Dual nature of acceptors in GaN and ZnO: The curious case of the shallow MgGa deep state
NASA Astrophysics Data System (ADS)
Lany, Stephan; Zunger, Alex
2010-04-01
Employing a Koopmans corrected density functional method, we find that the metal-site acceptors Mg, Be, and Zn in GaN and Li in ZnO bind holes in deep levels that are largely localized at single anion ligand atoms. In addition to this deep ground state (DGS), we observe an effective-masslike delocalized state that can exist as a short lived shallow transient state (STS). The Mg dopant in GaN represents the unique case where the ionization energy of the localized deep level exceeds only slightly that of the shallow effective-mass acceptor, which explains why Mg works so exceptionally well as an acceptor dopant.
NASA Astrophysics Data System (ADS)
Schultz, Peter
To make reliable first principles predictions of defect energies in semiconductors, it is crucial to discriminate between effective-mass-like defects--for which existing supercell methods fail--and deep defects--for which density functional theory calculations can yield reliable predictions of defect energy levels. The gallium antisite GaAs is often associated with the 78/203 meV shallow double acceptor in Ga-rich gallium arsenide. Within a framework of level occupation patterns, analyses of structure and spin stabilization can be used within a supercell approach to distinguish localized deep defect states from shallow acceptors such as BAs. This systematic analysis determines that the gallium antisite is inconsistent with a shallow state, and cannot be the 78/203 shallow double acceptor. The properties of the Ga antisite in GaAs are described, predicting that the Ga antisite is a deep double acceptor and has two donor states, one of which might be accidentally shallow. -- Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Company, for the U.S. Department of Energy's National Nuclear Security Administration under Contract DE-AC04-94AL85000.
Group III Acceptors with Shallow and Deep Levels in Silicon Carbide: ESR and ENDOR Studies
NASA Astrophysics Data System (ADS)
Il'in, I. V.; Uspenskaya, Yu. A.; Kramushchenko, D. D.; Muzafarova, M. V.; Soltamov, V. A.; Mokhov, E. N.; Baranov, P. G.
2018-04-01
Results of investigations of Group III acceptors (B, Al, and Ga) in crystals of silicon carbide using the most informative electron spin resonance and electron nuclear double resonance methods are presented. Structural models of the acceptors with shallow and deep levels are considered. In addition to the data obtained earlier, studies using high-frequency magnetic resonance were obtained, which allowed revealing orthorhombic deviations from the axial symmetry for the deep acceptors; theoretical analysis explains experimentally found shifts of g factors for the deep acceptors arising due to the orthorhombic deviations, which appear probably due to the Jahn-Teller effect.
Schultz, Peter A.
2016-03-01
For the purposes of making reliable first-principles predictions of defect energies in semiconductors, it is crucial to distinguish between effective-mass-like defects, which cannot be treated accurately with existing supercell methods, and deep defects, for which density functional theory calculations can yield reliable predictions of defect energy levels. The gallium antisite defect GaAs is often associated with the 78/203 meV shallow double acceptor in Ga-rich gallium arsenide. Within a conceptual framework of level patterns, analyses of structure and spin stabilization can be used within a supercell approach to distinguish localized deep defect states from shallow acceptors such as B As. Thismore » systematic approach determines that the gallium antisite supercell results has signatures inconsistent with an effective mass state and cannot be the 78/203 shallow double acceptor. Lastly, the properties of the Ga antisite in GaAs are described, total energy calculations that explicitly map onto asymptotic discrete localized bulk states predict that the Ga antisite is a deep double acceptor and has at least one deep donor state.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schultz, Peter A.
For the purposes of making reliable first-principles predictions of defect energies in semiconductors, it is crucial to distinguish between effective-mass-like defects, which cannot be treated accurately with existing supercell methods, and deep defects, for which density functional theory calculations can yield reliable predictions of defect energy levels. The gallium antisite defect GaAs is often associated with the 78/203 meV shallow double acceptor in Ga-rich gallium arsenide. Within a conceptual framework of level patterns, analyses of structure and spin stabilization can be used within a supercell approach to distinguish localized deep defect states from shallow acceptors such as B As. Thismore » systematic approach determines that the gallium antisite supercell results has signatures inconsistent with an effective mass state and cannot be the 78/203 shallow double acceptor. Lastly, the properties of the Ga antisite in GaAs are described, total energy calculations that explicitly map onto asymptotic discrete localized bulk states predict that the Ga antisite is a deep double acceptor and has at least one deep donor state.« less
NASA Astrophysics Data System (ADS)
Nishimoto, Naoki; Fujihara, Junko; Yoshino, Katsumi
2018-05-01
In this study, Ga0.6Sb0.4 thin films were grown on quartz and Ge(100) 1° off-axis substrates by RF magnetron sputtering at 500 °C. Ga0.6Sb0.4/Ge(100) shows n-type conductivity at room temperature (RT) and p-type conductivity at low temperatures, whereas undoped GaSb thin films exhibit p-type conductivity, irrespective of their growth methods and conditions. Their electrical properties were determined by rapid thermal annealing, which revealed that Ga0.6Sb0.4/Ge(100) contains two types of acceptors and two types of donors. The acceptors are considered to be GaSb and electrically active sites on dislocations originating at the Ga0.6Sb0.4/Ge(100) interface, while donors are believed to be Gai and electrically active sites originating at the Ga0.6Sb0.4/Ge(100) interface. In these acceptors and donors, the shallow donor concentration is higher than the shallow acceptor concentration, and the shallow donor level is deeper than the shallow acceptor level. Thus, we concluded that Ga0.6Sb0.4/Ge(100) shows n-type conductivity at RT due to electrically active sites originating at the Ga0.6Sb0.4/Ge(100) interface and native defects originating from excess Ga.
Shallow versus deep nature of Mg acceptors in nitride semiconductors
NASA Astrophysics Data System (ADS)
Lyons, John; Janotti, Anderson; van de Walle, Chris G.
2012-02-01
Although Mg doping is the only known method for achieving p-type conductivity in nitride semiconductors, Mg is not a perfect acceptor. Hydrogen is known to passivate the Mg acceptor, necessitating a post-growth anneal for acceptor activation. Furthermore, the acceptor ionization energy of Mg is relatively large (200 meV) in GaN, thus only a few percent of Mg acceptors are ionized at room temperature. Surprisingly, despite the importance of this impurity, open questions remain regarding the nature of the acceptor. Optical and magnetic resonance measurements on Mg-doped GaN indicate intriguing and complex behavior that depends on the growth, doping level, and thermal treatment of the samples. Motivated by these studies, we have revisited this topic by performing first-principles calculations based on a hybrid functional. We investigate the electrical and optical properties of the isolated Mg acceptor and its complexes with hydrogen in GaN, InN, and AlN. With the help of these advanced techniques we explain the deep or shallow nature of the Mg acceptor and its relation to optical signals often seen in Mg-doped GaN. We also explore the properties of the Mg acceptor in InN and AlN, allowing predictions of the behavior of the Mg dopant in ternary nitride alloys.
Prospects and limitations for p-type doping in boron nitride polymorphs
NASA Astrophysics Data System (ADS)
Weston, Leigh; van de Walle, Chris G.
Using first-principles calculations, we examine the potential for p-type doping of BN polymorphs via substitutional impurities. Based on density functional theory with a hybrid functional, our calculations reveal that group-IV elements (C, Si) substituting at the N site result in acceptor levels that are more than 1 eV above the valence-band maximum in all of the BN polymorphs, and hence far too deep to allow for p-type doping. On the other hand, group-II elements (Be, Mg) substituting at the B site lead to shallower acceptor levels. However, for the ground-state hexagonal phase (h-BN), we show that p-type doping at the B site is inhibited by the formation of hole polarons. Our calculations reveal that hole localization is intrinsic to sp2 bonded h-BN, and this places fundamental limits on hole conduction in this material. In contrast, the sp3 bonded wurtzite (w-BN) and cubic (c-BN) polymorphs are capable of forming shallow acceptor levels. For Be dopants, the acceptor ionization energies are 0.31 eV and 0.24 eV for w-BN and c-BN, respectively; these values are only slightly larger than the ionization energy of the Mg acceptor in GaN. This work was supported by NSF.
Acceptor binding energies in GaN and AlN
NASA Astrophysics Data System (ADS)
Mireles, Francisco; Ulloa, Sergio E.
1998-08-01
We employ effective-mass theory for degenerate hole bands to calculate the acceptor binding energies for Be, Mg, Zn, Ca, C, and Si substitutional acceptors in GaN and AlN. The calculations are performed through the 6×6 Rashba-Sheka-Pikus and the Luttinger-Kohn matrix Hamiltonians for wurtzite (WZ) and zinc-blende (ZB) crystal phases, respectively. An analytic representation for the acceptor pseudopotential is used to introduce the specific nature of the impurity atoms. The energy shift due to polaron effects is also considered in this approach. The ionization energy estimates are in very good agreement with those reported experimentally in WZ GaN. The binding energies for ZB GaN acceptors are all predicted to be shallower than the corresponding impurities in the WZ phase. The binding-energy dependence upon the crystal-field splitting in WZ GaN is analyzed. Ionization levels in AlN are found to have similar ``shallow'' values to those in GaN, but with some important differences which depend on the band structure parametrizations, especially the value of the crystal-field splitting used.
Gettering of donor impurities by V in GaAs and the growth of semi-insulating crystals
NASA Technical Reports Server (NTRS)
Ko, K. Y.; Lagowski, J.; Gatos, H. C.
1989-01-01
Vanadium added to the GaAs melt getters shallow donor impurities (Si and S) and decreases their concentration in the grown crystals. This gettering is driven by chemical reactions in the melt rather than in the solid. Employing V gettering, reproducibly semi-insulating GaAs were grown by horizontal Bridgman and liquid-encapsulated Czochralski techniques, although V did not introduce any midgap energy levels. The compensation mechanism in these crystals was controlled by the balance between the native midgap donor EL2 and residual shallow acceptors. Vanadium gettering contributed to the reduction of the concentration of shallow donors below the concentration of acceptors. The present findings clarify the long-standing controversy on the role of V in achieving semi-insulating GaAs.
Pressure-Photoluminescence Study of the Zn Vacancy and Donor Zn-Vacancy Complexes in ZnSe
NASA Astrophysics Data System (ADS)
Iota, V.; Weinstein, B. A.
1997-03-01
We report photoluminescence (PL) results to 65kbar (at 8K) on n-type electron irradiated ZnSe containing high densities of isolated Zn vacancies (V_Zn) and donor-V_Zn complexes (A-centers).^1 Isotropic pressure is applied using a diamond-anvil cell with He medium, and laser excitations above and below the ZnSe bandgap (2.82eV) are employed. The 1 atm. spectra exhibit excitonic lines, shallow donor-acceptor pair (DAP) peaks, and two broad bands due to DAP transitions between shallow donors and deep acceptor states at A-centers (2.07eV) or V_Zn (1.72eV). At all pressures, these broad bands are prominent only for sub-gap excitation, which results in: i) A-center PL at energies above the laser line, and ii) strong enhancement of the first LO-replica in the shallow DAP series compared to 3.41eV UV excitation. This suggests that sub-gap excitation produces long-lived metastable acceptor states. The broad PL bands shift to higher energy with pressure faster than the ZnSe direct gap, indicating that compression causes the A-center and V_Zn deep acceptor levels to approach the hole continuum. This behavior is similar to that found by our group for P and As deep acceptor levels in ZnSe, supporting the view that deep substitutional defects often resemble the limiting case of a vacancy. ^1D. Y. Jeon, H. P. Gislason, G. D. Watkins Phys. Rev. B 48, 7872 (1993); we thank G. D. Watkins for providing the samples. (figures)
NASA Astrophysics Data System (ADS)
Komarov, V. G.; Motsnyi, F. V.; Motsnyi, V. F.; Zinets, O. S.
The low temperature photoluminescence spectra of semi-insulating GaAs crystals grown by Czochralski method at different technological conditions have been studied. One of the main background impurities in such materials is carbon. The traditional high temperature annealing of semi-insulating GaAs wafers significantly aggravates their structure perfection because near the surface the creation of conductive layers with the thickness of several microns takes place. The fine structure of the bands of 1.514 and 1.490 eV has been registered. This structure caused by a) polariton emission from upper and low polariton branches; b) radiative recombination of free holes on shallow neutral donors (D^0, h); c) radiative recombination of excitons bound to shallow neutral donors (D^0, X) and to shallow carbon acceptors (C^0_{As}, X); d) excitons bound to the point structure defects (d, X); e) electron transitions between the conduction band and shallow neutral carbon acceptor; f) the electron transitions between donor-acceptor pairs in which carbon and possibly zinc are acceptors in the ground 1S_{3/2} state. The lux-intensity dependencies of the polariton emission from upper polariton branch and photoluminescence of (D^0, h), (C^0_{As}, X), (d, X) complexes are in good agreement with the theory. It is shown that one of the best available semi-insulating GaAs materials is a new commercial AGCP-5V material which differs from others by considerable concentration of shallow donors and new acceptors alongside of the known shallow C^0_{As} acceptor centres.
NASA Technical Reports Server (NTRS)
Lagowski, J.; Walukiewicz, W.; Kazior, T. E.; Gatos, H. C.; Siejka, J.
1981-01-01
Gigantic photoionization was discovered on GaAs-oxide interfaces leading to the discharge of deep surface states with rates exceeding 1000 times those of photoionization transitions to the conduction band. It exhibits a peak similar to acceptor-donor transitions and is explained as due to energy transfer from photo-excited donor-acceptor pairs to deep surface states. This new process indicates the presence of significant concentrations of shallow donor and acceptor levels not recognized in previous interface models.
Efficient Incorporation of Mg in Solution Grown GaN Crystals
NASA Astrophysics Data System (ADS)
Freitas, Jaime A., Jr.; Feigelson, Boris N.; Anderson, Travis J.
2013-11-01
Detailed spectrometry and optical spectroscopy studies carried out on GaN crystals grown in solution detect and identify Mg as the dominant shallow acceptor. Selective etching of crystals with higher Mg levels than that of the donor concentration background indicates that Mg acceptors incorporate preferentially in the N-polar face. Electrical transport measurements verified an efficient incorporation and activation of the Mg acceptors. These results suggest that this growth method has the potential to produce p-type doped epitaxial layers or p-type substrates characterized by high hole concentration and low defect density.
NASA Astrophysics Data System (ADS)
Demchenko, D. O.; Diallo, I. C.; Reshchikov, M. A.
2018-05-01
The problem of magnesium acceptor in gallium nitride is that experimental photoluminescence measurements clearly reveal a shallow defect state, while most theoretical predictions favor a localized polaronic defect state. To resolve this contradiction, we calculate properties of magnesium acceptor using the Heyd-Scuseria-Ernzerhof (HSE) hybrid functional, tuned to fulfill the generalized Koopmans condition. We test Koopmans tuning of HSE for defect calculations in GaN using two contrasting test cases: a deep state of gallium vacancy and a shallow state of magnesium acceptor. The obtained parametrization of HSE allows calculations of optical properties of acceptors using neutral defect-state eigenvalues, without relying on corrections due to charged defects in periodic supercells. Optical transitions and vibrational properties of M gGa defect are analyzed to bring the dual (shallow and deep) nature of this defect into accord with experimental photoluminescence measurements of the ultraviolet band in Mg-doped GaN samples.
Copper-related defects in In0.53Ga0.47As grown by liquid-phase epitaxy
NASA Astrophysics Data System (ADS)
Tilly, L. P.; Grimmeiss, H. G.; Hansson, P. O.
1993-01-01
High-purity In0.53Ga0.47As lattice matched to InP was grown by liquid-phase epitaxy and used for the study of Cu-related defects. The samples had a free-electron carrier concentration of n=5.0×1014 cm-3 and an electron mobility of μ77 K=44 000 cm2/V s. A Cu-related acceptor level 25 meV above the valence-band edge was identified using photoluminescence measurements. Comparing the energy position of this shallow acceptor level with the Ev+157.8-meV Cu-acceptor level in GaAs supports the assumption of an internal energy reference level [J. M. Langer, C. Delerue, M. Lannoo, and H. Heinrich, Phys. Rev. B 38, 7723 (1988)] common to GaAs and InxGa1-xAs.
Design of Shallow Acceptors in GaN through Zinc-Magnium Codoping: First-Principles Calculation
NASA Astrophysics Data System (ADS)
Liu, Zhiqiang; Melton, Andrew G.; Yi, Xiaoyan; Wang, Jianwei; Kucukgok, Bahadir; Kang, Jun; Lu, Na; Wang, Junxi; Li, Jinmin; Ferguson, Ian
2013-04-01
In this work, we propose a novel approach to reduce the ionization energy of acceptors in GaN through Zn-Mg codoping. The characteristics of the defect states and the valence-band maximum (VBM) were investigated via first-principles calculation. Our results indicated that the original VBM of the host GaN could be altered by Zn-Mg codoping, thus improving the p-type dopability. We show that the calculated ionization energy ɛ(0/-) of the Zn-Mg acceptor is only 117 meV, which is about 90 meV shallower than that of the isolated Mg acceptor.
