cost-efficient method for utilization of the oil shale refinery by-products, viz., the retort gas and the shale gasoline, for power generation is combustion of these products in power-generating oil shale-fired boilers. Calculation studies carried out at the Estonian electric power plant in Narva, an enterprise of EESTI ENERGIA, have shown that recycling of the flue gases in the furnace of a TP-101 boiler enables an increase in the portion of the oil shale refinery by-products burned in the boiler from the current 7% to 40%. Recycling of the flue gases is aimed at maintaining the temperatures in the furnace at a level characteristic of combustion of oil shale and reducing the nitric oxide concentration in the retort gas burners' flame. The degree of the flue gas recycling depends on the percentage of the burnt oil shale refinery by-products in the total heat generation and increases with the increasing percentage. For the threshold value of 40% under the rated conditions, the flue gas recycling accounts for 10%. A complete changeover of the boiler to combustion of only the retort gas in place of the oil shale does not seem to be possible, since this will necessitate major modification to the TP-101 boiler heating surfaces. Considering the obtained results, as a pilot project, one boiler furnace was modified by installing six retort gas burners and a flue gas recycling system.

  14. Assessing the Adsorption Properties of Shales

    NASA Astrophysics Data System (ADS)

    Pini, R.

    2014-12-01

    Fine-grained rocks, such as shales, contain a significant amount of nanopores that can significantly contribute to their storage capacity through the mechanism of adsorption. The current ability to extract natural gas that is adsorbed in the rock's matrix is limited and current technology focuses primarily on the free gas in the fractures, thus leading to very low recovery efficiencies. Shales constitute also a great portion of so-called caprocks above potential CO2 sequestration sites; hereby, the adsorption process may limit the CO2 mobility within the cap-rock, thus minimizing leakage phenomena. Whether it is a reservoir or a caprock, understanding and quantifying the mechanisms of adsorption in these natural materials is key to improve the engineering design of subsurface operations. Results will be presented from a laboratory study that combines conventional techniques for the measurement of adsorption isotherms with novel methods that allows for the imaging of adsorption using x-rays. Various nanoporous materials are considered, thus including rocks, such as shales and coals, pure clay minerals and engineered adsorbents with well-defined nanopore structures, such as zeolites. Supercritical CO2 adsorption isotherms have been measured with a Rubotherm Magnetic Suspension balance by covering the pressure range 0.1-20~MPa. A medical x-ray CT scanner has been used to identify three-dimensional patterns of the adsorption properties of a packed-bed of adsorbent, thus enabling to assess the spatial variability of the adsorption isotherm. The data are analyzed by using thermodynamically rigorous measures of adsorption and a graphical method is applied for their interpretation. The density of the adsorbed phase is estimated and compared to data reported in the literature; the latter is key to disclose gas-reserves and/or potential storage capacity estimates. When evaluated against classic adsorbent materials, the adsorption mechanism in shales is further complicated by

  15. An Exploratory Research and Development Program Leading to Specifications for Aviation Turbine Fuel from Whole Crude Shale Oil. Part II. Process Variable Analyses and Laboratory Sample Production.

    DTIC Science & Technology

    1981-09-01

    comprises moderate severity hydrotreating, fractionation, anhydrous HC1 extraction and hydrocracking. Plant capacities and product yields were not... Anhydrous Hydrogen Chloride Extraction Units - JP-8 Operation 36 12 Maximum JP-4 - Operating Conditions for Gas Oil HYdrocracker 37 13 Material Balance...DI4F nn-Dimethylformamide ix LIST OF SYMBOLS AND ABBREVIATIONS (Cont’d.) FOE Fuel Oil Equivalent H2 Hydrogen Gas HCl Anhydrous Hydrogen Chloride HP Sep

  16. Oak Ridge Y-12 Plant Emergency Action Level (EAL) Process

    SciTech Connect

    Bailiff, E.G.; Bolling, J.D.

    2000-08-01

    This report establishes requirements and standard methods for the development and maintenance of the Emergency Action Level (EAL) Process used by all lead and event contractors for emergency planning and preparedness. The EAL process ensures a technically defensible approach to emergency categorization/classification in accordance with DOE Order 151.1. The instructions provided in this document include methods and requirements for the development and approval of the EAL process. EALs are developed to cover events inside and outside the Y-12 Plant and to allow the Emergency Response Organization (ERO) to classify or reclassify events promptly based on specific indicators. This report is divided into the following 11 subsections: (1) EAL Process, (2) Categorization/Classification System for Operational Emergencies, (3) Development of EALs, (4) Barrier Analysis for EALs, (5) Symptom-Based and Event-Based EALs, (6) Other Considerations, (7) Integration of EALs with Normal and Off-Normal Operations, (8) EAL Manual, (9) Testing EALs for Completeness, (10) Training and Implementation of EALs, and (11) Configuration Management.

  17. Innovative Fresh Water Production Process for Fossil Fuel Plants

    SciTech Connect

    James F. Klausner; Renwei Mei; Yi Li; Jessica Knight; Venugopal Jogi

    2005-09-01

    This project concerns a diffusion driven desalination (DDD) process where warm water is evaporated into a low humidity air stream, and the vapor is condensed out to produce distilled water. Although the process has a low fresh water to feed water conversion efficiency, it has been demonstrated that this process can potentially produce low cost distilled water when driven by low grade waste heat. This report describes the annual progress made in the development and analysis of a Diffusion Driven Desalination (DDD) system. A dynamic analysis of heat and mass transfer demonstrates that the DDD process can yield a fresh water production of 1.03 million gallon/day by utilizing waste heat from a 100 MW steam power plant based on a condensing steam pressure of only 3 Hg. The optimum operating condition for the DDD process with a high temperature of 50 C and sink temperature of 25 C has an air mass flux of 1.5 kg/m{sup 2}-s, air to feed water mass flow ratio of 1 in the diffusion tower, and a fresh water to air mass flow ratio of 2 in the condenser. Operating at these conditions yields a fresh water production efficiency (m{sub fW}/m{sub L}) of 0.031 and electric energy consumption rate of 0.0023 kW-hr/kg{sub fW}. Throughout the past year, the main focus of the desalination process has been on the direct contact condenser. Detailed heat and mass transfer analyses required to size and analyze these heat and mass transfer devices are described. The analyses agree quite well with the current data. Recently, it has been recognized that the fresh water production efficiency can be significantly enhanced with air heating. This type of configuration is well suited for power plants utilizing air-cooled condensers. The experimental DDD facility has been modified with an air heating section, and temperature and humidity data have been collected over a range of flow and thermal conditions. It has been experimentally observed that the fresh water production rate is enhanced when air

  18. Aircraft-Based Measurements of Point Source Methane Emissions in the Barnett Shale Basin.

    PubMed

    Lavoie, Tegan N; Shepson, Paul B; Cambaliza, Maria O L; Stirm, Brian H; Karion, Anna; Sweeney, Colm; Yacovitch, Tara I; Herndon, Scott C; Lan, Xin; Lyon, David

    2015-07-07

    We report measurements of methane (CH4) emission rates observed at eight different high-emitting point sources in the Barnett Shale, Texas, using aircraft-based methods performed as part of the Barnett Coordinated Campaign. We quantified CH4 emission rates from four gas processing plants, one compressor station, and three landfills during five flights conducted in October 2013. Results are compared to other aircraft- and surface-based measurements of the same facilities, and to estimates based on a national study of gathering and processing facilities emissions and 2013 annual average emissions reported to the U.S. EPA Greenhouse Gas Reporting Program (GHGRP). For the eight sources, CH4 emission measurements from the aircraft-based mass balance approach were a factor of 3.2-5.8 greater than the GHGRP-based estimates. Summed emissions totaled 7022 ± 2000 kg hr(-1), roughly 9% of the entire basin-wide CH4 emissions estimated from regional mass balance flights during the campaign. Emission measurements from five natural gas management facilities were 1.2-4.6 times larger than emissions based on the national study. Results from this study were used to represent "super-emitters" in a newly formulated Barnett Shale Inventory, demonstrating the importance of targeted sampling of "super-emitters" that may be missed by random sampling of a subset of the total.

  19. Low-level arsenic exposure in wood processing plants.

    PubMed

    Rosenberg, M J; Landrigan, P J; Crowley, S

    1980-01-01

    In October 1978, seven construction workers building a pier in Monterey, California, developed symptoms consistent with arsenic intoxication and had elevated urinary levels of arsenic. The wood used for the pier had been pressure-treated with an arsenic preservative. To evaluate the potential acute medical hazards of preserving wood with arsenic, we evaluated employees at three California plants where arsenic preservatives are mixed and applied to wood. Histories, physical examinations, and urine specimens for arsenic analysis were collected from 44 workers exposed to arsenic and from 37 controls in three woodworking plants where arsenic is not used. A comparison of the groups failed to show any significant differences in history or physical examination. Adjustment for age, length of employment, and smoking histories did not alter the pattern. Urinary arsenic concentration was found to increase with increased exposure. These results do not imply absence of chronic or delayed toxicity, nor do they preclude the presence of a more subtle toxicity such as nerve conduction deficits. The data indicate existence of an arsenic exposure hazard in wood processing.U

  20. Novel fermentation processes for manufacturing plant natural products.

    PubMed

    Zhou, Jingwen; Du, Guocheng; Chen, Jian

    2014-02-01

    Microbial production of plant natural products (PNPs), such as terpenoids, flavonoids from renewable carbohydrate feedstocks offers sustainable and economically attractive alternatives to their petroleum-based production. Rapid development of metabolic engineering and synthetic biology of microorganisms shows many advantages to replace the current extraction of these useful high price chemicals from plants. Although few of them were actually applied on a large scale for PNPs production, continuous research on these high-price chemicals and the rapid growing global market of them, show the promising future for the production of these PNPs by microorganisms with a more economic and environmental friendly way. Introduction of novel pathways and optimization of the native cellular processes by metabolic engineering of microorganisms for PNPs production are rapidly expanding its range of cell-factory applications. Here we review recent progress in metabolic engineering of microorganisms for the production of PNPs. Besides, factors restricting the yield improvement and application of lab-scale achievements to industrial applications have also been discussed.

  1. From pathogen genomes to host plant processes: the power of plant parasitic oomycetes

    PubMed Central

    2013-01-01

    Recent pathogenomic research on plant parasitic oomycete effector function and plant host responses has resulted in major conceptual advances in plant pathology, which has been possible thanks to the availability of genome sequences. PMID:23809564

  2. From pathogen genomes to host plant processes: the power of plant parasitic oomycetes.

    PubMed

    Pais, Marina; Win, Joe; Yoshida, Kentaro; Etherington, Graham J; Cano, Liliana M; Raffaele, Sylvain; Banfield, Mark J; Jones, Alex; Kamoun, Sophien; Saunders, Diane G O

    2013-06-28

    Recent pathogenomic research on plant parasitic oomycete effector function and plant host responses has resulted in major conceptual advances in plant pathology, which has been possible thanks to the availability of genome sequences.

  3. A mortality study of workers at seven beryllium processing plants

    SciTech Connect

    Ward, E.; Okun, A.; Ruder, A.; Fingerhut, M.; Steenland, K. )

    1992-01-01

    The International Agency for Research on Cancer (IARC) has found that the evidence for the carcinogenicity of beryllium is sufficient based on animal data but limited based on human data. This analysis reports on a retrospective cohort mortality study among 9,225 male workers employed at seven beryllium processing facilities for at least 2 days between January 1, 1940, and December 31, 1969. Vital status was ascertained through December 31, 1988. The standardized mortality ratio (SMR) for lung cancer in the total cohort was 1.26 (95% confidence interval [CI] = 1.12-1.42); significant SMRs for lung cancer were observed for two of the oldest plants located in Lorain, Ohio (SMR = 1.69; 95% CI = 1.28-2.19) and Reading, Pennsylvania (SMR = 1.24; 95% CI = 1.03-1.48). For the overall cohort, significantly elevated SMRs were found for all deaths (SMR = 1.05; 95% CI = 1.01-1.08), ischemic heart disease (SMR = 1.08; 95% CI = 1.01-1.14), pneumoconiosis and other respiratory diseases (SMR = 1.48; 95% CI = 1.21-1.80), and chronic and unspecified nephritis, renal failure, and other renal sclerosis (SMR = 1.49; 95% CI = 1.00-2.12). Lung cancer SMRs did not increase with longer duration of employment, but did increase with longer latency (time since first exposure). Lung cancer was particularly elevated (SMR = 3.33; 95% CI = 1.66-5.95) among workers at the Lorain plant with a history of (primarily) acute beryllium disease, which is associated with very high beryllium exposure. The lung cancer excess was not restricted to plants operating in the 1940s, when beryllium exposures were known to be extraordinarily high. Elevated lung cancer SMRs were also observed for four of the five plants operating in the 1950s for workers hired during that decade. Neither smoking nor geographic location fully explains the increased lung cancer risk. Occupational exposure to beryllium compounds is the most plausible explanation for the increased risk of lung cancer observed in this study.

  4. Use of Brassica Plants in the Phytoremediation and Biofumigation Processes

    PubMed Central

    Szczygłowska, Marzena; Piekarska, Anna; Konieczka, Piotr; Namieśnik, Jacek

    2011-01-01

    In recent decades, serious contamination of soils by heavy metals has been reported. It is therefore a matter of urgency to develop a new and efficient technology for removing contaminants from soil. Another aspect to this problem is that environmental pollution decreases the biological quality of soil, which is why pesticides and fertilizers are being used in ever-larger quantities. The environmentally friendly solutions to these problems are phytoremediation, which is a technology that cleanses the soil of heavy metals, and biofumigation, a process that helps to protect crops using natural plant compounds. So far, these methods have only been used separately; however, research on a technology that combines them both using white cabbage has been carried out. PMID:22174630

  5. A study of poultry processing plant noise control techniques

    NASA Technical Reports Server (NTRS)

    Wyvill, J. C.; Morrison, W. G., Jr.

    1981-01-01

    A number of techniques can be used to reduce noise in poultry processing plants. In general, covering the ceiling with a noise-absorbing medium is a practical first step. Once the reflected noise levels are abated, treatment of specific identifiable noise courses can take place. The development, flammability, and mechanical properties of acoustic panels to be vertically suspended from the ceiling are discussed as well as the covers need to comply with USDA cleanability requirements. The isolation of drive motors and pumps from large expansive areas, the muffling of pneumatic devices, and the insulation of ice chutes are methods of source quieting. Proper maintenance of machinery and vibration monitoring are also needed to reduce hearing damage risk and to improve worker productivity and employee/supervisor relations.

  6. Mortality among female workers at a thorium-processing plant

    SciTech Connect

    Liu, Zhiyuan; Lee, Tze-San

    1994-05-01

    The mortality patterns among a cohort of 677 female workers at a thorium-processing plant are reported for the period from 1940 to 1982. Of the 677 women, 165 were reported dead; 459 were still alive; and 53 (7.8%) were lost to follow-up. The standardized mortality ratios from all causes (0.74), all cancers (0.53), and circulatory diseases (0.66) were significantly below those for the general US population. In this cohort, 5 deaths due to lung cancer and 1 death from leukemia were observed, with 4.53 and 1.69 deaths expected, respectively. No deaths from cancer of the liver, pancreas, or bone were observed. Poisson regression analysis was used for an internal comparison within the cohort. The results of the Poisson regression analysis showed no significant effect on mortality rates of all causes and cancers from the study factors, including job classification, duration of employment, and time since first employment.

