Han, Xiangxin; Jiang, Xiumin; Cui, Zhigang; Liu, Jianguo; Yan, Junwei
2010-03-15
Shale char, formed in retort furnaces of oil shale, is classified as a dangerous waste containing several toxic compounds. In order to retort oil shale to produce shale oil as well as treat shale char efficiently and in an environmentally friendly way, a novel kind of comprehensive utilization system was developed to use oil shale for shale oil production, electricity generation (shale char fired) and the extensive application of oil shale ash. For exploring the combustion properties of shale char further, in this paper organic matters within shale chars obtained under different retorting conditions were extracted and identified using a gas chromatography-mass spectrometry (GC-MS) method. Subsequently, the effects of retorting factors, including retorting temperature, residence time, particle size and heating rate, were analyzed in detail. As a result, a retorting condition with a retorting temperature of 460-490 degrees C, residence time of <40 min and a middle particle size was recommended for both keeping nitrogenous organic matters and aromatic hydrocarbons in shale char and improving the yield and quality of shale oil. In addition, shale char obtained under such retorting condition can also be treated efficiently using a circulating fluidized bed technology with fractional combustion. (c) 2009 Elsevier B.V. All rights reserved.
Application of petroleum demulsification technology to shale oil emulsions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Robertson, R.E.
1983-01-01
Demulsification, the process of emulsion separation, of water-in-oil shale oil emulsions produced by several methods was accomplished using commercial chemical demulsifiers which are used typically for petroleum demulsification. The shale oil emulsions were produced from Green River shale by one in situ and three different above-ground retorts, an in situ high pressure/high temperature steam process, and by washing both retort-produced and hydrotreated shale oils.
Gregg, David W.
1983-01-01
An apparatus and method for retorting oil shale using solar radiation. Oil shale is introduced into a first retorting chamber having a solar focus zone. There the oil shale is exposed to solar radiation and rapidly brought to a predetermined retorting temperature. Once the shale has reached this temperature, it is removed from the solar focus zone and transferred to a second retorting chamber where it is heated. In a second chamber, the oil shale is maintained at the retorting temperature, without direct exposure to solar radiation, until the retorting is complete.
Method for maximizing shale oil recovery from an underground formation
Sisemore, Clyde J.
1980-01-01
A method for maximizing shale oil recovery from an underground oil shale formation which has previously been processed by in situ retorting such that there is provided in the formation a column of substantially intact oil shale intervening between adjacent spent retorts, which method includes the steps of back filling the spent retorts with an aqueous slurry of spent shale. The slurry is permitted to harden into a cement-like substance which stabilizes the spent retorts. Shale oil is then recovered from the intervening column of intact oil shale by retorting the column in situ, the stabilized spent retorts providing support for the newly developed retorts.
Method for closing a drift between adjacent in situ oil shale retorts
Hines, Alex E.
1984-01-01
A row of horizontally spaced-apart in situ oil shale retorts is formed in a subterranean formation containing oil shale. Each row of retorts is formed by excavating development drifts at different elevations through opposite side boundaries of a plurality of retorts in the row of retorts. Each retort is formed by explosively expanding formation toward one or more voids within the boundaries of the retort site to form a fragmented permeable mass of formation particles containing oil shale in each retort. Following formation of each retort, the retort development drifts on the advancing side of the retort are closed off by covering formation particles within the development drift with a layer of crushed oil shale particles having a particle size smaller than the average particle size of oil shale particles in the adjacent retort. In one embodiment, the crushed oil shale particles are pneumatically loaded into the development drift to pack the particles tightly all the way to the top of the drift and throughout the entire cross section of the drift. The closure between adjacent retorts provided by the finely divided oil shale provides sufficient resistance to gas flow through the development drift to effectively inhibit gas flow through the drift during subsequent retorting operations.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Metzger, W.C.; Klein, D.A.; Redente, E.F.
1986-10-01
Bacterial populations were isolated from the soil-root interface and root-free regions of Agropyron smithii Rydb. and Atriplex canescens (Pursh) Nutt. grown in soil, retorted shale, or soil over shale. Bacteria isolated from retorted shale exhibited a wider range of tolerance to alkalinity and salinity and decreased growth on amino acid substrates compared with bacteria from soil and soil-over-shale environments. Exoenzyme production was only slightly affected by growth medium treatment. Viable bacterial populations were higher in the rhizosphere and rhizoplane of plants grown in retorted shale than in plants grown in soil or soil over shale. In addition, a greater numbermore » of physiological groups of rhizosphere bacteria was observed in retorted shale, compared with soil alone. Two patterns of community similarity were observed in comparisons of bacteria from soil over shale with those from soil and retorted-shale environments. Root-associated populations from soil over shale had a higher proportion of physiological groups in common with those from the soil control than those from the retorted-shale treatment. However, in non-rhizosphere populations, bacterial groups from soil over shale more closely resembled the physiological groups from retorted shale.« less
Methods for minimizing plastic flow of oil shale during in situ retorting
Lewis, Arthur E.; Mallon, Richard G.
1978-01-01
In an in situ oil shale retorting process, plastic flow of hot rubblized oil shale is minimized by injecting carbon dioxide and water into spent shale above the retorting zone. These gases react chemically with the mineral constituents of the spent shale to form a cement-like material which binds the individual shale particles together and bonds the consolidated mass to the wall of the retort. This relieves the weight burden borne by the hot shale below the retorting zone and thereby minimizes plastic flow in the hot shale. At least a portion of the required carbon dioxide and water can be supplied by recycled product gases.
Tuttle, Michele L.W.; Dean, Walter E.; Ackerman, Daniel J.; ,
1985-01-01
An oil-shale mine and experimental retort were operated near Rulison, Colorado by the U. S. Bureau of Mines from 1926 to 1929. Samples from seven drill cores from a retorted oil-shale waste pile were analyzed to determine 1) the chemical and mineral composition of the retorted oil shale and 2) variations in the composition that could be attributed to weathering. Unweathered, freshly-mined samples of oil shale from the Mahogany zone of the Green River Formation and slope wash collected away from the waste pile were also analyzed for comparison. The waste pile is composed of oil shale retorted under either low-temperature (400-500 degree C) or high-temperature (750 degree C) conditions. The results of the analyses show that the spent shale within the waste pile contains higher concentrations of most elements relative to unretorted oil shale.
Method of operating an oil shale kiln
Reeves, Adam A.
1978-05-23
Continuously determining the bulk density of raw and retorted oil shale, the specific gravity of the raw oil shale and the richness of the raw oil shale provides accurate means to control process variables of the retorting of oil shale, predicting oil production, determining mining strategy, and aids in controlling shale placement in the kiln for the retorting.
Research continues on Julia Creek shale oil project
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1986-09-01
CSR Limited and the CSIRO Division of Mineral Engineering in Australia are working jointly on the development of a new retorting process for Julia Creek oil shale. This paper describes the retorting process which integrates a fluid bed combustor with a retort in which heat is transferred from hot shale ash to cold raw shale. The upgrading of shale oil into transport fuels is also described.
In situ oil shale retort with a generally T-shaped vertical cross section
Ricketts, Thomas E.
1981-01-01
An in situ oil shale retort is formed in a subterranean formation containing oil shale. The retort contains a fragmented permeable mass of formation particles containing oil shale and has a production level drift in communication with a lower portion of the fragmented mass for withdrawing liquid and gaseous products of retorting during retorting of oil shale in the fragmented mass. The principal portion of the fragmented mass is spaced vertically above a lower production level portion having a generally T-shaped vertical cross section. The lower portion of the fragmented mass has a horizontal cross sectional area smaller than the horizontal cross sectional area of the upper principal portion of the fragmented mass above the production level.
Preparation of grout for stabilization of abandoned in-situ oil shale retorts
Mallon, Richard G.
1982-01-01
A process for the preparation of grout from burned shale by treating the burned shale in steam at approximately 700.degree. C. to maximize the production of the materials alite and larnite. Oil shale removed to the surface during the preparation of an in-situ retort is first retorted on the surface and then the carbon is burned off, leaving burned shale. The burned shale is treated in steam at approximately 700.degree. C. for about 70 minutes. The treated shale is then ground and mixed with water to produce a grout which is pumped into an abandoned, processed in-situ retort, flowing into the void spaces and then bonding up to form a rigid, solidified mass which prevents surface subsidence and leaching of the spent shale by ground water.
de Goes, Kelly C G P; da Silva, Josué J; Lovato, Gisele M; Iamanaka, Beatriz T; Massi, Fernanda P; Andrade, Diva S
2017-12-01
Fine shale particles and retorted shale are waste products generated during the oil shale retorting process. These by-products are small fragments of mined shale rock, are high in silicon and also contain organic matter, micronutrients, hydrocarbons and other elements. The aims of this study were to isolate and to evaluate fungal diversity present in fine shale particles and retorted shale samples collected at the Schist Industrialization Business Unit (Six)-Petrobras in São Mateus do Sul, State of Paraná, Brazil. Combining morphology and internal transcribed spacer (ITS) sequence, a total of seven fungal genera were identified, including Acidiella, Aspergillus, Cladosporium, Ochroconis, Penicillium, Talaromyces and Trichoderma. Acidiella was the most predominant genus found in the samples of fine shale particles, which are a highly acidic substrate (pH 2.4-3.6), while Talaromyces was the main genus in retorted shale (pH 5.20-6.20). Talaromyces sayulitensis was the species most frequently found in retorted shale, and Acidiella bohemica in fine shale particles. The presence of T. sayulitensis, T. diversus and T. stolli in oil shale is described herein for the first time. In conclusion, we have described for the first time a snapshot of the diversity of filamentous fungi colonizing solid oil shale by-products from the Irati Formation in Brazil.
Preparation of grout for stabilization of abandoned in-situ oil shale retorts. [Patent application
Mallon, R.G.
1979-12-07
A process is described for the preparation of grout from burned shale by treating the burned shale in steam at approximately 700/sup 0/C to maximize the production of the materials alite and larnite. Oil shale removed to the surface during the preparation of an in-situ retort is first retorted on the surface and then the carbon is burned off, leaving burned shale. The burned shale is treated in steam at approximately 700/sup 0/C for about 70 minutes. The treated shale is then ground and mixed with water to produce a grout which is pumped into an abandoned, processed in-situ retort, flowing into the void spaces and then bonding up to form a rigid, solidified mass which prevents surface subsidence and leaching of the spent shale by ground water.
Water mist injection in oil shale retorting
Galloway, T.R.; Lyczkowski, R.W.; Burnham, A.K.
1980-07-30
Water mist is utilized to control the maximum temperature in an oil shale retort during processing. A mist of water droplets is generated and entrained in the combustion supporting gas flowing into the retort in order to distribute the liquid water droplets throughout the retort. The water droplets are vaporized in the retort in order to provide an efficient coolant for temperature control.
Fluid outlet at the bottom of an in situ oil shale retort
Hutchins, Ned M.
1984-01-01
Formation is excavated from within the boundaries of a retort site in formation containing oil shale for forming at least one retort level void extending horizontally across the retort site, leaving at least one remaining zone of unfragmented formation within the retort site. A production level drift is excavated below the retort level void, leaving a lower zone of unfragmented formation between the retort level void and the production level drift. A plurality of raises are formed between the production level drift and the retort level void for providing product withdrawal passages distributed generally uniformly across the horizontal cross section of the retort level void. The product withdrawal passages are backfilled with a permeable mass of particles. Explosive placed within the remaining zone of unfragmented formation above the retort level void is detonated for explosively expanding formation within the retort site toward at least the retort level void for forming a fragmented permeable mass of formation particles containing oil shale within the boundaries of the retort site. During retorting operations products of retorting are conducted from the fragmented mass in the retort through the product withdrawal passages to the production level void. The products are withdrawn from the production level void.
Trace element partitioning during the retorting of Julia Creek oil shale
DOE Office of Scientific and Technical Information (OSTI.GOV)
Patterson, J.H.; Dale, L.S.; Chapman, J.f.
1987-05-01
A bulk sample of oil shale from the Julia Creek deposit in Queensland was retorted under Fischer assay conditions at temperatures ranging from 250 to 550 /sup 0/C. The distributions of the trace elements detected in the shale oil and retort water were determined at each temperature. Oil distillation commenced at 300 /sup 0/C and was essentially complete at 500 /sup 0/C. A number of trace elements were progressively mobilized with increasing retort temperature up to 450 /sup 0/C. The following trace elements partitioned mainly to the oil: vanadium, arsenic, selenium, iron, nickel, titanium, copper, cobalt, and aluminum. Elements thatmore » also partitioned to the retort waters included arsenic, selenium, chlorine, and bromine. Element mobilization is considered to be caused by the volatilization of organometallic compounds, sulfide minerals, and sodium halides present in the oil shale. The results have important implications for shale oil refining and for the disposal of retort waters. 22 references, 5 tables.« less
Apparatus for oil shale retorting
Lewis, Arthur E.; Braun, Robert L.; Mallon, Richard G.; Walton, Otis R.
1986-01-01
A cascading bed retorting process and apparatus in which cold raw crushed shale enters at the middle of a retort column into a mixer stage where it is rapidly mixed with hot recycled shale and thereby heated to pyrolysis temperature. The heated mixture then passes through a pyrolyzer stage where it resides for a sufficient time for complete pyrolysis to occur. The spent shale from the pyrolyzer is recirculated through a burner stage where the residual char is burned to heat the shale which then enters the mixer stage.
Cao, Xiaoyan; Birdwell, Justin E.; Chappell, Mark A.; Li, Yuan; Pignatello, Joseph J.; Mao, Jingdong
2013-01-01
Characterization of oil shale kerogen and organic residues remaining in postpyrolysis spent shale is critical to the understanding of the oil generation process and approaches to dealing with issues related to spent shale. The chemical structure of organic matter in raw oil shale and spent shale samples was examined in this study using advanced solid-state 13C nuclear magnetic resonance (NMR) spectroscopy. Oil shale was collected from Mahogany zone outcrops in the Piceance Basin. Five samples were analyzed: (1) raw oil shale, (2) isolated kerogen, (3) oil shale extracted with chloroform, (4) oil shale retorted in an open system at 500°C to mimic surface retorting, and (5) oil shale retorted in a closed system at 360°C to simulate in-situ retorting. The NMR methods applied included quantitative direct polarization with magic-angle spinning at 13 kHz, cross polarization with total sideband suppression, dipolar dephasing, CHn selection, 13C chemical shift anisotropy filtering, and 1H-13C long-range recoupled dipolar dephasing. The NMR results showed that, relative to the raw oil shale, (1) bitumen extraction and kerogen isolation by demineralization removed some oxygen-containing and alkyl moieties; (2) unpyrolyzed samples had low aromatic condensation; (3) oil shale pyrolysis removed aliphatic moieties, leaving behind residues enriched in aromatic carbon; and (4) oil shale retorted in an open system at 500°C contained larger aromatic clusters and more protonated aromatic moieties than oil shale retorted in a closed system at 360°C, which contained more total aromatic carbon with a wide range of cluster sizes.
Revegetation studies on Tosco II and USBM retorted oil shales
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kilkelly, M.K.; Harbert, H.P.; Berg, W.A.
1981-01-01
In 1973 studies on the revegetation of processed oil shales were initiated. The objectives of these studies were to investigate the vegetative stabilization of processed oil shales and to follow moisture and soluble salt movement in the retorted shale profile. Studies involving TOSCO II and USBM retorted shales were established at both a low-elevation (Anvil Points) and a high-elevation (Piceance Basin). Treatments included leaching and various depths of soil cover. After seven growing seasons a good vegetative cover remains with differences between treatments insignificant, with the exception of the TOSCO retorted shale south-aspect, which consistently supported less perennial vegetative covermore » than other treatments. With time, a shift from perennial grasses to dominance by shrubs was observed, especially on south-aspect slopes. 6 refs.« less
Method for attenuating seismic shock from detonating explosive in an in situ oil shale retort
Studebaker, Irving G.; Hefelfinger, Richard
1980-01-01
In situ oil shale retorts are formed in formation containing oil shale by excavating at least one void in each retort site. Explosive is placed in a remaining portion of unfragmented formation within each retort site adjacent such a void, and such explosive is detonated in a single round for explosively expanding formation within the retort site toward such a void for forming a fragmented permeable mass of formation particles containing oil shale in each retort. This produces a large explosion which generates seismic shock waves traveling outwardly from the blast site through the underground formation. Sensitive equipment which could be damaged by seismic shock traveling to it straight through unfragmented formation is shielded from such an explosion by placing such equipment in the shadow of a fragmented mass in an in situ retort formed prior to the explosion. The fragmented mass attenuates the velocity and magnitude of seismic shock waves traveling toward such sensitive equipment prior to the shock wave reaching the vicinity of such equipment.
Desulfurized gas production from vertical kiln pyrolysis
Harris, Harry A.; Jones, Jr., John B.
1978-05-30
A gas, formed as a product of a pyrolysis of oil shale, is passed through hot, retorted shale (containing at least partially decomposed calcium or magnesium carbonate) to essentially eliminate sulfur contaminants in the gas. Specifically, a single chambered pyrolysis vessel, having a pyrolysis zone and a retorted shale gas into the bottom of the retorted shale zone and cleaned product gas is withdrawn as hot product gas near the top of such zone.
Effect of retorted-oil shale leachate on a blue-green alga (Anabaena flos-aquae)
McKnight, Diane M.; Pereira, Wilfred E.; Rostad, Colleen E.; Stiles, Eric A.
1983-01-01
In the event of the development of the large oil shale reserves of Colorado, Utah, and Wyoming, one of the main environmental concerns will be disposal of retorted-oil shale which will be generated in greater volume than the original volume oI the mined oil shale. Investigators have found that leachates of retorted-oil shale are alkaline and have large concentrations of dissolved solids, molybdenum, boron, and fluoride (STOLLENWERK & RUNNELS 1981). STOLLENWERK & RUNNELS (1981) concluded that drainage from waste shale piles could have deleterious effects on the water quality of streams in northwestern Colorado.
NASA Astrophysics Data System (ADS)
Bader, B. E.
1981-10-01
The principal activities of the Sandia National Laboratories in the Department of Energy Oil shale program during the period April 1 to June 30, 1981 are discussed. Currently, Sandia's activities are focused upon: the development and use of analytical and experimental modeling techniques to describe and predict the retort properties and retorting process parameters that are important to the preparation, operation, and stability of in situ retorts, and the development, deployment, and field use of instrumentation, data acquisition, and process monitoring systems to characterize and evaluate in site up shale oil recovery operations. In-house activities and field activities (at the Geokinetics Oil Shale Project and the Occidental Oil Shale Project) are described under the headings: bed preparation, bed characterization, retorting process, and structural stability.
Developing technologies for synthetic fuels
NASA Astrophysics Data System (ADS)
Sprow, F. B.
1981-05-01
After consideration of a likely timetable for the development of a synthetic fuels industry and its necessary supporting technology, the large variety of such fuels and their potential roles is assessed along with their commercialization outlook. Among the fuel production methods considered are: (1) above-ground retorting of oil shale; (2) in-situ shale retorting; (3) open pit mining of tar sands; (4) in-situ steam stimulation of tar sands; (5) coal gasification; (6) methanol synthesis from carbon monoxide and hydrogen; and (7) direct coal liquefaction by the hydrogenation of coal. It is shown that while the U.S. has very limited resource bases for tar sands and heavy crudes, the abundance of shale in the western states and the abundance and greater geographical dispersion of coal will make these the two most important resources of a future synthetic fuels industry.
Leenheer, J.A.; Noyes, T.I.
1986-01-01
A series of investigations were conducted during a 6-year research project to determine the nature and effects of organic wastes from processing of Green River Formation oil shale on water quality. Fifty percent of the organic compounds in two retort wastewaters were identified as various aromatic amines, mono- and dicarboxylic acids phenols, amides, alcohols, ketones, nitriles, and hydroxypyridines. Spent shales with carbonaceous coatings were found to have good sorbent properties for organic constituents of retort wastewaters. However, soils sampled adjacent to an in situ retort had only fair sorbent properties for organic constituents or retort wastewater, and application of retort wastewater caused disruption of soil structure characteristics and extracted soil organic matter constituents. Microbiological degradation of organic solutes in retort wastewaters was found to occur preferentially in hydrocarbons and fatty acid groups of compounds. Aromatic amines did not degrade and they inhibited bacterial growth where their concentrations were significant. Ammonia, aromatic amines, and thiocyanate persisted in groundwater contaminated by in situ oil shale retorting, but thiosulfate was quantitatively degraded one year after the burn. Thiocyanate was found to be the best conservative tracer for retort water discharged into groundwater. Natural organic solutes, isolated from groundwater in contact with Green River Formation oil shale and from the White River near Rangely, Colorado, were readily distinguished from organic constituents in retort wastewaters by molecular weight and chemical characteristic differences. (USGS)
Process for oil shale retorting using gravity-driven solids flow and solid-solid heat exchange
Lewis, A.E.; Braun, R.L.; Mallon, R.G.; Walton, O.R.
1983-09-21
A cascading bed retorting process and apparatus are disclosed in which cold raw crushed shale enters at the middle of a retort column into a mixer stage where it is rapidly mixed with hot recycled shale and thereby heated to pyrolysis temperature. The heated mixture then passes through a pyrolyzer stage where it resides for a sufficient time for complete pyrolysis to occur. The spent shale from the pyrolyzer is recirculated through a burner stage where the residual char is burned to heat the shale which then enters the mixer stage.
Process for oil shale retorting using gravity-driven solids flow and solid-solid heat exchange
Lewis, Arthur E.; Braun, Robert L.; Mallon, Richard G.; Walton, Otis R.
1986-01-01
A cascading bed retorting process and apparatus in which cold raw crushed shale enters at the middle of a retort column into a mixer stage where it is rapidly mixed with hot recycled shale and thereby heated to pyrolysis temperature. The heated mixture then passes through a pyrolyzer stage where it resides for a sufficient time for complete pyrolysis to occur. The spent shale from the pyrolyzer is recirculated through a burner stage where the residual char is burned to heat the shale which then enters the mixer stage.
In-situ laser retorting of oil shale
NASA Technical Reports Server (NTRS)
Bloomfield, H. S. (Inventor)
1977-01-01
Oil shale formations are retorted in situ and gaseous hydrocarbon products are recovered by drilling two or more wells into an oil shale formation underneath the surface of the ground. A high energy laser beam is directed into the well and fractures the region of the shale formation. A compressed gas is forced into the well that supports combustion in the flame front ignited by the laser beam, thereby retorting the oil shale. Gaseous hydrocarbon products which permeate through the fractured region are recovered from one of the wells that were not exposed to the laser system.
Method for rubblizing an oil shale deposit for in situ retorting
Lewis, Arthur E.
1977-01-01
A method for rubblizing an oil shale deposit that has been formed in alternate horizontal layers of rich and lean shale, including the steps of driving a horizontal tunnel along the lower edge of a rich shale layer of the deposit, sublevel caving by fan drilling and blasting of both rich and lean overlying shale layers at the distal end of the tunnel to rubblize the layers, removing a substantial amount of the accessible rubblized rich shale to permit the overlying rubblized lean shale to drop to tunnel floor level to form a column of lean shale, performing additional sublevel caving of rich and lean shale towards the proximate end of the tunnel, removal of a substantial amount of the additionally rubblized rich shale to allow the overlying rubblized lean shale to drop to tunnel floor level to form another column of rubblized lean shale, similarly performing additional steps of sublevel caving and removal of rich rubble to form additional columns of lean shale rubble in the rich shale rubble in the tunnel, and driving additional horizontal tunnels in the deposit and similarly rubblizing the overlying layers of rich and lean shale and forming columns of rubblized lean shale in the rich, thereby forming an in situ oil shale retort having zones of lean shale that remain permeable to hot retorting fluids in the presence of high rubble pile pressures and high retorting temperatures.
Environmental research on a modified in situ oil shale task process. Progress report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1980-05-01
This report summarizes the progress of the US Department of Energy's Oil Shale Task Force in its research program at the Occidental Oil Shale, Inc. facility at Logan Wash, Colorado. More specifically, the Task Force obtained samples from Retort 3E and Retort 6 and submitted these samples to a variety of analyses. The samples collected included: crude oil (Retort 6); light oil (Retort 6); product water (Retort 6); boiler blowdown (Retort 6); makeup water (Retort 6); mine sump water; groundwater; water from Retorts 1 through 5; retort gas (Retort 6); mine air; mine dust; and spent shale core (Retort 3E).more » The locations of the sampling points and methods used for collection and storage are discussed in Chapter 2 (Characterization). These samples were then distributed to the various laboratories and universities participating in the Task Force. For convenience in organizing the data, it is useful to group the work into three categories: Characterization, Leaching, and Health Effects. While many samples still have not been analyzed and much of the data remains to be interpreted, there are some preliminary conclusions the Task Force feels will be helpful in defining future needs and establishing priorities. It is important to note that drilling agents other than water were used in the recovery of the core from Retort 3E. These agents have been analyzed (see Table 12 in Chapter 2) for several constituents of interest. As a result some of the analyses of this core sample and leachates must be considered tentative.« less
Process for oil shale retorting
Jones, John B.; Kunchal, S. Kumar
1981-10-27
Particulate oil shale is subjected to a pyrolysis with a hot, non-oxygenous gas in a pyrolysis vessel, with the products of the pyrolysis of the shale contained kerogen being withdrawn as an entrained mist of shale oil droplets in a gas for a separation of the liquid from the gas. Hot retorted shale withdrawn from the pyrolysis vessel is treated in a separate container with an oxygenous gas so as to provide combustion of residual carbon retained on the shale, producing a high temperature gas for the production of some steam and for heating the non-oxygenous gas used in the oil shale retorting process in the first vessel. The net energy recovery includes essentially complete recovery of the organic hydrocarbon material in the oil shale as a liquid shale oil, a high BTU gas, and high temperature steam.
Field studies were initiated in 1973 to investigate the vegetative stabilization of processed oil shales and to follow moisture and soluble salt movement within the soil/shale profile. Research plots with two types of retorted shales (TOSCO II and USBM) with leaching and soil cov...
Determining the locus of a processing zone in an in situ oil shale retort by sound monitoring
Elkington, W. Brice
1978-01-01
The locus of a processing zone advancing through a fragmented permeable mass of particles in an in situ oil shale retort in a subterranean formation containing oil shale is determined by monitoring for sound produced in the retort, preferably by monitoring for sound at at least two locations in a plane substantially normal to the direction of advancement of the processing zone. Monitoring can be effected by placing a sound transducer in a well extending through the formation adjacent the retort and/or in the fragmented mass such as in a well extending into the fragmented mass.
Characterization of in situ oil shale retorts prior to ignition
Turner, Thomas F.; Moore, Dennis F.
1984-01-01
Method and system for characterizing a vertical modified in situ oil shale retort prior to ignition of the retort. The retort is formed by mining a void at the bottom of a proposed retort in an oil shale deposit. The deposit is then sequentially blasted into the void to form a plurality of layers of rubble. A plurality of units each including a tracer gas cannister are installed at the upper level of each rubble layer prior to blasting to form the next layer. Each of the units includes a receiver that is responsive to a coded electromagnetic (EM) signal to release gas from the associated cannister into the rubble. Coded EM signals are transmitted to the receivers to selectively release gas from the cannisters. The released gas flows through the retort to an outlet line connected to the floor of the retort. The time of arrival of the gas at a detector unit in the outlet line relative to the time of release of gas from the cannisters is monitored. This information enables the retort to be characterized prior to ignition.
System for utilizing oil shale fines
Harak, Arnold E.
1982-01-01
A system is provided for utilizing fines of carbonaceous materials such as particles or pieces of oil shale of about one-half inch or less diameter which are rejected for use in some conventional or prior surface retorting process, which obtains maximum utilization of the energy content of the fines and which produces a waste which is relatively inert and of a size to facilitate disposal. The system includes a cyclone retort (20) which pyrolyzes the fines in the presence of heated gaseous combustion products, the cyclone retort having a first outlet (30) through which vapors can exit that can be cooled to provide oil, and having a second outlet (32) through which spent shale fines are removed. A burner (36) connected to the spent shale outlet of the cyclone retort, burns the spent shale with air, to provide hot combustion products (24) that are carried back to the cyclone retort to supply gaseous combustion products utilized therein. The burner heats the spent shale to a temperature which forms a molten slag, and the molten slag is removed from the burner into a quencher (48) that suddenly cools the molten slag to form granules that are relatively inert and of a size that is convenient to handle for disposal in the ground or in industrial processes.
Combuston method of oil shale retorting
Jones, Jr., John B.; Reeves, Adam A.
1977-08-16
A gravity flow, vertical bed of crushed oil shale having a two level injection of air and a three level injection of non-oxygenous gas and an internal combustion of at least residual carbon on the retorted shale. The injection of air and gas is carefully controlled in relation to the mass flow rate of the shale to control the temperature of pyrolysis zone, producing a maximum conversion of the organic content of the shale to a liquid shale oil. The parameters of the operation provides an economical and highly efficient shale oil production.
Process concept of retorting of Julia Creek oil shale
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sitnai, O.
1984-06-01
A process is proposed for the above ground retorting of the Julia Creek oil shale in Queensland. The oil shale characteristics, process description, chemical reactions of the oil shale components, and the effects of variable and operating conditions on process performance are discussed. The process contains a fluidized bed combustor which performs both as a combustor of the spent shales and as a heat carrier generator for the pyrolysis step. 12 references, 5 figures, 5 tables.
Oil shale retorting and combustion system
Pitrolo, Augustine A.; Mei, Joseph S.; Shang, Jerry Y.
1983-01-01
The present invention is directed to the extraction of energy values from l shale containing considerable concentrations of calcium carbonate in an efficient manner. The volatiles are separated from the oil shale in a retorting zone of a fluidized bed where the temperature and the concentration of oxygen are maintained at sufficiently low levels so that the volatiles are extracted from the oil shale with minimal combustion of the volatiles and with minimal calcination of the calcium carbonate. These gaseous volatiles and the calcium carbonate flow from the retorting zone into a freeboard combustion zone where the volatiles are burned in the presence of excess air. In this zone the calcination of the calcium carbonate occurs but at the expense of less BTU's than would be required by the calcination reaction in the event both the retorting and combustion steps took place simultaneously. The heat values in the products of combustion are satisfactorily recovered in a suitable heat exchange system.
Method for forming an in situ oil shale retort with horizontal free faces
Ricketts, Thomas E.; Fernandes, Robert J.
1983-01-01
A method for forming a fragmented permeable mass of formation particles in an in situ oil shale retort is provided. A horizontally extending void is excavated in unfragmented formation containing oil shale and a zone of unfragmented formation is left adjacent the void. An array of explosive charges is formed in the zone of unfragmented formation. The array of explosive charges comprises rows of central explosive charges surrounded by a band of outer explosive charges which are adjacent side boundaries of the retort being formed. The powder factor of each outer explosive charge is made about equal to the powder factor of each central explosive charge. The explosive charges are detonated for explosively expanding the zone of unfragmented formation toward the void for forming the fragmented permeable mass of formation particles having a reasonably uniformly distributed void fraction in the in situ oil shale retort.
Combined fluidized bed retort and combustor
Shang, Jer-Yu; Notestein, John E.; Mei, Joseph S.; Zeng, Li-Wen
1984-01-01
The present invention is directed to a combined fluidized bed retorting and combustion system particularly useful for extracting energy values from oil shale. The oil-shale retort and combustor are disposed side-by-side and in registry with one another through passageways in a partition therebetween. The passageways in the partition are submerged below the top of the respective fluid beds to preclude admixing or the product gases from the two chambers. The solid oil shale or bed material is transported through the chambers by inclining or slanting the fluidizing medium distributor so that the solid bed material, when fluidized, moves in the direction of the downward slope of the distributor.
Determination of polar organic solutes in oil-shale retort water
Leenheer, J.A.; Noyes, T.I.; Stuber, H.A.
1982-01-01
A variety of analytical methods were used to quantitatively determine polar organic solutes in process retort water and a gas-condensate retort water produced in a modified in situ oil-shale retort. Specific compounds accounting for 50% of the dissolved organic carbon were identified in both retort waters. In the process water, 42% of the dissolved organic carbon consisted of a homologous series of fatty acids from C2 to C10. Dissolved organic carbon percentages for other identified compound classes were as follows: aliphatic dicarboxylic acids, 1.4%; phenols, 2.2%; hydroxypyridines, 1.1%; aliphatic amides, 1.2%. In the gas-condensate retort water, aromatic amines were most abundant at 19.3% of the dissolved organic carbon, followed by phenols (17.8%), nitriles (4.3%), aliphatic alcohols (3.5%), aliphatic ketones (2.4%), and lactones (1.3%). Steam-volatile organic solutes were enriched in the gas-condensate retort water, whereas nonvolatile acids and polyfunctional neutral compounds were predominant organic constituents of the process retort water.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Garland, T. R.; Wildung, R. E.; Harbert, H. P.
1979-04-01
Major cations, anions, trace elements and dissolved organic C were measured in percolate from retorted oil shale collected from irrigated lysimeters in the field at Anvil Points, Colorado, over a two year period. The investigations indicated that chemical equilibrium was not established over the monitoring period and major changes occurred in percolate composition as a function of applied water volume and water residence time in the shale. Field and laboratory studies indicated that several factors contributed to changes in the chemistry of the shale on weathering, including recarbonization of the surface horizons with atmospheric CO/sub 2/ and the activities ofmore » microorganisms in surface and subsurface horizons. However, the principal mechanism responsible for the decreases in pH and salt concentrations appeared to be the conversion of major quantities of sulfide in the retorted shale to sulfate through a thiosulfate intermediate.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kilkelly, M.K.; Berg, W.A.; Harbert, H.P. III
1981-08-01
Field studies were initiated in 1973 to investigate the vegetative stabilization of processed oil shales and to follow moisture and soluble salt movement within the soil/shale profile. Research plots with two types of retorted shales (TOSCO II and USBM) with leaching and soil cover treatments were established at two locations: low-elevation (Anvil Points) and high-elevation (Piceance Basin) in western Colorado. Vegetation was established by intensive management including leaching, N and P fertilization, seeding, mulching, and irrigation. After seven growing seasons, a good vegetative cover remained with few differences between treatments, with the exception of the TOSCO retorted shale, south-aspect, whichmore » consistently supported less perennial vegetative cover than other treatments. With time, a shift from perennial grasses to dominance by shrubs was observed. Rodent activity on some treatments had a significantly negative effect on vegetative cover.« less
Gas seal for an in situ oil shale retort and method of forming thermal barrier
Burton, III, Robert S.
1982-01-01
A gas seal is provided in an access drift excavated in a subterranean formation containing oil shale. The access drift is adjacent an in situ oil shale retort and is in gas communication with the fragmented permeable mass of formation particles containing oil shale formed in the in situ oil shale retort. The mass of formation particles extends into the access drift, forming a rubble pile of formation particles having a face approximately at the angle of repose of fragmented formation. The gas seal includes a temperature barrier which includes a layer of heat insulating material disposed on the face of the rubble pile of formation particles and additionally includes a gas barrier. The gas barrier is a gas-tight bulkhead installed across the access drift at a location in the access drift spaced apart from the temperature barrier.
Geotechnical Properties of Oil Shale Retorted by the PARAHO and TOSCO Processes.
1979-11-01
literature search was restricted to the Green River formation of oil shale in the tri-state area of Colorado (Piceance Basin ), Utah ( Uinta Basin ), and...it is preheated by combustion gases as it travels downward by gravity. Air and recycling gas are injected at midheight and are burned, bringing the oil ...REFERENCES..................................38 TABLES 1-5 APPENDIX A: OIL SHALE RETORTING PROCESSES................Al Tosco Process Gas Combustion
Shale-oil-recovery systems incorporating ore beneficiation. Final report.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Weiss, M.A.; Klumpar, I.V.; Peterson, C.R.
This study analyzed the recovery of oil from oil shale by use of proposed systems which incorporate beneficiation of the shale ore (that is concentration of the kerogen before the oil-recovery step). The objective was to identify systems which could be more attractive than conventional surface retorting of ore. No experimental work was carried out. The systems analyzed consisted of beneficiation methods which could increase kerogen concentrations by at least four-fold. Potentially attractive low-enrichment methods such as density separation were not examined. The technical alternatives considered were bounded by the secondary crusher as input and raw shale oil as output.more » A sequence of ball milling, froth flotation, and retorting concentrate is not attractive for Western shales compared to conventional ore retorting; transporting the concentrate to another location for retorting reduces air emissions in the ore region but cost reduction is questionable. The high capital and energy cost s results largely from the ball milling step which is very inefficient. Major improvements in comminution seem achievable through research and such improvements, plus confirmation of other assumptions, could make high-enrichment beneficiation competitive with conventional processing. 27 figures, 23 tables.« less
Analysis of the effectiveness of steam retorting of oil shale
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jacobs, H.R.; Pensel, R.W.; Udell, K.S.
A numerical model is developed to describe the retorting of oil shale using superheated steam. The model describes not only the temperature history of the shale but predicts the evolution of shale oil from kerogen decomposition and the breakdown of the carbonates existing in the shale matrix. The heat transfer coefficients between the water and the shale are determined from experiments utilizing the model to reduce the data. Similarly the model is used with thermogravimetric analysis experiments to develop an improved kinetics expression for kerogen decomposition in a steam environment. Numerical results are presented which indicate the effect of oilmore » shale particle size and steam temperature on oil production.« less
Self-cementing properties of oil shale solid heat carrier retorting residue.
Talviste, Peeter; Sedman, Annette; Mõtlep, Riho; Kirsimäe, Kalle
2013-06-01
Oil shale-type organic-rich sedimentary rocks can be pyrolysed to produce shale oil. The pyrolysis of oil shale using solid heat carrier (SHC) technology is accompanied by large amount of environmentally hazardous solid residue-black ash-which needs to be properly landfilled. Usage of oil shale is growing worldwide, and the employment of large SHC retorts increases the amount of black ash type of waste, but little is known about its physical and chemical properties. The objectives of this research were to study the composition and self-cementing properties of black ash by simulating different disposal strategies in order to find the most appropriate landfilling method. Three disposal methods were simulated in laboratory experiment: hydraulic disposal with and without grain size separation, and dry dumping of moist residue. Black ash exhibited good self-cementing properties with maximum compressive strength values of >6 MPa after 90 days. About 80% of strength was gained in 30 days. However, the coarse fraction (>125 µm) did not exhibit any cementation, thus the hydraulic disposal with grain size separation should be avoided. The study showed that self-cementing properties of black ash are governed by the hydration of secondary calcium silicates (e.g. belite), calcite and hydrocalumite.
Hydrologic-information needs for oil-shale development, northwestern Colorado
Taylor, O.J.
1982-01-01
Hydrologic information is not adequate for proper development of the large oil-shale reserves of Piceance basin in northwestern Colorado. Exploratory drilling and aquifer testing are needed to define the hydrologic system, to provide wells for aquifer testing, to design mine-drainage techniques, and to explore for additional water supplies. Sampling networks are needed to supply hydrologic data on the quantity and quality of surface water, ground water, and springs. A detailed sampling network is proposed for the White River basin because of expected impacts related to water supplies and waste disposal. Emissions from oil-shale retorts to the atmosphere need additional study because of possible resulting corrosion problems and the destruction of fisheries. Studies of the leachate materials and the stability of disposed retorted shale piles are needed to insure that these materials will not cause problems. Hazards related to in-situ retorts, and the wastes related to oil-shale development in general also need further investigation. (USGS)
Oil shale combustor model developed by Greek researchers
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1986-09-01
Work carried out in the Department of Chemical Engineering at the University of Thessaloniki, Thessaloniki, Greece has resulted in a model for the combustion of retorted oil shale in a fluidized bed combustor. The model is generally applicable to any hot-solids retorting process, whereby raw oil shale is retorted by mixing with a hot solids stream (usually combusted spent shale), and then the residual carbon is burned off the spent shale in a fluidized bed. Based on their modelling work, the following conclusions were drawn by the researchers. (1) For the retorted particle size distribution selected (average particle diameter 1600more » microns) complete carbon conversion is feasible at high pressures (2.7 atmosphere) and over the entire temperature range studied (894 to 978 K). (2) Bubble size was found to have an important effect, especially at conditions where reaction rates are high (high temperature and pressure). (3) Carbonate decomposition increases with combustor temperature and residence time. Complete carbon conversion is feasible at high pressures (2.7 atmosphere) with less than 20 percent carbonate decomposition. (4) At the preferred combustor operating conditions (high pressure, low temperature) the main reaction is dolomite decomposition while calcite decomposition is negligible. (5) Recombination of CO/sub 2/ with MgO occurs at low temperatures, high pressures, and long particle residence times.« less
Reeves, Adam A.; Mast, Earl L.; Greaves, Melvin J.
1990-01-01
A retorting apparatus including a vertical kiln and a plurality of tubes for delivering rock to the top of the kiln and removal of processed rock from the bottom of the kiln so that the rock descends through the kiln as a moving bed. Distributors are provided for delivering gas to the kiln to effect heating of the rock and to disturb the rock particles during their descent. The distributors are constructed and disposed to deliver gas uniformly to the kiln and to withstand and overcome adverse conditions resulting from heat and from the descending rock. The rock delivery tubes are geometrically sized, spaced and positioned so as to deliver the shale uniformly into the kiln and form symmetrically disposed generally vertical paths, or "rock chimneys", through the descending shale which offer least resistance to upward flow of gas. When retorting oil shale, a delineated collection chamber near the top of the kiln collects gas and entrained oil mist rising through the kiln.
Johnson, Ronald C.; Mercier, Tracey J.; Brownfield, Michael E.
2014-01-01
The spatial and stratigraphic distribution of water in oil shale of the Eocene Green River Formation in the Piceance Basin of northwestern Colorado was studied in detail using some 321,000 Fischer assay analyses in the U.S. Geological Survey oil-shale database. The oil-shale section was subdivided into 17 roughly time-stratigraphic intervals, and the distribution of water in each interval was assessed separately. This study was conducted in part to determine whether water produced during retorting of oil shale could provide a significant amount of the water needed for an oil-shale industry. Recent estimates of water requirements vary from 1 to 10 barrels of water per barrel of oil produced, depending on the type of retort process used. Sources of water in Green River oil shale include (1) free water within clay minerals; (2) water from the hydrated minerals nahcolite (NaHCO3), dawsonite (NaAl(OH)2CO3), and analcime (NaAlSi2O6.H20); and (3) minor water produced from the breakdown of organic matter in oil shale during retorting. The amounts represented by each of these sources vary both stratigraphically and areally within the basin. Clay is the most important source of water in the lower part of the oil-shale interval and in many basin-margin areas. Nahcolite and dawsonite are the dominant sources of water in the oil-shale and saline-mineral depocenter, and analcime is important in the upper part of the formation. Organic matter does not appear to be a major source of water. The ratio of water to oil generated with retorting is significantly less than 1:1 for most areas of the basin and for most stratigraphic intervals; thus water within oil shale can provide only a fraction of the water needed for an oil-shale industry.
Johnson, Ronald C.; Mercier, Tracey J.; Brownfield, Michael E.
2014-01-01
The spatial and stratigraphic distribution of water in oil shale of the Eocene Green River Formation in the Piceance Basin of northwestern Colorado was studied in detail using some 321,000 Fischer assay analyses in the U.S. Geological Survey oil-shale database. The oil-shale section was subdivided into 17 roughly time-stratigraphic intervals, and the distribution of water in each interval was assessed separately. This study was conducted in part to determine whether water produced during retorting of oil shale could provide a significant amount of the water needed for an oil-shale industry. Recent estimates of water requirements vary from 1 to 10 barrels of water per barrel of oil produced, depending on the type of retort process used. Sources of water in Green River oil shale include (1) free water within clay minerals; (2) water from the hydrated minerals nahcolite (NaHCO3), dawsonite (NaAl(OH)2CO3), and analcime (NaAlSi2O6.H20); and (3) minor water produced from the breakdown of organic matter in oil shale during retorting. The amounts represented by each of these sources vary both stratigraphically and areally within the basin. Clay is the most important source of water in the lower part of the oil-shale interval and in many basin-margin areas. Nahcolite and dawsonite are the dominant sources of water in the oil-shale and saline-mineral depocenter, and analcime is important in the upper part of the formation. Organic matter does not appear to be a major source of water. The ratio of water to oil generated with retorting is significantly less than 1:1 for most areas of the basin and for most stratigraphic intervals; thus water within oil shale can provide only a fraction of the water needed for an oil-shale industry.
Withdrawal of gases and liquids from an in situ oil shale retort
Siegel, Martin M.
1982-01-01
An in situ oil shale retort is formed within a subterranean formation containing oil shale. The retort contains a fragmented permeable mass of formation particles containing oil shale. A production level drift extends below the fragmented mass, leaving a lower sill pillar of unfragmented formation between the production level drift and the fragmented mass. During retorting operations, liquid and gaseous products are recovered from a lower portion of the fragmented mass. A liquid outlet line extends from a lower portion of the fragmented mass through the lower sill pillar for conducting liquid products to a sump in the production level drift. Gaseous products are withdrawn from the fragmented mass through a plurality of gas outlet lines distributed across a horizontal cross-section of a lower portion of the fragmented mass. The gas outlet lines extend from the fragmented mass through the lower sill pillar and into the production level drift. The gas outlet lines are connected to a gas withdrawal manifold in the production level drift, and gaseous products are withdrawn from the manifold separately from withdrawal of liquid products from the sump in the production level drift.
Method for explosive expansion toward horizontal free faces for forming an in situ oil shale retort
Ricketts, Thomas E.
1980-01-01
Formation is excavated from within a retort site in formation containing oil shale for forming a plurality of vertically spaced apart voids extending horizontally across different levels of the retort site, leaving a separate zone of unfragmented formation between each pair of adjacent voids. Explosive is placed in each zone, and such explosive is detonated in a single round for forming an in situ retort containing a fragmented permeable mass of formation particles containing oil shale. The same amount of formation is explosively expanded upwardly and downwardly toward each void. A horizontal void excavated at a production level has a smaller horizontal cross-sectional area than a void excavated at a lower level of the retort site immediately above the production level void. Explosive in a first group of vertical blast holes is detonated for explosively expanding formation downwardly toward the lower void, and explosive in a second group of vertical blast holes is detonated in the same round for explosively expanding formation upwardly toward the lower void and downwardly toward the production level void for forming a generally T-shaped bottom of the fragmented mass.
Zerga, Daniel P.
1980-01-01
A process of producing within a subterranean oil shale deposit a retort chamber containing permeable fragmented material wherein a series of explosive charges are emplaced in the deposit in a particular configuration comprising an initiating round which functions to produce an upward flexure of the overburden and to initiate fragmentation of the oil shale within the area of the retort chamber to be formed, the initiating round being followed in a predetermined time sequence by retreating lines of emplaced charges developing further fragmentation within the retort zone and continued lateral upward flexure of the overburden. The initiating round is characterized by a plurality of 5-spot patterns and the retreating lines of charges are positioned and fired along zigzag lines generally forming retreating rows of W's. Particular time delays in the firing of successive charges are disclosed.
43 CFR 3935.10 - Accounting records.
Code of Federal Regulations, 2012 CFR
2012-10-01
... processing plant and retort; (3) Mineral products produced and sold; (4) Shale oil products, shale gas, and... mined or processed and of all products including synthetic petroleum, shale oil, shale gas, and shale..., DEPARTMENT OF THE INTERIOR MINERALS MANAGEMENT (3000) MANAGEMENT OF OIL SHALE EXPLORATION AND LEASES...
43 CFR 3935.10 - Accounting records.
Code of Federal Regulations, 2014 CFR
2014-10-01
... processing plant and retort; (3) Mineral products produced and sold; (4) Shale oil products, shale gas, and... mined or processed and of all products including synthetic petroleum, shale oil, shale gas, and shale..., DEPARTMENT OF THE INTERIOR MINERALS MANAGEMENT (3000) MANAGEMENT OF OIL SHALE EXPLORATION AND LEASES...
43 CFR 3935.10 - Accounting records.
Code of Federal Regulations, 2013 CFR
2013-10-01
... processing plant and retort; (3) Mineral products produced and sold; (4) Shale oil products, shale gas, and... mined or processed and of all products including synthetic petroleum, shale oil, shale gas, and shale..., DEPARTMENT OF THE INTERIOR MINERALS MANAGEMENT (3000) MANAGEMENT OF OIL SHALE EXPLORATION AND LEASES...
Solar heated oil shale pyrolysis process
NASA Technical Reports Server (NTRS)
Qader, S. A. (Inventor)
1985-01-01
An improved system for recovery of a liquid hydrocarbon fuel from oil shale is presented. The oil shale pyrolysis system is composed of a retort reactor for receiving a bed of oil shale particules which are heated to pyrolyis temperature by means of a recycled solar heated gas stream. The gas stream is separated from the recovered shale oil and a portion of the gas stream is rapidly heated to pyrolysis temperature by passing it through an efficient solar heater. Steam, oxygen, air or other oxidizing gases can be injected into the recycle gas before or after the recycle gas is heated to pyrolysis temperature and thus raise the temperature before it enters the retort reactor. The use of solar thermal heat to preheat the recycle gas and optionally the steam before introducing it into the bed of shale, increases the yield of shale oil.
43 CFR 3935.10 - Accounting records.
Code of Federal Regulations, 2011 CFR
2011-10-01
... processing plant and retort; (3) Mineral products produced and sold; (4) Shale oil products, shale gas, and... mined or processed and of all products including synthetic petroleum, shale oil, shale gas, and shale..., DEPARTMENT OF THE INTERIOR RANGE MANAGEMENT (4000) MANAGEMENT OF OIL SHALE EXPLORATION AND LEASES Production...
Marketable transport fuels made from Julia Creek shale oil
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1987-03-01
CSR Limited and the CSIRO Division of Energy Chemistry have been working on the problem of producing refined products from the Julia Creek deposit in Queensland, Australia. Two samples of shale oil, retorted at different temperatures from Julia Creek oil shale, were found to differ markedly in aromaticity. Using conventional hydrotreating technology, high quality jet and diesel fuels could be made from the less aromatic oil. Naphtha suitable for isomerization and reforming to gasoline could be produced from both oils. This paper discusses oil properties, stabilization of topped crudes, second stage hydrotreatment, and naphtha hydrotreating. 1 figure, 4 tables.
Method of design for vertical oil shale retorting vessels and retorting therewith
Reeves, Adam A.
1978-01-03
A method of designing the gas flow parameters of a vertical shaft oil shale retorting vessel involves determining the proportion of gas introduced in the bottom of the vessel and into intermediate levels in the vessel to provide for lateral distribution of gas across the vessel cross section, providing mixing with the uprising gas, and determining the limiting velocity of the gas through each nozzle. The total quantity of gas necessary for oil shale treatment in the vessel may be determined and the proportion to be injected into each level is then determined based on the velocity relation of the orifice velocity and its feeder manifold gas velocity. A limitation is placed on the velocity of gas issuing from an orifice by the nature of the solid being treated, usually physical tests of gas velocity impinging the solid.
Explosively produced fracture of oil shale
NASA Astrophysics Data System (ADS)
Morris, W. A.
1982-05-01
Rock fragmentation research in oil shale to develop the blasting technologies and designs required to prepare a rubble bed for a modified in situ retort is reported. Experimental work is outlined, proposed studies in explosive characterization are detailed and progress in numerical calculation techniques to predict fracture of the shale is described. A detailed geologic characterization of two Anvil Points experiment sites is related to previous work at Colony Mine. The second section focuses on computer modeling and theory. The latest generation of the stress wave code SHALE, its three dimensional potential, and the slide line package for it are described. A general stress rate equation that takes energy dependence into account is discussed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
McDermott, William F.
1979-12-01
The major activities at OOSI's Logan Wash site during the quarter were: driving the access drifts towards the underground locations for Retorts 7 and 8; manway raise boring; constructing the change house; rubbling the first lift of Mini-Retort (MR)1; preparing the Mini-Retorts for tracer testing; coring of Retort 3E; and beginning the DOE instrumentation program.
Israeli co-retorting of coal and oil shale would break even at 22/barrel
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
Work is being carried out at the Hebrew University of Jerusalem on co-retorting of coal and oil shale. The work is funded under a cooperative agreement with the US Department of Energy. The project is exploring the conversion of US eastern high-sulfur bituminous coal in a split-stage, fluidized-bed reactor. Pyrolysis occurs in the first stage and char combustion in the second stage. These data for coal will be compared with similar data from the same reactor fueled by high-sulfur eastern US oil shale and Israeli oil shales. The project includes research at three major levels: pyrolysis in lab-scale fluidized-bed reactor;more » retorting in split-stage, fluidized-bed bench-scale process (1/4 tpd); and scale-up, preparation of full-size flowchart, and economic evaluation. In the past year's research, a preliminary economic evaluation was completed for a scaled-up process using a feed of high-sulfur coal and carbonate-containing Israeli oil shale. A full-scale plant in Israel was estimated to break even at an equivalent crude oil price of $150/ton ($22/barrel).« less
Ignition technique for an in situ oil shale retort
Cha, Chang Y.
1983-01-01
A generally flat combustion zone is formed across the entire horizontal cross-section of a fragmented permeable mass of formation particles formed in an in situ oil shale retort. The flat combustion zone is formed by either sequentially igniting regions of the surface of the fragmented permeable mass at successively lower elevations or by igniting the entire surface of the fragmented permeable mass and controlling the rate of advance of various portions of the combustion zone.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1981-01-01
The major activities at OOSI's Logan Wash site during the quarter were: mining the voids at all levels for Retorts 7 and 8; blasthole drilling; tracer testing MR4; conducting the start-up and burner tests on MR3; continuing the surface facility construction; and conducting Retorts 7 and 8 related Rock Fragmentation tests. Environmental monitoring continued during the quarter, and the data and analyses are discussed. Sandia National Laboratory and Laramie Energy Technology Center (LETC) personnel were active in the DOE support of the MR3 burner and start-up tests. In the last section of this report the final oil inventory for Retortmore » 6 production is detailed. The total oil produced by Retort 6 was 55,696 barrels.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Heistand, R.N.; Atwood, R.A.; Richardson, K.L.
1980-06-01
From 1973 to 1978, Development Engineering, Inc. (DEI), a subsidiary of Paraho Development Corporation, demostrated the Paraho technology for surface oil shale retorting at Anvil Points, Colorado. A considerable amount of environmentally-related research was also conducted. This body of data represents the most comprehensive environmental data base relating to surface retorting that is currently available. In order to make this information available, the DOE Office of Environment has undertaken to compile, assemble, and publish this environmental data. The compilation has been prepared by DEI. This report includes the process characterization, air quality, and water quality categories.
CONTROL OF SULFUR EMISSIONS FROM OIL SHALE RETORTING USING SPEND SHALE ABSORPTION
The paper gives results of a detailed engineering evaluation of the potential for using an absorption on spent shale process (ASSP) for controlling sulfur emissions from oil shale plants. The evaluation analyzes the potential effectiveness and cost of absorbing SO2 on combusted s...
Method and apparatus for igniting an in situ oil shale retort
Burton, Robert S.; Rundberg, Sten I.; Vaughn, James V.; Williams, Thomas P.; Benson, Gregory C.
1981-01-01
A technique is provided for igniting an in situ oil shale retort having an open void space over the top of a fragmented mass of particles in the retort. A conduit is extended into the void space through a hole in overlying unfragmented formation and has an open end above the top surface of the fragmented mass. A primary air pipe having an open end above the open end of the conduit and a liquid atomizing fuel nozzle in the primary air pipe above the open end of the primary air pipe are centered in the conduit. Fuel is introduced through the nozzle, primary air through the pipe, and secondary air is introduced through the conduit for vortical flow past the open end of the primary air pipe. The resultant fuel and air mixture is ignited for combustion within the conduit and the resultant heated ignition gas impinges on the fragmented mass for heating oil shale to an ignition temperature.
Migration through soil of organic solutes in an oil-shale process water
Leenheer, J.A.; Stuber, H.A.
1981-01-01
The migration through soil of organic solutes in an oil-shale process water (retort water) was studied by using soil columns and analyzing leachates for various organic constituents. Retort water extracted significant quantities of organic anions leached from ammonium-saturated-soil organic matter, and a distilled-water rinse, which followed retort-water leaching, released additional organic acids from the soil. After being corrected for organic constitutents extracted from soil by retort water, dissolved-organic-carbon fractionation analyses of effluent fractions showed that the order of increasing affinity of six organic compound classes for the soil was as follows: hydrophilic neutrals nearly equal to hydrophilic acids, followed by the sequence of hydrophobic acids, hydrophilic bases, hydrophobic bases, and hydrophobic neutrals. Liquid-chromatographic analysis of the aromatic amines in the hydrophobic- and hydrophilic-base fractions showed that the relative order of the rates of migration through the soil column was the same as the order of migration on a reversed-phase, octadecylsilica liquid-chromatographic column.
Method for establishing a combustion zone in an in situ oil shale retort having a pocket at the top
Cha, Chang Y.
1980-01-01
An in situ oil shale retort having a top boundary of unfragmented formation and containing a fragmented permeable mass has a pocket at the top, that is, an open space between a portion of the top of the fragmented mass and the top boundary of unfragmented formation. To establish a combustion zone across the fragmented mass, a combustion zone is established in a portion of the fragmented mass which is proximate to the top boundary. A retort inlet mixture comprising oxygen is introduced to the fragmented mass to propagate the combustion zone across an upper portion of the fragmented mass. Simultaneously, cool fluid is introduced to the pocket to prevent overheating and thermal sloughing of formation from the top boundary into the pocket.
Mallon, R.G.
1983-05-13
The invention relates to oil shale retorting and more particularly to staged fluidized bed oil shale retorting. Method and apparatus are disclosed for narrowing the distribution of residence times of any size particle and equalizing the residence times of large and small particles in fluidized beds. Particles are moved up one fluidized column and down a second fluidized column with the relative heights selected to equalize residence times of large and small particles. Additional pairs of columns are staged to narrow the distribution of residence times and provide complete processing of the material.
A study of pyrolysis of oil shale of the Leningrad deposit by solid heat carrier
NASA Astrophysics Data System (ADS)
Gerasimov, G. Ya; Khaskhachikh, V. V.; Potapov, O. P.
2017-11-01
The investigation of the oil shale pyrolysis with a solid heat carrier was carried out using the experimental retorting system that simulates the Galoter industrial process. This system allows verifying both fractional composition of the oil shale and solid heat carrier, and their ratio and temperature. The oil shale of the Leningradsky deposit was used in the work, and quartz sand was used as the solid heat carrier. It is shown that the yield of the shale oil under the pyrolysis with solid heat carrier exceeds by more than 20% the results received in the standard Fisher retort. Using ash as the solid heat carrier results in a decrease in the yield of oil and gas with simultaneous increase in the amount of the solid residue. This is due to the chemical interaction of the acid components of the vapor-gas mixture with the oxides of alkaline-earth metals that are part of the ash.
Apparatus and method for igniting an in situ oil shale retort
Chambers, Carlon C.
1981-01-01
A method and apparatus for conducting such method are disclosed for igniting a fragmented permeable mass of formation particles in an in situ oil shale retort. The method is conducted by forming a hole through unfragmented formation to the fragmented mass. An oxygen-containing gas is introduced into the hole. A fuel is introduced into a portion of the hole spaced apart from the fragmented mass. The fuel and oxygen-containing gas mix forming a combustible mixture which is ignited for establishing a combustion zone in a portion of the hole spaced apart from the fragmented mass. The hot gas generated in the combustion zone is conducted from the hole into the fragmented mass for heating a portion of the fragmented mass above an ignition temperature of oil shale.
Federal Register 2010, 2011, 2012, 2013, 2014
2012-08-09
... extract oil from shale in underground metal and nonmetal I-A and I-B mines (those that operate in a... underground oil shale mines. The standard requires that, prior to ignition of underground retorts, mine...
Integrated oil production and upgrading using molten alkali metal
Gordon, John Howard
2016-10-04
A method that combines the oil retorting process (or other process needed to obtain/extract heavy oil or bitumen) with the process for upgrading these materials using sodium or other alkali metals. Specifically, the shale gas or other gases that are obtained from the retorting/extraction process may be introduced into the upgrading reactor and used to upgrade the oil feedstock. Also, the solid materials obtained from the reactor may be used as a fuel source, thereby providing the heat necessary for the retorting/extraction process. Other forms of integration are also disclosed.
METHOD OF CHEMICAL ANALYSIS FOR OIL SHALE WASTES
Several methods of chemical analysis are described for oil shale wastewaters and retort gases. These methods are designed to support the field testing of various pollution control systems. As such, emphasis has been placed on methods which are rapid and sufficiently rugged to per...
Daughton, Christian G.
1983-01-01
Process for removing biorefractory compounds from contaminated water (e.g., oil shale retort waste-water) by contacting same with fragmented raw oil shale. Biorefractory removal is enhanced by preactivating the oil shale with at least one member of the group of carboxylic, acids, alcohols, aldehydes, ketones, ethers, amines, amides, sulfoxides, mixed ether-esters and nitriles. Further purification is obtained by stripping, followed by biodegradation and removal of the cells.
Method for retorting oil shale
Shang, Jer-Yu; Lui, A.P.
1985-08-16
The recovery of oil from oil shale is provided in a fluidized bed by using a fluidizing medium of a binary mixture of carbon dioxide and 5 steam. The mixture with a steam concentration in the range of about 20 to 75 volume percent steam provides an increase in oil yield over that achievable by using a fluidizing gas of carbon dioxide or steam alone when the mixture contains higher steam concentrations. The operating parameters for the fluidized bed retorted are essentially the same as those utilized with other gaseous fluidizing mediums with the significant gain being in the oil yield recovered which is attributable solely to the use of the binary mixture of carbon dioxide and steam. 2 figs.
Method for loading explosive laterally from a borehole
Ricketts, Thomas E.
1981-01-01
There is provided a method for forming an in situ oil shale retort in a subterranean formation containing oil shale. At least one void is excavated in the formation, leaving zones of unfragmented formation adjacent the void. An array of main blastholes is formed in the zone of unfragmented formation and at least one explosive charge which is shaped for forming a high velocity gas jet is placed into a main blasthole with the axis of the gas jet extending transverse to the blasthole. The shaped charge is detonated for forming an auxiliary blasthole in the unfragmented formation adjacent a side wall of the main blasthole. The auxiliary blasthole extends laterally away from the main blasthole. Explosive is placed into the main blasthole and into the auxiliary blasthole and is detonated for explosively expanding formation towards the free face for forming a fragmented permeable mass of formation particles in the in situ oil shale retort.
Leachate migration from an in-situ oil-shale retort near Rock Springs, Wyoming
Glover, Kent C.
1988-01-01
Hydrogeologic factors influencing leachate movement from an in-situ oil-shale retort near Rock Springs, Wyoming, were investigated through models of ground-water flow and solute transport. Leachate, indicated by the conservative ion thiocyanate, has been observed ? mile downgradient from the retort. The contaminated aquifer is part of the Green River Formation and consists of thin, permeable layers of tuff and sandstone interbedded with oil shale. Most solute migration has occurred in an 8-foot sandstone at the top of the aquifer. Ground-water flow in the study area is complexly three dimensional and is characterized by large vertical variations in hydraulic head. The solute-transport model was used to predict the concentration of thiocyanate at a point where ground water discharges to the land surface. Leachate with peak concentrations of thiocyanate--45 milligrams per liter or approximately one-half the initial concentration of retort water--was estimated to reach the discharge area during January 1985. This report describes many of th3 advantages, as well as the problems, of site-specific studies. Data such as the distribution of thin, permeable beds or fractures might introduce an unmanageable degree of complexity to basin-wide studies but can be incorporated readily into site-specific models. Solute migration in the study area occurs primarily in thin, permeable beds rather than in oil-shale strata. Because of this behavior, leachate traveled far greater distances than might otherwise have been expected. The detail possible in site-specific models permits more accurate prediction of solute transport than is possible with basin-wide models. A major problem in site-specific studies is identifying model boundaries that permit the accurate estimation of aquifer properties. If the quantity of water flowing through a study area cannot be determined prior to modeling, the hydraulic conductivity and ground-water velocity will be poorly estimated.
Leachate migration from an in situ oil-shale retort near Rock Springs, Wyoming
Glover, K.C.