Infrared absorption study of neutron-transmutation-doped germanium
NASA Technical Reports Server (NTRS)
Park, I. S.; Haller, E. E.
1988-01-01
Using high-resolution far-infrared Fourier transform absorption spectroscopy and Hall effect measurements, the evolution of the shallow acceptor and donor impurity levels in germanium during and after the neutron transmutation doping process was studied. The results show unambiguously that the gallium acceptor level concentration equals the concentration of transmutated Ge-70 atoms during the whole process indicating that neither recoil during transmutation nor gallium-defect complex formation play significant roles. The arsenic donor levels appear at full concentration only after annealing for 1 h at 450 C. It is shown that this is due to donor-radiation-defect complex formation. Again, recoil does not play a significant role.
Annealing in tellurium-nitrogen co-doped ZnO films: The roles of intrinsic zinc defects
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tang, Kun, E-mail: ktang@nju.edu.cn; Gu, Ran; Gu, Shulin, E-mail: slgu@nju.edu.cn
2015-04-07
In this article, the authors have conducted an extensive investigation on the roles of intrinsic zinc defects by annealing of a batch of Te-N co-doped ZnO films. The formation and annihilation of Zn interstitial (Zn{sub i}) clusters have been found in samples with different annealing temperatures. Electrical and Raman measurements have shown that the Zn{sub i} clusters are a significant compensation source to holes, and the Te co-doping has a notable effect on suppressing the Zn{sub i} clusters. Meanwhile, shallow acceptors have been identified in photoluminescence spectra. The N{sub O}-Zn-Te complex, zinc vacancy (V{sub Zn})-N{sub O} complex, and V{sub Zn}more » clusters are thought to be the candidates as the shallow acceptors. The evolution of shallow acceptors upon annealing temperature have been also studied. The clustering of V{sub Zn} at high annealing temperature is proposed to be a possible candidate as a stable acceptor in ZnO.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Elleuch, Omar, E-mail: mr.omar.elleuch@gmail.com; Wang, Li; Lee, Kan-Hua
2015-01-28
The hole traps associated with high background doping in p-type GaAsN grown by chemical beam epitaxy are studied based on the changes of carrier concentration, junction capacitance, and hole traps properties due to the annealing. The carrier concentration was increased dramatically with annealing time, based on capacitance–voltage (C–V) measurement. In addition, the temperature dependence of the junction capacitance (C–T) was increased rapidly two times. Such behavior is explained by the thermal ionization of two acceptor states. These acceptors are the main cause of high background doping in the film, since the estimated carrier concentration from C–T results explains the measuredmore » carrier concentration at room temperature using C–V method. The acceptor states became shallower after annealing, and hence their structures are thermally unstable. Deep level transient spectroscopy (DLTS) showed that the HC2 hole trap was composed of two signals, labeled HC21 and HC22. These defects correspond to the acceptor levels, as their energy levels obtained from DLTS are similar to those deduced from C–T. The capture cross sections of HC21 and HC22 are larger than those of single acceptors. In addition, their energy levels and capture cross sections change in the same way due to the annealing. This tendency suggests that HC21 and HC22 signals originate from the same defect which acts as a double acceptor.« less
Investigation of new semiinsulating behavior of III-V compounds
NASA Technical Reports Server (NTRS)
Lagowski, Jacek
1990-01-01
The investigation of defect interactions and properties related to semiinsulating behavior of III-V semiconductors resulted in about twenty original publications, six doctoral thesis, one masters thesis and numerous conference presentations. The studies of new compensation mechanisms involving transition metal impurities have defined direct effects associated with deep donor/acceptor levels acting as compensating centers. Electrical and optical properties of vanadium and titanium levels were determined in GaAs, InP and also in ternary compounds InGaAs. The experimental data provided basis for the verification of chemical trends and the VRBE method. They also defined compositional range for III-V mixed crystals whereby semiinsulating behavior can be achieved using transition elements deep levels and a suitable codoping with shallow donor/acceptor impurities.
Parmar, Narendra S.; Yim, Haena; Choi, Ji-Won
2017-01-01
Stable p-type conduction in ZnO has been a long time obstacle in utilizing its full potential such as in opto-electronic devices. We designed a unique experimental set-up in the laboratory for high Na-doping by thermal diffusion in the bulk ZnO single crystals. SIMS measurement shows that Na concentration increases by 3 orders of magnitude, to ~3 × 1020 cm−3 as doping temperature increases to 1200 °C. Electronic infrared absorption was measured for Na-acceptors. Absorption bands were observed near (0.20–0.24) eV. Absorption bands blue shifted by 0.04 eV when doped at 1200 °C giving rise to shallow acceptor level. NaZn band movements as a function of doping temperature are also seen in Photoluminescence emission (PL), Photoluminescence excitation (PLE) and UV-Vis transmission measurements. Variable temperature Hall measurements show stable p-type conduction with hole binding energy ~0.18 eV in ZnO samples that were Na-doped at 1200 °C. PMID:28272444
Probing carbon impurities in hexagonal boron nitride epilayers
NASA Astrophysics Data System (ADS)
Uddin, M. R.; Li, J.; Lin, J. Y.; Jiang, H. X.
2017-05-01
Carbon doped hexagonal boron nitride epilayers have been grown by metal organic chemical vapor deposition. Photocurrent excitation spectroscopy has been utilized to probe the energy levels associated with carbon impurities in hexagonal boron nitride (h-BN). The observed transition peaks in photocurrent excitation spectra correspond well to the energy positions of the bandgap, substitutional donors (CB, carbon impurities occupying boron sites), and substitutional acceptors (CN, carbon impurities occupying nitrogen sites). From the observed transition peak positions, the derived energy level of CB donors in h-BN is ED ˜ 0.45 eV, which agrees well with the value deduced from the temperature dependent electrical resistivity. The present study further confirms that the room temperature bandgap of h-BN is about 6.42-6.45 eV, and the CN deep acceptors have an energy level of about 2.2-2.3 eV. The results also infer that carbon doping introduces both shallow donors (CB) and deep acceptors (CN) via self-compensation, and the energy level of carbon donors appears to be too deep to enable carbon as a viable candidate as an n-type dopant in h-BN epilayers.
Liu, Ruijian; Li, Yongfeng; Yao, Bin; Ding, Zhanhui; Jiang, Yuhong; Meng, Lei; Deng, Rui; Zhang, Ligong; Zhang, Zhenzhong; Zhao, Haifeng; Liu, Lei
2017-04-12
Shallow acceptor states in Mg-doped CuAlO 2 and their effect on structural, electrical, and optical properties are investigated by combining first-principles calculations and experiments. First-principles calculations demonstrate that Mg substituting at the Al site in CuAlO 2 plays the role of shallow acceptor and has a low formation energy, suggesting that Mg doping can increase hole concentration and improve the conductivity of CuAlO 2 . Hall effect measurements indicate that the hole concentration of the Mg-doped CuAlO 2 thin film is 2 orders of magnitude higher than that of undoped CuAlO 2 . The best room temperature conductivity of 8.0 × 10 -2 S/cm is obtained. A band gap widening is observed in the optical absorption spectra of Mg-doped CuAlO 2 , which is well supported by the results from first-principles electronic structure calculations.
Incorporation of Mg in Free-Standing HVPE GaN Substrates
NASA Astrophysics Data System (ADS)
Zvanut, M. E.; Dashdorj, J.; Freitas, J. A.; Glaser, E. R.; Willoughby, W. R.; Leach, J. H.; Udwary, K.
2016-06-01
Mg, the only effective p-type dopant for nitrides, is well studied in thin films due to the important role of the impurity in light-emitting diodes and high-power electronics. However, there are few reports of Mg in thick free-standing GaN substrates. Here, we demonstrate successful incorporation of Mg into GaN grown by hydride vapor-phase epitaxy (HVPE) using metallic Mg as the doping source. The concentration of Mg obtained from four separate growth runs ranged between 1016 cm-3 and 1019 cm-3. Raman spectroscopy and x-ray diffraction revealed that Mg did not induce stress or perturb the crystalline quality of the HVPE GaN substrates. Photoluminescence (PL) and electron paramagnetic resonance (EPR) spectroscopies were performed to investigate the types of point defects in the crystals. The near-band-edge excitonic and shallow donor-shallow acceptor radiative recombination processes involving shallow Mg acceptors were prominent in the PL spectrum of a sample doped to 3 × 1018 cm-3, while the EPR signal was also thought to represent a shallow Mg acceptor. Detection of this signal reflects minimization of nonuniform strain obtained in the thick free-standing HVPE GaN compared with heteroepitaxial thin films.
Quantitative analysis of the persistent photoconductivity effect in Cu(In,Ga)Se2
NASA Astrophysics Data System (ADS)
Maciaszek, Marek; Zabierowski, Paweł
2018-04-01
The magnitude of the persistent photoconductivity effect (PPC) in two sets of Cu(In,Ga)Se2 samples, differing in the amount of cadmium and sodium, was measured. Using equations describing the magnitude of PPC, metastable defect and shallow acceptor densities were calculated. The method of the analysis of PPC in the presence of a deep acceptor level was presented. Based on obtained results, we drew conclusions about reasons of decreased PPC in Cu(In,Ga)Se2 without sodium as well as the role of (VSe-VCu) complexes in establishing the carrier concentration in Cu(In,Ga)Se2 with and without sodium.
NASA Astrophysics Data System (ADS)
Stampfl, C.; Van de Walle, Chris G.
1998-01-01
N-type AlxGa1-xN exhibits a dramatic decrease in the free-carrier concentration for x⩾0.40. Based on first-principles calculations, we propose that two effects are responsible for this behavior: (i) in the case of doping with oxygen (the most common unintentional donor), a DX transition occurs, which converts the shallow donor into a deep level; and (ii) compensation by the cation vacancy (VGa or VAl), a triple acceptor, increases with alloy composition x. For p-type doping, the calculations indicate that the doping efficiency decreases due to compensation by the nitrogen vacancy. In addition, an increase in the acceptor ionization energy is found with increasing x.
Carrier providers or killers: The case of Cu defects in CdTe
Yang, Ji -Hui; Metzger, Wyatt K.; Wei, Su -Huai
2017-07-24
Defects play important roles in semiconductors for optoelectronic applications. Common intuition is that defects with shallow levels act as carrier providers and defects with deep levels are carrier killers. Here, taking the Cu defects in CdTe as an example, we show that relatively shallow defects can play both roles. Using first-principles calculation methods combined with thermodynamic simulations, we study the dialectic effects of Cu-related defects on hole density and lifetime in bulk CdTe. Because CuCd can form a relatively shallow acceptor, we find that increased Cu incorporation into CdTe indeed can help achieve high hole density; however, too much Cumore » can cause significant non-radiative recombination. We discuss strategies to balance the contradictory effects of Cu defects based on the calculated impact of Cd chemical potential, copper defect concentrations, and annealing temperature on lifetime and hole density. Lastly, these findings advance the understanding of the potential complex defect behaviors of relatively shallow defect states in semiconductors.« less
Carrier providers or killers: The case of Cu defects in CdTe
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yang, Ji -Hui; Metzger, Wyatt K.; Wei, Su -Huai
Defects play important roles in semiconductors for optoelectronic applications. Common intuition is that defects with shallow levels act as carrier providers and defects with deep levels are carrier killers. Here, taking the Cu defects in CdTe as an example, we show that relatively shallow defects can play both roles. Using first-principles calculation methods combined with thermodynamic simulations, we study the dialectic effects of Cu-related defects on hole density and lifetime in bulk CdTe. Because CuCd can form a relatively shallow acceptor, we find that increased Cu incorporation into CdTe indeed can help achieve high hole density; however, too much Cumore » can cause significant non-radiative recombination. We discuss strategies to balance the contradictory effects of Cu defects based on the calculated impact of Cd chemical potential, copper defect concentrations, and annealing temperature on lifetime and hole density. Lastly, these findings advance the understanding of the potential complex defect behaviors of relatively shallow defect states in semiconductors.« less
Ramifications of codoping SrI2:Eu with isovalent and aliovalent impurities
NASA Astrophysics Data System (ADS)
Feng, Qingguo; Biswas, Koushik
2016-12-01
Eu2+ doped SrI2 is an important scintillator having applications in the field of radiation detection. Codoping techniques are often useful to improve the electronic response of such insulators. Using first-principles based approach, we report on the properties of SrI2:Eu and the influence of codoping with aliovalent (Na, Cs) and isovalent (Mg, Ca, Ba, and Sn) impurities. These codopants do not preferably bind with Eu and are expected to remain as isolated impurities in the SrI2 host. As isolated defects they display amphoteric behavior having, in most cases, significant ionization energies of the donor and acceptor levels. Furthermore, the acceptor states of Na, Cs, and Mg can bind with I-vacancy forming charge compensated donor-acceptor pairs. Such pairs may also bind additional holes or electrons similar to the isolated defects. Lack of deep-to-shallow behavior upon codoping and its ramifications will be discussed.
Probing semiconductor gap states with resonant tunneling.
Loth, S; Wenderoth, M; Winking, L; Ulbrich, R G; Malzer, S; Döhler, G H
2006-02-17
Tunneling transport through the depletion layer under a GaAs {110} surface is studied with a low temperature scanning tunneling microscope (STM). The observed negative differential conductivity is due to a resonant enhancement of the tunneling probability through the depletion layer mediated by individual shallow acceptors. The STM experiment probes, for appropriate bias voltages, evanescent states in the GaAs band gap. Energetically and spatially resolved spectra show that the pronounced anisotropic contrast pattern of shallow acceptors occurs exclusively for this specific transport channel. Our findings suggest that the complex band structure causes the observed anisotropies connected with the zinc blende symmetry.
Iron and its complexes in silicon
NASA Astrophysics Data System (ADS)
Istratov, A. A.; Hieslmair, H.; Weber, E. R.
This article is the first in a series of two reviews on the properties of iron in silicon. It offers a comprehensive of the current state of understanding of fundamental physical properties of iron and its complexes in silicon. The first section of this review discusses the position of iron in the silicon lattice and the electrical properties of interstitial iron. Updated expressions for the solubility and the diffusivity of iron in silicon are presented, and possible explanations for conflicting experimental data obtained by different groups are discussed. The second section of the article considers the electrical and the structural properties of complexes of interstitial iron with shallow acceptors (boron, aluminum, indium, gallium, and thallium), shallow donors (phosphorus and arsenic) and other impurities (gold, silver, platinum, palladium, zinc, sulfur, oxygen, carbon, and hydrogen). Special attention is paid to the kinetics of iron pairing with shallow acceptors, the dissociation of these pairs, and the metastability of iron-acceptor pairs. The parameters of iron-related defects in silicon are summarized in tables that include more than 30 complexes of iron as detected by electron paramagnetic resonance (EPR) and almost 20 energy levels in the band gap associated with iron. The data presented in this review illustrate the enormous complexing activity of iron, which is attributed to the partial or complete (depending on the temperature and the conductivity type) ionization of iron as well as the high diffusivity of iron in silicon. It is shown that studies of iron in silicon require exceptional cleanliness of experimental facilities and highly reproducible diffusion and temperature ramping (quenching) procedures. Properties of iron that are not yet completely understood and need further research are outlined.
Poole-Frenkel effect in sputter-deposited CuAlO2+x nanocrystals
NASA Astrophysics Data System (ADS)
Narayan Banerjee, Arghya; Joo, Sang Woo
2013-04-01
Field-assisted thermionic emission within a sputter-deposited, nanocrystalline thin film of CuAlO2.06 is observed for the first time, and explained in terms of the Poole-Frenkel model. The presence of adsorbed oxygen ions as trap-states at the grain boundary regions of the nanostructured thin film is considered to manifest this phenomenon. Under an applied field, the barrier of the trap potential is lowered and thermal emission of charge carriers takes place at different sample temperatures to induce nonlinearity in the current (I)-voltage (V) characteristics of the nanomaterial. Fitting of the Poole-Frenkel model with the I-V data shows that the nonlinearity is effective above 50 V under the operating conditions. Calculations of the energy of the trap level, acceptor level and Fermi level reveal the existence of deep level trap-states and a shallow acceptor level with acceptor concentration considerably higher than the trap-states. Hall measurements confirm the p-type semiconductivity of the film, with a hole concentration around 1018 cm-3. Thermopower measurements give a room-temperature Seebeck coefficient around 130 μV K-1. This temperature-dependent conductivity enhancement within CuAlO2 nanomaterial may find interesting applications in transparent electronics and high-voltage applications for power supply networks.
Poole-Frenkel effect in sputter-deposited CuAlO(2+x) nanocrystals.
