Sample records for shale retorting operations

  1. Method of operating an oil shale kiln

    DOEpatents

    Reeves, Adam A.

    1978-05-23

    Continuously determining the bulk density of raw and retorted oil shale, the specific gravity of the raw oil shale and the richness of the raw oil shale provides accurate means to control process variables of the retorting of oil shale, predicting oil production, determining mining strategy, and aids in controlling shale placement in the kiln for the retorting.

  2. Method for closing a drift between adjacent in situ oil shale retorts

    DOEpatents

    Hines, Alex E.

    1984-01-01

    A row of horizontally spaced-apart in situ oil shale retorts is formed in a subterranean formation containing oil shale. Each row of retorts is formed by excavating development drifts at different elevations through opposite side boundaries of a plurality of retorts in the row of retorts. Each retort is formed by explosively expanding formation toward one or more voids within the boundaries of the retort site to form a fragmented permeable mass of formation particles containing oil shale in each retort. Following formation of each retort, the retort development drifts on the advancing side of the retort are closed off by covering formation particles within the development drift with a layer of crushed oil shale particles having a particle size smaller than the average particle size of oil shale particles in the adjacent retort. In one embodiment, the crushed oil shale particles are pneumatically loaded into the development drift to pack the particles tightly all the way to the top of the drift and throughout the entire cross section of the drift. The closure between adjacent retorts provided by the finely divided oil shale provides sufficient resistance to gas flow through the development drift to effectively inhibit gas flow through the drift during subsequent retorting operations.

  3. EVALUATION OF THE EFFECTS OF WEATHERING ON A 50-YEAR OLD RETORTED OIL-SHALE WASTE PILE, RULISON EXPERIMENTAL RETORT, COLORADO.

    USGS Publications Warehouse

    Tuttle, Michele L.W.; Dean, Walter E.; Ackerman, Daniel J.; ,

    1985-01-01

    An oil-shale mine and experimental retort were operated near Rulison, Colorado by the U. S. Bureau of Mines from 1926 to 1929. Samples from seven drill cores from a retorted oil-shale waste pile were analyzed to determine 1) the chemical and mineral composition of the retorted oil shale and 2) variations in the composition that could be attributed to weathering. Unweathered, freshly-mined samples of oil shale from the Mahogany zone of the Green River Formation and slope wash collected away from the waste pile were also analyzed for comparison. The waste pile is composed of oil shale retorted under either low-temperature (400-500 degree C) or high-temperature (750 degree C) conditions. The results of the analyses show that the spent shale within the waste pile contains higher concentrations of most elements relative to unretorted oil shale.

  4. Oil-shale program

    NASA Astrophysics Data System (ADS)

    Bader, B. E.

    1981-10-01

    The principal activities of the Sandia National Laboratories in the Department of Energy Oil shale program during the period April 1 to June 30, 1981 are discussed. Currently, Sandia's activities are focused upon: the development and use of analytical and experimental modeling techniques to describe and predict the retort properties and retorting process parameters that are important to the preparation, operation, and stability of in situ retorts, and the development, deployment, and field use of instrumentation, data acquisition, and process monitoring systems to characterize and evaluate in site up shale oil recovery operations. In-house activities and field activities (at the Geokinetics Oil Shale Project and the Occidental Oil Shale Project) are described under the headings: bed preparation, bed characterization, retorting process, and structural stability.

  5. Fluid outlet at the bottom of an in situ oil shale retort

    DOEpatents

    Hutchins, Ned M.

    1984-01-01

    Formation is excavated from within the boundaries of a retort site in formation containing oil shale for forming at least one retort level void extending horizontally across the retort site, leaving at least one remaining zone of unfragmented formation within the retort site. A production level drift is excavated below the retort level void, leaving a lower zone of unfragmented formation between the retort level void and the production level drift. A plurality of raises are formed between the production level drift and the retort level void for providing product withdrawal passages distributed generally uniformly across the horizontal cross section of the retort level void. The product withdrawal passages are backfilled with a permeable mass of particles. Explosive placed within the remaining zone of unfragmented formation above the retort level void is detonated for explosively expanding formation within the retort site toward at least the retort level void for forming a fragmented permeable mass of formation particles containing oil shale within the boundaries of the retort site. During retorting operations products of retorting are conducted from the fragmented mass in the retort through the product withdrawal passages to the production level void. The products are withdrawn from the production level void.

  6. Solar retorting of oil shale

    DOEpatents

    Gregg, David W.

    1983-01-01

    An apparatus and method for retorting oil shale using solar radiation. Oil shale is introduced into a first retorting chamber having a solar focus zone. There the oil shale is exposed to solar radiation and rapidly brought to a predetermined retorting temperature. Once the shale has reached this temperature, it is removed from the solar focus zone and transferred to a second retorting chamber where it is heated. In a second chamber, the oil shale is maintained at the retorting temperature, without direct exposure to solar radiation, until the retorting is complete.

  7. Process concept of retorting of Julia Creek oil shale

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sitnai, O.

    1984-06-01

    A process is proposed for the above ground retorting of the Julia Creek oil shale in Queensland. The oil shale characteristics, process description, chemical reactions of the oil shale components, and the effects of variable and operating conditions on process performance are discussed. The process contains a fluidized bed combustor which performs both as a combustor of the spent shales and as a heat carrier generator for the pyrolysis step. 12 references, 5 figures, 5 tables.

  8. Method for maximizing shale oil recovery from an underground formation

    DOEpatents

    Sisemore, Clyde J.

    1980-01-01

    A method for maximizing shale oil recovery from an underground oil shale formation which has previously been processed by in situ retorting such that there is provided in the formation a column of substantially intact oil shale intervening between adjacent spent retorts, which method includes the steps of back filling the spent retorts with an aqueous slurry of spent shale. The slurry is permitted to harden into a cement-like substance which stabilizes the spent retorts. Shale oil is then recovered from the intervening column of intact oil shale by retorting the column in situ, the stabilized spent retorts providing support for the newly developed retorts.

  9. Combuston method of oil shale retorting

    DOEpatents

    Jones, Jr., John B.; Reeves, Adam A.

    1977-08-16

    A gravity flow, vertical bed of crushed oil shale having a two level injection of air and a three level injection of non-oxygenous gas and an internal combustion of at least residual carbon on the retorted shale. The injection of air and gas is carefully controlled in relation to the mass flow rate of the shale to control the temperature of pyrolysis zone, producing a maximum conversion of the organic content of the shale to a liquid shale oil. The parameters of the operation provides an economical and highly efficient shale oil production.

  10. Effects of retorting factors on combustion properties of shale char. 3. Distribution of residual organic matters.

    PubMed

    Han, Xiangxin; Jiang, Xiumin; Cui, Zhigang; Liu, Jianguo; Yan, Junwei

    2010-03-15

    Shale char, formed in retort furnaces of oil shale, is classified as a dangerous waste containing several toxic compounds. In order to retort oil shale to produce shale oil as well as treat shale char efficiently and in an environmentally friendly way, a novel kind of comprehensive utilization system was developed to use oil shale for shale oil production, electricity generation (shale char fired) and the extensive application of oil shale ash. For exploring the combustion properties of shale char further, in this paper organic matters within shale chars obtained under different retorting conditions were extracted and identified using a gas chromatography-mass spectrometry (GC-MS) method. Subsequently, the effects of retorting factors, including retorting temperature, residence time, particle size and heating rate, were analyzed in detail. As a result, a retorting condition with a retorting temperature of 460-490 degrees C, residence time of <40 min and a middle particle size was recommended for both keeping nitrogenous organic matters and aromatic hydrocarbons in shale char and improving the yield and quality of shale oil. In addition, shale char obtained under such retorting condition can also be treated efficiently using a circulating fluidized bed technology with fractional combustion. (c) 2009 Elsevier B.V. All rights reserved.

  11. Bacterial physiological diversity in the rhizosphere of range plants in response to retorted shale stress. [Agropyron smithii Rydb; Atriplex canescens (Pursh) Nutt

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Metzger, W.C.; Klein, D.A.; Redente, E.F.

    1986-10-01

    Bacterial populations were isolated from the soil-root interface and root-free regions of Agropyron smithii Rydb. and Atriplex canescens (Pursh) Nutt. grown in soil, retorted shale, or soil over shale. Bacteria isolated from retorted shale exhibited a wider range of tolerance to alkalinity and salinity and decreased growth on amino acid substrates compared with bacteria from soil and soil-over-shale environments. Exoenzyme production was only slightly affected by growth medium treatment. Viable bacterial populations were higher in the rhizosphere and rhizoplane of plants grown in retorted shale than in plants grown in soil or soil over shale. In addition, a greater numbermore » of physiological groups of rhizosphere bacteria was observed in retorted shale, compared with soil alone. Two patterns of community similarity were observed in comparisons of bacteria from soil over shale with those from soil and retorted-shale environments. Root-associated populations from soil over shale had a higher proportion of physiological groups in common with those from the soil control than those from the retorted-shale treatment. However, in non-rhizosphere populations, bacterial groups from soil over shale more closely resembled the physiological groups from retorted shale.« less

  12. Methods for minimizing plastic flow of oil shale during in situ retorting

    DOEpatents

    Lewis, Arthur E.; Mallon, Richard G.

    1978-01-01

    In an in situ oil shale retorting process, plastic flow of hot rubblized oil shale is minimized by injecting carbon dioxide and water into spent shale above the retorting zone. These gases react chemically with the mineral constituents of the spent shale to form a cement-like material which binds the individual shale particles together and bonds the consolidated mass to the wall of the retort. This relieves the weight burden borne by the hot shale below the retorting zone and thereby minimizes plastic flow in the hot shale. At least a portion of the required carbon dioxide and water can be supplied by recycled product gases.

  13. Research continues on Julia Creek shale oil project

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1986-09-01

    CSR Limited and the CSIRO Division of Mineral Engineering in Australia are working jointly on the development of a new retorting process for Julia Creek oil shale. This paper describes the retorting process which integrates a fluid bed combustor with a retort in which heat is transferred from hot shale ash to cold raw shale. The upgrading of shale oil into transport fuels is also described.

  14. In situ oil shale retort with a generally T-shaped vertical cross section

    DOEpatents

    Ricketts, Thomas E.

    1981-01-01

    An in situ oil shale retort is formed in a subterranean formation containing oil shale. The retort contains a fragmented permeable mass of formation particles containing oil shale and has a production level drift in communication with a lower portion of the fragmented mass for withdrawing liquid and gaseous products of retorting during retorting of oil shale in the fragmented mass. The principal portion of the fragmented mass is spaced vertically above a lower production level portion having a generally T-shaped vertical cross section. The lower portion of the fragmented mass has a horizontal cross sectional area smaller than the horizontal cross sectional area of the upper principal portion of the fragmented mass above the production level.

  15. Preparation of grout for stabilization of abandoned in-situ oil shale retorts

    DOEpatents

    Mallon, Richard G.

    1982-01-01

    A process for the preparation of grout from burned shale by treating the burned shale in steam at approximately 700.degree. C. to maximize the production of the materials alite and larnite. Oil shale removed to the surface during the preparation of an in-situ retort is first retorted on the surface and then the carbon is burned off, leaving burned shale. The burned shale is treated in steam at approximately 700.degree. C. for about 70 minutes. The treated shale is then ground and mixed with water to produce a grout which is pumped into an abandoned, processed in-situ retort, flowing into the void spaces and then bonding up to form a rigid, solidified mass which prevents surface subsidence and leaching of the spent shale by ground water.

  16. Talaromyces sayulitensis, Acidiella bohemica and Penicillium citrinum in Brazilian oil shale by-products.

    PubMed

    de Goes, Kelly C G P; da Silva, Josué J; Lovato, Gisele M; Iamanaka, Beatriz T; Massi, Fernanda P; Andrade, Diva S

    2017-12-01

    Fine shale particles and retorted shale are waste products generated during the oil shale retorting process. These by-products are small fragments of mined shale rock, are high in silicon and also contain organic matter, micronutrients, hydrocarbons and other elements. The aims of this study were to isolate and to evaluate fungal diversity present in fine shale particles and retorted shale samples collected at the Schist Industrialization Business Unit (Six)-Petrobras in São Mateus do Sul, State of Paraná, Brazil. Combining morphology and internal transcribed spacer (ITS) sequence, a total of seven fungal genera were identified, including Acidiella, Aspergillus, Cladosporium, Ochroconis, Penicillium, Talaromyces and Trichoderma. Acidiella was the most predominant genus found in the samples of fine shale particles, which are a highly acidic substrate (pH 2.4-3.6), while Talaromyces was the main genus in retorted shale (pH 5.20-6.20). Talaromyces sayulitensis was the species most frequently found in retorted shale, and Acidiella bohemica in fine shale particles. The presence of T. sayulitensis, T. diversus and T. stolli in oil shale is described herein for the first time. In conclusion, we have described for the first time a snapshot of the diversity of filamentous fungi colonizing solid oil shale by-products from the Irati Formation in Brazil.

  17. Preparation of grout for stabilization of abandoned in-situ oil shale retorts. [Patent application

    DOEpatents

    Mallon, R.G.

    1979-12-07

    A process is described for the preparation of grout from burned shale by treating the burned shale in steam at approximately 700/sup 0/C to maximize the production of the materials alite and larnite. Oil shale removed to the surface during the preparation of an in-situ retort is first retorted on the surface and then the carbon is burned off, leaving burned shale. The burned shale is treated in steam at approximately 700/sup 0/C for about 70 minutes. The treated shale is then ground and mixed with water to produce a grout which is pumped into an abandoned, processed in-situ retort, flowing into the void spaces and then bonding up to form a rigid, solidified mass which prevents surface subsidence and leaching of the spent shale by ground water.

  18. Oil shale combustor model developed by Greek researchers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1986-09-01

    Work carried out in the Department of Chemical Engineering at the University of Thessaloniki, Thessaloniki, Greece has resulted in a model for the combustion of retorted oil shale in a fluidized bed combustor. The model is generally applicable to any hot-solids retorting process, whereby raw oil shale is retorted by mixing with a hot solids stream (usually combusted spent shale), and then the residual carbon is burned off the spent shale in a fluidized bed. Based on their modelling work, the following conclusions were drawn by the researchers. (1) For the retorted particle size distribution selected (average particle diameter 1600more » microns) complete carbon conversion is feasible at high pressures (2.7 atmosphere) and over the entire temperature range studied (894 to 978 K). (2) Bubble size was found to have an important effect, especially at conditions where reaction rates are high (high temperature and pressure). (3) Carbonate decomposition increases with combustor temperature and residence time. Complete carbon conversion is feasible at high pressures (2.7 atmosphere) with less than 20 percent carbonate decomposition. (4) At the preferred combustor operating conditions (high pressure, low temperature) the main reaction is dolomite decomposition while calcite decomposition is negligible. (5) Recombination of CO/sub 2/ with MgO occurs at low temperatures, high pressures, and long particle residence times.« less

  19. Water mist injection in oil shale retorting

    DOEpatents

    Galloway, T.R.; Lyczkowski, R.W.; Burnham, A.K.

    1980-07-30

    Water mist is utilized to control the maximum temperature in an oil shale retort during processing. A mist of water droplets is generated and entrained in the combustion supporting gas flowing into the retort in order to distribute the liquid water droplets throughout the retort. The water droplets are vaporized in the retort in order to provide an efficient coolant for temperature control.

  20. Withdrawal of gases and liquids from an in situ oil shale retort

    DOEpatents

    Siegel, Martin M.

    1982-01-01

    An in situ oil shale retort is formed within a subterranean formation containing oil shale. The retort contains a fragmented permeable mass of formation particles containing oil shale. A production level drift extends below the fragmented mass, leaving a lower sill pillar of unfragmented formation between the production level drift and the fragmented mass. During retorting operations, liquid and gaseous products are recovered from a lower portion of the fragmented mass. A liquid outlet line extends from a lower portion of the fragmented mass through the lower sill pillar for conducting liquid products to a sump in the production level drift. Gaseous products are withdrawn from the fragmented mass through a plurality of gas outlet lines distributed across a horizontal cross-section of a lower portion of the fragmented mass. The gas outlet lines extend from the fragmented mass through the lower sill pillar and into the production level drift. The gas outlet lines are connected to a gas withdrawal manifold in the production level drift, and gaseous products are withdrawn from the manifold separately from withdrawal of liquid products from the sump in the production level drift.

  1. Trace element partitioning during the retorting of Julia Creek oil shale

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Patterson, J.H.; Dale, L.S.; Chapman, J.f.

    1987-05-01

    A bulk sample of oil shale from the Julia Creek deposit in Queensland was retorted under Fischer assay conditions at temperatures ranging from 250 to 550 /sup 0/C. The distributions of the trace elements detected in the shale oil and retort water were determined at each temperature. Oil distillation commenced at 300 /sup 0/C and was essentially complete at 500 /sup 0/C. A number of trace elements were progressively mobilized with increasing retort temperature up to 450 /sup 0/C. The following trace elements partitioned mainly to the oil: vanadium, arsenic, selenium, iron, nickel, titanium, copper, cobalt, and aluminum. Elements thatmore » also partitioned to the retort waters included arsenic, selenium, chlorine, and bromine. Element mobilization is considered to be caused by the volatilization of organometallic compounds, sulfide minerals, and sodium halides present in the oil shale. The results have important implications for shale oil refining and for the disposal of retort waters. 22 references, 5 tables.« less

  2. Apparatus for oil shale retorting

    DOEpatents

    Lewis, Arthur E.; Braun, Robert L.; Mallon, Richard G.; Walton, Otis R.

    1986-01-01

    A cascading bed retorting process and apparatus in which cold raw crushed shale enters at the middle of a retort column into a mixer stage where it is rapidly mixed with hot recycled shale and thereby heated to pyrolysis temperature. The heated mixture then passes through a pyrolyzer stage where it resides for a sufficient time for complete pyrolysis to occur. The spent shale from the pyrolyzer is recirculated through a burner stage where the residual char is burned to heat the shale which then enters the mixer stage.

  3. Characterization of oil shale, isolated kerogen, and post-pyrolysis residues using advanced 13 solid-state nuclear magnetic resonance spectroscopy

    USGS Publications Warehouse

    Cao, Xiaoyan; Birdwell, Justin E.; Chappell, Mark A.; Li, Yuan; Pignatello, Joseph J.; Mao, Jingdong

    2013-01-01

    Characterization of oil shale kerogen and organic residues remaining in postpyrolysis spent shale is critical to the understanding of the oil generation process and approaches to dealing with issues related to spent shale. The chemical structure of organic matter in raw oil shale and spent shale samples was examined in this study using advanced solid-state 13C nuclear magnetic resonance (NMR) spectroscopy. Oil shale was collected from Mahogany zone outcrops in the Piceance Basin. Five samples were analyzed: (1) raw oil shale, (2) isolated kerogen, (3) oil shale extracted with chloroform, (4) oil shale retorted in an open system at 500°C to mimic surface retorting, and (5) oil shale retorted in a closed system at 360°C to simulate in-situ retorting. The NMR methods applied included quantitative direct polarization with magic-angle spinning at 13 kHz, cross polarization with total sideband suppression, dipolar dephasing, CHn selection, 13C chemical shift anisotropy filtering, and 1H-13C long-range recoupled dipolar dephasing. The NMR results showed that, relative to the raw oil shale, (1) bitumen extraction and kerogen isolation by demineralization removed some oxygen-containing and alkyl moieties; (2) unpyrolyzed samples had low aromatic condensation; (3) oil shale pyrolysis removed aliphatic moieties, leaving behind residues enriched in aromatic carbon; and (4) oil shale retorted in an open system at 500°C contained larger aromatic clusters and more protonated aromatic moieties than oil shale retorted in a closed system at 360°C, which contained more total aromatic carbon with a wide range of cluster sizes.

  4. Revegetation studies on Tosco II and USBM retorted oil shales

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kilkelly, M.K.; Harbert, H.P.; Berg, W.A.

    1981-01-01

    In 1973 studies on the revegetation of processed oil shales were initiated. The objectives of these studies were to investigate the vegetative stabilization of processed oil shales and to follow moisture and soluble salt movement in the retorted shale profile. Studies involving TOSCO II and USBM retorted shales were established at both a low-elevation (Anvil Points) and a high-elevation (Piceance Basin). Treatments included leaching and various depths of soil cover. After seven growing seasons a good vegetative cover remains with differences between treatments insignificant, with the exception of the TOSCO retorted shale south-aspect, which consistently supported less perennial vegetative covermore » than other treatments. With time, a shift from perennial grasses to dominance by shrubs was observed, especially on south-aspect slopes. 6 refs.« less

  5. Method for attenuating seismic shock from detonating explosive in an in situ oil shale retort

    DOEpatents

    Studebaker, Irving G.; Hefelfinger, Richard

    1980-01-01

    In situ oil shale retorts are formed in formation containing oil shale by excavating at least one void in each retort site. Explosive is placed in a remaining portion of unfragmented formation within each retort site adjacent such a void, and such explosive is detonated in a single round for explosively expanding formation within the retort site toward such a void for forming a fragmented permeable mass of formation particles containing oil shale in each retort. This produces a large explosion which generates seismic shock waves traveling outwardly from the blast site through the underground formation. Sensitive equipment which could be damaged by seismic shock traveling to it straight through unfragmented formation is shielded from such an explosion by placing such equipment in the shadow of a fragmented mass in an in situ retort formed prior to the explosion. The fragmented mass attenuates the velocity and magnitude of seismic shock waves traveling toward such sensitive equipment prior to the shock wave reaching the vicinity of such equipment.

  6. Desulfurized gas production from vertical kiln pyrolysis

    DOEpatents

    Harris, Harry A.; Jones, Jr., John B.

    1978-05-30

    A gas, formed as a product of a pyrolysis of oil shale, is passed through hot, retorted shale (containing at least partially decomposed calcium or magnesium carbonate) to essentially eliminate sulfur contaminants in the gas. Specifically, a single chambered pyrolysis vessel, having a pyrolysis zone and a retorted shale gas into the bottom of the retorted shale zone and cleaned product gas is withdrawn as hot product gas near the top of such zone.

  7. Effect of retorted-oil shale leachate on a blue-green alga (Anabaena flos-aquae)

    USGS Publications Warehouse

    McKnight, Diane M.; Pereira, Wilfred E.; Rostad, Colleen E.; Stiles, Eric A.

    1983-01-01

    In the event of the development of the large oil shale reserves of Colorado, Utah, and Wyoming, one of the main environmental concerns will be disposal of retorted-oil shale which will be generated in greater volume than the original volume oI the mined oil shale. Investigators have found that leachates of retorted-oil shale are alkaline and have large concentrations of dissolved solids, molybdenum, boron, and fluoride (STOLLENWERK & RUNNELS 1981). STOLLENWERK & RUNNELS (1981) concluded that drainage from waste shale piles could have deleterious effects on the water quality of streams in northwestern Colorado.

  8. Effects of organic wastes on water quality from processing of oil shale from the Green River Formation, Colorado, Utah, and Wyoming

    USGS Publications Warehouse

    Leenheer, J.A.; Noyes, T.I.

    1986-01-01

    A series of investigations were conducted during a 6-year research project to determine the nature and effects of organic wastes from processing of Green River Formation oil shale on water quality. Fifty percent of the organic compounds in two retort wastewaters were identified as various aromatic amines, mono- and dicarboxylic acids phenols, amides, alcohols, ketones, nitriles, and hydroxypyridines. Spent shales with carbonaceous coatings were found to have good sorbent properties for organic constituents of retort wastewaters. However, soils sampled adjacent to an in situ retort had only fair sorbent properties for organic constituents or retort wastewater, and application of retort wastewater caused disruption of soil structure characteristics and extracted soil organic matter constituents. Microbiological degradation of organic solutes in retort wastewaters was found to occur preferentially in hydrocarbons and fatty acid groups of compounds. Aromatic amines did not degrade and they inhibited bacterial growth where their concentrations were significant. Ammonia, aromatic amines, and thiocyanate persisted in groundwater contaminated by in situ oil shale retorting, but thiosulfate was quantitatively degraded one year after the burn. Thiocyanate was found to be the best conservative tracer for retort water discharged into groundwater. Natural organic solutes, isolated from groundwater in contact with Green River Formation oil shale and from the White River near Rangely, Colorado, were readily distinguished from organic constituents in retort wastewaters by molecular weight and chemical characteristic differences. (USGS)

  9. Process for oil shale retorting using gravity-driven solids flow and solid-solid heat exchange

    DOEpatents

    Lewis, A.E.; Braun, R.L.; Mallon, R.G.; Walton, O.R.

    1983-09-21

    A cascading bed retorting process and apparatus are disclosed in which cold raw crushed shale enters at the middle of a retort column into a mixer stage where it is rapidly mixed with hot recycled shale and thereby heated to pyrolysis temperature. The heated mixture then passes through a pyrolyzer stage where it resides for a sufficient time for complete pyrolysis to occur. The spent shale from the pyrolyzer is recirculated through a burner stage where the residual char is burned to heat the shale which then enters the mixer stage.

  10. Process for oil shale retorting using gravity-driven solids flow and solid-solid heat exchange

    DOEpatents

    Lewis, Arthur E.; Braun, Robert L.; Mallon, Richard G.; Walton, Otis R.

    1986-01-01

    A cascading bed retorting process and apparatus in which cold raw crushed shale enters at the middle of a retort column into a mixer stage where it is rapidly mixed with hot recycled shale and thereby heated to pyrolysis temperature. The heated mixture then passes through a pyrolyzer stage where it resides for a sufficient time for complete pyrolysis to occur. The spent shale from the pyrolyzer is recirculated through a burner stage where the residual char is burned to heat the shale which then enters the mixer stage.

  11. In-situ laser retorting of oil shale

    NASA Technical Reports Server (NTRS)

    Bloomfield, H. S. (Inventor)

    1977-01-01

    Oil shale formations are retorted in situ and gaseous hydrocarbon products are recovered by drilling two or more wells into an oil shale formation underneath the surface of the ground. A high energy laser beam is directed into the well and fractures the region of the shale formation. A compressed gas is forced into the well that supports combustion in the flame front ignited by the laser beam, thereby retorting the oil shale. Gaseous hydrocarbon products which permeate through the fractured region are recovered from one of the wells that were not exposed to the laser system.

  12. Method for rubblizing an oil shale deposit for in situ retorting

    DOEpatents

    Lewis, Arthur E.

    1977-01-01

    A method for rubblizing an oil shale deposit that has been formed in alternate horizontal layers of rich and lean shale, including the steps of driving a horizontal tunnel along the lower edge of a rich shale layer of the deposit, sublevel caving by fan drilling and blasting of both rich and lean overlying shale layers at the distal end of the tunnel to rubblize the layers, removing a substantial amount of the accessible rubblized rich shale to permit the overlying rubblized lean shale to drop to tunnel floor level to form a column of lean shale, performing additional sublevel caving of rich and lean shale towards the proximate end of the tunnel, removal of a substantial amount of the additionally rubblized rich shale to allow the overlying rubblized lean shale to drop to tunnel floor level to form another column of rubblized lean shale, similarly performing additional steps of sublevel caving and removal of rich rubble to form additional columns of lean shale rubble in the rich shale rubble in the tunnel, and driving additional horizontal tunnels in the deposit and similarly rubblizing the overlying layers of rich and lean shale and forming columns of rubblized lean shale in the rich, thereby forming an in situ oil shale retort having zones of lean shale that remain permeable to hot retorting fluids in the presence of high rubble pile pressures and high retorting temperatures.

  13. 77 FR 47668 - Agency Information Collection Activities; Submission for OMB Review; Comment Request; Underground...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-08-09

    ... extract oil from shale in underground metal and nonmetal I-A and I-B mines (those that operate in a... underground oil shale mines. The standard requires that, prior to ignition of underground retorts, mine...

  14. Environmental research on a modified in situ oil shale task process. Progress report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1980-05-01

    This report summarizes the progress of the US Department of Energy's Oil Shale Task Force in its research program at the Occidental Oil Shale, Inc. facility at Logan Wash, Colorado. More specifically, the Task Force obtained samples from Retort 3E and Retort 6 and submitted these samples to a variety of analyses. The samples collected included: crude oil (Retort 6); light oil (Retort 6); product water (Retort 6); boiler blowdown (Retort 6); makeup water (Retort 6); mine sump water; groundwater; water from Retorts 1 through 5; retort gas (Retort 6); mine air; mine dust; and spent shale core (Retort 3E).more » The locations of the sampling points and methods used for collection and storage are discussed in Chapter 2 (Characterization). These samples were then distributed to the various laboratories and universities participating in the Task Force. For convenience in organizing the data, it is useful to group the work into three categories: Characterization, Leaching, and Health Effects. While many samples still have not been analyzed and much of the data remains to be interpreted, there are some preliminary conclusions the Task Force feels will be helpful in defining future needs and establishing priorities. It is important to note that drilling agents other than water were used in the recovery of the core from Retort 3E. These agents have been analyzed (see Table 12 in Chapter 2) for several constituents of interest. As a result some of the analyses of this core sample and leachates must be considered tentative.« less

  15. Process for oil shale retorting

    DOEpatents

    Jones, John B.; Kunchal, S. Kumar

    1981-10-27

    Particulate oil shale is subjected to a pyrolysis with a hot, non-oxygenous gas in a pyrolysis vessel, with the products of the pyrolysis of the shale contained kerogen being withdrawn as an entrained mist of shale oil droplets in a gas for a separation of the liquid from the gas. Hot retorted shale withdrawn from the pyrolysis vessel is treated in a separate container with an oxygenous gas so as to provide combustion of residual carbon retained on the shale, producing a high temperature gas for the production of some steam and for heating the non-oxygenous gas used in the oil shale retorting process in the first vessel. The net energy recovery includes essentially complete recovery of the organic hydrocarbon material in the oil shale as a liquid shale oil, a high BTU gas, and high temperature steam.

  16. FIELD STUDIES ON USBM AND TOSCO II RETORTED OIL SHALES: VEGETATION, MOISTURE, SALINITY, AND RUNOFF, 1977-1980

    EPA Science Inventory

    Field studies were initiated in 1973 to investigate the vegetative stabilization of processed oil shales and to follow moisture and soluble salt movement within the soil/shale profile. Research plots with two types of retorted shales (TOSCO II and USBM) with leaching and soil cov...

  17. Determining the locus of a processing zone in an in situ oil shale retort by sound monitoring

    DOEpatents

    Elkington, W. Brice

    1978-01-01

    The locus of a processing zone advancing through a fragmented permeable mass of particles in an in situ oil shale retort in a subterranean formation containing oil shale is determined by monitoring for sound produced in the retort, preferably by monitoring for sound at at least two locations in a plane substantially normal to the direction of advancement of the processing zone. Monitoring can be effected by placing a sound transducer in a well extending through the formation adjacent the retort and/or in the fragmented mass such as in a well extending into the fragmented mass.

  18. Characterization of in situ oil shale retorts prior to ignition

    DOEpatents

    Turner, Thomas F.; Moore, Dennis F.

    1984-01-01

    Method and system for characterizing a vertical modified in situ oil shale retort prior to ignition of the retort. The retort is formed by mining a void at the bottom of a proposed retort in an oil shale deposit. The deposit is then sequentially blasted into the void to form a plurality of layers of rubble. A plurality of units each including a tracer gas cannister are installed at the upper level of each rubble layer prior to blasting to form the next layer. Each of the units includes a receiver that is responsive to a coded electromagnetic (EM) signal to release gas from the associated cannister into the rubble. Coded EM signals are transmitted to the receivers to selectively release gas from the cannisters. The released gas flows through the retort to an outlet line connected to the floor of the retort. The time of arrival of the gas at a detector unit in the outlet line relative to the time of release of gas from the cannisters is monitored. This information enables the retort to be characterized prior to ignition.

  19. Application of petroleum demulsification technology to shale oil emulsions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Robertson, R.E.

    1983-01-01

    Demulsification, the process of emulsion separation, of water-in-oil shale oil emulsions produced by several methods was accomplished using commercial chemical demulsifiers which are used typically for petroleum demulsification. The shale oil emulsions were produced from Green River shale by one in situ and three different above-ground retorts, an in situ high pressure/high temperature steam process, and by washing both retort-produced and hydrotreated shale oils.

  20. System for utilizing oil shale fines

    DOEpatents

    Harak, Arnold E.

    1982-01-01

    A system is provided for utilizing fines of carbonaceous materials such as particles or pieces of oil shale of about one-half inch or less diameter which are rejected for use in some conventional or prior surface retorting process, which obtains maximum utilization of the energy content of the fines and which produces a waste which is relatively inert and of a size to facilitate disposal. The system includes a cyclone retort (20) which pyrolyzes the fines in the presence of heated gaseous combustion products, the cyclone retort having a first outlet (30) through which vapors can exit that can be cooled to provide oil, and having a second outlet (32) through which spent shale fines are removed. A burner (36) connected to the spent shale outlet of the cyclone retort, burns the spent shale with air, to provide hot combustion products (24) that are carried back to the cyclone retort to supply gaseous combustion products utilized therein. The burner heats the spent shale to a temperature which forms a molten slag, and the molten slag is removed from the burner into a quencher (48) that suddenly cools the molten slag to form granules that are relatively inert and of a size that is convenient to handle for disposal in the ground or in industrial processes.

  1. Oil shale retorting and combustion system

    DOEpatents

    Pitrolo, Augustine A.; Mei, Joseph S.; Shang, Jerry Y.

    1983-01-01

    The present invention is directed to the extraction of energy values from l shale containing considerable concentrations of calcium carbonate in an efficient manner. The volatiles are separated from the oil shale in a retorting zone of a fluidized bed where the temperature and the concentration of oxygen are maintained at sufficiently low levels so that the volatiles are extracted from the oil shale with minimal combustion of the volatiles and with minimal calcination of the calcium carbonate. These gaseous volatiles and the calcium carbonate flow from the retorting zone into a freeboard combustion zone where the volatiles are burned in the presence of excess air. In this zone the calcination of the calcium carbonate occurs but at the expense of less BTU's than would be required by the calcination reaction in the event both the retorting and combustion steps took place simultaneously. The heat values in the products of combustion are satisfactorily recovered in a suitable heat exchange system.

  2. Method for forming an in situ oil shale retort with horizontal free faces

    DOEpatents

    Ricketts, Thomas E.; Fernandes, Robert J.

    1983-01-01

    A method for forming a fragmented permeable mass of formation particles in an in situ oil shale retort is provided. A horizontally extending void is excavated in unfragmented formation containing oil shale and a zone of unfragmented formation is left adjacent the void. An array of explosive charges is formed in the zone of unfragmented formation. The array of explosive charges comprises rows of central explosive charges surrounded by a band of outer explosive charges which are adjacent side boundaries of the retort being formed. The powder factor of each outer explosive charge is made about equal to the powder factor of each central explosive charge. The explosive charges are detonated for explosively expanding the zone of unfragmented formation toward the void for forming the fragmented permeable mass of formation particles having a reasonably uniformly distributed void fraction in the in situ oil shale retort.

  3. Method for retorting oil shale

    DOEpatents

    Shang, Jer-Yu; Lui, A.P.

    1985-08-16

    The recovery of oil from oil shale is provided in a fluidized bed by using a fluidizing medium of a binary mixture of carbon dioxide and 5 steam. The mixture with a steam concentration in the range of about 20 to 75 volume percent steam provides an increase in oil yield over that achievable by using a fluidizing gas of carbon dioxide or steam alone when the mixture contains higher steam concentrations. The operating parameters for the fluidized bed retorted are essentially the same as those utilized with other gaseous fluidizing mediums with the significant gain being in the oil yield recovered which is attributable solely to the use of the binary mixture of carbon dioxide and steam. 2 figs.

  4. Combined fluidized bed retort and combustor

    DOEpatents

    Shang, Jer-Yu; Notestein, John E.; Mei, Joseph S.; Zeng, Li-Wen

    1984-01-01

    The present invention is directed to a combined fluidized bed retorting and combustion system particularly useful for extracting energy values from oil shale. The oil-shale retort and combustor are disposed side-by-side and in registry with one another through passageways in a partition therebetween. The passageways in the partition are submerged below the top of the respective fluid beds to preclude admixing or the product gases from the two chambers. The solid oil shale or bed material is transported through the chambers by inclining or slanting the fluidizing medium distributor so that the solid bed material, when fluidized, moves in the direction of the downward slope of the distributor.

  5. Determination of polar organic solutes in oil-shale retort water

    USGS Publications Warehouse

    Leenheer, J.A.; Noyes, T.I.; Stuber, H.A.

    1982-01-01

    A variety of analytical methods were used to quantitatively determine polar organic solutes in process retort water and a gas-condensate retort water produced in a modified in situ oil-shale retort. Specific compounds accounting for 50% of the dissolved organic carbon were identified in both retort waters. In the process water, 42% of the dissolved organic carbon consisted of a homologous series of fatty acids from C2 to C10. Dissolved organic carbon percentages for other identified compound classes were as follows: aliphatic dicarboxylic acids, 1.4%; phenols, 2.2%; hydroxypyridines, 1.1%; aliphatic amides, 1.2%. In the gas-condensate retort water, aromatic amines were most abundant at 19.3% of the dissolved organic carbon, followed by phenols (17.8%), nitriles (4.3%), aliphatic alcohols (3.5%), aliphatic ketones (2.4%), and lactones (1.3%). Steam-volatile organic solutes were enriched in the gas-condensate retort water, whereas nonvolatile acids and polyfunctional neutral compounds were predominant organic constituents of the process retort water.

  6. Influence of irrigation and weathering reactions on the composition of percolates from retorted oil shale in field lysimeters

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Garland, T. R.; Wildung, R. E.; Harbert, H. P.

    1979-04-01

    Major cations, anions, trace elements and dissolved organic C were measured in percolate from retorted oil shale collected from irrigated lysimeters in the field at Anvil Points, Colorado, over a two year period. The investigations indicated that chemical equilibrium was not established over the monitoring period and major changes occurred in percolate composition as a function of applied water volume and water residence time in the shale. Field and laboratory studies indicated that several factors contributed to changes in the chemistry of the shale on weathering, including recarbonization of the surface horizons with atmospheric CO/sub 2/ and the activities ofmore » microorganisms in surface and subsurface horizons. However, the principal mechanism responsible for the decreases in pH and salt concentrations appeared to be the conversion of major quantities of sulfide in the retorted shale to sulfate through a thiosulfate intermediate.« less

  7. Field studies on USBM and TOSCO II retorted oil shales: vegetation, moisture, salinity, and runoff, 1977-1980. Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kilkelly, M.K.; Berg, W.A.; Harbert, H.P. III

    1981-08-01

    Field studies were initiated in 1973 to investigate the vegetative stabilization of processed oil shales and to follow moisture and soluble salt movement within the soil/shale profile. Research plots with two types of retorted shales (TOSCO II and USBM) with leaching and soil cover treatments were established at two locations: low-elevation (Anvil Points) and high-elevation (Piceance Basin) in western Colorado. Vegetation was established by intensive management including leaching, N and P fertilization, seeding, mulching, and irrigation. After seven growing seasons, a good vegetative cover remained with few differences between treatments, with the exception of the TOSCO retorted shale, south-aspect, whichmore » consistently supported less perennial vegetative cover than other treatments. With time, a shift from perennial grasses to dominance by shrubs was observed. Rodent activity on some treatments had a significantly negative effect on vegetative cover.« less

  8. Gas seal for an in situ oil shale retort and method of forming thermal barrier

    DOEpatents

    Burton, III, Robert S.

    1982-01-01

    A gas seal is provided in an access drift excavated in a subterranean formation containing oil shale. The access drift is adjacent an in situ oil shale retort and is in gas communication with the fragmented permeable mass of formation particles containing oil shale formed in the in situ oil shale retort. The mass of formation particles extends into the access drift, forming a rubble pile of formation particles having a face approximately at the angle of repose of fragmented formation. The gas seal includes a temperature barrier which includes a layer of heat insulating material disposed on the face of the rubble pile of formation particles and additionally includes a gas barrier. The gas barrier is a gas-tight bulkhead installed across the access drift at a location in the access drift spaced apart from the temperature barrier.

  9. Geotechnical Properties of Oil Shale Retorted by the PARAHO and TOSCO Processes.

    DTIC Science & Technology

    1979-11-01

    literature search was restricted to the Green River formation of oil shale in the tri-state area of Colorado (Piceance Basin ), Utah ( Uinta Basin ), and...it is preheated by combustion gases as it travels downward by gravity. Air and recycling gas are injected at midheight and are burned, bringing the oil ...REFERENCES..................................38 TABLES 1-5 APPENDIX A: OIL SHALE RETORTING PROCESSES................Al Tosco Process Gas Combustion

  10. Shale-oil-recovery systems incorporating ore beneficiation. Final report.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Weiss, M.A.; Klumpar, I.V.; Peterson, C.R.

    This study analyzed the recovery of oil from oil shale by use of proposed systems which incorporate beneficiation of the shale ore (that is concentration of the kerogen before the oil-recovery step). The objective was to identify systems which could be more attractive than conventional surface retorting of ore. No experimental work was carried out. The systems analyzed consisted of beneficiation methods which could increase kerogen concentrations by at least four-fold. Potentially attractive low-enrichment methods such as density separation were not examined. The technical alternatives considered were bounded by the secondary crusher as input and raw shale oil as output.more » A sequence of ball milling, froth flotation, and retorting concentrate is not attractive for Western shales compared to conventional ore retorting; transporting the concentrate to another location for retorting reduces air emissions in the ore region but cost reduction is questionable. The high capital and energy cost s results largely from the ball milling step which is very inefficient. Major improvements in comminution seem achievable through research and such improvements, plus confirmation of other assumptions, could make high-enrichment beneficiation competitive with conventional processing. 27 figures, 23 tables.« less

  11. Analysis of the effectiveness of steam retorting of oil shale

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jacobs, H.R.; Pensel, R.W.; Udell, K.S.

    A numerical model is developed to describe the retorting of oil shale using superheated steam. The model describes not only the temperature history of the shale but predicts the evolution of shale oil from kerogen decomposition and the breakdown of the carbonates existing in the shale matrix. The heat transfer coefficients between the water and the shale are determined from experiments utilizing the model to reduce the data. Similarly the model is used with thermogravimetric analysis experiments to develop an improved kinetics expression for kerogen decomposition in a steam environment. Numerical results are presented which indicate the effect of oilmore » shale particle size and steam temperature on oil production.« less

  12. Hydrologic-information needs for oil-shale development, northwestern Colorado

    USGS Publications Warehouse

    Taylor, O.J.

    1982-01-01

    Hydrologic information is not adequate for proper development of the large oil-shale reserves of Piceance basin in northwestern Colorado. Exploratory drilling and aquifer testing are needed to define the hydrologic system, to provide wells for aquifer testing, to design mine-drainage techniques, and to explore for additional water supplies. Sampling networks are needed to supply hydrologic data on the quantity and quality of surface water, ground water, and springs. A detailed sampling network is proposed for the White River basin because of expected impacts related to water supplies and waste disposal. Emissions from oil-shale retorts to the atmosphere need additional study because of possible resulting corrosion problems and the destruction of fisheries. Studies of the leachate materials and the stability of disposed retorted shale piles are needed to insure that these materials will not cause problems. Hazards related to in-situ retorts, and the wastes related to oil-shale development in general also need further investigation. (USGS)

  13. Oil shale retort apparatus

    DOEpatents

    Reeves, Adam A.; Mast, Earl L.; Greaves, Melvin J.

    1990-01-01

    A retorting apparatus including a vertical kiln and a plurality of tubes for delivering rock to the top of the kiln and removal of processed rock from the bottom of the kiln so that the rock descends through the kiln as a moving bed. Distributors are provided for delivering gas to the kiln to effect heating of the rock and to disturb the rock particles during their descent. The distributors are constructed and disposed to deliver gas uniformly to the kiln and to withstand and overcome adverse conditions resulting from heat and from the descending rock. The rock delivery tubes are geometrically sized, spaced and positioned so as to deliver the shale uniformly into the kiln and form symmetrically disposed generally vertical paths, or "rock chimneys", through the descending shale which offer least resistance to upward flow of gas. When retorting oil shale, a delineated collection chamber near the top of the kiln collects gas and entrained oil mist rising through the kiln.

  14. Spatial and stratigraphic distribution of water in oil shale of the Green River Formation using Fischer Assay, Piceance Basin, northwestern Colorado

    USGS Publications Warehouse

    Johnson, Ronald C.; Mercier, Tracey J.; Brownfield, Michael E.

    2014-01-01

    The spatial and stratigraphic distribution of water in oil shale of the Eocene Green River Formation in the Piceance Basin of northwestern Colorado was studied in detail using some 321,000 Fischer assay analyses in the U.S. Geological Survey oil-shale database. The oil-shale section was subdivided into 17 roughly time-stratigraphic intervals, and the distribution of water in each interval was assessed separately. This study was conducted in part to determine whether water produced during retorting of oil shale could provide a significant amount of the water needed for an oil-shale industry. Recent estimates of water requirements vary from 1 to 10 barrels of water per barrel of oil produced, depending on the type of retort process used. Sources of water in Green River oil shale include (1) free water within clay minerals; (2) water from the hydrated minerals nahcolite (NaHCO3), dawsonite (NaAl(OH)2CO3), and analcime (NaAlSi2O6.H20); and (3) minor water produced from the breakdown of organic matter in oil shale during retorting. The amounts represented by each of these sources vary both stratigraphically and areally within the basin. Clay is the most important source of water in the lower part of the oil-shale interval and in many basin-margin areas. Nahcolite and dawsonite are the dominant sources of water in the oil-shale and saline-mineral depocenter, and analcime is important in the upper part of the formation. Organic matter does not appear to be a major source of water. The ratio of water to oil generated with retorting is significantly less than 1:1 for most areas of the basin and for most stratigraphic intervals; thus water within oil shale can provide only a fraction of the water needed for an oil-shale industry.

  15. Spatial and stratigraphic distribution of water in oil shale of the Green River Formation using Fischer assay, Piceance Basin, northwestern Colorado

    USGS Publications Warehouse

    Johnson, Ronald C.; Mercier, Tracey J.; Brownfield, Michael E.

    2014-01-01

    The spatial and stratigraphic distribution of water in oil shale of the Eocene Green River Formation in the Piceance Basin of northwestern Colorado was studied in detail using some 321,000 Fischer assay analyses in the U.S. Geological Survey oil-shale database. The oil-shale section was subdivided into 17 roughly time-stratigraphic intervals, and the distribution of water in each interval was assessed separately. This study was conducted in part to determine whether water produced during retorting of oil shale could provide a significant amount of the water needed for an oil-shale industry. Recent estimates of water requirements vary from 1 to 10 barrels of water per barrel of oil produced, depending on the type of retort process used. Sources of water in Green River oil shale include (1) free water within clay minerals; (2) water from the hydrated minerals nahcolite (NaHCO3), dawsonite (NaAl(OH)2CO3), and analcime (NaAlSi2O6.H20); and (3) minor water produced from the breakdown of organic matter in oil shale during retorting. The amounts represented by each of these sources vary both stratigraphically and areally within the basin. Clay is the most important source of water in the lower part of the oil-shale interval and in many basin-margin areas. Nahcolite and dawsonite are the dominant sources of water in the oil-shale and saline-mineral depocenter, and analcime is important in the upper part of the formation. Organic matter does not appear to be a major source of water. The ratio of water to oil generated with retorting is significantly less than 1:1 for most areas of the basin and for most stratigraphic intervals; thus water within oil shale can provide only a fraction of the water needed for an oil-shale industry.

  16. Method for explosive expansion toward horizontal free faces for forming an in situ oil shale retort

    DOEpatents

    Ricketts, Thomas E.

    1980-01-01

    Formation is excavated from within a retort site in formation containing oil shale for forming a plurality of vertically spaced apart voids extending horizontally across different levels of the retort site, leaving a separate zone of unfragmented formation between each pair of adjacent voids. Explosive is placed in each zone, and such explosive is detonated in a single round for forming an in situ retort containing a fragmented permeable mass of formation particles containing oil shale. The same amount of formation is explosively expanded upwardly and downwardly toward each void. A horizontal void excavated at a production level has a smaller horizontal cross-sectional area than a void excavated at a lower level of the retort site immediately above the production level void. Explosive in a first group of vertical blast holes is detonated for explosively expanding formation downwardly toward the lower void, and explosive in a second group of vertical blast holes is detonated in the same round for explosively expanding formation upwardly toward the lower void and downwardly toward the production level void for forming a generally T-shaped bottom of the fragmented mass.

  17. Shale oil recovery process

    DOEpatents

    Zerga, Daniel P.

    1980-01-01

    A process of producing within a subterranean oil shale deposit a retort chamber containing permeable fragmented material wherein a series of explosive charges are emplaced in the deposit in a particular configuration comprising an initiating round which functions to produce an upward flexure of the overburden and to initiate fragmentation of the oil shale within the area of the retort chamber to be formed, the initiating round being followed in a predetermined time sequence by retreating lines of emplaced charges developing further fragmentation within the retort zone and continued lateral upward flexure of the overburden. The initiating round is characterized by a plurality of 5-spot patterns and the retreating lines of charges are positioned and fired along zigzag lines generally forming retreating rows of W's. Particular time delays in the firing of successive charges are disclosed.

  18. 43 CFR 3935.10 - Accounting records.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... processing plant and retort; (3) Mineral products produced and sold; (4) Shale oil products, shale gas, and... mined or processed and of all products including synthetic petroleum, shale oil, shale gas, and shale..., DEPARTMENT OF THE INTERIOR MINERALS MANAGEMENT (3000) MANAGEMENT OF OIL SHALE EXPLORATION AND LEASES...

  19. 43 CFR 3935.10 - Accounting records.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... processing plant and retort; (3) Mineral products produced and sold; (4) Shale oil products, shale gas, and... mined or processed and of all products including synthetic petroleum, shale oil, shale gas, and shale..., DEPARTMENT OF THE INTERIOR MINERALS MANAGEMENT (3000) MANAGEMENT OF OIL SHALE EXPLORATION AND LEASES...

  20. 43 CFR 3935.10 - Accounting records.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... processing plant and retort; (3) Mineral products produced and sold; (4) Shale oil products, shale gas, and... mined or processed and of all products including synthetic petroleum, shale oil, shale gas, and shale..., DEPARTMENT OF THE INTERIOR MINERALS MANAGEMENT (3000) MANAGEMENT OF OIL SHALE EXPLORATION AND LEASES...

  1. Solar heated oil shale pyrolysis process

    NASA Technical Reports Server (NTRS)

    Qader, S. A. (Inventor)

    1985-01-01

    An improved system for recovery of a liquid hydrocarbon fuel from oil shale is presented. The oil shale pyrolysis system is composed of a retort reactor for receiving a bed of oil shale particules which are heated to pyrolyis temperature by means of a recycled solar heated gas stream. The gas stream is separated from the recovered shale oil and a portion of the gas stream is rapidly heated to pyrolysis temperature by passing it through an efficient solar heater. Steam, oxygen, air or other oxidizing gases can be injected into the recycle gas before or after the recycle gas is heated to pyrolysis temperature and thus raise the temperature before it enters the retort reactor. The use of solar thermal heat to preheat the recycle gas and optionally the steam before introducing it into the bed of shale, increases the yield of shale oil.

  2. 43 CFR 3935.10 - Accounting records.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... processing plant and retort; (3) Mineral products produced and sold; (4) Shale oil products, shale gas, and... mined or processed and of all products including synthetic petroleum, shale oil, shale gas, and shale..., DEPARTMENT OF THE INTERIOR RANGE MANAGEMENT (4000) MANAGEMENT OF OIL SHALE EXPLORATION AND LEASES Production...

  3. Method of design for vertical oil shale retorting vessels and retorting therewith

    DOEpatents

    Reeves, Adam A.

    1978-01-03

    A method of designing the gas flow parameters of a vertical shaft oil shale retorting vessel involves determining the proportion of gas introduced in the bottom of the vessel and into intermediate levels in the vessel to provide for lateral distribution of gas across the vessel cross section, providing mixing with the uprising gas, and determining the limiting velocity of the gas through each nozzle. The total quantity of gas necessary for oil shale treatment in the vessel may be determined and the proportion to be injected into each level is then determined based on the velocity relation of the orifice velocity and its feeder manifold gas velocity. A limitation is placed on the velocity of gas issuing from an orifice by the nature of the solid being treated, usually physical tests of gas velocity impinging the solid.

  4. Occidental vertical modified in situ process for the recovery of oil from oil shale. Phase II. Quarterly progress report, September 1-November 30, 1979

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McDermott, William F.

    1979-12-01

    The major activities at OOSI's Logan Wash site during the quarter were: driving the access drifts towards the underground locations for Retorts 7 and 8; manway raise boring; constructing the change house; rubbling the first lift of Mini-Retort (MR)1; preparing the Mini-Retorts for tracer testing; coring of Retort 3E; and beginning the DOE instrumentation program.

  5. Israeli co-retorting of coal and oil shale would break even at 22/barrel

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    Work is being carried out at the Hebrew University of Jerusalem on co-retorting of coal and oil shale. The work is funded under a cooperative agreement with the US Department of Energy. The project is exploring the conversion of US eastern high-sulfur bituminous coal in a split-stage, fluidized-bed reactor. Pyrolysis occurs in the first stage and char combustion in the second stage. These data for coal will be compared with similar data from the same reactor fueled by high-sulfur eastern US oil shale and Israeli oil shales. The project includes research at three major levels: pyrolysis in lab-scale fluidized-bed reactor;more » retorting in split-stage, fluidized-bed bench-scale process (1/4 tpd); and scale-up, preparation of full-size flowchart, and economic evaluation. In the past year's research, a preliminary economic evaluation was completed for a scaled-up process using a feed of high-sulfur coal and carbonate-containing Israeli oil shale. A full-scale plant in Israel was estimated to break even at an equivalent crude oil price of $150/ton ($22/barrel).« less

  6. Ignition technique for an in situ oil shale retort

    DOEpatents

    Cha, Chang Y.

    1983-01-01

    A generally flat combustion zone is formed across the entire horizontal cross-section of a fragmented permeable mass of formation particles formed in an in situ oil shale retort. The flat combustion zone is formed by either sequentially igniting regions of the surface of the fragmented permeable mass at successively lower elevations or by igniting the entire surface of the fragmented permeable mass and controlling the rate of advance of various portions of the combustion zone.

  7. CONTROL OF SULFUR EMISSIONS FROM OIL SHALE RETORTING USING SPEND SHALE ABSORPTION

    EPA Science Inventory

    The paper gives results of a detailed engineering evaluation of the potential for using an absorption on spent shale process (ASSP) for controlling sulfur emissions from oil shale plants. The evaluation analyzes the potential effectiveness and cost of absorbing SO2 on combusted s...

  8. Method and apparatus for igniting an in situ oil shale retort

    DOEpatents

    Burton, Robert S.; Rundberg, Sten I.; Vaughn, James V.; Williams, Thomas P.; Benson, Gregory C.

    1981-01-01

    A technique is provided for igniting an in situ oil shale retort having an open void space over the top of a fragmented mass of particles in the retort. A conduit is extended into the void space through a hole in overlying unfragmented formation and has an open end above the top surface of the fragmented mass. A primary air pipe having an open end above the open end of the conduit and a liquid atomizing fuel nozzle in the primary air pipe above the open end of the primary air pipe are centered in the conduit. Fuel is introduced through the nozzle, primary air through the pipe, and secondary air is introduced through the conduit for vortical flow past the open end of the primary air pipe. The resultant fuel and air mixture is ignited for combustion within the conduit and the resultant heated ignition gas impinges on the fragmented mass for heating oil shale to an ignition temperature.

  9. Migration through soil of organic solutes in an oil-shale process water

    USGS Publications Warehouse

    Leenheer, J.A.; Stuber, H.A.

    1981-01-01

    The migration through soil of organic solutes in an oil-shale process water (retort water) was studied by using soil columns and analyzing leachates for various organic constituents. Retort water extracted significant quantities of organic anions leached from ammonium-saturated-soil organic matter, and a distilled-water rinse, which followed retort-water leaching, released additional organic acids from the soil. After being corrected for organic constitutents extracted from soil by retort water, dissolved-organic-carbon fractionation analyses of effluent fractions showed that the order of increasing affinity of six organic compound classes for the soil was as follows: hydrophilic neutrals nearly equal to hydrophilic acids, followed by the sequence of hydrophobic acids, hydrophilic bases, hydrophobic bases, and hydrophobic neutrals. Liquid-chromatographic analysis of the aromatic amines in the hydrophobic- and hydrophilic-base fractions showed that the relative order of the rates of migration through the soil column was the same as the order of migration on a reversed-phase, octadecylsilica liquid-chromatographic column.

  10. Method for establishing a combustion zone in an in situ oil shale retort having a pocket at the top

    DOEpatents

    Cha, Chang Y.

    1980-01-01

    An in situ oil shale retort having a top boundary of unfragmented formation and containing a fragmented permeable mass has a pocket at the top, that is, an open space between a portion of the top of the fragmented mass and the top boundary of unfragmented formation. To establish a combustion zone across the fragmented mass, a combustion zone is established in a portion of the fragmented mass which is proximate to the top boundary. A retort inlet mixture comprising oxygen is introduced to the fragmented mass to propagate the combustion zone across an upper portion of the fragmented mass. Simultaneously, cool fluid is introduced to the pocket to prevent overheating and thermal sloughing of formation from the top boundary into the pocket.

  11. Staged fluidized bed

    DOEpatents

    Mallon, R.G.

    1983-05-13

    The invention relates to oil shale retorting and more particularly to staged fluidized bed oil shale retorting. Method and apparatus are disclosed for narrowing the distribution of residence times of any size particle and equalizing the residence times of large and small particles in fluidized beds. Particles are moved up one fluidized column and down a second fluidized column with the relative heights selected to equalize residence times of large and small particles. Additional pairs of columns are staged to narrow the distribution of residence times and provide complete processing of the material.

  12. A study of pyrolysis of oil shale of the Leningrad deposit by solid heat carrier

    NASA Astrophysics Data System (ADS)

    Gerasimov, G. Ya; Khaskhachikh, V. V.; Potapov, O. P.

    2017-11-01

    The investigation of the oil shale pyrolysis with a solid heat carrier was carried out using the experimental retorting system that simulates the Galoter industrial process. This system allows verifying both fractional composition of the oil shale and solid heat carrier, and their ratio and temperature. The oil shale of the Leningradsky deposit was used in the work, and quartz sand was used as the solid heat carrier. It is shown that the yield of the shale oil under the pyrolysis with solid heat carrier exceeds by more than 20% the results received in the standard Fisher retort. Using ash as the solid heat carrier results in a decrease in the yield of oil and gas with simultaneous increase in the amount of the solid residue. This is due to the chemical interaction of the acid components of the vapor-gas mixture with the oxides of alkaline-earth metals that are part of the ash.

  13. Gas stream cleaning system and method

    DOEpatents

    Kunchal, S. Kumar; Erck, Louis J.; Harris, Harry A.

    1979-04-13

    An oil mist and solid particle laden gas from an oil shale retorting operation is initially treated with a temperature controlled oil spray and then by a coalescer to reduce the quantity of oil mist and remove most of the solid particle content of the gas stream and then finally treated by an electrostatic precipitator to essentially remove the oil mist remaining in the gas.

  14. 78 FR 39313 - Notice of Intent To Prepare an Environmental Impact Statement for the Enefit American Oil Utility...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-07-01

    ..., 8 miles of natural gas supply pipeline, 10 miles of oil product line, 29 miles of single or dual... commercial oil shale mining, retorting, and upgrading operation located in Uintah County, Utah. Approval or... 13X] Notice of Intent To Prepare an Environmental Impact Statement for the Enefit American Oil Utility...

  15. Apparatus and method for igniting an in situ oil shale retort

    DOEpatents

    Chambers, Carlon C.

    1981-01-01

    A method and apparatus for conducting such method are disclosed for igniting a fragmented permeable mass of formation particles in an in situ oil shale retort. The method is conducted by forming a hole through unfragmented formation to the fragmented mass. An oxygen-containing gas is introduced into the hole. A fuel is introduced into a portion of the hole spaced apart from the fragmented mass. The fuel and oxygen-containing gas mix forming a combustible mixture which is ignited for establishing a combustion zone in a portion of the hole spaced apart from the fragmented mass. The hot gas generated in the combustion zone is conducted from the hole into the fragmented mass for heating a portion of the fragmented mass above an ignition temperature of oil shale.

  16. Developing technologies for synthetic fuels

    NASA Astrophysics Data System (ADS)

    Sprow, F. B.

    1981-05-01

    After consideration of a likely timetable for the development of a synthetic fuels industry and its necessary supporting technology, the large variety of such fuels and their potential roles is assessed along with their commercialization outlook. Among the fuel production methods considered are: (1) above-ground retorting of oil shale; (2) in-situ shale retorting; (3) open pit mining of tar sands; (4) in-situ steam stimulation of tar sands; (5) coal gasification; (6) methanol synthesis from carbon monoxide and hydrogen; and (7) direct coal liquefaction by the hydrogenation of coal. It is shown that while the U.S. has very limited resource bases for tar sands and heavy crudes, the abundance of shale in the western states and the abundance and greater geographical dispersion of coal will make these the two most important resources of a future synthetic fuels industry.

  17. Integrated oil production and upgrading using molten alkali metal

    DOEpatents

    Gordon, John Howard

    2016-10-04

    A method that combines the oil retorting process (or other process needed to obtain/extract heavy oil or bitumen) with the process for upgrading these materials using sodium or other alkali metals. Specifically, the shale gas or other gases that are obtained from the retorting/extraction process may be introduced into the upgrading reactor and used to upgrade the oil feedstock. Also, the solid materials obtained from the reactor may be used as a fuel source, thereby providing the heat necessary for the retorting/extraction process. Other forms of integration are also disclosed.

  18. METHOD OF CHEMICAL ANALYSIS FOR OIL SHALE WASTES

    EPA Science Inventory

    Several methods of chemical analysis are described for oil shale wastewaters and retort gases. These methods are designed to support the field testing of various pollution control systems. As such, emphasis has been placed on methods which are rapid and sufficiently rugged to per...

  19. Purifying contaminated water

    DOEpatents

    Daughton, Christian G.

    1983-01-01

    Process for removing biorefractory compounds from contaminated water (e.g., oil shale retort waste-water) by contacting same with fragmented raw oil shale. Biorefractory removal is enhanced by preactivating the oil shale with at least one member of the group of carboxylic, acids, alcohols, aldehydes, ketones, ethers, amines, amides, sulfoxides, mixed ether-esters and nitriles. Further purification is obtained by stripping, followed by biodegradation and removal of the cells.

  20. Method for loading explosive laterally from a borehole

    DOEpatents

    Ricketts, Thomas E.

    1981-01-01

    There is provided a method for forming an in situ oil shale retort in a subterranean formation containing oil shale. At least one void is excavated in the formation, leaving zones of unfragmented formation adjacent the void. An array of main blastholes is formed in the zone of unfragmented formation and at least one explosive charge which is shaped for forming a high velocity gas jet is placed into a main blasthole with the axis of the gas jet extending transverse to the blasthole. The shaped charge is detonated for forming an auxiliary blasthole in the unfragmented formation adjacent a side wall of the main blasthole. The auxiliary blasthole extends laterally away from the main blasthole. Explosive is placed into the main blasthole and into the auxiliary blasthole and is detonated for explosively expanding formation towards the free face for forming a fragmented permeable mass of formation particles in the in situ oil shale retort.

  1. Leachate migration from an in-situ oil-shale retort near Rock Springs, Wyoming

    USGS Publications Warehouse

    Glover, Kent C.

    1988-01-01

    Hydrogeologic factors influencing leachate movement from an in-situ oil-shale retort near Rock Springs, Wyoming, were investigated through models of ground-water flow and solute transport. Leachate, indicated by the conservative ion thiocyanate, has been observed ? mile downgradient from the retort. The contaminated aquifer is part of the Green River Formation and consists of thin, permeable layers of tuff and sandstone interbedded with oil shale. Most solute migration has occurred in an 8-foot sandstone at the top of the aquifer. Ground-water flow in the study area is complexly three dimensional and is characterized by large vertical variations in hydraulic head. The solute-transport model was used to predict the concentration of thiocyanate at a point where ground water discharges to the land surface. Leachate with peak concentrations of thiocyanate--45 milligrams per liter or approximately one-half the initial concentration of retort water--was estimated to reach the discharge area during January 1985. This report describes many of th3 advantages, as well as the problems, of site-specific studies. Data such as the distribution of thin, permeable beds or fractures might introduce an unmanageable degree of complexity to basin-wide studies but can be incorporated readily into site-specific models. Solute migration in the study area occurs primarily in thin, permeable beds rather than in oil-shale strata. Because of this behavior, leachate traveled far greater distances than might otherwise have been expected. The detail possible in site-specific models permits more accurate prediction of solute transport than is possible with basin-wide models. A major problem in site-specific studies is identifying model boundaries that permit the accurate estimation of aquifer properties. If the quantity of water flowing through a study area cannot be determined prior to modeling, the hydraulic conductivity and ground-water velocity will be poorly estimated.

  2. Leachate migration from an in situ oil-shale retort near Rock Springs, Wyoming

    USGS Publications Warehouse

    Glover, K.C.

    1986-01-01

    Geohydrologic factors influencing leachate movement from an in situ oil shale retort near Rock Springs, Wyoming, were investigated by developing models of groundwater flow and solute transport. Leachate, indicated by the conservative ion thiocyanate, has been observed 1/2 mi downgradient from the retort. The contaminated aquifer is part of the Green River Formation and consists of thin, permeable layers of tuff and sandstone interbedded with oil shale. Most solute migration has occurred in an 8-ft sandstone at the top of the aquifer. Groundwater flow in the study area is complexly 3-D and is characterized by large vertical variations in hydraulic head. The solute transport model was used to predict the concentration of thiocyanate at a point where groundwater discharges to the land surface. Leachates with peak concentrations of thiocyanate--45 mg/L or approximately one-half the initial concentration of retort water--were estimated to reach the discharge area during January 1985. Advantages as well as the problems of site specific studies are described. Data such as the distribution of thin permeable beds or fractures may introduce an unmanageable degree of complexity to basin-wide studies but can be incorporated readily in site specific models. Solute migration in the study area primarily occurs in thin permeable beds rather than in oil shale strata. Because of this behavior, leachate traveled far greater distances than might otherwise have been expected. The detail possible in site specific models permits more accurate prediction of solute transport than is possible with basin-wide models. A major problem in site specific studies is identifying model boundaries that permit the accurate estimation of aquifer properties. If the quantity of water flowing through a study area cannot be determined prior to modeling, the hydraulic conductivity and groundwater velocity will be estimated poorly. (Author 's abstract)

  3. Self-cementing properties of oil shale solid heat carrier retorting residue.

    PubMed

    Talviste, Peeter; Sedman, Annette; Mõtlep, Riho; Kirsimäe, Kalle

    2013-06-01

    Oil shale-type organic-rich sedimentary rocks can be pyrolysed to produce shale oil. The pyrolysis of oil shale using solid heat carrier (SHC) technology is accompanied by large amount of environmentally hazardous solid residue-black ash-which needs to be properly landfilled. Usage of oil shale is growing worldwide, and the employment of large SHC retorts increases the amount of black ash type of waste, but little is known about its physical and chemical properties. The objectives of this research were to study the composition and self-cementing properties of black ash by simulating different disposal strategies in order to find the most appropriate landfilling method. Three disposal methods were simulated in laboratory experiment: hydraulic disposal with and without grain size separation, and dry dumping of moist residue. Black ash exhibited good self-cementing properties with maximum compressive strength values of >6 MPa after 90 days. About 80% of strength was gained in 30 days. However, the coarse fraction (>125 µm) did not exhibit any cementation, thus the hydraulic disposal with grain size separation should be avoided. The study showed that self-cementing properties of black ash are governed by the hydration of secondary calcium silicates (e.g. belite), calcite and hydrocalumite.

  4. Parameters Affecting the Characteristics of Oil Shale-Derived Fuels.

    DTIC Science & Technology

    1981-03-01

    rock with essentially no organic matter. The oil shale of the Uinta Basin in Utah and extreme western Colorado is richer than the Wyoming shales, but...could be used in several areas of the Uinta Basin . Once the oil shale is mined, it must be heated to about 900’F to hreak down the kerogen. A variety... Uinta Basin of eastern Utah. The sections presented above d.l not exhaust the supply of retorting tech- niques that are in various stages of

  5. Water pollution potential of spent oil shale residues. [From USBM, UOC, and TOSCO processes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1971-12-01

    Physical properties, including porosity, permeability, particle size distribution, and density of spent shale from three different retorting operations, (TOSCO, USBM, and UOC) have been determined. Slurry experiments were conducted on each of the spent shales and the slurry analyzed for leachable dissolved solids. Percolation experiments were conducted on the TOSCO spent shale and the quantities of dissolved solids leachable determined. The concentrations of the various ionic species in the initial leachate from the column were high. The major constituents, SO/sub 4//sup 2 -/ and Na/sup +/, were present in concentrations of 90,000 and 35,000 mg/l in the initial leachate; howevermore » the succeeding concentrations dropped markedly during the course of the experiment. A computer program was utilized to predict equilibrium concentrations in the leachate from the column. The extent of leaching and erosion of spent shale and the composition and concentration of natural drainage from spent shale have been determined using oil shale residue and simulated rainfall. Concentrations in the runoff from the spent shale have been correlated with runoff rate, precipitation intensity, flow depth, application time, slope, and water temperature. 18 tables, 32 figures.« less

  6. Purifying contaminated water. [DOE patent application

    DOEpatents

    Daughton, C.G.