  7. Waste receiving and processing plant control system; system design description

    SciTech Connect

    LANE, M.P.

    1999-02-24

    The Plant Control System (PCS) is a heterogeneous computer system composed of numerous sub-systems. The PCS represents every major computer system that is used to support operation of the Waste Receiving and Processing (WRAP) facility. This document, the System Design Description (PCS SDD), includes several chapters and appendices. Each chapter is devoted to a separate PCS sub-system. Typically, each chapter includes an overview description of the system, a list of associated documents related to operation of that system, and a detailed description of relevant system features. Each appendice provides configuration information for selected PCS sub-systems. The appendices are designed as separate sections to assist in maintaining this document due to frequent changes in system configurations. This document is intended to serve as the primary reference for configuration of PCS computer systems. The use of this document is further described in the WRAP System Configuration Management Plan, WMH-350, Section 4.1.

  8. Geochemical modeling of cyanide in tailing dam gold processing plant

    NASA Astrophysics Data System (ADS)

    Khodadadi, Ahmad; Monjezi, M.; Mehrpouya, H.; Dehghani, H.

    2009-09-01

    This research is aimed at investigating possible neutralization of cyanide in tailing dam of Muteh gold processing plant in Isfahan, Iran at various conditions such as pH and temperature using USEPA Visual MINTEQ geochemical model simulation. The model is based on geochemical equilibrium which uses the simultaneous solution of the non-linear mass action expressions and linear mass balance relationships to formulate and solve the multiple-component chemical equilibrium problems. In this study the concentration of aqueous species in tailing dam as an aqueous, solid and gaseous were used as input in the model. Temperature and pH variation were simulated. The results of the model indicated that cyanide may be complexes in 10 < pH < 5. In other pH values complexation is not important. The results also indicated that cyanide reduction mechanism in acidic pH and temperature above 30°C is due to cyanide acid formation which is vaporized.

  9. Modeling of gas generation from the Barnett Shale, Fort Worth Basin, Texas

    USGS Publications Warehouse

    Hill, R.J.; Zhang, E.; Katz, B.J.; Tang, Y.

    2007-01-01

    The generative gas potential of the Mississippian Barnett Shale in the Fort Worth Basin, Texas, was quantitatively evaluated by sealed gold-tube pyrolysis. Kinetic parameters for gas generation and vitrinite reflectance (Ro) changes were calculated from pyrolysis data and the results used to estimate the amount of gas generated from the Barnett Shale at geologic heating rates. Using derived kinetics for Ro evolution and gas generation, quantities of hydrocarbon gas generated at Ro ??? 1.1% are about 230 L/t (7.4 scf/t) and increase to more that 5800 L/t (186 scf/t) at Ro ??? 2.0% for a sample with an initial total organic carbon content of 5.5% and Ro = 0.44%. The volume of shale gas generated will depend on the organic richness, thickness, and thermal maturity of the shale and also the amount of petroleum that is retained in the shale during migration. Gas that is reservoired in shales appears to be generated from the cracking of kerogen and petroleum that is retained in shales, and that cracking of the retained petroleum starts by Ro ??? 1.1%. This result suggests that the cracking of petroleum retained in source rocks occurs at rates that are faster than what is predicted for conventional siliciclastic and carbonate reservoirs, and that contact of retained petroleum with kerogen and shale mineralogy may be a critical factor in shale-gas generation. Shale-gas systems, together with overburden, can be considered complete petroleum systems, although the processes of petroleum migration, accumulation, and trap formation are different from what is defined for conventional petroleum systems. Copyright ?? 2007. The American Association of Petroleum Geologists. All rights reserved.

  10. Processing of Non-PFP Plutonium Oxide in Hanford Plants

    SciTech Connect

    Jones, Susan A.; Delegard, Calvin H.

    2011-03-10

    Processing of non-irradiated plutonium oxide, PuO2, scrap for recovery of plutonium values occurred routinely at Hanford’s Plutonium Finishing Plant (PFP) in glovebox line operations. Plutonium oxide is difficult to dissolve, particularly if it has been high-fired; i.e., calcined to temperatures above about 400°C and much of it was. Dissolution of the PuO2 in the scrap typically was performed in PFP’s Miscellaneous Treatment line using nitric acid (HNO3) containing some source of fluoride ion, F-, such as hydrofluoric acid (HF), sodium fluoride (NaF), or calcium fluoride (CaF2). The HNO3 concentration generally was 6 M or higher whereas the fluoride concentration was ~0.5 M or lower. At higher fluoride concentrations, plutonium fluoride (PuF4) would precipitate, thus limiting the plutonium dissolution. Some plutonium-bearing scrap also contained PuF4 and thus required no added fluoride. Once the plutonium scrap was dissolved, the excess fluoride was complexed with aluminum ion, Al3+, added as aluminum nitrate, Al(NO3)3•9H2O, to limit collateral damage to the process equipment by the corrosive fluoride. Aluminum nitrate also was added in low quantities in processing PuF4.

  11. Model operating permits for natural gas processing plants

    SciTech Connect

    Arend, C.

    1995-12-31

    Major sources as defined in Title V of the Clean Air Act Amendments of 1990 that are required to submit an operating permit application will need to: Evaluate their compliance status; Determine a strategic method of presenting the general and specific conditions of their Model Operating Permit (MOP); Maintain compliance with air quality regulations. A MOP is prepared to assist permitting agencies and affected facilities in the development of operating permits for a specific source category. This paper includes a brief discussion of example permit conditions that may be applicable to various types of Title V sources. A MOP for a generic natural gas processing plant is provided as an example. The MOP should include a general description of the production process and identify emission sources. The two primary elements that comprise a MOP are: Provisions of all existing state and/or local air permits; Identification of general and specific conditions for the Title V permit. The general provisions will include overall compliance with all Clean Air Act Titles. The specific provisions include monitoring, record keeping, and reporting. Although Title V MOPs are prepared on a case-by-case basis, this paper will provide a general guideline of the requirements for preparation of a MOP. Regulatory agencies have indicated that a MOP included in the Title V application will assist in preparation of the final permit provisions, minimize delays in securing a permit, and provide support during the public notification process.

  12. Bayer process plant scale: transformation of sodalite to cancrinite

    NASA Astrophysics Data System (ADS)

    Gerson, Andrea R.; Zheng, Kali

    1997-01-01

    An investigation of the deposition and in situ transformation of scale found in a Bayer process plant has been carried out using X-ray powder diffraction and FTIR studies. Scale samples were analysed as a function of their position in the Bayer process circuit. Scale precipitated during bauxite digestion at approximately 255°C was found to be mostly cafetite but also contained haematite. At 120°C boehmite has been identified as the main scale phase formed from "spent" liquor (i.e. liquors from which Al(OH) 3 crystallisation has previously occurred). Three sodium aluminosilicate phases were found to form between 150 and 255°C, sodalite 1, sodalite 2 and cancrinite although thermonatrite (Na 2CO 3 · H 2O) and calcite (CaCO 3) were also observed periodically. The ratios of cancrinite to sodalite 1 and sodalite 2 to sodalite 1 were observed to increase with the temperature of formation, The scale phases found in a cross section of plant scale formed at 150°C show a similar trend on increasing the in situ age of the scale. Comparison with precipitation from synthetic solutions has indicated that the aging mechanism of the sodium aluminosilicate deposits is the same in both cases: sodalite 1 (cubic, a ≈ 8.98 Å)) → sodalite 2 (cubic, a ≈ 8.89 Å) → cancrinite (hexagonal, a ≈ 12.70 Å, c ≈ 5.18 Å). The transformation from sodalite 2 to cancrinite has been shown to be the rate determining step in cancrinite formation.

  13. Improving the environmental sustainability of a waste processing plant

    SciTech Connect

    Turner, Tom; Watson, Stuart

    2013-07-01

    This paper describes how the level of environmental sustainability at the Solid Waste Processing plant at Research Sites Restoration Ltd (RSRL) Harwell was measured and improved. It provides reasons to improve environmental performance in an organisation, states best practice on how improvement should be conducted, and gives first-hand experience on how changes were implemented. In this paper sustainability is defined as 'meeting the needs of the present without compromising the ability of future generations to meet their own needs'. A baseline for environmental sustainability was created, by looking at multiple attributes. From this, a matrix was created to show how the baseline environmental performance compared to best practice, and a gap analysis was performed. Results from this analysis showed areas for potential systematic improvement, and actions were created. Nearly all actions were implemented within one year, and environmental sustainability improved significantly. Most improvements cost no money to implement, and the few that did had to pass criteria in a business case. Results from a company-wide survey showed that the vast majority of employees felt that environmental issues were important, and that they were willing to help improve performance. Environmental awareness training was given to everyone in the department, and individuals were given measurable improvement targets. A focus group was set up and met regularly to agree improvements and monitor results. Environmental performance was publicised regularly to highlight successes and seek further engagement and improvement. Improvement ideas were encouraged and managed in a transparent way which showed clear prioritisation and accountability. The culture of environmental improvement changed visibly and results at the end of the first year showed that electricity consumption had reduced by 12.5%, and gas consumption had reduced by 7.3%. In less than two years over UK Pound 60,000 was saved on utility

  14. Unconventional shale-gas systems: The Mississippian Barnett Shale of north-central Texas as one model for thermogenic shale-gas assessment

    USGS Publications Warehouse

    Jarvie, D.M.; Hill, R.J.; Ruble, T.E.; Pollastro, R.M.

    2007-01-01

    Shale-gas resource plays can be distinguished by gas type and system characteristics. The Newark East gas field, located in the Fort Worth Basin, Texas, is defined by thermogenic gas production from low-porosity and low-permeability Barnett Shale. The Barnett Shale gas system, a self-contained source-reservoir system, has generated large amounts of gas in the key productive areas because of various characteristics and processes, including (1) excellent original organic richness and generation potential; (2) primary and secondary cracking of kerogen and retained oil, respectively; (3) retention of oil for cracking to gas by adsorption; (4) porosity resulting from organic matter decomposition; and (5) brittle mineralogical composition. The calculated total gas in place (GIP) based on estimated ultimate recovery that is based on production profiles and operator estimates is about 204 bcf/section (5.78 ?? 109 m3/1.73 ?? 104 m3). We estimate that the Barnett Shale has a total generation potential of about 609 bbl of oil equivalent/ac-ft or the equivalent of 3657 mcf/ac-ft (84.0 m3/m3). Assuming a thickness of 350 ft (107 m) and only sufficient hydrogen for partial cracking of retained oil to gas, a total generation potential of 820 bcf/section is estimated. Of this potential, approximately 60% was expelled, and the balance was retained for secondary cracking of oil to gas, if sufficient thermal maturity was reached. Gas storage capacity of the Barnett Shale at typical reservoir pressure, volume, and temperature conditions and 6% porosity shows a maximum storage capacity of 540 mcf/ac-ft or 159 scf/ton. Copyright ?? 2007. The American Association of Petroleum Geologists. All rights reserved.

  15. The future of oil shale

    SciTech Connect

    Vawter, R.G. )

    1989-01-01

    In spite of a growing awareness of the future consequences of rising petroleum imports, oil shale has not become an integral element of federal energy policy. This paper discusses how recent actions by the private sector and regional governments have begun to reverse opinions. First, published estimates by industry have refuted the notion that shale oil will cost $60 to $80 per barrel. Second, state and local governments in the West are supporting planned development. In the early 1980's, there was extreme resistance to the mammoth development proposed at the time. Jobs and economic development are now very important. Third environmental regulations have been adopted which give the private sector and government a better framework from which to interact.

  16. Primary emissions and secondary formation of volatile organic compounds from natural gas production in five major U.S. shale plays

    NASA Astrophysics Data System (ADS)

    Gilman, J.; Lerner, B. M.; Warneke, C.; Graus, M.; Lui, R.; Koss, A.; Yuan, B.; Murphy, S. M.; Alvarez, S. L.; Lefer, B. L.; Min, K. E.; Brown, S. S.; Roberts, J. M.; Osthoff, H. D.; Hatch, C. D.; Peischl, J.; Ryerson, T. B.; De Gouw, J. A.

    2014-12-01

    According to the U.S. Energy and Information Administration (EIA), domestic production of natural gas from shale formations is currently at the highest levels in U.S. history. Shale gas production may also result in the production of natural gas plant liquids (NGPLs) such as ethane and propane as well as natural gas condensate composed of a complex mixture of non-methane hydrocarbons containing more than ~5 carbon atoms (e.g., hexane, cyclohexane, and benzene). The amounts of natural gas liquids and condensate produced depends on the particular reservoir. The source signature of primary emissions of hydrocarbons to the atmosphere within each shale play will therefore depend on the composition of the raw natural gas as well as the industrial processes and equipment used to extract, separate, store, and transport the raw materials. Characterizing the primary emissions of VOCs from natural gas production is critical to assessing the local and regional atmospheric impacts such as the photochemical formation of ozone and secondary formation of organic aerosol. This study utilizes ground-based measurements of a full suite of volatile organic compounds (VOCs) in two western U.S. basins, the Uintah (2012-2014 winter measurements only) and Denver-Julesburg (winter 2011 and summer 2012), and airborne measurements over the Haynesville, Fayetteville, and Marcellus shale basins (summer 2013). By comparing the observed VOC to propane enhancement ratios, we show that each basin has a unique VOC source signature associated with oil and natural gas operations. Of the shale basins studied, the Uintah basin had the largest overall VOC to propane enhancement ratios while the Marcellus had the lowest. For the western basins, we will compare the composition of oxygenated VOCs produced from photochemical oxidation of VOC precursors and contrast the oxygenated VOC mixture to a "typical" summertime urban VOC mixture. The relative roles of alkanes, alkenes, aromatics, and cycloalkanes as

  17. Clean and Secure Energy from Domestic Oil Shale and Oil Sands Resources

    SciTech Connect

    Spinti, Jennifer; Birgenheier, Lauren; Deo, Milind; Facelli, Julio; Hradisky, Michal; Kelly, Kerry; Miller, Jan; McLennan, John; Ring, Terry; Ruple, John; Uchitel, Kirsten

    2015-09-30

    This report summarizes the significant findings from the Clean and Secure Energy from Domestic Oil Shale and Oil Sands Resources program sponsored by the Department of Energy through the National Energy Technology Laboratory. There were four principle areas of research; Environmental, legal, and policy issues related to development of oil shale and oil sands resources; Economic and environmental assessment of domestic unconventional fuels industry; Basin-scale assessment of conventional and unconventional fuel development impacts; and Liquid fuel production by in situ thermal processing of oil shale Multiple research projects were conducted in each area and the results have been communicated via sponsored conferences, conference presentations, invited talks, interviews with the media, numerous topical reports, journal publications, and a book that summarizes much of the oil shale research relating to Utah’s Uinta Basin. In addition, a repository of materials related to oil shale and oil sands has been created within the University of Utah’s Institutional Repository, including the materials generated during this research program. Below is a listing of all topical and progress reports generated by this project and submitted to the Office of Science and Technical Information (OSTI). A listing of all peer-reviewed publications generated as a result of this project is included at the end of this report; Geomechanical and Fluid Transport Properties 1 (December, 2015); Validation Results for Core-Scale Oil Shale Pyrolysis (February, 2015); and Rates and Mechanisms of Oil Shale Pyrolysis: A Chemical Structure Approach (November, 2014); Policy Issues Associated With Using Simulation to Assess Environmental Impacts (November, 2014); Policy Analysis of the Canadian Oil Sands Experience (September, 2013); V-UQ of Generation 1 Simulator with AMSO Experimental Data (August, 2013); Lands with Wilderness Characteristics, Resource Management Plan Constraints, and Land Exchanges