1986-01-01
Geohydrologic factors influencing leachate movement from an in situ oil shale retort near Rock Springs, Wyoming, were investigated by developing models of groundwater flow and solute transport. Leachate, indicated by the conservative ion thiocyanate, has been observed 1/2 mi downgradient from the retort. The contaminated aquifer is part of the Green River Formation and consists of thin, permeable layers of tuff and sandstone interbedded with oil shale. Most solute migration has occurred in an 8-ft sandstone at the top of the aquifer. Groundwater flow in the study area is complexly 3-D and is characterized by large vertical variations in hydraulic head. The solute transport model was used to predict the concentration of thiocyanate at a point where groundwater discharges to the land surface. Leachates with peak concentrations of thiocyanate--45 mg/L or approximately one-half the initial concentration of retort water--were estimated to reach the discharge area during January 1985. Advantages as well as the problems of site specific studies are described. Data such as the distribution of thin permeable beds or fractures may introduce an unmanageable degree of complexity to basin-wide studies but can be incorporated readily in site specific models. Solute migration in the study area primarily occurs in thin permeable beds rather than in oil shale strata. Because of this behavior, leachate traveled far greater distances than might otherwise have been expected. The detail possible in site specific models permits more accurate prediction of solute transport than is possible with basin-wide models. A major problem in site specific studies is identifying model boundaries that permit the accurate estimation of aquifer properties. If the quantity of water flowing through a study area cannot be determined prior to modeling, the hydraulic conductivity and groundwater velocity will be estimated poorly. (Author 's abstract)
Leading trends in environmental regulation that affect energy development. Final report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Steele, R V; Attaway, L D; Christerson, J A
1980-01-01
Major environmental issues that are likely to affect the implementation of energy technologies between now and the year 2000 are identified and assessed. The energy technologies specifically addressed are: oil recovery and processing; gas recovery and processing; coal liquefaction; coal gasification (surface); in situ coal gasification; direct coal combustion; advanced power systems; magnetohydrodynamics; surface oil shale retorting; true and modified in situ oil shale retorting; geothermal energy; biomass energy conversion; and nuclear power (fission). Environmental analyses of these technologies included, in addition to the main processing steps, the complete fuel cycle from resource extraction to end use. A comprehensive surveymore » of the environmental community (including environmental groups, researchers, and regulatory agencies) was carried out in parallel with an analysis of the technologies to identify important future environmental issues. Each of the final 20 issues selected by the project staff has the following common attributes: consensus of the environmental community that the issue is important; it is a likely candidate for future regulatory action; it deals with a major environmental aspect of energy development. The analyses of the 20 major issues address their environmental problem areas, current regulatory status, and the impact of future regulations. These analyses are followed by a quantitative assessment of the impact on energy costs and nationwide pollutant emissions of possible future regulations. This is accomplished by employing the Strategic Environmental Assessment System (SEAS) for a subset of the 20 major issues. The report concludes with a more general discussion of the impact of environmental regulatory action on energy development.« less
Parameters Affecting the Characteristics of Oil Shale-Derived Fuels.
1981-03-01
rock with essentially no organic matter. The oil shale of the Uinta Basin in Utah and extreme western Colorado is richer than the Wyoming shales, but...could be used in several areas of the Uinta Basin . Once the oil shale is mined, it must be heated to about 900’F to hreak down the kerogen. A variety... Uinta Basin of eastern Utah. The sections presented above d.l not exhaust the supply of retorting tech- niques that are in various stages of
Purifying contaminated water. [DOE patent application
Daughton, C.G.
1981-10-27
Process is presented for removing biorefactory compounds from contaminated water (e.g., oil shale retort waste-water) by contacting same with fragmented raw oil shale. Biorefractory removal is enhanced by preactivating the oil shale with at least one member of the group of carboxylic acids, alcohols, aldehydes, ketones, ethers, amines, amides, sulfoxides, mixed ether-esters and nitriles. Further purification is obtained by stripping, followed by biodegradation and removal of the cells.
Brandt, Adam R
2008-10-01
Oil shale is a sedimentary rock that contains kerogen, a fossil organic material. Kerogen can be heated to produce oil and gas (retorted). This has traditionally been a CO2-intensive process. In this paper, the Shell in situ conversion process (ICP), which is a novel method of retorting oil shale in place, is analyzed. The ICP utilizes electricity to heat the underground shale over a period of 2 years. Hydrocarbons are produced using conventional oil production techniques, leaving shale oil coke within the formation. The energy inputs and outputs from the ICP, as applied to oil shales of the Green River formation, are modeled. Using these energy inputs, the greenhouse gas (GHG) emissions from the ICP are calculated and are compared to emissions from conventional petroleum. Energy outputs (as refined liquid fuel) are 1.2-1.6 times greater than the total primary energy inputs to the process. In the absence of capturing CO2 generated from electricity produced to fuel the process, well-to-pump GHG emissions are in the range of 30.6-37.1 grams of carbon equivalent per megajoule of liquid fuel produced. These full-fuel-cycle emissions are 21%-47% larger than those from conventionally produced petroleum-based fuels.
Review of rare earth element concentrations in oil shales of the Eocene Green River Formation
Birdwell, Justin E.
2012-01-01
Concentrations of the lanthanide series or rare earth elements and yttrium were determined for lacustrine oil shale samples from the Eocene Green River Formation in the Piceance Basin of Colorado and the Uinta Basin of Utah. Unprocessed oil shale, post-pyrolysis (spent) shale, and leached shale samples were examined to determine if oil-shale processing to generate oil or the remediation of retorted shale affects rare earth element concentrations. Results for unprocessed Green River oil shale samples were compared to data published in the literature on reference materials, such as chondritic meteorites, the North American shale composite, marine oil shale samples from two sites in northern Tibet, and mined rare earth element ores from the United States and China. The Green River oil shales had lower rare earth element concentrations (66.3 to 141.3 micrograms per gram, μg g-1) than are typical of material in the upper crust (approximately 170 μg g-1) and were also lower in rare earth elements relative to the North American shale composite (approximately 165 μg g-1). Adjusting for dilution of rare earth elements by organic matter does not account for the total difference between the oil shales and other crustal rocks. Europium anomalies for Green River oil shales from the Piceance Basin were slightly lower than those reported for the North American shale composite and upper crust. When compared to ores currently mined for rare earth elements, the concentrations in Green River oil shales are several orders of magnitude lower. Retorting Green River oil shales led to a slight enrichment of rare earth elements due to removal of organic matter. When concentrations in spent and leached samples were normalized to an original rock basis, concentrations were comparable to those of the raw shale, indicating that rare earth elements are conserved in processed oil shales.
NASA Technical Reports Server (NTRS)
Simoneit, B. R.; Schnoes, H. K.; Haug, P.; Burlingame, A. L.
1971-01-01
Basic nitrogenous compounds isolated from extracts of Green River Formation oil shale were analyzed. The major homologous constituents found were the compositional types - namely, quinolines, tetrahydrequinolines with minor amounts of pyridines and indoles series and traces of more aromatized nitrogen compounds. These results are correlated with nitrogen compounds isolated from Green River Formation retort oil and are a survey of the unaltered nitrogen compounds indigeneous to the shale.
Johnson, Ronald C.; Mercier, Tracey J.; Brownfield, Michael E.; Pantea, Michael P.; Self, Jesse G.
2009-01-01
The U.S. Geological Survey (USGS) recently completed a reassessment of in-place oil shale resources, regardless of richness, in the Eocene Green River Formation in the Piceance Basin, western Colorado. A considerable amount of oil-yield data has been collected after previous in-place assessments were published, and these data were incorporated into this new assessment. About twice as many oil-yield data points were used, and several additional oil shale intervals were included that were not assessed previously for lack of data. Oil yields are measured using the Fischer assay method. The Fischer assay method is a standardized laboratory test for determining the oil yield from oil shale that has been almost universally used to determine oil yields for Green River Formation oil shales. Fischer assay does not necessarily measure the maximum amount of oil that an oil shale can produce, and there are retorting methods that yield more than the Fischer assay yield. However, the oil yields achieved by other technologies are typically reported as a percentage of the Fischer assay oil yield, and thus Fischer assay is still considered the standard by which other methods are compared.
Geochemistry of Israeli oil shales: a review
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shirav, M.; Ginzburg, D.
1983-01-01
The oil shales of Israel are widely distributed throughout the country and have current reserves of about 3500 million tons located in the following deposits: Zin, Oron, Ef'e, Hartuv, and Nabi-Musa. The geochemistry and chemical analysis of these shales are discussed, along with the calorific value, oil yield, and trace elements. The main components influencing the quality of the oil shales are organic matter, carbonate, clay minerals, and apatite. Compositional variations within the organic matter are responsible for changes in the relative calorific value and retorted oil yield while fluidized bed combustion is affected by the inorganic components. (JMT)
Chemical composition of shale oil. 1; Dependence on oil shale origin
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kesavan, S.; Lee, S.; Polasky, M.E.
1991-01-01
This paper reports on shale oils obtained by nitrogen retorting of North Carolina, Cleveland, Ohio, Colorado, Rundle, Stuart, and Condor oil shales that have been chemically characterized by g.c.-m.s. techniques. After species identification, chemical compositions of the shale oils have been related to the geological origins of the parent shales. Based on the characteristics observed in the chromatograms, eight semi-quantitative parameters have been used to describe the chromatograms. Six of these parameters describe the chromatograms. Six of these parameters describe the relative abundance and distribution of straight chain alkanes and alkenes in the chromatograms. The other two parameters represent themore » abundance, relative to the total amount of volatiles in the oil, of alkylbenzenes and alkylphenols.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tyler, A.L.; Bullen, E.A.; Jacobs, H.R.
The leached zone of the Parachute Creek member of the Piceance Basin in the Green River Formation has a unique natural porosity that makes it a likely source for in-situ production of oil from oil shale by injection of superheated steam. The Equity Oil Co. of Salt Lake City, in cooperation with the U. S. Department of Energy, carried out field tests using surface generated steam. Difficulties in delivering steam of sufficiently high temperature to the formation resulted in an experiment which was only marginally successful yielding less than 1 percent of the estimated 300,000 barrels of oil in place.more » In 1981, personnel at Sandia National Laboratory suggested that a downhole steam generator which could produce steam at temperatures in excess of 1000/sup 0/F (538/sup 0/C) at depth could well solve the temperature problem. In order to evaluate the effects of combustion gases which would be injected along with steam, should a downhole steam generator be used, laboratory studies have been completed using steam diluted with CO/sub 2/ and with CO/sub 2/ and N/sub 2/ as the heating medium. Results of experiments in an autoclave reactor and in a laboratory retort are reported. The temperature, residence time, and partial pressure of steam are the parameters which effect oil yield and oil quality. Oil properties are reported for several experimental conditions and include oil yield, boiling point distributions, pour points, gravity, and elemental and hydrocarbon-type analyses. Both the autoclave and laboratory retort experiments indicate that CO/sub 2/ and N/sub 2/ do not take a reactive part in the formation of oils except as they dilute the steam. However, the presence of CO/sub 2/ in the gaseous atmosphere during retorting does promote a low-temperature transformation of dolomite to calcite in the inorganic matrix of the oil shale.« less
High liquid yield process for retorting various organic materials including oil shale
Coburn, Thomas T.
1990-01-01
This invention is a continuous retorting process for various high molecular weight organic materials, including oil shale, that yields an enhanced output of liquid product. The organic material, mineral matter, and an acidic catalyst, that appreciably adsorbs alkenes on surface sites at prescribed temperatures, are mixed and introduced into a pyrolyzer. A circulating stream of olefin enriched pyrolysis gas is continuously swept through the organic material and catalyst, whereupon, as the result of pyrolysis, the enhanced liquid product output is provided. Mixed spent organic material, mineral matter, and cool catalyst are continuously withdrawn from the pyrolyzer. Combustion of the spent organic material and mineral matter serves to reheat the catalyst. Olefin depleted pyrolysis gas, from the pyrolyzer, is enriched in olefins and recycled into the pyrolyzer. The reheated acidic catalyst is separated from the mineral matter and again mixed with fresh organic material, to maintain the continuously cyclic process.
A high liquid yield process for retorting various organic materials including oil shale
Coburn, T.T.
1988-07-26
This invention is a continuous retorting process for various high molecular weight organic materials, including oil shale, that yields an enhanced output of liquid product. The organic material, mineral matter, and an acidic catalyst, that appreciably adsorbs alkenes on surface sites at prescribed temperatures, are mixed and introduced into a pyrolyzer. A circulating stream of olefin enriched pyrolysis gas is continuously swept through the organic material and catalyst, whereupon, as the result of pyrolysis, the enhanced liquid product output is provided. Mixed spent organic material, mineral matter, and cool catalyst are continuously withdrawn from the pyrolyzer. Combustion of the spent organic material and mineral matter serves to reheat the catalyst. Olefin depleted pyrolysis gas, from the pyrolyzer, is enriched in olefins and recycled into the pyrolyzer. The reheated acidic catalyst is separated from the mineral matter and again mixed with fresh organic material, to maintain the continuously cyclic process. 2 figs.
CO2 Sequestration within Spent Oil Shale
NASA Astrophysics Data System (ADS)
Foster, H.; Worrall, F.; Gluyas, J.; Morgan, C.; Fraser, J.
2013-12-01
Worldwide deposits of oil shales are thought to represent ~3 trillion barrels of oil. Jordanian oil shale deposits are extensive and of high quality, and could represent 100 billion barrels of oil, leading to much interest and activity in the development of these deposits. The exploitation of oil shales has raised a number of environmental concerns including: land use, waste disposal, water consumption, and greenhouse gas emissions. The dry retorting of oil shales can overcome a number of the environmental impacts, but this leaves concerns over management of spent oil shale and CO2 production. In this study we propose that the spent oil shale can be used to sequester CO2 from the retorting process. Here we show that by conducting experiments using high pressure reaction facilities, we can achieve successful carbonation of spent oil shale. High pressure reactor facilities in the Department of Earth Sciences, Durham University, are capable of reacting solids with a range of fluids up to 15 MPa and 350°C, being specially designed for research with supercritical fluids. Jordanian spent oil shale was reacted with high pressure CO2 in order to assess whether there is potential for sequestration. Fresh and reacted materials were then examined by: Inductively Coupled Plasma Mass Spectrometry (ICP-MS), Thermogravimetric Analysis (TGA), X-Ray Fluorescence (XRF) and X-Ray Diffraction (XRD) methods. Jordanian spent oil shale was found to sequester up to 5.8 wt % CO2, on reacting under supercritical conditions, which is 90% of the theoretical carbonation. Jordanian spent oil shale is composed of a large proportion of CaCO3, which on retorting decomposes, forming CaSO4 and Ca-oxides which are the focus of carbonation reactions. A factorially designed experiment was used to test different factors on the extent of carbonation, including: pressure; temperature; duration; and the water content. Analysis of Variance (ANOVA) techniques were then used to determine the significance of each of these. Results show that the duration; temperature; pressure; and the interactions between these significantly affect the extent of carbonation. Reactions carried out for at least 4 hours show significantly more carbonation than those under supercritical conditions for 2 hours or less. However, reacting for 24 hours does not show a significant increase in the extent of reaction, indicating that the reaction has reached equilibrium within a few hours. Maximum carbonation occurred within 4 hours, at higher temperatures and pressures of 80°C and 100 bar although results also show that there is a significant amount of carbonation achieved within 30 minutes, at 40°C and 70 bar. The magnitude of the CO2 sequestration achieved was sufficient that it could lower CO2 emissions by up to 30 kg CO2 /bbl, thereby bringing the emissions from oil shale processing in line with those from conventional oil extraction methods. The determination of optimum conditions to allow for: maximum carbonation, oil recovery and sufficient calcination, is also of importance and is currently under investigation.
Gallegos, Tanya J.; Bern, Carleton R.; Birdwell, Justin E.; Haines, Seth S.; Engle, Mark A.
2015-01-01
Global trends toward developing new energy resources from lower grade, larger tonnage deposits that are not generally accessible using “conventional” extraction methods involve variations of subsurface in situ extraction techniques including in situ oil-shale retorting, hydraulic fracturing of petroleum reservoirs, and in situ recovery (ISR) of uranium. Although these methods are economically feasible and perhaps result in a smaller above-ground land-use footprint, there remain uncertainties regarding potential subsurface impacts to groundwater. This chapter provides an overview of the role of water in these technologies and the opportunities and challenges for water reuse and recycling.
Biological markers from Green River kerogen decomposition
NASA Astrophysics Data System (ADS)
Burnham, A. K.; Clarkson, J. E.; Singleton, M. F.; Wong, C. M.; Crawford, R. W.
1982-07-01
Isoprenoid and other carbon skeletons that are formed in living organisms and preserved essentially intact in ancient sediments are often called biological markers. The purpose of this paper is to develop improved methods of using isoprenoid hydrocarbons to relate petroleum or shale oil to its source rock. It is demonstrated that most, but not all, of the isoprenoid hydrocarbon structures are chemically bonded in kerogen (or to minerals) in Green River oil shale. The rate constant for thermally producing isoprenoid, cyclic, and aromatic hydrocarbons is substantially greater than for the bulk of shale oil. This may be related to the substantial quantity of CO 2 which is evolved coincident with the isoprenoid hydrocarbons but prior to substantial oil evolution. Although formation of isoprenoid alkenes is enhanced by rapid heating and high pyrolysis temperatures, the ratio of isoprenoid alkenes plus alkanes to normal alkenes plus alkanes is independent of heating rate. High-temperature laboratory pyrolysis experiments can thus be used to predict the distribution of aliphatic hydrocarbons in low temperature processes such as in situ shale oil production and perhaps petroleum formation. Finally, we demonstrate that significant variation in biological marker ratios occurs as a function of stratigraphy in the Green River formation. This information, combined with methods for measuring process yield from oil composition, enables one to relate time-dependent processing conditions to the corresponding time-dependent oil yield in a vertical modified- in situ retort even if there is a substantial and previously undetermined delay in drainage of shale oil from the retort.
Jin, J.M.; Kim, S.; Birdwell, J.E.
2011-01-01
Fourier transform ion cyclotron resonance mass spectrometry (FT ICR-MS) was applied in the analysis of shale oils generated using two different pyrolysis systems under laboratory conditions meant to simulate surface and in situ oil shale retorting. Significant variations were observed in the shale oils, particularly the degree of conjugation of the constituent molecules. Comparison of FT ICR-MS results to standard oil characterization methods (API gravity, SARA fractionation, gas chromatography-flame ionization detection) indicated correspondence between the average Double Bond Equivalence (DBE) and asphaltene content. The results show that, based on the average DBE values and DBE distributions of the shale oils examined, highly conjugated species are enriched in samples produced under low pressure, high temperature conditions and in the presence of water.
Tiernan, Joan E.
1991-01-01
Highly concentrated and toxic petroleum-based and synthetic fuels wastewaters such as oil shale retort water are treated in a unit treatment process by electrolysis in a reactor containing oleophilic, ionized, open-celled polyurethane foams and subjected to mixing and l BACKGROUND OF THE INVENTION The invention described herein arose in the course of, or under, Contract No. DE-AC03-76SF00098 between the U.S. Department of Energy and the University of California.
Baird, Zachariah Steven; Oja, Vahur; Järvik, Oliver
2015-05-01
This article describes the use of Fourier transform infrared (FT-IR) spectroscopy to quantitatively measure the hydroxyl concentrations among narrow boiling shale oil cuts. Shale oil samples were from an industrial solid heat carrier retort. Reference values were measured by titration and were used to create a partial least squares regression model from FT-IR data. The model had a root mean squared error (RMSE) of 0.44 wt% OH. This method was then used to study the distribution of hydroxyl groups among more than 100 shale oil cuts, which showed that hydroxyl content increased with the average boiling point of the cut up to about 350 °C and then leveled off and decreased.
Modules for estimating solid waste from fossil-fuel technologies
DOE Office of Scientific and Technical Information (OSTI.GOV)
Crowther, M.A.; Thode, H.C. Jr.; Morris, S.C.
1980-10-01
Solid waste has become a subject of increasing concern to energy industries for several reasons. Increasingly stringent air and water pollution regulations result in a larger fraction of residuals in the form of solid wastes. Control technologies, particularly flue gas desulfurization, can multiply the amount of waste. With the renewed emphasis on coal utilization and the likelihood of oil shale development, increased amounts of solid waste will be produced. In the past, solid waste residuals used for environmental assessment have tended only to include total quantities generated. To look at environmental impacts, however, data on the composition of the solidmore » wastes are required. Computer modules for calculating the quantities and composition of solid waste from major fossil fuel technologies were therefore developed and are described in this report. Six modules have been produced covering physical coal cleaning, conventional coal combustion with flue gas desulfurization, atmospheric fluidized-bed combustion, coal gasification using the Lurgi process, coal liquefaction using the SRC-II process, and oil shale retorting. Total quantities of each solid waste stream are computed together with the major components and a number of trace elements and radionuclides.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cook, C.W.
The following document is a third-year progress report for the period June 1, 1978 to May 31, 1979. The overall objective of the project is to study the effects of seeding techniques, species mixtures, fertilizer, ecotypes, improved plant materials, mycorrhizal fungi, and soil microorganisms on the initial and final stages of reclamation obtained through seeding and subsequent succession on disturbed oil shale lands. Plant growth medias that are being used in field-established test plots include retorted shale, soil over retorted shale, subsoil materials, and surface disturbed topsoils. Because of the long-term nature of successional and ecologically oriented studies the projectmore » is just beginning to generate significant publications. Several of the studies associated with the project have some phases being conducted principally in the laboratories and greenhouses at Colorado State Univerisity. The majority of the research, however, is being conducted on a 20 hectare Intensive Study Site located near the focal points of oil shale activity in the Piceance Basin. The site is at an elevation of 2,042 m, receives approximately 30 to 55 cm of precipitation annually, and encompasses the plant communities most typical of the Piceance Basin. Most of the information contained in this report originated from the monitoring and sampling of research plots established in either the fall of 1976 or 1977. Therefore, data that have been obtained from the Intensive Study Site represent only first- or second-year results. However, many trends have been identified in thesuccessional process and the soil microorganisms and mycorrhizal studies continue to contribute significant information to the overall results. The phytosociological study has progressed to a point where field sampling is complete and the application and publication of this materials will be forthcoming in 1979.« less
Lindskov, K.L.; Kimball, B.A.
1984-01-01
Proposed oil-shale mining in northeastern Utah is expected to impact the water resources of a 3,000-square-mile area. This report summarizes a comprehensive hydrologic investigation of the area which resulted in 13 published reports. Hydrologic information obtained during 1974-80 was used to evaluate the availability of water and to evaluate potential impacts of an oil-shale industry on the water resources.The study area is the southeastern part of the Uinta Basin, Utah and Colorado, where the hydrology is extremely variable. The normal annual precipitation averages 11 inches and varies with altitude. It ranges from less than 8 inches at altitudes below 5,000 feet along the White and Green Rivers to more than 20 inches where altitudes exceed 9,000 feet on the Roan Plateau.The White and Green Rivers are large streams that flow through the area. They convey an average flow of 4.3 million acre-feet per year from outside drainage areas of about 34,000 square miles, which is more than 150 times as much flow as that originating within the area. Streams originating in areas where precipitation is less than 10 inches are ephemeral. Mean annual runoff from the study area is about 28,000 acre-feet and ranges from less than 0.1 to 1.6 inches, depending on the location. At any given site, runoff varies greatly-from year to year and season to season. Potential evapotranspiration is large, exceeding precipitation in all years. Three major aquifers occur in the area. They are alluvial deposits of small areal extent along the major stream valleys; the bird's-nest aquifer of the Parachute Creek Member of the Green River Formation, which is limited to the central part of the study area; and the Douglas Creek aquifer of the Douglas Creek Member of the Green River Formation, which underlies most of the area. Total recoverable water in storage in the three aquifers is about 18 million acre-feet. Yields of individual wells and interference between wells limit the maximum practical withdrawal to about 20,000 acre-feet per year.An oil-shale industry in the southeastern Uinta Basin with a peak production of 400,000 barrels of oil per day would require a water supply of about 70,000 acre-feet per year. Sources of water supply considered for such an industry were: diversion from the natural flow of the White River, a proposed reservoir on the White River, diversion from the White River combined with proposed off-stream storage in Hells Hole Canyon, diversion from the Green River, and conjunctive use of ground and surface water.The proposed reservoir on the White River would trap about 90 percent of the sediment moving in the river and in turn would release almost sediment-free water. Possible impacts are changes in channel gradient in the downstream 18 miles of the White River and changes in bank stability. In some parts of the area, annual sheet-erosion rates are as great as 2.2 acre-feet per square mile but sediment yield to the White River is less than might be expected because the runoff is small. If process water from retort operations or water used in the construction of surface facilities is discharged into a normally dry streambed, increased channel erosion and sediment in tributary streams could result in increased sediment loads in the White River. In addition, sediment yields from retorted-shale piles with minimum slopes could exceed 0.1 acrefoot per square mile during a common storm. Thus, without safeguards, the useful life of any proposed reservoir or holding pond could be decreased considerably.Leachate water from retorted-shale piles has large concentrations of sodium and sulfate, and the chemical composition of retort waters differs considerably from that of the natural waters of the area. The retort waters contain a greater concentration of dissolved solids and more organic carbon and nutrients. Without proper disposal or impoundment of retort and leachate waters, the salinity of downstream waters in the Colorado River Basin would be increased.
Mass and heat transfer in crushed oil shale
DOE Office of Scientific and Technical Information (OSTI.GOV)
Carley, J.F.; Straub, J.S.; Ott, L.L.
1984-04-01
Heat and mass transfer between gases and oil-shale particles are both important for all proposed retorting processes. Past studies of transfer in packed beds, which have disagreed substantially in their results, have nearly all been done with beds of regular particles of uniform size, whereas oil-shale retorting involves particles of diverse shapes and widely ranging sizes. To resolve these questions, we have made 349 runs in which we measured mass-transfer rates from naphthalene particles of diverse shapes buried in packed beds through which air was passed at room temperature. This technique permits calculation of the mass-transfer coefficient for each activemore » particle in the bed rather than, as in most past studies, for the bed as a whole. The data were analyzed in two ways: (1) by the traditional correlation of Colburn j/sub D/ vs Reynolds number and (2) by multiple regression of the mass-transfer coefficient on air rate, traditional correlation of Colburn j/sub D/ vs Reynolds number and (3) by multiple regression of the mass-transfer coefficient on air rate, sizes of active and inert particles, void fraction, and temperature. Principal findings are: (1) local Reynolds number should be based on active particle size rather than average size for the bed; (2) no appreciable differences were seen between shallow beds and deep ones; (3) mass transfer was 26% faster for spheres and lozenges buried in shale than for all-sphere beds; (4) orientation of lozenges in shale beds has little effect on mass-transfer rate; (5) a useful summarizing equation for either mass or heat transfer in shale beds is log j.epsilon = -.0747 - .6344 log Re + .0592 log/sup 2/Re where j = either j/sub D/ or j/sub H/, the Chilton-Colburn j-factors for mass and heat transfer, Re = the Reynolds number defined for packed beds, and epsilon = the void fraction in the bed. 12 references, 15 figures.« less
Sea-based Fuel Synthesis Work at NRL from FY02 to FY07 (October 2001 - October 2006)
2010-08-05
nearly a decade and involved every aspect of the development of a new liquid hydrocarbon from shale including mining, retorting , refining, performance...the end of each year’s effort. This was an attempt by Willauer and Hardy to obtain the necessary total funding package to accelerate the carbon
Tiernan, Joan E.
1990-01-01
Highly concentrated and toxic petroleum-based and synthetic fuels wastewaters such as oil shale retort water are treated in a unit treatment process by electrolysis in a reactor containing oleophilic, ionized, open-celled polyurethane foams and subjected to mixing and laminar flow conditions at an average detention time of six hours. Both the polyurethane foams and the foam regenerate solution are re-used. The treatment is a cost-effective process for waste-waters which are not treatable, or are not cost-effectively treatable, by conventional process series.
Comparative acute toxicity of shale and petroleum derived distillates.
Clark, C R; Ferguson, P W; Katchen, M A; Dennis, M W; Craig, D K
1989-12-01
In anticipation of the commercialization of its shale oil retorting and upgrading process, Unocal Corp. conducted a testing program aimed at better defining potential health impacts of a shale industry. Acute toxicity studies using rats and rabbits compared the effects of naphtha, Jet-A, JP-4, diesel and "residual" distillate fractions of both petroleum derived crude oils and hydrotreated shale oil. No differences in the acute oral (greater than 5 g/kg LD50) and dermal (greater than 2 g/kg LD50) toxicities were noted between the shale and petroleum derived distillates and none of the samples were more than mildly irritating to the eyes. Shale and petroleum products caused similar degrees of mild to moderate skin irritation. None of the materials produced sensitization reactions. The LC50 after acute inhalation exposure to Jet-A, shale naphtha, (greater than 5 mg/L) and JP-4 distillate fractions of petroleum and shale oils was greater than 5 mg/L. The LC50 of petroleum naphtha (greater than 4.8 mg/L) and raw shale oil (greater than 3.95 mg/L) also indicated low toxicity. Results demonstrate that shale oil products are of low acute toxicity, mild to moderately irritating and similar to their petroleum counterparts. The results further demonstrate that hydrotreatment reduces the irritancy of raw shale oil.
Method for in situ heating of hydrocarbonaceous formations
Little, William E.; McLendon, Thomas R.
1987-01-01
A method for extracting valuable constituents from underground hydrocarbonaceous deposits such as heavy crude tar sands and oil shale is disclosed. Initially, a stratum containing a rich deposit is hydraulically fractured to form a horizontally extending fracture plane. A conducting liquid and proppant is then injected into the fracture plane to form a conducting plane. Electrical excitations are then introduced into the stratum adjacent the conducting plate to retort the rich stratum along the conducting plane. The valuable constituents from the stratum adjacent the conducting plate are then recovered. Subsequently, the remainder of the deposit is also combustion retorted to further recover valuable constituents from the deposit. Various R.F. heating systems are also disclosed for use in the present invention.
Water pollution potential of spent oil shale residues. [From USBM, UOC, and TOSCO processes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1971-12-01
Physical properties, including porosity, permeability, particle size distribution, and density of spent shale from three different retorting operations, (TOSCO, USBM, and UOC) have been determined. Slurry experiments were conducted on each of the spent shales and the slurry analyzed for leachable dissolved solids. Percolation experiments were conducted on the TOSCO spent shale and the quantities of dissolved solids leachable determined. The concentrations of the various ionic species in the initial leachate from the column were high. The major constituents, SO/sub 4//sup 2 -/ and Na/sup +/, were present in concentrations of 90,000 and 35,000 mg/l in the initial leachate; howevermore » the succeeding concentrations dropped markedly during the course of the experiment. A computer program was utilized to predict equilibrium concentrations in the leachate from the column. The extent of leaching and erosion of spent shale and the composition and concentration of natural drainage from spent shale have been determined using oil shale residue and simulated rainfall. Concentrations in the runoff from the spent shale have been correlated with runoff rate, precipitation intensity, flow depth, application time, slope, and water temperature. 18 tables, 32 figures.« less
Gas stream cleaning system and method
Kunchal, S. Kumar; Erck, Louis J.; Harris, Harry A.
1979-04-13
An oil mist and solid particle laden gas from an oil shale retorting operation is initially treated with a temperature controlled oil spray and then by a coalescer to reduce the quantity of oil mist and remove most of the solid particle content of the gas stream and then finally treated by an electrostatic precipitator to essentially remove the oil mist remaining in the gas.
Federal Register 2010, 2011, 2012, 2013, 2014
2013-07-01
..., 8 miles of natural gas supply pipeline, 10 miles of oil product line, 29 miles of single or dual... commercial oil shale mining, retorting, and upgrading operation located in Uintah County, Utah. Approval or... 13X] Notice of Intent To Prepare an Environmental Impact Statement for the Enefit American Oil Utility...
Effects of stripped oil shale retort water on fishes, birds, and mammals
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nystrom, R.R.
1983-01-01
Golden hamsters (Mesocricetus auratus Water), coturnix quail (Coturnix coturnix Teminck and Schlegal), fathead minnows (Pimphales promelas Rafinesque), and rainbow trout (Salmo gairdneri Richardson) were subjected to various exposures of stripped oil shale retort water (SRW). Chronic low-level exposures of all experimental animals to SRW revealed no adverse histological effects attributable to SRW. Also, production and development of second generation fathead minnows and coturnix quail exposed to SRW was normal. Subacute exposure of rainbow trout to SRW produced ultrastructural changes detected by transmission, scanning, and freeze fracture electron microscopy) in the gill, liver, and kidney tissues. The gills showed a swellingmore » of secondary lamellae, disorganization of normal tissue architecture, and sloughing of respiratory cells. The liver contained lamellar bodies not seen in the controls. Relatively large, electron dense, membrane-bounded deposits were present in proximal tubule cells of the kidney. Sodium arsenite (a significant component of SRW) was shown to cause swelling of granular endosplasmic reticulum in quail liver tissue with an acute exposure. This effect could be related to the fact that arsenic inhibits ATP production, which would decrease the ability of the sodium pumps to maintain a normal osmotic balance.« less
NASA Astrophysics Data System (ADS)
Kobchenko, M.; Pluymakers, A.; Cordonnier, B.; Tairova, A.; Renard, F.
2017-12-01
Time-lapse imaging of fracture network development in organic-rich shales at elevated temperatures while kerogen is retorted allows characterizing the development of microfractures and the onset of primary migration. When the solid organic matter is transformed to hydrocarbons with lower molecular weight, the local pore-pressure increases and drives the propagation of hydro-fractures sub-parallel to the shale lamination. On the scale of samples of several mm size, these fractures can be described as mode I opening, where fracture walls dilate in the direction of minimal compression. However, so far experiments coupled to microtomography in situ imaging have been performed on samples where no load was imposed. Here, an external load was applied perpendicular to the sample laminations and we show that this stress state slows down, but does not stop, the propagation of fracture along bedding. Conversely, microfractures also propagate sub-perpendicular to the shale lamination, creating a percolating network in three dimensions. To monitor this process we have used a uniaxial compaction rig combined with in-situ heating from 50 to 500 deg C, while capturing three-dimensional X-ray microtomography scans at a voxel resolution of 2.2 μm; Data were acquired at beamline ID19 at the European Synchrotron Radiation Facility. In total ten time-resolved experiments were performed at different vertical loading conditions, with and without lateral passive confinement and different heating rates. At high external load the sample fails by symmetric bulging, while at lower external load the reaction-induced fracture network develops with the presence of microfractures both sub-parallel and sub-perpendicular to the bedding direction. In addition, the variation of experimental conditions allows the decoupling of the effects of the hydrocarbon decomposition reaction on the deformation process from the influence of thermal stress heating on the weakening and failure mode of immature shale.
Sun, You-Hong; Bai, Feng-Tian; Lü, Xiao-Shu; Li, Qiang; Liu, Yu-Min; Guo, Ming-Yi; Guo, Wei; Liu, Bao-Chang
2015-02-06
This paper proposes a novel energy-efficient oil shale pyrolysis process triggered by a topochemical reaction that can be applied in horizontal oil shale formations. The process starts by feeding preheated air to oil shale to initiate a topochemical reaction and the onset of self-pyrolysis. As the temperature in the virgin oil shale increases (to 250-300°C), the hot air can be replaced by ambient-temperature air, allowing heat to be released by internal topochemical reactions to complete the pyrolysis. The propagation of fronts formed in this process, the temperature evolution, and the reaction mechanism of oil shale pyrolysis in porous media are discussed and compared with those in a traditional oxygen-free process. The results show that the self-pyrolysis of oil shale can be achieved with the proposed method without any need for external heat. The results also verify that fractured oil shale may be more suitable for underground retorting. Moreover, the gas and liquid products from this method were characterised, and a highly instrumented experimental device designed specifically for this process is described. This study can serve as a reference for new ideas on oil shale in situ pyrolysis processes.
Sun, You-Hong; Bai, Feng-Tian; Lü, Xiao-Shu; Li, Qiang; Liu, Yu-Min; Guo, Ming-Yi; Guo, Wei; Liu, Bao-Chang
2015-01-01
This paper proposes a novel energy-efficient oil shale pyrolysis process triggered by a topochemical reaction that can be applied in horizontal oil shale formations. The process starts by feeding preheated air to oil shale to initiate a topochemical reaction and the onset of self-pyrolysis. As the temperature in the virgin oil shale increases (to 250–300°C), the hot air can be replaced by ambient-temperature air, allowing heat to be released by internal topochemical reactions to complete the pyrolysis. The propagation of fronts formed in this process, the temperature evolution, and the reaction mechanism of oil shale pyrolysis in porous media are discussed and compared with those in a traditional oxygen-free process. The results show that the self-pyrolysis of oil shale can be achieved with the proposed method without any need for external heat. The results also verify that fractured oil shale may be more suitable for underground retorting. Moreover, the gas and liquid products from this method were characterised, and a highly instrumented experimental device designed specifically for this process is described. This study can serve as a reference for new ideas on oil shale in situ pyrolysis processes. PMID:25656294
Calorimetric determination of the heat of combustion of spent Green River shale at 978 K
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mraw, S.C.; Keweshan, C.F.
1987-08-01
A Calvet-type calorimeter was used to measure heats of combustion of spent Colorado oil shales. For Green River shale, the samples were members of a sink-float series spanning oil yields from 87 to 340 L . tonne/sup -1/. Shale samples (30-200 mg) are dropped into the calorimeter at high temperature, and a peak in the thermopile signal records the total enthalpy change of the sample between room temperature and the final temperature. Duplicate samples from the above sink-float series were first retorted at 773 K and then dropped separately into nitrogen and oxygen at 978 K. The resulting heats aremore » subtracted to give the heat of combustion, and the results are compared to values from classical bomb calorimetry. The agreement shows that the heats of combustion of the organic component are well understood but that question remain on the reactions of the mineral components.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rotariu, G.J.
1982-02-01
Information on the potential health effects of a developing oil shale industry can be derived from two major sources: (1) the historical experience in foreign countries that have had major industries; and (2) the health effects research that has been conducted in the US in recent years. The information presented here is divided into two major sections: one dealing with the experience in foreign countries and the second dealing with the more recent work associated with current oil shale development in the US. As a result of the study, several observations can be made: (1) most of the current andmore » historical data from foreign countries relate to occupational hazards rather than to impacts on regional populations; (2) neither the historical evidence from other countries nor the results of current research have shown pulmonary neoplasia to be a major concern, however, certain types of exposure, particularly such mixed source exposures as dust/diesel or dust/organic-vapor have not been adequately studied and the lung cancer question is not closed; (3) the industry should be alert to the incidence of skin disease in the industrial setting, however, automated techniques, modern industrial hygiene practices and realistic personal hygiene should greatly reduce the hazards associated with skin contact; and (4) the entire question of regional water contamination and any resultant health hazard has not been adequately addressed. The industrial practice of hydrotreating the crude shale oil will diminish the carcinogenic hazard of the product, however, the quantitative reduction of biological activity is dependent on the degree of hydrotreatment. Both Soviet and American experimentalists have demonstrated a correlation betweed carcinogenicity/toxicity and retorting temperature; the higher temperatures producing the more carcinogenic or toxic products.« less
Geochemistry of Israeli oil shales - A review
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shirav, M.; Ginzbury, D.
1983-02-01
The oil shales in Israel are widely distributed throughout the country. Outcrops are rare and the information is based on boreholes data. The oil shale sequence is of UpperCampanian - Maastrichtian age and belongs to the Chareb Formation. In places, part of the phosphorite layer below the oil shales is also rich in kerogen. The host rocks are biomicritic limestones and marls, in which the organic matter is generally homogeneously and finely dispersed. The occurrence of authigenic feldspar and the preservation of the organic matter (up to 26% of the total rock) indicate euxinic hypersaline conditions which prevailed in themore » relative closed basins of deposition during the Maastrichtian. Current reserves of oil shales in Israel are about 3,500 million tons, located in the following deposits: Zin, Oron, Ef'e, Hartuv and Nabi-Musa. The 'En Bokek deposit, although thoroughly investigated, is of limited reserves and is not considered for future exploitation. Other potential areas, in the Northern Negev and along the Coastal Plain are under investigation. Future successful utilization of the Israeli oil shales, either by fluidizid-bed combustion or by retorting will contribute to the state's energy balance.« less
Study of the Use of Oxygen-Absorbing Packaging Material to Prolong Shelf-Life of Rations
2010-05-28
technology can be used for retortable items (MRE 28 “Italian” entrée, chicken pesto with noodles ) since it maintained the 4 product shelf-life and...packages that have head spacing issues (e.g., retort item or those containing olive oil). Products included chicken pest with noodles (retorted entrée...of the MRE applesauce, they did not prevent the darkening problem. It is suspected that the retort processing step for applesauce manufacture may
Innovative food processing technology using ohmic heating and aseptic packaging for meat.
Ito, Ruri; Fukuoka, Mika; Hamada-Sato, Naoko
2014-02-01
Since the Tohoku earthquake, there is much interest in processed foods, which can be stored for long periods at room temperature. Retort heating is one of the main technologies employed for producing it. We developed the innovative food processing technology, which supersede retort, using ohmic heating and aseptic packaging. Electrical heating involves the application of alternating voltage to food. Compared with retort heating, which uses a heat transfer medium, ohmic heating allows for high heating efficiency and rapid heating. In this paper we ohmically heated chicken breast samples and conducted various tests on the heated samples. The measurement results of water content, IMP, and glutamic acid suggest that the quality of the ohmically heated samples was similar or superior to that of the retort-heated samples. Furthermore, based on the monitoring of these samples, it was observed that sample quality did not deteriorate during storage. © 2013. Published by Elsevier Ltd on behalf of The American Meat Science Association. All rights reserved.
1975-06-06
the U.S. Atomic Energy Commission, and the Department of the Interior, with the Program Management provided by Geonuclear Corporation of Las Vegas...of native species. --Addition of irrigation water when initially planting. —Protection from access by herbivores. — Management after planting. No...physical conditions or water qaulity (temperature, pH, toxic substances) include trout and whitefish as well as the threatened species mentioned above
Numerical modeling of oil shale fragmentation experiments
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kuszmaul, J.S.
The economic development of modified in situ oil shale retorting will benefit from the ability to design a blasting scheme that creates a rubble bed of uniform permeability. Preparing such a design depends upon successfully predicting how a given explosive charge and firing sequence will fracture the oil shale. Numerical models are used to predict the extent of damage caused by a particular explosive charge. Recent single-blastwell cratering tests provided experimental measurements of the extent of damage induced by an explosion. Measuring rock damage involved crater excavation, rubble screening, crater elevation surveys, and posttest extraction of cores. These measurements weremore » compared to the damage calculated by the numerical model. Core analyses showed that the damage varied greatly from layer to layer. The numerical results also show this effect, indicating that rock damage is highly dependent on oil shale grade. The computer simulation also calculated particle velocities and dynamic stress amplitudes in the rock; predicted values agree with experimental measurements. Calculated rock fragmentation compared favorably with fragmentation measured by crater excavation and by core analysis. Because coring provides direct inspection of rock fragmentation, the use of posttest coring in future experiments is recommended.« less
A Transversely Isotropic Thermo-mechanical Framework for Oil Shale
NASA Astrophysics Data System (ADS)
Semnani, S. J.; White, J. A.; Borja, R. I.
2014-12-01
The present study provides a thermo-mechanical framework for modeling the temperature dependent behavior of oil shale. As a result of heating, oil shale undergoes phase transformations, during which organic matter is converted to petroleum products, e.g. light oil, heavy oil, bitumen, and coke. The change in the constituents and microstructure of shale at high temperatures dramatically alters its mechanical behavior e.g. plastic deformations and strength, as demonstrated by triaxial tests conducted at multiple temperatures [1,2]. Accordingly, the present model formulates the effects of changes in the chemical constituents due to thermal loading. It is well known that due to the layered structure of shale its mechanical properties in the direction parallel to the bedding planes is significantly different from its properties in the perpendicular direction. Although isotropic models simplify the modeling process, they fail to accurately describe the mechanical behavior of these rocks. Therefore, many researchers have studied the anisotropic behavior of rocks, including shale [3]. The current study presents a framework to incorporate the effects of transverse isotropy within a thermo-mechanical formulation. The proposed constitutive model can be readily applied to existing finite element codes to predict the behavior of oil shale in applications such as in-situ retorting process and stability assessment in petroleum reservoirs. [1] Masri, M. et al."Experimental Study of the Thermomechanical Behavior of the Petroleum Reservoir." SPE Eastern Regional/AAPG Eastern Section Joint Meeting. Society of Petroleum Engineers, 2008. [2] Xu, B. et al. "Thermal impact on shale deformation/failure behaviors---laboratory studies." 45th US Rock Mechanics/Geomechanics Symposium. American Rock Mechanics Association, 2011. [3] Crook, AJL et al. "Development of an orthotropic 3D elastoplastic material model for shale." SPE/ISRM Rock Mechanics Conference. Society of Petroleum Engineers, 2002.
Molecular characterization and comparison of shale oils generated by different pyrolysis methods
Birdwell, Justin E.; Jin, Jang Mi; Kim, Sunghwan
2012-01-01
Shale oils generated using different laboratory pyrolysis methods have been studied using standard oil characterization methods as well as Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR MS) with electrospray ionization (ESI) and atmospheric photoionization (APPI) to assess differences in molecular composition. The pyrolysis oils were generated from samples of the Mahogany zone oil shale of the Eocene Green River Formation collected from outcrops in the Piceance Basin, Colorado, using three pyrolysis systems under conditions relevant to surface and in situ retorting approaches. Significant variations were observed in the shale oils, particularly the degree of conjugation of the constituent molecules and the distribution of nitrogen-containing compound classes. Comparison of FT-ICR MS results to other oil characteristics, such as specific gravity; saturate, aromatic, resin, asphaltene (SARA) distribution; and carbon number distribution determined by gas chromatography, indicated correspondence between higher average double bond equivalence (DBE) values and increasing asphaltene content. The results show that, based on the shale oil DBE distributions, highly conjugated species are enriched in samples produced under low pressure, high temperature conditions, and under high pressure, moderate temperature conditions in the presence of water. We also report, for the first time in any petroleum-like substance, the presence of N4 class compounds based on FT-ICR MS data. Using double bond equivalence and carbon number distributions, structures for the N4 class and other nitrogen-containing compounds are proposed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, D.J.C.; Strniste, G.F.
1982-01-01
A Chinese hamster ovary (CHO) cell line heterozygous at the adenine phosphoribosyl transferase (APRT) locus was used for selection of induced mutants resistant to 8-azaadenine (8AA), 6-thioguanine (6TG), ouabain (OUA), emetine (EMT) and diphtheria toxin (DIP). The expression times necessary for optimizing the number of mutants recovered at the different loci have been determined using the known direct acting mutagen, far ultraviolet light (FUV), and a complex aqueous organic mixture (shale oil process water) activated with near ultraviolet light (NUV). The results indicate that optimal expression times following treatment with either mutagen was between 2 and 8 days. For CHOmore » cells treated with shale oil process water and subsequently exposed to NUV a linear dose response for mutant induction was observed for all five genetic loci. At 10% surviving fraction of cells, between 35- and 130-fold increases above backgound mutation frequencies were observed for the various markers examined.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chang, N.Y.; Wu, T.H.
1986-01-01
To evaluate the engineering property of spent shale at elevated temperatures, high temperature triaxial cells were designed and manufactured. The cells were then used in the test program designed to provide the physical and engineering properties of spent shale (TOSCO-II) at elevated temperatures. A series of consolidated drained triaxial tests were conducted at high temperatures. Duncan-Chang hyperbolic model was adopted to simulate the laboratory stress versus strain behavior of spent shale at various temperatures. This model provides very good fit to the laboratory stress-strain-volumetric strain characteristics of spent shale at various temperatures. The parameters of this model were then formulatedmore » as functions of temperatures and the Duncan-Chang model was implemented in a finite element analysis computer code for predicting the stress-deformation behavior of large spent shale embankments. Modified Bishop method was also used in analyzing the stability of spent shale embankments. The stability of three different spent shale embankments at three different temperatures were investigated in the study. Additionally the stability of embankments with different degrees of toe erosion was also studied. Results of this study indicated that (1) the stress-strain-strength properties of soils are affected by temperature variation; (2) the stress-strain-strength behavior of spent shale can be simulated by Duncan-Chang hyperbolic model, (3) the factor of safety of embankment slope decreases with rising temperatures; (4) the embankment deformation increases with rising temperatures; and (5) the toe erosion induced by floods causes the embankment slope to become less stable. It is strongly recommended, to extend this study to investigate the effect of internal seepage on the stability of large spent shale embankment. 68 refs., 53 figs., 16 tabs.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hepworth, J.C.; Foss, M.M.
The fifth Energy and Minerals Field Institute program for Washington, D.C. Congressional and Executive Aides was held during August 15-21, 1982. The five-and-one-half day program was conducted through Wyoming, Colorado and Utah and consisted of visits to: an R and D tertiary petroleum production facility; an historic oil field entering secondary production; a surface uranium mine; a petroleum exploration drilling rig; a surface coal mine; an air cooled, coal-fired power plant; an oil shale site; a geothermal-electrical generating facility; and open pit copper mine and associated smelter and refinery; a petroleum refinery and an oil shale semi-works retort. During themore » field program, participants had opportunities to view communities affected by these activities, such as Wright City and Gillette, Wyoming, Parachute, Colorado and Milford and Cedar City, Utah. Throughout the program, aides met with local, state and industry officials and citizen leaders during bus rides, meals and site visits.« less
Reaction rate kinetics for in situ combustion retorting of Michigan Antrim oil shale
Rostam-Abadi, M.; Mickelson, R.W.
1984-01-01
The intrinsic reaction rate kinetics for the pyrolysis of Michigan Antrim oil shale and the oxidation of the carbonaceous residue of this shale have been determined using a thermogravimetric analysis method. The kinetics of the pyrolysis reaction were evaluated from both isothermal and nonisothermal rate data. The reaction was found to be second-order with an activation energy of 252.2 kJ/mole, and with a frequency factor of 9.25 ?? 1015 sec-1. Pyrolysis kinetics were not affected by heating rates between 0.01 to 0.67??K/s. No evidence of any reactions among the oil shale mineral constituents was observed at temperatures below 1173??K. However, it was found that the presence of pyrite in oil shale reduces the primary devolatilization rate of kerogen and increases the amount of residual char in the spent shale. Carbonaceous residues which were prepared by heating the oil shale at a rate of 0.166??K/s to temperatures between 923??K and 1073??K, had the highest reactivities when oxidized at 0.166??K/s in a gas having 21 volume percent oxygen. Oxygen chemisorption was found to be the initial precursor to the oxidation process. The kinetics governing oxygen chemisorption is (Equation Presented) where X is the fractional coverage. The oxidation of the carbonaceous residue was found also to be second-order. The activation energy and the frequency factor determined from isothermal experiments were 147 kJ/mole and 9.18??107 sec-1 respectively, while the values of these parameters obtained from a nonisothermal experiment were 212 kJ/mole and 1.5??1013 sec-1. The variation in the rate constants is attributed to the fact that isothermal and nonisothermal analyses represent two different aspects of the combustion process.
El-Hasan, Tayel; Szczerba, Wojciech; Buzanich, Günter; Radtke, Martin; Riesemeier, Heinrich; Kersten, Michael
2011-11-15
With the increase in the awareness of the public in the environmental impact of oil shale utilization, it is of interest to reveal the mobility of potentially toxic trace elements in spent oil shale. Therefore, the Cr and As oxidation state in a representative Jordanian oil shale sample from the El-Lajjoun area were investigated upon different lab-scale furnace treatments. The anaerobic pyrolysis was performed in a retort flushed by nitrogen gas at temperatures in between 600 and 800 °C (pyrolytic oil shale, POS). The aerobic combustion was simply performed in porcelain cups heated in a muffle furnace for 4 h at temperatures in between 700 and 1000 °C (burned oil shale, BOS). The high loss-on-ignition in the BOS samples of up to 370 g kg(-1) results from both calcium carbonate and organic carbon degradation. The LOI leads to enrichment in the Cr concentrations from 480 mg kg(-1) in the original oil shale up to 675 mg kg(-1) in the ≥ 850 °C BOS samples. Arsenic concentrations were not much elevated beyond that in the average shale standard (13 mg kg(-1)). Synchrotron-based X-ray absorption near-edge structure (XANES) analysis revealed that within the original oil shale the oxidation states of Cr and As were lower than after its aerobic combustion. Cr(VI) increased from 0% in the untreated or pyrolyzed oil shale up to 60% in the BOS ash combusted at 850 °C, while As(V) increased from 64% in the original oil shale up to 100% in the BOS ash at 700 °C. No Cr was released from original oil shale and POS products by the European compliance leaching test CEN/TC 292 EN 12457-1 (1:2 solid/water ratio, 24 h shaking), whereas leachates from BOS samples showed Cr release in the order of one mmol L(-1). The leachable Cr content is dominated by chromate as revealed by catalytic adsorptive stripping voltammetry (CAdSV) which could cause harmful contamination of surface and groundwater in the semiarid environment of Jordan.
Geology and phosphate resources of the Hawley Creek area, Lemhi County, Idaho
Oberlindacher, Peter; Hovland, Robert David
1979-01-01
Phosphate resources occur within the Retort Phosphatic Shale Member of the Permian Phosphoria Formation in the Hawley Creek area, near Leadore, in east-central Idaho. About 12 square miles (31 km2 ) of the Retort Member and enclosing rocks were mapped at a scale of 1:12,000 to evaluate the leasable Federal mineral resources. The Retort has an average thickness of 73 feet (22.3 m) and 12.9 linear miles (20.8 linear km) of outcrop within the area mapped. Rock samples taken from a bulldozer trench were analyzed for phosphate content and for minor trace elements. Analyses show a cumulative thickness of 8.7 feet ( 2.7 m) of medium-grade phosphate rock ( 24 to 31 percent P2O5) and 33.4 feet (10.2 m) of low-grade phosphate rock (16 to 24 percent P2O5). Minor elements in the Retort include uranium, vanadium, fluorine, cadmium, chromium, nickel, molybdenum, silver, and rare earths. These minor elements are potential byproducts of any future phosphate production in the Hawley Creek area. In addition, analyses of six phosphate rock samples taken from a prospect trench show a cumulative thickness of 14.9 ft (4.5 m) at 17.6 percent P2O5. Indicated phosphate resources are calculated for phosphate beds under less than 600 feet (183.0 m) of overburden. Approximately 36.5 feet (11.1 m), representing 50 percent of the total Retort Member, were measured in trench CP-71. There are 80.42 million short tons (72.96 million metric tons) of medium-grade phosphate rock, and 308.76 million short tons ( 280.10 million metric tons) of low-grade phosphate rock in the Retort Member within the map area. Because the thickness and grade of the phosphate beds for each block are based on the recovered section from CP-71, the calculated phosphate resource estimates represent a minimum. Other mineral resources in the area are thorium (35 ppm) in a Precambrian (?) granite body located immediately west of the Hawley Creek area; oil and gas accumulations may occur beneath the Medicine Lodge thrust system in this part of the Beaverhead Mountains. Paleozoic, Mesozoic, and Cenozoic rocks are present in the Hawley Creek area. Fold axes and thrust faults have a dominant northwest trend. These thrusts and folds are probably associated with the northeast-oriented stress field that existed in Late Cretaceous time. Evidence of younger, high-angle normal and reverse faults in the area also exists.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhou, Wei; Minnick, Matthew D; Mattson, Earl D
Oil shale deposits of the Green River Formation (GRF) in Northwestern Colorado, Southwestern Wyoming, and Northeastern Utah may become one of the first oil shale deposits to be developed in the U.S. because of their richness, accessibility, and extensive prior characterization. Oil shale is an organic-rich fine-grained sedimentary rock that contains significant amounts of kerogen from which liquid hydrocarbons can be produced. Water is needed to retort or extract oil shale at an approximate rate of three volumes of water for every volume of oil produced. Concerns have been raised over the demand and availability of water to produce oilmore » shale, particularly in semiarid regions where water consumption must be limited and optimized to meet demands from other sectors. The economic benefit of oil shale development in this region may have tradeoffs within the local and regional environment. Due to these potential environmental impacts of oil shale development, water usage issues need to be further studied. A basin-wide baseline for oil shale and water resource data is the foundation of the study. This paper focuses on the design and construction of a centralized geospatial infrastructure for managing a large amount of oil shale and water resource related baseline data, and for setting up the frameworks for analytical and numerical models including but not limited to three-dimensional (3D) geologic, energy resource development systems, and surface water models. Such a centralized geospatial infrastructure made it possible to directly generate model inputs from the same database and to indirectly couple the different models through inputs/outputs. Thus ensures consistency of analyses conducted by researchers from different institutions, and help decision makers to balance water budget based on the spatial distribution of the oil shale and water resources, and the spatial variations of geologic, topographic, and hydrogeological Characterization of the basin. This endeavor encountered many technical challenging and hasn't been done in the past for any oil shale basin. The database built during this study remains valuable for any other future studies involving oil shale and water resource management in the Piceance Basin. The methodology applied in the development of the GIS based Geospatial Infrastructure can be readily adapted for other professionals to develop database structure for other similar basins.« less
Post Retort, Pre Hydro-treat Upgrading of Shale Oil
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gordon, John
Various oil feedstocks, including oil from oil shale, bitumen from tar sands, heavy oil, and refin- ery streams were reacted with the alkali metals lithium or sodium in the presence of hydrogen or methane at elevated temperature and pressure in a reactor. The products were liquids with sub- stantially reduced metals, sulfur and nitrogen content. The API gravity typically increased. Sodi- um was found to be more effective than lithium in effectiveness. The solids formed when sodium was utilized contained sodium sulfide which could be regenerated electrochemically back to so- dium and a sulfur product using a "Nasicon", sodium ionmore » conducting membrane. In addition, the process was found to be effective reducing total acid number (TAN) to zero, dramatically reduc- ing the asphaltene content and vacuum residual fraction in the product liquid. The process has promise as a means of eliminating sulfur oxide and carbon monoxide emissions. The process al- so opens the possibility of eliminating the coking process from upgrading schemes and upgrad- ing without using hydrogen.« less
Mass and heat transfer in crushed oil shale
DOE Office of Scientific and Technical Information (OSTI.GOV)
Carley, J.F.; Ott, L.L.; Swecker, J.L.
1995-03-01
Studies of heat and mass transfer in packed beds, which disagree substantially in their findings, have nearly all been done with beds of regular particles of uniform size, whereas oil-shale retorting involves particles of diverse irregular shapes and sizes. The authors, in 349 runs, measured mass-transfer rates front naphthalene particles buried in packed beds by passing through air at room temperature. An exact catalog between convection of heat and mass makes it possible to infer heat-transfer coefficients from measured mass-transfer coefficients and fluid properties. Some beds consisted of spheres, naphthalene and inert, of the same, contrasting or distributed sizes. Inmore » some runs, naphthalene spheres were buried in beds of crushed shale, some in narrow screen ranges and others with a wide size range. In others, naphthalene lozenges of different shapes were buried in beds of crushed shale in various bed axis orientations. This technique permits calculation of the mass-transfer coefficient for each active particle in the bed rather than, as in most past studies, for the bed as a whole. The data are analyzed by the traditional correlation of Colburn j{sub D} vs. Reynolds number and by multiple regression of the mass-transfer coefficient on air rate, sizes of active and inert particles, void fraction, and temperature. Principal findings are: local Reynolds number should be based on the active-particle size, not the average for the whole bed; differences between shallow and deep beds are not appreciable; mass transfer is 26% faster for spheres and lozenges buried in shale than in all-sphere beds; orientation of lozenges in shale beds has little or no effect on mass-transfer rate; and for mass or heat transfer in shale beds, log(j{center_dot}{epsilon}) = {minus}0.0747 - 0.6344 log N{sub Re} + 0. 0592 log {sup 2} N{sub Re}.« less
de Lima, Flávia Melo; de Andrade Borges, Talitha; Braga, Renata Martins; de Araújo Melo, Dulce Maria; Martinelli, Antônio Eduardo
2018-05-01
There is global concern about acid rain and other pollution which is caused by the consumption of oil. By decreasing sulfur content in the oil, we can reduce unwanted emissions and acid rain. Shale was used which is a solid waste generated in the pyrolysis of shale, impregnated with Zn as an adsorbent which removes sulfur present in fuels from the hexane/toluene model solution. An influence of the agitation time (60-180 min), temperature (25-35 °C), adsorbent mass (0.1-0.25 g), and initial sulfur concentration (100-250 ppm) factorial 24 with three central points totaling 19 experiments was applied to investigate the effect of the variables on the efficiency of sulfur removal in fuels. The values of the parameters tested for maximum sulfur removal were obtained as follows: contact time = 180 min, temperature = 35 °C, adsorbent mass = 0.25 g, and initial sulfur concentration = 100 ppm. The mathematical model proposed with R 2 99.97% satisfied the experimental data. This may provide a theoretical basis for new research and alternative uses for tailings of schist industrialization in order to evaluate its potential.
Catauro, Patricia M; Perchonok, Michele H
2012-01-01
To determine the suitability of retort processed foods to support long-duration spaceflight, a series of 36-mo accelerated shelf life studies were performed on 13 representative retort pouch products. Combined sensory evaluations, physical properties assessments, and nutritional analyses were employed to determine shelf life endpoints for these foods, which were either observed during the analysis or extrapolated via mathematical projection. Data obtained through analysis of these 13 products were later used to estimate the shelf life values of all retort-processed spaceflight foods. In general, the major determinants of shelf life appear to be the development of off-flavor and off-color in products over time. These changes were assumed to be the result of Maillard and oxidation reactions, which can be initiated or accelerated as a result of the retort process and product formulation. Meat products and other vegetable entrées are projected to maintain their quality the longest, between 2 and 8 y, without refrigeration. Fruit and dessert products (1.5 to 5 y), dairy products (2.5 to 3.25 y), and starches, vegetable, and soup products (1 to 4 y) follow. Aside from considerable losses in B and C vitamin content, nutritional value of most products was maintained throughout shelf life. Fortification of storage-labile vitamins was proposed as a countermeasure to ensure long-term nutritive value of these products. The use of nonthermal sterilization technologies was also recommended, as a means to improve initial quality of these products and extend their shelf life for use in long-duration missions. Data obtained also emphasize the importance of low temperature storage in maintaining product quality. Retort sterilized pouch products are garnering increased commercial acceptance, largely due to their improved convenience and quality over metal-canned products. Assessment of the long-term stability of these products with ambient storage can identify potential areas for improvement, and ultimately increase consumer satisfaction with these technologies. Journal of Food Science © 2011 Institute of Food Technologists® No claim to original US government works.
Pit and backfill: Getty's plan for a diatomite zone in an oil patch. [Dravo Process
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1981-06-01
Getty Oil Co. is investigating the recovery of oil from a diatomite deposit in California's McKittrick oil field, using a pair of newly built pilot plants - one a Dravo solvent extraction train and the other a Lurgi-Ruhrgas retort-condenser system. Both are sized to process approximately 240 short tons/day of mined feed, and each will be separately campaigned for a year during the evaluation program. The diatomite project has a number of advantages as a mine and materials-handling project compared to oil shale and tar sands. The deposit is soft, and in-transit handling will probably perform much of the necessarymore » crushing for the plant. The material is light, approximately 100 lb/cu ft in place and 90 lb/cu ft broken. The near-surface location contrasts to the more deeply buried oil shale deposits in other areas of the nation. At the same time, the traction surface and structural bearing strength for heavy earth movers should be somewhat better in diatomite.« less
Mercury reduction in Munhena, Mozambique: homemade solutions and the social context for change.
Spiegel, Samuel J; Savornin, Olivier; Shoko, Dennis; Veiga, Marcello M
2006-01-01
The health and environmental impacts of artisanal gold mining are of growing concern in Munhena, Mozambique, where more than 12,000 people are involved in such activities. Gold is extracted using mercury amalgamation, posing a considerable threat to human and environmental health. A pilot project ascertained the feasibility of reducing mercury use and emissions by promoting control measures utilizing local resources. Retorts were fabricated with local materials. Training workshops introduced the homemade retorts, and a portable mercury monitor revealed effective mercury reduction. Barriers to widespread technology adoption include poverty, lack of knowledge and trust, and the free supply of mercury from private gold buyers. Homemade retorts are inexpensive and effective, and miners could benefit by building community amalgamation centers. The government could play a greater role in gold purchasing to reduce mercury pollution.
2011-11-01
OXYGEN AND WATER VAPOR TRANSMISSION RATE FOR NON- RETORT MILITARY RATION PACKAGING by Danielle Froio Alan Wright Nicole Favreau and Sarah...ANSI Std. Z39.18 RETORT STORAGE SHELF LIFE RETORT POUCHES SENSORY ANALYSIS OXYGEN CRACKERS PACKAGING SENSORY... Packaging for MRE. (a) MRE Retort Pouch Quad-Laminate Structure; (b) MRE Non- retort Pouch Tri-Laminate Structure
Gondolellid conodonts and depositional setting of the Phosphoria Formation
Wardlaw, Bruce R.
2015-01-01
The Phosphoria Formation and related rocks were deposited over an 8.9 m.y. interval beginning approximately 274.0Ma and ending approximately 265.1Ma. The Meade Peak Phosphatic Shale Member was deposited in southeastern Idaho and adjacent Wyoming over 5.4 m.y. from approximately 273.2 to 268.6 Ma. The Retort Phosphatic Shale Member was deposited in southwestern Montana and west-central Wyoming over 1.3 m.y. from approximately 267.4 to 266.1Ma. The base of the Roadian Stage of the Middle Permian occurs within the lower phosphate zone of the Meade Peak. The base of the Wordian Stage occurs within the upper phosphate zone of the Meade Peak. The presence of a cool-water brachiopod fauna, cool-water conodont faunas, and the absence of fusulinids throughout the Phosphoria basin indicate the presence of pervasive cool, upwelling waters. Acritarchs are intimately associated with phosphorites and phosphatic shales and may have been the primary organic producer to help drive phosphate production. The gondolellid conodont fauna of the Phosphoria Formation links a geographic cline of Jinogondolella nankingensis from the Delaware basin, West Texas, to the Sverdrup basin, Canadian Arctic, and shows distinct differentiation in species distribution, as do other conodont groups, within the Phosphoria basin. Ten species and two subspecies of gondolellid conodonts are recognized from the Phosphoria Formation and related rocks that belong to Mesogondolella and Jinogondolella.
Application of biomass pyrolytic polygeneration technology using retort reactors.