    1981-10-27

    Process is presented for removing biorefactory compounds from contaminated water (e.g., oil shale retort waste-water) by contacting same with fragmented raw oil shale. Biorefractory removal is enhanced by preactivating the oil shale with at least one member of the group of carboxylic acids, alcohols, aldehydes, ketones, ethers, amines, amides, sulfoxides, mixed ether-esters and nitriles. Further purification is obtained by stripping, followed by biodegradation and removal of the cells.

  7. Converting oil shale to liquid fuels: energy inputs and greenhouse gas emissions of the Shell in situ conversion process.

    PubMed

    Brandt, Adam R

    2008-10-01

    Oil shale is a sedimentary rock that contains kerogen, a fossil organic material. Kerogen can be heated to produce oil and gas (retorted). This has traditionally been a CO2-intensive process. In this paper, the Shell in situ conversion process (ICP), which is a novel method of retorting oil shale in place, is analyzed. The ICP utilizes electricity to heat the underground shale over a period of 2 years. Hydrocarbons are produced using conventional oil production techniques, leaving shale oil coke within the formation. The energy inputs and outputs from the ICP, as applied to oil shales of the Green River formation, are modeled. Using these energy inputs, the greenhouse gas (GHG) emissions from the ICP are calculated and are compared to emissions from conventional petroleum. Energy outputs (as refined liquid fuel) are 1.2-1.6 times greater than the total primary energy inputs to the process. In the absence of capturing CO2 generated from electricity produced to fuel the process, well-to-pump GHG emissions are in the range of 30.6-37.1 grams of carbon equivalent per megajoule of liquid fuel produced. These full-fuel-cycle emissions are 21%-47% larger than those from conventionally produced petroleum-based fuels.

  8. Review of rare earth element concentrations in oil shales of the Eocene Green River Formation

    USGS Publications Warehouse

    Birdwell, Justin E.

    2012-01-01

    Concentrations of the lanthanide series or rare earth elements and yttrium were determined for lacustrine oil shale samples from the Eocene Green River Formation in the Piceance Basin of Colorado and the Uinta Basin of Utah. Unprocessed oil shale, post-pyrolysis (spent) shale, and leached shale samples were examined to determine if oil-shale processing to generate oil or the remediation of retorted shale affects rare earth element concentrations. Results for unprocessed Green River oil shale samples were compared to data published in the literature on reference materials, such as chondritic meteorites, the North American shale composite, marine oil shale samples from two sites in northern Tibet, and mined rare earth element ores from the United States and China. The Green River oil shales had lower rare earth element concentrations (66.3 to 141.3 micrograms per gram, μg g-1) than are typical of material in the upper crust (approximately 170 μg g-1) and were also lower in rare earth elements relative to the North American shale composite (approximately 165 μg g-1). Adjusting for dilution of rare earth elements by organic matter does not account for the total difference between the oil shales and other crustal rocks. Europium anomalies for Green River oil shales from the Piceance Basin were slightly lower than those reported for the North American shale composite and upper crust. When compared to ores currently mined for rare earth elements, the concentrations in Green River oil shales are several orders of magnitude lower. Retorting Green River oil shales led to a slight enrichment of rare earth elements due to removal of organic matter. When concentrations in spent and leached samples were normalized to an original rock basis, concentrations were comparable to those of the raw shale, indicating that rare earth elements are conserved in processed oil shales.

  9. High-resolution mass spectrometry of nitrogenous compounds of the Colorado Green River formation oil shale.

    NASA Technical Reports Server (NTRS)

    Simoneit, B. R.; Schnoes, H. K.; Haug, P.; Burlingame, A. L.

    1971-01-01

    Basic nitrogenous compounds isolated from extracts of Green River Formation oil shale were analyzed. The major homologous constituents found were the compositional types - namely, quinolines, tetrahydrequinolines with minor amounts of pyridines and indoles series and traces of more aromatized nitrogen compounds. These results are correlated with nitrogen compounds isolated from Green River Formation retort oil and are a survey of the unaltered nitrogen compounds indigeneous to the shale.

  10. Water resources and potential hydrologic effects of oil-shale development in the southeastern Uinta Basin, Utah and Colorado

    USGS Publications Warehouse

    Lindskov, K.L.; Kimball, B.A.

    1984-01-01

    Proposed oil-shale mining in northeastern Utah is expected to impact the water resources of a 3,000-square-mile area. This report summarizes a comprehensive hydrologic investigation of the area which resulted in 13 published reports. Hydrologic information obtained during 1974-80 was used to evaluate the availability of water and to evaluate potential impacts of an oil-shale industry on the water resources.The study area is the southeastern part of the Uinta Basin, Utah and Colorado, where the hydrology is extremely variable. The normal annual precipitation averages 11 inches and varies with altitude. It ranges from less than 8 inches at altitudes below 5,000 feet along the White and Green Rivers to more than 20 inches where altitudes exceed 9,000 feet on the Roan Plateau.The White and Green Rivers are large streams that flow through the area. They convey an average flow of 4.3 million acre-feet per year from outside drainage areas of about 34,000 square miles, which is more than 150 times as much flow as that originating within the area. Streams originating in areas where precipitation is less than 10 inches are ephemeral. Mean annual runoff from the study area is about 28,000 acre-feet and ranges from less than 0.1 to 1.6 inches, depending on the location. At any given site, runoff varies greatly-from year to year and season to season. Potential evapotranspiration is large, exceeding precipitation in all years. Three major aquifers occur in the area. They are alluvial deposits of small areal extent along the major stream valleys; the bird's-nest aquifer of the Parachute Creek Member of the Green River Formation, which is limited to the central part of the study area; and the Douglas Creek aquifer of the Douglas Creek Member of the Green River Formation, which underlies most of the area. Total recoverable water in storage in the three aquifers is about 18 million acre-feet. Yields of individual wells and interference between wells limit the maximum practical withdrawal to about 20,000 acre-feet per year.An oil-shale industry in the southeastern Uinta Basin with a peak production of 400,000 barrels of oil per day would require a water supply of about 70,000 acre-feet per year. Sources of water supply considered for such an industry were: diversion from the natural flow of the White River, a proposed reservoir on the White River, diversion from the White River combined with proposed off-stream storage in Hells Hole Canyon, diversion from the Green River, and conjunctive use of ground and surface water.The proposed reservoir on the White River would trap about 90 percent of the sediment moving in the river and in turn would release almost sediment-free water. Possible impacts are changes in channel gradient in the downstream 18 miles of the White River and changes in bank stability. In some parts of the area, annual sheet-erosion rates are as great as 2.2 acre-feet per square mile but sediment yield to the White River is less than might be expected because the runoff is small. If process water from retort operations or water used in the construction of surface facilities is discharged into a normally dry streambed, increased channel erosion and sediment in tributary streams could result in increased sediment loads in the White River. In addition, sediment yields from retorted-shale piles with minimum slopes could exceed 0.1 acrefoot per square mile during a common storm. Thus, without safeguards, the useful life of any proposed reservoir or holding pond could be decreased considerably.Leachate water from retorted-shale piles has large concentrations of sodium and sulfate, and the chemical composition of retort waters differs considerably from that of the natural waters of the area. The retort waters contain a greater concentration of dissolved solids and more organic carbon and nutrients. Without proper disposal or impoundment of retort and leachate waters, the salinity of downstream waters in the Colorado River Basin would be increased.

  11. Geochemistry of Israeli oil shales: a review

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shirav, M.; Ginzburg, D.

    1983-01-01

    The oil shales of Israel are widely distributed throughout the country and have current reserves of about 3500 million tons located in the following deposits: Zin, Oron, Ef'e, Hartuv, and Nabi-Musa. The geochemistry and chemical analysis of these shales are discussed, along with the calorific value, oil yield, and trace elements. The main components influencing the quality of the oil shales are organic matter, carbonate, clay minerals, and apatite. Compositional variations within the organic matter are responsible for changes in the relative calorific value and retorted oil yield while fluidized bed combustion is affected by the inorganic components. (JMT)

  12. Chemical composition of shale oil. 1; Dependence on oil shale origin

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kesavan, S.; Lee, S.; Polasky, M.E.

    1991-01-01

    This paper reports on shale oils obtained by nitrogen retorting of North Carolina, Cleveland, Ohio, Colorado, Rundle, Stuart, and Condor oil shales that have been chemically characterized by g.c.-m.s. techniques. After species identification, chemical compositions of the shale oils have been related to the geological origins of the parent shales. Based on the characteristics observed in the chromatograms, eight semi-quantitative parameters have been used to describe the chromatograms. Six of these parameters describe the chromatograms. Six of these parameters describe the relative abundance and distribution of straight chain alkanes and alkenes in the chromatograms. The other two parameters represent themore » abundance, relative to the total amount of volatiles in the oil, of alkylbenzenes and alkylphenols.« less

  13. Laboratory study of the effects of combustion gases on retorting of Green River oil shale with superheated steam

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tyler, A.L.; Bullen, E.A.; Jacobs, H.R.

    The leached zone of the Parachute Creek member of the Piceance Basin in the Green River Formation has a unique natural porosity that makes it a likely source for in-situ production of oil from oil shale by injection of superheated steam. The Equity Oil Co. of Salt Lake City, in cooperation with the U. S. Department of Energy, carried out field tests using surface generated steam. Difficulties in delivering steam of sufficiently high temperature to the formation resulted in an experiment which was only marginally successful yielding less than 1 percent of the estimated 300,000 barrels of oil in place.more » In 1981, personnel at Sandia National Laboratory suggested that a downhole steam generator which could produce steam at temperatures in excess of 1000/sup 0/F (538/sup 0/C) at depth could well solve the temperature problem. In order to evaluate the effects of combustion gases which would be injected along with steam, should a downhole steam generator be used, laboratory studies have been completed using steam diluted with CO/sub 2/ and with CO/sub 2/ and N/sub 2/ as the heating medium. Results of experiments in an autoclave reactor and in a laboratory retort are reported. The temperature, residence time, and partial pressure of steam are the parameters which effect oil yield and oil quality. Oil properties are reported for several experimental conditions and include oil yield, boiling point distributions, pour points, gravity, and elemental and hydrocarbon-type analyses. Both the autoclave and laboratory retort experiments indicate that CO/sub 2/ and N/sub 2/ do not take a reactive part in the formation of oils except as they dilute the steam. However, the presence of CO/sub 2/ in the gaseous atmosphere during retorting does promote a low-temperature transformation of dolomite to calcite in the inorganic matrix of the oil shale.« less

  14. High liquid yield process for retorting various organic materials including oil shale

    DOEpatents

    Coburn, Thomas T.

    1990-01-01

    This invention is a continuous retorting process for various high molecular weight organic materials, including oil shale, that yields an enhanced output of liquid product. The organic material, mineral matter, and an acidic catalyst, that appreciably adsorbs alkenes on surface sites at prescribed temperatures, are mixed and introduced into a pyrolyzer. A circulating stream of olefin enriched pyrolysis gas is continuously swept through the organic material and catalyst, whereupon, as the result of pyrolysis, the enhanced liquid product output is provided. Mixed spent organic material, mineral matter, and cool catalyst are continuously withdrawn from the pyrolyzer. Combustion of the spent organic material and mineral matter serves to reheat the catalyst. Olefin depleted pyrolysis gas, from the pyrolyzer, is enriched in olefins and recycled into the pyrolyzer. The reheated acidic catalyst is separated from the mineral matter and again mixed with fresh organic material, to maintain the continuously cyclic process.

  15. A high liquid yield process for retorting various organic materials including oil shale

    DOEpatents

    Coburn, T.T.

    1988-07-26

    This invention is a continuous retorting process for various high molecular weight organic materials, including oil shale, that yields an enhanced output of liquid product. The organic material, mineral matter, and an acidic catalyst, that appreciably adsorbs alkenes on surface sites at prescribed temperatures, are mixed and introduced into a pyrolyzer. A circulating stream of olefin enriched pyrolysis gas is continuously swept through the organic material and catalyst, whereupon, as the result of pyrolysis, the enhanced liquid product output is provided. Mixed spent organic material, mineral matter, and cool catalyst are continuously withdrawn from the pyrolyzer. Combustion of the spent organic material and mineral matter serves to reheat the catalyst. Olefin depleted pyrolysis gas, from the pyrolyzer, is enriched in olefins and recycled into the pyrolyzer. The reheated acidic catalyst is separated from the mineral matter and again mixed with fresh organic material, to maintain the continuously cyclic process. 2 figs.

  16. CO2 Sequestration within Spent Oil Shale

    NASA Astrophysics Data System (ADS)

    Foster, H.; Worrall, F.; Gluyas, J.; Morgan, C.; Fraser, J.

    2013-12-01

    Worldwide deposits of oil shales are thought to represent ~3 trillion barrels of oil. Jordanian oil shale deposits are extensive and of high quality, and could represent 100 billion barrels of oil, leading to much interest and activity in the development of these deposits. The exploitation of oil shales has raised a number of environmental concerns including: land use, waste disposal, water consumption, and greenhouse gas emissions. The dry retorting of oil shales can overcome a number of the environmental impacts, but this leaves concerns over management of spent oil shale and CO2 production. In this study we propose that the spent oil shale can be used to sequester CO2 from the retorting process. Here we show that by conducting experiments using high pressure reaction facilities, we can achieve successful carbonation of spent oil shale. High pressure reactor facilities in the Department of Earth Sciences, Durham University, are capable of reacting solids with a range of fluids up to 15 MPa and 350°C, being specially designed for research with supercritical fluids. Jordanian spent oil shale was reacted with high pressure CO2 in order to assess whether there is potential for sequestration. Fresh and reacted materials were then examined by: Inductively Coupled Plasma Mass Spectrometry (ICP-MS), Thermogravimetric Analysis (TGA), X-Ray Fluorescence (XRF) and X-Ray Diffraction (XRD) methods. Jordanian spent oil shale was found to sequester up to 5.8 wt % CO2, on reacting under supercritical conditions, which is 90% of the theoretical carbonation. Jordanian spent oil shale is composed of a large proportion of CaCO3, which on retorting decomposes, forming CaSO4 and Ca-oxides which are the focus of carbonation reactions. A factorially designed experiment was used to test different factors on the extent of carbonation, including: pressure; temperature; duration; and the water content. Analysis of Variance (ANOVA) techniques were then used to determine the significance of each of these. Results show that the duration; temperature; pressure; and the interactions between these significantly affect the extent of carbonation. Reactions carried out for at least 4 hours show significantly more carbonation than those under supercritical conditions for 2 hours or less. However, reacting for 24 hours does not show a significant increase in the extent of reaction, indicating that the reaction has reached equilibrium within a few hours. Maximum carbonation occurred within 4 hours, at higher temperatures and pressures of 80°C and 100 bar although results also show that there is a significant amount of carbonation achieved within 30 minutes, at 40°C and 70 bar. The magnitude of the CO2 sequestration achieved was sufficient that it could lower CO2 emissions by up to 30 kg CO2 /bbl, thereby bringing the emissions from oil shale processing in line with those from conventional oil extraction methods. The determination of optimum conditions to allow for: maximum carbonation, oil recovery and sufficient calcination, is also of importance and is currently under investigation.

  17. Biological markers from Green River kerogen decomposition

    NASA Astrophysics Data System (ADS)

    Burnham, A. K.; Clarkson, J. E.; Singleton, M. F.; Wong, C. M.; Crawford, R. W.

    1982-07-01

    Isoprenoid and other carbon skeletons that are formed in living organisms and preserved essentially intact in ancient sediments are often called biological markers. The purpose of this paper is to develop improved methods of using isoprenoid hydrocarbons to relate petroleum or shale oil to its source rock. It is demonstrated that most, but not all, of the isoprenoid hydrocarbon structures are chemically bonded in kerogen (or to minerals) in Green River oil shale. The rate constant for thermally producing isoprenoid, cyclic, and aromatic hydrocarbons is substantially greater than for the bulk of shale oil. This may be related to the substantial quantity of CO 2 which is evolved coincident with the isoprenoid hydrocarbons but prior to substantial oil evolution. Although formation of isoprenoid alkenes is enhanced by rapid heating and high pyrolysis temperatures, the ratio of isoprenoid alkenes plus alkanes to normal alkenes plus alkanes is independent of heating rate. High-temperature laboratory pyrolysis experiments can thus be used to predict the distribution of aliphatic hydrocarbons in low temperature processes such as in situ shale oil production and perhaps petroleum formation. Finally, we demonstrate that significant variation in biological marker ratios occurs as a function of stratigraphy in the Green River formation. This information, combined with methods for measuring process yield from oil composition, enables one to relate time-dependent processing conditions to the corresponding time-dependent oil yield in a vertical modified- in situ retort even if there is a substantial and previously undetermined delay in drainage of shale oil from the retort.

  18. Marketable transport fuels made from Julia Creek shale oil

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1987-03-01

    CSR Limited and the CSIRO Division of Energy Chemistry have been working on the problem of producing refined products from the Julia Creek deposit in Queensland, Australia. Two samples of shale oil, retorted at different temperatures from Julia Creek oil shale, were found to differ markedly in aromaticity. Using conventional hydrotreating technology, high quality jet and diesel fuels could be made from the less aromatic oil. Naphtha suitable for isomerization and reforming to gasoline could be produced from both oils. This paper discusses oil properties, stabilization of topped crudes, second stage hydrotreatment, and naphtha hydrotreating. 1 figure, 4 tables.

  19. Explosively produced fracture of oil shale

    NASA Astrophysics Data System (ADS)

    Morris, W. A.

    1982-05-01

    Rock fragmentation research in oil shale to develop the blasting technologies and designs required to prepare a rubble bed for a modified in situ retort is reported. Experimental work is outlined, proposed studies in explosive characterization are detailed and progress in numerical calculation techniques to predict fracture of the shale is described. A detailed geologic characterization of two Anvil Points experiment sites is related to previous work at Colony Mine. The second section focuses on computer modeling and theory. The latest generation of the stress wave code SHALE, its three dimensional potential, and the slide line package for it are described. A general stress rate equation that takes energy dependence into account is discussed.

  20. Occidental vertical modified in situ process for the recovery of oil from oil shale. Phase II. Quarterly progress report, September 1, 1980-November 30, 1980

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1981-01-01

    The major activities at OOSI's Logan Wash site during the quarter were: mining the voids at all levels for Retorts 7 and 8; blasthole drilling; tracer testing MR4; conducting the start-up and burner tests on MR3; continuing the surface facility construction; and conducting Retorts 7 and 8 related Rock Fragmentation tests. Environmental monitoring continued during the quarter, and the data and analyses are discussed. Sandia National Laboratory and Laramie Energy Technology Center (LETC) personnel were active in the DOE support of the MR3 burner and start-up tests. In the last section of this report the final oil inventory for Retortmore » 6 production is detailed. The total oil produced by Retort 6 was 55,696 barrels.« less

  1. Molecular characterization and comparison of shale oils generated by different pyrolysis methods using FT-ICR mass spectrometry

    USGS Publications Warehouse

    Jin, J.M.; Kim, S.; Birdwell, J.E.

    2011-01-01

    Fourier transform ion cyclotron resonance mass spectrometry (FT ICR-MS) was applied in the analysis of shale oils generated using two different pyrolysis systems under laboratory conditions meant to simulate surface and in situ oil shale retorting. Significant variations were observed in the shale oils, particularly the degree of conjugation of the constituent molecules. Comparison of FT ICR-MS results to standard oil characterization methods (API gravity, SARA fractionation, gas chromatography-flame ionization detection) indicated correspondence between the average Double Bond Equivalence (DBE) and asphaltene content. The results show that, based on the average DBE values and DBE distributions of the shale oils examined, highly conjugated species are enriched in samples produced under low pressure, high temperature conditions and in the presence of water.

  2. Treatment of concentrated industrial wastewaters originating from oil shale and the like by electrolysis polyurethane foam interaction

    DOEpatents

    Tiernan, Joan E.

    1991-01-01

    Highly concentrated and toxic petroleum-based and synthetic fuels wastewaters such as oil shale retort water are treated in a unit treatment process by electrolysis in a reactor containing oleophilic, ionized, open-celled polyurethane foams and subjected to mixing and l BACKGROUND OF THE INVENTION The invention described herein arose in the course of, or under, Contract No. DE-AC03-76SF00098 between the U.S. Department of Energy and the University of California.

  3. Distribution of Hydroxyl Groups in Kukersite Shale Oil: Quantitative Determination Using Fourier Transform Infrared (FT-IR) Spectroscopy.

    PubMed

    Baird, Zachariah Steven; Oja, Vahur; Järvik, Oliver

    2015-05-01

    This article describes the use of Fourier transform infrared (FT-IR) spectroscopy to quantitatively measure the hydroxyl concentrations among narrow boiling shale oil cuts. Shale oil samples were from an industrial solid heat carrier retort. Reference values were measured by titration and were used to create a partial least squares regression model from FT-IR data. The model had a root mean squared error (RMSE) of 0.44 wt% OH. This method was then used to study the distribution of hydroxyl groups among more than 100 shale oil cuts, which showed that hydroxyl content increased with the average boiling point of the cut up to about 350 °C and then leveled off and decreased.

  4. Paraho environmental data. Part I. Process characterization. Par II. Air quality. Part III. Water quality

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Heistand, R.N.; Atwood, R.A.; Richardson, K.L.

    1980-06-01

    From 1973 to 1978, Development Engineering, Inc. (DEI), a subsidiary of Paraho Development Corporation, demostrated the Paraho technology for surface oil shale retorting at Anvil Points, Colorado. A considerable amount of environmentally-related research was also conducted. This body of data represents the most comprehensive environmental data base relating to surface retorting that is currently available. In order to make this information available, the DOE Office of Environment has undertaken to compile, assemble, and publish this environmental data. The compilation has been prepared by DEI. This report includes the process characterization, air quality, and water quality categories.

  5. Rehabilitation potential and practices of Colorado oil shale lands. Progress report, June 1, 1978--May 31, 1979

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cook, C.W.

    The following document is a third-year progress report for the period June 1, 1978 to May 31, 1979. The overall objective of the project is to study the effects of seeding techniques, species mixtures, fertilizer, ecotypes, improved plant materials, mycorrhizal fungi, and soil microorganisms on the initial and final stages of reclamation obtained through seeding and subsequent succession on disturbed oil shale lands. Plant growth medias that are being used in field-established test plots include retorted shale, soil over retorted shale, subsoil materials, and surface disturbed topsoils. Because of the long-term nature of successional and ecologically oriented studies the projectmore » is just beginning to generate significant publications. Several of the studies associated with the project have some phases being conducted principally in the laboratories and greenhouses at Colorado State Univerisity. The majority of the research, however, is being conducted on a 20 hectare Intensive Study Site located near the focal points of oil shale activity in the Piceance Basin. The site is at an elevation of 2,042 m, receives approximately 30 to 55 cm of precipitation annually, and encompasses the plant communities most typical of the Piceance Basin. Most of the information contained in this report originated from the monitoring and sampling of research plots established in either the fall of 1976 or 1977. Therefore, data that have been obtained from the Intensive Study Site represent only first- or second-year results. However, many trends have been identified in thesuccessional process and the soil microorganisms and mycorrhizal studies continue to contribute significant information to the overall results. The phytosociological study has progressed to a point where field sampling is complete and the application and publication of this materials will be forthcoming in 1979.« less

  6. Integrating Nuclear Energy to Oilfield Operations – Two Case Studies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Eric P. Robertson; Lee O. Nelson; Michael G. McKellar

    2011-11-01

    Fossil fuel resources that require large energy inputs for extraction, such as the Canadian oil sands and the Green River oil shale resource in the western USA, could benefit from the use of nuclear power instead of power generated by natural gas combustion. This paper discusses the technical and economic aspects of integrating nuclear energy with oil sands operations and the development of oil shale resources. A high temperature gas reactor (HTGR) that produces heat in the form of high pressure steam (no electricity production) was selected as the nuclear power source for both fossil fuel resources. Both cases weremore » based on 50,000 bbl/day output. The oil sands case was a steam-assisted, gravity-drainage (SAGD) operation located in the Canadian oil sands belt. The oil shale development was an in-situ oil shale retorting operation located in western Colorado, USA. The technical feasibility of the integrating nuclear power was assessed. The economic feasibility of each case was evaluated using a discounted cash flow, rate of return analysis. Integrating an HTGR to both the SAGD oil sands operation and the oil shale development was found to be technically feasible for both cases. In the oil sands case, integrating an HTGR eliminated natural gas combustion and associated CO2 emissions, although there were still some emissions associated with imported electrical power. In the in situ oil shale case, integrating an HTGR reduced CO2 emissions by 88% and increased natural gas production by 100%. Economic viabilities of both nuclear integrated cases were poorer than the non-nuclear-integrated cases when CO2 emissions were not taxed. However, taxing the CO2 emissions had a significant effect on the economics of the non-nuclear base cases, bringing them in line with the economics of the nuclear-integrated cases. As we move toward limiting CO2 emissions, integrating non-CO2-emitting energy sources to the development of energy-intense fossil fuel resources is becoming increasingly important. This paper attempts to reduce the barriers that have traditionally separated fossil fuel development and application of nuclear power and to promote serious discussion of ideas about hybrid energy systems.« less

  7. Mass and heat transfer in crushed oil shale

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Carley, J.F.; Straub, J.S.; Ott, L.L.

    1984-04-01

    Heat and mass transfer between gases and oil-shale particles are both important for all proposed retorting processes. Past studies of transfer in packed beds, which have disagreed substantially in their results, have nearly all been done with beds of regular particles of uniform size, whereas oil-shale retorting involves particles of diverse shapes and widely ranging sizes. To resolve these questions, we have made 349 runs in which we measured mass-transfer rates from naphthalene particles of diverse shapes buried in packed beds through which air was passed at room temperature. This technique permits calculation of the mass-transfer coefficient for each activemore » particle in the bed rather than, as in most past studies, for the bed as a whole. The data were analyzed in two ways: (1) by the traditional correlation of Colburn j/sub D/ vs Reynolds number and (2) by multiple regression of the mass-transfer coefficient on air rate, traditional correlation of Colburn j/sub D/ vs Reynolds number and (3) by multiple regression of the mass-transfer coefficient on air rate, sizes of active and inert particles, void fraction, and temperature. Principal findings are: (1) local Reynolds number should be based on active particle size rather than average size for the bed; (2) no appreciable differences were seen between shallow beds and deep ones; (3) mass transfer was 26% faster for spheres and lozenges buried in shale than for all-sphere beds; (4) orientation of lozenges in shale beds has little effect on mass-transfer rate; (5) a useful summarizing equation for either mass or heat transfer in shale beds is log j.epsilon = -.0747 - .6344 log Re + .0592 log/sup 2/Re where j = either j/sub D/ or j/sub H/, the Chilton-Colburn j-factors for mass and heat transfer, Re = the Reynolds number defined for packed beds, and epsilon = the void fraction in the bed. 12 references, 15 figures.« less

  8. Sea-based Fuel Synthesis Work at NRL from FY02 to FY07 (October 2001 - October 2006)

    DTIC Science & Technology

    2010-08-05

    nearly a decade and involved every aspect of the development of a new liquid hydrocarbon from shale including mining, retorting , refining, performance...the end of each year’s effort. This was an attempt by Willauer and Hardy to obtain the necessary total funding package to accelerate the carbon

  9. Treatment of concentrated industrial wastewaters originating from oil shale and the like by electrolysis polyurethane foam interaction

    DOEpatents

    Tiernan, Joan E.

    1990-01-01

    Highly concentrated and toxic petroleum-based and synthetic fuels wastewaters such as oil shale retort water are treated in a unit treatment process by electrolysis in a reactor containing oleophilic, ionized, open-celled polyurethane foams and subjected to mixing and laminar flow conditions at an average detention time of six hours. Both the polyurethane foams and the foam regenerate solution are re-used. The treatment is a cost-effective process for waste-waters which are not treatable, or are not cost-effectively treatable, by conventional process series.

  10. Comparative acute toxicity of shale and petroleum derived distillates.

    PubMed

    Clark, C R; Ferguson, P W; Katchen, M A; Dennis, M W; Craig, D K

    1989-12-01

    In anticipation of the commercialization of its shale oil retorting and upgrading process, Unocal Corp. conducted a testing program aimed at better defining potential health impacts of a shale industry. Acute toxicity studies using rats and rabbits compared the effects of naphtha, Jet-A, JP-4, diesel and "residual" distillate fractions of both petroleum derived crude oils and hydrotreated shale oil. No differences in the acute oral (greater than 5 g/kg LD50) and dermal (greater than 2 g/kg LD50) toxicities were noted between the shale and petroleum derived distillates and none of the samples were more than mildly irritating to the eyes. Shale and petroleum products caused similar degrees of mild to moderate skin irritation. None of the materials produced sensitization reactions. The LC50 after acute inhalation exposure to Jet-A, shale naphtha, (greater than 5 mg/L) and JP-4 distillate fractions of petroleum and shale oils was greater than 5 mg/L. The LC50 of petroleum naphtha (greater than 4.8 mg/L) and raw shale oil (greater than 3.95 mg/L) also indicated low toxicity. Results demonstrate that shale oil products are of low acute toxicity, mild to moderately irritating and similar to their petroleum counterparts. The results further demonstrate that hydrotreatment reduces the irritancy of raw shale oil.

  11. Method for in situ heating of hydrocarbonaceous formations

    DOEpatents

    Little, William E.; McLendon, Thomas R.

    1987-01-01

    A method for extracting valuable constituents from underground hydrocarbonaceous deposits such as heavy crude tar sands and oil shale is disclosed. Initially, a stratum containing a rich deposit is hydraulically fractured to form a horizontally extending fracture plane. A conducting liquid and proppant is then injected into the fracture plane to form a conducting plane. Electrical excitations are then introduced into the stratum adjacent the conducting plate to retort the rich stratum along the conducting plane. The valuable constituents from the stratum adjacent the conducting plate are then recovered. Subsequently, the remainder of the deposit is also combustion retorted to further recover valuable constituents from the deposit. Various R.F. heating systems are also disclosed for use in the present invention.

  12. Effects of stripped oil shale retort water on fishes, birds, and mammals

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nystrom, R.R.

    1983-01-01

    Golden hamsters (Mesocricetus auratus Water), coturnix quail (Coturnix coturnix Teminck and Schlegal), fathead minnows (Pimphales promelas Rafinesque), and rainbow trout (Salmo gairdneri Richardson) were subjected to various exposures of stripped oil shale retort water (SRW). Chronic low-level exposures of all experimental animals to SRW revealed no adverse histological effects attributable to SRW. Also, production and development of second generation fathead minnows and coturnix quail exposed to SRW was normal. Subacute exposure of rainbow trout to SRW produced ultrastructural changes detected by transmission, scanning, and freeze fracture electron microscopy) in the gill, liver, and kidney tissues. The gills showed a swellingmore » of secondary lamellae, disorganization of normal tissue architecture, and sloughing of respiratory cells. The liver contained lamellar bodies not seen in the controls. Relatively large, electron dense, membrane-bounded deposits were present in proximal tubule cells of the kidney. Sodium arsenite (a significant component of SRW) was shown to cause swelling of granular endosplasmic reticulum in quail liver tissue with an acute exposure. This effect could be related to the fact that arsenic inhibits ATP production, which would decrease the ability of the sodium pumps to maintain a normal osmotic balance.« less

  13. Four dimensional X-ray imaging of deformation modes in organic-rich Green River Shale retorted under uniaxial compression

    NASA Astrophysics Data System (ADS)

    Kobchenko, M.; Pluymakers, A.; Cordonnier, B.; Tairova, A.; Renard, F.

    2017-12-01

    Time-lapse imaging of fracture network development in organic-rich shales at elevated temperatures while kerogen is retorted allows characterizing the development of microfractures and the onset of primary migration. When the solid organic matter is transformed to hydrocarbons with lower molecular weight, the local pore-pressure increases and drives the propagation of hydro-fractures sub-parallel to the shale lamination. On the scale of samples of several mm size, these fractures can be described as mode I opening, where fracture walls dilate in the direction of minimal compression. However, so far experiments coupled to microtomography in situ imaging have been performed on samples where no load was imposed. Here, an external load was applied perpendicular to the sample laminations and we show that this stress state slows down, but does not stop, the propagation of fracture along bedding. Conversely, microfractures also propagate sub-perpendicular to the shale lamination, creating a percolating network in three dimensions. To monitor this process we have used a uniaxial compaction rig combined with in-situ heating from 50 to 500 deg C, while capturing three-dimensional X-ray microtomography scans at a voxel resolution of 2.2 μm; Data were acquired at beamline ID19 at the European Synchrotron Radiation Facility. In total ten time-resolved experiments were performed at different vertical loading conditions, with and without lateral passive confinement and different heating rates. At high external load the sample fails by symmetric bulging, while at lower external load the reaction-induced fracture network develops with the presence of microfractures both sub-parallel and sub-perpendicular to the bedding direction. In addition, the variation of experimental conditions allows the decoupling of the effects of the hydrocarbon decomposition reaction on the deformation process from the influence of thermal stress heating on the weakening and failure mode of immature shale.

  14. A novel energy-efficient pyrolysis process: self-pyrolysis of oil shale triggered by topochemical heat in a horizontal fixed bed.

    PubMed

    Sun, You-Hong; Bai, Feng-Tian; Lü, Xiao-Shu; Li, Qiang; Liu, Yu-Min; Guo, Ming-Yi; Guo, Wei; Liu, Bao-Chang

    2015-02-06

    This paper proposes a novel energy-efficient oil shale pyrolysis process triggered by a topochemical reaction that can be applied in horizontal oil shale formations. The process starts by feeding preheated air to oil shale to initiate a topochemical reaction and the onset of self-pyrolysis. As the temperature in the virgin oil shale increases (to 250-300°C), the hot air can be replaced by ambient-temperature air, allowing heat to be released by internal topochemical reactions to complete the pyrolysis. The propagation of fronts formed in this process, the temperature evolution, and the reaction mechanism of oil shale pyrolysis in porous media are discussed and compared with those in a traditional oxygen-free process. The results show that the self-pyrolysis of oil shale can be achieved with the proposed method without any need for external heat. The results also verify that fractured oil shale may be more suitable for underground retorting. Moreover, the gas and liquid products from this method were characterised, and a highly instrumented experimental device designed specifically for this process is described. This study can serve as a reference for new ideas on oil shale in situ pyrolysis processes.

  15. A Novel Energy-Efficient Pyrolysis Process: Self-pyrolysis of Oil Shale Triggered by Topochemical Heat in a Horizontal Fixed Bed

    PubMed Central

    Sun, You-Hong; Bai, Feng-Tian; Lü, Xiao-Shu; Li, Qiang; Liu, Yu-Min; Guo, Ming-Yi; Guo, Wei; Liu, Bao-Chang

    2015-01-01

    This paper proposes a novel energy-efficient oil shale pyrolysis process triggered by a topochemical reaction that can be applied in horizontal oil shale formations. The process starts by feeding preheated air to oil shale to initiate a topochemical reaction and the onset of self-pyrolysis. As the temperature in the virgin oil shale increases (to 250–300°C), the hot air can be replaced by ambient-temperature air, allowing heat to be released by internal topochemical reactions to complete the pyrolysis. The propagation of fronts formed in this process, the temperature evolution, and the reaction mechanism of oil shale pyrolysis in porous media are discussed and compared with those in a traditional oxygen-free process. The results show that the self-pyrolysis of oil shale can be achieved with the proposed method without any need for external heat. The results also verify that fractured oil shale may be more suitable for underground retorting. Moreover, the gas and liquid products from this method were characterised, and a highly instrumented experimental device designed specifically for this process is described. This study can serve as a reference for new ideas on oil shale in situ pyrolysis processes. PMID:25656294

  16. Calorimetric determination of the heat of combustion of spent Green River shale at 978 K

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mraw, S.C.; Keweshan, C.F.

    1987-08-01

    A Calvet-type calorimeter was used to measure heats of combustion of spent Colorado oil shales. For Green River shale, the samples were members of a sink-float series spanning oil yields from 87 to 340 L . tonne/sup -1/. Shale samples (30-200 mg) are dropped into the calorimeter at high temperature, and a peak in the thermopile signal records the total enthalpy change of the sample between room temperature and the final temperature. Duplicate samples from the above sink-float series were first retorted at 773 K and then dropped separately into nitrogen and oxygen at 978 K. The resulting heats aremore » subtracted to give the heat of combustion, and the results are compared to values from classical bomb calorimetry. The agreement shows that the heats of combustion of the organic component are well understood but that question remain on the reactions of the mineral components.« less

  17. Assessment of In-Place Oil Shale Resources of the Green River Formation, Piceance Basin, Western Colorado

    USGS Publications Warehouse

    Johnson, Ronald C.; Mercier, Tracey J.; Brownfield, Michael E.; Pantea, Michael P.; Self, Jesse G.

    2009-01-01

    The U.S. Geological Survey (USGS) recently completed a reassessment of in-place oil shale resources, regardless of richness, in the Eocene Green River Formation in the Piceance Basin, western Colorado. A considerable amount of oil-yield data has been collected after previous in-place assessments were published, and these data were incorporated into this new assessment. About twice as many oil-yield data points were used, and several additional oil shale intervals were included that were not assessed previously for lack of data. Oil yields are measured using the Fischer assay method. The Fischer assay method is a standardized laboratory test for determining the oil yield from oil shale that has been almost universally used to determine oil yields for Green River Formation oil shales. Fischer assay does not necessarily measure the maximum amount of oil that an oil shale can produce, and there are retorting methods that yield more than the Fischer assay yield. However, the oil yields achieved by other technologies are typically reported as a percentage of the Fischer assay oil yield, and thus Fischer assay is still considered the standard by which other methods are compared.

  18. Geochemistry of Israeli oil shales - A review

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shirav, M.; Ginzbury, D.

    1983-02-01

    The oil shales in Israel are widely distributed throughout the country. Outcrops are rare and the information is based on boreholes data. The oil shale sequence is of UpperCampanian - Maastrichtian age and belongs to the Chareb Formation. In places, part of the phosphorite layer below the oil shales is also rich in kerogen. The host rocks are biomicritic limestones and marls, in which the organic matter is generally homogeneously and finely dispersed. The occurrence of authigenic feldspar and the preservation of the organic matter (up to 26% of the total rock) indicate euxinic hypersaline conditions which prevailed in themore » relative closed basins of deposition during the Maastrichtian. Current reserves of oil shales in Israel are about 3,500 million tons, located in the following deposits: Zin, Oron, Ef'e, Hartuv and Nabi-Musa. The 'En Bokek deposit, although thoroughly investigated, is of limited reserves and is not considered for future exploitation. Other potential areas, in the Northern Negev and along the Coastal Plain are under investigation. Future successful utilization of the Israeli oil shales, either by fluidizid-bed combustion or by retorting will contribute to the state's energy balance.« less

  19. An Economic and Ecologic Comparison of the Nuclear Stimulation of Natural Gas Fields with Retorting of Oil Shale

    DTIC Science & Technology

    1975-06-06

    the U.S. Atomic Energy Commission, and the Department of the Interior, with the Program Management provided by Geonuclear Corporation of Las Vegas...of native species. --Addition of irrigation water when initially planting. —Protection from access by herbivores. — Management after planting. No...physical conditions or water qaulity (temperature, pH, toxic substances) include trout and whitefish as well as the threatened species mentioned above

  20. Numerical modeling of oil shale fragmentation experiments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kuszmaul, J.S.

    The economic development of modified in situ oil shale retorting will benefit from the ability to design a blasting scheme that creates a rubble bed of uniform permeability. Preparing such a design depends upon successfully predicting how a given explosive charge and firing sequence will fracture the oil shale. Numerical models are used to predict the extent of damage caused by a particular explosive charge. Recent single-blastwell cratering tests provided experimental measurements of the extent of damage induced by an explosion. Measuring rock damage involved crater excavation, rubble screening, crater elevation surveys, and posttest extraction of cores. These measurements weremore » compared to the damage calculated by the numerical model. Core analyses showed that the damage varied greatly from layer to layer. The numerical results also show this effect, indicating that rock damage is highly dependent on oil shale grade. The computer simulation also calculated particle velocities and dynamic stress amplitudes in the rock; predicted values agree with experimental measurements. Calculated rock fragmentation compared favorably with fragmentation measured by crater excavation and by core analysis. Because coring provides direct inspection of rock fragmentation, the use of posttest coring in future experiments is recommended.« less

  1. A Transversely Isotropic Thermo-mechanical Framework for Oil Shale

    NASA Astrophysics Data System (ADS)

    Semnani, S. J.; White, J. A.; Borja, R. I.

    2014-12-01

    The present study provides a thermo-mechanical framework for modeling the temperature dependent behavior of oil shale. As a result of heating, oil shale undergoes phase transformations, during which organic matter is converted to petroleum products, e.g. light oil, heavy oil, bitumen, and coke. The change in the constituents and microstructure of shale at high temperatures dramatically alters its mechanical behavior e.g. plastic deformations and strength, as demonstrated by triaxial tests conducted at multiple temperatures [1,2]. Accordingly, the present model formulates the effects of changes in the chemical constituents due to thermal loading. It is well known that due to the layered structure of shale its mechanical properties in the direction parallel to the bedding planes is significantly different from its properties in the perpendicular direction. Although isotropic models simplify the modeling process, they fail to accurately describe the mechanical behavior of these rocks. Therefore, many researchers have studied the anisotropic behavior of rocks, including shale [3]. The current study presents a framework to incorporate the effects of transverse isotropy within a thermo-mechanical formulation. The proposed constitutive model can be readily applied to existing finite element codes to predict the behavior of oil shale in applications such as in-situ retorting process and stability assessment in petroleum reservoirs. [1] Masri, M. et al."Experimental Study of the Thermomechanical Behavior of the Petroleum Reservoir." SPE Eastern Regional/AAPG Eastern Section Joint Meeting. Society of Petroleum Engineers, 2008. [2] Xu, B. et al. "Thermal impact on shale deformation/failure behaviors---laboratory studies." 45th US Rock Mechanics/Geomechanics Symposium. American Rock Mechanics Association, 2011. [3] Crook, AJL et al. "Development of an orthotropic 3D elastoplastic material model for shale." SPE/ISRM Rock Mechanics Conference. Society of Petroleum Engineers, 2002.

  2. Water demands for expanding energy development

    USGS Publications Warehouse

    Davis, G.H.; Wood, Leonard A.

    1974-01-01

    Water is used in producing energy for mining and reclamation of mined lands, onsite processing, transportation, refining, and conversion of fuels to other forms of energy. In the East, South, Midwest, and along the seacoasts, most water problems are related to pollution rather than to water supply. West of about the 100th meridian, however, runoff is generally less than potential diversions, and energy industries must compete with other water users. Water demands for extraction of coal, oil shale, uranium, and oil and gas are modest, although large quantities of water are used in secondary recovery operations for oil. The only significant use of water for energy transportation, aside from in-stream navigation use, is for slurry lines. Substantial quantities of water are required in the retorting and the disposal of spent oil shale. The conversion of coal to synthetic gas or oil or to electric power and the generation of electric power with nuclear energy require large quantities of water, mostly for cooling. Withdrawals for cooling of thermal-electric plants is by far the largest category of water use in energy industry, totaling about 170 billion gallons (644 million m3) per day in 1970. Water availability will dictate the location and design of energy-conversion facilities, especially in water deficient areas of the West.

  3. Molecular characterization and comparison of shale oils generated by different pyrolysis methods

    USGS Publications Warehouse

    Birdwell, Justin E.; Jin, Jang Mi; Kim, Sunghwan

    2012-01-01

    Shale oils generated using different laboratory pyrolysis methods have been studied using standard oil characterization methods as well as Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR MS) with electrospray ionization (ESI) and atmospheric photoionization (APPI) to assess differences in molecular composition. The pyrolysis oils were generated from samples of the Mahogany zone oil shale of the Eocene Green River Formation collected from outcrops in the Piceance Basin, Colorado, using three pyrolysis systems under conditions relevant to surface and in situ retorting approaches. Significant variations were observed in the shale oils, particularly the degree of conjugation of the constituent molecules and the distribution of nitrogen-containing compound classes. Comparison of FT-ICR MS results to other oil characteristics, such as specific gravity; saturate, aromatic, resin, asphaltene (SARA) distribution; and carbon number distribution determined by gas chromatography, indicated correspondence between higher average double bond equivalence (DBE) values and increasing asphaltene content. The results show that, based on the shale oil DBE distributions, highly conjugated species are enriched in samples produced under low pressure, high temperature conditions, and under high pressure, moderate temperature conditions in the presence of water. We also report, for the first time in any petroleum-like substance, the presence of N4 class compounds based on FT-ICR MS data. Using double bond equivalence and carbon number distributions, structures for the N4 class and other nitrogen-containing compounds are proposed.

  4. Cytotoxic and mutagenic properties of shale oil byproducts. II. Comparison of mutagenic effects at five genetic markers induced by retort process water plus near ultraviolet light in Chinese hamster ovary cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, D.J.C.; Strniste, G.F.

    1982-01-01

    A Chinese hamster ovary (CHO) cell line heterozygous at the adenine phosphoribosyl transferase (APRT) locus was used for selection of induced mutants resistant to 8-azaadenine (8AA), 6-thioguanine (6TG), ouabain (OUA), emetine (EMT) and diphtheria toxin (DIP). The expression times necessary for optimizing the number of mutants recovered at the different loci have been determined using the known direct acting mutagen, far ultraviolet light (FUV), and a complex aqueous organic mixture (shale oil process water) activated with near ultraviolet light (NUV). The results indicate that optimal expression times following treatment with either mutagen was between 2 and 8 days. For CHOmore » cells treated with shale oil process water and subsequently exposed to NUV a linear dose response for mutant induction was observed for all five genetic loci. At 10% surviving fraction of cells, between 35- and 130-fold increases above backgound mutation frequencies were observed for the various markers examined.« less

  5. Transport and geotechnical properties of porous media with applications to retorted oil shale. Volume 4. Appendix D. Temperature and toe erosion effects on spent oil shale embankment stability

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chang, N.Y.; Wu, T.H.

    1986-01-01

    To evaluate the engineering property of spent shale at elevated temperatures, high temperature triaxial cells were designed and manufactured. The cells were then used in the test program designed to provide the physical and engineering properties of spent shale (TOSCO-II) at elevated temperatures. A series of consolidated drained triaxial tests were conducted at high temperatures. Duncan-Chang hyperbolic model was adopted to simulate the laboratory stress versus strain behavior of spent shale at various temperatures. This model provides very good fit to the laboratory stress-strain-volumetric strain characteristics of spent shale at various temperatures. The parameters of this model were then formulatedmore » as functions of temperatures and the Duncan-Chang model was implemented in a finite element analysis computer code for predicting the stress-deformation behavior of large spent shale embankments. Modified Bishop method was also used in analyzing the stability of spent shale embankments. The stability of three different spent shale embankments at three different temperatures were investigated in the study. Additionally the stability of embankments with different degrees of toe erosion was also studied. Results of this study indicated that (1) the stress-strain-strength properties of soils are affected by temperature variation; (2) the stress-strain-strength behavior of spent shale can be simulated by Duncan-Chang hyperbolic model, (3) the factor of safety of embankment slope decreases with rising temperatures; (4) the embankment deformation increases with rising temperatures; and (5) the toe erosion induced by floods causes the embankment slope to become less stable. It is strongly recommended, to extend this study to investigate the effect of internal seepage on the stability of large spent shale embankment. 68 refs., 53 figs., 16 tabs.« less

  6. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hepworth, J.C.; Foss, M.M.

    The fifth Energy and Minerals Field Institute program for Washington, D.C. Congressional and Executive Aides was held during August 15-21, 1982. The five-and-one-half day program was conducted through Wyoming, Colorado and Utah and consisted of visits to: an R and D tertiary petroleum production facility; an historic oil field entering secondary production; a surface uranium mine; a petroleum exploration drilling rig; a surface coal mine; an air cooled, coal-fired power plant; an oil shale site; a geothermal-electrical generating facility; and open pit copper mine and associated smelter and refinery; a petroleum refinery and an oil shale semi-works retort. During themore » field program, participants had opportunities to view communities affected by these activities, such as Wright City and Gillette, Wyoming, Parachute, Colorado and Milford and Cedar City, Utah. Throughout the program, aides met with local, state and industry officials and citizen leaders during bus rides, meals and site visits.« less

  7. Leading trends in environmental regulation that affect energy development. Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Steele, R V; Attaway, L D; Christerson, J A

    1980-01-01

    Major environmental issues that are likely to affect the implementation of energy technologies between now and the year 2000 are identified and assessed. The energy technologies specifically addressed are: oil recovery and processing; gas recovery and processing; coal liquefaction; coal gasification (surface); in situ coal gasification; direct coal combustion; advanced power systems; magnetohydrodynamics; surface oil shale retorting; true and modified in situ oil shale retorting; geothermal energy; biomass energy conversion; and nuclear power (fission). Environmental analyses of these technologies included, in addition to the main processing steps, the complete fuel cycle from resource extraction to end use. A comprehensive surveymore » of the environmental community (including environmental groups, researchers, and regulatory agencies) was carried out in parallel with an analysis of the technologies to identify important future environmental issues. Each of the final 20 issues selected by the project staff has the following common attributes: consensus of the environmental community that the issue is important; it is a likely candidate for future regulatory action; it deals with a major environmental aspect of energy development. The analyses of the 20 major issues address their environmental problem areas, current regulatory status, and the impact of future regulations. These analyses are followed by a quantitative assessment of the impact on energy costs and nationwide pollutant emissions of possible future regulations. This is accomplished by employing the Strategic Environmental Assessment System (SEAS) for a subset of the 20 major issues. The report concludes with a more general discussion of the impact of environmental regulatory action on energy development.« less

  8. Reaction rate kinetics for in situ combustion retorting of Michigan Antrim oil shale

    USGS Publications Warehouse

    Rostam-Abadi, M.; Mickelson, R.W.

    1984-01-01

    The intrinsic reaction rate kinetics for the pyrolysis of Michigan Antrim oil shale and the oxidation of the carbonaceous residue of this shale have been determined using a thermogravimetric analysis method. The kinetics of the pyrolysis reaction were evaluated from both isothermal and nonisothermal rate data. The reaction was found to be second-order with an activation energy of 252.2 kJ/mole, and with a frequency factor of 9.25 ?? 1015 sec-1. Pyrolysis kinetics were not affected by heating rates between 0.01 to 0.67??K/s. No evidence of any reactions among the oil shale mineral constituents was observed at temperatures below 1173??K. However, it was found that the presence of pyrite in oil shale reduces the primary devolatilization rate of kerogen and increases the amount of residual char in the spent shale. Carbonaceous residues which were prepared by heating the oil shale at a rate of 0.166??K/s to temperatures between 923??K and 1073??K, had the highest reactivities when oxidized at 0.166??K/s in a gas having 21 volume percent oxygen. Oxygen chemisorption was found to be the initial precursor to the oxidation process. The kinetics governing oxygen chemisorption is (Equation Presented) where X is the fractional coverage. The oxidation of the carbonaceous residue was found also to be second-order. The activation energy and the frequency factor determined from isothermal experiments were 147 kJ/mole and 9.18??107 sec-1 respectively, while the values of these parameters obtained from a nonisothermal experiment were 212 kJ/mole and 1.5??1013 sec-1. The variation in the rate constants is attributed to the fact that isothermal and nonisothermal analyses represent two different aspects of the combustion process.

  9. Cr(VI)/Cr(III) and As(V)/As(III) ratio assessments in Jordanian spent oil shale produced by aerobic combustion and Anaerobic Pyrolysis.

    PubMed

    El-Hasan, Tayel; Szczerba, Wojciech; Buzanich, Günter; Radtke, Martin; Riesemeier, Heinrich; Kersten, Michael

    2011-11-15

    With the increase in the awareness of the public in the environmental impact of oil shale utilization, it is of interest to reveal the mobility of potentially toxic trace elements in spent oil shale. Therefore, the Cr and As oxidation state in a representative Jordanian oil shale sample from the El-Lajjoun area were investigated upon different lab-scale furnace treatments. The anaerobic pyrolysis was performed in a retort flushed by nitrogen gas at temperatures in between 600 and 800 °C (pyrolytic oil shale, POS). The aerobic combustion was simply performed in porcelain cups heated in a muffle furnace for 4 h at temperatures in between 700 and 1000 °C (burned oil shale, BOS). The high loss-on-ignition in the BOS samples of up to 370 g kg(-1) results from both calcium carbonate and organic carbon degradation. The LOI leads to enrichment in the Cr concentrations from 480 mg kg(-1) in the original oil shale up to 675 mg kg(-1) in the ≥ 850 °C BOS samples. Arsenic concentrations were not much elevated beyond that in the average shale standard (13 mg kg(-1)). Synchrotron-based X-ray absorption near-edge structure (XANES) analysis revealed that within the original oil shale the oxidation states of Cr and As were lower than after its aerobic combustion. Cr(VI) increased from 0% in the untreated or pyrolyzed oil shale up to 60% in the BOS ash combusted at 850 °C, while As(V) increased from 64% in the original oil shale up to 100% in the BOS ash at 700 °C. No Cr was released from original oil shale and POS products by the European compliance leaching test CEN/TC 292 EN 12457-1 (1:2 solid/water ratio, 24 h shaking), whereas leachates from BOS samples showed Cr release in the order of one mmol L(-1). The leachable Cr content is dominated by chromate as revealed by catalytic adsorptive stripping voltammetry (CAdSV) which could cause harmful contamination of surface and groundwater in the semiarid environment of Jordan.

  10. Yield and Production Properties of Wood chips and Particles Torrefied in a Crucible Furnace Retort

    Treesearch

    Thomas L. Eberhardt; Chi-Leung So; Karen G. Reed

    2016-01-01

    Biomass preprocessing by torrefaction improves feedstock consistency and thereby improves the efficiency of biofuels operations, including pyrolysis, gasification, and combustion. A crucible furnace retort was fabricated of sufficient size to handle a commercially available wood chip feedstock. Varying the torrefaction times and temperatures provided an array of...

  11. Geology and phosphate resources of the Hawley Creek area, Lemhi County, Idaho

    USGS Publications Warehouse

    Oberlindacher, Peter; Hovland, Robert David

    1979-01-01

    Phosphate resources occur within the Retort Phosphatic Shale Member of the Permian Phosphoria Formation in the Hawley Creek area, near Leadore, in east-central Idaho. About 12 square miles (31 km2 ) of the Retort Member and enclosing rocks were mapped at a scale of 1:12,000 to evaluate the leasable Federal mineral resources. The Retort has an average thickness of 73 feet (22.3 m) and 12.9 linear miles (20.8 linear km) of outcrop within the area mapped. Rock samples taken from a bulldozer trench were analyzed for phosphate content and for minor trace elements. Analyses show a cumulative thickness of 8.7 feet ( 2.7 m) of medium-grade phosphate rock ( 24 to 31 percent P2O5) and 33.4 feet (10.2 m) of low-grade phosphate rock (16 to 24 percent P2O5). Minor elements in the Retort include uranium, vanadium, fluorine, cadmium, chromium, nickel, molybdenum, silver, and rare earths. These minor elements are potential byproducts of any future phosphate production in the Hawley Creek area. In addition, analyses of six phosphate rock samples taken from a prospect trench show a cumulative thickness of 14.9 ft (4.5 m) at 17.6 percent P2O5. Indicated phosphate resources are calculated for phosphate beds under less than 600 feet (183.0 m) of overburden. Approximately 36.5 feet (11.1 m), representing 50 percent of the total Retort Member, were measured in trench CP-71. There are 80.42 million short tons (72.96 million metric tons) of medium-grade phosphate rock, and 308.76 million short tons ( 280.10 million metric tons) of low-grade phosphate rock in the Retort Member within the map area. Because the thickness and grade of the phosphate beds for each block are based on the recovered section from CP-71, the calculated phosphate resource estimates represent a minimum. Other mineral resources in the area are thorium (35 ppm) in a Precambrian (?) granite body located immediately west of the Hawley Creek area; oil and gas accumulations may occur beneath the Medicine Lodge thrust system in this part of the Beaverhead Mountains. Paleozoic, Mesozoic, and Cenozoic rocks are present in the Hawley Creek area. Fold axes and thrust faults have a dominant northwest trend. These thrusts and folds are probably associated with the northeast-oriented stress field that existed in Late Cretaceous time. Evidence of younger, high-angle normal and reverse faults in the area also exists.

  12. Fuel Gas Demonstration Plant Program. Volume I. Demonstration plant

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1979-01-01

    The objective of this project is for Babcock Contractors Inc. (BCI) to provide process designs, and gasifier retort design for a fuel gas demonstration plant for Erie Mining Company at Hoyt Lake, Minnesota. The fuel gas produced will be used to supplement natural gas and fuel oil for iron ore pellet induration. The fuel gas demonstration plant will consist of five stirred, two-stage fixed-bed gasifier retorts capable of handling caking and non-caking coals, and provisions for the installation of a sixth retort. The process and unit design has been based on operation with caking coals; however, the retorts have beenmore » designed for easy conversion to handle non-caking coals. The demonstration unit has been designed to provide for expansion to a commercial plant (described in Commercial Plant Package) in an economical manner.« less

  13. GIS-based Geospatial Infrastructure of Water Resource Assessment for Supporting Oil Shale Development in Piceance Basin of Northwestern Colorado

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhou, Wei; Minnick, Matthew D; Mattson, Earl D

    Oil shale deposits of the Green River Formation (GRF) in Northwestern Colorado, Southwestern Wyoming, and Northeastern Utah may become one of the first oil shale deposits to be developed in the U.S. because of their richness, accessibility, and extensive prior characterization. Oil shale is an organic-rich fine-grained sedimentary rock that contains significant amounts of kerogen from which liquid hydrocarbons can be produced. Water is needed to retort or extract oil shale at an approximate rate of three volumes of water for every volume of oil produced. Concerns have been raised over the demand and availability of water to produce oilmore » shale, particularly in semiarid regions where water consumption must be limited and optimized to meet demands from other sectors. The economic benefit of oil shale development in this region may have tradeoffs within the local and regional environment. Due to these potential environmental impacts of oil shale development, water usage issues need to be further studied. A basin-wide baseline for oil shale and water resource data is the foundation of the study. This paper focuses on the design and construction of a centralized geospatial infrastructure for managing a large amount of oil shale and water resource related baseline data, and for setting up the frameworks for analytical and numerical models including but not limited to three-dimensional (3D) geologic, energy resource development systems, and surface water models. Such a centralized geospatial infrastructure made it possible to directly generate model inputs from the same database and to indirectly couple the different models through inputs/outputs. Thus ensures consistency of analyses conducted by researchers from different institutions, and help decision makers to balance water budget based on the spatial distribution of the oil shale and water resources, and the spatial variations of geologic, topographic, and hydrogeological Characterization of the basin. This endeavor encountered many technical challenging and hasn't been done in the past for any oil shale basin. The database built during this study remains valuable for any other future studies involving oil shale and water resource management in the Piceance Basin. The methodology applied in the development of the GIS based Geospatial Infrastructure can be readily adapted for other professionals to develop database structure for other similar basins.« less

  14. Post Retort, Pre Hydro-treat Upgrading of Shale Oil

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gordon, John

    Various oil feedstocks, including oil from oil shale, bitumen from tar sands, heavy oil, and refin- ery streams were reacted with the alkali metals lithium or sodium in the presence of hydrogen or methane at elevated temperature and pressure in a reactor. The products were liquids with sub- stantially reduced metals, sulfur and nitrogen content. The API gravity typically increased. Sodi- um was found to be more effective than lithium in effectiveness. The solids formed when sodium was utilized contained sodium sulfide which could be regenerated electrochemically back to so- dium and a sulfur product using a "Nasicon", sodium ionmore » conducting membrane. In addition, the process was found to be effective reducing total acid number (TAN) to zero, dramatically reduc- ing the asphaltene content and vacuum residual fraction in the product liquid. The process has promise as a means of eliminating sulfur oxide and carbon monoxide emissions. The process al- so opens the possibility of eliminating the coking process from upgrading schemes and upgrad- ing without using hydrogen.« less

  15. Mass and heat transfer in crushed oil shale

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Carley, J.F.; Ott, L.L.; Swecker, J.L.

    1995-03-01

    Studies of heat and mass transfer in packed beds, which disagree substantially in their findings, have nearly all been done with beds of regular particles of uniform size, whereas oil-shale retorting involves particles of diverse irregular shapes and sizes. The authors, in 349 runs, measured mass-transfer rates front naphthalene particles buried in packed beds by passing through air at room temperature. An exact catalog between convection of heat and mass makes it possible to infer heat-transfer coefficients from measured mass-transfer coefficients and fluid properties. Some beds consisted of spheres, naphthalene and inert, of the same, contrasting or distributed sizes. Inmore » some runs, naphthalene spheres were buried in beds of crushed shale, some in narrow screen ranges and others with a wide size range. In others, naphthalene lozenges of different shapes were buried in beds of crushed shale in various bed axis orientations. This technique permits calculation of the mass-transfer coefficient for each active particle in the bed rather than, as in most past studies, for the bed as a whole. The data are analyzed by the traditional correlation of Colburn j{sub D} vs. Reynolds number and by multiple regression of the mass-transfer coefficient on air rate, sizes of active and inert particles, void fraction, and temperature. Principal findings are: local Reynolds number should be based on the active-particle size, not the average for the whole bed; differences between shallow and deep beds are not appreciable; mass transfer is 26% faster for spheres and lozenges buried in shale than in all-sphere beds; orientation of lozenges in shale beds has little or no effect on mass-transfer rate; and for mass or heat transfer in shale beds, log(j{center_dot}{epsilon}) = {minus}0.0747 - 0.6344 log N{sub Re} + 0. 0592 log {sup 2} N{sub Re}.« less

  16. Sulfur removal from model fuel by Zn impregnated retorted shale and with assistance of design of experiments.

    PubMed

    de Lima, Flávia Melo; de Andrade Borges, Talitha; Braga, Renata Martins; de Araújo Melo, Dulce Maria; Martinelli, Antônio Eduardo

    2018-05-01

    There is global concern about acid rain and other pollution which is caused by the consumption of oil. By decreasing sulfur content in the oil, we can reduce unwanted emissions and acid rain. Shale was used which is a solid waste generated in the pyrolysis of shale, impregnated with Zn as an adsorbent which removes sulfur present in fuels from the hexane/toluene model solution. An influence of the agitation time (60-180 min), temperature (25-35 °C), adsorbent mass (0.1-0.25 g), and initial sulfur concentration (100-250 ppm) factorial 24 with three central points totaling 19 experiments was applied to investigate the effect of the variables on the efficiency of sulfur removal in fuels. The values of the parameters tested for maximum sulfur removal were obtained as follows: contact time = 180 min, temperature = 35 °C, adsorbent mass = 0.25 g, and initial sulfur concentration = 100 ppm. The mathematical model proposed with R 2 99.97% satisfied the experimental data. This may provide a theoretical basis for new research and alternative uses for tailings of schist industrialization in order to evaluate its potential.

  17. Western oil shale development: a technology assessment. Volume 8. Health effects of oil shale development

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rotariu, G.J.

    1982-02-01

    Information on the potential health effects of a developing oil shale industry can be derived from two major sources: (1) the historical experience in foreign countries that have had major industries; and (2) the health effects research that has been conducted in the US in recent years. The information presented here is divided into two major sections: one dealing with the experience in foreign countries and the second dealing with the more recent work associated with current oil shale development in the US. As a result of the study, several observations can be made: (1) most of the current andmore » historical data from foreign countries relate to occupational hazards rather than to impacts on regional populations; (2) neither the historical evidence from other countries nor the results of current research have shown pulmonary neoplasia to be a major concern, however, certain types of exposure, particularly such mixed source exposures as dust/diesel or dust/organic-vapor have not been adequately studied and the lung cancer question is not closed; (3) the industry should be alert to the incidence of skin disease in the industrial setting, however, automated techniques, modern industrial hygiene practices and realistic personal hygiene should greatly reduce the hazards associated with skin contact; and (4) the entire question of regional water contamination and any resultant health hazard has not been adequately addressed. The industrial practice of hydrotreating the crude shale oil will diminish the carcinogenic hazard of the product, however, the quantitative reduction of biological activity is dependent on the degree of hydrotreatment. Both Soviet and American experimentalists have demonstrated a correlation betweed carcinogenicity/toxicity and retorting temperature; the higher temperatures producing the more carcinogenic or toxic products.« less

  18. The role of water in unconventional in situ energy resource extraction technologies: Chapter 7 in Food, energy, and water: The chemistry connection

    USGS Publications Warehouse

    Gallegos, Tanya J.; Bern, Carleton R.; Birdwell, Justin E.; Haines, Seth S.; Engle, Mark A.

    2015-01-01

    Global trends toward developing new energy resources from lower grade, larger tonnage deposits that are not generally accessible using “conventional” extraction methods involve variations of subsurface in situ extraction techniques including in situ oil-shale retorting, hydraulic fracturing of petroleum reservoirs, and in situ recovery (ISR) of uranium. Although these methods are economically feasible and perhaps result in a smaller above-ground land-use footprint, there remain uncertainties regarding potential subsurface impacts to groundwater. This chapter provides an overview of the role of water in these technologies and the opportunities and challenges for water reuse and recycling.

  19. Pit and backfill: Getty's plan for a diatomite zone in an oil patch. [Dravo Process

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1981-06-01

    Getty Oil Co. is investigating the recovery of oil from a diatomite deposit in California's McKittrick oil field, using a pair of newly built pilot plants - one a Dravo solvent extraction train and the other a Lurgi-Ruhrgas retort-condenser system. Both are sized to process approximately 240 short tons/day of mined feed, and each will be separately campaigned for a year during the evaluation program. The diatomite project has a number of advantages as a mine and materials-handling project compared to oil shale and tar sands. The deposit is soft, and in-transit handling will probably perform much of the necessarymore » crushing for the plant. The material is light, approximately 100 lb/cu ft in place and 90 lb/cu ft broken. The near-surface location contrasts to the more deeply buried oil shale deposits in other areas of the nation. At the same time, the traction surface and structural bearing strength for heavy earth movers should be somewhat better in diatomite.« less

  20. Determining Permissible Oxygen and Water Vapor Transmission Rate for Non-Retort Military Ration Packaging

    DTIC Science & Technology

    2011-11-01

    OXYGEN AND WATER VAPOR TRANSMISSION RATE FOR NON- RETORT MILITARY RATION PACKAGING by Danielle Froio Alan Wright Nicole Favreau and Sarah...ANSI Std. Z39.18 RETORT STORAGE SHELF LIFE RETORT POUCHES SENSORY ANALYSIS OXYGEN CRACKERS PACKAGING SENSORY... Packaging for MRE. (a) MRE Retort Pouch Quad-Laminate Structure; (b) MRE Non- retort Pouch Tri-Laminate Structure

  1. Gondolellid conodonts and depositional setting of the Phosphoria Formation

    USGS Publications Warehouse

    Wardlaw, Bruce R.

    2015-01-01

    The Phosphoria Formation and related rocks were deposited over an 8.9 m.y. interval beginning approximately 274.0Ma and ending approximately 265.1Ma. The Meade Peak Phosphatic Shale Member was deposited in southeastern Idaho and adjacent Wyoming over 5.4 m.y. from approximately 273.2 to 268.6 Ma. The Retort Phosphatic Shale Member was deposited in southwestern Montana and west-central Wyoming over 1.3 m.y. from approximately 267.4 to 266.1Ma. The base of the Roadian Stage of the Middle Permian occurs within the lower phosphate zone of the Meade Peak. The base of the Wordian Stage occurs within the upper phosphate zone of the Meade Peak. The presence of a cool-water brachiopod fauna, cool-water conodont faunas, and the absence of fusulinids throughout the Phosphoria basin indicate the presence of pervasive cool, upwelling waters. Acritarchs are intimately associated with phosphorites and phosphatic shales and may have been the primary organic producer to help drive phosphate production. The gondolellid conodont fauna of the Phosphoria Formation links a geographic cline of Jinogondolella nankingensis from the Delaware basin, West Texas, to the Sverdrup basin, Canadian Arctic, and shows distinct differentiation in species distribution, as do other conodont groups, within the Phosphoria basin. Ten species and two subspecies of gondolellid conodonts are recognized from the Phosphoria Formation and related rocks that belong to Mesogondolella and Jinogondolella.