  18. The origin of Cretaceous black shales: a change in the surface ocean ecosystem and its triggers

    PubMed Central

    OHKOUCHI, Naohiko; KURODA, Junichiro; TAIRA, Asahiko

    2015-01-01

    Black shale is dark-colored, organic-rich sediment, and there have been many episodes of black shale deposition over the history of the Earth. Black shales are source rocks for petroleum and natural gas, and thus are both geologically and economically important. Here, we review our recent progress in understanding of the surface ocean ecosystem during periods of carbonaceous sediment deposition, and the factors triggering black shale deposition. The stable nitrogen isotopic composition of geoporphyrins (geological derivatives of chlorophylls) strongly suggests that N2-fixation was a major process for nourishing the photoautotrophs. A symbiotic association between diatoms and cyanobacteria may have been a major primary producer during episodes of black shale deposition. The timing of black shale formation in the Cretaceous is strongly correlated with the emplacement of large igneous provinces such as the Ontong Java Plateau, suggesting that black shale deposition was ultimately induced by massive volcanic events. However, the process that connects these events remains to be solved. PMID:26194853

  19. Observations of the release of non-methane hydrocarbons from fractured shale.

    PubMed

    Sommariva, Roberto; Blake, Robert S; Cuss, Robert J; Cordell, Rebecca L; Harrington, Jon F; White, Iain R; Monks, Paul S

    2014-01-01

    The organic content of shale has become of commercial interest as a source of hydrocarbons, owing to the development of hydraulic fracturing ("fracking"). While the main focus is on the extraction of methane, shale also contains significant amounts of non-methane hydrocarbons (NMHCs). We describe the first real-time observations of the release of NMHCs from a fractured shale. Samples from the Bowland-Hodder formation (England) were analyzed under different conditions using mass spectrometry, with the objective of understanding the dynamic process of gas release upon fracturing of the shale. A wide range of NMHCs (alkanes, cycloalkanes, aromatics, and bicyclic hydrocarbons) are released at parts per million or parts per billion level with temperature- and humidity-dependent release rates, which can be rationalized in terms of the physicochemical characteristics of different hydrocarbon classes. Our results indicate that higher energy inputs (i.e., temperatures) significantly increase the amount of NMHCs released from shale, while humidity tends to suppress it; additionally, a large fraction of the gas is released within the first hour after the shale has been fractured. These findings suggest that other hydrocarbons of commercial interest may be extracted from shale and open the possibility to optimize the "fracking" process, improving gas yields and reducing environmental impacts.

  20. Experimental and Numerical Simulation of Water Vapor Adsorption and Diffusion in Shale Grains

    NASA Astrophysics Data System (ADS)

    Shen, W.; Tokunaga, T. K.; Cihan, A.; Wan, J.; Zheng, L.; Oldenburg, C. M.

    2015-12-01

    Advances in deep horizontal drilling and hydraulic fracturing have lead to large increases in production from unconventional shale gas reservoirs. Despite the success of this technology, uncertainties associated with basic transport processes require understanding in order to improve efficiency and minimize environmental impacts. The hydraulic fracturing process introduces large volumes of water into shale gas reservoirs. Most of the fracturing water remains in reservoirs to interfere with gas production. The quantification of the amount of water retained in shale gas reservoirs is crucial for predicting gas shale formation productivity and for optimizing extraction conditions. In this study, water vapor adsorption isotherms were gravimetrically measured on granular fractions of Woodford formation shales sieved after crushing. The isotherms were obtained at 30℃ and 50℃, for relative humidities from 11.1% to 97.0%. Water adsorption in these shale grains conformed to the typeⅡisotherm, and were nearly identical for the two experimental temperatures. In order to better understand the isotherms, a computational model based on the Maxwell-Stefan Diffusion equations (MSDM) was constructed to analyze the water adsorption and gas diffusion in shale grains. Based on the experimental results, the Guggenheim-Anderson-de Boer (GAB) isotherm model for gas adsorption was included in the model.

  1. Conductivity heating a subterranean oil shale to create permeability and subsequently produce oil

    SciTech Connect

    Van Meurs, P.; DeRouffignac, E.P.; Vinegar, H.J.; Lucid, M.F.

    1989-12-12

    This patent describes an improvement in a process in which oil is produced from a subterranean oil shale deposit by extending at least one each of heat-injecting and fluid-producing wells into the deposit, establishing a heat-conductive fluid-impermeable barrier between the interior of each heat-injecting well and the adjacent deposit, and then heating the interior of each heat-injecting well at a temperature sufficient to conductively heat oil shale kerogen and cause pyrolysis products to form fractures within the oil shale deposit through which the pyrolysis products are displaced into at least one production well. The improvement is for enhancing the uniformity of the heat fronts moving through the oil shale deposit. Also described is a process for exploiting a target oil shale interval, by progressively expanding a heated treatment zone band from about a geometric center of the target oil shale interval outward, such that the formation or extension of vertical fractures from the heated treatment zone band to the periphery of the target oil shale interval is minimized.

  2. ENZYMATIC PROCESSES USED BY PLANTS TO DEGRADE ORGANIC COMPOUNDS

    EPA Science Inventory

    This is a review of recent plant enzyme systems that have been studied in uptake and transformation of organic contaminants. General procedures of plant preparation and enzyme isolation are covered. Six plant enzyme systems have been investigated for activity with selected pollut...

  3. Review of Emerging Resources: U.S. Shale Gas and Shale Oil Plays

    EIA Publications

    2011-01-01

    To gain a better understanding of the potential U.S. domestic shale gas and shale oil resources, the Energy Information Administration (EIA) commissioned INTEK, Inc. to develop an assessment of onshore lower 48 states technically recoverable shale gas and shale oil resources. This paper briefly describes the scope, methodology, and key results of the report and discusses the key assumptions that underlie the results.

  4. Calcium Signals: The Lead Currency of Plant Information Processing

    PubMed Central

    Kudla, Jörg; Batistič, Oliver; Hashimoto, Kenji

    2010-01-01

    Ca2+ signals are core transducers and regulators in many adaptation and developmental processes of plants. Ca2+ signals are represented by stimulus-specific signatures that result from the concerted action of channels, pumps, and carriers that shape temporally and spatially defined Ca2+ elevations. Cellular Ca2+ signals are decoded and transmitted by a toolkit of Ca2+ binding proteins that relay this information into downstream responses. Major transduction routes of Ca2+ signaling involve Ca2+-regulated kinases mediating phosphorylation events that orchestrate downstream responses or comprise regulation of gene expression via Ca2+-regulated transcription factors and Ca2+-responsive promoter elements. Here, we review some of the remarkable progress that has been made in recent years, especially in identifying critical components functioning in Ca2+ signal transduction, both at the single-cell and multicellular level. Despite impressive progress in our understanding of the processing of Ca2+ signals during the past years, the elucidation of the exact mechanistic principles that underlie the specific recognition and conversion of the cellular Ca2+ currency into defined changes in protein–protein interaction, protein phosphorylation, and gene expression and thereby establish the specificity in stimulus response coupling remain to be explored. PMID:20354197

  5. Pressurized fluidized-bed hydroretorting of eastern oil shales. Progress report, September--November 1991

    SciTech Connect

    Lau, F.S.; Mensinger, M.C.; Roberts, M.J.; Rue, D.M.

    1991-12-01

    The overall objective of this project is to perform the research necessary to develop the pressurized fluidized-bed hydroretorting (PFH) process for producing oil from Eastern oil shales. The program also incorporates research on technologies in areas such as raw shale preparation, beneficiation, product separation, and waste disposal that the potential of improving the economics and/or environmental acceptability of recovering oil from oil shales using the PFH process. The program is divided into the following tasks: Testing of Process Improvement Concepts; Beneficiation Research; Operation of PFH on Beneficiated Shale; Environmental Data and Mitigation Analyses; Sample Procurement, Preparation, and Characterization; and Project Management and Reporting. Accomplishments for this period for these tasks are presented.

  6. Introduction to special section: China shale gas and shale oil plays

    USGS Publications Warehouse

    Jiang, Shu; Zeng, Hongliu; Zhang, Jinchuan; Fishman, Neil; Bai, Baojun; Xiao, Xianming; Zhang, Tongwei; Ellis, Geoffrey S.; Li, Xinjing; Richards-McClung, Bryony; Cai, Dongsheng; Ma, Yongsheng

    2015-01-01

    Even though China shale gas and shale oil exploration is still in an early stage, limited data are already available. We are pleased to have selected eight high-quality papers from fifteen submitted manuscripts for this timely section on the topic of China shale gas and shale oil plays. These selected papers discuss various subject areas including regional geology, resource potentials, integrated and multidisciplinary characterization of China shale reservoirs (geology, geophysics, geochemistry, and petrophysics) China shale property measurement using new techniques, case studies for marine, lacustrine, and transitional shale deposits in China, and hydraulic fracturing. One paper summarizes the regional geology and different tectonic and depositional settings of the major prospective shale oil and gas plays in China. Four papers concentrate on the geology, geochemistry, reservoir characterization, lithologic heterogeneity, and sweet spot identification in the Silurian Longmaxi marine shale in the Sichuan Basin in southwest China, which is currently the primary focus of shale gas exploration in China. One paper discusses the Ordovician Salgan Shale in the Tarim Basin in northwest China, and two papers focus on the reservoir characterization and hydraulic fracturing of Triassic lacustrine shale in the Ordos Basin in northern China. Each paper discusses a specific area.

  7. Oil shale oxidation at subretorting temperatures

    SciTech Connect

    Jacobson, I.A. Jr.

    1980-06-01

    Green River oil shale was air oxidized at subretorting temperatures. Off gases consisting of nitrogen, oxygen, carbon monoxide, carbon dioxide, and water were monitored and quantitatively determined. A mathematical model of the oxidation reactions based on a shrinking core model has been developed. This model incorporates the chemical reaction of oxygen and the organic material in the oil shale as well as the diffusivity of the oxygen into the shale particle. Diffusivity appears to be rate limiting for the oxidation. Arrhenius type equations, which include a term for oil shale grade, have been derived for both the chemical reaction and the diffusivity.

  8. Synthesis and analysis of jet fuels from shale oil and coal syncrudes

    NASA Technical Reports Server (NTRS)

    Antoine, A. C.; Gallagher, J. P.

    1976-01-01

    The technical problems involved in converting a significant portion of a barrel of either a shale oil or coal syncrude into a suitable aviation turbine fuel were studied. TOSCO shale oil, H-Coal and COED coal syncrudes were the starting materials. They were processed by distillation and hydrocracking to produce two levels of yield (20 and 40 weight percent) of material having a distillation range of approximately 422 to 561 K (300 F to 550 F). The full distillation range 311 to 616 K (100 F to 650 F) materials were hydrotreated to meet two sets of specifications (20 and 40 volume percent aromatics, 13.5 and 12.75 weight percent H, 0.2 and 0.5 weight percent S, and 0.1 and 0.2 weight percent N). The hydrotreated materials were distilled to meet given end point and volatility requirements. The syntheses were carried out in laboratory and pilot plant equipment scaled to produce thirty-two 0.0757 cu m (2-gal)samples of jet fuel of varying defined specifications. Detailed analyses for physical and chemical properties were made on the crude starting materials and on the products.

  9. Shale-oil-recovery systems incorporating ore beneficiation. Final report.

    SciTech Connect

    Weiss, M.A.; Klumpar, I.V.; Peterson, C.R.; Ring, T.A.

    1982-10-01

    This study analyzed the recovery of oil from oil shale by use of proposed systems which incorporate beneficiation of the shale ore (that is concentration of the kerogen before the oil-recovery step). The objective was to identify systems which could be more attractive than conventional surface retorting of ore. No experimental work was carried out. The systems analyzed consisted of beneficiation methods which could increase kerogen concentrations by at least four-fold. Potentially attractive low-enrichment methods such as density separation were not examined. The technical alternatives considered were bounded by the secondary crusher as input and raw shale oil as output. A sequence of ball milling, froth flotation, and retorting concentrate is not attractive for Western shales compared to conventional ore retorting; transporting the concentrate to another location for retorting reduces air emissions in the ore region but cost reduction is questionable. The high capital and energy cost s results largely from the ball milling step which is very inefficient. Major improvements in comminution seem achievable through research and such improvements, plus confirmation of other assumptions, could make high-enrichment beneficiation competitive with conventional processing. 27 figures, 23 tables.

  10. Chemical Weathering of Black Shales and Rare Earth Element Composition of Surface Waters and Groundwater

    NASA Astrophysics Data System (ADS)

    Hannigan, R. E.; Johannesson, K. H.

    2001-05-01

    Weathering processes dominate the dissolved and suspended loads of most of the world's major rivers. Among sedimentary rocks, black shales are particularly sensitive to chemical weathering. Therefore, shale systems are useful for investigating the partitioning of chemical elements during chemical weathering. Recent studies, such as those by Peucker-Ehrenbrink, Ravizza and others, link chemical weathering of black shales to changes in marine isotopic composition. Rare earth elements (REE) have a unique chemistry and are ideal for such tracer studies. We explored the effect of modern chemical weathering of black shales on the hydrochemistry of surface and groundwaters in the Mohawk Valley of New York State. This region provides an ideal site for the investigation of trace element remobilization during the chemical weathering of black shales. In this region, surface and groundwaters, in intimate contact with black shales and have high dissolved metal concentrations presumably due to water-rock interactions. The extent to which the dissolved REE composition of the surface and ground waters retains the rock signature is, in someway related to the length of time that the water remains in contact with the rock. We compared the REE compositions of surface and groundwaters in areas draining black shale to those of waters draining regions of dolostone-limestone to explore the extent of metal release due to chemical weathering. Shale normalized REE patterns for stream waters exhibit slight heavy REE enrichments and, at some locations, LREE depletion. REE patterns of the waters normalized to their respective sediments show some LREE depletion. However, waters associated with the Little Falls dolomite show fractionation predominantly enriched in the heavy REEs. Differences between the black shale sites, recorded as light REE depletion and/or middle REE enrichment, may be related to the discharge of the streams and the total dissolved solids. The dissolved REE chemistry of

  11. Sharing Water Data to Encourage Sustainable Choices in Areas of the Marcellus Shale

    NASA Astrophysics Data System (ADS)

    Brantley, S. L.; Abad, J. D.; Vastine, J.; Yoxtheimer, D.; Wilderman, C.; Vidic, R.; Hooper, R. P.; Brasier, K.

    2012-12-01

    participants to assess data gaps. Fourth, the team was encouraged to search for data that plug gaps. Fifth, the database should be easily sustained by others long-term if the Shale Network team simplifies the process of uploading data and finds ways to create community buy-in or incentives for data uploads. Sixth, the database itself and the workshops for the database should drive future agreement about analytical protocols. Seventh, the database is already encouraging other groups to publish data online. Finally, a user interface is needed that is easier and more accessible for citizens to use. Overall, it is clear that sharing data is one way to build bridges among decision makers, scientists, and citizens to understand issues related to sustainable development of energy resources in the face of issues related to water quality and quantity.

  12. Baseline studies on the feasibility of detecting a coal/shale interface with a self-powered sensitized pick

    NASA Technical Reports Server (NTRS)

    Anderson, G. R., II

    1981-01-01

    The feasibility of utilizing a sensitized pick to discriminate between cutting coal and roof material during the longwall mining process was investigated. A conventional longwall mining pick was instrumented and cutting force magnitudes were determined for a variety of materials, including Illinois #6 coal, shale type materials, and synthetic coal/shale materials.