Yang, Haiping; Liu, Biao; Chen, Yingquan; Chen, Wei; Yang, Qing; Chen, Hanping
2016-01-01
To introduce application status and illustrate the good utilisation potential of biomass pyrolytic polygeneration using retort reactors, the properties of major products and the economic viability of commercial factories were investigated. The capacity of one factory was about 3000t of biomass per year, which was converted into 1000t of charcoal, 950,000Nm(3) of biogas, 270t of woody tar, and 950t of woody vinegar. Charcoal and fuel gas had LHV of 31MJ/kg and 12MJ/m(3), respectively, indicating their potential for use as commercial fuels. The woody tar was rich in phenols, while woody vinegar contained large quantities of water and acetic acid. The economic analysis showed that the factory using this technology could be profitable, and the initial investment could be recouped over the factory lifetime. This technology offered a promising means of converting abundant agricultural biomass into high-value products. Copyright © 2015 Elsevier Ltd. All rights reserved.
4. VIEW OF AREA EXCAVATED FOR ACCESS TO MERCURY RETORT. ...
4. VIEW OF AREA EXCAVATED FOR ACCESS TO MERCURY RETORT. VIEW SOUTH FROM RETORT. (OCTOBER, 1995) - McCormick Group Mine, Mercury Retort, East slope of Buckskin Mountain, Paradise Valley, Humboldt County, NV
NASA Astrophysics Data System (ADS)
Ivanov, S. L.; Zablotsky, D.
2018-05-01
The current industrial practice for titanium extraction is a complex procedure, which produces a porous reaction mass of sintered titanium particulates fused to a steel retort wall with magnesium and MgCl2 trapped in the interstices. The reactor temperature is limited to approx. 900 °C due to the formation of fusible TiFe eutectic, which corrodes the retort and degrades the quality of titanium sponge. Here we examine the theoretical foundations and technological possibilities to design a shielded retort of niobium-zirconium alloy NbZr(1%), which is resistant to corrosion by titanium at high temperature. We consider the reactor at a temperature of approx. 1150 °C. Supplying stoichiometric quantities of reagents enables the reaction in the gas phase, whereas the exothermic process sustains the combustion of the reaction zone. When the pathway to the condenser is open, vacuum separation and evacuation of vaporized magnesium dichloride and excess magnesium into the water-cooled condenser take place. As both the reaction and the evacuation occur within seconds, the yield of the extraction is improved. We anticipate new possibilities for designing a device combining the retort function to conduct the reduction in the gas phase with fast vacuum separation of the reaction products and distillation of magnesium dichloride.
Integrating Nuclear Energy to Oilfield Operations – Two Case Studies
DOE Office of Scientific and Technical Information (OSTI.GOV)
Eric P. Robertson; Lee O. Nelson; Michael G. McKellar
2011-11-01
Fossil fuel resources that require large energy inputs for extraction, such as the Canadian oil sands and the Green River oil shale resource in the western USA, could benefit from the use of nuclear power instead of power generated by natural gas combustion. This paper discusses the technical and economic aspects of integrating nuclear energy with oil sands operations and the development of oil shale resources. A high temperature gas reactor (HTGR) that produces heat in the form of high pressure steam (no electricity production) was selected as the nuclear power source for both fossil fuel resources. Both cases weremore » based on 50,000 bbl/day output. The oil sands case was a steam-assisted, gravity-drainage (SAGD) operation located in the Canadian oil sands belt. The oil shale development was an in-situ oil shale retorting operation located in western Colorado, USA. The technical feasibility of the integrating nuclear power was assessed. The economic feasibility of each case was evaluated using a discounted cash flow, rate of return analysis. Integrating an HTGR to both the SAGD oil sands operation and the oil shale development was found to be technically feasible for both cases. In the oil sands case, integrating an HTGR eliminated natural gas combustion and associated CO2 emissions, although there were still some emissions associated with imported electrical power. In the in situ oil shale case, integrating an HTGR reduced CO2 emissions by 88% and increased natural gas production by 100%. Economic viabilities of both nuclear integrated cases were poorer than the non-nuclear-integrated cases when CO2 emissions were not taxed. However, taxing the CO2 emissions had a significant effect on the economics of the non-nuclear base cases, bringing them in line with the economics of the nuclear-integrated cases. As we move toward limiting CO2 emissions, integrating non-CO2-emitting energy sources to the development of energy-intense fossil fuel resources is becoming increasingly important. This paper attempts to reduce the barriers that have traditionally separated fossil fuel development and application of nuclear power and to promote serious discussion of ideas about hybrid energy systems.« less
Assessment of TAMU Rack Material in Poly Tray Racks using Spray Retort
2009-07-01
FOR ADVANCED FOOD TECHNOLOGY The School of Enviromental and Biological Science Rutgers, The State University of New Jersey New Brunswick, New Jersey...A003 Mr. Henderikus B. Bruins Rutgers, The State University of New Jersey The Center for Advanced Food Technology School of Enviromental and
High-pressure thermal sterilization: food safety and food quality of baby food puree.
Sevenich, Robert; Kleinstueck, Elke; Crews, Colin; Anderson, Warwick; Pye, Celine; Riddellova, Katerina; Hradecky, Jaromir; Moravcova, Eliska; Reineke, Kai; Knorr, Dietrich
2014-02-01
The benefits that high-pressure thermal sterilization offers as an emerging technology could be used to produce a better overall food quality. Due to shorter dwell times and lower thermal load applied to the product in comparison to the thermal retorting, lower numbers and quantities of unwanted food processing contaminants (FPCs), for example, furan, acrylamide, HMF, and MCPD-esters could be formed. Two spore strains were used to test the technique; Geobacillus stearothermophilus and Bacillus amyloliquefaciens, over the temperature range 90 to 121 °C at 600 MPa. The treatments were carried out in baby food puree and ACES-buffer. The treatments at 90 and 105 °C showed that G. stearothermophilus is more pressure-sensitive than B. amyloliquefaciens. The formation of FPCs was monitored during the sterilization process and compared to the amounts found in retorted samples of the same food. The amounts of furan could be reduced between 81% to 96% in comparison to retorting for the tested temperature pressure combination even at sterilization conditions of F₀-value in 7 min. © 2014 Institute of Food Technologists®
Water demands for expanding energy development
Davis, G.H.; Wood, Leonard A.
1974-01-01
Water is used in producing energy for mining and reclamation of mined lands, onsite processing, transportation, refining, and conversion of fuels to other forms of energy. In the East, South, Midwest, and along the seacoasts, most water problems are related to pollution rather than to water supply. West of about the 100th meridian, however, runoff is generally less than potential diversions, and energy industries must compete with other water users. Water demands for extraction of coal, oil shale, uranium, and oil and gas are modest, although large quantities of water are used in secondary recovery operations for oil. The only significant use of water for energy transportation, aside from in-stream navigation use, is for slurry lines. Substantial quantities of water are required in the retorting and the disposal of spent oil shale. The conversion of coal to synthetic gas or oil or to electric power and the generation of electric power with nuclear energy require large quantities of water, mostly for cooling. Withdrawals for cooling of thermal-electric plants is by far the largest category of water use in energy industry, totaling about 170 billion gallons (644 million m3) per day in 1970. Water availability will dictate the location and design of energy-conversion facilities, especially in water deficient areas of the West.
3. VIEW EAST OF TAILINGS OF MERCURY RETORT. SCOOP FOR ...
3. VIEW EAST OF TAILINGS OF MERCURY RETORT. SCOOP FOR EXTRACTING MERCURY VISIBLE IN CENTER OF PHOTOGRAPH. (OCTOBER, 1995) - McCormick Group Mine, Mercury Retort, East slope of Buckskin Mountain, Paradise Valley, Humboldt County, NV
A new laboratory approach to shale analysis using NMR relaxometry
Washburn, Kathryn E.; Birdwell, Justin E.; Baez, Luis; Beeney, Ken; Sonnenberg, Steve
2013-01-01
Low-field nuclear magnetic resonance (LF-NMR) relaxometry is a non-invasive technique commonly used to assess hydrogen-bearing fluids in petroleum reservoir rocks. Measurements made using LF-NMR provide information on rock porosity, pore-size distributions, and in some cases, fluid types and saturations (Timur, 1967; Kenyon et al., 1986; Straley et al., 1994; Brown, 2001; Jackson, 2001; Kleinberg, 2001; Hurlimann et al., 2002). Recent improvements in LF-NMR instrument electronics have made it possible to apply methods used to measure pore fluids to assess highly viscous and even solid organic phases within reservoir rocks. T1 and T2 relaxation responses behave very differently in solids and liquids; therefore the relationship between these two modes of relaxation can be used to differentiate organic phases in rock samples or to characterize extracted organic materials. Using T1-T2 correlation data, organic components present in shales, such as kerogen and bitumen, can be examined in laboratory relaxometry measurements. In addition, implementation of a solid-echo pulse sequence to refocus T2 relaxation caused by homonuclear dipolar coupling during correlation measurements allows for improved resolution of solid-phase protons. LF-NMR measurements of T1 and T2 relaxation time distributions were carried out on raw oil shale samples from the Eocene Green River Formation and pyrolyzed samples of these shales processed by hydrous pyrolysis and techniques meant to mimic surface and in-situ retorting. Samples processed using the In Situ Simulator approach ranged from bitumen and early oil generation through to depletion of petroleum generating potential. The standard T1-T2 correlation plots revealed distinct peaks representative of solid- and liquid-like organic phases; results on the pyrolyzed shales reflect changes that occurred during thermal processing. The solid-echo T1 and T2 measurements were used to improve assessment of the solid organic phases, specifically kerogen, thermally degraded kerogen, and char. Integrated peak areas from the LF-NMR results representative of kerogen and bitumen were found to be well correlated with S1 and S2 parameters from Rock-Eval programmed pyrolysis. This study demonstrates that LFNMR relaxometry can provide a wide range of information on shales and other reservoir rocks that goes well beyond porosity and pore-fluid analysis.
Loomis, C.C.; Ash, W.J.
1957-11-26
An improved retort assembly useful in the thermal reduction of volatilizable metals such as magnesium and calcium is described. In this process a high vacuum is maintained in the retort, however the retort must be heated to very high temperatures while at the same time the unloading end must bo cooled to condense the metal vapors, therefore the retention of the vacuum is frequently difficult due to the thermal stresses involved. This apparatus provides an extended condenser sleeve enclosed by the retort cover which forms the vacuum seal. Therefore, the seal is cooled by the fluid in the condenser sleeve and the extreme thermal stresses found in previous designs together with the deterioration of the sealing gasket caused by the high temperatures are avoided.
The study of heat penetration of kimchi soup on stationary and rotary retorts.
Cho, Won-Il; Park, Eun-Ji; Cheon, Hee Soon; Chung, Myong-Soo
2015-03-01
The aim of this study was to determine the heat-penetration characteristics using stationary and rotary retorts to manufacture Kimchi soup. Both heat-penetration tests and computer simulation based on mathematical modeling were performed. The sterility was measured at five different positions in the pouch. The results revealed only a small deviation of F 0 among the different positions, and the rate of heat transfer was increased by rotation of the retort. The thermal processing of retort-pouched Kimchi soup was analyzed mathematically using a finite-element model, and optimum models for predicting the time course of the temperature and F 0 were developed. The mathematical models could accurately predict the actual heat penetration of retort-pouched Kimchi soup. The average deviation of the temperature between the experimental and mathematical predicted model was 2.46% (R(2)=0.975). The changes in nodal temperature and F 0 caused by microbial inactivation in the finite-element model predicted using the NISA program were very similar to that of the experimental data of for the retorted Kimchi soup during sterilization with rotary retorts. The correlation coefficient between the simulation using the NISA program and the experimental data was very high, at 99%.
The Study of Heat Penetration of Kimchi Soup on Stationary and Rotary Retorts
Cho, Won-Il; Park, Eun-Ji; Cheon, Hee Soon; Chung, Myong-Soo
2015-01-01
The aim of this study was to determine the heat-penetration characteristics using stationary and rotary retorts to manufacture Kimchi soup. Both heat-penetration tests and computer simulation based on mathematical modeling were performed. The sterility was measured at five different positions in the pouch. The results revealed only a small deviation of F0 among the different positions, and the rate of heat transfer was increased by rotation of the retort. The thermal processing of retort-pouched Kimchi soup was analyzed mathematically using a finite-element model, and optimum models for predicting the time course of the temperature and F0 were developed. The mathematical models could accurately predict the actual heat penetration of retort-pouched Kimchi soup. The average deviation of the temperature between the experimental and mathematical predicted model was 2.46% (R2=0.975). The changes in nodal temperature and F0 caused by microbial inactivation in the finite-element model predicted using the NISA program were very similar to that of the experimental data of for the retorted Kimchi soup during sterilization with rotary retorts. The correlation coefficient between the simulation using the NISA program and the experimental data was very high, at 99%. PMID:25866751
Brazing retort manifold design concept may minimize air contamination and enhance uniform gas flow
NASA Technical Reports Server (NTRS)
Ruppe, E. P.
1966-01-01
Brazing retort manifold minimizes air contamination, prevents gas entrapment during purging, and provides uniform gas flow into the retort bell. The manifold is easily cleaned and turbulence within the bell is minimized because all manifold construction lies outside the main enclosure.
43 CFR 3922.20 - Application contents.
Code of Federal Regulations, 2011 CFR
2011-10-01
..., and transportation methods, including: (1) A description of the mining, retorting, or in situ mining... applications must be filed in the proper BLM State Office. No specific form of application is required, but the... is substantially identical to a technology or method currently in use to produce marketable...
43 CFR 3922.20 - Application contents.
Code of Federal Regulations, 2012 CFR
2012-10-01
..., and transportation methods, including: (1) A description of the mining, retorting, or in situ mining... applications must be filed in the proper BLM State Office. No specific form of application is required, but the... is substantially identical to a technology or method currently in use to produce marketable...
43 CFR 3922.20 - Application contents.
Code of Federal Regulations, 2013 CFR
2013-10-01
..., and transportation methods, including: (1) A description of the mining, retorting, or in situ mining... applications must be filed in the proper BLM State Office. No specific form of application is required, but the... is substantially identical to a technology or method currently in use to produce marketable...
43 CFR 3922.20 - Application contents.
Code of Federal Regulations, 2014 CFR
2014-10-01
..., and transportation methods, including: (1) A description of the mining, retorting, or in situ mining... applications must be filed in the proper BLM State Office. No specific form of application is required, but the... is substantially identical to a technology or method currently in use to produce marketable...
Maughan, E.K.
1983-01-01
Recent studies of the Meade Peak and the Retort Phosphatic Shale Members of the Phosphoria Formation have investigated the organic carbon content and some aspects of hydrocarbon generation from these rocks. Phosphorite has been mined from the Retort and Meade Peak members in southeastern Idaho, northern Utah, western Wyoming and southwestern Montana. Organic carbon-rich mudstone beds associated with the phosphorite in these two members also were natural sources of petroleum. These mudstone beds were differentially buried throughout the region so that heating of these rocks has been different from place to place. Most of the Phosphoria source beds have been deeply buried and naturally heated to catagenetically form hydrocarbons. Deepest burial was in eastern Idaho and throughout most of the northeastern Great Basin where high ambient temperatures have driven the catagenesis to its limit and beyond to degrade or to destroy the hydrocarbons. In southwest Montana, however, burial in some areas has been less than 2 km, ambient temperatures remained low and the kerogen has not produced hydrocarbons (2). In these areas in Montana, the kerogen in the carbonaceous mudstone has retained the potential for hydrocarbon generation and the carbon-rich Retort Member is an oil shale from which hydrocarbons can be synthetically extracted. The Phosphoria Formation was deposited in a foreland basin between the Cordilleran geosyncline and the North American craton. This foreland basin, which coincides with the area of deposition of the two organic carbon-rich mudstone members of the Phosphoria, has been named the Sublett basin (Maughan, 1979). The basin has a northwest-southeast trending axis and seems to have been deepest in central Idaho where deep-water sedimentary rocks equivalent to the Phosphoria Formation are exceptionally thick. The depth of the basin was increasingly shallower away from central Idaho toward the Milk River uplift - a land area in Montana, the ancestral Rocky Mountains. The basin is composed of land areas in Colorado, the Humboldt highland in northeastern Nevada and intervening carbonate shelves in Utah and Wyoming. The phosphorites and the carbonaceous mudstones were deposited on the foreslope between the carbonate and littoral sand deposits on the shelf and the dominantly cherty mudstone sediments in the axial part of the basin. Paleomagnetic evidence indicates that in the Permian the region would have been within the northern hemispheric trade wind belt; and wind-direction studies determined from studies of sand dunes, indicate that the prevailing winds from the Milk River uplift would have blown offshore across the Phosphoria sea. Offshore winds would have carried surface water away from the shore and generated upwelling in the sea in eastern Idaho and adjacent areas in Montana, Wyoming and Utah. Prior to deposition of the Phosphoria, the region was the site of extensive deposition of shallow-water carbonate sediments. Equivalent rocks in the northern part of the basin are dominantly sandstone derived from the adjacent Milk River uplift and similar sandstone strata in the southeastern sector were derived from the ancestral Rocky Mountains uplift. Tectonic subsidence of the Sublett basin in part of the region seems to have provided a sea-floor profile favorable for upwelling circulation and the shift in deposition from regional carbonates and local sandstone into a more complex depositional pattern that included the accumulation of the mudstone-chert-phosphorite facies that comprises the Phosphoria Formation. High biological productivity and the accumulation of sapropel on the sea floor is associated with contemporary coastal upwelling (1) and similar environmental and depositional conditions are attributed to the rich accumulations of organic matter in the Phosphoria Formation. Sapropelic mudstone and phosphorite composing the Meade Peak Member are approximately 60 m thick near the center of the Sublett basin. The Meade
Overview of the technology and status of oil sands development
DOE Office of Scientific and Technical Information (OSTI.GOV)
Detamore, R.J.
1981-01-01
In conjunction with the increasing emphasis upon alternate energy sources, interest in the oil sands resource is discussed. This paper reviews the primary established oil sands recovery techniques including surface mining, surface retorting, in situ thermal and nonthermal in situ, and presents an overview of their application in specific projects.
Downhole delay assembly for blasting with series delay
Ricketts, Thomas E.
1982-01-01
A downhole delay assembly is provided which can be placed into a blasthole for initiation of explosive in the blasthole. The downhole delay assembly includes at least two detonating time delay devices in series in order to effect a time delay of longer than about 200 milliseconds in a round of explosions. The downhole delay assembly provides a protective housing to prevent detonation of explosive in the blasthole in response to the detonation of the first detonating time delay device. There is further provided a connection between the first and second time delay devices. The connection is responsive to the detonation of the first detonating time delay device and initiates the second detonating time delay device. A plurality of such downhole delay assemblies are placed downhole in unfragmented formation and are initiated simultaneously for providing a round of explosive expansions. The explosive expansions can be used to form an in situ oil shale retort containing a fragmented permeable mass of formation particles.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jochen, J.E.; Hopkins, C.W.
1993-12-31
;Contents: Naturally fractured reservoir description; Geologic considerations; Shale-specific log model; Stress profiles; Berea reasearch; Benefits analysis; Summary of technologies; Novel well test methods; Natural fracture identification; Reverse drilling; Production data analysis; Fracture treatment quality control; Novel core analysis methods; and Shale well cleanouts.
Mercury isotope fractionation during ore retorting in the Almadén mining district, Spain
Gray, John E.; Pribil, Michael J.; Higueras, Pablo L.
2013-01-01
Almadén, Spain, is the world's largest mercury (Hg) mining district, which has produced over 250,000 metric tons of Hg representing about 30% of the historical Hg produced worldwide. The objective of this study was to measure Hg isotopic compositions of cinnabar ore, mine waste calcine (retorted ore), elemental Hg (Hg0(L)), and elemental Hg gas (Hg0(g)), to evaluate potential Hg isotopic fractionation. Almadén cinnabar ore δ202Hg varied from − 0.92 to 0.15‰ (mean of − 0.56‰, σ = 0.35‰, n = 7), whereas calcine was isotopically heavier and δ202Hg ranged from − 0.03‰ to 1.01‰ (mean of 0.43‰, σ = 0.44‰, n = 8). The average δ202Hg enrichment of 0.99‰ between cinnabar ore and calcines generated during ore retorting indicated Hg isotopic mass dependent fractionation (MDF). Mass independent fractionation (MIF) was not observed in any of the samples in this study. Laboratory retorting experiments of cinnabar also were carried out to evaluate Hg isotopic fractionation of products generated during retorting such as calcine, Hg0(L), and Hg0(g). Calcine and Hg0(L) generated during these retorting experiments showed an enrichment in δ202Hg of as much as 1.90‰ and 0.67‰, respectively, compared to the original cinnabar ore. The δ202Hg for Hg0(g) generated during the retorting experiments was as much as 1.16‰ isotopically lighter compared to cinnabar, thus, when cinnabar ore was roasted, the resultant calcines formed were isotopically heavier, whereas the Hg0(g) generated was isotopically lighter in Hg isotopes.
Rytuba, James J.; Hothem, Roger L.; Goldstein, Daniel N.; Brussee, Brianne E.; May, Jason T.
2011-01-01
Sample Sites and Methods Samples were collected to assess the concentrations of Hg and biogeochemically relevant constituents in tailings and wasterock piles at the Little Bonanza Hg mine. Tailings are present adjacent to a three-pipe retort used to process the Hg ore. The tailings occur in the upper 15 cm of the soil adjacent to the retort and slag from the retort is present on the surface. An area of disturbed soil and rock uphill from the retort was likely formed during construction of a dam that provided water for mining activities. Wasterock in these piles was sampled. The largest amount of tailings is exposed to the west of the retort in the bank of WF Las Tablas Creek. Water, sediment, and biota were sampled from WF Las Tablas Creek, which flows through the mine area. Sample-site locations are shown in figures 10 and 11 and listed in table 1. Samples were collected when streamflow was low and no precipitation had occurred.
Ege, John R.; Carroll, R.D.; Way, R.J.; Magner, J.E.
1969-01-01
USBM/AEC Colorado Core Hole No. 3 (Bronco BR-1) is located in the SW1/4SW1/4SW1/4 sec. 14, T. 1 N., R. 98 W., Rio Blanco County, Colorado. The collar is at a ground elevation of 6,356 feet. The hole was core drilled between depths of 964 and 3,325 feet with a total depth of 3,797 feet. The hole was drilled to investigate geologic, geophysical and hydrological conditions at a possible in situ oil-shale retorting experiment site. The drill hole passed through 1,157 feet of alluvium and the Evacuation Creek Member of the Green River Formation, 1,603 feet of the Parachute Creek Member and penetrated into the Garden Gulch Member of the Green River Formation. In-bole density log/oil yield ratio interpretation indicates that two oil-shale zones exist which yield more than 20 gallons of shale oil per ton of rock; an upper zone lying between 1,271 and 1,750 feet in depth and a lower zone lying between 1,900 and 2,964 feet. Halite (sodium chloride salt) is found between 2,140 and 2,185 feet and nahcolite (sodium bicarbonate salt) between 2,195 and 2,700 feet. Nahcolite was present at one time above 2,195 feet but has been subsequently dissolved out by ground water. The core can be divided into six structural units based upon degree of fracturing. A highly fractured interval is found between 1,646 and 1,899 feet, which coincides with the dissolution or leached nahcolite zone. Physical property tests made on core samples between 1,356 and 3,253 feet give average values of 11,988 psi for uniaxial compressive strength, 1.38 X 10[superscript]6[superscript] psi for static Young's modulus and 11,809 fps for compressional velocity.
Shaffer, Devin L; Arias Chavez, Laura H; Ben-Sasson, Moshe; Romero-Vargas Castrillón, Santiago; Yip, Ngai Yin; Elimelech, Menachem
2013-09-03
In the rapidly developing shale gas industry, managing produced water is a major challenge for maintaining the profitability of shale gas extraction while protecting public health and the environment. We review the current state of practice for produced water management across the United States and discuss the interrelated regulatory, infrastructure, and economic drivers for produced water reuse. Within this framework, we examine the Marcellus shale play, a region in the eastern United States where produced water is currently reused without desalination. In the Marcellus region, and in other shale plays worldwide with similar constraints, contraction of current reuse opportunities within the shale gas industry and growing restrictions on produced water disposal will provide strong incentives for produced water desalination for reuse outside the industry. The most challenging scenarios for the selection of desalination for reuse over other management strategies will be those involving high-salinity produced water, which must be desalinated with thermal separation processes. We explore desalination technologies for treatment of high-salinity shale gas produced water, and we critically review mechanical vapor compression (MVC), membrane distillation (MD), and forward osmosis (FO) as the technologies best suited for desalination of high-salinity produced water for reuse outside the shale gas industry. The advantages and challenges of applying MVC, MD, and FO technologies to produced water desalination are discussed, and directions for future research and development are identified. We find that desalination for reuse of produced water is technically feasible and can be economically relevant. However, because produced water management is primarily an economic decision, expanding desalination for reuse is dependent on process and material improvements to reduce capital and operating costs.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Matthew Bruff; Ned Godshall; Karen Evans
2011-04-30
This Final Scientific/ Technical Report submitted with respect to Project DE-FE0000833 titled 'An Integrated Water Treatment Technology Solution for Sustainable Water Resource Management in the Marcellus Shale' in support of final reporting requirements. This final report contains a compilation of previous reports with the most current data in order to produce one final complete document. The goal of this research was to provide an integrated approach aimed at addressing the increasing water resource challenges between natural gas production and other water stakeholders in shale gas basins. The objective was to demonstrate that the AltelaRain{reg_sign} technology could be successfully deployed inmore » the Marcellus Shale Basin to treat frac flow-back water. That objective has been successfully met.« less
Discourse over a contested technology on Twitter: A case study of hydraulic fracturing.
Hopke, Jill E; Simis, Molly
2015-10-04
High-volume hydraulic fracturing, a drilling simulation technique commonly referred to as "fracking," is a contested technology. In this article, we explore discourse over hydraulic fracturing and the shale industry on the social media platform Twitter during a period of heightened public contention regarding the application of the technology. We study the relative prominence of negative messaging about shale development in relation to pro-shale messaging on Twitter across five hashtags (#fracking, #globalfrackdown, #natgas, #shale, and #shalegas). We analyze the top actors tweeting using the #fracking hashtag and receiving @mentions with the hashtag. Results show statistically significant differences in the sentiment about hydraulic fracturing and shale development across the five hashtags. In addition, results show that the discourse on the main contested hashtag #fracking is dominated by activists, both individual activists and organizations. The highest proportion of tweeters, those posting messages using the hashtag #fracking, were individual activists, while the highest proportion of @mention references went to activist organizations. © The Author(s) 2015.
Fuel Gas Demonstration Plant Program. Volume I. Demonstration plant
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1979-01-01
The objective of this project is for Babcock Contractors Inc. (BCI) to provide process designs, and gasifier retort design for a fuel gas demonstration plant for Erie Mining Company at Hoyt Lake, Minnesota. The fuel gas produced will be used to supplement natural gas and fuel oil for iron ore pellet induration. The fuel gas demonstration plant will consist of five stirred, two-stage fixed-bed gasifier retorts capable of handling caking and non-caking coals, and provisions for the installation of a sixth retort. The process and unit design has been based on operation with caking coals; however, the retorts have beenmore » designed for easy conversion to handle non-caking coals. The demonstration unit has been designed to provide for expansion to a commercial plant (described in Commercial Plant Package) in an economical manner.« less
Retort beef aroma that gives preferable properties to canned beef products and its aroma components.
Migita, Koshiro; Iiduka, Takao; Tsukamoto, Kie; Sugiura, Sayuri; Tanaka, Genichiro; Sakamaki, Gousuke; Yamamoto, Yasufumi; Takeshige, Yusuke; Miyazawa, Toshio; Kojima, Ayako; Nakatake, Tomoko; Okitani, Akihiro; Matsuishi, Masanori
2017-12-01
The objective of this study is to identify the properties and responsible compounds for the aromatic roast odor (retort beef aroma) that commonly occurs in canned beef products and could contribute to their palatability. The optimal temperature for generating retort beef aroma was 121°C. An untrained panel evaluated both uncured corned beef and canned yamato-ni beef and found that they had an aroma that was significantly (P < 0.01) similar to the odor of 121°C-heated beef than 100°C-heated beef. The panel also noted that the aroma of 121°C-heated beef tended to be (P < 0.1) preferable than that of 100°C-heated beef. These results suggest that retort beef aroma is one constituent of palatability in canned beef. GC-MS (gas chromatography-mass spectrometry) analysis of the volatile fraction obtained from 100°C- and 121°C-heated beef showed that the amounts of pyrazine, 2-methylpyrazine and diacetyl were higher in the 121°C-heated beef than in the 100°C-heated beef. GC-sniffing revealed that the odor quality of pyrazines was similar to that of retort beef aroma. Therefore, pyrazines were suggested to be a candidate responsible for the retort beef aroma. Analysis of commercial uncured corned beef and cured corned beef confirmed the presence of pyrazine, 2-methylpyrazine and 2,6-dimethylpyrazine. © 2017 Japanese Society of Animal Science.
Overview of the Development of Australian Combat Ration Packs
2014-12-01
g) Variety B Serve Size (g) Retort Meal Chilli Con Carne 1 x 250 FD Meal Veal Italienne 1 x 110 Instant Oriental Noodles 1 x 74 White Rice 2 x 125...retort pouch meal freeze dried meal flexible retort pouch meal light meals (soup, noodles , steak bar, canned fish) noodles steak bar...Items Common to all HWRP Menus Cracked Pepper Vita Wheat 1x36 g instant coffee 1x3.5 g tea bags# 1x2.5 g cheddar cheese (canned) 1x56 g cappuccino
Understanding public perception of hydraulic fracturing: a case study in Spain.
Costa, D; Pereira, V; Góis, J; Danko, A; Fiúza, A
2017-12-15
Public acceptance is crucial for the implementation of energy technologies. Hydraulic fracturing is a technology widely used in the USA for natural gas production from shale formations, but currently finds strong public opposition worldwide, especially in Europe. Shale gas exploitation and exploration have the potential to significantly reduce import dependency in several countries, including Spain. To better understand public opinion on this issue, this article reports a survey targeting both the entire Spanish population and the inhabitants of the province of Burgos, the location where shale gas exploration permits have already been issued. Results demonstrate that half of the Spanish population opposes shale gas, and this opposition increases in autonomous communities that are closer to possible exploration sites. The results also show that socio-demographic aspects are not strong predictors of opposition. In addition, Burgos' population show different behaviours toward shale gas that demonstrates that proximity and prospect of shale gas development affects opinion. Finally, there is still a great level of unfamiliarity with high volume hydraulic fracturing and shale gas in both populations sampled. Copyright © 2017 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Kumar, R.; George, Johnsy; Rajamanickam, R.; Nataraju, S.; Sabhapathy, S. N.; Bawa, A. S.
2011-12-01
Effect of irradiation in combination with retort processing on the shelf life and safety aspects of an ethnic Indian food product like vegetable pulav was investigated. Gamma irradiation of RTE vegetable pulav was carried out at different dosage rates with 60Co followed by retort processing. The combination processed samples were analysed for microbiological, chemical and sensory characteristics. Microbiological analysis indicated that irradiation in combination with retort processing has significantly reduced the microbial loads whereas the chemical and sensory analysis proved that this combination processing is effective in retaining the properties even after storage for one year at ambient conditions. The results also indicated that a minimum irradiation dosage at 4.0 kGy along with retort processing at an F0 value of 2.0 is needed to achieve the desired shelf life with improved organoleptic qualities.
Shale Gas Implications for C2-C3 Olefin Production: Incumbent and Future Technology.
Stangland, Eric E
2018-06-07
Substantial natural gas liquids recovery from tight shale formations has produced a significant boon for the US chemical industry. As fracking technology improves, shale liquids may represent the same for other geographies. As with any major industry disruption, the advent of shale resources permits both the chemical industry and the community an excellent opportunity to have open, foundational discussions on how both public and private institutions should research, develop, and utilize these resources most sustainably. This review summarizes current chemical industry processes that use ethane and propane from shale gas liquids to produce the two primary chemical olefins of the industry: ethylene and propylene. It also discusses simplified techno-economics related to olefins production from an industry perspective, attempting to provide a mutually beneficial context in which to discuss the next generation of sustainable olefin process development.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Skrinak, V.M.
The Eastern Devonian Gas Shales Technology Review is a technology transfer vehicle designed to keep industry and research organizations aware of major happenings in the shales. Four issues were published, and the majority of the readership was found to be operators. Under the other major task in this project, areal and analytic analyses of the basin resulted in reducing the study area by 30% while defining a rectangular coordinate system for the basin. Shale-well cost and economic models were developed and validated, and a simplified flow model was prepared.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Middleton, Richard Stephen
Shale gas and hydraulic refracturing has revolutionized the US energy sector in terms of prices, consumption, and CO 2 emissions. However, key questions remain including environmental concerns and extraction efficiencies that are leveling off. For the first time, we identify key discoveries, lessons learned, and recommendations from this shale gas revolution through extensive data mining and analysis of 23 years of production from 20,000 wells. Discoveries include identification of a learning-bydoing process where disruptive technology innovation led to a doubling in shale gas extraction, how refracturing with emerging technologies can transform existing wells, and how overall shale gas production ismore » actually dominated by long-term tail production rather than the high-profile initial exponentially-declining production in the first 12 months. We hypothesize that tail production can be manipulated, through better fracturing techniques and alternative working fluids such as CO 2, to increase shale gas recovery and minimize environmental impacts such as through carbon sequestration.« less
The shale gas revolution: Barriers, sustainability, and emerging opportunities
DOE Office of Scientific and Technical Information (OSTI.GOV)
Middleton, Richard S.; Gupta, Rajan; Hyman, Jeffrey D.
Shale gas and hydraulic refracturing has revolutionized the US energy sector in terms of prices, consumption, and CO 2 emissions. However, key questions remain including environmental concerns and extraction efficiencies that are leveling off. For the first time, we identify key discoveries, lessons learned, and recommendations from this shale gas revolution through extensive data mining and analysis of 23 years of production from 20,000 wells. Discoveries include identification of a learning-by-doing process where disruptive technology innovation led to a doubling in shale gas extraction, how refracturing with emerging technologies can transform existing wells, and how overall shale gas production ismore » actually dominated by long-term tail production rather than the high-profile initial exponentially-declining production in the first 12 months. We hypothesize that tail production can be manipulated, through better fracturing techniques and alternative working fluids such as CO 2, to increase shale gas recovery and minimize environmental impacts such as through carbon sequestration.« less
The shale gas revolution: Barriers, sustainability, and emerging opportunities
Middleton, Richard S.; Gupta, Rajan; Hyman, Jeffrey D.; ...
2017-08-01
Shale gas and hydraulic refracturing has revolutionized the US energy sector in terms of prices, consumption, and CO 2 emissions. However, key questions remain including environmental concerns and extraction efficiencies that are leveling off. For the first time, we identify key discoveries, lessons learned, and recommendations from this shale gas revolution through extensive data mining and analysis of 23 years of production from 20,000 wells. Discoveries include identification of a learning-by-doing process where disruptive technology innovation led to a doubling in shale gas extraction, how refracturing with emerging technologies can transform existing wells, and how overall shale gas production ismore » actually dominated by long-term tail production rather than the high-profile initial exponentially-declining production in the first 12 months. We hypothesize that tail production can be manipulated, through better fracturing techniques and alternative working fluids such as CO 2, to increase shale gas recovery and minimize environmental impacts such as through carbon sequestration.« less
Meredith-Dennis, Laura; Xu, Gege; Goonatilleke, Elisha; Lebrilla, Carlito B; Underwood, Mark A; Smilowitz, Jennifer T
2018-02-01
When human milk is unavailable, banked milk is recommended for feeding premature infants. Milk banks use processes to eliminate pathogens; however, variability among methods exists. Research aim: The aim of this study was to compare the macronutrient (protein, carbohydrate, fat, energy), immune-protective protein, and human milk oligosaccharide (HMO) content of human milk from three independent milk banks that use pasteurization (Holder vs. vat techniques) or retort sterilization. Randomly acquired human milk samples from three different milk banks ( n = 3 from each bank) were analyzed for macronutrient concentrations using a Fourier transform mid-infrared spectroscopy human milk analyzer. The concentrations of IgA, IgM, IgG, lactoferrin, lysozyme, α-lactalbumin, α antitrypsin, casein, and HMO were analyzed by mass spectrometry. The concentrations of protein and fat were significantly ( p < .05) less in the retort sterilized compared with the Holder and vat pasteurized samples, respectively. The concentrations of all immune-modulating proteins were significantly ( p < .05) less in the retort sterilized samples compared with vat and/or Holder pasteurized samples. The total HMO concentration and HMOs containing fucose, sialic acid, and nonfucosylated neutral sugars were significantly ( p < .05) less in retort sterilized compared with Holder pasteurized samples. Random milk samples that had undergone retort sterilization had significantly less immune-protective proteins and total and specific HMOs compared with samples that had undergone Holder and vat pasteurization. These data suggest that further analysis of the effect of retort sterilization on human milk components is needed prior to widespread adoption of this process.
Benefits of applying technology to Devonian shale wells. Topical report, July-December 1992
DOE Office of Scientific and Technical Information (OSTI.GOV)
Voneiff, G.W.; Gatens, J.M.
1993-01-01
The report summarizes the benefits of applying technology to Devonian Shales wells in the Appalachian Basin. The results of the work suggest that an intermediate level of technology application, with an incremental cost of $6,700/well, is best for routine application in the Devonian Shales. The technology level uses conventional well tests, rock mechanical properties logs, a borehole camera, and a moderate logging suite. Most of these tools and technologies should be used on only a portion of the wells in multi-well projects, reducing the per well cost of the technology. Determining the correct reservoir description is critical to optimizing themore » stimulation treatment. The most critical reservoir properties are bulk and matrix permeabilities, net pay, stress profile, and natural fracture spacing in the direction perpendicular to induced hydraulic fractures. Applying technology to improve the accuracy of the reservoir description can significantly increase well profitability.« less
Ferreira, Angélica B.; Ribeiro, Andreza P.; Ferreira, Maurício L.; Kniess, Cláudia T.; Quaresma, Cristiano C.; Lafortezza, Raffaele; Santos, José O.; Saiki, Mitiko; Saldiva, Paulo H.
2017-01-01
Industrialization in developing countries associated with urban growth results in a number of economic benefits, especially in small or medium-sized cities, but leads to a number of environmental and public health consequences. This problem is further aggravated when adequate infrastructure is lacking to monitor the environmental impacts left by industries and refineries. In this study, a new protocol was designed combining biomonitoring and geostatistics to evaluate the possible effects of shale industry emissions on human health and wellbeing. Futhermore, the traditional and expensive air quality method based on PM2.5 measuring was also used to validate the low-cost geostatistical approach. Chemical analysis was performed using Energy Dispersive X-ray Fluorescence Spectrometer (EDXRF) to measure inorganic elements in tree bark and shale retorted samples in São Mateus do Sul city, Southern Brazil. Fe, S, and Si were considered potential pollutants in the study area. Distribution maps of element concentrations were generated from the dataset and used to estimate the spatial behavior of Fe, S, and Si and the range from their hot spot(s), highlighting the regions sorrounding the shale refinery. This evidence was also demonstrated in the measurements of PM2.5 concentrations, which are in agreement with the information obtained from the biomonitoring and geostatistical model. Factor and descriptive analyses performed on the concentrations of tree bark contaminants suggest that Fe, S, and Si might be used as indicators of industrial emissions. The number of cases of respiratory diseases obtained from local basic health unit were used to assess a possible correlation between shale refinery emissions and cases of repiratory disease. These data are public and may be accessed on the website of the the Brazilian Ministry of Health. Significant associations were found between the health data and refinery activities. The combination of the spatial characterization of air pollution and clinical health data revealed that adverse effects were significant for individuals over 38 years of age. These results also suggest that a protocol designed to monitor urban air quality may be an effective and low-cost strategy in environmentally contaminated cities, especially in low- and middle-income countries. PMID:28979271
Cornelissen, Gerard; Pandit, Naba Raj; Taylor, Paul; Pandit, Bishnu Hari; Sparrevik, Magnus; Schmidt, Hans Peter
2016-01-01
Pyrolysis of organic waste or woody materials yields charcoal, a stable carbonaceous product that can be used for cooking or mixed into soil, in the latter case often termed "biochar". Traditional kiln technologies for charcoal production are slow and without treatment of the pyrolysis gases, resulting in emissions of gases (mainly methane and carbon monoxide) and aerosols that are both toxic and contribute to greenhouse gas emissions. In retort kilns pyrolysis gases are led back to a combustion chamber. This can reduce emissions substantially, but is costly and consumes a considerable amount of valuable ignition material such as wood during start-up. To overcome these problems, a novel type of technology, the Kon-Tiki flame curtain pyrolysis, is proposed. This technology combines the simplicity of the traditional kiln with the combustion of pyrolysis gases in the flame curtain (similar to retort kilns), also avoiding use of external fuel for start-up. A field study in Nepal using various feedstocks showed char yields of 22 ± 5% on a dry weight basis and 40 ± 11% on a C basis. Biochars with high C contents (76 ± 9%; n = 57), average surface areas (11 to 215 m2 g-1), low EPA16-PAHs (2.3 to 6.6 mg kg-1) and high CECs (43 to 217 cmolc/kg)(average for all feedstocks, mainly woody shrubs) were obtained, in compliance with the European Biochar Certificate (EBC). Mean emission factors for the flame curtain kilns were (g kg-1 biochar for all feedstocks); CO2 = 4300 ± 1700, CO = 54 ± 35, non-methane volatile organic compounds (NMVOC) = 6 ± 3, CH4 = 30 ± 60, aerosols (PM10) = 11 ± 15, total products of incomplete combustion (PIC) = 100 ± 83 and NOx = 0.4 ± 0.3. The flame curtain kilns emitted statistically significantly (p<0.05) lower amounts of CO, PIC and NOx than retort and traditional kilns, and higher amounts of CO2. With benefits such as high quality biochar, low emission, no need for start-up fuel, fast pyrolysis time and, importantly, easy and cheap construction and operation the flame curtain technology represent a promising possibility for sustainable rural biochar production.
Cornelissen, Gerard; Pandit, Naba Raj; Taylor, Paul; Pandit, Bishnu Hari; Sparrevik, Magnus; Schmidt, Hans Peter
2016-01-01
Flame Curtain Biochar Kilns Pyrolysis of organic waste or woody materials yields charcoal, a stable carbonaceous product that can be used for cooking or mixed into soil, in the latter case often termed "biochar". Traditional kiln technologies for charcoal production are slow and without treatment of the pyrolysis gases, resulting in emissions of gases (mainly methane and carbon monoxide) and aerosols that are both toxic and contribute to greenhouse gas emissions. In retort kilns pyrolysis gases are led back to a combustion chamber. This can reduce emissions substantially, but is costly and consumes a considerable amount of valuable ignition material such as wood during start-up. To overcome these problems, a novel type of technology, the Kon-Tiki flame curtain pyrolysis, is proposed. This technology combines the simplicity of the traditional kiln with the combustion of pyrolysis gases in the flame curtain (similar to retort kilns), also avoiding use of external fuel for start-up. Biochar Characteristics A field study in Nepal using various feedstocks showed char yields of 22 ± 5% on a dry weight basis and 40 ± 11% on a C basis. Biochars with high C contents (76 ± 9%; n = 57), average surface areas (11 to 215 m2 g-1), low EPA16—PAHs (2.3 to 6.6 mg kg-1) and high CECs (43 to 217 cmolc/kg)(average for all feedstocks, mainly woody shrubs) were obtained, in compliance with the European Biochar Certificate (EBC). Gas Emission Factors Mean emission factors for the flame curtain kilns were (g kg-1 biochar for all feedstocks); CO2 = 4300 ± 1700, CO = 54 ± 35, non-methane volatile organic compounds (NMVOC) = 6 ± 3, CH4 = 30 ± 60, aerosols (PM10) = 11 ± 15, total products of incomplete combustion (PIC) = 100 ± 83 and NOx = 0.4 ± 0.3. The flame curtain kilns emitted statistically significantly (p<0.05) lower amounts of CO, PIC and NOx than retort and traditional kilns, and higher amounts of CO2. Implications With benefits such as high quality biochar, low emission, no need for start-up fuel, fast pyrolysis time and, importantly, easy and cheap construction and operation the flame curtain technology represent a promising possibility for sustainable rural biochar production. PMID:27191397
Western oil shale development: a technology assessment. Volume 1. Main report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1981-11-01
The general goal of this study is to present the prospects of shale oil within the context of (1) environmental constraints, (2) available natural and economic resources, and (3) the characteristics of existing and emerging technology. The objectives are: to review shale oil technologies objectively as a means of supplying domestically produced fuels within environmental, social, economic, and legal/institutional constraints; using available data, analyses, and experienced judgment, to examine the major points of uncertainty regarding potential impacts of oil shale development; to resolve issues where data and analyses are compelling or where conclusions can be reached on judgmental grounds; tomore » specify issues which cannot be resolved on the bases of the data, analyses, and experienced judgment currently available; and when appropriate and feasible, to suggest ways for the removal of existing uncertainties that stand in the way of resolving outstanding issues.« less
NASA Astrophysics Data System (ADS)
Shan, Jia
As its role in satisfying the energy demand of the U.S. and as a clean fuel has become more significant than ever, the shale gas production in the U.S. has gained increasing momentum over recent years. Thus, effective and environmentally friendly methods to extract shale gas are critical. Hydraulic fracturing has been proven to be efficient in the production of shale gas. However, environmental issues such as underground water contamination and high usage of water make this technology controversial. A potential technology to eliminate the environmental issues concerning water usage and contamination is to use blast fracturing, which uses explosives to create fractures. It can be further aided by HEGF and multi-pulse pressure loading technology, which causes less crushing effect near the wellbore and induces longer fractures. Radial drilling is another relatively new technology that can bypass damage zones due to drilling and create a larger drainage area through drilling horizontal wellbores. Blast fracturing and radial drilling both have the advantage of cost saving. The successful combination of blast fracturing and radial drilling has a great potential for improving U.S. shale gas production. An analytical productivity model was built in this study, considering linear flow from the reservoir rock to the fracture face, to analyze factors affecting shale gas production from radial lateral wells with shockwave completion. Based on the model analyses, the number of fractures per lateral is concluded to be the most effective factor controlling the productivity index of blast-fractured radial lateral wells. This model can be used for feasibility studies of replacing hydraulic fracturing by blast fracturing in shale gas well completions. Prediction of fracture geometry is recommended for future studies.
Dry Volume Fracturing Simulation of Shale Gas Reservoir
NASA Astrophysics Data System (ADS)
Xu, Guixi; Wang, Shuzhong; Luo, Xiangrong; Jing, Zefeng
2017-11-01
Application of CO2 dry fracturing technology to shale gas reservoir development in China has advantages of no water consumption, little reservoir damage and promoting CH4 desorption. This paper uses Meyer simulation to study complex fracture network extension and the distribution characteristics of shale gas reservoirs in the CO2 dry volume fracturing process. The simulation results prove the validity of the modified CO2 dry fracturing fluid used in shale volume fracturing and provides a theoretical basis for the following study on interval optimization of the shale reservoir dry volume fracturing.
Distributor means for charging particulate material into receptacles
Greaves, Melvin J.
1977-06-14
Disclosed are receptacles, such as shaft furnaces illustrated by a blast furnace and an upright oil shale retort, embodying rotatable charge distributor means for distributing particulate charge material in the furnace, which charge distributor means can provide a high uniformity of distribution of various sizes of particles and also can provide and maintain a stock line of desired contour and heighth in the receptacle. The distributor means includes a hopper having rigidly fixed to it a plurality of downwardly extending chutes with lower discharge portions that discharge in concentric circular zones at the stock line. The distributor means includes a segmented portion at the juncture of the hopper and the chutes that divides the charge material discharged into the hopper in proportion to the area of the circular zone at the stock line that is fed by the chute. The distributor means embodies means for providing mass flow of the particulate charge material through the chutes to the stock line and for avoiding segregation between larger and smaller particles of charge material deposited at the stock line.
Studies of the Permian Phosphoria Formation and related rocks, Great Basin-Rocky Mountain region
Wardlaw, Bruce R.
1979-01-01
PART A: The transgression of the Permian Retort Phosphatic Shale Member of the Phosphoria Formation is dated by the occurrence of diagnostic brachiopods. The complex pattern of this transgression reflects the paleogeography and indicates two initial basins of deposition: one in southwestern Montana and one in southeastern Idaho. PART B: A new formation is proposed for middle Permian rocks of a transitional facies positioned laterally between the Rex Chert Member of the Phosphoria Formation in northeastern Utah and southeastern Idaho and the Plympton Formation in northeastern Nevada and northwestern Utah. PART C: The relationships of the Permian Park City Group to the Phosphoria and Park City Formations are clarified by the stratigraphy of four sections in northwestern Utah, northeastern Nevada, and southern Idaho. PART D: Five biostratigraphic zones based on the distribution of brachiopods and conodonts are proposed for the Park City Group. They are: the Peniculauris ivesi-Neostreptognathodus prayi Zone, the Peniculauris bassi-Neostreptognathodus sulcoplicatus Zone, the Peniculauris bassi-Neostreptognathodus sp. C Zone, the Thamnosia depressa Zone, and the Yakovlevia. multistriata-Neogondolella bitteri Zone. They range in age from Leonardian to Wordian.
Clean and Secure Energy from Domestic Oil Shale and Oil Sands Resources
DOE Office of Scientific and Technical Information (OSTI.GOV)
Spinti, Jennifer; Birgenheier, Lauren; Deo, Milind
This report summarizes the significant findings from the Clean and Secure Energy from Domestic Oil Shale and Oil Sands Resources program sponsored by the Department of Energy through the National Energy Technology Laboratory. There were four principle areas of research; Environmental, legal, and policy issues related to development of oil shale and oil sands resources; Economic and environmental assessment of domestic unconventional fuels industry; Basin-scale assessment of conventional and unconventional fuel development impacts; and Liquid fuel production by in situ thermal processing of oil shale Multiple research projects were conducted in each area and the results have been communicated viamore » sponsored conferences, conference presentations, invited talks, interviews with the media, numerous topical reports, journal publications, and a book that summarizes much of the oil shale research relating to Utah’s Uinta Basin. In addition, a repository of materials related to oil shale and oil sands has been created within the University of Utah’s Institutional Repository, including the materials generated during this research program. Below is a listing of all topical and progress reports generated by this project and submitted to the Office of Science and Technical Information (OSTI). A listing of all peer-reviewed publications generated as a result of this project is included at the end of this report; Geomechanical and Fluid Transport Properties 1 (December, 2015); Validation Results for Core-Scale Oil Shale Pyrolysis (February, 2015); and Rates and Mechanisms of Oil Shale Pyrolysis: A Chemical Structure Approach (November, 2014); Policy Issues Associated With Using Simulation to Assess Environmental Impacts (November, 2014); Policy Analysis of the Canadian Oil Sands Experience (September, 2013); V-UQ of Generation 1 Simulator with AMSO Experimental Data (August, 2013); Lands with Wilderness Characteristics, Resource Management Plan Constraints, and Land Exchanges (March, 2012); Conjunctive Surface and Groundwater Management in Utah: Implications for Oil Shale and Oil Sands Development (May, 2012); Development of CFD-Based Simulation Tools for In Situ Thermal Processing of Oil Shale/Sands (February, 2012); Core-Based Integrated Sedimentologic, Stratigraphic, and Geochemical Analysis of the Oil Shale Bearing Green River Formation, Uinta Basin, Utah (April, 2011); Atomistic Modeling of Oil Shale Kerogens and Asphaltenes Along with their Interactions with the Inorganic Mineral Matrix (April, 2011); Pore Scale Analysis of Oil Shale/Sands Pyrolysis (March, 2011); Land and Resource Management Issues Relevant to Deploying In-Situ Thermal Technologies (January, 2011); Policy Analysis of Produced Water Issues Associated with In-Situ Thermal Technologies (January, 2011); and Policy Analysis of Water Availability and Use Issues for Domestic Oil Shale and Oil Sands Development (March, 2010)« less
Code of Federal Regulations, 2010 CFR
2010-04-01
... steam into the closed retort and the time when the retort reaches the required processing temperature..., school, penal, or other organization) processing of food, including pet food. Persons engaged in the... flames to achieve sterilization temperatures. A holding period in a heated section may follow the initial...
Lethality of Rendang packaged in multilayer retortable pouch with sterilization process
NASA Astrophysics Data System (ADS)
Praharasti, A. S.; Kusumaningrum, A.; Frediansyah, A.; Nurhikmat, A.; Khasanah, Y.; Suprapedi
2017-01-01
Retort Pouch had become a choice to preserve foods nowadays, besides the used of the can. Both had their own advantages, and Retort Pouch became more popular for the reason of cheaper and easier to recycle. General Method usually used to estimate the lethality of commercial heat sterilization process. Lethality value wa s used for evaluating the efficacy of the thermal process. This study aimed to find whether different layers of pouch materials affect the lethality value and to find differences lethality in two types of multilayer retort pouch, PET/Aluminum Foil/Nylon/RCPP and PET/Nylon/Modified Aluminum/CPP. The result showed that the different layer arrangement was resulted different Sterilization Value (SV). PET/Nylon/Modified Aluminum/CPP had better heat penetration, implied by the higher value of lethality. PET/Nylon/Modified Aluminum/CPP had the lethality value of 6,24 minutes, whereas the lethality value of PET/Aluminum Foil/Nylon/RCPP was 3,54 minutes.
NASA Astrophysics Data System (ADS)
Wang, B.
2013-12-01
Shale gas is natural gas that is found trapped within shale formations. And it has become an increasingly important source of natural gas in the United States since start of this century. Because shales ordinarily have insufficient permeability to allow significant fluid flow to a well bore, so gas production in commercial quantities requires fractures to provide permeability. Usually, the shale gas boom is due to modern technology in hydraulic fracturing to create extensive artificial fractures around well bores. In the same time, horizontal drilling is often used with shale gas wells, to create maximum borehole surface area in contact with shale. However, the extraction and use of shale gas can affect the environment through the leaking of extraction into water supplies, and the pollution caused by improper processing of natural gas. The challenge to prevent pollution is that shale gas extractions varies widely even in the two wells that in the same project. What's more, the enormous amounts of water will be needed for drilling, while some of the largest sources of shale gas are found in deserts. So if we can find some technologies to substitute the water in the fracking process, we will not only solve the environmental problems, but also the water supply issues. There are already some methods that have been studied for this purpose, like the CO2 fracking process by Tsuyoshi Ishida et al. I will also propose our new method called air-pressure system for fracking the shales without using water in the fracking process at last.
Understanding Shale Gas: Recent Progress and Remaining Challenges
Striolo, Alberto; Cole, David R.
2017-08-27
Because of a number of technological advancements, unconventional hydrocarbons, and in particular shale gas, have transformed the US economy. Much is being learned, as demonstrated by the reduced cost of extracting shale gas in the US over the past five years. However, a number of challenges still need to be addressed. Many of these challenges represent grand scientific and technological tasks, overcoming which will have a number of positive impacts, ranging from the reduction of the environmental footprint of shale gas production to improvements and leaps forward in diverse sectors, including chemical manufacturing and catalytic transformations. This review addresses recentmore » advancements in computational and experimental approaches, which led to improved understanding of, in particular, structure and transport of fluids, including hydrocarbons, electrolytes, water, and CO 2 in heterogeneous subsurface rocks such as those typically found in shale formations. Finally, the narrative is concluded with a suggestion of a few research directions that, by synergistically combining computational and experimental advances, could allow us to overcome some of the hurdles that currently hinder the production of hydrocarbons from shale formations.« less
Lewan, Michael D.; Dolan, Michael P.; Curtis, John B.
2014-01-01
The amount of oil that maturing source rocks expel is expressed as their expulsion efficiency, which is usually stated in milligrams of expelled oil per gram of original total organic carbon (TOCO). Oil-expulsion efficiency can be determined by heating thermally immature source rocks in the presence of liquid water (i.e., hydrous pyrolysis) at temperatures between 350°C and 365°C for 72 hr. This pyrolysis method generates oil that is compositionally similar to natural crude oil and expels it by processes operative in the subsurface. Consequently, hydrous pyrolysis provides a means to determine oil-expulsion efficiencies and the rock properties that influence them. Smectite in source rocks has previously been considered to promote oil generation and expulsion and is the focus of this hydrous-pyrolysis study involving a representative sample of smectite-rich source rock from the Eocene Kreyenhagen Shale in the San Joaquin Basin of California. Smectite is the major clay mineral (31 wt. %) in this thermally immature sample, which contains 9.4 wt. % total organic carbon (TOC) comprised of type II kerogen. Compared to other immature source rocks that lack smectite as their major clay mineral, the expulsion efficiency of the Kreyenhagen Shale was significantly lower. The expulsion efficiency of the Kreyenhagen whole rock was reduced 88% compared to that of its isolated kerogen. This significant reduction is attributed to bitumen impregnating the smectite interlayers in addition to the rock matrix. Within the interlayers, much of the bitumen is converted to pyrobitumen through crosslinking instead of oil through thermal cracking. As a result, smectite does not promote oil generation but inhibits it. Bitumen impregnation of the rock matrix and smectite interlayers results in the rock pore system changing from water wet to bitumen wet. This change prevents potassium ion (K+) transfer and dissolution and precipitation reactions needed for the conversion of smectite to illite. As a result, illitization only reaches 35% to 40% at 310°C for 72 hr and remains unchanged to 365°C for 72 hr. Bitumen generation before or during early illitization in these experiments emphasizes the importance of knowing when and to what degree illitization occurs in natural maturation of a smectite-rich source rock to determine its expulsion efficiency. Complete illitization prior to bitumen generation is common for Paleozoic source rocks (e.g., Woodford Shale and Retort Phosphatic Shale Member of the Phosphoria Formation), and expulsion efficiencies can be determined on immature samples by hydrous pyrolysis. Conversely, smectite is more common in Cenozoic source rocks like the Kreyenhagen Shale, and expulsion efficiencies determined by hydrous pyrolysis need to be made on samples that reflect the level of illitization at or near bitumen generation in the subsurface.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1976-06-01
Oil shale technology has been divided into two sub-technologies: surfaceprocessing and in-situ processing. Definition of the research programs is essentially an amplification of the five King-Muir categories: (A) pollutants: characterization, measurement, and monitoring; (B) physical and chemical processes and effects; (C) health effects; (D) ecological processes and effects; and (E) integrated assessment. Twenty-three biomedical and environmental research projects are described as to program title, scope, milestones, technology time frame, program unit priority, and estimated program unit cost.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Striolo, Alberto; Cole, David R.
Because of a number of technological advancements, unconventional hydrocarbons, and in particular shale gas, have transformed the US economy. Much is being learned, as demonstrated by the reduced cost of extracting shale gas in the US over the past five years. However, a number of challenges still need to be addressed. Many of these challenges represent grand scientific and technological tasks, overcoming which will have a number of positive impacts, ranging from the reduction of the environmental footprint of shale gas production to improvements and leaps forward in diverse sectors, including chemical manufacturing and catalytic transformations. This review addresses recentmore » advancements in computational and experimental approaches, which led to improved understanding of, in particular, structure and transport of fluids, including hydrocarbons, electrolytes, water, and CO 2 in heterogeneous subsurface rocks such as those typically found in shale formations. Finally, the narrative is concluded with a suggestion of a few research directions that, by synergistically combining computational and experimental advances, could allow us to overcome some of the hurdles that currently hinder the production of hydrocarbons from shale formations.« less
Shale Gas Geomechanics for Development and Performance of Unconventional Reservoirs
NASA Astrophysics Data System (ADS)
Domonik, Andrzej; Łukaszewski, Paweł; Wilczyński, Przemysław; Dziedzic, Artur; Łukasiak, Dominik; Bobrowska, Alicja
2017-04-01
Mechanical properties of individual shale formations are predominantly determined by their lithology, which reflects sedimentary facies distribution, and subsequent diagenetic and tectonic alterations. Shale rocks may exhibit complex elasto-viscoplastic deformation mechanisms depending on the rate of deformation and the amount of clay minerals, also bearing implications for subcritical crack growth and heterogeneous fracture network development. Thus, geomechanics for unconventional resources differs from conventional reservoirs due to inelastic matrix behavior, stress sensitivity, rock anisotropy and low matrix permeability. Effective horizontal drilling and hydraulic fracturing technologies are required to obtain and maintain high performance. Success of these techniques strongly depends on the geomechanical investigations of shales. An inelastic behavior of shales draws increasing attention of investigators [1], due to its role in stress relaxation between fracturing phases. A strong mechanical anisotropy in the vertical plane and a lower and more variable one in the horizontal plane are characteristic for shale rocks. The horizontal anisotropy plays an important role in determining the direction and effectiveness of propagation of technological hydraulic fractures. Non-standard rock mechanics laboratory experiments are being applied in order to obtain the mechanical properties of shales that have not been previously studied in Poland. Novel laboratory investigations were carried out to assess the creep parameters and to determine time-dependent viscoplastic deformation of shale samples, which can provide a limiting factor to tectonic stresses and control stress change caused by hydraulic fracturing. The study was supported by grant no.: 13-03-00-501-90-472946 "An integrated geomechanical investigation to enhance gas extraction from the Pomeranian shale formations", funded by the National Centre for Research and Development (NCBiR). References: Ch. Chang M. D. Zoback. 2009. Viscous creep in room-dried unconsolidated Gulf of Mexico shale (I): Experimental results. Journal of Petroleum Science and Engineering 69: 239-246.
Western Greece unconventional hydrocarbon potential from oil shale and shale gas reservoirs
NASA Astrophysics Data System (ADS)
Karakitsios, Vasileios; Agiadi, Konstantina
2013-04-01
It is clear that we are gradually running out of new sedimentary basins to explore for conventional oil and gas and that the reserves of conventional oil, which can be produced cheaply, are limited. This is the reason why several major oil companies invest in what are often called unconventional hydrocarbons: mainly oil shales, heavy oil, tar sand and shale gas. In western Greece exist important oil and gas shale reservoirs which must be added to its hydrocarbon potential1,2. Regarding oil shales, Western Greece presents significant underground immature, or close to the early maturation stage, source rocks with black shale composition. These source rock oils may be produced by applying an in-situ conversion process (ICP). A modern technology, yet unproven at a commercial scale, is the thermally conductive in-situ conversion technology, developed by Shell3. Since most of western Greece source rocks are black shales with high organic content, those, which are immature or close to the maturity limit have sufficient thickness and are located below 1500 meters depth, may be converted artificially by in situ pyrolysis. In western Greece, there are several extensive areas with these characteristics, which may be subject of exploitation in the future2. Shale gas reservoirs in Western Greece are quite possibly present in all areas where shales occur below the ground-water level, with significant extent and organic matter content greater than 1%, and during their geological history, were found under conditions corresponding to the gas window (generally at depths over 5,000 to 6,000m). Western Greece contains argillaceous source rocks, found within the gas window, from which shale gas may be produced and consequently these rocks represent exploitable shale gas reservoirs. Considering the inevitable increase in crude oil prices, it is expected that at some point soon Western Greece shales will most probably be targeted. Exploration for conventional petroleum reservoirs, through the interpretation of seismic profiles and the surface geological data, will simultaneously provide the subsurface geometry of the unconventional reservoirs. Their exploitation should follow that of conventional hydrocarbons, in order to benefit from the anticipated technological advances, eliminating environmental repercussions. As a realistic approach, the environmental consequences of the oil shale and shale gas exploitation to the natural environment of western Greece, which holds other very significant natural resources, should be delved into as early as possible. References 1Karakitsios V. & Rigakis N. 2007. Evolution and Petroleum Potential of Western Greece. J.Petroleum Geology, v. 30, no. 3, p. 197-218. 2Karakitsios V. 2013. Western Greece and Ionian Sea petroleum systems. AAPG Bulletin, in press. 3Bartis J.T., Latourrette T., Dixon L., Peterson D.J., Cecchine G. 2005. Oil Shale Development in the United States: Prospect and Policy Issues. Prepared for the National Energy Tech. Lab. of the U.S. Dept Energy. RAND Corporation, 65 p.
The enrichment behavior of natural radionuclides in pulverized oil shale-fired power plants.
Vaasma, Taavi; Kiisk, Madis; Meriste, Tõnis; Tkaczyk, Alan Henry
2014-12-01
The oil shale industry is the largest producer of NORM (Naturally Occurring Radioactive Material) waste in Estonia. Approximately 11-12 million tons of oil shale containing various amounts of natural radionuclides is burned annually in the Narva oil shale-fired power plants, which accounts for approximately 90% of Estonian electricity production. The radionuclide behavior characteristics change during the fuel combustion process, which redistributes the radionuclides between different ash fractions. Out of 24 operational boilers in the power plants, four use circulating fluidized bed (CFB) technology and twenty use pulverized fuel (PF) technology. Over the past decade, the PF boilers have been renovated, with the main objective to increase the efficiency of the filter systems. Between 2009 and 2012, electrostatic precipitators (ESP) in four PF energy blocks were replaced with novel integrated desulphurization technology (NID) for the efficient removal of fly ash and SO2 from flue gases. Using gamma spectrometry, activity concentrations and enrichment factors for the (238)U ((238)U, (226)Ra, (210)Pb) and (232)Th ((232)Th, (228)Ra) family radionuclides as well as (40)K were measured and analyzed in different PF boiler ash fractions. The radionuclide activity concentrations in the ash samples increased from the furnace toward the back end of the flue gas duct. The highest values in different PF boiler ash fractions were in the last field of the ESP and in the NID ash, where radionuclide enrichment factors were up to 4.2 and 3.3, respectively. The acquired and analyzed data on radionuclide activity concentrations in different PF boiler ashes (operating with an ESP and a NID system) compared to CFB boiler ashes provides an indication that changes in the fuel (oil shale) composition and boiler working parameters, as well as technological enhancements in Estonian oil shale fired power plants, have had a combined effect on the distribution patterns of natural radionuclides in the oil shale combustion products. Copyright © 2014 Elsevier Ltd. All rights reserved.