  2. 9 CFR 318.304 - Operations in the thermal processing area.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... factor over the specified thermal processing operation times. Temperature/time recording devices shall... minimum initial temperatures and operating procedures for thermal processing equipment, shall be posted in... available to the thermal processing system operator and the inspector. (b) Process indicators and retort...

  3. 9 CFR 318.304 - Operations in the thermal processing area.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... factor over the specified thermal processing operation times. Temperature/time recording devices shall... minimum initial temperatures and operating procedures for thermal processing equipment, shall be posted in... available to the thermal processing system operator and the inspector. (b) Process indicators and retort...

  4. 9 CFR 318.304 - Operations in the thermal processing area.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... factor over the specified thermal processing operation times. Temperature/time recording devices shall... minimum initial temperatures and operating procedures for thermal processing equipment, shall be posted in... available to the thermal processing system operator and the inspector. (b) Process indicators and retort...

  5. 9 CFR 318.304 - Operations in the thermal processing area.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... factor over the specified thermal processing operation times. Temperature/time recording devices shall... minimum initial temperatures and operating procedures for thermal processing equipment, shall be posted in... available to the thermal processing system operator and the inspector. (b) Process indicators and retort...

  6. 4. VIEW OF AREA EXCAVATED FOR ACCESS TO MERCURY RETORT. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    4. VIEW OF AREA EXCAVATED FOR ACCESS TO MERCURY RETORT. VIEW SOUTH FROM RETORT. (OCTOBER, 1995) - McCormick Group Mine, Mercury Retort, East slope of Buckskin Mountain, Paradise Valley, Humboldt County, NV

  7. Modules for estimating solid waste from fossil-fuel technologies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Crowther, M.A.; Thode, H.C. Jr.; Morris, S.C.

    1980-10-01

    Solid waste has become a subject of increasing concern to energy industries for several reasons. Increasingly stringent air and water pollution regulations result in a larger fraction of residuals in the form of solid wastes. Control technologies, particularly flue gas desulfurization, can multiply the amount of waste. With the renewed emphasis on coal utilization and the likelihood of oil shale development, increased amounts of solid waste will be produced. In the past, solid waste residuals used for environmental assessment have tended only to include total quantities generated. To look at environmental impacts, however, data on the composition of the solidmore » wastes are required. Computer modules for calculating the quantities and composition of solid waste from major fossil fuel technologies were therefore developed and are described in this report. Six modules have been produced covering physical coal cleaning, conventional coal combustion with flue gas desulfurization, atmospheric fluidized-bed combustion, coal gasification using the Lurgi process, coal liquefaction using the SRC-II process, and oil shale retorting. Total quantities of each solid waste stream are computed together with the major components and a number of trace elements and radionuclides.« less

  8. Effects of smectite on the oil-expulsion efficiency of the Kreyenhagen Shale, San Joaquin Basin, California, based on hydrous-pyrolysis experiments

    USGS Publications Warehouse

    Lewan, Michael D.; Dolan, Michael P.; Curtis, John B.

    2014-01-01

    The amount of oil that maturing source rocks expel is expressed as their expulsion efficiency, which is usually stated in milligrams of expelled oil per gram of original total organic carbon (TOCO). Oil-expulsion efficiency can be determined by heating thermally immature source rocks in the presence of liquid water (i.e., hydrous pyrolysis) at temperatures between 350°C and 365°C for 72 hr. This pyrolysis method generates oil that is compositionally similar to natural crude oil and expels it by processes operative in the subsurface. Consequently, hydrous pyrolysis provides a means to determine oil-expulsion efficiencies and the rock properties that influence them. Smectite in source rocks has previously been considered to promote oil generation and expulsion and is the focus of this hydrous-pyrolysis study involving a representative sample of smectite-rich source rock from the Eocene Kreyenhagen Shale in the San Joaquin Basin of California. Smectite is the major clay mineral (31 wt. %) in this thermally immature sample, which contains 9.4 wt. % total organic carbon (TOC) comprised of type II kerogen. Compared to other immature source rocks that lack smectite as their major clay mineral, the expulsion efficiency of the Kreyenhagen Shale was significantly lower. The expulsion efficiency of the Kreyenhagen whole rock was reduced 88% compared to that of its isolated kerogen. This significant reduction is attributed to bitumen impregnating the smectite interlayers in addition to the rock matrix. Within the interlayers, much of the bitumen is converted to pyrobitumen through crosslinking instead of oil through thermal cracking. As a result, smectite does not promote oil generation but inhibits it. Bitumen impregnation of the rock matrix and smectite interlayers results in the rock pore system changing from water wet to bitumen wet. This change prevents potassium ion (K+) transfer and dissolution and precipitation reactions needed for the conversion of smectite to illite. As a result, illitization only reaches 35% to 40% at 310°C for 72 hr and remains unchanged to 365°C for 72 hr. Bitumen generation before or during early illitization in these experiments emphasizes the importance of knowing when and to what degree illitization occurs in natural maturation of a smectite-rich source rock to determine its expulsion efficiency. Complete illitization prior to bitumen generation is common for Paleozoic source rocks (e.g., Woodford Shale and Retort Phosphatic Shale Member of the Phosphoria Formation), and expulsion efficiencies can be determined on immature samples by hydrous pyrolysis. Conversely, smectite is more common in Cenozoic source rocks like the Kreyenhagen Shale, and expulsion efficiencies determined by hydrous pyrolysis need to be made on samples that reflect the level of illitization at or near bitumen generation in the subsurface.

  9. 3. VIEW EAST OF TAILINGS OF MERCURY RETORT. SCOOP FOR ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    3. VIEW EAST OF TAILINGS OF MERCURY RETORT. SCOOP FOR EXTRACTING MERCURY VISIBLE IN CENTER OF PHOTOGRAPH. (OCTOBER, 1995) - McCormick Group Mine, Mercury Retort, East slope of Buckskin Mountain, Paradise Valley, Humboldt County, NV

  10. A new laboratory approach to shale analysis using NMR relaxometry

    USGS Publications Warehouse

    Washburn, Kathryn E.; Birdwell, Justin E.; Baez, Luis; Beeney, Ken; Sonnenberg, Steve

    2013-01-01

    Low-field nuclear magnetic resonance (LF-NMR) relaxometry is a non-invasive technique commonly used to assess hydrogen-bearing fluids in petroleum reservoir rocks. Measurements made using LF-NMR provide information on rock porosity, pore-size distributions, and in some cases, fluid types and saturations (Timur, 1967; Kenyon et al., 1986; Straley et al., 1994; Brown, 2001; Jackson, 2001; Kleinberg, 2001; Hurlimann et al., 2002). Recent improvements in LF-NMR instrument electronics have made it possible to apply methods used to measure pore fluids to assess highly viscous and even solid organic phases within reservoir rocks. T1 and T2 relaxation responses behave very differently in solids and liquids; therefore the relationship between these two modes of relaxation can be used to differentiate organic phases in rock samples or to characterize extracted organic materials. Using T1-T2 correlation data, organic components present in shales, such as kerogen and bitumen, can be examined in laboratory relaxometry measurements. In addition, implementation of a solid-echo pulse sequence to refocus T2 relaxation caused by homonuclear dipolar coupling during correlation measurements allows for improved resolution of solid-phase protons. LF-NMR measurements of T1 and T2 relaxation time distributions were carried out on raw oil shale samples from the Eocene Green River Formation and pyrolyzed samples of these shales processed by hydrous pyrolysis and techniques meant to mimic surface and in-situ retorting. Samples processed using the In Situ Simulator approach ranged from bitumen and early oil generation through to depletion of petroleum generating potential. The standard T1-T2 correlation plots revealed distinct peaks representative of solid- and liquid-like organic phases; results on the pyrolyzed shales reflect changes that occurred during thermal processing. The solid-echo T1 and T2 measurements were used to improve assessment of the solid organic phases, specifically kerogen, thermally degraded kerogen, and char. Integrated peak areas from the LF-NMR results representative of kerogen and bitumen were found to be well correlated with S1 and S2 parameters from Rock-Eval programmed pyrolysis. This study demonstrates that LFNMR relaxometry can provide a wide range of information on shales and other reservoir rocks that goes well beyond porosity and pore-fluid analysis.

  11. RETORT ASSEMBLY

    DOEpatents

    Loomis, C.C.; Ash, W.J.

    1957-11-26

    An improved retort assembly useful in the thermal reduction of volatilizable metals such as magnesium and calcium is described. In this process a high vacuum is maintained in the retort, however the retort must be heated to very high temperatures while at the same time the unloading end must bo cooled to condense the metal vapors, therefore the retention of the vacuum is frequently difficult due to the thermal stresses involved. This apparatus provides an extended condenser sleeve enclosed by the retort cover which forms the vacuum seal. Therefore, the seal is cooled by the fluid in the condenser sleeve and the extreme thermal stresses found in previous designs together with the deterioration of the sealing gasket caused by the high temperatures are avoided.

  12. The study of heat penetration of kimchi soup on stationary and rotary retorts.

    PubMed

    Cho, Won-Il; Park, Eun-Ji; Cheon, Hee Soon; Chung, Myong-Soo

    2015-03-01

    The aim of this study was to determine the heat-penetration characteristics using stationary and rotary retorts to manufacture Kimchi soup. Both heat-penetration tests and computer simulation based on mathematical modeling were performed. The sterility was measured at five different positions in the pouch. The results revealed only a small deviation of F 0 among the different positions, and the rate of heat transfer was increased by rotation of the retort. The thermal processing of retort-pouched Kimchi soup was analyzed mathematically using a finite-element model, and optimum models for predicting the time course of the temperature and F 0 were developed. The mathematical models could accurately predict the actual heat penetration of retort-pouched Kimchi soup. The average deviation of the temperature between the experimental and mathematical predicted model was 2.46% (R(2)=0.975). The changes in nodal temperature and F 0 caused by microbial inactivation in the finite-element model predicted using the NISA program were very similar to that of the experimental data of for the retorted Kimchi soup during sterilization with rotary retorts. The correlation coefficient between the simulation using the NISA program and the experimental data was very high, at 99%.

  13. The Study of Heat Penetration of Kimchi Soup on Stationary and Rotary Retorts

    PubMed Central

    Cho, Won-Il; Park, Eun-Ji; Cheon, Hee Soon; Chung, Myong-Soo

    2015-01-01

    The aim of this study was to determine the heat-penetration characteristics using stationary and rotary retorts to manufacture Kimchi soup. Both heat-penetration tests and computer simulation based on mathematical modeling were performed. The sterility was measured at five different positions in the pouch. The results revealed only a small deviation of F0 among the different positions, and the rate of heat transfer was increased by rotation of the retort. The thermal processing of retort-pouched Kimchi soup was analyzed mathematically using a finite-element model, and optimum models for predicting the time course of the temperature and F0 were developed. The mathematical models could accurately predict the actual heat penetration of retort-pouched Kimchi soup. The average deviation of the temperature between the experimental and mathematical predicted model was 2.46% (R2=0.975). The changes in nodal temperature and F0 caused by microbial inactivation in the finite-element model predicted using the NISA program were very similar to that of the experimental data of for the retorted Kimchi soup during sterilization with rotary retorts. The correlation coefficient between the simulation using the NISA program and the experimental data was very high, at 99%. PMID:25866751

  14. 30 CFR 57.22103 - Open flames (I-A, II-A, III, and V-A mines).

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... welding, cutting, and other maintenance operations, and for igniting underground retorts in a Subcategory... after the initital test has been conducted as an alternative to the ten-minute interval testing...

  15. Study of the Use of Oxygen-Absorbing Packaging Material to Prolong Shelf-Life of Rations

    DTIC Science & Technology

    2010-05-28

    technology can be used for retortable items (MRE 28 “Italian” entrée, chicken pesto with noodles ) since it maintained the 4 product shelf-life and...packages that have head spacing issues (e.g., retort item or those containing olive oil). Products included chicken pest with noodles (retorted entrée...of the MRE applesauce, they did not prevent the darkening problem. It is suspected that the retort processing step for applesauce manufacture may

  16. Brazing retort manifold design concept may minimize air contamination and enhance uniform gas flow

    NASA Technical Reports Server (NTRS)

    Ruppe, E. P.

    1966-01-01

    Brazing retort manifold minimizes air contamination, prevents gas entrapment during purging, and provides uniform gas flow into the retort bell. The manifold is easily cleaned and turbulence within the bell is minimized because all manifold construction lies outside the main enclosure.

  17. 77 FR 25206 - Proposed Extension of Existing Information Collection; Underground Retorts

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-04-27

    ... (those that operate within a combustible ore and either liberate methane or have the potential to liberate methane based on the history of the mine or the geological area in which the mine is located). At...

  18. Geological setting of oil shales in the Permian phosphoria formation and some of the geochemistry of these rocks

    USGS Publications Warehouse

    Maughan, E.K.

    1983-01-01

    Recent studies of the Meade Peak and the Retort Phosphatic Shale Members of the Phosphoria Formation have investigated the organic carbon content and some aspects of hydrocarbon generation from these rocks. Phosphorite has been mined from the Retort and Meade Peak members in southeastern Idaho, northern Utah, western Wyoming and southwestern Montana. Organic carbon-rich mudstone beds associated with the phosphorite in these two members also were natural sources of petroleum. These mudstone beds were differentially buried throughout the region so that heating of these rocks has been different from place to place. Most of the Phosphoria source beds have been deeply buried and naturally heated to catagenetically form hydrocarbons. Deepest burial was in eastern Idaho and throughout most of the northeastern Great Basin where high ambient temperatures have driven the catagenesis to its limit and beyond to degrade or to destroy the hydrocarbons. In southwest Montana, however, burial in some areas has been less than 2 km, ambient temperatures remained low and the kerogen has not produced hydrocarbons (2). In these areas in Montana, the kerogen in the carbonaceous mudstone has retained the potential for hydrocarbon generation and the carbon-rich Retort Member is an oil shale from which hydrocarbons can be synthetically extracted. The Phosphoria Formation was deposited in a foreland basin between the Cordilleran geosyncline and the North American craton. This foreland basin, which coincides with the area of deposition of the two organic carbon-rich mudstone members of the Phosphoria, has been named the Sublett basin (Maughan, 1979). The basin has a northwest-southeast trending axis and seems to have been deepest in central Idaho where deep-water sedimentary rocks equivalent to the Phosphoria Formation are exceptionally thick. The depth of the basin was increasingly shallower away from central Idaho toward the Milk River uplift - a land area in Montana, the ancestral Rocky Mountains. The basin is composed of land areas in Colorado, the Humboldt highland in northeastern Nevada and intervening carbonate shelves in Utah and Wyoming. The phosphorites and the carbonaceous mudstones were deposited on the foreslope between the carbonate and littoral sand deposits on the shelf and the dominantly cherty mudstone sediments in the axial part of the basin. Paleomagnetic evidence indicates that in the Permian the region would have been within the northern hemispheric trade wind belt; and wind-direction studies determined from studies of sand dunes, indicate that the prevailing winds from the Milk River uplift would have blown offshore across the Phosphoria sea. Offshore winds would have carried surface water away from the shore and generated upwelling in the sea in eastern Idaho and adjacent areas in Montana, Wyoming and Utah. Prior to deposition of the Phosphoria, the region was the site of extensive deposition of shallow-water carbonate sediments. Equivalent rocks in the northern part of the basin are dominantly sandstone derived from the adjacent Milk River uplift and similar sandstone strata in the southeastern sector were derived from the ancestral Rocky Mountains uplift. Tectonic subsidence of the Sublett basin in part of the region seems to have provided a sea-floor profile favorable for upwelling circulation and the shift in deposition from regional carbonates and local sandstone into a more complex depositional pattern that included the accumulation of the mudstone-chert-phosphorite facies that comprises the Phosphoria Formation. High biological productivity and the accumulation of sapropel on the sea floor is associated with contemporary coastal upwelling (1) and similar environmental and depositional conditions are attributed to the rich accumulations of organic matter in the Phosphoria Formation. Sapropelic mudstone and phosphorite composing the Meade Peak Member are approximately 60 m thick near the center of the Sublett basin. The Meade

  19. Double Retort System for Materials Compatibility Testing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    V. Munne; EV Carelli

    2006-02-23

    With Naval Reactors (NR) approval of the Naval Reactors Prime Contractor Team (NRPCT) recommendation to develop a gas cooled reactor directly coupled to a Brayton power conversion system as the Space Nuclear Power Plant (SNPP) for Project Prometheus (References a and b) there was a need to investigate compatibility between the various materials to be used throughout the SNPP. Of particular interest was the transport of interstitial impurities from the nickel-base superalloys, which were leading candidates for most of the piping and turbine components to the refractory metal alloys planned for use in the reactor core. This kind of contaminationmore » has the potential to affect the lifetime of the core materials. This letter provides technical information regarding the assembly and operation of a double retort materials compatibility testing system and initial experimental results. The use of a double retort system to test materials compatibility through the transfer of impurities from a source to a sink material is described here. The system has independent temperature control for both materials and is far less complex than closed loops. The system is described in detail and the results of three experiments are presented.« less

  20. 9 CFR 318.302 - Thermal processing.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 9 Animals and Animal Products 2 2011-01-01 2011-01-01 false Thermal processing. 318.302 Section 318.302 Animals and Animal Products FOOD SAFETY AND INSPECTION SERVICE, DEPARTMENT OF AGRICULTURE... retort come-up operating procedures and critical factors. (2) Letters or other written communications...

  1. SPOUTED BED DESIGN CONSIDERATIONS FOR COATED NUCLEAR FUEL PARTICLES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Marshall, Douglas W.

    High Temperature Gas Cooled Reactors (HTGRs) are fueled with tristructural isotropic (TRISO) coated nuclear fuel particles embedded in a carbon-graphite fuel body. TRISO coatings consist of four layers of pyrolytic carbon and silicon carbide that are deposited on uranium ceramic fuel kernels (350µm – 500µm diameters) in a concatenated series of batch depositions. Each layer has dedicated functions such that the finished fuel particle has its own integral containment to minimize and control the release of fission products into the fuel body and reactor core. The TRISO coatings are the primary containment structure in the HTGR reactor and must havemore » very high uniformity and integrity. To ensure high quality TRISO coatings, the four layers are deposited by chemical vapor deposition (CVD) using high purity precursors and are applied in a concatenated succession of batch operations before the finished product is unloaded from the coating furnace. These depositions take place at temperatures ranging from 1230°C to 1550°C and use three different gas compositions, while the fuel particle diameters double, their density drops from 11.1 g/cm3 to 3.0 g/cm3, and the bed volume increases more than 8-fold. All this is accomplished without the aid of sight ports or internal instrumentation that could cause chemical contamination within the layers or mechanical damage to thin layers in the early stages of each layer deposition. The converging section of the furnace retort was specifically designed to prevent bed stagnation that would lead to unacceptably high defect fractions and facilitate bed circulation to avoid large variability in coating layer dimensions and properties. The gas injection nozzle was designed to protect precursor gases from becoming overheated prior to injection, to induce bed spouting and preclude bed stagnation in the bottom of the retort. Furthermore, the retort and injection nozzle designs minimize buildup of pyrocarbon and silicon carbide on the retort wall and manage nozzle orifice accretions. The equipment and operating methods have yielded very good reproducibility in the TRISO coated particles batches.« less

  2. 21 CFR 113.87 - Operations in the thermal processing room.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... Section 113.87 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR HUMAN CONSUMPTION THERMALLY PROCESSED LOW-ACID FOODS PACKAGED IN HERMETICALLY SEALED... Food and Drug Administration. (b) A system for product traffic control in the retort room shall be...

  3. 21 CFR 113.87 - Operations in the thermal processing room.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... Section 113.87 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR HUMAN CONSUMPTION THERMALLY PROCESSED LOW-ACID FOODS PACKAGED IN HERMETICALLY SEALED... Administration. (b) A system for product traffic control in the retort room shall be estab-lished to prevent...

  4. 7 CFR 98.2 - Definitions.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ..., READY-TO-EAT (MRE's), MEATS, AND MEAT PRODUCTS MRE's, Meats, and Related Meat Food Products § 98.2... acceptable one meal serving, retorted pouched or 18-24 serving hermetically-sealed tray packed meat, or meal... operational food rations, and as an item of general issue by the military. Meat. This includes the edible part...

  5. Downhole delay assembly for blasting with series delay

    DOEpatents

    Ricketts, Thomas E.

    1982-01-01

    A downhole delay assembly is provided which can be placed into a blasthole for initiation of explosive in the blasthole. The downhole delay assembly includes at least two detonating time delay devices in series in order to effect a time delay of longer than about 200 milliseconds in a round of explosions. The downhole delay assembly provides a protective housing to prevent detonation of explosive in the blasthole in response to the detonation of the first detonating time delay device. There is further provided a connection between the first and second time delay devices. The connection is responsive to the detonation of the first detonating time delay device and initiates the second detonating time delay device. A plurality of such downhole delay assemblies are placed downhole in unfragmented formation and are initiated simultaneously for providing a round of explosive expansions. The explosive expansions can be used to form an in situ oil shale retort containing a fragmented permeable mass of formation particles.

  6. Method and apparatus for hydrocarbon recovery from tar sands

    DOEpatents

    Westhoff, J.D.; Harak, A.E.

    1988-05-04

    A method and apparatus for utilizing tar sands having a broad range of bitumen content is disclosed. More particularly, tar sands are pyrolyzed in a cyclone retort with high temperature gases recycled from the cyclone retort to produce oil and hydrocarbon products. The spent tar sands are then burned at 2000/degree/F in a burner to remove residual char and produce a solid waste that is easily disposable. The process and apparatus have the advantages of being able to utilize tar sands having a broad range of bitumen content and the advantage of producing product gases that are free from combustion gases and thereby have a higher heating value. Another important advantage is rapid pyrolysis of the tar sands in the cyclone so as to effectively utilize smaller sized reactor vessels for reducing capitol and operating costs. 1 fig., 1 tab.

  7. Method and apparatus for hydrocarbon recovery from tar sands

    DOEpatents

    Westhoff, James D.; Harak, Arnold E.

    1989-01-01

    A method and apparatus for utilizing tar sands having a broad range of bitumen content is disclosed. More particularly, tar sands are pyrolyzed in a cyclone retort with high temperature gases recycled from the cyclone retort to produce oil and hydrocarbon products. The spent tar sands are then burned at 2000.degree. F. in a burner to remove residual char and produce a solid waste that is easily disposable. The process and apparatus have the advantages of being able to utilize tar sands having a broad range of bitumen content and the advantage of producing product gases that are free from combustion gases and thereby have a higher heating value. Another important advantage is rapid pyrolysis of the tar sands in the cyclone so as to effectively utilize smaller sized reactor vessels for reducing capitol and operating costs.

  8. Mercury isotope fractionation during ore retorting in the Almadén mining district, Spain

    USGS Publications Warehouse

    Gray, John E.; Pribil, Michael J.; Higueras, Pablo L.

    2013-01-01

    Almadén, Spain, is the world's largest mercury (Hg) mining district, which has produced over 250,000 metric tons of Hg representing about 30% of the historical Hg produced worldwide. The objective of this study was to measure Hg isotopic compositions of cinnabar ore, mine waste calcine (retorted ore), elemental Hg (Hg0(L)), and elemental Hg gas (Hg0(g)), to evaluate potential Hg isotopic fractionation. Almadén cinnabar ore δ202Hg varied from − 0.92 to 0.15‰ (mean of − 0.56‰, σ = 0.35‰, n = 7), whereas calcine was isotopically heavier and δ202Hg ranged from − 0.03‰ to 1.01‰ (mean of 0.43‰, σ = 0.44‰, n = 8). The average δ202Hg enrichment of 0.99‰ between cinnabar ore and calcines generated during ore retorting indicated Hg isotopic mass dependent fractionation (MDF). Mass independent fractionation (MIF) was not observed in any of the samples in this study. Laboratory retorting experiments of cinnabar also were carried out to evaluate Hg isotopic fractionation of products generated during retorting such as calcine, Hg0(L), and Hg0(g). Calcine and Hg0(L) generated during these retorting experiments showed an enrichment in δ202Hg of as much as 1.90‰ and 0.67‰, respectively, compared to the original cinnabar ore. The δ202Hg for Hg0(g) generated during the retorting experiments was as much as 1.16‰ isotopically lighter compared to cinnabar, thus, when cinnabar ore was roasted, the resultant calcines formed were isotopically heavier, whereas the Hg0(g) generated was isotopically lighter in Hg isotopes.

  9. Review of samples of water, sediment, tailings, and biota at the Little Bonanza mercury mine, San Luis Obispo County, California

    USGS Publications Warehouse

    Rytuba, James J.; Hothem, Roger L.; Goldstein, Daniel N.; Brussee, Brianne E.; May, Jason T.

    2011-01-01

    Sample Sites and Methods Samples were collected to assess the concentrations of Hg and biogeochemically relevant constituents in tailings and wasterock piles at the Little Bonanza Hg mine. Tailings are present adjacent to a three-pipe retort used to process the Hg ore. The tailings occur in the upper 15 cm of the soil adjacent to the retort and slag from the retort is present on the surface. An area of disturbed soil and rock uphill from the retort was likely formed during construction of a dam that provided water for mining activities. Wasterock in these piles was sampled. The largest amount of tailings is exposed to the west of the retort in the bank of WF Las Tablas Creek. Water, sediment, and biota were sampled from WF Las Tablas Creek, which flows through the mine area. Sample-site locations are shown in figures 10 and 11 and listed in table 1. Samples were collected when streamflow was low and no precipitation had occurred.

  10. Evaluation of core data, physical properties, and oil yield USBM/AEC Colorado Core Hole no. 3 (Bronco BR-1)

    USGS Publications Warehouse

    Ege, John R.; Carroll, R.D.; Way, R.J.; Magner, J.E.

    1969-01-01

    USBM/AEC Colorado Core Hole No. 3 (Bronco BR-1) is located in the SW1/4SW1/4SW1/4 sec. 14, T. 1 N., R. 98 W., Rio Blanco County, Colorado. The collar is at a ground elevation of 6,356 feet. The hole was core drilled between depths of 964 and 3,325 feet with a total depth of 3,797 feet. The hole was drilled to investigate geologic, geophysical and hydrological conditions at a possible in situ oil-shale retorting experiment site. The drill hole passed through 1,157 feet of alluvium and the Evacuation Creek Member of the Green River Formation, 1,603 feet of the Parachute Creek Member and penetrated into the Garden Gulch Member of the Green River Formation. In-bole density log/oil yield ratio interpretation indicates that two oil-shale zones exist which yield more than 20 gallons of shale oil per ton of rock; an upper zone lying between 1,271 and 1,750 feet in depth and a lower zone lying between 1,900 and 2,964 feet. Halite (sodium chloride salt) is found between 2,140 and 2,185 feet and nahcolite (sodium bicarbonate salt) between 2,195 and 2,700 feet. Nahcolite was present at one time above 2,195 feet but has been subsequently dissolved out by ground water. The core can be divided into six structural units based upon degree of fracturing. A highly fractured interval is found between 1,646 and 1,899 feet, which coincides with the dissolution or leached nahcolite zone. Physical property tests made on core samples between 1,356 and 3,253 feet give average values of 11,988 psi for uniaxial compressive strength, 1.38 X 10[superscript]6[superscript] psi for static Young's modulus and 11,809 fps for compressional velocity.

  11. 43 CFR 3900.5 - Information collection.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... MANAGEMENT, DEPARTMENT OF THE INTERIOR RANGE MANAGEMENT (4000) OIL SHALE MANAGEMENT-GENERAL Oil Shale... information. (b) Respondents are oil shale lessees and operators. The requirement to respond to the... extent and specific characteristics of the Federal oil shale resource. The BLM will use the information...

  12. Retort beef aroma that gives preferable properties to canned beef products and its aroma components.

    PubMed

    Migita, Koshiro; Iiduka, Takao; Tsukamoto, Kie; Sugiura, Sayuri; Tanaka, Genichiro; Sakamaki, Gousuke; Yamamoto, Yasufumi; Takeshige, Yusuke; Miyazawa, Toshio; Kojima, Ayako; Nakatake, Tomoko; Okitani, Akihiro; Matsuishi, Masanori

    2017-12-01

    The objective of this study is to identify the properties and responsible compounds for the aromatic roast odor (retort beef aroma) that commonly occurs in canned beef products and could contribute to their palatability. The optimal temperature for generating retort beef aroma was 121°C. An untrained panel evaluated both uncured corned beef and canned yamato-ni beef and found that they had an aroma that was significantly (P < 0.01) similar to the odor of 121°C-heated beef than 100°C-heated beef. The panel also noted that the aroma of 121°C-heated beef tended to be (P < 0.1) preferable than that of 100°C-heated beef. These results suggest that retort beef aroma is one constituent of palatability in canned beef. GC-MS (gas chromatography-mass spectrometry) analysis of the volatile fraction obtained from 100°C- and 121°C-heated beef showed that the amounts of pyrazine, 2-methylpyrazine and diacetyl were higher in the 121°C-heated beef than in the 100°C-heated beef. GC-sniffing revealed that the odor quality of pyrazines was similar to that of retort beef aroma. Therefore, pyrazines were suggested to be a candidate responsible for the retort beef aroma. Analysis of commercial uncured corned beef and cured corned beef confirmed the presence of pyrazine, 2-methylpyrazine and 2,6-dimethylpyrazine. © 2017 Japanese Society of Animal Science.

  13. 43 CFR 3930.10 - General performance standards.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... MANAGEMENT, DEPARTMENT OF THE INTERIOR RANGE MANAGEMENT (4000) MANAGEMENT OF OIL SHALE EXPLORATION AND LEASES Management of Oil Shale Exploration Licenses and Leases § 3930.10 General performance standards. The operator... adversely affect the recovery of shale oil or other minerals producible under an oil shale lease during...

  14. Overview of the Development of Australian Combat Ration Packs

    DTIC Science & Technology

    2014-12-01

    g) Variety B Serve Size (g) Retort Meal Chilli Con Carne 1 x 250 FD Meal Veal Italienne 1 x 110 Instant Oriental Noodles 1 x 74 White Rice 2 x 125...retort pouch meal freeze dried meal flexible retort pouch meal light meals (soup, noodles , steak bar, canned fish)  noodles steak bar...Items Common to all HWRP Menus Cracked Pepper Vita Wheat 1x36 g instant coffee 1x3.5 g tea bags# 1x2.5 g cheddar cheese (canned) 1x56 g cappuccino

  15. Mixed integer simulation optimization for optimal hydraulic fracturing and production of shale gas fields

    NASA Astrophysics Data System (ADS)

    Li, J. C.; Gong, B.; Wang, H. G.

    2016-08-01

    Optimal development of shale gas fields involves designing a most productive fracturing network for hydraulic stimulation processes and operating wells appropriately throughout the production time. A hydraulic fracturing network design-determining well placement, number of fracturing stages, and fracture lengths-is defined by specifying a set of integer ordered blocks to drill wells and create fractures in a discrete shale gas reservoir model. The well control variables such as bottom hole pressures or production rates for well operations are real valued. Shale gas development problems, therefore, can be mathematically formulated with mixed-integer optimization models. A shale gas reservoir simulator is used to evaluate the production performance for a hydraulic fracturing and well control plan. To find the optimal fracturing design and well operation is challenging because the problem is a mixed integer optimization problem and entails computationally expensive reservoir simulation. A dynamic simplex interpolation-based alternate subspace (DSIAS) search method is applied for mixed integer optimization problems associated with shale gas development projects. The optimization performance is demonstrated with the example case of the development of the Barnett Shale field. The optimization results of DSIAS are compared with those of a pattern search algorithm.

  16. Effect of combination processing on the microbial, chemical and sensory quality of ready-to-eat (RTE) vegetable pulav

    NASA Astrophysics Data System (ADS)

    Kumar, R.; George, Johnsy; Rajamanickam, R.; Nataraju, S.; Sabhapathy, S. N.; Bawa, A. S.

    2011-12-01

    Effect of irradiation in combination with retort processing on the shelf life and safety aspects of an ethnic Indian food product like vegetable pulav was investigated. Gamma irradiation of RTE vegetable pulav was carried out at different dosage rates with 60Co followed by retort processing. The combination processed samples were analysed for microbiological, chemical and sensory characteristics. Microbiological analysis indicated that irradiation in combination with retort processing has significantly reduced the microbial loads whereas the chemical and sensory analysis proved that this combination processing is effective in retaining the properties even after storage for one year at ambient conditions. The results also indicated that a minimum irradiation dosage at 4.0 kGy along with retort processing at an F0 value of 2.0 is needed to achieve the desired shelf life with improved organoleptic qualities.

  17. Composition and Variation of Macronutrients, Immune Proteins, and Human Milk Oligosaccharides in Human Milk From Nonprofit and Commercial Milk Banks.

    PubMed

    Meredith-Dennis, Laura; Xu, Gege; Goonatilleke, Elisha; Lebrilla, Carlito B; Underwood, Mark A; Smilowitz, Jennifer T

    2018-02-01

    When human milk is unavailable, banked milk is recommended for feeding premature infants. Milk banks use processes to eliminate pathogens; however, variability among methods exists. Research aim: The aim of this study was to compare the macronutrient (protein, carbohydrate, fat, energy), immune-protective protein, and human milk oligosaccharide (HMO) content of human milk from three independent milk banks that use pasteurization (Holder vs. vat techniques) or retort sterilization. Randomly acquired human milk samples from three different milk banks ( n = 3 from each bank) were analyzed for macronutrient concentrations using a Fourier transform mid-infrared spectroscopy human milk analyzer. The concentrations of IgA, IgM, IgG, lactoferrin, lysozyme, α-lactalbumin, α antitrypsin, casein, and HMO were analyzed by mass spectrometry. The concentrations of protein and fat were significantly ( p < .05) less in the retort sterilized compared with the Holder and vat pasteurized samples, respectively. The concentrations of all immune-modulating proteins were significantly ( p < .05) less in the retort sterilized samples compared with vat and/or Holder pasteurized samples. The total HMO concentration and HMOs containing fucose, sialic acid, and nonfucosylated neutral sugars were significantly ( p < .05) less in retort sterilized compared with Holder pasteurized samples. Random milk samples that had undergone retort sterilization had significantly less immune-protective proteins and total and specific HMOs compared with samples that had undergone Holder and vat pasteurization. These data suggest that further analysis of the effect of retort sterilization on human milk components is needed prior to widespread adoption of this process.

  18. Water management practices used by Fayetteville shale gas producers.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Veil, J. A.

    2011-06-03

    Water issues continue to play an important role in producing natural gas from shale formations. This report examines water issues relating to shale gas production in the Fayetteville Shale. In particular, the report focuses on how gas producers obtain water supplies used for drilling and hydraulically fracturing wells, how that water is transported to the well sites and stored, and how the wastewater from the wells (flowback and produced water) is managed. Last year, Argonne National Laboratory made a similar evaluation of water issues in the Marcellus Shale (Veil 2010). Gas production in the Marcellus Shale involves at least threemore » states, many oil and gas operators, and multiple wastewater management options. Consequently, Veil (2010) provided extensive information on water. This current study is less complicated for several reasons: (1) gas production in the Fayetteville Shale is somewhat more mature and stable than production in the Marcellus Shale; (2) the Fayetteville Shale underlies a single state (Arkansas); (3) there are only a few gas producers that operate the large majority of the wells in the Fayetteville Shale; (4) much of the water management information relating to the Marcellus Shale also applies to the Fayetteville Shale, therefore, it can be referenced from Veil (2010) rather than being recreated here; and (5) the author has previously published a report on the Fayetteville Shale (Veil 2007) and has helped to develop an informational website on the Fayetteville Shale (Argonne and University of Arkansas 2008), both of these sources, which are relevant to the subject of this report, are cited as references.« less

  19. A Streamlined Approach by a Combination of Bioindication and Geostatistical Methods for Assessing Air Contaminants and Their Effects on Human Health in Industrialized Areas: A Case Study in Southern Brazil

    PubMed Central

    Ferreira, Angélica B.; Ribeiro, Andreza P.; Ferreira, Maurício L.; Kniess, Cláudia T.; Quaresma, Cristiano C.; Lafortezza, Raffaele; Santos, José O.; Saiki, Mitiko; Saldiva, Paulo H.

    2017-01-01

    Industrialization in developing countries associated with urban growth results in a number of economic benefits, especially in small or medium-sized cities, but leads to a number of environmental and public health consequences. This problem is further aggravated when adequate infrastructure is lacking to monitor the environmental impacts left by industries and refineries. In this study, a new protocol was designed combining biomonitoring and geostatistics to evaluate the possible effects of shale industry emissions on human health and wellbeing. Futhermore, the traditional and expensive air quality method based on PM2.5 measuring was also used to validate the low-cost geostatistical approach. Chemical analysis was performed using Energy Dispersive X-ray Fluorescence Spectrometer (EDXRF) to measure inorganic elements in tree bark and shale retorted samples in São Mateus do Sul city, Southern Brazil. Fe, S, and Si were considered potential pollutants in the study area. Distribution maps of element concentrations were generated from the dataset and used to estimate the spatial behavior of Fe, S, and Si and the range from their hot spot(s), highlighting the regions sorrounding the shale refinery. This evidence was also demonstrated in the measurements of PM2.5 concentrations, which are in agreement with the information obtained from the biomonitoring and geostatistical model. Factor and descriptive analyses performed on the concentrations of tree bark contaminants suggest that Fe, S, and Si might be used as indicators of industrial emissions. The number of cases of respiratory diseases obtained from local basic health unit were used to assess a possible correlation between shale refinery emissions and cases of repiratory disease. These data are public and may be accessed on the website of the the Brazilian Ministry of Health. Significant associations were found between the health data and refinery activities. The combination of the spatial characterization of air pollution and clinical health data revealed that adverse effects were significant for individuals over 38 years of age. These results also suggest that a protocol designed to monitor urban air quality may be an effective and low-cost strategy in environmentally contaminated cities, especially in low- and middle-income countries. PMID:28979271

  20. Review of the scientific evidence to support environmental risk assessment of shale gas development in the UK.

    PubMed

    Prpich, George; Coulon, Frédéric; Anthony, Edward J

    2016-09-01

    Interest in the development of shale gas resources using hydraulic fracturing techniques is increasing worldwide despite concerns about the environmental risks associated with this activity. In the United Kingdom (UK), early attempts to hydraulically fracture a shale gas well resulted in a seismic event that led to the suspension of all hydraulic fracturing operations. In response to this occurrence, UK regulators have requested that future shale gas operations that use hydraulic fracturing should be accompanied by a high-level environmental risk assessment (ERA). Completion of an ERA can demonstrate competency, communicate understanding, and ultimately build trust that environmental risks are being managed properly, however, this assessment requires a scientific evidence base. In this paper we discuss how the ERA became a preferred assessment technique to understand the risks related to shale gas development in the UK, and how it can be used to communicate information between stakeholders. We also provide a review of the evidence base that describes the environmental risks related to shale gas operations, which could be used to support an ERA. Finally, we conclude with an update of the current environmental risks associated with shale gas development in the UK and present recommendations for further research. Copyright © 2015 Elsevier B.V. All rights reserved.

  1. Distributor means for charging particulate material into receptacles

    DOEpatents

    Greaves, Melvin J.

    1977-06-14

    Disclosed are receptacles, such as shaft furnaces illustrated by a blast furnace and an upright oil shale retort, embodying rotatable charge distributor means for distributing particulate charge material in the furnace, which charge distributor means can provide a high uniformity of distribution of various sizes of particles and also can provide and maintain a stock line of desired contour and heighth in the receptacle. The distributor means includes a hopper having rigidly fixed to it a plurality of downwardly extending chutes with lower discharge portions that discharge in concentric circular zones at the stock line. The distributor means includes a segmented portion at the juncture of the hopper and the chutes that divides the charge material discharged into the hopper in proportion to the area of the circular zone at the stock line that is fed by the chute. The distributor means embodies means for providing mass flow of the particulate charge material through the chutes to the stock line and for avoiding segregation between larger and smaller particles of charge material deposited at the stock line.

  2. Studies of the Permian Phosphoria Formation and related rocks, Great Basin-Rocky Mountain region

    USGS Publications Warehouse

    Wardlaw, Bruce R.

    1979-01-01

    PART A: The transgression of the Permian Retort Phosphatic Shale Member of the Phosphoria Formation is dated by the occurrence of diagnostic brachiopods. The complex pattern of this transgression reflects the paleogeography and indicates two initial basins of deposition: one in southwestern Montana and one in southeastern Idaho. PART B: A new formation is proposed for middle Permian rocks of a transitional facies positioned laterally between the Rex Chert Member of the Phosphoria Formation in northeastern Utah and southeastern Idaho and the Plympton Formation in northeastern Nevada and northwestern Utah. PART C: The relationships of the Permian Park City Group to the Phosphoria and Park City Formations are clarified by the stratigraphy of four sections in northwestern Utah, northeastern Nevada, and southern Idaho. PART D: Five biostratigraphic zones based on the distribution of brachiopods and conodonts are proposed for the Park City Group. They are: the Peniculauris ivesi-Neostreptognathodus prayi Zone, the Peniculauris bassi-Neostreptognathodus sulcoplicatus Zone, the Peniculauris bassi-Neostreptognathodus sp. C Zone, the Thamnosia depressa Zone, and the Yakovlevia. multistriata-Neogondolella bitteri Zone. They range in age from Leonardian to Wordian.

  3. 21 CFR 113.3 - Definitions.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... steam into the closed retort and the time when the retort reaches the required processing temperature..., school, penal, or other organization) processing of food, including pet food. Persons engaged in the... flames to achieve sterilization temperatures. A holding period in a heated section may follow the initial...

  4. Innovative food processing technology using ohmic heating and aseptic packaging for meat.

    PubMed

    Ito, Ruri; Fukuoka, Mika; Hamada-Sato, Naoko

    2014-02-01

    Since the Tohoku earthquake, there is much interest in processed foods, which can be stored for long periods at room temperature. Retort heating is one of the main technologies employed for producing it. We developed the innovative food processing technology, which supersede retort, using ohmic heating and aseptic packaging. Electrical heating involves the application of alternating voltage to food. Compared with retort heating, which uses a heat transfer medium, ohmic heating allows for high heating efficiency and rapid heating. In this paper we ohmically heated chicken breast samples and conducted various tests on the heated samples. The measurement results of water content, IMP, and glutamic acid suggest that the quality of the ohmically heated samples was similar or superior to that of the retort-heated samples. Furthermore, based on the monitoring of these samples, it was observed that sample quality did not deteriorate during storage. © 2013. Published by Elsevier Ltd on behalf of The American Meat Science Association. All rights reserved.

  5. Lethality of Rendang packaged in multilayer retortable pouch with sterilization process

    NASA Astrophysics Data System (ADS)

    Praharasti, A. S.; Kusumaningrum, A.; Frediansyah, A.; Nurhikmat, A.; Khasanah, Y.; Suprapedi

    2017-01-01

    Retort Pouch had become a choice to preserve foods nowadays, besides the used of the can. Both had their own advantages, and Retort Pouch became more popular for the reason of cheaper and easier to recycle. General Method usually used to estimate the lethality of commercial heat sterilization process. Lethality value wa s used for evaluating the efficacy of the thermal process. This study aimed to find whether different layers of pouch materials affect the lethality value and to find differences lethality in two types of multilayer retort pouch, PET/Aluminum Foil/Nylon/RCPP and PET/Nylon/Modified Aluminum/CPP. The result showed that the different layer arrangement was resulted different Sterilization Value (SV). PET/Nylon/Modified Aluminum/CPP had better heat penetration, implied by the higher value of lethality. PET/Nylon/Modified Aluminum/CPP had the lethality value of 6,24 minutes, whereas the lethality value of PET/Aluminum Foil/Nylon/RCPP was 3,54 minutes.

  6. 43 CFR 3930.30 - Diligent development milestones.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... MANAGEMENT, DEPARTMENT OF THE INTERIOR MINERALS MANAGEMENT (3000) MANAGEMENT OF OIL SHALE EXPLORATION AND LEASES Management of Oil Shale Exploration Licenses and Leases § 3930.30 Diligent development milestones. (a) Operators must diligently develop the oil shale resources consistent with the terms and...

  7. 43 CFR 3930.30 - Diligent development milestones.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... MANAGEMENT, DEPARTMENT OF THE INTERIOR MINERALS MANAGEMENT (3000) MANAGEMENT OF OIL SHALE EXPLORATION AND LEASES Management of Oil Shale Exploration Licenses and Leases § 3930.30 Diligent development milestones. (a) Operators must diligently develop the oil shale resources consistent with the terms and...

  8. 43 CFR 3930.30 - Diligent development milestones.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... MANAGEMENT, DEPARTMENT OF THE INTERIOR MINERALS MANAGEMENT (3000) MANAGEMENT OF OIL SHALE EXPLORATION AND LEASES Management of Oil Shale Exploration Licenses and Leases § 3930.30 Diligent development milestones. (a) Operators must diligently develop the oil shale resources consistent with the terms and...

  9. Stress dependence of permeability of intact and fractured shale cores.

    NASA Astrophysics Data System (ADS)

    van Noort, Reinier; Yarushina, Viktoriya

    2016-04-01

    Whether a shale acts as a caprock, source rock, or reservoir, understanding fluid flow through shale is of major importance for understanding fluid flow in geological systems. Because of the low permeability of shale, flow is thought to be largely confined to fractures and similar features. In fracking operations, fractures are induced specifically to allow for hydrocarbon exploration. We have constructed an experimental setup to measure core permeabilities, using constant flow or a transient pulse. In this setup, we have measured the permeability of intact and fractured shale core samples, using either water or supercritical CO2 as the transporting fluid. Our measurements show decreasing permeability with increasing confining pressure, mainly due to time-dependent creep. Furthermore, our measurements show that for a simple splitting fracture, time-dependent creep will also eliminate any significant effect of this fracture on permeability. This effect of confinement on fracture permeability can have important implications regarding the effects of fracturing on shale permeability, and hence for operations depending on that.

  10. Experience and prospects of oil shale utilization for power production in Russia

    NASA Astrophysics Data System (ADS)

    Potapov, O. P.

    2016-09-01

    Due to termination of work at the Leningrad Shale Deposit, the Russian shale industry has been liquidated, including not only shale mining and processing but also research and engineering (including design) activities, because this deposit was the only commercially operated complex in Russia. UTT-3000 plants with solid heat carrier, created mainly by the Russian specialists under scientific guidance of members of Krzhizhanovsky Power Engineering Institute, passed under the control of Estonian engineers, who, alongside with their operation in Narva, construct similar plants in Kohtla-Jarve, having renamed the Galoter Process into the Enifit or Petroter. The main idea of this article is to substantiate the expediency of revival of the oil shale industry in Russia. Data on the UTT-3000 plants' advantages, shale oils, and gas properties is provided. Information on investments in an UTT-3000 plant and estimated cost of Leningrad oil shale mining at the Mezhdurechensk Strip Mine is given. For more detailed technical and economic assessment of construction of a complex for oil shale extraction and processing, it is necessary to develop a feasibility study, which should be the first stage of this work. Creation of such a complex will make it possible to produce liquid and gaseous power fuel from oil shale of Leningrad Deposit and provide the opportunity to direct for export the released volumes of oil and gas for the purposes of Russian budget currency replenishment.

  11. Chapter 3: Geologic Assessment of Undiscovered Oil and Gas Resources in the Phosphoria Total Petroleum System of the Wind River Basin Province, Wyoming

    USGS Publications Warehouse

    Kirschbaum, M.A.; Lillis, P.G.; Roberts, L.N.R.

    2007-01-01

    The Phosphoria Total Petroleum System (TPS) encompasses the entire Wind River Basin Province, an area of 4.7 million acres in central Wyoming. The source rocks most likely are black, organic-rich shales of the Meade Peak and Retort Phosphatic Shale Members of the Permian Phosphoria Formation located in the Wyoming and Idaho thrust belt to the west and southwest of the province. Petroleum was generated and expelled during Jurassic and Cretaceous time in westernmost Wyoming and is interpreted to have migrated into the province through carrier beds of the Pennsylvanian Tensleep Sandstone where it was preserved in hypothesized regional stratigraphic traps in the Tensleep and Permian Park City Formation. Secondary migration occurred during the development of structural traps associated with the Laramide orogeny. The main reservoirs are in the Tensleep Sandstone and Park City Formation and minor reservoirs are in the Mississippian Madison Limestone, Mississippian-Pennsylvanian Amsden Formation, Triassic Chugwater Group, and Jurassic Nugget Sandstone and Sundance Formation. The traps are sealed by shale or evaporite beds of the Park City, Amsden, and Triassic Dinwoody Formations, Triassic Chugwater Group, and Jurassic Gypsum Spring Formation. A single conventional oil and gas assessment unit (AU), the Tensleep-Park City AU, was defined for the Phosphoria TPS. Both the AU and TPS cover the entire Wind River Basin Province. Oil is produced from 18 anticlinal fields, the last of which was discovered in 1957, and the possibility of discovering new structural oil accumulations is considered to be relatively low. Nonassociated gas is produced from only two fields, but may be underexplored in the province. The discovery of new gas is more promising, but will be from deep structures. The bulk of new oil and gas accumulations is dependent on the discovery of hypothesized stratigraphic traps in isolated carbonate reservoirs of the Park City Formation. Mean resource estimates for the Tensleep-Park City Conventional Oil and Gas AU total 18 million barrels of oil, 294 billion cubic feet of gas, and 5.9 million barrels of natural gas liquids.

  12. 120. VIEW, LOOKING SOUTHEAST, OF TELLURIDE IRON WORKS RETORT USED ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    120. VIEW, LOOKING SOUTHEAST, OF TELLURIDE IRON WORKS RETORT USED FOR FLASHING MERCURY OFF OF GOLD TO CREATE SOFT INGOTS CALLED "SPONGES." AT RIGHT ARE SAFES FOR STORING 22-POUND SPONGES WORTH OVER $60,000 EACH, CA. 1985. - Shenandoah-Dives Mill, 135 County Road 2, Silverton, San Juan County, CO

  13. 1. Distant view shows Engine Room Building behind cranes. Retort ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    1. Distant view shows Engine Room Building behind cranes. Retort rings in foreground were once located in Engine Room Building. See photo WA-131-A-2. Building on left is Machine Shop. Boiler Building is in front of stack. - Pacific Creosoting Plant, Engine Room Building, 5350 Creosote Place, Northeast, Bremerton, Kitsap County, WA

  14. 9 CFR 318.308 - Deviations in processing.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ...) Deviations in processing (or process deviations) must be handled according to: (1)(i) A HACCP plan for canned..., containers in the retort intake valve and in transfer valves between retort shells at the time of a jam or... 9 Animals and Animal Products 2 2011-01-01 2011-01-01 false Deviations in processing. 318.308...

  15. 9 CFR 381.308 - Deviations in processing.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ..., containers in the retort intake valve and in transfer valves between retort shells at the time of a jam or... 9 Animals and Animal Products 2 2011-01-01 2011-01-01 false Deviations in processing. 381.308... Deviations in processing. (a) Whenever the actual process is less than the process schedule or when any...

  16. Elemental composition of airborne dust in the Shale Shaker House during an offshore drilling operation.

    PubMed

    Hansen, A B; Larsen, E; Hansen, L V; Lyngsaae, M; Kunze, H

    1991-12-01

    During 2 days of an offshore drilling operation in the North Sea, 16 airborne dust samples from the atmosphere of the Shale Shaker House were collected onto filters. During this operation, drilling mud composed of a water slurry of barite (BaSO4) together with minor amounts of additives, among them chrome lignosulphonate and chrome lignite, was circulated between the borehole and the Shale Shaker House. The concentration of airborne dust in the atmosphere was determined and the elemental composition of the particles analysed by both PIXE (proton-induced X-ray emission) and ICP-MS (inductively coupled plasma-mass spectrometry). The total amount of dust collected varied from 0.04 to 1.41 mg m-3 with barium (Ba) as the single most abundant element. The open shale shakers turned out to be the major cause of generation of dust from the solid components of the drilling mud.

  17. The subsurface impact of hydraulic fracturing in shales- Perspectives from the well and reservoir

    NASA Astrophysics Data System (ADS)

    ter Heege, Jan; Coles, Rhys

    2017-04-01

    It has been identified that the main risks of subsurface shale gas operations in the U.S.A. and Canada are associated with (1) drilling and well integrity, (2) hydraulic fracturing, and (3) induced seismicity. Although it is unlikely that hydraulic fracturing operations result in direct pathways of enhanced migration between stimulated fracture disturbed rock volume and shallow aquifers, operations may jeopardize well integrity or induce seismicity. From the well perspective, it is often assumed that fluid injection leads to the initiation of tensile (mode I) fractures at different perforation intervals along the horizontal sections of shale gas wells if pore pressure exceeds the minimum principal stress. From the reservoir perspective, rise in pore pressure resulting from fluid injection may lead to initiation of tensile fractures, reactivation of shear (mode II) fractures if the criterion for failure in shear is exceeded, or combinations of different fracturing modes. In this study, we compare tensile fracturing simulations using conventional well-based models with shear fracturing simulations using a fractured shale model with characteristic fault populations. In the fractured shale model, stimulated permeability is described by an analytical model that incorporates populations of reactivated faults and that combines 3D permeability tensors for layered shale matrix, damage zone and fault core. Well-based models applied to wells crosscutting the Posidonia Shale Formation are compared to generic fractured shale models, and fractured shale models are compared to micro-seismic data from the Marcellus Shale. Focus is on comparing the spatial distribution of permeability, stimulated reservoir volume and seismicity, and on differences in fracture initiation pressure and fracture orientation for tensile and shear fracturing end-members. It is shown that incorporation of fault populations (for example resulting from analysis of 3D seismics or outcrops) in hydraulic fracturing models provides better constraints on well pressures, stimulated fracture disturbed volume and induced seismicity. Thereby, it helps assessing the subsurface impact of hydraulic fracturing in shales and mitigating risks associated with loss of loss of well integrity, loss of fracture containment, and induced seismicity.

  18. 4D synchrotron X-ray imaging to understand porosity development in shales during exposure to hydraulic fracturing fluid

    NASA Astrophysics Data System (ADS)

    Kiss, A. M.; Bargar, J.; Kohli, A. H.; Harrison, A. L.; Jew, A. D.; Lim, J. H.; Liu, Y.; Maher, K.; Zoback, M. D.; Brown, G. E.

    2016-12-01

    Unconventional (shale) reservoirs have emerged as the most important source of petroleum resources in the United States and represent a two-fold decrease in greenhouse gas emissions compared to coal. Despite recent progress, hydraulic fracturing operations present substantial technical, economic, and environmental challenges, including inefficient recovery, wastewater production and disposal, contaminant and greenhouse gas pollution, and induced seismicity. A relatively unexplored facet of hydraulic fracturing operations is the fluid-rock interface, where hydraulic fracturing fluid (HFF) contacts shale along faults and fractures. Widely used, water-based fracturing fluids contain oxidants and acid, which react strongly with shale minerals. Consequently, fluid injection and soaking induces a host of fluid-rock interactions, most notably the dissolution of carbonates and sulfides, producing enhanced or "secondary" porosity networks, as well as mineral precipitation. The competition between these mechanisms determines how HFF affects reactive surface area and permeability of the shale matrix. The resultant microstructural and chemical changes may also create capillary barriers that can trap hydrocarbons and water. A mechanistic understanding of the microstructure and chemistry of the shale-HFF interface is needed to design new methodologies and fracturing fluids. Shales were imaged using synchrotron micro-X-ray computed tomography before, during, and after exposure to HFF to characterize changes to the initial 3D structure. CT reconstructions reveal how the secondary porosity networks advance into the shale matrix. Shale samples span a range of lithologies from siliceous to calcareous to organic-rich. By testing shales of different lithologies, we have obtained insights into the mineralogic controls on secondary pore network development and the morphologies at the shale-HFF interface and the ultimate composition of produced water from different facies. These results show that mineral texture is a major control over secondary porosity network morphology.

  19. 40 CFR Appendix 7 to Subpart A of... - API Recommended Practice 13B-2

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... facilitate cleaning and funnel-shaped top to catch falling drops. For compliance monitoring under the NPDES... condenser. b. Pack the retort body with steel wool. c. Apply lubricant/sealant to threads of retort cup and... the clean and dry liquid receiver. This is mass (C), grams. Place the receiver below condenser outlet...

  20. 40 CFR Appendix 7 to Subpart A of... - API Recommended Practice 13B-2

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... facilitate cleaning and funnel-shaped top to catch falling drops. For compliance monitoring under the NPDES... condenser. b. Pack the retort body with steel wool. c. Apply lubricant/sealant to threads of retort cup and... the clean and dry liquid receiver. This is mass (C), grams. Place the receiver below condenser outlet...

  1. Transportation infrastructure asset damage cost recovery correlated with shale oil/gas recovery operations in Louisiana : research project capsule : technology transfer program.

    DOT National Transportation Integrated Search

    2016-10-01

    Due to shale oil/gas recovery : operations, a large number : of truck trips on Louisiana : roadways are required for : transporting equipment and : materials to and from the : recovery sites. As a result, : roads and bridges that were : designed for ...

  2. Technical note: Evaluation of a crucible furnace retort for laboratory torrefactions of wood chips

    Treesearch

    Thomas L. Eberhardt; Karen G. Reed

    2014-01-01

    Torrefaction is a thermal process that improves biomass performance as a fuel by property enhancements such as decreased moisture uptake and increased carbon density. Most studies to date have used very small amounts of finely ground biomass. This study reports the testing of a crucible furnace retort that was fabricated to produce intermediate quantities of torrefied...

  3. Optimization of thermal processing of canned mussels.

    PubMed

    Ansorena, M R; Salvadori, V O

    2011-10-01

    The design and optimization of thermal processing of solid-liquid food mixtures, such as canned mussels, requires the knowledge of the thermal history at the slowest heating point. In general, this point does not coincide with the geometrical center of the can, and the results show that it is located along the axial axis at a height that depends on the brine content. In this study, a mathematical model for the prediction of the temperature at this point was developed using the discrete transfer function approach. Transfer function coefficients were experimentally obtained, and prediction equations fitted to consider other can dimensions and sampling interval. This model was coupled with an optimization routine in order to search for different retort temperature profiles to maximize a quality index. Both constant retort temperature (CRT) and variable retort temperature (VRT; discrete step-wise and exponential) were considered. In the CRT process, the optimal retort temperature was always between 134 °C and 137 °C, and high values of thiamine retention were achieved. A significant improvement in surface quality index was obtained for optimal VRT profiles compared to optimal CRT. The optimization procedure shown in this study produces results that justify its utilization in the industry.

  4. WATER COOLED RETORT COVER

    DOEpatents

    Ash, W.J.; Pozzi, J.F.

    1962-05-01

    A retort cover is designed for use in the production of magnesium metal by the condensation of vaporized metal on a collecting surface. The cover includes a condensing surface, insulating means adjacent to the condensing surface, ind a water-cooled means for the insulating means. The irrangement of insulation and the cooling means permits the magnesium to be condensed at a high temperature and in massive nonpyrophoric form. (AEC)

  5. Quality of ready to serve tilapia fish curry with PUFA in retortable pouches.

    PubMed

    Dhanapal, K; Reddy, G V S; Nayak, B B; Basu, S; Shashidhar, K; Venkateshwarlu, G; Chouksey, M K

    2010-09-01

    Studies on the physical, chemical, and microbiological qualities of fresh tilapia meat revealed its suitability for the preparation of ready to eat fish curry packed in retort pouches. Studies on the fatty acid profile of tilapia meat suggest fortification with polyunsaturated fatty acid (PUFA) to increase the nutritional value. Based on the commercial sterility, sensory evaluation, color, and texture profile analysis F(0) value of 6.94 and cook value of 107.24, with a total process time of 50.24 min at 116 °C was satisfactory for the development of tilapia fish curry in retort pouches. Thermally processed ready to eat south Indian type tilapia fish curry fortified with PUFA was developed and its keeping quality studied at ambient temperature. During storage, a slight increase in the fat content of fish meat was observed, with no significant change in the contents of moisture, protein, and ash. The thiobarbituric acid (TBA) values of fish curry significantly increased during storage. Fish curry fortified with 1% cod liver oil and fish curry without fortification (control) did not show any significant difference in the levels of eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA), during thermal processing and storage. Sensory analysis revealed that fortification of fish curry with cod liver oil had no impact on the quality. Tilapia fish curry processed at 116 °C and F(0) value of 7.0 (with or without fortification of cod liver oil) was fit for consumption, even after a period of 1-y storage in retort pouch. Tilapia is a lean variety of fish with white flesh and therefore an ideal choice as raw material for the development of ready to serve fish products such as fish curry in retort pouches for both domestic and international markets. Ready to eat thermal processed (116 °C and F(0) value of 7.0) south Indian type tilapia fish curry enriched with PUFA and packed in retort pouch was acceptable for consumption even after a storage period of 1 y at ambient temperature.

  6. Assessment of the long-term stability of retort pouch foods to support extended duration spaceflight.

    PubMed

    Catauro, Patricia M; Perchonok, Michele H

    2012-01-01

    To determine the suitability of retort processed foods to support long-duration spaceflight, a series of 36-mo accelerated shelf life studies were performed on 13 representative retort pouch products. Combined sensory evaluations, physical properties assessments, and nutritional analyses were employed to determine shelf life endpoints for these foods, which were either observed during the analysis or extrapolated via mathematical projection. Data obtained through analysis of these 13 products were later used to estimate the shelf life values of all retort-processed spaceflight foods. In general, the major determinants of shelf life appear to be the development of off-flavor and off-color in products over time. These changes were assumed to be the result of Maillard and oxidation reactions, which can be initiated or accelerated as a result of the retort process and product formulation. Meat products and other vegetable entrées are projected to maintain their quality the longest, between 2 and 8 y, without refrigeration. Fruit and dessert products (1.5 to 5 y), dairy products (2.5 to 3.25 y), and starches, vegetable, and soup products (1 to 4 y) follow. Aside from considerable losses in B and C vitamin content, nutritional value of most products was maintained throughout shelf life. Fortification of storage-labile vitamins was proposed as a countermeasure to ensure long-term nutritive value of these products. The use of nonthermal sterilization technologies was also recommended, as a means to improve initial quality of these products and extend their shelf life for use in long-duration missions. Data obtained also emphasize the importance of low temperature storage in maintaining product quality. Retort sterilized pouch products are garnering increased commercial acceptance, largely due to their improved convenience and quality over metal-canned products. Assessment of the long-term stability of these products with ambient storage can identify potential areas for improvement, and ultimately increase consumer satisfaction with these technologies. Journal of Food Science © 2011 Institute of Food Technologists® No claim to original US government works.

  7. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Apelt, B.

    For as long as the people around Rifle, Colo., can remember, the rock that burns has ignited dreams of a boom in that oil shale country. Now the prospect of tapping oil shale to help satisfy man's growing energy demands burns brighter than ever. At the test site of the $7.5 million Paraho project, down the road from Rifle, dark, rich, refinable shale oil is flowing from 2 silver, cylindrical shale kilns operated by Paraho Oil Shale Demonstration, Inc. Sohio and 16 other energy-oriented companies are financing the Paraho experiments in W. Colorado. What they prove could pave the waymore » for a full-scale commercial oil-shale plant in a desert area in Utah, some 75 miles to the northwest. Sohio's holdings in the area and the research that is taking place are described.« less

  8. Effect of high pressure-high temperature process on meat product quality

    NASA Astrophysics Data System (ADS)

    Duranton, Frédérique; Marée, Elvire; Simonin, Hélène; Chéret, Romuald; de Lamballerie, Marie

    2011-03-01

    High pressure/high temperature (HPHT) processing is an innovative way to sterilize food and has been proposed as an alternative to conventional retorting. By using elevated temperatures and adiabatic compression, it allows the inactivation of vegetative microorganisms and pathogen spores. Even though the microbial inactivation has been widely studied, the effect of such process on sensorial attributes of food products, especially meat products, remains rare. The aim of this study was to investigate the potential of using HPHT process (500 MPa/115 °C) instead of conventional retorting to stabilize Toulouse sausages while retaining high organoleptic quality. The measurements of texture, color, water-holding capacity and microbial stability were investigated. It was possible to manufacture stable products at 500 MPa/115 °C/30 min. However, in these conditions, no improvement of the quality was found compared with conventional retorting.

  9. Mercury reduction in Munhena, Mozambique: homemade solutions and the social context for change.

    PubMed

    Spiegel, Samuel J; Savornin, Olivier; Shoko, Dennis; Veiga, Marcello M

    2006-01-01

    The health and environmental impacts of artisanal gold mining are of growing concern in Munhena, Mozambique, where more than 12,000 people are involved in such activities. Gold is extracted using mercury amalgamation, posing a considerable threat to human and environmental health. A pilot project ascertained the feasibility of reducing mercury use and emissions by promoting control measures utilizing local resources. Retorts were fabricated with local materials. Training workshops introduced the homemade retorts, and a portable mercury monitor revealed effective mercury reduction. Barriers to widespread technology adoption include poverty, lack of knowledge and trust, and the free supply of mercury from private gold buyers. Homemade retorts are inexpensive and effective, and miners could benefit by building community amalgamation centers. The government could play a greater role in gold purchasing to reduce mercury pollution.

  10. Shale gas development impacts on surface water quality in Pennsylvania.

    PubMed

    Olmstead, Sheila M; Muehlenbachs, Lucija A; Shih, Jhih-Shyang; Chu, Ziyan; Krupnick, Alan J

    2013-03-26

    Concern has been raised in the scientific literature about the environmental implications of extracting natural gas from deep shale formations, and published studies suggest that shale gas development may affect local groundwater quality. The potential for surface water quality degradation has been discussed in prior work, although no empirical analysis of this issue has been published. The potential for large-scale surface water quality degradation has affected regulatory approaches to shale gas development in some US states, despite the dearth of evidence. This paper conducts a large-scale examination of the extent to which shale gas development activities affect surface water quality. Focusing on the Marcellus Shale in Pennsylvania, we estimate the effect of shale gas wells and the release of treated shale gas waste by permitted treatment facilities on observed downstream concentrations of chloride (Cl(-)) and total suspended solids (TSS), controlling for other factors. Results suggest that (i) the treatment of shale gas waste by treatment plants in a watershed raises downstream Cl(-) concentrations but not TSS concentrations, and (ii) the presence of shale gas wells in a watershed raises downstream TSS concentrations but not Cl(-) concentrations. These results can inform future voluntary measures taken by shale gas operators and policy approaches taken by regulators to protect surface water quality as the scale of this economically important activity increases.

  11. Retortable Laminate/Polymeric Food Tubes for Specialized Feeding

    DTIC Science & Technology

    2012-06-01

    on commercial off-the-shelf materials and not military unique. A market survey of commercially available laminated tubes revealed that they are all...on commercial off-the-shelf materials and not military unique. A market survey of commercially available laminated tubes revealed that they are...available materials and not be uniquely military. We surveyed the market for laminated retortable tubes and were not able to find any application

  12. Reduction of Aspergillus spp. and aflatoxins in peanut sauce processing by oil-less frying of chilli powder and retort processing.

    PubMed

    Farawahida, A H; Jinap, S; Nor-Khaizura, M A R; Samsudin, N I P

    2017-12-01

    Among the many roles played by small and medium enterprises (SMEs) in the food industry is the production of heritage foods such as peanut sauce. Unfortunately, the safety of peanut sauce is not always assured as the processing line is not controlled. Peanut sauce is usually made of peanuts and chilli, and these commodities are normally contaminated with Aspergillus spp. and aflatoxins (AFs). Hence, the objective of this study was to evaluate the practices related to reduction of AF hazard and the effect of interventions in peanut sauce processing. Peanut samples were collected from each step of peanut sauce processing from a small peanut sauce company according to four designs: (1) control; (2) oil-less frying of chilli powder; (3) addition of retort processing; and (4) combination of oil-less frying of chilli powder and retort processing. Oil-less frying of chilli powder (Design 2) reduced total AFs by 33-41%, retort processing (Design 3) reduced total AFs by 49%, while combination of these two thermal processes (Design 4) significantly reduced total AFs, by 57%. The present work demonstrated that Design 4 yielded the highest reduction of total AFs and is therefore recommended to be employed by SME companies.

  13. A feasibility study for high-temperature titanium reduction from TiCl4 using a magnesiothermic process

    NASA Astrophysics Data System (ADS)

    Ivanov, S. L.; Zablotsky, D.