  13. Characterization of DOE reference oil shales: Mahogany Zone, Parachute Creek Member, Green River Formation Oil Shale, and Clegg Creek Member, New Albany Shale

    SciTech Connect

    Miknis, F. P.; Robertson, R. E.

    1987-09-01

    Measurements have been made on the chemical and physical properties of two oil shales designated as reference oil shales by the Department of Energy. One oil shale is a Green River Formation, Parachute Creek Member, Mahogany Zone Colorado oil shale from the Exxon Colony mine and the other is a Clegg Creek Member, New Albany shale from Kentucky. Material balance Fischer assays, carbon aromaticities, thermal properties, and bulk mineralogic properties have been determined for the oil shales. Kerogen concentrates were prepared from both shales. The measured properties of the reference shales are comparable to results obtained from previous studies on similar shales. The western reference shale has a low carbon aromaticity, high Fischer assay conversion to oil, and a dominant carbonate mineralogy. The eastern reference shale has a high carbon aromaticity, low Fischer assay conversion to oil, and a dominant silicate mineralogy. Chemical and physical properties, including ASTM distillations, have been determined for shale oils produced from the reference shales. The distillation data were used in conjunction with API correlations to calculate a large number of shale oil properties that are required for computer models such as ASPEN. There was poor agreement between measured and calculated molecular weights for the total shale oil produced from each shale. However, measured and calculated molecular weights agreed reasonably well for true boiling point distillate fractions in the temperature range of 204 to 399/sup 0/C (400 to 750/sup 0/F). Similarly, measured and calculated viscosities of the total shale oils were in disagreement, whereas good agreement was obtained on distillate fractions for a boiling range up to 315/sup 0/C (600/sup 0/F). Thermal and dielectric properties were determined for the shales and shale oils. The dielectric properties of the reference shales and shale oils decreased with increasing frequency of the applied frequency. 42 refs., 34 figs., 24

  14. Seasonal uncoupling of demographic processes in a marine clonal plant

    NASA Astrophysics Data System (ADS)

    Mascaró, O.; Romero, J.; Pérez, M.

    2014-04-01

    In temperate regions, climatic factors impose a general seasonal pattern on seagrass growth that can be observed in leaf growth rates and, in small species, also in shoot density. Large variations in shoot density suggest a strong temporal uncoupling between shoot recruitment and shoot mortality, and the dependence of each of these processes on different drivers. Here we examine seasonal patterns of recruitment and mortality in the seagrass Cymodocea nodosa, one of the species most sensitive to seasonal forcing in the Mediterranean. We sampled two local populations submitted to different nutrient availability in Alfacs Bay (NW Mediterranean) and determined recruitment and mortality rates, as well as other plant traits, on a monthly basis. Our results confirm the hypothesized uncoupling, with maximum mortality 2 months after maximum recruitment. Whereas timing of recruitment was associated with light availability, and was supported by carbohydrate remobilisation, mortality was related to high water temperatures and probably also to light limitation in late summer due to self-shading. In the high-nutrient population, algal overgrowth caused further light deprivation, with mortality rates higher than in the low-nutrient population. It is emphasised that the demographic balance of the studied populations was negative for most of the year, with the exception of August and September. Therefore, caution is necessary when overall population trends are inferred from single annual sampling events.

  15. Modelling production processes in a vehicle recycling plant.

    PubMed

    Simic, Vladimir; Dimitrijevic, Branka

    2012-09-01

    The European Directive on end-of-life vehicles (ELVs) fundamentally changed the business philosophy of the European vehicle recycling system, which was exclusively profit-oriented. As the dominant participants of this system, vehicle recycling plants (VRPs) are especially affected by its implementation. For VRPs to successfully respond to the prescribed eco-efficiency quotas, investment will be needed to procure modern sorting equipment as well as to achieve full transformation of their production process. However, before VRPs decide to make this very important investment decision, it is necessary to determine the adequacy of such a decision in detail. Consequently, the following questions become unavoidable: Can modernly equipped VRPs conduct profitable business? Are eco-efficiency quotas actually attainable? How will the new changes in vehicle design influence VRPs? To provide answers to these essential questions, a production planning model of a modernly equipped VRP was first developed and then tested extensively using real data. Based on the answers provided by the proposed model testing analysis it was concluded that VRP transformation is not only necessary but completely justified and that the final success of the ELV Directive is realistic.

  16. Burgess shale faunas and the cambrian explosion.

    PubMed

    Morris, S C

    1989-10-20

    Soft-bodied marine faunas from the Lower and Middle Cambrian, exemplified by the Burgess Shale of British Columbia, are a key component in understanding the major adaptive radiations at the beginning of the Phanerozoic ("Cambrian explosion"). These faunas have a widespread distribution, and many taxa have pronounced longevity. Among the components appear to be survivors of the preceding Ediacaran assemblages and a suite of bizarre forms that give unexpected insights into morphological diversification. Microevolutionary processes, however, seem adequate to account for this radiation, and the macroevolutionary patterns that set the seal on Phanerozoic life are contingent on random extinctions. They weeded out the morphological spectrum and permitted rediversification among surviving clades. Although the predictability of which clades will play in successive acts of the Phanerozoic theater is low, at least the outlines of the underlying ecological plot are already clear from the opening of the drama.

  17. Insights into deep-time terrestrial carbon cycle processes from modern plant isotope ecology

    NASA Astrophysics Data System (ADS)

    Sheldon, N. D.; Smith, S. Y.

    2012-12-01

    -diet studies. Finally, using these new results we examine terrestrial carbon inputs into the Cretaceous Interior Seaway using plant fossils from the Campanian Pierre Shale, as well as presenting mean annual precipitation (MAP) estimates derived from the relationship between conifer δ13C composition and MAP described above.

  18. Industrial fuel gas plant project. Phase II. Memphis industrial fuel gas plant. Final report. [U-GAS process

    SciTech Connect

    Not Available

    1983-01-01

    The Industrial Fuel Gas Plant produces a nominal 50 billion Btu/day of product gas. The entire IFG production will be sold to MLGW. Under normal conditions, 20% of the output of the plant will be sold by MLGW to the local MAPCO refinery and exchanged for pipeline quality refinery gas. The MAPCO refinery gas will be inserted into the Memphis Natural Gas Distribution System. A portion (normally 10%) of the IFG output of the plant will be diverted to a Credit Generation Unit, owned by MLGW, where the IFG will be upgraded to pipeline quality (950 Btu/SCF). This gas will be inserted into MLGW's Natural Gas Distribution System. The remaining output of the IFG plant (gas with a gross heating value of 300 Btu/SCF) will be sold by MLGW as Industrial Fuel Gas. During periods when the IFG plant is partially or totally off-stream, natural gas from the Memphis Natural Gas Distribution System will be sent to an air mixing unit where the gas will be diluted to a medium Btu content and distributed to the IFG customers. Drawing 2200-1-50-00104 is the plant block flow diagram showing the process sequence and process related support facilities of this industrial plant. Each process unit as well as each process-related support facility is described briefly.

  19. In situ oil shale retorting: water quality

    SciTech Connect

    Tompkins, M.A.

    1981-03-10

    Rio Blanco Oil Shale Company completed the first burn on their modified in-situ system located in the Piceance Basin of Colorado. Gas stream analyses were performed using a small computerized mass spectrometer. These analyses were made continuously from a sample line originating at the off-gas knockout drum. In addition, the feasibility of determining trace sulfur gases in this mixture was tested. The mass spectrometer has a detection limit of about 5 ppM for a typical trace component in air or other simple gas matrix. However, because of the complex organic matrix composing the oil shale gas, it becomes very difficult to positively identify most trace components at this low ppM level. The sulfur gases which have the fewest interferences include H/sub 2/S, COS, CH/sub 3/SH and SO/sub 2/. These gases can be determined at approximatey the 15 to 25 ppM level. Mass spectrometric analysis of low- or sub-ppM level trace components in complex gas mixture would require pre-treatment of the gas such as concentration or separation to be effective. Positive identifications were made on H/sub 2/S, CH/sub 3/SH, COS and SO/sub 2/. Water samples were taken from five points in the Rio Blanco MIS process for organic characterization and toxicity screening. There was considerable variation in the toxicity of the retort waters relative to both time into the burn and the location of the sampling point. The scrubber water samples were more toxic than the other samples. This is most likely due to the higher pH of these samples. The east holding pond samples were not toxic. These samples represent an integrated sample set as all process waters are finally discharged into this holding pond.

  20. Germanium and uranium in coalified wood from Upper Devonian black shale

    USGS Publications Warehouse

    Breger, Irving A.; Schopf, James M.

    1954-01-01

    Microscopic study of black, vitreous, carbonaceous material occurring in the Chattanooga shale in Tennessee and in the Cleveland member of the Ohio shale in Ohio has revealed coalified woody plant tissue. Some samples have shown sufficient detail to be identified with the genus Callixylon. Similar material has been reported in the literature as "bituminous" or "asphaltic" stringers. Spectrographic analyses of the ash from the coalified wood have shown unusually high percentages of germanium, uranium, vanadium, and nickel. The inverse relationship between uranium and germanium in the ash and the ash content of various samples shows an association of these elements with the organic constituents of the coal. On the basis of geochemical considerations, it seems most probable that the wood or coalified wood was germanium-bearing at the time logs or woody fragments were floated into the basins of deposition of the Chattanooga shale and the Cleveland member of the Ohio shale. Once within the marine environment, the material probably absorbed uranium with the formation of organo-uranium compounds such as have been found to exist in coals. It is suggested that a more systematic search for germaniferous coals in the vicinity of the Chattanooga shale and the Cleveland member of the Ohio shale might be rewarding.

  1. Germanium and uranium in coalified wood bom upper Devonian black shale

    USGS Publications Warehouse

    Breger, I.A.; Schopf, J.M.

    1955-01-01

    Microscopic study of black, vitreous, carbonaceous material occurring in the Chattanooga shale in Tennessee and in the Cleveland member of the Ohio shale in Ohio has revealed coalified woody plant tissue. Some samples have shown sufficient detail to be identified with the genus Cauixylon. Similar material has been reported in the literature as "bituminous" or "asphaltic" stringers. Spectrographic analyses of the ash from the coalified wood have shown unusually high percentages of germanium, uranium, vanadium, and nickel. The inverse relationship between uranium and germanium in the ash and the ash content of various samples shows an association of these elements with the organic constituents of the coal. On the basis of geochemical considerations, it seems most probable that the wood or coalified wood was germanium-bearing at the time logs or woody fragmenta were floated into the basins of deposition of the Chattanooga shale and the Cleveland member of the Ohio shale. Once within the marine environment, the material probably absorbed uranium with the formation of organo-uranium compounds such as exist in coals. It is suggested that a more systematic search for germaniferous coals in the vicinity of the Chattanooga shale and the Cleveland member of the Ohio shale might be rewarding. ?? 1955.

  2. Differences in how rice plants processes arsenic in their cells

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Arsenic (As), a carcinogenic heavy metal, is a problem in some drinking water and staple food supplies around the world. Rice plants readily uptake arsenic and transport a portion of it into the grain. Arsenic is also toxic to plants; therefore mechanisms that reduce toxicity or accumulation have ev...

  3. Wastewater management and Marcellus Shale gas development: trends, drivers, and planning implications.

    PubMed

    Rahm, Brian G; Bates, Josephine T; Bertoia, Lara R; Galford, Amy E; Yoxtheimer, David A; Riha, Susan J

    2013-05-15

    Extraction of natural gas from tight shale formations has been made possible by recent technological advances, including hydraulic fracturing with horizontal drilling. Global shale gas development is seen as a potential energy and geopolitical "game-changer." However, widespread concern exists with respect to possible environmental consequences of this development, particularly impacts on water resources. In the United States, where the most shale gas extraction has occurred, the Marcellus Shale is now the largest natural gas producing play. To date, over 6,000,000 m(3) of wastewater has been generated in the process of extracting natural gas from this shale in the state of Pennsylvania (PA) alone. Here we examine wastewater management practices and trends for this shale play through analysis of industry-reported, publicly available data collected from the Pennsylvania Department of Environmental Protection Oil and Gas Reporting Website. We also analyze the tracking and transport of shale gas liquid waste streams originating in PA using a combination of web-based and GIS approaches. From 2008 to 2011 wastewater reuse increased, POTW use decreased, and data tracking became more complete, while the average distance traveled by wastewater decreased by over 30%. Likely factors influencing these trends include state regulations and policies, along with low natural gas prices. Regional differences in wastewater management are influenced by industrial treatment capacity, as well as proximity to injection disposal capacity. Using lessons from the Marcellus Shale, we suggest that nations, states, and regulatory agencies facing new unconventional shale development recognize that pace and scale of well drilling leads to commensurate wastewater management challenges. We also suggest they implement wastewater reporting and tracking systems, articulate a policy for adapting management to evolving data and development patterns, assess local and regional wastewater treatment

  4. Prediction of Shale Transport Properties Using the Lattice Boltzmann Method: Permeability and Effective Knudsen Diffusivity

    NASA Astrophysics Data System (ADS)

    Kang, Q.; Chen, L.

    2014-12-01

    Although short-term production of unconventional gas depends on the area of contact created by hydraulic fracturing and connections with pre-existing natural fracture networks, sustainable recovery is limited by transfer of gas from nanoporous matrix into the fractures, because the permeability of hydraulic fractures is orders of magnitude higher than that of the shale matrix. Therefore, a fundamental understanding of hydrocarbon mobility in shale matrix is urgently needed for improving recovery efficiencies. Shale transport properties (diffusivity, permeability, and electronic conductivity), which are critical for understanding the fundamental transport mechanisms, are still poorly understood. There have been some studies using experimental techniques such as scanning electron microscopy (SEM) to visualize the nanoscale structures of shale. Due to the ultra-low porosity and permeability, it is difficult to experimentally investigate the fundamental transport processes inside the shale or accurately measure the transport properties. Advanced pore-scale numerical methods, e.g., the lattice Boltzman method (LBM) may provide an alternative approach. In the present study, three-dimensional nanoscale porous structures of shale are reconstructed based on SEM images of shale samples. Characterization analysis of the nanoscale reconstructed shale is performed, including determination of porosity, pore size distribution, specific surface area, and pore connectivity. The LBM flow model and diffusion model are adopted to simulate fluid flow and Knudsen diffusion in the reconstructed shale, respectively. Tortuosity, intrinsic permeability, and effective Knudsen diffusivity are numerically predicted. The tortuosity is much higher than what is commonly employed in Bruggeman equation. Correction of the intrinsic permeability by taking into consideration the contribution of Knudsen diffusion, which leads to the apparent permeability, is performed. The correction factor under

  5. High-Temperature Nuclear Reactors for In-Situ Recovery of Oil from Oil Shale

    SciTech Connect

    Forsberg, Charles W.