Kirschbaum, M.A.; Lillis, P.G.; Roberts, L.N.R.
2007-01-01
The Phosphoria Total Petroleum System (TPS) encompasses the entire Wind River Basin Province, an area of 4.7 million acres in central Wyoming. The source rocks most likely are black, organic-rich shales of the Meade Peak and Retort Phosphatic Shale Members of the Permian Phosphoria Formation located in the Wyoming and Idaho thrust belt to the west and southwest of the province. Petroleum was generated and expelled during Jurassic and Cretaceous time in westernmost Wyoming and is interpreted to have migrated into the province through carrier beds of the Pennsylvanian Tensleep Sandstone where it was preserved in hypothesized regional stratigraphic traps in the Tensleep and Permian Park City Formation. Secondary migration occurred during the development of structural traps associated with the Laramide orogeny. The main reservoirs are in the Tensleep Sandstone and Park City Formation and minor reservoirs are in the Mississippian Madison Limestone, Mississippian-Pennsylvanian Amsden Formation, Triassic Chugwater Group, and Jurassic Nugget Sandstone and Sundance Formation. The traps are sealed by shale or evaporite beds of the Park City, Amsden, and Triassic Dinwoody Formations, Triassic Chugwater Group, and Jurassic Gypsum Spring Formation. A single conventional oil and gas assessment unit (AU), the Tensleep-Park City AU, was defined for the Phosphoria TPS. Both the AU and TPS cover the entire Wind River Basin Province. Oil is produced from 18 anticlinal fields, the last of which was discovered in 1957, and the possibility of discovering new structural oil accumulations is considered to be relatively low. Nonassociated gas is produced from only two fields, but may be underexplored in the province. The discovery of new gas is more promising, but will be from deep structures. The bulk of new oil and gas accumulations is dependent on the discovery of hypothesized stratigraphic traps in isolated carbonate reservoirs of the Park City Formation. Mean resource estimates for the Tensleep-Park City Conventional Oil and Gas AU total 18 million barrels of oil, 294 billion cubic feet of gas, and 5.9 million barrels of natural gas liquids.
ERIC Educational Resources Information Center
Schafft, Kai A.; Biddle, Catharine
2014-01-01
Innovations associated with gas and oil drilling technology, including new hydraulic fracturing and horizontal drilling techniques, have recently led to dramatic boomtown development in many rural areas that have endured extended periods of economic decline. The Marcellus Shale play, one of the world's largest gas-bearing shale formations, lies…
120. VIEW, LOOKING SOUTHEAST, OF TELLURIDE IRON WORKS RETORT USED ...
120. VIEW, LOOKING SOUTHEAST, OF TELLURIDE IRON WORKS RETORT USED FOR FLASHING MERCURY OFF OF GOLD TO CREATE SOFT INGOTS CALLED "SPONGES." AT RIGHT ARE SAFES FOR STORING 22-POUND SPONGES WORTH OVER $60,000 EACH, CA. 1985. - Shenandoah-Dives Mill, 135 County Road 2, Silverton, San Juan County, CO
Yield and Production Properties of Wood chips and Particles Torrefied in a Crucible Furnace Retort
Thomas L. Eberhardt; Chi-Leung So; Karen G. Reed
2016-01-01
Biomass preprocessing by torrefaction improves feedstock consistency and thereby improves the efficiency of biofuels operations, including pyrolysis, gasification, and combustion. A crucible furnace retort was fabricated of sufficient size to handle a commercially available wood chip feedstock. Varying the torrefaction times and temperatures provided an array of...
1. Distant view shows Engine Room Building behind cranes. Retort ...
1. Distant view shows Engine Room Building behind cranes. Retort rings in foreground were once located in Engine Room Building. See photo WA-131-A-2. Building on left is Machine Shop. Boiler Building is in front of stack. - Pacific Creosoting Plant, Engine Room Building, 5350 Creosote Place, Northeast, Bremerton, Kitsap County, WA
9 CFR 318.308 - Deviations in processing.
Code of Federal Regulations, 2011 CFR
2011-01-01
...) Deviations in processing (or process deviations) must be handled according to: (1)(i) A HACCP plan for canned..., containers in the retort intake valve and in transfer valves between retort shells at the time of a jam or... 9 Animals and Animal Products 2 2011-01-01 2011-01-01 false Deviations in processing. 318.308...
9 CFR 381.308 - Deviations in processing.
Code of Federal Regulations, 2011 CFR
2011-01-01
..., containers in the retort intake valve and in transfer valves between retort shells at the time of a jam or... 9 Animals and Animal Products 2 2011-01-01 2011-01-01 false Deviations in processing. 381.308... Deviations in processing. (a) Whenever the actual process is less than the process schedule or when any...
40 CFR Appendix 7 to Subpart A of... - API Recommended Practice 13B-2
Code of Federal Regulations, 2010 CFR
2010-07-01
... facilitate cleaning and funnel-shaped top to catch falling drops. For compliance monitoring under the NPDES... condenser. b. Pack the retort body with steel wool. c. Apply lubricant/sealant to threads of retort cup and... the clean and dry liquid receiver. This is mass (C), grams. Place the receiver below condenser outlet...
40 CFR Appendix 7 to Subpart A of... - API Recommended Practice 13B-2
Code of Federal Regulations, 2011 CFR
2011-07-01
... facilitate cleaning and funnel-shaped top to catch falling drops. For compliance monitoring under the NPDES... condenser. b. Pack the retort body with steel wool. c. Apply lubricant/sealant to threads of retort cup and... the clean and dry liquid receiver. This is mass (C), grams. Place the receiver below condenser outlet...
NASA Astrophysics Data System (ADS)
Zhang, Y.; Hu, C.; Wang, M.
2017-12-01
The evaluation of total organic carbon (TOC) in shale using logging data is one of the most crucial steps in shale gas exploration. However, it didn't achieve the ideal effect for the application of `ΔlogR' method in the Longmaxi Formation shale of Sichuan Basin.The reason may be the organic matter carbonization in Longmaxi Formation. An improved evaluation method, using the classification by lithology and sedimentary structure: 1) silty mudstone (wellsite logging data show silty); 2) calcareous mudstone (calcareous content > 25%); 3) laminated mudstone (laminations are recognized by core and imaging logging technology); 4) massive mudstone (massive textures are recognized by core and imaging logging technology, was proposed. This study compares two logging evaluation methods for measuring TOC in shale: the △logR method and the new proposed method. The results showed that the correlation coefficient between the calculated TOC and the tested TOC, based on the △logR method, was only 0.17. The correlation coefficient obtained according to the new method reached 0.80. The calculation results illustrated that, because of the good correlation between lithologies and sedimentary structure zones and TOC of different types of shale, the shale reservoirs could be graded according to four shale types. The new proposed method is more efficient, faster, and has higher vertical resolution than the △logR method. In addition, a new software had been completed. It was found to be especially effective under conditions of insufficient data during the early stages of shale gas exploration in the Silurian Longmaxi Formation, Muai Syncline Belt, south of the Sichuan Basin.
Practical measures for reducing the risk of environmental contamination in shale energy production.
Ziemkiewicz, Paul; Quaranta, John D; McCawley, Michael
2014-07-01
Gas recovery from shale formations has been made possible by advances in horizontal drilling and hydraulic fracturing technology. Rapid adoption of these methods has created a surge in natural gas production in the United States and increased public concern about its environmental and human health effects. We surveyed the environmental literature relevant to shale gas development and studied over fifteen well sites and impoundments in West Virginia to evaluate pollution caused by air emissions, light and noise during drilling. Our study also characterized liquid and solid waste streams generated by drilling and hydraulic fracturing and evaluated the integrity of impoundments used to store fluids produced by hydraulic fracturing. While most shale gas wells are completed with little or no environmental contamination, we found that many of the problems associated with shale gas development resulted from inattention to accepted engineering practices such as impoundment construction, improper liner installation and a lack of institutional controls. Recommendations are provided based on the literature and our field studies. They will address not all but a great many of the deficiencies that result in environmental release of contaminants from shale gas development. We also identified areas where new technologies are needed to fully address contaminant releases to air and water.
Technical note: Evaluation of a crucible furnace retort for laboratory torrefactions of wood chips
Thomas L. Eberhardt; Karen G. Reed
2014-01-01
Torrefaction is a thermal process that improves biomass performance as a fuel by property enhancements such as decreased moisture uptake and increased carbon density. Most studies to date have used very small amounts of finely ground biomass. This study reports the testing of a crucible furnace retort that was fabricated to produce intermediate quantities of torrefied...
Optimization of thermal processing of canned mussels.
Ansorena, M R; Salvadori, V O
2011-10-01
The design and optimization of thermal processing of solid-liquid food mixtures, such as canned mussels, requires the knowledge of the thermal history at the slowest heating point. In general, this point does not coincide with the geometrical center of the can, and the results show that it is located along the axial axis at a height that depends on the brine content. In this study, a mathematical model for the prediction of the temperature at this point was developed using the discrete transfer function approach. Transfer function coefficients were experimentally obtained, and prediction equations fitted to consider other can dimensions and sampling interval. This model was coupled with an optimization routine in order to search for different retort temperature profiles to maximize a quality index. Both constant retort temperature (CRT) and variable retort temperature (VRT; discrete step-wise and exponential) were considered. In the CRT process, the optimal retort temperature was always between 134 °C and 137 °C, and high values of thiamine retention were achieved. A significant improvement in surface quality index was obtained for optimal VRT profiles compared to optimal CRT. The optimization procedure shown in this study produces results that justify its utilization in the industry.
Rahm, Brian G; Bates, Josephine T; Bertoia, Lara R; Galford, Amy E; Yoxtheimer, David A; Riha, Susan J
2013-05-15
Extraction of natural gas from tight shale formations has been made possible by recent technological advances, including hydraulic fracturing with horizontal drilling. Global shale gas development is seen as a potential energy and geopolitical "game-changer." However, widespread concern exists with respect to possible environmental consequences of this development, particularly impacts on water resources. In the United States, where the most shale gas extraction has occurred, the Marcellus Shale is now the largest natural gas producing play. To date, over 6,000,000 m(3) of wastewater has been generated in the process of extracting natural gas from this shale in the state of Pennsylvania (PA) alone. Here we examine wastewater management practices and trends for this shale play through analysis of industry-reported, publicly available data collected from the Pennsylvania Department of Environmental Protection Oil and Gas Reporting Website. We also analyze the tracking and transport of shale gas liquid waste streams originating in PA using a combination of web-based and GIS approaches. From 2008 to 2011 wastewater reuse increased, POTW use decreased, and data tracking became more complete, while the average distance traveled by wastewater decreased by over 30%. Likely factors influencing these trends include state regulations and policies, along with low natural gas prices. Regional differences in wastewater management are influenced by industrial treatment capacity, as well as proximity to injection disposal capacity. Using lessons from the Marcellus Shale, we suggest that nations, states, and regulatory agencies facing new unconventional shale development recognize that pace and scale of well drilling leads to commensurate wastewater management challenges. We also suggest they implement wastewater reporting and tracking systems, articulate a policy for adapting management to evolving data and development patterns, assess local and regional wastewater treatment infrastructure in terms of capacity and capability, promote well-regulated on-site treatment technologies, and review and update wastewater management regulations and policies. Copyright © 2013 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Fei, S.; Xinong, X.
2017-12-01
The fifth organic-matter-rich interval (ORI 5) in the He-third Member of the Paleogene Hetaoyuan Formation is believed to be the main exploration target for shale oil in Biyang Depression, eastern China. An important part of successful explorating and producing shale oil is to identify and predict organic-rich shale lithofacies with different reservoir capacities and rock geomechanical properties, which are related to organic matter content and mineral components. In this study, shale lithofacies are defined by core analysis data, well-logging and seismic data, and the spatial-temporal distribution of various lithologies are predicted qualitatively by seismic attribute technology and quantitatively by geostatistical inversion analysis, and the prediction results are confirmed by the logging data and geological background. ORI 5 is present in lacustrine expanding system tract and can be further divided into four parasequence sets based on the analysis of conventional logs, TOC content and wavelet transform. Calcareous shale, dolomitic shale, argillaceous shale, silty shale and muddy siltstone are defined within ORI 5, and can be separated and predicted in regional-scale by root mean square amplitude (RMS) analysis and wave impedance. The results indicate that in the early expansion system tract, dolomitic shale and calcareous shale widely developed in the study area, and argillaceous shale, silty shale, and muddy siltstone only developed in periphery of deep depression. With the lake level rising, argillaceous shale and calcareous shale are well developed, and argillaceous shale interbeded with silty shale or muddy siltstone developed in deep or semi-deep lake. In the late expansion system tract, argillaceous shale is widely deposited in the deepest depression, calcareous shale presented band distribution in the east of the depression. Actual test results indicate that these methods are feasible to predict the spatial distribution of shale lithofacies.
Water Resources and Natural Gas Production from the Marcellus Shale
Soeder, Daniel J.; Kappel, William M.
2009-01-01
The Marcellus Shale is a sedimentary rock formation deposited over 350 million years ago in a shallow inland sea located in the eastern United States where the present-day Appalachian Mountains now stand (de Witt and others, 1993). This shale contains significant quantities of natural gas. New developments in drilling technology, along with higher wellhead prices, have made the Marcellus Shale an important natural gas resource. The Marcellus Shale extends from southern New York across Pennsylvania, and into western Maryland, West Virginia, and eastern Ohio (fig. 1). The production of commercial quantities of gas from this shale requires large volumes of water to drill and hydraulically fracture the rock. This water must be recovered from the well and disposed of before the gas can flow. Concerns about the availability of water supplies needed for gas production, and questions about wastewater disposal have been raised by water-resource agencies and citizens throughout the Marcellus Shale gas development region. This Fact Sheet explains the basics of Marcellus Shale gas production, with the intent of helping the reader better understand the framework of the water-resource questions and concerns.
NASA Astrophysics Data System (ADS)
Tugov, A. N.; Ots, A.; Siirde, A.; Sidorkin, V. T.; Ryabov, G. A.
2016-06-01
Prospects of the use of oil shale are associated with its thermal processing for the production of liquid fuel, shale oil. Gaseous by-products, such as low-calorie generator gas with a calorific value up to 4.3MJ/m3 or semicoke gas with a calorific value up to 56.57 MJ/m3, are generated depending on the oil shale processing method. The main methods of energy recovery from these gases are either their cofiring with oil shale in power boilers or firing only under gaseous conditions in reconstructed or specially designed for this fuel boilers. The possible use of gaseous products of oil shale processing in gas-turbine or gas-piston units is also considered. Experiments on the cofiring of oil shale gas and its gaseous processing products have been carried out on boilers BKZ-75-39FSl in Kohtla-Järve and on the boiler TP-101 of the Estonian power plant. The test results have shown that, in the case of cofiring, the concentration of sulfur oxides in exhaust gases does not exceed the level of existing values in the case of oil shale firing. The low-temperature corrosion rate does not change as compared to the firing of only oil shale, and, therefore, operation conditions of boiler back-end surfaces do not worsen. When implementing measures to reduce the generation of NO x , especially of flue gas recirculation, it has been possible to reduce the emissions of nitrogen oxides in the whole boiler. The operation experience of the reconstructed boilers BKZ-75-39FSl after their transfer to the firing of only gaseous products of oil shale processing is summarized. Concentrations of nitrogen and sulfur oxides in the combustion products of semicoke and generator gases are measured. Technical solutions that made it possible to minimize the damage to air heater pipes associated with the low-temperature sulfur corrosion are proposed and implemented. The technological measures for burners of new boilers that made it possible to burn gaseous products of oil shale processing with low emissions of nitrogen oxides are developed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schulte, H.F.; Stoker, A.K.; Campbell, E.E.
1976-06-01
Oil shale technology has been divided into two sub-technologies: surface processing and in-situ processing. Definition of the research programs is essentially an amplification of the five King-Muir categories: (A) pollutants: characterization, measurement, and monitoring; (B) physical and chemical processes and effects; (C) health effects; (D) ecological processes and effects; and (E) integrated assessment. Twenty-three biomedical and environmental research projects are described as to program title, scope, milestones, technolgy time frame, program unit priority, and estimated program unit cost.
Ash, W.J.; Pozzi, J.F.
1962-05-01
A retort cover is designed for use in the production of magnesium metal by the condensation of vaporized metal on a collecting surface. The cover includes a condensing surface, insulating means adjacent to the condensing surface, ind a water-cooled means for the insulating means. The irrangement of insulation and the cooling means permits the magnesium to be condensed at a high temperature and in massive nonpyrophoric form. (AEC)
Quality of ready to serve tilapia fish curry with PUFA in retortable pouches.
Dhanapal, K; Reddy, G V S; Nayak, B B; Basu, S; Shashidhar, K; Venkateshwarlu, G; Chouksey, M K
2010-09-01
Studies on the physical, chemical, and microbiological qualities of fresh tilapia meat revealed its suitability for the preparation of ready to eat fish curry packed in retort pouches. Studies on the fatty acid profile of tilapia meat suggest fortification with polyunsaturated fatty acid (PUFA) to increase the nutritional value. Based on the commercial sterility, sensory evaluation, color, and texture profile analysis F(0) value of 6.94 and cook value of 107.24, with a total process time of 50.24 min at 116 °C was satisfactory for the development of tilapia fish curry in retort pouches. Thermally processed ready to eat south Indian type tilapia fish curry fortified with PUFA was developed and its keeping quality studied at ambient temperature. During storage, a slight increase in the fat content of fish meat was observed, with no significant change in the contents of moisture, protein, and ash. The thiobarbituric acid (TBA) values of fish curry significantly increased during storage. Fish curry fortified with 1% cod liver oil and fish curry without fortification (control) did not show any significant difference in the levels of eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA), during thermal processing and storage. Sensory analysis revealed that fortification of fish curry with cod liver oil had no impact on the quality. Tilapia fish curry processed at 116 °C and F(0) value of 7.0 (with or without fortification of cod liver oil) was fit for consumption, even after a period of 1-y storage in retort pouch. Tilapia is a lean variety of fish with white flesh and therefore an ideal choice as raw material for the development of ready to serve fish products such as fish curry in retort pouches for both domestic and international markets. Ready to eat thermal processed (116 °C and F(0) value of 7.0) south Indian type tilapia fish curry enriched with PUFA and packed in retort pouch was acceptable for consumption even after a storage period of 1 y at ambient temperature.
Geology of the Devonian black shales of the Appalachian Basin
Roen, J.B.
1984-01-01
Black shales of Devonian age in the Appalachian Basin are a unique rock sequence. The high content of organic matter, which imparts the characteristic lithology, has for years attracted considerable interest in the shales as a possible source of energy. The recent energy shortage prompted the U.S. Department of Energy through the Eastern Gas Shales Project of the Morgantown Energy Technology Center to underwrite a research program to determine the geologic, geochemical, and structural characteristics of the Devonian black shales in order to enhance the recovery of gas from the shales. Geologic studies by Federal and State agencies and academic institutions produced a regional stratigraphic network that correlates the 15 ft black shale sequence in Tennessee with 3000 ft of interbedded black and gray shales in central New York. These studies correlate the classic Devonian black shale sequence in New York with the Ohio Shale of Ohio and Kentucky and the Chattanooga Shale of Tennessee and southwestern Virginia. Biostratigraphic and lithostratigraphic markers in conjunction with gamma-ray logs facilitated long-range correlations within the Appalachian Basin. Basinwide correlations, including the subsurface rocks, provided a basis for determining the areal distribution and thickness of the important black shale units. The organic carbon content of the dark shales generally increases from east to west across the basin and is sufficient to qualify as a hydrocarbon source rock. Significant structural features that involve the black shale and their hydrocarbon potential are the Rome trough, Kentucky River and Irvine-Paint Creek fault zone, and regional decollements and ramp zones. ?? 1984.
Water Use by Texas Oil and Gas Industry: A Look towards the Future
NASA Astrophysics Data System (ADS)
Nicot, J.; Ritter, S. M.; Hebel, A. K.
2009-12-01
The Barnett Shale gas play, located in North Texas, has seen a relatively quick growth in the past decade with the development of new “frac” (aka, fracture stimulation) technologies needed to create pathways to produce gas from the very low permeability shales. This technology uses a large amount of fresh water (millions of gallons in a day or two on average) to develop a gas well. Now operators are taking aim at other shale gas plays in Texas including the Haynesville, Woodford, and Pearsall-Eagle Ford shales and at other tight formation such as the Bossier Sand. These promising gas plays are likely to be developed at an even steeper growth rate. There are currently over 12,000 wells producing gas from the Barnett Shale with many more likely to be drilled in the next couple of decades as the play expands out of its core area. Despite the recent gas price slump, thousands more wells may be drilled across the state to access the gas resource in the next few years. As an example, a typical vertical and horizontal well completion in the Barnett Shale consumes approximately 1.2 and 3.0 to 3.5 millions gallons of fresh water, respectively. This could raise some concerns among local communities and other surface water and groundwater stakeholders. We present a preliminary analysis of future water use by the Texas oil and gas industry and compare it to projections of total water use, including municipal use and irrigation. Maps showing large increase in total number of well completions in the Barnett Shale (black dots) from 1998 to 2008. Operators avoided the DFW metro area (center right on the map) until recently. Also shown are the structural limits of the Barnett Shale on its eastern boundaries.
NASA Astrophysics Data System (ADS)
Naseer, Muhammad Tayyab; Asim, Shazia
2017-10-01
Unconventional resource shales can play a critical role in economic growth throughout the world. The hydrocarbon potential of faults/fractured shales is the most significant challenge for unconventional prospect generation. The continuous wavelet transforms (CWT) of spectral decomposition (SD) technology is applied for shale gas prospects on high-resolution 3D seismic data from the Miano area in the Indus platform, SW Pakistan. Schmoker' technique reveals high-quality shales with total organic carbon (TOC) of 9.2% distributed in the western regions. The seismic amplitude, root-mean-square (RMS), and most positive curvature attributes show limited ability to resolve the prospective fractured shale components. The CWT is used to identify the hydrocarbon-bearing faulted/fractured compartments encased within the non-hydrocarbon bearing shale units. The hydrocarbon-bearing shales experience higher amplitudes (4694 dB and 3439 dB) than the non-reservoir shales (3290 dB). Cross plots between sweetness, 22 Hz spectral decomposition, and the seismic amplitudes are found more effective tools than the conventional seismic attribute mapping for discriminating the seal and reservoir elements within the incised-valley petroleum system. Rock physics distinguish the productive sediments from the non-productive sediments, suggesting the potential for future shale play exploration.
Oil shale as an energy source in Israel
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fainberg, V.; Hetsroni, G.
1996-01-01
Reserves, characteristics, energetics, chemistry, and technology of Israeli oil shales are described. Oil shale is the only source of energy and the only organic natural resource in Israel. Its reserves of about 12 billion tons will be enough to meet Israel`s requirements for about 80 years. The heating value of the oil shale is 1,150 kcal/kg, oil yield is 6%, and sulfur content of the oil is 5--7%. A method of oil shale processing, providing exhaustive utilization of its energy and chemical potential, developed in the Technion, is described. The principal feature of the method is a two-stage pyrolysis ofmore » the oil shale. As a result, gas and aromatic liquids are obtained. The gas may be used for energy production in a high-efficiency power unit, or as a source for chemical synthesis. The liquid products can be an excellent source for production of chemicals.« less
Public and stakeholder participation for managing and reducing the risks of shale gas development.
North, D Warner; Stern, Paul C; Webler, Thomas; Field, Patrick
2014-01-01
Emerging technologies pose particularly strong challenges for risk governance when they have multidimensional and inequitable impacts, when there is scientific uncertainty about the technology and its risks, when there are strong value conflicts over the perceived benefits and risks, when decisions must be made urgently, and when the decision making environment is rife with mistrust. Shale gas development is one such emerging technology. Drawing on previous U.S. National Research Council committee reports that examined risk decision making for complex issues like these, we point to the benefits and challenges of applying the analytic-deliberative process recommended in those reports for stakeholder and public engagement in risk decision making about shale gas development in the United States. We discuss the different phases of such a process and conclude by noting the dangers of allowing controversy to ossify and the benefits of sound dialogue and learning among publics, stakeholders, industry, and regulatory decision makers.
Geology of the Devonian black shales of the Appalachian basin
Roen, J.B.
1983-01-01
Black shales of Devonian age in the Appalachian basin are a unique rock sequence. The high content of organic matter, which imparts the characteristic lithology, has for years attracted considerable interest in the shales as a possible source of energy. Concurrent with periodic and varied economic exploitations of the black shales are geologic studies. The recent energy shortage prompted the U.S. Department of Energy through the Eastern Gas Shales Project of the Morgantown Energy Technology Center to underwrite a research program to determine the geologic, geochemical, and structural characteristics of the Devonian black shales in order to enhance the recovery of gas from the shales. Geologic studies produced a regional stratigraphic network that correlates the 15-foot sequence in Tennessee with 3,000 feet of interbedded black and gray shales in central New York. The classic Devonian black-shale sequence in New York has been correlated with the Ohio Shale of Ohio and Kentucky and the Chattanooga Shale of Tennessee and southwestern Virginia. Biostratigraphic and lithostratigraphic markers in conjunction with gamma-ray logs facilitated long range correlations within the Appalachian basin and provided a basis for correlations with the black shales of the Illinois and Michigan basins. Areal distribution of selected shale units along with paleocurrent studies, clay mineralogy, and geochemistry suggests variations in the sediment source and transport directions. Current structures, faunal evidence, lithologic variations, and geochemical studies provide evidence to support interpretation of depositional environments. In addition, organic geochemical data combined with stratigraphic and structural characteristics of the shale within the basin allow an evaluation of the resource potential of natural gas in the Devonian shale sequence.
Effect of high pressure-high temperature process on meat product quality
NASA Astrophysics Data System (ADS)
Duranton, Frédérique; Marée, Elvire; Simonin, Hélène; Chéret, Romuald; de Lamballerie, Marie
2011-03-01
High pressure/high temperature (HPHT) processing is an innovative way to sterilize food and has been proposed as an alternative to conventional retorting. By using elevated temperatures and adiabatic compression, it allows the inactivation of vegetative microorganisms and pathogen spores. Even though the microbial inactivation has been widely studied, the effect of such process on sensorial attributes of food products, especially meat products, remains rare. The aim of this study was to investigate the potential of using HPHT process (500 MPa/115 °C) instead of conventional retorting to stabilize Toulouse sausages while retaining high organoleptic quality. The measurements of texture, color, water-holding capacity and microbial stability were investigated. It was possible to manufacture stable products at 500 MPa/115 °C/30 min. However, in these conditions, no improvement of the quality was found compared with conventional retorting.
Impact of Shale Gas Development on Water Resources: A Case Study in Northern Poland
NASA Astrophysics Data System (ADS)
Vandecasteele, Ine; Marí Rivero, Inés; Sala, Serenella; Baranzelli, Claudia; Barranco, Ricardo; Batelaan, Okke; Lavalle, Carlo
2015-06-01
Shale gas is currently being explored in Europe as an alternative energy source to conventional oil and gas. There is, however, increasing concern about the potential environmental impacts of shale gas extraction by hydraulic fracturing (fracking). In this study, we focussed on the potential impacts on regional water resources within the Baltic Basin in Poland, both in terms of quantity and quality. The future development of the shale play was modeled for the time period 2015-2030 using the LUISA modeling framework. We formulated two scenarios which took into account the large range in technology and resource requirements, as well as two additional scenarios based on the current legislation and the potential restrictions which could be put in place. According to these scenarios, between 0.03 and 0.86 % of the total water withdrawals for all sectors could be attributed to shale gas exploitation within the study area. A screening-level assessment of the potential impact of the chemicals commonly used in fracking was carried out and showed that due to their wide range of physicochemical properties, these chemicals may pose additional pressure on freshwater ecosystems. The legislation put in place also influenced the resulting environmental impacts of shale gas extraction. Especially important are the protection of vulnerable ground and surface water resources and the promotion of more water-efficient technologies.
Impact of shale gas development on water resources: a case study in northern poland.
Vandecasteele, Ine; Marí Rivero, Inés; Sala, Serenella; Baranzelli, Claudia; Barranco, Ricardo; Batelaan, Okke; Lavalle, Carlo
2015-06-01
Shale gas is currently being explored in Europe as an alternative energy source to conventional oil and gas. There is, however, increasing concern about the potential environmental impacts of shale gas extraction by hydraulic fracturing (fracking). In this study, we focussed on the potential impacts on regional water resources within the Baltic Basin in Poland, both in terms of quantity and quality. The future development of the shale play was modeled for the time period 2015-2030 using the LUISA modeling framework. We formulated two scenarios which took into account the large range in technology and resource requirements, as well as two additional scenarios based on the current legislation and the potential restrictions which could be put in place. According to these scenarios, between 0.03 and 0.86% of the total water withdrawals for all sectors could be attributed to shale gas exploitation within the study area. A screening-level assessment of the potential impact of the chemicals commonly used in fracking was carried out and showed that due to their wide range of physicochemical properties, these chemicals may pose additional pressure on freshwater ecosystems. The legislation put in place also influenced the resulting environmental impacts of shale gas extraction. Especially important are the protection of vulnerable ground and surface water resources and the promotion of more water-efficient technologies.
Shale Oil Value Enhancement Research
DOE Office of Scientific and Technical Information (OSTI.GOV)
James W. Bunger
2006-11-30
Raw kerogen oil is rich in heteroatom-containing compounds. Heteroatoms, N, S & O, are undesirable as components of a refinery feedstock, but are the basis for product value in agrochemicals, pharmaceuticals, surfactants, solvents, polymers, and a host of industrial materials. An economically viable, technologically feasible process scheme was developed in this research that promises to enhance the economics of oil shale development, both in the US and elsewhere in the world, in particular Estonia. Products will compete in existing markets for products now manufactured by costly synthesis routes. A premium petroleum refinery feedstock is also produced. The technology is nowmore » ready for pilot plant engineering studies and is likely to play an important role in developing a US oil shale industry.« less
On the possibility of magnetic nano-markers use for hydraulic fracturing in shale gas mining
NASA Astrophysics Data System (ADS)
Zawadzki, Jaroslaw; Bogacki, Jan
2016-04-01
Recently shale gas production became essential for the global economy, thanks to fast advances in shale fracturing technology. Shale gas extraction can be achieved by drilling techniques coupled with hydraulic fracturing. Further increasing of shale gas production is possible by improving the efficiency of hydraulic fracturing and assessing the spatial distribution of fractures in shale deposits. The latter can be achieved by adding magnetic markers to fracturing fluid or directly to proppant, which keeps the fracture pathways open. After that, the range of hydraulic fracturing can be assessed by measurement of vertical and horizontal component of earth's magnetic field before and after fracturing. The difference in these components caused by the presence of magnetic marker particles may allow to delineate spatial distribution of fractures. Due to the fact, that subterranean geological formations may contain minerals with significant magnetic properties, it is important to provide to the markers excellent magnetic properties which should be also, independent of harsh chemical and geological conditions. On the other hand it is of great significance to produce magnetic markers at an affordable price because of the large quantities of fracturing fluids or proppants used during shale fracturing. Examining the properties of nano-materials, it was found, that they possess clearly superior magnetic properties, as compared to the same structure but having a larger particle size. It should be then possible, to use lower amount of magnetic marker, to obtain the same effect. Although a research on properties of new magnetic nano-materials is very intensive, cheap magnetic nano-materials are not yet produced on a scale appropriate for shale gas mining. In this work we overview, in detail, geological, technological and economic aspects of using magnetic nano-markers in shale gas mining. Acknowledgment This work was supported by the NCBiR under Grant "Electromagnetic method to estimate penetration of proppant in the fracturing process".
The impact of intensity on perceived risk from unconventional shale gas development.
Livy, Mitchell R; Gopalakrishnan, Sathya; Klaiber, H Allen; Roe, Brian E
2018-07-15
The recent boom in the extraction of natural gas from subsurface shale deposits due to advances in hydraulic fracturing and horizontal drilling technologies has raised concern around environmental risks. Reliable measures of how residents view these risks are therefore a necessary first step in evaluating policies that regulate the industry through risk mitigation measures. We conduct a choice experiment targeting residents in an area of Ohio with significant shale drilling activity, and find that households are willing to pay to avoid high intensities of shale development and truck traffic. Our analysis presents new policy-relevant evidence of preferences associated with unconventional shale gas reserves, and highlights the tradeoffs between activity intensity at each site and the number of sites in aggregate. Copyright © 2018 Elsevier Ltd. All rights reserved.
Sparrevik, Magnus; Field, John L; Martinsen, Vegard; Breedveld, Gijs D; Cornelissen, Gerard
2013-02-05
Biochar amendment to soil is a potential technology for carbon storage and climate change mitigation. It may, in addition, be a valuable soil fertility enhancer for agricultural purposes in sandy and/or weathered soils. A life cycle assessment including ecological, health and resource impacts has been conducted for field sites in Zambia to evaluate the overall impacts of biochar for agricultural use. The life cycle impacts from conservation farming using cultivation growth basins and precision fertilization with and without biochar addition were in the present study compared to conventional agricultural methods. Three different biochar production methods were evaluated: traditional earth-mound kilns, improved retort kilns, and micro top-lit updraft (TLUD) gasifier stoves. The results confirm that the use of biochar in conservation farming is beneficial for climate change mitigation purposes. However, when including health impacts from particle emissions originating from biochar production, conservation farming plus biochar from earth-mound kilns generally results in a larger negative effect over the whole life cycle than conservation farming without biochar addition. The use of cleaner technologies such as retort kilns or TLUDs can overcome this problem, mainly because fewer particles and less volatile organic compounds, methane and carbon monoxide are emitted. These results emphasize the need for a holistic view on biochar use in agricultural systems. Of special importance is the biochar production technique which has to be evaluated from both environmental/climate, health and social perspectives.
Retortable Laminate/Polymeric Food Tubes for Specialized Feeding
2012-06-01
on commercial off-the-shelf materials and not military unique. A market survey of commercially available laminated tubes revealed that they are all...on commercial off-the-shelf materials and not military unique. A market survey of commercially available laminated tubes revealed that they are...available materials and not be uniquely military. We surveyed the market for laminated retortable tubes and were not able to find any application
Farawahida, A H; Jinap, S; Nor-Khaizura, M A R; Samsudin, N I P
2017-12-01
Among the many roles played by small and medium enterprises (SMEs) in the food industry is the production of heritage foods such as peanut sauce. Unfortunately, the safety of peanut sauce is not always assured as the processing line is not controlled. Peanut sauce is usually made of peanuts and chilli, and these commodities are normally contaminated with Aspergillus spp. and aflatoxins (AFs). Hence, the objective of this study was to evaluate the practices related to reduction of AF hazard and the effect of interventions in peanut sauce processing. Peanut samples were collected from each step of peanut sauce processing from a small peanut sauce company according to four designs: (1) control; (2) oil-less frying of chilli powder; (3) addition of retort processing; and (4) combination of oil-less frying of chilli powder and retort processing. Oil-less frying of chilli powder (Design 2) reduced total AFs by 33-41%, retort processing (Design 3) reduced total AFs by 49%, while combination of these two thermal processes (Design 4) significantly reduced total AFs, by 57%. The present work demonstrated that Design 4 yielded the highest reduction of total AFs and is therefore recommended to be employed by SME companies.
Compaction of mixtures of hard rocks and soft shales and non-durable shales using impact compactors.
DOT National Transportation Integrated Search
2007-06-01
Impact roller compaction has been used to improve embankment and highway subgrades in South Africa, Australia, Europe, and China and other areas of the world. In September of 2003, the International Technology Scanning Program, sponsored by the Feder...
1982-03-01
ON SPEC Meeting Specifications *1 OXY Test Series on In Situ Shale Oil P Pressure (P + N) Paraffins and Naphthenes PHO Test Series on Above-Ground...material, the crude shale is heated and processed through caustic desalt- ing similar to conventional technology. The desalted oil is mixed with recycle...with hot regenerated catalyst. Spent catalyst and oil vapors are disengaqed by -.eans of high temperature cyclones. The spent catalyst first passes
POLICY ANALYSIS OF PRODUCED WATER ISSUES ASSOCIATED WITH IN-SITU THERMAL TECHNOLOGIES
DOE Office of Scientific and Technical Information (OSTI.GOV)
Robert Keiter; John Ruple; Heather Tanana
2011-02-01
Commercial scale oil shale and oil sands development will require water, the amount of which will depend on the technologies adopted and the scale of development that occurs. Water in oil shale and oil sands country is already in scarce supply, and because of the arid nature of the region and limitations on water consumption imposed by interstate compacts and the Endangered Species Act, the State of Utah normally does not issue new water rights in oil shale or oil sands rich areas. Prospective oil shale and oil sands developers that do not already hold adequate water rights can acquiremore » water rights from willing sellers, but large and secure water supplies may be difficult and expensive to acquire, driving oil shale and oil sands developers to seek alternative sources of supply. Produced water is one such potential source of supply. When oil and gas are developed, operators often encounter ground water that must be removed and disposed of to facilitate hydrocarbon extraction. Water produced through mineral extraction was traditionally poor in quality and treated as a waste product rather than a valuable resource. However, the increase in produced water volume and the often-higher quality water associated with coalbed methane development have drawn attention to potential uses of produced water and its treatment under appropriations law. This growing interest in produced water has led to litigation and statutory changes that must be understood and evaluated if produced water is to be harnessed in the oil shale and oil sands development process. Conversely, if water is generated as a byproduct of oil shale and oil sands production, consideration must be given to how this water will be disposed of or utilized in the shale oil production process. This report explores the role produced water could play in commercial oil shale and oil sands production, explaining the evolving regulatory framework associated with produced water, Utah water law and produced water regulation, and the obstacles that must be overcome in order for produced water to support the nascent oil shale and oil sands industries.« less
Investigating GHGs and VOCs emissions from a shale gas industry in Germany and the UK
NASA Astrophysics Data System (ADS)
Cremonese, L.; Weger, L.; Denier Van Der Gon, H.; Bartels, M. P.; Butler, T. M.
2017-12-01
The shale gas and shale oil production boom experienced in the US led the country to a significant reduction of foreign fuel imports and an increase in domestic energy security. Several European countries are considering to extract domestic shale gas reserves that might serve as a bridge in the transition to renewables. Nevertheless, the generation of shale gas leads to emissions of CH4 and pollutants such as PM, NOx and VOCs, which in turn impact local and regional air quality and climate. Results from numerous studies investigating greenhouse gas and pollutant emissions from shale oil and shale gas extraction in North America can help in estimating the impact of such industrial activity elsewhere, when local regulations are taken into consideration. In order to investigate the extent of emissions and their distribution from a potential shale gas industry in Germany and the United Kingdom, we develop three drilling scenarios compatible with desired national gas outputs based on available geological information on potential productivity ranges of the reservoirs. Subsequently we assign activity data and emissions factors to wells under development, as well as to producing wells (from activities at the well site up until processing plants) to enable emissions quantification. We then define emissions scenarios to explore different shale gas development pathways: 1) implementation of "high-technology" devices and recovery practices (low emissions); 2) implementation of "low-technology" devices and recovery practices (high emissions), and 3) intermediate scenarios reflecting assumptions on local and national settings, or extremely high emission events (e.g. super-emitters); all with high and low boundaries of confidence driven by uncertainties. A comparison of these unconventional gas production scenarios to conventional natural gas production in Germany and the United Kingdom is also planned. The aim of this work is to highlight important variables and their ranges, to promote discussion and communication of potential impacts, and to construct possible visions for a future shale gas development in the two study countries. In a follow-up study, the impact of pollutant emissions from these scenarios on air quality will be explored using the Weather Research and Forecasting model with chemistry (WRF-Chem) model.
Shale Gas in Europe: pragmatic perspectives and actions
NASA Astrophysics Data System (ADS)
Hübner, A.; Horsfield, B.; Kapp, I.
2012-10-01
Natural gas will continue to play a key role in the EU's energy mix in the coming years, with unconventional gas' role increasing in importance as new resources are exploited worldwide. As far as Europe's own shale gas resources are concerned, it is especially the public's perception and level of acceptance that will make or break shale gas in the near-term. Both the pros and cons need to be discussed based on factual argument rather than speculation. Research organizations such as ours (GFZ German Research Centre for Geosciences) have an active and defining role to play in remedying this deficiency. As far as science and technology developments are concerned, the project "Gas Shales in Europe" (GASH) and the shale gas activities of "GeoEnergie" (GeoEn) are the first major initiatives in Europe focused on shale gas. Basic and applied geoscientific research is conducted to understand the fundamental nature and interdependencies of the processes leading to shale gas formation. When it comes to knowledge transfer, the perceived and real risks associated with shale gas exploitation need immediate evaluation in Europe using scientific analysis. To proactively target these issues, the GFZ and partners are launching the European sustainable Operating Practices (E-SOP) Initiative for Unconventional Resources. The web-based Shale Gas Information Platform (SHIP) brings these issues into the public domain.
The Devonian Marcellus Shale and Millboro Shale
Soeder, Daniel J.; Enomoto, Catherine B.; Chermak, John A.
2014-01-01
The recent development of unconventional oil and natural gas resources in the United States builds upon many decades of research, which included resource assessment and the development of well completion and extraction technology. The Eastern Gas Shales Project, funded by the U.S. Department of Energy in the 1980s, investigated the gas potential of organic-rich, Devonian black shales in the Appalachian, Michigan, and Illinois basins. One of these eastern shales is the Middle Devonian Marcellus Shale, which has been extensively developed for natural gas and natural gas liquids since 2007. The Marcellus is one of the basal units in a thick Devonian shale sedimentary sequence in the Appalachian basin. The Marcellus rests on the Onondaga Limestone throughout most of the basin, or on the time-equivalent Needmore Shale in the southeastern parts of the basin. Another basal unit, the Huntersville Chert, underlies the Marcellus in the southern part of the basin. The Devonian section is compressed to the south, and the Marcellus Shale, along with several overlying units, grades into the age-equivalent Millboro Shale in Virginia. The Marcellus-Millboro interval is far from a uniform slab of black rock. This field trip will examine a number of natural and engineered exposures in the vicinity of the West Virginia–Virginia state line, where participants will have the opportunity to view a variety of sedimentary facies within the shale itself, sedimentary structures, tectonic structures, fossils, overlying and underlying formations, volcaniclastic ash beds, and to view a basaltic intrusion.
Life-cycle analysis of shale gas and natural gas.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Clark, C.E.; Han, J.; Burnham, A.
2012-01-27
The technologies and practices that have enabled the recent boom in shale gas production have also brought attention to the environmental impacts of its use. Using the current state of knowledge of the recovery, processing, and distribution of shale gas and conventional natural gas, we have estimated up-to-date, life-cycle greenhouse gas emissions. In addition, we have developed distribution functions for key parameters in each pathway to examine uncertainty and identify data gaps - such as methane emissions from shale gas well completions and conventional natural gas liquid unloadings - that need to be addressed further. Our base case results showmore » that shale gas life-cycle emissions are 6% lower than those of conventional natural gas. However, the range in values for shale and conventional gas overlap, so there is a statistical uncertainty regarding whether shale gas emissions are indeed lower than conventional gas emissions. This life-cycle analysis provides insight into the critical stages in the natural gas industry where emissions occur and where opportunities exist to reduce the greenhouse gas footprint of natural gas.« less
NASA Astrophysics Data System (ADS)
Kim, N.; Heo, S.; Lim, C. H.; Lee, W. K.
2017-12-01
Shale gas is gain attention due to the tremendous reserves beneath the earth. The two known high reservoirs are located in United States and China. According to U.S Energy Information Administration China have estimated 7,299 trillion cubic feet of recoverable shale gas and placed as world first reservoir. United States had 665 trillion cubic feet for the shale gas reservoir and placed fourth. Unlike the traditional fossil fuel, spatial distribution of shale gas is considered to be widely spread and the reserved amount and location make the resource as energy source for the next generation. United States dramatically increased the shale gas production. For instance, shale gas production composes more than 50% of total natural gas production whereas China and Canada shale gas produce very small amount of the shale gas. According to U.S Energy Information Administration's report, in 2014 United States produced shale gas almost 40 billion cubic feet per day but China only produced 0.25 billion cubic feet per day. Recently, China's policy had changed to decrease the coal powerplants to reduce the air pollution and the energy stress in China is keep increasing. Shale gas produce less air pollution while producing energy and considered to be clean energy source. Considering the situation of China and characteristics of shale gas, soon the demand of shale gas will increase in China. United States invested 71.7 billion dollars in 2013 but it Chinese government is only proceeding fundamental investment due to land degradation, limited water resources, geological location of the reservoirs.In this study, firstly we reviewed the current system and technology of shale gas extraction such as hydraulic Fracturing. Secondly, listed the possible environmental damages, land degradations, and resource demands for the shale gas extraction. Thirdly, invested the potential shale gas extraction amount in China based on the location of shale gas reservoirs and limited resources for the gas extraction. Fourthly, invested the potential land degradation on agricultural, surface water, and forest in developing shale gas extraction scenario. In conclusion, we suggested possible environmental damages and social impacts from shale gas extraction in China.
Unconventional Reservoirs: Ideas to Commercialization
NASA Astrophysics Data System (ADS)
Tinker, S. W.
2015-12-01
There is no shortage of coal, oil, and natural gas in the world. What are sometimes in short supply are fresh ideas. Scientific innovation combined with continued advances in drilling and completion technology revitalized the natural gas industry in North America by making production from shale economic. Similar advances are now happening in shale oil. The convergence of ideas and technology has created a commercial environment in which unconventional reservoirs could supply natural gas to the North American consumer for 50 years or more. And, although not as far along in terms of resource development, oil from the Eagle Ford and Bakken Shales and the oil sands in Alberta could have a similar impact. Without advanced horizontal drilling, geosteering, staged hydraulic-fracture stimulation, synthetic and natural proppants, evolution of hydraulic fluid chemistry, and high-end monitoring and simulation, many of these plays would not exist. Yet drilling and completion technology cannot stand alone. Also required for success are creative thinking, favorable economics, and a tolerance for risk by operators. Current understanding and completion practices will leave upwards of 80% of oil and natural gas in the shale reservoirs. The opportunity to enhance recovery through advanced reservoir understanding and imaging, as well as through recompletions and infill drilling, is considerable. The path from ideas to commercialization will continue to provide economic results in unconventional reservoirs.
Shale Gas Boom or Bust? Estimating US and Global Economically Recoverable Resources
NASA Astrophysics Data System (ADS)
Brecha, R. J.; Hilaire, J.; Bauer, N.
2014-12-01
One of the most disruptive energy system technological developments of the past few decades is the rapid expansion of shale gas production in the United States. Because the changes have been so rapid there are great uncertainties as to the impacts of shale production for medium- and long-term energy and climate change mitigation policies. A necessary starting point for incorporating shale resources into modeling efforts is to understand the size of the resource, how much is technically recoverable (TRR), and finally, how much is economically recoverable (ERR) at a given cost. To assess production costs of shale gas, we combine top-down data with detailed bottom-up information. Studies solely based on top-down approaches do not adequately account for the heterogeneity of shale gas deposits and are unlikely to appropriately estimate extraction costs. We design an expedient bottom-up method based on publicly available US data to compute the levelized costs of shale gas extraction. Our results indicate the existence of economically attractive areas but also reveal a dramatic cost increase as lower-quality reservoirs are exploited. Extrapolating results for the US to the global level, our best estimate suggests that, at a cost of 6 US$/GJ, only 39% of the technically recoverable resources reported in top-down studies should be considered economically recoverable. This estimate increases to about 77% when considering optimistic TRR and estimated ultimate recovery parameters but could be lower than 12% for more pessimistic parameters. The current lack of information on the heterogeneity of shale gas deposits as well as on the development of future production technologies leads to significant uncertainties regarding recovery rates and production costs. Much of this uncertainty may be inherent, but for energy system planning purposes, with or without climate change mitigation policies, it is crucial to recognize the full ranges of recoverable quantities and costs.
DOT National Transportation Integrated Search
2016-10-01
Due to shale oil/gas recovery : operations, a large number : of truck trips on Louisiana : roadways are required for : transporting equipment and : materials to and from the : recovery sites. As a result, : roads and bridges that were : designed for ...
Potential restrictions for CO2 sequestration sites due to shale and tight gas production.
Elliot, T R; Celia, M A
2012-04-03
Carbon capture and geological sequestration is the only available technology that both allows continued use of fossil fuels in the power sector and reduces significantly the associated CO(2) emissions. Geological sequestration requires a deep permeable geological formation into which captured CO(2)can be injected, and an overlying impermeable formation, called a caprock, that keeps the buoyant CO(2) within the injection formation. Shale formations typically have very low permeability and are considered to be good caprock formations. Production of natural gas from shale and other tight formations involves fracturing the shale with the explicit objective to greatly increase the permeability of the shale. As such, shale gas production is in direct conflict with the use of shale formations as a caprock barrier to CO(2) migration. We have examined the locations in the United States where deep saline aquifers, suitable for CO(2) sequestration, exist, as well as the locations of gas production from shale and other tight formations. While estimated sequestration capacity for CO(2) sequestration in deep saline aquifers is large, up to 80% of that capacity has areal overlap with potential shale-gas production regions and, therefore, could be adversely affected by shale and tight gas production. Analysis of stationary sources of CO(2) shows a similar effect: about two-thirds of the total emissions from these sources are located within 20 miles of a deep saline aquifer, but shale and tight gas production could affect up to 85% of these sources. These analyses indicate that colocation of deep saline aquifers with shale and tight gas production could significantly affect the sequestration capacity for CCS operations. This suggests that a more comprehensive management strategy for subsurface resource utilization should be developed.
NASA Astrophysics Data System (ADS)
Wójcicki, Adam; Jarosiński, Marek
2017-04-01
For the stage of shale gas production, like in the USA, prediction of the CO2 storage potential in shale reservoir can be performed by dynamic modeling. We have made an attempt to estimate this potential at an early stage of shale gas exploration in the Lower Paleozoic Baltic Basin, based on data from 3,800 m deep vertical well (without hydraulic fracking stimulation), supplemented with additional information from neighboring boreholes. Such an attempt makes a sense as a first guess forecast for company that explores a new basin. In our approach, the storage capacity is build by: (1) sorption potential of organic matter, (2) open pore space and (3) potential fracture space. the sequence. our estimation is done for 120 m long shale sequence including three shale intervals enriched with organic mater. Such an interval is possible to be fracked from a single horizontal borehole as known from hydraulic fracture treatment in the other boreholes in this region. The potential for adsorbed CO2 is determined from Langmuir isotherm parameters taken from laboratory measurements in case of both CH4 and CO2 adsorption, as well as shale density and volume. CO2 has approximately three times higher sorption capacity than methane to the organic matter contained in the Baltic Basin shales. Finally, due to low permeability of shale we adopt the common assumption for the USA shale basins that the CO2 will be able to reach effectively only 10% of theoretical total sorption volume. The pore space capacity was estimated by utilizing results of laboratory measurements of dynamic capacity for pores bigger than 10 nm. It is assumed for smaller pores adsorption prevails over free gas. Similarly to solution for sorption, we have assumed that only 10 % of the tight pore space will be reached by CO2. For fracture space we have considered separately natural (tectonic-origin) and technological (potentially produced by hydraulic fracturing treatment) fractures. From fracture density profile and typical permeability of fractures under lithostatic stress we inferred negligible open space of natural fractures. Technological fracture space was calculated as an potential for hydraulic stimulation of vertical fractures until, due to elastic expansion of reservoir, the horizontal minimum stress equals the vertical one. In such a case, horizontal fractures start to open and the stimulation process gets to fail. Based on elastic anisotropy and tectonic stress differentiation, the maximum hydraulic horizontal extension was calculated for separated shale complexes. For further storage capacity we assumed that technological fracture space create primary pathway for CO2 transport is entirely accessible for the CO2. In general, the CO2 sorption capacity makes the predominant contribution and fracture space capacity is comparable or smaller than pore space contribution. When compare this with the best recognized Marcellus shale basin we can see that our calculations for the 35 m depth interval comprising formations with the higher TOC content show a slightly lower value than in the case of Marcellus.
Organic Substances from Unconventional Oil and Gas Production in Shale
NASA Astrophysics Data System (ADS)
Orem, W. H.; Varonka, M.; Crosby, L.; Schell, T.; Bates, A.; Engle, M.
2014-12-01
Unconventional oil and gas (UOG) production has emerged as an important element in the US and world energy mix. Technological innovations in the oil and gas industry, especially horizontal drilling and hydraulic fracturing, allow for the enhanced release of oil and natural gas from shale compared to conventional oil and gas production. This has made commercial exploitation possible on a large scale. Although UOG is enormously successful, there is surprisingly little known about the effects of this technology on the targeted shale formation and on environmental impacts of oil and gas production at the surface. We examined water samples from both conventional and UOG shale wells to determine the composition, source and fate of organic substances present. Extraction of hydrocarbon from shale plays involves the creation and expansion of fractures through the hydraulic fracturing process. This process involves the injection of large volumes of a water-sand mix treated with organic and inorganic chemicals to assist the process and prop open the fractures created. Formation water from a well in the New Albany Shale that was not hydraulically fractured (no injected chemicals) had total organic carbon (TOC) levels that averaged 8 mg/L, and organic substances that included: long-chain fatty acids, alkanes, polycyclic aromatic hydrocarbons, heterocyclic compounds, alkyl benzenes, and alkyl phenols. In contrast, water from UOG production in the Marcellus Shale had TOC levels as high as 5,500 mg/L, and contained a range of organic chemicals including, solvents, biocides, scale inhibitors, and other organic chemicals at thousands of μg/L for individual compounds. These chemicals and TOC decreased rapidly over the first 20 days of water recovery as injected fluids were recovered, but residual organic compounds (some naturally-occurring) remained up to 250 days after the start of water recovery (TOC 10-30 mg/L). Results show how hydraulic fracturing changes the organic composition of shale formation water, and that some injected organic substances are retained on the shale and slowly released. Thus, appropriate safe disposal of produced water is needed long into production. Changes in organic substances in formation water may impact microbial communities. Current work is focused on UOG production in the Permian Basin, Texas.
Constituent bioconcentration in rainbow trout exposed to a complex chemical mixture
DOE Office of Scientific and Technical Information (OSTI.GOV)
Linder, G.; Bergman, H.L.; Meyer, J.S.
1984-09-01
Classically, aquatic contaminant fate models predicting a chemical's bioconcentration factor (BCF) are based upon single-compound derived models, yet such BCF predictions may deviate from observed BCFs when physicochemical interactions or biological responses to complex chemical mixture exposures are not adequately considered in the predictive model. Rainbow trout were exposed to oil-shale retort waters. Such a study was designed to model the potential biological effects precluded by exposure to complex chemical mixtures such as solid waste leachates, agricultural runoff, and industrial process waste waters. Chromatographic analysis of aqueous and nonaqueous liquid-liquid reservoir components yielded differences in mixed extraction solvent HPLC profilesmore » of whole fish exposed for 1 and 3 weeks to the highest dilution of the complex chemical mixture when compared to their corresponding control, yet subsequent whole fish extractions at 6, 9, 12, and 15 weeks into exposure demonstrated no qualitative differences between control and exposed fish. Liver extractions and deproteinized bile samples from exposed fish were qualitatively different than their corresponding controls. These findings support the projected NOEC of 0.0045% dilution, even though the differences in bioconcentration profiles suggest hazard assessment strategies may be useful in evaluating environmental fate processes associated with complex chemical mixtures. 12 references, 4 figures, 2 tables.« less
Plowshare Program - American Atomic Bomb Tests For Industrial Applications
None
2018-01-16
The United States Atomic Energy Commission (AEC) established the Plowshare Program as a research and development activity to explore the technical and economic feasibility of using nuclear explosives for industrial applications. The reasoning was that the relatively inexpensive energy available from nuclear explosions could prove useful for a wide variety of peaceful purposes. The Plowshare Program began in 1958 and continued through 1975. Between December 1961 and May 1973, the United States conducted 27 Plowshare nuclear explosive tests comprising 35 individual detonations. Conceptually, industrial applications resulting from the use of nuclear explosives could be divided into two broad categories: 1) large-scale excavation and quarrying, where the energy from the explosion was used to break up and/or move rock; and 2) underground engineering, where the energy released from deeply buried nuclear explosives increased the permeability and porosity of the rock by massive breaking and fracturing. Possible excavation applications included: canals, harbors, highway and railroad cuts through mountains, open pit mining, construction of dams, and other quarry and construction-related projects. Underground nuclear explosion applications included: stimulation of natural gas production, preparation of leachable ore bodies for in situ leaching, creation of underground zones of fractured oil shale for in situ retorting, and formation of underground natural gas and petroleum storage reservoirs.
Plowshare Program - American Atomic Bomb Tests For Industrial Applications
DOE Office of Scientific and Technical Information (OSTI.GOV)
None
2012-04-22
The United States Atomic Energy Commission (AEC) established the Plowshare Program as a research and development activity to explore the technical and economic feasibility of using nuclear explosives for industrial applications. The reasoning was that the relatively inexpensive energy available from nuclear explosions could prove useful for a wide variety of peaceful purposes. The Plowshare Program began in 1958 and continued through 1975. Between December 1961 and May 1973, the United States conducted 27 Plowshare nuclear explosive tests comprising 35 individual detonations. Conceptually, industrial applications resulting from the use of nuclear explosives could be divided into two broad categories: 1)more » large-scale excavation and quarrying, where the energy from the explosion was used to break up and/or move rock; and 2) underground engineering, where the energy released from deeply buried nuclear explosives increased the permeability and porosity of the rock by massive breaking and fracturing. Possible excavation applications included: canals, harbors, highway and railroad cuts through mountains, open pit mining, construction of dams, and other quarry and construction-related projects. Underground nuclear explosion applications included: stimulation of natural gas production, preparation of leachable ore bodies for in situ leaching, creation of underground zones of fractured oil shale for in situ retorting, and formation of underground natural gas and petroleum storage reservoirs.« less
Collected Works of Mao Tse-Tung (1917-1949), Volume 4
1978-10-10
Spanking of children had not been com- pletely stopped, but it was reduced. (There should be no spanking at all.) The children had become more...intelligent. In the past, when spanked or scolded by their parents, they seldom retorted, but now more of them re- torted. (If the parents did not... spank or scold them, the children would not be retorting.) About 1 percent of the women married 3 times in the 4-1/2 years after the uprising
Habitat loss and modification due to gas development in the Fayetteville shale.
Moran, Matthew D; Cox, A Brandon; Wells, Rachel L; Benichou, Chloe C; McClung, Maureen R
2015-06-01
Hydraulic fracturing and horizontal drilling have become major methods to extract new oil and gas deposits, many of which exist in shale formations in the temperate deciduous biome of the eastern United States. While these technologies have increased natural gas production to new highs, they can have substantial environmental effects. We measured the changes in land use within the maturing Fayetteville Shale gas development region in Arkansas between 2001/2002 and 2012. Our goal was to estimate the land use impact of these new technologies in natural gas drilling and predict future consequences for habitat loss and fragmentation. Loss of natural forest in the gas field was significantly higher compared to areas outside the gas field. The creation of edge habitat, roads, and developed areas was also greater in the gas field. The Fayetteville Shale gas field fully developed about 2% of the natural habitat within the region and increased edge habitat by 1,067 linear km. Our data indicate that without shale gas activities, forest cover would have increased slightly and edge habitat would have decreased slightly, similar to patterns seen recently in many areas of the southern U.S. On average, individual gas wells fully developed about 2.5 ha of land and modified an additional 0.5 ha of natural forest. Considering the large number of wells drilled in other parts of the eastern U.S. and projections for new wells in the future, shale gas development will likely have substantial negative effects on forested habitats and the organisms that depend upon them.
Processing use, and characterization of shale oil products
Decora, Andrew W.; Kerr, Robert D.
1979-01-01
Oil shale is a potential source of oil that will supplement conventional sources for oil as our needs for fossil fuels begin to exceed our supplies. The resource may be mined and processed on the surface or it may be processed in situ. An overview of the potential technologies and environmental issues is presented. PMID:446454
Lillis, Paul G.; Selby, David
2013-01-01
Rhenium-osmium (Re-Os) geochronometry is applied to crude oils derived from the Permian Phosphoria Formation of the Bighorn Basin in Wyoming and Montana to determine whether the radiogenic age reflects the timing of petroleum generation, timing of migration, age of the source rock, or the timing of thermochemical sulfate reduction (TSR). The oils selected for this study are interpreted to be derived from the Meade Peak Phosphatic Shale and Retort Phosphatic Shale Members of the Phosphoria Formation based on oil-oil and oil-source rock correlations utilizing bulk properties, elemental composition, δ13C and δ34S values, and biomarker distributions. The δ34S values of the oils range from -6.2‰ to +5.7‰, with oils heavier than -2‰ interpreted to be indicative of TSR. The Re and Os isotope data of the Phosphoria oils plot in two general trends: (1) the main trend (n = 15 oils) yielding a Triassic age (239 ± 43 Ma) with an initial 187Os/188Os value of 0.85 ± 0.42 and a mean square weighted deviation (MSWD) of 1596, and (2) the Torchlight trend (n = 4 oils) yielding a Miocene age (9.24 ± 0.39 Ma) with an initial 187Os/188Os value of 1.88 ± 0.01 and a MSWD of 0.05. The scatter (high MSWD) in the main-trend regression is due, in part, to TSR in reservoirs along the eastern margin of the basin. Excluding oils that have experienced TSR, the regression is significantly improved, yielding an age of 211 ± 21 Ma with a MSWD of 148. This revised age is consistent with some studies that have proposed Late Triassic as the beginning of Phosphoria oil generation and migration, and does not seem to reflect the source rock age (Permian) or the timing of re-migration (Late Cretaceous to Eocene) associated with the Laramide orogeny. The low precision of the revised regression (±21 Ma) is not unexpected for this oil family given the long duration of generation from a large geographic area of mature Phosphoria source rock, and the possible range in the initial 187Os/188Os values of the Meade Peak and Retort source units. Effects of re-migration may have contributed to the scatter, but thermal cracking and biodegradation likely have had minimal or no effect on the main-trend regression. The four Phosphoria-sourced oils from Torchlight and Lamb fields yield a precise Miocene age Re-Os isochron that may reflect the end of TSR in the reservoir due to cooling below a threshold temperature in the last 10 m.y. from uplift and erosion of overlying rocks. The mechanism for the formation of a Re-Os isotopic relationship in a family of crude oils may involve multiple steps in the petroleum generation process. Bitumen generation from the source rock kerogen may provide a reset of the isotopic chronometer, and incremental expulsion of oil over the duration of the oil window may provide some of the variation seen in 187Re/188Os values from an oil family.
Contested Technologies and Design for Values: The Case of Shale Gas.
Dignum, Marloes; Correljé, Aad; Cuppen, Eefje; Pesch, Udo; Taebi, Behnam
2016-08-01
The introduction of new energy technologies may lead to public resistance and contestation. It is often argued that this phenomenon is caused by an inadequate inclusion of relevant public values in the design of technology. In this paper we examine the applicability of the value sensitive design (VSD) approach. While VSD was primarily introduced for incorporating values in technological design, our focus in this paper is expanded towards the design of the institutions surrounding these technologies, as well as the design of stakeholder participation. One important methodological challenge of VSD is to identify the relevant values related to new technological developments. In this paper, we argue that the public debate can form a rich source from which to retrieve the values at stake. To demonstrate this, we have examined the arguments used in the public debate regarding the exploration and exploitation of shale gas in the Netherlands. We identified two important sets of the underlying values, namely substantive and procedural values. This paper concludes with two key findings. Firstly, contrary to what is often suggested in the literature, both proponents and opponents seem to endorse the same values. Secondly, contestation seems to arise in the precise operationalization of these values among the different stakeholders. In other words, contestation in the Dutch shale gas debate does not arise from inter-value conflict but rather from intra-value conflicts. This multi-interpretability should be incorporated in VSD processes.
DOE Office of Scientific and Technical Information (OSTI.GOV)
White, O. Jr.
1979-03-01
This work was supported by the United States Department of Energy, Division of Biomedical and Environmental Research, Analysis and Assessment Program, through the Safety and Environmental Protection Division at Brookhaven National Laboratory. The symposium program included presentations centering around the themes: Recognition of Occupational Health Monitoring Requirements for the Coal Conversion and Oil Shale Industries and Status of Dosimetry Technology for Occupational Health Monitoring for the Coal Conversion and Oil Shale Industries. Sixteen papers have been entered individually into EDB and ERA; six had been entered previously from other sources. (LTN)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bazillian, Morgan; Pedersen, Ascha Lychett; Pless, Jacuelyn
Shale gas resource potential in China is assessed to be large, and its development could have wide-ranging economic, environmental, and energy security implications. Although commercial scale shale gas development has not yet begun in China, it holds the potential to change the global energy landscape. Chinese decision-makers are wrestling with the challenges associated with bringing the potential to reality: geologic complexity; infrastructure and logistical difficulties; technological, institutional, social and market development issues; and environmental impacts, including greenhouse gas emissions, impacts on water availability and quality, and air pollution. This paper briefly examines the current situation and outlook for shale gasmore » in China, and explores existing and potential avenues for international cooperation. We find that despite some barriers to large-scale development, Chinese shale gas production has the potential to grow rapidly over the medium-term.« less
Environmental hazard of oil shale combustion fly ash.