    2018-05-01

    The current industrial practice for titanium extraction is a complex procedure, which produces a porous reaction mass of sintered titanium particulates fused to a steel retort wall with magnesium and MgCl2 trapped in the interstices. The reactor temperature is limited to approx. 900 °C due to the formation of fusible TiFe eutectic, which corrodes the retort and degrades the quality of titanium sponge. Here we examine the theoretical foundations and technological possibilities to design a shielded retort of niobium-zirconium alloy NbZr(1%), which is resistant to corrosion by titanium at high temperature. We consider the reactor at a temperature of approx. 1150 °C. Supplying stoichiometric quantities of reagents enables the reaction in the gas phase, whereas the exothermic process sustains the combustion of the reaction zone. When the pathway to the condenser is open, vacuum separation and evacuation of vaporized magnesium dichloride and excess magnesium into the water-cooled condenser take place. As both the reaction and the evacuation occur within seconds, the yield of the extraction is improved. We anticipate new possibilities for designing a device combining the retort function to conduct the reduction in the gas phase with fast vacuum separation of the reaction products and distillation of magnesium dichloride.

  14. Water Requirements and Sustainable Sources in the Barnett Shale, March 29, 2011

    EPA Pesticide Factsheets

    This paper will focus on the water requirements and sustainable sources in the Barnett Shale. Devon Energy Corporation is committed to the principles of water conservation and reuse where feasible in its operations.

  15. Kinetics of selenium release in mine waste from the Meade Peak Phosphatic Shale, Phosphoria Formation, Wooley Valley, Idaho, USA

    Treesearch

    Lisa L. Stillings; Michael C. Amacher

    2010-01-01

    Phosphorite from the Meade Peak Phosphatic Shale member of the Permian Phosphoria Formation has been mined in southeastern Idaho since 1906. Dumps of waste rock from mining operations contain high concentrations of Se which readily leach into nearby streams and wetlands. While the most common mineralogical residence of Se in the phosphatic shale is elemental Se, Se(0...

  16. Life Cycle Water Consumption for Shale Gas and Conventional Natural Gas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Clark, Corrie E.; Horner, Robert M.; Harto, Christopher B.

    2013-10-15

    Shale gas production represents a large potential source of natural gas for the nation. The scale and rapid growth in shale gas development underscore the need to better understand its environmental implications, including water consumption. This study estimates the water consumed over the life cycle of conventional and shale gas production, accounting for the different stages of production and for flowback water reuse (in the case of shale gas). This study finds that shale gas consumes more water over its life cycle (13–37 L/GJ) than conventional natural gas consumes (9.3–9.6 L/GJ). However, when used as a transportation fuel, shale gasmore » consumes significantly less water than other transportation fuels. When used for electricity generation, the combustion of shale gas adds incrementally to the overall water consumption compared to conventional natural gas. The impact of fuel production, however, is small relative to that of power plant operations. The type of power plant where the natural gas is utilized is far more important than the source of the natural gas.« less

  17. Life cycle water consumption for shale gas and conventional natural gas.

    PubMed

    Clark, Corrie E; Horner, Robert M; Harto, Christopher B

    2013-10-15

    Shale gas production represents a large potential source of natural gas for the nation. The scale and rapid growth in shale gas development underscore the need to better understand its environmental implications, including water consumption. This study estimates the water consumed over the life cycle of conventional and shale gas production, accounting for the different stages of production and for flowback water reuse (in the case of shale gas). This study finds that shale gas consumes more water over its life cycle (13-37 L/GJ) than conventional natural gas consumes (9.3-9.6 L/GJ). However, when used as a transportation fuel, shale gas consumes significantly less water than other transportation fuels. When used for electricity generation, the combustion of shale gas adds incrementally to the overall water consumption compared to conventional natural gas. The impact of fuel production, however, is small relative to that of power plant operations. The type of power plant where the natural gas is utilized is far more important than the source of the natural gas.

  18. Centralized Control and Decentralized Execution: A Catchphrase in Crisis?

    DTIC Science & Technology

    2009-03-01

    assignment of control of forces at any level other than that which is able to exploit fully their weapons is contrary to accepted military doctrine. The...between ground and air com- manders. “The CFACC is not supporting me!” complained some ground commanders, while Airmen retorted , “The CFACC cannot...of war had a strategic im- 3 pact. If the losses suffered early in the operation had continued much longer, or if the Taliban had been able to

  19. Getty Oil Company Diatomite project

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zuber, I.L.

    1984-09-01

    The feasibility of using Diatomite as a synthetic fuels feedstock is discussed. The asphaltic outcropping near McKittrick, California are evidence of oil bearing deposits. Two different processes have been taken to the pilot plant stage to evaluate the viability of recovering oil from the Diatomite ore. One approach was the retorting process which was developed by Lurgi. The other process is based on a totally different concept of solvent extracting the oil from the ore. The operation and performance of the pilot plants are described.

  20. Mechanical Properties of Gas Shale During Drilling Operations

    NASA Astrophysics Data System (ADS)

    Yan, Chuanliang; Deng, Jingen; Cheng, Yuanfang; Li, Menglai; Feng, Yongcun; Li, Xiaorong

    2017-07-01

    The mechanical properties of gas shale significantly affect the designs of drilling, completion, and hydraulic fracturing treatments. In this paper, the microstructure characteristics of gas shale from southern China containing up to 45.1% clay were analyzed using a scanning electron microscope. The gas shale samples feature strongly anisotropic characteristics and well-developed bedding planes. Their strength is controlled by the strength of both the matrix and the bedding planes. Conventional triaxial tests and direct shear tests are further used to study the chemical effects of drilling fluids on the strength of shale matrix and bedding planes, respectively. The results show that the drilling fluid has a much larger impact on the strength of the bedding plane than that of the shale matrix. The impact of water-based mud (WBM) is much larger compared with oil-based mud. Furthermore, the borehole collapse pressure of shale gas wells considering the effects of drilling fluids are analyzed. The results show that the collapse pressure increases gradually with the increase of drilling time, especially for WBM.

  1. Measurements and modeling to quantify emissions of methane and VOCs from shale gas operations: Final Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Presto, Albert A

    The objectives of the project were to determine the leakage rates of methane and ozone-forming Volatile Organic Compounds (VOCs) and the emission rates of air toxics from Marcellus shale gas activities. Methane emissions in the Marcellus Shale region were differentiated between “newer” sources associated with shale gas development and “older” sources associated with coal or conventional natural gas exploration. This project conducted measurements of methane and VOC emissions from both shale and non-shale natural gas resources. The initial scope of the project was the Marcellus Shale basin, and measurements were conducted in both the western wet gas regions (southwest PAmore » and WV) and eastern dry gas region (northeast PA) of the basin. During this project, we obtained additional funding from other agencies to expand the scope of measurements to include additional basins. The data from both the Marcellus and other basins were combined to construct a national analysis of methane emissions from oil & gas production activities.« less

  2. Development of measures to improve technologies of energy recovery from gaseous wastes of oil shale processing

    NASA Astrophysics Data System (ADS)

    Tugov, A. N.; Ots, A.; Siirde, A.; Sidorkin, V. T.; Ryabov, G. A.

    2016-06-01

    Prospects of the use of oil shale are associated with its thermal processing for the production of liquid fuel, shale oil. Gaseous by-products, such as low-calorie generator gas with a calorific value up to 4.3MJ/m3 or semicoke gas with a calorific value up to 56.57 MJ/m3, are generated depending on the oil shale processing method. The main methods of energy recovery from these gases are either their cofiring with oil shale in power boilers or firing only under gaseous conditions in reconstructed or specially designed for this fuel boilers. The possible use of gaseous products of oil shale processing in gas-turbine or gas-piston units is also considered. Experiments on the cofiring of oil shale gas and its gaseous processing products have been carried out on boilers BKZ-75-39FSl in Kohtla-Järve and on the boiler TP-101 of the Estonian power plant. The test results have shown that, in the case of cofiring, the concentration of sulfur oxides in exhaust gases does not exceed the level of existing values in the case of oil shale firing. The low-temperature corrosion rate does not change as compared to the firing of only oil shale, and, therefore, operation conditions of boiler back-end surfaces do not worsen. When implementing measures to reduce the generation of NO x , especially of flue gas recirculation, it has been possible to reduce the emissions of nitrogen oxides in the whole boiler. The operation experience of the reconstructed boilers BKZ-75-39FSl after their transfer to the firing of only gaseous products of oil shale processing is summarized. Concentrations of nitrogen and sulfur oxides in the combustion products of semicoke and generator gases are measured. Technical solutions that made it possible to minimize the damage to air heater pipes associated with the low-temperature sulfur corrosion are proposed and implemented. The technological measures for burners of new boilers that made it possible to burn gaseous products of oil shale processing with low emissions of nitrogen oxides are developed.

  3. Shale gas development impacts on surface water quality in Pennsylvania

    PubMed Central

    Olmstead, Sheila M.; Muehlenbachs, Lucija A.; Shih, Jhih-Shyang; Chu, Ziyan; Krupnick, Alan J.

    2013-01-01

    Concern has been raised in the scientific literature about the environmental implications of extracting natural gas from deep shale formations, and published studies suggest that shale gas development may affect local groundwater quality. The potential for surface water quality degradation has been discussed in prior work, although no empirical analysis of this issue has been published. The potential for large-scale surface water quality degradation has affected regulatory approaches to shale gas development in some US states, despite the dearth of evidence. This paper conducts a large-scale examination of the extent to which shale gas development activities affect surface water quality. Focusing on the Marcellus Shale in Pennsylvania, we estimate the effect of shale gas wells and the release of treated shale gas waste by permitted treatment facilities on observed downstream concentrations of chloride (Cl−) and total suspended solids (TSS), controlling for other factors. Results suggest that (i) the treatment of shale gas waste by treatment plants in a watershed raises downstream Cl− concentrations but not TSS concentrations, and (ii) the presence of shale gas wells in a watershed raises downstream TSS concentrations but not Cl− concentrations. These results can inform future voluntary measures taken by shale gas operators and policy approaches taken by regulators to protect surface water quality as the scale of this economically important activity increases. PMID:23479604

  4. Geological and petrological considerations relevant to the disposal of radioactive wastes by hydraulic fracturing: an example at the US Department of Energy's Oak Ridge National Laboratory. [Pumpkin Valley shales

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Haase, C.S.

    1982-01-01

    At Oak Ridge National Laboratory the Pumpkin Valley Shale is used as a host formation for hydraulic-fracturing waste disposal. Determination of the relationships between the distribution of different lithologies and porosity-permeability trends within this host formation allows these properties, important to hydraulic-fracturing operations, to be related to measurable and mappable geological and petrological parameters. It also permits extrapolation of such patterns to little-studied portions of the Pumpkin Valley Shale. Such knowledge better allows for the satisfactory operation and assessment of the hydraulic fracturing at Oak Ridge National Laboratory.

  5. Water Use by Texas Oil and Gas Industry: A Look towards the Future

    NASA Astrophysics Data System (ADS)

    Nicot, J.; Ritter, S. M.; Hebel, A. K.

    2009-12-01

    The Barnett Shale gas play, located in North Texas, has seen a relatively quick growth in the past decade with the development of new “frac” (aka, fracture stimulation) technologies needed to create pathways to produce gas from the very low permeability shales. This technology uses a large amount of fresh water (millions of gallons in a day or two on average) to develop a gas well. Now operators are taking aim at other shale gas plays in Texas including the Haynesville, Woodford, and Pearsall-Eagle Ford shales and at other tight formation such as the Bossier Sand. These promising gas plays are likely to be developed at an even steeper growth rate. There are currently over 12,000 wells producing gas from the Barnett Shale with many more likely to be drilled in the next couple of decades as the play expands out of its core area. Despite the recent gas price slump, thousands more wells may be drilled across the state to access the gas resource in the next few years. As an example, a typical vertical and horizontal well completion in the Barnett Shale consumes approximately 1.2 and 3.0 to 3.5 millions gallons of fresh water, respectively. This could raise some concerns among local communities and other surface water and groundwater stakeholders. We present a preliminary analysis of future water use by the Texas oil and gas industry and compare it to projections of total water use, including municipal use and irrigation. Maps showing large increase in total number of well completions in the Barnett Shale (black dots) from 1998 to 2008. Operators avoided the DFW metro area (center right on the map) until recently. Also shown are the structural limits of the Barnett Shale on its eastern boundaries.

  6. Halogenation of Hydraulic Fracturing Additives in the Shale Well Parameter Space

    NASA Astrophysics Data System (ADS)

    Sumner, A. J.; Plata, D.

    2017-12-01

    Horizontal Drilling and Hydraulic fracturing (HDHF) involves the deep-well injection of a `fracking fluid' composed of diverse and numerous chemical additives designed to facilitate the release and collection of natural gas from shale plays. The potential impacts of HDHF operations on water resources and ecosystems are numerous, and analyses of flowback samples revealed organic compounds from both geogenic and anthropogenic sources. Furthermore, halogenated chemicals were also detected, and these compounds are rarely disclosed, suggesting the in situ halogenation of reactive additives. To test this transformation hypothesis, we designed and operated a novel high pressure and temperature reactor system to simulate the shale well parameter space and investigate the chemical reactivity of twelve commonly disclosed and functionally diverse HDHF additives. Early results revealed an unanticipated halogenation pathway of α-β unsaturated aldehyde, Cinnamaldehyde, in the presence of oxidant and concentrated brine. Ongoing experiments over a range of parameters informed a proposed mechanism, demonstrating the role of various shale-well specific parameters in enabling the demonstrated halogenation pathway. Ultimately, these results will inform a host of potentially unintended interactions of HDHF additives during the extreme conditions down-bore of a shale well during HDHF activities.

  7. Shale Gas in Europe: pragmatic perspectives and actions

    NASA Astrophysics Data System (ADS)

    Hübner, A.; Horsfield, B.; Kapp, I.

    2012-10-01

    Natural gas will continue to play a key role in the EU's energy mix in the coming years, with unconventional gas' role increasing in importance as new resources are exploited worldwide. As far as Europe's own shale gas resources are concerned, it is especially the public's perception and level of acceptance that will make or break shale gas in the near-term. Both the pros and cons need to be discussed based on factual argument rather than speculation. Research organizations such as ours (GFZ German Research Centre for Geosciences) have an active and defining role to play in remedying this deficiency. As far as science and technology developments are concerned, the project "Gas Shales in Europe" (GASH) and the shale gas activities of "GeoEnergie" (GeoEn) are the first major initiatives in Europe focused on shale gas. Basic and applied geoscientific research is conducted to understand the fundamental nature and interdependencies of the processes leading to shale gas formation. When it comes to knowledge transfer, the perceived and real risks associated with shale gas exploitation need immediate evaluation in Europe using scientific analysis. To proactively target these issues, the GFZ and partners are launching the European sustainable Operating Practices (E-SOP) Initiative for Unconventional Resources. The web-based Shale Gas Information Platform (SHIP) brings these issues into the public domain.

  8. Constituent bioconcentration in rainbow trout exposed to a complex chemical mixture

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Linder, G.; Bergman, H.L.; Meyer, J.S.

    1984-09-01

    Classically, aquatic contaminant fate models predicting a chemical's bioconcentration factor (BCF) are based upon single-compound derived models, yet such BCF predictions may deviate from observed BCFs when physicochemical interactions or biological responses to complex chemical mixture exposures are not adequately considered in the predictive model. Rainbow trout were exposed to oil-shale retort waters. Such a study was designed to model the potential biological effects precluded by exposure to complex chemical mixtures such as solid waste leachates, agricultural runoff, and industrial process waste waters. Chromatographic analysis of aqueous and nonaqueous liquid-liquid reservoir components yielded differences in mixed extraction solvent HPLC profilesmore » of whole fish exposed for 1 and 3 weeks to the highest dilution of the complex chemical mixture when compared to their corresponding control, yet subsequent whole fish extractions at 6, 9, 12, and 15 weeks into exposure demonstrated no qualitative differences between control and exposed fish. Liver extractions and deproteinized bile samples from exposed fish were qualitatively different than their corresponding controls. These findings support the projected NOEC of 0.0045% dilution, even though the differences in bioconcentration profiles suggest hazard assessment strategies may be useful in evaluating environmental fate processes associated with complex chemical mixtures. 12 references, 4 figures, 2 tables.« less

  9. Plowshare Program - American Atomic Bomb Tests For Industrial Applications

    ScienceCinema

    None

    2018-01-16

    The United States Atomic Energy Commission (AEC) established the Plowshare Program as a research and development activity to explore the technical and economic feasibility of using nuclear explosives for industrial applications. The reasoning was that the relatively inexpensive energy available from nuclear explosions could prove useful for a wide variety of peaceful purposes. The Plowshare Program began in 1958 and continued through 1975. Between December 1961 and May 1973, the United States conducted 27 Plowshare nuclear explosive tests comprising 35 individual detonations. Conceptually, industrial applications resulting from the use of nuclear explosives could be divided into two broad categories: 1) large-scale excavation and quarrying, where the energy from the explosion was used to break up and/or move rock; and 2) underground engineering, where the energy released from deeply buried nuclear explosives increased the permeability and porosity of the rock by massive breaking and fracturing. Possible excavation applications included: canals, harbors, highway and railroad cuts through mountains, open pit mining, construction of dams, and other quarry and construction-related projects. Underground nuclear explosion applications included: stimulation of natural gas production, preparation of leachable ore bodies for in situ leaching, creation of underground zones of fractured oil shale for in situ retorting, and formation of underground natural gas and petroleum storage reservoirs.

  10. Plowshare Program - American Atomic Bomb Tests For Industrial Applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    2012-04-22

    The United States Atomic Energy Commission (AEC) established the Plowshare Program as a research and development activity to explore the technical and economic feasibility of using nuclear explosives for industrial applications. The reasoning was that the relatively inexpensive energy available from nuclear explosions could prove useful for a wide variety of peaceful purposes. The Plowshare Program began in 1958 and continued through 1975. Between December 1961 and May 1973, the United States conducted 27 Plowshare nuclear explosive tests comprising 35 individual detonations. Conceptually, industrial applications resulting from the use of nuclear explosives could be divided into two broad categories: 1)more » large-scale excavation and quarrying, where the energy from the explosion was used to break up and/or move rock; and 2) underground engineering, where the energy released from deeply buried nuclear explosives increased the permeability and porosity of the rock by massive breaking and fracturing. Possible excavation applications included: canals, harbors, highway and railroad cuts through mountains, open pit mining, construction of dams, and other quarry and construction-related projects. Underground nuclear explosion applications included: stimulation of natural gas production, preparation of leachable ore bodies for in situ leaching, creation of underground zones of fractured oil shale for in situ retorting, and formation of underground natural gas and petroleum storage reservoirs.« less

  11. Modeling of fault reactivation and induced seismicity during hydraulic fracturing of shale-gas reservoirs

    EPA Science Inventory

    We have conducted numerical simulation studies to assess the potential for injection-induced fault reactivation and notable seismic events associated with shale-gas hydraulic fracturing operations. The modeling is generally tuned toward conditions usually encountered in the Marce...

  12. Collected Works of Mao Tse-Tung (1917-1949), Volume 4

    DTIC Science & Technology

    1978-10-10

    Spanking of children had not been com- pletely stopped, but it was reduced. (There should be no spanking at all.) The children had become more...intelligent. In the past, when spanked or scolded by their parents, they seldom retorted, but now more of them re- torted. (If the parents did not... spank or scold them, the children would not be retorting.) About 1 percent of the women married 3 times in the 4-1/2 years after the uprising

  13. The Description of Shale Reservoir Pore Structure Based on Method of Moments Estimation

    PubMed Central

    Li, Wenjie; Wang, Changcheng; Shi, Zejin; Wei, Yi; Zhou, Huailai; Deng, Kun

    2016-01-01

    Shale has been considered as good gas reservoir due to its abundant interior nanoscale pores. Thus, the study of the pore structure of shale is of great significance for the evaluation and development of shale oil and gas. To date, the most widely used approaches for studying the shale pore structure include image analysis, radiation and fluid invasion methods. The detailed pore structures can be studied intuitively by image analysis and radiation methods, but the results obtained are quite sensitive to sample preparation, equipment performance and experimental operation. In contrast, the fluid invasion method can be used to obtain information on pore size distribution and pore structure, but the relative simple parameters derived cannot be used to evaluate the pore structure of shale comprehensively and quantitatively. To characterize the nanoscale pore structure of shale reservoir more effectively and expand the current research techniques, we proposed a new method based on gas adsorption experimental data and the method of moments to describe the pore structure parameters of shale reservoir. Combined with the geological mixture empirical distribution and the method of moments estimation principle, the new method calculates the characteristic parameters of shale, including the mean pore size (x¯), standard deviation (σ), skewness (Sk) and variation coefficient (c). These values are found by reconstructing the grouping intervals of observation values and optimizing algorithms for eigenvalues. This approach assures a more effective description of the characteristics of nanoscale pore structures. Finally, the new method has been applied to analyze the Yanchang shale in the Ordos Basin (China) and Longmaxi shale from the Sichuan Basin (China). The results obtained well reveal the pore characteristics of shale, indicating the feasibility of this new method in the study of the pore structure of shale reservoir. PMID:26992168

  14. The Description of Shale Reservoir Pore Structure Based on Method of Moments Estimation.

    PubMed

    Li, Wenjie; Wang, Changcheng; Shi, Zejin; Wei, Yi; Zhou, Huailai; Deng, Kun

    2016-01-01

    Shale has been considered as good gas reservoir due to its abundant interior nanoscale pores. Thus, the study of the pore structure of shale is of great significance for the evaluation and development of shale oil and gas. To date, the most widely used approaches for studying the shale pore structure include image analysis, radiation and fluid invasion methods. The detailed pore structures can be studied intuitively by image analysis and radiation methods, but the results obtained are quite sensitive to sample preparation, equipment performance and experimental operation. In contrast, the fluid invasion method can be used to obtain information on pore size distribution and pore structure, but the relative simple parameters derived cannot be used to evaluate the pore structure of shale comprehensively and quantitatively. To characterize the nanoscale pore structure of shale reservoir more effectively and expand the current research techniques, we proposed a new method based on gas adsorption experimental data and the method of moments to describe the pore structure parameters of shale reservoir. Combined with the geological mixture empirical distribution and the method of moments estimation principle, the new method calculates the characteristic parameters of shale, including the mean pore size (mean), standard deviation (σ), skewness (Sk) and variation coefficient (c). These values are found by reconstructing the grouping intervals of observation values and optimizing algorithms for eigenvalues. This approach assures a more effective description of the characteristics of nanoscale pore structures. Finally, the new method has been applied to analyze the Yanchang shale in the Ordos Basin (China) and Longmaxi shale from the Sichuan Basin (China). The results obtained well reveal the pore characteristics of shale, indicating the feasibility of this new method in the study of the pore structure of shale reservoir.

  15. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Skrinak, V.M.

    The Eastern Devonian Gas Shales Technology Review is a technology transfer vehicle designed to keep industry and research organizations aware of major happenings in the shales. Four issues were published, and the majority of the readership was found to be operators. Under the other major task in this project, areal and analytic analyses of the basin resulted in reducing the study area by 30% while defining a rectangular coordinate system for the basin. Shale-well cost and economic models were developed and validated, and a simplified flow model was prepared.

  16. USAF shale oil program status

    NASA Technical Reports Server (NTRS)

    Delaney, C. L.

    1984-01-01

    The test and evaluation program on shale derived fuel being conducted by the Air Force is intended to accomplish the minimum amount of testing necessary to assure both the safe use of shale oil derived turbine fuels in operational USAF aircraft and its compatibility with USAF handling systems. This program, which was designed to take advantage of existing R&D testing programs, began in 1981. However, due to a problem in acquiring the necessary fuel, the testing program was suspended until July 1983 when an additional sample of shale derived fuel was received. Tentatively, the Air Force is planning to make three relatively minor revisions to the procurement specifications requirements for the production shale derived fuel. These are: (1) Aromatic Contest (min) - 9% (by volume); (2) Nitrogen (max - 20 ppm by weight); and (3) Antioxidants - 9.1 g/100 gal (U.S.)

  17. Evaluation of the rhenium-osmium geochronometer in the Phosphoria petroleum system, Bighorn Basin of Wyoming and Montana, USA

    USGS Publications Warehouse

    Lillis, Paul G.; Selby, David

    2013-01-01

    Rhenium-osmium (Re-Os) geochronometry is applied to crude oils derived from the Permian Phosphoria Formation of the Bighorn Basin in Wyoming and Montana to determine whether the radiogenic age reflects the timing of petroleum generation, timing of migration, age of the source rock, or the timing of thermochemical sulfate reduction (TSR). The oils selected for this study are interpreted to be derived from the Meade Peak Phosphatic Shale and Retort Phosphatic Shale Members of the Phosphoria Formation based on oil-oil and oil-source rock correlations utilizing bulk properties, elemental composition, δ13C and δ34S values, and biomarker distributions. The δ34S values of the oils range from -6.2‰ to +5.7‰, with oils heavier than -2‰ interpreted to be indicative of TSR. The Re and Os isotope data of the Phosphoria oils plot in two general trends: (1) the main trend (n = 15 oils) yielding a Triassic age (239 ± 43 Ma) with an initial 187Os/188Os value of 0.85 ± 0.42 and a mean square weighted deviation (MSWD) of 1596, and (2) the Torchlight trend (n = 4 oils) yielding a Miocene age (9.24 ± 0.39 Ma) with an initial 187Os/188Os value of 1.88 ± 0.01 and a MSWD of 0.05. The scatter (high MSWD) in the main-trend regression is due, in part, to TSR in reservoirs along the eastern margin of the basin. Excluding oils that have experienced TSR, the regression is significantly improved, yielding an age of 211 ± 21 Ma with a MSWD of 148. This revised age is consistent with some studies that have proposed Late Triassic as the beginning of Phosphoria oil generation and migration, and does not seem to reflect the source rock age (Permian) or the timing of re-migration (Late Cretaceous to Eocene) associated with the Laramide orogeny. The low precision of the revised regression (±21 Ma) is not unexpected for this oil family given the long duration of generation from a large geographic area of mature Phosphoria source rock, and the possible range in the initial 187Os/188Os values of the Meade Peak and Retort source units. Effects of re-migration may have contributed to the scatter, but thermal cracking and biodegradation likely have had minimal or no effect on the main-trend regression. The four Phosphoria-sourced oils from Torchlight and Lamb fields yield a precise Miocene age Re-Os isochron that may reflect the end of TSR in the reservoir due to cooling below a threshold temperature in the last 10 m.y. from uplift and erosion of overlying rocks. The mechanism for the formation of a Re-Os isotopic relationship in a family of crude oils may involve multiple steps in the petroleum generation process. Bitumen generation from the source rock kerogen may provide a reset of the isotopic chronometer, and incremental expulsion of oil over the duration of the oil window may provide some of the variation seen in 187Re/188Os values from an oil family.

  18. Modeling emissions and environmental impacts of transportation activities associated with high volume horizontal hydraulic fracturing operations in the Marcellus Shale Formation : final report.

    DOT National Transportation Integrated Search

    2015-09-18

    The researchers' initial University Transportation Research Center (UTRC) research project identified routes and road segments with predicted high volumes of truck traffic related to natural gas extraction in the Marcellus Shale region. Results also ...

  19. Shale Gas Exploration and Exploitation Induced Risks - SHEER

    NASA Astrophysics Data System (ADS)

    Capuano, Paolo; Orlecka-Sikora, Beata; Lasocki, Stanislaw; Cesca, Simone; Gunning, Andrew; jaroslawsky, Janusz; Garcia-Aristizabal, Alexander; Westwood, Rachel; Gasparini, Paolo

    2017-04-01

    Shale gas operations may affect the quality of air, water and landscapes; furthermore, it can induce seismic activity, with the possible impacts on the surrounding infrastructure. The SHEER project aims at setting up a probabilistic methodology to assess and mitigate the short and the long term environmental risks connected to the exploration and exploitation of shale gas. In particular we are investigating risks associated with groundwater contamination, air pollution and induced seismicity. A shale gas test site located in Poland (Wysin) has been monitored before, during and after the fracking operations with the aim of assessing environmental risks connected with groundwater contamination, air pollution and earthquakes induced by fracking and injection of waste water. The severity of each of these hazards depends strongly on the unexpected enhanced permeability pattern, which may develop as an unwanted by-product of the fracking processes and may become pathway for gas and fluid migration towards underground water reservoirs or the surface. The project is devoted to monitor and understand how far this enhanced permeability pattern develops both in space and time. The considered hazards may be at least partially inter-related as they all depend on this enhanced permeability pattern. Therefore they are being approached from a multi-hazard, multi parameter perspective. We expect to develop methodologies and procedures to track and model fracture evolution around shale gas exploitation sites and a robust statistically based, multi-parameter methodology to assess environmental impacts and risks across the operational lifecycle of shale gas. The developed methodologies are going to be applied and tested on a comprehensive database consisting of seismicity, changes of the quality of ground-waters and air, ground deformations, and operational data collected from the ongoing monitoring episode (Wysin) and past episodes: Lubocino (Poland), Preese Hall (UK), Oklahoma (USA), Groningen Field (Netherlands), Gross Schönebeck (Germany), The Geysers (USA), Cooper Basin(Australia). Best practices to be applied in Europe to monitor and minimize any environmental impacts will be worked out with the involvement of governmental decisional bodies, private industries and experts This work was supported under SHEER: "Shale Gas Exploration and Exploitation Induced Risks" project n.640896, funded from Horizon 2020 - R&I Framework Programme, call H2020-LCE-2014-1

  20. Potential restrictions for CO2 sequestration sites due to shale and tight gas production.

    PubMed

    Elliot, T R; Celia, M A

    2012-04-03

    Carbon capture and geological sequestration is the only available technology that both allows continued use of fossil fuels in the power sector and reduces significantly the associated CO(2) emissions. Geological sequestration requires a deep permeable geological formation into which captured CO(2)can be injected, and an overlying impermeable formation, called a caprock, that keeps the buoyant CO(2) within the injection formation. Shale formations typically have very low permeability and are considered to be good caprock formations. Production of natural gas from shale and other tight formations involves fracturing the shale with the explicit objective to greatly increase the permeability of the shale. As such, shale gas production is in direct conflict with the use of shale formations as a caprock barrier to CO(2) migration. We have examined the locations in the United States where deep saline aquifers, suitable for CO(2) sequestration, exist, as well as the locations of gas production from shale and other tight formations. While estimated sequestration capacity for CO(2) sequestration in deep saline aquifers is large, up to 80% of that capacity has areal overlap with potential shale-gas production regions and, therefore, could be adversely affected by shale and tight gas production. Analysis of stationary sources of CO(2) shows a similar effect: about two-thirds of the total emissions from these sources are located within 20 miles of a deep saline aquifer, but shale and tight gas production could affect up to 85% of these sources. These analyses indicate that colocation of deep saline aquifers with shale and tight gas production could significantly affect the sequestration capacity for CCS operations. This suggests that a more comprehensive management strategy for subsurface resource utilization should be developed.

  1. Fault reactivation and earthquakes with magnitudes of up to Mw4.7 induced by shale-gas hydraulic fracturing in Sichuan Basin, China.

    PubMed

    Lei, Xinglin; Huang, Dongjian; Su, Jinrong; Jiang, Guomao; Wang, Xiaolong; Wang, Hui; Guo, Xin; Fu, Hong

    2017-08-11

    This paper presents a timely and detailed study of significant injection-induced seismicity recently observed in the Sichuan Basin, China, where shale-gas hydraulic fracturing has been initiated and the aggressive production of shale gas is planned for the coming years. Multiple lines of evidence, including an epidemic-type aftershock sequence model, relocated hypocenters, the mechanisms of 13 large events (M W  > 3.5), and numerically calculated Coulomb failure stress results, convincingly suggest that a series of earthquakes with moment magnitudes up to M W 4.7 has been induced by "short-term" (several months at a single well pad) injections for hydraulic fracturing at depths of 2.3 to 3 km. This, in turn, supports the hypothesis that they represent examples of injection-induced fault reactivation. The geologic reasons why earthquake magnitudes associated with hydraulic fracturing operations are so high in this area are discussed. Because hydraulic fracturing operations are on the rise in the Sichuan Basin, it would be beneficial for the geoscience, gas operator, regulator, and academic communities to work collectively to elucidate the local factors governing the high level of injection-induced seismicity, with the ultimate goal of ensuring that shale gas fracking can be carried out effectively and safely.

  2. Evaluation of impact of shale gas operations in the Barnett Shale region on volatile organic compounds in air and potential human health risks.

    PubMed

    Bunch, A G; Perry, C S; Abraham, L; Wikoff, D S; Tachovsky, J A; Hixon, J G; Urban, J D; Harris, M A; Haws, L C

    2014-01-15

    Shale gas exploration and production (E&P) has experienced substantial growth across the U.S. over the last decade. The Barnett Shale, in north-central Texas, contains one of the largest, most active onshore gas fields in North America, stretching across 5000 square miles and having an estimated 15,870 producing wells as of 2011. Given that these operations may occur in relatively close proximity to populated/urban areas, concerns have been expressed about potential impacts on human health. In response to these concerns, the Texas Commission on Environmental Quality established an extensive air monitoring network in the region. This network provides a unique data set for evaluating the potential impact of shale gas E&P activities on human health. As such, the objective of this study was to evaluate community-wide exposures to volatile organic compounds (VOCs) in the Barnett Shale region. In this current study, more than 4.6 million data points (representing data from seven monitors at six locations, up to 105 VOCs/monitor, and periods of record dating back to 2000) were evaluated. Measured air concentrations were compared to federal and state health-based air comparison values (HBACVs) to assess potential acute and chronic health effects. None of the measured VOC concentrations exceeded applicable acute HBACVs. Only one chemical (1,2-dibromoethane) exceeded its applicable chronic HBACV, but it is not known to be associated with shale gas production activities. Annual average concentrations were also evaluated in deterministic and probabilistic risk assessments and all risks/hazards were below levels of concern. The analyses demonstrate that, for the extensive number of VOCs measured, shale gas production activities have not resulted in community-wide exposures to those VOCs at levels that would pose a health concern. With the high density of active wells in this region, these findings may be useful for understanding potential health risks in other shale play regions. © 2013. Published by Elsevier B.V. All rights reserved.

  3. GROUNDWATER QUALITY MONITORING OF WESTERN OIL SHALE DEVELOPMENT: IDENTIFICATION AND PRIORITY RANKING OF POTENTIAL POLLUTION SOURCES

    EPA Science Inventory

    This report presents the development of a preliminary priority ranking of potential pollution sources with respect to groundwater quality and the associated pollutants for oil shale operations such as proposed for Federal Prototype Leases U-a and U-b in Eastern Utah. The methodol...

  4. 76 FR 44600 - Renewal of Approved Information Collection, OMB Control Number 1004-0201

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-07-26

    ..., production, resource recovery and protection, operations under oil shale leases, and exploration under leases... requirements in 43 CFR parts 3900, 3910, 3920, and 3930, which pertain to management of oil shale. DATES... the agency's burden estimates; (3) ways to enhance the quality, utility, and clarity of the...

  5. Improved mechanical properties of retorted carrots by ultrasonic pre-treatments.

    PubMed

    Day, Li; Xu, Mi; Øiseth, Sofia K; Mawson, Raymond

    2012-05-01

    The use of ultrasound pre-processing treatment, compared to blanching, to enhance mechanical properties of non-starchy cell wall materials was investigated using carrot as an example. The mechanical properties of carrot tissues were measured by compression and tensile testing after the pre-processing treatment prior to and after retorting. Carrot samples ultrasound treated for 10 min at 60 °C provided a higher mechanical strength (P<0.05) to the cell wall structure than blanching for the same time period. With the addition of 0.5% CaCl(2) in the pre-treatment solution, both blanching and ultrasound treatment showed synergistic effect on enhancing the mechanical properties of retorted carrot pieces. At a relatively short treatment time (10 min at 60 °C) with the use of 0.5% CaCl(2), ultrasound treatment achieved similar enhancement to the mechanical strength of retorted carrots to blanching for a much longer time period (i.e. 40 min). The mechanism involved appears to be related to the stress responses present in all living plant matter. However, there is a need to clarify the relative importance of the potential stress mechanisms in order to get a better understanding of the processing conditions likely to be most effective. The amount of ultrasound treatment required is likely to involve low treatment intensities and there are indications from the structural characterisation and mechanical property analyses that the plant cell wall tissues were more elastic than that accomplished using low temperature long time blanching. Crown Copyright © 2011. Published by Elsevier B.V. All rights reserved.

  6. High-pressure thermal sterilization: food safety and food quality of baby food puree.

    PubMed

    Sevenich, Robert; Kleinstueck, Elke; Crews, Colin; Anderson, Warwick; Pye, Celine; Riddellova, Katerina; Hradecky, Jaromir; Moravcova, Eliska; Reineke, Kai; Knorr, Dietrich

    2014-02-01

    The benefits that high-pressure thermal sterilization offers as an emerging technology could be used to produce a better overall food quality. Due to shorter dwell times and lower thermal load applied to the product in comparison to the thermal retorting, lower numbers and quantities of unwanted food processing contaminants (FPCs), for example, furan, acrylamide, HMF, and MCPD-esters could be formed. Two spore strains were used to test the technique; Geobacillus stearothermophilus and Bacillus amyloliquefaciens, over the temperature range 90 to 121 °C at 600 MPa. The treatments were carried out in baby food puree and ACES-buffer. The treatments at 90 and 105 °C showed that G. stearothermophilus is more pressure-sensitive than B. amyloliquefaciens. The formation of FPCs was monitored during the sterilization process and compared to the amounts found in retorted samples of the same food. The amounts of furan could be reduced between 81% to 96% in comparison to retorting for the tested temperature pressure combination even at sterilization conditions of F₀-value in 7 min. © 2014 Institute of Food Technologists®

  7. Effect of γ-irradiation on commercial polypropylene based mono and multi-layered retortable food packaging materials

    NASA Astrophysics Data System (ADS)

    George, Johnsy; Kumar, R.; Sajeevkumar, V. A.; Sabapathy, S. N.; Vaijapurkar, S. G.; Kumar, D.; Kchawahha, A.; Bawa, A. S.

    2007-07-01

    Irradiation processing of food in the prepackaged form may affect chemical and physical properties of the plastic packaging materials. The effect of γ-irradiation doses (2.5-10.0 kGy) on polypropylene (PP)-based retortable food packaging materials, were investigated using Fourier transform infrared (FTIR) spectroscopic analysis, which revealed the changes happening to these materials after irradiation. The mechanical properties decreased with irradiation while oxygen transmission rate (OTR) was not affected significantly. Colour measurement indicated that Nylon 6 containing multilayer films became yellowish after irradiation. Thermal characterization revealed the changes in percentage crystallinity.

  8. Water Availability for Shale Gas Development in Sichuan Basin, China.

    PubMed

    Yu, Mengjun; Weinthal, Erika; Patiño-Echeverri, Dalia; Deshusses, Marc A; Zou, Caineng; Ni, Yunyan; Vengosh, Avner

    2016-03-15

    Unconventional shale gas development holds promise for reducing the predominant consumption of coal and increasing the utilization of natural gas in China. While China possesses some of the most abundant technically recoverable shale gas resources in the world, water availability could still be a limiting factor for hydraulic fracturing operations, in addition to geological, infrastructural, and technological barriers. Here, we project the baseline water availability for the next 15 years in Sichuan Basin, one of the most promising shale gas basins in China. Our projection shows that continued water demand for the domestic sector in Sichuan Basin could result in high to extremely high water stress in certain areas. By simulating shale gas development and using information from current water use for hydraulic fracturing in Sichuan Basin (20,000-30,000 m(3) per well), we project that during the next decade water use for shale gas development could reach 20-30 million m(3)/year, when shale gas well development is projected to be most active. While this volume is negligible relative to the projected overall domestic water use of ∼36 billion m(3)/year, we posit that intensification of hydraulic fracturing and water use might compete with other water utilization in local water-stress areas in Sichuan Basin.

  9. Hydraulic fracturing offers view of microbial life in the deep terrestrial subsurface.

    PubMed

    Mouser, Paula J; Borton, Mikayla; Darrah, Thomas H; Hartsock, Angela; Wrighton, Kelly C

    2016-11-01

    Horizontal drilling and hydraulic fracturing are increasingly used for recovering energy resources in black shales across the globe. Although newly drilled wells are providing access to rocks and fluids from kilometer depths to study the deep biosphere, we have much to learn about microbial ecology of shales before and after 'fracking'. Recent studies provide a framework for considering how engineering activities alter this rock-hosted ecosystem. We first provide data on the geochemical environment and microbial habitability in pristine shales. Next, we summarize data showing the same pattern across fractured shales: diverse assemblages of microbes are introduced into the subsurface, eventually converging to a low diversity, halotolerant, bacterial and archaeal community. Data we synthesized show that the shale microbial community predictably shifts in response to temporal changes in geochemistry, favoring conservation of key microorganisms regardless of inputs, shale location or operators. We identified factors that constrain diversity in the shale and inhibit biodegradation at the surface, including salinity, biocides, substrates and redox. Continued research in this engineered ecosystem is required to assess additive biodegradability, quantify infrastructure biocorrosion, treat wastewaters that return to the surface and potentially enhance energy production through in situ methanogenesis. © FEMS 2016. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  10. The influence of pressure on petroleum generation and maturation as suggested by aqueous pyrolysis

    USGS Publications Warehouse

    Price, L.C.; Wenger, L.M.

    1992-01-01

    Because fluid pressures are transient in sedimentary basins over geologic time, the effect of increasing fluid pressure on organic-matter metamorphism is difficult to determine, and conflicting opinions exist concerning its influence. Properly-performed aqueous-pyrolysis experiments can closely simulate hydrocarbon generation and maturation in nature, and thus offer an excellent way to study the influence of pressure. Such experiments, carried out on the Retort Phosphatic Shale Member of the Lower Permian Phosphoria Formation (type II-S organic matter) at different constant temperatures, demonstrated that increasing pressure significantly retards all aspects of organic matter metamorphism, including hydrocarbon generation, maturation and thermal destruction. This conclusion results from detailed quantitative and qualitative analyses of all products from hydrocarbon generation, from the C1 to C4 hydrocarbon gases to the asphaltenes, and also from analyses of the reacted rocks. We have documented that our aqueous-pyrolysis experiments closely simulated natural hydrocarbon generation and maturation. Thus the data taken as a function of pressure have relevance to the influence of normal and abnormal fluid pressures as related to: 1) depths and temperatures of mainstage hydrocarbon generation; 2) the thermal destruction of deposits of gas or light oil, or their preservation to unexpectedly high maturation ranks; and 3) the persistence of measurable to moderate concentrations of C15+ hydrocarbons in fine-grained rocks even to ultra-high maturation ranks. ?? 1992.

  11. The enrichment behavior of natural radionuclides in pulverized oil shale-fired power plants.

    PubMed

    Vaasma, Taavi; Kiisk, Madis; Meriste, Tõnis; Tkaczyk, Alan Henry

    2014-12-01

    The oil shale industry is the largest producer of NORM (Naturally Occurring Radioactive Material) waste in Estonia. Approximately 11-12 million tons of oil shale containing various amounts of natural radionuclides is burned annually in the Narva oil shale-fired power plants, which accounts for approximately 90% of Estonian electricity production. The radionuclide behavior characteristics change during the fuel combustion process, which redistributes the radionuclides between different ash fractions. Out of 24 operational boilers in the power plants, four use circulating fluidized bed (CFB) technology and twenty use pulverized fuel (PF) technology. Over the past decade, the PF boilers have been renovated, with the main objective to increase the efficiency of the filter systems. Between 2009 and 2012, electrostatic precipitators (ESP) in four PF energy blocks were replaced with novel integrated desulphurization technology (NID) for the efficient removal of fly ash and SO2 from flue gases. Using gamma spectrometry, activity concentrations and enrichment factors for the (238)U ((238)U, (226)Ra, (210)Pb) and (232)Th ((232)Th, (228)Ra) family radionuclides as well as (40)K were measured and analyzed in different PF boiler ash fractions. The radionuclide activity concentrations in the ash samples increased from the furnace toward the back end of the flue gas duct. The highest values in different PF boiler ash fractions were in the last field of the ESP and in the NID ash, where radionuclide enrichment factors were up to 4.2 and 3.3, respectively. The acquired and analyzed data on radionuclide activity concentrations in different PF boiler ashes (operating with an ESP and a NID system) compared to CFB boiler ashes provides an indication that changes in the fuel (oil shale) composition and boiler working parameters, as well as technological enhancements in Estonian oil shale fired power plants, have had a combined effect on the distribution patterns of natural radionuclides in the oil shale combustion products. Copyright © 2014 Elsevier Ltd. All rights reserved.

  12. A Thermoplasticity Model for Oil Shale

    DOE PAGES

    White, Joshua A.; Burnham, Alan K.; Camp, David W.

    2016-03-31

    Several regions of the world have abundant oil shale resources, but accessing this energy supply poses a number of challenges. One particular difficulty is the thermomechanical behavior of the material. When heated to sufficient temperatures, thermal conversion of kerogen to oil, gas, and other products takes place. This alteration of microstructure leads to a complex geomechanical response. In this work, we develop a thermoplasticity model for oil shale. The model is based on critical state plasticity, a framework often used for modeling clays and soft rocks. The model described here allows for both hardening due to mechanical deformation and softeningmore » due to thermal processes. In particular, the preconsolidation pressure—defining the onset of plastic volumetric compaction—is controlled by a state variable representing the kerogen content of the material. As kerogen is converted to other phases, the material weakens and plastic compaction begins. We calibrate and compare the proposed model to a suite of high-temperature uniaxial and triaxial experiments on core samples from a pilot in situ processing operation in the Green River Formation. In conclusion, we also describe avenues for future work to improve understanding and prediction of the geomechanical behavior of oil shale operations.« less

  13. Bacteria and Bioactivity in Holder Pasteurized and Shelf-Stable Human Milk Products

    PubMed Central

    2017-01-01

    Abstract Background: Historically, Holder pasteurization has been used to pasteurize donor human milk available in a hospital setting. There is extensive research that provides an overview of the impact of Holder pasteurization on bioactive components of human milk. A shelf-stable (SS) human milk product, created using retort processing, recently became available; however, to our knowledge, little has been published about the effect of retort processing on human milk. Objective: We aimed to assess the ability of retort processing to eliminate bacteria and to quantify the difference in lysozyme and secretory immunoglobulin A (sIgA) activity between Holder pasteurized (HP) and SS human milk. Methods: Milk samples from 60 mothers were pooled. From this pool, 36 samples were taken: 12 samples were kept raw, 12 samples were HP, and 12 samples were retort processed to create an SS product. All samples were analyzed for total aerobic bacteria, coliform bacteria, Bacillus cereus, sIgA activity, and lysozyme activity. Raw samples served as the control. Results: One raw sample and 3 HP samples contained B. cereus at the time of culture. There were no detectable bacteria in SS samples at the time of culture. Raw samples had significantly greater lysozyme and sIgA activity than HP and SS samples (P < 0.0001). HP samples retained significantly more lysozyme and sIgA activity (54% and 87%, respectively) than SS samples (0% and 11%, respectively). Conclusions: Human milk processed using Holder pasteurization should continue to be screened for the presence of B. cereus. Clinicians should be aware of the differences in the retention of lysozyme and sIgA activity in HP and SS products when making feeding decisions for medically fragile or immunocompromised infants to ensure that patients are receiving the maximum immune protection. PMID:29955718

  14. Time-dependent deformation of gas shales - role of rock framework versus reservoir fluids

    NASA Astrophysics Data System (ADS)

    Hol, Sander; Zoback, Mark

    2013-04-01

    Hydraulic fracturing operations are generally performed to achieve a fast, drastic increase of permeability and production rates. Although modeling of the underlying short-term mechanical response has proven successful via conventional geomechanical approaches, predicting long-term behavior is still challenging as the formation interacts physically and chemically with the fluids present in-situ. Recent experimental work has shown that shale samples subjected to a change in effective stress deform in a time-dependent manner ("creep"). Although the magnitude and nature of this behavior is strongly related to the composition and texture of the sample, also the choice of fluid used in the experiments affects the total strain response - strongly adsorbing fluids result in more, recoverable creep. The processes underlying time-dependent deformation of shales under in-situ stresses, and the long-term impact on reservoir performance, are at present poorly understood. In this contribution, we report triaxial mechanical tests, and theoretical/thermodynamic modeling work with the aim to identify and describe the main mechanisms that control time-dependent deformation of gas shales. In particular, we focus on the role of the shale solid framework versus the type and pressure of the present pore fluid. Our experiments were mainly performed on Eagle Ford Shale samples. The samples were subjected to cycles of loading and unloading, first in the dry state, and then again after equilibrating them with (adsorbing) CO2 and (non-adsorbing) He at fluid pressures of 4 MPa. Stresses were chosen close to those persisting under in-situ conditions. The results of our tests demonstrate that likely two main types of deformation mechanisms operate that relate to a) the presence of microfractures as a dominating feature in the solid framework of the shale, and b) the adsorbing potential of fluids present in the nanoscale voids of the shale. To explain the role of adsorption in the observed compaction creep, we postulate a serial coupling between 1) stress-driven desorption of the fluid species, 2) diffusion of the desorbed species out of the solid, and 3) consequent shrinkage. We propose a model in which the total shrinkage of the solid (Step 3) that is measured as bulk compaction, is driven by a change in stress state (Step 1), and evolves in time controlled by the diffusion characteristics of the system (Step 2). Our experimental and modeling study shows that both the nature of the solid framework of the shale, as well as the type and pressure of pore fluids affect the long-term in-situ mechanical behavior of gas shale reservoirs.

  15. Environmental public health dimensions of shale and tight gas development.

    PubMed

    Shonkoff, Seth B C; Hays, Jake; Finkel, Madelon L

    2014-08-01

    The United States has experienced a boom in natural gas production due to recent technological innovations that have enabled this resource to be produced from shale formations. We reviewed the body of evidence related to exposure pathways in order to evaluate the potential environmental public health impacts of shale gas development. We highlight what is currently known and identify data gaps and research limitations by addressing matters of toxicity, exposure pathways, air quality, and water quality. There is evidence of potential environmental public health risks associated with shale gas development. Several studies suggest that shale gas development contributes to ambient air concentrations of pollutants known to be associated with increased risk of morbidity and mortality. Similarly, an increasing body of studies suggest that water contamination risks exist through a variety of environmental pathways, most notably during wastewater transport and disposal, and via poor zonal isolation of gases and fluids due to structural integrity impairment of cement in gas wells. Despite a growing body of evidence, data gaps persist. Most important, there is a need for more epidemiological studies to assess associations between risk factors, such as air and water pollution, and health outcomes among populations living in close proximity to shale gas operations.

  16. Application of Fractal Geometry in Evaluation of Effective Stimulated Reservoir Volume in Shale Gas Reservoirs

    NASA Astrophysics Data System (ADS)

    Sheng, Guanglong; Su, Yuliang; Wang, Wendong; Javadpour, Farzam; Tang, Meirong

    According to hydraulic-fracturing practices conducted in shale reservoirs, effective stimulated reservoir volume (ESRV) significantly affects the production of hydraulic fractured well. Therefore, estimating ESRV is an important prerequisite for confirming the success of hydraulic fracturing and predicting the production of hydraulic fracturing wells in shale reservoirs. However, ESRV calculation remains a longstanding challenge in hydraulic-fracturing operation. In considering fractal characteristics of the fracture network in stimulated reservoir volume (SRV), this paper introduces a fractal random-fracture-network algorithm for converting the microseismic data into fractal geometry. Five key parameters, including bifurcation direction, generating length (d), deviation angle (α), iteration times (N) and generating rules, are proposed to quantitatively characterize fracture geometry. Furthermore, we introduce an orthogonal-fractures coupled dual-porosity-media representation elementary volume (REV) flow model to predict the volumetric flux of gas in shale reservoirs. On the basis of the migration of adsorbed gas in porous kerogen of REV with different fracture spaces, an ESRV criterion for shale reservoirs with SRV is proposed. Eventually, combining the ESRV criterion and fractal characteristic of a fracture network, we propose a new approach for evaluating ESRV in shale reservoirs. The approach has been used in the Eagle Ford shale gas reservoir, and results show that the fracture space has a measurable influence on migration of adsorbed gas. The fracture network can contribute to enhancement of the absorbed gas recovery ratio when the fracture space is less than 0.2 m. ESRV is evaluated in this paper, and results indicate that the ESRV accounts for 27.87% of the total SRV in shale gas reservoirs. This work is important and timely for evaluating fracturing effect and predicting production of hydraulic fracturing wells in shale reservoirs.

  17. The Impact of Mineralogy on the Geochemical Alteration of Shales During Hydraulic Fracturing Operations

    NASA Astrophysics Data System (ADS)

    Maher, K.; Harrison, A. L.; Jew, A. D.; Dustin, M. K.; Kiss, A. M.; Kohli, A. H.; Thomas, D.; Joe-Wong, C. M.; Brown, G. E.; Bargar, J.

    2016-12-01

    The extraction of oil and gas resources from low permeability shale reservoirs using hydraulic fracturing techniques has increased significantly in recent years. During hydraulic fracturing, large volumes of fluid are injected into subsurface shale formations, which drives substantial fluid-rock interaction that can release contaminants and alter rock permeability. Here, a combined experimental, imaging, and modeling approach was employed to systematically evaluate the impact of shale mineralogy on its physical and chemical alteration when exposed to fracturing fluids of different composition. Batch reactor experiments contained different shales with unique mineralogical compositions that were exposed to simulated hydraulic fracturing fluid. Experiments revealed that the balance between fluid acidity and acid neutralizing capacity of the rock was the strongest control on the evolution of fluid and rock chemistry. Carbonate mineral-rich shales rapidly recovered solution pH to circum-neutral conditions, whereas fluids in contact with carbonate mineral-poor shales remained acidic. The dissolution of shale minerals released metal contaminants, yet the precipitation of Fe(III)-bearing secondary phases helped to attenuate their release via co-precipitation or sorption. Post-reaction imaging illustrated that selective dissolution of carbonate minerals generated secondary porosity, the connectivity of which was dictated by initial carbonate distribution. Conversely, the precipitation of secondary Al- and Fe-bearing phases may occlude porosity, potentially inhibiting transport of water, contaminants, and hydrocarbons. The maturation of secondary Fe-bearing phases from amorphous to crystalline over time suggests that porosity will continue to evolve even after oxidation reactions have effectively ceased. These experiments reveal that the relative abundance and distribution of carbonate minerals is the master variable dictating both porosity alteration and contaminant release from shale formations, implying that the response of a reservoir to hydraulic fracturing can be better assessed using robust mineralogical data.

  18. Shale-brine-CO2 interactions and the long-term stability of carbonate-rich shale caprock

    NASA Astrophysics Data System (ADS)

    Ilgen, A.; Aman, M.; Espinoza, D. N.; Rodriguez, M. A.; Griego, J.; Dewers, T. A.; Feldman, J.; Stewart, T.; Choens, R. C., II

    2017-12-01

    Geological carbon storage (GCS) requires an impermeable caprock (e.g., shale) that prevents the upward migration and escape of carbon dioxide (CO2) from the subsurface. Geochemical alteration can occur at the caprock-reservoir rock interface, which could lead to the altering of the rock's mechanical properties, compromising the seal. We performed laboratory experiments on Mancos shale to quantify the coupled chemical-mechanical response of carbonate-rich shale in CO2-brine mixtures at conditions typical to GCS. We constructed geochemical models, calibrated them using laboratory results, and extended to time scales required for GCS. We observed the dissolution of calcite and kaolinite and the precipitation of gypsum and amorphous aluminum (hydr)oxide following the introduction of CO2. To address whether this mineral alteration causes changes in micro-mechanical properties, we examined altered Mancos shale using micro-mechanical (scratch) testing, measuring the scratch toughness of mm-scale shale lithofacies. The quartz-rich regions of the Mancos shale did not show significant changes in scratch toughness following 1-week alteration in a CO2-brine mixture. However, the scratch toughness of the calcite-rich, originally softer regions decreased by about 50%. These observations illustrate a coupled and localized chemical-mechanical response of carbonate-rich shale to the injection of CO2. This suggests a localized weakening of the caprock may occur, potentially leading to the development of preferential flow paths. The identification of vulnerable lithofacies within caprock and a characterization of mineralogical heterogeneity is imperative at prospective GCS sites. Sandia National Laboratories is a multimission laboratory managed and operated by National Technology and Engineering Solutions of Sandia, LLC., a wholly owned subsidiary of Honeywell International, Inc., for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-NA-0003525.

  19. Experimental Determination of P-V-T-X Properties and Adsorption Kinetics in the CO2-CH4 System under Shale Gas Reservoir Conditions

    NASA Astrophysics Data System (ADS)

    Xiong, Y.; Wang, Y.

    2014-12-01

    Shale gas production via hydrofracturing has profoundly changed the energy portfolio in the USA and other parts of the world. Under the shale gas reservior conditions, CO2 and H2O, either in residence or being injected during hydrofracturing or both, co-exist with CH4. One important feature characteristic of shale is the presence of nanometer-scale (1-100 nm) pores in shale or mudstone. The interactions among CH4, CO2 and H2O in those nano-sized pores directly impact shale gas storage and gas release from the shale matrix. Therefore, a fundamental understanding of interactions among CH4, CO2 and H2O in nanopore confinement would provide guidance in addressing a number of problems such as rapid decline in production after a few years and low recovery rates. We are systematically investigating the P-V-T-X properties and adsorption kinetics in the CH4-CO2-H2O system under the reservior conditions. We have designed and constructed a unique high temperature and pressure experimental system that can measure both of the P-V-T-X properties and adsorption kinetics sequentially. We measure the P-V-T-X properties of CH4-CO2 mixtures with CH4 up to 95 vol. %, and adsorption kinetics of various materials, under the conditions relevant to shale gas reservoir. We use three types of materials: (I) model materials, (II) single solid phases separated from shale samples, and (III) crushed shale samples from both the known shale gas producing formations and the shale gas barren formations. The model materials are well characterized in terms of pore sizes. Therefore, the results associated with the model material serve as benchmarks for our model development. Sandia National Laboratories is a multi-program laboratory operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000. This research is supported by a Geoscience Foundation LDRD.

  20. Shale gas development: a smart regulation framework.

    PubMed

    Konschnik, Katherine E; Boling, Mark K

    2014-01-01

    Advances in directional drilling and hydraulic fracturing have sparked a natural gas boom from shale formations in the United States. Regulators face a rapidly changing industry comprised of hundreds of players, operating tens of thousands of wells across 30 states. They are often challenged to respond by budget cuts, a brain drain to industry, regulations designed for conventional gas developments, insufficient information, and deeply polarized debates about hydraulic fracturing and its regulation. As a result, shale gas governance remains a halting patchwork of rules, undermining opportunities to effectively characterize and mitigate development risk. The situation is dynamic, with research and incremental regulatory advances underway. Into this mix, we offer the CO/RE framework--characterization of risk, optimization of mitigation strategies, regulation, and enforcement--to design tailored governance strategies. We then apply CO/RE to three types of shale gas risks, to illustrate its potential utility to regulators.

  1. The U.S. Shale Oil and Gas Resource - a Multi-Scale Analysis of Productivity

    NASA Astrophysics Data System (ADS)

    O'sullivan, F.

    2014-12-01

    Over the past decade, the large-scale production of natural gas, and more recently oil, from U.S. shale formations has had a transformative impact on the energy industry. The emergence of shale oil and gas as recoverable resources has altered perceptions regarding both the future abundance and cost of hydrocarbons, and has shifted the balance of global energy geopolitics. However, despite the excitement, shale is a resource in its nascency, and many challenges surrounding its exploitation remain. One of the most significant of these is the dramatic variation in resource productivity across multiple length scales, which is a feature of all of today's shale plays. This paper will describe the results of work that has looked to characterize the spatial and temporal variations in the productivity of the contemporary shale resource. Analysis will be presented that shows there is a strong stochastic element to observed shale well productivity in all the major plays. It will be shown that the nature of this stochasticity is consistent regardless of specific play being considered. A characterization of this stochasticity will be proposed. As a parallel to the discussion of productivity, the paper will also address the issue of "learning" in shale development. It will be shown that "creaming" trends are observable and that although "absolute" well productivity levels have increased, "specific" productivity levels (i.e. considering well and stimulation size) have actually falling markedly in many plays. The paper will also show that among individual operators' well ensembles, normalized well-to-well performance distributions are almost identical, and have remained consistent year-to-year. This result suggests little if any systematic learning regarding the effective management of well-to-well performance variability has taken place. The paper will conclude with an articulation of how the productivity characteristics of the shale resource are impacting on the resources' economic profile, and the implications of this in terms of the commercial risks associated with shale production activities.

  2. Fracture patterns and their origin in the upper Devonian Antrim Shale gas reservoir of the Michigan basin; a review

    USGS Publications Warehouse

    Ryder, Robert T.

    1996-01-01

    INTRODUCTION: Black shale members of the Upper Devonian Antrim Shale are both the source and reservoir for a regional gas accumulation that presently extends across parts of six counties in the northern part of the Michigan basin (fig. 1). Natural fractures are considered by most petroleum geologists and oil and gas operators who work the Michigan basin to be a necessary condition for commercial gas production in the Antrim Shale. Fractures provide the conduits for free gas and associated water to flow to the borehole through the black shale which, otherwise, has a low matrix permeability. Moreover, the fractures assist in the release of gas adsorbed on mineral and(or) organic matter in the shale (Curtis, 1992). Depths to the gas-producing intervals (Norwood and Lachine Members) generally range from 1,200 to 1,800 ft (Oil and Gas Journal, 1994). Locally, wells that produce gas from the accumulation are as deep as 2,200 (Oil and Gas Journal, 1994). Even though natural fractures are an important control on Antrim Shale gas production, most wells require stimulation by hydraulic fracturing to attain commercial production rates (Kelly, 1992). In the U.S. Geological Survey's National Assessment of United States oil and gas, Dolton (1995) estimates that, at a mean value, 4.45 trillion cubic feet (TCF) of gas are recoverable as additions to already discovered quantities from the Antrim Shale in the productive area of the northern Michigan trend. Dolton (1995) also suggests that undiscovered Antrim Shale gas accumulations exist in other parts of the Michigan basin. The character, distribution, and origin of natural fractures in the Antrim Shale gas accumulation have been studied recently by academia and industry. The intent of these investigations is to: 1) predict 'sweet spots', prior to drilling, in the existing gas-producing trend, 2) improve production practices in the existing trend, 3) predict analogous fracture-controlled gas accumulations in other parts of the Michigan basin, and 4) improve estimates of the recoverable gas in the Antrim Shale gas plays (Dolton, 1995). This review of published literature on the characteristics of Antrim Shale fractures, their origin, and their controls on gas production will help to define objectives and goals in future U.S. Geological Survey studies of Antrim Shale gas resources.

  3. Release of Particulate Iron Sulfide during Shale-Fluid Interaction.

    PubMed

    Kreisserman, Yevgeny; Emmanuel, Simon

    2018-01-16

    During hydraulic fracturing, a technique often used to extract hydrocarbons from shales, large volumes of water are injected into the subsurface. Although the injected fluid typically contains various reagents, it can become further contaminated by interaction with minerals present in the rocks. Pyrite, which is common in organic-rich shales, is a potential source of toxic elements, including arsenic and lead, and it is generally thought that for these elements to become mobilized, pyrite must first dissolve. Here, we use atomic force microscopy and environmental scanning electron microscopy to show that during fluid-rock interaction, the dissolution of carbonate minerals in Eagle Ford shale leads to the physical detachment, and mobilization, of embedded pyrite grains. In experiments carried out over a range of pH, salinity, and temperature we found that in all cases pyrite particles became detached from the shale surfaces. On average, the amount of pyrite detached was equivalent to 6.5 × 10 -11 mol m -2 s -1 , which is over an order of magnitude greater than the rate of pyrite oxidation expected under similar conditions. This result suggests that mechanical detachment of pyrite grains could be an important pathway for the mobilization of arsenic in hydraulic fracturing operations and in groundwater systems containing shales.

  4. Drilling of a deviated well: E. C. Newell 10056-D Meigs County, Ohio

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rodgers, J.A.

    1982-09-30

    The Department of Energy's (DOE) Eastern Gas Shales Program (EGSP) has focused primarily on the resource characterization of the Devonian shales in the Appalachian, Michigan and Illinois Basins, where the collective volume of gas in place is estimated to be on the order of 280 Tcf. From an early assessment of the petrophysical properties of these shales, attention now has turned to an understanding of the mechanisms controlling production of this unconventional-gas source. However, present knowledge of the production history of the Devonian shales is inadequate for an accurate estimation of the gas reserves, the optimum well spacing for gasmore » extraction, and the preferred stimulation techniques to be used. As part of this program, a Deviated Well Test was designed to evaluate the spacing of natural fractures in the Devonian shale in Meigs County, Ohio as a follow-on test to further define shale production characteristics and to assess the benefit of additional section gained by drilling through the producing interval at the approximate angle for dip of 60/sup 0/ from vertical. The Columbia Gas Transmission Company, E.C. Newell 10056-D well, on the same site as a previous Off-Set Well Test, was selected for this investigation. This report summarizes drilling operations on this Deviated Well Test.« less

  5. Unfinished business in the regulation of shale gas production in the United States.

    PubMed

    Centner, Terence J; O'Connell, Laura Kathryn

    2014-04-01

    With increased drilling for natural gas, toxic chemicals used to fracture wells have been introduced into the environment accompanied by allegations of injuries. This article evaluates laws and regulations governing shale gas production to disclose ideas for offering further protection to people and the environment. The aim of the study is to offer state governments ideas for addressing contractual obligations of drilling operators, discerning health risks, disclosing toxic chemicals, and reporting sufficient information to detect problems and enforce regulations. The discussion suggests opportunities for state regulators to become more supportive of public health through greater oversight of shale gas extraction. Copyright © 2014 Elsevier B.V. All rights reserved.

  6. Local CO2-induced swelling of shales

    NASA Astrophysics Data System (ADS)

    Pluymakers, Anne; Dysthe, Dag Kristian

    2017-04-01

    In heterogeneous shale rocks, CO2 adsorbs more strongly to organic matter than to the other components. CO2-induced swelling of organic matter has been shown in coal, which is pure carbon. The heterogeneity of the shale matrix makes an interesting case study. Can local swelling through adsorption of CO2 to organic matter induce strain in the surrounding shale matrix? Can fractures close due to CO2-induced swelling of clays and organic matter? We have developed a new generation of microfluidic high pressure cells (up to 100 bar), which can be used to study flow and adsorption phenomena at the microscale in natural geo-materials. The devices contain one transparent side and a shale sample on the other side. The shale used is the Pomeranian shale, extracted from 4 km depth in Poland. This formation is a potential target of a combined CO2-storage and gas extraction project. To answer the first question, we place the pressure cell under a Veeco NT1100 Interferometer, operated in Vertical Scanning Interferometry mode and equipped with a Through Transmissive Media objective. This allows for observation of local swelling or organic matter with nanometer vertical resolution and micrometer lateral resolution. We expose the sample to CO2 atmospheres at different pressures. Comparison of the interferometry data and using SEM-EDS maps plus optical microscopy delivers local swelling maps where we can distinguish swelling of different mineralogies. Preliminary results indicate minor local swelling of organic matter, where the total amount is both time- and pressure-dependent.

  7. Environmental Public Health Dimensions of Shale and Tight Gas Development

    PubMed Central

    Hays, Jake; Finkel, Madelon L.

    2014-01-01

    Background: The United States has experienced a boom in natural gas production due to recent technological innovations that have enabled this resource to be produced from shale formations. Objectives: We reviewed the body of evidence related to exposure pathways in order to evaluate the potential environmental public health impacts of shale gas development. We highlight what is currently known and identify data gaps and research limitations by addressing matters of toxicity, exposure pathways, air quality, and water quality. Discussion: There is evidence of potential environmental public health risks associated with shale gas development. Several studies suggest that shale gas development contributes to ambient air concentrations of pollutants known to be associated with increased risk of morbidity and mortality. Similarly, an increasing body of studies suggest that water contamination risks exist through a variety of environmental pathways, most notably during wastewater transport and disposal, and via poor zonal isolation of gases and fluids due to structural integrity impairment of cement in gas wells. Conclusion: Despite a growing body of evidence, data gaps persist. Most important, there is a need for more epidemiological studies to assess associations between risk factors, such as air and water pollution, and health outcomes among populations living in close proximity to shale gas operations. Citation: Shonkoff SB, Hays J, Finkel ML. 2014. Environmental public health dimensions of shale and tight gas development. Environ Health Perspect 122:787–795; http://dx.doi.org/10.1289/ehp.1307866 PMID:24736097

  8. Investigating Rare Earth Element Systematics in the Marcellus Shale

    NASA Astrophysics Data System (ADS)

    Yang, J.; Torres, M. E.; Kim, J. H.; Verba, C.