    2006-07-01

    The world is exhausting its supply of crude oil for the production of liquid fuels (gasoline, jet fuel, and diesel). However, the United States has sufficient oil shale deposits to meet our current oil demands for {approx}100 years. Shell Oil Corporation is developing a new potentially cost-effective in-situ process for oil recovery that involves drilling wells into oil shale, using electric heaters to raise the bulk temperature of the oil shale deposit to {approx}370 deg C to initiate chemical reactions that produce light crude oil, and then pumping the oil to the surface. The primary production cost is the cost of high-temperature electrical heating. Because of the low thermal conductivity of oil shale, high-temperature heat is required at the heater wells to obtain the required medium temperatures in the bulk oil shale within an economically practical two to three years. It is proposed to use high-temperature nuclear reactors to provide high-temperature heat to replace the electricity and avoid the factor-of-2 loss in converting high-temperature heat to electricity that is then used to heat oil shale. Nuclear heat is potentially viable because many oil shale deposits are thick (200 to 700 m) and can yield up to 2.5 million barrels of oil per acre, or about 125 million dollars/acre of oil at $50/barrel. The concentrated characteristics of oil-shale deposits make it practical to transfer high-temperature heat over limited distances from a reactor to the oil shale deposits. (author)

  6. Heterogeneity of shale documented by micro-FTIR and image analysis.

    PubMed

    Chen, Yanyan; Mastalerz, Maria; Schimmelmann, Arndt

    2014-12-01

    In this study, four New Albany Shale Devonian and Mississippian samples, with vitrinite reflectance [Ro ] values ranging from 0.55% to 1.41%, were analyzed by micro-FTIR mapping of chemical and mineralogical properties. One additional postmature shale sample from the Haynesville Shale (Kimmeridgian, Ro = 3.0%) was included to test the limitation of the method for more mature substrates. Relative abundances of organic matter and mineral groups (carbonates, quartz and clays) were mapped across selected microscale regions based on characteristic infrared peaks and demonstrated to be consistent with corresponding bulk compositional percentages. Mapped distributions of organic matter provide information on the organic matter abundance and the connectivity of organic matter within the overall shale matrix. The pervasive distribution of organic matter mapped in the New Albany Shale sample MM4 is in agreement with this shale's high total organic carbon abundance relative to other samples. Mapped interconnectivity of organic matter domains in New Albany Shale samples is excellent in two early mature shale samples having Ro values from 0.55% to 0.65%, then dramatically decreases in a late mature sample having an intermediate Ro of 1.15% and finally increases again in the postmature sample, which has a Ro of 1.41%. Swanson permeabilities, derived from independent mercury intrusion capillary pressure porosimetry measurements, follow the same trend among the four New Albany Shale samples, suggesting that micro-FTIR, in combination with complementary porosimetric techniques, strengthens our understanding of porosity networks. In addition, image processing and analysis software (e.g. ImageJ) have the capability to quantify organic matter and total organic carbon - valuable parameters for highly mature rocks, because they cannot be analyzed by micro-FTIR owing to the weakness of the aliphatic carbon-hydrogen signal.

  7. How lithology and climate affect REE mobility and fractionation along a shale weathering transect of the Susquehanna Shale Hills Critical Zone Observatory

    NASA Astrophysics Data System (ADS)

    Ma, L.; Jin, L.; Dere, A. L.; White, T.; Mathur, R.; Brantley, S. L.

    2012-12-01

    Shale weathering is an important process in global elemental cycles. Accompanied by the transformation of bedrock into regolith, many elements including rare earth elements (REE) are mobilized primarily by chemical weathering in the Critical Zone. Then, REE are subsequently transported from the vadose zone to streams, with eventual deposition in the oceans. REE have been identified as crucial and strategic natural resources; and discovery of new REE deposits will be facilitated by understanding global REE cycles. At present, the mechanisms and environmental factors controlling release, transport, and deposition of REE - the sources and sinks - at Earth's surface remain unclear. Here, we present a systematic study of soils, stream sediments, stream waters, soil water and bedrock in six small watersheds that are developed on shale bedrock in the eastern USA to constrain the mobility and fractionation of REE during early stages of chemical weathering. The selected watersheds are part of the shale transect established by the Susquehanna Shale Hills Observatory (SSHO) and are well suited to investigate weathering on shales of different compositions or within different climate regimes but on the same shale unit. Our REE study from SSHO, a small gray shale watershed in central Pennsylvania, shows that up to 65% of the REE (relative to parent bedrock) is depleted in the acidic and organic-rich soils due to chemical leaching. Both weathering soil profiles and natural waters show a preferential removal of middle REE (MREE: Sm to Dy) relative to light REE (La to Nd) and heavy REE (Ho to Lu) during shale weathering, due to preferential release of MREE from a phosphate phase (rhabdophane). Strong positive Ce anomalies observed in the regolith and stream sediments point to the fractionation and preferential precipitation of Ce as compared to other REE, in the generally oxidizing conditions of the surface environments. One watershed developed on the Marcellus black shale in

  8. Shale JP-4 Additive Evaluation

    DTIC Science & Technology

    1986-10-01

    8217. •% . , ’ ,,,r ,% . -- - ,.-. ’ ’ 4,w% %’. " - ,’ . . . * ’, .* . TABLE OF CONTENTS .4q ,4 . * SECTION PAGE I. INTRODUCTION 1 II. TEST PARAMETERS 2 1...42 PRECEDING PAGE BLANK TABLE OF CONTENTS (CON’T) SECT ION PAGE V. CONCLUSIONS 44 REFERENCES 46 APPENDIX A Drum to Test Sample Relationship 47 APPENDIX...B.O.C.L.E. Results 40 vii LIST OF TABLES TABLE PAGE 1 Antioxidants 3 2 Raw Shale/Petroleum Fuel Properties 10 3 Drum Sample Additive Content 13 4

  9. Thermomechanical properties of selected shales

    SciTech Connect

    Hansen, F.D.; Vogt, T.J.

    1987-08-01

    The experimental work discussed in this report is part of an ongoing program concerning evaluation of sedimentary and other rock types as potential hosts for a geologic repository. The objectives are the development of tools and techniques for repository characterization and performance assessment in a diversity of geohydrologic settings. This phase of the program is a laboratory study that investigates fundamental thermomechanical properties of several different shales. Laboratory experiments are intrinsically related to numerical modeling and in situ field experiments, which together will be used for performance assessment.

  10. Indirect heating pyrolysis of oil shale

    DOEpatents

    Jones, Jr., John B.; Reeves, Adam A.

    1978-09-26

    Hot, non-oxygenous gas at carefully controlled quantities and at predetermined depths in a bed of lump oil shale provides pyrolysis of the contained kerogen of the oil shale, and cool non-oxygenous gas is passed up through the bed to conserve the heat

  11. Formosa Plastics Corporation: Plant-Wide Assessment of Texas Plant Identifies Opportunities for Improving Process Efficiency and Reducing Energy Costs

    SciTech Connect

    2005-01-01

    At Formosa Plastics Corporation's plant in Point Comfort, Texas, a plant-wide assessment team analyzed process energy requirements, reviewed new technologies for applicability, and found ways to improve the plant's energy efficiency. The assessment team identified the energy requirements of each process and compared actual energy consumption with theoretical process requirements. The team estimated that total annual energy savings would be about 115,000 MBtu for natural gas and nearly 14 million kWh for electricity if the plant makes several improvements, which include upgrading the gas compressor impeller, improving the vent blower system, and recovering steam condensate for reuse. Total annual cost savings could be $1.5 million. The U.S. Department of Energy's Industrial Technologies Program cosponsored this assessment.

  12. Characterization of oil shale, isolated kerogen, and post-pyrolysis residues using advanced 13 solid-state nuclear magnetic resonance spectroscopy

    USGS Publications Warehouse

    Cao, Xiaoyan; Birdwell, Justin E.; Chappell, Mark A.; Li, Yuan; Pignatello, Joseph J.; Mao, Jingdong

    2013-01-01

    Characterization of oil shale kerogen and organic residues remaining in postpyrolysis spent shale is critical to the understanding of the oil generation process and approaches to dealing with issues related to spent shale. The chemical structure of organic matter in raw oil shale and spent shale samples was examined in this study using advanced solid-state 13C nuclear magnetic resonance (NMR) spectroscopy. Oil shale was collected from Mahogany zone outcrops in the Piceance Basin. Five samples were analyzed: (1) raw oil shale, (2) isolated kerogen, (3) oil shale extracted with chloroform, (4) oil shale retorted in an open system at 500°C to mimic surface retorting, and (5) oil shale retorted in a closed system at 360°C to simulate in-situ retorting. The NMR methods applied included quantitative direct polarization with magic-angle spinning at 13 kHz, cross polarization with total sideband suppression, dipolar dephasing, CHn selection, 13C chemical shift anisotropy filtering, and 1H-13C long-range recoupled dipolar dephasing. The NMR results showed that, relative to the raw oil shale, (1) bitumen extraction and kerogen isolation by demineralization removed some oxygen-containing and alkyl moieties; (2) unpyrolyzed samples had low aromatic condensation; (3) oil shale pyrolysis removed aliphatic moieties, leaving behind residues enriched in aromatic carbon; and (4) oil shale retorted in an open system at 500°C contained larger aromatic clusters and more protonated aromatic moieties than oil shale retorted in a closed system at 360°C, which contained more total aromatic carbon with a wide range of cluster sizes.

  13. Reclamation studies on oil shale lands in northwestern Colorado

    SciTech Connect

    Cook, C.W.; Redente, E.F.

    1980-02-01

    The overall objective of this project is to study the effects of various reclamation practices on above- and belowground ecosystem development associated with disturbed oil shale lands in northwestern Colorado. Plant growth media that are being used in field test plots include retorted shale, soil over retorted shale, subsoil materials, and surface disturbed topsoils. Some of the more significant results are: (1) a soil cover of at least 61 cm in conjunction with a capiallary barrier provided the best combination of treatments for the establishment of vegetation and a functional microbial community, (2) aboveground production values for native and introduced species mixtures are comparable after three growing seasons, (3) cover values for native species mixtures are generally greater than for introduced species, (4) native seed mixtures, in general, allow greater invasion to occur, (5) sewage sludge at relatively low rates appears to provide the most beneficial overall effect on plant growth, (6) cultural practices, such as irrigated and mulching have significant effects on both above- and belowground ecosystem development, (7) topsoil storage after 1.5 years does not appear to significantly affect general microbial activities but does reduce the mycorrhizal infection potential of the soil at shallow depths, (8) populations of mycorrhizal fungi are decreased on severely disturbed soils if a cover of vegetation is not established, (9) significant biological differences among ecotypes of important shrub species have been identified, (10) a vegetation model is outlined which upon completion will enable the reclamation specialist to predict the plant species combinations best adapted to specific reclamation sites, and (11) synthetic strains of two important grass species are close to development which will provide superior plant materials for reclamation in the West.

  14. Process simulation for a new conceptual design of LNG terminal coupling NGL recovery and LNG re-gasification for maximum energy savings

    NASA Astrophysics Data System (ADS)

    Muqeet, Mohammed A.

    With the high demands of shale gas and promising development of LNG terminals, a lot of research has focused towards the process development for effective recovery of C2+ hydrocarbons (NGL). Shale gas requires a large amount of cold energy to cool down and recover the NGL; and the LNG re-gasification process requires a lot of heat energy to evaporate for NGL recovery. Thus, coupling the shale gas NGL recovery process and LNG re-gasification process, for utilizing the cold energy from LNG re-gasification process to assist NGL recovery from shale gas has significant economic benefits on both energy saving and high value product recovery. Wang et al. developed new conceptual design of such coupled process in 2013 and later Wang and Xu developed an optimal design considering uncertainties in 2014. This work deals with process simulation of both these designs and the feasibility of the process is verified. A steady state model is developed based on the plant design proposed by Wang et al. using Aspen plusRTM and then a dynamic model of the process is developed using Aspen dynamicsRTM. An effective control strategy is developed and the flexibility of the dynamic model is examined by giving disturbances in the shale gas feed. A comparison is made between the two proposed design and the prospects of the design for real plant scenario is discussed.

  15. Assessing the adsorption properties of shales

    NASA Astrophysics Data System (ADS)

    Pini, Ronny

    2015-04-01

    Physical adsorption refers to the trapping of fluid molecules at near liquid-like densities in the pores of a given adsorbent material. Fine-grained rocks, such as shales, contain a significant amount of nanopores that can significantly contribute to their storage capacity. As a matter of fact, the current ability to extract natural gas that is adsorbed in the rock's matrix is limited, and current technology focuses primarily on the free gas in the fractures (either natural or stimulated), thus leading to recovery efficiencies that are very low. Shales constitute also a great portion of so-called cap-rocks above potential CO2 sequestration sites; hereby, the adsorption process may limit the CO2 mobility within the cap-rock, thus minimizing the impact of leakage on the whole operation. Whether it is an unconventional reservoir or a cap-rock, understanding and quantifying the mechanisms of adsorption in these natural materials is key to improve the engineering design of subsurface operations. Results will be presented from a laboratory study that combines conventional techniques for the measurement of adsorption isotherms with novel methods that allows for the imaging of adsorption using x-rays. Various nanoporous materials are considered, thus including rocks, such as shales and coals, pure clay minerals (a major component in mudrocks) and engineered adsorbents with well-defined nanopore structures, such as zeolites. Supercritical CO2 adsorption isotherms have been measured with a Rubotherm Magnetic Suspension balance by covering the pressure range 0.1-20~MPa. A medical x-ray CT scanner has been used to identify three-dimensional patterns of the adsorption properties of a packed-bed of adsorbent, thus enabling to assess the spatial variability of the adsorption isotherm in heterogeneous materials. The data are analyzed by using thermodynamically rigorous measures of adsorption, such as the net- and excess adsorbed amounts and a recently developed methodology is

  16. Environmental effects of soil contamination by shale fuel oils.

    PubMed

    Kanarbik, Liina; Blinova, Irina; Sihtmäe, Mariliis; Künnis-Beres, Kai; Kahru, Anne

    2014-10-01

    Estonia is currently one of the leading producers of shale oils in the world. Increased production, transportation and use of shale oils entail risks of environmental contamination. This paper studies the behaviour of two shale fuel oils (SFOs)--'VKG D' and 'VKG sweet'--in different soil matrices under natural climatic conditions. Dynamics of SFOs' hydrocarbons (C10-C40), 16 PAHs, and a number of soil heterotrophic bacteria in oil-spiked soils was investigated during the long-term (1 year) outdoor experiment. In parallel, toxicity of aqueous leachates of oil-spiked soils to aquatic organisms (crustaceans Daphnia magna and Thamnocephalus platyurus and marine bacteria Vibrio fischeri) and terrestrial plants (Sinapis alba and Hordeum vulgare) was evaluated. Our data showed that in temperate climate conditions, the degradation of SFOs in the oil-contaminated soils was very slow: after 1 year of treatment, the decrease of total hydrocarbons' content in the soil did not exceed 25 %. In spite of the comparable chemical composition of the two studied SFOs, the VKG sweet posed higher hazard to the environment than the heavier fraction (VKG D) due to its higher mobility in the soil as well as higher toxicity to aquatic and terrestrial species. Our study demonstrated that the correlation between chemical parameters (such as total hydrocarbons or total PAHs) widely used for the evaluation of the soil pollution levels and corresponding toxicity to aquatic and terrestrial organisms was weak.

  17. Basic Data Report -- Defense Waste Processing Facility Sludge Plant, Savannah River Plant 200-S Area

    SciTech Connect

    Amerine, D.B.

    1982-09-01

    This Basic Data Report for the Defense Waste Processing Facility (DWPF)--Sludge Plant was prepared to supplement the Technical Data Summary. Jointly, the two reports were intended to form the basis for the design and construction of the DWPF. To the extent that conflicting information may appear, the Basic Data Report takes precedence over the Technical Data Summary. It describes project objectives and design requirements. Pertinent data on the geology, hydrology, and climate of the site are included. Functions and requirements of the major structures are described to provide guidance in the design of the facilities. Revision 9 of the Basic Data Report was prepared to eliminate inconsistencies between the Technical Data Summary, Basic Data Report and Scopes of Work which were used to prepare the September, 1982 updated CAB. Concurrently, pertinent data (material balance, curie balance, etc.) have also been placed in the Basic Data Report. It is intended that these balances be used as a basis for the continuing design of the DWPF even though minor revisions may be made in these balances in future revisions to the Technical Data Summary.