Blinova, Irina; Bityukova, Liidia; Kasemets, Kaja; Ivask, Angela; Käkinen, Aleksandr; Kurvet, Imbi; Bondarenko, Olesja; Kanarbik, Liina; Sihtmäe, Mariliis; Aruoja, Villem; Schvede, Hedi; Kahru, Anne
2012-08-30
The combined chemical and ecotoxicological characterization of oil shale combustion fly ash was performed. Ash was sampled from the most distant point of the ash-separation systems of the Balti and Eesti Thermal Power Plants in North-Eastern Estonia. The fly ash proved potentially hazardous for tested aquatic organisms and high alkalinity of the leachates (pH>10) is apparently the key factor determining its toxicity. The leachates were not genotoxic in the Ames assay. Also, the analysis showed that despite long-term intensive oil-shale combustion accompanied by considerable fly ash emissions has not led to significant soil contamination by hazardous trace elements in North-Eastern Estonia. Comparative study of the fly ash originating from the 'new' circulating fluidized bed (CFB) combustion technology and the 'old' pulverized-fired (PF) one showed that CFB fly ash was less toxic than PF fly ash. Thus, complete transfer to the 'new' technology will reduce (i) atmospheric emission of hazardous trace elements and (ii) fly ash toxicity to aquatic organisms as compared with the 'old' technology. Copyright © 2012 Elsevier B.V. All rights reserved.
ERIC Educational Resources Information Center
Schafft, Kai A.; Borlu, Yetkin; Glenna, Leland
2013-01-01
Recent advances in gas and oil drilling technology have led to dramatic boomtown development in many rural areas that have endured extended periods of economic decline. In Pennsylvania's Marcellus gas fields, the recent development of unconventional shale gas resources has not been without controversy. It has been variously framed as a major…
Water Availability for Shale Gas Development in Sichuan Basin, China.
Yu, Mengjun; Weinthal, Erika; Patiño-Echeverri, Dalia; Deshusses, Marc A; Zou, Caineng; Ni, Yunyan; Vengosh, Avner
2016-03-15
Unconventional shale gas development holds promise for reducing the predominant consumption of coal and increasing the utilization of natural gas in China. While China possesses some of the most abundant technically recoverable shale gas resources in the world, water availability could still be a limiting factor for hydraulic fracturing operations, in addition to geological, infrastructural, and technological barriers. Here, we project the baseline water availability for the next 15 years in Sichuan Basin, one of the most promising shale gas basins in China. Our projection shows that continued water demand for the domestic sector in Sichuan Basin could result in high to extremely high water stress in certain areas. By simulating shale gas development and using information from current water use for hydraulic fracturing in Sichuan Basin (20,000-30,000 m(3) per well), we project that during the next decade water use for shale gas development could reach 20-30 million m(3)/year, when shale gas well development is projected to be most active. While this volume is negligible relative to the projected overall domestic water use of ∼36 billion m(3)/year, we posit that intensification of hydraulic fracturing and water use might compete with other water utilization in local water-stress areas in Sichuan Basin.
Life-cycle greenhouse gas emissions of shale gas, natural gas, coal, and petroleum.
Burnham, Andrew; Han, Jeongwoo; Clark, Corrie E; Wang, Michael; Dunn, Jennifer B; Palou-Rivera, Ignasi
2012-01-17
The technologies and practices that have enabled the recent boom in shale gas production have also brought attention to the environmental impacts of its use. It has been debated whether the fugitive methane emissions during natural gas production and transmission outweigh the lower carbon dioxide emissions during combustion when compared to coal and petroleum. Using the current state of knowledge of methane emissions from shale gas, conventional natural gas, coal, and petroleum, we estimated up-to-date life-cycle greenhouse gas emissions. In addition, we developed distribution functions for key parameters in each pathway to examine uncertainty and identify data gaps such as methane emissions from shale gas well completions and conventional natural gas liquid unloadings that need to be further addressed. Our base case results show that shale gas life-cycle emissions are 6% lower than conventional natural gas, 23% lower than gasoline, and 33% lower than coal. However, the range in values for shale and conventional gas overlap, so there is a statistical uncertainty whether shale gas emissions are indeed lower than conventional gas. Moreover, this life-cycle analysis, among other work in this area, provides insight on critical stages that the natural gas industry and government agencies can work together on to reduce the greenhouse gas footprint of natural gas.
Selling 'Fracking': Legitimation of High Speed Oil and Gas Extraction in the Marcellus Shale Region
NASA Astrophysics Data System (ADS)
Matz, Jacob R.
The advent of horizontal hydraulic fracture drilling, or 'fracking,' a technology used to access oil and natural gas deposits, has allowed for the extraction of deep, unconventional shale gas and oil deposits in various shale seams throughout the United States and world. One such shale seam, the Marcellus shale, extends from New York State, across Pennsylvania, and throughout West Virginia, where shale gas development has significantly increased within the last decade. This boom has created a massive amount of economic activity surrounding the energy industry, creating jobs for workers, income from leases and royalties for landowners, and profits for energy conglomerates. However, this bounty comes with risks to environmental and public health, and has led to divisive community polarization over the issue in the Marcellus shale region. In the face of potential environmental and social disruption, and a great deal of controversy surrounding 'fracking,' the oil and gas industry has had to undertake a myriad of public relations campaigns and initiatives to legitimize their extraction efforts in the Marcellus shale region, and to project the oil and gas industry in a positive light to residents, policy makers, and landowners. This thesis describes one such public relations initiative, the Energy in Depth Northeast Marcellus Initiative. Through qualitative content analysis of Energy in Depth's online web material, this thesis examines the ways in which the oil and gas industry narrates the shale gas boom in the Marcellus shale region, and the ways in which the industry frames the discourse surrounding natural gas development. Through the use of environmental imagery, appeals to scientific reason, and appeals to patriotism, the oil and gas industry uses Energy in Depth to frame the shale gas extraction process in a positive way, all the while framing those who question or oppose the processes of shale gas extraction as irrational obstructionists.
Research on Utilization of Geo-Energy
NASA Astrophysics Data System (ADS)
Bock, Michaela; Scheck-Wenderoth, Magdalena; GeoEn Working Group
2013-04-01
The world's energy demand will increase year by year and we have to search for alternative energy resources. New concepts concerning the energy production from geo-resources have to be provided and developed. The joint project GeoEn combines research on the four core themes geothermal energy, shale gas, CO2 capture and CO2 storage. Sustainable energy production from deep geothermal energy resources is addressed including all processes related to geothermal technologies, from reservoir exploitation to energy conversion in the power plant. The research on the unconventional natural gas resource, shale gas, is focussed on the sedimentological, diagenetic and compositional characteristics of gas shales. Technologies and solutions for the prevention of the greenhouse gas carbon dioxide are developed in the research fields CO2 capture technologies, utilization, transport, and CO2 storage. Those four core themes are studied with an integrated approach using the synergy of cross-cutting methodologies. New exploration and reservoir technologies and innovative monitoring methods, e.g. CSMT (controlled-source magnetotellurics) are examined and developed. All disciplines are complemented by numerical simulations of the relevant processes. A particular strength of the project is the availability of large experimental infrastructures where the respective technologies are tested and monitored. These include the power plant Schwarze Pumpe, where the Oxyfuel process is improved, the pilot storage site for CO2 in Ketzin and the geothermal research platform Groß Schönebeck, with two deep wells and an experimental plant overground for research on corrosion. In addition to fundamental research, the acceptance of new technologies, especially in the field of CCS is examined. Another focus addressed is the impact of shale gas production on the environment. A further important goal is the education of young scientists in the new field "geo-energy" to fight skills shortage in this field of growing economic and ecologic relevance.
Environmental public health dimensions of shale and tight gas development.
Shonkoff, Seth B C; Hays, Jake; Finkel, Madelon L
2014-08-01
The United States has experienced a boom in natural gas production due to recent technological innovations that have enabled this resource to be produced from shale formations. We reviewed the body of evidence related to exposure pathways in order to evaluate the potential environmental public health impacts of shale gas development. We highlight what is currently known and identify data gaps and research limitations by addressing matters of toxicity, exposure pathways, air quality, and water quality. There is evidence of potential environmental public health risks associated with shale gas development. Several studies suggest that shale gas development contributes to ambient air concentrations of pollutants known to be associated with increased risk of morbidity and mortality. Similarly, an increasing body of studies suggest that water contamination risks exist through a variety of environmental pathways, most notably during wastewater transport and disposal, and via poor zonal isolation of gases and fluids due to structural integrity impairment of cement in gas wells. Despite a growing body of evidence, data gaps persist. Most important, there is a need for more epidemiological studies to assess associations between risk factors, such as air and water pollution, and health outcomes among populations living in close proximity to shale gas operations.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Godec, Michael
Building upon advances in technology, production of natural gas from organic-rich shales is rapidly developing as a major hydrocarbon supply option in North America and around the world. The same technology advances that have facilitated this revolution - dense well spacing, horizontal drilling, and hydraulic fracturing - may help to facilitate enhanced gas recovery (EGR) and carbon dioxide (CO 2) storage in these formations. The potential storage of CO 2 in shales is attracting increasing interest, especially in Appalachian Basin states that have extensive shale deposits, but limited CO 2 storage capacity in conventional reservoirs. The goal of this cooperativemore » research project was to build upon previous and on-going work to assess key factors that could influence effective EGR, CO 2 storage capacity, and injectivity in selected Eastern gas shales, including the Devonian Marcellus Shale, the Devonian Ohio Shale, the Ordovician Utica and Point Pleasant shale and equivalent formations, and the late Devonian-age Antrim Shale. The project had the following objectives: (1) Analyze and synthesize geologic information and reservoir data through collaboration with selected State geological surveys, universities, and oil and gas operators; (2) improve reservoir models to perform reservoir simulations to better understand the shale characteristics that impact EGR, storage capacity and CO 2 injectivity in the targeted shales; (3) Analyze results of a targeted, highly monitored, small-scale CO 2 injection test and incorporate into ongoing characterization and simulation work; (4) Test and model a smart particle early warning concept that can potentially be used to inject water with uniquely labeled particles before the start of CO 2 injection; (5) Identify and evaluate potential constraints to economic CO 2 storage in gas shales, and propose development approaches that overcome these constraints; and (6) Complete new basin-level characterizations for the CO 2 storage capacity and injectivity potential of the targeted eastern shales. In total, these Eastern gas shales cover an area of over 116 million acres, may contain an estimated 6,000 trillion cubic feet (Tcf) of gas in place, and have a maximum theoretical storage capacity of over 600 million metric tons. Not all of this gas in-place will be recoverable, and economics will further limit how much will be economic to produce using EGR techniques with CO 2 injection. Reservoir models were developed and simulations were conducted to characterize the potential for both CO 2 storage and EGR for the target gas shale formations. Based on that, engineering costing and cash flow analyses were used to estimate economic potential based on future natural gas prices and possible financial incentives. The objective was to assume that EGR and CO 2 storage activities would commence consistent with the historical development practices. Alternative CO 2 injection/EGR scenarios were considered and compared to well production without CO 2 injection. These simulations were conducted for specific, defined model areas in each shale gas play. The resulting outputs were estimated recovery per typical well (per 80 acres), and the estimated CO 2 that would be injected and remain in the reservoir (i.e., not produced), and thus ultimately assumed to be stored. The application of this approach aggregated to the entire area of the four shale gas plays concluded that they contain nearly 1,300 Tcf of both primary production and EGR potential, of which an estimated 460 Tcf could be economic to produce with reasonable gas prices and/or modest incentives. This could facilitate the storage of nearly 50 Gt of CO 2 in the Marcellus, Utica, Antrim, and Devonian Ohio shales.« less
Improved mechanical properties of retorted carrots by ultrasonic pre-treatments.
Day, Li; Xu, Mi; Øiseth, Sofia K; Mawson, Raymond
2012-05-01
The use of ultrasound pre-processing treatment, compared to blanching, to enhance mechanical properties of non-starchy cell wall materials was investigated using carrot as an example. The mechanical properties of carrot tissues were measured by compression and tensile testing after the pre-processing treatment prior to and after retorting. Carrot samples ultrasound treated for 10 min at 60 °C provided a higher mechanical strength (P<0.05) to the cell wall structure than blanching for the same time period. With the addition of 0.5% CaCl(2) in the pre-treatment solution, both blanching and ultrasound treatment showed synergistic effect on enhancing the mechanical properties of retorted carrot pieces. At a relatively short treatment time (10 min at 60 °C) with the use of 0.5% CaCl(2), ultrasound treatment achieved similar enhancement to the mechanical strength of retorted carrots to blanching for a much longer time period (i.e. 40 min). The mechanism involved appears to be related to the stress responses present in all living plant matter. However, there is a need to clarify the relative importance of the potential stress mechanisms in order to get a better understanding of the processing conditions likely to be most effective. The amount of ultrasound treatment required is likely to involve low treatment intensities and there are indications from the structural characterisation and mechanical property analyses that the plant cell wall tissues were more elastic than that accomplished using low temperature long time blanching. Crown Copyright © 2011. Published by Elsevier B.V. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Levine, Jonathan S.; Fukai, Isis; Soeder, Daniel J.
While the majority of shale formations will serve as reservoir seals for stored anthropogenic carbon dioxide (CO2), hydrocarbon-bearing shale formations may be potential geologic sinks after depletion through primary production. Here in this paper we present the United States-Department of Energy-National Energy Technology Laboratory (US-DOE-NETL) methodology for screening-level assessment of prospective CO 2 storage resources in shale using a volumetric equation. Volumetric resource estimates are produced from the bulk volume, porosity, and sorptivity of the shale and storage efficiency factors based on formation-scale properties and petrophysical limitations on fluid transport. Prospective shale formations require: (1) prior hydrocarbon production using horizontalmore » drilling and stimulation via staged, high-volume hydraulic fracturing, (2) depths sufficient to maintain CO 2 in a supercritical state, generally >800 m, and (3) an overlying seal. The US-DOE-NETL methodology accounts for storage of CO 2 in shale as a free fluid phase within fractures and matrix pores and as an sorbed phase on organic matter and clays. Uncertainties include but are not limited to poorly-constrained geologic variability in formation thickness, porosity, existing fluid content, organic richness, and mineralogy. Knowledge of how these parameters may be linked to depositional environments, facies, and diagenetic history of the shale will improve the understanding of pore-to-reservoir scale behavior, and provide improved estimates of prospective CO 2 storage.« less
Levine, Jonathan S.; Fukai, Isis; Soeder, Daniel J.; ...
2016-05-31
While the majority of shale formations will serve as reservoir seals for stored anthropogenic carbon dioxide (CO2), hydrocarbon-bearing shale formations may be potential geologic sinks after depletion through primary production. Here in this paper we present the United States-Department of Energy-National Energy Technology Laboratory (US-DOE-NETL) methodology for screening-level assessment of prospective CO 2 storage resources in shale using a volumetric equation. Volumetric resource estimates are produced from the bulk volume, porosity, and sorptivity of the shale and storage efficiency factors based on formation-scale properties and petrophysical limitations on fluid transport. Prospective shale formations require: (1) prior hydrocarbon production using horizontalmore » drilling and stimulation via staged, high-volume hydraulic fracturing, (2) depths sufficient to maintain CO 2 in a supercritical state, generally >800 m, and (3) an overlying seal. The US-DOE-NETL methodology accounts for storage of CO 2 in shale as a free fluid phase within fractures and matrix pores and as an sorbed phase on organic matter and clays. Uncertainties include but are not limited to poorly-constrained geologic variability in formation thickness, porosity, existing fluid content, organic richness, and mineralogy. Knowledge of how these parameters may be linked to depositional environments, facies, and diagenetic history of the shale will improve the understanding of pore-to-reservoir scale behavior, and provide improved estimates of prospective CO 2 storage.« less
Composition of pyrolysis gas from oil shale at various stages of heating
NASA Astrophysics Data System (ADS)
Martemyanov, S. M.; Bukharkin, A. A.; Koryashov, I. A.; Ivanov, A. A.
2017-05-01
Underground, the pyrolytic conversion of an oil shale in the nearest future may become an alternative source of a fuel gas and a synthetic oil. The main scientific problem in designing this technology is to provide a methodology for determination of the optimal mode of heating the subterranean formation. Such a methodology must allow predicting the composition of the pyrolysis products and the energy consumption at a given heating rate of the subterranean formation. The paper describes the results of heating of the oil shale fragments in conditions similar to the underground. The dynamics of composition of the gaseous products of pyrolysis are presented and analyzed.
NASA Astrophysics Data System (ADS)
Xiangjun, Liu; Jian, Xiong; Lixi, Liang; Yi, Ding
2017-06-01
With increasing demand for energy and advances in exploration and development technologies, more attention is being devoted to exploration and development of deep oil and gas reservoirs. The Nanpu Sag contains huge reserves in deep oil and gas reservoirs and is a promising area. In this paper, the physico-chemical and mechanical properties of hard brittle shales from the Shahejie Formation in the Nanpu Sag in the Bohai Bay Basin of northern China were investigated using a variety of methods, including x-ray diffraction analysis, cation exchange capacity (CEC) analysis, contact angle measurements, scanning electron microscope observations, immersion experiments, ultrasonic testing and mechanical testing. The effects of the physico-chemical properties of the shales on wellbore instability were observed, and the effects of hydration of the shales on wellbore instability were also examined. The results show that the major mineral constituents of the investigated shales are quartz and clay minerals. The clay mineral contents range from 25.33% to 52.03%, and the quartz contents range from 20.03% to 46.45%. The clay minerals do not include montmorillonite, but large amounts of mixed-layer illite/smectite were observed. The CEC values of the shales range from 90 to 210 mmol kg-1, indicating that the shales are partly hydrated. The wettability of the shales is strongly water-wetted, indicating that water would enter the shales due to the capillary effect. Hydration of hard brittle shales can generate cracks, leading to changes in microstructure and increases in the acoustic value, which could generate damage in the shales and reduce their strength. With increasing hydration time, the shale hydration effect gradually becomes stronger, causing an increase in the range of the acoustic travel time and decreases in the ranges of cohesion and internal friction angles. For the hard brittle shales of the Nanpu Sag, drilling fluid systems should aim to enhance sealing ability, decrease drilling fluid filter loss and increase the amount of clay-hydration inhibitor used.
Yang, Jon; Verba, Circe; Torres, Marta; ...
2018-02-01
Rare earth elements (REEs) are economically important to modern society and the rapid growth of technologies dependent on REEs has placed considerable economic pressure on their sourcing. This study addresses whether REEs could be released as a byproduct of natural gas extraction from a series of experiments that were designed to simulate hydraulic fracturing of black shale under various pressure (25 and 27.5 MPa) and temperature (50, 90, 130 °C) conditions. The dissolved REEs in the reacted fluids displayed no propensity for the REEs to be released from black shale under high pressure and temperature conditions, a result that ismore » consistent across the different types of fluids investigated. Overall, there was a net loss of REEs from the fluid. These changes in dissolved REEs were greatest at the moment the fluids first contacted the shale and before the high temperature and high pressure conditions were imposed, although the magnitude of these changes (10 -4 μg/g) were small compared to the magnitude of the total REE content present in the solid shale samples (10 2 μg/g). These results highlight the variability and complexity of hydraulic fracturing systems and indicate that REE may not serve as robust tracers for fracturing fluid-shale reactions. Additionally, the results suggest that significant quantities of REEs may not be byproducts of hydraulically fractured shales.« less
Few, Sheridan; Gambhir, Ajay; Napp, Tamaryn; ...
2017-01-27
There exists considerable uncertainty over both shale and conventional gas resource availability and extraction costs, as well as the fugitive methane emissions associated with shale gas extraction and its possible role in mitigating climate change. This study uses a multi-region energy system model, TIAM (TIMES integrated assessment model), to consider the impact of a range of conventional and shale gas cost and availability assessments on mitigation scenarios aimed at achieving a limit to global warming of below 2 °C in 2100, with a 50% likelihood. When adding shale gas to the global energy mix, the reduction to the global energymore » system cost is relatively small (up to 0.4%), and the mitigation cost increases by 1%–3% under all cost assumptions. The impact of a “dash for shale gas”, of unavailability of carbon capture and storage, of increased barriers to investment in low carbon technologies, and of higher than expected leakage rates, are also considered; and are each found to have the potential to increase the cost and reduce feasibility of meeting global temperature goals. Finally, we conclude that the extraction of shale gas is not likely to significantly reduce the effort required to mitigate climate change under globally coordinated action, but could increase required mitigation effort if not handled sufficiently carefully.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yang, Jon; Verba, Circe; Torres, Marta
Rare earth elements (REEs) are economically important to modern society and the rapid growth of technologies dependent on REEs has placed considerable economic pressure on their sourcing. This study addresses whether REEs could be released as a byproduct of natural gas extraction from a series of experiments that were designed to simulate hydraulic fracturing of black shale under various pressure (25 and 27.5 MPa) and temperature (50, 90, 130 °C) conditions. The dissolved REEs in the reacted fluids displayed no propensity for the REEs to be released from black shale under high pressure and temperature conditions, a result that ismore » consistent across the different types of fluids investigated. Overall, there was a net loss of REEs from the fluid. These changes in dissolved REEs were greatest at the moment the fluids first contacted the shale and before the high temperature and high pressure conditions were imposed, although the magnitude of these changes (10 -4 μg/g) were small compared to the magnitude of the total REE content present in the solid shale samples (10 2 μg/g). These results highlight the variability and complexity of hydraulic fracturing systems and indicate that REE may not serve as robust tracers for fracturing fluid-shale reactions. Additionally, the results suggest that significant quantities of REEs may not be byproducts of hydraulically fractured shales.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Few, Sheridan; Gambhir, Ajay; Napp, Tamaryn
There exists considerable uncertainty over both shale and conventional gas resource availability and extraction costs, as well as the fugitive methane emissions associated with shale gas extraction and its possible role in mitigating climate change. This study uses a multi-region energy system model, TIAM (TIMES integrated assessment model), to consider the impact of a range of conventional and shale gas cost and availability assessments on mitigation scenarios aimed at achieving a limit to global warming of below 2 °C in 2100, with a 50% likelihood. When adding shale gas to the global energy mix, the reduction to the global energymore » system cost is relatively small (up to 0.4%), and the mitigation cost increases by 1%–3% under all cost assumptions. The impact of a “dash for shale gas”, of unavailability of carbon capture and storage, of increased barriers to investment in low carbon technologies, and of higher than expected leakage rates, are also considered; and are each found to have the potential to increase the cost and reduce feasibility of meeting global temperature goals. Finally, we conclude that the extraction of shale gas is not likely to significantly reduce the effort required to mitigate climate change under globally coordinated action, but could increase required mitigation effort if not handled sufficiently carefully.« less
NASA Astrophysics Data System (ADS)
George, Johnsy; Kumar, R.; Sajeevkumar, V. A.; Sabapathy, S. N.; Vaijapurkar, S. G.; Kumar, D.; Kchawahha, A.; Bawa, A. S.
2007-07-01
Irradiation processing of food in the prepackaged form may affect chemical and physical properties of the plastic packaging materials. The effect of γ-irradiation doses (2.5-10.0 kGy) on polypropylene (PP)-based retortable food packaging materials, were investigated using Fourier transform infrared (FTIR) spectroscopic analysis, which revealed the changes happening to these materials after irradiation. The mechanical properties decreased with irradiation while oxygen transmission rate (OTR) was not affected significantly. Colour measurement indicated that Nylon 6 containing multilayer films became yellowish after irradiation. Thermal characterization revealed the changes in percentage crystallinity.
Shale-brine-CO2 interactions and the long-term stability of carbonate-rich shale caprock
NASA Astrophysics Data System (ADS)
Ilgen, A.; Aman, M.; Espinoza, D. N.; Rodriguez, M. A.; Griego, J.; Dewers, T. A.; Feldman, J.; Stewart, T.; Choens, R. C., II
2017-12-01
Geological carbon storage (GCS) requires an impermeable caprock (e.g., shale) that prevents the upward migration and escape of carbon dioxide (CO2) from the subsurface. Geochemical alteration can occur at the caprock-reservoir rock interface, which could lead to the altering of the rock's mechanical properties, compromising the seal. We performed laboratory experiments on Mancos shale to quantify the coupled chemical-mechanical response of carbonate-rich shale in CO2-brine mixtures at conditions typical to GCS. We constructed geochemical models, calibrated them using laboratory results, and extended to time scales required for GCS. We observed the dissolution of calcite and kaolinite and the precipitation of gypsum and amorphous aluminum (hydr)oxide following the introduction of CO2. To address whether this mineral alteration causes changes in micro-mechanical properties, we examined altered Mancos shale using micro-mechanical (scratch) testing, measuring the scratch toughness of mm-scale shale lithofacies. The quartz-rich regions of the Mancos shale did not show significant changes in scratch toughness following 1-week alteration in a CO2-brine mixture. However, the scratch toughness of the calcite-rich, originally softer regions decreased by about 50%. These observations illustrate a coupled and localized chemical-mechanical response of carbonate-rich shale to the injection of CO2. This suggests a localized weakening of the caprock may occur, potentially leading to the development of preferential flow paths. The identification of vulnerable lithofacies within caprock and a characterization of mineralogical heterogeneity is imperative at prospective GCS sites. Sandia National Laboratories is a multimission laboratory managed and operated by National Technology and Engineering Solutions of Sandia, LLC., a wholly owned subsidiary of Honeywell International, Inc., for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-NA-0003525.
Jet Fuel from Shale Oil - 1981 Technology Review,
1981-12-01
the programs just described by Mr Jackson in the previous papaer . F. N. Hodgson of the Mon- santo Research Center provided mass spectrometric... research and development efforts at alleviating the magnitude of the problem and its impact on national security by evaluating the potential of...with Exxon Research and Engineering, domestic oil shale was determined to be the most viable near term alternative source of syncrude available for
CO2 mineral sequestration in oil-shale wastes from Estonian power production.
Uibu, Mai; Uus, Mati; Kuusik, Rein
2009-02-01
In the Republic of Estonia, local low-grade carbonaceous fossil fuel--Estonian oil-shale--is used as a primary energy source. Combustion of oil-shale is characterized by a high specific carbon emission factor (CEF). In Estonia, the power sector is the largest CO(2) emitter and is also a source of huge amounts of waste ash. Oil-shale has been burned by pulverized firing (PF) since 1959 and in circulating fluidized-bed combustors (CFBCs) since 2004-2005. Depending on the combustion technology, the ash contains a total of up to 30% free Ca-Mg oxides. In consequence, some amount of emitted CO(2) is bound by alkaline transportation water and by the ash during hydraulic transportation and open-air deposition. The goal of this study was to investigate the possibility of improving the extent of CO(2) capture using additional chemical and technological means, in particular the treatment of aqueous ash suspensions with model flue gases containing 10-15% CO(2). The results indicated that both types of ash (PF and CFBC) could be used as sorbents for CO(2) mineral sequestration. The amount of CO(2) captured averaged 60-65% of the carbonaceous CO(2) and 10-11% of the total CO(2) emissions.
Pressurized fluidized-bed hydroretorting of Eastern oil shales -- Sulfur control
DOE Office of Scientific and Technical Information (OSTI.GOV)
Roberts, M.J.; Abbasian, J.; Akin, C.
1992-05-01
This topical report on Sulfur Control'' presents the results of work conducted by the Institute of Gas Technology (IGT), the Illinois Institute of Technology (IIT), and the Ohio State University (OSU) to develop three novel approaches for desulfurization that have shown good potential with coal and could be cost-effective for oil shales. These are (1) In-Bed Sulfur Capture using different sorbents (IGT), (2) Electrostatic Desulfurization (IIT), and (3) Microbial Desulfurization and Denitrification (OSU and IGT). The objective of the task on In-Bed Sulfur Capture was to determine the effectiveness of different sorbents (that is, limestone, calcined limestone, dolomite, and siderite)more » for capturing sulfur (as H{sub 2}S) in the reactor during hydroretorting. The objective of the task on Electrostatic Desulfurization was to determine the operating conditions necessary to achieve a high degree of sulfur removal and kerogen recovery in IIT's electrostatic separator. The objectives of the task on Microbial Desulfurization and Denitrification were to (1) isolate microbial cultures and evaluate their ability to desulfurize and denitrify shale, (2) conduct laboratory-scale batch and continuous tests to improve and enhance microbial removal of these components, and (3) determine the effects of processing parameters, such as shale slurry concentration, solids settling characteristics, agitation rate, and pH on the process.« less
Use of Digital Volume Correlation to Measure Deformation of Shale Using Natural Markers
NASA Astrophysics Data System (ADS)
Dewers, T. A.; Quintana, E.; Ingraham, M. D.; Jacques, C. L.
2016-12-01
We apply digital volume correlation (DVC) to interpreting deformation as influenced by shale heterogeneity. An extension of digital image correlation, DVC uses 3D images (CT Scans) of a sample before, during and after loading to determine deformation in terms of a 3D strain map. The technology tracks the deformation of high and low density regions within the sample to determine full field 3D strains within the sample. High pyrite shales (Woodford and Marcellus in this study) are being used as the high density pyrite serves as an excellent point to track in the volume correlation. Preliminary results indicate that this technology is promising for measuring true volume strains, strain localization, and strain portioning by microlithofacies within specimens during testing. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.
Shale Gas: Development Opportunities and Challenges
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zoback, Mark D.; Arent, Douglas J.
2014-03-01
The use of horizontal drilling and multistage hydraulic fracturing technologies has enabled the production of immense quantities of natural gas, to date principally in North America but increasingly in other countries around the world. The global availability of this resource creates both opportunities and challenges that need to be addressed in a timely and effective manner. There seems little question that rapid shale gas development, coupled with fuel switching from coal to natural gas for power generation, can have beneficial effects on air pollution, greenhouse gas emissions, and energy security in many countries. In this context, shale gas resources representmore » a critically important transition fuel on the path to a decarbonized energy future. For these benefits to be realized, however, it is imperative that shale gas resources be developed with effective environmental safeguards to reduce their impact on land use, water resources, air quality, and nearby communities.« less
Synthetic fuel development creates problems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schmit, M.
The development of the oil shale in Colorado is discussed specifically. Governor Lamm points out that this is not a well-proven technology; and both he and Harris D. Sherman, Executive Director of the Colorado Dept. of Natural Resources, are seriously concerned with the social, economic, and environmental disruptions that oil shale commercialization will bring to the state. With production at maximum capacity (8 oil shale plants at 50,000 barrels a day each), only 2.5 to 5% of the nation's petroleum needs could be supplied. However, both Gov. Lamm and Mr. Sherman realize that because the present administration has the synfuelsmore » bandwagon rolling - and 70% of the nation's high-grade oil shale is found in Colorado - it is not a question of if, but when, there will be development in the state. Therefore, they favor a phased approach to circumvent or mitigate the social, economic, and environmental impacts.« less
NASA Astrophysics Data System (ADS)
Kadyrov, R.; Statsenko, E.
2018-05-01
The resources of shale oil, contained in the organic matter of the wood deposits, can be considered as a source of profitable production of hydrocarbons, when modern EOR technologies are used. As a result of the primary studies of the pore space structure, it is revealed that two types of porous space are prevailing in the studied samples of the Domanik oil shales. The most prevailing is intrakerogen porosity with pore volumes of 5 × 10-8 1 × 10-6 mm3. The volumetric reconstruction of the structure of this pore space shows that the voids are confined directly to micro lenses of organic matter. The second type of the found void is represented by leaching cracks. It is characteristic of more carbonate varieties of the Dominik oil shale with spotted structure. It is the oil shale intervals with such cracks that are of greatest interest to the EOR, since they consist of a large area with smaller pores and through which pressurization and spread of various agents are possible to occur in order to increase the oil recovery.
The influence of pressure on petroleum generation and maturation as suggested by aqueous pyrolysis
Price, L.C.; Wenger, L.M.
1992-01-01
Because fluid pressures are transient in sedimentary basins over geologic time, the effect of increasing fluid pressure on organic-matter metamorphism is difficult to determine, and conflicting opinions exist concerning its influence. Properly-performed aqueous-pyrolysis experiments can closely simulate hydrocarbon generation and maturation in nature, and thus offer an excellent way to study the influence of pressure. Such experiments, carried out on the Retort Phosphatic Shale Member of the Lower Permian Phosphoria Formation (type II-S organic matter) at different constant temperatures, demonstrated that increasing pressure significantly retards all aspects of organic matter metamorphism, including hydrocarbon generation, maturation and thermal destruction. This conclusion results from detailed quantitative and qualitative analyses of all products from hydrocarbon generation, from the C1 to C4 hydrocarbon gases to the asphaltenes, and also from analyses of the reacted rocks. We have documented that our aqueous-pyrolysis experiments closely simulated natural hydrocarbon generation and maturation. Thus the data taken as a function of pressure have relevance to the influence of normal and abnormal fluid pressures as related to: 1) depths and temperatures of mainstage hydrocarbon generation; 2) the thermal destruction of deposits of gas or light oil, or their preservation to unexpectedly high maturation ranks; and 3) the persistence of measurable to moderate concentrations of C15+ hydrocarbons in fine-grained rocks even to ultra-high maturation ranks. ?? 1992.
NASA Astrophysics Data System (ADS)
Korolev, E.; Barieva, E.; Eskin, A.
2018-05-01
A comprehensive study of combustible shale, common within Tatarstan and Ulyanovsk region, is carried out. The rocks physicochemical parameters are found to meet the power generating fuels requirements. The predictive estimate of ash products properties of combustible shale burning is held. Minding furnace process technology it is necessary to know mineral and organic components behavior when combustible shale is burnt. Since the first will determine slagging properties of energy raw materials, the second – its calorific value. In consideration of this the main research methods were X-ray, thermal and X-ray fluorescence analyses. Summing up the obtained results, we can draw to the following conclusions: 1. The combustible shale in Tatarstan and the Ulyanovsk region has predominantly low calorific value (Qb d = 5-9 MJ/kg). In order to enhance its efficiency and to reduce cost it is possible to conduct rocks burning together with some other organic or organic mineral power generating fuels. 2. High ash content (Ad = 60-80%) that causes a high external ballast content in shale implies the appropriateness of using this fuel resource next to its exploitation site. The acceptable distance to a consumer will reduce unproductive transportation charges for large ash and moisture masses. 3. The performed fuel ash components characteristics, as well as the yield and volatiles composition allow us to specify the basic parameters for boiler units, designed for the Volga combustible shale burning. 4. The noncombustible residual components composition shows that shale ash can be used in manufacture of materials of construction.
Study on nickel and vanadium removal in thermal conversion of oil sludge and oil shale sludge
NASA Astrophysics Data System (ADS)
Sombral, L. G. S.; Pickler, A. C.; Aires, J. R.; Riehl, C. A.
2003-05-01
The petroleum refining processes and of oil shale industrialization generate solid and semi-solid residues. In those residues heavy metals are found in concentrations that vary according to the production sector. The destination of those residues is encouraging researches looking for new technologies that reach the specifications of environmental organisms, and are being developed and applied to the industry. In this work it is shown that the heavy metals concentrations, previously in the petroleum oily solid residues and in those of the oils shale, treated by low temperature thermal conversion, obtaining in both cases concentrations below Ippm to Nickel and below 5ppm to vanadium.
Bacteria and Bioactivity in Holder Pasteurized and Shelf-Stable Human Milk Products
2017-01-01
Abstract Background: Historically, Holder pasteurization has been used to pasteurize donor human milk available in a hospital setting. There is extensive research that provides an overview of the impact of Holder pasteurization on bioactive components of human milk. A shelf-stable (SS) human milk product, created using retort processing, recently became available; however, to our knowledge, little has been published about the effect of retort processing on human milk. Objective: We aimed to assess the ability of retort processing to eliminate bacteria and to quantify the difference in lysozyme and secretory immunoglobulin A (sIgA) activity between Holder pasteurized (HP) and SS human milk. Methods: Milk samples from 60 mothers were pooled. From this pool, 36 samples were taken: 12 samples were kept raw, 12 samples were HP, and 12 samples were retort processed to create an SS product. All samples were analyzed for total aerobic bacteria, coliform bacteria, Bacillus cereus, sIgA activity, and lysozyme activity. Raw samples served as the control. Results: One raw sample and 3 HP samples contained B. cereus at the time of culture. There were no detectable bacteria in SS samples at the time of culture. Raw samples had significantly greater lysozyme and sIgA activity than HP and SS samples (P < 0.0001). HP samples retained significantly more lysozyme and sIgA activity (54% and 87%, respectively) than SS samples (0% and 11%, respectively). Conclusions: Human milk processed using Holder pasteurization should continue to be screened for the presence of B. cereus. Clinicians should be aware of the differences in the retention of lysozyme and sIgA activity in HP and SS products when making feeding decisions for medically fragile or immunocompromised infants to ensure that patients are receiving the maximum immune protection. PMID:29955718
CT Scanning and Geophysical Measurements of the Marcellus Formation from the Tippens 6HS Well
DOE Office of Scientific and Technical Information (OSTI.GOV)
Crandall, Dustin; Paronish, Thomas; Brown, Sarah
The computed tomography (CT) facilities and the Multi-Sensor Core Logger (MSCL) at the National Energy Technology Laboratory (NETL) Morgantown, West Virginia site were used to characterize core of the Marcellus Shale from a vertical well drilled in Eastern Ohio. The core is from the Tippens 6HS Well in Monroe County, Ohio and is comprised primarily of the Marcellus Shale from depths of 5550 to 5663 ft.
Environmental Public Health Dimensions of Shale and Tight Gas Development
Hays, Jake; Finkel, Madelon L.
2014-01-01
Background: The United States has experienced a boom in natural gas production due to recent technological innovations that have enabled this resource to be produced from shale formations. Objectives: We reviewed the body of evidence related to exposure pathways in order to evaluate the potential environmental public health impacts of shale gas development. We highlight what is currently known and identify data gaps and research limitations by addressing matters of toxicity, exposure pathways, air quality, and water quality. Discussion: There is evidence of potential environmental public health risks associated with shale gas development. Several studies suggest that shale gas development contributes to ambient air concentrations of pollutants known to be associated with increased risk of morbidity and mortality. Similarly, an increasing body of studies suggest that water contamination risks exist through a variety of environmental pathways, most notably during wastewater transport and disposal, and via poor zonal isolation of gases and fluids due to structural integrity impairment of cement in gas wells. Conclusion: Despite a growing body of evidence, data gaps persist. Most important, there is a need for more epidemiological studies to assess associations between risk factors, such as air and water pollution, and health outcomes among populations living in close proximity to shale gas operations. Citation: Shonkoff SB, Hays J, Finkel ML. 2014. Environmental public health dimensions of shale and tight gas development. Environ Health Perspect 122:787–795; http://dx.doi.org/10.1289/ehp.1307866 PMID:24736097
Double Retort System for Materials Compatibility Testing
DOE Office of Scientific and Technical Information (OSTI.GOV)
V. Munne; EV Carelli
2006-02-23
With Naval Reactors (NR) approval of the Naval Reactors Prime Contractor Team (NRPCT) recommendation to develop a gas cooled reactor directly coupled to a Brayton power conversion system as the Space Nuclear Power Plant (SNPP) for Project Prometheus (References a and b) there was a need to investigate compatibility between the various materials to be used throughout the SNPP. Of particular interest was the transport of interstitial impurities from the nickel-base superalloys, which were leading candidates for most of the piping and turbine components to the refractory metal alloys planned for use in the reactor core. This kind of contaminationmore » has the potential to affect the lifetime of the core materials. This letter provides technical information regarding the assembly and operation of a double retort materials compatibility testing system and initial experimental results. The use of a double retort system to test materials compatibility through the transfer of impurities from a source to a sink material is described here. The system has independent temperature control for both materials and is far less complex than closed loops. The system is described in detail and the results of three experiments are presented.« less
U.S. shale gas trends - economic and global implications
NASA Astrophysics Data System (ADS)
Murphy, T.
2016-09-01
Natural gas from shale has moved the U.S., and North America more broadly, to become one of the largest producers of the commodity worldwide. Large technological gains have allowed reservoirs of unconventional hydrocarbons to become commercially viable to extract and market. The addition of this growing supply into the global marketplace, has upended longstanding trading patterns, and created new economic outcomes worth noting. This paper will discuss the recent trends of shale energy development in the U.S., the impact it is having on domestic and international markets, and the implications as the world shifts to a new low carbon energy paradigm. It will cover changes in workforce, midstream build out, power generation trends, petrochemicals, and emerging LNG export capacities.
Wang, Chao-Qiang; Jin, Ji-Zhong; Lin, Xiao-Yan; Xiong, De-Ming; Mei, Xu-Dong
2017-07-01
Based on the requirement of national energy conservation and environmental protection, attention has been given to building an environment-friendly and resource-saving society. Shale gas oil-based drilling cutting pyrolysis residues (ODPRs) have been used as the main research object to developing new technology which can convert the residues into a harmless and recyclable material. Using the test data of ODPR, we analyze the development prospect in the building material industry and provide a scheme to utilize this particular solid-waste efficiently. Theoretically speaking, the ODPR resource utilization such as admixture of cement, making sintered brick, and non-fired brick, by the exploration and development of Fuling shale gas is feasible.
$1. 9 million OKd for Michigan shale project. [Antrim shale deposits
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kreiling, J.
Dow Chemical Co. has received a $1.9 million Energy Research and Development Administration grant to begin developing ''in-situ'' technology to extract gas and oil from Michigan's vast Antrim shale deposits. Dow estimates that the deposits contain at least 2.5 trillion barrels of crude oil and it is speculated that 10 percent of it is recoverable. Michigan Gov. William G. Milliken says ''Success in this high-risk, unconventional but potentially big-payoff project could substantially ease the energy crunch in Michigan and the nation.'' Michigan imports 95 percent of its fuel. The $1.9 million will get work started and foreshadows a $13 millionmore » contract that will support Dow's research in fracturing and ignition.« less
[Chemical hazards arising from shale gas extraction].
Pakulska, Daria
2015-01-01
The development of the shale industry is gaining momentum and hence the analysis of chemical hazards to the environment and health of the local population is extreiely timely and important. Chemical hazards are created during the exploitation of all minerals, but in the case of shale gas production, there is much more uncertainty as regards to the effects of new technologies application. American experience suggests the increasing risk of environmental contamination, mainly groundwater. The greatest, concern is the incomplete knowledge of the composition of fluids used for fracturing shale rock and unpredictability of long-term effects of hydraulic fracturing for the environment and health of residents. High population density in the old continent causes the problem of chemical hazards which is much larger than in the USA. Despite the growing public discontent data on this subject are limited. First of all, there is no epidemiological studies to assess the relationship between risk factors, such as air and water pollution, and health effects in populations living in close proximity to gas wells. The aim of this article is to identify and discuss existing concepts on the sources of environmental contamination, an indication of the environment elements under pressure and potential health risks arising from shale gas extraction.
Technology-Based Oil and Natural Gas Plays: Shale Shock! Could There Be Billions in the Bakken?
2006-01-01
This report presents information about the Bakken Formation of the Williston Basin: its location, production, geology, resources, proved reserves, and the technology being used for development. This is the first in a series intending to share information about technology-based oil and natural gas plays.
Study on fracture identification of shale reservoir based on electrical imaging logging
NASA Astrophysics Data System (ADS)
Yu, Zhou; Lai, Fuqiang; Xu, Lei; Liu, Lin; Yu, Tong; Chen, Junyu; Zhu, Yuantong
2017-05-01
In recent years, shale gas exploration has made important development, access to a major breakthrough, in which the study of mud shale fractures is extremely important. The development of fractures has an important role in the development of gas reservoirs. Based on the core observation and the analysis of laboratory flakes and laboratory materials, this paper divides the lithology of the shale reservoirs of the XX well in Zhanhua Depression. Based on the response of the mudstone fractures in the logging curve, the fracture development and logging Response to the relationship between the conventional logging and electrical imaging logging to identify the fractures in the work, the final completion of the type of fractures in the area to determine and quantify the calculation of fractures. It is concluded that the fracture type of the study area is high and the microstructures are developed from the analysis of the XX wells in Zhanhua Depression. The shape of the fractures can be clearly seen by imaging logging technology to determine its type.
Construction of Shale Gas Well
NASA Astrophysics Data System (ADS)
Sapińska-Śliwa, Aneta; Wiśniowski, Rafał; Skrzypaszek, Krzysztof
2018-03-01
The paper describes shale gas borehole axes trajectories (vertical, horizontal, multilateral). The methodology of trajectory design in a two-and three-dimensional space has been developed. The selection of the profile type of the trajectory axes of the directional borehole depends on the technical and technological possibilities of its implementation and the results of a comprehensive economic analysis of the availability and development of the field. The work assumes the possibility of a multivariate design of trajectories depending on the accepted (available or imposed) input data.
A risk assessment tool applied to the study of shale gas resources.
Veiguela, Miguel; Hurtado, Antonio; Eguilior, Sonsoles; Recreo, Fernando; Roqueñi, Nieves; Loredo, Jorge
2016-11-15
The implementation of a risk assessment tool with the capacity to evaluate the risks for health, safety and the environment (HSE) from extraction of non-conventional fossil fuel resources by the hydraulic fracturing (fracking) technique can be a useful tool to boost development and progress of the technology and winning public trust and acceptance of this. At the early project stages, the lack of data related the selection of non-conventional gas deposits makes it difficult the use of existing approaches to risk assessment of fluids injected into geologic formations. The qualitative risk assessment tool developed in this work is based on the approach that shale gas exploitation risk is dependent on both the geologic site and the technological aspects. It follows from the Oldenburg's 'Screening and Ranking Framework (SRF)' developed to evaluate potential geologic carbon dioxide (CO2) storage sites. These two global characteristics: (1) characteristics centered on the natural aspects of the site and (2) characteristics centered on the technological aspects of the Project, have been evaluated through user input of Property values, which define Attributes, which define the Characteristics. In order to carry out an individual evaluation of each of the characteristics and the elements of the model, the tool has been implemented in a spreadsheet. The proposed model has been applied to a site with potential for the exploitation of shale gas in Asturias (northwestern Spain) with tree different technological options to test the approach. Copyright © 2016 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Wang, Yubin; Ismail, Marliya; Farid, Mohammed
2017-10-01
Currently baby food is sterilized using retort processing that gives an extended shelf life. However, this type of heat processing leads to reduction of organoleptic and nutrition value. Alternatively, the combination of pressure and heat could be used to achieve sterilization at reduced temperatures. This study investigates the potential of pressure-assisted thermal sterilization (PATS) technology for baby food sterilization. Here, baby food (apple puree), inoculated with Bacillus subtilis spores was treated using PATS at different operating temperatures, pressures and times and was compared with thermal only treatment. The results revealed that the decimal reduction time of B. subtilis in PATS treatment was lower than that of thermal only treatment. At a similar spore inactivation, the retention of ascorbic acid of PATS-treated sample was higher than that of thermally treated sample. The results indicated that PATS could be a potential technology for baby food processing while minimizing quality deterioration.
NASA Technical Reports Server (NTRS)
1980-01-01
The aim of Skylab's multi-agency cooperative project was to make simple but nutritious space meals available to handicapped and otherwise homebound senior adults, unable to take advantage of existing meal programs sponsored by federal, state and private organizations. As a spinoff of Meal Systems for the Elderly, commercial food processing firms are now producing astronaut type meals for public distribution. Company offers variety of freeze dried foods which are reconstituted by addition of water, and "retort pouch" meals which need no reconstitution, only heating. The retort pouch is an innovative flexible package that combines the advantage of boil-in bag and metal can. Foods retain their flavor, minerals and vitamins can be stored without refrigeration and are lightweight for easy transportation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hutton, Phillip N.
This report describes research into an innovative laser-enhanced catalytic pyrolysis technology that has the potential to significantly decrease the cost of cracking ethane and other alkanes found in shale gas ethylene. Similar to how water is resonantly heated by microwaves, a CO 2 laser can resonantly heat ethylene, producing radicals that convert ethane to ethylene at lower reactor temperatures. Proof of concept experiments were performed to determine if commercial grade CO 2 lasers at one-twenty fifth the cost of scientific grade lasers could crack ethane at lower temperatures than conventional technology. Cr doped MgO catalyst was then inserted in themore » reaction chamber to further increase conersion rates.« less
Advances in Geologic Disposal System Modeling and Shale Reference Cases
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mariner, Paul E.; Stein, Emily R.; Frederick, Jennifer M.
The Spent Fuel and Waste Science and Technology (SFWST) Campaign of the U.S. Department of Energy (DOE) Office of Nuclear Energy (NE), Office of Fuel Cycle Technology (OFCT) is conducting research and development (R&D) on geologic disposal of spent nuclear fuel (SNF) and high level nuclear waste (HLW). Two high priorities for SFWST disposal R&D are design concept development and disposal system modeling (DOE 2011, Table 6). These priorities are directly addressed in the SFWST Generic Disposal Systems Analysis (GDSA) work package, which is charged with developing a disposal system modeling and analysis capability for evaluating disposal system performance formore » nuclear waste in geologic media (e.g., salt, granite, shale, and deep borehole disposal).« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Perry, Frank Vinton; Kelley, Richard E.
The DOE Spent Fuel and Waste Technology (SWFT) R&D Campaign is supporting research on crystalline rock, shale (argillite) and salt as potential host rocks for disposal of HLW and SNF in a mined geologic repository. The distribution of these three potential repository host rocks is limited to specific regions of the US and to different geologic and hydrologic environments (Perry et al., 2014), many of which may be technically suitable as a site for mined geologic disposal. This report documents a regional geologic evaluation of the Pierre Shale, as an example of evaluating a potentially suitable shale for siting amore » geologic HLW repository. This report follows a similar report competed in 2016 on a regional evaluation of crystalline rock that focused on the Superior Province of the north-central US (Perry et al., 2016).« less
Ultraviolet laser-induced voltage in anisotropic shale
NASA Astrophysics Data System (ADS)
Miao, Xinyang; Zhu, Jing; Li, Yizhang; Zhao, Kun; Zhan, Honglei; Yue, Wenzheng
2018-01-01
The anisotropy of shales plays a significant role in oil and gas exploration and engineering. Owing to various problems and limitations, anisotropic properties were seldom investigated by direct current resistivity methods. Here in this work, a 248 nm ultraviolet laser was employed to assess the anisotropic electrical response of a dielectric shale. Angular dependence of laser-induced voltages (V p) were obtained, with a data symmetry at the location of 180° and a ~62.2% V p anisotropy of the sample. The double-exponential functions have provided an explanation for the electrical field controlled carrier transportation process in horizontal and vertical directions. The results demonstrate that the combination of optics and electrical logging analysis (Opti-electrical Logging) is a promising technology for the investigation of unconventional reservoirs.
The rush to drill for natural gas: a public health cautionary tale.
Finkel, Madelon L; Law, Adam
2011-05-01
Efforts to identify alternative sources of energy have focused on extracting natural gas from vast shale deposits. The Marcellus Shale, located in western New York, Pennsylvania, and Ohio, is estimated to contain enough natural gas to supply the United States for the next 45 years. New drilling technology-horizontal drilling and high-volume hydraulic fracturing of shale (fracking)-has made gas extraction much more economically feasible. However, this technique poses a threat to the environment and to the public's health. There is evidence that many of the chemicals used in fracking can damage the lungs, liver, kidneys, blood, and brain. We discuss the controversial technique of fracking and raise the issue of how to balance the need for energy with the protection of the public's health.
Shale Gas Information Platform SHIP: the scientific perspective in all that hype
NASA Astrophysics Data System (ADS)
Hübner, A.; Horsfield, B.; Kapp, I.
2012-04-01
With the Shale Gas Information Platform SHIP, the GFZ German Research Centre for Geosciences engages in the public discussion of technical and environmental issues related to shale gas exploration and production. Unconventional fossil fuels, already on stream in the USA, and now under rapid development globally, have brought about a fundamental change in energy resource distribution and energy politics. Among these resources, shale gas is currently most discussed, with the public perspective focusing on putative environmental risk rather than on potential benefits. As far as Europe's own shale gas resources are concerned, scientific and technological innovations will play key roles in defining the dimension of future shale gas production, but it is especially the public's perception and level of acceptance that will make or break shale gas in the near-term. However, opinions on environmental risks diverge strongly: risks are minor and controllable according to industry, while environmental groups often claim the opposite. The Shale Gas Information Platform SHIP brings the perspective of science to the discussion on technical and environmental issues related to shale gas exploration and production. SHIP will not only showcase but discuss what is known and what is not yet know about environmental challenges and potential risks. SHIP features current scientific results and best practice approaches and builds on a network of international experts. The project is interactive and aims to spark discussion among all stakeholders. The Shale Gas Information Platform SHIP covers basic information and news on shale gas, but at the heart of SHIP is the Knowledge Base, a collection of scientific reviews from international experts. The articles give an overview on the current state of knowledge on a certain topic including knowledge gaps, and put this into context of past experiences, current best practices, and opinions expressed by different stakeholders. The articles are open to public comments via the SHIP website, and will be reviewed every three month by the author(s). After approx. one year lifetime, the articles are compiled and published as an E-book by GFZ German Research Centre for Geosciences (Library and Information Centre LIS of the GFZ). A DOI (Document Object Identifier) will be issued for every article (=book chapter). As the whole SHIP website, the E-book will be licensed with a Creative Commons CC-BY-NC-license, in order to promote maximum visibility and distribution in the web.
Commercially sterilized mussel meats (Mytilus chilensis): a study on process yield.
Almonacid, S; Bustamante, J; Simpson, R; Urtubia, A; Pinto, M; Teixeira, A
2012-06-01
The processing steps most responsible for yield loss in the manufacture of canned mussel meats are the thermal treatments of precooking to remove meats from shells, and thermal processing (retorting) to render the final canned product commercially sterile for long-term shelf stability. The objective of this study was to investigate and evaluate the impact of different combinations of process variables on the ultimate drained weight in the final mussel product (Mytilu chilensis), while verifying that any differences found were statistically and economically significant. The process variables selected for this study were precooking time, brine salt concentration, and retort temperature. Results indicated 2 combinations of process variables producing the widest difference in final drained weight, designated best combination and worst combination with 35% and 29% yield, respectively. Significance of this difference was determined by employing a Bootstrap methodology, which assumes an empirical distribution of statistical error. A difference of nearly 6 percentage points in total yield was found. This represents a 20% increase in annual sales from the same quantity of raw material, in addition to increase in yield, the conditions for the best process included a retort process time 65% shorter than that for the worst process, this difference in yield could have significant economic impact, important to the mussel canning industry. © 2012 Institute of Food Technologists®
Energy Options: Challenge for the Future
ERIC Educational Resources Information Center
Hammond, Allen L.
1972-01-01
Summarizes alternative technological possibilities for ensuring a supply of energy for the United States, including nuclear technology, solar energy, shale oil and coal gassification, low pollutant techniques for burning coal, and a fuel cell suitable for commercial use. Reports the extent of existing research and development efforts. (AL)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Roberts, M.J.; Abbasian, J.; Akin, C.
1992-05-01
This topical report on ``Sulfur Control`` presents the results of work conducted by the Institute of Gas Technology (IGT), the Illinois Institute of Technology (IIT), and the Ohio State University (OSU) to develop three novel approaches for desulfurization that have shown good potential with coal and could be cost-effective for oil shales. These are (1) In-Bed Sulfur Capture using different sorbents (IGT), (2) Electrostatic Desulfurization (IIT), and (3) Microbial Desulfurization and Denitrification (OSU and IGT). The objective of the task on In-Bed Sulfur Capture was to determine the effectiveness of different sorbents (that is, limestone, calcined limestone, dolomite, and siderite)more » for capturing sulfur (as H{sub 2}S) in the reactor during hydroretorting. The objective of the task on Electrostatic Desulfurization was to determine the operating conditions necessary to achieve a high degree of sulfur removal and kerogen recovery in IIT`s electrostatic separator. The objectives of the task on Microbial Desulfurization and Denitrification were to (1) isolate microbial cultures and evaluate their ability to desulfurize and denitrify shale, (2) conduct laboratory-scale batch and continuous tests to improve and enhance microbial removal of these components, and (3) determine the effects of processing parameters, such as shale slurry concentration, solids settling characteristics, agitation rate, and pH on the process.« less
Water Resources Management for Shale Energy Development
NASA Astrophysics Data System (ADS)
Yoxtheimer, D.
2015-12-01
The increase in the exploration and extraction of hydrocarbons, especially natural gas, from shale formations has been facilitated by advents in horizontal drilling and hydraulic fracturing technologies. Shale energy resources are very promising as an abundant energy source, though environmental challenges exist with their development, including potential adverse impacts to water quality. The well drilling and construction process itself has the potential to impact groundwater quality, however if proper protocols are followed and well integrity is established then impacts such as methane migration or drilling fluids releases can be minimized. Once a shale well has been drilled and hydraulically fractured, approximately 10-50% of the volume of injected fluids (flowback fluids) may flow out of the well initially with continued generation of fluids (produced fluids) throughout the well's productive life. Produced fluid TDS concentrations often exceed 200,000 mg/L, with elevated levels of strontium (Sr), bromide (Br), sodium (Na), calcium (Ca), barium (Ba), chloride (Cl), radionuclides originating from the shale formation as well as fracturing additives. Storing, managing and properly disposisng of these fluids is critical to ensure water resources are not impacted by unintended releases. The most recent data in Pennsylvania suggests an estimated 85% of the produced fluids were being recycled for hydraulic fracturing operations, while many other states reuse less than 50% of these fluids and rely moreso on underground injection wells for disposal. Over the last few years there has been a shift to reuse more produced fluids during well fracturing operations in shale plays around the U.S., which has a combination of economic, regulatory, environmental, and technological drivers. The reuse of water is cost-competitive with sourcing of fresh water and disposal of flowback, especially when considering the costs of advanced treatment to or disposal well injection and lessens the use of fresh water and disposal needs thus is a major innovation for the industry. Proper water resource managment techniques from the begining of drilling through production are critical to ensure the energy necessary for society is produced while also protecting the environment.
NASA Astrophysics Data System (ADS)
Hopke, Jill E.
In this dissertation, I study the network structure and content of a transnational movement against hydraulic fracturing and shale development, Global Frackdown. I apply a relational perspective to the study of role of digital technologies in transnational political organizing. I examine the structure of the social movement through analysis of hyperlinking patterns and qualitative analysis of the content of the ties in one strand of the movement. I explicate three actor types: coordinator, broker, and hyper-local. This research intervenes in the paradigm that considers international actors as the key nodes to understanding transnational advocacy networks. I argue this focus on the international scale obscures the role of globally minded local groups in mediating global issues back to the hyper-local scale. While international NGOs play a coordinating role, local groups with a global worldview can connect transnational movements to the hyper-local scale by networking with groups that are too small to appear in a transnational network. I also examine the movement's messaging on the social media platform Twitter. Findings show that Global Frackdown tweeters engage in framing practices of: movement convergence and solidarity, declarative and targeted engagement, prefabricated messaging, and multilingual tweeting. The episodic, loosely-coordinated and often personalized, transnational framing practices of Global Frackdown tweeters support core organizers' goal of promoting the globalness of activism to ban fracking. Global Frackdown activists use Twitter as a tool to advance the movement and to bolster its moral authority, as well as to forge linkages between localized groups on a transnational scale. Lastly, I study the relative prominence of negative messaging about shale development in relation to pro-shale messaging on Twitter across five hashtags (#fracking, #globalfrackdown, #natgas, #shale, and #shalegas). I analyze the top actors tweeting using the #fracking hashtag and receiving mentions with the hashtag. Results show statistically significant differences in the sentiment about shale development across the five hashtags. Results also indicate that the discourse on the main contested hashtag #fracking is dominated by activists, both individual activists and organizations.
NASA Astrophysics Data System (ADS)
Omara, M.; Subramanian, R.; Sullivan, M.; Robinson, A. L.; Presto, A. A.
2014-12-01
The Marcellus Shale is the most expansive shale gas reserve in play in the United States, representing an estimated 17 to 29 % of the total domestic shale gas reserves. The rapid and extensive development of this shale gas reserve in the past decade has stimulated significant interest and debate over the climate and environmental impacts associated with fugitive releases of methane and other pollutants, including volatile organic compounds. However, the nature and magnitude of these pollutant emissions remain poorly characterized. This study utilizes the tracer release technique to characterize total fugitive methane release rates from natural gas facilities in southwestern Pennsylvania and West Virginia that are at different stages of development, including well completion flowbacks and active production. Real-time downwind concentrations of methane and two tracer gases (acetylene and nitrous oxide) released onsite at known flow rates were measured using a quantum cascade tunable infrared laser differential absorption spectrometer (QC-TILDAS, Aerodyne, Billerica, MA) and a cavity ring down spectrometer (Model G2203, Picarro, Santa Clara, CA). Evacuated Silonite canisters were used to sample ambient air during downwind transects of methane and tracer plumes to assess volatile organic compounds (VOCs). A gas chromatograph with a flame ionization detector was used to quantify VOCs following the EPA Method TO-14A. A preliminary assessment of fugitive emissions from actively producing sites indicated that methane leak rates ranged from approximately 1.8 to 6.2 SCFM, possibly reflecting differences in facility age and installed emissions control technology. A detailed comparison of methane leak rates and VOCs emissions with recent published literature for other US shale gas plays will also be discussed.
WORK PLAN FOR COMPLETING A TECHNOLOGY ASSESSMENT OF WESTERN ENERGY RESOURCE DEVELOPMENT
This is a work plan for completing the final phase of a three year technology assessment of the development of six energy resources (coal, geothermal, natural gas, oil, oil shale, and uranium) in eight western states (Arizona, Colorado, Montana, New Mexico, North and South Dakota...
Study on fracturing flowback fluid treatment technology for shale gas in Yangzhou
NASA Astrophysics Data System (ADS)
Shi, Shengwei; Du, Jiajia; Kang, Dingyu; Chen, Xinjian; Qu, Chengtun; Yu, Tao
2018-02-01
Shale gas fracturing flowback fluid has the characteristics of high viscosity, large displacement, complex components and difficult to deal with. Therefore, it is of great significance for environmental protection to treat and reuse it. In this paper, Yangzhou shale gas is taken as an object to study the treatment of shale gas fracturing flowback fluid. The results shown that the viscosity of the fracturing flowback fluid before treatment was 16.75mPa·s, and when the pH was adjusted to 3.5, with Cerium(III) sulfate and ferrous sulfate as catalyst and the dosage were 60mg/L and 120 mg/L respectively, and hydrogen peroxide dosage was 0.5%, the viscosity of fracturing folwback fluid was reduced from 16.75mPa·s to 1.97mPa·s After the oxidation treatment, adjusting pH to 7.5, and treating it with inorganic flocculant and organic flocculant, the water quality met the reinjection requirement of the average air permeability of less than or equal to 0.01 μm2.
Military Fuels Refined from Paraho-II Shale Oil.
1981-03-01
FUELS REFINED O FROM PARAHO-II SHALE OIL INTERIM REPORT AFLRL No. 131 4!t by J.N. Bowden E.C. Owens D.W. Naegeli L.L. Stavinoha U.S. Army Fuels and...J.N./Bowden, E.C. /Owens, D.W./ Naegeli / DAAK70-78-C-0001 € L.L. Stavinoha DAAK70-80-C-0001 V 9 PERFORMING ORGANIZATION NAME AND ADDRESSES J0...Combustor Design and Oper- ating Conditions," Combustion Science and Technology, 19, 119, 1979. 16. Moses, C.A., and Naegeli , D.W., "Fuel Property
Ecological risks of shale oil and gas development to wildlife, aquatic resources and their habitats
Brittingham, Margaret C.; Maloney, Kelly O.; Farag, Aïda M.; Harper, David D.; Bowen, Zachary H.
2014-01-01
Technological advances in hydraulic fracturing and horizontal drilling have led to the exploration and exploitation of shale oil and gas both nationally and internationally. Extensive development of shale resources has occurred within the United States over the past decade, yet full build out is not expected to occur for years. Moreover, countries across the globe have large shale resources and are beginning to explore extraction of these resources. Extraction of shale resources is a multistep process that includes site identification, well pad and infrastructure development, well drilling, high-volume hydraulic fracturing and production; each with its own propensity to affect associated ecosystems. Some potential effects, for example from well pad, road and pipeline development, will likely be similar to other anthropogenic activities like conventional gas drilling, land clearing, exurban and agricultural development and surface mining (e.g., habitat fragmentation and sedimentation). Therefore, we can use the large body of literature available on the ecological effects of these activities to estimate potential effects from shale development on nearby ecosystems. However, other effects, such as accidental release of wastewaters, are novel to the shale gas extraction process making it harder to predict potential outcomes. Here, we review current knowledge of the effects of high-volume hydraulic fracturing coupled with horizontal drilling on terrestrial and aquatic ecosystems in the contiguous United States, an area that includes 20 shale plays many of which have experienced extensive development over the past decade. We conclude that species and habitats most at risk are ones where there is an extensive overlap between a species range or habitat type and one of the shale plays (leading to high vulnerability) coupled with intrinsic characteristics such as limited range, small population size, specialized habitat requirements, and high sensitivity to disturbance. Examples include core forest habitat and forest specialists, sagebrush habitat and specialists, vernal pond inhabitants and stream biota. We suggest five general areas of research and monitoring that could aid in development of effective guidelines and policies to minimize negative impacts and protect vulnerable species and ecosystems: (1) spatial analyses, (2) species-based modeling, (3) vulnerability assessments, (4) ecoregional assessments, and (5) threshold and toxicity evaluations.