    2014-12-01

    The lanthanide series of elements (the 14 rare earth elements, REEs) have similar chemical properties and respond to different chemical and physical processes in the natural environment by developing unique patterns in their concentration distribution when normalized to an average shale REE content. The interpretation of the REE content in a gas-bearing black shale deposited in a marine environment must therefore take into account the paleoredox conditions of deposition as well as any diagenetic remobilization and authigenic mineral formation. We analyzed 15 samples from a core of the Marcellus Shale (Whipkey ST1, Greene Co., PA) for REEs, TOC, gas-producing potential, trace metal content, and carbon isotopes of organic matter in order to determine the REE systematics of a black shale currently undergoing shale gas development. We also conducted a series of sequential leaching experiments targeting the phosphatic fractions in order to evaluate the dominant host phase of REEs in a black shale. Knowledge of the REE system in the Marcellus black shale will allow us to evaluate potential REE release and behavior during hydraulic fracturing operations. Total REE content of the Whipkey ST1 core ranged from 65-185 μg/g and we observed three distinct REE shale-normalized patterns: middle-REE enrichment (MREE/MREE* ~2) with heavy-REE enrichment (HREE/LREE ~1.8-2), flat patterns, and a linear enrichment towards the heavy-REE (HREE/LREE ~1.5-2.5). The MREE enrichment occurred in the high carbonate samples of the Stafford Member overlying the Marcellus Formation. The HREE enrichment occurred in the Union Springs Member of the Marcellus Formation, corresponding to a high TOC peak (TOC ~4.6-6.2 wt%) and moderate carbonate levels (CaCO3 ~4-53 wt%). Results from the sequential leaching experiments suggest that the dominant host of the REEs is the organic fraction of the black shale and that the detrital and authigenic fractions have characteristic MREE enrichments. We present our conclusions on the impact of depositional setting and diagenetic remobilization and authigenic mineral formation on the REE system in the Marcellus Shale.

  9. Statistical evaluation of the impact of shale gas activities on ozone pollution in North Texas.

    PubMed

    Ahmadi, Mahdi; John, Kuruvilla

    2015-12-01

    Over the past decade, substantial growth in shale gas exploration and production across the US has changed the country's energy outlook. Beyond its economic benefits, the negative impacts of shale gas development on air and water are less well known. In this study the relationship between shale gas activities and ground-level ozone pollution was statistically evaluated. The Dallas-Fort Worth (DFW) area in north-central Texas was selected as the study region. The Barnett Shale, which is one the most productive and fastest growing shale gas fields in the US, is located in the western half of DFW. Hourly meteorological and ozone data were acquired for fourteen years from monitoring stations established and operated by the Texas Commission on Environmental Quality (TCEQ). The area was divided into two regions, the shale gas region (SGR) and the non-shale gas (NSGR) region, according to the number of gas wells in close proximity to each monitoring site. The study period was also divided into 2000-2006 and 2007-2013 because the western half of DFW has experienced significant growth in shale gas activities since 2007. An evaluation of the raw ozone data showed that, while the overall trend in the ozone concentration was down over the entire region, the monitoring sites in the NSGR showed an additional reduction of 4% in the annual number of ozone exceedance days than those in the SGR. Directional analysis of ozone showed that the winds blowing from areas with high shale gas activities contributed to higher ozone downwind. KZ-filtering method and linear regression techniques were used to remove the effects of meteorological variations on ozone and to construct long-term and short-term meteorologically adjusted (M.A.) ozone time series. The mean value of all M.A. ozone components was 8% higher in the sites located within the SGR than in the NSGR. These findings may be useful for understanding the overall impact of shale gas activities on the local and regional ozone pollution. Copyright © 2015 Elsevier B.V. All rights reserved.

  10. Geological and petrological considerations relevant to the disposal of radioactive wastes by hydraulic fracturing: an example at the US Department of Energy's Oak Ridge National Laboratory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Haase, C.S.

    1983-01-01

    At Oak Ridge National Laboratory the Pumpkin Valley Shale is used as a host formation for hydraulic fracturing waste disposal. Determination of the relationships between the distribution of different lithologies and porosity-permeability trends within this host formation allows these properties, important to hydraulic fracturing operations, to be related to measurable and mappable geological and petrological parameters. It also permits extrapolation of such patterns to little-studied portions of the Pumpkin Valley Shale. Such knowledge better allows for the satisfactory operation and assessment of the hydraulic fracturing at Oak Ridge National Laboratory.

  11. Meals for the Elderly

    NASA Technical Reports Server (NTRS)

    1980-01-01

    The aim of Skylab's multi-agency cooperative project was to make simple but nutritious space meals available to handicapped and otherwise homebound senior adults, unable to take advantage of existing meal programs sponsored by federal, state and private organizations. As a spinoff of Meal Systems for the Elderly, commercial food processing firms are now producing astronaut type meals for public distribution. Company offers variety of freeze dried foods which are reconstituted by addition of water, and "retort pouch" meals which need no reconstitution, only heating. The retort pouch is an innovative flexible package that combines the advantage of boil-in bag and metal can. Foods retain their flavor, minerals and vitamins can be stored without refrigeration and are lightweight for easy transportation.

  12. Dissolution of cemented fractures in gas bearing shales in the context of CO2 sequestration

    NASA Astrophysics Data System (ADS)

    Kwiatkowski, Kamil; Szymczak, Piotr

    2016-04-01

    Carbon dioxide has a stronger binding than methane to the organic matter contained in the matrix of shale rocks [1]. Thus, the injection of CO2 into shale formation may enhance the production rate and total amount of produced methane, and simultaneously permanently store pumped CO2. Carbon dioxide can be injected during the initial fracking stage as CO2 based hydraulic fracturing, and/or later, as a part of enhanced gas recovery (EGR) [2]. Economic and environmental benefits makes CO2 sequestration in shales potentially very for industrial-scale operation [3]. However, the effective process requires large area of fracture-matrix interface, where CO2 and CH4 can be exchanged. Usually natural fractures, existing in shale formation, are preferentially reactivated during hydraulic fracturing, thus they considerably contribute to the flow paths in the resulting fracture system [4]. Unfortunately, very often these natural fractures are sealed by calcite [5]. Consequently the layer of calcite coating surfaces impedes exchange of gases, both CO2 and CH4, between shale matrix and fracture. In this communication we address the question whether carbonic acid, formed when CO2 is mixed with brine, is able to effectively dissolve a calcite layer present in the natural fractures. We investigate numerically fluid flow and dissolution of calcite coating in natural shale fractures, with CO2-brine mixture as a reactive fluid. Moreover, we discuss the differences between slow dissolution (driven by carbonic acid) and fast dissolution (driven by stronger hydrochloric acid) of calcite layer. We compare an impact of the flow rate and geometry of the fracture on the parameters of practical importance: available surface area, morphology of dissolution front, time scale of the dissolution, and the penetration length. We investigate whether the dissolution is sufficiently non-uniform to retain the fracture permeability, even in the absence of the proppant. The sizes of analysed fractures varying from 0.2 x 0.2 m2 up to 4 x 4 m2, together with discussion of a further upscaling, make the study relevant to the industrial applications. While the results of this study should be applicable to different shale formations throughout the world, we discuss them in the context of preparation to gas-production from Pomeranian shale basin, located in the northern Poland. [1] Mosher, K., He, J., Liu, Y., Rupp, E., & Wilcox, J. Molecular simulation of methane adsorption in micro-and mesoporous carbons with applications to coal and gas shale systems. International Journal of Coal Geology, 109, 36-44 (2013) [2] Grieser, W. V., Wheaton, W. E., Magness, W. D., Blauch, M. E., & Loghry, R, "Surface Reactive Fluid's Effect on Shale." Proceedings of the Production and Operations Symposium, 31 March-3 April 2007, Oklahoma City (SPE-106815-MS) [3] Tao, Z. and Clarens, A., Estimating the carbon sequestration capacity of shale formations using methane production rates, Environmental Science and Technology, 47, 11318-11325 (2013). [4] Zhang, X., Jeffrey, R. G., & Thiercelin, M. (2009). Mechanics of fluid-driven fracture growth in naturally fractured reservoirs with simple network geometries. Journal of Geophysical Research: Solid Earth, 114, B12406 (2009) [5] Gale, J.F., Laubach, S.E., Olson, J.E., Eichhubl, P., Fall, A. Natural fractures in shale: A review and new observations. AAPG Bulletin 98(11):2165-2216 (2014)

  13. Unconventional shale-gas systems: The Mississippian Barnett Shale of north-central Texas as one model for thermogenic shale-gas assessment

    USGS Publications Warehouse

    Jarvie, D.M.; Hill, R.J.; Ruble, T.E.; Pollastro, R.M.

    2007-01-01

    Shale-gas resource plays can be distinguished by gas type and system characteristics. The Newark East gas field, located in the Fort Worth Basin, Texas, is defined by thermogenic gas production from low-porosity and low-permeability Barnett Shale. The Barnett Shale gas system, a self-contained source-reservoir system, has generated large amounts of gas in the key productive areas because of various characteristics and processes, including (1) excellent original organic richness and generation potential; (2) primary and secondary cracking of kerogen and retained oil, respectively; (3) retention of oil for cracking to gas by adsorption; (4) porosity resulting from organic matter decomposition; and (5) brittle mineralogical composition. The calculated total gas in place (GIP) based on estimated ultimate recovery that is based on production profiles and operator estimates is about 204 bcf/section (5.78 ?? 109 m3/1.73 ?? 104 m3). We estimate that the Barnett Shale has a total generation potential of about 609 bbl of oil equivalent/ac-ft or the equivalent of 3657 mcf/ac-ft (84.0 m3/m3). Assuming a thickness of 350 ft (107 m) and only sufficient hydrogen for partial cracking of retained oil to gas, a total generation potential of 820 bcf/section is estimated. Of this potential, approximately 60% was expelled, and the balance was retained for secondary cracking of oil to gas, if sufficient thermal maturity was reached. Gas storage capacity of the Barnett Shale at typical reservoir pressure, volume, and temperature conditions and 6% porosity shows a maximum storage capacity of 540 mcf/ac-ft or 159 scf/ton. Copyright ?? 2007. The American Association of Petroleum Geologists. All rights reserved.

  14. Hydrothermal Liquefaction Biocrude Compositions Compared to Petroleum Crude and Shale Oil

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jarvis, Jacqueline M.; Billing, Justin M.; Hallen, Richard T.

    We provide a direct and detailed comparison of the chemical composition of petroleum crude oil (from the Gulf of Mexico), shale oil, and three biocrudes (i.e., clean pine, microalgae Chlorella sp., and sewage sludge feedstocks) generated by hydrothermal liquefaction (HTL). Ultrahigh resolution Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR MS) reveals that HTL biocrudes are compositionally more similar to shale oil than petroleum crude oil and that only a few heteroatom classes (e.g., N1, N2, N1O1, and O1) are common to organic sediment- and biomass-derived oils. All HTL biocrudes contain a diverse range of oxygen-containing compounds when compared tomore » either petroleum crude or shale oil. Overall, petroleum crude and shale oil are compositionally dissimilar to HTL oils, and >85% of the elemental compositions identified within the positive-ion electrospray (ESI) mass spectra of the HTL biocrudes were not present in either the petroleum crude or shale oil (>43% for negative-ion ESI). Direct comparison of the heteroatom classes that are common to both organic sedimentand biomass-derived oils shows that HTL biocrudes generally contain species with both smaller core structures and a lower degree of alkylation relative to either the petroleum crude or the shale oil. Three-dimensional plots of carbon number versus molecular double bond equivalents (with observed abundance as the third dimension) for abundant molecular classes reveal the specific relationship of the composition of HTL biocrudes to petroleum and shale oils to inform the possible incorporation of these oils into refinery operations as a partial amendment to conventional petroleum feeds.« less

  15. Desalination and reuse of high-salinity shale gas produced water: drivers, technologies, and future directions.

    PubMed

    Shaffer, Devin L; Arias Chavez, Laura H; Ben-Sasson, Moshe; Romero-Vargas Castrillón, Santiago; Yip, Ngai Yin; Elimelech, Menachem

    2013-09-03

    In the rapidly developing shale gas industry, managing produced water is a major challenge for maintaining the profitability of shale gas extraction while protecting public health and the environment. We review the current state of practice for produced water management across the United States and discuss the interrelated regulatory, infrastructure, and economic drivers for produced water reuse. Within this framework, we examine the Marcellus shale play, a region in the eastern United States where produced water is currently reused without desalination. In the Marcellus region, and in other shale plays worldwide with similar constraints, contraction of current reuse opportunities within the shale gas industry and growing restrictions on produced water disposal will provide strong incentives for produced water desalination for reuse outside the industry. The most challenging scenarios for the selection of desalination for reuse over other management strategies will be those involving high-salinity produced water, which must be desalinated with thermal separation processes. We explore desalination technologies for treatment of high-salinity shale gas produced water, and we critically review mechanical vapor compression (MVC), membrane distillation (MD), and forward osmosis (FO) as the technologies best suited for desalination of high-salinity produced water for reuse outside the shale gas industry. The advantages and challenges of applying MVC, MD, and FO technologies to produced water desalination are discussed, and directions for future research and development are identified. We find that desalination for reuse of produced water is technically feasible and can be economically relevant. However, because produced water management is primarily an economic decision, expanding desalination for reuse is dependent on process and material improvements to reduce capital and operating costs.

  16. Commercially sterilized mussel meats (Mytilus chilensis): a study on process yield.

    PubMed

    Almonacid, S; Bustamante, J; Simpson, R; Urtubia, A; Pinto, M; Teixeira, A

    2012-06-01

    The processing steps most responsible for yield loss in the manufacture of canned mussel meats are the thermal treatments of precooking to remove meats from shells, and thermal processing (retorting) to render the final canned product commercially sterile for long-term shelf stability. The objective of this study was to investigate and evaluate the impact of different combinations of process variables on the ultimate drained weight in the final mussel product (Mytilu chilensis), while verifying that any differences found were statistically and economically significant. The process variables selected for this study were precooking time, brine salt concentration, and retort temperature. Results indicated 2 combinations of process variables producing the widest difference in final drained weight, designated best combination and worst combination with 35% and 29% yield, respectively. Significance of this difference was determined by employing a Bootstrap methodology, which assumes an empirical distribution of statistical error. A difference of nearly 6 percentage points in total yield was found. This represents a 20% increase in annual sales from the same quantity of raw material, in addition to increase in yield, the conditions for the best process included a retort process time 65% shorter than that for the worst process, this difference in yield could have significant economic impact, important to the mussel canning industry. © 2012 Institute of Food Technologists®

  17. Towards Characterization, Modeling, and Uncertainty Quantification in Multi-scale Mechanics of Oragnic-rich Shales

    NASA Astrophysics Data System (ADS)

    Abedi, S.; Mashhadian, M.; Noshadravan, A.

    2015-12-01

    Increasing the efficiency and sustainability in operation of hydrocarbon recovery from organic-rich shales requires a fundamental understanding of chemomechanical properties of organic-rich shales. This understanding is manifested in form of physics-bases predictive models capable of capturing highly heterogeneous and multi-scale structure of organic-rich shale materials. In this work we present a framework of experimental characterization, micromechanical modeling, and uncertainty quantification that spans from nanoscale to macroscale. Application of experiments such as coupled grid nano-indentation and energy dispersive x-ray spectroscopy and micromechanical modeling attributing the role of organic maturity to the texture of the material, allow us to identify unique clay mechanical properties among different samples that are independent of maturity of shale formations and total organic content. The results can then be used to inform the physically-based multiscale model for organic rich shales consisting of three levels that spans from the scale of elementary building blocks (e.g. clay minerals in clay-dominated formations) of organic rich shales to the scale of the macroscopic inorganic/organic hard/soft inclusion composite. Although this approach is powerful in capturing the effective properties of organic-rich shale in an average sense, it does not account for the uncertainty in compositional and mechanical model parameters. Thus, we take this model one step forward by systematically incorporating the main sources of uncertainty in modeling multiscale behavior of organic-rich shales. In particular we account for the uncertainty in main model parameters at different scales such as porosity, elastic properties and mineralogy mass percent. To that end, we use Maximum Entropy Principle and random matrix theory to construct probabilistic descriptions of model inputs based on available information. The Monte Carlo simulation is then carried out to propagate the uncertainty and consequently construct probabilistic descriptions of properties at multiple length-scales. The combination of experimental characterization and stochastic multi-scale modeling presented in this work improves the robustness in the prediction of essential subsurface parameters in engineering scale.

  18. Permitting program with best management practices for shale gas wells to safeguard public health.

    PubMed

    Centner, Terence J; Petetin, Ludivine

    2015-11-01

    The development of shale gas resources in the United States has been controversial as governments have been tardy in devising sufficient safeguards to protect both people and the environment. Alleged health and environmental damages suggest that other countries around the world that decide to develop their shale gas resources can learn from these problems and take further actions to prevent situations resulting in the release of harmful pollutants. Looking at U.S. federal regulations governing large animal operations under the permitting provisions of the Clean Water Act, the idea of a permitting program is proposed to respond to the risks of pollution by shale gas development activities. Governments can require permits before allowing the drilling of a new gas well. Each permit would include fluids and air emissions reduction plans containing best management practices to minimize risks and releases of pollutants. The public availability of permits and permit applications, as occurs for water pollution under various U.S. permitting programs, would assist governments in protecting public health. The permitting proposals provide governments a means for providing further assurances that shale gas development projects will not adversely affect people and the environment. Copyright © 2015 Elsevier Ltd. All rights reserved.

  19. Recovery of water and minerals from shale gas produced water by membrane distillation crystallization.

    PubMed

    Kim, Junghyun; Kim, Jungwon; Hong, Seungkwan

    2018-02-01

    Shale gas produced water (SGPW) treatment imposes greater technical challenges because of its high concentration of various contaminants. Membrane distillation crystallization (MDC) has a great potential to manage SGPW since it is capable of recovering both water and minerals at high rates, up to near a zero liquid discharge (ZLD) condition. To evaluate the feasibility of MDC for SGPW treatment, MDC performance indicators, such as water recovery rate, solid production rate (SPR) and specific energy consumption (SEC), were systematically investigated, to our knowledge for the first time, by using actual SGPW from Eagle Ford Shale (USA). The main operating parameters including feed cross-flow velocity (CFV) and crystallization temperature (T Cr ) were optimized by performing a series of MDC experiments. The results reported that water and minerals were effectively recovered with 84% of recovery rate and 2.72 kg/m 2 day of SPR under respective optimal operating conditions. Furthermore, the scale mechanism was firstly identified as limiting factor for MDC performance degradation. Lastly, SEC of MDC was estimated to be as low as 28.2 kWh/m 3 under ideal optimal operating conditions. Our experimental observations demonstrated that MDC could sustainably and effectively recover water and mineral with low energy consumption from SGPW by optimizing operating condition. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. Total arsenic and selenium analysis in Marcellus shale, high-salinity water, and hydrofracture flowback wastewater.

    PubMed

    Balaba, Ronald S; Smart, Ronald B

    2012-11-01

    Trace levels of arsenic and selenium can be toxic to living organisms yet their quantitation in high ionic strength or high salinity aqueous media is difficult due to the matrix interferences which can either suppress or enhance the analyte signal. A modified thiol cotton fiber (TCF) method employing lower flow rates and centrifugation has been used to remove the analyte from complex aqueous media and minimize the matrix interferences. This method has been tested using a USGS (SGR-1b) certified reference shale. It has been used to analyze Marcellus shale samples following microwave digestion as well as spiked samples of high salinity water (HSW) and flow back wastewater (WRF6) obtained from an actual gas well drilling operation. Quantitation of arsenic and selenium is carried out by graphite furnace atomic spectroscopy (GFAAS). Extraction of arsenic and selenium from Marcellus shale exposed to HSW and WRF6 for varying lengths of time is also reported. Copyright © 2012 Elsevier Ltd. All rights reserved.

  1. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    To evaluate the potential of the Devonian shale as a source of natural gas, the US Department of Energy (DOE) has undertaken the Eastern Gas Shales Project (EGSP). The EGSP is designed not only to identify the resource, but also to test improved methods of inducing permeability to facilitate gas drainage, collection, and production. The ultimate goal of this project is to increase the production of gas from the eastern shales through advanced exploration and exploitation techniques. The purpose of this report is to inform the general public and interested oil and gas operators about EGSP results as they pertainmore » to the Devonian gas shales of the Appalachian basin in Pennsylvania. Geologic data and interpretations are summarized and areas where the accumulation of gas may be large enough to justify commercial production are outlined. Because the data presented in this report are generalized and not suitable for evaluation of specific sites for exploration, the reader should consult the various reports cited for more detail and discussion of the data, concepts, and interpretations presented.« less

  2. POLICY ANALYSIS OF PRODUCED WATER ISSUES ASSOCIATED WITH IN-SITU THERMAL TECHNOLOGIES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Robert Keiter; John Ruple; Heather Tanana

    2011-02-01

    Commercial scale oil shale and oil sands development will require water, the amount of which will depend on the technologies adopted and the scale of development that occurs. Water in oil shale and oil sands country is already in scarce supply, and because of the arid nature of the region and limitations on water consumption imposed by interstate compacts and the Endangered Species Act, the State of Utah normally does not issue new water rights in oil shale or oil sands rich areas. Prospective oil shale and oil sands developers that do not already hold adequate water rights can acquiremore » water rights from willing sellers, but large and secure water supplies may be difficult and expensive to acquire, driving oil shale and oil sands developers to seek alternative sources of supply. Produced water is one such potential source of supply. When oil and gas are developed, operators often encounter ground water that must be removed and disposed of to facilitate hydrocarbon extraction. Water produced through mineral extraction was traditionally poor in quality and treated as a waste product rather than a valuable resource. However, the increase in produced water volume and the often-higher quality water associated with coalbed methane development have drawn attention to potential uses of produced water and its treatment under appropriations law. This growing interest in produced water has led to litigation and statutory changes that must be understood and evaluated if produced water is to be harnessed in the oil shale and oil sands development process. Conversely, if water is generated as a byproduct of oil shale and oil sands production, consideration must be given to how this water will be disposed of or utilized in the shale oil production process. This report explores the role produced water could play in commercial oil shale and oil sands production, explaining the evolving regulatory framework associated with produced water, Utah water law and produced water regulation, and the obstacles that must be overcome in order for produced water to support the nascent oil shale and oil sands industries.« less

  3. A nuclear wind/solar oil-shale system for variable electricity and liquid fuels production

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Forsberg, C.

    2012-07-01

    The recoverable reserves of oil shale in the United States exceed the total quantity of oil produced to date worldwide. Oil shale contains no oil, rather it contains kerogen which when heated decomposes into oil, gases, and a carbon char. The energy required to heat the kerogen-containing rock to produce the oil is about a quarter of the energy value of the recovered products. If fossil fuels are burned to supply this energy, the greenhouse gas releases are large relative to producing gasoline and diesel from crude oil. The oil shale can be heated underground with steam from nuclear reactorsmore » leaving the carbon char underground - a form of carbon sequestration. Because the thermal conductivity of the oil shale is low, the heating process takes months to years. This process characteristic in a system where the reactor dominates the capital costs creates the option to operate the nuclear reactor at base load while providing variable electricity to meet peak electricity demand and heat for the shale oil at times of low electricity demand. This, in turn, may enable the large scale use of renewables such as wind and solar for electricity production because the base-load nuclear plants can provide lower-cost variable backup electricity. Nuclear shale oil may reduce the greenhouse gas releases from using gasoline and diesel in half relative to gasoline and diesel produced from conventional oil. The variable electricity replaces electricity that would have been produced by fossil plants. The carbon credits from replacing fossil fuels for variable electricity production, if assigned to shale oil production, results in a carbon footprint from burning gasoline or diesel from shale oil that may half that of conventional crude oil. The U.S. imports about 10 million barrels of oil per day at a cost of a billion dollars per day. It would require about 200 GW of high-temperature nuclear heat to recover this quantity of shale oil - about two-thirds the thermal output of existing nuclear reactors in the United States. With the added variable electricity production to enable renewables, additional nuclear capacity would be required. (authors)« less

  4. Modelling the deployment of CO₂ storage in U.S. gas-bearing shales

    DOE PAGES

    Davidson, Casie L.; Dahowski, Robert T.; Dooley, James J.; ...

    2014-12-31

    The proliferation of commercial development in U.S. gas-bearing shales helped to drive a twelve-fold increase in domestic gas production between 2000 and 2010, and the nation's gas production rates continue to grow. While shales have long been regarded as a desirable caprock for CCS operations because of their low permeability and porosity, there is increasing interest in the feasibility of injecting CO₂ into shales to enhance methane recovery and augment CO₂ storage. Laboratory work published in recent years observes that shales with adsorbed methane appear to exhibit a stronger affinity for CO₂ adsorption, offering the potential to drive additional CH₄more » recovery beyond primary production and perhaps the potential to store a larger volume of CO₂ than the volume of methane displaced. Recent research by the authors on the revenues associated with CO₂-enhanced gas recovery (CO₂-EGR) in gas-bearing shales estimates that, based on a range of EGR response rates, the average revenue per ton of CO₂ for projects managed over both EGR and subsequent storage-only phases could range from $0.50 to $18/tCO₂. While perhaps not as profitable as EOR, for regions where lower-cost storage options may be limited, shales could represent another “early opportunity” storage option if proven feasible for reliable EGR and CO₂ storage. Significant storage potential exists in gas shales, with theoretical CO₂ storage resources estimated at approximately 30-50 GtCO₂. However, an analysis of the comprehensive cost competitiveness of these various options is necessary to understand the degree to which they might meaningfully impact U.S. CCS deployment or costs. This preliminary analysis shows that the degree to which EGR-based CO₂ storage could play a role in commercial-scale deployment is heavily dependent upon the offsetting revenues associated with incremental recovery; modeling the low revenue case resulted in only five shale-based projects, while under the high revenue case, shales accounted for as much as 20 percent of total U.S. storage in the first 20 years of deployment. Interestingly, even in this highest revenue case, there appear to be no negative-cost projects that would be profitable in a no-policy environment as modeled under the assumptions employed. While this reflects a very first look at the potential for shales, it is clear that more laboratory and experimental work are needed to reduce uncertainty in key variables and begin to differentiate and identify high-potential shales for early pilot study.« less

  5. Isotopic Variability of Mercury in Ore, Mine-Waste Calcine, and Leachates of Mine-Waste Calcine from Areas Mined for Mercury

    PubMed Central

    2009-01-01

    The isotopic composition of mercury (Hg) was determined in cinnabar ore, mine-waste calcine (retorted ore), and leachates obtained from water leaching experiments of calcine from two large Hg mining districts in the U.S. This study is the first to report significant mass-dependent Hg isotopic fractionation between cinnabar ore and resultant calcine. Data indicate that δ202Hg values relative to NIST 3133 of calcine (up to 1.52‰) in the Terlingua district, Texas, are as much as 3.24‰ heavier than cinnabar (−1.72‰) prior to retorting. In addition, δ202Hg values obtained from leachates of Terlingua district calcines are isotopically similar to, or as much as 1.17‰ heavier than associated calcines, most likely due to leaching of soluble, byproduct Hg compounds formed during ore retorting that are a minor component in the calcines. As a result of the large fractionation found between cinnabar and calcine, and because calcine is the dominant source of Hg contamination from the mines studied, δ202Hg values of calcine may be more environmentally important in these mined areas than the primary cinnabar ore. Measurement of the Hg isotopic composition of calcine is necessary when using Hg isotopes for tracing Hg sources from areas mined for Hg, especially mine water runoff. PMID:19848142

  6. Isotopic variability of mercury in ore, mine-waste calcine, and leachates of mine-waste calcine from areas mined for mercury

    USGS Publications Warehouse

    Stetson, S.J.; Gray, J.E.; Wanty, R.B.; Macalady, D.L.

    2009-01-01

    The isotopic composition of mercury (Hg) was determined in cinnabar ore, mine-waste calcine (retorted ore), and leachates obtained from water leaching experiments of calcine from two large Hg mining districts in the U.S. This study is the first to report significant mass-dependent Hg isotopic fractionation between cinnabar ore and resultant calcine. Data indicate that ??202Hg values relative to NIST 3133 of calcine (up to 1.52???) in the Terlingua district, Texas, are as much as 3.24??? heavier than cinnabar (-1.72???) prior to retorting. In addition, ??202Hg values obtained from leachates of Terlingua district calcines are isotopically similar to, or as much as 1.17??? heavier than associated calcines, most likely due to leaching of soluble, byproduct Hg compounds formed during ore retorting that are a minor component in the calcines. As a result of the large fractionation found between cinnabar and calcine, and because calcine is the dominant source of Hg contamination from the mines studied, ??202Hg values of calcine may be more environmentally important in these mined areas than the primary cinnabar ore. Measurement of the Hg isotopic composition of calcine is necessary when using Hg isotopes for tracing Hg sources from areas mined for Hg, especially mine water runoff. ?? 2009 American Chemical Society.

  7. Emissions and Char Quality of Flame-Curtain "Kon Tiki" Kilns for Farmer-Scale Charcoal/Biochar Production.

    PubMed

    Cornelissen, Gerard; Pandit, Naba Raj; Taylor, Paul; Pandit, Bishnu Hari; Sparrevik, Magnus; Schmidt, Hans Peter

    2016-01-01

    Pyrolysis of organic waste or woody materials yields charcoal, a stable carbonaceous product that can be used for cooking or mixed into soil, in the latter case often termed "biochar". Traditional kiln technologies for charcoal production are slow and without treatment of the pyrolysis gases, resulting in emissions of gases (mainly methane and carbon monoxide) and aerosols that are both toxic and contribute to greenhouse gas emissions. In retort kilns pyrolysis gases are led back to a combustion chamber. This can reduce emissions substantially, but is costly and consumes a considerable amount of valuable ignition material such as wood during start-up. To overcome these problems, a novel type of technology, the Kon-Tiki flame curtain pyrolysis, is proposed. This technology combines the simplicity of the traditional kiln with the combustion of pyrolysis gases in the flame curtain (similar to retort kilns), also avoiding use of external fuel for start-up. A field study in Nepal using various feedstocks showed char yields of 22 ± 5% on a dry weight basis and 40 ± 11% on a C basis. Biochars with high C contents (76 ± 9%; n = 57), average surface areas (11 to 215 m2 g-1), low EPA16-PAHs (2.3 to 6.6 mg kg-1) and high CECs (43 to 217 cmolc/kg)(average for all feedstocks, mainly woody shrubs) were obtained, in compliance with the European Biochar Certificate (EBC). Mean emission factors for the flame curtain kilns were (g kg-1 biochar for all feedstocks); CO2 = 4300 ± 1700, CO = 54 ± 35, non-methane volatile organic compounds (NMVOC) = 6 ± 3, CH4 = 30 ± 60, aerosols (PM10) = 11 ± 15, total products of incomplete combustion (PIC) = 100 ± 83 and NOx = 0.4 ± 0.3. The flame curtain kilns emitted statistically significantly (p<0.05) lower amounts of CO, PIC and NOx than retort and traditional kilns, and higher amounts of CO2. With benefits such as high quality biochar, low emission, no need for start-up fuel, fast pyrolysis time and, importantly, easy and cheap construction and operation the flame curtain technology represent a promising possibility for sustainable rural biochar production.

  8. Emissions and Char Quality of Flame-Curtain "Kon Tiki" Kilns for Farmer-Scale Charcoal/Biochar Production

    PubMed Central

    Cornelissen, Gerard; Pandit, Naba Raj; Taylor, Paul; Pandit, Bishnu Hari; Sparrevik, Magnus; Schmidt, Hans Peter

    2016-01-01

    Flame Curtain Biochar Kilns Pyrolysis of organic waste or woody materials yields charcoal, a stable carbonaceous product that can be used for cooking or mixed into soil, in the latter case often termed "biochar". Traditional kiln technologies for charcoal production are slow and without treatment of the pyrolysis gases, resulting in emissions of gases (mainly methane and carbon monoxide) and aerosols that are both toxic and contribute to greenhouse gas emissions. In retort kilns pyrolysis gases are led back to a combustion chamber. This can reduce emissions substantially, but is costly and consumes a considerable amount of valuable ignition material such as wood during start-up. To overcome these problems, a novel type of technology, the Kon-Tiki flame curtain pyrolysis, is proposed. This technology combines the simplicity of the traditional kiln with the combustion of pyrolysis gases in the flame curtain (similar to retort kilns), also avoiding use of external fuel for start-up. Biochar Characteristics A field study in Nepal using various feedstocks showed char yields of 22 ± 5% on a dry weight basis and 40 ± 11% on a C basis. Biochars with high C contents (76 ± 9%; n = 57), average surface areas (11 to 215 m2 g-1), low EPA16—PAHs (2.3 to 6.6 mg kg-1) and high CECs (43 to 217 cmolc/kg)(average for all feedstocks, mainly woody shrubs) were obtained, in compliance with the European Biochar Certificate (EBC). Gas Emission Factors Mean emission factors for the flame curtain kilns were (g kg-1 biochar for all feedstocks); CO2 = 4300 ± 1700, CO = 54 ± 35, non-methane volatile organic compounds (NMVOC) = 6 ± 3, CH4 = 30 ± 60, aerosols (PM10) = 11 ± 15, total products of incomplete combustion (PIC) = 100 ± 83 and NOx = 0.4 ± 0.3. The flame curtain kilns emitted statistically significantly (p<0.05) lower amounts of CO, PIC and NOx than retort and traditional kilns, and higher amounts of CO2. Implications With benefits such as high quality biochar, low emission, no need for start-up fuel, fast pyrolysis time and, importantly, easy and cheap construction and operation the flame curtain technology represent a promising possibility for sustainable rural biochar production. PMID:27191397

  9. Measurements of Methane Emissions and Volatile Organic Compounds from Shale Gas Operations in the Marcellus Shale

    NASA Astrophysics Data System (ADS)

    Omara, M.; Subramanian, R.; Sullivan, M.; Robinson, A. L.; Presto, A. A.

    2014-12-01

    The Marcellus Shale is the most expansive shale gas reserve in play in the United States, representing an estimated 17 to 29 % of the total domestic shale gas reserves. The rapid and extensive development of this shale gas reserve in the past decade has stimulated significant interest and debate over the climate and environmental impacts associated with fugitive releases of methane and other pollutants, including volatile organic compounds. However, the nature and magnitude of these pollutant emissions remain poorly characterized. This study utilizes the tracer release technique to characterize total fugitive methane release rates from natural gas facilities in southwestern Pennsylvania and West Virginia that are at different stages of development, including well completion flowbacks and active production. Real-time downwind concentrations of methane and two tracer gases (acetylene and nitrous oxide) released onsite at known flow rates were measured using a quantum cascade tunable infrared laser differential absorption spectrometer (QC-TILDAS, Aerodyne, Billerica, MA) and a cavity ring down spectrometer (Model G2203, Picarro, Santa Clara, CA). Evacuated Silonite canisters were used to sample ambient air during downwind transects of methane and tracer plumes to assess volatile organic compounds (VOCs). A gas chromatograph with a flame ionization detector was used to quantify VOCs following the EPA Method TO-14A. A preliminary assessment of fugitive emissions from actively producing sites indicated that methane leak rates ranged from approximately 1.8 to 6.2 SCFM, possibly reflecting differences in facility age and installed emissions control technology. A detailed comparison of methane leak rates and VOCs emissions with recent published literature for other US shale gas plays will also be discussed.

  10. Influence of Composition and Deformation Conditions on the Strength and Brittleness of Shale Rock

    NASA Astrophysics Data System (ADS)

    Rybacki, E.; Reinicke, A.; Meier, T.; Makasi, M.; Dresen, G. H.

    2015-12-01

    Stimulation of shale gas reservoirs by hydraulic fracturing operations aims to increase the production rate by increasing the rock surface connected to the borehole. Prospective shales are often believed to display high strength and brittleness to decrease the breakdown pressure required to (re-) initiate a fracture as well as slow healing of natural and hydraulically induced fractures to increase the lifetime of the fracture network. Laboratory deformation tests were performed on several, mainly European black shales with different mineralogical composition, porosity and maturity at ambient and elevated pressures and temperatures. Mechanical properties such as compressive strength and elastic moduli strongly depend on shale composition, porosity, water content, structural anisotropy, and on pressure (P) and temperature (T) conditions, but less on strain rate. We observed a transition from brittle to semibrittle deformation at high P-T conditions, in particular for high porosity shales. At given P-T conditions, the variation of compressive strength and Young's modulus with composition can be roughly estimated from the volumetric proportion of all components including organic matter and pores. We determined also brittleness index values based on pre-failure deformation behavior, Young's modulus and bulk composition. At low P-T conditions, where samples showed pronounced post-failure weakening, brittleness may be empirically estimated from bulk composition or Young's modulus. Similar to strength, at given P-T conditions, brittleness depends on the fraction of all components and not the amount of a specific component, e.g. clays, alone. Beside strength and brittleness, knowledge of the long term creep properties of shales is required to estimate in-situ stress anisotropy and the healing of (propped) hydraulic fractures.

  11. Thermo-sensitive polymer nanospheres as a smart plugging agent for shale gas drilling operations.

    PubMed

    Wang, Wei-Ji; Qiu, Zheng-Song; Zhong, Han-Yi; Huang, Wei-An; Dai, Wen-Hao

    2017-01-01

    Emulsifier-free poly(methyl methacrylate-styrene) [P(MMA-St)] nanospheres with an average particle size of 100 nm were synthesized in an isopropyl alcohol-water medium by a solvothermal method. Then, through radical graft copolymerization of thermo-sensitive monomer N -isopropylacrylamide (NIPAm) and hydrophilic monomer acrylic acid (AA) onto the surface of P(MMA-St) nanospheres at 80 °C, a series of thermo-sensitive polymer nanospheres, named SD-SEAL with different lower critical solution temperatures (LCST), were prepared by adjusting the mole ratio of NIPAm to AA. The products were characterized by Fourier transform infrared spectroscopy, transmission electron microscopy, thermogravimetric analysis, particle size distribution, and specific surface area analysis. The temperature-sensitive behavior was studied by light transmittance tests, while the sealing performance was investigated by pressure transmission tests with Lungmachi Formation shales. The experimental results showed that the synthesized nanoparticles are sensitive to temperature and had apparent LCST values which increased with an increase in hydrophilic monomer AA. When the temperature was higher than its LCST value, SD-SEAL played a dual role of physical plugging and chemical inhibition, slowed down pressure transmission, and reduced shale permeability remarkably. The plugged layer of shale was changed to being hydrophobic, which greatly improved the shale stability.

  12. Thermal maturity and petroleum kitchen areas of Liassic Black Shales (Lower Jurassic) in the central Upper Rhine Graben, Germany

    NASA Astrophysics Data System (ADS)

    Böcker, Johannes; Littke, Ralf

    2016-03-01

    In the central Upper Rhine Graben (URG), several major oil fields have been sourced by Liassic Black Shales. In particular, the Posidonia Shale (Lias ɛ, Lower Toarcian) acts as excellent and most prominent source rock in the central URG. This study is the first comprehensive synthesis of Liassic maturity data in the URG area and SW Germany. The thermal maturity of the Liassic Black Shales has been analysed by vitrinite reflectance (VRr) measurements, which have been verified with T max and spore coloration index (SCI) data. In outcrops and shallow wells (<600 m), the Liassic Black Shales reached maturities equivalent to the very early or early oil window (ca. 0.50-0.60 % VRr). This maturity is found in Liassic outcrops and shallow wells in the entire URG area and surrounding Swabian Jura Mountains. Maximum temperatures of the Posidonia Shale before graben formation are in the order of 80-90 °C. These values were likely reached during Late Cretaceous times due to significant Upper Jurassic and minor Cretaceous deposition and influenced by higher heat flows of the beginning rift event at about 70 Ma. In this regard, the consistent regional maturity data (VRr, T max, SCI) of 0.5-0.6 % VRr for the Posidonia Shale close to surface suggest a major burial-controlled maturation before graben formation. These consistent maturity data for Liassic outcrops and shallow wells imply no significant oil generation and expulsion from the Posidonia Shale before formation of the URG. A detailed VRr map has been created using VRr values of 31 wells and outcrops with a structure map of the Posidonia Shale as reference map for a depth-dependent gridding operation. Highest maturity levels occur in the area of the Rastatt Trough (ca. 1.5 % VRr) and along the graben axis with partly very high VRr gradients (e.g. well Scheibenhardt 2). In these deep graben areas, the maximum temperatures which were reached during upper Oligocene to Miocene times greatly exceed those during the Cretaceous.

  13. Micro Mechanics and Microstructures of Major Subsurface Hydraulic Barriers: Shale Caprock vs Wellbore Cement

    NASA Astrophysics Data System (ADS)

    Radonjic, M.; Du, H.

    2015-12-01

    Shale caprocks and wellbore cements are two of the most common subsurface impermeable barriers in the oil and gas industry. More than 60% of effective seals for geologic hydrocarbon bearing formations as natural hydraulic barriers constitute of shale rocks. Wellbore cements provide zonal isolation as an engineered hydraulic barrier to ensure controlled fluid flow from the reservoir to the production facilities. Shale caprocks were deposited and formed by squeezing excess formation water and mineralogical transformations at different temperatures and pressures. In a similar process, wellbore cements are subjected to compression during expandable tubular operations, which lead to a rapid pore water propagation and secondary mineral precipitation within the cement. The focus of this research was to investigate the effect of wellbore cement compression on its microstructure and mechanical properties, as well as a preliminary comparison of shale caprocks and hydrated cement. The purpose of comparative evaluation of engineered vs natural hydraulic barrier materials is to further improve wellbore cement durability when in contact with geofluids. The micro-indentation was utilized to evaluate the change in cement mechanical properties caused by compression. Indentation experiments showed an overall increase in hardness and Young's modulus of compressed cement. Furthermore, SEM imaging and Electron Probe Microanalysis showed mineralogical alterations and decrease in porosity. These can be correlated with the cement rehydration caused by microstructure changes as a result of compression. The mechanical properties were also quantitatively compared to shale caprock samples in order to investigate the similarities of hydraulic barrier features that could help to improve the subsurface application of cement in zonal isolation. The comparison results showed that the poro-mechanical characteristics of wellbore cement appear to be improved when inherent pore sizes are shifted to predominantly nano-scale range as characteristic of pore-size distribution typical for shale rocks. The effect of compression on cement appears to petrophysically alter cement towards the properties of shale caprocks, although the process is achieved much faster than in the case of shale diagenesis over geological times.

  14. Geology, sequence stratigraphy, and oil and gas assessment of the Lewis Shale Total Petroleum System, San Juan Basin, New Mexico and Colorado: Chapter 5 in Total petroleum systems and geologic assessment of undiscovered oil and gas resources in the San Juan Basin Province, exclusive of Paleozoic rocks, New Mexico and Colorado

    USGS Publications Warehouse

    Dubiel, R.F.

    2013-01-01

    The Lewis Shale Total Petroleum System (TPS) in the San Juan Basin Province contains a continuous gas accumulation in three distinct stratigraphic units deposited in genetically related depositional environments: offshore-marine shales, mudstones, siltstones, and sandstones of the Lewis Shale, and marginal-marine shoreface sandstones and siltstones of both the La Ventana Tongue and the Chacra Tongue of the Cliff House Sandstone. The Lewis Shale was not a completion target in the San Juan Basin (SJB) in early drilling from about the 1950s through 1990. During that time, only 16 wells were completed in the Lewis from natural fracture systems encountered while drilling for deeper reservoir objectives. In 1991, existing wells that penetrated the Lewis Shale were re-entered by petroleum industry operators in order to fracture-stimulate the Lewis and to add Lewis gas production onto preexisting, and presumably often declining, Mesaverde Group production stratigraphically lower in the section. By 1997, approximately 101 Lewis completions had been made, both as re-entries into existing wells and as add-ons to Mesaverde production in new wells. Based on recent industry drilling and completion practices leading to successful gas production from the Lewis and because new geologic models indicate that the Lewis Shale contains both source rocks and reservoir rocks, the Lewis Shale TPS was defined and evaluated as part of this U.S. Geological Survey oil and gas assessment of the San Juan Basin. Gas in the Lewis Shale Total Petroleum System is produced from shoreface sandstones and siltstones in the La Ventana and Chacra Tongues and from distal facies of these prograding clastic units that extend into marine rocks of the Lewis Shale in the central part of the San Juan Basin. Reservoirs are in shoreface sandstone parasequences of the La Ventana and Chacra and their correlative distal parasequences in the Lewis Shale where both natural and artificially enhanced fractures produce gas. The Lewis Continuous Gas Assessment Unit (AU 50220261) is thought to be self-sourced from and self-sealed by marine shales and mudstones deposited within the Lewis Shale that enclose clastic parasequences in the La Ventana and Chacra Tongues. The gas resource is thought to be a continuous accumulation sourced from the Lewis Shale throughout the depositional basin. In the Lewis Continuous Gas Assessment Unit (AU 50220261), for continuous gas resources, there is an F95 of 8,315.22 billion cubic feet of gas (BCFG) and an F5 of 12,282.31 BCFG, with a mean value of 10,177.24 BCFG. There is an F95 of 18.08 million barrels of natural gas liquids (MMBNGL) and an F5 of 47.32 MMBNGL, with a mean of 30.53 MMBNGL.

  15. Water Resources Management for Shale Energy Development

    NASA Astrophysics Data System (ADS)

    Yoxtheimer, D.

    2015-12-01

    The increase in the exploration and extraction of hydrocarbons, especially natural gas, from shale formations has been facilitated by advents in horizontal drilling and hydraulic fracturing technologies. Shale energy resources are very promising as an abundant energy source, though environmental challenges exist with their development, including potential adverse impacts to water quality. The well drilling and construction process itself has the potential to impact groundwater quality, however if proper protocols are followed and well integrity is established then impacts such as methane migration or drilling fluids releases can be minimized. Once a shale well has been drilled and hydraulically fractured, approximately 10-50% of the volume of injected fluids (flowback fluids) may flow out of the well initially with continued generation of fluids (produced fluids) throughout the well's productive life. Produced fluid TDS concentrations often exceed 200,000 mg/L, with elevated levels of strontium (Sr), bromide (Br), sodium (Na), calcium (Ca), barium (Ba), chloride (Cl), radionuclides originating from the shale formation as well as fracturing additives. Storing, managing and properly disposisng of these fluids is critical to ensure water resources are not impacted by unintended releases. The most recent data in Pennsylvania suggests an estimated 85% of the produced fluids were being recycled for hydraulic fracturing operations, while many other states reuse less than 50% of these fluids and rely moreso on underground injection wells for disposal. Over the last few years there has been a shift to reuse more produced fluids during well fracturing operations in shale plays around the U.S., which has a combination of economic, regulatory, environmental, and technological drivers. The reuse of water is cost-competitive with sourcing of fresh water and disposal of flowback, especially when considering the costs of advanced treatment to or disposal well injection and lessens the use of fresh water and disposal needs thus is a major innovation for the industry. Proper water resource managment techniques from the begining of drilling through production are critical to ensure the energy necessary for society is produced while also protecting the environment.

  16. Effects of Hydraulic Frac Fluids on Subsurface Microbial Communities in Gas Shales

    NASA Astrophysics Data System (ADS)

    Jiménez, Núria; Krüger, Martin

    2014-05-01

    Shale gas is being considered as a complementary energy resource to coal or other fossil fuels. The exploitation of unconventional gas reservoirs requires the use of advanced drilling techniques and hydraulic stimulation (fracking). During fracking operations, large amounts of fluids (fresh water, proppants and chemical additives) are injected at high pressures into the formations, to produce fractures and fissures, and thus to release gas from the source rock into the wellbore. The injected fluids partly remain in the formation, while about 20 to 40% of the originally injected fluid flows back to the surface, together with formation waters, sometimes containing dissolved hydrocarbons, high salt concentrations, etc. The overall production operation will likely affect and be affected by subsurface microbial communities associated to the shale formations. On the one hand microbial activity (like growth, biofilm formation) can cause unwanted processes like corrosion, clogging, etc. On the other hand, the introduction of frac fluids could either enhance microbial growth or cause toxicity to the shale-associated microbial communities. To investigate the potential impacts of changing environmental reservoir conditions, like temperature, salinity, oxgen content and pH, as well as the introduction of frac or geogenic chemicals on subsurface microbial communities, laboratory experiments under in situ conditions (i.e. high temperatures and pressures) are being conducted. Enrichment cultures with samples from several subsurface environments (e.g. shale and coal deposits, gas reservoirs, geothermal fluids) have been set up using a variety of carbon sources, including hydrocarbons and typical frac chemicals. Classical microbiological and molecular analysis are used to determine changes in the microbial abundance, community structure and function after the exposure to different single frac chemicals, "artificial" frac fluids or production waters. On the other hand, potential transformation reactions of frac or geogenic chemicals by subsurface microbiota and their lifetime are investigated. In our "fracking simulation" experiments, an increasing number of hydrocarbon-degrading or halophilic microorganisms is to be expected after exposure of subsurface communities to artificial production waters. Whereas the introduction of freshwater and of easily biodegradable substrates might favor the proliferation of fast-growing generalistic heterotrophs in shale-associated communities. Nevertheless toxicity of some of the frac components cannot be excluded.

  17. 43 CFR 3931.10 - Exploration plans and plans of development for mining and in situ operations.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... for mining and in situ operations. 3931.10 Section 3931.10 Public Lands: Interior Regulations Relating....10 Exploration plans and plans of development for mining and in situ operations. (a) The POD must... development of the oil shale resources in the lease. (b) The operator must submit to the proper BLM office an...

  18. 43 CFR 3931.10 - Exploration plans and plans of development for mining and in situ operations.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... for mining and in situ operations. 3931.10 Section 3931.10 Public Lands: Interior Regulations Relating....10 Exploration plans and plans of development for mining and in situ operations. (a) The POD must... development of the oil shale resources in the lease. (b) The operator must submit to the proper BLM office an...

  19. 43 CFR 3931.10 - Exploration plans and plans of development for mining and in situ operations.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... for mining and in situ operations. 3931.10 Section 3931.10 Public Lands: Interior Regulations Relating....10 Exploration plans and plans of development for mining and in situ operations. (a) The POD must... development of the oil shale resources in the lease. (b) The operator must submit to the proper BLM office an...

  20. 43 CFR 3931.10 - Exploration plans and plans of development for mining and in situ operations.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... for mining and in situ operations. 3931.10 Section 3931.10 Public Lands: Interior Regulations Relating....10 Exploration plans and plans of development for mining and in situ operations. (a) The POD must... development of the oil shale resources in the lease. (b) The operator must submit to the proper BLM office an...

  1. Fossil fuel furnace reactor

    DOEpatents

    Parkinson, William J.

    1987-01-01

    A fossil fuel furnace reactor is provided for simulating a continuous processing plant with a batch reactor. An internal reaction vessel contains a batch of shale oil, with the vessel having a relatively thin wall thickness for a heat transfer rate effective to simulate a process temperature history in the selected continuous processing plant. A heater jacket is disposed about the reactor vessel and defines a number of independent controllable temperature zones axially spaced along the reaction vessel. Each temperature zone can be energized to simulate a time-temperature history of process material through the continuous plant. A pressure vessel contains both the heater jacket and the reaction vessel at an operating pressure functionally selected to simulate the continuous processing plant. The process yield from the oil shale may be used as feedback information to software simulating operation of the continuous plant to provide operating parameters, i.e., temperature profiles, ambient atmosphere, operating pressure, material feed rates, etc., for simulation in the batch reactor.

  2. Hydrocarbon recovery from diatomite

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Scinta, J.

    1984-05-15

    Supercritical extraction of diatomaceous earth results in a much more significant improvement in hydrocarbon recovery over Fischer retorting than achievable with tar sands. Process and apparatus for supercritical extraction of diatomaceous earth are disclosed.

  3. Military Fuels Refined from Paraho-II Shale Oil.

    DTIC Science & Technology

    1981-03-01

    FUELS REFINED O FROM PARAHO-II SHALE OIL INTERIM REPORT AFLRL No. 131 4!t by J.N. Bowden E.C. Owens D.W. Naegeli L.L. Stavinoha U.S. Army Fuels and...J.N./Bowden, E.C. /Owens, D.W./ Naegeli / DAAK70-78-C-0001 € L.L. Stavinoha DAAK70-80-C-0001 V 9 PERFORMING ORGANIZATION NAME AND ADDRESSES J0...Combustor Design and Oper- ating Conditions," Combustion Science and Technology, 19, 119, 1979. 16. Moses, C.A., and Naegeli , D.W., "Fuel Property

  4. A critical review of the risks to water resources from unconventional shale gas development and hydraulic fracturing in the United States.

    PubMed

    Vengosh, Avner; Jackson, Robert B; Warner, Nathaniel; Darrah, Thomas H; Kondash, Andrew

    2014-01-01

    The rapid rise of shale gas development through horizontal drilling and high volume hydraulic fracturing has expanded the extraction of hydrocarbon resources in the U.S. The rise of shale gas development has triggered an intense public debate regarding the potential environmental and human health effects from hydraulic fracturing. This paper provides a critical review of the potential risks that shale gas operations pose to water resources, with an emphasis on case studies mostly from the U.S. Four potential risks for water resources are identified: (1) the contamination of shallow aquifers with fugitive hydrocarbon gases (i.e., stray gas contamination), which can also potentially lead to the salinization of shallow groundwater through leaking natural gas wells and subsurface flow; (2) the contamination of surface water and shallow groundwater from spills, leaks, and/or the disposal of inadequately treated shale gas wastewater; (3) the accumulation of toxic and radioactive elements in soil or stream sediments near disposal or spill sites; and (4) the overextraction of water resources for high-volume hydraulic fracturing that could induce water shortages or conflicts with other water users, particularly in water-scarce areas. Analysis of published data (through January 2014) reveals evidence for stray gas contamination, surface water impacts in areas of intensive shale gas development, and the accumulation of radium isotopes in some disposal and spill sites. The direct contamination of shallow groundwater from hydraulic fracturing fluids and deep formation waters by hydraulic fracturing itself, however, remains controversial.

  5. Computerized X-ray Microtomography Observations and Fluid Flow Measurements of the Effect of Effective Stress on Fractured Reservoir Seal Shale

    NASA Astrophysics Data System (ADS)

    Welch, N.; Crawshaw, J.; Boek, E.

    2014-12-01

    The successful storage of carbon dioxide in geologic formations requires an in-depth understanding of all reservoir characteristics and morphologies. An intact and substantial seal formation above a storage reservoir is required for a significant portion of the initial sealing mechanisms believed to occur during carbon dioxide storage operations. Shales are a common seal formation rock types found above numerous hydrocarbon reservoirs, as well as potential saline aquifer storage locations. Shales commonly have very low permeability, however they also have the tendency to be quite fissile, and the formation of fractures within these seals can have a significant detrimental effect on the sealing potential of a reservoir and amount to large areas of high permeability and low capillary pressures compared to the surrounding intact rock. Fractured shales also have an increased current interest due to the increasing development of shale gas reservoirs using hydraulic fracturing techniques. This work shows the observed changes that occur within fractured pieces of reservoir seal shale samples, along with quarry analogues, using an in-situ micro-CT fluid flow imaging apparatus with a Hassler type core holder. Changes within the preferential flow path under different stress regimes as well as physical changes to the fracture geometry are reported. Lattice Boltzmann flow simulations were then performed on the extracted flow paths and compared to experiment permeability measurements. The preferential flow path of carbon dioxide through the fracture network is also observed and compared to the results two-phase Lattice Boltzmann fluid flow simulations.

  6. Geotechnical centrifuge under construction

    NASA Astrophysics Data System (ADS)

    Richman, Barbara T.

    Modifications are underway at the National Aeronautics and Space Administration (NASA) Ames Research Center in California to transform a centrifuge used in the Apollo space program to the largest geotechnical centrifuge in the free world. The centrifuge, to be finished in August and opened next January, following check out and tuning, will enable geoscientists to model stratigraphic features down to 275 m below the earth's surface. Scientists will be able to model processes that are coupled with body force loading, including earthquake response of earth structures and soil structure interaction; rubbled-bed behavior during in situ coal gasification or in oil shale in situ retorts; behavior of frozen soil; frost heave; behavior of offshore structures; wave-seabed interactions; explosive cratering; and blast-induced liquefaction.The centrifuge will have a load capacity of 900-g-tons (short); that is, it will be able to carry a net soil load of 3 short tons to a centripetal acceleration of 300 times the acceleration caused by gravity. Modified for a total cost of $2.4 million, the centrifuge will have an arm with a 7.6-m radius and a swinging platform or bucket at its end that will be able to carry a payload container measuring 2.1×2.1 m. An additional future input of $500,000 would enable the purchase of a larger bucket that could accommodate a load of up to 20 tons, according to Charles Babendreier, program director for geotechnical engineering at the National Science Foundation. Additional cooling for the motor would also be required. The centrifuge has the capability of accelerating the 20-ton load to 100 g.

  7. Groundwater quality at the Saline Valley Conservancy District well field, Gallatin County, Illinois

    USGS Publications Warehouse

    Gorczynska, Magdalena; Kay, Robert T.

    2016-08-29

    The Saline Valley Conservancy District (SVCD) operates wells that supply water to most of the water users in Saline and Gallatin Counties, Illinois. The SVCD wells draw water from a shallow sand and gravel aquifer located in close proximity to an abandoned underground coal mine, several abandoned oil wells, and at least one operational oil well. The aquifer that yields water to the SVCD wells overlies the New Albany Shale, which may be subjected to shale-gas exploration by use of hydraulic fracturing. The SVCD has sought technical assistance from the U.S. Geological Survey to characterize baseline water quality at the SVCD well field so that future changes in water quality (if any) and the cause of those changes (including mine leachate and hydraulic fracturing) can be identified.

  8. Discrete fracture modeling of multiphase flow and hydrocarbon production in fractured shale or low permeability reservoirs

    NASA Astrophysics Data System (ADS)

    Hao, Y.; Settgast, R. R.; Fu, P.; Tompson, A. F. B.; Morris, J.; Ryerson, F. J.

    2016-12-01

    It has long been recognized that multiphase flow and transport in fractured porous media is very important for various subsurface applications. Hydrocarbon fluid flow and production from hydraulically fractured shale reservoirs is an important and complicated example of multiphase flow in fractured formations. The combination of horizontal drilling and hydraulic fracturing is able to create extensive fracture networks in low permeability shale rocks, leading to increased formation permeability and enhanced hydrocarbon production. However, unconventional wells experience a much faster production decline than conventional hydrocarbon recovery. Maintaining sustainable and economically viable shale gas/oil production requires additional wells and re-fracturing. Excessive fracturing fluid loss during hydraulic fracturing operations may also drive up operation costs and raise potential environmental concerns. Understanding and modeling processes that contribute to decreasing productivity and fracturing fluid loss represent a critical component for unconventional hydrocarbon recovery analysis. Towards this effort we develop a discrete fracture model (DFM) in GEOS (LLNL multi-physics computational code) to simulate multiphase flow and transfer in hydraulically fractured reservoirs. The DFM model is able to explicitly account for both individual fractures and their surrounding rocks, therefore allowing for an accurate prediction of impacts of fracture-matrix interactions on hydrocarbon production. We apply the DFM model to simulate three-phase (water, oil, and gas) flow behaviors in fractured shale rocks as a result of different hydraulic stimulation scenarios. Numerical results show that multiphase flow behaviors at the fracture-matrix interface play a major role in controlling both hydrocarbon production and fracturing fluid recovery rates. The DFM model developed in this study will be coupled with the existing hydro-fracture model to provide a fully integrated geomechanical and reservoir simulation capability for an accurate prediction and assessment of hydrocarbon production and hydraulic fracturing performance. This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.

  9. Assessment of Factors Influencing Effective CO 2 Storage Capacity and Injectivity in Eastern Gas Shales

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Godec, Michael

    Building upon advances in technology, production of natural gas from organic-rich shales is rapidly developing as a major hydrocarbon supply option in North America and around the world. The same technology advances that have facilitated this revolution - dense well spacing, horizontal drilling, and hydraulic fracturing - may help to facilitate enhanced gas recovery (EGR) and carbon dioxide (CO 2) storage in these formations. The potential storage of CO 2 in shales is attracting increasing interest, especially in Appalachian Basin states that have extensive shale deposits, but limited CO 2 storage capacity in conventional reservoirs. The goal of this cooperativemore » research project was to build upon previous and on-going work to assess key factors that could influence effective EGR, CO 2 storage capacity, and injectivity in selected Eastern gas shales, including the Devonian Marcellus Shale, the Devonian Ohio Shale, the Ordovician Utica and Point Pleasant shale and equivalent formations, and the late Devonian-age Antrim Shale. The project had the following objectives: (1) Analyze and synthesize geologic information and reservoir data through collaboration with selected State geological surveys, universities, and oil and gas operators; (2) improve reservoir models to perform reservoir simulations to better understand the shale characteristics that impact EGR, storage capacity and CO 2 injectivity in the targeted shales; (3) Analyze results of a targeted, highly monitored, small-scale CO 2 injection test and incorporate into ongoing characterization and simulation work; (4) Test and model a smart particle early warning concept that can potentially be used to inject water with uniquely labeled particles before the start of CO 2 injection; (5) Identify and evaluate potential constraints to economic CO 2 storage in gas shales, and propose development approaches that overcome these constraints; and (6) Complete new basin-level characterizations for the CO 2 storage capacity and injectivity potential of the targeted eastern shales. In total, these Eastern gas shales cover an area of over 116 million acres, may contain an estimated 6,000 trillion cubic feet (Tcf) of gas in place, and have a maximum theoretical storage capacity of over 600 million metric tons. Not all of this gas in-place will be recoverable, and economics will further limit how much will be economic to produce using EGR techniques with CO 2 injection. Reservoir models were developed and simulations were conducted to characterize the potential for both CO 2 storage and EGR for the target gas shale formations. Based on that, engineering costing and cash flow analyses were used to estimate economic potential based on future natural gas prices and possible financial incentives. The objective was to assume that EGR and CO 2 storage activities would commence consistent with the historical development practices. Alternative CO 2 injection/EGR scenarios were considered and compared to well production without CO 2 injection. These simulations were conducted for specific, defined model areas in each shale gas play. The resulting outputs were estimated recovery per typical well (per 80 acres), and the estimated CO 2 that would be injected and remain in the reservoir (i.e., not produced), and thus ultimately assumed to be stored. The application of this approach aggregated to the entire area of the four shale gas plays concluded that they contain nearly 1,300 Tcf of both primary production and EGR potential, of which an estimated 460 Tcf could be economic to produce with reasonable gas prices and/or modest incentives. This could facilitate the storage of nearly 50 Gt of CO 2 in the Marcellus, Utica, Antrim, and Devonian Ohio shales.« less

  10. 43 CFR 3931.80 - Core or test hole samples and cuttings.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... OF LAND MANAGEMENT, DEPARTMENT OF THE INTERIOR RANGE MANAGEMENT (4000) MANAGEMENT OF OIL SHALE.... The records must include a log of all strata penetrated and conditions encountered, such as water, gas... operation or any deposit of oil, gas, other mineral substances, or ground water. (c) Operators may convert...

  11. 41 CFR 50-204.2 - General safety and health standards.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    .... Part 221—Oil and Gas Operating Regulations. Part 231—Operating and Safety Regulations Governing the Mining of Potash; Oil Shale, Sodium, and Phosphate; Sulphur; and Gold, Silver, or Quicksilver; and Other... 14 CFR part 103 Hazardous material regulation—Transportation of compressed gases. (4) U.S. Department...

  12. 43 CFR 3931.80 - Core or test hole samples and cuttings.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... OF LAND MANAGEMENT, DEPARTMENT OF THE INTERIOR MINERALS MANAGEMENT (3000) MANAGEMENT OF OIL SHALE.... The records must include a log of all strata penetrated and conditions encountered, such as water, gas... operation or any deposit of oil, gas, other mineral substances, or ground water. (c) Operators may convert...

  13. 43 CFR 3931.80 - Core or test hole samples and cuttings.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... OF LAND MANAGEMENT, DEPARTMENT OF THE INTERIOR MINERALS MANAGEMENT (3000) MANAGEMENT OF OIL SHALE.... The records must include a log of all strata penetrated and conditions encountered, such as water, gas... operation or any deposit of oil, gas, other mineral substances, or ground water. (c) Operators may convert...

  14. 41 CFR 50-204.2 - General safety and health standards.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    .... Part 221—Oil and Gas Operating Regulations. Part 231—Operating and Safety Regulations Governing the Mining of Potash; Oil Shale, Sodium, and Phosphate; Sulphur; and Gold, Silver, or Quicksilver; and Other... 14 CFR part 103 Hazardous material regulation—Transportation of compressed gases. (4) U.S. Department...

  15. 43 CFR 3931.80 - Core or test hole samples and cuttings.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... OF LAND MANAGEMENT, DEPARTMENT OF THE INTERIOR MINERALS MANAGEMENT (3000) MANAGEMENT OF OIL SHALE.... The records must include a log of all strata penetrated and conditions encountered, such as water, gas... operation or any deposit of oil, gas, other mineral substances, or ground water. (c) Operators may convert...

  16. Effect of PDC bit design and confining pressure on bit-balling tendencies while drilling shale using water base mud

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hariharan, P.R.; Azar, J.J.

    1996-09-01

    A good majority of all oilwell drilling occurs in shale and other clay-bearing rocks. In the light of relatively fewer studies conducted, the problem of bit-balling in PDC bits while drilling shale has been addressed with the primary intention of attempting to quantify the degree of balling, as well as to investigate the influence of bit design and confining pressures. A series of full-scale laboratory drilling tests under simulated down hole conditions were conducted utilizing seven different PDC bits in Catoosa shale. Test results have indicated that the non-dimensional parameter R{sub d} [(bit torque).(weight-on-bit)/(bit diameter)] is a good indicator ofmore » the degree of bit-balling and that it correlated well with Specific-Energy. Furthermore, test results have shown bit-profile and bit-hydraulic design to be key parameters of bit design that dictate the tendency of balling in shales under a given set of operating conditions. A bladed bit was noticed to ball less compared to a ribbed or open-faced bit. Likewise, related to bit profile, test results have indicated that the parabolic profile has a lesser tendency to ball compared to round and flat profiles. The tendency of PDC bits to ball was noticed to increase with increasing confining pressures for the set of drilling conditions used.« less

  17. Estimating emissions of toxic hydrocarbons from natural gas production sites in the Barnett Shale region

    NASA Astrophysics Data System (ADS)

    Marrero, J. E.; Townsend-Small, A.; Lyon, D. R.; Tsai, T.; Meinardi, S.; Blake, D. R.

    2015-12-01

    Throughout the past decade, shale gas operations have moved closer to urban centers and densely populated areas, contributing to growing public concerns regarding exposure to hazardous air pollutants (HAPs). These HAPs include gases like hexane, 1,3-butadiene and BTEX compounds, which can cause minor health effects from short-term exposure or possibly cancer due to prolonged exposure. During the Barnett Shale Coordinated Campaign in October, 2013, ground-based whole air samples revealed enhancements in several of these toxic volatile organic compounds (VOCs) downwind of natural gas well pads and compressor stations. Two methods were used to estimate the emission rate of several HAPs in the Barnett Shale. The first method utilized CH4 flux measurements derived from the Picarro Mobile Flux Plane (MFP) and taken concurrently with whole air samples, while the second used a CH4 emissions inventory developed for the Barnett Shale region. From these two approaches, the regional emission estimate for benzene (C6H6) ranged from 48 ± 16 to 84 ± 26 kg C6H6 hr-1. A significant regional source of atmospheric benzene is evident, despite measurement uncertainty and limited number of samples. The extent to which these emission rates equate to a larger public health risk is unclear, but is of particular interest as natural gas productions continues to expand.

  18. Heterogeneity of shales in different scales and its implications to laboratory analyses - examples from sedimentology and organic geochemistry study of the Lower Paleozoic shales from shale gas exploration well located in the Baltic Basin, Poland.