Banerjee, Arghya Narayan; Joo, Sang Woo
2013-04-26
Field-assisted thermionic emission within a sputter-deposited, nanocrystalline thin film of CuAlO2.06 is observed for the first time, and explained in terms of the Poole-Frenkel model. The presence of adsorbed oxygen ions as trap-states at the grain boundary regions of the nanostructured thin film is considered to manifest this phenomenon. Under an applied field, the barrier of the trap potential is lowered and thermal emission of charge carriers takes place at different sample temperatures to induce nonlinearity in the current (I)-voltage (V) characteristics of the nanomaterial. Fitting of the Poole-Frenkel model with the I-V data shows that the nonlinearity is effective above 50 V under the operating conditions. Calculations of the energy of the trap level, acceptor level and Fermi level reveal the existence of deep level trap-states and a shallow acceptor level with acceptor concentration considerably higher than the trap-states. Hall measurements confirm the p-type semiconductivity of the film, with a hole concentration around 10(18) cm(-3). Thermopower measurements give a room-temperature Seebeck coefficient around 130 μV K(-1). This temperature-dependent conductivity enhancement within CuAlO2 nanomaterial may find interesting applications in transparent electronics and high-voltage applications for power supply networks.
The role of the VZn-NO-H complex in the p-type conductivity in ZnO.
Amini, M N; Saniz, R; Lamoen, D; Partoens, B
2015-02-21
Past research efforts aiming at obtaining stable p-type ZnO have been based on complexes involving nitrogen doping. A recent experiment by (J. G. Reynolds et al., Appl. Phys. Lett., 2013, 102, 152114) demonstrated a significant (∼10(18) cm(-3)) p-type behavior in N-doped ZnO films after appropriate annealing. The p-type conductivity was attributed to a VZn-NO-H shallow acceptor complex, formed by a Zn vacancy (VZn), N substituting O (NO), and H interstitial (Hi). We present here a first-principles hybrid functional study of this complex compared to the one without hydrogen. Our results confirm that the VZn-NO-H complex acts as an acceptor in ZnO. We find that H plays an important role, because it lowers the formation energy of the complex with respect to VZn-NO, a complex known to exhibit (unstable) p-type behavior. However, this additional H atom also occupies the hole level at the origin of the shallow behavior of VZn-NO, leaving only two states empty higher in the band gap and making the VZn-NO-H complex a deep acceptor. Therefore, we conclude that the cause of the observed p-type conductivity in experiment is not the presence of the VZn-NO-H complex, but probably the formation of the VZn-NO complex during the annealing process.
Three holes bound to a double acceptor - Be(+) in germanium
NASA Technical Reports Server (NTRS)
Haller, E. E.; Mcmurray, R. E., Jr.; Falicov, L. M.; Haegel, N. M.; Hansen, W. L.
1983-01-01
A double acceptor binding three holes has been observed for the first time with photoconductive far-infrared spectroscopy in beryllium-doped germanium single crystals. This new center, Be(+), has a hole binding energy of about 5 meV and is only present when free holes are generated by ionization of either neutral shallow acceptors or neutral Be double acceptors. The Be(+) center thermally ionizes above 4 K. It disappears at a uniaxial stress higher than about a billion dyn/sq cm parallel to (111) as a result of the lifting of the valence-band degeneracy.
Wide Bandgap Extrinsic Photoconductive Switches
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sullivan, James S.
2013-07-03
Semi-insulating Gallium Nitride, 4H and 6H Silicon Carbide are attractive materials for compact, high voltage, extrinsic, photoconductive switches due to their wide bandgap, high dark resistance, high critical electric field strength and high electron saturation velocity. These wide bandgap semiconductors are made semi-insulating by the addition of vanadium (4H and 6HSiC) and iron (2H-GaN) impurities that form deep acceptors. These deep acceptors trap electrons donated from shallow donor impurities. The electrons can be optically excited from these deep acceptor levels into the conduction band to transition the wide bandgap semiconductor materials from a semi-insulating to a conducting state. Extrinsic photoconductivemore » switches with opposing electrodes have been constructed using vanadium compensated 6H-SiC and iron compensated 2H-GaN. These extrinsic photoconductive switches were tested at high voltage and high power to determine if they could be successfully used as the closing switch in compact medical accelerators.« less
Analysis of Deep and Shallow Traps in Semi-Insulating CdZnTe
Kim, Kihyun; Yoon, Yongsu; James, Ralph B.
2018-03-13
Trap levels which are deep or shallow play an important role in the electrical and the optical properties of a semiconductor; thus, a trap level analysis is very important in most semiconductor devices. Deep-level defects in CdZnTe are essential in Fermi level pinning at the middle of the bandgap and are responsible for incomplete charge collection and polarization effects. However, a deep level analysis in semi-insulating CdZnTe (CZT) is very difficult. Theoretical capacitance calculation for a metal/insulator/CZT (MIS) device with deep-level defects exhibits inflection points when the donor/acceptor level crosses the Fermi level in the surface-charge layer (SCL). Three CZTmore » samples with different resistivities, 2 × 10 4 (n-type), 2 × 10 6 (p-type), and 2 × 10 10 (p-type) Ω·cm, were used in fabricating the MIS devices. These devices showed several peaks in their capacitance measurements due to upward/downward band bending that depend on the surface potential. In conclusion, theoretical and experimental capacitance measurements were in agreement, except in the fully compensated case.« less
Analysis of Deep and Shallow Traps in Semi-Insulating CdZnTe
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kim, Kihyun; Yoon, Yongsu; James, Ralph B.
Trap levels which are deep or shallow play an important role in the electrical and the optical properties of a semiconductor; thus, a trap level analysis is very important in most semiconductor devices. Deep-level defects in CdZnTe are essential in Fermi level pinning at the middle of the bandgap and are responsible for incomplete charge collection and polarization effects. However, a deep level analysis in semi-insulating CdZnTe (CZT) is very difficult. Theoretical capacitance calculation for a metal/insulator/CZT (MIS) device with deep-level defects exhibits inflection points when the donor/acceptor level crosses the Fermi level in the surface-charge layer (SCL). Three CZTmore » samples with different resistivities, 2 × 10 4 (n-type), 2 × 10 6 (p-type), and 2 × 10 10 (p-type) Ω·cm, were used in fabricating the MIS devices. These devices showed several peaks in their capacitance measurements due to upward/downward band bending that depend on the surface potential. In conclusion, theoretical and experimental capacitance measurements were in agreement, except in the fully compensated case.« less
Defect-related photoluminescence in Mg-doped GaN nanostructures
NASA Astrophysics Data System (ADS)
Reshchikov, M. A.; Shahedipour-Sandvik, F.; Messer, B. J.; Jindal, V.; Tripathi, N.; Tungare, M.
2009-12-01
Thin film of GaN:Mg, pyramidal GaN:Mg on GaN, sapphire and AlN substrates were grown in a MOCVD system under same growth conditions and at the same time. In samples with Mg-doped GaN pyramids on GaN:Si template a strong ultraviolet (UVL) band with few phonon replicas dominated at low temperature and was attributed to transitions from shallow donors to shallow Mg acceptor. In samples grown on sapphire and AlN substrates the UVL band appeared as a structureless band with the maximum at about 3.25 eV. There is a possibility that the structureless UVL band and the UVL band with phonon structure have different origin. In addition to the UVL band, the blue luminescence (BL) band peaking at 2.9 eV was observed in samples representing GaN:Mg pyramids on GaN:Si substrate. It is preliminary attributed to transitions from shallow donors to Zn acceptor in GaN:Si substrate.
Electronic spectrum of non-tetrahedral acceptors in CdTe:Cl and CdTe:Bi,Cl single crystals
DOE Office of Scientific and Technical Information (OSTI.GOV)
Krivobok, V. S., E-mail: krivobok@lebedev.ru; Moscow Institute of Physics and Technology; Nikolaev, S. N.
2016-02-07
The electronic spectra of complex acceptors in compensated CdTe:Cl, CdTe:Ag,Cl, and CdTe:Bi,Cl single crystals are studied using low-temperature photoluminescence (PL) measurements under both nonresonant and resonant excitation of distant donor–acceptor pairs (DAP). The wavelength modulation of the excitation source combined with the analysis of the differential PL signal is used to enhance narrow spectral features obscured because of inhomogeneous line broadening and/or excitation transfer for selectively excited DAPs. For the well-known tetrahedral (T{sub D}) Ag{sub Cd} acceptor, the energies of four excited states are measured, and the values obtained are shown to be in perfect agreement with the previous data.more » Moreover, splitting between the 2P{sub 3/2} (Γ{sub 8}) and 2S{sub 3/2} (Γ{sub 8}) states is clearly observed for Ag{sub Cd} centers located at a short distance (5–7 nm) from a hydrogen-like donor (Cl{sub Te}). This splitting results from the reduction of the T{sub D} symmetry taking place when the acceptor is a member of a donor–acceptor pair. For the Cl-related complex acceptor with an activation energy of ∼121 meV (A-center), the energies of eight excited states are measured. It is shown that this defect produces low-symmetry central-cell correction responsible for the strong splitting of S-like T{sub D} shells. The energy spectrum of the Bi-related shallow acceptor with an activation energy of ∼36 meV is measured as well. The spectrum obtained differs drastically from the hydrogen-like set of levels, which indicates the existence of repulsive low-symmetry perturbation of the hydrogen-like Coulomb potential. It is also shown that the spectra of selectively excited PL recorded for a macroscopic ensemble of distant donor–acceptor pairs allow one to detect the low symmetry of acceptors of a given type caused by their complex nature or by the Jahn–Teller distortion. This method does not require any additional (external) field and is applicable to acceptors in diverse zinc-blende compound semiconductors.« less
Characterization of Deep and Shallow Levels in GaN
NASA Astrophysics Data System (ADS)
Wessels, Bruce
1997-03-01
The role of native defects and impurities in compensating n-type GaN was investigated. From the observed dependence of carrier concentration on dopant partial pressure the compensating acceptor in n-type material is attributed to the triply charged gallium vacancy. This is consistent with recent calculations on defect stability using density functional theory. The interaction of hydrogen and point defects in GaN was also investigated using FTIR. The role of these defects in compensation will be discussed.
Point defects in ZnO: an approach from first principles
Oba, Fumiyasu; Choi, Minseok; Togo, Atsushi; Tanaka, Isao
2011-01-01
Recent first-principles studies of point defects in ZnO are reviewed with a focus on native defects. Key properties of defects, such as formation energies, donor and acceptor levels, optical transition energies, migration energies and atomic and electronic structure, have been evaluated using various approaches including the local density approximation (LDA) and generalized gradient approximation (GGA) to DFT, LDA+U/GGA+U, hybrid Hartree–Fock density functionals, sX and GW approximation. Results significantly depend on the approximation to exchange correlation, the simulation models for defects and the post-processes to correct shortcomings of the approximation and models. The choice of a proper approach is, therefore, crucial for reliable theoretical predictions. First-principles studies have provided an insight into the energetics and atomic and electronic structures of native point defects and impurities and defect-induced properties of ZnO. Native defects that are relevant to the n-type conductivity and the non-stoichiometry toward the O-deficient side in reduced ZnO have been debated. It is suggested that the O vacancy is responsible for the non-stoichiometry because of its low formation energy under O-poor chemical potential conditions. However, the O vacancy is a very deep donor and cannot be a major source of carrier electrons. The Zn interstitial and anti-site are shallow donors, but these defects are unlikely to form at a high concentration in n-type ZnO under thermal equilibrium. Therefore, the n-type conductivity is attributed to other sources such as residual impurities including H impurities with several atomic configurations, a metastable shallow donor state of the O vacancy, and defect complexes involving the Zn interstitial. Among the native acceptor-type defects, the Zn vacancy is dominant. It is a deep acceptor and cannot produce a high concentration of holes. The O interstitial and anti-site are high in formation energy and/or are electrically inactive and, hence, are unlikely to play essential roles in electrical properties. Overall defect energetics suggests a preference for the native donor-type defects over acceptor-type defects in ZnO. The O vacancy, Zn interstitial and Zn anti-site have very low formation energies when the Fermi level is low. Therefore, these defects are expected to be sources of a strong hole compensation in p-type ZnO. For the n-type doping, the compensation of carrier electrons by the native acceptor-type defects can be mostly suppressed when O-poor chemical potential conditions, i.e. low O partial pressure conditions, are chosen during crystal growth and/or doping. PMID:27877390
Free-Standing Undoped ZnO Microtubes with Rich and Stable Shallow Acceptors
Wang, Qiang; Yan, Yinzhou; Zeng, Yong; Lu, Yue; Chen, Liang; Jiang, Yijian
2016-01-01
Fabrication of reliable large-sized p-ZnO is a major challenge to realise ZnO-based electronic device applications. Here we report a novel technique to grow high-quality free-standing undoped acceptor-rich ZnO (A-ZnO) microtubes with dimensions of ~100 μm (in diameter) × 5 mm (in length) by optical vapour supersaturated precipitation. The A-ZnO exhibits long lifetimes (>1 year) against compensation/lattice-relaxation and the stable shallow acceptors with binding energy of ~127 meV are confirmed from Zn vacancies. The A-ZnO provides a possibility for a mimetic p-n homojunction diode with n+-ZnO:Sn. The high concentrations of holes in A-ZnO and electrons in n+-ZnO make the dual diffusion possible to form a depletion layer. The diode threshold voltage, turn-on voltage, reverse saturated current and reverse breakdown voltage are 0.72 V, 1.90 V, <10 μA and >15 V, respectively. The A-ZnO also demonstrates quenching-free donor-acceptor-pairs (DAP) emission located in 390–414 nm with temperature of 270–470 K. Combining the temperature-dependent DAP violet emission with native green emission, the visible luminescence of A-ZnO microtube can be modulated in a wide region of colour space across white light. The present work opens up new opportunities to achieve ZnO with rich and stable acceptors instead of p-ZnO for a variety of potential applications. PMID:27263856
Singh, A K; O'Donnell, K P; Edwards, P R; Lorenz, K; Kappers, M J; Boćkowski, M
2017-02-03
Although p-type activation of GaN by Mg underpins a mature commercial technology, the nature of the Mg acceptor in GaN is still controversial. Here, we use implanted Eu as a 'spectator ion' to probe the lattice location of Mg in doubly doped GaN(Mg):Eu. Photoluminescence spectroscopy of this material exemplifies hysteretic photochromic switching (HPS) between two configurations, Eu0 and Eu1(Mg), of the same Eu-Mg defect, with a hyperbolic time dependence on 'switchdown' from Eu0 to Eu1(Mg). The sample temperature and the incident light intensity at 355 nm tune the characteristic switching time over several orders of magnitude, from less than a second at 12.5 K, ~100 mW/cm 2 to (an estimated) several hours at 50 K, 1 mW/cm 2 . Linking the distinct Eu-Mg defect configurations with the shallow transient and deep ground states of the Mg acceptor in the Lany-Zunger model, we determine the energy barrier between the states to be 27.7(4) meV, in good agreement with the predictions of theory. The experimental results further suggest that at low temperatures holes in deep ground states are localized on N atoms axially bonded to Mg acceptors.
NASA Astrophysics Data System (ADS)
Zhang, Shengbai
2002-03-01
Recent advances in bipolar doping of wide gap semiconductors challenge our understanding of impurity and defect properties in these materials, as theories based on equilibrium thermodynamics cannot keep up with these recent developments. For ZnO, the puzzling experimental results involve doping with nitrogen(M. Joseph, H. Tabata, and T. Kawai, Jpn. J. Appl. Phys. 38), L1205 (1999)., arsenic(Y. R. Ryu, S. Zhu, D. C. Look, J. M. Wrobel, H. M. Jeong, and H. W. White, J. Crys. Growth 216), 330 (2000)., and phosphorus(T. Aoki, Y. Hatanaka, and D. C. Look, Appl. Phys. Lett. 76), 3257 (2000).. In this talk, I will discuss some recent theoretical efforts trying to explain the experiments by first-principles total energy calculations. I will first discuss the acceptor level positions for group I and group V impurities. A general trend is observed(C. H. Park, S. B. Zhang, and S.-H. Wei, submitted to Phys. Rev. B.) that substitutional group V impurities on O range from relatively deep (e.g. N) to very deep (e.g. P and As) with high formation energies, whereas substitutional group I impurities on Zn are shallow acceptors. However, substitutional group I impurities are unstable against the formation of interstitials that are donors. A careful examination of N doping in Ref. [1] suggests that one can kinetically suppress the formation of N2 molecules by engineering dopant sources/footnoteY. Yan, S. B. Zhang, and S. T. Pantelides, Phys. Rev. Lett. 86, 5723 (2001).. This leads to significantly enhanced N solubility and hence p-type ZnO. For As [2], our preliminary studies show that the formation energy of AsO is so high that it is an exothermic process to form low-energy complexes that act effectively as relatively shallow acceptors.
Arsenic doped p-type zinc oxide films grown by radio frequency magnetron sputtering
NASA Astrophysics Data System (ADS)
Fan, J. C.; Zhu, C. Y.; Fung, S.; Zhong, Y. C.; Wong, K. S.; Xie, Z.; Brauer, G.; Anwand, W.; Skorupa, W.; To, C. K.; Yang, B.; Beling, C. D.; Ling, C. C.
2009-10-01
As-doped ZnO films were grown by the radio frequency magnetron sputtering method. As the substrate temperature during growth was raised above ˜400 °C, the films changed from n type to p type. Hole concentration and mobility of ˜6×1017 cm-3 and ˜6 cm2 V-1 s-1 were achieved. The ZnO films were studied by secondary ion mass spectroscopy, x-ray photoelectron spectroscopy (XPS), low temperature photoluminescence (PL), and positron annihilation spectroscopy (PAS). The results were consistent with the AsZn-2VZn shallow acceptor model proposed by Limpijumnong et al. [Phys. Rev. Lett. 92, 155504 (2004)]. The results of the XPS, PL, PAS, and thermal studies lead us to suggest a comprehensive picture of the As-related shallow acceptor formation.