Ecological risks of shale oil and gas development to wildlife, aquatic resources and their habitats.
Brittingham, Margaret C; Maloney, Kelly O; Farag, Aïda M; Harper, David D; Bowen, Zachary H
2014-10-07
Technological advances in hydraulic fracturing and horizontal drilling have led to the exploration and exploitation of shale oil and gas both nationally and internationally. Extensive development of shale resources has occurred within the United States over the past decade, yet full build out is not expected to occur for years. Moreover, countries across the globe have large shale resources and are beginning to explore extraction of these resources. Extraction of shale resources is a multistep process that includes site identification, well pad and infrastructure development, well drilling, high-volume hydraulic fracturing and production; each with its own propensity to affect associated ecosystems. Some potential effects, for example from well pad, road and pipeline development, will likely be similar to other anthropogenic activities like conventional gas drilling, land clearing, exurban and agricultural development and surface mining (e.g., habitat fragmentation and sedimentation). Therefore, we can use the large body of literature available on the ecological effects of these activities to estimate potential effects from shale development on nearby ecosystems. However, other effects, such as accidental release of wastewaters, are novel to the shale gas extraction process making it harder to predict potential outcomes. Here, we review current knowledge of the effects of high-volume hydraulic fracturing coupled with horizontal drilling on terrestrial and aquatic ecosystems in the contiguous United States, an area that includes 20 shale plays many of which have experienced extensive development over the past decade. We conclude that species and habitats most at risk are ones where there is an extensive overlap between a species range or habitat type and one of the shale plays (leading to high vulnerability) coupled with intrinsic characteristics such as limited range, small population size, specialized habitat requirements, and high sensitivity to disturbance. Examples include core forest habitat and forest specialists, sagebrush habitat and specialists, vernal pond inhabitants and stream biota. We suggest five general areas of research and monitoring that could aid in development of effective guidelines and policies to minimize negative impacts and protect vulnerable species and ecosystems: (1) spatial analyses, (2) species-based modeling, (3) vulnerability assessments, (4) ecoregional assessments, and (5) threshold and toxicity evaluations.
2009-01-01
The isotopic composition of mercury (Hg) was determined in cinnabar ore, mine-waste calcine (retorted ore), and leachates obtained from water leaching experiments of calcine from two large Hg mining districts in the U.S. This study is the first to report significant mass-dependent Hg isotopic fractionation between cinnabar ore and resultant calcine. Data indicate that δ202Hg values relative to NIST 3133 of calcine (up to 1.52‰) in the Terlingua district, Texas, are as much as 3.24‰ heavier than cinnabar (−1.72‰) prior to retorting. In addition, δ202Hg values obtained from leachates of Terlingua district calcines are isotopically similar to, or as much as 1.17‰ heavier than associated calcines, most likely due to leaching of soluble, byproduct Hg compounds formed during ore retorting that are a minor component in the calcines. As a result of the large fractionation found between cinnabar and calcine, and because calcine is the dominant source of Hg contamination from the mines studied, δ202Hg values of calcine may be more environmentally important in these mined areas than the primary cinnabar ore. Measurement of the Hg isotopic composition of calcine is necessary when using Hg isotopes for tracing Hg sources from areas mined for Hg, especially mine water runoff. PMID:19848142
Stetson, S.J.; Gray, J.E.; Wanty, R.B.; Macalady, D.L.
2009-01-01
The isotopic composition of mercury (Hg) was determined in cinnabar ore, mine-waste calcine (retorted ore), and leachates obtained from water leaching experiments of calcine from two large Hg mining districts in the U.S. This study is the first to report significant mass-dependent Hg isotopic fractionation between cinnabar ore and resultant calcine. Data indicate that ??202Hg values relative to NIST 3133 of calcine (up to 1.52???) in the Terlingua district, Texas, are as much as 3.24??? heavier than cinnabar (-1.72???) prior to retorting. In addition, ??202Hg values obtained from leachates of Terlingua district calcines are isotopically similar to, or as much as 1.17??? heavier than associated calcines, most likely due to leaching of soluble, byproduct Hg compounds formed during ore retorting that are a minor component in the calcines. As a result of the large fractionation found between cinnabar and calcine, and because calcine is the dominant source of Hg contamination from the mines studied, ??202Hg values of calcine may be more environmentally important in these mined areas than the primary cinnabar ore. Measurement of the Hg isotopic composition of calcine is necessary when using Hg isotopes for tracing Hg sources from areas mined for Hg, especially mine water runoff. ?? 2009 American Chemical Society.
This report covers a three year technology assessment of the development of six energy resources (coal, geothermal, natural gas, oil, oil shale, and uranium) in eight western states (Arizona, Montana, New Mexico, North Dakota, South Dakota, Utah, and Wyoming) during the period fr...
Heath, Garvin A; O'Donoughue, Patrick; Arent, Douglas J; Bazilian, Morgan
2014-08-05
Recent technological advances in the recovery of unconventional natural gas, particularly shale gas, have served to dramatically increase domestic production and reserve estimates for the United States and internationally. This trend has led to lowered prices and increased scrutiny on production practices. Questions have been raised as to how greenhouse gas (GHG) emissions from the life cycle of shale gas production and use compares with that of conventionally produced natural gas or other fuel sources such as coal. Recent literature has come to different conclusions on this point, largely due to differing assumptions, comparison baselines, and system boundaries. Through a meta-analytical procedure we call harmonization, we develop robust, analytically consistent, and updated comparisons of estimates of life cycle GHG emissions for electricity produced from shale gas, conventionally produced natural gas, and coal. On a per-unit electrical output basis, harmonization reveals that median estimates of GHG emissions from shale gas-generated electricity are similar to those for conventional natural gas, with both approximately half that of the central tendency of coal. Sensitivity analysis on the harmonized estimates indicates that assumptions regarding liquids unloading and estimated ultimate recovery (EUR) of wells have the greatest influence on life cycle GHG emissions, whereby shale gas life cycle GHG emissions could approach the range of best-performing coal-fired generation under certain scenarios. Despite clarification of published estimates through harmonization, these initial assessments should be confirmed through methane emissions measurements at components and in the atmosphere and through better characterization of EUR and practices.
Heath, Garvin A.; O’Donoughue, Patrick; Arent, Douglas J.; Bazilian, Morgan
2014-01-01
Recent technological advances in the recovery of unconventional natural gas, particularly shale gas, have served to dramatically increase domestic production and reserve estimates for the United States and internationally. This trend has led to lowered prices and increased scrutiny on production practices. Questions have been raised as to how greenhouse gas (GHG) emissions from the life cycle of shale gas production and use compares with that of conventionally produced natural gas or other fuel sources such as coal. Recent literature has come to different conclusions on this point, largely due to differing assumptions, comparison baselines, and system boundaries. Through a meta-analytical procedure we call harmonization, we develop robust, analytically consistent, and updated comparisons of estimates of life cycle GHG emissions for electricity produced from shale gas, conventionally produced natural gas, and coal. On a per-unit electrical output basis, harmonization reveals that median estimates of GHG emissions from shale gas-generated electricity are similar to those for conventional natural gas, with both approximately half that of the central tendency of coal. Sensitivity analysis on the harmonized estimates indicates that assumptions regarding liquids unloading and estimated ultimate recovery (EUR) of wells have the greatest influence on life cycle GHG emissions, whereby shale gas life cycle GHG emissions could approach the range of best-performing coal-fired generation under certain scenarios. Despite clarification of published estimates through harmonization, these initial assessments should be confirmed through methane emissions measurements at components and in the atmosphere and through better characterization of EUR and practices. PMID:25049378
Knoblauch, Theresa A K; Stauffacher, Michael; Trutnevyte, Evelina
2018-04-01
Subsurface energy activities entail the risk of induced seismicity including low-probability high-consequence (LPHC) events. For designing respective risk communication, the scientific literature lacks empirical evidence of how the public reacts to different written risk communication formats about such LPHC events and to related uncertainty or expert confidence. This study presents findings from an online experiment (N = 590) that empirically tested the public's responses to risk communication about induced seismicity and to different technology frames, namely deep geothermal energy (DGE) and shale gas (between-subject design). Three incrementally different formats of written risk communication were tested: (i) qualitative, (ii) qualitative and quantitative, and (iii) qualitative and quantitative with risk comparison. Respondents found the latter two the easiest to understand, the most exact, and liked them the most. Adding uncertainty and expert confidence statements made the risk communication less clear, less easy to understand and increased concern. Above all, the technology for which risks are communicated and its acceptance mattered strongly: respondents in the shale gas condition found the identical risk communication less trustworthy and more concerning than in the DGE conditions. They also liked the risk communication overall less. For practitioners in DGE or shale gas projects, the study shows that the public would appreciate efforts in describing LPHC risks with numbers and optionally risk comparisons. However, there seems to be a trade-off between aiming for transparency by disclosing uncertainty and limited expert confidence, and thereby decreasing clarity and increasing concern in the view of the public. © 2017 Society for Risk Analysis.
Romania Country Analysis Brief
2014-01-01
Romania’s energy strategy is to secure supply through both fuel imports and domestic supplies and maintain a balanced energy resource portfolio by promoting clean coal technologies, nuclear energy, renewable energy expansion, and shale gas development.
Unconventional energy resources: 2015 review. Shale gas and liquids
Fishman, Neil S.; Bowker, Kent; Cander, Harris; Cardott, Brian; Charette, Marc; Chew, Kenneth; Chidsey, Thomas; Dubiel, Russell F.; Egenhoff, Sven O.; Enomoto, Catherine B.; Hammes, Ursula; Harrison, William; Jiang, Shu; LeFever, Julie A.; McCracken, Jock; Nordeng, Stephen; Nyahay, Richard; Sonnenberg, Stephen; Vanden Berg, Michael; ,
2015-01-01
Introduction As the source rocks from which petroleum is generated, organic-rich shales have always been considered an important component of petroleum systems. Over the last few years, it has been realized that in some mudrocks, sufficient hydrocarbons remain in place to allow for commercial development, although advanced drilling and completion technology is typically required to access hydrocarbons from these reservoirs. Tight oil reservoirs (also referred to as continuous oil accumulations) contain hydrocarbons migrated from source rocks that are geologically/stratigraphically interbedded with or occur immediately overlying/underlying them. Migration is minimal in charging these tight oil accumulations (Gaswirth and Marra 2014). Companies around the world are now successfully exploiting organic-rich shales and tight rocks for contained hydrocarbons, and the search for these types of unconventional petroleum reservoirs is growing. Unconventional reservoirs range in geologic age from Ordovician to Tertiary (Silverman et al. 2005; EIA 2013a).
DOE Office of Scientific and Technical Information (OSTI.GOV)
Goldsmith, M.W.; Forbes, I.A.; Turnage, J.C.
The potential of new and future energy technologies is discussed, with information provided on availability, technical and economic feasibility, and limitations due to the form of the energy. Energy sources not presently in use (i.e., shale oil, garbage, geothermal, wind, tidal, breeder reactors, ocean thermal gradients, solar energy, and fusion) are expected to supply only 10 to 15% of the Nation's energy requirements in the year 2000. The following chapters are included: Energy Use and Supply; Extending Chemical Fuel Resources, which covers oil shale and tar sands, coal gasification and liquefaction, garbage, and biomass energy; Harnessing the Forces of Nature,more » which describes geothermal, tidal, hydro, wind, and solar energy; New Nuclear Technology (e.g., converter reactors, breeder reactors, fusion by magnetic confinement, and laser fusion); and Improving Energy Production Efficiency, with discussions on energy storage, MHD (magnetohydrodynamics), and combined cycles. (64 references) (BYB)« less
Identification Method of Mud Shale Fractures Base on Wavelet Transform
NASA Astrophysics Data System (ADS)
Xia, Weixu; Lai, Fuqiang; Luo, Han
2018-01-01
In recent years, inspired by seismic analysis technology, a new method for analysing mud shale fractures oil and gas reservoirs by logging properties has emerged. By extracting the high frequency attribute of the wavelet transform in the logging attribute, the formation information hidden in the logging signal is extracted, identified the fractures that are not recognized by conventional logging and in the identified fracture segment to show the “cycle jump”, “high value”, “spike” and other response effect is more obvious. Finally formed a complete wavelet denoising method and wavelet high frequency identification fracture method.
Israel Electric joins oil shale power plant project
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1986-12-01
The Israel Electric Corporation has purchased a 25% share in PAMA (Energy Resources Development, Ltd). PAMA is planning to build a 7 1/2 megawatt shale-fired demonstration plant at Mishor Rotem in Israel. The demonstration cogeneration plant is being designed to produce 42 tons/hours of steam for use in nearby phosphate plants, and also produce electricity. Construction of the demonstration plant is expected to begin in early 1987 and be completed within 2 years. It will be based on fluidized bed technology. Successful operation of the demo plant could then lead to a 50 to 100 megawatt or larger commercial plant.
The role of ethics in shale gas policies.
de Melo-Martín, Inmaculada; Hays, Jake; Finkel, Madelon L
2014-02-01
The United States has experienced a boom in natural gas production due to recent technological innovations that have enabled natural gas to be produced from unconventional sources, such as shale. There has been much discussion about the costs and benefits of developing shale gas among scientists, policy makers, and the general public. The debate has typically revolved around potential gains in economics, employment, energy independence, and national security as well as potential harms to the environment, the climate, and public health. In the face of scientific uncertainty, national and international governments must make decisions on how to proceed. So far, the results have been varied, with some governments banning the process, others enacting moratoria until it is better understood, and others explicitly sanctioning shale gas development. These policies reflect legislature's preferences to avoid false negative errors or false positive ones. Here we argue that policy makers have a prima facie duty to minimize false negatives based on three considerations: (1) protection from serious harm generally takes precedence over the enhancement of welfare; (2) minimizing false negatives in this case is more respectful to people's autonomy; and (3) alternative solutions exist that may provide many of the same benefits while minimizing many of the harms. © 2013.
Hydrocarbon recovery from diatomite
DOE Office of Scientific and Technical Information (OSTI.GOV)
Scinta, J.
1984-05-15
Supercritical extraction of diatomaceous earth results in a much more significant improvement in hydrocarbon recovery over Fischer retorting than achievable with tar sands. Process and apparatus for supercritical extraction of diatomaceous earth are disclosed.
SPOUTED BED DESIGN CONSIDERATIONS FOR COATED NUCLEAR FUEL PARTICLES
DOE Office of Scientific and Technical Information (OSTI.GOV)
Marshall, Douglas W.
High Temperature Gas Cooled Reactors (HTGRs) are fueled with tristructural isotropic (TRISO) coated nuclear fuel particles embedded in a carbon-graphite fuel body. TRISO coatings consist of four layers of pyrolytic carbon and silicon carbide that are deposited on uranium ceramic fuel kernels (350µm – 500µm diameters) in a concatenated series of batch depositions. Each layer has dedicated functions such that the finished fuel particle has its own integral containment to minimize and control the release of fission products into the fuel body and reactor core. The TRISO coatings are the primary containment structure in the HTGR reactor and must havemore » very high uniformity and integrity. To ensure high quality TRISO coatings, the four layers are deposited by chemical vapor deposition (CVD) using high purity precursors and are applied in a concatenated succession of batch operations before the finished product is unloaded from the coating furnace. These depositions take place at temperatures ranging from 1230°C to 1550°C and use three different gas compositions, while the fuel particle diameters double, their density drops from 11.1 g/cm3 to 3.0 g/cm3, and the bed volume increases more than 8-fold. All this is accomplished without the aid of sight ports or internal instrumentation that could cause chemical contamination within the layers or mechanical damage to thin layers in the early stages of each layer deposition. The converging section of the furnace retort was specifically designed to prevent bed stagnation that would lead to unacceptably high defect fractions and facilitate bed circulation to avoid large variability in coating layer dimensions and properties. The gas injection nozzle was designed to protect precursor gases from becoming overheated prior to injection, to induce bed spouting and preclude bed stagnation in the bottom of the retort. Furthermore, the retort and injection nozzle designs minimize buildup of pyrocarbon and silicon carbide on the retort wall and manage nozzle orifice accretions. The equipment and operating methods have yielded very good reproducibility in the TRISO coated particles batches.« less
Novel and Emerging Technologies for Produced Water Treatment, March 30, 2011
Development of unconventional gas resources, including coalbed methane (CBM), shale gas, and tight sand is currently one of the most rapidly growing trends in domestic oil and gas exploration and production.
Towards the development of rapid screening techniques for shale gas core properties
NASA Astrophysics Data System (ADS)
Cave, Mark R.; Vane, Christopher; Kemp, Simon; Harrington, Jon; Cuss, Robert
2013-04-01
Shale gas has been produced for many years in the U.S.A. and forms around 8% of total their natural gas production. Recent testing for gas on the Fylde Coast in Lancashire UK suggests there are potentially large reserves which could be exploited. The increasing significance of shale gas has lead to the need for deeper understanding of shale behaviour. There are many factors which govern whether a particular shale will become a shale gas resource and these include: i) Organic matter abundance, type and thermal maturity; ii) Porosity-permeability relationships and pore size distribution; iii) Brittleness and its relationship to mineralogy and rock fabric. Measurements of these properties require sophisticated and time consuming laboratory techniques (Josh et al 2012), whereas rapid screening techniques could provide timely results which could improve the efficiency and cost effectiveness of exploration. In this study, techniques which are portable and provide rapid on-site measurements (X-ray Fluorescence (XRF) and Infra-red (IR) spectroscopy) have been calibrated against standard laboratory techniques (Rock-Eval 6 analyser-Vinci Technologies) and Powder whole-rock XRD analysis was carried out using a PANalytical X'Pert Pro series diffractometer equipped with a cobalt-target tube, X'Celerator detector and operated at 45kV and 40mA, to predict properties of potential shale gas material from core material from the Bowland shale Roosecote, south Cumbria. Preliminary work showed that, amongst various mineralogical and organic matter properties of the core, regression models could be used so that the total organic carbon content could be predicted from the IR spectra with a 95 percentile confidence prediction error of 0.6% organic carbon, the free hydrocarbons could be predicted with a 95 percentile confidence prediction error of 0.6 mgHC/g rock, the bound hydrocarbons could be predicted with a 95 percentile confidence prediction error of 2.4 mgHC/g rock, mica content with a 95 percentile confidence prediction error of 14% and quartz content with a 95 percentile confidence prediction error of 14% . References M. Josh *, L. Esteban, C. Delle Piane, J. Sarout, D.N. Dewhurst, M.B. Clennell 2012. Journal of Petroleum Science and Engineering , 88-89, 107-124.
The water footprint of hydraulic fracturing in Sichuan Basin, China.
Zou, Caineng; Ni, Yunyan; Li, Jian; Kondash, Andrew; Coyte, Rachel; Lauer, Nancy; Cui, Huiying; Liao, Fengrong; Vengosh, Avner
2018-07-15
Shale gas is likely to play a major role in China's transition away from coal. In addition to technological and infrastructural constraints, the main challenges to China's sustainable shale gas development are sufficient shale gas production, water availability, and adequate wastewater management. Here we present, for the first time, actual data of shale gas production and its water footprint from the Weiyuan gas field, one of the major gas fields in Sichuan Basin. We show that shale gas production rates during the first 12 months (24 million m 3 per well) are similar to gas production rates in U.S. shale basins. The amount of water used for hydraulic fracturing (34,000 m 3 per well) and the volume of flowback and produced (FP) water in the first 12 months (19,800 m 3 per well) in Sichuan Basin are also similar to the current water footprints of hydraulic fracturing in U.S. basins. We present salinity data of the FP water (5000 to 40,000 mgCl/L) in Sichuan Basin and the treatment operations, which include sedimentation, dilution with fresh water, and recycling of the FP water for hydraulic fracturing. We utilize the water use data, empirical decline rates of shale gas and FP water productions in Sichuan Basin to generate two prediction models for water use for hydraulic fracturing and FP water production upon achieving China's goals to generate 100 billion m 3 of shale gas by 2030. The first model utilizes the current water use and FP production data, and the second assumes a yearly 5% intensification of the hydraulic fracturing process. The predicted water use for hydraulic fracturing in 2030 (50-65 million m 3 per year), FP water production (50-55 million m 3 per year), and fresh water dilution of FP water (25 million m 3 per year) constitute a water footprint that is much smaller than current water consumption and wastewater generation for coal mining, but higher than those of conventional gas production in China. Given estimates for water availability in Sichuan Basin, our predictions suggest that water might not be a limiting factor for future large-scale shale gas development in Sichuan Basin. Copyright © 2018 Elsevier B.V. All rights reserved.
Pollastro, R.M.
2007-01-01
Undiscovered natural gas having potential for additions to reserves in the Mississippian Barnett Shale of the Fort Worth Basin, north-central Texas, was assessed using the total petroleum system assessment unit concept and a cell-based methodology for continuous-type (Unconventional) resources. The Barnett-Paleozoic total petroleum system is defined in the Bend arch-Fort Worth Basin as encompassing the area in which the organic-rich Barnett is the primary source rock for oil and gas produced from Paleozoic carbonate and clastic reservoirs. Exploration, technology, and drilling in the Barnett Shale play have rapidly evolved in recent years, with about 3500 vertical and 1000 horizontal wells completed in the Barnett through 2005 and more than 85% of the them completed since 1999. Using framework geology and historical production data, assessment of the Barnett Shale was performed by the U.S. Geological Survey using vertical wells at the peak of vertical well completions and before a transition to completions with horizontal wells. The assessment was performed after (1) mapping critical geological and geochemical parameters to define assessment unit areas with future potential, (2) defining distributions of drainage area (cell size) and estimating ultimate recovery per cell, and (3) estimating future success rates. Two assessment units are defined and assessed for the Barnett Shale continuous gas accumulation, resulting in a total mean undiscovered volume having potential for additions to reserves of 26.2 TCFG. The greater Newark East fracture-barrier continuous Barnett Shale gas assessment unit represents a core-producing area where thick, organic-rich, siliceous Barnett Shale is within the thermal window for gas generation (Ro ??? 1.1%) and is overlain and underlain by impermeable limestone barriers (Pennsylvanian Marble Falls Limestone and Ordovician Viola Limestone, respectively) that serve to confine induced fractures during well completion to maximize gas recovery. The extended continuous Barnett Shale gas assessment unit, which had been less explored, defines a geographic area where Barnett Shale is (1) within the thermal window for gas generation, (2) greater than 100 ft (30 m) thick, and (3) where at least one impermeable limestone barrier is absent. Mean undiscovered gas having potential for additions to reserves in the greater Newark East assessment unit is estimated at 14.6 tcf, and in the less tested extended assessment unit, a mean resource is estimated at 11.6 TCFG. A third hypothetical basin-arch Barnett Shale oil assessment unit was defined but not assessed because of a lack of production data. Copyright ?? 2007. The American Association of Petroleum Geologists. All rights reserved.
Developing America's Shale Reserves - Water Strategies For A Sustainable Future (Invited)
NASA Astrophysics Data System (ADS)
Shephard, L. E.; Oshikanlu, T.
2013-12-01
The development of shale oil and gas reserves over the last several years has had a significant impact on securing America's energy future while making substantial contributions to our nation's economic prosperity. These developments have also raised serious concerns about potential detrimental impacts to our environment (i.e., land, air and water) with much media attention focused on the impacts to our nation's fresh water supply. These concerns are being discussed across the nation often with little or no distinction that the nature of the water issues vary depending on local circumstances (e.g., depth of aquifer and reservoir zone, water demand and availability, availability of discharge wells, regulatory framework, etc.) and regional shale reservoir development strategies (depth of wells, length of laterals, fluid-type used for fracturing, etc.). Growing concerns over long standing drought conditions in some areas and competing demands for water from other sectors (e.g., agriculture, domestic, etc.) add even greater uncertainty relative to fresh water. Water demands for gas and oil wells vary from region to region but nominally range from 10 to 15 acre feet of water (4 to 6 million gallons) for drilling and hydraulic fracturing applications. Flowback water from the hydraulic fracturing process varies and can range from 5 to 40 % of the water used for drilling and 'fracing'. Produced water can be substantial, leading to significant volumes of 'disposed water' where injection wells are available. A science-based systems approach to water lifecycle management that incorporates leading-edge technology development and considers economic and social impacts is critical for the long-term sustainable development of shale reserves. Various water recycling and reuse technologies are being deployed within select regions across the nation with each having limited success depending on region. The efficacy of reuse technology will vary based on produced water quantity and quality, flow back rates and the associated economics. A significant contributor to the economics can be offsite transportation costs from hauling water to and from the drill site. While economics often drive decisions on technology and reuse, available water and infrastructure (water pipelines, injection wells, etc.) are also important contributors. In some regions effluent water (i.e., treated or untreated waste water) is playing an increasing role to reduce impacting 'fresh' water supplies for communities in regions where supply is limited and demand continues to increase. In many communities effluent water provides additional revenue to support infrastructure needs arising from accelerated population growth and economic expansion. The development strategy for shale reservoirs can be optimized to assure a sustainable future for water resources. A systems-based sustainable water strategy should be integrated into the regional reservoir development approach at the earliest possible stage with full consideration of the nature of regional water issues and reservoir development strategies impacting water demand and supply, available technology and potential social and economic impacts.
Milheim, L.E.; Slonecker, E.T.; Roig-Silva, C.M.; Malizia, A.R.
2013-01-01
Increased demands for cleaner burning energy, coupled with the relatively recent technological advances in accessing unconventional hydrocarbon-rich geologic formations, have led to an intense effort to find and extract natural gas from various underground sources around the country. One of these sources, the Marcellus Shale, located in the Allegheny Plateau, is currently undergoing extensive drilling and production. The technology used to extract gas in the Marcellus Shale is known as hydraulic fracturing and has garnered much attention because of its use of large amounts of fresh water, its use of proprietary fluids for the hydraulic-fracturing process, its potential to release contaminants into the environment, and its potential effect on water resources. Nonetheless, development of natural gas extraction wells in the Marcellus Shale is only part of the overall natural gas story in this area of Pennsylvania. Conventional natural gas wells, which sometimes use the same technique, are commonly located in the same general area as the Marcellus Shale and are frequently developed in clusters across the landscape. The combined effects of these two natural gas extraction methods create potentially serious patterns of disturbance on the landscape. This document quantifies the landscape changes and consequences of natural gas extraction for Lackawanna County and Wayne County in Pennsylvania between 2004 and 2010. Patterns of landscape disturbance related to natural gas extraction activities were collected and digitized using National Agriculture Imagery Program (NAIP) imagery for 2004, 2005/2006, 2008, and 2010. The disturbance patterns were then used to measure changes in land cover and land use using the National Land Cover Database (NLCD) of 2001. A series of landscape metrics is also used to quantify these changes and is included in this publication.
Slonecker, E.T.; Milheim, L.E.; Roig-Silva, C.M.; Fisher, G.B.
2012-01-01
Increased demands for cleaner burning energy, coupled with the relatively recent technological advances in accessing unconventional hydrocarbon-rich geologic formations, have led to an intense effort to find and extract natural gas from various underground sources around the country. One of these sources, the Marcellus Shale, located in the Allegheny Plateau, is currently undergoing extensive drilling and production. The technology used to extract gas in the Marcellus shale is known as hydraulic fracturing and has garnered much attention because of its use of large amounts of fresh water, its use of proprietary fluids for the hydraulic-fracturing process, its potential to release contaminants into the environment, and its potential effect on water resources. Nonetheless, development of natural gas extraction wells in the Marcellus Shale is only part of the overall natural gas story in the area of Pennsylvania. Coalbed methane, which is sometimes extracted using the same technique, is commonly located in the same general area as the Marcellus Shale and is frequently developed in clusters across the landscape. The combined effects of these two natural gas extraction methods create potentially serious patterns of disturbance on the landscape. This document quantifies the landscape changes and consequences of natural gas extraction for Greene County and Tioga County in Pennsylvania between 2004 and 2010. Patterns of landscape disturbance related to natural gas extraction activities were collected and digitized using National Agriculture Imagery Program (NAIP) imagery for 2004, 2005/2006, 2008, and 2010. The disturbance patterns were then used to measure changes in land cover and land use using the National Land Cover Database (NLCD) of 2001. A series of landscape metrics are also used to quantify these changes and are included in this publication.
Slonecker, E.T.; Milheim, L.E.; Roig-Silva, C.M.; Malizia, A.R.; Marr, D.A.; Fisher, G.B.
2012-01-01
Increased demands for cleaner burning energy, coupled with the relatively recent technological advances in accessing unconventional hydrocarbon-rich geologic formations, led to an intense effort to find and extract natural gas from various underground sources around the country. One of these sources, the Marcellus Shale, located in the Allegheny Plateau, is undergoing extensive drilling and production. The technology used to extract gas in the Marcellus Shale is known as hydraulic fracturing and has garnered much attention because of its use of large amounts of fresh water, its use of proprietary fluids for the hydraulic-fracturing process, its potential to release contaminants into the environment, and its potential effect on water resources. Nonetheless, development of natural gas extraction wells in the Marcellus Shale is only part of the overall natural gas story in the area of Pennsylvania. Coalbed methane, which is sometimes extracted using the same technique, is often located in the same general area as the Marcellus Shale and is frequently developed in clusters across the landscape. The combined effects of these two natural gas extraction methods create potentially serious patterns of disturbance on the landscape. This document quantifies the landscape changes and consequences of natural gas extraction for Bradford County and Washington County, Pennsylvania, between 2004 and 2010. Patterns of landscape disturbance related to natural gas extraction activities were collected and digitized using National Agriculture Imagery Program (NAIP) imagery for 2004, 2005/2006, 2008, and 2010. The disturbance patterns were then used to measure changes in land cover and land use using the National Land Cover Database (NLCD) of 2001. A series of landscape metrics is used to quantify these changes and are included in this publication.
Slonecker, Terry E.; Milheim, Lesley E.; Roig-Silva, Coral M.; Malizia, Alexander R.
2013-01-01
Increased demands for cleaner burning energy, coupled with the relatively recent technological advances in accessing unconventional hydrocarbon-rich geologic formations, have led to an intense effort to find and extract natural gas from various underground sources around the country. One of these sources, the Marcellus Shale, located in the Allegheny Plateau, is currently undergoing extensive drilling and production. The technology used to extract gas in the Marcellus Shale is known as hydraulic fracturing and has garnered much attention because of its use of large amounts of fresh water, its use of proprietary fluids for the hydraulic-fracturing process, its potential to release contaminants into the environment, and its potential effect on water resources. Nonetheless, development of natural gas extraction wells in the Marcellus Shale is only part of the overall natural gas story in this area of Pennsylvania. Conventional natural gas wells are commonly located in the same general area as the Marcellus Shale and are frequently developed in clusters across the landscape. The combined effects of these two natural gas extraction methods create potentially serious patterns of disturbance on the landscape. This document quantifies the landscape changes and consequences of natural gas extraction for Armstrong County and Indiana County in Pennsylvania between 2004 and 2010. Patterns of landscape disturbance related to natural gas extraction activities were collected and digitized using National Agriculture Imagery Program (NAIP) imagery for 2004, 2005/2006, 2008, and 2010. The disturbance patterns were then used to measure changes in land cover and land use using the National Land Cover Database (NLCD) of 2001. A series of landscape metrics is also used to quantify these changes and is included in this publication.
Milheim, L.E.; Slonecker, E.T.; Roig-Silva, C.M.; Malizia, A.R.
2013-01-01
Increased demands for cleaner burning energy, coupled with the relatively recent technological advances in accessing unconventional hydrocarbon-rich geologic formations, have led to an intense effort to find and extract natural gas from various underground sources around the country. One of these sources, the Marcellus Shale, located in the Allegheny Plateau, is currently undergoing extensive drilling and production. The technology used to extract gas in the Marcellus Shale is known as hydraulic fracturing and has garnered much attention because of its use of large amounts of fresh water, its use of proprietary fluids for the hydraulic-fracturing process, its potential to release contaminants into the environment, and its potential effect on water resources. Nonetheless, development of natural gas extraction wells in the Marcellus Shale is only part of the overall natural gas story in this area of Pennsylvania. Conventional natural gas wells, which sometimes use the same technique, are commonly located in the same general area as the Marcellus Shale and are frequently developed in clusters across the landscape. The combined effects of these two natural gas extraction methods create potentially serious patterns of disturbance on the landscape. This document quantifies the landscape changes and consequences of natural gas extraction for Somerset County and Westmoreland County in Pennsylvania between 2004 and 2010. Patterns of landscape disturbance related to natural gas extraction activities were collected and digitized using National Agriculture Imagery Program (NAIP) imagery for 2004, 2005/2006, 2008, and 2010. The disturbance patterns were then used to measure changes in land cover and land use using the National Land Cover Database (NLCD) of 2001. A series of landscape metrics is also used to quantify these changes and is included in this publication.
Slonecker, E.T.; Milheim, L.E.; Roig-Silva, C.M.; Malizia, A.R.
2013-01-01
Increased demands for cleaner burning energy, coupled with the relatively recent technological advances in accessing unconventional hydrocarbon-rich geologic formations, have led to an intense effort to find and extract natural gas from various underground sources around the country. One of these sources, the Marcellus Shale, located in the Allegheny Plateau, is currently undergoing extensive drilling and production. The technology used to extract gas in the Marcellus Shale is known as hydraulic fracturing and has garnered much attention because of its use of large amounts of fresh water, its use of proprietary fluids for the hydraulic-fracturing process, its potential to release contaminants into the environment, and its potential effect on water resources. Nonetheless, development of natural gas extraction wells in the Marcellus Shale is only part of the overall natural gas story in this area of Pennsylvania. Coalbed methane, which is sometimes extracted using the same technique, is commonly located in the same general area as the Marcellus Shale and is frequently developed in clusters of wells across the landscape. The combined effects of these two natural gas extraction methods create potentially serious patterns of disturbance on the landscape. This document quantifies the landscape changes and consequences of natural gas extraction for Allegheny County and Susquehanna County in Pennsylvania between 2004 and 2010. Patterns of landscape disturbance related to natural gas extraction activities were collected and digitized using National Agriculture Imagery Program (NAIP) imagery for 2004, 2005/2006, 2008, and 2010. The disturbance patterns were then used to measure changes in land cover and land use using the National Land Cover Database (NLCD) of 2001. A series of landscape metrics is also used to quantify these changes and is included in this publication.
Slonecker, Terry E.; Milheim, Lesley E.; Roig-Silva, Coral M.; Malizia, Alexander R.
2013-01-01
Increased demands for cleaner burning energy, coupled with the relatively recent technological advances in accessing unconventional hydrocarbon-rich geologic formations, have led to an intense effort to find and extract natural gas from various underground sources around the country. One of these sources, the Marcellus Shale, located in the Allegheny Plateau, is currently undergoing extensive drilling and production. The technology used to extract gas in the Marcellus Shale is known as hydraulic fracturing and has garnered much attention because of its use of large amounts of fresh water, its use of proprietary fluids for the hydraulic-fracturing process, its potential to release contaminants into the environment, and its potential effect on water resources. Nonetheless, development of natural gas extraction wells in the Marcellus Shale is only part of the overall natural gas story in this area of Pennsylvania. Conventional natural gas wells, which sometimes use the same technique, are commonly located in the same general area as the Marcellus Shale and are frequently developed in clusters across the landscape. The combined effects of these two natural gas extraction methods create potentially serious patterns of disturbance on the landscape. This document quantifies the landscape changes and consequences of natural gas extraction for Sullivan County and Wyoming County in Pennsylvania between 2004 and 2010. Patterns of landscape disturbance related to natural gas extraction activities were collected and digitized using National Agriculture Imagery Program (NAIP) imagery for 2004, 2005/2006, 2008, and 2010. The disturbance patterns were then used to measure changes in land cover and land use using the National Land Cover Database (NLCD) of 2001. A series of landscape metrics is also used to quantify these changes and is included in this publication.
Slonecker, E.T.; Milheim, L.E.; Roig-Silva, C.M.; Malizia, A.R.; Gillenwater, B.H.
2013-01-01
Increased demands for cleaner burning energy, coupled with the relatively recent technological advances in accessing unconventional hydrocarbon-rich geologic formations, have led to an intense effort to find and extract natural gas from various underground sources around the country. One of these sources, the Marcellus Shale, located in the Allegheny Plateau, is currently undergoing extensive drilling and production. The technology used to extract gas in the Marcellus Shale is known as hydraulic fracturing and has garnered much attention because of its use of large amounts of fresh water, its use of proprietary fluids for the hydraulic-fracturing process, its potential to release contaminants into the environment, and its potential effect on water resources. Nonetheless, development of natural gas extraction wells in the Marcellus Shale is only part of the overall natural gas story in this area of Pennsylvania. Conventional natural gas wells, which sometimes use the same technique, are commonly located in the same general area as the Marcellus Shale and are frequently developed in clusters across the landscape. The combined effects of these two natural gas extraction methods create potentially serious patterns of disturbance on the landscape. This document quantifies the landscape changes and consequences of natural gas extraction for Fayette County and Lycoming County in Pennsylvania between 2004 and 2010. Patterns of landscape disturbance related to natural gas extraction activities were collected and digitized using National Agriculture Imagery Program (NAIP) imagery for 2004, 2005/2006, 2008, and 2010. The disturbance patterns were then used to measure changes in land cover and land use using the National Land Cover Database (NLCD) of 2001. A series of landscape metrics is also used to quantify these changes and is included in this publication.
Roig-Silva, Coral M.; Slonecker, E. Terry; Milheim, Lesley E.; Malizia, Alexander R.
2013-01-01
Increased demands for cleaner burning energy, coupled with the relatively recent technological advances in accessing unconventional hydrocarbon-rich geologic formations, have led to an intense effort to find and extract natural gas from various underground sources around the country. One of these sources, the Marcellus Shale, located in the Allegheny Plateau, is currently undergoing extensive drilling and production. The technology used to extract gas in the Marcellus Shale is known as hydraulic fracturing and has garnered much attention because of its use of large amounts of fresh water, its use of proprietary fluids for the hydraulic-fracturing process, its potential to release contaminants into the environment, and its potential effect on water resources. Nonetheless, development of natural gas extraction wells in the Marcellus Shale is only part of the overall natural gas story in this area of Pennsylvania. Conventional natural gas wells, which sometimes use the same technique, are commonly located in the same general area as the Marcellus Shale and are frequently developed in clusters across the landscape. The combined effects of these two natural gas extraction methods create potentially serious patterns of disturbance on the landscape. This document quantifies the landscape changes and consequences of natural gas extraction for Beaver County and Butler County in Pennsylvania between 2004 and 2010. Patterns of landscape disturbance related to natural gas extraction activities were collected and digitized using National Agriculture Imagery Program (NAIP) imagery for 2004, 2005/2006, 2008, and 2010. The disturbance patterns were then used to measure changes in land cover and land use using the National Land Cover Database (NLCD) of 2001. A series of landscape metrics is also used to quantify these changes and is included in this publication.
Geotechnical centrifuge under construction
NASA Astrophysics Data System (ADS)
Richman, Barbara T.
Modifications are underway at the National Aeronautics and Space Administration (NASA) Ames Research Center in California to transform a centrifuge used in the Apollo space program to the largest geotechnical centrifuge in the free world. The centrifuge, to be finished in August and opened next January, following check out and tuning, will enable geoscientists to model stratigraphic features down to 275 m below the earth's surface. Scientists will be able to model processes that are coupled with body force loading, including earthquake response of earth structures and soil structure interaction; rubbled-bed behavior during in situ coal gasification or in oil shale in situ retorts; behavior of frozen soil; frost heave; behavior of offshore structures; wave-seabed interactions; explosive cratering; and blast-induced liquefaction.The centrifuge will have a load capacity of 900-g-tons (short); that is, it will be able to carry a net soil load of 3 short tons to a centripetal acceleration of 300 times the acceleration caused by gravity. Modified for a total cost of $2.4 million, the centrifuge will have an arm with a 7.6-m radius and a swinging platform or bucket at its end that will be able to carry a payload container measuring 2.1×2.1 m. An additional future input of $500,000 would enable the purchase of a larger bucket that could accommodate a load of up to 20 tons, according to Charles Babendreier, program director for geotechnical engineering at the National Science Foundation. Additional cooling for the motor would also be required. The centrifuge has the capability of accelerating the 20-ton load to 100 g.
Method and apparatus for hydrocarbon recovery from tar sands
Westhoff, J.D.; Harak, A.E.
1988-05-04
A method and apparatus for utilizing tar sands having a broad range of bitumen content is disclosed. More particularly, tar sands are pyrolyzed in a cyclone retort with high temperature gases recycled from the cyclone retort to produce oil and hydrocarbon products. The spent tar sands are then burned at 2000/degree/F in a burner to remove residual char and produce a solid waste that is easily disposable. The process and apparatus have the advantages of being able to utilize tar sands having a broad range of bitumen content and the advantage of producing product gases that are free from combustion gases and thereby have a higher heating value. Another important advantage is rapid pyrolysis of the tar sands in the cyclone so as to effectively utilize smaller sized reactor vessels for reducing capitol and operating costs. 1 fig., 1 tab.
Method and apparatus for hydrocarbon recovery from tar sands
Westhoff, James D.; Harak, Arnold E.
1989-01-01
A method and apparatus for utilizing tar sands having a broad range of bitumen content is disclosed. More particularly, tar sands are pyrolyzed in a cyclone retort with high temperature gases recycled from the cyclone retort to produce oil and hydrocarbon products. The spent tar sands are then burned at 2000.degree. F. in a burner to remove residual char and produce a solid waste that is easily disposable. The process and apparatus have the advantages of being able to utilize tar sands having a broad range of bitumen content and the advantage of producing product gases that are free from combustion gases and thereby have a higher heating value. Another important advantage is rapid pyrolysis of the tar sands in the cyclone so as to effectively utilize smaller sized reactor vessels for reducing capitol and operating costs.
GEOCHEMICAL INVESTIGATIONS OF CO₂-BRINE-ROCK INTERACTIONS OF THE KNOX GROUP IN THE ILLINOIS BASIN
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yoksoulian, Lois; Berger, Peter; Freiburg, Jared
Increased output of greenhouse gases, particularly carbon dioxide (CO₂), into the atmosphere from anthropogenic sources is of great concern. A potential technology to reduce CO₂ emissions is geologic carbon sequestration. This technology is currently being evaluated in the United States and throughout the world. The geology of the Illinois Basin exhibits outstanding potential as a carbon sequestration target, as demonstrated by the ongoing Illinois Basin – Decatur Project that is using the Mt. Simon Sandstone reservoir and Eau Claire Shale seal system to store and contain 1 million tonnes of CO₂. The Knox Group-Maquoketa Shale reservoir and seal system, locatedmore » stratigraphically above the Mt. Simon Sandstone-Eau Claire Shale reservoir and seal system, has little economic value as a resource for fossil fuels or as a potable water source, making it ideal as a potential carbon sequestration target. In order for a reservoir-seal system to be effective, it must be able to contain the injected CO₂ without the potential for the release of harmful contaminants liberated by the reaction between CO₂-formation fluids and reservoir and seal rocks. This study examines portions of the Knox Group (Potosi Dolomite, Gunter Sandstone, New Richmond Sandstone) and St. Peter Sandstone, and Maquoketa Shale from various locations around the Illinois Basin. A total of 14 rock and fluid samples were exposed to simulated sequestration conditions (9101–9860 kPa [1320–1430 psi] and 32°–42°C [90°– 108°F]) for varying amounts of time (6 hours to 4 months). Knox Group reservoir rocks exhibited dissolution of dolomite in the presence of CO₂ as indicated by petrographic examination, X-ray diffraction analysis, and fluid chemistry analysis. These reactions equilibrated rapidly, and geochemical modeling confirmed that these reactions reached equilibrium within the time frames of the experiments. Pre-reaction sample mineralogy and postreaction fluid geochemistry from this study suggests only limited potential for the release of United States Environmental Protection Agency regulated inorganic contaminants into potable water sources. Short-term core flood experiments further verify that the carbonate reactions occurring in Knox Group reservoir samples reach equilibrium rapidly. The core flood experiments also lend insight to pressure changes that may occur during CO₂ injection. The Maquoketa Shale experiments reveal that this rock is initially chemically reactive when in contact with CO₂ and brine. However, due to the conservative nature of silicate and clay reaction kinetics and the rapid equilibration of carbonate reactions that occur in the shale, these reactions would not present a significant risk to the competency of the shale as an effective seal rock.« less
Fuel-conservative engine technology
NASA Technical Reports Server (NTRS)
Dugan, J. F., Jr.; Mcaulay, J. E.; Reynolds, T. W.; Strack, W. C.
1975-01-01
Aircraft fuel consumption is discussed in terms of its efficient use, and the conversion of energy from sources other than petroleum. Topics discussed include: fuel from coal and oil shale, hydrogen deficiency of alternate sources, alternate fuels evaluation program, and future engines.
Trouble in NIFLHEIM Elements of a NATO Arctic Strategy
2015-06-01
comparison.35 According to Robert W. Baird Equity Research North American fracking /shale oil has a break-even production cost of $53 to $93 per...extractive technologies especially hydraulic fracturing, have increased U.S. hydrocarbon production, 94 Katarzyna
Maximize Liquid Oil Production from Shale Oil and Gas Condensate Reservoirs by Cyclic Gas Injection
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sheng, James; Li, Lei; Yu, Yang
The current technology to produce shale oil reservoirs is the primary depletion using fractured wells (generally horizontal wells). The oil recovery is less than 10%. The prize to enhance oil recovery (EOR) is big. Based on our earlier simulation study, huff-n-puff gas injection has the highest EOR potential. This project was to explore the potential extensively and from broader aspects. The huff-n-puff gas injection was compared with gas flooding, water huff-n-puff and waterflooding. The potential to mitigate liquid blockage was also studied and the gas huff-n-puff method was compared with other solvent methods. Field pilot tests were initiated but terminatedmore » owing to the low oil price and the operator’s budget cut. To meet the original project objectives, efforts were made to review existing and relevant field projects in shale and tight reservoirs. The fundamental flow in nanopores was also studied.« less
Vaasma, Taavi; Kiisk, Madis; Meriste, Tõnis; Tkaczyk, Alan Henry
2014-03-01
Burning oil shale to produce electricity has a dominant position in Estonia's energy sector. Around 90% of the overall electric energy production originates from the Narva Power Plants. The technology in use has been significantly renovated - two older types of pulverized fuel burning (PF) energy production units were replaced with new circulating fluidized bed (CFB) technology. Additional filter systems have been added to PF boilers to reduce emissions. Oil shale contains various amounts of natural radionuclides. These radionuclides concentrate and become enriched in different boiler ash fractions. More volatile isotopes will be partially emitted to the atmosphere via flue gases and fly ash. To our knowledge, there has been no previous study for CFB boiler systems on natural radionuclide enrichment and their atmospheric emissions. Ash samples were collected from Eesti Power Plant's CFB boiler. These samples were processed and analyzed with gamma spectrometry. Activity concentrations (Bq/kg) and enrichment factors were calculated for the (238)U ((238)U, (226)Ra, (210)Pb) and (232)Th ((232)Th, (228)Ra) family radionuclides and for (40)K in different CFB boiler ash fractions. Results from the CFB boiler ash sample analysis showed an increase in the activity concentrations and enrichment factors (up to 4.5) from the furnace toward the electrostatic precipitator block. The volatile radionuclide ((210)Pb and (40)K) activity concentrations in CFB boilers were evenly distributed in finer ash fractions. Activity balance calculations showed discrepancies between input (via oil shale) and output (via ash fractions) activities for some radionuclides ((238)U, (226)Ra, (210)Pb). This refers to a situation where the missing part of the activity (around 20% for these radionuclides) is emitted to the atmosphere. Also different behavior patterns were detected for the two Ra isotopes, (226)Ra and (228)Ra. A part of (226)Ra input activity, unlike (228)Ra, was undetectable in the solid ash fractions of the boiler. Most probably it is released to the surrounding environment. Copyright © 2014 Elsevier Ltd. All rights reserved.
1. VIEW NORTH OF PARADISE MILL FOUNDATION AND TAILINGS (FEATURE ...
1. VIEW NORTH OF PARADISE MILL FOUNDATION AND TAILINGS (FEATURE P-7). PHOTO TAKEN FROM MERCURY RETORT. (OCTOBER, 1995) - McCormick Group Mine, Paradise Mill, East slope of Buckskin Mountain, Paradise Valley, Humboldt County, NV
30 CFR 57.22103 - Open flames (I-A, II-A, III, and V-A mines).
Code of Federal Regulations, 2010 CFR
2010-07-01
... welding, cutting, and other maintenance operations, and for igniting underground retorts in a Subcategory... after the initital test has been conducted as an alternative to the ten-minute interval testing...
2015 Subpoena and Information Request from EPA to Mercury Recyclers
EPA issued formal requests for information to five companies believed to be the primary recyclers/retorters and distributors of mercury in the United States to gain a better understanding of the mercury recycling marketplace.
Adepoju, Mary A; Omitoyin, Bamidele O; Mohan, Chitradurga O; Zynudheen, Aliyam A
2017-05-01
The difference in the heating penetration characteristics of product processed in retort by steam-air application and water immersion was studied. Fresh milkfish ( Chanos chanos ) packed in dry pack and in oil medium, both in flexible pouches, was thermal processed to minimum F 0 value of 7.77 at 121.1°C. Heat penetration values were recorded for each minute of processing with the aid Ellab (TM 9608, Denmark) temperature recorder. Retort come up time to achieve 121.1°C was observed to be less in steam-air which invariably led to a lower Ball's process time (B) and the total process time (T) observed in steam-air as compared to water immersion. Obtained data were plotted on a semi-logarithmic paper with temperature deficit on x -axis against time on the y -axis.
GIS-and Web-based Water Resource Geospatial Infrastructure for Oil Shale Development
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhou, Wei; Minnick, Matthew; Geza, Mengistu
2012-09-30
The Colorado School of Mines (CSM) was awarded a grant by the National Energy Technology Laboratory (NETL), Department of Energy (DOE) to conduct a research project en- titled GIS- and Web-based Water Resource Geospatial Infrastructure for Oil Shale Development in October of 2008. The ultimate goal of this research project is to develop a water resource geo-spatial infrastructure that serves as “baseline data” for creating solutions on water resource management and for supporting decisions making on oil shale resource development. The project came to the end on September 30, 2012. This final project report will report the key findings frommore » the project activity, major accomplishments, and expected impacts of the research. At meantime, the gamma version (also known as Version 4.0) of the geodatabase as well as other various deliverables stored on digital storage media will be send to the program manager at NETL, DOE via express mail. The key findings from the project activity include the quantitative spatial and temporal distribution of the water resource throughout the Piceance Basin, water consumption with respect to oil shale production, and data gaps identified. Major accomplishments of this project include the creation of a relational geodatabase, automated data processing scripts (Matlab) for database link with surface water and geological model, ArcGIS Model for hydrogeologic data processing for groundwater model input, a 3D geological model, surface water/groundwater models, energy resource development systems model, as well as a web-based geo-spatial infrastructure for data exploration, visualization and dissemination. This research will have broad impacts of the devel- opment of the oil shale resources in the US. The geodatabase provides a “baseline” data for fur- ther study of the oil shale development and identification of further data collection needs. The 3D geological model provides better understanding through data interpolation and visualization techniques of the Piceance Basin structure spatial distribution of the oil shale resources. The sur- face water/groundwater models quantify the water shortage and better understanding the spatial distribution of the available water resources. The energy resource development systems model reveals the phase shift of water usage and the oil shale production, which will facilitate better planning for oil shale development. Detailed descriptions about the key findings from the project activity, major accomplishments, and expected impacts of the research will be given in the sec- tion of “ACCOMPLISHMENTS, RESULTS, AND DISCUSSION” of this report.« less
Fundamental Study of Disposition and Release of Methane in a Shale Gas Reservoir
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Yifeng; Xiong, Yongliang; Criscenti, Louise J.
The recent boom in shale gas production through hydrofracturing has reshaped the energy production landscape in the United States. Wellbore production rates vary greatly among the wells within a single field and decline rapidly with time, thus bring up a serious concern with the sustainability of shale gas production. Shale gas production starts with creating a fracture network by injecting a pressurized fluid in a wellbore. The induced fractures are then held open by proppant particles. During production, gas releases from the mudstone matrix, migrates to nearby fractures, and ultimately reaches a production wellbore. Given the relatively high permeability ofmore » the induced fractures, gas release and migration in low-permeability shale matrix is likely to be a limiting step for long-term wellbore production. Therefore, a clear understanding of the underlying mechanisms of methane disposition and release in shale matrix is crucial for the development of new technologies to maximize gas production and recovery. Shale is a natural nanocomposite material with distinct characteristics of nanometer-scale pore sizes, extremely low permeability, high clay contents, significant amounts of organic carbon, and large spatial heterogeneities. Our work has shown that nanopore confinement plays an important role in methane disposition and release in shale matrix. Using molecular simulations, we show that methane release in nanoporous kerogen matrix is characterized by fast release of pressurized free gas (accounting for ~ 30 - 47% recovery) followed by slow release of adsorbed gas as the gas pressure decreases. The first stage is driven by the gas pressure gradient while the second stage is controlled by gas desorption and diffusion. The long-term production decline appears controlled by the second stage of gas release. We further show that diffusion of all methane in nanoporous kerogen behaves differently from the bulk phase, with much smaller diffusion coefficients. The MD simulations also indicate that a significant fraction (3 - 35%) of methane deposited in kerogen can potentially become trapped in isolated nanopores and thus not recoverable. We have successfully established experimental capabilities for measuring gas sorption and desorption on shale and model materials under a wide range of physical and chemical conditions. Both low and high pressure measurements show significant sorption of CH 4 and CO 2 onto clays, implying that methane adsorbed on clay minerals could contribute a significant portion of gas-in-place in an unconventional reservoir. We have also studied the potential impact of the interaction of shale with hydrofracking fluid on gas sorption. We have found that the CH 4-CO 2 sorption capacity for the reacted sample is systematically lower (by a factor of ~2) than that for the unreacted (raw) sample. This difference in sorption capacity may result from a mineralogical or surface chemistry change of the shale sample induced by fluid-rock interaction. Our results shed a new light on mechanistic understanding gas release and production decline in unconventional reservoirs.« less
Dissolution of cemented fractures in gas bearing shales in the context of CO2 sequestration
NASA Astrophysics Data System (ADS)
Kwiatkowski, Kamil; Szymczak, Piotr
2016-04-01
Carbon dioxide has a stronger binding than methane to the organic matter contained in the matrix of shale rocks [1]. Thus, the injection of CO2 into shale formation may enhance the production rate and total amount of produced methane, and simultaneously permanently store pumped CO2. Carbon dioxide can be injected during the initial fracking stage as CO2 based hydraulic fracturing, and/or later, as a part of enhanced gas recovery (EGR) [2]. Economic and environmental benefits makes CO2 sequestration in shales potentially very for industrial-scale operation [3]. However, the effective process requires large area of fracture-matrix interface, where CO2 and CH4 can be exchanged. Usually natural fractures, existing in shale formation, are preferentially reactivated during hydraulic fracturing, thus they considerably contribute to the flow paths in the resulting fracture system [4]. Unfortunately, very often these natural fractures are sealed by calcite [5]. Consequently the layer of calcite coating surfaces impedes exchange of gases, both CO2 and CH4, between shale matrix and fracture. In this communication we address the question whether carbonic acid, formed when CO2 is mixed with brine, is able to effectively dissolve a calcite layer present in the natural fractures. We investigate numerically fluid flow and dissolution of calcite coating in natural shale fractures, with CO2-brine mixture as a reactive fluid. Moreover, we discuss the differences between slow dissolution (driven by carbonic acid) and fast dissolution (driven by stronger hydrochloric acid) of calcite layer. We compare an impact of the flow rate and geometry of the fracture on the parameters of practical importance: available surface area, morphology of dissolution front, time scale of the dissolution, and the penetration length. We investigate whether the dissolution is sufficiently non-uniform to retain the fracture permeability, even in the absence of the proppant. The sizes of analysed fractures varying from 0.2 x 0.2 m2 up to 4 x 4 m2, together with discussion of a further upscaling, make the study relevant to the industrial applications. While the results of this study should be applicable to different shale formations throughout the world, we discuss them in the context of preparation to gas-production from Pomeranian shale basin, located in the northern Poland. [1] Mosher, K., He, J., Liu, Y., Rupp, E., & Wilcox, J. Molecular simulation of methane adsorption in micro-and mesoporous carbons with applications to coal and gas shale systems. International Journal of Coal Geology, 109, 36-44 (2013) [2] Grieser, W. V., Wheaton, W. E., Magness, W. D., Blauch, M. E., & Loghry, R, "Surface Reactive Fluid's Effect on Shale." Proceedings of the Production and Operations Symposium, 31 March-3 April 2007, Oklahoma City (SPE-106815-MS) [3] Tao, Z. and Clarens, A., Estimating the carbon sequestration capacity of shale formations using methane production rates, Environmental Science and Technology, 47, 11318-11325 (2013). [4] Zhang, X., Jeffrey, R. G., & Thiercelin, M. (2009). Mechanics of fluid-driven fracture growth in naturally fractured reservoirs with simple network geometries. Journal of Geophysical Research: Solid Earth, 114, B12406 (2009) [5] Gale, J.F., Laubach, S.E., Olson, J.E., Eichhubl, P., Fall, A. Natural fractures in shale: A review and new observations. AAPG Bulletin 98(11):2165-2216 (2014)
NASA Astrophysics Data System (ADS)
Yoon, Seok-Hoon; Koh, Chang-Seong; Joe, Young-Jin; Woo, Ju-Hwan; Lee, Hyun-Suk
2017-04-01
The Horn River Basin in the northeastern British Columbia, Canada, is one of the largest unconventional gas accumulations in North America. It consists mainly of Devonian shales (Horn River Formation) and is stratigraphically divided into three members, the Muskwa, Otterpark and Evie in descending order. This study focuses on sedimentary processes and depositional environments of the Horn River shale based on sedimentary facies analysis aided by well-log mineralogy (ECS) and total organic carbon (TOC) data. The shale formation consists dominantly of siliceous minerals (quartz, feldspar and mica) and subordinate clay mineral and carbonate materials, and TOC ranging from 1.0 to 7.6%. Based on sedimentary structures and micro texture, three sedimentary facies were classified: homogeneous mudstone (HM), indistinctly laminated mudstone (ILM), and planar laminated mudstone (PLM). Integrated interpretation of the sedimentary facies, lithology and TOC suggests that depositional environment of the Horn River shale was an anoxic quiescent basin plain and base-of-slope off carbonate platform or reef. In this deeper marine setting, organic-rich facies HM and ILM, dominant in the Muskwa (the upper part of the Horn River Formation) and Evie (the lower part of the Horn River Formation) members, may have been emplaced by pelagic to hemipelagic sedimentation on the anoxic sea floor with infrequent effects of low-density gravity flows (turbidity currents or nepheloid flows). In the other hand, facies PLM typifying the Otterpark Member (the middle part of the Horn River Formation) suggests more frequent inflow of bottom-hugging turbidity currents punctuating the hemipelagic settling of the background sedimentation process. The stratigraphic change of sedimentary facies and TOC content in the Horn River Formation is most appropriately interpreted to have been caused by the relative sea-level change, that is, lower TOC and frequent signal of turbidity current during the sea-level lowstand and vice versa. Therefore, the Horn River Formation represents an earlier upward shallowing environmental change from a deep basin (Evie) to shallower marginal slope (middle Otterpark), then turning back to the deeper marine environment (Muskwa) in association with overall regression-lowstand-transgression of the sea level. (This study is supported by "Research on Exploration Technologies and an Onsite Verification to Enhance the Fracturing Efficiency of a Shale Gas Formation" of the Korea Institute of Energy Technology Evaluation and Planning (KETEP), granted financial resource from the Ministry of Trade, Industry & Energy, Republic of Korea.)
DeSantos, F A; Ramamoorthi, L; Bechtel, P; Smiley, S; Brewer, M S
2010-08-01
Salmon-based infant food (puree) and toddler food (puree plus chunks) were manufactured from pink salmon, with and without bone, and from Sockeye salmon, with and without bone, to contain 45% salmon, 55% water, and 5% starch. Products were retort processed at 118 to 121 degrees C for 55 min in a steam-jacketed still retort. A trained descriptive panel (n = 7) evaluated infant and toddler foods separately. Instrumental color, pH, and water activity were also determined. Infant and toddler foods were also evaluated by a consumer panel (n = 104) of parents for product acceptability. During the manufacturing process (cooking, homogenization, retort processing), salmon infant food from pink salmon lost much of its characteristic pink color while that from sockeye salmon retained a greater amount. Bitterness was more evident in samples with bones. In the toddler food formulation containing chunks, the odor and flavor characteristics were influenced primarily by the type of salmon. The presence of bone affected visual pink color and lightness, and salmon odor only. Consumers scored products made with sockeye salmon as more acceptable despite the fact that they had more off-flavor than products from pink salmon. The appearance and thickness of the pureed infant food was more acceptable than the toddler food with chunks despite the chunky toddler product having more acceptable salmon flavor. This indicates that the color and appearance of the prototypes were the main drivers for liking. Of the total number of parents surveyed, 73% would feed this salmon product to their children.
77 FR 25206 - Proposed Extension of Existing Information Collection; Underground Retorts
Federal Register 2010, 2011, 2012, 2013, 2014
2012-04-27
... (those that operate within a combustible ore and either liberate methane or have the potential to liberate methane based on the history of the mine or the geological area in which the mine is located). At...
Impact of shale gas development on regional water quality.
Vidic, R D; Brantley, S L; Vandenbossche, J M; Yoxtheimer, D; Abad, J D
2013-05-17
Unconventional natural gas resources offer an opportunity to access a relatively clean fossil fuel that could potentially lead to energy independence for some countries. Horizontal drilling and hydraulic fracturing make the extraction of tightly bound natural gas from shale formations economically feasible. These technologies are not free from environmental risks, however, especially those related to regional water quality, such as gas migration, contaminant transport through induced and natural fractures, wastewater discharge, and accidental spills. We review the current understanding of environmental issues associated with unconventional gas extraction. Improved understanding of the fate and transport of contaminants of concern and increased long-term monitoring and data dissemination will help manage these water-quality risks today and in the future.
Hydraulic fracturing in shales: the spark that created an oil and gas boom
NASA Astrophysics Data System (ADS)
Olson, J. E.
2017-12-01
In the oil and gas business, one of the valued properties of a shale was its lack of flow capacity (its sealing integrity) and its propensity to provide mechanical barriers to hydraulic fracture height growth when exploiting oil and gas bearing sandstones. The other important property was the high organic content that made shale a potential source rock for oil and gas, commodities which migrated elsewhere to be produced. Technological advancements in horizontal drilling and hydraulic fracturing have turned this perspective on its head, making shale (or other ultra-low permeability rocks that are described with this catch-all term) the most prized reservoir rock in US onshore operations. Field and laboratory results have changed our view of how hydraulic fracturing works, suggesting heterogeneities like bedding planes and natural fractures can cause significant complexity in hydraulic fracture growth, resulting in induced networks of fractures whose details are controlled by factors including in situ stress contrasts, ductility contrasts in the stratigraphy, the orientation and strength of pre-existing natural fractures, injection fluid viscosity, perforation cluster spacing and effective mechanical layer thickness. The stress shadowing and stress relief concepts that structural geologists have long used to explain joint spacing and orthogonal fracture pattern development in stratified sequences are key to understanding optimal injection point spacing and promotion of more uniform length development in induced hydraulic fractures. Also, fracture interaction criterion to interpret abutting vs crossing natural fracture relationships in natural fracture systems are key to modeling hydraulic fracture propagation within natural fractured reservoirs such as shale. Scaled physical experiments provide constraints on models where the physics is uncertain. Numerous interesting technical questions remain to be answered, and the field is particularly appealing in that better geologic understanding of the stratigraphic heterogeneity and material property attributes of shale can have a direct effect on the engineering design of wellbores and stimulation treatments.
NASA Astrophysics Data System (ADS)
Mahanta, B.; Vishal, V.; Singh, T. N.; Ranjith, P.
2016-12-01
In addition to modern improved technology, it requires detailed understanding of rock fractures for the purpose of enhanced energy extraction through hydraulic fracturing of gas shales and geothermal energy systems. The understanding of rock fracture behavior, patterns and properties such as fracture toughness; energy release rate; strength and deformation attributes during fracturing hold significance. Environmental factors like temperature, pressure, humidity, water vapor and experimental condition such as strain rate influence the estimation of these properties. In this study, the effects of strain rates on fracture toughness, energy release rate as well as geomechanical properties like uniaxial compressive strength, Young's modulus, failure strain, tensile strength, and brittleness index of gas shales were investigated. In addition to the rock-mechanical parameters, the fracture toughness and the energy release rates were measured for three different modes viz. mode I, mixed mode (I-II) and mode II. Petrographic and X-ray diffraction (XRD) analyses were performed to identify the mineral composition of the shale samples. Scanning electron microscope (SEM) analyses were conducted to have an insight about the strain rate effects on micro-structure of the rock. The results suggest that the fracture toughness; the energy release rate as well as other geomechanical properties are a function of strain rates. At high strain rates, the strength and stiffness of shale increases which in turn increases the fracture toughness and the energy release rate of shale that may be due to stress redistribution during grain fracturing. The fracture toughness and the strain energy release rates for all the modes (I/I-II/II) are comparable at lower strain rates, but they vary considerably at higher strain rates. In all the cases, mode I and mode II fracturing requires minimum and maximum applied energy, respectively. Mode I energy release rate is maximum, compared to the other modes.