  18. Investigating the Fate of Hydraulic Fracturing Fluid in Shale Gas Formations Through Two-Phase Numerical Modelling of Fluid Injection

    NASA Astrophysics Data System (ADS)

    Edwards, R.; Doster, F.; Celia, M. A.; Bandilla, K.

    2015-12-01

    The process of hydraulic fracturing in shale gas formations typically involves the injection of large quantities of water-based fluid (2×107L typical) into the shale formations in order to fracture the rock. A large proportion of the fracturing fluids injected into shale gas wells during hydraulic fracturing does not return out of the well once production begins. The percentage of water returning varies within and between different shale plays, but is generally around 30%. The large proportion of the fluid that does not return raises the possibility that it could migrate out of the target shale formation and potentially toward aquifers and the surface through pathways such as the created hydraulic fractures, faults and adjacent wells. A leading hypothesis for the fate of the remaining fracturing fluid is that it is spontaneously imbibed from the hydraulic fractures into the shale rock matrix due to the low water saturation and very high capillary pressure in the shale. The imbibition hypothesis is assessed using numerical modeling of the two-phase flow of fracturing fluid and gas in the shale during injection. The model incorporates relevant two-phase physical phenomena such as capillarity and relative permeability, including hysteretic behavior in both. Modeling scenarios for fracturing fluid injection were assessed under varying conditions for shale reservoir parameters and spatial heterogeneities in permeability and wettability. The results showed that the unaccounted fracturing fluid may plausibly be imbibed into the shale matrix under certain conditions, and that significant small-scale spatial heterogeneity in the shale permeability likely plays an important role in imbibing the fracturing fluid.

  19. An Experimental Investigation into the Effects of the Anisotropy of Shale on Hydraulic Fracture Propagation

    NASA Astrophysics Data System (ADS)

    Lin, Chong; He, Jianming; Li, Xiao; Wan, Xiaole; Zheng, Bo

    2017-03-01

    Hydraulic fracturing is a key technology in the exploitation of shale gas. Shale formations are a type of typical transverse isotropic material. The mechanisms that generate complex fracture networks during the fracturing process are of vital importance to hydraulic fracturing design. In this article, in order to analyze the effects of the anisotropic characteristics on the propagation of hydraulic fractures in shale formations, a series of hydraulic fracturing experiments were carried out with different stress conditions and injection rates. The effects of the anisotropic structure on the propagation of hydraulic fractures were revealed. The results show that the breakdown pressure increases with an increase in the injection rate of the fracturing fluid. It is suggested that the bedding plane angle of the shale formation has a great influence on the fracturing results. Additionally, as the deviator stress increases, the breakdown pressure decreases. From macroscopic observation of the fractures, different hydraulic fracture morphologies and hydraulic fracture propagation patterns were observed.

  20. Paraho oil shale module. Site development plan, Task 4

    SciTech Connect

    Not Available

    1981-10-01

    A management plan and schedule which covers all requirements for gaining access to the site and for conducting a Paraho Process demonstration program have been prepared. The oil shale available should represent a regional resource of suitable size and quality for commercial development. Discussed in this report are: proof of ownership; requirements for rights-of-way for access to the site; local zoning restrictions; water rights; site availability verification; and other legal requirements. (DMC)

  1. Production of valuable hydrocarbons by flash pyrolysis of oil shale

    DOEpatents

    Steinberg, M.; Fallon, P.T.

    1985-04-01

    A process for the production of gas and liquid hydrocarbons from particulated oil shale by reaction with a pyrolysis gas at a temperature of from about 700/sup 0/C to about 1100/sup 0/C, at a pressure of from about 400 psi to about 600 psi, for a period of about 0.2 second to about 20 seconds. Such a pyrolysis gas includes methane, helium, or hydrogen. 3 figs., 3 tabs.

  2. Automated small-scale fuel alcohol plant: A means to add value to food processing waste

    SciTech Connect

    Wolfram, J.H.; Keller, J.; Wernimont, L.P.

    1993-12-31

    A small scale fuel grade alcohol plant was designed, constructed and operated a decade ago. This plant design incorporated several innovative processes and features that are still on the cutting edge for small scale alcohol production. The plant design could be scaled down or up to match the needs of food processing waste streams that contain sugars or starches as BOD. The novel features include automation requiring four hours of labor per 24 hour day and a plug flow low temperature cooking system which solubilizes and liquifies the starch in one step. This plant consistently produced high yield of alcohol. Yields of 2.6 gallons of absolute alcohol were produced from a bushel of corn. Potato waste grain dust and cheese whey were also processed in this plant as well as barley. Production energy for a 190 proof gallon was approximately 32,000 BTU. This paper discusses the design, results, and applicability of this plant to food processing industries.

  3. 43 CFR 3905.10 - Oil shale lease exchanges.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 43 Public Lands: Interior 2 2014-10-01 2014-10-01 false Oil shale lease exchanges. 3905.10 Section... MANAGEMENT, DEPARTMENT OF THE INTERIOR MINERALS MANAGEMENT (3000) OIL SHALE MANAGEMENT-GENERAL Lease Exchanges § 3905.10 Oil shale lease exchanges. To facilitate the recovery of oil shale, the BLM may...

  4. 43 CFR 3905.10 - Oil shale lease exchanges.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 43 Public Lands: Interior 2 2013-10-01 2013-10-01 false Oil shale lease exchanges. 3905.10 Section... MANAGEMENT, DEPARTMENT OF THE INTERIOR MINERALS MANAGEMENT (3000) OIL SHALE MANAGEMENT-GENERAL Lease Exchanges § 3905.10 Oil shale lease exchanges. To facilitate the recovery of oil shale, the BLM may...

  5. 43 CFR 3905.10 - Oil shale lease exchanges.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 43 Public Lands: Interior 2 2011-10-01 2011-10-01 false Oil shale lease exchanges. 3905.10 Section... MANAGEMENT, DEPARTMENT OF THE INTERIOR RANGE MANAGEMENT (4000) OIL SHALE MANAGEMENT-GENERAL Lease Exchanges § 3905.10 Oil shale lease exchanges. To facilitate the recovery of oil shale, the BLM may consider...

  6. 43 CFR 3905.10 - Oil shale lease exchanges.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 43 Public Lands: Interior 2 2012-10-01 2012-10-01 false Oil shale lease exchanges. 3905.10 Section... MANAGEMENT, DEPARTMENT OF THE INTERIOR MINERALS MANAGEMENT (3000) OIL SHALE MANAGEMENT-GENERAL Lease Exchanges § 3905.10 Oil shale lease exchanges. To facilitate the recovery of oil shale, the BLM may...

  7. Phanerozoic black shales and the Wilson Cycle

    NASA Astrophysics Data System (ADS)

    Trabucho-Alexandre, J.; Hay, W. W.; de Boer, P. L.

    2011-09-01

    The spatial and temporal distribution of black shales is related to the development of the environments in which they accumulate and to a propitious combination of environmental variables. Whereas much has been done in recent years to improve our understanding of the mechanisms behind the temporal distribution of black shales in the Phanerozoic, the interpretation of the palaeogeographical distribution of black shales is still dominated by an oversimplistic set of three uniformitarian depositional models that do not capture the complexity and dynamics of environments of black shale accumulation. These three models, the restricted circulation, the (open) ocean oxygen minimum and the continental shelf models, are in fact a uniformitarian simplification of the variety of depositional environments that arise and coexist throughout the course of a basin's Wilson Cycle, i.e. the dynamic sequence of events and stages that characterise the evolution of an ocean basin, from the opening continental rift to the closing orogeny. We examine the spatial distribution of black shales in the context of the Wilson Cycle using examples from the Phanerozoic. It is shown that the geographical distribution of black shales, their position in the basin infill sequence and their nature (e.g. type of organic matter, lithology) depend on basin evolution because the latter controls the development of sedimentary environments where black shales may be deposited.

  8. In-situ retorting of oil shale

    SciTech Connect

    Peters, G.G.; West, R.C.

    1984-11-20

    Fluid, such as liquid water, is injected into the rock surrounding an in situ oil shale retort at sufficient pressure and flow rate so that the injected fluid flows toward the retort to block the path of hot liquid and gaseous kerogen decomposition products escaping from the retort and to return heat to the retort. The successful conduct of an oil shale retorting operation usually requires that the retort temperature be maintained at a temperature sufficient to decompose efficiently the kerogen contained in the oil shale. By reducing the heat loss from an active retort, the amount of energy required to maintain a desired temperature therein is reduced. The fluid injection method also maintains pressure in an in-situ oil shale retort, allowing in-situ oil shale retorting to be efficiently conducted at a desired pressure. The method also reduces the danger to mineworkers who may be engaged in adjacent mining operations due to the escape of hazardous gases from an active retort. The method allows a series of sequential in-situ oil shale retorts in an oil shale formation to be placed more closely together than previously practical by reducing hot fluid leakage from each active retort to one or more abandoned retorts adjacent thereto, thus improving the recovery factor from the formation. The method also minimizes contamination of the formation surrounding an active in-situ retort due to hazardous chemicals which may be contained in the kerogen decomposition products leaking from the retort.

  9. Nitrogen cycling and water pulses in semiarid grasslands: Are microbial and plant processes temporarily asynchronous?

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Precipitation pulses in arid ecosystems can lead to temporal asynchrony in microbial and plant processing of nitrogen (N) during drying/wetting cycles causing increased N loss. In contrast, more consistent availability of soil moisture in mesic ecosystems can synchronize microbial and plant processe...

  10. Classroom Terraria: Enhancing Student Understanding of Plant-Related Gas Processes

    ERIC Educational Resources Information Center

    Thompson, Stephen

    2010-01-01

    Despite our best teaching efforts, many students hold misconceptions related to the roles plants play in gas-related processes (Amir and Tamir 1994; Hershey 1992; 2004). In an effort to remedy this problem, the author presents a series of activities that address common plant-related gas-process misconceptions held by middle school students. The…

  11. Beneficiation of oil shales by froth flotation and heavy media separation: Volume 3, Appendix B: Final report

    SciTech Connect

    Veselick, E.; West, J.

    1987-08-01

    A study to evaluate physical beneficiation processes was undertaken to assess the efficiency of beneficiating oil shale, and to measure its impact on the economics of shale oil production. This study evaluated the effect of crusher types and degree of crushing on beneficiation of oil shales, the natural beneficiation that occurs due to particle size distribution, different beneficiation techniques (heavy liquid sink-float, heavy media cyclones, and froth flotation), and the costs associated with beneficiating low grade oil shales. Every effort was made to incorporate all test available in published reports for both the Green River and Eastern Oil Shales. Results of beneficiation tests show that within the scatter in data, there is no effect of shale particle size (between 45 microns to -3''), method of beneficiation, grade of feed material (13 to 3/GPT), or type of crusher used on oil recovery. The geochemical nature of the oil shale clearly shows that maximum separation of kerogen and inorganic materials occur at particle size below 20 microns. This was verified when the froth flotation technique was used on these fine particle sizes; the oil recovery increased dramatically with much lower oil losses. Analysis of the data shows that froth flotation is the preferred technique for beneficiating oil shales as opposed to heavy media separation. 17 refs., 31 figs., 42 tabs.

  12. Horizontal oil shale and tar sands retort

    SciTech Connect

    Thomas, D.D.

    1982-08-31

    A horizontal retorting apparatus and method are disclosed designed to pyrolyze tar sands and oil shale, which are often found together in naturally occurring deposits. The retort is based on a horizontal retorting tube defining a horizontal retort zone having an upstream and a downstream end. Inlet means are provided for introducing the combined tar sands and oil shale into the upstream end of the retort. A screw conveyor horizontally conveys tar sands and oil shale from the upstream end of the retort zone to the downstream end of the retort zone while simultaneously mixing the tar sands and oil shale to insure full release of product gases. A firebox defining a heating zone surrounds the horizontal retort is provided for heating the tar sands and oil shale to pyrolysis temperatures. Spent shale and tar sands residue are passed horizontally beneath the retort tube with any carbonaceous residue thereon being combusted to provide a portion of the heat necessary for pyrolysis. Hot waste solids resulting from combustion of spent shale and tar sands residue are also passed horizontally beneath the retort tube whereby residual heat is radiated upward to provide a portion of the pyrolysis heat. Hot gas inlet holes are provided in the retort tube so that a portion of the hot gases produced in the heating zone are passed into the retort zone for contacting and directly heating the tar sands and oil shale. Auxiliary heating means are provided to supplement the heat generated from spent shale and tar sands residue combustion in order to insure adequate pyrolysis of the raw materials with varying residual carbonaceous material.

  13. A review of the organic geochemistry of shales

    SciTech Connect

    Ho, P.C.; Meyer, R.E.

    1987-06-01

    Shale formations have been suggested as a potential site for a high level nuclear waste repository. As a first step in the study of the possible interaction of nuclides with the organic components of the shales, literature on the identification of organic compounds from various shales of the continent of the United States has been reviewed. The Green River shale of the Cenozoic era is the most studied shale followed by the Pierre shale of the Mesozoic era and the Devonian black shale of the Paleozoic era. Organic compounds that have been identified from these shales are hydrocarbons, fatty acids, fatty alcohols, steranes, terpanes, carotenes, carbohydrates, amino acids, and porphyrins. However, these organic compounds constitute only a small fraction of the organics in shales and the majority of the organic compounds in shales are still unidentified.

  14. Plant species used in traditional smallholder dairy processing in East Shoa, Ethiopia.

    PubMed

    Mekonnen, Hailemariam; Lemma, A

    2011-04-01

    Plant species used in traditional dairy processing were studied in three districts (Bosset, Ada, and Gimbichu) in Eastern Shoa, Ethiopia, from October 2007 to March 2008. A total of 300 smallholders were interviewed using semi-structured questionnaires, and three focus group discussions were conducted, followed by plants specimen collection and identification. A total of 36 plant species, falling under 24 plant families, were identified. Nearly half of the identified plant species had more than one use types. Eleven plant species were/are used for washing (scrubbing) dairy utensils, ten plant species for smoking dairy utensils, 12 plant species in butter making, 15 plant species in ghee making, and five plant species for packaging (wrapping) butter and cheese. The plant species that had the highest overall citations from each use category were Ocimum hardiense, Olea europaea subspecies africana, Trachyspermum copticum, Curcuma longa, and Croton macrostachyus. The plant species used in the three study districts, representing different agro ecologies, showed some similarities, but levels of uses differed significantly (P < 0.05). Higher informant citations might indicate their better efficacy, however need to be further investigated to determine their effects on milk and milk product quality and to make sure that they are innocuous to human and animal health. Finally, as the present study tried to document natural products used in traditional dairy processing, it could be considered as part of the global efforts aimed at promoting organic food production.