Photorefractive Properties of Doped BaTiO3 and SBN
1991-12-01
couple these competing effects. The first measurements of the photoinduced absorption in BaTiO 3 were performed by Motes et al 6 8 and Brost et al. 9...Mahgereftireh and Brost . 17 play a rolh in liTh phiothtoitittt absorption. If the shallow acceptor levels were the source of the p)hotoivi’ucetil a...Opt. Soc. Am. B4, 1379 (1987) 8. A. Motes, G. Brost , J. Rotge, and J. Kim, Opt. Lett. 13, 509 (1988) 9. G. A. Brost , R. A. Motes, and J. R. Rotge. J
On the behaviour and origin of the major deep level (EL2) in GaAs
NASA Technical Reports Server (NTRS)
Lagowski, J.; Parsey, J. M.; Kaminska, M.; Wada, K.; Gatos, H. C.
1982-01-01
In an extensive crystal growth and characterization study of Bridgman-grown GaAs it was established that the following factors affect the concentration of the EL2 level: (1) the As pressure during growth; (2) the partial pressure of Ga2O; (3) the concentration of shallow donors and acceptors; and (4) the post-growth cooling cycle. The role of these factors is qualitatively and quantitatively explained by attributing the 0.82 eV donor state to the antisite defect As-sub-Ga formed as a result of Ga-vacancy migration during the post-growth cooling of the crystals.
Polytype transition of N-face GaN:Mg from wurtzite to zinc-blende
NASA Astrophysics Data System (ADS)
Monroy, E.; Hermann, M.; Sarigiannidou, E.; Andreev, T.; Holliger, P.; Monnoye, S.; Mank, H.; Daudin, B.; Eickhoff, M.
2004-10-01
We have investigated the polytype conversion of a GaN film from N-face wurtzite (2H) to zinc-blende (3C) structure due to Mg doping during growth by plasma-assisted molecular-beam epitaxy. Structural analysis by high-resolution transmission electron microscopy and high-resolution x-ray diffraction measurement revealed alignment of the cubic phase with the [111] axis perpendicular to the substrate surface. The optical characteristics of GaN:Mg layers are shown to be very sensitive to the presence of the cubic polytype. For low Mg doping, photoluminescence is dominated by a phonon-replicated donor-acceptor pair at ˜3.25eV, related to the shallow Mg acceptor level, accompanied by a narrow excitonic emission. For high Mg doping, the photoluminescence spectra are also dominated by a line around 3.25eV, but this emission displays the behavior of excitonic luminescence from cubic GaN. A cubic-related donor-acceptor transition at ˜3.16eV is also observed, together with a broad blue band around 2.9eV, previously reported in heavily Mg-doped 3C-GaN(001).
Magnesium acceptor in gallium nitride. I. Photoluminescence from Mg-doped GaN
NASA Astrophysics Data System (ADS)
Reshchikov, M. A.; Ghimire, P.; Demchenko, D. O.
2018-05-01
Defect-related photoluminescence (PL) is analyzed in detail for n -type, p -type, and semi-insulating Mg-doped GaN grown by different techniques. The ultraviolet luminescence (UVL) band is the dominant PL band in conductive n -type and p -type GaN:Mg samples grown by hydride vapor phase epitaxy (HVPE) and molecular beam epitaxy. The UVL band in undoped and Mg-doped GaN samples is attributed to the shallow M gGa acceptor with the ionization energy of 223 meV. In semi-insulating GaN:Mg samples, very large shifts of the UVL band (up to 0.6 eV) are observed with variation of temperature or excitation intensity. The shifts are attributed to diagonal transitions, likely due to potential fluctuations or near-surface band bending. The blue luminescence (B LMg ) band is observed only in GaN:Mg samples grown by HVPE or metalorganic chemical vapor deposition when the concentration of Mg exceeds 1019c m-3 . The B LMg band is attributed to electron transitions from an unknown deep donor to the shallow M gGa acceptor. Basic properties of the observed PL are explained with a phenomenological model.
Intrinsic and extrinsic doping of ZnO and ZnO alloys
NASA Astrophysics Data System (ADS)
Ellmer, Klaus; Bikowski, André
2016-10-01
In this article the doping of the oxidic compound semiconductor ZnO is reviewed with special emphasis on n-type doping. ZnO naturally exhibits n-type conductivity, which is used in the application of highly doped n-type ZnO as a transparent electrode, for instance in thin film solar cells. For prospective application of ZnO in other electronic devices (LEDs, UV photodetectors or power devices) p-type doping is required, which has been reported only minimally. Highly n-type doped ZnO can be prepared by doping with the group IIIB elements B, Al, Ga, and In, which act as shallow donors according to the simple hydrogen-like substitutional donor model of Bethe (1942 Theory of the Boundary Layer of Crystal Rectifiers (Boston, MA: MIT Rad Lab.)). Group IIIA elements (Sc, Y, La etc) are also known to act as shallow donors in ZnO, similarly explainable by the shallow donor model of Bethe. Some reports showed that even group IVA (Ti, Zr, Hf) and IVB (Si, Ge) elements can be used to prepare highly doped ZnO films—which, however, can no longer be explained by the simple hydrogen-like substitutional donor model. More probably, these elements form defect complexes that act as shallow donors in ZnO. On the other hand, group V elements on oxygen lattice sites (N, P, As, and Sb), which were viewed for a long time as typical shallow acceptors, behave instead as deep acceptors, preventing high hole concentrations in ZnO at room temperature. Also, ‘self’-compensation, i.e. the formation of a large number of intrinsic donors at high acceptor concentrations seems to counteract the p-type doping of ZnO. At donor concentrations above about 1020 cm-3, the electrical activation of the dopant elements is often less than 100%, especially in polycrystalline thin films. Reasons for the electrical deactivation of the dopant atoms are (i) the formation of dopant-defect complexes, (ii) the compensation of the electrons by acceptors (Oi, VZn) or (iii) the formation of secondary phases, for instance Al2O3, Ga2O3 etc. The strong influence of the different deposition methods and annealing conditions on the doping of ZnO is discussed. This review shows that, though it is one of the best-investigated oxide compound semiconductors over many decades, understanding of the details of the doping properties and mechanisms of zinc oxide is still in its infancy. Based on this review, prospective research opportunities are devised.
A photoluminescence study of the effects of hydrogen on deep levels in MBE grown GaAlAs:Si
NASA Astrophysics Data System (ADS)
Bosacchi, A.; Franchi, S.; Vanzetti, L.; Allegri, P.; Grilli, E.; Guzzi, M.; Zamboni, R.; Pavesi, L.
1991-04-01
We present a study on low-temperature photoluminescence (PL) of Si-doped Ga 1- xAl xAs ( n ~ 1 × 10 17 cm -3, 0.2 ⩽ x ⩽ 0.5) grown by MBE in the presence and in the absence of a hydrogen backpressure, and post-growth hydrogenated or not, by exposure to a hydrogen plasma. The PL spectra of GaAlAs grown without hydrogen are dominated by transitions involving relatively deep donors and/or acceptors independently on whether the material is post-growth hydrogenated. On the contrary, the spectra of GaAlAs grown in the presence of hydrogen are characterized by recombinations related to excitons and/or to shallow donors and acceptors. Both the in-situ and the ex-situ processes result in PL efficiency enhancements, which are definitely larger (by a factor of up to 20) when the former treatment is used. All of the above results suggest that the ex-situ and the in-situ treatments may affect deep levels of different origin, such as DX centers (related to the band structure of the semiconductor) and levels associated to Al-O complexes, respectively.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Peng, Yuan; Wang, Junling, E-mail: jlwang@ntu.edu.sg; Zheng, Jianwei
Single n-type dopant in CuO has either a deep donor level or limited solubility, inefficient in generating free electrons. We have performed ab-initio study of the donor-acceptor codoping to obtain n-type CuO. Our results show that N codoping can slightly improve the donor level of Zr and In by forming shallower n-type complexes (Zr{sub Cu}-N{sub O} and 2In{sub Cu}-N{sub O}), but their formation energies are too high to be realized in experiments. However, Li codoping with Al and Ga is found to be relatively easy to achieve. 2Al{sub Cu}-Li{sub Cu} and 2Ga{sub Cu}-Li{sub Cu} have shallower donor levels than singlemore » Al and Ga by 0.14 eV and 0.08 eV, respectively, and their formation energies are reasonably low to act as efficient codopants. Moreover, Li codoping with both Al and Ga produce an empty impurity band just below the host conduction band minimum, which may reduce the donor ionization energy at high codoping concentrations.« less
Two-level quenching of photoluminescence in hexagonal boron nitride micropowder
DOE Office of Scientific and Technical Information (OSTI.GOV)
Henaish, A. M. A.; Tanta University, Physics Department, Tanta, Egypt, 31527; Vokhmintsev, A. S.
2016-03-29
The processes of photoluminescence thermal quenching in the range RT – 800 K of h-BN micropowder in the 3.56 eV band were studied. It was found that two non-radiative channels of excitations relaxation with activation energies of 0.27 and 0.81 eV control the quenching for emission observed. It was assumed that emptying the shallow traps based on O{sub N}-centers characterized external quenching in RT – 530 K range and non-radiative mechanism of donor-acceptor recombination began to dominate at T > 530 K.
Hydrogen-related complexes in Li-diffused ZnO single crystals
NASA Astrophysics Data System (ADS)
Corolewski, Caleb D.; Parmar, Narendra S.; Lynn, Kelvin G.; McCluskey, Matthew D.
2016-07-01
Zinc oxide (ZnO) is a wide band gap semiconductor and a potential candidate for next generation white solid state lighting applications. In this work, hydrogen-related complexes in lithium diffused ZnO single crystals were studied. In addition to the well-known Li-OH complex, several other hydrogen defects were observed. When a mixture of Li2O and ZnO is used as the dopant source, zinc vacancies are suppressed and the bulk Li concentration is very high (>1019 cm-3). In that case, the predominant hydrogen complex has a vibrational frequency of 3677 cm-1, attributed to surface O-H species. When Li2CO3 is used, a structured blue luminescence band and O-H mode at 3327 cm-1 are observed at 10 K. These observations, along with positron annihilation measurements, suggest a zinc vacancy-hydrogen complex, with an acceptor level ˜0.3 eV above the valence-band maximum. This relatively shallow acceptor could be beneficial for p-type ZnO.
Strong compensation hinders the p-type doping of ZnO: a glance over surface defect levels
NASA Astrophysics Data System (ADS)
Huang, B.
2016-07-01
We propose a surface doping model of ZnO to elucidate the p-type doping and compensations in ZnO nanomaterials. With an N-dopant, the effects of N on the ZnO surface demonstrate a relatively shallow acceptor level in the band gap. As the dimension of the ZnO materials decreases, the quantum confinement effects will increase and render the charge transfer on surface to influence the shifting of Fermi level, by evidence of transition level changes of the N-dopant. We report that this can overwhelm the intrinsic p-type conductivity and transport of the ZnO bulk system. This may provide a possible route of using surface doping to modify the electronic transport and conductivity of ZnO nanomaterials.
How localized acceptors limit p-type conductivity in GaN
NASA Astrophysics Data System (ADS)
Lyons, John L.
2013-03-01
Despite the impressive development of GaN as an optoelectronic material, p-type conductivity is still limited. Only a single acceptor impurity, magnesium, is known to lead to p-type GaN. But Mg is far from a well-behaved acceptor. Hydrogen is known to passivate Mg, necessitating a post-growth anneal for acceptor activation. In addition, the ionization energy is quite large (~ 200 meV in GaN), meaning only a few percent of Mg acceptors are ionized at room temperature. Thus, hole conductivity is limited, and high concentrations of Mg are required to achieve moderately p-type GaN. Other acceptor impurities have not proven to be effective p-type dopants, for reasons that are still unresolved. Using advanced first-principles calculations based on a hybrid functional, we investigate the electrical and optical properties of the isolated Mg acceptor and its complexes with hydrogen in GaN, InN, and AlN.[2] We employ a technique that overcomes the band-gap-problem of traditional density functional theory, and allows for quantitative predictions of acceptor ionization energies and optical transition energies. Our results allow us to explain the deep or shallow nature of the Mg acceptor and its relation to the optical signals observed in Mg-doped GaN. We also revisit the properties of other group-II acceptors in GaN. We find that all cation-site acceptors show behavior similar to MgGa, and lead to highly localized holes. The ZnGa and BeGa acceptors have ionization energies that are even larger than that of Mg, making them ineffective dopants. All acceptors cause large lattice distortions in their neutral charge state, in turn leading to deep, broad luminescence signals that can serve as a means of experimentally verifying the deep nature of these acceptors. This work was performed in collaboration with Audrius Alkauskas, Anderson Janotti, and Chris G. Van de Walle. It was supported by the NSF and by the Solid State Lighting and Energy Center at UCSB.
NASA Astrophysics Data System (ADS)
Jia, Junjun; Suko, Ayaka; Shigesato, Yuzo; Okajima, Toshihiro; Inoue, Keiko; Hosomi, Hiroyuki
2018-01-01
We investigate the evolution behavior of defect structures and the subgap states in In-Ga-Zn oxide (IGZO) films with increasing postannealing temperature by means of extended x-ray absorption fine-structure (EXAFS) measurements, positron annihilation lifetime spectroscopy (PALS), and cathodoluminescence (CL) spectroscopy, aiming to understand the relationship between defect structures and subgap states. EXAFS measurements reveal the varied oxygen coordination numbers around cations during postannealing and confirm two types of point defects, namely, excess oxygen around Ga atoms and oxygen deficiency around In and/or Zn atoms. PALS suggests the existence of cation-vacancy (VM )-related clusters with neutral or negative charge in both amorphous and polycrystalline IGZO films. CL spectra show a main emission band at approximately 1.85 eV for IGZO films, and a distinct shoulder located at about 2.15 eV for IGZO films postannealed above 600 °C . These two emission bands are assigned to a recombination between the electrons in the conduction band and/or in the shallow donor levels near the conduction band and the acceptors trapped above the valence-band maximum. The shallow donors are attributed to the oxygen deficiency, and the acceptors are thought to possibly arise from the excess oxygen or the VM-related clusters. These results open up an alternative route for understanding the device instability of amorphous IGZO-based thin-film transistors, especially the presence of the neutral or negatively charged VM-related clusters in amorphous IGZO films.
Native defect properties and p -type doping efficiency in group-IIA doped wurtzite AlN
NASA Astrophysics Data System (ADS)
Zhang, Yong; Liu, Wen; Niu, Hanben
2008-01-01
Using the first-principles full-potential linearized augmented plane-wave (FPLAPW) method based on density functional theory (DFT), we have investigated the native defect properties and p -type doping efficiency in AlN doped with group-IIA elements such as Be, Mg, and Ca. It is shown that nitrogen vacancies (VN) have low formation energies and introduce deep donor levels in wurtzite AlN, while in zinc blende AlN and GaN, these levels are reported to be shallow. The calculated acceptor levels γ(0/-) for substitutional Be (BeAl) , Mg (MgAl) , and Ca (CaAl) are 0.48, 0.58, and 0.95eV , respectively. In p -type AlN, Be interstitials (Bei) , which act as donors, have low formation energies, making them a likely compensating center in the case of acceptor doping. Whereas, when N-rich growth conditions are applied, Bei are energetically not favorable. It is found that p -type doping efficiency of substitutional Be, Mg, and Ca impurities in w-AlN is affected by atomic size and electronegativity of dopants. Among the three dopants, Be may be the best candidate for p -type w-AlN . N-rich growth conditions help us to increase the concentration of BeAl , MgAl , and CaAl .
Correlated electron-hole mechanism for molecular doping in organic semiconductors
NASA Astrophysics Data System (ADS)
Li, Jing; D'Avino, Gabriele; Pershin, Anton; Jacquemin, Denis; Duchemin, Ivan; Beljonne, David; Blase, Xavier
2017-07-01
The electronic and optical properties of the paradigmatic F4TCNQ-doped pentacene in the low-doping limit are investigated by a combination of state-of-the-art many-body ab initio methods accounting for environmental screening effects, and a carefully parametrized model Hamiltonian. We demonstrate that while the acceptor level lies very deep in the gap, the inclusion of electron-hole interactions strongly stabilizes dopant-semiconductor charge transfer states and, together with spin statistics and structural relaxation effects, rationalize the possibility for room-temperature dopant ionization. Our findings reconcile available experimental data, shedding light on the partial vs. full charge transfer scenario discussed in the literature, and question the relevance of the standard classification in shallow or deep impurity levels prevailing for inorganic semiconductors.
Compensation and persistent photocapacitance in homoepitaxial Sn-doped β-Ga2O3
NASA Astrophysics Data System (ADS)
Polyakov, A. Y.; Smirnov, N. B.; Shchemerov, I. V.; Gogova, D.; Tarelkin, S. A.; Pearton, S. J.