    NASA Astrophysics Data System (ADS)

    Roszkowska-Remin, Joanna; Janas, Marcin

    2017-04-01

    We present the litho-sedimentological, organic geochemical results and organic porosity estimation of the Ordovician and Silurian shales in the SeqWell (shale gas exploration well located in the Pomerania region, Poland). The most perspective black and bituminous shales of the Upper Ordovician and the Lower Silurian may seem to be homogeneous. However, our results reveal that these shales show heterogeneity at different scales (m to mm). For example, in most cases the decrease of TOC content in the m scale is related to pyroclastic rock intercalations and "dark bioturbations" with no color difference when compared with surrounding sediments. While in cm scale heterogeneity is related to bioturbations, density of organic-rich laminas, or abundance of carbonates and pyrite. Without a detailed sedimentological study of polished core surfaces and Rock-Eval analyses those observations are rather invisible. The correct interpretation of results requires the understanding of rock's heterogeneity in different scales. It has a critical importance for laboratory tests applied on few cm long samples, especially if the results are to be extrapolated to wider intervals. Therefore in ShaleSeq project, a detailed sedimentological core logging and analysis of geochemical parameters of perspective formations in m to mm scale was performed for the first time. The results show good correlation between bioturbation index (BI) and organic geochemical indicators like organic carbon content (TOC) or oxic deposition conditions indicator (oxygen index - OI) leading to the assumption that environmental conditions may have played a crucial role in organic carbon preservation. The geochemical analyses of 12 samples showed that even within the few cm long sections shale can be really diversified. Eight out of twelve analyzed samples were considered geochemically mostly homogeneous, whilst four of them showed evident heterogeneity. Concluding, the sampling should be preceded by detailed sedimentological study, as it allows to control if the chosen samples are representative for wider intervals and give opportunity to place the laboratory results in the wider context. An attempt to estimate organic porosity using Rock-Eval data was based on Marathon Oil company study of the Polish Lower Paleozoic shales. The results of this study and suggested equations were used to calculate hypothetical organic porosity of the most perspective shales in the SeqWell. Calculated organic porosities in % bulk volume of rock suggested that organic porosity for Upper Ordovician and Lower Silurian shales in SeqWell may be at the level of 0,1-2,9% in bulk volume of rock. These results would suggest that organic porosity doesn't play a major role in total porosity system in these shales at the certain thermal maturity level. The hypothetical organic porosity values were not validated by the microscopic study though. Our study are part of the ShaleSeq Project co-funded by Norway Grants of the Polish-Norwegian Research Programme operated by the National Centre for Research and Development.

  19. Modeling Studies to Constrain Fluid and Gas Migration Associated with Hydraulic Fracturing Operations

    NASA Astrophysics Data System (ADS)

    Rajaram, H.; Birdsell, D.; Lackey, G.; Karra, S.; Viswanathan, H. S.; Dempsey, D.

    2015-12-01

    The dramatic increase in the extraction of unconventional oil and gas resources using horizontal wells and hydraulic fracturing (fracking) technologies has raised concerns about potential environmental impacts. Large volumes of hydraulic fracturing fluids are injected during fracking. Incidents of stray gas occurrence in shallow aquifers overlying shale gas reservoirs have been reported; whether these are in any way related to fracking continues to be debated. Computational models serve as useful tools for evaluating potential environmental impacts. We present modeling studies of hydraulic fracturing fluid and gas migration during the various stages of well operation, production, and subsequent plugging. The fluid migration models account for overpressure in the gas reservoir, density contrast between injected fluids and brine, imbibition into partially saturated shale, and well operations. Our results highlight the importance of representing the different stages of well operation consistently. Most importantly, well suction and imbibition both play a significant role in limiting upward migration of injected fluids, even in the presence of permeable connecting pathways. In an overall assessment, our fluid migration simulations suggest very low risk to groundwater aquifers when the vertical separation from a shale gas reservoir is of the order of 1000' or more. Multi-phase models of gas migration were developed to couple flow and transport in compromised wellbores and subsurface formations. These models are useful for evaluating both short-term and long-term scenarios of stray methane release. We present simulation results to evaluate mechanisms controlling stray gas migration, and explore relationships between bradenhead pressures and the likelihood of methane release and transport.

  20. An analysis of European shale gas policies: Why EU member states are pursuing divergent 'fracking' strategies

    NASA Astrophysics Data System (ADS)

    Thorne, Ben

    The recent progression in hydraulic fracturing or 'fracking' has enabled energy companies to extract once-considered, inaccessible hydrocarbons. The United States has been at the forefront of this controversial industry, revolutionizing the energy market by becoming the world's largest oil and natural gas producer as a result of its vast shale deposits. Shale oil and gas deposits are not unique to North America, however. EU member states are faced with the dilemma of whether to permit fracking domestically or suspend operations. The United Kingdom and Romania have issued concessions for exploring their reserves, while France and Bulgaria have halted all drilling efforts, citing environmental concerns. This paper evaluates why these four European countries pursued divergent fracking policies, arguing that energy security and Russian-relations are more relevant and powerful explanatory factors than a country's commitment to protecting the environment.

  1. Community-based risk assessment of water contamination from high-volume horizontal hydraulic fracturing.

    PubMed

    Penningroth, Stephen M; Yarrow, Matthew M; Figueroa, Abner X; Bowen, Rebecca J; Delgado, Soraya

    2013-01-01

    The risk of contaminating surface and groundwater as a result of shale gas extraction using high-volume horizontal hydraulic fracturing (fracking) has not been assessed using conventional risk assessment methodologies. Baseline (pre-fracking) data on relevant water quality indicators, needed for meaningful risk assessment, are largely lacking. To fill this gap, the nonprofit Community Science Institute (CSI) partners with community volunteers who perform regular sampling of more than 50 streams in the Marcellus and Utica Shale regions of upstate New York; samples are analyzed for parameters associated with HVHHF. Similar baseline data on regional groundwater comes from CSI's testing of private drinking water wells. Analytic results for groundwater (with permission) and surface water are made publicly available in an interactive, searchable database. Baseline concentrations of potential contaminants from shale gas operations are found to be low, suggesting that early community-based monitoring is an effective foundation for assessing later contamination due to fracking.

  2. Standardization of vitrinite reflectance measurements in shale petroleum systems: How accurate are my Ro data?

    USGS Publications Warehouse

    Hackley, Paul C.

    2014-01-01

    Vitrinite reflectance generally is considered the most robust thermal maturity parameter available for application to hydrocarbon exploration and petroleum system evaluation. However, until 2011 there was no standardized methodology available to provide guidelines for vitrinite reflectance measurements in shale. Efforts to correct this deficiency resulted in publication of ASTM D7708-11: Standard test method for microscopical determination of the reflectance of vitrinite dispersed in sedimentary rocks. In 2012-2013, an interlaboratory exercise was conducted to establish precision limits for the measurement technique. Six samples, representing a wide variety of shale, were tested in duplicate by 28 analysts in 22 laboratories from 14 countries. Samples ranged from immature to overmature (Ro 0.31-1.53%), from organic-rich to organic-lean (1-22 wt.% total organic carbon), and contained Type I (lacustrine), Type II (marine), and Type III (terrestrial) kerogens. Repeatability values (difference between repetitive results from same operator, same conditions) ranged from 0.03-0.11% absolute reflectance, whereas reproducibility values (difference between results obtained on same test material by different operators, different laboratories) ranged from 0.12-0.54% absolute reflectance. Repeatability and reproducibility degraded consistently with increasing maturity and decreasing organic content. However, samples with terrestrial kerogens (Type III) fell off this trend, showing improved levels of reproducibility due to higher vitrinite content and improved ease of identification. Operators did not consistently meet the reporting requirements of the test method, indicating that a common reporting template is required to improve data quality. The most difficult problem encountered was the petrographic distinction of solid bitumens and low-reflecting inert macerals from vitrinite when vitrinite occurred with reflectance ranges overlapping the other components. Discussion among participants suggested this problem could not be corrected via kerogen concentration or solvent extraction and is related to operator training and background. Poor reproducibility (0.54% absolute reflectance, related to increased anisotropy?) in the highest maturity sample (Ro 1.53%) suggests that vitrinite reflectance is not a highly reliable parameter in such rocks. Future work will investigate opportunities to improve reproducibility in similar high maturity, organic-lean shale varieties.

  3. The Impacts of Hydraulic Fracturing in the Eagle Ford Shale Region, South Texas: Hands-On Activities for Middle and High School Students

    NASA Astrophysics Data System (ADS)

    Kohlmeyer, C.; Loisel, J.; Schade, G. W.

    2016-12-01

    The Eagle Ford Shale (EFS) region of south-central Texas is strongly affected by a rapid increase in unconventional oil and gas production, and it ranks amongst the top production regions of the country. Across the EFS region and elsewhere, the fracking boom has been causing large emissions of methane (CH4) and non-methane hydrocarbons to the atmosphere, with direct consequences on atmospheric GHG concentration and air quality. An increase in seismic activity has also been reported in the area. Since these effects were initially underestimated, fracking operations remain largely unmitigated by regulation. As a result, large-scale oil and gas operations are found in close geographical proximity to rural communities who are uninformed and/or not accustomed to such operations and their effects on the environment and human health. Here we present a few hands-on activities that are being developed to educate middle and high school students on hydraulic fracturing and associated land-use change, water and air pollution, and seismicity induced by deep well injection. Modules on the carbon cycle (with an emphasis on CO2 and CH4), global environmental change, and human energy consumption around the world and main energy sources are also under development. Each activity is either based on scientific data gathered by students or information that is freely available; mapping exercises and time series analysis are included. For example, students will implement a geographic information system (GIS) to study local land-use change using satellite imagery analysis. These activities will be implemented in Fall 2016 and Spring 2017 in at least one Independent School District of the Eagle Ford Shale area. A broadly applicable educational booklet/teaching module on atmospheric CH4 emissions, with an emphasis on the environmental impacts of the oil and gas industry as the dominant source of emissions and land use change in shale areas, will be published.

  4. Towards the development of rapid screening techniques for shale gas core properties

    NASA Astrophysics Data System (ADS)

    Cave, Mark R.; Vane, Christopher; Kemp, Simon; Harrington, Jon; Cuss, Robert

    2013-04-01

    Shale gas has been produced for many years in the U.S.A. and forms around 8% of total their natural gas production. Recent testing for gas on the Fylde Coast in Lancashire UK suggests there are potentially large reserves which could be exploited. The increasing significance of shale gas has lead to the need for deeper understanding of shale behaviour. There are many factors which govern whether a particular shale will become a shale gas resource and these include: i) Organic matter abundance, type and thermal maturity; ii) Porosity-permeability relationships and pore size distribution; iii) Brittleness and its relationship to mineralogy and rock fabric. Measurements of these properties require sophisticated and time consuming laboratory techniques (Josh et al 2012), whereas rapid screening techniques could provide timely results which could improve the efficiency and cost effectiveness of exploration. In this study, techniques which are portable and provide rapid on-site measurements (X-ray Fluorescence (XRF) and Infra-red (IR) spectroscopy) have been calibrated against standard laboratory techniques (Rock-Eval 6 analyser-Vinci Technologies) and Powder whole-rock XRD analysis was carried out using a PANalytical X'Pert Pro series diffractometer equipped with a cobalt-target tube, X'Celerator detector and operated at 45kV and 40mA, to predict properties of potential shale gas material from core material from the Bowland shale Roosecote, south Cumbria. Preliminary work showed that, amongst various mineralogical and organic matter properties of the core, regression models could be used so that the total organic carbon content could be predicted from the IR spectra with a 95 percentile confidence prediction error of 0.6% organic carbon, the free hydrocarbons could be predicted with a 95 percentile confidence prediction error of 0.6 mgHC/g rock, the bound hydrocarbons could be predicted with a 95 percentile confidence prediction error of 2.4 mgHC/g rock, mica content with a 95 percentile confidence prediction error of 14% and quartz content with a 95 percentile confidence prediction error of 14% . References M. Josh *, L. Esteban, C. Delle Piane, J. Sarout, D.N. Dewhurst, M.B. Clennell 2012. Journal of Petroleum Science and Engineering , 88-89, 107-124.

  5. The water footprint of hydraulic fracturing in Sichuan Basin, China.

    PubMed

    Zou, Caineng; Ni, Yunyan; Li, Jian; Kondash, Andrew; Coyte, Rachel; Lauer, Nancy; Cui, Huiying; Liao, Fengrong; Vengosh, Avner

    2018-07-15

    Shale gas is likely to play a major role in China's transition away from coal. In addition to technological and infrastructural constraints, the main challenges to China's sustainable shale gas development are sufficient shale gas production, water availability, and adequate wastewater management. Here we present, for the first time, actual data of shale gas production and its water footprint from the Weiyuan gas field, one of the major gas fields in Sichuan Basin. We show that shale gas production rates during the first 12 months (24 million m 3 per well) are similar to gas production rates in U.S. shale basins. The amount of water used for hydraulic fracturing (34,000 m 3 per well) and the volume of flowback and produced (FP) water in the first 12 months (19,800 m 3 per well) in Sichuan Basin are also similar to the current water footprints of hydraulic fracturing in U.S. basins. We present salinity data of the FP water (5000 to 40,000 mgCl/L) in Sichuan Basin and the treatment operations, which include sedimentation, dilution with fresh water, and recycling of the FP water for hydraulic fracturing. We utilize the water use data, empirical decline rates of shale gas and FP water productions in Sichuan Basin to generate two prediction models for water use for hydraulic fracturing and FP water production upon achieving China's goals to generate 100 billion m 3 of shale gas by 2030. The first model utilizes the current water use and FP production data, and the second assumes a yearly 5% intensification of the hydraulic fracturing process. The predicted water use for hydraulic fracturing in 2030 (50-65 million m 3 per year), FP water production (50-55 million m 3 per year), and fresh water dilution of FP water (25 million m 3 per year) constitute a water footprint that is much smaller than current water consumption and wastewater generation for coal mining, but higher than those of conventional gas production in China. Given estimates for water availability in Sichuan Basin, our predictions suggest that water might not be a limiting factor for future large-scale shale gas development in Sichuan Basin. Copyright © 2018 Elsevier B.V. All rights reserved.

  6. An exploratory study of air emissions associated with shale gas development and production in the Barnett Shale.

    PubMed

    Rich, Alisa; Grover, James P; Sattler, Melanie L

    2014-01-01

    Information regarding air emissions from shale gas extraction and production is critically important given production is occurring in highly urbanized areas across the United States. Objectives of this exploratory study were to collect ambient air samples in residential areas within 61 m (200 feet) of shale gas extraction/production and determine whether a "fingerprint" of chemicals can be associated with shale gas activity. Statistical analyses correlating fingerprint chemicals with methane, equipment, and processes of extraction/production were performed. Ambient air sampling in residential areas of shale gas extraction and production was conducted at six counties in the Dallas/Fort Worth (DFW) Metroplex from 2008 to 2010. The 39 locations tested were identified by clients that requested monitoring. Seven sites were sampled on 2 days (typically months later in another season), and two sites were sampled on 3 days, resulting in 50 sets of monitoring data. Twenty-four-hour passive samples were collected using summa canisters. Gas chromatography/mass spectrometer analysis was used to identify organic compounds present. Methane was present in concentrations above laboratory detection limits in 49 out of 50 sampling data sets. Most of the areas investigated had atmospheric methane concentrations considerably higher than reported urban background concentrations (1.8-2.0 ppm(v)). Other chemical constituents were found to be correlated with presence of methane. A principal components analysis (PCA) identified multivariate patterns of concentrations that potentially constitute signatures of emissions from different phases of operation at natural gas sites. The first factor identified through the PCA proved most informative. Extreme negative values were strongly and statistically associated with the presence of compressors at sample sites. The seven chemicals strongly associated with this factor (o-xylene, ethylbenzene, 1,2,4-trimethylbenzene, m- and p-xylene, 1,3,5-trimethylbenzene, toluene, and benzene) thus constitute a potential fingerprint of emissions associated with compression. Information regarding air emissions from shale gas development and production is critically important given production is now occurring in highly urbanized areas across the United States. Methane, the primary shale gas constituent, contributes substantially to climate change; other natural gas constituents are known to have adverse health effects. This study goes beyond previous Barnett Shale field studies by encompassing a wider variety of production equipment (wells, tanks, compressors, and separators) and a wider geographical region. The principal components analysis, unique to this study, provides valuable information regarding the ability to anticipate associated shale gas chemical constituents.

  7. Shale Gas Information Platform SHIP: first year of fact-based communication

    NASA Astrophysics Data System (ADS)

    Hübner, Andreas; Horsfield, Brian; Petrow, Theresia

    2013-04-01

    Natural gas produced from shale, already on stream in the USA, and under development in many regions worldwide, has brought about a fundamental change in energy resource distribution and energy politics. According to recent IEA publications, shale gas production will continue to rise globally and will be embraced by many more countries than at present. Shale gas production, especially in densely populated regions, brings with it a new dimension of risk alongside potential benefits. A fact-based discussion of the pros and cons, however, has been hampered in part by a scarcity of scientific knowledge on the related risks, and by a lack of appropriate, i.e. transparent and balanced, communication of the academic research perspective. With the Shale Gas Information Platform SHIP, the GFZ German Research Centre for Geosciences engages in the public discussion of technical and environmental issues related to shale gas exploration and production. The project was launched online in early 2012, at a propitious time: the public debate was until then dominated by voices from industry and from environmental groups, which were often biased and/or lacking sound factual background. Significant academic research on the risks related to shale gas development and hydraulic fracturing operations in particular only started in 2011 and continued to expand in 2012. This was reflected in an increased output of peer-reviewed publications and academic reports. SHIP puts these into perspective and brings them to the attention of the broader public. With just one year of online presence, SHIP has already effectively filled the void in fact-based information on shale gas. This can be seen by a continuing demand for subscriptions to our News Email Alert Service, and by invitations SHIP has received to conferences and workshops, in order to share our experience of science-based and balanced information dissemination. SHIP's web content is expanding and so is its expert network. Collaborations with large research initiatives, such as GASH Gas Shales in Europe (GFZ Potsdam), ReFINE - Researching Fracking IN Europe (Durham University) and the US EPA Gas STAR program ensuring up to date information is disseminated. However, the issue of shale gas is much discussed by local residents in potential exploration areas in Europe and elsewhere, and sound information becomes more scarce outside the English language domain. To remedy this shortcoming, large parts of SHIP content are translated to German and Polish; two countries where shale gas development is a hot topic on the political agenda. In the course of development of the SHIP initiative, other languages may follow. SHIP seeks to grow continuously, and a conference like EGÚs General Assembly is very well suited to spread the word. If you are interested to contribute/collaborate, please contact SHIP.

  8. Multiscale Porosity and Mechanical Properties of Mancos Shale: Evaluation of REV and Scale Separation

    NASA Astrophysics Data System (ADS)

    Heath, J. E.; Dewers, T. A.; Yoon, H.; Mozley, P.

    2016-12-01

    Heterogeneity from the nanometer to core and larger length scales is a major challenge to understanding coupled processes in shale. To develop methods to address this challenge, we present application of high throughput multi-beam scanning electron microscopy (mSEM) and nano-to-micro-scale mechanics to the Mancos Shale. We use a 61-beam mSEM to collect 6 nm resolution SEM images at the scale of several square millimeters. These images are analyzed for pore size and shape characteristics including spatial correlation and structure. Nano-indentation, micropillar compression, and axisymmetric testing at multiple length scales allows for examining the influence of sampling size on mechanical response. The combined data set is used to: investigate representative elementary volumes (and areas for the 2D images) for the Mancos Shale; determine if scale separation occurs; and determine if transport and mechanical properties at a given length scale can be statistically defined. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.

  9. Creep of Posidonia Shale at Elevated Pressure and Temperature

    NASA Astrophysics Data System (ADS)

    Rybacki, E.; Herrmann, J.; Wirth, R.; Dresen, G.

    2017-12-01

    The economic production of gas and oil from shales requires repeated hydraulic fracturing operations to stimulate these tight reservoir rocks. Besides simple depletion, the often observed decay of production rate with time may arise from creep-induced fracture closure. We examined experimentally the creep behavior of an immature carbonate-rich Posidonia shale, subjected to constant stress conditions at temperatures between 50 and 200 °C and confining pressures of 50-200 MPa, simulating elevated in situ depth conditions. Samples showed transient creep in the semibrittle regime with high deformation rates at high differential stress, high temperature and low confinement. Strain was mainly accommodated by deformation of the weak organic matter and phyllosilicates and by pore space reduction. The primary decelerating creep phase observed at relatively low stress can be described by an empirical power law relation between strain and time, where the fitted parameters vary with temperature, pressure and stress. Our results suggest that healing of hydraulic fractures at low stresses by creep-induced proppant embedment is unlikely within a creep period of several years. At higher differential stress, as may be expected in situ at contact areas due to stress concentrations, the shale showed secondary creep, followed by tertiary creep until failure. In this regime, microcrack propagation and coalescence may be assisted by stress corrosion. Secondary creep rates were also described by a power law, predicting faster fracture closure rates than for primary creep, likely contributing to production rate decline. Comparison of our data with published primary creep data on other shales suggests that the long-term creep behavior of shales can be correlated with their brittleness estimated from composition. Low creep strain is supported by a high fraction of strong minerals that can build up a load-bearing framework.

  10. Overview of DOE Oil and Gas Field Laboratory Projects

    NASA Astrophysics Data System (ADS)

    Bromhal, G.; Ciferno, J.; Covatch, G.; Folio, E.; Melchert, E.; Ogunsola, O.; Renk, J., III; Vagnetti, R.

    2017-12-01

    America's abundant unconventional oil and natural gas (UOG) resources are critical components of our nation's energy portfolio. These resources need to be prudently developed to derive maximum benefits. In spite of the long history of hydraulic fracturing, the optimal number of fracturing stages during multi-stage fracture stimulation in horizontal wells is not known. In addition, there is the dire need of a comprehensive understanding of ways to improve the recovery of shale gas with little or no impacts on the environment. Research that seeks to expand our view of effective and environmentally sustainable ways to develop our nation's oil and natural gas resources can be done in the laboratory or at a computer; but, some experiments must be performed in a field setting. The Department of Energy (DOE) Field Lab Observatory projects are designed to address those research questions that must be studied in the field. The Department of Energy (DOE) is developing a suite of "field laboratory" test sites to carry out collaborative research that will help find ways of improving the recovery of energy resources as much as possible, with as little environmental impact as possible, from "unconventional" formations, such as shale and other low permeability rock formations. Currently there are three field laboratories in various stages of development and operation. Work is on-going at two of the sites: The Hydraulic Fracturing Test Site (HFTS) in the Permian Basin and the Marcellus Shale Energy and Environmental Lab (MSEEL) project in the Marcellus Shale Play. Agreement on the third site, the Utica Shale Energy and Environmental Lab (USEEL) project in the Utica Shale Play, was just recently finalized. Other field site opportunities may be forthcoming. This presentation will give an overview of the three field laboratory projects.

  11. Creep Behavior of Posidonia Shale at Elevated Pressure and Temperature

    NASA Astrophysics Data System (ADS)

    Rybacki, E.; Herrmann, J.; Wirth, R.; Dresen, G.

    2017-12-01

    Unconventional reservoir rocks are usually stimulated by repeated hydraulic fracturing operations. However, the production rate often decays with time that may arise from creep-induced fracture closure by proppant embedment. To examine experimentally the creep behavior of shales, we deformed immature carbonate-rich Posidonia shale at constant stress conditions and elevated temperatures between 50° and 200°C and confining pressures of 50 to 200 MPa. Samples showed transient creep in the semibrittle regime with high deformation rates at high differential stress, high temperature, and low confinement. Strain was mainly accommodated by deformation of the weak organic matter and phyllosilicates and by pore space reduction. At relatively low stress the samples deformed in the primary creep regime with continuously decelerating strain rate. The relation between strain and time can be described by an empirical power law equation, where the fitted parameters vary with temperature, pressure and stress. Our results suggest that healing of hydraulic fractures at low stresses by creep-induced proppant embedment is unlikely within a creep period of several years. At high differential stress (85-90% of the triaxial strength), as may be expected in situ at contact areas due to stress concentrations, the shale showed secondary creep, followed by tertiary creep until failure. In this regime, stress corrosion may induce microcrack propagation and coalescence. Secondary creep rates were also described by a power law that predicts faster fracture closure rates than for primary creep and likely contributes to production rate decline. Comparison of our data with published primary creep data on other shales suggest that the long-term creep behavior of shales can be correlated to their brittleness estimated from composition. Low creep strain is supported by a high fraction of strong minerals that can build up a load-bearing framework.

  12. Pacific Enewetak Atoll Crater Exploration (PEACE) program, Enewetak Atoll, Republic of the Marshall Islands; Part 1, Drilling operations and descriptions of boreholes in vicinity of KOA and OAK craters

    USGS Publications Warehouse

    Henry, T.W.; Wardlaw, B.R.; Skipp, Betty; Major, R. P.; Tracey, J.I.

    1986-01-01

    Evidence of a post-Cretaceous uplift of the Sioux Quartzite ridge in southeastern South Dakota consists of deformation of the Dakota Formation, Graneros Shale, Greenhorn Limestone, Carlile Shale, and Niobrara Formation of Cretaceous age. The Greenhorn is warped upward about 400 ft on the Sioux Quartzite with a formation dip ranging from 30-50 ft/mi. Elsewhere in eastern South Dakota the dip of the Greenhorn ranges from 3-8 ft/mi. (Author 's abstract)

  13. Israel Electric joins oil shale power plant project

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1986-12-01

    The Israel Electric Corporation has purchased a 25% share in PAMA (Energy Resources Development, Ltd). PAMA is planning to build a 7 1/2 megawatt shale-fired demonstration plant at Mishor Rotem in Israel. The demonstration cogeneration plant is being designed to produce 42 tons/hours of steam for use in nearby phosphate plants, and also produce electricity. Construction of the demonstration plant is expected to begin in early 1987 and be completed within 2 years. It will be based on fluidized bed technology. Successful operation of the demo plant could then lead to a 50 to 100 megawatt or larger commercial plant.

  14. 41 CFR 50-204.2 - General safety and health standards.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... Alaska. Part 221—Oil and Gas Operating Regulations. Part 231—Operating and Safety Regulations Governing the Mining of Potash; Oil Shale, Sodium, and Phosphate; Sulphur; and Gold, Silver, or Quicksilver; and... 171-179 and 14 CFR part 103 Hazardous material regulation—Transportation of compressed gases. (4) U.S...

  15. 1. VIEW NORTH OF PARADISE MILL FOUNDATION AND TAILINGS (FEATURE ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    1. VIEW NORTH OF PARADISE MILL FOUNDATION AND TAILINGS (FEATURE P-7). PHOTO TAKEN FROM MERCURY RETORT. (OCTOBER, 1995) - McCormick Group Mine, Paradise Mill, East slope of Buckskin Mountain, Paradise Valley, Humboldt County, NV

  16. 2015 Subpoena and Information Request from EPA to Mercury Recyclers

    EPA Pesticide Factsheets

    EPA issued formal requests for information to five companies believed to be the primary recyclers/retorters and distributors of mercury in the United States to gain a better understanding of the mercury recycling marketplace.

  17. Application of biomass pyrolytic polygeneration technology using retort reactors.

    PubMed

    Yang, Haiping; Liu, Biao; Chen, Yingquan; Chen, Wei; Yang, Qing; Chen, Hanping

    2016-01-01

    To introduce application status and illustrate the good utilisation potential of biomass pyrolytic polygeneration using retort reactors, the properties of major products and the economic viability of commercial factories were investigated. The capacity of one factory was about 3000t of biomass per year, which was converted into 1000t of charcoal, 950,000Nm(3) of biogas, 270t of woody tar, and 950t of woody vinegar. Charcoal and fuel gas had LHV of 31MJ/kg and 12MJ/m(3), respectively, indicating their potential for use as commercial fuels. The woody tar was rich in phenols, while woody vinegar contained large quantities of water and acetic acid. The economic analysis showed that the factory using this technology could be profitable, and the initial investment could be recouped over the factory lifetime. This technology offered a promising means of converting abundant agricultural biomass into high-value products. Copyright © 2015 Elsevier Ltd. All rights reserved.

  18. Heat penetration attributes of milkfish (Chanos chanos) thermal processed in flexible pouches: a comparative study between steam application and water immersion.

    PubMed

    Adepoju, Mary A; Omitoyin, Bamidele O; Mohan, Chitradurga O; Zynudheen, Aliyam A

    2017-05-01

    The difference in the heating penetration characteristics of product processed in retort by steam-air application and water immersion was studied. Fresh milkfish ( Chanos chanos ) packed in dry pack and in oil medium, both in flexible pouches, was thermal processed to minimum F 0 value of 7.77 at 121.1°C. Heat penetration values were recorded for each minute of processing with the aid Ellab (TM 9608, Denmark) temperature recorder. Retort come up time to achieve 121.1°C was observed to be less in steam-air which invariably led to a lower Ball's process time (B) and the total process time (T) observed in steam-air as compared to water immersion. Obtained data were plotted on a semi-logarithmic paper with temperature deficit on x -axis against time on the y -axis.

  19. Control technology assessment of hazardous waste disposal operations in chemicals manufacturing: walk-through survey report of Olin Chemicals Group, Charleston, Tennessee

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Crandall, M.S.

    1983-08-01

    A walk through survey was conducted to assess control technology for hazardous wastes disposal operations at Olin Chemicals Group (SIC-2800, SIC-2812, SIC-2819), Charleston, Tennessee in May 1982. Hazardous wastes generated at the facility included brine sludge, thick mercury (7439954) (Hg) butter, and calcium-hypochlorite (7778543). An estimated 8500 tons of waste were disposed of annually. The Hg waste underwent a retorting process that recycled the Hg. The final detoxified waste was land filled. Brine sludge and calcium-hypochlorite were also land filled. No controls beyond those normally used at such sites were found at the landfills. Periodic monitoring of Hg vapor concentrationsmore » was conducted by the company. Medical monitoring of urine for Hg exposure was conducted. Specific limits were set for urinary Hg concentrations. When these limits were exceeded the workers were removed from exposure. Personal protective equipment consisted of hard hats, safety glasses, and spirators specially designed for Hg exposure. The author concludes that the hazardous waste disposal and treatment operations at the facility are well controlled.« less

  20. Development of Nuclear Renewable Oil Shale Systems for Flexible Electricity and Reduced Fossil Fuel Emissions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Daniel Curtis; Charles Forsberg; Humberto Garcia

    2015-05-01

    We propose the development of Nuclear Renewable Oil Shale Systems (NROSS) in northern Europe, China, and the western United States to provide large supplies of flexible, dispatchable, very-low-carbon electricity and fossil fuel production with reduced CO2 emissions. NROSS are a class of large hybrid energy systems in which base-load nuclear reactors provide the primary energy used to produce shale oil from kerogen deposits and simultaneously provide flexible, dispatchable, very-low-carbon electricity to the grid. Kerogen is solid organic matter trapped in sedimentary shale, and large reserves of this resource, called oil shale, are found in northern Europe, China, and the westernmore » United States. NROSS couples electricity generation and transportation fuel production in a single operation, reduces lifecycle carbon emissions from the fuel produced, improves revenue for the nuclear plant, and enables a major shift toward a very-low-carbon electricity grid. NROSS will require a significant development effort in the United States, where kerogen resources have never been developed on a large scale. In Europe, however, nuclear plants have been used for process heat delivery (district heating), and kerogen use is familiar in certain countries. Europe, China, and the United States all have the opportunity to use large scale NROSS development to enable major growth in renewable generation and either substantially reduce or eliminate their dependence on foreign fossil fuel supplies, accelerating their transitions to cleaner, more efficient, and more reliable energy systems.« less

  1. Mechanical Characterization of Mancos Shale

    NASA Astrophysics Data System (ADS)

    Broome, S.; Ingraham, M. D.; Dewers, T. A.

    2015-12-01

    A series of tests on Mancos shale have been undertaken to determine the failure surface and to characterize anisotropy. This work supports additional studies which are being performed on the same block of shale; fracture toughness, permeability, and chemical analysis. Mechanical tests are being conducted after specimens were conditioned for at least two weeks at 70% constant relative humidity conditions. Specimens are tested under drained conditions, with the constant relative humidity condition maintained on the downstream side of the specimen. The upstream is sealed. Anisotropy is determined through testing specimens that have been cored parallel and perpendicular to the bedding plane. Preliminary results show that when loaded parallel to bedding the shale is roughly 50% weaker. Test are run under constant mean stress conditions when possible (excepting indirect tension, unconfined compression, and hydrostatic). Tests are run in hydrostatic compaction to the desired mean stress, then differential stress is applied axially in displacement control to failure. The constant mean stress condition is maintained by decreasing the confining pressure by half of the increase in the axial stress. Results will be compared to typical failure criteria to investigate the effectiveness of capturing the behavior of the shale with traditional failure theory. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000. SAND2015-6107 A.

  2. Evolution of water chemistry during Marcellus Shale gas development: A case study in West Virginia.

    PubMed

    Ziemkiewicz, Paul F; Thomas He, Y

    2015-09-01

    Hydraulic fracturing (HF) has been used with horizontal drilling to extract gas and natural gas liquids from source rock such as the Marcellus Shale in the Appalachian Basin. Horizontal drilling and HF generates large volumes of waste water known as flowback. While inorganic ion chemistry has been well characterized, and the general increase in concentration through the flowback is widely recognized, the literature contains little information relative to organic compounds and radionuclides. This study examined the chemical evolution of liquid process and waste streams (including makeup water, HF fluids, and flowback) in four Marcellus Shale gas well sites in north central West Virginia. Concentrations of organic and inorganic constituents and radioactive isotopes were measured to determine changes in waste water chemistry during shale gas development. We found that additives used in fracturing fluid may contribute to some of the constituents (e.g., Fe) found in flowback, but they appear to play a minor role. Time sequence samples collected during flowback indicated increasing concentrations of organic, inorganic and radioactive constituents. Nearly all constituents were found in much higher concentrations in flowback water than in injected HF fluids suggesting that the bulk of constituents originate in the Marcellus Shale formation rather than in the formulation of the injected HF fluids. Liquid wastes such as flowback and produced water, are largely recycled for subsequent fracturing operations. These practices limit environmental exposure to flowback. Copyright © 2015 Elsevier Ltd. All rights reserved.

  3. Impact of Marcellus Shale natural gas development in southwest Pennsylvania on volatile organic compound emissions and regional air quality.

    PubMed

    Swarthout, Robert F; Russo, Rachel S; Zhou, Yong; Miller, Brandon M; Mitchell, Brittney; Horsman, Emily; Lipsky, Eric; McCabe, David C; Baum, Ellen; Sive, Barkley C

    2015-03-03

    The Marcellus Shale is the largest natural gas deposit in the U.S. and rapid development of this resource has raised concerns about regional air pollution. A field campaign was conducted in the southwestern Pennsylvania region of the Marcellus Shale to investigate the impact of unconventional natural gas (UNG) production operations on regional air quality. Whole air samples were collected throughout an 8050 km(2) grid surrounding Pittsburgh and analyzed for methane, carbon dioxide, and C1-C10 volatile organic compounds (VOCs). Elevated mixing ratios of methane and C2-C8 alkanes were observed in areas with the highest density of UNG wells. Source apportionment was used to identify characteristic emission ratios for UNG sources, and results indicated that UNG emissions were responsible for the majority of mixing ratios of C2-C8 alkanes, but accounted for a small proportion of alkene and aromatic compounds. The VOC emissions from UNG operations accounted for 17 ± 19% of the regional kinetic hydroxyl radical reactivity of nonbiogenic VOCs suggesting that natural gas emissions may affect compliance with federal ozone standards. A first approximation of methane emissions from the study area of 10.0 ± 5.2 kg s(-1) provides a baseline for determining the efficacy of regulatory emission control efforts.

  4. Estimating Emissions of Toxic Hydrocarbons from Natural Gas Production Sites in the Barnett Shale Region of Northern Texas.

    PubMed

    Marrero, Josette E; Townsend-Small, Amy; Lyon, David R; Tsai, Tracy R; Meinardi, Simone; Blake, Donald R

    2016-10-04

    Oil and natural gas operations have continued to expand and move closer to densely populated areas, contributing to growing public concerns regarding exposure to hazardous air pollutants. During the Barnett Shale Coordinated Campaign in October, 2013, ground-based whole air samples collected downwind of oil and gas sites revealed enhancements in several potentially toxic volatile organic compounds (VOCs) when compared to background values. Molar emissions ratios relative to methane were determined for hexane, benzene, toluene, ethylbenzene, and xylene (BTEX compounds). Using methane leak rates measured from the Picarro mobile flux plane (MFP) system and a Barnett Shale regional methane emissions inventory, the rates of emission of these toxic gases were calculated. Benzene emissions ranged between 51 ± 4 and 60 ± 4 kg h -1 . Hexane, the most abundantly emitted pollutant, ranged from 642 ± 45 to 1070 ± 340 kg h -1 . While observed hydrocarbon enhancements fall below federal workplace standards, results may indicate a link between emissions from oil and natural gas operations and concerns about exposure to hazardous air pollutants. The larger public health risks associated with the production and distribution of natural gas are of particular importance and warrant further investigation, particularly as the use of natural gas increases in the United States and internationally.

  5. Life cycle greenhouse gas emissions and freshwater consumption of Marcellus shale gas.

    PubMed

    Laurenzi, Ian J; Jersey, Gilbert R

    2013-05-07

    We present results of a life cycle assessment (LCA) of Marcellus shale gas used for power generation. The analysis employs the most extensive data set of any LCA of shale gas to date, encompassing data from actual gas production and power generation operations. Results indicate that a typical Marcellus gas life cycle yields 466 kg CO2eq/MWh (80% confidence interval: 450-567 kg CO2eq/MWh) of greenhouse gas (GHG) emissions and 224 gal/MWh (80% CI: 185-305 gal/MWh) of freshwater consumption. Operations associated with hydraulic fracturing constitute only 1.2% of the life cycle GHG emissions, and 6.2% of the life cycle freshwater consumption. These results are influenced most strongly by the estimated ultimate recovery (EUR) of the well and the power plant efficiency: increase in either quantity will reduce both life cycle freshwater consumption and GHG emissions relative to power generated at the plant. We conclude by comparing the life cycle impacts of Marcellus gas and U.S. coal: The carbon footprint of Marcellus gas is 53% (80% CI: 44-61%) lower than coal, and its freshwater consumption is about 50% of coal. We conclude that substantial GHG reductions and freshwater savings may result from the replacement of coal-fired power generation with gas-fired power generation.

  6. Effect of salmon type and presence/absence of bone on color, sensory characteristics, and consumer acceptability of pureed and chunked infant food products.

    PubMed

    DeSantos, F A; Ramamoorthi, L; Bechtel, P; Smiley, S; Brewer, M S

    2010-08-01

    Salmon-based infant food (puree) and toddler food (puree plus chunks) were manufactured from pink salmon, with and without bone, and from Sockeye salmon, with and without bone, to contain 45% salmon, 55% water, and 5% starch. Products were retort processed at 118 to 121 degrees C for 55 min in a steam-jacketed still retort. A trained descriptive panel (n = 7) evaluated infant and toddler foods separately. Instrumental color, pH, and water activity were also determined. Infant and toddler foods were also evaluated by a consumer panel (n = 104) of parents for product acceptability. During the manufacturing process (cooking, homogenization, retort processing), salmon infant food from pink salmon lost much of its characteristic pink color while that from sockeye salmon retained a greater amount. Bitterness was more evident in samples with bones. In the toddler food formulation containing chunks, the odor and flavor characteristics were influenced primarily by the type of salmon. The presence of bone affected visual pink color and lightness, and salmon odor only. Consumers scored products made with sockeye salmon as more acceptable despite the fact that they had more off-flavor than products from pink salmon. The appearance and thickness of the pureed infant food was more acceptable than the toddler food with chunks despite the chunky toddler product having more acceptable salmon flavor. This indicates that the color and appearance of the prototypes were the main drivers for liking. Of the total number of parents surveyed, 73% would feed this salmon product to their children.

  7. Heat transfer simulation and retort program adjustment for thermal processing of wheat based Haleem in semi-rigid aluminum containers.

    PubMed

    Vatankhah, Hamed; Zamindar, Nafiseh; Shahedi Baghekhandan, Mohammad

    2015-10-01

    A mixed computational strategy was used to simulate and optimize the thermal processing of Haleem, an ancient eastern food, in semi-rigid aluminum containers. Average temperature values of the experiments showed no significant difference (α = 0.05) in contrast to the predicted temperatures at the same positions. According to the model, the slowest heating zone was located in geometrical center of the container. The container geometrical center F0 was estimated to be 23.8 min. A 19 min processing time interval decrease in holding time of the treatment was estimated to optimize the heating operation since the preferred F0 of some starch or meat based fluid foods is about 4.8-7.5 min.

  8. CO 2 utilization and storage in shale gas reservoirs: Experimental results and economic impacts

    DOE PAGES

    Schaef, Herbert T.; Davidson, Casie L.; Owen, Antionette Toni; ...

    2014-12-31

    Natural gas is considered a cleaner and lower-emission fuel than coal, and its high abundance from advanced drilling techniques has positioned natural gas as a major alternative energy source for the U.S. However, each ton of CO 2 emitted from any type of fossil fuel combustion will continue to increase global atmospheric concentrations. One unique approach to reducing anthropogenic CO 2 emissions involves coupling CO 2 based enhanced gas recovery (EGR) operations in depleted shale gas reservoirs with long-term CO 2 storage operations. In this paper, we report unique findings about the interactions between important shale minerals and sorbing gasesmore » (CH 4 and CO 2) and associated economic consequences. Where enhanced condensation of CO 2 followed by desorption on clay surface is observed under supercritical conditions, a linear sorption profile emerges for CH 4. Volumetric changes to montmorillonites occur during exposure to CO 2. Theory-based simulations identify interactions with interlayer cations as energetically favorable for CO 2 intercalation. Thus, experimental evidence suggests CH 4 does not occupy the interlayer and has only the propensity for surface adsorption. Mixed CH 4:CO 2 gas systems, where CH 4 concentrations prevail, indicate preferential CO 2 sorption as determined by in situ infrared spectroscopy and X-ray diffraction techniques. Collectively, these laboratory studies combined with a cost-based economic analysis provide a basis for identifying favorable CO 2-EOR opportunities in previously fractured shale gas reservoirs approaching final stages of primary gas production. Moreover, utilization of site-specific laboratory measurements in reservoir simulators provides insight into optimum injection strategies for maximizing CH 4/CO 2 exchange rates to obtain peak natural gas production.« less

  9. Beneficial Reuse of Produced and Flowback Water

    EPA Pesticide Factsheets

    Water reuse and recycling is a significant issue in the development of oil and gas shale plays in the United StatesDrilling operations – 60,000 to 650,000 gallons per wellHydraulic fracturing operations – 3 million to 5 million gallons per wellDefinition of produced water and flowback waterInteractions of water quality constituents as they relate to water reuse and recyclingTesting criteria in the laboratory and field operations

  10. Comprehensive Lifecycle Planning and Management System For Addressing Water Issues Associated With Shale Gas Development In New York, Pennsylvania, And West Virginia

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Arthur, J. Daniel

    2012-07-01

    The objective of this project is to develop a modeling system to allow operators and regulators to plan all aspects of water management activities associated with shale gas development in the target project area of New York, Pennsylvania, and West Virginia (target area ), including water supply, transport, storage, use, recycling, and disposal and which can be used for planning, managing, forecasting, permit tracking, and compliance monitoring. The proposed project is a breakthrough approach to represent the entire shale gas water lifecycle in one comprehensive system with the capability to analyze impacts and options for operational efficiency and regulatory trackingmore » and compliance, and to plan for future water use and disposition. It will address all of the major water-related issues of concern associated with shale gas development in the target area, including water withdrawal, transport, storage, use, treatment, recycling, and disposal. It will analyze the costs, water use, and wastes associated with the available options, and incorporate constraints presented by permit requirements, agreements, local and state regulations, equipment and material availability, etc. By using the system to examine the water lifecycle from withdrawals through disposal, users will be able to perform scenario analysis to answer "what if" questions for various situations. The system will include regulatory requirements of the appropriate state and regional agencies and facilitate reporting and permit applications and tracking. These features will allow operators to plan for more cost effective resource production. Regulators will be able to analyze impacts of development over an entire area. Regulators can then make informed decisions about the protections and practices that should be required as development proceeds. This modeling system will have myriad benefits for industry, government, and the public. For industry, it will allow planning all water management operations for a project or an area as one entity to optimize water use and minimize costs subject to regulatory and other constraints. It will facilitate analysis of options and tradeoffs, and will also simplify permitting and reporting to regulatory agencies. The system will help regulators study cumulative impacts of development, conserve water resources, and manage disposal options across a region. It will also allow them to track permits and monitor compliance. The public will benefit from water conservation, improved environmental performance as better system wide decisions are made, and greater supply of natural gas, with attendant lower prices, as costs are reduced and development is assisted through better planning and scheduling. Altogether, better economics and fewer barriers will facilitate recovery of the more than 300 trillion cubic feet of estimated recoverable natural gas resource in the Marcellus Shale in a manner that protects the environment.« less

  11. Liquid-Rich Shale Potential of Utah’s Uinta and Paradox Basins: Reservoir Characterization and Development Optimization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vanden Berg, Michael; Morgan, Craig; Chidsey, Thomas

    The enclosed report is the culmination of a multi-year and multi-faceted research project investigating Utah’s unconventional tight oil potential. From the beginning, the project team focused efforts on two different plays: (1) the basal Green River Formation’s (GRF) Uteland Butte unconventional play in the Uinta Basin and (2) the more established but understudied Cane Creek shale play in the Paradox Basin. The 2009-2014 high price of crude oil, coupled with lower natural gas prices, generated renewed interest in exploration and development of liquid hydrocarbon reserves. Following the success of the mid-2000s shale gas boom and employing many of the samemore » well completion techniques, petroleum companies started exploring for liquid petroleum in shale formations. In fact, many shales targeted for natural gas include areas in which the shale is more prone to liquid production. In Utah, organic-rich shales in the Uinta and Paradox Basins have been the source of significant hydrocarbon generation, with companies traditionally targeting the interbedded sands or carbonates for their conventional resource recovery. Because of the advances in horizontal drilling and hydraulic fracturing techniques, operators in these basins started to explore the petroleum production potential of the shale units themselves. The GRF in the Uinta Basin has been studied for over 50 years, since the first hydrocarbon discoveries. However, those studies focused on the many conventional sandstone reservoirs currently producing oil and gas. In contrast, less information was available about the more unconventional crude oil production potential of thinner carbonate/shale units, most notably the basal Uteland Butte member. The Cane Creek shale of the Paradox Basin has been a target for exploration periodically since the 1960s and produces oil from several small fields. The play generated much interest in the early 1990s with the successful use of horizontal drilling. Recently, the USGS assessed the undiscovered oil resource in the Cane Creek shale of the Paradox Basin at 103 million barrels at a 95 percent confidence level and 198 million barrels at a 50 percent confidence level. Nonetheless, limited research was available or published to further define the play and the reservoir characteristics. The specific objectives of the enclosed research were to (1) characterize geologic, geochemical, and geomechanical rock properties of target zones in the two designated basins by compiling data and by analyzing available cores, cuttings, and well logs; (2) describe outcrop reservoir analogs of GRF plays (Cane Creek shale is not exposed) and compare them to subsurface data; (3) map major regional trends for targeted intervals and identify “sweet spots” that have the greatest oil potential; (4) reduce exploration costs and drilling risks, especially in environmentally sensitive areas; (5) improve drilling and fracturing effectiveness by determining optimal well completion design; and (6) reduce field development costs, maximize oil recovery, and increase reserves. These objectives are all addressed in a series of nine publications that resulted from this extensive research project. Each publication is included in this report as an independent appendix.« less

  12. Numerical analysis of fracture propagation during hydraulic fracturing operations in shale gas systems

    EPA Pesticide Factsheets

    Researchers used the TOUGH+ geomechanics computational software and simulation system to examine the likelihood of hydraulic fracture propagation (the spread of fractures) traveling long distances to connect with drinking water aquifers.

  13. Dissemination of technical information from the oil-shale program

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1980-09-03

    Auditors found cause to believe that DOE was not receiving technical information from a jointly financed demonstration project in Colorado to produce shale oil means of the modified in-situ process. The governments right to use and disseminate technical information developed under the Cooperative Agreement is seen a a contractual right spelled out in the Agreement for cost sharing. Enforcement is necessary to lessen vulnerability to charges of subsidy of private research and development without adequate benefits to the public. This final report was prepared after sending the draft report to the Assistant Secretaries of Fossil Energy (FE) and of Resourcemore » Applications (RA) for comments. IG still takes issue with some of the comments by FE, which are attached. Comments by IR, also appended, point out operational changes at the DOE Technical Information Center, Oak Ridge, TN that will improve, its publication operations time.« less

  14. Upper Paleozoic Marine Shale Characteristics and Exploration Prospects in the Northwestern Guizhong Depression, South China

    NASA Astrophysics Data System (ADS)

    Zhu, Zhenhong; Yao, Genshun; Lou, Zhanghua; Jin, Aimin; Zhu, Rong; Jin, Chong; Chen, Chao

    2018-05-01

    Multiple sets of organic-rich shales developed in the Upper Paleozoic of the northwestern Guizhong Depression in South China. However, the exploration of these shales is presently at a relatively immature stage. The Upper Paleozoic shales in the northwestern Guizhong Depression, including the Middle Devonian Luofu shale, the Nabiao shale, and the Lower Carboniferous Yanguan shale, were investigated in this study. Mineral composition analysis, organic matter analysis (including total organic carbon (TOC) content, maceral of kerogen and the vitrinite reflection (Ro)), pore characteristic analysis (including porosity and permeability, pore type identification by SEM, and pore size distribution by nitrogen sorption), methane isothermal sorption test were conducted, and the distribution and thickness of the shales were determined, Then the characteristics of the two target shales were illustrated and compared. The results show that the Upper Paleozoic shales have favorable organic matter conditions (mainly moderate to high TOC content, type I and II1 kerogen and high to over maturity), good fracability potential (brittleness index (BI) > 40%), multiple pore types, stable distribution and effective thickness, and good methane sorption capacity. Therefore, the Upper Paleozoic shales in the northern Guizhong Depression have good shale gas potential and exploration prospects. Moreover, the average TOC content, average BI, thickness of the organic-rich shale (TOC > 2.0 wt%) and the shale gas resources of the Middle Devonian shales are better than those of the Lower Carboniferous shale. The Middle Devonian shales have better shale gas potential and exploration prospects than the Lower Carboniferous shales.

  15. In Situ Study of CO2 and H2O Partitioning Between Na-Montmorillonite and Variably Wet Supercritical Carbon Dioxide

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Loring, John S.; Ilton, Eugene S.; Chen, Jeffrey

    Shale formations play fundamental roles in large-scale geologic carbon sequestration (GCS) aimed primarily to mitigate climate change, and in smaller-scale GCS targeted mainly for CO2-enhanced gas recovery operations. In both technologies, CO2 is injected underground as a supercritical fluid (scCO2), where interactions with shale minerals could influence successful GCS implementation. Reactive components of shales include expandable clays, such as montmorillonites and mixed-layer illite/smectite clays. In this work, we used in situ X-ray diffraction (XRD) and in situ infrared (IR) spectroscopy to investigate the swelling/shrinkage and water/CO2 sorption of a pure montmorillonite, Na-SWy-2, when the clay is exposed to variably hydratedmore » scCO2 at 50 °C and 90 bar. Measured interlayer spacings and sorbed water concentrations at varying levels of scCO2 hydration are similar to previously reported values measured in air at ambient pressure over a range of relative humidities. IR spectra show evidence of both water and CO2 intercalation, and variations in peak shapes and positions suggest multiple sorbed types with distinct chemical environments. Based on the intensity of the asymmetric CO stretching band of the CO2 associated with the Na-SWy-2, we observed a significant increase in sorbed CO2 as the clay expands from a 0W to a 1W state, suggesting that water props open the interlayer so that CO2 can enter. However, as the clay transitions from a 1W to a 2W state, CO2 desorbs sharply. These observations were placed in the context of two conceptual models concerning hydration mechanisms for expandable clays and were also discussed in light of recent theoretical studies on CO2-H2O-clay interactions. The swelling/shrinkage of expandable clays could affect solid volume, porosity, and permeability of shales. Consequently, the results from this work could aid predictions of shale caprock integrity in large-scale GCS, as well as methane transmissivity in enhanced gas recovery operations.« less

  16. Catalytic combustion with incompletely vaporized residual fuel

    NASA Technical Reports Server (NTRS)

    Rosfjord, T. J.

    1981-01-01

    Catalytic combustion of fuel lean mixtures of incompletely vaporized residual fuel and air was investigated. The 7.6 cm diameter, graded cell reactor was constructed from zirconia spinel substrate and catalyzed with a noble metal catalyst. Streams of luminous particles exited the rector as a result of fuel deposition and carbonization on the substrate. Similar results were obtained with blends of No. 6 and No. 2 oil. Blends of shale residual oil and No. 2 oil resulted in stable operation. In shale oil blends the combustor performance degraded with a reduced degree of fuel vaporization. In tests performed with No. 2 oil a similar effect was observed.

  17. Unconventional Reservoirs: Ideas to Commercialization

    NASA Astrophysics Data System (ADS)

    Tinker, S. W.

    2015-12-01

    There is no shortage of coal, oil, and natural gas in the world. What are sometimes in short supply are fresh ideas. Scientific innovation combined with continued advances in drilling and completion technology revitalized the natural gas industry in North America by making production from shale economic. Similar advances are now happening in shale oil. The convergence of ideas and technology has created a commercial environment in which unconventional reservoirs could supply natural gas to the North American consumer for 50 years or more. And, although not as far along in terms of resource development, oil from the Eagle Ford and Bakken Shales and the oil sands in Alberta could have a similar impact. Without advanced horizontal drilling, geosteering, staged hydraulic-fracture stimulation, synthetic and natural proppants, evolution of hydraulic fluid chemistry, and high-end monitoring and simulation, many of these plays would not exist. Yet drilling and completion technology cannot stand alone. Also required for success are creative thinking, favorable economics, and a tolerance for risk by operators. Current understanding and completion practices will leave upwards of 80% of oil and natural gas in the shale reservoirs. The opportunity to enhance recovery through advanced reservoir understanding and imaging, as well as through recompletions and infill drilling, is considerable. The path from ideas to commercialization will continue to provide economic results in unconventional reservoirs.

  18. Pressurized fluidized-bed hydroretorting of Eastern oil shales -- Sulfur control

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Roberts, M.J.; Abbasian, J.; Akin, C.

    1992-05-01

    This topical report on Sulfur Control'' presents the results of work conducted by the Institute of Gas Technology (IGT), the Illinois Institute of Technology (IIT), and the Ohio State University (OSU) to develop three novel approaches for desulfurization that have shown good potential with coal and could be cost-effective for oil shales. These are (1) In-Bed Sulfur Capture using different sorbents (IGT), (2) Electrostatic Desulfurization (IIT), and (3) Microbial Desulfurization and Denitrification (OSU and IGT). The objective of the task on In-Bed Sulfur Capture was to determine the effectiveness of different sorbents (that is, limestone, calcined limestone, dolomite, and siderite)more » for capturing sulfur (as H{sub 2}S) in the reactor during hydroretorting. The objective of the task on Electrostatic Desulfurization was to determine the operating conditions necessary to achieve a high degree of sulfur removal and kerogen recovery in IIT's electrostatic separator. The objectives of the task on Microbial Desulfurization and Denitrification were to (1) isolate microbial cultures and evaluate their ability to desulfurize and denitrify shale, (2) conduct laboratory-scale batch and continuous tests to improve and enhance microbial removal of these components, and (3) determine the effects of processing parameters, such as shale slurry concentration, solids settling characteristics, agitation rate, and pH on the process.« less

  19. Defining the natural fracture network in a shale gas play and its cover succession: The case of the Utica Shale in eastern Canada

    NASA Astrophysics Data System (ADS)

    Ladevèze, P.; Séjourné, S.; Rivard, C.; Lavoie, D.; Lefebvre, R.; Rouleau, A.

    2018-03-01

    In the St. Lawrence sedimentary platform (eastern Canada), very little data are available between shallow fresh water aquifers and deep geological hydrocarbon reservoir units (here referred to as the intermediate zone). Characterization of this intermediate zone is crucial, as the latter controls aquifer vulnerability to operations carried out at depth. In this paper, the natural fracture networks in shallow aquifers and in the Utica shale gas reservoir are documented in an attempt to indirectly characterize the intermediate zone. This study used structural data from outcrops, shallow observation well logs and deep shale gas well logs to propose a conceptual model of the natural fracture network. Shallow and deep fractures were categorized into three sets of steeply-dipping fractures and into a set of bedding-parallel fractures. Some lithological and structural controls on fracture distribution were identified. The regional geologic history and similarities between the shallow and deep fracture datasets allowed the extrapolation of the fracture network characterization to the intermediate zone. This study thus highlights the benefits of using both datasets simultaneously, while they are generally interpreted separately. Recommendations are also proposed for future environmental assessment studies in which the existence of preferential flow pathways and potential upward fluid migration toward shallow aquifers need to be identified.

  20. Use of Digital Volume Correlation to Measure Deformation of Shale Using Natural Markers

    NASA Astrophysics Data System (ADS)

    Dewers, T. A.; Quintana, E.; Ingraham, M. D.; Jacques, C. L.

    2016-12-01

    We apply digital volume correlation (DVC) to interpreting deformation as influenced by shale heterogeneity. An extension of digital image correlation, DVC uses 3D images (CT Scans) of a sample before, during and after loading to determine deformation in terms of a 3D strain map. The technology tracks the deformation of high and low density regions within the sample to determine full field 3D strains within the sample. High pyrite shales (Woodford and Marcellus in this study) are being used as the high density pyrite serves as an excellent point to track in the volume correlation. Preliminary results indicate that this technology is promising for measuring true volume strains, strain localization, and strain portioning by microlithofacies within specimens during testing. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.

  1. Analysis of Mancos shale failure in light of localization theory for transversely isotropic materials.

    NASA Astrophysics Data System (ADS)

    Ingraham, M. D.; Dewers, T. A.; Heath, J. E.

    2016-12-01

    Utilizing the localization conditions laid out in Rudnicki 2002, the failure of a series of tests performed on Mancos shale has been analyzed. Shale specimens were tested under constant mean stress conditions in an axisymmetric stress state, with specimens cored both parallel and perpendicular to bedding. Failure data indicates that for the range of pressures tested the failure surface is well represented by a Mohr- Coulomb failure surface with a friction angle of 34.4 for specimens cored parallel to bedding, and 26.5 for specimens cored perpendicular to bedding. There is no evidence of a yield cap up to 200 MPa mean stress. Comparison with the theory shows that the best agreement in terms of band angles comes from assuming normality of the plastic strain increment. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.

  2. The Architecture and Frictional Properties of Faults in Shale

    NASA Astrophysics Data System (ADS)

    De Paola, N.; Imber, J.; Murray, R.; Holdsworth, R.

    2015-12-01

    The geometry of brittle fault zones in shale rocks, as well as their frictional properties at reservoir conditions, are still poorly understood. Nevertheless, these factors may control the very low recovery factors (25% for gas and 5% for oil) obtained during fracking operations. Extensional brittle fault zones (maximum displacement < 3 m) cut exhumed oil mature black shales in the Cleveland Basin (UK). Fault cores up to 50 cm wide accommodated most of the displacement, and are defined by a stair-step geometry. Their internal architecture is characterised by four distinct fault rock domains: foliated gouges; breccias; hydraulic breccias; and a slip zone up to 20 mm thick, composed of a fine-grained black gouge. Hydraulic breccias are located within dilational jogs with aperture of up to 20 cm. Brittle fracturing and cataclastic flow are the dominant deformation mechanisms in the fault core of shale faults. Velocity-step and slide-hold-slide experiments at sub-seismic slip rates (microns/s) were performed in a rotary shear apparatus under dry, water and brine-saturated conditions, for displacements of up to 46 cm. Both the protolith shale and the slip zone black gouge display shear localization, velocity strengthening behaviour and negative healing rates, suggesting that slow, stable sliding faulting should occur within the protolith rocks and slip zone gouges. Experiments at seismic speed (1.3 m/s), performed on the same materials under dry conditions, show that after initial friction values of 0.5-0.55, friction decreases to steady-state values of 0.1-0.15 within the first 10 mm of slip. Contrastingly, water/brine saturated gouge mixtures, exhibit almost instantaneous attainment of very low steady-state sliding friction (0.1), suggesting that seismic ruptures may efficiently propagate in the slip zone of fluid-saturated shale faults. Stable sliding in faults in shale can cause slow fault/fracture propagation, affecting the rate at which new fracture areas are created and, hence, limiting oil and gas production during reservoir stimulation. However, fluid saturated conditions can favour seismic slip propagation, with fast and efficient creation of new fracture areas. These processes are very effective at dilational jogs, where fluid circulation may be enhanced, facilitating oil and gas production.

  3. DEMONSTRATION BULLETIN: SOILTECH ANAEROBIC THERMAL PROCESSOR: OUTBOARD MARINE CORPORATION SITE

    EPA Science Inventory

    The ATP system is designed to desorb, collect, and recondense contaminants. The kiln contains four separate internal thermal zones: preheat, retort, combustion, and cooling. In the preheat zone, water and volatile organic compounds are vaporized. Hot solids and heavy hydrocarbons...

  4. A Numerical Study of Factors Affecting Fracture-Fluid Cleanup and Produced Gas/Water in Marcellus Shale: Part II

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Seales, Maxian B.; Dilmore, Robert; Ertekin, Turgay

    Horizontal wells combined with successful multistage-hydraulic-fracture treatments are currently the most-established method for effectively stimulating and enabling economic development of gas-bearing organic-rich shale formations. Fracture cleanup in the stimulated reservoir volume (SRV) is critical to stimulation effectiveness and long-term well performance. But, fluid cleanup is often hampered by formation damage, and post-fracture well performance frequently falls to less than expectations. A systematic study of the factors that hinder fracture-fluid cleanup in shale formations can help optimize fracture treatments and better quantify long-term volumes of produced water and gas. Fracture-fluid cleanup is a complex process influenced by mutliphase flow through porousmore » media (relative permeability hysteresis, capillary pressure), reservoir-rock and -fluid properties, fracture-fluid properties, proppant placement, fracture-treatment parameters, and subsequent flowback and field operations. Changing SRV and fracture conductivity as production progresses further adds to the complexity of this problem. Numerical simulation is the best and most-practical approach to investigate such a complicated blend of mechanisms, parameters, their interactions, and subsequent effect on fracture-fluid cleanup and well deliverability. Here, a 3D, two-phase, dual-porosity model was used to investigate the effect of mutliphase flow, proppant crushing, proppant diagenesis, shut-in time, reservoir-rock compaction, gas slippage, and gas desorption on fracture-fluid cleanup and well performance in Marcellus Shale. Our findings have shed light on the factors that substantially constrain efficient fracture-fluid cleanup in gas shales, and we have provided guidelines for improved fracture-treatment designs and water management.« less

  5. Shale gas impacts on groundwater resources: insights from monitoring a fracking site in Poland

    NASA Astrophysics Data System (ADS)

    Montcoudiol, Nelly; Isherwood, Catherine; Gunning, Andrew; Kelly, Thomas; Younger, Paul

    2017-04-01

    Exploitation of shale gas by hydraulic fracturing (fracking) is highly controversial and concerns have been raised regarding induced risks from this technique. The SHEER project, an EU Horizon 2020-funded project, is looking into developing best practice to understand, prevent and mitigate the potential short- and long-term environmental impacts and risks from shale gas exploration and exploitation. Three major potential impacts were identified: groundwater contamination, air pollution and induced seismicity. This presentation will deal with the hydrogeological aspect. As part of the SHEER project, four monitoring wells were installed at a shale gas exploration site in Northern Poland. They intercept the main drinking water aquifer located in Quaternary sediments. Baseline monitoring was carried out from mid-December 2015 to beginning of June 2016. Fracking operations occurred in two horizontal wells, in two stages, in June and July 2016. The monitoring has continued after fracking was completed, with site visits every 4-6 weeks. Collected data include measurements of groundwater level, conductivity and temperature at 15-minute intervals, frequent sampling for laboratory analyses and field measurements of groundwater physico-chemical parameters. Groundwater samples are analysed for a range of constituents including dissolved gases and isotopes. The presentation will focus on the interpretation of baseline monitoring data. The insights gained into the behaviour of the Quaternary aquifer will allow a greater perspective to be place on the initial project understanding draw from previous studies. Short-term impacts will also be discussed in comparison with the baseline monitoring results. The presentation will conclude with discussion of challenges regarding monitoring of shale gas fracking sites.

  6. A Numerical Study of Factors Affecting Fracture-Fluid Cleanup and Produced Gas/Water in Marcellus Shale: Part II

    DOE PAGES

    Seales, Maxian B.; Dilmore, Robert; Ertekin, Turgay; ...

    2017-04-01

    Horizontal wells combined with successful multistage-hydraulic-fracture treatments are currently the most-established method for effectively stimulating and enabling economic development of gas-bearing organic-rich shale formations. Fracture cleanup in the stimulated reservoir volume (SRV) is critical to stimulation effectiveness and long-term well performance. But, fluid cleanup is often hampered by formation damage, and post-fracture well performance frequently falls to less than expectations. A systematic study of the factors that hinder fracture-fluid cleanup in shale formations can help optimize fracture treatments and better quantify long-term volumes of produced water and gas. Fracture-fluid cleanup is a complex process influenced by mutliphase flow through porousmore » media (relative permeability hysteresis, capillary pressure), reservoir-rock and -fluid properties, fracture-fluid properties, proppant placement, fracture-treatment parameters, and subsequent flowback and field operations. Changing SRV and fracture conductivity as production progresses further adds to the complexity of this problem. Numerical simulation is the best and most-practical approach to investigate such a complicated blend of mechanisms, parameters, their interactions, and subsequent effect on fracture-fluid cleanup and well deliverability. Here, a 3D, two-phase, dual-porosity model was used to investigate the effect of mutliphase flow, proppant crushing, proppant diagenesis, shut-in time, reservoir-rock compaction, gas slippage, and gas desorption on fracture-fluid cleanup and well performance in Marcellus Shale. Our findings have shed light on the factors that substantially constrain efficient fracture-fluid cleanup in gas shales, and we have provided guidelines for improved fracture-treatment designs and water management.« less

  7. Organic-rich shale lithofacies geophysical prediction: A case study in the fifth organic-matter-rich interval of Paleogene Hetaoyuan Formation, Biyang Depression

    NASA Astrophysics Data System (ADS)

    Fei, S.; Xinong, X.

    2017-12-01

    The fifth organic-matter-rich interval (ORI 5) in the He-third Member of the Paleogene Hetaoyuan Formation is believed to be the main exploration target for shale oil in Biyang Depression, eastern China. An important part of successful explorating and producing shale oil is to identify and predict organic-rich shale lithofacies with different reservoir capacities and rock geomechanical properties, which are related to organic matter content and mineral components. In this study, shale lithofacies are defined by core analysis data, well-logging and seismic data, and the spatial-temporal distribution of various lithologies are predicted qualitatively by seismic attribute technology and quantitatively by geostatistical inversion analysis, and the prediction results are confirmed by the logging data and geological background. ORI 5 is present in lacustrine expanding system tract and can be further divided into four parasequence sets based on the analysis of conventional logs, TOC content and wavelet transform. Calcareous shale, dolomitic shale, argillaceous shale, silty shale and muddy siltstone are defined within ORI 5, and can be separated and predicted in regional-scale by root mean square amplitude (RMS) analysis and wave impedance. The results indicate that in the early expansion system tract, dolomitic shale and calcareous shale widely developed in the study area, and argillaceous shale, silty shale, and muddy siltstone only developed in periphery of deep depression. With the lake level rising, argillaceous shale and calcareous shale are well developed, and argillaceous shale interbeded with silty shale or muddy siltstone developed in deep or semi-deep lake. In the late expansion system tract, argillaceous shale is widely deposited in the deepest depression, calcareous shale presented band distribution in the east of the depression. Actual test results indicate that these methods are feasible to predict the spatial distribution of shale lithofacies.

  8. Model for refining operations

    NASA Technical Reports Server (NTRS)

    Dunbar, D. N.; Tunnah, B. G.

    1979-01-01

    Program predicts production volumes of petroleum refinery products, with particular emphasis on aircraft-turbine fuel blends and their key properties. It calculates capital and operating costs for refinery and its margin of profitability. Program also includes provisions for processing of synthetic crude oils from oil shale and coal liquefaction processes and contains highly-detailed blending computations for alternative jet-fuel blends of varying endpoint specifications.

  9. Introduction to special section: China shale gas and shale oil plays

    USGS Publications Warehouse

    Jiang, Shu; Zeng, Hongliu; Zhang, Jinchuan; Fishman, Neil; Bai, Baojun; Xiao, Xianming; Zhang, Tongwei; Ellis, Geoffrey S.; Li, Xinjing; Richards-McClung, Bryony; Cai, Dongsheng; Ma, Yongsheng

    2015-01-01

    Even though China shale gas and shale oil exploration is still in an early stage, limited data are already available. We are pleased to have selected eight high-quality papers from fifteen submitted manuscripts for this timely section on the topic of China shale gas and shale oil plays. These selected papers discuss various subject areas including regional geology, resource potentials, integrated and multidisciplinary characterization of China shale reservoirs (geology, geophysics, geochemistry, and petrophysics) China shale property measurement using new techniques, case studies for marine, lacustrine, and transitional shale deposits in China, and hydraulic fracturing. One paper summarizes the regional geology and different tectonic and depositional settings of the major prospective shale oil and gas plays in China. Four papers concentrate on the geology, geochemistry, reservoir characterization, lithologic heterogeneity, and sweet spot identification in the Silurian Longmaxi marine shale in the Sichuan Basin in southwest China, which is currently the primary focus of shale gas exploration in China. One paper discusses the Ordovician Salgan Shale in the Tarim Basin in northwest China, and two papers focus on the reservoir characterization and hydraulic fracturing of Triassic lacustrine shale in the Ordos Basin in northern China. Each paper discusses a specific area.