  15. Kerogen extraction from subterranean oil shale resources

    DOEpatents

    Looney, Mark Dean; Lestz, Robert Steven; Hollis, Kirk; Taylor, Craig; Kinkead, Scott; Wigand, Marcus

    2010-09-07

    The present invention is directed to methods for extracting a kerogen-based product from subsurface (oil) shale formations, wherein such methods rely on fracturing and/or rubblizing portions of said formations so as to enhance their fluid permeability, and wherein such methods further rely on chemically modifying the shale-bound kerogen so as to render it mobile. The present invention is also directed at systems for implementing at least some of the foregoing methods. Additionally, the present invention is also directed to methods of fracturing and/or rubblizing subsurface shale formations and to methods of chemically modifying kerogen in situ so as to render it mobile.

  16. Kerogen extraction from subterranean oil shale resources

    DOEpatents

    Looney, Mark Dean; Lestz, Robert Steven; Hollis, Kirk; Taylor, Craig; Kinkead, Scott; Wigand, Marcus

    2009-03-10

    The present invention is directed to methods for extracting a kerogen-based product from subsurface (oil) shale formations, wherein such methods rely on fracturing and/or rubblizing portions of said formations so as to enhance their fluid permeability, and wherein such methods further rely on chemically modifying the shale-bound kerogen so as to render it mobile. The present invention is also directed at systems for implementing at least some of the foregoing methods. Additionally, the present invention is also directed to methods of fracturing and/or rubblizing subsurface shale formations and to methods of chemically modifying kerogen in situ so as to render it mobile.

  17. Mechanistic model for the leaching of retorted rundle oil shale

    SciTech Connect

    Krol, A.A.; Bell, P.R.F.; Greenfield, P.F.

    1985-12-09

    The mechanisms involved in the leaching of inorganic components from oil shale mined at the Rundle deposit, Queensland, Australia, and retorted by the Lurgi-Ruhrgas process were examined. The phenomena of most significance were found to be solute dissolution, cation exchange, solution speciation and hydrodynamic and unsaturated flow effects. To check on the completeness of this characterization, a model was developed which describes the generation and transport of the major components (Ca, Mg, Na, K, Cl and SO/sub 4/) in the leachate as it infiltrates a column of dry retorted shale. Model predictions compare well with experimental results. It is concluded that the dominant mechanisms which control the rate of leaching have been recognized. 8 references, 11 figures.

  18. Towards uncovering the roles of switchgrass peroxidases in plant processes

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Herbaceous perennial plants selected as potential biofuel feedstocks had been understudied at the genomic and functional genomic levels. Recent investments, primarily by the U.S. Department of Energy, have led to the development of a number of molecular resources for bioenergy grasses and related di...

  19. Trailers transporting oranges to processing plants move Asian citrus psyllids

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Huanglongbing (citrus greening) is one of the most serious of citrus diseases. Movement of the disease occurs as a result of natural vector-borne infection and by movement of plant material. We demonstrate here that Diaphorina citri Kuwayama (vector of citrus greening pathogens) can be transported i...

  20. Method for retorting oil shale

    DOEpatents

    Shang, Jer-Yu; Lui, A.P.

    1985-08-16

    The recovery of oil from oil shale is provided in a fluidized bed by using a fluidizing medium of a binary mixture of carbon dioxide and 5 steam. The mixture with a steam concentration in the range of about 20 to 75 volume percent steam provides an increase in oil yield over that achievable by using a fluidizing gas of carbon dioxide or steam alone when the mixture contains higher steam concentrations. The operating parameters for the fluidized bed retorted are essentially the same as those utilized with other gaseous fluidizing mediums with the significant gain being in the oil yield recovered which is attributable solely to the use of the binary mixture of carbon dioxide and steam. 2 figs.

  1. Energy conservation study on Lamb-Weston potato processing plant, Hermiston, Oregon

    SciTech Connect

    Not Available

    1985-03-21

    This report presents the findings of an energy study done at the Lamb-Weston potato processing plant in Hermiston, Oregon. The study includes all electrical energy using systems at the plant but does not address specifc modificiations to process equipment. The Hermiston plant receives raw potatoes and produces a mixture of pre-fried and frozen potato products, including french fries, breakfast products, and a dinner product. The plant contains all necessary equipment and processes to produce a finished product but does not have on-site, long-term cold storage. The Hermiston plant purchases electricity from the Umatilla Rural Electrical Association (REA) on two main services: a 12.7 KV, three phase service for the electric boiler, and a three phase, 480 volt service that provides electricity for all other functions in the main plant (the wheelturning load).

  2. The Architecture and Frictional Properties of Faults in Shale

    NASA Astrophysics Data System (ADS)

    De Paola, N.; Imber, J.; Murray, R.; Holdsworth, R.

    2015-12-01

    The geometry of brittle fault zones in shale rocks, as well as their frictional properties at reservoir conditions, are still poorly understood. Nevertheless, these factors may control the very low recovery factors (25% for gas and 5% for oil) obtained during fracking operations. Extensional brittle fault zones (maximum displacement < 3 m) cut exhumed oil mature black shales in the Cleveland Basin (UK). Fault cores up to 50 cm wide accommodated most of the displacement, and are defined by a stair-step geometry. Their internal architecture is characterised by four distinct fault rock domains: foliated gouges; breccias; hydraulic breccias; and a slip zone up to 20 mm thick, composed of a fine-grained black gouge. Hydraulic breccias are located within dilational jogs with aperture of up to 20 cm. Brittle fracturing and cataclastic flow are the dominant deformation mechanisms in the fault core of shale faults. Velocity-step and slide-hold-slide experiments at sub-seismic slip rates (microns/s) were performed in a rotary shear apparatus under dry, water and brine-saturated conditions, for displacements of up to 46 cm. Both the protolith shale and the slip zone black gouge display shear localization, velocity strengthening behaviour and negative healing rates, suggesting that slow, stable sliding faulting should occur within the protolith rocks and slip zone gouges. Experiments at seismic speed (1.3 m/s), performed on the same materials under dry conditions, show that after initial friction values of 0.5-0.55, friction decreases to steady-state values of 0.1-0.15 within the first 10 mm of slip. Contrastingly, water/brine saturated gouge mixtures, exhibit almost instantaneous attainment of very low steady-state sliding friction (0.1), suggesting that seismic ruptures may efficiently propagate in the slip zone of fluid-saturated shale faults. Stable sliding in faults in shale can cause slow fault/fracture propagation, affecting the rate at which new fracture areas are

  3. Proof-of-Concept Oil Shale Facility Environmental Analysis Program

    SciTech Connect

    Not Available

    1990-11-01

    The objectives of the Project are to demonstrate: (1) the Modified In- Situ (MIS) shale oil extraction process and (2) the application of CFBC technology using oil shale, coal and waste gas streams as fuels. The project will focus on evaluating and improving the efficiency and environmental performance of these technologies. The project will be modest by commercial standards. A 17-retort MIS system is planned in which two retorts will be processed simultaneously. Production of 1206-barrels per calendar day of raw shale oil and 46-megawatts of electricity is anticipated. West Virginia University coordinated an Environmental Analysis Program for the Project. Experts from around the country were retained by WVU to prepare individual sections of the report. These experts were exposed to all of OOSI's archives and toured Tract C-b and Logan Wash. Their findings were incorporated into this report. In summary, no environmental obstacles were revealed that would preclude proceeding with the Project. One of the most important objectives of the Project was to verify the environmental acceptability of the technologies being employed. Consequently, special attention will be given to monitoring environmental factors and providing state of the art mitigation measures. Extensive environmental and socioeconomic background information has been compiled for the Tract over the last 15 years and permits were obtained for the large scale operations contemplated in the late 1970's and early 1980's. Those permits have been reviewed and are being modified so that all required permits can be obtained in a timely manner.

  4. Proof-of-Concept Oil Shale Facility Environmental Analysis Program

    SciTech Connect

    Not Available

    1990-11-01

    The objectives of the Project are to demonstrate: (1) the Modified In- Situ (MIS) shale oil extraction process and (2) the application of CFBC technology using oil shale, coal and waste gas streams as fuels. The project will focus on evaluating and improving the efficiency and environmental performance of these technologies. The project will be modest by commercial standards. A 17-retort MIS system is planned in which two retorts will be processed simultaneously. Production of 1206-barrels per calendar day of raw shale oil and 46-megawatts of electricity is anticipated. West Virginia University coordinated an Environmental Analysis Program for the Project. Experts from around the country were retained by WVU to prepare individual sections of the report. These experts were exposed to all of OOSI`s archives and toured Tract C-b and Logan Wash. Their findings were incorporated into this report. In summary, no environmental obstacles were revealed that would preclude proceeding with the Project. One of the most important objectives of the Project was to verify the environmental acceptability of the technologies being employed. Consequently, special attention will be given to monitoring environmental factors and providing state of the art mitigation measures. Extensive environmental and socioeconomic background information has been compiled for the Tract over the last 15 years and permits were obtained for the large scale operations contemplated in the late 1970`s and early 1980`s. Those permits have been reviewed and are being modified so that all required permits can be obtained in a timely manner.

  5. [The airborne 1,3-butadiene concentrations in rubber and plastic processing plants].

    PubMed

    Yoshida, Toshiaki; Tainaka, Hidetsugu; Matsunaga, Ichiro; Goto, Sumio

    2002-03-01

    Environment pollution by 1,3-butadiene had considerably increased in Japan. The main cause of the pollution is the automotive exhaust gas, and leaks from factories, smoking, and burning of rubber and plastic products are considered to be minor sources. The object of this study was to determine the contamination levels of airborne 1,3-butadiene in factories processing rubber and plastics containing 1,3-butadiene. The concentrations of airborne 1,3-butadiene were measured in 21 plants (10 rubber processing plants and 11 plastics processing plants) in Osaka. 1,3-Butadiene in air was collected for 10 minutes with a charcoal tube and a portable small pump adjusted to a 250 ml/min flow rate. In each plant, indoor air samples at five points and an outdoor air sample at one point outside the plant were collected. The samples were subjected to gas chromatography/mass spectrometry after thermal desorption from the charcoal. The concentrations of airborne 1,3-butadiene in the rubber processing plants and the plastics processing plants were 0.14-2.20 micrograms/m3 (geometric mean: 0.48 microgram/m3) and 0.23-4.51 micrograms/m3 (geometric mean: 0.80 microgram/m3), respectively. In all plants examined, indoor 1,3-butadiene concentrations were higher than the outdoor concentrations around the plants. Therefore, 1,3-butadiene was considered to arise from the processing of rubber or plastics, but the indoor 1,3-butadiene concentrations were much lower than the PEL-TWA (1 ppm = 2.21 mg/m3) of OSHA and the TLV-TWA (2 ppm) of ACGIH. The concentrations in the plants with closed room conditions without ventilation were higher than the concentrations in the other plants. It was suggested that ventilation affected the 1,3-butadiene concentration in the plants.

  6. Multi-elemental surface mapping and analysis of carbonaceous shale by laser-induced breakdown spectroscopy

    NASA Astrophysics Data System (ADS)

    Xu, Tao; Liu, Jie; Shi, Qi; He, Yi; Niu, Guanghui; Duan, Yixiang

    2016-01-01

    Gas shale is one of the important unconventional hydrocarbon source rocks, whose composition, such as mineral components and redox sensitive trace elements, has been proved as important geochemical proxies playing essential roles in indicating the gas potential and gas productivity in recent geological researches. Fast and accurate measurements for the shale composition, especially those with spatial resolution, will reveal rich information for the understanding and evaluation of gas shale reservoirs. In this paper, we demonstrated the potentiality as well as feasibility of laser-induced breakdown spectroscopy as an effective technique to perform spectrochemical analysis for shale samples. In case of the bulk analysis of pressed shale pellet, spectral analysis of the plasma emission revealed high sensitivity of LIBS for major, minor and even trace elements. More than 356 lines emitted by 19 different elements can be found. Among these species, redox sensitive trace elements such as V, Cr, and Ni were detected with high signal-to-ratios. Two-dimensional surface micro-analysis for the concerned major or minor elements with strong emissions was then applied to the smoothed shale slab. Local thermodynamic equilibrium for the plasma was first verified with a line profile point-by-point on the sample surface, the matrix effect was then assessed as negligible by the extracted electron density and temperature of the plasmas induced at each position on the same profile. Concentration mappings for the major elements of Si, Al, Fe, Ca, Mg, Na and K were finally constructed with their measured relative variations of line emission intensities. The distribution and correlations of these elements in concentration may reflect changes of shale mineral components with respected to the variations of the depositional environments and provide an important clue in identifying sedimentary processes when combined with other geological or geochemical evidences. These results well

  7. Stratigraphic variations in oil-shale fracture properties. [Colorado and Wyoming

    SciTech Connect

    Young, C.; Patti, N. C.; Trent, B. C.

    1982-09-01

    The proper design and evaluation of in situ oil shale fracture and retorting experiments require that both the extreme values and spatial distribution of the controlling rock properties be adequately known. Many of the in situ technologies being considered for processing within the Green River Formation in Colorado, Wyoming and Utah depend upon the carefully controlled explosive fracturing of the rock such that suitably uniform permeabilities are achieved. The prediction, control and evaluation of explosive oil shale fracturing require a detailed knowledge of tensile strength behavior as a function of shale grade and stratigraphic position. Direct-pull tensile tests, point-load pinch tests, and four-point-bend fracture toughness tests have been utilized to develop detailed logs of the relevant fracture properties for the 37 m thick Mahogany Zone section of the Green River Formation near Anvil Points, Colorado and for the rich, upper 13 m of the Tipton Member near Rock Springs, Wyoming. For the Mahogany Zone shale tensile strengths ranged up to 15.3 MPa for direct-pull tests and 43.4 MPa for indirect tests. Fracture energy values for this shale ranged from 8 J/m/sup 2/ to 191 J/m/sup 2/. For the Tipton shale tensile strengths ranged up to 3.7 MPa for direct-pull tests and 12.6 MPa for indirect tests. Fracture energy values for the Tipton averaged from 5 J/m/sup 2/ to 91 J/m/sup 2/. Detailed statistical analyses were performed on these data and on Fischer assay oil yield data to establish the correlations between them. Data from both tensile strength and fracture energy tests correlate well with lithologic and oil yield characteristics of the Mahogany Zone shale while poor correlations were found for the Tipton shale. 27 figures, 8 tables.

  8. On the possibility of magnetic nano-markers use for hydraulic fracturing in shale gas mining

    NASA Astrophysics Data System (ADS)

    Zawadzki, Jaroslaw; Bogacki, Jan

    2016-04-01

    Recently shale gas production became essential for the global economy, thanks to fast advances in shale fracturing technology. Shale gas extraction can be achieved by drilling techniques coupled with hydraulic fracturing. Further increasing of shale gas production is possible by improving the efficiency of hydraulic fracturing and assessing the spatial distribution of fractures in shale deposits. The latter can be achieved by adding magnetic markers to fracturing fluid or directly to proppant, which keeps the fracture pathways open. After that, the range of hydraulic fracturing can be assessed by measurement of vertical and horizontal component of earth's magnetic field before and after fracturing. The difference in these components caused by the presence of magnetic marker particles may allow to delineate spatial distribution of fractures. Due to the fact, that subterranean geological formations may contain minerals with significant magnetic properties, it is important to provide to the markers excellent magnetic properties which should be also, independent of harsh chemical and geological conditions. On the other hand it is of great significance to produce magnetic markers at an affordable price because of the large quantities of fracturing fluids or proppants used during shale fracturing. Examining the properties of nano-materials, it was found, that they possess clearly superior magnetic properties, as compared to the same structure but having a larger particle size. It should be then possible, to use lower amount of magnetic marker, to obtain the same effect. Although a research on properties of new magnetic nano-materials is very intensive, cheap magnetic nano-materials are not yet produced on a scale appropriate for shale gas mining. In this work we overview, in detail, geological, technological and economic aspects of using magnetic nano-markers in shale gas mining. Acknowledgment This work was supported by the NCBiR under Grant "Electromagnetic method to

  9. Harnessing mineral carbonation reactions to seal fractured shales and sequester carbon

    NASA Astrophysics Data System (ADS)

    Clarens, A. F.; Tao, Z.