2018-03-01
The electrical properties of epitaxial β-Ga2O3 doped with Sn (1016-9 × 1018 cm-3) and grown by metalorganic chemical vapor deposition on semi-insulating β-Ga2O3 substrates are reported. Shallow donors attributable to Sn were observed only in a narrow region near the film/substrate interface and with a much lower concentration than the total Sn density. For heavily Sn doped films (Sn concentration, 9 × 1018 cm-3), the electrical properties in the top portion of the layer were determined by deep centers with a level at Ec-0.21 eV not described previously. In more lightly doped layers, the Ec-0.21 eV centers and deeper traps at Ec-0.8 eV were present, with the latter pinning the Fermi level. Low temperature photocapacitance and capacitance voltage measurements of illuminated samples indicated the presence of high densities (1017-1018 cm-3) of deep acceptors with an optical ionization threshold of 2.3 eV. Optical deep level transient spectroscopy (ODLTS) and photoinduced current transient spectroscopy (PICTS) detected electron traps at Ec-0.8 eV and Ec-1.1 eV. For lightly doped layers, the compensation of film conductivity was mostly provided by the Ec-2.3 eV acceptors. For heavily Sn doped films, deep acceptor centers possibly related to Ga vacancies were significant. The photocapacitance and the photocurrent caused by illumination at low temperatures were persistent, with an optical threshold of 1.9 eV and vanished only at temperatures of ˜400 K. The capture barrier for electrons causing the persistent photocapacitance effect was estimated from ODLTS and PICTS to be 0.25-0.35 eV.
Donor assists acceptor binding and catalysis of human α1,6-fucosyltransferase.
Kötzler, Miriam P; Blank, Simon; Bantleon, Frank I; Wienke, Martin; Spillner, Edzard; Meyer, Bernd
2013-08-16
α1,6-Core-fucosyltransferase (FUT8) is a vital enzyme in mammalian physiological and pathophysiological processes such as tumorigenesis and progress of, among others, non-small cell lung cancer and colon carcinoma. It was also shown that therapeutic antibodies have a dramatically higher efficacy if the α1,6-fucosyl residue is absent. However, specific and potent inhibitors for FUT8 and related enzymes are lacking. Hence, it is crucial to elucidate the structural basis of acceptor binding and the catalytic mechanism. We present here the first structural model of FUT8 in complex with its acceptor and donor molecules. An unusually large acceptor, i.e., a hexasaccharide from the core of N-glycans, is required as minimal structure. Acceptor substrate binding of FUT8 is being dissected experimentally by STD NMR and SPR and theoretically by molecular dynamics simulations. The acceptor binding site forms an unusually large and shallow binding site. Binding of the acceptor to the enzyme is much faster and stronger if the donor is present. This is due to strong hydrogen bonding between O6 of the proximal N-acetylglucosamine and an oxygen atom of the β-phosphate of GDP-fucose. Therefore, we propose an ordered Bi Bi mechanism for FUT8 where the donor molecule binds first. No specific amino acid is present that could act as base during catalysis. Our results indicate a donor-assisted mechanism, where an oxygen of the β-phosphate deprotonates the acceptor. Knowledge of the mechanism of FUT8 is now being used for rational design of targeted inhibitors to address metastasis and prognosis of carcinomas.
Hydrogen-related complexes in Li-diffused ZnO single crystals
Corolewski, Caleb D.; Parmar, Narendra S.; Lynn, Kelvin G.; ...
2016-07-21
Zinc oxide (ZnO) is a wide band gap semiconductor and a potential candidate for next generation white solid state lighting applications. In this work, hydrogen-related complexes in lithium diffused ZnO single crystals were studied. In addition to the well-known Li-OH complex, several other hydrogen defects were observed. When a mixture of Li 2O and ZnO is used as the dopant source, zinc vacancies are suppressed and the bulk Li concentration is very high (>10 19 cm -3). In that case, the predominant hydrogen complex has a vibrational frequency of 3677 cm -1, attributed to surface O-H species. When Li 2COmore » 3 is used, a structured blue luminescence band and O-H mode at 3327 cm -1 are observed at 10K. These observations, along with positron annihilation measurements, suggest a zinc vacancy–hydrogen complex, with an acceptor level 0.3 eV above the valence-band maximum. In conclusion, this relatively shallow acceptor could be beneficial for p-type ZnO.« less
NASA Astrophysics Data System (ADS)
Sun, Y. Y.; Abtew, Tesfaye A.; Zhang, Peihong; Zhang, S. B.
2014-10-01
The behavior of cation substitutional hole doping in GaN and ZnO is investigated using hybrid density functional calculations. Our results reveal that Mg substitution for Ga (MgGa) in GaN can assume three different configurations. Two of the configurations are characterized by the formation of defect-bound small polaron (i.e., a large structural distortion accompanied by hole localization on one of the neighboring N atoms). The third one has a relatively small but significant distortion that is characterized by highly anisotropic polaron localization. In this third configuration, MgGa exhibits both effective-mass-like and noneffective-mass-like characters. In contrast, a similar defect in ZnO, LiZn, cannot sustain the anisotropic polaron in the hybrid functional calculation, but undergoes spontaneous breaking of a mirror symmetry through a mechanism driven by the hole localization. Finally, using NaZn in ZnO as an example, we show that the deep acceptor levels of the small-polaron defects could be made shallower by applying compressive strain to the material.
Magnetic resonance studies of the Mg acceptor in thick free-standing and thin-film GaN
NASA Astrophysics Data System (ADS)
Zvanut, Mary Ellen
Mg, the only effective p-type dopant for the nitrides, substitutes for Ga and forms an acceptor with a defect level of about 0.16 eV. The magnetic resonance of such a center should be highly anisotropic, yet early work employing both optically detected magnetic resonance (ODMR) and electron paramagnetic resonance (EPR) spectroscopies revealed a defect with a nearly isotropic g-tensor. The results were attributed to crystal fields caused by compensation and/or strain typical of the heteroepitaxially grown films. The theory was supported by observation of the expected highly anisotropic ODMR signature in homoepitaxially grown films in which dislocation-induced non-uniform strain and compensation are reduced. The talk will review EPR measurements of thin films and describe new work which takes advantage of the recently available thick free-standing GaN:Mg substrates grown by hydride vapor phase epitaxy (HVPE) and high nitrogen pressure solution growth (HNPS). Interestingly, the films and HVPE substrates exhibit characteristically different types of EPR signals, and no EPR response could be induced in the HNPS substrates, with or without illumination. In the heteroepitaxial films, a curious angular dependent line-shape is observed in addition to the nearly isotropic g-tensor characteristic of the Mg-related acceptor. On the other hand, the free-standing HVPE crystals reveal a clear signature of a highly anisotropic shallow acceptor center. Comparison with SIMS measurements implies a direct relation to the Mg impurity, and frequency-dependent EPR studies demonstrate the influence of the anisotropic crystal fields. Overall, the measurements of the thick free-standing crystals show that the Mg acceptor is strongly affected by the local environment. The ODMR was performed by Evan Glaser, NRL and the free-standing Mg-doped HVPE crystals were grown by Jacob Leach, Kyma Tech. The work at UAB is supported by NSF Grant No. DMR-1308446.
Osad'ko, I S; Shchukina, A L
2012-06-01
The influence of triplet levels on Förster resonance energy transfer via singlet levels in donor-acceptor (D-A) pairs is studied. Four types of D-A pair are considered: (i) two-level donor and two-level acceptor, (ii) three-level donor and two-level acceptor, (iii) two-level donor and three-level acceptor, and (iv) three-level donor and three-level acceptor. If singlet-triplet transitions in a three-level acceptor molecule are ineffective, the energy transfer efficiency E=I_{A}/(I_{A}+I_{D}), where I_{D} and I_{A} are the average intensities of donor and acceptor fluorescence, can be described by the simple theoretical equation E(F)=FT_{D}/(1+FT_{D}). Here F is the rate of energy transfer, and T_{D} is the donor fluorescence lifetime. In accordance with the last equation, 100% of the donor electronic energy can be transferred to an acceptor molecule at FT_{D}≫1. However, if singlet-triplet transitions in a three-level acceptor molecule are effective, the energy transfer efficiency is described by another theoretical equation, E(F)=F[over ¯](F)T_{D}/[1+F[over ¯](F)T_{D}]. Here F[over ¯](F) is a function of F depending on singlet-triplet transitions in both donor and acceptor molecules. Expressions for the functions F[over ¯](F) are derived. In this case the energy transfer efficiency will be far from 100% even at FT_{D}≫1. The character of the intensity fluctuations of donor and acceptor fluorescence indicates which of the two equations for E(F) should be used to find the value of the rate F. Therefore, random time instants of photon emission in both donor and acceptor fluorescence are calculated by the Monte Carlo method for all four types of D-A pair. Theoretical expressions for start-stop correlators (waiting time distributions) in donor and acceptor fluorescence are derived. The probabilities w_{N}^{D}(t) and w_{N}^{A}(t) of finding N photons of donor and acceptor fluorescence in the time interval t are calculated for various values of the energy transfer rate F and for all four types of D-A pair. Comparison of the calculated D and A fluorescence trajectories with those measured by Weiss and co-workers proves the important role of triplet levels in energy transfer via singlet levels.
Tight-Binding Description of Impurity States in Semiconductors
ERIC Educational Resources Information Center
Dominguez-Adame, F.
2012-01-01
Introductory textbooks in solid state physics usually present the hydrogenic impurity model to calculate the energy of carriers bound to donors or acceptors in semiconductors. This model treats the pure semiconductor as a homogeneous medium and the impurity is represented as a fixed point charge. This approach is only valid for shallow impurities…
Sb-related defects in Sb-doped ZnO thin film grown by pulsed laser deposition
NASA Astrophysics Data System (ADS)
Luo, Caiqin; Ho, Lok-Ping; Azad, Fahad; Anwand, Wolfgang; Butterling, Maik; Wagner, Andreas; Kuznetsov, Andrej; Zhu, Hai; Su, Shichen; Ling, Francis Chi-Chung
2018-04-01
Sb-doped ZnO films were fabricated on c-plane sapphire using the pulsed laser deposition method and characterized by Hall effect measurement, X-ray photoelectron spectroscopy, X-ray diffraction, photoluminescence, and positron annihilation spectroscopy. Systematic studies on the growth conditions with different Sb composition, oxygen pressure, and post-growth annealing were conducted. If the Sb doping concentration is lower than the threshold ˜8 × 1020 cm-3, the as-grown films grown with an appropriate oxygen pressure could be n˜4 × 1020 cm-3. The shallow donor was attributed to the SbZn related defect. Annealing these samples led to the formation of the SbZn-2VZn shallow acceptor which subsequently compensated for the free carrier. For samples with Sb concentration exceeding the threshold, the yielded as-grown samples were highly resistive. X-ray diffraction results showed that the Sb dopant occupied the O site rather than the Zn site as the Sb doping exceeded the threshold, whereas the SbO related deep acceptor was responsible for the high resistivity of the samples.
Origin and roles of oxygen impurities in hexagonal boron nitride epilayers
NASA Astrophysics Data System (ADS)
Grenadier, S. J.; Maity, A.; Li, J.; Lin, J. Y.; Jiang, H. X.
2018-04-01
Photoluminescence emission spectroscopy and electrical transport measurements have been employed to study the origin and roles of oxygen impurities in hexagonal boron nitride (h-BN) epilayers grown on sapphire substrates. The temperature dependence of the electrical resistivity revealed the presence of a previously unnoticed impurity level of about 0.6 eV in h-BN epilayers grown at high temperatures. The results suggested that in addition to the common nitrogen vacancy (VN) shallow donors in h-BN, oxygen impurities diffused from sapphire substrates during high temperature growth also act as substitutional donors (ON). The presence of ON gives rise to an additional emission peak in the photoluminescence spectrum, corresponding to a donor-acceptor pair recombination involving the ON donor and the CN (carbon occupying nitrogen site) deep level acceptor. Moreover, due to the presence of ON donors, the majority charge carrier type changed to electrons in epilayers grown at high temperatures, in contrast to typical h-BN epilayers which naturally exhibit "p-type" character. The results provided a more coherent picture for common impurities/defects in h-BN as well as a better understanding of the growth mediated impurities in h-BN epilayers, which will be helpful for finding possible ways to further improve the quality and purity of this emerging material.
Low temperature coefficient of resistance and high gage factor in beryllium-doped silicon
NASA Technical Reports Server (NTRS)
Robertson, J. B.; Littlejohn, M. A.
1974-01-01
The gage factor and resistivity of p-type silicon doped with beryllium was studied as a function of temperature, crystal orientation, and beryllium doping concentration. It was shown that the temperature coefficient of resistance can be varied and reduced to zero near room temperature by varying the beryllium doping level. Similarly, the magnitude of the piezoresistance gage factor for beryllium-doped silicon is slightly larger than for silicon doped with a shallow acceptor impurity such as boron, whereas the temperature coefficient of piezoresistance is about the same for material containing these two dopants. These results are discussed in terms of a model for the piezoresistance of compensated p-type silicon.
NASA Astrophysics Data System (ADS)
Xu, Ying; Li, Fei; Sheng, Wei; Nie, Guo-Zheng; Yuan, Ding-Wang
2014-03-01
The electronic structure and formation energies of Ni-doped CuAlO2 are calculated by first-principles calculations. Our results show that Ni is good for p-type doping in CuAlO2. When Ni is doped into CuAlO2, it prefers to substitute Al-site. NiAl is a shallow acceptor, while NiCu is a deep acceptor and its formation energy is high. Further electronic structure calculations show that strong hybridization happens between Ni-3d and O-2p states for Ni substituting Al-site, while localized Ni-3d states are found for Ni substituting Cu-site.
Acceptors in bulk and nanoscale ZnO
NASA Astrophysics Data System (ADS)
McCluskey, M. D.
2012-02-01
Zinc oxide (ZnO) is a semiconductor that emits bright UV light, with little wasted heat. This intrinsic feature makes it a promising material for energy-efficient white lighting, nano-lasers, and other optical applications. For devices to be competitive, however, it is necessary to develop reliable p-type doping. Although substitutional nitrogen has been considered as a potential p-type dopant for ZnO, theoretical and experimental work indicates that nitrogen is a deep acceptor and will not lead to p-type conductivity. This talk will highlight recent experiments on ZnO:N at low temperatures. A red/near-IR photoluminescence (PL) band is correlated with the presence of deep nitrogen acceptors. PL excitation (PLE) measurements show an absorption threshold of 2.26 eV, in good agreement with theory. Magnetic resonance experiments provide further evidence for this assignment. The results of these studies seem to rule out group-V elements as shallow acceptors in ZnO, contradicting numerous reports in the literature. If these acceptors do not work as advertised, is there a viable alternative? Optical studies on ZnO nanocrystals show some intriguing leads. At liquid-helium temperatures, a series of sharp IR absorption peaks arise from an unknown acceptor impurity. The data are consistent with a hydrogenic acceptor 0.46 eV above the valence band edge. While this binding energy is still too deep for many practical applications, it represents a significant improvement over the ˜ 1.3 eV binding energy for nitrogen acceptors. Nanocrystals present another twist. Due to their high surface-to-volume ratio, surface states are especially important. Specifically, electron-hole recombination at the surface give rises to a red luminescence band. From our PL and IR experiments, we have developed a ``unified'' model that attempts to explain acceptor and surface states in ZnO nanocrystals. This model could provide a useful framework for designing future nanoscale ZnO devices.
NASA Astrophysics Data System (ADS)
Bochet, O.; Dufresne, A.; Pédrot, M.; Chatton, E.; Labasque, T.; Ben Maamar, S.; Burté, L.; de la Bernardie, J.; Guihéneuf, N.; Lavenant, N.; Petton, C.; Bour, O.; Aquilina, L.; Le Borgne, T.
2015-12-01
Biofilms play a major role in controlling the fluxes and reactivity of chemical species transported in hydro-logical systems. Micro-organisms require both electron donors and electron acceptors for cellular growth, proliferation and maintenance of their metabolic functions. The mechanisms controlling these reactions derive from the interactions occurring at the micro-scale that depend on mineral compositions, the biota of subsurface environment, but also fluid mixing, which determines the local concentrations of nutriments, electron donors and electron acceptors. Hence, mixing zones between oxygen and nutriment rich shallow groundwater and mineralized deep groundwater are often considered as potential hotspots of microbial activity, although relatively few field data document flow distributions, transport properties, chemical gradients and micro-organisms distributions across these mixing interfaces. Here we investigate the origin of a localized biofilm development observed in the fractured granite aquifer at the Ploemeur observatory (H+ network hplus.ore.fr).This biofilm composed of ferro-oxidizing bacteria is observed in an 130m deep artesian well. Borehole video logs show an important colonization of the well by the biofilm in the shallower part (0 to 60m), while it is inexistent in the deeper part (60 to 130m). As flow is localized in a few deep and shallow fractures, we presume that the spatial distribution of biofilm is controlled by mixing between shallow and deep groundwater. To verify this hypothesis we conducted a field campaign with joint characterization of the flow and chemical composition of water flowing from the different fractures, as well as the microbiological composition of the biofilm at different depth, using pyrosequencing techniques. We will discuss in this presentation the results of this interdisciplinary dataset and their implications for the occurrence of hotspots of microbiological activity in the subsurface.