Oil shale development and its environmental considerations
Stone, R.T.; Johnson, H.; Decora, A.
1974-01-01
The petroleum shortage recently experienced by many nations throughout the world has created an intense interest in obtaining new and supplemental energy sources. In the United States, this interest has been centered on oil shale. Any major action by the federal government having significant environmental effects requires compliance with the National Environmental Policy Act of 1969 (NEPA). Since most oil shale is found on federal lands, and since its development involves significant environmental impacts, leasing oil shale lands to private interests must be in compliance with NEPA. For oil shale, program planning began at approximately the same time that NEPA was signed into law. By structuring the program to permit a resource and technological inventory by industry and the federal agencies, the Department of the Interior was able simultaneously to conduct the environmental assessments required by the act. This required: 1. Clearly defined program objections; 2. An organization which could integrate public policy with diverse scientific disciplines and environmental concerns; and 3. Flexible decisionmaking to adjust to policy changes as well as to evolving interpretations on EPA as clarified by court decisions. This paper outlines the program, the organization structure that was created for this specific task, and the environmental concerns which were investigated. The success of the program has been demonstrated by meeting the requirements of NEPA, without court challenge, and by industry's acceptance of a leasing program that included the most stringent environmental protection provisions ever required. The need for energy development has spurred the acceptance of the program. However, by its awareness and willingness to meet the environmental challenges of the future, industry has shown a reasonable understanding of its commitments. The pros and cons of development were publicly considered in hearings and analyzed in the final environmental statement. This action aided greatly in preventing legal challenges. The prototype oil shale program is now under way and this new energy source, developed with strict environmental safeguards, may soon be available to our nation.
DOT National Transportation Integrated Search
2012-10-01
Recent advances in horizontal drilling and fracturing technology in gas shale formations have increased natural gas supply : such that its price has decoupled from petroleum and is likely to remain significantly lower for the foreseeable future. In t...
NASA Astrophysics Data System (ADS)
Pachytel, Radomir; Jarosiński, Marek; Bobek, Kinga
2017-04-01
Geomechanical investigations in shale reservoir are crucial to understand rock behavior during hydraulic fracturing treatment and to solve borehole wall stability problem. Anisotropy should be considered as key mechanical parameter while trying to characterize shale properties in variety of scales. We are developing a concept of step-by-step approach to characterize and upscale the Consistent Lithological Units (CLU) at several scales of analysis. We decided that the most regional scale model, comparable to lithostratigraphic formations, is too general for hydraulic fracture propagation study thus a more detailed description is needed. The CLU's hierarchic model aims in upscale elastic properties with their anisotropy based on available data from vertical borehole. For the purpose of our study we have an access to continuous borehole core profile and full set of geophysical logging from several wells in the Pomeranian part of the Ordovician and Silurian shale complex belongs to the Baltic Basin. We are focused on shale properties that might be crucial for mechanical response to hydraulic fracturing: mineral components, porosity, density, elastic parameters and natural fracture pattern. To prepare the precise CLU model we compare several methods of determination and upscaling every single parameter used for consistent units secretion. Mineralogical data taken from ULTRA log, GEM log, X-ray diffraction and X-ray fluorescence were compared with Young modulus from sonic logs and Triaxial Compressive Strength Tests. The results showed the impact of clay content and porosity increase on Young's modulus reduction while carbonates (both calcite and dolomite) have stronger impact on elastic modulus growth, more than quartz, represented here mostly by detrital particles. Comparing the shales of similar composition in a few wells of different depths we concluded that differences in diagenesis and compaction due to variation in formation depth in a range of 1 km has negligible influence on the values of Young modulus. Both mineralogical and mechanical brittleness display differences not only between lithostratigraphic formations, but also for the lower-order CLUs which may influence development of tectonic and technological fractures. Using this approach, we can predict the areas that may be more prone to fracture propagation and branching during hydraulic fracturing treatment and also places that can create barriers to their development. Furthermore, we demonstrate relationship between CLU's mechanical properties and the density of natural fractures determined from core and Electric-Resistivity Borehole Imager analysis. As fracture friction may rule reservoir response to technological loads induced while drilling and fracking we also applied a method of massive determination of static friction coefficient on borehole core. Tuffite beds or other weak intercalations were included in the CLU's model as possible structural barriers for hydraulic fracture propagation. Distinguished set of CLUs is possible to be traced from well to well across tens of kilometers of the Baltic Basin. Our study in the frame of ShaleMech Project funded by Polish Committee for Scientific Research is in progress and the results are preliminary.
Xenon adsorption on geological media and implications for radionuclide signatures
Paul, M. J.; Biegalski, S. R.; Haas, D. A.; ...
2018-02-13
Here, the detection of radioactive noble gases is a primary technology for verifying compliance with the pending Comprehensive Nuclear-Test-Ban Treaty. A fundamental challenge in applying this technology for detecting underground nuclear explosions is estimating the timing and magnitude of the radionuclide signatures. While the primary mechanism for transport is advective transport, either through barometric pumping or thermally driven advection, diffusive transport in the surrounding matrix also plays a secondary role. From the study of primordial noble gas signatures, it is known that xenon has a strong physical adsorption affinity in shale formations. Given the unselective nature of physical adsorption, isothermmore » measurements reported here show that non-trivial amounts of xenon adsorb on a variety of media, in addition to shale. A dual-porosity model is then discussed demonstrating that sorption amplifies the diffusive uptake of an adsorbing matrix from a fracture. This effect may reduce the radioxenon signature down to approximately one-tenth, similar to primordial xenon isotopic signatures.« less
Xenon adsorption on geological media and implications for radionuclide signatures
DOE Office of Scientific and Technical Information (OSTI.GOV)
Paul, M. J.; Biegalski, S. R.; Haas, D. A.
Here, the detection of radioactive noble gases is a primary technology for verifying compliance with the pending Comprehensive Nuclear-Test-Ban Treaty. A fundamental challenge in applying this technology for detecting underground nuclear explosions is estimating the timing and magnitude of the radionuclide signatures. While the primary mechanism for transport is advective transport, either through barometric pumping or thermally driven advection, diffusive transport in the surrounding matrix also plays a secondary role. From the study of primordial noble gas signatures, it is known that xenon has a strong physical adsorption affinity in shale formations. Given the unselective nature of physical adsorption, isothermmore » measurements reported here show that non-trivial amounts of xenon adsorb on a variety of media, in addition to shale. A dual-porosity model is then discussed demonstrating that sorption amplifies the diffusive uptake of an adsorbing matrix from a fracture. This effect may reduce the radioxenon signature down to approximately one-tenth, similar to primordial xenon isotopic signatures.« less
Xenon adsorption on geological media and implications for radionuclide signatures.
Paul, M J; Biegalski, S R; Haas, D A; Jiang, H; Daigle, H; Lowrey, J D
2018-07-01
The detection of radioactive noble gases is a primary technology for verifying compliance with the pending Comprehensive Nuclear-Test-Ban Treaty. A fundamental challenge in applying this technology for detecting underground nuclear explosions is estimating the timing and magnitude of the radionuclide signatures. While the primary mechanism for transport is advective transport, either through barometric pumping or thermally driven advection, diffusive transport in the surrounding matrix also plays a secondary role. From the study of primordial noble gas signatures, it is known that xenon has a strong physical adsorption affinity in shale formations. Given the unselective nature of physical adsorption, isotherm measurements reported here show that non-trivial amounts of xenon adsorb on a variety of media, in addition to shale. A dual-porosity model is then discussed demonstrating that sorption amplifies the diffusive uptake of an adsorbing matrix from a fracture. This effect may reduce the radioxenon signature down to approximately one-tenth, similar to primordial xenon isotopic signatures. Copyright © 2018 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Zhu, Zhenhong; Yao, Genshun; Lou, Zhanghua; Jin, Aimin; Zhu, Rong; Jin, Chong; Chen, Chao
2018-05-01
Multiple sets of organic-rich shales developed in the Upper Paleozoic of the northwestern Guizhong Depression in South China. However, the exploration of these shales is presently at a relatively immature stage. The Upper Paleozoic shales in the northwestern Guizhong Depression, including the Middle Devonian Luofu shale, the Nabiao shale, and the Lower Carboniferous Yanguan shale, were investigated in this study. Mineral composition analysis, organic matter analysis (including total organic carbon (TOC) content, maceral of kerogen and the vitrinite reflection (Ro)), pore characteristic analysis (including porosity and permeability, pore type identification by SEM, and pore size distribution by nitrogen sorption), methane isothermal sorption test were conducted, and the distribution and thickness of the shales were determined, Then the characteristics of the two target shales were illustrated and compared. The results show that the Upper Paleozoic shales have favorable organic matter conditions (mainly moderate to high TOC content, type I and II1 kerogen and high to over maturity), good fracability potential (brittleness index (BI) > 40%), multiple pore types, stable distribution and effective thickness, and good methane sorption capacity. Therefore, the Upper Paleozoic shales in the northern Guizhong Depression have good shale gas potential and exploration prospects. Moreover, the average TOC content, average BI, thickness of the organic-rich shale (TOC > 2.0 wt%) and the shale gas resources of the Middle Devonian shales are better than those of the Lower Carboniferous shale. The Middle Devonian shales have better shale gas potential and exploration prospects than the Lower Carboniferous shales.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Crandall, M.S.
1983-08-01
A walk through survey was conducted to assess control technology for hazardous wastes disposal operations at Olin Chemicals Group (SIC-2800, SIC-2812, SIC-2819), Charleston, Tennessee in May 1982. Hazardous wastes generated at the facility included brine sludge, thick mercury (7439954) (Hg) butter, and calcium-hypochlorite (7778543). An estimated 8500 tons of waste were disposed of annually. The Hg waste underwent a retorting process that recycled the Hg. The final detoxified waste was land filled. Brine sludge and calcium-hypochlorite were also land filled. No controls beyond those normally used at such sites were found at the landfills. Periodic monitoring of Hg vapor concentrationsmore » was conducted by the company. Medical monitoring of urine for Hg exposure was conducted. Specific limits were set for urinary Hg concentrations. When these limits were exceeded the workers were removed from exposure. Personal protective equipment consisted of hard hats, safety glasses, and spirators specially designed for Hg exposure. The author concludes that the hazardous waste disposal and treatment operations at the facility are well controlled.« less
NASA Astrophysics Data System (ADS)
Murtha, T., Jr.; Orland, B.; Goldberg, L.; Hammond, R.
2014-12-01
Deep shale natural gas deposits made accessible by new technologies are quickly becoming a considerable share of North America's energy portfolio. Unlike traditional deposits and extraction footprints, shale gas offers dispersed and complex landscape and community challenges. These challenges are both cultural and environmental. This paper describes the development and application of creative geospatial tools as a means to engage communities along the northern tier counties of Pennsylvania, experiencing Marcellus shale drilling in design and planning. Uniquely combining physical landscape models with predictive models of exploration activities, including drilling, pipeline construction and road reconstruction, the tools quantify the potential impacts of drilling activities for communities and landscapes in the commonwealth of Pennsylvania. Dividing the state into 9836 watershed sub-basins, we first describe the current state of Marcellus related activities through 2014. We then describe and report the results of three scaled predictive models designed to investigate probable sub-basins where future activities will be focused. Finally, the core of the paper reports on the second level of tools we have now developed to engage communities in planning for unconventional gas extraction in Pennsylvania. Using a geodesign approach we are working with communities to transfer information for comprehensive landscape planning and informed decision making. These tools not only quantify physical landscape impacts, but also quantify potential visual, aesthetic and cultural resource implications.
Federal Register 2010, 2011, 2012, 2013, 2014
2013-09-30
... does the changing resource mix (i.e., increased reliance on natural gas-fired generation, increasing... resource planning policies, emerging technologies and fuels such as shale gas, price responsive demand and... design tools could prospectively augment, supplement or substitute for typical centralized capacity...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Steinkamp, J.A.; Hansen, K.M.; Wilson, J.S.
1977-07-01
This report summarizes results of continuing experiments to develop cytological and biochemical indicators for estimating damage to respiratory tract cells in animals exposed to toxic agents associated with production of synthetic fuels from oil shale and coal, the specific goal being the application of advanced flow-systems technologies to the detection of early atypical cellular changes in lung epithelium. The objectives of the program during the past 6 months were: to develop standard methods for lavaging lungs of several rodent species (hamster, rat, and mouse) to increase cell yield; initiate oil shale exposures in hamsters and rats; study the effects ofmore » macrophage mobility in the presence of oil shale; and determine the effects of different fixatives on lung cell morphology using electron microscopy. To develop standard methods for lavaging the respiratory tract of test animals, experiments were devised to increase cell yield with minimal debris and blood. Proteolytic enzymes such as trypsin were also tested but produced excessive amounts of fibrinated blood. Experimental animals were exposed to raw and spent oil shale particulates to determine if changes in lung cell differential counts and/or atypical cellular changes were noted. Since the multiparameter cell separator system was inoperative during this reporting period due to major modifications, including the addition of an uv krypton laser, emphasis was primarily on cytological techniques. As the flow-systems instrumentation becomes fully operational during the next month, automated analysis of respiratory tract cells and measurement of physical and biochemical properties as a function of exposure to toxic agents will continue.« less
DEMONSTRATION BULLETIN: SOILTECH ANAEROBIC THERMAL PROCESSOR: OUTBOARD MARINE CORPORATION SITE
The ATP system is designed to desorb, collect, and recondense contaminants. The kiln contains four separate internal thermal zones: preheat, retort, combustion, and cooling. In the preheat zone, water and volatile organic compounds are vaporized. Hot solids and heavy hydrocarbons...
NASA Astrophysics Data System (ADS)
Alkan, Engin
It is essential to understand natural fracture systems embedded in shale-gas reservoirs and the stress fields that influence how induced fractures form in targeted shale units. Multicomponent seismic technology and elastic seismic stratigraphy allow geologic formations to be better images through analysis of different S-wave modes as well as the P-wave mode. Significant amounts of energy produced by P-wave sources radiate through the Earth as downgoing SV-wave energy. A vertical-force source is an effective source for direct SV radiation and provides a pure shear-wave mode (SV-SV) that should reveal crucial information about geologic surfaces located in anisotropic media. SV-SV shear wave modes should carry important information about petrophysical characteristics of hydrocarbon systems that cannot be obtained using other elastic-wave modes. Regardless of the difficulties of extracting good-quality SV-SV signal, direct shear waves as well as direct P and converted S energy should be accounted for in 3C seismic studies. Acquisition of full-azimuth seismic data and sampling data at small intervals over long offsets are required for detailed anisotropy analysis. If 3C3D data can be acquired with improved signal-to-noise ratio, more uniform illumination of targets, increased lateral resolution, more accurate amplitude attributes, and better multiple attenuation, such data will have strong interest by the industry. The objectives of this research are: (1) determine the feasibility of extracting direct SV-SV common-mid-point sections from 3-C seismic surveys, (2) improve the exploration for stratigraphic traps by developing systematic relationship between petrophysical properties and combinations of P and S wave modes, (3) create compelling examples illustrating how hydrocarbon-bearing reservoirs in low-permeable rocks (particularly anisotropic shale formations) can be better characterized using different Swave modes (P-SV, SV-SV) in addition to the conventional P-P modes, and (4) analyze P and S radiation patterns produced by a variety of seismic sources. The research done in this study has contributed to understanding the physics involved in direct-S radiation from vertical-force source stations. A U.S. Patent issued to the Board of Regents of the University of Texas System now protects the intellectual property the Exploration Geophysics Laboratory has developed related to S-wave generation by vertical-force sources. The University's Office of Technology Commercialization is actively engaged in commercializing this new S-wave reflection seismic technology on behalf of the Board of Regents.
Introduction to special section: China shale gas and shale oil plays
Jiang, Shu; Zeng, Hongliu; Zhang, Jinchuan; Fishman, Neil; Bai, Baojun; Xiao, Xianming; Zhang, Tongwei; Ellis, Geoffrey S.; Li, Xinjing; Richards-McClung, Bryony; Cai, Dongsheng; Ma, Yongsheng
2015-01-01
Even though China shale gas and shale oil exploration is still in an early stage, limited data are already available. We are pleased to have selected eight high-quality papers from fifteen submitted manuscripts for this timely section on the topic of China shale gas and shale oil plays. These selected papers discuss various subject areas including regional geology, resource potentials, integrated and multidisciplinary characterization of China shale reservoirs (geology, geophysics, geochemistry, and petrophysics) China shale property measurement using new techniques, case studies for marine, lacustrine, and transitional shale deposits in China, and hydraulic fracturing. One paper summarizes the regional geology and different tectonic and depositional settings of the major prospective shale oil and gas plays in China. Four papers concentrate on the geology, geochemistry, reservoir characterization, lithologic heterogeneity, and sweet spot identification in the Silurian Longmaxi marine shale in the Sichuan Basin in southwest China, which is currently the primary focus of shale gas exploration in China. One paper discusses the Ordovician Salgan Shale in the Tarim Basin in northwest China, and two papers focus on the reservoir characterization and hydraulic fracturing of Triassic lacustrine shale in the Ordos Basin in northern China. Each paper discusses a specific area.
A review of the organic geochemistry of shales
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ho, P.C.; Meyer, R.E.
1987-06-01
Shale formations have been suggested as a potential site for a high level nuclear waste repository. As a first step in the study of the possible interaction of nuclides with the organic components of the shales, literature on the identification of organic compounds from various shales of the continent of the United States has been reviewed. The Green River shale of the Cenozoic era is the most studied shale followed by the Pierre shale of the Mesozoic era and the Devonian black shale of the Paleozoic era. Organic compounds that have been identified from these shales are hydrocarbons, fatty acids,more » fatty alcohols, steranes, terpanes, carotenes, carbohydrates, amino acids, and porphyrins. However, these organic compounds constitute only a small fraction of the organics in shales and the majority of the organic compounds in shales are still unidentified.« less
Assessment of potential shale-oil and shale-gas resources in Silurian shales of Jordan, 2014
Schenk, Christopher J.; Pitman, Janet K.; Charpentier, Ronald R.; Klett, Timothy R.; Tennyson, Marilyn E.; Mercier, Tracey J.; Nelson, Philip H.; Brownfield, Michael E.; Pawlewicz, Mark J.; Wandrey, Craig J.
2014-01-01
Using a geology-based assessment methodology, the U.S. Geological Survey estimated means of 11 million barrels of potential shale-oil and 320 billion cubic feet of shale-gas resources in Silurian shales of Jordan.
Yang, Jing-Iong; Ho, Hsin-Yi; Chu, Yuh-Jwo; Chow, Chau-Jen
2008-09-01
Alkali-pretreated cobia (Rachycentron canadum) skin was extracted in a retort (121°C) for 30min to obtain a retorted skin gelatin hydrolysate (RSGH). The molecular mass distributions and antioxidant activities of cobia RSGH and enzyme-treated RSGHs (ET-RSGHs) derived from bromelain, papain, pancreatin, and trypsin digestion were then characterized. The molecular mass distribution of the RSGH ranged mainly between 20,000 and 700Da and those of ET-RSGHs ranged between 6500 and 700Da. The DPPH (α,α-diphenyl-β-picrylhydrazyl) radical scavenging effects (%) of 10mg/ml of RSGH and 10mg/ml of the four ET-RSGHs were 55% and 51-61%, respectively. The lipid peroxidation inhibition (%) of RSGH and ET-RSGHs (10mg/ml) were 58% and 60-71% on the fifth day in a linoleic acid model system, respectively. The 3Kd-ET-RSGHs, obtained by using a series of centrifugal ultrafiltration filters (molecular weight cut-offs of 10, 5, and 3kDa done sequentially with decreasing pore size), exhibited dramatically improved antioxidant activity, with most of the molecular mass ranging below 700Da. Compared to 10mg/ml of the RSGH, 10mg/ml of 3Kd-ET-RSGHs exhibited 45-65% more scavenging of DPPH radical and 24-38% more inhibition of lipid peroxidation. The peptides with molecular masses below 700Da in the ET-RSGHs or 3Kd-ET-RSGHs significantly affect the antioxidant properties. These peptides are composed of a small number of amino acids or free amino acids and have the potential to be added as antioxidants in foods. Copyright © 2008 Elsevier Ltd. All rights reserved.
Effect of Pre-cooking Conditions on the Quality Characteristics of Ready-To-Eat Samgyetang
2015-01-01
The aim of this study was to examine the effectiveness of pre-cooking conditions on the quality characteristics of ready-to-eat (RTE) Samgyetang. Raw chickens were steamed under the different conditions of 50℃/30 min (T1), 65℃/30 min (T2), 85℃/30 min (T3), and 90℃/10 min (T4) prior to retorting at 120℃ for 65 min. The results showed that pre-cooking conditions in all treated samples could reduce fat contents in breast and leg meats by 8.5-11.7% and 10.0-11.0% compared to the control, even though there were no significant differences among treatments (p>0.05). The L* and b* values of breast and leg meats treated with the higher temperature and longer time conditions were significantly higher than the control (p<0.05), while a* values tended to decrease despite of not to a significant extent (p>0.05). Moreover, apparent viscosity and water soluble protein showed insignificant differences (p>0.05) among the samples as a result of the retorting process, which might have more negative influences on the quality. T2 samples obtained significantly the highest average Quantitative Descriptive Analysis (QDA) score and transmittance value, representing the most clear broth among the samples, compared to the control. On the other hand, T3 showed the highest cooking loss among the treatments and the lowest QDA scores among the samples. In conclusion, pre-cooking treatment prior to retorting in manufacturing Samgyetang is a plausible way to reduce its fat content. A pre-cooking condition at either 65℃ for 30 min, or 90℃ for 10 min are recommended for producing Samgyetang with optimum quality. PMID:26761871
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1983-04-01
The document is one of six technical handbooks prepared by EPA to help government officials granting permits to build synfuels facilities, synfuels process developers, and other interested parties. They provide technical data on waste streams from synfuels facilities and technologies capable of controlling them. Process technologies covered in the manuals include coal gasification, coal liquefaction by direct and idirect processing, and the extraction of oil from shale. The manuals offer no regulatory guidance, allowing the industry flexibility in deciding how best to comply with environmental regulations.
This report describes the technologies likely to be used for development of coal, oil shale, uranium, oil, natural gas, and geothermal resources in eight western states (Arizona, Colorado, Montana, New Mexico, North Dakota, South Dakota, Utah, and Wyoming). Volume 1 describes the...
ENERGY FROM THE WEST: IMPACT ANALYSIS REPORT. VOLUME I: INTRODUCTION AND SUMMARY
This document reports the results of impact analyses conducted as a part of a three-year technology assessment of the development of six energy resources (coal, geothermal, natural gas, oil, oil shale and uranium) in eight western states (Arizona, Colorado, Montana, New Mexico, N...
ENERGY FROM THE WEST: IMPACT ANALYSIS REPORT. VOLUME II: SITE-SPECIFIC AND REGIONAL IMPACT ANALYSES
This document reports the results of impact analyses conducted as a part of a three-year technology assessment of the development of six energy resources (coal, geothermal, natural gas, oil, oil shale and uranium) in eight western states (Arizona, Colorado, Montana, New Mexico, N...
9 CFR 318.304 - Operations in the thermal processing area.
Code of Federal Regulations, 2013 CFR
2013-01-01
... factor over the specified thermal processing operation times. Temperature/time recording devices shall... minimum initial temperatures and operating procedures for thermal processing equipment, shall be posted in... available to the thermal processing system operator and the inspector. (b) Process indicators and retort...
9 CFR 318.304 - Operations in the thermal processing area.
Code of Federal Regulations, 2012 CFR
2012-01-01
... factor over the specified thermal processing operation times. Temperature/time recording devices shall... minimum initial temperatures and operating procedures for thermal processing equipment, shall be posted in... available to the thermal processing system operator and the inspector. (b) Process indicators and retort...
9 CFR 318.304 - Operations in the thermal processing area.
Code of Federal Regulations, 2014 CFR
2014-01-01
... factor over the specified thermal processing operation times. Temperature/time recording devices shall... minimum initial temperatures and operating procedures for thermal processing equipment, shall be posted in... available to the thermal processing system operator and the inspector. (b) Process indicators and retort...
9 CFR 318.304 - Operations in the thermal processing area.
Code of Federal Regulations, 2011 CFR
2011-01-01
... factor over the specified thermal processing operation times. Temperature/time recording devices shall... minimum initial temperatures and operating procedures for thermal processing equipment, shall be posted in... available to the thermal processing system operator and the inspector. (b) Process indicators and retort...
9 CFR 318.302 - Thermal processing.
Code of Federal Regulations, 2011 CFR
2011-01-01
... 9 Animals and Animal Products 2 2011-01-01 2011-01-01 false Thermal processing. 318.302 Section 318.302 Animals and Animal Products FOOD SAFETY AND INSPECTION SERVICE, DEPARTMENT OF AGRICULTURE... retort come-up operating procedures and critical factors. (2) Letters or other written communications...
Paleozoic shale gas resources in the Sichuan Basin, China
Potter, Christopher J.
2018-01-01
The Sichuan Basin, China, is commonly considered to contain the world’s most abundant shale gas resources. Although its Paleozoic marine shales share many basic characteristics with successful United States gas shales, numerous geologic uncertainties exist, and Sichuan Basin shale gas production is nascent. Gas retention was likely compromised by the age of the shale reservoirs, multiple uplifts and orogenies, and migration pathways along unconformities. High thermal maturities raise questions about gas storage potential in lower Paleozoic shales. Given these uncertainties, a new look at Sichuan Basin shale gas resources is advantageous. As part of a systematic effort to quantitatively assess continuous oil and gas resources in priority basins worldwide, the US Geological Survey (USGS) completed an assessment of Paleozoic shale gas in the Sichuan Basin in 2015. Three organic-rich marine Paleozoic shale intervals meet the USGS geologic criteria for quantitative assessment of shale gas resources: the lower Cambrian Qiongzhusi Formation, the uppermost Ordovician Wufeng through lowermost Silurian Longmaxi Formations (currently producing shale gas), and the upper Permian Longtan and Dalong Formations. This study defined geologically based assessment units and calculated probabilistic distributions of technically recoverable shale gas resources using the USGS well productivity–based method. For six assessment units evaluated in 2015, the USGS estimated a mean value of 23.9 tcf (677 billion cubic meters) of undiscovered, technically recoverable shale gas. This result is considerably lower than volumes calculated in previous shale gas assessments of the Sichuan Basin, highlighting a need for caution in this geologically challenging setting.
9 CFR 318.308 - Deviations in processing.
Code of Federal Regulations, 2010 CFR
2010-01-01
...) Deviations in processing (or process deviations) must be handled according to: (1)(i) A HACCP plan for canned...) of this section. (c) [Reserved] (d) Procedures for handling process deviations where the HACCP plan... accordance with the following procedures: (a) Emergency stops. (1) When retort jams or breakdowns occur...
9 CFR 381.308 - Deviations in processing.
Code of Federal Regulations, 2010 CFR
2010-01-01
...) must be handled according to: (1)(i) A HACCP plan for canned product that addresses hazards associated... (d) of this section. (c) [Reserved] (d) Procedures for handling process deviations where the HACCP... accordance with the following procedures: (a) Emergency stops. (1) When retort jams or breakdowns occur...
118. VIEW, LOOKING SOUTHWEST OF GOLD AMALGAMATION ROOM, SHOWING AMALGAMATION ...
118. VIEW, LOOKING SOUTHWEST OF GOLD AMALGAMATION ROOM, SHOWING AMALGAMATION BARREL AT CENTER FOREGROUND, BULLION FURNACE IN LARGE HOOD BEHIND IT, AND GOLD RETORT IN BACKGROUND HOOD. NOTE OVERHEAD MONORAIL FOR MATERIALS HANDLING. - Shenandoah-Dives Mill, 135 County Road 2, Silverton, San Juan County, CO
ERIC Educational Resources Information Center
Kingsbury, Mary E.
1979-01-01
Responds to article by Pauline Wilson (School Library Journal, v25 n6 Feb 1979) in terms of defining the role of children's librarians, clarifying the goals of children's services, making a case for such services, improving the impression made by children's librarians, determining appropriate preparation, and understanding and achieving quality…
NASA Astrophysics Data System (ADS)
Wang, Yang; Zhu, Yanming; Liu, Yu; Chen, Shangbin
2018-04-01
Shale gas and coalbed methane (CBM) are both considered unconventional natural gas and are becoming increasingly important energy resources. In coal-bearing strata, coal and shale are vertically adjacent as coal and shale are continuously deposited. Research on the reservoir characteristics of coal-shale sedimentary sequences is important for CBM and coal-bearing shale gas exploration. In this study, a total of 71 samples were collected, including coal samples (total organic carbon (TOC) content >40%), carbonaceous shale samples (TOC content: 6%-10%), and shale samples (TOC content <6%). Combining techniques of field emission scanning electron microscopy (FE-SEM), x-ray diffraction, high-pressure mercury intrusion porosimetry, and methane adsorption, experiments were employed to characterize unconventional gas reservoirs in coal-bearing strata. The results indicate that in the coal-shale sedimentary sequence, the proportion of shale is the highest at 74% and that of carbonaceous shale and coal are 14% and 12%, respectively. The porosity of all measured samples demonstrates a good positive relationship with TOC content. Clay and quartz also have a great effect on the porosity of shale samples. According to the FE-SEM image technique, nanoscale pores in the organic matter of coal samples are much more developed compared with shale samples. For shales with low TOC, inorganic minerals provide more pores than organic matter. In addition, TOC content has a positive relationship with methane adsorption capacity, and the adsorption capacity of coal samples is more sensitive than the shale samples to temperature.
Porosity evolution during weathering of Marcellus shale
NASA Astrophysics Data System (ADS)
Gu, X.; Brantley, S.
2017-12-01
Weathering is an important process that continuously converts rock to regolith. Shale weathering is of particular interest because 1) shale covers about 25% of continental land mass; 2) recent development of unconventional shale gas generates large volumes of rock cuttings. When cuttings are exposed at earth's surface, they can release toxic trace elements during weathering. In this study, we investigated the evolution of pore structures and mineral transformation in an outcrop of Marcellus shale - one of the biggest gas shale play in North America - at Frankstown, Pennsylvania. A combination of neutron scattering and imaging was used to characterize the pore structures from nm to mm. The weathering profile of Marcellus shale was also compared to the well-studied Rose Hill shale from the Susquehanna Shale Hills critical zone observatory nearby. This latter shale has a similar mineral composition as Marcellus shale but much lower concentrations of pyrite and OC. The Marcellus shale formation in outcrop overlies a layer of carbonate at 10 m below land surface with low porosity (<3%). All the shale samples above the carbonate layer are almost completely depleted in carbonate, plagioclase, chlorite and pyrite. The porosities in the weathered Marcellus shale are twice as high as in protolith. The pore size distribution exhibits a broad peak for pores of size in the range of 10s of microns, likely due to the loss of OC and/or dissolution of carbonate during weathering. In the nearby Rose Hill shale, the pyrite and carbonate are sharply depleted close to the water table ( 15-20 m at ridgetop); while chlorite and plagioclase are gradually depleted toward the land surface. The greater weathering extent of silicates in the Marcellus shale despite the similarity in climate and erosion rate in these two neighboring locations is attributed to 1) the formation of micron-size pores increases the infiltration rate into weathered Marcellus shale and therefore promotes mineral weathering; 2) the pyrite/carbonate ratio is higher in the Marcellus shale than in Rose Hill shale, and thus excess acidity generated through pyrite oxidation enhances the dissolution of silicates. We seek to use these and other observations to develop a global model for shale weathering that incorporates both mineral composition and porosity change.
Mongolian Oil Shale, hosted in Mesozoic Sedimentary Basins
NASA Astrophysics Data System (ADS)
Bat-Orshikh, E.; Lee, I.; Norov, B.; Batsaikhan, M.
2016-12-01
Mongolia contains several Mesozoic sedimentary basins, which filled >2000 m thick non-marine successions. Late Triassic-Middle Jurassic foreland basins were formed under compression tectonic conditions, whereas Late Jurassic-Early Cretaceous rift valleys were formed through extension tectonics. Also, large areas of China were affected by these tectonic events. The sedimentary basins in China host prolific petroleum and oil shale resources. Similarly, Mongolian basins contain hundreds meter thick oil shale as well as oil fields. However, petroleum system and oil shale geology of Mongolia remain not well known due to lack of survey. Mongolian oil shale deposits and occurrences, hosted in Middle Jurassic and Lower Cretaceous units, are classified into thirteen oil shale-bearing basins, of which oil shale resources were estimated to be 787 Bt. Jurassic oil shale has been identified in central Mongolia, while Lower Cretaceous oil shale is distributed in eastern Mongolia. Lithologically, Jurassic and Cretaceous oil shale-bearing units (up to 700 m thick) are similar, composed mainly of alternating beds of oil shale, dolomotic marl, siltstone and sandstone, representing lacustrine facies. Both Jurassic and Cretaceous oil shales are characterized by Type I kerogen with high TOC contents, up to 35.6% and low sulfur contents ranging from 0.1% to 1.5%. Moreover, S2 values of oil shales are up to 146 kg/t. The numbers indicate that the oil shales are high quality, oil prone source rocks. The Tmax values of samples range from 410 to 447, suggesting immature to early oil window maturity levels. PI values are consistent with this interpretation, ranging from 0.01 to 0.03. According to bulk geochemistry data, Jurassic and Cretaceous oil shales are identical, high quality petroleum source rocks. However, previous studies indicate that known oil fields in Eastern Mongolia were originated from Lower Cretaceous oil shales. Thus, further detailed studies on Jurassic oil shale and its petroleum potential are required.
NASA Astrophysics Data System (ADS)
Jin, G.
2016-12-01
Shales are important petroleum source rocks and reservoir seals. Recent developments in hydraulic fracturing technology have facilitated high gas production rates from shale and have had a strong impact on the U.S. gas supply and markets. Modeling of effective permeability for fractured shale reservoirs has been challenging because the presence of a fracture network significantly alters the reservoir hydrologic properties. Due to the frequent occurrence of fracture networks, it is of vital importance to characterize fracture networks and to investigate how these networks can be used to optimize the hydraulic fracturing. We have conducted basic research on 3-D fracture permeability characterization and compartmentization analyses for fractured shale formations, which takes the advantages of the discrete fracture networks (DFN). The DFN modeling is a stochastic modeling approach using the probabilistic density functions of fractures. Three common scenarios of DFN models have been studied for fracture permeability mapping using our previously proposed techniques. In DFN models with moderately to highly concentrated fractures, there exists a representative element volume (REV) for fracture permeability characterization, which indicates that the fractured reservoirs can be treated as anisotropic homogeneous media. Hydraulic fracturing will be most effective if the orientation of the hydraulic fracture is perpendicular to the mean direction of the fractures. A DFN model with randomized fracture orientations, on the other hand, lacks an REV for fracture characterization. Therefore, a fracture permeability tensor has to be computed from each element. Modeling of fracture interconnectivity indicates that there exists no preferred direction for hydraulic fracturing to be most effective oweing to the interconnected pathways of the fracture network. 3-D fracture permeability mapping has been applied to the Devonian Chattanooga Shale in Alabama and the results suggest that an REV exist for fluid flow and transport modeling at element sizes larger than 200 m. Fracture pathway analysis indicates that hydraulic fracturing can be equally effective for hydrocarbon fluid/gas exploration as long as its orientation is not aligned with that of the regional system fractures.
Comparison of formation mechanism of fresh-water and salt-water lacustrine organic-rich shale
NASA Astrophysics Data System (ADS)
Lin, Senhu
2017-04-01
Based on the core and thin section observation, major, trace and rare earth elements test, carbon and oxygen isotopes content analysis and other geochemical methods, a detailed study was performed on formation mechanism of lacustrine organic-rich shale by taking the middle Permian salt-water shale in Zhungaer Basin and upper Triassic fresh-water shale in Ordos Basin as the research target. The results show that, the middle Permian salt-water shale was overall deposited in hot and dry climate. Long-term reductive environment and high biological abundance due to elevated temperature provides favorable conditions for formation and preservation of organic-rich shale. Within certain limits, the hotter climate, the organic-richer shale formed. These organic-rich shale was typically distributed in the area where palaeosalinity is relatively high. However, during the upper Triassic at Ordos Basin, organic-rich shale was formed in warm and moist environment. What's more, if the temperature, salinity or water depth rises, the TOC in shale decreases. In other words, relatively low temperature and salinity, stable lake level and strong reducing conditions benefits organic-rich shale deposits in fresh water. In this sense, looking for high-TOC shale in lacustrine basin needs to follow different rules depends on the palaeoclimate and palaeoenvironment during sedimentary period. There is reason to believe that the some other factors can also have significant impact on formation mechanism of organic-rich shale, which increases the complexity of shale oil and gas prediction.
The Pneumatic Fracturing Extraction (PFE) process developed by Accutech Remedial Systems, Inc. makes it possible to use vapor extraction to remove volatile organics at increased rates from a broader range of vadose zones. The low permeability of silts, clays, shales, etc. would o...
This report discusses development of six energy resources (coal, geothermal, natural gas, oil, oil shale, and uranium) in eight western states (Arizona, Colorado, Montana, New Mexico, North Dakota, South Dakota, Utah, and Wyoming) during the period from the present to the year 20...
Marra, Kristen R.; Charpentier, Ronald R.; Schenk, Christopher J.; Lewan, Michael D.; Leathers-Miller, Heidi M.; Klett, Timothy R.; Gaswirth, Stephanie B.; Le, Phuong A.; Mercier, Tracey J.; Pitman, Janet K.; Tennyson, Marilyn E.
2015-12-17
Using a geology-based assessment methodology, the U.S. Geological Survey estimated mean volumes of 53 trillion cubic feet of shale gas, 172 million barrels of shale oil, and 176 million barrels of natural gas liquids in the Barnett Shale of the Bend Arch–Fort Worth Basin Province of Texas.
Land and Resource Management Issues Relevant to Deploying In-Situ Thermal Technologies
DOE Office of Scientific and Technical Information (OSTI.GOV)
Keiter, Robert; Ruple, John; Tanana, Heather
2011-01-01
Utah is home to oil shale resources containing roughly 1.3 trillion barrels of oil equivalent and our nation’s richest oil sands resources. If economically feasible and environmentally responsible means of tapping these resources can be developed, these resources could provide a safe and stable domestic energy source for decades to come. In Utah, oil shale and oil sands resources underlay a patchwork of federal, state, private, and tribal lands that are subject to different regulatory schemes and conflicting management objectives. Evaluating the development potential of Utah’s oil shale and oil sands resources requires an understanding of jurisdictional issues and themore » challenges they present to deployment and efficient utilization of emerging technologies. The jurisdictional patchwork and divergent management requirements inhibit efficient, economic, and environmentally sustainable development. This report examines these barriers to resource development, methods of obtaining access to landlocked resources, and options for consolidating resource ownership. This report also examines recent legislative efforts to wrest control of western public lands from the federal government. If successful, these efforts could dramatically reshape resource control and access, though these efforts appear to fall far short of their stated goals. The unintended consequences of adversarial approaches to obtaining resource access may outweigh their benefits, hardening positions and increasing tensions to the detriment of overall coordination between resource managers. Federal land exchanges represent a more efficient and mutually beneficial means of consolidating management control and improving management efficiency. Independent of exchange proposals, resource managers must improve coordination, moving beyond mere consultation with neighboring landowners and sister agencies to coordinating actions with them.« less
21 CFR 113.87 - Operations in the thermal processing room.
Code of Federal Regulations, 2012 CFR
2012-04-01
... Section 113.87 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR HUMAN CONSUMPTION THERMALLY PROCESSED LOW-ACID FOODS PACKAGED IN HERMETICALLY SEALED... Food and Drug Administration. (b) A system for product traffic control in the retort room shall be...
21 CFR 113.87 - Operations in the thermal processing room.
Code of Federal Regulations, 2011 CFR
2011-04-01
... Section 113.87 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR HUMAN CONSUMPTION THERMALLY PROCESSED LOW-ACID FOODS PACKAGED IN HERMETICALLY SEALED... Administration. (b) A system for product traffic control in the retort room shall be estab-lished to prevent...
121. FRONT ELEVATION OF TELLURIDE IRON WORKS 2.5 BY 4FOOT ...
121. FRONT ELEVATION OF TELLURIDE IRON WORKS 2.5 BY 4-FOOT RETORT, USED TO FLASH MERCURY FROM GOLD. MERCURY VAPOR THEN CONDENSED ON INSIDE OF HOOD AND WAS COLLECTED FOR REUSE. - Shenandoah-Dives Mill, 135 County Road 2, Silverton, San Juan County, CO
Letters of a Slave Turned Union Soldier.
ERIC Educational Resources Information Center
Humanities, 1990
1990-01-01
Discusses the influx of Black soldiers into the Union army following the Emancipation Proclamation. Concentrates on the case of Private Spotswood Rice. Provides a short history of Rice, including copies of Rice's letters to his enslaved daughters, the daughter's slaveholders, and an angry retort from the slaveowner to the federal commander in…
Code of Federal Regulations, 2013 CFR
2013-01-01
... of air from a retort before the start of process timing. (x) Water activity. The ratio of the water vapor pressure of the product to the vapor pressure of pure water at the same temperature. ... throughout the entire thermal process. (d) Canned product. A poultry food product with a water activity above...
Code of Federal Regulations, 2012 CFR
2012-01-01
... of air from a retort before the start of process timing. (x) Water activity. The ratio of the water vapor pressure of the product to the vapor pressure of pure water at the same temperature. ... throughout the entire thermal process. (d) Canned product. A poultry food product with a water activity above...
Code of Federal Regulations, 2012 CFR
2012-01-01
... of air from a retort before the start of process timing. (x) Water activity. The ratio of the water vapor pressure of the product to the vapor pressure of pure water at the same temperature. ... with a water activity above 0.85 which receives a thermal process either before or after being packed...
Code of Federal Regulations, 2010 CFR
2010-01-01
... of air from a retort before the start of process timing. (x) Water activity. The ratio of the water vapor pressure of the product to the vapor pressure of pure water at the same temperature. ... with a water activity above 0.85 which receives a thermal process either before or after being packed...
Code of Federal Regulations, 2014 CFR
2014-01-01
... of air from a retort before the start of process timing. (x) Water activity. The ratio of the water vapor pressure of the product to the vapor pressure of pure water at the same temperature. ... throughout the entire thermal process. (d) Canned product. A poultry food product with a water activity above...
Code of Federal Regulations, 2011 CFR
2011-01-01
... of air from a retort before the start of process timing. (x) Water activity. The ratio of the water vapor pressure of the product to the vapor pressure of pure water at the same temperature. ... with a water activity above 0.85 which receives a thermal process either before or after being packed...
Code of Federal Regulations, 2014 CFR
2014-01-01
... of air from a retort before the start of process timing. (x) Water activity. The ratio of the water vapor pressure of the product to the vapor pressure of pure water at the same temperature. ... with a water activity above 0.85 which receives a thermal process either before or after being packed...
Code of Federal Regulations, 2010 CFR
2010-01-01
... of air from a retort before the start of process timing. (x) Water activity. The ratio of the water vapor pressure of the product to the vapor pressure of pure water at the same temperature. ... throughout the entire thermal process. (d) Canned product. A poultry food product with a water activity above...
Code of Federal Regulations, 2011 CFR
2011-01-01
... of air from a retort before the start of process timing. (x) Water activity. The ratio of the water vapor pressure of the product to the vapor pressure of pure water at the same temperature. ... throughout the entire thermal process. (d) Canned product. A poultry food product with a water activity above...
Code of Federal Regulations, 2013 CFR
2013-01-01
... of air from a retort before the start of process timing. (x) Water activity. The ratio of the water vapor pressure of the product to the vapor pressure of pure water at the same temperature. ... with a water activity above 0.85 which receives a thermal process either before or after being packed...
Code of Federal Regulations, 2010 CFR
2010-01-01
..., READY-TO-EAT (MRE's), MEATS, AND MEAT PRODUCTS MRE's, Meats, and Related Meat Food Products § 98.2... acceptable one meal serving, retorted pouched or 18-24 serving hermetically-sealed tray packed meat, or meal... operational food rations, and as an item of general issue by the military. Meat. This includes the edible part...
Pore-Scale Simulation and Sensitivity Analysis of Apparent Gas Permeability in Shale Matrix
Zhang, Pengwei; Hu, Liming; Meegoda, Jay N.
2017-01-01
Extremely low permeability due to nano-scale pores is a distinctive feature of gas transport in a shale matrix. The permeability of shale depends on pore pressure, porosity, pore throat size and gas type. The pore network model is a practical way to explain the macro flow behavior of porous media from a microscopic point of view. In this research, gas flow in a shale matrix is simulated using a previously developed three-dimensional pore network model that includes typical bimodal pore size distribution, anisotropy and low connectivity of the pore structure in shale. The apparent gas permeability of shale matrix was calculated under different reservoir pressures corresponding to different gas exploitation stages. Results indicate that gas permeability is strongly related to reservoir gas pressure, and hence the apparent permeability is not a unique value during the shale gas exploitation, and simulations suggested that a constant permeability for continuum-scale simulation is not accurate. Hence, the reservoir pressures of different shale gas exploitations should be considered. In addition, a sensitivity analysis was also performed to determine the contributions to apparent permeability of a shale matrix from petro-physical properties of shale such as pore throat size and porosity. Finally, the impact of connectivity of nano-scale pores on shale gas flux was analyzed. These results would provide an insight into understanding nano/micro scale flows of shale gas in the shale matrix. PMID:28772465
Pore-Scale Simulation and Sensitivity Analysis of Apparent Gas Permeability in Shale Matrix.
Zhang, Pengwei; Hu, Liming; Meegoda, Jay N
2017-01-25
Extremely low permeability due to nano-scale pores is a distinctive feature of gas transport in a shale matrix. The permeability of shale depends on pore pressure, porosity, pore throat size and gas type. The pore network model is a practical way to explain the macro flow behavior of porous media from a microscopic point of view. In this research, gas flow in a shale matrix is simulated using a previously developed three-dimensional pore network model that includes typical bimodal pore size distribution, anisotropy and low connectivity of the pore structure in shale. The apparent gas permeability of shale matrix was calculated under different reservoir pressures corresponding to different gas exploitation stages. Results indicate that gas permeability is strongly related to reservoir gas pressure, and hence the apparent permeability is not a unique value during the shale gas exploitation, and simulations suggested that a constant permeability for continuum-scale simulation is not accurate. Hence, the reservoir pressures of different shale gas exploitations should be considered. In addition, a sensitivity analysis was also performed to determine the contributions to apparent permeability of a shale matrix from petro-physical properties of shale such as pore throat size and porosity. Finally, the impact of connectivity of nano-scale pores on shale gas flux was analyzed. These results would provide an insight into understanding nano/micro scale flows of shale gas in the shale matrix.
Integration of Product, Package, Process, and Environment: A Food System Optimization
NASA Technical Reports Server (NTRS)
Cooper, Maya R.; Douglas, Grace L.
2015-01-01
The food systems slated for future NASA missions must meet crew nutritional needs, be acceptable for consumption, and use resources efficiently. Although the current food system of prepackaged, moderately stabilized food items works well for International Space Station (ISS) missions, many of the current space menu items do not maintain acceptability and/or nutritive value beyond 2 years. Longer space missions require that the food system can sustain the crew for 3 to 5 years without replenishment. The task "Integration of Product, Package, Process, and Environment: A Food System Optimization" has the objective of optimizing food-product shelf life for the space-food system through product recipe adjustments, new packaging and processing technologies, and modified storage conditions. Two emergent food processing technologies were examined to identify a pathway to stable, wet-pack foods without the detrimental color and texture effects. Both microwave-assisted thermal sterilization (MATS) and pressure-assisted thermal stabilization (PATS) were evaluated against traditional retort processing to determine if lower heat inputs during processing would produce a product with higher micronutrient quality and longer shelf life. While MATS products did have brighter color and better texture initially, the advantages were not sustained. The non-metallized packaging film used in the process likely provided inadequate oxygen barrier. No difference in vitamin stability was evident between MATS and retort processed foods. Similarly, fruit products produced using PATS showed improved color and texture through 3 years of storage compared to retort fruit, but the vitamin stability was not improved. The final processing study involved freeze drying. Five processing factors were tested in factorial design to assess potential impact of each to the quality of freeze-dried food, including the integrity of the microstructure. The initial freezing rate and primary freeze drying temperature and pressure were linked to final product quality in freeze-dried corn, indicating processing modifications that could lead to improved product shelf life. Storage temperatures and packaging systems were also assessed for the impact to food quality. Reduced temperature storage had inconclusive impact to the progression of rancidity in butter cookies. Frozen storage was detrimental to fruit and vegetable textural attributes but refrigerated storage helped to sustain color and organoleptic ratings for plant-based foods. With regard to packaging systems, the metallized film overwrap significantly decreased the progression of the rancidity of butter cookies as compared to the highest barrier non-metallized film. The inclusion of oxygen scavengers resulted in noticeable moisture gains in butter cookies over time, independent of packaging film systems. Neither emergent processing technology nor the freeze dry optimization resulted in compelling quality differences from current space food provisions such that a five-year shelf life is likely with these processing changes alone. Using a combination of refrigeration and PATS processing is expected to result in organoleptically-acceptable fruit quality for most fruits through five years. The vitamin degradation will be aided somewhat by the cold temperatures but, given the labile nature of vitamin C, a more stable fortification method, such as encapsulation, should also be investigated to ensure vitamin delivery throughout the product life. Similarly, significant improvement to the packaging film used in the MATS processing, optimization of formulation for dielectric properties, vitamin fortification, and reduced temperature storage should be investigated as a hurdle approach to reach a five year shelf life in wet-pack entrees and soups. Baked goods and other environmentally-sensitive spaceflight foods will require an almost impenetrable barrier to protect the foods from oxygen and moisture ingress but scavengers and reduced storage temperature did not improve baked good shelf life and are not recommended at this time for these foods.
Review of Emerging Resources: U.S. Shale Gas and Shale Oil Plays
2011-01-01
To gain a better understanding of the potential U.S. domestic shale gas and shale oil resources, the Energy Information Administration (EIA) commissioned INTEK, Inc. to develop an assessment of onshore lower 48 states technically recoverable shale gas and shale oil resources. This paper briefly describes the scope, methodology, and key results of the report and discusses the key assumptions that underlie the results.
Carbon sequestration in depleted oil shale deposits
Burnham, Alan K; Carroll, Susan A
2014-12-02
A method and apparatus are described for sequestering carbon dioxide underground by mineralizing the carbon dioxide with coinjected fluids and minerals remaining from the extraction shale oil. In one embodiment, the oil shale of an illite-rich oil shale is heated to pyrolyze the shale underground, and carbon dioxide is provided to the remaining depleted oil shale while at an elevated temperature. Conditions are sufficient to mineralize the carbon dioxide.
Wet separation processes as method to separate limestone and oil shale
NASA Astrophysics Data System (ADS)
Nurme, Martin; Karu, Veiko
2015-04-01
Biggest oil shale industry is located in Estonia. Oil shale usage is mainly for electricity generation, shale oil generation and cement production. All these processes need certain quality oil shale. Oil shale seam have interlayer limestone layers. To use oil shale in production, it is needed to separate oil shale and limestone. A key challenge is find separation process when we can get the best quality for all product types. In oil shale separation typically has been used heavy media separation process. There are tested also different types of separation processes before: wet separation, pneumatic separation. Now oil shale industry moves more to oil production and this needs innovation methods for separation to ensure fuel quality and the changes in quality. The pilot unit test with Allmineral ALLJIG have pointed out that the suitable new innovation way for oil shale separation can be wet separation with gravity, where material by pulsating water forming layers of grains according to their density and subsequently separates the heavy material (limestone) from the stratified material (oil shale)bed. Main aim of this research is to find the suitable separation process for oil shale, that the products have highest quality. The expected results can be used also for developing separation processes for phosphorite rock or all others, where traditional separation processes doesn't work property. This research is part of the study Sustainable and environmentally acceptable Oil shale mining No. 3.2.0501.11-0025 http://mi.ttu.ee/etp and the project B36 Extraction and processing of rock with selective methods - http://mi.ttu.ee/separation; http://mi.ttu.ee/miningwaste/
Water management practices used by Fayetteville shale gas producers.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Veil, J. A.
2011-06-03
Water issues continue to play an important role in producing natural gas from shale formations. This report examines water issues relating to shale gas production in the Fayetteville Shale. In particular, the report focuses on how gas producers obtain water supplies used for drilling and hydraulically fracturing wells, how that water is transported to the well sites and stored, and how the wastewater from the wells (flowback and produced water) is managed. Last year, Argonne National Laboratory made a similar evaluation of water issues in the Marcellus Shale (Veil 2010). Gas production in the Marcellus Shale involves at least threemore » states, many oil and gas operators, and multiple wastewater management options. Consequently, Veil (2010) provided extensive information on water. This current study is less complicated for several reasons: (1) gas production in the Fayetteville Shale is somewhat more mature and stable than production in the Marcellus Shale; (2) the Fayetteville Shale underlies a single state (Arkansas); (3) there are only a few gas producers that operate the large majority of the wells in the Fayetteville Shale; (4) much of the water management information relating to the Marcellus Shale also applies to the Fayetteville Shale, therefore, it can be referenced from Veil (2010) rather than being recreated here; and (5) the author has previously published a report on the Fayetteville Shale (Veil 2007) and has helped to develop an informational website on the Fayetteville Shale (Argonne and University of Arkansas 2008), both of these sources, which are relevant to the subject of this report, are cited as references.« less
Petrophysical Properties of Cody, Mowry, Shell Creek, and Thermopolis Shales, Bighorn Basin, Wyoming
NASA Astrophysics Data System (ADS)
Nelson, P. H.
2013-12-01
The petrophysical properties of four shale formations are documented from well-log responses in 23 wells in the Bighorn Basin in Wyoming. Depths of the examined shales range from 4,771 to 20,594 ft. The four formations are the Thermopolis Shale (T), the Shell Creek Shale (SC), the Mowry Shale (M), and the lower part of the Cody Shale (C), all of Cretaceous age. These four shales lie within a 4,000-ft, moderately overpressured, gas-rich vertical interval in which the sonic velocity of most rocks is less than that of an interpolated trendline representing a normal increase of velocity with depth. Sonic velocity, resistivity, neutron, caliper, and gamma-ray values were determined from well logs at discrete intervals in each of the four shales in 23 wells. Sonic velocity in all four shales increases with depth to a present-day depth of about 10,000 ft; below this depth, sonic velocity remains relatively unchanged. Velocity (V), resistivity (R), neutron porosity (N), and hole diameter (D) in the four shales vary such that: VM > VC > VSC > VT, RM > RC > RSC > RT, NT > NSC ≈ NC > NM, and DT > DC ≈ DSC > DM. These orderings can be partially understood on the basis of rock compositions. The Mowry Shale is highly siliceous and by inference comparatively low in clay content, resulting in high sonic velocity, high resistivity, low neutron porosity, and minimal borehole enlargement. The Thermopolis Shale, by contrast, is a black fissile shale with very little silt--its high clay content causes low velocity, low resistivity, high neutron response, and results in the greatest borehole enlargement. The properties of the Shell Creek and lower Cody Shales are intermediate to the Mowry and Thermopolis Shales. The sonic velocities of all four shales are less than that of an interpolated trendline that is tied to velocities in shales above and below the interval of moderate overpressure. The reduction in velocity varies among the four shales, such that the amount of offset (O) from the trendline is OT > OSC > OC > OM, that is, the velocity in the Mowry Shale is reduced the least and the velocity in the Thermopolis Shale is reduced the most. Velocity reductions are attributed to increases in pore pressure during burial, caused by the generation and retention of gas, with lithology playing a key role in the amount of reduction. Sonic velocity in the four shale units remains low to the present day, after uplift and erosion of as much as 6,500 ft in the deeper part of the basin and consequent possible reduction from maximum pore pressures reached when strata were more deeply buried. A model combining burial history, the decrease of effective stress with increasing pore pressure, and Bower's model for the dependence of sonic velocity on effective stress is proposed to explain the persistence of low velocity in shale units. Interruptions to compaction gradients associated with gas occurrences and overpressure are observed in correlative strata in other basins in Wyoming, so the general results for shales in the Bighorn Basin established in this paper should be applicable elsewhere.
The geological and microbiological controls on the enrichment of Se and Te in sedimentary rocks
NASA Astrophysics Data System (ADS)
Bullock, Liam; Parnell, John; Armstrong, Joseph; Boyce, Adrian; Perez, Magali
2017-04-01
Selenium (Se) and tellurium (Te) have become elements of high interest, mainly due to their photovoltaic and photoconductive properties, and can contaminate local soils and groundwater systems during mobilisation. Due to their economic and environmental significance, it is important to understand the processes that lead to Se- and Te-enrichment in sediments. The distribution of Se and Te in sedimentary environments is primarily a function of redox conditions, and may be transported and concentrated by the movement of reduced fluids through oxidised strata. Se and Te concentrations have been measured in a suite of late Neoproterozoic Gwna Group black shales (UK) and uranium red bed (roll-front) samples (USA). Due to the chemical affinity of Se and sulphur (S), variations in the S isotopic composition of pyrite have also been measured in order to provide insights into their origin. Scanning electron microscopy of pyrite in the black shales shows abundant inclusions of the lead selenide mineral clausthalite. The data for the black shale samples show marked enrichment in Te and Se relative to crustal mean and several hundreds of other samples processed through our laboratory. While Se levels in sulphidic black shales are typically below 5 ppm, the measured values of up to 116 ppm are remarkable. The Se enrichment in roll-fronts (up to 168 ppm) is restricted to a narrow band of alteration at the interface between the barren oxidised core, and the highly mineralised reduced nose of the front. Te is depleted in roll-fronts with respect to the continental crust and other geological settings and deposits. S isotope compositions for pyrite in both the black shales and roll-fronts are very light and indicate precipitation by microbial sulphate reduction, suggesting that Se was microbially sequestered. Results show that Gwna Group black shales and U.S roll-front deposits contain marked elemental enrichments (particularly Se content). In Gwna Group black shales, Se and Te were sequestered out of seawater into pyritic shales at a higher rate than into crusts. Se enrichment in roll-fronts relates to the initial mobilisation of trace elements in oxidised conditions, and later precipitation downgradient in reduced conditions. Results highlight the potential for sedimentary types of Se- and Te-bearing deposits. The enrichment of elements of high value for future technologies in sedimentary rocks deserve careful assessment for potential future resources, and should be monitored during exploration and mobilisation due to the potential contamination effects. This work forms part of the NERC-funded 'Security of Supply of Mineral Resources' project, which aims to detail the science needed to sustain the security of supply of strategic minerals in a changing environment.
43 CFR 3905.10 - Oil shale lease exchanges.
Code of Federal Regulations, 2014 CFR
2014-10-01
... 43 Public Lands: Interior 2 2014-10-01 2014-10-01 false Oil shale lease exchanges. 3905.10 Section... MANAGEMENT, DEPARTMENT OF THE INTERIOR MINERALS MANAGEMENT (3000) OIL SHALE MANAGEMENT-GENERAL Lease Exchanges § 3905.10 Oil shale lease exchanges. To facilitate the recovery of oil shale, the BLM may consider...
43 CFR 3905.10 - Oil shale lease exchanges.
Code of Federal Regulations, 2013 CFR
2013-10-01
... 43 Public Lands: Interior 2 2013-10-01 2013-10-01 false Oil shale lease exchanges. 3905.10 Section... MANAGEMENT, DEPARTMENT OF THE INTERIOR MINERALS MANAGEMENT (3000) OIL SHALE MANAGEMENT-GENERAL Lease Exchanges § 3905.10 Oil shale lease exchanges. To facilitate the recovery of oil shale, the BLM may consider...
43 CFR 3905.10 - Oil shale lease exchanges.
Code of Federal Regulations, 2012 CFR
2012-10-01
... 43 Public Lands: Interior 2 2012-10-01 2012-10-01 false Oil shale lease exchanges. 3905.10 Section... MANAGEMENT, DEPARTMENT OF THE INTERIOR MINERALS MANAGEMENT (3000) OIL SHALE MANAGEMENT-GENERAL Lease Exchanges § 3905.10 Oil shale lease exchanges. To facilitate the recovery of oil shale, the BLM may consider...
What is shale gas and why is it important?
2012-01-01
Shale gas refers to natural gas that is trapped within shale formations. Shales are fine-grained sedimentary rocks that can be rich sources of petroleum and natural gas. Over the past decade, the combination of horizontal drilling and hydraulic fracturing has allowed access to large volumes of shale gas that were previously uneconomical to produce. The production of natural gas from shale formations has rejuvenated the natural gas industry in the United States.
Dyni, John R.
2008-01-01
Oil shale units in the Eocene Green River Formation are shown on two east-west stratigraphic sections across the Uinta Basin in northeastern Utah. Several units have potential value for recovery of shale oil, especially the Mahogany oil shale zone, which is a high grade oil shale that can be traced across most of the Uinta Basin and into the Piceance Basin in northwestern Colorado. Many thin medium to high grade oil shale beds above the Mahogany zone can also be traced for many miles across the basin. Several units below the Mahogany that have slow velocities on sonic logs may be low grade oil shale. These may have value as a source for shale gas.
Shale Gas Exploration and Development Progress in China and the Way Forward
NASA Astrophysics Data System (ADS)
Chen, Jianghua
2018-02-01
Shale gas exploration in China started late but is progressing very quickly with the strong support from Central Government. China has 21.8 tcm technically recoverable shale gas resources and 764.3 bcm proved shale gas reserve, mainly in marine facies in Sichuan basin. In 2016, overall shale gas production in China is around 7.9 bcm, while it is set to reach 10 bcm in 2017 and 30 bcm in 2020. BP is the only remaining IOC actor in shale gas exploration in China partnering with CNPC in 2 blocks in Sichuan basin. China is encouraging shale gas business both at Central level and at Provincial level through establishing development plan, continuation of subsidies and research funding. Engineering services for shale gas development and infrastructures are developing, while the overall cost and gas marketing conditions will be key factors for the success in shale gas industry.
Chen, Fangwen; Lu, Shuangfang; Ding, Xue
2014-01-01
The organopores play an important role in determining total volume of hydrocarbons in shale gas reservoir. The Lower Silurian Longmaxi Shale in southeast Chongqing was selected as a case to confirm the contribution of organopores (microscale and nanoscale pores within organic matters in shale) formed by hydrocarbon generation to total volume of hydrocarbons in shale gas reservoir. Using the material balance principle combined with chemical kinetics methods, an evaluation model of organoporosity for shale gas reservoirs was established. The results indicate that there are four important model parameters to consider when evaluating organoporosity in shale: the original organic carbon (w(TOC0)), the original hydrogen index (I H0), the transformation ratio of generated hydrocarbon (F(R o)), and the organopore correction coefficient (C). The organoporosity of the Lower Silurian Longmaxi Shale in the Py1 well is from 0.20 to 2.76%, and the average value is 1.25%. The organoporosity variation trends and the residual organic carbon of Longmaxi Shale are consistent in section. The residual organic carbon is indicative of the relative levels of organoporosity, while the samples are in the same shale reservoirs with similar buried depths. PMID:25184155
43 CFR 3905.10 - Oil shale lease exchanges.
Code of Federal Regulations, 2011 CFR
2011-10-01
... 43 Public Lands: Interior 2 2011-10-01 2011-10-01 false Oil shale lease exchanges. 3905.10 Section... MANAGEMENT, DEPARTMENT OF THE INTERIOR RANGE MANAGEMENT (4000) OIL SHALE MANAGEMENT-GENERAL Lease Exchanges § 3905.10 Oil shale lease exchanges. To facilitate the recovery of oil shale, the BLM may consider land...
Milheim, L. E.; Slonecker, E. T.; Roig-Silva, C. M.; Winters, S. G.; Ballew, J. R.
2014-01-01
Increased demands for cleaner burning energy, coupled with the relatively recent technological advances in accessing hydrocarbon-rich geologic formations, have led to an intense effort to find and extract unconventional natural gas from various underground sources around the country. One of these sources, the Marcellus Shale, located in the Allegheny Plateau, is currently undergoing extensive drilling and production. The technology used to extract gas in the Marcellus Shale is known as hydraulic fracturing and has garnered much attention because of its use of large amounts of fresh water, its use of proprietary fluids for the hydraulic-fracturing process, its potential to release contaminants into the environment, and its potential effect on water resources. Nonetheless, development of natural gas extraction wells in the Marcellus Shale is only part of the overall natural gas story in this area of Pennsylvania. Conventional natural gas wells, which sometimes use the same technique for extraction, are commonly located in the same general area as the Marcellus Shale and are frequently developed in clusters across the landscape. The combined effects of these two natural gas extraction methods create potentially serious patterns of disturbance on the landscape. This document quantifies the landscape changes and consequences of natural gas extraction for Cameron, Clarion, Elk, Forest, Jefferson, McKean, Potter, and Warren Counties in Pennsylvania between 2004 and 2010. Patterns of landscape disturbance related to natural gas extraction activities were collected and digitized using National Agriculture Imagery Program (NAIP) imagery for 2004, 2005/2006, 2008, and 2010. The disturbance patterns were then used to measure changes in land cover and land use using the National Land Cover Database (NLCD) of 2001. A series of landscape metrics is also used to quantify these changes and is included in this publication. In this region, natural gas and oil development disturbed approximately 5,255 hectares (ha) (conventional, 2,400 ha; Marcellus, 357 ha; and oil, 1,883 ha) of land of which 3,507 ha were forested land and 610 ha were agricultural land. Eighty percent of that total disturbance was from conventional natural gas and oil development.