  10. A review of the organic geochemistry of shales

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ho, P.C.; Meyer, R.E.

    1987-06-01

    Shale formations have been suggested as a potential site for a high level nuclear waste repository. As a first step in the study of the possible interaction of nuclides with the organic components of the shales, literature on the identification of organic compounds from various shales of the continent of the United States has been reviewed. The Green River shale of the Cenozoic era is the most studied shale followed by the Pierre shale of the Mesozoic era and the Devonian black shale of the Paleozoic era. Organic compounds that have been identified from these shales are hydrocarbons, fatty acids,more » fatty alcohols, steranes, terpanes, carotenes, carbohydrates, amino acids, and porphyrins. However, these organic compounds constitute only a small fraction of the organics in shales and the majority of the organic compounds in shales are still unidentified.« less

  11. Assessment of potential shale-oil and shale-gas resources in Silurian shales of Jordan, 2014

    USGS Publications Warehouse

    Schenk, Christopher J.; Pitman, Janet K.; Charpentier, Ronald R.; Klett, Timothy R.; Tennyson, Marilyn E.; Mercier, Tracey J.; Nelson, Philip H.; Brownfield, Michael E.; Pawlewicz, Mark J.; Wandrey, Craig J.

    2014-01-01

    Using a geology-based assessment methodology, the U.S. Geological Survey estimated means of 11 million barrels of potential shale-oil and 320 billion cubic feet of shale-gas resources in Silurian shales of Jordan.

  12. Characteristic and antioxidant activity of retorted gelatin hydrolysates from cobia (Rachycentron canadum) skin.

    PubMed

    Yang, Jing-Iong; Ho, Hsin-Yi; Chu, Yuh-Jwo; Chow, Chau-Jen

    2008-09-01

    Alkali-pretreated cobia (Rachycentron canadum) skin was extracted in a retort (121°C) for 30min to obtain a retorted skin gelatin hydrolysate (RSGH). The molecular mass distributions and antioxidant activities of cobia RSGH and enzyme-treated RSGHs (ET-RSGHs) derived from bromelain, papain, pancreatin, and trypsin digestion were then characterized. The molecular mass distribution of the RSGH ranged mainly between 20,000 and 700Da and those of ET-RSGHs ranged between 6500 and 700Da. The DPPH (α,α-diphenyl-β-picrylhydrazyl) radical scavenging effects (%) of 10mg/ml of RSGH and 10mg/ml of the four ET-RSGHs were 55% and 51-61%, respectively. The lipid peroxidation inhibition (%) of RSGH and ET-RSGHs (10mg/ml) were 58% and 60-71% on the fifth day in a linoleic acid model system, respectively. The 3Kd-ET-RSGHs, obtained by using a series of centrifugal ultrafiltration filters (molecular weight cut-offs of 10, 5, and 3kDa done sequentially with decreasing pore size), exhibited dramatically improved antioxidant activity, with most of the molecular mass ranging below 700Da. Compared to 10mg/ml of the RSGH, 10mg/ml of 3Kd-ET-RSGHs exhibited 45-65% more scavenging of DPPH radical and 24-38% more inhibition of lipid peroxidation. The peptides with molecular masses below 700Da in the ET-RSGHs or 3Kd-ET-RSGHs significantly affect the antioxidant properties. These peptides are composed of a small number of amino acids or free amino acids and have the potential to be added as antioxidants in foods. Copyright © 2008 Elsevier Ltd. All rights reserved.

  13. Effect of Pre-cooking Conditions on the Quality Characteristics of Ready-To-Eat Samgyetang

    PubMed Central

    2015-01-01

    The aim of this study was to examine the effectiveness of pre-cooking conditions on the quality characteristics of ready-to-eat (RTE) Samgyetang. Raw chickens were steamed under the different conditions of 50℃/30 min (T1), 65℃/30 min (T2), 85℃/30 min (T3), and 90℃/10 min (T4) prior to retorting at 120℃ for 65 min. The results showed that pre-cooking conditions in all treated samples could reduce fat contents in breast and leg meats by 8.5-11.7% and 10.0-11.0% compared to the control, even though there were no significant differences among treatments (p>0.05). The L* and b* values of breast and leg meats treated with the higher temperature and longer time conditions were significantly higher than the control (p<0.05), while a* values tended to decrease despite of not to a significant extent (p>0.05). Moreover, apparent viscosity and water soluble protein showed insignificant differences (p>0.05) among the samples as a result of the retorting process, which might have more negative influences on the quality. T2 samples obtained significantly the highest average Quantitative Descriptive Analysis (QDA) score and transmittance value, representing the most clear broth among the samples, compared to the control. On the other hand, T3 showed the highest cooking loss among the treatments and the lowest QDA scores among the samples. In conclusion, pre-cooking treatment prior to retorting in manufacturing Samgyetang is a plausible way to reduce its fat content. A pre-cooking condition at either 65℃ for 30 min, or 90℃ for 10 min are recommended for producing Samgyetang with optimum quality. PMID:26761871

  14. Naval Petroleum and Oil Shale Reserves Combined Financial Statements September 30, 1994 and 1993 and Management Overview and Supplemental Financial and Management Information

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    1994-12-31

    This report presents the results of the independent certified public accountant`s audit of the Department of Energy`s (Department) Naval Petroleum and Oil Shale Reserves (NPOSR) financial statements as of September 30, 1994. The auditors have expressed an unqualified opinion on the 1994 statements. Their reports on the NPOSR internal control structure and on compliance with laws and regulations, and management letter on addressing needed improvements are also provided. NPOSR consists of petroleum reserves in California and Wyoming, and oil shale reserves in Colorado and Utah. The Government`s interests in NPOSR are managed by the Department through its headquarters office inmore » Washington, D.C. In addition, the Department has site offices in both California and Wyoming that are responsible for contractor oversight functions. Daily operations are conducted under contract by two management and operating contractors. By law, NPOSR was authorized to produce crude oil at the maximum efficient rate for six years. The law allowed production to be extended for three year periods, provided that the President of the United States certified that continued maximum production was in the best interest of the nation. The current three year period ends on April 5, 1997. Additional information about NPOSR is provided in the overview and notes to the financial statements.« less

  15. Hydraulic fracturing in shales: the spark that created an oil and gas boom

    NASA Astrophysics Data System (ADS)

    Olson, J. E.

    2017-12-01

    In the oil and gas business, one of the valued properties of a shale was its lack of flow capacity (its sealing integrity) and its propensity to provide mechanical barriers to hydraulic fracture height growth when exploiting oil and gas bearing sandstones. The other important property was the high organic content that made shale a potential source rock for oil and gas, commodities which migrated elsewhere to be produced. Technological advancements in horizontal drilling and hydraulic fracturing have turned this perspective on its head, making shale (or other ultra-low permeability rocks that are described with this catch-all term) the most prized reservoir rock in US onshore operations. Field and laboratory results have changed our view of how hydraulic fracturing works, suggesting heterogeneities like bedding planes and natural fractures can cause significant complexity in hydraulic fracture growth, resulting in induced networks of fractures whose details are controlled by factors including in situ stress contrasts, ductility contrasts in the stratigraphy, the orientation and strength of pre-existing natural fractures, injection fluid viscosity, perforation cluster spacing and effective mechanical layer thickness. The stress shadowing and stress relief concepts that structural geologists have long used to explain joint spacing and orthogonal fracture pattern development in stratified sequences are key to understanding optimal injection point spacing and promotion of more uniform length development in induced hydraulic fractures. Also, fracture interaction criterion to interpret abutting vs crossing natural fracture relationships in natural fracture systems are key to modeling hydraulic fracture propagation within natural fractured reservoirs such as shale. Scaled physical experiments provide constraints on models where the physics is uncertain. Numerous interesting technical questions remain to be answered, and the field is particularly appealing in that better geologic understanding of the stratigraphic heterogeneity and material property attributes of shale can have a direct effect on the engineering design of wellbores and stimulation treatments.

  16. Recovery and fractionation of phosphorus retained by lightweight expanded shale and masonry sand used as media in subsurface flow treatment wetlands.

    PubMed

    Forbes, Margaret G; Dickson, Kenneth L; Saleh, Farida; Waller, William T; Doyle, Robert D; Hudak, Paul

    2005-06-15

    Most subsurface flow treatment wetlands, also known as reed bed or root zone systems, use sand or gravel substrates to reduce organics, solids, and nutrients in septic tank effluents. Phosphorus (P) retention in these systems is highly variable and few studies have identified the fate of retained P. In this study, two substrates, expanded shale and masonry sand, were used as filter media in five subsurface flow pilot-scale wetlands (2.7 m3). After 1 year of operation, we estimated the annual rate of P sorption by taking the difference between total P (TP) of substrate in the pilot cells and TP of substrate not exposed to wastewater (control). Means and standard deviations of TP retained by expanded shale were 349 +/- 171 mg kg(-1), respectively. For a substrate depth of 0.9 m, aerial P retention by shale was 201 +/- 98.6 g of P m(-2) year(-1), respectively. Masonry sand retained an insignificant quantity of wastewater P (11.9 +/- 21.8 mg kg(-1)) and on occasion exported P. Substrate samples were also sequentially fractionated into labile P, microbial P, (Fe + Al) P, humic P, (Ca + Mg) P, and residual P. In expanded shale samples, the greatest increase in P was in the relatively permanent form of (Fe + Al) P (108 mg kg(-1)), followed by labile P (46.7 mg kg(-1)) and humic P (39.8 mg kg(-1)). In masonry sand, there was an increase in labile P (9.71 mg kg(-1)). Results suggest that sand is a poor candidate for long-term P storage, but its efficiency is similar to that reported for many sand, gravel, and rock systems. By contrast, expanded shale and similar products with high hydraulic conductivity and P sorption capacity could greatly improve performance of P retention in constructed wetlands.

  17. Quantifying Emissions from the Eagle Ford Shale Using Ethane Enhancement

    NASA Astrophysics Data System (ADS)

    Roest, G. S.; Schade, G. W.

    2014-12-01

    Emissions from unconventional oil and natural gas exploration in the Eagle Ford Shale have been conjectured as a contributing factor to increasing ozone concentrations in the San Antonio Metropolitan Area, which is on track to be designated as a nonattainment area by the EPA. Primary species found in natural gas emissions are alkanes, with C3 and heavier alkanes acting as short-lived VOCs contributing to regional ozone formation. Methane emissions from the industry are also a forcing mechanism for climate change as methane is a potent greenhouse gas. Recent studies have highlighted a high variability and uncertainties in oil and natural gas emissions estimates in emissions inventories. Thus, accurately quantifying oil and natural gas emissions from the Eagle Ford Shale is necessary to assess the industry's impacts on climate forcing and regional air quality. We estimate oil and natural gas emissions in the Eagle Ford Shale using in situ ethane measurements along southwesterly trajectories from the Gulf of Mexico, dominantly during the summertime. Ethane enhancement within the drilling area is estimated by comparing ethane concentrations upwind of the shale, near the Texas coastline, to downwind measurements in the San Antonio Metropolitan Area, Odessa, and Amarillo. Upwind ethane observations indicate low background levels entering Texas in the Gulf of Mexico air masses. Significant ethane enhancement is observed between the coast and San Antonio, and is attributed to oil and natural gas operations due to the concurrent enhancements of heavier alkanes. Using typical boundary layer depths and presuming homogenous emissions across the Eagle Ford shale area, the observed ethane enhancements are used to extrapolate an estimate of oil and natural gas industry emissions in the Eagle Ford. As oil and natural gas production in the area is projected to grow rapidly over the coming years, the impacts of these emissions on regional air quality will need to be thoroughly studied.

  18. 40 CFR 265.223 - Containment system.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 265.223 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) INTERIM STATUS STANDARDS FOR OWNERS AND OPERATORS OF HAZARDOUS WASTE TREATMENT, STORAGE, AND DISPOSAL..., such as grass, shale, or rock, to minimize wind and water erosion and to preserve their structural...

  19. Paleozoic shale gas resources in the Sichuan Basin, China

    USGS Publications Warehouse

    Potter, Christopher J.

    2018-01-01

    The Sichuan Basin, China, is commonly considered to contain the world’s most abundant shale gas resources. Although its Paleozoic marine shales share many basic characteristics with successful United States gas shales, numerous geologic uncertainties exist, and Sichuan Basin shale gas production is nascent. Gas retention was likely compromised by the age of the shale reservoirs, multiple uplifts and orogenies, and migration pathways along unconformities. High thermal maturities raise questions about gas storage potential in lower Paleozoic shales. Given these uncertainties, a new look at Sichuan Basin shale gas resources is advantageous. As part of a systematic effort to quantitatively assess continuous oil and gas resources in priority basins worldwide, the US Geological Survey (USGS) completed an assessment of Paleozoic shale gas in the Sichuan Basin in 2015. Three organic-rich marine Paleozoic shale intervals meet the USGS geologic criteria for quantitative assessment of shale gas resources: the lower Cambrian Qiongzhusi Formation, the uppermost Ordovician Wufeng through lowermost Silurian Longmaxi Formations (currently producing shale gas), and the upper Permian Longtan and Dalong Formations. This study defined geologically based assessment units and calculated probabilistic distributions of technically recoverable shale gas resources using the USGS well productivity–based method. For six assessment units evaluated in 2015, the USGS estimated a mean value of 23.9 tcf (677 billion cubic meters) of undiscovered, technically recoverable shale gas. This result is considerably lower than volumes calculated in previous shale gas assessments of the Sichuan Basin, highlighting a need for caution in this geologically challenging setting.

  20. Ontonagon Harbor Operation and Maintenance Activities. Lake Superior.

    DTIC Science & Technology

    1975-08-01

    St. Paul, Minnesota 55101 August 1975 FINAL ENVIRONMENTAL IMPACT STATEMENT OPERATION AND MAINTENAN4CE ACTIVITIES ONTONAGON HARBDOR, MICHIGAN LAKE...SUPERIOR Responsible Office: St. Paul District, Corps of Engineers, 1135 U.S. Post Office and Custom House, St. Paul, Minnesota 55101 Telephone Number 612...Nonesuch shale is a finer siltstone containing recoverable copper deposits. Active mining is present at White Pine, 12 air miles southwest of Ontonagon

  1. 9 CFR 318.308 - Deviations in processing.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ...) Deviations in processing (or process deviations) must be handled according to: (1)(i) A HACCP plan for canned...) of this section. (c) [Reserved] (d) Procedures for handling process deviations where the HACCP plan... accordance with the following procedures: (a) Emergency stops. (1) When retort jams or breakdowns occur...

  2. 9 CFR 381.308 - Deviations in processing.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ...) must be handled according to: (1)(i) A HACCP plan for canned product that addresses hazards associated... (d) of this section. (c) [Reserved] (d) Procedures for handling process deviations where the HACCP... accordance with the following procedures: (a) Emergency stops. (1) When retort jams or breakdowns occur...

  3. 118. VIEW, LOOKING SOUTHWEST OF GOLD AMALGAMATION ROOM, SHOWING AMALGAMATION ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    118. VIEW, LOOKING SOUTHWEST OF GOLD AMALGAMATION ROOM, SHOWING AMALGAMATION BARREL AT CENTER FOREGROUND, BULLION FURNACE IN LARGE HOOD BEHIND IT, AND GOLD RETORT IN BACKGROUND HOOD. NOTE OVERHEAD MONORAIL FOR MATERIALS HANDLING. - Shenandoah-Dives Mill, 135 County Road 2, Silverton, San Juan County, CO

  4. A "Retort Courteous."

    ERIC Educational Resources Information Center

    Kingsbury, Mary E.

    1979-01-01

    Responds to article by Pauline Wilson (School Library Journal, v25 n6 Feb 1979) in terms of defining the role of children's librarians, clarifying the goals of children's services, making a case for such services, improving the impression made by children's librarians, determining appropriate preparation, and understanding and achieving quality…

  5. 43 CFR 3922.20 - Application contents.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ..., and transportation methods, including: (1) A description of the mining, retorting, or in situ mining... applications must be filed in the proper BLM State Office. No specific form of application is required, but the... is substantially identical to a technology or method currently in use to produce marketable...

  6. 43 CFR 3922.20 - Application contents.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ..., and transportation methods, including: (1) A description of the mining, retorting, or in situ mining... applications must be filed in the proper BLM State Office. No specific form of application is required, but the... is substantially identical to a technology or method currently in use to produce marketable...

  7. 43 CFR 3922.20 - Application contents.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ..., and transportation methods, including: (1) A description of the mining, retorting, or in situ mining... applications must be filed in the proper BLM State Office. No specific form of application is required, but the... is substantially identical to a technology or method currently in use to produce marketable...

  8. 43 CFR 3922.20 - Application contents.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ..., and transportation methods, including: (1) A description of the mining, retorting, or in situ mining... applications must be filed in the proper BLM State Office. No specific form of application is required, but the... is substantially identical to a technology or method currently in use to produce marketable...

  9. Estimation of Potential Shale Gas Yield Amount and Land Degradation in China by Landcover Distribution regarding Water-Food-Energy and Forest

    NASA Astrophysics Data System (ADS)

    Kim, N.; Heo, S.; Lim, C. H.; Lee, W. K.

    2017-12-01

    Shale gas is gain attention due to the tremendous reserves beneath the earth. The two known high reservoirs are located in United States and China. According to U.S Energy Information Administration China have estimated 7,299 trillion cubic feet of recoverable shale gas and placed as world first reservoir. United States had 665 trillion cubic feet for the shale gas reservoir and placed fourth. Unlike the traditional fossil fuel, spatial distribution of shale gas is considered to be widely spread and the reserved amount and location make the resource as energy source for the next generation. United States dramatically increased the shale gas production. For instance, shale gas production composes more than 50% of total natural gas production whereas China and Canada shale gas produce very small amount of the shale gas. According to U.S Energy Information Administration's report, in 2014 United States produced shale gas almost 40 billion cubic feet per day but China only produced 0.25 billion cubic feet per day. Recently, China's policy had changed to decrease the coal powerplants to reduce the air pollution and the energy stress in China is keep increasing. Shale gas produce less air pollution while producing energy and considered to be clean energy source. Considering the situation of China and characteristics of shale gas, soon the demand of shale gas will increase in China. United States invested 71.7 billion dollars in 2013 but it Chinese government is only proceeding fundamental investment due to land degradation, limited water resources, geological location of the reservoirs.In this study, firstly we reviewed the current system and technology of shale gas extraction such as hydraulic Fracturing. Secondly, listed the possible environmental damages, land degradations, and resource demands for the shale gas extraction. Thirdly, invested the potential shale gas extraction amount in China based on the location of shale gas reservoirs and limited resources for the gas extraction. Fourthly, invested the potential land degradation on agricultural, surface water, and forest in developing shale gas extraction scenario. In conclusion, we suggested possible environmental damages and social impacts from shale gas extraction in China.

  10. Detachment of particulate iron sulfide during shale-water interaction

    NASA Astrophysics Data System (ADS)

    Emmanuel, S.; Kreisserman, Y.

    2017-12-01

    Hydraulic fracturing, a commonly used technique to extract oil and gas from shales, is controversial in part because of the threat it poses to water resources. The technique involves the injection into the subsurface of large amounts of fluid, which can become contaminated by fluid-rock interaction. The dissolution of pyrite is thought to be a primary pathway for the contamination of fracturing fluids with toxic elements, such as arsenic and lead. In this study, we use direct observations with atomic force microscopy to show that the dissolution of carbonate minerals in Eagle Ford shale leads to the physical detachment of embedded pyrite grains. To simulate the way fluid interacts with a fractured shale surface, we also reacted rock samples in a flow-through cell, and used environmental scanning electron microscopy to compare the surfaces before and after interaction with water. Crucially, our results show that the flux of particulate iron sulfide into the fluid may be orders of magnitude higher than the flux of pyrite from chemical dissolution. This result suggests that mechanical detachment of pyrite grains could be the dominant mode by which arsenic and other inorganic elements are mobilized in the subsurface. Thus, during hydraulic fracturing operations and in groundwater systems containing pyrite, the transport of many toxic species may be controlled by the transport of colloidal iron sulfide particles.

  11. Safe Management of Waste Generated during Shale Gas Operations

    NASA Astrophysics Data System (ADS)

    Kukulska-Zając, Ewa; Król, Anna; Holewa-Rataj, Jadwiga

    2017-04-01

    Exploration and exploitation of hydrocarbon deposits, regardless of their type, are connected with the generation of waste, which may have various environmental effects. Such wastes may pose a serious risk to the surrounding environment and public health because they usually contain numerous potentially toxic chemicals. Waste associated with exploration and exploitation of unconventional hydrocarbon deposits is composed of a mixture of organic and inorganic materials, the qualitative and quantitative composition of which changes widely over time, depending on numerous factors. As a result the proper characteristic of this type of waste is very important. Information gained from detailed chemical analyses of drilling chemicals, drilling wastes, and flowback water can be used to manage shale gas-related wastes more appropriately, to develop treatment methods, to store the waste, and assess the potential environmental and health risk. The following paper will focus mainly on the results of research carried out on waste samples coming from the unconventional hydrogen exploration sites. Additionally, regulatory frameworks applicable to the management of wastes produced during this type of works will be discussed. The scope of research concerning physicochemical parameters for this type of wastes will also be presented. The presented results were obtained during M4ShaleGas project realization. The M4ShaleGas project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement no. 640715.

  12. Reservoir characteristics of coal-shale sedimentary sequence in coal-bearing strata and their implications for the accumulation of unconventional gas

    NASA Astrophysics Data System (ADS)

    Wang, Yang; Zhu, Yanming; Liu, Yu; Chen, Shangbin

    2018-04-01

    Shale gas and coalbed methane (CBM) are both considered unconventional natural gas and are becoming increasingly important energy resources. In coal-bearing strata, coal and shale are vertically adjacent as coal and shale are continuously deposited. Research on the reservoir characteristics of coal-shale sedimentary sequences is important for CBM and coal-bearing shale gas exploration. In this study, a total of 71 samples were collected, including coal samples (total organic carbon (TOC) content >40%), carbonaceous shale samples (TOC content: 6%-10%), and shale samples (TOC content <6%). Combining techniques of field emission scanning electron microscopy (FE-SEM), x-ray diffraction, high-pressure mercury intrusion porosimetry, and methane adsorption, experiments were employed to characterize unconventional gas reservoirs in coal-bearing strata. The results indicate that in the coal-shale sedimentary sequence, the proportion of shale is the highest at 74% and that of carbonaceous shale and coal are 14% and 12%, respectively. The porosity of all measured samples demonstrates a good positive relationship with TOC content. Clay and quartz also have a great effect on the porosity of shale samples. According to the FE-SEM image technique, nanoscale pores in the organic matter of coal samples are much more developed compared with shale samples. For shales with low TOC, inorganic minerals provide more pores than organic matter. In addition, TOC content has a positive relationship with methane adsorption capacity, and the adsorption capacity of coal samples is more sensitive than the shale samples to temperature.

  13. Detection of early changes in lung cell cytology by flow-systems analysis techniques. Progress report, October 1, 1976--June 30, 1977. [Damage induced by exposure to toxic agents associated with production of synthetic fuels from oil shale and coal

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Steinkamp, J.A.; Hansen, K.M.; Wilson, J.S.

    1977-07-01

    This report summarizes results of continuing experiments to develop cytological and biochemical indicators for estimating damage to respiratory tract cells in animals exposed to toxic agents associated with production of synthetic fuels from oil shale and coal, the specific goal being the application of advanced flow-systems technologies to the detection of early atypical cellular changes in lung epithelium. The objectives of the program during the past 6 months were: to develop standard methods for lavaging lungs of several rodent species (hamster, rat, and mouse) to increase cell yield; initiate oil shale exposures in hamsters and rats; study the effects ofmore » macrophage mobility in the presence of oil shale; and determine the effects of different fixatives on lung cell morphology using electron microscopy. To develop standard methods for lavaging the respiratory tract of test animals, experiments were devised to increase cell yield with minimal debris and blood. Proteolytic enzymes such as trypsin were also tested but produced excessive amounts of fibrinated blood. Experimental animals were exposed to raw and spent oil shale particulates to determine if changes in lung cell differential counts and/or atypical cellular changes were noted. Since the multiparameter cell separator system was inoperative during this reporting period due to major modifications, including the addition of an uv krypton laser, emphasis was primarily on cytological techniques. As the flow-systems instrumentation becomes fully operational during the next month, automated analysis of respiratory tract cells and measurement of physical and biochemical properties as a function of exposure to toxic agents will continue.« less

  14. A Numerical Study of Factors Affecting Fracture-Fluid Cleanup and Produced Gas/Water in Marcellus Shale: Part II

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Seales, Maxian B.; Dilmore, Robert; Ertekin, Turgay

    Horizontal wells combined with successful multi-stage hydraulic fracture treatments are currently the most established method for effectively stimulating and enabling economic development of gas bearing organic-rich shale formations. Fracture cleanup in the Stimulated Reservoir Volume (SRV) is critical to stimulation effectiveness and long-term well performance. However, fluid cleanup is often hampered by formation damage, and post-fracture well performance frequently falls below expectations. A systematic study of the factors that hinder fracture fluid cleanup in shale formations can help optimize fracture treatments and better quantify long term volumes of produced water and gas. Fracture fluid cleanup is a complex process influencedmore » by multi-phase flow through porous media (relative permeability hysteresis, capillary pressure etc.), reservoir rock and fluid properties, fracture fluid properties, proppant placement, fracture treatment parameters, and subsequent flowback and field operations. Changing SRV and fracture conductivity as production progresses further adds to the complexity of this problem. Numerical simulation is the best, and most practical approach to investigate such a complicated blend of mechanisms, parameters, their interactions, and subsequent impact on fracture fluid cleanup and well deliverability. In this paper, a 3-dimensional, 2-phase, dual-porosity model was used to investigate the impact of multiphase flow, proppant crushing, proppant diagenesis, shut-in time, reservoir rock compaction, gas slippage, and gas desorption on fracture fluid cleanup, and well performance in Marcellus shale. The research findings have shed light on the factors that substantially constrains efficient fracture fluid cleanup in gas shales, and provided guidelines for improved fracture treatment designs and water management.« less

  15. Porosity evolution during weathering of Marcellus shale

    NASA Astrophysics Data System (ADS)

    Gu, X.; Brantley, S.

    2017-12-01

    Weathering is an important process that continuously converts rock to regolith. Shale weathering is of particular interest because 1) shale covers about 25% of continental land mass; 2) recent development of unconventional shale gas generates large volumes of rock cuttings. When cuttings are exposed at earth's surface, they can release toxic trace elements during weathering. In this study, we investigated the evolution of pore structures and mineral transformation in an outcrop of Marcellus shale - one of the biggest gas shale play in North America - at Frankstown, Pennsylvania. A combination of neutron scattering and imaging was used to characterize the pore structures from nm to mm. The weathering profile of Marcellus shale was also compared to the well-studied Rose Hill shale from the Susquehanna Shale Hills critical zone observatory nearby. This latter shale has a similar mineral composition as Marcellus shale but much lower concentrations of pyrite and OC. The Marcellus shale formation in outcrop overlies a layer of carbonate at 10 m below land surface with low porosity (<3%). All the shale samples above the carbonate layer are almost completely depleted in carbonate, plagioclase, chlorite and pyrite. The porosities in the weathered Marcellus shale are twice as high as in protolith. The pore size distribution exhibits a broad peak for pores of size in the range of 10s of microns, likely due to the loss of OC and/or dissolution of carbonate during weathering. In the nearby Rose Hill shale, the pyrite and carbonate are sharply depleted close to the water table ( 15-20 m at ridgetop); while chlorite and plagioclase are gradually depleted toward the land surface. The greater weathering extent of silicates in the Marcellus shale despite the similarity in climate and erosion rate in these two neighboring locations is attributed to 1) the formation of micron-size pores increases the infiltration rate into weathered Marcellus shale and therefore promotes mineral weathering; 2) the pyrite/carbonate ratio is higher in the Marcellus shale than in Rose Hill shale, and thus excess acidity generated through pyrite oxidation enhances the dissolution of silicates. We seek to use these and other observations to develop a global model for shale weathering that incorporates both mineral composition and porosity change.

  16. Mongolian Oil Shale, hosted in Mesozoic Sedimentary Basins

    NASA Astrophysics Data System (ADS)

    Bat-Orshikh, E.; Lee, I.; Norov, B.; Batsaikhan, M.

    2016-12-01

    Mongolia contains several Mesozoic sedimentary basins, which filled >2000 m thick non-marine successions. Late Triassic-Middle Jurassic foreland basins were formed under compression tectonic conditions, whereas Late Jurassic-Early Cretaceous rift valleys were formed through extension tectonics. Also, large areas of China were affected by these tectonic events. The sedimentary basins in China host prolific petroleum and oil shale resources. Similarly, Mongolian basins contain hundreds meter thick oil shale as well as oil fields. However, petroleum system and oil shale geology of Mongolia remain not well known due to lack of survey. Mongolian oil shale deposits and occurrences, hosted in Middle Jurassic and Lower Cretaceous units, are classified into thirteen oil shale-bearing basins, of which oil shale resources were estimated to be 787 Bt. Jurassic oil shale has been identified in central Mongolia, while Lower Cretaceous oil shale is distributed in eastern Mongolia. Lithologically, Jurassic and Cretaceous oil shale-bearing units (up to 700 m thick) are similar, composed mainly of alternating beds of oil shale, dolomotic marl, siltstone and sandstone, representing lacustrine facies. Both Jurassic and Cretaceous oil shales are characterized by Type I kerogen with high TOC contents, up to 35.6% and low sulfur contents ranging from 0.1% to 1.5%. Moreover, S2 values of oil shales are up to 146 kg/t. The numbers indicate that the oil shales are high quality, oil prone source rocks. The Tmax values of samples range from 410 to 447, suggesting immature to early oil window maturity levels. PI values are consistent with this interpretation, ranging from 0.01 to 0.03. According to bulk geochemistry data, Jurassic and Cretaceous oil shales are identical, high quality petroleum source rocks. However, previous studies indicate that known oil fields in Eastern Mongolia were originated from Lower Cretaceous oil shales. Thus, further detailed studies on Jurassic oil shale and its petroleum potential are required.

  17. Use of arsenic and REE in black shales as potential environmental tracers in hydraulic fracturing operations

    NASA Astrophysics Data System (ADS)

    Yang, J.; Torres, M. E.; Haley, B. A.; McKay, J. L.; Algeo, T. J.; Hakala, A.; Joseph, C.; Edenborn, H. M.

    2013-12-01

    Black shales commonly targeted for shale gas development were deposited under low oxygen concentrations, and typically contain high As levels. The depositional environment governs its solid-phase association in the sediment, which in turn will influence degree of remobilization during hydraulic fracturing. Organic carbon (OC), trace element (TE) and REE distributions have been used as tracers for assessing deep water redox conditions at the time of deposition in the Midcontinent Sea of North America (Algeo and Heckel, 2008), during large-scale oceanic anoxic events (e.g., Bunte, 2009) and in modern OC-rich sediments underlying coastal upwelling areas (e.g., Brumsack, 2006). We will present REE and As data from a collection of six different locations in the continental US (Kansas, Iowa, Oklahoma, Kentucky, North Dakota and Pennsylvania), ranging in age from Devonian to Upper Pennsylvanian, and from a Cretaceous black shale drilled on the Demerara Rise during ODP Leg 207. We interpret our data in light of the depositional framework previously developed for these locations based on OC and TE patterns, to document the mechanisms leading to REE and As accumulation, and explore their potential use as environmental proxies and their diagenetic remobilization during burial, as part of our future goal to develop a predictive evaluation of arsenic release from shales and transport with flowback waters. Total REE abundance (ΣREE) ranged from 35 to 420 ppm in an organic rich sample from Stark shale, KS. PAAS-normalized REE concentrations ranged from 0.5 to 7, with the highest enrichments observed in the MREE (Sm to Ho). Neither the ΣREE nor the MREE enrichments correlated with OC concentrations or postulated depositional redox conditions, suggesting a principal association with aluminosilicates and selective REE fractionation during diagenesis. In the anoxic reducing environments in which black shales were deposited, sulfide minerals such as FeS2 trap aqueous arsenic in the crystal lattice, but As is also known to bind to the charged surfaces of clay minerals. Our arsenic concentration data show that the highest abundances (up to 70 ppm) are found in sediments with the highest total sulfur concentration (to 2.6 ppm), but there was no clear correlation with organic carbon or aluminosilicate content. We compare our results with preliminary data from a series of flowback waters sampled from ten producing wells in Pennsylvania and from high-pressure high-temperature experimental leaching of Marcellus shale samples.

  18. Comparison of formation mechanism of fresh-water and salt-water lacustrine organic-rich shale

    NASA Astrophysics Data System (ADS)

    Lin, Senhu

    2017-04-01

    Based on the core and thin section observation, major, trace and rare earth elements test, carbon and oxygen isotopes content analysis and other geochemical methods, a detailed study was performed on formation mechanism of lacustrine organic-rich shale by taking the middle Permian salt-water shale in Zhungaer Basin and upper Triassic fresh-water shale in Ordos Basin as the research target. The results show that, the middle Permian salt-water shale was overall deposited in hot and dry climate. Long-term reductive environment and high biological abundance due to elevated temperature provides favorable conditions for formation and preservation of organic-rich shale. Within certain limits, the hotter climate, the organic-richer shale formed. These organic-rich shale was typically distributed in the area where palaeosalinity is relatively high. However, during the upper Triassic at Ordos Basin, organic-rich shale was formed in warm and moist environment. What's more, if the temperature, salinity or water depth rises, the TOC in shale decreases. In other words, relatively low temperature and salinity, stable lake level and strong reducing conditions benefits organic-rich shale deposits in fresh water. In this sense, looking for high-TOC shale in lacustrine basin needs to follow different rules depends on the palaeoclimate and palaeoenvironment during sedimentary period. There is reason to believe that the some other factors can also have significant impact on formation mechanism of organic-rich shale, which increases the complexity of shale oil and gas prediction.

  19. Assessment of undiscovered shale gas and shale oil resources in the Mississippian Barnett Shale, Bend Arch–Fort Worth Basin Province, North-Central Texas

    USGS Publications Warehouse

    Marra, Kristen R.; Charpentier, Ronald R.; Schenk, Christopher J.; Lewan, Michael D.; Leathers-Miller, Heidi M.; Klett, Timothy R.; Gaswirth, Stephanie B.; Le, Phuong A.; Mercier, Tracey J.; Pitman, Janet K.; Tennyson, Marilyn E.

    2015-12-17

    Using a geology-based assessment methodology, the U.S. Geological Survey estimated mean volumes of 53 trillion cubic feet of shale gas, 172 million barrels of shale oil, and 176 million barrels of natural gas liquids in the Barnett Shale of the Bend Arch–Fort Worth Basin Province of Texas.

  20. 121. FRONT ELEVATION OF TELLURIDE IRON WORKS 2.5 BY 4FOOT ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    121. FRONT ELEVATION OF TELLURIDE IRON WORKS 2.5 BY 4-FOOT RETORT, USED TO FLASH MERCURY FROM GOLD. MERCURY VAPOR THEN CONDENSED ON INSIDE OF HOOD AND WAS COLLECTED FOR REUSE. - Shenandoah-Dives Mill, 135 County Road 2, Silverton, San Juan County, CO

  1. Assessment of TAMU Rack Material in Poly Tray Racks using Spray Retort

    DTIC Science & Technology

    2009-07-01

    FOR ADVANCED FOOD TECHNOLOGY The School of Enviromental and Biological Science Rutgers, The State University of New Jersey New Brunswick, New Jersey...A003 Mr. Henderikus B. Bruins Rutgers, The State University of New Jersey The Center for Advanced Food Technology School of Enviromental and

  2. Letters of a Slave Turned Union Soldier.

    ERIC Educational Resources Information Center

    Humanities, 1990

    1990-01-01

    Discusses the influx of Black soldiers into the Union army following the Emancipation Proclamation. Concentrates on the case of Private Spotswood Rice. Provides a short history of Rice, including copies of Rice's letters to his enslaved daughters, the daughter's slaveholders, and an angry retort from the slaveowner to the federal commander in…

  3. 9 CFR 381.300 - Definitions.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... of air from a retort before the start of process timing. (x) Water activity. The ratio of the water vapor pressure of the product to the vapor pressure of pure water at the same temperature. ... throughout the entire thermal process. (d) Canned product. A poultry food product with a water activity above...

  4. 9 CFR 381.300 - Definitions.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... of air from a retort before the start of process timing. (x) Water activity. The ratio of the water vapor pressure of the product to the vapor pressure of pure water at the same temperature. ... throughout the entire thermal process. (d) Canned product. A poultry food product with a water activity above...

  5. 9 CFR 318.300 - Definitions.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... of air from a retort before the start of process timing. (x) Water activity. The ratio of the water vapor pressure of the product to the vapor pressure of pure water at the same temperature. ... with a water activity above 0.85 which receives a thermal process either before or after being packed...

  6. 9 CFR 318.300 - Definitions.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... of air from a retort before the start of process timing. (x) Water activity. The ratio of the water vapor pressure of the product to the vapor pressure of pure water at the same temperature. ... with a water activity above 0.85 which receives a thermal process either before or after being packed...

  7. 9 CFR 381.300 - Definitions.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... of air from a retort before the start of process timing. (x) Water activity. The ratio of the water vapor pressure of the product to the vapor pressure of pure water at the same temperature. ... throughout the entire thermal process. (d) Canned product. A poultry food product with a water activity above...

  8. 9 CFR 318.300 - Definitions.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... of air from a retort before the start of process timing. (x) Water activity. The ratio of the water vapor pressure of the product to the vapor pressure of pure water at the same temperature. ... with a water activity above 0.85 which receives a thermal process either before or after being packed...

  9. 9 CFR 318.300 - Definitions.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... of air from a retort before the start of process timing. (x) Water activity. The ratio of the water vapor pressure of the product to the vapor pressure of pure water at the same temperature. ... with a water activity above 0.85 which receives a thermal process either before or after being packed...

  10. 9 CFR 381.300 - Definitions.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... of air from a retort before the start of process timing. (x) Water activity. The ratio of the water vapor pressure of the product to the vapor pressure of pure water at the same temperature. ... throughout the entire thermal process. (d) Canned product. A poultry food product with a water activity above...

  11. 9 CFR 381.300 - Definitions.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... of air from a retort before the start of process timing. (x) Water activity. The ratio of the water vapor pressure of the product to the vapor pressure of pure water at the same temperature. ... throughout the entire thermal process. (d) Canned product. A poultry food product with a water activity above...

  12. 9 CFR 318.300 - Definitions.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... of air from a retort before the start of process timing. (x) Water activity. The ratio of the water vapor pressure of the product to the vapor pressure of pure water at the same temperature. ... with a water activity above 0.85 which receives a thermal process either before or after being packed...

  13. Pore-Scale Simulation and Sensitivity Analysis of Apparent Gas Permeability in Shale Matrix

    PubMed Central

    Zhang, Pengwei; Hu, Liming; Meegoda, Jay N.

    2017-01-01

    Extremely low permeability due to nano-scale pores is a distinctive feature of gas transport in a shale matrix. The permeability of shale depends on pore pressure, porosity, pore throat size and gas type. The pore network model is a practical way to explain the macro flow behavior of porous media from a microscopic point of view. In this research, gas flow in a shale matrix is simulated using a previously developed three-dimensional pore network model that includes typical bimodal pore size distribution, anisotropy and low connectivity of the pore structure in shale. The apparent gas permeability of shale matrix was calculated under different reservoir pressures corresponding to different gas exploitation stages. Results indicate that gas permeability is strongly related to reservoir gas pressure, and hence the apparent permeability is not a unique value during the shale gas exploitation, and simulations suggested that a constant permeability for continuum-scale simulation is not accurate. Hence, the reservoir pressures of different shale gas exploitations should be considered. In addition, a sensitivity analysis was also performed to determine the contributions to apparent permeability of a shale matrix from petro-physical properties of shale such as pore throat size and porosity. Finally, the impact of connectivity of nano-scale pores on shale gas flux was analyzed. These results would provide an insight into understanding nano/micro scale flows of shale gas in the shale matrix. PMID:28772465

  14. Pore-Scale Simulation and Sensitivity Analysis of Apparent Gas Permeability in Shale Matrix.

    PubMed

    Zhang, Pengwei; Hu, Liming; Meegoda, Jay N

    2017-01-25

    Extremely low permeability due to nano-scale pores is a distinctive feature of gas transport in a shale matrix. The permeability of shale depends on pore pressure, porosity, pore throat size and gas type. The pore network model is a practical way to explain the macro flow behavior of porous media from a microscopic point of view. In this research, gas flow in a shale matrix is simulated using a previously developed three-dimensional pore network model that includes typical bimodal pore size distribution, anisotropy and low connectivity of the pore structure in shale. The apparent gas permeability of shale matrix was calculated under different reservoir pressures corresponding to different gas exploitation stages. Results indicate that gas permeability is strongly related to reservoir gas pressure, and hence the apparent permeability is not a unique value during the shale gas exploitation, and simulations suggested that a constant permeability for continuum-scale simulation is not accurate. Hence, the reservoir pressures of different shale gas exploitations should be considered. In addition, a sensitivity analysis was also performed to determine the contributions to apparent permeability of a shale matrix from petro-physical properties of shale such as pore throat size and porosity. Finally, the impact of connectivity of nano-scale pores on shale gas flux was analyzed. These results would provide an insight into understanding nano/micro scale flows of shale gas in the shale matrix.

  15. Long-term modelling of fly ash and radionuclide emissions as well as deposition fluxes due to the operation of large oil shale-fired power plants.

    PubMed

    Vaasma, Taavi; Kaasik, Marko; Loosaar, Jüri; Kiisk, Madis; Tkaczyk, Alan H

    2017-11-01

    Two of the world's largest oil shale-fired power plants (PPs) in Estonia have been operational over 40 years, emitting various pollutants, such as fly ash, SO x , NO x , heavy metals, volatile organic compounds as well as radionuclides to the environment. The emissions from these PPs have varied significantly during this period, with the maximum during the 1970s and 1980s. The oil shale burned in the PPs contains naturally occurring radionuclides from the 238 U and 232 Th decay series as well as 40 K. These radionuclides become enriched in fly ash fractions (up to 10 times), especially in the fine fly ash escaping the purification system. Using a validated Gaussian-plume model, atmospheric dispersion modelling was carried out to determine the quantity and a real magnitude of fly ash and radionuclide deposition fluxes during different decades. The maximum deposition fluxes of volatile radionuclides ( 210 Pb and 210 Po) were around 70 mBq m -2 d -1 nearby the PPs during 1970s and 1980s. Due to the reduction of burned oil shale and significant renovations done on the PPs, the deposition fluxes were reduced to 10 mBq m -2 d -1 in the 2000s and down to 1.5 mBq m -2 d -1 in 2015. The maximum deposition occurs within couple of kilometers of the PPs, but the impacted area extends to over 50 km from the sources. For many radionuclides, including 210 Po, the PPs have been larger contributors of radionuclides to the environment via atmospheric pathway than natural sources. This is the first time that the emissions and deposition fluxes of radionuclides from the PPs have been quantified, providing the information about their radionuclide deposition load on the surrounding environment during various time periods. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. Molybdenum Enrichment in the 3.2 Ga old Black Shales Recovered by Dixon Island-Cleaverville Drilling Project (DXCL-DP) in Northwestern Pilbara, Western Australia

    NASA Astrophysics Data System (ADS)

    Yamaguchi, K. E.; Kiyokawa, S.; Naraoka, H.; Ikehara, M.; Ito, T.; Suganuma, Y.; Sakamoto, R.; Hosoi, K.

    2010-12-01

    To obtain drillcores of Mesoarchean black shales with negligible modern weathering, we conducted continental drilling at Cleaverville coast in Pilbara, Western Australia. We recovered 3.2Ga sulfidic black shales of the Cleaverville Group from three drillholes (~200m in total), namely DX, CL1, and CL2. Information on the geology of the drilling site has been reported [1, 2]. Here we report the discovery of Mo enrichment in the 3.2Ga DXCL-DP black shales. We analyzed total chemical compositions of forty black shale samples from drillcore DX and fifty-six of those from CL1 and CL2. Molybdenum concentrations for DX samples ranged from 0.3 to 12.9ppm (Avg±1σ= 1.8±1.9ppm), and those for CL1 and CL2 (combined) ranged from 0.8 to 3.3ppm (Avg±1σ= 1.4±0.4ppm). The highest concentration of Mo occurs in Corg-rich sample, and is comparable to that of the contemporaneous Fig Tree Group in South Africa [3, 4]. The highest concentration of Mo in the DXCL-DP samples, ~13ppm, is lower than that found in the 2.5 Ga Mt. McRae Shale of the Hamersley Group, Western Australia (maximums are ~17ppm [5], and ~40ppm [6]). However, it is much higher, by thirteen times, than the average Mo concentration in the Phanerozoic shales (1ppm [7]). No significant enrichment of Mo was expected to occur in the before-GOE black shales if pO2 was as low as <10-6 PAL. Sulfur isotope analysis revealed, based on the variable δ34S values (-1.9 ~ +26.8‰), that bacterial sulfate reduction was so extensive in the 3.2Ga deep marine environments that sulfate utilization by sulfate-reducers was near completion [8]. Production of bacteriogenic sulfide would have enhanced fixation of dissolved Mo into sulfide minerals in sediments. This is rather a common process occurring in oxygen-depleted environments in the modern ocean ([9]). A combined enrichment of Mo, Corg, and S, together with high δ34S values for a sedimentary formation may be used as a strong evidence for operation of modern-day style sedimentary Mo enrichment. This further implies that oxygenation of the atmosphere and (at least the surface) oceans was significant during deposition of the sediments, ~800Ma earlier than commonly thought ([10]). Operation of present-day style geochemical cycle of Mo in the Mesoarchean surface environments suggests early evolution of atmosphere, oceans, and microbial biosphere. References: [1] Kiyokawa et al, 2006, GSAB 118: 3-22. [2] Yamaguchi et al, 2009, Sci. Drill. 7: 34-37. [3] Yamaguchi, 2002, Ph.D. dissertation, Penn State Univ. [4] Yamaguchi & Ohmoto, 2002, GSA Abstract [5] Naraoka et al, 2001, 4th Int'l Archaean Symp., Perth. [6] Anbar et al, 2007, Science 317: 1903-1906. [7] Vine & Tourtelot, 1970, Econ. Geol. 65: 253-272. [8] Sakamoto et al, 2010, Fall AGU Mtg. [9] Morford & Emerson, 1999, GCA 63: 1735-1750. [10] Bekker et al, 2004, Nature 427: 117-120.

  17. Sustaining Louisiana's Freshwater Aquifers - A Case Study Brining Community and Industry Together

    EPA Pesticide Factsheets

    For wells in the Haynesville Shale, operators use ground water for fracking. Since it requires a lot of water, the Louisiana Office of Conservation pursued alternatives to satisfy the water needs of fracking, but avoiding water impacts for the community.

  18. RESEARCH TO IDENTIFY COMPONENTS OF ENERGY-RELATED WASTES: A STATE-OF-THE-ART REPORT

    EPA Science Inventory

    Pertinent abstracts from a survey of current (post-1976) research projects are categorized according to energy-related activity. Subjects include coal strip mines, oil refineries, oil shale operations, coal-fired power plants, geothermal energy production, coal liquefaction plant...

  19. The shale gas revolution from the viewpoint of a former industry insider.

    PubMed

    Bamberger, Michelle; Oswald, Robert

    2015-02-01

    This is an interview conducted with an oil and gas worker who was employed in the industry from 1993 to 2012. He requested that his name not be used. From 2008 to 2012, he drilled wells for a major operator in Bradford County, Pennsylvania. Bradford County is the center of the Marcellus shale gas boom in Northeastern Pennsylvania. In 2012, he formed a consulting business to assist clients who need information on the details of gas and oil drilling operations. In this interview, the worker describes the benefits and difficulties of the hard work involved in drilling unconventional gas wells in Pennsylvania. In particular, he outlines the safety procedures that were in place and how they sometimes failed, leading to workplace injuries. He provides a compelling view of the trade-offs between the economic opportunities of working on a rig and the dangers and stresses of working long hours under hazardous conditions. © 2015 SAGE Publications.

  20. Geology of the Devonian black shales of the Appalachian basin

    USGS Publications Warehouse

    Roen, J.B.

    1983-01-01

    Black shales of Devonian age in the Appalachian basin are a unique rock sequence. The high content of organic matter, which imparts the characteristic lithology, has for years attracted considerable interest in the shales as a possible source of energy. Concurrent with periodic and varied economic exploitations of the black shales are geologic studies. The recent energy shortage prompted the U.S. Department of Energy through the Eastern Gas Shales Project of the Morgantown Energy Technology Center to underwrite a research program to determine the geologic, geochemical, and structural characteristics of the Devonian black shales in order to enhance the recovery of gas from the shales. Geologic studies produced a regional stratigraphic network that correlates the 15-foot sequence in Tennessee with 3,000 feet of interbedded black and gray shales in central New York. The classic Devonian black-shale sequence in New York has been correlated with the Ohio Shale of Ohio and Kentucky and the Chattanooga Shale of Tennessee and southwestern Virginia. Biostratigraphic and lithostratigraphic markers in conjunction with gamma-ray logs facilitated long range correlations within the Appalachian basin and provided a basis for correlations with the black shales of the Illinois and Michigan basins. Areal distribution of selected shale units along with paleocurrent studies, clay mineralogy, and geochemistry suggests variations in the sediment source and transport directions. Current structures, faunal evidence, lithologic variations, and geochemical studies provide evidence to support interpretation of depositional environments. In addition, organic geochemical data combined with stratigraphic and structural characteristics of the shale within the basin allow an evaluation of the resource potential of natural gas in the Devonian shale sequence.

  1. The Energy-Water Nexus: potential groundwater-quality degradation associated with production of shale gas

    USGS Publications Warehouse

    Kharaka, Yousif K.; Thordsen, James J.; Conaway, Christopher H.; Thomas, Randal B.

    2013-01-01

    Oil and natural gas have been the main sources of primary energy in the USA, providing 63% of the total energy consumption in 2011. Petroleum production, drilling operations, and improperly sealed abandoned wells have caused significant local groundwater contamination in many states, including at the USGS OSPER sites in Oklahoma. The potential for groundwater contamination is higher when producing natural gas and oil from unconventional sources of energy, including shale and tight sandstones. These reservoirs require horizontally-completed wells and massive hydraulic fracturing that injects large volumes (up to 50,000 m3/well) of high-pressured water with added proppant, and toxic organic and inorganic chemicals. Recent results show that flow back and produced waters from Haynesville (Texas) and Marcellus (Pennsylvania) Shale have high salinities (≥200,000 mg/L TDS) and high NORMs (up to 10,000 picocuries/L) concentrations. A major research effort is needed worldwide to minimize all potential environmental impacts, especially groundwater contamination and induced seismicity, when producing these extremely important new sources of energy.

  2. Shale Fracture Analysis using the Combined Finite-Discrete Element Method

    NASA Astrophysics Data System (ADS)

    Carey, J. W.; Lei, Z.; Rougier, E.; Knight, E. E.; Viswanathan, H.

    2014-12-01

    Hydraulic fracturing (hydrofrac) is a successful method used to extract oil and gas from highly carbonate rocks like shale. However, challenges exist for industry experts estimate that for a single $10 million dollar lateral wellbore fracking operation, only 10% of the hydrocarbons contained in the rock are extracted. To better understand how to improve hydrofrac recovery efficiencies and to lower its costs, LANL recently funded the Laboratory Directed Research and Development (LDRD) project: "Discovery Science of Hydraulic Fracturing: Innovative Working Fluids and Their Interactions with Rocks, Fractures, and Hydrocarbons". Under the support of this project, the LDRD modeling team is working with the experimental team to understand fracture initiation and propagation in shale rocks. LANL's hybrid hydro-mechanical (HM) tool, the Hybrid Optimization Software Suite (HOSS), is being used to simulate the complex fracture and fragment processes under a variety of different boundary conditions. HOSS is based on the combined finite-discrete element method (FDEM) and has been proven to be a superior computational tool for multi-fracturing problems. In this work, the comparison of HOSS simulation results to triaxial core flooding experiments will be presented.

  3. System for producing a uniform rubble bed for in situ processes

    DOEpatents

    Galloway, T.R.

    1983-07-05

    A method and a cutter are disclosed for producing a large cavity filled with a uniform bed of rubblized oil shale or other material, for in situ processing. A raise drill head has a hollow body with a generally circular base and sloping upper surface. A hollow shaft extends from the hollow body. Cutter teeth are mounted on the upper surface of the body and relatively small holes are formed in the body between the cutter teeth. Relatively large peripheral flutes around the body allow material to drop below the drill head. A pilot hole is drilled into the oil shale deposit. The pilot hole is reamed into a large diameter hole by means of a large diameter raise drill head or cutter to produce a cavity filled with rubble. A flushing fluid, such as air, is circulated through the pilot hole during the reaming operation to remove fines through the raise drill, thereby removing sufficient material to create sufficient void space, and allowing the larger particles to fill the cavity and provide a uniform bed of rubblized oil shale. 4 figs.

  4. Review of Emerging Resources: U.S. Shale Gas and Shale Oil Plays

    EIA Publications

    2011-01-01

    To gain a better understanding of the potential U.S. domestic shale gas and shale oil resources, the Energy Information Administration (EIA) commissioned INTEK, Inc. to develop an assessment of onshore lower 48 states technically recoverable shale gas and shale oil resources. This paper briefly describes the scope, methodology, and key results of the report and discusses the key assumptions that underlie the results.

  5. Carbon sequestration in depleted oil shale deposits

    DOEpatents

    Burnham, Alan K; Carroll, Susan A

    2014-12-02

    A method and apparatus are described for sequestering carbon dioxide underground by mineralizing the carbon dioxide with coinjected fluids and minerals remaining from the extraction shale oil. In one embodiment, the oil shale of an illite-rich oil shale is heated to pyrolyze the shale underground, and carbon dioxide is provided to the remaining depleted oil shale while at an elevated temperature. Conditions are sufficient to mineralize the carbon dioxide.

  6. Wet separation processes as method to separate limestone and oil shale

    NASA Astrophysics Data System (ADS)

    Nurme, Martin; Karu, Veiko

    2015-04-01

    Biggest oil shale industry is located in Estonia. Oil shale usage is mainly for electricity generation, shale oil generation and cement production. All these processes need certain quality oil shale. Oil shale seam have interlayer limestone layers. To use oil shale in production, it is needed to separate oil shale and limestone. A key challenge is find separation process when we can get the best quality for all product types. In oil shale separation typically has been used heavy media separation process. There are tested also different types of separation processes before: wet separation, pneumatic separation. Now oil shale industry moves more to oil production and this needs innovation methods for separation to ensure fuel quality and the changes in quality. The pilot unit test with Allmineral ALLJIG have pointed out that the suitable new innovation way for oil shale separation can be wet separation with gravity, where material by pulsating water forming layers of grains according to their density and subsequently separates the heavy material (limestone) from the stratified material (oil shale)bed. Main aim of this research is to find the suitable separation process for oil shale, that the products have highest quality. The expected results can be used also for developing separation processes for phosphorite rock or all others, where traditional separation processes doesn't work property. This research is part of the study Sustainable and environmentally acceptable Oil shale mining No. 3.2.0501.11-0025 http://mi.ttu.ee/etp and the project B36 Extraction and processing of rock with selective methods - http://mi.ttu.ee/separation; http://mi.ttu.ee/miningwaste/

  7. Geology of the Devonian black shales of the Appalachian Basin

    USGS Publications Warehouse

    Roen, J.B.

    1984-01-01

    Black shales of Devonian age in the Appalachian Basin are a unique rock sequence. The high content of organic matter, which imparts the characteristic lithology, has for years attracted considerable interest in the shales as a possible source of energy. The recent energy shortage prompted the U.S. Department of Energy through the Eastern Gas Shales Project of the Morgantown Energy Technology Center to underwrite a research program to determine the geologic, geochemical, and structural characteristics of the Devonian black shales in order to enhance the recovery of gas from the shales. Geologic studies by Federal and State agencies and academic institutions produced a regional stratigraphic network that correlates the 15 ft black shale sequence in Tennessee with 3000 ft of interbedded black and gray shales in central New York. These studies correlate the classic Devonian black shale sequence in New York with the Ohio Shale of Ohio and Kentucky and the Chattanooga Shale of Tennessee and southwestern Virginia. Biostratigraphic and lithostratigraphic markers in conjunction with gamma-ray logs facilitated long-range correlations within the Appalachian Basin. Basinwide correlations, including the subsurface rocks, provided a basis for determining the areal distribution and thickness of the important black shale units. The organic carbon content of the dark shales generally increases from east to west across the basin and is sufficient to qualify as a hydrocarbon source rock. Significant structural features that involve the black shale and their hydrocarbon potential are the Rome trough, Kentucky River and Irvine-Paint Creek fault zone, and regional decollements and ramp zones. ?? 1984.

  8. Numerical modeling of fracking fluid and methane migration through fault zones in shale gas reservoirs

    NASA Astrophysics Data System (ADS)

    Taherdangkoo, Reza; Tatomir, Alexandru; Sauter, Martin

    2017-04-01

    Hydraulic fracturing operation in shale gas reservoir has gained growing interest over the last few years. Groundwater contamination is one of the most important environmental concerns that have emerged surrounding shale gas development (Reagan et al., 2015). The potential impacts of hydraulic fracturing could be studied through the possible pathways for subsurface migration of contaminants towards overlying aquifers (Kissinger et al., 2013; Myers, 2012). The intent of this study is to investigate, by means of numerical simulation, two failure scenarios which are based on the presence of a fault zone that penetrates the full thickness of overburden and connect shale gas reservoir to aquifer. Scenario 1 addresses the potential transport of fracturing fluid from the shale into the subsurface. This scenario was modeled with COMSOL Multiphysics software. Scenario 2 deals with the leakage of methane from the reservoir into the overburden. The numerical modeling of this scenario was implemented in DuMux (free and open-source software), discrete fracture model (DFM) simulator (Tatomir, 2012). The modeling results are used to evaluate the influence of several important parameters (reservoir pressure, aquifer-reservoir separation thickness, fault zone inclination, porosity, permeability, etc.) that could affect the fluid transport through the fault zone. Furthermore, we determined the main transport mechanisms and circumstances in which would allow frack fluid or methane migrate through the fault zone into geological layers. The results show that presence of a conductive fault could reduce the contaminant travel time and a significant contaminant leakage, under certain hydraulic conditions, is most likely to occur. Bibliography Kissinger, A., Helmig, R., Ebigbo, A., Class, H., Lange, T., Sauter, M., Heitfeld, M., Klünker, J., Jahnke, W., 2013. Hydraulic fracturing in unconventional gas reservoirs: risks in the geological system, part 2. Environ Earth Sci 70, 3855-3873. Myers, T., 2012. Potential contaminant pathways from hydraulically fractured shale to aquifers. Groundwater, 50(6), 872-882. Reagan, M.T., Moridis, G.J., Keen, N.D., Johnson, J.N., 2015. Numerical simulation of the environmental impact of hydraulic fracturing of tight/shale gas reservoirs on near-surface groundwater: Background, base cases, shallow reservoirs, short-term gas, and water transport. Water Resources Research 51, 2543-2573. Tatomir, A., 2012. From Discrete to Continuum Concepts of Flow in Fractured Porous Media. Stuttgart University: University of Stuttgart.

  9. Petrophysical Properties of Cody, Mowry, Shell Creek, and Thermopolis Shales, Bighorn Basin, Wyoming

    NASA Astrophysics Data System (ADS)

    Nelson, P. H.

    2013-12-01

    The petrophysical properties of four shale formations are documented from well-log responses in 23 wells in the Bighorn Basin in Wyoming. Depths of the examined shales range from 4,771 to 20,594 ft. The four formations are the Thermopolis Shale (T), the Shell Creek Shale (SC), the Mowry Shale (M), and the lower part of the Cody Shale (C), all of Cretaceous age. These four shales lie within a 4,000-ft, moderately overpressured, gas-rich vertical interval in which the sonic velocity of most rocks is less than that of an interpolated trendline representing a normal increase of velocity with depth. Sonic velocity, resistivity, neutron, caliper, and gamma-ray values were determined from well logs at discrete intervals in each of the four shales in 23 wells. Sonic velocity in all four shales increases with depth to a present-day depth of about 10,000 ft; below this depth, sonic velocity remains relatively unchanged. Velocity (V), resistivity (R), neutron porosity (N), and hole diameter (D) in the four shales vary such that: VM > VC > VSC > VT, RM > RC > RSC > RT, NT > NSC ≈ NC > NM, and DT > DC ≈ DSC > DM. These orderings can be partially understood on the basis of rock compositions. The Mowry Shale is highly siliceous and by inference comparatively low in clay content, resulting in high sonic velocity, high resistivity, low neutron porosity, and minimal borehole enlargement. The Thermopolis Shale, by contrast, is a black fissile shale with very little silt--its high clay content causes low velocity, low resistivity, high neutron response, and results in the greatest borehole enlargement. The properties of the Shell Creek and lower Cody Shales are intermediate to the Mowry and Thermopolis Shales. The sonic velocities of all four shales are less than that of an interpolated trendline that is tied to velocities in shales above and below the interval of moderate overpressure. The reduction in velocity varies among the four shales, such that the amount of offset (O) from the trendline is OT > OSC > OC > OM, that is, the velocity in the Mowry Shale is reduced the least and the velocity in the Thermopolis Shale is reduced the most. Velocity reductions are attributed to increases in pore pressure during burial, caused by the generation and retention of gas, with lithology playing a key role in the amount of reduction. Sonic velocity in the four shale units remains low to the present day, after uplift and erosion of as much as 6,500 ft in the deeper part of the basin and consequent possible reduction from maximum pore pressures reached when strata were more deeply buried. A model combining burial history, the decrease of effective stress with increasing pore pressure, and Bower's model for the dependence of sonic velocity on effective stress is proposed to explain the persistence of low velocity in shale units. Interruptions to compaction gradients associated with gas occurrences and overpressure are observed in correlative strata in other basins in Wyoming, so the general results for shales in the Bighorn Basin established in this paper should be applicable elsewhere.

  10. Developing monitoring plans to detect spills related to natural gas production.

    PubMed

    Harris, Aubrey E; Hopkinson, Leslie; Soeder, Daniel J

    2016-11-01

    Surface water is at risk from Marcellus Shale operations because of chemical storage on drill pads during hydraulic fracturing operations, and the return of water high in total dissolved solids (up to 345 g/L) from shale gas production. This research evaluated how two commercial, off-the-shelf water quality sensors responded to simulated surface water pollution events associated with Marcellus Shale development. First, peak concentrations of contaminants from typical spill events in monitored watersheds were estimated using regression techniques. Laboratory measurements were then conducted to determine how standard in-stream instrumentation that monitor conductivity, pH, temperature, and dissolved oxygen responded to three potential spill materials: ethylene glycol (corrosion inhibitor), drilling mud, and produced water. Solutions ranging from 0 to 50 ppm of each spill material were assessed. Over this range, the specific conductivity increased on average by 19.9, 27.9, and 70 μS/cm for drilling mud, ethylene glycol, and produced water, respectively. On average, minor changes in pH (0.5-0.8) and dissolved oxygen (0.13-0.23 ppm) were observed. While continuous monitoring may be part of the strategy for detecting spills to surface water, these minor impacts to water quality highlight the difficulty in detecting spill events. When practical, sensors should be placed at the mouths of small watersheds where drilling activities or spill risks are present, as contaminant travel distance strongly affects concentrations in surface water systems.

  11. 43 CFR 3905.10 - Oil shale lease exchanges.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 43 Public Lands: Interior 2 2014-10-01 2014-10-01 false Oil shale lease exchanges. 3905.10 Section... MANAGEMENT, DEPARTMENT OF THE INTERIOR MINERALS MANAGEMENT (3000) OIL SHALE MANAGEMENT-GENERAL Lease Exchanges § 3905.10 Oil shale lease exchanges. To facilitate the recovery of oil shale, the BLM may consider...

  12. 43 CFR 3905.10 - Oil shale lease exchanges.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 43 Public Lands: Interior 2 2013-10-01 2013-10-01 false Oil shale lease exchanges. 3905.10 Section... MANAGEMENT, DEPARTMENT OF THE INTERIOR MINERALS MANAGEMENT (3000) OIL SHALE MANAGEMENT-GENERAL Lease Exchanges § 3905.10 Oil shale lease exchanges. To facilitate the recovery of oil shale, the BLM may consider...

  13. 43 CFR 3905.10 - Oil shale lease exchanges.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 43 Public Lands: Interior 2 2012-10-01 2012-10-01 false Oil shale lease exchanges. 3905.10 Section... MANAGEMENT, DEPARTMENT OF THE INTERIOR MINERALS MANAGEMENT (3000) OIL SHALE MANAGEMENT-GENERAL Lease Exchanges § 3905.10 Oil shale lease exchanges. To facilitate the recovery of oil shale, the BLM may consider...

  14. What is shale gas and why is it important?

    EIA Publications

    2012-01-01

    Shale gas refers to natural gas that is trapped within shale formations. Shales are fine-grained sedimentary rocks that can be rich sources of petroleum and natural gas. Over the past decade, the combination of horizontal drilling and hydraulic fracturing has allowed access to large volumes of shale gas that were previously uneconomical to produce. The production of natural gas from shale formations has rejuvenated the natural gas industry in the United States.

  15. Preliminary Stratigraphic Cross Sections of Oil Shale in the Eocene Green River Formation, Uinta Basin, Utah

    USGS Publications Warehouse

    Dyni, John R.

    2008-01-01

    Oil shale units in the Eocene Green River Formation are shown on two east-west stratigraphic sections across the Uinta Basin in northeastern Utah. Several units have potential value for recovery of shale oil, especially the Mahogany oil shale zone, which is a high grade oil shale that can be traced across most of the Uinta Basin and into the Piceance Basin in northwestern Colorado. Many thin medium to high grade oil shale beds above the Mahogany zone can also be traced for many miles across the basin. Several units below the Mahogany that have slow velocities on sonic logs may be low grade oil shale. These may have value as a source for shale gas.

  16. Shale Gas Exploration and Development Progress in China and the Way Forward

    NASA Astrophysics Data System (ADS)

    Chen, Jianghua

    2018-02-01

    Shale gas exploration in China started late but is progressing very quickly with the strong support from Central Government. China has 21.8 tcm technically recoverable shale gas resources and 764.3 bcm proved shale gas reserve, mainly in marine facies in Sichuan basin. In 2016, overall shale gas production in China is around 7.9 bcm, while it is set to reach 10 bcm in 2017 and 30 bcm in 2020. BP is the only remaining IOC actor in shale gas exploration in China partnering with CNPC in 2 blocks in Sichuan basin. China is encouraging shale gas business both at Central level and at Provincial level through establishing development plan, continuation of subsidies and research funding. Engineering services for shale gas development and infrastructures are developing, while the overall cost and gas marketing conditions will be key factors for the success in shale gas industry.

  17. Organoporosity Evaluation of Shale: A Case Study of the Lower Silurian Longmaxi Shale in Southeast Chongqing, China

    PubMed Central

    Chen, Fangwen; Lu, Shuangfang; Ding, Xue

    2014-01-01

    The organopores play an important role in determining total volume of hydrocarbons in shale gas reservoir. The Lower Silurian Longmaxi Shale in southeast Chongqing was selected as a case to confirm the contribution of organopores (microscale and nanoscale pores within organic matters in shale) formed by hydrocarbon generation to total volume of hydrocarbons in shale gas reservoir. Using the material balance principle combined with chemical kinetics methods, an evaluation model of organoporosity for shale gas reservoirs was established. The results indicate that there are four important model parameters to consider when evaluating organoporosity in shale: the original organic carbon (w(TOC0)), the original hydrogen index (I H0), the transformation ratio of generated hydrocarbon (F(R o)), and the organopore correction coefficient (C). The organoporosity of the Lower Silurian Longmaxi Shale in the Py1 well is from 0.20 to 2.76%, and the average value is 1.25%. The organoporosity variation trends and the residual organic carbon of Longmaxi Shale are consistent in section. The residual organic carbon is indicative of the relative levels of organoporosity, while the samples are in the same shale reservoirs with similar buried depths. PMID:25184155

  18. EPA Hydraulic Fracturing Study Technical Workshop #2 March 10-11, 2011: Well Integrity Case Study by Lloyd H. Hetrick

    EPA Pesticide Factsheets

    This case study defines well integrity by the prevention of vertical migration of fluids to protect drinking water resources. A generic shale development well is presented, including design, construction, operational phase, and its plug and abandonment.