NASA Astrophysics Data System (ADS)
Cox, S. F. J.
2003-11-01
The structure and electrical activity of monatomic hydrogen defect centres are inferred from the spectroscopy and charge-state transitions of muonium, the light pseudo-isotope of hydrogen. Introductions are given to all these topics. Special attention is paid to the shallow-donor behaviour recently established in a number of II VI compounds and one III nitride. This contrasts with trapped-atom states suggestive of an acceptor function in other members of the II VI family as well as with the deep-level amphoteric behaviour which has long been known in the elemental group-IV semiconductors and certain III V compounds. The systematics of this remarkable shallow-to-deep instability are examined in terms of simple chemical considerations, as well as current theoretical and computational models. The muonium data appear to confirm predictions that the switch from shallow to deep behaviour is governed primarily by the depth of the conduction-band minimum below the vacuum continuum. The threshold electron affinity is around 3.5 eV, which compares favourably with computational estimates of a so-called pinning level for hydrogen (+/-) charge-state transitions of between -3 and -4.5 eV. A purely ionic model gives some intuitive understanding of this behaviour as well as the invariance of the threshold. Another current description applies equally to covalent materials and relates the threshold to the origin of the electrochemical scale. At the present level of approximation, zero-point energy corrections to the transition levels are small, so that muonium data should provide a reliable guide to the behaviour of hydrogen. Muonium spectroscopy proves to be more sensitive to the (0/+) donor level than to the (+/-) pinning level but, as a tool which does not rely on favourable hydrogen solubility, it looks set to test further predictions of these models in a large number of other materials, notably oxides. Certain candidate thin-film insulators and high-permittivity gate dielectrics appear to be uncomfortably close to conditions in which hydrogen impurity may cause electronic conduction.
Acceptor Type Vacancy Complexes In As-Grown ZnO
NASA Astrophysics Data System (ADS)
Zubiaga, A.; Tuomisto, F.; Zuñiga-Pérez, J.
2010-11-01
One of the many technological areas that ZnO is interesting for is the construction of opto-electronic devices working in the blue-UV range as its large band gap (˜3.4 eV at 10 K) makes them suitable for that purpose. As-grown ZnO shows generally n-type conductivity partially due to the large concentration of unintentional shallow donors, like H, but impurities can also form complexes with acceptor type defects (Zn vacancy) leading to the creation of compensating defects. Recently, LiZn and NaZn acceptors have been measured and H could form similar type of defects. Doppler Broadening Positron Annihilation spectroscopy experimental results on the observation of Zn related vacancy complexes in ZnO thin films, as-grown, O implanted and Al doped will be presented. Results show that as-grown ZnO film show small Zn vacancy related complexed that could be related to presence of H as a unintentional doping element.
GaAs-oxide interface states - Gigantic photoionization via Auger-like process
NASA Technical Reports Server (NTRS)
Lagowski, J.; Kazior, T. E.; Gatos, H. C.; Walukiewicz, W.; Siejka, J.
1981-01-01
Spectral and transient responses of photostimulated current in MOS structures were employed for the study of GaAs-anodic oxide interface states. Discrete deep traps at 0.7 and 0.85 eV below the conduction band were found with concentrations of 5 x 10 to the 12th/sq cm and 7 x 10 to the 11th/sq cm, respectively. These traps coincide with interface states induced on clean GaAs surfaces by oxygen and/or metal adatoms (submonolayer coverage). In contrast to surfaces with low oxygen coverage, the GaAs-thick oxide interfaces exhibited a high density (about 10 to the 14th/sq cm) of shallow donors and acceptors. Photoexcitation of these donor-acceptor pairs led to a gigantic photoionization of deep interface states with rates 1000 times greater than direct transitions into the conduction band. The gigantic photoionization is explained on the basis of energy transfer from excited donor-acceptor pairs to deep states.
NASA Astrophysics Data System (ADS)
Krupka, Jerzy; Zajåc, Marcin; Kucharski, Robert; Gryglewski, Daniel
2016-03-01
Permittivity, the dielectric loss tangent and conductivity of semi-insulating Gallium Nitride crystals have been measured as functions of frequency from 10 GHz to 50 GHz and temperature from 295 to 560 K employing quasi TE0np mode dielectric resonator technique. Crystals were grown using ammonothermal method. Two kinds of doping were used to obtain high resistivity crystals; one with deep acceptors in form of transition metal ions, and the other with shallow Mg acceptors. The sample compensated with transition metal ions exhibited semi-insulating behavior in the whole temperature range. The sample doped with Mg acceptors remained semi-insulating up to 390 K. At temperatures exceeding 390 K the conductivity term in the total dielectric loss tangent of Mg compensated sample becomes dominant and it increases exponentially with activation energy of 1.14 eV. It has been proved that ammonothermal method with appropriate doping allows growth of high quality, temperature stable semi-insulating GaN crystals.
NASA Astrophysics Data System (ADS)
To, C. K.; Yang, B.; Su, S. C.; Ling, C. C.; Beling, C. D.; Fung, S.
2011-12-01
Arsenic-doped ZnO films were fabricated by radio frequency magnetron sputtering method at a relatively low substrate temperature of 200 °C. Post-growth annealing in air was carried out up to a temperature of 1000 °C. The samples were characterized by Hall measurement, positron annihilation spectroscopy (PAS), secondary ion mass spectroscopy (SIMS), and cathodoluminescence (CL). The as-grown sample was of n-type and it converted to p-type material after the 400 °C annealing. The resulting hole concentration was found to increase with annealing temperature and reached a maximum of 6 × 1017 cm-3 at the annealing temperature of 600 °C. The origin of the p-type conductivity was consistent with the AsZn(VZn)2 shallow acceptor model. Further increasing the annealing temperature would decrease the hole concentration of the samples finally converted the sample back to n-type. With evidence, it was suggested that the removal of the p-type conductivity was due to the dissociation of the AsZn(VZn)2 acceptor and the creation of the deep level defect giving rise to the green luminescence.
Electrically active induced energy levels and metastability of B and N vacancy-complexes in 4H–SiC
NASA Astrophysics Data System (ADS)
Igumbor, E.; Olaniyan, O.; Mapasha, R. E.; Danga, H. T.; Omotoso, E.; Meyer, W. E.
2018-05-01
Electrically active induced energy levels in semiconductor devices could be beneficial to the discovery of an enhanced p or n-type semiconductor. Nitrogen (N) implanted into 4H–SiC is a high energy process that produced high defect concentrations which could be removed during dopant activation annealing. On the other hand, boron (B) substituted for silicon in SiC causes a reduction in the number of defects. This scenario leads to a decrease in the dielectric properties and induced deep donor and shallow acceptor levels. Complexes formed by the N, such as the nitrogen-vacancy centre, have been reported to play a significant role in the application of quantum bits. In this paper, results of charge states thermodynamic transition level of the N and B vacancy-complexes in 4H–SiC are presented. We explore complexes where substitutional N/N or B/B sits near a Si (V) or C (V) vacancy to form vacancy-complexes (NV, NV, NV, NV, BV, BV, BV and BV). The energies of formation of the N related vacancy-complexes showed the NV to be energetically stable close to the valence band maximum in its double positive charge state. The NV is more energetically stable in the double negative charge state close to the conduction band minimum. The NV on the other hand, induced double donor level and the NV induced a double acceptor level. For B related complexes, the BV and BV were energetically stable in their single positive charge state close to the valence band maximum. As the Fermi energy is varied across the band gap, the neutral and single negative charge states of the BV become more stable at different energy levels. B and N related complexes exhibited charge state controlled metastability behaviour.
Effects of Pressure on Optically Active Deep Levels in Phosphorus Doped ZnSe
NASA Astrophysics Data System (ADS)
Weinstein, B. A.; Iota, V.
1998-03-01
We report high pressure photoluminescence (PL) and PL-excitation (PLE) studies at 8K of the 'midgap' emission in P-doped ZnSe using a diamond-cell with He medium. The dominant emission at low pressure is due to donor-acceptor-pair (DAP) transitions between shallow donors and deep trigonally relaxed P_Se acceptors.(J. Davies, et al., J. Luminescence 18/19, 322 (1979)) Its PL and PLE peaks shift by 8.2meV/kbar and 5.9meV/kbar, respectively -- Stokes shift decreasing with pressure. At 35kbar a new PL band, shifting to lower energy (-5.4meV/kbar), emerges from above the absorption edge, and concurrently the original DAP PL quenches. This shows that a resonant level, a deep donor or possibly a P_Se antibonding state,(R. Watts, et al., Phys. Rev. B3), 404 (1971) crosses the conduction edge into the gap. A third PL band is seen only with internse UV excitation. It occurs initially as a high energy shoulder of the original DAP peak, but shifts more rapidly upward (9.4meV/kbar) until it crosses the edge and quenches at 40kbar. We discuss candidates for this band, including donor-P_Se complexes, and we compare our results to similar work on the Zn vacancy in ZnSe. (figures)
NASA Astrophysics Data System (ADS)
Lu, G. S.; Amend, J.; LaRowe, D.
2017-12-01
Chemolithoautotrophic microorganisms are important primary producers in hydrothermal environments. The potential catabolic energy sources that thermophilic chemolithoautotrophs can take advantage of can be quantified by combining analytical geochemical data and thermodynamic calculations. This approach explicitly considers how microbial communities are shaped by environmental conditions such as temperature, pressure, pH and the concentrations of electron donors and acceptors. In this study, we have calculated the Gibbs free energy available from 730 redox reactions in 30 terrestrial, shallow-sea, and deep-sea hydrothermal venting systems around the world (326 geochemical data sets) to better determine the relationship between microbial physiology and environment. The reactions with NO2-, O2, MnO2 and NO3- as terminal electron acceptors yield 5-20 kJ/mol e- more energy in terrestrial and shallow-sea hydrothermal systems than in deep-sea hydrothermal settings. However, reactions in which As5+, S0, FeS2 and SO42- as electron acceptors are more favorable by 5-30 kJ/mol e- in deep-sea hydrothermal systems than in the other two types of hydrothermal systems. The most exergonic reactions were predominantly NO2-, O2, MnO2 and NO3- reduction or Fe2+, pyrite, CO and CH4 oxidation. In contrast, reduction of N2, CO, and CO2 or oxidation of N2, Mn2+, and NO2-, though still often exergonic, yielded significantly less energy. Our results provide a comprehensive view of the distribution of energy supplies from redox reactions in high-temperature ecosystems on a global scale. Furthermore, the bioenergetic modeling carried out in this study can be used to test physiological predictions made from metagenomic and proteomic data sets, explore in situ biogeochemical interactions, predict possible but yet-to-be observed metabolisms and guide cultivation efforts.
A Quasi-Classical Model of the Hubbard Gap in Lightly Compensated Semiconductors
DOE Office of Scientific and Technical Information (OSTI.GOV)
Poklonski, N. A.; Vyrko, S. A.; Kovalev, A. I.
2016-03-15
A quasi-classical method for calculating the narrowing of the Hubbard gap between the A{sup 0} and A{sup +} acceptor bands in a hole semiconductor or the D{sup 0} and D{sup –} donor bands in an electron semiconductor is suggested. This narrowing gives rise to the phenomenon of a semiconductor transition from the insulator to metal state with an increase in doping level. The major (doping) impurity can be in one of three charge states (–1, 0, or +1), while the compensating impurity can be in states (+1) or (–1). The impurity distribution over the crystal is assumed to be randommore » and the width of Hubbard bands (levels), to be much smaller than the gap between them. It is shown that narrowing of the Hubbard gap is due to the formation of electrically neutral acceptor (donor) states of the quasicontinuous band of allowed energies for holes (electrons) from excited states. This quasicontinuous band merges with the top of the valence band (v band) for acceptors or with the bottom of the conduction band (c band) for donors. In other words, the top of the v band for a p-type semiconductor or the bottom of the c band for an n-type semiconductor is shifted into the band gap. The value of this shift is determined by the maximum radius of the Bohr orbit of the excited state of an electrically neutral major impurity atom, which is no larger than half the average distance between nearest impurity atoms. As a result of the increasing dopant concentration, the both Hubbard energy levels become shallower and the gap between them narrows. Analytical formulas are derived to describe the thermally activated hopping transition of holes (electrons) between Hubbard bands. The calculated gap narrowing with increasing doping level, which manifests itself in a reduction in the activation energy ε{sub 2} is consistent with available experimental data for lightly compensated p-Si crystals doped with boron and n-Ge crystals doped with antimony.« less
Finster, Kai; Bak, Friedhelm
1993-01-01
Anaerobic enrichment cultures with either propionate, succinate, lactate, or valerate and elemental sulfur and inocula from shallow marine or deep-sea sediments were dominated by rod-shaped motile bacteria after three transfers. By application of deep-agar dilutions, five eubacterial strains were obtained in pure culture and designated Kyprop, Gyprop, Kysw2, Gylac, and Kyval. All strains were gram negative and grew by complete oxidation of the electron donors and concomitant stoichiometric reduction of elemental sulfur to hydrogen sulfide. The isolates used acetate, propionate, succinate, lactate, pyruvate, oxaloacetate, maleate, glutamate, alanine, aspartate, and yeast extract. All isolates, except strain Gylac, used citrate as an electron donor but valerate was oxidized only by strain Kyval. Fumarate and malate were degraded by all strains without an additional electron donor or acceptor. Kyprop, Gyprop, and Gylac utilized elemental sulfur as the sole inorganic electron acceptor, while Kysw2 and Kyval also utilized nitrate, dimethyl sulfoxide, or Fe(III)-citrate as an electron acceptor. Images PMID:16348934
2006-11-01
shallow 120-meV acceptor and residual donor impurities. To produce low -absorption material for use in nonlinear optical devices, it is necessary to reduce...our knowledge, -20x higher than in previously reported works. This is accomplished by simply inserting a layer of low - index material (AlxOy) in the...and thin - film ferromagnetic semiconductors with Curie points above room temperature, and characterization of their magnetic and transport properties
Small molecule BODIPY dyes as non-fullerene acceptors in bulk heterojunction organic photovoltaics.
Poe, Ambata M; Della Pelle, Andrea M; Subrahmanyam, Ayyagari V; White, William; Wantz, Guillaume; Thayumanavan, S
2014-03-18
A series of acceptor-donor-acceptor molecules containing terminal BODIPY moieties conjugated through the meso position were synthesized. Deep LUMO energy levels and good visible absorption led to their use as acceptors in bulk heterojunction solar cells. Inverted devices were fabricated, reaching efficiencies as high as 1.51%.
Bhattacharyya, Sayan; Estrin, Yevgeni; Moshe, Ofer; Rich, Daniel H; Solovyov, Leonid A; Gedanken, A
2009-07-28
Zn(x)Cd(1-x)Se/C core/shell nanocrystals with 31-39 nm semiconducting core and 11-25 nm carbon shell were synthesized from solid state precursors in large scale amounts. A mixture of spherical and tripod nanostructures were obtained only in the one-step reaction (ZC3), where the Zn- and Cd-precursors were reacted simultaneously, rather than in the two step reactions (ZC1 and ZC2), where largely spherical nanostructures were observed. Rietveld analysis of the X-ray diffraction patterns of the samples prepared in three different ways, all under their autogenic pressure, reveal varying compositions of the Zn(x)Cd(1-x)Se nanocrystal core, where the cubic phases with higher Zn content were dominant compared to the hexagonal phases. Carbon encapsulation offers excellent protection to the nanocrystal core and is an added advantage for biological applications. Cathodoluminescence (CL) measurements with spatially integrated and highly localized excitations show distinct peaks and sharp lines at various wavelengths, representing emissions from single nanostructures possessing different compositions, phases, and sizes. Transmission electron microscopy (TEM) showed striations in the nanocrystals that are indicative of a composition modulation, and possibly reveal a phase separation and spinodal decomposition within the nanocrystals. Thermal quenching of the luminescence for both the near band-edge and defect related emissions were observed in the range 60-300 K. The measured activation energies of ∼50-70 meV were related to the presence of shallow donors or acceptors, deep level emissions, and thermal activation and quenching of the luminescence due to the thermal release of electrons from shallow donors to the conduction band or a thermal release of holes from shallow acceptors to the valence band. Spatially integrated CL spectra revealed the existence of broadening and additional components that are consistent with the presence of a composition modulation in the nanocrystals. Spatial localization of the emission in isolated single nanocrystals was studied using monochromatic CL imaging and local CL spectroscopy. CL spectra acquired by a highly localized excitation of individual nanocrystals showed energy shifts in the excitonic luminescence that are consistent with a phase separation into Zn- and Cd-rich regions. The simultaneous appearance of both structural and compositional phase separation for the synthesis of Zn(x)Cd(1-x)Se nanocrystals reveals the complexity and uniqueness of these results.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lamprecht, M., E-mail: matthias.lamprecht@uni-ulm.de; Grund, C.; Neuschl, B.