Slonecker, E.T.; Milheim, L.E.; Roig-Silva, C.M.; Winters, S.G.
2014-01-01
Increased demands for cleaner burning energy, coupled with the relatively recent technological advances in accessing unconventional hydrocarbon-rich geologic formations, have led to an intense effort to find and extract natural gas from various underground sources around the country. One of these sources, the Marcellus Shale, located in the Allegheny Plateau, is currently undergoing extensive drilling and production. The technology used to extract gas in the Marcellus Shale is known as hydraulic fracturing and has garnered much attention because of its use of large amounts of fresh water, its use of proprietary fluids for the hydraulic-fracturing process, its potential to release contaminants into the environment, and its potential effect on water resources. Nonetheless, development of natural gas extraction wells in the Marcellus Shale is only part of the overall natural gas story in this area of Pennsylvania. Conventional natural gas wells, which sometimes use the same technique, are commonly located in the same general area as the Marcellus Shale and are frequently developed in clusters across the landscape. The combined effects of these two natural gas extraction methods create potentially serious patterns of disturbance on the landscape. This document quantifies the landscape changes and consequences of natural gas extraction for Bedford, Blair, Cambria, Centre, Clearfield, Clinton, Columbia, Huntingdon, and Luzerne Counties in Pennsylvania between 2004 and 2010. Patterns of landscape disturbance related to natural gas extraction activities were collected and digitized using National Agriculture Imagery Program (NAIP) imagery for 2004, 2005/2006, 2008, and 2010. The disturbance patterns were then used to measure changes in land cover and land use using the National Land Cover Database (NLCD) of 2001. A series of landscape metrics is also used to quantify these changes and is included in this publication. In this region, natural gas development disturbed approximately 943 hectares of land in which forest sustained three times the amount of disturbance as agricultural land. One-quarter of that total disturbance was from Marcellus natural gas development.
NASA Astrophysics Data System (ADS)
Joewondo, N.; Zhang, Y.; Prasad, M.
2016-12-01
Sequestration of carbon dioxide in shale has been a subject of interest as the result of the technological advancement in gas shale production. The process involves injection of CO2 to enhance methane recovery and storing CO2 in depleted shale reservoir at elevated pressures. To better understand both shale production and carbon storage one must study the physical phenomena acting at different scales that control the in situ fluid flow. Shale rocks are complex systems with heterogeneous structures and compositions. Pore structures of these systems are in nanometer scales and have significant gas storage capacity and surface area. Adsorption is prominent in nanometer sized pores due to the high attraction between gas molecules and the surface of the pores. Recent studies attempt to find correlation between storage capacity and the rock composition, particularly the clay content. This study, however, focuses on the study of supercritical adsorption of CO2 on pure clay sample. We have built an in-house manometric experimental setup that can be used to study both the equilibrium and kinetics of adsorption. The experiment is conducted at isothermal condition. The study of equilibrium of adsorption gives insight on the storage capacity of these systems, and the study of the kinetics of adsorption is essential in understanding the resistance to fluid transport. The diffusion coefficient, which can be estimated from the dynamic experimental results, is a parameter which quantify diffusion mobility, and is affected by many factors including pressure and temperature. The first part of this paper briefly discusses the study of both equilibrium and kinetics of the CO2 adsorption on illite. Both static and dynamic measurements on the system are compared to theoretical models available in the literature to estimate the storage capacity and the diffusion time constants. The main part of the paper discusses the effect of varying temperature on the static and dynamic experimental results.
Nanometer-Scale Pore Characteristics of Lacustrine Shale, Songliao Basin, NE China
Wang, Min; Yang, Jinxiu; Wang, Zhiwei; Lu, Shuangfang
2015-01-01
In shale, liquid hydrocarbons are accumulated mainly in nanometer-scale pores or fractures, so the pore types and PSDs (pore size distributions) play a major role in the shale oil occurrence (free or absorbed state), amount of oil, and flow features. The pore types and PSDs of marine shale have been well studied; however, research on lacustrine shale is rare, especially for shale in the oil generation window, although lacustrine shale is deposited widely around the world. To investigate the relationship between nanometer-scale pores and oil occurrence in the lacustrine shale, 10 lacustrine shale core samples from Songliao Basin, NE China were analyzed. Analyses of these samples included geochemical measurements, SEM (scanning electron microscope) observations, low pressure CO2 and N2 adsorption, and high-pressure mercury injection experiments. Analysis results indicate that: (1) Pore types in the lacustrine shale include inter-matrix pores, intergranular pores, organic matter pores, and dissolution pores, and these pores are dominated by mesopores and micropores; (2) There is no apparent correlation between pore volumes and clay content, however, a weak negative correlation is present between total pore volume and carbonate content; (3) Pores in lacustrine shale are well developed when the organic matter maturity (Ro) is >1.0% and the pore volume is positively correlated with the TOC (total organic carbon) content. The statistical results suggest that oil in lacustrine shale mainly occurs in pores with diameters larger than 40 nm. However, more research is needed to determine whether this minimum pore diameter for oil occurrence in lacustrine shale is widely applicable. PMID:26285123
Nanometer-Scale Pore Characteristics of Lacustrine Shale, Songliao Basin, NE China.
Wang, Min; Yang, Jinxiu; Wang, Zhiwei; Lu, Shuangfang
2015-01-01
In shale, liquid hydrocarbons are accumulated mainly in nanometer-scale pores or fractures, so the pore types and PSDs (pore size distributions) play a major role in the shale oil occurrence (free or absorbed state), amount of oil, and flow features. The pore types and PSDs of marine shale have been well studied; however, research on lacustrine shale is rare, especially for shale in the oil generation window, although lacustrine shale is deposited widely around the world. To investigate the relationship between nanometer-scale pores and oil occurrence in the lacustrine shale, 10 lacustrine shale core samples from Songliao Basin, NE China were analyzed. Analyses of these samples included geochemical measurements, SEM (scanning electron microscope) observations, low pressure CO2 and N2 adsorption, and high-pressure mercury injection experiments. Analysis results indicate that: (1) Pore types in the lacustrine shale include inter-matrix pores, intergranular pores, organic matter pores, and dissolution pores, and these pores are dominated by mesopores and micropores; (2) There is no apparent correlation between pore volumes and clay content, however, a weak negative correlation is present between total pore volume and carbonate content; (3) Pores in lacustrine shale are well developed when the organic matter maturity (Ro) is >1.0% and the pore volume is positively correlated with the TOC (total organic carbon) content. The statistical results suggest that oil in lacustrine shale mainly occurs in pores with diameters larger than 40 nm. However, more research is needed to determine whether this minimum pore diameter for oil occurrence in lacustrine shale is widely applicable.
Map of assessed shale gas in the United States, 2012
,; Biewick, Laura R. H.
2013-01-01
The U.S. Geological Survey has compiled a map of shale-gas assessments in the United States that were completed by 2012 as part of the National Assessment of Oil and Gas Project. Using a geology-based assessment methodology, the U.S. Geological Survey quantitatively estimated potential volumes of undiscovered gas within shale-gas assessment units. These shale-gas assessment units are mapped, and square-mile cells are shown to represent proprietary shale-gas wells. The square-mile cells include gas-producing wells from shale intervals. In some cases, shale-gas formations contain gas in deeper parts of a basin and oil at shallower depths (for example, the Woodford Shale and the Eagle Ford Shale). Because a discussion of shale oil is beyond the scope of this report, only shale-gas assessment units and cells are shown. The map can be printed as a hardcopy map or downloaded for interactive analysis in a Geographic Information System data package using the ArcGIS map document (file extension MXD) and published map file (file extension PMF). Also available is a publications access table with hyperlinks to current U.S. Geological Survey shale gas assessment publications and web pages. Assessment results and geologic reports are available as completed at the U.S. Geological Survey Energy Resources Program Web Site, http://energy.usgs.gov/OilGas/AssessmentsData/NationalOilGasAssessment.aspx. A historical perspective of shale gas activity in the United States is documented and presented in a video clip included as a PowerPoint slideshow.
1977-01-01
services . He is the integrated material manager for bulk petroleum products and performs contract administration overseas. The Chief of Naval Operations...technologies with other requirements ( health . safety, environmental protection, and economic regulation). Federal Energy Administration FEA was established in...Naval Oil Shale Reserve No. 3 (Colorado No. 2) ........... .. 5-4 5.3 Administration or the Reserves ........................... 5-4 5.4 Future Plans
Leventhal, J.S.
1991-01-01
In most black shales, such as the Chattanooga Shale and related shales of the eastern interior United States, increased metal and metalloid contents are generally related to increased organic carbon content, decreased sedimentation rate, organic matter type, or position in the basin. In areas where the stratigraphic equivalents of the Chattanooga Shale are deeply buried and and the organic material is thermally mature, metal contents are essentially the same as in unheated areas and correlate with organic C or S contents. This paradigm does not hold for the Cambrian Alum Shale Formation of Sweden where increased metal content does not necessarily correlate with organic matter content nor is metal enrichment necessarily related to land derived humic material because this organic matter is all of marine source. In southcentral Sweden the elements U, Mo, V, Ni, Zn, Cd and Pb are all enriched relative to average black shales but only U and Mo correlate to organic matter content. Tectonically disturbed and metamorphosed allochthonous samples of Alum Shale on the Caledonian front in western Sweden have even higher amounts for some metals (V, Ni, Zn and Ba) relative to the autochthonous shales in this area and those in southern Sweden. ?? 1991 Springer-Verlag.
Shale gas development impacts on surface water quality in Pennsylvania.
Olmstead, Sheila M; Muehlenbachs, Lucija A; Shih, Jhih-Shyang; Chu, Ziyan; Krupnick, Alan J
2013-03-26
Concern has been raised in the scientific literature about the environmental implications of extracting natural gas from deep shale formations, and published studies suggest that shale gas development may affect local groundwater quality. The potential for surface water quality degradation has been discussed in prior work, although no empirical analysis of this issue has been published. The potential for large-scale surface water quality degradation has affected regulatory approaches to shale gas development in some US states, despite the dearth of evidence. This paper conducts a large-scale examination of the extent to which shale gas development activities affect surface water quality. Focusing on the Marcellus Shale in Pennsylvania, we estimate the effect of shale gas wells and the release of treated shale gas waste by permitted treatment facilities on observed downstream concentrations of chloride (Cl(-)) and total suspended solids (TSS), controlling for other factors. Results suggest that (i) the treatment of shale gas waste by treatment plants in a watershed raises downstream Cl(-) concentrations but not TSS concentrations, and (ii) the presence of shale gas wells in a watershed raises downstream TSS concentrations but not Cl(-) concentrations. These results can inform future voluntary measures taken by shale gas operators and policy approaches taken by regulators to protect surface water quality as the scale of this economically important activity increases.
NASA Astrophysics Data System (ADS)
Loveless, Sian E.; Bloomfield, John P.; Ward, Robert S.; Hart, Alwyn J.; Davey, Ian R.; Lewis, Melinda A.
2018-03-01
Shale gas is considered by many to have the potential to provide the UK with greater energy security, economic growth and jobs. However, development of a shale gas industry is highly contentious due to environmental concerns including the risk of groundwater pollution. Evidence suggests that the vertical separation between exploited shale units and aquifers is an important factor in the risk to groundwater from shale gas exploitation. A methodology is presented to assess the vertical separation between different pairs of aquifers and shales that are present across England and Wales. The application of the method is then demonstrated for two of these pairs—the Cretaceous Chalk Group aquifer and the Upper Jurassic Kimmeridge Clay Formation, and the Triassic sandstone aquifer and the Carboniferous Bowland Shale Formation. Challenges in defining what might be considered criteria for `safe separation' between a shale gas formation and an overlying aquifer are discussed, in particular with respect to uncertainties in geological properties, aquifer extents and determination of socially acceptable risk levels. Modelled vertical separations suggest that the risk of aquifer contamination from shale exploration will vary greatly between shale-aquifer pairs and between regions and this will need to be considered carefully as part of the risk assessment and management for any shale gas development.
Sedimentary provenance of Maastrichtian oil shales, Central Eastern Desert, Egypt
NASA Astrophysics Data System (ADS)
Fathy, Douaa; Wagreich, Michael; Mohamed, Ramadan S.; Zaki, Rafat
2017-04-01
Maastrichtian oil shales are distributed within the Central Eastern Desert in Egypt. In this study elemental geochemical data have been applied to investigate the probable provenance of the sedimentary detrital material of the Maastrichtian oil shale beds within the Duwi and the Dakhla formations. The Maastrichtian oil shales are characterized by the enrichment in Ca, P, Mo, Ni, Zn, U, Cr and Sr versus post-Archean Australian shales (PAAS). The chondrite-normalized patterns of the Maastrichtian oil shale samples are showing LREE enrichment, HREE depletion, slightly negative Eu anomaly, no obvious Ce anomaly and typical shale-like PAAS-normalized patterns. The total REE well correlated with Si, Al, Fe, K and Ti, suggesting that the REE of the Maastrichtian oil shales are derived from terrigenous source. Chemical weathering indices such as Chemical Index of Alteration (CIA), Chemical Proxy of Alteration (CPA) and Plagioclase Index of Alteration (PIA) indicate moderate to strong chemical weathering. We suggest that the Maastrichtian oil shale is mainly derived from first cycle rocks especially intermediate rocks without any significant inputs from recycled or mature sources. The proposed data illustrated the impact of the parent material composition on evolution of oil shale chemistry. Furthermore, the paleo-tectonic setting of the detrital source rocks for the Maastrichtian oil shale is probably related to Proterozoic continental island arcs
NASA Astrophysics Data System (ADS)
Wang, Y.; Ji, J.; Li, M.
2017-12-01
CO2 enhanced shale gas recovery has proved to be one of the most efficient methods to extract shale gas, and represent a mutually beneficial approach to mitigate greenhouse gas emission into the atmosphere. During the processes of most CO2 enhanced shale gas recovery, liquid CO2 is injected into reservoirs, fracturing the shale, making competitive adsorption with shale gas and displacing the shale gas at multi-scale to the production well. Hydraulic and mechanical coupling actions between the shale and fluid media are expected to play important roles in affecting fracture propagation, CO2 adsorption and shale gas desorption, multi-scale fluid flow, plume development, and CO2 storage. In this study, four reservoir shale samples were selected to carry out triaxial compression experiments of complete strain-stress and post failure tests. Two fluid media, CO2 and N2, were used to flow through the samples and produce the pore pressure. All of the above four compression experiments were conducted under the same confining and pore pressures, and loaded the axial pressure with the same loading path. Permeability, strain-stress, and pore volumetric change were measured and recorded over time. The results show that, compared to N2, CO2 appeared to lower the peak strength and elastic modulus of shale samples, and increase the permeability up two to six orders of magnitudes after the sample failure. Furthermore, the shale samples were dilated by CO2 much more than N2, and retained the volume of CO2 2.6 times more than N2. Results from this study indicate that the CO2 can embrittle the shale formation so as to form fracture net easily to enhance the shale gas recovery. Meanwhile, part of the remaining CO2 might be adsorbed on the surface of shale matrix and the rest of the CO2 be in the pore and fracture spaces, implying that CO2 can be effectively geo-stored in the shale formation.
21 CFR 113.40 - Equipment and procedures.
Code of Federal Regulations, 2011 CFR
2011-04-01
... ensure a supply of clean, dry air. (3) Pressure gages. Each retort should be equipped with a pressure... should have adequate filter systems to ensure a supply of clean, dry air. (3) Pressure gages. (i) Each... controllers should have adequate filter systems to ensure a supply of clean, dry air. (3) Pressure gages. Each...
Retort to Religious Critics of RET.
ERIC Educational Resources Information Center
Nardi, Thomas J.
This paper is concerned with people who contact clergymen for counseling who could benefit from the short-term directive therapeutic approach of Rational Emotive Therapy (RET) and the reluctance of clergymen to use RET. The integration of the precepts of Christianity and the concepts of RET is considered. This paper is specifically a response to…
9 CFR 318.305 - Equipment and procedures for heat processing systems.
Code of Federal Regulations, 2011 CFR
2011-01-01
... ensure a supply of clean, dry air. The recorder timing mechanism shall be accurate. (i) Chart-type... filter systems to ensure a supply of clean, dry air. (ii) Pressure recording device. Each retort shall be... section. (2) Cooling canal water shall be chlorinated or treated with a chemical approved by the...
9 CFR 381.305 - Equipment and procedures for heat processing systems.
Code of Federal Regulations, 2011 CFR
2011-01-01
... supply of clean, dry air. The recorder timing mechanism shall be accurate. (i) Chart-type devices... filter systems to ensure a supply of clean, dry air. (ii) Pressure recording device. Each retort shall be... cooling except as provided for in paragraphs (h) (2) and (3) of this section. (2) Cooling canal water...
Shale Gas and Tight Oil: A Panacea for the Energy Woes of America?
NASA Astrophysics Data System (ADS)
Hughes, J. D.
2012-12-01
Shale gas has been heralded as a "game changer" in the struggle to meet America's demand for energy. The "Pickens Plan" of Texas oil and gas pioneer T.Boone Pickens suggests that gas can replace coal for much of U.S. electricity generation, and oil for, at least, truck transportation1. Industry lobby groups such as ANGA declare "that the dream of clean, abundant, home grown energy is now reality"2. In Canada, politicians in British Columbia are racing to export the virtual bounty of shale gas via LNG to Asia (despite the fact that Canadian gas production is down 16 percent from its 2001 peak). And the EIA has forecast that the U.S. will become a net exporter of gas by 20213. Similarly, recent reports from Citigroup and Harvard suggest that an oil glut is on the horizon thanks in part to the application of fracking technology to formerly inaccessible low permeability tight oil plays. The fundamentals of well costs and declines belie this optimism. Shale gas is expensive gas. In the early days it was declared that "continuous plays" like shale gas were "manufacturing operations", and that geology didn't matter. One could drill a well anywhere, it was suggested, and expect consistent production. Unfortunately, Mother Nature always has the last word, and inevitably the vast expanses of purported potential shale gas resources contracted to "core" areas, where geological conditions were optimal. The cost to produce shale gas ranges from 4.00 per thousand cubic feet (mcf) to 10.00, depending on the play. Natural gas production is a story about declines which now amount to 32% per year in the U.S. So 22 billion cubic feet per day of production now has to be replaced each year to keep overall production flat. At current prices of 2.50/mcf, industry is short about 50 billion per year in cash flow to make this happen4. As a result I expect falling production and rising prices in the near to medium term. Similarly, tight oil plays in North Dakota and Texas have been heralded as a new "Saudi Arabia" of oil. Growth in production has been spectacular, but currently amounts to just one million barrels per day which is less than 15 percent of US oil and other liquids production. Tight oil is offsetting declines in conventional crude oil production as well as contributing to a modest production increase from the 40-year US crude oil production low of 2008. The mantra that natural gas is a "transition fuel" to a low carbon future is false. The environmental costs of shale gas extraction have been documented in legions of anecdotal and scientific reports. Methane and fracture fluid contamination of groundwater, induced seismicity from fracture water injection, industrialized landscapes and air emissions, and the fact that near term emissions from shale gas generation of electricity are worse than coal. Tight oil also comes with environmental costs but has been a saviour in that it at least temporarily arrested a terminal decline in US oil production. A sane energy security strategy for America must focus on radically reducing energy consumption through investments in infrastructure that provides alternatives to our current high energy throughput. Shale gas and tight oil will be an important contributors to future energy requirements, given that other gas and oil sources are declining, but there is no free lunch.
NASA Astrophysics Data System (ADS)
Miki, T.; Kiyokawa, S.; Ito, T.; Yamaguchi, K. E.; Ikehara, M.
2014-12-01
DXCL project was targeted for 3.2-3.1 Ga hydrothermal chert-black shale (Dixon Island Formation) and black shale-banded iron formation (Cleaverville Formation). CL3 core (200m long) was drilled from 1) upper part of Black Shale Member (35m thick) to 2) lower part of BIF Member (165m thick) of the Cleaverville Formation. Here, the BIF Member can be divided into three submembers; Greenish shale-siderite (50m thick), Magnetite-siderite (55m thick) and Black shale-siderite (60m) submembers. In this study, we used bulk samples and samples treated by hot hydrochloric acid in order to extract organic carbon. The Black shale Member consists of black carbonaceous matter and fine grain quartz (< 100μm). Organic carbon content (Corg) of black shale is 1.2% in average and organic carbon isotope ratio (δ13Corg) is -31.4 to -28.7‰. On the other hand, inorganic carbon isotope ratio of siderite (δ13Ccarb) was -5.2 to +12.6‰. In the BIF Member, the Greenish shale-siderite submember is composed of well laminated greenish sideritic shale and white chert (<7mm thick), which is gradually increase from black shale of the Black shale Member through about 10m. Magnetite-siderite submember contains very fine magnetite lamination with inter-bedded greenish sideritic shale and siderite lamination. Hematite is identified near fractured part. The Black shale-siderite submember is composed of black shale, siderite and chert bands. 1) Siderite layers of these three submembers showedδ13Ccarb value of -14.6 to -3.8‰. Corg and δ13Corg content are 0.2% and -18.3 to -0.3‰. 2) Siderite grains within greenish sideritic shales showedδ13Ccarb value of -12.9 to +15.0‰. 3) Black shale of Corg and δ13Corg content in the BIF Member are 0.1% and -36.3 to -17.1‰ respectively. We found great difference in values of δ13Ccarb of siderite. One is Corg-rich shale (up to +15.0‰) and the other is Corg-poor siderite layers (up to -3.8‰). The lighter value of siderite layers may be originated from precursor organic carbon which is strongly affected by biological activity.
NASA Astrophysics Data System (ADS)
Cheng, Yong; Zhang, Yu; Wen, Yiming
2018-02-01
The microscopic pore structure is the key of the shale reservoir study; however, traditional Scanning Electron Microscopy (SEM) methods cannot identify the irregular morphology caused by mechanical polishing. In this work, Scanning Electron Microscopy combined argon ion polishing technology was taken to study the characteristics of shale reservoir pores of Member 1 of Shahejie Formation (E3s1) located in JX1-1 area of Liaozhong Sag. The results show that pores between clay platelets, intraplatelet pores within clay aggregates and organic-matter pores are very rich in the area and with good pore connectivity, so these types of pores are of great significance for oil-gas exporation. Pores between clay platelets are formed by directional or semi-directional contact between edge and surface, edge and edge or surface and surface of laminated clay minerals, whose shapes are linear, mesh, and irregular with the size of 500 nm to 5 μm. The intraplatelet pores within clay aggregates are formed in the process of the transformation and compaction of clay minerals, whose shapes are usually linear with the width of 30 to 500 nm and the length of 2 to 50 μm. The organic-matter pores are from the process of the conversion from organic matters to the hydrocarbon under thermal evolution, whose shapes are gneissic, irregular, pitted and elliptical with the size of 100 nm to 2 μm. This study is of certain guiding significance to selecting target zones, evaluating resource potential and exploring & developing of shale gas in this region.
Fishman, N.S.; Bereskin, S.R.; Bowker, K.A.; Cardott, B.J.; Chidsey, T.C.; Dubiel, R.F.; Enomoto, C.B.; Harrison, W.B.; Jarvie, D.M.; Jenkins, C.L.; LeFever, J.A.; Li, Peng; McCracken, J.N.; Morgan, C.D.; Nordeng, S.H.; Nyahay, R.E.; Schamel, Steven; Sumner, R.L.; Wray, L.L.
2011-01-01
The production of natural gas from shales continues to increase in North America, and shale gas exploration is on the rise in other parts of the world since the previous report by this committee was published by American Association of Petroleum Geologists, Energy Minerals Division (2009). For the United States, the volume of proved reserves of natural gas increased 11% from 2008 to 2009, the increase driven largely by shale gas development (Energy Information Administration 2010c). Furthermore, shales have increasingly become targets of exploration for oil and condensate as well as gas, which has served to greatly expand their significance as ‘‘unconventional’’ petroleum reservoirs.This report provides information about specific shales across North America and Europe from which gas (biogenic or thermogenic), oil, or natural gas liquids are produced or is actively being explored. The intent is to reflect the recently expanded mission of the Energy Minerals Division (EMD) Gas Shales Committee to serve as a single point of access to technical information on shales regardless of the type of hydrocarbon produced from them. The contents of this report were drawn largely from contributions by numerous members of the EMD Gas Shales Advisory Committee, with much of the data being available from public websites such as state or provincial geological surveys or other public institutions. Shales from which gas or oil is being produced in the United States are listed in alphabetical order by shale name. Information for Canada is presented by province, whereas for Europe, it is presented by country.
Current knowledge and potential applications of cavitation technologies for the petroleum industry.
Avvaru, Balasubrahmanyam; Venkateswaran, Natarajan; Uppara, Parasuveera; Iyengar, Suresh B; Katti, Sanjeev S
2018-04-01
Technologies based on cavitation, produced by either ultrasound or hydrodynamic means, are part of growing literature for individual refinery unit processes. In this review, we have explained the mechanism through which these cavitation technologies intensify individual unit processes such as enhanced oil recovery, demulsification of water in oil emulsions during desalting stage, crude oil viscosity reduction, oxidative desulphurisation/demetallization, and crude oil upgrading. Apart from these refinery processes, applications of this technology are also mentioned for other potential crude oil sources such as oil shale and oil sand extraction. The relative advantages and current situation of each application/process at commercial scale is explained. Copyright © 2017 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Li, Jijun; Liu, Zhao; Li, Junqian; Lu, Shuangfang; Zhang, Tongqian; Zhang, Xinwen; Yu, Zhiyuan; Huang, Kaizhan; Shen, Bojian; Ma, Yan; Liu, Jiewen
Samples from seven major exploration wells in Biyang Depression of Henan Oilfield were compared using low-temperature nitrogen adsorption and shale oil adsorption experiments. Comprehensive analysis of pore development, oiliness and shale oil flowability was conducted by combining fractal dimension. The results show that the fractal dimension of shale in Biyang Depression of Henan Oilfield was negatively correlated with the average pore size and positively correlated with the specific surface area. Compared with the large pore, the small pore has great fractal dimension, indicating the pore structure is more complicated. Using S1 and chloroform bitumen A to evaluate the relationship between shale oiliness and pore structure, it was found that the more heterogeneous the shale pore structure, the higher the complexity and the poorer the oiliness. Clay minerals are the main carriers involved in crude oil adsorption, affecting the mobility of shale oil. When the pore complexity of shale was high, the content of micro- and mesopores was high, and the high specific surface area could enhance the adsorption and reduce the mobility of shale oil.
The Description of Shale Reservoir Pore Structure Based on Method of Moments Estimation
Li, Wenjie; Wang, Changcheng; Shi, Zejin; Wei, Yi; Zhou, Huailai; Deng, Kun
2016-01-01
Shale has been considered as good gas reservoir due to its abundant interior nanoscale pores. Thus, the study of the pore structure of shale is of great significance for the evaluation and development of shale oil and gas. To date, the most widely used approaches for studying the shale pore structure include image analysis, radiation and fluid invasion methods. The detailed pore structures can be studied intuitively by image analysis and radiation methods, but the results obtained are quite sensitive to sample preparation, equipment performance and experimental operation. In contrast, the fluid invasion method can be used to obtain information on pore size distribution and pore structure, but the relative simple parameters derived cannot be used to evaluate the pore structure of shale comprehensively and quantitatively. To characterize the nanoscale pore structure of shale reservoir more effectively and expand the current research techniques, we proposed a new method based on gas adsorption experimental data and the method of moments to describe the pore structure parameters of shale reservoir. Combined with the geological mixture empirical distribution and the method of moments estimation principle, the new method calculates the characteristic parameters of shale, including the mean pore size (x¯), standard deviation (σ), skewness (Sk) and variation coefficient (c). These values are found by reconstructing the grouping intervals of observation values and optimizing algorithms for eigenvalues. This approach assures a more effective description of the characteristics of nanoscale pore structures. Finally, the new method has been applied to analyze the Yanchang shale in the Ordos Basin (China) and Longmaxi shale from the Sichuan Basin (China). The results obtained well reveal the pore characteristics of shale, indicating the feasibility of this new method in the study of the pore structure of shale reservoir. PMID:26992168
The Description of Shale Reservoir Pore Structure Based on Method of Moments Estimation.
Li, Wenjie; Wang, Changcheng; Shi, Zejin; Wei, Yi; Zhou, Huailai; Deng, Kun
2016-01-01
Shale has been considered as good gas reservoir due to its abundant interior nanoscale pores. Thus, the study of the pore structure of shale is of great significance for the evaluation and development of shale oil and gas. To date, the most widely used approaches for studying the shale pore structure include image analysis, radiation and fluid invasion methods. The detailed pore structures can be studied intuitively by image analysis and radiation methods, but the results obtained are quite sensitive to sample preparation, equipment performance and experimental operation. In contrast, the fluid invasion method can be used to obtain information on pore size distribution and pore structure, but the relative simple parameters derived cannot be used to evaluate the pore structure of shale comprehensively and quantitatively. To characterize the nanoscale pore structure of shale reservoir more effectively and expand the current research techniques, we proposed a new method based on gas adsorption experimental data and the method of moments to describe the pore structure parameters of shale reservoir. Combined with the geological mixture empirical distribution and the method of moments estimation principle, the new method calculates the characteristic parameters of shale, including the mean pore size (mean), standard deviation (σ), skewness (Sk) and variation coefficient (c). These values are found by reconstructing the grouping intervals of observation values and optimizing algorithms for eigenvalues. This approach assures a more effective description of the characteristics of nanoscale pore structures. Finally, the new method has been applied to analyze the Yanchang shale in the Ordos Basin (China) and Longmaxi shale from the Sichuan Basin (China). The results obtained well reveal the pore characteristics of shale, indicating the feasibility of this new method in the study of the pore structure of shale reservoir.
NASA Astrophysics Data System (ADS)
Zou, C.; Nie, X.; Qiao, L.; Pan, L.; Hou, S.
2013-12-01
The Longmaxi Shale in the Lower Silurian has been recognized as a favorable target of shale gas exploration in Sichuan basin, China. One important feature of shale gas reservoirs is of high total organic carbon (TOC). Many studies have shown that the spectral gamma-ray measurements are positively correlated to the TOC contents. In this study, the spectral gamma ray responses of five shale outcrop profiles are measured in Chongqing and its adjacent areas, Sichuan basin. Three of the five profiles are located in Qijiang, Qianjiang and Changning in Chongqing, and the other two are located in Qilong and Houtan in Guizhou. The main lithologies of the profiles include mainly black shale, gray shale and silty shale. The spectral gamma-ray measurements provide the contents of potassium (K), uranium (U), and thorium (Th). The result of the five profiles shows that the K and Th contents of gray shale are close to the ones of black shale, while the U contents in the black shale are significantly higher than that in the other rocks. The TOC contents are estimated by using the outcrop-based measurements with an empirical formula. The result shows that the TOC contents are the highest in black shale of Changning profile. It indicates that there is a most promising exploration potential for shale gas in this area. In the future, the outcrop data will be used to construct detailed lithofacies profiles and establish relationships between lithofacies both in outcrop and the subsurface gamma-ray logs. Acknowledgment: We acknowledge the financial support of the National Natural Science Foundation of China (41274185) and the Fundamental Research Funds for the Central Universities.
Unconventional energy resources: 2007-2008 review
Warwick, Peter D.; ,
2009-01-01
This paper summarizes five 2007–2008 resource commodity committee reports prepared by the Energy Minerals Division (EMD) of the American Association of Petroleum Geologists. Current United States and global research and development activities related to gas hydrates, gas shales, geothermal resources, oil sands, and uranium resources are included in this review. These commodity reports were written to advise EMD leadership and membership of the current status of research and development of unconventional energy resources. Unconventional energy resources are defined as those resources other than conventional oil and natural gas that typically occur in sandstone and carbonate rocks. Gas hydrate resources are potentially enormous; however, production technologies are still under development. Gas shale, geothermal, oil sand, and uranium resources are now increasing targets of exploration and development, and are rapidly becoming important energy resources that will continue to be developed in the future.
Grubert, Emily
2016-01-22
Hopke and Simis (Public Understanding of Science, online 4 October 2015) find that #fracking, the most popular of five shale-related hashtags analyzed from a 2013 period, is associated with pro-shale attitudes only 13% of the time and note that the dominant voice of the activist community, coupled with a lack of engagement from industry, is unexpected. This comment offers additional perspective on the sentiment- and actor-skewed result by noting that the term "fracking" is highly political, specifically because the spelling "frack" versus "frac" is associated with activism. Furthermore, in public speech, the industry tends to deemphasize the hydraulic fracturing process in favor of the product, consistent with the findings that #natgas is a relatively pro-industry hashtag. © The Author(s) 2016.
Study of Cetane Properties of ATJ Blends Based on World Survey of Jet Fuels
2016-01-28
49.84 N/A N/A N/A 46.92 N/A N/A N/A 12 (100% Syn.) 1 57.79 N/A N/A N/A 53.48 N/A N/A N/A a - Conventional petroleum based jet fuel; b - Oil Shale ...Australia (% Nitrogen content unknown) c - Oil Shale , Australia (Low Nitrogen); d - Oil Shale , Australia (High Nitrogen) U/A – Unavailable in PQIS...fuel b - Oil Shale , Australia (% Nitrogen content unknown) c - Oil Shale , Australia (Low Nitrogen) d - Oil Shale , Australia (High Nitrogen) U/A
NASA Astrophysics Data System (ADS)
You, L.; Chen, Q.; Kang, Y.; Cheng, Q.; Sheng, J.
2017-12-01
Black shales contain a large amount of environment-sensitive compositions, e.g., clay minerals, carbonate, siderite, pyrite, and organic matter. There have been numerous studies on the black shales compositional and pore structure changes caused by oxic environments. However, most of the studies did not focus on their ability to facilitate shale fracturing. To test the redox-sensitive aspects of shale fracturing and its potentially favorable effects on hydraulic fracturing in shale gas reservoirs, the induced microfractures of Longmaxi black shales exposed to deionized water, hydrochloric acid, and hydrogen peroxide at room-temperature for 240 hours were imaged by scanning electron microscopy (SEM) and CT-scanning in this paper. Mineral composition, acoustic emission, swelling, and zeta potential of the untreated and oxidative treatment shale samples were also recorded to decipher the coupled physical and chemical effects of oxidizing environments on shale fracturing processes. Results show that pervasive microfractures (Fig.1) with apertures ranging from tens of nanometers to tens of microns formed in response to oxidative dissolution by hydrogen peroxide, whereas no new microfracture was observed after the exposure to deionized water and hydrochloric acid. The trajectory of these oxidation-induced microfractures was controlled by the distribution of phyllosilicate framework and flaky or stringy organic matter in shale. The experiments reported in this paper indicate that black shales present the least resistance to crack initiation and subcritical slow propagation in hydrogen peroxide, a process we refer to as oxidation-sensitive fracturing, which are closely related to the expansive stress of clay minerals, dissolution of redox-sensitive compositions, destruction of phyllosilicate framework, and the much lower zeta potential of hydrogen peroxide solution-shale system. It could mean that the injection of fracturing water with strong oxidizing aqueous solution may play an important role in improving hydraulic fracturing of shale formation by reducing the energy requirements for crack growth. However, additional work is needed to the selection of highly-effective, economical, and environmentally friendly oxidants.
NASA Astrophysics Data System (ADS)
Ahmad, N. R.; Jamin, N. H.
2018-04-01
The research was inspired by series of geological studies on Semanggol formation found exposed at North Perak, South Kedah and North Kedah. The chert unit comprised interbedded chert-shale rocks are the main lithologies sampled in a small-scale outcrop of Pokok Sena area. Black shale materials were also observed associated with these sedimentary rocks. The well-known characteristics of shale that may swell when absorb water and leave shrinkage when dried make the formation weaker when load is applied on it. The presence of organic materials may worsen the condition apart from the other factors such as the history of geological processes and depositional environment. Thus, this research is important to find the preliminary relations of the geotechnical properties of soft rocks and the geological reasoning behind it. Series of basic soil tests and 1-D compression tests were carried out to obtain the soil parameters. The results obtained gave some preliminary insight to mechanical behaviour of these two samples. The black shale and weathered interbedded chert-shale were classified as sandy-clayey-SILT and clayey-silty-SAND respectively. The range of specific gravity of black shale and interbedded chert/shale 2.3 – 2.6 and fall in the common range of shale and chert specific gravity value. In terms of degree of plasticity, the interbedded chert/shale samples exhibit higher plastic degree compared to the black shale samples. Results from oedometer tests showed that black shale samples had higher overburden pressure (Pc) throughout its lifetime compare to weathered interbedded chert-shale, however the compression index (Cc) of black shale were 0.15 – 0.185 which was higher than that found in interbedded chert-shale. The geotechnical properties of these two samples were explained in correlation with their provenance and their history of geological processes involved which predominantly dictated the mechanical behaviour of these two samples.
Discussion on upper limit of maturity for marine shale gas accumulation
NASA Astrophysics Data System (ADS)
Huang, Jinliang; Dong, Dazhong; Zhang, Chenchen; Wang, Yuman; Li, Xinjing; Wang, Shufang
2017-04-01
The sedimentary formations of marine shale in China are widely distributed and are characterized by old age, early hydrocarbon-generation and high thermal evolution degree, strong tectonic deformation and reformation and poor preservation conditions. Therefore whether commercial shale gas reservoirs can be formed is a critical issue to be studied. The previous studies showed that the upper threshold of maturity (Ro%) for the gas generation of marine source rocks is 3.0%. Based on comparative studies of marine shale gas exploration practices at home and abroad and reservoir experimental analysis results, we proposed in this paper that the upper threshold of maturity (Ro%) for marine shale gas accumulation is 3.5%. And the main proofs are as follows: (1) There is still certain commercial production in the area with the higher than 3.0% in Marcellus and Woodford marine shale gas plays in North America; (2) The Ro of the Silurian Longmaxi shale in the Sichuan Basin in China is between 2.5% and 3.3%. However, the significant breakthrough has been made in shale gas exploration and the production exceeds 7 billion m3 in 2016; (3) The TOC of the Cambrian Qiongzhusi organic-rich shale in Changning Region in the Sichuan Basin ranges 2% to 7.1% and the Ro is greater than 3.5%. And the resistivity logging of organic-rich shale appears low-ultra low resistivity and inversion of Rt curve. It's suggested that the organic matters in Qiongzhusi organic-rich shale occurs partial carbonization which leads to stronger conductivity; (4) Thermal simulation experiments showed that the specific surface of shale increases with Ro. And the specific surface and adsorptive capacity both reach maximum when the Ro is 3.5%; (5) The analysis of physical properties and SEM images of shale reservoirs indicated that when Ro is higher than 3.5%, the dominant pores of Qiongzhusi shale are micro-pores while the organic pores are relatively poor-developed, and the average porosity is less than 2%.
Morbidity survey of US oil shale workers employed during 1948-1969
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rom, W.N.; Krueger, G.; Zone, J.
The health status of 325 oil shale workers employed at the Anvil Points, Colorado, demonstration facility from 1948 to 1969 was evaluated. As a comparison population, 323 Utah coal miners frequency matched for age were studied. The prevalence of respiratory symptoms among oil shale workers who smoked were similar to the coal miners who smoked, although nonsmoking oil shale workers had fewer symptoms compared to nonsmoking coal workers. Four cases of skin cancers were found on the oil shale workers and eight cases in the controls. Similar numbers of nevi, telangiectasiae, possible pitch warts, pigment changes (solar/senile lentigo), and papillomatamore » (seborrheic keratoses and skin tags) were seen in both groups, while actinic keratoses were more frequent in the oil shale workers. The prevalence of actinic keratoses was significantly associated with oil shale work after allowing for age, sun exposure, and other exposures. The prevalence of pulmonary cytology metaplasia was associated with years of production work in oil shale among both smokers and ex-smokers. More of the oil shale workers had atypical cells in the urine, but the excess mostly found among ex-smokers. Although these workers had short-term and limited oil shale exposure work exposure, the authors recommend that medical surveillance of oil shale workers consider the skin, respiratory, and urinary systems for special observation.« less
Duvernay shale lithofacies distribution analysis in the West Canadian Sedimentary Basin
NASA Astrophysics Data System (ADS)
Zhu, Houqin; Kong, Xiangwen; Long, Huashan; Huai, Yinchao
2018-02-01
In the West Canadian Sedimentary Basin (WCSB), Duvernay shale is considered to contribute most of the Canadian shale gas reserve and production. According to global shale gas exploration and development practice, reservoir property and well completion quality are the two key factors determining the shale gas economics. The two key factors are strongly depending on shale lithofacies. On the basis of inorganic mineralogy theory, all available thin section, X-ray diffraction, scanning electron microscope (SEM), energy dispersive spectrometer (EDS) data were used to assist lithofacies analysis. Gamma ray (GR), acoustic (AC), bulk density (RHOB), neutron porosity (NPHI) and photoelectric absorption cross-section index (PE) were selected for log response analysis of various minerals. Reservoir representative equation was created constrained by quantitative core analysis results, and matrix mineral percentage of quartz, carbonate, feldspar and pyrite were calculated to classify shale lithofacies. Considering the horizontal continuity of seismic data, rock physics model was built, and acoustic impedance integrated with core data and log data was used to predict the horizontal distribution of different lithofacies. The results indicate that: (1) nine lithofacies can be categorized in Duvernay shale, (2) the horizontal distribution of different lithofacies is quite diversified, siliceous shale mainly occurs in Simonette area, calcareous shale is prone to develop in the vicinity of reef, while calcareous-siliceous shale dominates in Willesdon Green area.
Shale gas development impacts on surface water quality in Pennsylvania
Olmstead, Sheila M.; Muehlenbachs, Lucija A.; Shih, Jhih-Shyang; Chu, Ziyan; Krupnick, Alan J.
2013-01-01
Concern has been raised in the scientific literature about the environmental implications of extracting natural gas from deep shale formations, and published studies suggest that shale gas development may affect local groundwater quality. The potential for surface water quality degradation has been discussed in prior work, although no empirical analysis of this issue has been published. The potential for large-scale surface water quality degradation has affected regulatory approaches to shale gas development in some US states, despite the dearth of evidence. This paper conducts a large-scale examination of the extent to which shale gas development activities affect surface water quality. Focusing on the Marcellus Shale in Pennsylvania, we estimate the effect of shale gas wells and the release of treated shale gas waste by permitted treatment facilities on observed downstream concentrations of chloride (Cl−) and total suspended solids (TSS), controlling for other factors. Results suggest that (i) the treatment of shale gas waste by treatment plants in a watershed raises downstream Cl− concentrations but not TSS concentrations, and (ii) the presence of shale gas wells in a watershed raises downstream TSS concentrations but not Cl− concentrations. These results can inform future voluntary measures taken by shale gas operators and policy approaches taken by regulators to protect surface water quality as the scale of this economically important activity increases. PMID:23479604
Subsurface stratigraphy of upper Devonian clastics in southern West Virginia
DOE Office of Scientific and Technical Information (OSTI.GOV)
Neal, D.W.; Patchen, D.G.
Studies of upper Devonian shales and siltstones in southern West Virginia have resulted in a refinement of the stratigraphic framework used in characterizing the gas-producing Devonian shales. Gamma-ray log correlation around the periphery of the Appalachian Basin has extended the usage of New York stratigraphic nomenclature for the interval between the base of the Dunkirk shale and the top of the Tully limestone to southern West Virginia. Equivalents of the Dunkirk shale and younger rocks of New York are recognized in southwestern West Virginia and are named according to Ohio usage. Gas production is primarily from the basal black shalemore » member of the Ohio shale. Gas shows from older black shale units (Rhinestreet and Marcellus shales) are recorded from wells east of the major producing trend. Provided suitable stimulation techniques can be developed, these older and deeper black shales may prove to be another potential gas resource.« less
Wilke, Franziska D H; Schettler, Georg; Vieth-Hillebrand, Andrea; Kühn, Michael; Rothe, Heike
2018-05-18
The production of gas from unconventional resources became an important position in the world energy economics. In 2012, the European Commission's Joint Research Centre estimate 16 trillion cubic meters (Tcm) of technically recoverable shale gas in Europe. Taking into account that the exploitation of unconventional gas can be accompanied by serious health risks due to the release of toxic chemical components and natural occurring radionuclides into the return flow water and their near-surface accumulation in secondary precipitates, we investigated the release of U, Th and Ra from black shales by interaction with drilling fluids containing additives that are commonly employed for shale gas exploitation. We performed leaching tests at elevated temperatures and pressures with an Alum black shale from Bornholm, Denmark and a Posidonia black shale from Lower Saxony, Germany. The Alum shale is a carbonate free black shale with pyrite and barite, containing 74.4 μg/g U. The Posidonia shales is a calcareous shale with pyrite but without detectable amounts of barite containing 3.6 μg/g U. Pyrite oxidized during the tests forming sulfuric acid which lowered the pH on values between 2 and 3 of the extraction fluid from the Alum shale favoring a release of U from the Alum shale to the fluid during the short-term and in the beginning of the long-term experiments. The activity concentration of 238 U is as high as 23.9 mBq/ml in the fluid for those experiments. The release of U and Th into the fluid is almost independent of pressure. The amount of uranium in the European shales is similar to that of the Marcellus Shale in the United States but the daughter product of 238 U, the 226 Ra activity concentrations in the experimentally derived leachates from the European shales are quite low in comparison to that found in industrially derived flowback fluids from the Marcellus shale. This difference could mainly be due to missing Cl in the reaction fluid used in our experiments and a lower fluid to solid ratio in the industrial plays than in the experiments due to subsequent fracking and minute cracks from which Ra can easily be released. Copyright © 2018 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Brantley, S.; Pollak, J.
2016-12-01
The Shale Network's extensive database of water quality observations in the Marcellus Shale region enables educational experiences about the potential impacts of resource extraction and energy production with real data. Through tools that are open source and free to use, interested parties can access and analyze the very same data that the Shale Network team has used in peer-reviewed publications about the potential impacts of hydraulic fracturing on water. The development of the Shale Network database has been made possible through efforts led by an academic team and involving numerous individuals from government agencies, citizen science organizations, and private industry. With these tools and data, the Shale Network team has engaged high school students, university undergraduate and graduate students, as well as citizens so that all can discover how energy production impacts the Marcellus Shale region, which includes Pennsylvania and other nearby states. This presentation will describe these data tools, how the Shale Network has used them in educational settings, and the resources available to learn more.
Technologies for Decreasing Mining Losses
NASA Astrophysics Data System (ADS)
Valgma, Ingo; Väizene, Vivika; Kolats, Margit; Saarnak, Martin
2013-12-01
In case of stratified deposits like oil shale deposit in Estonia, mining losses depend on mining technologies. Current research focuses on extraction and separation possibilities of mineral resources. Selective mining, selective crushing and separation tests have been performed, showing possibilities of decreasing mining losses. Rock crushing and screening process simulations were used for optimizing rock fractions. In addition mine backfilling, fine separation, and optimized drilling and blasting have been analyzed. All tested methods show potential and depend on mineral usage. Usage in addition depends on the utilization technology. The questions like stability of the material flow and influences of the quality fluctuations to the final yield are raised.
Establishing effective sentinels - Setting the baseline for shale gas
NASA Astrophysics Data System (ADS)
Ward, C.; Worrall, F.
2017-12-01
The UK has a nascent shale gas industry and, unlike the US we have the opportunity to establish structures both physical and regulatory to reassure the public that any impact of a developing shale gas will be .properly licensed, regulated, monitored and, if necessary, mitigated. To assess and indeed demonstrate an impact of any activity, let alone those of shale gas exploitation, it is necessary to show, within a reasonable level of certainty, that the industry has changed a environmental state over and above that which was true without the activity present. The need for demonstrating impact not only means that a baseline needs to be established but that the baseline needs to be robustly established within a statistical and probabilistic framework so that certainty of impact can be demonstrated. A number of technologies have been proposed for monitoring the water quality impacts of shale gas developments, however, to be an effective and robust sentinel of change the parameter should have several properties: it should be a lead indicator and not a lag indicator of change; it should have a high contrast with the normal or background activity; it should show a high specificity for the activity of concern and not be associated with other activities; and it should readily deployed in time and space. By far the greatest difference between the waters arising from a shale gas well pad and surface waters is nothing more than salinity or its associated determinds. The salinity of flowback water and deep formation water can be many times greater than seawater let alone greater than the salinity of most UK surface waters. Therefore, we have built a probabilistic model of the salinity of English surface waters. We have developed a generalised linear model of the existing salinity data available for English surface waters. Generalised linear modelling means that we can use all the existing data, the approach is entirely data driven; it does not require parameterisation; and can include existing factorial and covariate information. The model was developed in a Bayesian hierarchical framework. The model creates a dynamic baseline against which it is possible to assess whether an observation is within that expected for that river under those temporal and hydroclimatic conditions. The model is tested for the Vale of Pickering gasfield.
Combustion heater for oil shale
Mallon, R.; Walton, O.; Lewis, A.E.; Braun, R.
1983-09-21
A combustion heater for oil shale heats particles of spent oil shale containing unburned char by burning the char. A delayed fall is produced by flowing the shale particles down through a stack of downwardly sloped overlapping baffles alternately extending from opposite sides of a vertical column. The delayed fall and flow reversal occurring in passing from each baffle to the next increase the residence time and increase the contact of the oil shale particles with combustion supporting gas flowed across the column to heat the shale to about 650 to 700/sup 0/C for use as a process heat source.
Combustion heater for oil shale
Mallon, Richard G.; Walton, Otis R.; Lewis, Arthur E.; Braun, Robert L.
1985-01-01
A combustion heater for oil shale heats particles of spent oil shale containing unburned char by burning the char. A delayed fall is produced by flowing the shale particles down through a stack of downwardly sloped overlapping baffles alternately extending from opposite sides of a vertical column. The delayed fall and flow reversal occurring in passing from each baffle to the next increase the residence time and increase the contact of the oil shale particles with combustion supporting gas flowed across the column to heat the shale to about 650.degree.-700.degree. C. for use as a process heat source.
Eastern Devonian shales: Organic geochemical studies, past and present
Breger, I.A.; Hatcher, P.G.; Romankiw, L.A.; Miknis, F.P.
1983-01-01
The Eastern Devonian shales are represented by a sequence of sediments extending from New York state, south to the northern regions of Georgia and Alabama, and west into Ohio and to the Michigan and Ilinois Basins. Correlatives are known in Texas. The shale is regionally known by a number of names: Chattanooga, Dunkirk, Rhinestreet, Huron, Antrim, Ohio, Woodford, etc. These shales, other than those in Texas, have elicited much interest because they have been a source of unassociated natural gas. It is of particular interest, however, that most of these shales have no associated crude oil, in spite of the fact that they have some of the characteristics normally attributed to source beds. This paper addresses some of the organic geochemical aspects of the kerogen in these shales, in relation to their oil generating potential. Past organic geochemical studies on Eastern Devonian shales will be reviewed. Recent solid state 13C NMR studies on the nature of the organic matter in Eastern Devonian shales show that Eastern Devonian shales contain a larger fraction of aromatic carbon in their chemical composition. Thus, despite their high organic matter contents, their potential as a petroleum source rock is low, because the kerogen in these shales is of a "coaly" nature and hence more prone to producing natural gas.
Eastern Devonian shales: Organic geochemical studies
DOE Office of Scientific and Technical Information (OSTI.GOV)
Berger, I.A.; Hatchner, P.G.; Miknis, F.P.
The Eastern Devonian shales are represented by a sequence of sediments extending from New York state, south to the northern regions of Georgia and Alabama, and west into Ohio and to the Michigan and Illinois Basins. Correlatives are known in Texas. The shale is regionally known by a number of names: Chattanooga, Dunkirk, Rhinestreet, Huron, Antrim, Ohio, Woodford, etc. These shales, other than those in Texas, have elicited much interest because they have been a source of unassociated natural gas. It is of particular interest, however, that most of these shales have no associated crude oil, in spite of themore » fact that they have some of the characteristics normally attributed to source beds. This paper addresses some of the organic geochemical aspects of the kerogen in these shales, in relation to their oil generating potential. Past organic geochemical studies on Eastern Devonian shales are reviewed. Recent solid state /sup 13/C NMR studies on the nature of the organic matter in Eastern Devonian shales show that Eastern Devonian shales contain a larger fraction of aromatic carbon in their chemical composition. Thus, despite their high organic matter contents, their potential as a petroleum source rock is low, because the kerogen in these shales is of a ''coaly'' nature and hence more prone to producing natural gas.« less
Edwards, Ryan W J; Celia, Michael A; Bandilla, Karl W; Doster, Florian; Kanno, Cynthia M
2015-08-04
Recent studies suggest the possibility of CO2 sequestration in depleted shale gas formations, motivated by large storage capacity estimates in these formations. Questions remain regarding the dynamic response and practicality of injection of large amounts of CO2 into shale gas wells. A two-component (CO2 and CH4) model of gas flow in a shale gas formation including adsorption effects provides the basis to investigate the dynamics of CO2 injection. History-matching of gas production data allows for formation parameter estimation. Application to three shale gas-producing regions shows that CO2 can only be injected at low rates into individual wells and that individual well capacity is relatively small, despite significant capacity variation between shale plays. The estimated total capacity of an average Marcellus Shale well in Pennsylvania is 0.5 million metric tonnes (Mt) of CO2, compared with 0.15 Mt in an average Barnett Shale well. Applying the individual well estimates to the total number of existing and permitted planned wells (as of March, 2015) in each play yields a current estimated capacity of 7200-9600 Mt in the Marcellus Shale in Pennsylvania and 2100-3100 Mt in the Barnett Shale.
Organic geochemistry: Effects of organic components of shales on adsorption: Progress report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ho, P.C.
1988-11-01
The Sedimentary Rock Program at the Oak Ridge National Laboratory is investigating shale to determine its potential suitability as a host rock for the disposal of high-level radioactive wastes (HLW). The selected shales are Upper Dowelltown, Pierre, Green River Formation, and two Conasauga (Nolichucky and Pumpkin Valley) Shales, which represent mineralogical and compositional extremes of shales in the United States. According to mineralogical studies, the first three shales contain 5 to 13 wt % of organic matter, and the two Conasauga Shales only contain trace amounts (2 wt %) of organic matter. Soxhlet extraction with chloroform and a mixture ofmore » chloroform and methanol can remove 0.07 to 5.9 wt % of the total organic matter from these shales. Preliminary analysis if these organic extracts reveals the existence of organic carboxylic acids and hydrocarbons in these samples. Adsorption of elements such as Cs(I), Sr(II) and Tc(VII) on the organic-extracted Upper Dowelltown, Pierre, green River Formation and Pumpkin Valley Shales in synthetic groundwaters (simulating groundwaters in the Conasauga Shales) and in 0.03-M NaHCO/sub 3/ solution indicates interaction between each of the three elements and the organic-extractable bitumen. 28 refs., 8 figs., 10 tabs.« less
Inventory and evaluation of potential oil shale development in Kansas
DOE Office of Scientific and Technical Information (OSTI.GOV)
Angino, E.; Berg, J.; Dellwig, L.
The University of Kansas Center for Research, Inc. was commissioned by the Kansas Energy Office and the US Department of Energy to conduct a review of certain oil shales in Kansas. The purpose of the study focused on making an inventory and assessing those oil shales in close stratigraphic proximity to coal beds close to the surface and containing significant reserves. The idea was to assess the feasibility of using coal as an economic window to aid in making oil shales economically recoverable. Based on this as a criterion and the work of Runnels, et al., (Runnels, R.T., Kulstead, R.O.,more » McDuffee, C. and Schleicher, J.A., 1952, Oil Shale in Kansas, Kansas Geological Survey Bulletin, No. 96, Part 3.) five eastern Kansas black shale units were selected for study and their areal distribution mapped. The volume of recoverable oil shale in each unit was calculated and translated to reserves. The report concludes that in all probability, extraction of oil shale for shale oil is not feasible at this time due to the cost of extraction, transportation and processing. The report recommends that additional studies be undertaken to provide a more comprehensive and detailed assessment of Kansas oil shales as a potential fuel resource. 49 references, 4 tables.« less
Silva, Tânia L S; Morales-Torres, Sergio; Castro-Silva, Sérgio; Figueiredo, José L; Silva, Adrián M T
2017-09-15
Rising global energy demands associated to unbalanced allocation of water resources highlight the importance of water management solutions for the gas industry. Advanced drilling, completion and stimulation techniques for gas extraction, allow more economical access to unconventional gas reserves. This stimulated a shale gas revolution, besides tight gas and coalbed methane, also causing escalating water handling challenges in order to avoid a major impact on the environment. Hydraulic fracturing allied to horizontal drilling is gaining higher relevance in the exploration of unconventional gas reserves, but a large amount of wastewater (known as "produced water") is generated. Its variable chemical composition and flow rates, together with more severe regulations and public concern, have promoted the development of solutions for the treatment and reuse of such produced water. This work intends to provide an overview on the exploration and subsequent environmental implications of unconventional gas sources, as well as the technologies for treatment of produced water, describing the main results and drawbacks, together with some cost estimates. In particular, the growing volumes of produced water from shale gas plays are creating an interesting market opportunity for water technology and service providers. Membrane-based technologies (membrane distillation, forward osmosis, membrane bioreactors and pervaporation) and advanced oxidation processes (ozonation, Fenton, photocatalysis) are claimed to be adequate treatment solutions. Copyright © 2017 Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Larsen, A.
This study examines various energy resources in Utah including oil impregnated rocks (oil shale and oil sand deposits), geothermal, coal, uranium, oil and natural gas in terms of the following dimensions: resurce potential and location; resource technology, development and production status; resource development requirements; potential environmental and socio-economic impacts; and transportation tradeoffs. The advantages of minemouth power plants in comparison to combined cycle or hybrid power plants are also examined. Annotative bibliographies of the energy resources are presented in the appendices. Specific topics summarized in these annotative bibliographies include: economics, environmental impacts, water requirements, production technology, and siting requirements.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lee, S. Y.; Hyder, L. K.; Baxter, P. M.
1989-07-01
One objective of the Sedimentary Rock Program at the Oak Ridge National Laboratory has been to examine end-member shales to develop a data base that will aid in evaluations if shales are ever considered as a repository host rock. Five end-member shales were selected for comprehensive characterization: the Chattanooga Shale from Fentress County, Tennessee; the Pierre Shale from Gregory County, South Dakota; the Green River Formation from Garfield County, Colorado; and the Nolichucky Shale and Pumpkin Valley Shale from Roane County, Tennessee. Detailed micromorphological and mineralogical characterizations of the shales were completed by Lee et al. (1987) in ORNL/TM-10567. Thismore » report is a supplemental characterization study that was necessary because second batches of the shale samples were needed for additional studies. Selected physical, chemical, and mineralogical properties were determined for the second batches; and their properties were compared with the results from the first batches. Physical characterization indicated that the second-batch and first-batch samples had a noticeable difference in apparent-size distributions but had similar primary-particle-size distributions. There were some differences in chemical composition between the batches, but these differences were not considered important in comparison with the differences among the end-member shales. The results of x-ray diffraction analyses showed that the second batches had mineralogical compositions very similar to the first batches. 9 refs., 9 figs., 4 tabs.« less
Formation resistivity as an indicator of oil generation in black shales
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hester, T.C.; Schmoker, J.W.
1987-08-01
Black, organic-rich shales of Late Devonian-Early Mississippi age are present in many basins of the North American craton and, where mature, have significant economic importance as hydrocarbon source rocks. Examples drawn from the upper and lower shale members of the Bakken Formation, Williston basin, North Dakota, and the Woodford Shale, Anadarko basin, Oklahoma, demonstrate the utility of formation resistivity as a direct in-situ indicator of oil generation in black shales. With the onset of oil generation, nonconductive hydrocarbons begin to replace conductive pore water, and the resistivity of a given black-shale interval increases from low levels associated with thermal immaturitymore » to values approaching infinity. Crossplots of a thermal-maturity index (R/sub 0/ or TTI) versus formation resistivity define two populations representing immature shales and shales that have generated oil. A resistivity of 35 ohm-m marks the boundary between immature and mature source rocks for each of the three shales studied. Thermal maturity-resistivity crossplots make possible a straightforward determination of thermal maturity at the onset of oil generation, and are sufficiently precise to detect subtle differences in source-rock properties. For example, the threshold of oil generation in the upper Bakken shale occurs at R/sub 0/ = 0.43-0.45% (TTI = 10-12). The threshold increases to R/sub 0/ = 0.48-0.51% (TTI = 20-26) in the lower Bakken shale, and to R/sub 0/ = 0.56-0.57% (TTI = 33-48) in the most resistive Woodford interval.« less
The flux of radionuclides in flowback fluid from shale gas exploitation.
Almond, S; Clancy, S A; Davies, R J; Worrall, F
2014-11-01
This study considers the flux of radioactivity in flowback fluid from shale gas development in three areas: the Carboniferous, Bowland Shale, UK; the Silurian Shale, Poland; and the Carboniferous Barnett Shale, USA. The radioactive flux from these basins was estimated, given estimates of the number of wells developed or to be developed, the flowback volume per well and the concentration of K (potassium) and Ra (radium) in the flowback water. For comparative purposes, the range of concentration was itself considered within four scenarios for the concentration range of radioactive measured in each shale gas basin, the groundwater of the each shale gas basin, global groundwater and local surface water. The study found that (i) for the Barnett Shale and the Silurian Shale, Poland, the 1 % exceedance flux in flowback water was between seven and eight times that would be expected from local groundwater. However, for the Bowland Shale, UK, the 1 % exceedance flux (the flux that would only be expected to be exceeded 1 % of the time, i.e. a reasonable worst case scenario) in flowback water was 500 times that expected from local groundwater. (ii) In no scenario was the 1 % exceedance exposure greater than 1 mSv-the allowable annual exposure allowed for in the UK. (iii) The radioactive flux of per energy produced was lower for shale gas than for conventional oil and gas production, nuclear power production and electricity generated through burning coal.
ERIC Educational Resources Information Center
Palladino, John M.; Giesler, Mark A.
2012-01-01
A significant population of foster care infants and toddlers access early special education services under the parameters of the Individuals with Disabilities Education Act (IDEA)-Part C. A dearth of literature exists about special education interventionists' services for this particular population. In response, we conducted a government-funded…
2008-11-01
Endress & Hauser Analog Level Gauge PV with Sight Glass Minco Temperature Transmitters (2) Steam Pressure Alarm Switch ABB Kent Taylor...Transmitter SV (0-100 psig range) LogTec Pressure Transmitter PV (0-60 psig) Strobe Light Rotor Proximity Switches (3) Endress & Hauser ... Endress & Hauser Analog Level Gauge PV with Sight Glass Minco Temperature Transmitters (2) Steam Pressure Alarm Switch ABB Kent Taylor
Identification and Development of Simple Acceptance Tests for MRE Film Pouch Materials
2006-01-26
retort applications, such as wheat snack bread, shortbread cookies, and beef jerky. Film #2 (48 GA PET/10#PE/.00035F/2 mil sealant) was chosen as the...for polymers) is the melt flow direction and its relation to the direction of the scratch test. It is known that, when polymers are molded or extruded
ERIC Educational Resources Information Center
Schuurmans-Stekhoven, James Benjamin
2013-01-01
Numerous studies suggest spirituality and subjective well-being (SWB) are positively associated. However, critics argue that popular spirituality instruments--including the Daily Spiritual Experiences Scale (DSES)--contain items that conflate religiosity/spirituality (R/S), prosociality and SWB. Advocates of the DSES retort that, despite this…
9 CFR 381.305 - Equipment and procedures for heat processing systems.
Code of Federal Regulations, 2014 CFR
2014-01-01
... plates. Whenever one or more divider plates are used between any two layers of containers or placed on... from several still retorts shall lead to the atmosphere. The manifold header shall not be controlled by...) Venting through multiple 1 inch (2.5 cm) vents discharging directly to the atmosphere. EC11SE91.047...
9 CFR 381.305 - Equipment and procedures for heat processing systems.
Code of Federal Regulations, 2012 CFR
2012-01-01
... plates. Whenever one or more divider plates are used between any two layers of containers or placed on... from several still retorts shall lead to the atmosphere. The manifold header shall not be controlled by...) Venting through multiple 1 inch (2.5 cm) vents discharging directly to the atmosphere. EC11SE91.047...
9 CFR 381.305 - Equipment and procedures for heat processing systems.
Code of Federal Regulations, 2013 CFR
2013-01-01
... plates. Whenever one or more divider plates are used between any two layers of containers or placed on... from several still retorts shall lead to the atmosphere. The manifold header shall not be controlled by...) Venting through multiple 1 inch (2.5 cm) vents discharging directly to the atmosphere. EC11SE91.047...
USDA-ARS?s Scientific Manuscript database
Biochar is a renewable, useful material that can be utilized in many different applications. Biochar is commonly produced via pyrolysis methods using a retort-style oven with inert gas. Gasification is another method that can utilize pyrolysis to produce biochar, but with the advantage of not requir...