  19. Processing of baby food using pressure-assisted thermal sterilization (PATS) and comparison with thermal treatment

    NASA Astrophysics Data System (ADS)

    Wang, Yubin; Ismail, Marliya; Farid, Mohammed

    2017-10-01

    Currently baby food is sterilized using retort processing that gives an extended shelf life. However, this type of heat processing leads to reduction of organoleptic and nutrition value. Alternatively, the combination of pressure and heat could be used to achieve sterilization at reduced temperatures. This study investigates the potential of pressure-assisted thermal sterilization (PATS) technology for baby food sterilization. Here, baby food (apple puree), inoculated with Bacillus subtilis spores was treated using PATS at different operating temperatures, pressures and times and was compared with thermal only treatment. The results revealed that the decimal reduction time of B. subtilis in PATS treatment was lower than that of thermal only treatment. At a similar spore inactivation, the retention of ascorbic acid of PATS-treated sample was higher than that of thermally treated sample. The results indicated that PATS could be a potential technology for baby food processing while minimizing quality deterioration.

  20. 43 CFR 3905.10 - Oil shale lease exchanges.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 43 Public Lands: Interior 2 2011-10-01 2011-10-01 false Oil shale lease exchanges. 3905.10 Section... MANAGEMENT, DEPARTMENT OF THE INTERIOR RANGE MANAGEMENT (4000) OIL SHALE MANAGEMENT-GENERAL Lease Exchanges § 3905.10 Oil shale lease exchanges. To facilitate the recovery of oil shale, the BLM may consider land...

  1. Nanometer-Scale Pore Characteristics of Lacustrine Shale, Songliao Basin, NE China

    PubMed Central

    Wang, Min; Yang, Jinxiu; Wang, Zhiwei; Lu, Shuangfang

    2015-01-01

    In shale, liquid hydrocarbons are accumulated mainly in nanometer-scale pores or fractures, so the pore types and PSDs (pore size distributions) play a major role in the shale oil occurrence (free or absorbed state), amount of oil, and flow features. The pore types and PSDs of marine shale have been well studied; however, research on lacustrine shale is rare, especially for shale in the oil generation window, although lacustrine shale is deposited widely around the world. To investigate the relationship between nanometer-scale pores and oil occurrence in the lacustrine shale, 10 lacustrine shale core samples from Songliao Basin, NE China were analyzed. Analyses of these samples included geochemical measurements, SEM (scanning electron microscope) observations, low pressure CO2 and N2 adsorption, and high-pressure mercury injection experiments. Analysis results indicate that: (1) Pore types in the lacustrine shale include inter-matrix pores, intergranular pores, organic matter pores, and dissolution pores, and these pores are dominated by mesopores and micropores; (2) There is no apparent correlation between pore volumes and clay content, however, a weak negative correlation is present between total pore volume and carbonate content; (3) Pores in lacustrine shale are well developed when the organic matter maturity (Ro) is >1.0% and the pore volume is positively correlated with the TOC (total organic carbon) content. The statistical results suggest that oil in lacustrine shale mainly occurs in pores with diameters larger than 40 nm. However, more research is needed to determine whether this minimum pore diameter for oil occurrence in lacustrine shale is widely applicable. PMID:26285123

  2. Nanometer-Scale Pore Characteristics of Lacustrine Shale, Songliao Basin, NE China.

    PubMed

    Wang, Min; Yang, Jinxiu; Wang, Zhiwei; Lu, Shuangfang

    2015-01-01

    In shale, liquid hydrocarbons are accumulated mainly in nanometer-scale pores or fractures, so the pore types and PSDs (pore size distributions) play a major role in the shale oil occurrence (free or absorbed state), amount of oil, and flow features. The pore types and PSDs of marine shale have been well studied; however, research on lacustrine shale is rare, especially for shale in the oil generation window, although lacustrine shale is deposited widely around the world. To investigate the relationship between nanometer-scale pores and oil occurrence in the lacustrine shale, 10 lacustrine shale core samples from Songliao Basin, NE China were analyzed. Analyses of these samples included geochemical measurements, SEM (scanning electron microscope) observations, low pressure CO2 and N2 adsorption, and high-pressure mercury injection experiments. Analysis results indicate that: (1) Pore types in the lacustrine shale include inter-matrix pores, intergranular pores, organic matter pores, and dissolution pores, and these pores are dominated by mesopores and micropores; (2) There is no apparent correlation between pore volumes and clay content, however, a weak negative correlation is present between total pore volume and carbonate content; (3) Pores in lacustrine shale are well developed when the organic matter maturity (Ro) is >1.0% and the pore volume is positively correlated with the TOC (total organic carbon) content. The statistical results suggest that oil in lacustrine shale mainly occurs in pores with diameters larger than 40 nm. However, more research is needed to determine whether this minimum pore diameter for oil occurrence in lacustrine shale is widely applicable.

  3. Map of assessed shale gas in the United States, 2012

    USGS Publications Warehouse

    ,; Biewick, Laura R. H.

    2013-01-01

    The U.S. Geological Survey has compiled a map of shale-gas assessments in the United States that were completed by 2012 as part of the National Assessment of Oil and Gas Project. Using a geology-based assessment methodology, the U.S. Geological Survey quantitatively estimated potential volumes of undiscovered gas within shale-gas assessment units. These shale-gas assessment units are mapped, and square-mile cells are shown to represent proprietary shale-gas wells. The square-mile cells include gas-producing wells from shale intervals. In some cases, shale-gas formations contain gas in deeper parts of a basin and oil at shallower depths (for example, the Woodford Shale and the Eagle Ford Shale). Because a discussion of shale oil is beyond the scope of this report, only shale-gas assessment units and cells are shown. The map can be printed as a hardcopy map or downloaded for interactive analysis in a Geographic Information System data package using the ArcGIS map document (file extension MXD) and published map file (file extension PMF). Also available is a publications access table with hyperlinks to current U.S. Geological Survey shale gas assessment publications and web pages. Assessment results and geologic reports are available as completed at the U.S. Geological Survey Energy Resources Program Web Site, http://energy.usgs.gov/OilGas/AssessmentsData/NationalOilGasAssessment.aspx. A historical perspective of shale gas activity in the United States is documented and presented in a video clip included as a PowerPoint slideshow.

  4. Aquifers survey in the context of source rocks exploitation: from baseline acquisition to long term monitoring

    NASA Astrophysics Data System (ADS)

    Garcia, Bruno; Rouchon, Virgile; Deflandre, Jean-Pierre

    2017-04-01

    Producing hydrocarbons from source rocks (like shales: a mix of clays, silts, carbonate and sandstone minerals containing matured organic matter, i.e. kerogen oil and gas, but also non-hydrocarbon various species of chemical elements including sometimes radioactive elements) requires to create permeability within the rock matrix by at least hydraulically fracturing the source rock. It corresponds to the production of hydrocarbon fuels that have not been naturally expelled from the pressurized matured source rock and that remain trapped in the porosity or/and kerogen porosity of the impermeable matrix. Azimuth and extent of developed fractures can be respectively determined and mapped by monitoring the associated induced microseismicity. This allows to have an idea of where and how far injected fluids penetrated the rock formation. In a geological context, aquifers are always present in the vicinity -or on fluid migration paths- of such shale formations: deep aquifers (near the shale formation) up to sub-surface and potable (surface) aquifers. Our purpose will be to track any unsuitable invasion or migration of chemicals specifies coming from matured shales of production fluids including both drilling and fracturing ones into aquifers. Our objective is to early detect and alarm of any anomaly to avoid any important environmental issue. The approach consists in deploying a specific sampling tool within a well to recover formation fluids and to run a panoply of appropriate laboratory tests to state on fluid characteristics. Of course for deep aquifers, such a characterization process may consider aquifer properties prior producing shale oil and gas, as they may contain naturally some chemical species present in the source rocks. One can also consider that a baseline acquisition could be justified in case of possible previous invasion of non-natural fluids in the formation under survey (due to any anthropogenic action at surface or in the underground). The paper aims at presenting the protocol and routine test we propose to make our early detection approach efficient for production of shale hydrocarbon fluids, in considering the source-rock reservoir itself, the aquifers, and also the chemical species present in the fluids that are used for hydraulic fracturing operations.

  5. Impact of emissions from natural gas production facilities on ambient air quality in the Barnett Shale area: a pilot study.

    PubMed

    Zielinska, Barbara; Campbell, Dave; Samburova, Vera

    2014-12-01

    Rapid and extensive development of shale gas resources in the Barnett Shale region of Texas in recent years has created concerns about potential environmental impacts on water and air quality. The purpose of this study was to provide a better understanding of the potential contributions of emissions from gas production operations to population exposure to air toxics in the Barnett Shale region. This goal was approached using a combination of chemical characterization of the volatile organic compound (VOC) emissions from active wells, saturation monitoring for gaseous and particulate pollutants in a residential community located near active gas/oil extraction and processing facilities, source apportionment of VOCs measured in the community using the Chemical Mass Balance (CMB) receptor model, and direct measurements of the pollutant gradient downwind of a gas well with high VOC emissions. Overall, the study results indicate that air quality impacts due to individual gas wells and compressor stations are not likely to be discernible beyond a distance of approximately 100 m in the downwind direction. However, source apportionment results indicate a significant contribution to regional VOCs from gas production sources, particularly for lower-molecular-weight alkanes (< C6). Although measured ambient VOC concentrations were well below health-based safe exposure levels, the existence of urban-level mean concentrations of benzene and other mobile source air toxics combined with soot to total carbon ratios that were high for an area with little residential or commercial development may be indicative of the impact of increased heavy-duty vehicle traffic related to gas production. Implications: Rapid and extensive development of shale gas resources in recent years has created concerns about potential environmental impacts on water and air quality. This study focused on directly measuring the ambient air pollutant levels occurring at residential properties located near natural gas extraction and processing facilities, and estimating the relative contributions from gas production and motor vehicle emissions to ambient VOC concentrations. Although only a small-scale case study, the results may be useful for guidance in planning future ambient air quality studies and human exposure estimates in areas of intensive shale gas production.

  6. Primary emissions and secondary formation of volatile organic compounds from natural gas production in five major U.S. shale plays

    NASA Astrophysics Data System (ADS)

    Gilman, J.; Lerner, B. M.; Warneke, C.; Graus, M.; Lui, R.; Koss, A.; Yuan, B.; Murphy, S. M.; Alvarez, S. L.; Lefer, B. L.; Min, K. E.; Brown, S. S.; Roberts, J. M.; Osthoff, H. D.; Hatch, C. D.; Peischl, J.; Ryerson, T. B.; De Gouw, J. A.

    2014-12-01

    According to the U.S. Energy and Information Administration (EIA), domestic production of natural gas from shale formations is currently at the highest levels in U.S. history. Shale gas production may also result in the production of natural gas plant liquids (NGPLs) such as ethane and propane as well as natural gas condensate composed of a complex mixture of non-methane hydrocarbons containing more than ~5 carbon atoms (e.g., hexane, cyclohexane, and benzene). The amounts of natural gas liquids and condensate produced depends on the particular reservoir. The source signature of primary emissions of hydrocarbons to the atmosphere within each shale play will therefore depend on the composition of the raw natural gas as well as the industrial processes and equipment used to extract, separate, store, and transport the raw materials. Characterizing the primary emissions of VOCs from natural gas production is critical to assessing the local and regional atmospheric impacts such as the photochemical formation of ozone and secondary formation of organic aerosol. This study utilizes ground-based measurements of a full suite of volatile organic compounds (VOCs) in two western U.S. basins, the Uintah (2012-2014 winter measurements only) and Denver-Julesburg (winter 2011 and summer 2012), and airborne measurements over the Haynesville, Fayetteville, and Marcellus shale basins (summer 2013). By comparing the observed VOC to propane enhancement ratios, we show that each basin has a unique VOC source signature associated with oil and natural gas operations. Of the shale basins studied, the Uintah basin had the largest overall VOC to propane enhancement ratios while the Marcellus had the lowest. For the western basins, we will compare the composition of oxygenated VOCs produced from photochemical oxidation of VOC precursors and contrast the oxygenated VOC mixture to a "typical" summertime urban VOC mixture. The relative roles of alkanes, alkenes, aromatics, and cycloalkanes as precursors for C2-C6 aldehydes and ketones, and C3-C4 alkyl nitrates will be investigated.

  7. Comparison of organic geochemistry and metal enrichment in two black shales: Cambrian Alum Shale of Sweden and Devonian Chattanooga Shale of United States

    USGS Publications Warehouse

    Leventhal, J.S.

    1991-01-01

    In most black shales, such as the Chattanooga Shale and related shales of the eastern interior United States, increased metal and metalloid contents are generally related to increased organic carbon content, decreased sedimentation rate, organic matter type, or position in the basin. In areas where the stratigraphic equivalents of the Chattanooga Shale are deeply buried and and the organic material is thermally mature, metal contents are essentially the same as in unheated areas and correlate with organic C or S contents. This paradigm does not hold for the Cambrian Alum Shale Formation of Sweden where increased metal content does not necessarily correlate with organic matter content nor is metal enrichment necessarily related to land derived humic material because this organic matter is all of marine source. In southcentral Sweden the elements U, Mo, V, Ni, Zn, Cd and Pb are all enriched relative to average black shales but only U and Mo correlate to organic matter content. Tectonically disturbed and metamorphosed allochthonous samples of Alum Shale on the Caledonian front in western Sweden have even higher amounts for some metals (V, Ni, Zn and Ba) relative to the autochthonous shales in this area and those in southern Sweden. ?? 1991 Springer-Verlag.

  8. Characterising the vertical separation of shale-gas source rocks and aquifers across England and Wales (UK)

    NASA Astrophysics Data System (ADS)

    Loveless, Sian E.; Bloomfield, John P.; Ward, Robert S.; Hart, Alwyn J.; Davey, Ian R.; Lewis, Melinda A.

    2018-03-01

    Shale gas is considered by many to have the potential to provide the UK with greater energy security, economic growth and jobs. However, development of a shale gas industry is highly contentious due to environmental concerns including the risk of groundwater pollution. Evidence suggests that the vertical separation between exploited shale units and aquifers is an important factor in the risk to groundwater from shale gas exploitation. A methodology is presented to assess the vertical separation between different pairs of aquifers and shales that are present across England and Wales. The application of the method is then demonstrated for two of these pairs—the Cretaceous Chalk Group aquifer and the Upper Jurassic Kimmeridge Clay Formation, and the Triassic sandstone aquifer and the Carboniferous Bowland Shale Formation. Challenges in defining what might be considered criteria for `safe separation' between a shale gas formation and an overlying aquifer are discussed, in particular with respect to uncertainties in geological properties, aquifer extents and determination of socially acceptable risk levels. Modelled vertical separations suggest that the risk of aquifer contamination from shale exploration will vary greatly between shale-aquifer pairs and between regions and this will need to be considered carefully as part of the risk assessment and management for any shale gas development.

  9. Sedimentary provenance of Maastrichtian oil shales, Central Eastern Desert, Egypt

    NASA Astrophysics Data System (ADS)

    Fathy, Douaa; Wagreich, Michael; Mohamed, Ramadan S.; Zaki, Rafat

    2017-04-01

    Maastrichtian oil shales are distributed within the Central Eastern Desert in Egypt. In this study elemental geochemical data have been applied to investigate the probable provenance of the sedimentary detrital material of the Maastrichtian oil shale beds within the Duwi and the Dakhla formations. The Maastrichtian oil shales are characterized by the enrichment in Ca, P, Mo, Ni, Zn, U, Cr and Sr versus post-Archean Australian shales (PAAS). The chondrite-normalized patterns of the Maastrichtian oil shale samples are showing LREE enrichment, HREE depletion, slightly negative Eu anomaly, no obvious Ce anomaly and typical shale-like PAAS-normalized patterns. The total REE well correlated with Si, Al, Fe, K and Ti, suggesting that the REE of the Maastrichtian oil shales are derived from terrigenous source. Chemical weathering indices such as Chemical Index of Alteration (CIA), Chemical Proxy of Alteration (CPA) and Plagioclase Index of Alteration (PIA) indicate moderate to strong chemical weathering. We suggest that the Maastrichtian oil shale is mainly derived from first cycle rocks especially intermediate rocks without any significant inputs from recycled or mature sources. The proposed data illustrated the impact of the parent material composition on evolution of oil shale chemistry. Furthermore, the paleo-tectonic setting of the detrital source rocks for the Maastrichtian oil shale is probably related to Proterozoic continental island arcs

  10. Experimental study of CO2 effect on shale mechanical properties in the processes of complete strain-stress and post-failure tests

    NASA Astrophysics Data System (ADS)

    Wang, Y.; Ji, J.; Li, M.

    2017-12-01

    CO2 enhanced shale gas recovery has proved to be one of the most efficient methods to extract shale gas, and represent a mutually beneficial approach to mitigate greenhouse gas emission into the atmosphere. During the processes of most CO2 enhanced shale gas recovery, liquid CO2 is injected into reservoirs, fracturing the shale, making competitive adsorption with shale gas and displacing the shale gas at multi-scale to the production well. Hydraulic and mechanical coupling actions between the shale and fluid media are expected to play important roles in affecting fracture propagation, CO2 adsorption and shale gas desorption, multi-scale fluid flow, plume development, and CO2 storage. In this study, four reservoir shale samples were selected to carry out triaxial compression experiments of complete strain-stress and post failure tests. Two fluid media, CO2 and N2, were used to flow through the samples and produce the pore pressure. All of the above four compression experiments were conducted under the same confining and pore pressures, and loaded the axial pressure with the same loading path. Permeability, strain-stress, and pore volumetric change were measured and recorded over time. The results show that, compared to N2, CO2 appeared to lower the peak strength and elastic modulus of shale samples, and increase the permeability up two to six orders of magnitudes after the sample failure. Furthermore, the shale samples were dilated by CO2 much more than N2, and retained the volume of CO2 2.6 times more than N2. Results from this study indicate that the CO2 can embrittle the shale formation so as to form fracture net easily to enhance the shale gas recovery. Meanwhile, part of the remaining CO2 might be adsorbed on the surface of shale matrix and the rest of the CO2 be in the pore and fracture spaces, implying that CO2 can be effectively geo-stored in the shale formation.

  11. 21 CFR 113.40 - Equipment and procedures.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... ensure a supply of clean, dry air. (3) Pressure gages. Each retort should be equipped with a pressure... should have adequate filter systems to ensure a supply of clean, dry air. (3) Pressure gages. (i) Each... controllers should have adequate filter systems to ensure a supply of clean, dry air. (3) Pressure gages. Each...

  12. Retort to Religious Critics of RET.

    ERIC Educational Resources Information Center

    Nardi, Thomas J.

    This paper is concerned with people who contact clergymen for counseling who could benefit from the short-term directive therapeutic approach of Rational Emotive Therapy (RET) and the reluctance of clergymen to use RET. The integration of the precepts of Christianity and the concepts of RET is considered. This paper is specifically a response to…

  13. Overview of the technology and status of oil sands development

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Detamore, R.J.

    1981-01-01

    In conjunction with the increasing emphasis upon alternate energy sources, interest in the oil sands resource is discussed. This paper reviews the primary established oil sands recovery techniques including surface mining, surface retorting, in situ thermal and nonthermal in situ, and presents an overview of their application in specific projects.

  14. 9 CFR 318.305 - Equipment and procedures for heat processing systems.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... ensure a supply of clean, dry air. The recorder timing mechanism shall be accurate. (i) Chart-type... filter systems to ensure a supply of clean, dry air. (ii) Pressure recording device. Each retort shall be... section. (2) Cooling canal water shall be chlorinated or treated with a chemical approved by the...

  15. 9 CFR 381.305 - Equipment and procedures for heat processing systems.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... supply of clean, dry air. The recorder timing mechanism shall be accurate. (i) Chart-type devices... filter systems to ensure a supply of clean, dry air. (ii) Pressure recording device. Each retort shall be... cooling except as provided for in paragraphs (h) (2) and (3) of this section. (2) Cooling canal water...

  16. 30 CFR 259.002 - Definitions.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... these) oil and gas, coal, oil shale, tar sands, and goethermal resources on lands or interests in lands under Federal jurisdiction. Gas means natural gas as defined by the Federal Energy Regulatory Commission... empowered to supervise and direct all oil and gas operations and to perform other duties prescribed in 30...

  17. 30 CFR 559.002 - Definitions.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... explore for, or develop, or produce (or to do any or all of these) oil and gas, coal, oil shale, tar sands, and geothermal resources on lands or interests in lands under Federal jurisdiction. Gas means natural... direct all oil and gas operations and to perform other duties prescribed in this chapter. Director means...

  18. 30 CFR 559.002 - Definitions.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... explore for, or develop, or produce (or to do any or all of these) oil and gas, coal, oil shale, tar sands, and geothermal resources on lands or interests in lands under Federal jurisdiction. Gas means natural... direct all oil and gas operations and to perform other duties prescribed in this chapter. Director means...

  19. 30 CFR 559.002 - Definitions.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... explore for, or develop, or produce (or to do any or all of these) oil and gas, coal, oil shale, tar sands, and geothermal resources on lands or interests in lands under Federal jurisdiction. Gas means natural... direct all oil and gas operations and to perform other duties prescribed in this chapter. Director means...

  20. 43 CFR 3590.0-7 - Scope.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... hydrocarbon from tar sands or oil shale by in-situ methods utilizing boreholes or wells, part 3160 of this... regulations in this part govern operations for the discovery, testing, development, mining, reclamation, and processing of all minerals under lease, license or permit issued for Federal lands under the regulations in...

  1. 43 CFR 3590.0-7 - Scope.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... hydrocarbon from tar sands or oil shale by in-situ methods utilizing boreholes or wells, part 3160 of this... regulations in this part govern operations for the discovery, testing, development, mining, reclamation, and processing of all minerals under lease, license or permit issued for Federal lands under the regulations in...

  2. 43 CFR 3590.0-7 - Scope.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... hydrocarbon from tar sands or oil shale by in-situ methods utilizing boreholes or wells, part 3160 of this... regulations in this part govern operations for the discovery, testing, development, mining, reclamation, and processing of all minerals under lease, license or permit issued for Federal lands under the regulations in...

  3. 43 CFR 3590.0-7 - Scope.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... hydrocarbon from tar sands or oil shale by in-situ methods utilizing boreholes or wells, part 3160 of this... regulations in this part govern operations for the discovery, testing, development, mining, reclamation, and processing of all minerals under lease, license or permit issued for Federal lands under the regulations in...

  4. 26 CFR 1.9004 - Statutory provisions; the Act of September 26, 1961 (Pub. L. 87-312, 75 Stat. 674).

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ..., That (a) Election for past years. In the case of brick and tile clay, fire clay, or shale used by the mineowner or operator in the manufacture of building or paving brick, drainage and roofing tile, sewer pipe...

  5. 26 CFR 1.9004 - Statutory provisions; the Act of September 26, 1961 (Pub. L. 87-312, 75 Stat. 674).

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ..., That (a) Election for past years. In the case of brick and tile clay, fire clay, or shale used by the mineowner or operator in the manufacture of building or paving brick, drainage and roofing tile, sewer pipe...

  6. 26 CFR 1.9004 - Statutory provisions; the Act of September 26, 1961 (Pub. L. 87-312, 75 Stat. 674).

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ..., That (a) Election for past years. In the case of brick and tile clay, fire clay, or shale used by the mineowner or operator in the manufacture of building or paving brick, drainage and roofing tile, sewer pipe...

  7. 26 CFR 1.9004 - Statutory provisions; the Act of September 26, 1961 (Pub. L. 87-312, 75 Stat. 674).

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ..., That (a) Election for past years. In the case of brick and tile clay, fire clay, or shale used by the mineowner or operator in the manufacture of building or paving brick, drainage and roofing tile, sewer pipe...

  8. 26 CFR 1.9004 - Statutory provisions; the Act of September 26, 1961 (Pub. L. 87-312, 75 Stat. 674).

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ..., That (a) Election for past years. In the case of brick and tile clay, fire clay, or shale used by the mineowner or operator in the manufacture of building or paving brick, drainage and roofing tile, sewer pipe...

  9. Hydraulic fracturing fluid migration in the subsurface: A review and expanded modeling results

    NASA Astrophysics Data System (ADS)

    Birdsell, Daniel T.; Rajaram, Harihar; Dempsey, David; Viswanathan, Hari S.

    2015-09-01

    Understanding the transport of hydraulic fracturing (HF) fluid that is injected into the deep subsurface for shale gas extraction is important to ensure that shallow drinking water aquifers are not contaminated. Topographically driven flow, overpressured shale reservoirs, permeable pathways such as faults or leaky wellbores, the increased formation pressure due to HF fluid injection, and the density contrast of the HF fluid to the surrounding brine can encourage upward HF fluid migration. In contrast, the very low shale permeability and capillary imbibition of water into partially saturated shale may sequester much of the HF fluid, and well production will remove HF fluid from the subsurface. We review the literature on important aspects of HF fluid migration. Single-phase flow and transport simulations are performed to quantify how much HF fluid is removed via the wellbore with flowback and produced water, how much reaches overlying aquifers, and how much is permanently sequestered by capillary imbibition, which is treated as a sink term based on a semianalytical, one-dimensional solution for two-phase flow. These simulations include all of the important aspects of HF fluid migration identified in the literature review and are performed in five stages to faithfully represent the typical operation of a hydraulically fractured well. No fracturing fluid reaches the aquifer without a permeable pathway. In the presence of a permeable pathway, 10 times more fracturing fluid reaches the aquifer if well production and capillary imbibition are not included in the model.

  10. Pressurized fluidized-bed hydroretorting of Eastern oil shales -- Sulfur control. Topical report for Subtask 3.1, In-bed sulfur capture tests; Subtask 3.2, Electrostatic desulfurization; Subtask 3.3, Microbial desulfurization and denitrification

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Roberts, M.J.; Abbasian, J.; Akin, C.

    1992-05-01

    This topical report on ``Sulfur Control`` presents the results of work conducted by the Institute of Gas Technology (IGT), the Illinois Institute of Technology (IIT), and the Ohio State University (OSU) to develop three novel approaches for desulfurization that have shown good potential with coal and could be cost-effective for oil shales. These are (1) In-Bed Sulfur Capture using different sorbents (IGT), (2) Electrostatic Desulfurization (IIT), and (3) Microbial Desulfurization and Denitrification (OSU and IGT). The objective of the task on In-Bed Sulfur Capture was to determine the effectiveness of different sorbents (that is, limestone, calcined limestone, dolomite, and siderite)more » for capturing sulfur (as H{sub 2}S) in the reactor during hydroretorting. The objective of the task on Electrostatic Desulfurization was to determine the operating conditions necessary to achieve a high degree of sulfur removal and kerogen recovery in IIT`s electrostatic separator. The objectives of the task on Microbial Desulfurization and Denitrification were to (1) isolate microbial cultures and evaluate their ability to desulfurize and denitrify shale, (2) conduct laboratory-scale batch and continuous tests to improve and enhance microbial removal of these components, and (3) determine the effects of processing parameters, such as shale slurry concentration, solids settling characteristics, agitation rate, and pH on the process.« less

  11. Assessing impacts of unconventional natural gas extraction on microbial communities in headwater stream ecosystems in Northwestern Pennsylvania

    PubMed Central

    Trexler, Ryan; Solomon, Caroline; Brislawn, Colin J.; Wright, Justin R.; Rosenberger, Abigail; McClure, Erin E.; Grube, Alyssa M.; Peterson, Mark P.; Keddache, Mehdi; Mason, Olivia U.; Hazen, Terry C.; Grant, Christopher J.; Lamendella, Regina

    2014-01-01

    Hydraulic fracturing and horizontal drilling have increased dramatically in Pennsylvania Marcellus shale formations, however the potential for major environmental impacts are still incompletely understood. High-throughput sequencing of the 16S rRNA gene was performed to characterize the microbial community structure of water, sediment, bryophyte, and biofilm samples from 26 headwater stream sites in northwestern Pennsylvania with different histories of fracking activity within Marcellus shale formations. Further, we describe the relationship between microbial community structure and environmental parameters measured. Approximately 3.2 million 16S rRNA gene sequences were retrieved from a total of 58 samples. Microbial community analyses showed significant reductions in species richness as well as evenness in sites with Marcellus shale activity. Beta diversity analyses revealed distinct microbial community structure between sites with and without Marcellus shale activity. For example, operational taxonomic units (OTUs) within the Acetobacteracea, Methylocystaceae, Acidobacteriaceae, and Phenylobacterium were greater than three log-fold more abundant in MSA+ sites as compared to MSA− sites. Further, several of these OTUs were strongly negatively correlated with pH and positively correlated with the number of wellpads in a watershed. It should be noted that many of the OTUs enriched in MSA+ sites are putative acidophilic and/or methanotrophic populations. This study revealed apparent shifts in the autochthonous microbial communities and highlighted potential members that could be responding to changing stream conditions as a result of nascent industrial activity in these aquatic ecosystems. PMID:25408683

  12. Organic / inorganic carbon content and isotope analysis of 3.1Ga Cleaverville Formation in Pilbara, Australia: Result of DXCL project

    NASA Astrophysics Data System (ADS)

    Miki, T.; Kiyokawa, S.; Ito, T.; Yamaguchi, K. E.; Ikehara, M.

    2014-12-01

    DXCL project was targeted for 3.2-3.1 Ga hydrothermal chert-black shale (Dixon Island Formation) and black shale-banded iron formation (Cleaverville Formation). CL3 core (200m long) was drilled from 1) upper part of Black Shale Member (35m thick) to 2) lower part of BIF Member (165m thick) of the Cleaverville Formation. Here, the BIF Member can be divided into three submembers; Greenish shale-siderite (50m thick), Magnetite-siderite (55m thick) and Black shale-siderite (60m) submembers. In this study, we used bulk samples and samples treated by hot hydrochloric acid in order to extract organic carbon.  The Black shale Member consists of black carbonaceous matter and fine grain quartz (< 100μm). Organic carbon content (Corg) of black shale is 1.2% in average and organic carbon isotope ratio (δ13Corg) is -31.4 to -28.7‰. On the other hand, inorganic carbon isotope ratio of siderite (δ13Ccarb) was -5.2 to +12.6‰.  In the BIF Member, the Greenish shale-siderite submember is composed of well laminated greenish sideritic shale and white chert (<7mm thick), which is gradually increase from black shale of the Black shale Member through about 10m. Magnetite-siderite submember contains very fine magnetite lamination with inter-bedded greenish sideritic shale and siderite lamination. Hematite is identified near fractured part. The Black shale-siderite submember is composed of black shale, siderite and chert bands.  1) Siderite layers of these three submembers showedδ13Ccarb value of -14.6 to -3.8‰. Corg and δ13Corg content are 0.2% and -18.3 to -0.3‰. 2) Siderite grains within greenish sideritic shales showedδ13Ccarb value of -12.9 to +15.0‰. 3) Black shale of Corg and δ13Corg content in the BIF Member are 0.1% and -36.3 to -17.1‰ respectively.  We found great difference in values of δ13Ccarb of siderite. One is Corg-rich shale (up to +15.0‰) and the other is Corg-poor siderite layers (up to -3.8‰). The lighter value of siderite layers may be originated from precursor organic carbon which is strongly affected by biological activity.

  13. Gas shale/oil shale

    USGS Publications Warehouse

    Fishman, N.S.; Bereskin, S.R.; Bowker, K.A.; Cardott, B.J.; Chidsey, T.C.; Dubiel, R.F.; Enomoto, C.B.; Harrison, W.B.; Jarvie, D.M.; Jenkins, C.L.; LeFever, J.A.; Li, Peng; McCracken, J.N.; Morgan, C.D.; Nordeng, S.H.; Nyahay, R.E.; Schamel, Steven; Sumner, R.L.; Wray, L.L.

    2011-01-01

    The production of natural gas from shales continues to increase in North America, and shale gas exploration is on the rise in other parts of the world since the previous report by this committee was published by American Association of Petroleum Geologists, Energy Minerals Division (2009). For the United States, the volume of proved reserves of natural gas increased 11% from 2008 to 2009, the increase driven largely by shale gas development (Energy Information Administration 2010c). Furthermore, shales have increasingly become targets of exploration for oil and condensate as well as gas, which has served to greatly expand their significance as ‘‘unconventional’’ petroleum reservoirs.This report provides information about specific shales across North America and Europe from which gas (biogenic or thermogenic), oil, or natural gas liquids are produced or is actively being explored. The intent is to reflect the recently expanded mission of the Energy Minerals Division (EMD) Gas Shales Committee to serve as a single point of access to technical information on shales regardless of the type of hydrocarbon produced from them. The contents of this report were drawn largely from contributions by numerous members of the EMD Gas Shales Advisory Committee, with much of the data being available from public websites such as state or provincial geological surveys or other public institutions. Shales from which gas or oil is being produced in the United States are listed in alphabetical order by shale name. Information for Canada is presented by province, whereas for Europe, it is presented by country.

  14. Fractal Characteristics of Continental Shale Pores and its Significance to the Occurrence of Shale Oil in China: a Case Study of Biyang Depression

    NASA Astrophysics Data System (ADS)

    Li, Jijun; Liu, Zhao; Li, Junqian; Lu, Shuangfang; Zhang, Tongqian; Zhang, Xinwen; Yu, Zhiyuan; Huang, Kaizhan; Shen, Bojian; Ma, Yan; Liu, Jiewen

    Samples from seven major exploration wells in Biyang Depression of Henan Oilfield were compared using low-temperature nitrogen adsorption and shale oil adsorption experiments. Comprehensive analysis of pore development, oiliness and shale oil flowability was conducted by combining fractal dimension. The results show that the fractal dimension of shale in Biyang Depression of Henan Oilfield was negatively correlated with the average pore size and positively correlated with the specific surface area. Compared with the large pore, the small pore has great fractal dimension, indicating the pore structure is more complicated. Using S1 and chloroform bitumen A to evaluate the relationship between shale oiliness and pore structure, it was found that the more heterogeneous the shale pore structure, the higher the complexity and the poorer the oiliness. Clay minerals are the main carriers involved in crude oil adsorption, affecting the mobility of shale oil. When the pore complexity of shale was high, the content of micro- and mesopores was high, and the high specific surface area could enhance the adsorption and reduce the mobility of shale oil.

  15. Preliminary Results from Outcrop-Based Spectral Gamma-Ray Measurements on the Lower Silurian Longmaxi Shale, in Chongqing and Its Adjacent Areas

    NASA Astrophysics Data System (ADS)

    Zou, C.; Nie, X.; Qiao, L.; Pan, L.; Hou, S.

    2013-12-01

    The Longmaxi Shale in the Lower Silurian has been recognized as a favorable target of shale gas exploration in Sichuan basin, China. One important feature of shale gas reservoirs is of high total organic carbon (TOC). Many studies have shown that the spectral gamma-ray measurements are positively correlated to the TOC contents. In this study, the spectral gamma ray responses of five shale outcrop profiles are measured in Chongqing and its adjacent areas, Sichuan basin. Three of the five profiles are located in Qijiang, Qianjiang and Changning in Chongqing, and the other two are located in Qilong and Houtan in Guizhou. The main lithologies of the profiles include mainly black shale, gray shale and silty shale. The spectral gamma-ray measurements provide the contents of potassium (K), uranium (U), and thorium (Th). The result of the five profiles shows that the K and Th contents of gray shale are close to the ones of black shale, while the U contents in the black shale are significantly higher than that in the other rocks. The TOC contents are estimated by using the outcrop-based measurements with an empirical formula. The result shows that the TOC contents are the highest in black shale of Changning profile. It indicates that there is a most promising exploration potential for shale gas in this area. In the future, the outcrop data will be used to construct detailed lithofacies profiles and establish relationships between lithofacies both in outcrop and the subsurface gamma-ray logs. Acknowledgment: We acknowledge the financial support of the National Natural Science Foundation of China (41274185) and the Fundamental Research Funds for the Central Universities.

  16. Study of Cetane Properties of ATJ Blends Based on World Survey of Jet Fuels

    DTIC Science & Technology

    2016-01-28

    49.84 N/A N/A N/A 46.92 N/A N/A N/A 12 (100% Syn.) 1 57.79 N/A N/A N/A 53.48 N/A N/A N/A a - Conventional petroleum based jet fuel; b - Oil Shale ...Australia (% Nitrogen content unknown) c - Oil Shale , Australia (Low Nitrogen); d - Oil Shale , Australia (High Nitrogen) U/A – Unavailable in PQIS...fuel b - Oil Shale , Australia (% Nitrogen content unknown) c - Oil Shale , Australia (Low Nitrogen) d - Oil Shale , Australia (High Nitrogen) U/A

  17. Impact of Oxidative Dissolution on Black Shale Fracturing: Implication for Shale Fracturing Treatment Design

    NASA Astrophysics Data System (ADS)

    You, L.; Chen, Q.; Kang, Y.; Cheng, Q.; Sheng, J.

    2017-12-01

    Black shales contain a large amount of environment-sensitive compositions, e.g., clay minerals, carbonate, siderite, pyrite, and organic matter. There have been numerous studies on the black shales compositional and pore structure changes caused by oxic environments. However, most of the studies did not focus on their ability to facilitate shale fracturing. To test the redox-sensitive aspects of shale fracturing and its potentially favorable effects on hydraulic fracturing in shale gas reservoirs, the induced microfractures of Longmaxi black shales exposed to deionized water, hydrochloric acid, and hydrogen peroxide at room-temperature for 240 hours were imaged by scanning electron microscopy (SEM) and CT-scanning in this paper. Mineral composition, acoustic emission, swelling, and zeta potential of the untreated and oxidative treatment shale samples were also recorded to decipher the coupled physical and chemical effects of oxidizing environments on shale fracturing processes. Results show that pervasive microfractures (Fig.1) with apertures ranging from tens of nanometers to tens of microns formed in response to oxidative dissolution by hydrogen peroxide, whereas no new microfracture was observed after the exposure to deionized water and hydrochloric acid. The trajectory of these oxidation-induced microfractures was controlled by the distribution of phyllosilicate framework and flaky or stringy organic matter in shale. The experiments reported in this paper indicate that black shales present the least resistance to crack initiation and subcritical slow propagation in hydrogen peroxide, a process we refer to as oxidation-sensitive fracturing, which are closely related to the expansive stress of clay minerals, dissolution of redox-sensitive compositions, destruction of phyllosilicate framework, and the much lower zeta potential of hydrogen peroxide solution-shale system. It could mean that the injection of fracturing water with strong oxidizing aqueous solution may play an important role in improving hydraulic fracturing of shale formation by reducing the energy requirements for crack growth. However, additional work is needed to the selection of highly-effective, economical, and environmentally friendly oxidants.

  18. Preliminary view of geotechnical properties of soft rocks of Semanggol formation at Pokok Sena, Kedah

    NASA Astrophysics Data System (ADS)

    Ahmad, N. R.; Jamin, N. H.

    2018-04-01

    The research was inspired by series of geological studies on Semanggol formation found exposed at North Perak, South Kedah and North Kedah. The chert unit comprised interbedded chert-shale rocks are the main lithologies sampled in a small-scale outcrop of Pokok Sena area. Black shale materials were also observed associated with these sedimentary rocks. The well-known characteristics of shale that may swell when absorb water and leave shrinkage when dried make the formation weaker when load is applied on it. The presence of organic materials may worsen the condition apart from the other factors such as the history of geological processes and depositional environment. Thus, this research is important to find the preliminary relations of the geotechnical properties of soft rocks and the geological reasoning behind it. Series of basic soil tests and 1-D compression tests were carried out to obtain the soil parameters. The results obtained gave some preliminary insight to mechanical behaviour of these two samples. The black shale and weathered interbedded chert-shale were classified as sandy-clayey-SILT and clayey-silty-SAND respectively. The range of specific gravity of black shale and interbedded chert/shale 2.3 – 2.6 and fall in the common range of shale and chert specific gravity value. In terms of degree of plasticity, the interbedded chert/shale samples exhibit higher plastic degree compared to the black shale samples. Results from oedometer tests showed that black shale samples had higher overburden pressure (Pc) throughout its lifetime compare to weathered interbedded chert-shale, however the compression index (Cc) of black shale were 0.15 – 0.185 which was higher than that found in interbedded chert-shale. The geotechnical properties of these two samples were explained in correlation with their provenance and their history of geological processes involved which predominantly dictated the mechanical behaviour of these two samples.

  19. Discussion on upper limit of maturity for marine shale gas accumulation

    NASA Astrophysics Data System (ADS)

    Huang, Jinliang; Dong, Dazhong; Zhang, Chenchen; Wang, Yuman; Li, Xinjing; Wang, Shufang

    2017-04-01

    The sedimentary formations of marine shale in China are widely distributed and are characterized by old age, early hydrocarbon-generation and high thermal evolution degree, strong tectonic deformation and reformation and poor preservation conditions. Therefore whether commercial shale gas reservoirs can be formed is a critical issue to be studied. The previous studies showed that the upper threshold of maturity (Ro%) for the gas generation of marine source rocks is 3.0%. Based on comparative studies of marine shale gas exploration practices at home and abroad and reservoir experimental analysis results, we proposed in this paper that the upper threshold of maturity (Ro%) for marine shale gas accumulation is 3.5%. And the main proofs are as follows: (1) There is still certain commercial production in the area with the higher than 3.0% in Marcellus and Woodford marine shale gas plays in North America; (2) The Ro of the Silurian Longmaxi shale in the Sichuan Basin in China is between 2.5% and 3.3%. However, the significant breakthrough has been made in shale gas exploration and the production exceeds 7 billion m3 in 2016; (3) The TOC of the Cambrian Qiongzhusi organic-rich shale in Changning Region in the Sichuan Basin ranges 2% to 7.1% and the Ro is greater than 3.5%. And the resistivity logging of organic-rich shale appears low-ultra low resistivity and inversion of Rt curve. It's suggested that the organic matters in Qiongzhusi organic-rich shale occurs partial carbonization which leads to stronger conductivity; (4) Thermal simulation experiments showed that the specific surface of shale increases with Ro. And the specific surface and adsorptive capacity both reach maximum when the Ro is 3.5%; (5) The analysis of physical properties and SEM images of shale reservoirs indicated that when Ro is higher than 3.5%, the dominant pores of Qiongzhusi shale are micro-pores while the organic pores are relatively poor-developed, and the average porosity is less than 2%.

  20. Morbidity survey of US oil shale workers employed during 1948-1969

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rom, W.N.; Krueger, G.; Zone, J.

    The health status of 325 oil shale workers employed at the Anvil Points, Colorado, demonstration facility from 1948 to 1969 was evaluated. As a comparison population, 323 Utah coal miners frequency matched for age were studied. The prevalence of respiratory symptoms among oil shale workers who smoked were similar to the coal miners who smoked, although nonsmoking oil shale workers had fewer symptoms compared to nonsmoking coal workers. Four cases of skin cancers were found on the oil shale workers and eight cases in the controls. Similar numbers of nevi, telangiectasiae, possible pitch warts, pigment changes (solar/senile lentigo), and papillomatamore » (seborrheic keratoses and skin tags) were seen in both groups, while actinic keratoses were more frequent in the oil shale workers. The prevalence of actinic keratoses was significantly associated with oil shale work after allowing for age, sun exposure, and other exposures. The prevalence of pulmonary cytology metaplasia was associated with years of production work in oil shale among both smokers and ex-smokers. More of the oil shale workers had atypical cells in the urine, but the excess mostly found among ex-smokers. Although these workers had short-term and limited oil shale exposure work exposure, the authors recommend that medical surveillance of oil shale workers consider the skin, respiratory, and urinary systems for special observation.« less

  1. Duvernay shale lithofacies distribution analysis in the West Canadian Sedimentary Basin

    NASA Astrophysics Data System (ADS)

    Zhu, Houqin; Kong, Xiangwen; Long, Huashan; Huai, Yinchao

    2018-02-01

    In the West Canadian Sedimentary Basin (WCSB), Duvernay shale is considered to contribute most of the Canadian shale gas reserve and production. According to global shale gas exploration and development practice, reservoir property and well completion quality are the two key factors determining the shale gas economics. The two key factors are strongly depending on shale lithofacies. On the basis of inorganic mineralogy theory, all available thin section, X-ray diffraction, scanning electron microscope (SEM), energy dispersive spectrometer (EDS) data were used to assist lithofacies analysis. Gamma ray (GR), acoustic (AC), bulk density (RHOB), neutron porosity (NPHI) and photoelectric absorption cross-section index (PE) were selected for log response analysis of various minerals. Reservoir representative equation was created constrained by quantitative core analysis results, and matrix mineral percentage of quartz, carbonate, feldspar and pyrite were calculated to classify shale lithofacies. Considering the horizontal continuity of seismic data, rock physics model was built, and acoustic impedance integrated with core data and log data was used to predict the horizontal distribution of different lithofacies. The results indicate that: (1) nine lithofacies can be categorized in Duvernay shale, (2) the horizontal distribution of different lithofacies is quite diversified, siliceous shale mainly occurs in Simonette area, calcareous shale is prone to develop in the vicinity of reef, while calcareous-siliceous shale dominates in Willesdon Green area.

  2. Subsurface stratigraphy of upper Devonian clastics in southern West Virginia

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Neal, D.W.; Patchen, D.G.

    Studies of upper Devonian shales and siltstones in southern West Virginia have resulted in a refinement of the stratigraphic framework used in characterizing the gas-producing Devonian shales. Gamma-ray log correlation around the periphery of the Appalachian Basin has extended the usage of New York stratigraphic nomenclature for the interval between the base of the Dunkirk shale and the top of the Tully limestone to southern West Virginia. Equivalents of the Dunkirk shale and younger rocks of New York are recognized in southwestern West Virginia and are named according to Ohio usage. Gas production is primarily from the basal black shalemore » member of the Ohio shale. Gas shows from older black shale units (Rhinestreet and Marcellus shales) are recorded from wells east of the major producing trend. Provided suitable stimulation techniques can be developed, these older and deeper black shales may prove to be another potential gas resource.« less

  3. Activity concentrations of 238U and 226Ra in two European black shales and their experimentally-derived leachates.

    PubMed

    Wilke, Franziska D H; Schettler, Georg; Vieth-Hillebrand, Andrea; Kühn, Michael; Rothe, Heike

    2018-05-18

    The production of gas from unconventional resources became an important position in the world energy economics. In 2012, the European Commission's Joint Research Centre estimate 16 trillion cubic meters (Tcm) of technically recoverable shale gas in Europe. Taking into account that the exploitation of unconventional gas can be accompanied by serious health risks due to the release of toxic chemical components and natural occurring radionuclides into the return flow water and their near-surface accumulation in secondary precipitates, we investigated the release of U, Th and Ra from black shales by interaction with drilling fluids containing additives that are commonly employed for shale gas exploitation. We performed leaching tests at elevated temperatures and pressures with an Alum black shale from Bornholm, Denmark and a Posidonia black shale from Lower Saxony, Germany. The Alum shale is a carbonate free black shale with pyrite and barite, containing 74.4 μg/g U. The Posidonia shales is a calcareous shale with pyrite but without detectable amounts of barite containing 3.6 μg/g U. Pyrite oxidized during the tests forming sulfuric acid which lowered the pH on values between 2 and 3 of the extraction fluid from the Alum shale favoring a release of U from the Alum shale to the fluid during the short-term and in the beginning of the long-term experiments. The activity concentration of 238 U is as high as 23.9 mBq/ml in the fluid for those experiments. The release of U and Th into the fluid is almost independent of pressure. The amount of uranium in the European shales is similar to that of the Marcellus Shale in the United States but the daughter product of 238 U, the 226 Ra activity concentrations in the experimentally derived leachates from the European shales are quite low in comparison to that found in industrially derived flowback fluids from the Marcellus shale. This difference could mainly be due to missing Cl in the reaction fluid used in our experiments and a lower fluid to solid ratio in the industrial plays than in the experiments due to subsequent fracking and minute cracks from which Ra can easily be released. Copyright © 2018 Elsevier Ltd. All rights reserved.

  4. Investigating the Potential Impacts of Energy Production in the Marcellus Shale Region Using the Shale Network Database

    NASA Astrophysics Data System (ADS)

    Brantley, S.; Pollak, J.

    2016-12-01

    The Shale Network's extensive database of water quality observations in the Marcellus Shale region enables educational experiences about the potential impacts of resource extraction and energy production with real data. Through tools that are open source and free to use, interested parties can access and analyze the very same data that the Shale Network team has used in peer-reviewed publications about the potential impacts of hydraulic fracturing on water. The development of the Shale Network database has been made possible through efforts led by an academic team and involving numerous individuals from government agencies, citizen science organizations, and private industry. With these tools and data, the Shale Network team has engaged high school students, university undergraduate and graduate students, as well as citizens so that all can discover how energy production impacts the Marcellus Shale region, which includes Pennsylvania and other nearby states. This presentation will describe these data tools, how the Shale Network has used them in educational settings, and the resources available to learn more.

  5. System for producing a uniform rubble bed for in situ processes

    DOEpatents

    Galloway, Terry R.

    1983-01-01

    A method and a cutter for producing a large cavity filled with a uniform bed of rubblized oil shale or other material, for in situ processing. A raise drill head (72) has a hollow body (76) with a generally circular base and sloping upper surface. A hollow shaft (74) extends from the hollow body (76). Cutter teeth (78) are mounted on the upper surface of the body (76) and relatively small holes (77) are formed in the body (76) between the cutter teeth (78). Relatively large peripheral flutes (80) around the body (76) allow material to drop below the drill head (72). A pilot hole is drilled into the oil shale deposit. The pilot hole is reamed into a large diameter hole by means of a large diameter raise drill head or cutter to produce a cavity filled with rubble. A flushing fluid, such as air, is circulated through the pilot hole during the reaming operation to remove fines through the raise drill, thereby removing sufficient material to create sufficient void space, and allowing the larger particles to fill the cavity and provide a uniform bed of rubblized oil shale.

  6. Combustion heater for oil shale

    DOEpatents

    Mallon, R.; Walton, O.; Lewis, A.E.; Braun, R.

    1983-09-21

    A combustion heater for oil shale heats particles of spent oil shale containing unburned char by burning the char. A delayed fall is produced by flowing the shale particles down through a stack of downwardly sloped overlapping baffles alternately extending from opposite sides of a vertical column. The delayed fall and flow reversal occurring in passing from each baffle to the next increase the residence time and increase the contact of the oil shale particles with combustion supporting gas flowed across the column to heat the shale to about 650 to 700/sup 0/C for use as a process heat source.

  7. Combustion heater for oil shale

    DOEpatents

    Mallon, Richard G.; Walton, Otis R.; Lewis, Arthur E.; Braun, Robert L.

    1985-01-01

    A combustion heater for oil shale heats particles of spent oil shale containing unburned char by burning the char. A delayed fall is produced by flowing the shale particles down through a stack of downwardly sloped overlapping baffles alternately extending from opposite sides of a vertical column. The delayed fall and flow reversal occurring in passing from each baffle to the next increase the residence time and increase the contact of the oil shale particles with combustion supporting gas flowed across the column to heat the shale to about 650.degree.-700.degree. C. for use as a process heat source.

  8. Eastern Devonian shales: Organic geochemical studies, past and present

    USGS Publications Warehouse

    Breger, I.A.; Hatcher, P.G.; Romankiw, L.A.; Miknis, F.P.

    1983-01-01

    The Eastern Devonian shales are represented by a sequence of sediments extending from New York state, south to the northern regions of Georgia and Alabama, and west into Ohio and to the Michigan and Ilinois Basins. Correlatives are known in Texas. The shale is regionally known by a number of names: Chattanooga, Dunkirk, Rhinestreet, Huron, Antrim, Ohio, Woodford, etc. These shales, other than those in Texas, have elicited much interest because they have been a source of unassociated natural gas. It is of particular interest, however, that most of these shales have no associated crude oil, in spite of the fact that they have some of the characteristics normally attributed to source beds. This paper addresses some of the organic geochemical aspects of the kerogen in these shales, in relation to their oil generating potential. Past organic geochemical studies on Eastern Devonian shales will be reviewed. Recent solid state 13C NMR studies on the nature of the organic matter in Eastern Devonian shales show that Eastern Devonian shales contain a larger fraction of aromatic carbon in their chemical composition. Thus, despite their high organic matter contents, their potential as a petroleum source rock is low, because the kerogen in these shales is of a "coaly" nature and hence more prone to producing natural gas.

  9. Eastern Devonian shales: Organic geochemical studies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Berger, I.A.; Hatchner, P.G.; Miknis, F.P.

    The Eastern Devonian shales are represented by a sequence of sediments extending from New York state, south to the northern regions of Georgia and Alabama, and west into Ohio and to the Michigan and Illinois Basins. Correlatives are known in Texas. The shale is regionally known by a number of names: Chattanooga, Dunkirk, Rhinestreet, Huron, Antrim, Ohio, Woodford, etc. These shales, other than those in Texas, have elicited much interest because they have been a source of unassociated natural gas. It is of particular interest, however, that most of these shales have no associated crude oil, in spite of themore » fact that they have some of the characteristics normally attributed to source beds. This paper addresses some of the organic geochemical aspects of the kerogen in these shales, in relation to their oil generating potential. Past organic geochemical studies on Eastern Devonian shales are reviewed. Recent solid state /sup 13/C NMR studies on the nature of the organic matter in Eastern Devonian shales show that Eastern Devonian shales contain a larger fraction of aromatic carbon in their chemical composition. Thus, despite their high organic matter contents, their potential as a petroleum source rock is low, because the kerogen in these shales is of a ''coaly'' nature and hence more prone to producing natural gas.« less

  10. A Model To Estimate Carbon Dioxide Injectivity and Storage Capacity for Geological Sequestration in Shale Gas Wells.

    PubMed

    Edwards, Ryan W J; Celia, Michael A; Bandilla, Karl W; Doster, Florian; Kanno, Cynthia M

    2015-08-04

    Recent studies suggest the possibility of CO2 sequestration in depleted shale gas formations, motivated by large storage capacity estimates in these formations. Questions remain regarding the dynamic response and practicality of injection of large amounts of CO2 into shale gas wells. A two-component (CO2 and CH4) model of gas flow in a shale gas formation including adsorption effects provides the basis to investigate the dynamics of CO2 injection. History-matching of gas production data allows for formation parameter estimation. Application to three shale gas-producing regions shows that CO2 can only be injected at low rates into individual wells and that individual well capacity is relatively small, despite significant capacity variation between shale plays. The estimated total capacity of an average Marcellus Shale well in Pennsylvania is 0.5 million metric tonnes (Mt) of CO2, compared with 0.15 Mt in an average Barnett Shale well. Applying the individual well estimates to the total number of existing and permitted planned wells (as of March, 2015) in each play yields a current estimated capacity of 7200-9600 Mt in the Marcellus Shale in Pennsylvania and 2100-3100 Mt in the Barnett Shale.

  11. Organic geochemistry: Effects of organic components of shales on adsorption: Progress report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ho, P.C.

    1988-11-01

    The Sedimentary Rock Program at the Oak Ridge National Laboratory is investigating shale to determine its potential suitability as a host rock for the disposal of high-level radioactive wastes (HLW). The selected shales are Upper Dowelltown, Pierre, Green River Formation, and two Conasauga (Nolichucky and Pumpkin Valley) Shales, which represent mineralogical and compositional extremes of shales in the United States. According to mineralogical studies, the first three shales contain 5 to 13 wt % of organic matter, and the two Conasauga Shales only contain trace amounts (2 wt %) of organic matter. Soxhlet extraction with chloroform and a mixture ofmore » chloroform and methanol can remove 0.07 to 5.9 wt % of the total organic matter from these shales. Preliminary analysis if these organic extracts reveals the existence of organic carboxylic acids and hydrocarbons in these samples. Adsorption of elements such as Cs(I), Sr(II) and Tc(VII) on the organic-extracted Upper Dowelltown, Pierre, green River Formation and Pumpkin Valley Shales in synthetic groundwaters (simulating groundwaters in the Conasauga Shales) and in 0.03-M NaHCO/sub 3/ solution indicates interaction between each of the three elements and the organic-extractable bitumen. 28 refs., 8 figs., 10 tabs.« less

  12. Detection of cretaceous incised-valley shale for resource play, Miano gas field, SW Pakistan: Spectral decomposition using continuous wavelet transform

    NASA Astrophysics Data System (ADS)

    Naseer, Muhammad Tayyab; Asim, Shazia

    2017-10-01

    Unconventional resource shales can play a critical role in economic growth throughout the world. The hydrocarbon potential of faults/fractured shales is the most significant challenge for unconventional prospect generation. The continuous wavelet transforms (CWT) of spectral decomposition (SD) technology is applied for shale gas prospects on high-resolution 3D seismic data from the Miano area in the Indus platform, SW Pakistan. Schmoker' technique reveals high-quality shales with total organic carbon (TOC) of 9.2% distributed in the western regions. The seismic amplitude, root-mean-square (RMS), and most positive curvature attributes show limited ability to resolve the prospective fractured shale components. The CWT is used to identify the hydrocarbon-bearing faulted/fractured compartments encased within the non-hydrocarbon bearing shale units. The hydrocarbon-bearing shales experience higher amplitudes (4694 dB and 3439 dB) than the non-reservoir shales (3290 dB). Cross plots between sweetness, 22 Hz spectral decomposition, and the seismic amplitudes are found more effective tools than the conventional seismic attribute mapping for discriminating the seal and reservoir elements within the incised-valley petroleum system. Rock physics distinguish the productive sediments from the non-productive sediments, suggesting the potential for future shale play exploration.

  13. Inventory and evaluation of potential oil shale development in Kansas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Angino, E.; Berg, J.; Dellwig, L.

    The University of Kansas Center for Research, Inc. was commissioned by the Kansas Energy Office and the US Department of Energy to conduct a review of certain oil shales in Kansas. The purpose of the study focused on making an inventory and assessing those oil shales in close stratigraphic proximity to coal beds close to the surface and containing significant reserves. The idea was to assess the feasibility of using coal as an economic window to aid in making oil shales economically recoverable. Based on this as a criterion and the work of Runnels, et al., (Runnels, R.T., Kulstead, R.O.,more » McDuffee, C. and Schleicher, J.A., 1952, Oil Shale in Kansas, Kansas Geological Survey Bulletin, No. 96, Part 3.) five eastern Kansas black shale units were selected for study and their areal distribution mapped. The volume of recoverable oil shale in each unit was calculated and translated to reserves. The report concludes that in all probability, extraction of oil shale for shale oil is not feasible at this time due to the cost of extraction, transportation and processing. The report recommends that additional studies be undertaken to provide a more comprehensive and detailed assessment of Kansas oil shales as a potential fuel resource. 49 references, 4 tables.« less

  14. Application of fluid-rock reaction studies to in situ recovery from oil sand deposits, Alberta, Canada - I. Aqueous phase results for an experimental-statistical study of water-bitumen-shale reactions

    NASA Astrophysics Data System (ADS)

    Boon, J. A.; Hitchon, Brian

    1983-02-01

    In situ recovery operations in oil sand deposits effectively represent man-imposed low to intermediate temperature metamorphism of the sediments in the deposit. In order to evaluate some of the reactions which occur, a factorial experiment was earned out in which a shale from the Lower Cretaceous McMurray Formation in the Athabasca oil sand deposit of Alberta, in the presence or absence of bitumen, was subjected to hydrothermal treatment with aqueous fluids of varying pH and salinity, at two different temperatures, for periods up to 92 hours. The aqueous fluid was analyzed and the analytical data subjected to statistical factor analysis and analysis of variance, which enabled identification of the main processes, namely, cation exchange, the production of two types of colloidal material, and the dissolution of quartz There is also saturation of the aqueous phase by. as yet unidentified, "total organic carbon" and complete conversion and removal of all nitrogen in the shale to the aqueous phase. These reactions have implications with regards to the economics of the in situ recovery process, specifically with respect to the reuse and/or disposal of the produced water and the plugging of the pore space and hence of reduction of permeability between the injection and production wells. As a result of these experiments it is suggested that monitoring of the composition of the produced water from in situ recovery operations in oil sand deposits would be advisable.

  15. Shale Gas and Tight Oil: A Panacea for the Energy Woes of America?

    NASA Astrophysics Data System (ADS)

    Hughes, J. D.

    2012-12-01

    Shale gas has been heralded as a "game changer" in the struggle to meet America's demand for energy. The "Pickens Plan" of Texas oil and gas pioneer T.Boone Pickens suggests that gas can replace coal for much of U.S. electricity generation, and oil for, at least, truck transportation1. Industry lobby groups such as ANGA declare "that the dream of clean, abundant, home grown energy is now reality"2. In Canada, politicians in British Columbia are racing to export the virtual bounty of shale gas via LNG to Asia (despite the fact that Canadian gas production is down 16 percent from its 2001 peak). And the EIA has forecast that the U.S. will become a net exporter of gas by 20213. Similarly, recent reports from Citigroup and Harvard suggest that an oil glut is on the horizon thanks in part to the application of fracking technology to formerly inaccessible low permeability tight oil plays. The fundamentals of well costs and declines belie this optimism. Shale gas is expensive gas. In the early days it was declared that "continuous plays" like shale gas were "manufacturing operations", and that geology didn't matter. One could drill a well anywhere, it was suggested, and expect consistent production. Unfortunately, Mother Nature always has the last word, and inevitably the vast expanses of purported potential shale gas resources contracted to "core" areas, where geological conditions were optimal. The cost to produce shale gas ranges from 4.00 per thousand cubic feet (mcf) to 10.00, depending on the play. Natural gas production is a story about declines which now amount to 32% per year in the U.S. So 22 billion cubic feet per day of production now has to be replaced each year to keep overall production flat. At current prices of 2.50/mcf, industry is short about 50 billion per year in cash flow to make this happen4. As a result I expect falling production and rising prices in the near to medium term. Similarly, tight oil plays in North Dakota and Texas have been heralded as a new "Saudi Arabia" of oil. Growth in production has been spectacular, but currently amounts to just one million barrels per day which is less than 15 percent of US oil and other liquids production. Tight oil is offsetting declines in conventional crude oil production as well as contributing to a modest production increase from the 40-year US crude oil production low of 2008. The mantra that natural gas is a "transition fuel" to a low carbon future is false. The environmental costs of shale gas extraction have been documented in legions of anecdotal and scientific reports. Methane and fracture fluid contamination of groundwater, induced seismicity from fracture water injection, industrialized landscapes and air emissions, and the fact that near term emissions from shale gas generation of electricity are worse than coal. Tight oil also comes with environmental costs but has been a saviour in that it at least temporarily arrested a terminal decline in US oil production. A sane energy security strategy for America must focus on radically reducing energy consumption through investments in infrastructure that provides alternatives to our current high energy throughput. Shale gas and tight oil will be an important contributors to future energy requirements, given that other gas and oil sources are declining, but there is no free lunch.

  16. Mineralogical characterization of selected shales in support of nuclear waste repository studies: Progress report, October 1987--September 1988

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, S. Y.; Hyder, L. K.; Baxter, P. M.

    1989-07-01

    One objective of the Sedimentary Rock Program at the Oak Ridge National Laboratory has been to examine end-member shales to develop a data base that will aid in evaluations if shales are ever considered as a repository host rock. Five end-member shales were selected for comprehensive characterization: the Chattanooga Shale from Fentress County, Tennessee; the Pierre Shale from Gregory County, South Dakota; the Green River Formation from Garfield County, Colorado; and the Nolichucky Shale and Pumpkin Valley Shale from Roane County, Tennessee. Detailed micromorphological and mineralogical characterizations of the shales were completed by Lee et al. (1987) in ORNL/TM-10567. Thismore » report is a supplemental characterization study that was necessary because second batches of the shale samples were needed for additional studies. Selected physical, chemical, and mineralogical properties were determined for the second batches; and their properties were compared with the results from the first batches. Physical characterization indicated that the second-batch and first-batch samples had a noticeable difference in apparent-size distributions but had similar primary-particle-size distributions. There were some differences in chemical composition between the batches, but these differences were not considered important in comparison with the differences among the end-member shales. The results of x-ray diffraction analyses showed that the second batches had mineralogical compositions very similar to the first batches. 9 refs., 9 figs., 4 tabs.« less

  17. Formation resistivity as an indicator of oil generation in black shales

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hester, T.C.; Schmoker, J.W.

    1987-08-01

    Black, organic-rich shales of Late Devonian-Early Mississippi age are present in many basins of the North American craton and, where mature, have significant economic importance as hydrocarbon source rocks. Examples drawn from the upper and lower shale members of the Bakken Formation, Williston basin, North Dakota, and the Woodford Shale, Anadarko basin, Oklahoma, demonstrate the utility of formation resistivity as a direct in-situ indicator of oil generation in black shales. With the onset of oil generation, nonconductive hydrocarbons begin to replace conductive pore water, and the resistivity of a given black-shale interval increases from low levels associated with thermal immaturitymore » to values approaching infinity. Crossplots of a thermal-maturity index (R/sub 0/ or TTI) versus formation resistivity define two populations representing immature shales and shales that have generated oil. A resistivity of 35 ohm-m marks the boundary between immature and mature source rocks for each of the three shales studied. Thermal maturity-resistivity crossplots make possible a straightforward determination of thermal maturity at the onset of oil generation, and are sufficiently precise to detect subtle differences in source-rock properties. For example, the threshold of oil generation in the upper Bakken shale occurs at R/sub 0/ = 0.43-0.45% (TTI = 10-12). The threshold increases to R/sub 0/ = 0.48-0.51% (TTI = 20-26) in the lower Bakken shale, and to R/sub 0/ = 0.56-0.57% (TTI = 33-48) in the most resistive Woodford interval.« less

  18. The Devonian Marcellus Shale and Millboro Shale

    USGS Publications Warehouse

    Soeder, Daniel J.; Enomoto, Catherine B.; Chermak, John A.

    2014-01-01

    The recent development of unconventional oil and natural gas resources in the United States builds upon many decades of research, which included resource assessment and the development of well completion and extraction technology. The Eastern Gas Shales Project, funded by the U.S. Department of Energy in the 1980s, investigated the gas potential of organic-rich, Devonian black shales in the Appalachian, Michigan, and Illinois basins. One of these eastern shales is the Middle Devonian Marcellus Shale, which has been extensively developed for natural gas and natural gas liquids since 2007. The Marcellus is one of the basal units in a thick Devonian shale sedimentary sequence in the Appalachian basin. The Marcellus rests on the Onondaga Limestone throughout most of the basin, or on the time-equivalent Needmore Shale in the southeastern parts of the basin. Another basal unit, the Huntersville Chert, underlies the Marcellus in the southern part of the basin. The Devonian section is compressed to the south, and the Marcellus Shale, along with several overlying units, grades into the age-equivalent Millboro Shale in Virginia. The Marcellus-Millboro interval is far from a uniform slab of black rock. This field trip will examine a number of natural and engineered exposures in the vicinity of the West Virginia–Virginia state line, where participants will have the opportunity to view a variety of sedimentary facies within the shale itself, sedimentary structures, tectonic structures, fossils, overlying and underlying formations, volcaniclastic ash beds, and to view a basaltic intrusion.

  19. The flux of radionuclides in flowback fluid from shale gas exploitation.

    PubMed

    Almond, S; Clancy, S A; Davies, R J; Worrall, F

    2014-11-01

    This study considers the flux of radioactivity in flowback fluid from shale gas development in three areas: the Carboniferous, Bowland Shale, UK; the Silurian Shale, Poland; and the Carboniferous Barnett Shale, USA. The radioactive flux from these basins was estimated, given estimates of the number of wells developed or to be developed, the flowback volume per well and the concentration of K (potassium) and Ra (radium) in the flowback water. For comparative purposes, the range of concentration was itself considered within four scenarios for the concentration range of radioactive measured in each shale gas basin, the groundwater of the each shale gas basin, global groundwater and local surface water. The study found that (i) for the Barnett Shale and the Silurian Shale, Poland, the 1 % exceedance flux in flowback water was between seven and eight times that would be expected from local groundwater. However, for the Bowland Shale, UK, the 1 % exceedance flux (the flux that would only be expected to be exceeded 1 % of the time, i.e. a reasonable worst case scenario) in flowback water was 500 times that expected from local groundwater. (ii) In no scenario was the 1 % exceedance exposure greater than 1 mSv-the allowable annual exposure allowed for in the UK. (iii) The radioactive flux of per energy produced was lower for shale gas than for conventional oil and gas production, nuclear power production and electricity generated through burning coal.

  20. When the "Asked for" Becomes the "Not Wanted:" A Grant Funder's Retort to a Foster Care Multiple Case Study

    ERIC Educational Resources Information Center

    Palladino, John M.; Giesler, Mark A.

    2012-01-01

    A significant population of foster care infants and toddlers access early special education services under the parameters of the Individuals with Disabilities Education Act (IDEA)-Part C. A dearth of literature exists about special education interventionists' services for this particular population. In response, we conducted a government-funded…

Top