    2014-12-01

    Shale oil and gas are being developed widely in the United States despite the potential for long-term climate impacts driven by burning these new hydrocarbon resources and by fugitive emissions from fractured formations. Here the carbonation of calcium-based silicates is studied as a method to re-seal fractured shale formations and to store significant amounts of CO2 after hydrocarbon extraction. Ex situ mineral carbonation has been studied extensively for trapping CO2 from power plants but the application of these reactions directly within shale matrix under in situ conditions to seal shales and sequester carbon has not been studied. The reaction requires the solid calcium-based silicates being present within the shale fracture matrix and flooded with high-pressure CO2. The pressure and temperature within most shale formations would enable this carbonation reaction to precipitate solid calcium carbonate, which would clog fractures. Silicates could be injected in the same way that proppants are injected into shale gas wells. Wollastonite was tested here but other silicate minerals such as olivine could also be used in much the same way. To prove this concept, batch experiments were carried out under reservoir conditions representative of the Marcellus Shale in the presence of ground shale particles (39-177μm) and CaSiO3 powder. X-ray diffraction (XRD) patterns revealed the conversion of CaSiO3 into CaCO3 after 24 hours. Quantitative XRD analysis was used to determine that the conversion ratio of CaSiO3 was ~55% at 3100 Psi and 75oC. The reaction was sensitive to both temperature and pressure with ~58% conversion at an increased temperature of 95oC and only ~50% at lower pressure (2200psi). The morphology observed by Scanning Electron Microscopy (SEM) reveals that the shale particle surfaces are covered with precipitated calcite crystals ranging in size from 1 to 5 μm. Using energy-dispersive X-ray spectroscopy (EDS), the locations of residual CaSiO3and

  10. Apparatus for retorting comminuted oil shale

    SciTech Connect

    Strumskis, L.

    1982-04-20

    A continuously operable retort-type processing system for the recovery of petroleum-like products from comminuted oil-bearing shale and other oil-yielding particulate solid materials. The retort portion of the system includes an insulated retort outer shell for a wall jacket-type heat exchanger. Disposed within the retort, all driven from a common axially disposed motor-driven shaft, are a plurality of stirring fingers, wall scrapers and discharge shovels, the latter for use in discharge of spent solid material from the retort. The system envisions burning gases from the process to provide a fluid heat exchange medium as a source of the heat required for the process. The system further includes means for the admixture of steam and acetic acid with the starting particulate materials prior to its introduction into the retort. An additional instrumentality is included at an intermediate position along the reaction path of the materials as they pass through the retort for the addition of additional quantities of steam and acetic acid.

  11. Production of shale oil by in-situ retorting of oil shale

    SciTech Connect

    Miller, J.

    1983-04-05

    A modified in-situ retort for the retorting of oil shale is constructed by mining an open space having a volume of twentyfive to thirty-five percent of the volume of the retort in the bottom of the retort and thereafter blasting the oil shale that is to remain in the retort as rubble in a manner to cause random free fall of the shale particles onto the rubblized bed. Blasting occurs sequentially from the bottom of the unfragmented shale immediately above the open space to the top of the retort. At each blast, there is an open space below the shale to be broken in the blast having a volume at least one-third the volume of that shale, and the timing of the blasts is such that movement of the broken shale is not interfered with by shale broken in the preceding blast. There is no withdrawal of oil shale that would cause downward movement of the rubble that is to be retorted insitu. The resultant in-situ retort is characterized by a high and uniform permeability.

  12. Biodegradation of Kupferschiefer black shale organic matter (Fore-Sudetic Monocline, Poland) by indigenous microorganisms.

    PubMed

    Matlakowska, Renata; Sklodowska, Aleksandra

    2011-05-01

    This study provides the first evidence for the direct biodegradation of persistent organic matter extracted from the organic-rich polymetallic black shale ore Kupferschiefer, one of the most important sources of metals in the world. It was demonstrated that an enriched community of indigenous heterotrophic microorganisms isolated from black shale grown under aerobic conditions could utilize shale organic matter as the sole carbon and energy source. Colonization of shale organic matter was observed. The main biodegradation intermediates and products such as phosphonic acid dioctadecyl ester and isoindole-1,3 were detected in the aqueous phase of cultures. The bacterial community showed the ability to PAH biodegradation, assimilation of organic acids and esters as well as lipase activity. The intracellular accumulation of phosphorus by bacteria during growth on organic matter was confirmed. Strains within the genus Pseudomonas were found to dominate the bacterial population at the end of the experiment. The results of this study confirm that indigenous bacteria are likely to play a role in the biotransformation of black shale and can influence the geochemical cycles of ancient organic carbon in the deep terrestrial subsurface. This process may also occur in tailings ponds containing black shale, and cause the mobilization of potentially toxic compounds to the soil and groundwater.

  13. Gold and platinum in shales with evidence against extraterrestrial sources of metals

    USGS Publications Warehouse

    Coveney, R.M.; Murowchick, J.B.; Grauch, R.I.; Glascock, M.D.; Denison, J.R.

    1992-01-01

    Few black shales contain concentrations of precious metals higher than average continental crust (i.e. ???5 ppb Au). Yet Au and Pt alloys have been reported from the Kupferschiefer in Poland. Moreover, thin sulfide beds in certain Chinese and Canadian shales contain several hundred ppb Au, Pd and Pt and average ???4% Mo and ???2.5% Ni in an association that is difficult to explain. Volcanic and non-volcanic exhalations, hydrothermal epigenesis involving either igneous or sedex fluids, biogenic processes and low-temperature secondary enrichment are among the possible factors involved in deriving Ni, PGE and Au for black shales and sulfide beds in black shales. Extraterrestrial sources have been invoked in some cases (e.g., the Cambrian of China). However, available data on abundances of PGE indicate relatively low values for Ir (<0.02-2 ppb) in comparison with amounts for other PGE (up to 700 ppb Pt and 1255 ppb Pd). These data and high contents for Mo are not consistent with extraterrestrial sources of metals for Chinese shales and Ni-Mo-sulfide beds. Data are less complete for the U.S. shales, but nevertheless are suggestive of earthly origins for PGE. ?? 1992.

  14. Organic metamorphism in the Lower Mississippian-Upper Devonian Bakken shales-II: Soxhlet extraction.

    USGS Publications Warehouse

    Price, L.C.; Ging, T.; Love, A.; Anders, D.

    1986-01-01

    We report on Soxhlet extraction (and subsequent related analyses) of 39 Lower Mississippian-Upper Devonian Bakken shales from the North Dakota portion of the Williston Basin, and analyses of 28 oils from the Basin. Because of the influence of primary petroleum migration, no increase in the relative or absolute concentrations of hydrocarbons or bitumen was observed at the threshold of intense hydrocarbon generation (TIHG), or during mainstage hydrocarbon generation in the Bakken shales. Thus, the maturation indices that have been so useful in delineating the TIHG and mainstage hydrocarbon generation in other studies were of no use in this study, where these events could clearly be identified only by Rock-Eval pyrolysis data. The data of this study demonstrate that primary petroleum migration is a very efficient process. Four distinctive classes of saturated hydrocarbon gas chromatograms from the Bakken shales arose from facies, maturation, and primary migration controls. As a consequence of maturation, the % of saturated hydrocarbons increased in the shale extract at the expense of decreases in the resins and asphaltenes. Measurements involving resins and asphaltenes appear to be excellent maturation indices in the Bakken shales. Two different and distinct organic facies were present in immature Bakken shales. -from Authors

  15. Mixed integer simulation optimization for optimal hydraulic fracturing and production of shale gas fields

    NASA Astrophysics Data System (ADS)

    Li, J. C.; Gong, B.; Wang, H. G.

    2016-08-01

    Optimal development of shale gas fields involves designing a most productive fracturing network for hydraulic stimulation processes and operating wells appropriately throughout the production time. A hydraulic fracturing network design-determining well placement, number of fracturing stages, and fracture lengths-is defined by specifying a set of integer ordered blocks to drill wells and create fractures in a discrete shale gas reservoir model. The well control variables such as bottom hole pressures or production rates for well operations are real valued. Shale gas development problems, therefore, can be mathematically formulated with mixed-integer optimization models. A shale gas reservoir simulator is used to evaluate the production performance for a hydraulic fracturing and well control plan. To find the optimal fracturing design and well operation is challenging because the problem is a mixed integer optimization problem and entails computationally expensive reservoir simulation. A dynamic simplex interpolation-based alternate subspace (DSIAS) search method is applied for mixed integer optimization problems associated with shale gas development projects. The optimization performance is demonstrated with the example case of the development of the Barnett Shale field. The optimization results of DSIAS are compared with those of a pattern search algorithm.

  16. Impacts of oil sands process water on fen plants: implications for plant selection in required reclamation projects.

    PubMed

    Pouliot, Rémy; Rochefort, Line; Graf, Martha D

    2012-08-01

    Fen plant growth in peat contaminated with groundwater discharges of oil sands process water (OSPW) was assessed in a greenhouse over two growing seasons. Three treatments (non-diluted OSPW, diluted OSPW and rainwater) were tested on five vascular plants and four mosses. All vascular plants tested can grow in salinity and naphthenic acids levels currently produced by oil sands activity in northwestern Canada. No stress sign was observed after both seasons. Because of plant characteristics, Carex species (C. atherodes and C. utriculata) and Triglochin maritima would be more useful for rapidly restoring vegetation and creating a new peat-accumulating system. Groundwater discharge of OSPW proved detrimental to mosses under dry conditions and ensuring adequate water levels would be crucial in fen creation following oil sands exploitation. Campylium stellatum would be the best choice to grow in contaminated areas and Bryum pseudotriquetrum might be interesting as it has spontaneously regenerated in all treatments.

  17. Idealized Shale Sorption Isotherm Measurements to Determine Pore Volume, Pore Size Distribution, and Surface Area

    NASA Astrophysics Data System (ADS)

    Holmes, R.; Wang, B.; Aljama, H.; Rupp, E.; Wilcox, J.

    2014-12-01

    One method for mitigating the impacts of anthropogenic CO2-related climate change is the sequestration of CO2 in depleted gas and oil reservoirs, including shale. The accurate characterization of the heterogeneous material properties of shale, including pore volume, surface area, pore size distributions (PSDs) and composition is needed to understand the interaction of CO2 with shale. Idealized powdered shale sorption isotherms were created by varying incremental amounts of four essential components by weight. The first two components, organic carbon and clay, have been shown to be the most important components for CO2 uptake in shales. Organic carbon was represented by kerogen isolated from a Silurian shale, and clay groups were represented by illite from the Green River shale formation. The rest of the idealized shale was composed of equal parts by weight of SiO2 to represent quartz and CaCO3 to represent carbonate components. Baltic, Eagle Ford, and Barnett shale sorption measurements were used to validate the idealized samples. The idealized and validation shale sorption isotherms were measured volumetrically using low pressure N2 (77K) and CO2 (273K) adsorbates on a Quantachrome Autosorb IQ2. Gravimetric isotherms were also produced for a subset of these samples using CO2 and CH4adsorbates under subsurface temperature and pressure conditions using a Rubotherm magnetic suspension balance. Preliminary analyses were inconclusive in validating the idealized samples. This could be a result of conflicting reports of total organic carbon (TOC) content in each sample, a problem stemming from the heterogeneity of the samples and different techniques used for measuring TOC content. The TOC content of the validation samples (Eagle Ford and Barnett) was measured by Rock-Eval pyrolysis at Weatherford Laboratories, while the TOC content in the Baltic validation samples was determined by LECO TOC. Development of a uniform process for measuring TOC in the validation samples is

  18. Quartz cementation mechanisms between adjacent sandstone and shale in Middle Cambrian, West Lithuania

    NASA Astrophysics Data System (ADS)

    Zhou, Lingli; Friis, Henrik

    2013-04-01

    dissolution (chemical compaction) of quartz within the shales, or internal supply through chemical compaction within sandstones or along sandstone/shale interfaces; 2) Dissolution of detrital silicate grains, such as feldspars or lithic grains may locally play a role; 3) Shale diagenesis process that required addition of K2O and Al2O3, and resulted in loss of SiO2. Thin shales could act as an open system and export silica towards the intercalated sandstones. The main mechanism to move these dissolved silica is supposed to be compaction that resulted in the elongated grains and etched margines in shales and sandstones. Dissolved silica that was produced during dissolution may have been transported by diffusion into inter-stylolite regions or porous area with less pressure where the aqueous silica precipitates as quartz cement on quartz grains.

  19. When do plants modify fluvial processes? Plant-hydraulic interactions under variable flow and sediment supply rates

    NASA Astrophysics Data System (ADS)

    Manners, Rebecca B.; Wilcox, Andrew C.; Kui, Li; Lightbody, Anne F.; Stella, John C.; Sklar, Leonard S.

    2015-02-01

    Flow and sediment regimes shape alluvial river channels; yet the influence of these abiotic drivers can be strongly mediated by biotic factors such as the size and density of riparian vegetation. We present results from an experiment designed to identify when plants control fluvial processes and to investigate the sensitivity of fluvial processes to changes in plant characteristics versus changes in flow rate or sediment supply. Live seedlings of two species with distinct morphologies, tamarisk (Tamarix spp.) and cottonwood (Populus fremontii), were placed in different configurations in a mobile sand-bed flume. We measured the hydraulic and sediment flux responses of the channel at different flow rates and sediment supply conditions representing equilibrium (sediment supply = transport rate) and deficit (sediment supply < transport rate). We found that the hydraulic and sediment flux responses during sediment equilibrium represented a balance between abiotic and biotic factors and was sensitive to increasing flow rates and plant species and configuration. Species-specific traits controlled the hydraulic response: compared to cottonwood, which has a more tree-like morphology, the shrubby morphology of tamarisk resulted in less pronation and greater reductions in near-bed velocities, Reynolds stress, and sediment flux rates. Under sediment-deficit conditions, on the other hand, abiotic factors dampened the effect of variations in plant characteristics on the hydraulic response. We identified scenarios for which the highest stem-density patch, independent of abiotic factors, dominated the fluvial response. These results provide insight into how and when plants influence fluvial processes in natural systems.

  20. Pollination and seed dispersal are the most threatened processes of plant regeneration

    NASA Astrophysics Data System (ADS)

    Neuschulz, Eike Lena; Mueller, Thomas; Schleuning, Matthias; Böhning-Gaese, Katrin

    2016-07-01

    Plant regeneration is essential for maintaining forest biodiversity and ecosystem functioning, which are globally threatened by human disturbance. Here we present the first integrative meta-analysis on how forest disturbance affects multiple ecological processes of plant regeneration including pollination, seed dispersal, seed predation, recruitment and herbivory. We analysed 408 pairwise comparisons of these processes between near-natural and disturbed forests. Human impacts overall reduced plant regeneration. Importantly, only processes early in the regeneration cycle that often depend on plant-animal interactions, i.e. pollination and seed dispersal, were negatively affected. Later processes, i.e. seed predation, recruitment and herbivory, showed overall no significant response to human disturbance. Conserving pollination and seed dispersal, including the animals that provide these services to plants, should become a priority in forest conservation efforts globally.