2016-04-21
We report on a defect related luminescence band at 2.4 eV in aluminum nitride bulk crystals, for which we find strong indications to be related to silicon DX centers. Time resolved photoluminescence spectroscopy using a sub-bandgap excitation reveals two different recombination processes with very long decay times of 13 ms and 153 ms at low temperature. Based on the results of temperature and excitation dependent photoluminescence experiments, the process with the shorter lifetime is assigned to a donor-acceptor pair transition involving the shallow silicon donor state, which can be emptied with a thermal dissociation energy of 65 meV. The slower process with a thermalmore » quenching energy of 15 meV is assigned to the slightly deeper Si DX state known from electron paramagnetic resonance experiments, which is transferred back to the shallow donor state.« less
Band edge states, intrinsic defects, and dopants in monolayer HfS2 and SnS2
NASA Astrophysics Data System (ADS)
Lu, Haichang; Guo, Yuzheng; Robertson, John
2018-02-01
Although monolayer HfS2 and SnS2 do not have a direct bandgap like MoS2, they have much higher carrier mobilities. Their band offsets are favorable for use with WSe2 in tunnel field effect transistors. Here, we study the effective masses, intrinsic defects, and substitutional dopants of these dichalcogenides. We find that HfS2 has surprisingly small effective masses for a compound that might appear partly ionic. The S vacancy in HfS2 is found to be a shallow donor while that in SnS2 is a deep donor. Substitutional dopants at the S site are found to be shallow. This contrasts with MoS2 where donors and acceptors are not always shallow or with black phosphorus where dopants can reconstruct into deep non-doping configurations. It is pointed out that HfS2 is more favorable than MoS2 for semiconductor processing because it has the more convenient CVD precursors developed for growing HfO2.
Tracking Hole Transport in DNA Hairpins Using a Phenylethynylguanine Nucleobase.
Brown, Kristen E; Singh, Arunoday P N; Wu, Yi-Lin; Mishra, Ashutosh Kumar; Zhou, Jiawang; Lewis, Frederick D; Young, Ryan M; Wasielewski, Michael R
2017-08-30
The hole transport dynamics of DNA hairpins possessing a stilbene electron acceptor and donor along with a modified guanine (G) nucleobase, specifically 8-(4'-phenylethynyl)deoxyguanosine, or EG, have been investigated. The nearly indistinguishable oxidation potentials of EG and G and unique spectroscopic characteristics of EG +• make it well-suited for directly observing transient hole occupation during charge transport between a stilbene electron donor and acceptor. In contrast to the cation radical G +• , EG +• possesses a strong absorption near 460 nm and has a distinct Raman-active ethynyl stretch. Both spectroscopic characteristics are easily distinguished from those of the stilbene donor/acceptor radical ion chromophores. Employing EG, we observe its role as a shallow hole trap, or as an intermediate hole transport site when a deeper trap state is present. Using a combination of ultrafast absorption and stimulated Raman spectroscopies, the hole-transport dynamics are observed to be similar in systems having EG vs G bases, with small perturbations to the charge transport rates and yields. These results show EG can be deployed at specified locations throughout the sequence to report on hole occupancy, thereby enabling detailed monitoring of the hole transport dynamics with base-site specificity.
Cozzarelli, I.M.; Herman, J.S.; Baedecker, M. Jo
1995-01-01
A combined field and laboratory study was undertaken to understand the distribution and geochemical conditions that influence the prevalence of low molecular weight organic acids in groundwater of a shallow aquifer contaminated with gasoline. Aromatic hydrocarbons from gasoline were degraded by microbially mediated oxidation-reduction reactions, including reduction of nitrate, sulfate, and Fe(III). The biogeochemical reactions changed overtime in response to changes in the hydrogeochemical conditions in the aquifer. Aliphatic and aromatic organic acids were associated with hydrocarbon degradation in anoxic zones of the aquifer. Laboratory microcosms demonstrated that the biogeochemical fate of specific organic acids observed in groundwater varied with the structure of the acid and the availability of electron acceptors. Benzoic and phenylacetic acid were degraded by indigenous aquifer microorganisms when nitrate was supplied as an electron acceptor. Aromatic acids with two or more methyl substituants on the benzene ring persisted under nitrate-reducing conditions. Although iron reduction and sulfate reduction were important processes in situ and occurred in the microcosms, these reactions were not coupled to the biological oxidation of aromatic organic acids that were added to the microcosms as electron donors. ?? 1995 American Chemical Society.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Maciaszek, M.; Zabierowski, P.
2016-06-07
In this contribution, we investigated by means of numerical simulations the influence of relaxation processes related to metastable defects on electrical characteristics of Cu(In,Ga)Se{sub 2}. In particular, we analyzed the relaxation of a metastable state induced by illumination at a fixed temperature as well as the dependence of the hole concentration on the temperature during cooling. The knowledge of these two relaxation processes is crucial in the evaluation of the hole concentration in the relaxed state and after light soaking. We have shown that the distribution of the metastable defects can be considered frozen below 200 K. The hole capture crossmore » section was estimated as ∼3 × 10{sup −15} cm{sup 2}. It was shown that the usually used cooling rates may lead to relevant changes of the hole concentration. We calculated the lower limit of the hole concentration after cooling, and we presented how it depends on densities of shallow acceptors and metastable defects. Moreover, we proposed a method which allows for the evaluation of shallow acceptor and metastable defect densities from two capacitance-voltage profiles measured in the relaxed and light soaking states. Finally, we indicated experimental conditions in which the influence of relaxation processes on the accuracy of this method is the smallest.« less
Rare earth substitutional impurities in germanium: A hybrid density functional theory study
NASA Astrophysics Data System (ADS)
Igumbor, E.; Omotoso, E.; Tunhuma, S. M.; Danga, H. T.; Meyer, W. E.
2017-10-01
The Heyd, Scuseria, and Ernzerhof (HSE06) hybrid functional by means of density functional theory has been used to model the electronic and structural properties of rare earth (RE) substitutional impurities in germanium (REGe) . The formation and charge state transition energies for the REGe (RE = Ce, Pr, Er and Eu) were calculated. The energy of formation for the neutral charge state of the REGe lies between -0.14 and 3.13 eV. The formation energy result shows that the Pr dopant in Ge (PrGe) has the lowest formation energy of -0.14 eV, and is most energetically favourable under equilibrium conditions. The REGe induced charge state transition levels within the band gap of Ge. Shallow acceptor levels were induced by both the Eu (EuGe) and Pr (PrGe) dopants in Ge. The CeGe and ErGe exhibited properties of negative-U ordering with effective-U values of -0.85 and -1.07 eV, respectively.
NASA Astrophysics Data System (ADS)
Reshchikov, M. A.; Demchenko, D. O.; Usikov, A.; Helava, H.; Makarov, Yu.
2015-03-01
We have investigated point defects in GaN grown by HVPE by using steady-state and time-resolved photoluminescence (PL). Among the most common PL bands in this material are the red luminescence band with a maximum at 1.8 eV and a zero-phonon line (ZPL) at 2.36 eV (attributed to an unknown acceptor having an energy level 1.130 eV above the valence band), the blue luminescence band with a maximum at 2.9 eV (attributed to ZnGa), and the ultraviolet luminescence band with the main peak at 3.27 eV (related to an unknown shallow acceptor). In GaN with the highest quality, the dominant defect-related PL band at high excitation intensity is the green luminescence band with a maximum at about 2.4 eV. We attribute this band to transitions of electrons from the conduction band to the 0/+ level of the isolated CN defect. The yellow luminescence (YL) band, related to transitions via the -/0 level of the same defect, has a maximum at 2.1 eV. Another yellow luminescence band, which has similar shape but peaks at about 2.2 eV, is observed in less pure GaN samples and is attributed to the CNON complex. In semi-insulating GaN, the GL2 band with a maximum at 2.35 eV (attributed to VN) and the BL2 band with a maximum at 3.0 eV and the ZPL at 3.33 eV (attributed to a defect complex involving hydrogen) are observed. We also conclude that the gallium vacancy-related defects act as centers of nonradiative recombination.
Far-Infrared Magneto-Optical Studies in Germanium and Indium-Antimonide at High Intensities
NASA Astrophysics Data System (ADS)
Leung, Michael
Observations of nonlinear magneto-optical phenomena occurring in p-type Germanium and n-type Indium Antimonide are reported. These include multi-photon ionization of impurity states, and a new observation, the magneto-photon ionization of impurity states, and a new observation, the magneto-photon drag effect. A novel source of far-infrared radiation has been used. This source uses a pulsed CO(,2) LASER to optically pump a super-radiant cell, generating light with intensities up to 100 KW/cm('2) and wavelengths from 66 (mu)m to 496 (mu)m in a pulse of 150 nanoseconds duration. The Germanium samples were doped with Gallium, which is a shallow acceptor with an ionization potential of 11 meV. At liquid Helium temperature virtually all charge carriers are bound to acceptor sites. However, the high intensity radiation unexpectedly ionizes the acceptors. This is demonstrated through measurements of photoconductivity, transmission and the photo-Hall Effect. This observation is unexpected because the photon energy is one-fourth the ionization potential. Rate equations describing sequential multiphoton excitations are in agreement with the experimental results. The intermediate states are postulated to be acceptor exciton band states. Studies of the photoexcited mobility at 496 (mu)m suggest that at non-saturating levels of photoexcitation, the primary scattering mechanism of hot holes in Germanium is by neutral impurities. A new magneto-optical effect, the magneto-photon drag effect, has been studied in both Germanium and Indium Antimonide. This is simply the absorption of momentum by free carriers, from an incident photon field. It has been found that the mechanism for this effect is different in the two materials. In Germanium, the effect occurs when carriers make optical transitions from the heavy hole band to the light hole band. Thus, the magneto-optical behavior depends heavily upon the band structure. On the other hand, a modified Drude model (independent electron) has been found to be reasonably successful in describing the effect in InSb. The inclusion of non-parabolicity and hot electron effects gives a consistent description of the experimental observations.
Chen, Dong; Yao, Jia; Chen, Lie; Yin, Jingping; Lv, Ruizhi; Huang, Bin; Liu, Siqi; Zhang, Zhi-Guo; Yang, Chunhe; Chen, Yiwang; Li, Yongfang
2018-04-16
All-polymer solar cells (all-PSCs) can offer unique advantages for applications in flexible devices, and naphthalene diimide (NDI)-based polymer acceptors are the widely used polymer acceptors. However, their power conversion efficiency (PCE) still lags behind that of state-of-the-art polymer solar cells, due to low light absorption, suboptimal energy levels and the strong aggregation of the NDI-based polymer acceptor. Herein, a rhodanine-based dye molecule was introduced into the NDI-based polymer acceptor by simple random copolymerization and showed an improved light absorption coefficient, an up-shifted lowest unoccupied molecular orbital level and reduced crystallization. Consequently, additive-free all-PSCs demonstrated a high PCE of 8.13 %, which is one of the highest performance characteristics reported for all-PSCs to date. These results indicate that incorporating a dye into the n-type polymer gives insight into the precise design of high-performance polymer acceptors for all-PSCs. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Tang, Guoping; Watson, David B; Wu, Wei-Min; Schadt, Christopher W; Parker, Jack C; Brooks, Scott C
2013-04-02
We amended a shallow fast-flowing uranium (U) contaminated aquifer with emulsified vegetable oil (EVO) and subsequently monitored the biogeochemical responses for over a year. Using a biogeochemical model developed in a companion article (Tang et al., Environ. Sci. Technol.2013, doi: 10.1021/es304641b) based on microcosm tests, we simulated geochemical and microbial dynamics in the field test during and after the 2-h EVO injection. When the lab-determined parameters were applied in the field-scale simulation, the estimated rate coefficient for EVO hydrolysis in the field was about 1 order of magnitude greater than that in the microcosms. Model results suggested that precipitation of long-chain fatty acids, produced from EVO hydrolysis, with Ca in the aquifer created a secondary long-term electron donor source. The model predicted substantial accumulation of denitrifying and sulfate-reducing bacteria, and U(IV) precipitates. The accumulation was greatest near the injection wells and along the lateral boundaries of the treatment zone where electron donors mixed with electron acceptors in the groundwater. While electron acceptors such as sulfate were generally considered to compete with U(VI) for electrons, this work highlighted their role in providing electron acceptors for microorganisms to degrade complex substrates thereby enhancing U(VI) reduction and immobilization.
Fullerene-bisadduct acceptors for polymer solar cells.
Li, Yongfang
2013-10-01
Polymer solar cells (PSCs) have drawn great attention in recent years for their simple device structure, light weight, and low-cost fabrication in comparison with inorganic semiconductor solar cells. However, the power-conversion efficiency (PCE) of PSCs needs to be increased for their future application. The key issue for improving the PCE of PSCs is the design and synthesis of high-efficiency conjugated polymer donors and fullerene acceptors for the photovoltaic materials. For the acceptor materials, several fullerene-bisadduct acceptors with high LUMO energy levels have demonstrated excellent photovoltaic performance in PSCs with P3HT as a donor. In this Focus Review, recent progress in high-efficiency fullerene-bisadduct acceptors is discussed, including the bisadduct of PCBM, indene-C60 bisadduct (ICBA), indene-C70 bisadduct (IC70BA), DMPCBA, NCBA, and bisTOQC. The LUMO levels and photovoltaic performance of these bisadduct acceptors with P3HT as a donor are summarized and compared. In addition, the applications of an ICBA acceptor in new device structures and with other conjugated polymer donors than P3HT are also introduced and discussed. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Tesoriero, A.J.; Spruill, T.B.; Eimers, J.L.
2004-01-01
Ground-water chemistry data from coastal plain environments have been examined to determine the geochemical conditions and processes that occur in these areas and assess their implications for aquifer susceptibility. Two distinct geochemical environments were studied to represent a range of conditions: an inner coastal plain setting having more well-drained soils and lower organic carbon (C) content and an outer coastal plain environment that has more poorly drained soils and high organic C content. Higher concentrations of most major ions and dissolved inorganic and organic C in the outer coastal plain setting indicate a greater degree of mineral dissolution and organic matter oxidation. Accordingly, outer coastal plain waters are more reducing than inner coastal plain waters. Low dissolved oxygen (O2) and nitrate (NO 3-) concentrations and high iron (Fe) concentrations indicate that ferric iron (Fe (III)) is an important electron acceptor in this setting, while dissolved O2 is the most common terminal electron acceptor in the inner coastal plain setting. The presence of a wide range of redox conditions in the shallow aquifer system examined here underscores the importance of providing a detailed geochemical characterization of ground water when assessing the intrinsic susceptibility of coastal plain settings. The greater prevalence of aerobic conditions in the inner coastal plain setting makes this region more susceptible to contamination by constituents that are more stable under these conditions and is consistent with the significantly (p<0.05) higher concentrations of NO3- found in this setting. Herbicides and their transformation products were frequently detected (36% of wells sampled), however concentrations were typically low (<0.1 ??g/L). Shallow water table depths often found in coastal plain settings may result in an increased risk of the detection of pesticides (e.g., alachlor) that degrade rapidly in the unsaturated zone.
NASA Astrophysics Data System (ADS)
Zheng, Yanqiong; Wang, Chao; Yu, Junle; Yang, Fang; Zhang, Jing; Wei, Bin; Li, Weishi
2017-11-01
To find the ideal acceptors for perovskite solar cells (PSCs) and get insight into the dielectric property at the interface between perovskite and acceptor, series of small molecular fullerene and non-fullerene acceptors were comparatively investigated. Fullerene acceptors based PSCs show higher performance than non-fullerene acceptors based PSCs. However, the perylene tetracarboxylic diimide based PSC has achieved a η PCE of 4.70%, implying that it is a promising acceptor candidate for PSCs because of its suitable energy level, high electron mobility, and smooth surface. By employing double acceptors of (6,6)-phenyl-C61-butyric acid methyl ester (PCBM)/C60 or PCBM/3,4,9,10-perylenetetracarboxylic bisbenzimidazole, the PSC stability is greatly improved even without performance enhancement. The perovskite (Pero)/PCBM film shows smooth surface, suggesting that PCBM penetrates into the Pero layer. The hydrophobicity trend of Pero/acceptor composite films is same as the device performance by judging from the water contact angle, and Pero/PCBM as well as Pero/C60 show higher hydrophobicity than other Pero/small-molecular-acceptor composite films. Capacitance-voltage characteristics of the series of single and double acceptor based PSCs were measured. The double acceptor based PSCs show larger depletion layer width (W d) than single acceptor based PSCs. Meanwhile, the defect density (N A) in Pero layer for single acceptor based PSCs is larger than that for double acceptor based PSCs, implying better n-doping of Pero layer by using a single acceptor.
NASA Astrophysics Data System (ADS)
Bochet, Olivier; Le Borgne, Tanguy; Pédrot, Mathieu; Labasque, Thierry; Lavenant, Nicolas; Petton, Christophe; Dufresne, Alexis; Ben Maamar, Sarah; Chatton, Eliot; De la Bernardie, Jérôme; Aquilina, Luc
2015-04-01
Biofilm development in a hotspot of mixing between shallow and deep groundwater in a fractured aquifer: field evidence from joint flow, chemical and microbiological characterization Olivier Bochet1, Tanguy Le Borgne1, Mathieu Pédrot1, Thierry Labasque1, Nicolas Lavenant1, Christophe Petton1, Alexis Dufresne2,Sarah Ben Maamar1-2, Eliot Chatton1, Jérôme de la Bernardie1, Luc Aquilina1 1: Géosciences Rennes, CNRS UMR 6118, Université de Rennes 1, Campus de Beaulieu bât 14B, Rennes, France 2: Ecobio, CNRS UMR 6553, Université de Rennes 1, Campus de Beaulieu, bât 14, Rennes, France Biofilms play a major role in controlling the fluxes and reactivity of chemical species transported in hydrological systems. Their development can have either positive impacts on groundwater quality (e.g. attenuation of contaminants under natural or stimulated conditions), or possible negative effects on subsurface operations (e.g. bio-clogging of geothermal dipoles or artificial recharge systems). Micro-organisms require both electron donors and electron acceptors for cellular growth, proliferation and maintenance of their metabolic functions. The mechanisms controlling these reactions derive from the interactions occurring at the micro-scale that depend on mineral compositions, the biota of subsurface environment, but also fluid mixing, which determines the local concentrations of nutriments, electron donors and electron acceptors. Hence, mixing zones between oxygen and nutriment rich shallow groundwater and mineralized deep groundwater are often considered as potential hotspots of microbial activity, although relatively few field data document flow distributions, transport properties, chemical gradients and micro-organisms distributions across these mixing interfaces. Here we investigate the origin of a localized biofilm development observed in the fractured granite aquifer at the Ploemeur observatory (H+ network hplus.ore.fr).This biofilm composed of ferro-oxidizing bacteria is observed in an 130m deep artesian well. Borehole video logs show an important colonization of the well by the biofilm in the shallower part (0 to 60m), while it is inexistent in the deeper part (60 to 130m). As flow is localized in a few deep and shallow fractures, we presume that the spatial distribution of biofilm is controlled by mixing between shallow and deep groundwater. To verify this hypothesis we conducted a field campaign with joint characterization of the flow and chemical composition of water flowing from the different fractures, as well as the microbiological composition of the biofilm at different depth, using pyrosequencing techniques. We will discuss in this presentation the results of this interdisciplinary dataset and their implications for the occurrence of hotspots of microbiological activity in the subsurface.
Non-Fullerene Electron Acceptors for Use in Organic Solar Cells
2015-01-01
Conspectus The active layer in a solution processed organic photovoltaic device comprises a light absorbing electron donor semiconductor, typically a polymer, and an electron accepting fullerene acceptor. Although there has been huge effort targeted to optimize the absorbing, energetic, and transport properties of the donor material, fullerenes remain as the exclusive electron acceptor in all high performance devices. Very recently, some new non-fullerene acceptors have been demonstrated to outperform fullerenes in comparative devices. This Account describes this progress, discussing molecular design considerations and the structure–property relationships that are emerging. The motivation to replace fullerene acceptors stems from their synthetic inflexibility, leading to constraints in manipulating frontier energy levels, as well as poor absorption in the solar spectrum range, and an inherent tendency to undergo postfabrication crystallization, resulting in device instability. New acceptors have to address these limitations, providing tunable absorption with high extinction coefficients, thus contributing to device photocurrent. The ability to vary and optimize the lowest unoccupied molecular orbital (LUMO) energy level for a specific donor polymer is also an important requirement, ensuring minimal energy loss on electron transfer and as high an internal voltage as possible. Initially perylene diimide acceptors were evaluated as promising acceptor materials. These electron deficient aromatic molecules can exhibit good electron transport, facilitated by close packed herringbone crystal motifs, and their energy levels can be synthetically tuned. The principal drawback of this class of materials, their tendency to crystallize on too large a length scale for an optimal heterojunction nanostructure, has been shown to be overcome through introduction of conformation twisting through steric effects. This has been primarily achieved by coupling two units together, forming dimers with a large intramolecular twist, which suppresses both nucleation and crystal growth. The generic design concept of rotationally symmetrical aromatic small molecules with extended π orbital delocalization, including polyaromatic hydrocarbons, phthalocyanines, etc., has also provided some excellent small molecule acceptors. In most cases, additional electron withdrawing functionality, such as imide or ester groups, can be incorporated to stabilize the LUMO and improve properties. New calamitic acceptors have been developed, where molecular orbital hybridization of electron rich and poor segments can be judiciously employed to precisely control energy levels. Conformation and intermolecular associations can be controlled by peripheral functionalization leading to optimization of crystallization length scales. In particular, the use of rhodanine end groups, coupled electronically through short bridged aromatic chains, has been a successful strategy, with promising device efficiencies attributed to high lying LUMO energy levels and subsequently large open circuit voltages. PMID:26505279
Origins of n -type doping difficulties in perovskite stannates
NASA Astrophysics Data System (ADS)
Weston, L.; Bjaalie, L.; Krishnaswamy, K.; Van de Walle, C. G.
2018-02-01
The perovskite stannates (A SnO3 ; A = Ba, Sr, Ca) are promising for oxide electronics, but control of n -type doping has proved challenging. Using first-principles hybrid density functional calculations, we investigate La dopants and explore the formation of compensating acceptor defects. We find that La on the A site always behaves as a shallow donor, but incorporation of La on the Sn site can lead to self-compensation. At low La concentrations and in O-poor conditions, oxygen vacancies form in BaSnO3. A -site cation vacancies are found to be dominant among the native compensating centers. Compared to BaSnO3, charge compensation is a larger problem for the wider-band-gap stannates, SrSnO3 and CaSnO3, a trend we can explain based on conduction-band alignments. The formation of compensating acceptor defects can be inhibited by choosing oxygen-poor (cation-rich) growth or annealing conditions, thus providing a pathway for improved n -type doping.
ESR study of p-type natural 2H-polytype MoS2 crystals: The As acceptor activity
NASA Astrophysics Data System (ADS)
Stesmans, A.; Iacovo, S.; Afanas'ev, V. V.
2016-10-01
Low-temperature (T = 1.7-77 K) multi frequency electron spin resonance (ESR) study on p-type 2H-polytype geological MoS2 crystals reveals p-type doping predominantly originating from As atoms substituting for S sites in densities of (2.4 ± 0.2) × 1017 cm-3. Observation of a "half field"(g ˜ 3.88) signal firmly correlating with the central Zeeman As accepter signal indicates the presence of spin S > ½ As agglomerates, which together with the distinct multicomponent makeup of the Zeeman signal points to manifest non-uniform As doping; only ˜13% of the total As response originates from individual decoupled As dopants. From ESR monitoring the latter vs. T, an activation energy Ea = (0.7 ± 0.2) meV is obtained. This unveils As as a noticeable shallow acceptor dopant, appropriate for realization of effective p-type doping in targeted 2D MoS2-based switching devices.
Ferromagnetism in two-dimensional hole-doped SnO
NASA Astrophysics Data System (ADS)
Houssa, M.; Iordanidou, K.; Pourtois, G.; Afanas'ev, V. V.; Stesmans, A.
2018-05-01
Hole-doped monolayer SnO has been recently predicted to be a ferromagnetic material, for a hole density typically above 5x1013/cm2. The possibility to induce a hole-doped stable ferromagnetic order in this two-dimensional material, either by intrinsic or extrinsic defects, is theoretically studied, using first-principles simulations. Sn vacancies and Sn vacancy-hydrogen complexes are predicted to be shallow acceptors, with relatively low formation energies in SnO monolayers grown under O-rich conditions. These defects produce spin-polarized gap states near the valence band-edge, potentially stabilizing the ferromagnetic order in 2D SnO. Hole-doping resulting from substitutional doping is also investigated. Among the considered possible dopants, As, substituting O, is predicted to produce shallow spin-polarized gap states near the valence band edge, also potentially resulting in a stable ferromagnetic order in SnO monolayers.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Julkarnain, M., E-mail: s13ds053@mail.saitama-u.ac.jp, E-mail: jnain.apee@ru.ac.bd; Department of Applied Physics and Electronic Engineering, University of Rajshahi, Rajshahi 6205; Fukuda, T.
2015-11-23
The behavior of below-gap luminescence of undoped GaN grown by MOCVD has been studied by the scheme of two-wavelength-excited photoluminescence. The emission intensity of shallow donor to valence band transition (I{sub OX}) increased while intensities of donor-acceptor pair transition and the Yellow Luminescence band (YLB) decreased after the irradiation of a below-gap excitation source of 1.17 eV. The conventional energy schemes and recombination models have been considered to explain our experimental result but only one model in which YLB is the transition of a shallow donor to a deep state placed at ∼1 eV above the valence band maximum satisfies our result.more » The defect related parameters that give a qualitative insight in the samples have been evaluated by systematically solving the rate equations and fitting the result with the experiment.« less
Low-temperature emission of Al0.48In0.52As under high pressures
NASA Astrophysics Data System (ADS)
Zhou, H. P.; Sotomayor Torres, C. M.
1994-04-01
We investigated the low-temperature emission of Al0.48In0.52As under high pressures from 1 bar up to 92 kbar, paying special attention to the changes in luminescence mechanisms that occur concurrently with the crossover between the Γ- and the X-related states. By investigating the temperature and excitation power dependence of the photoluminescence together with the photoluminescence excitation, we demonstrate the low-temperature emission of Al0.48In0.52As is due to neutral donor-acceptor-pair (D0,A0) transitions with a relatively deep acceptor. This occurs in both the Γ- and the X-related states. We suggest the shallow donor ground states associated with the X and the Γ conduction bands seem to be tied quite rigidly to these conduction bands. Variations in the donor binding energies with the pressure and the Γ-X related state crossover seem to be minor. The linear pressure coefficients αΓ and αX of the (D0,A0) related to the Γ and the X levels in the conduction band are 7.9±0.1 and -2.9±0.1 meV/kbar, respectively. The Γ-X related state crossover occurs at ˜52.5±0.5 kbar at 2 K. The direct band gap EΓg and the indirect band gap Exg of Al0.48In0.52As are ˜1.61 and ˜2.17 eV at 1 bar and 2 K, respectively.
NASA Astrophysics Data System (ADS)
Shi, H.-L.; Duan, Y.
2008-12-01
Using a first-principles band-structure method and a special quasirandom structure (SQS) approach, we systematically calculate the band gap bowing parameters and p-type doping properties of (Zn, Mg, Be)O related random ternary and quaternary alloys. We show that the bowing parameters for ZnBeO and MgBeO alloys are large and dependent on composition. This is due to the size difference and chemical mismatch between Be and Zn(Mg) atoms. We also demonstrate that adding a small amount of Be into MgO reduces the band gap indicating that the bowing parameter is larger than the band-gap difference. We select an ideal N atom with lower p atomic energy level as dopant to perform p-type doping of ZnBeO and ZnMgBeO alloys. For N doped in ZnBeO alloy, we show that the acceptor transition energies become shallower as the number of the nearest neighbor Be atoms increases. This is thought to be because of the reduction of p- d repulsion. The NO acceptor transition energies are deep in the ZnMgBeO quaternary alloy lattice-matched to GaN substrate due to the lower valence band maximum. These decrease slightly as there are more nearest neighbor Mg atoms surrounding the N dopant. The important natural valence band alignment between ZnO, MgO, BeO, ZnBeO, and ZnMgBeO quaternary alloy is also investigated.
Mccluskey, Matthew D.; Corolewski, Caleb; Lv, Jinpeng; ...
2015-03-21
Zinc oxide (ZnO) has potential for a range of applications in the area of optoelectronics. The quest for p-type ZnO has focused much attention on acceptors. In this paper, Cu, N, and Li acceptor impurities are discussed. Experimental evidence shows that these point defects have acceptor levels 3.2, 1.5, and 0.8 eV above the valence-band maximum, respectively. The levels are deep because the ZnO valence band is quite low compared to conventional, non-oxide semiconductors. Using MoO2 contacts, the electrical resistivity of ZnO:Li was measured and showed behavior consistent with bulk hole conduction for temperatures above 400 K. A photoluminescence peakmore » in ZnO nanocrystals has been attributed to an acceptor, which may involve a zinc vacancy. High field (W-band) electron paramagnetic resonance measurements on the nanocrystals revealed an axial center with g = 2.0033 and g = 2.0075, along with an isotropic center at g = 2.0053.« less
Kan, Bin; Feng, Huanran; Wan, Xiangjian; Liu, Feng; Ke, Xin; Wang, Yanbo; Wang, Yunchuang; Zhang, Hongtao; Li, Chenxi; Hou, Jianhui; Chen, Yongsheng
2017-04-05
A new nonfullerene small molecule with acceptor-donor-acceptor (A-D-A) structure, namely, NFBDT, based on a heptacyclic benzodi(cyclopentadithiophene) (FBDT) unit using benzo[1,2-b:4,5-b']dithiophene as the core unit, was designed and synthesized. Its absorption ability, energy levels, thermal stability, as well as photovoltaic performances were fully investigated. NFBDT exhibits a low optical bandgap of 1.56 eV resulting in wide and efficient absorption that covered the range from 600 to 800 nm, and suitable energy levels as an electron acceptor. With the widely used and successful wide bandgap polymer PBDB-T selected as the electron donor material, an optimized PCE of 10.42% was obtained for the PBDB-T:NFBDT-based device with an outstanding short-circuit current density of 17.85 mA cm -2 under AM 1.5G irradiation (100 mW cm -2 ), which is so far among the highest performance of NF-OSC devices. These results demonstrate that the BDT unit could also be applied for designing NF-acceptors, and the fused-ring benzodi(cyclopentadithiophene) unit is a prospective block for designing new NF-acceptors with excellent performance.
Identification of yellow luminescence centers in Be-doped GaN through pressure-dependent studies
NASA Astrophysics Data System (ADS)
Teisseyre, Henryk; Lyons, John L.; Kaminska, Agata; Jankowski, Dawid; Jarosz, Dawid; Boćkowski, Michał; Suchocki, Andrzej; Van de Walle, Chris G.
2017-06-01
Effective acceptor doping of wide-band-gap semiconductors is still an outstanding problem. Beryllium has been suggested as a shallow acceptor in GaN, but despite sporadic announcements, Be-induced p-type doping has never been practically realized. Be-doped GaN possesses two luminescence bands; one at 3.38 eV and a second near 2.2 eV at an energy close to that of the parasitic yellow luminescence often found in undoped GaN crystals. We have performed high hydrostatic pressure studies of bulk, Be-doped gallium nitride crystals using the diamond anvil cell technique. We observed a splitting of the yellow luminescence line under hydrostatic pressure into two components, one which is strongly dependent on applied pressure and another whose pressure dependence is more modest. Together with hybrid functional calculations, we attribute the strongly-varying component to the beryllium-oxygen complex. The second component of the yellow luminescence possesses very similar pressure behavior to the yellow luminescence observed in undoped samples grown by the same method, behavior which we find consistent with the CN acceptor. At higher pressure, we observe the vanishing of yellow luminescence and a rapid increase in luminescence intensity of the UV line. We explain this as the pressure-induced transformation of the Be-O complex from a highly localized state with large lattice relaxation to a delocalized state with limited lattice relaxation.
Characteristics of ovulation method acceptors: a cross-cultural assessment.
Klaus, H; Labbok, M; Barker, D
1988-01-01
Five programs of instruction in the ovulation method (OM) in diverse geographic and cultural settings are described, and characteristics of approximately 200 consecutive OM acceptors in each program are examined. Major findings include: the religious background and family size of acceptors are variable, as is the level of previous contraceptive use. Acceptors are drawn from a wide range of socioeconomic and religious backgrounds; however, family planning intention was similarly distributed in all five countries. In sum, the ovulation method is accepted by persons from a variety of backgrounds within and between cultural setting.
Feeding a subsurface biosphere: radiolysis and abiogenic energy sources
NASA Astrophysics Data System (ADS)
Onstott, T.
Noble gas analyses of ground water collected from the deep, fractured, basaltic andesite and quartzite Archean strata in South Africa suggest subsurface residence times ranging from tens to hundreds of millions of years. Hydraulically isolated compartments of highly saline water contain hundreds of μM concentrations of gas comprised primarily of C1-4 hydrocarbons, H2 and He, with minor Ar and N .2 Carbon and hydrogen isotopic analyses of the hydrocarbons suggest an abiogenic origin com atible with surface catalysed reductive assimilation (i.e. Fischer-Tropschp synthesis). H2 and He data suggest that the H2 is generated by subsurface radiolysis of water. One sample of a saline, isolated water/gas pocket agrees exactly with that predicted by radioactive decay of U, Th, K in the host rock and indicates a subsurface H2 production rate of 0.1 to 1 nM/yr. Other samples yielded less H2 than predicted and require a sink for this H2 . Possible sinks include microbial H2 oxidation and abiotic formation of hydrocarbons at rates slightly less than the H2 production rate. Highly diffusive H2 is essential for life in deep subsurface environments where only trace amounts of organic carbon exist. Lithoautotrophic microbes can acquire energy from the redox reactions involving H2 with other electron acceptors (Fe3 +, SO4 2 - or CO2 ), to synthesis organic carbon and can be fully independent of solar-driven photosynthesis. The microbial abundance in many of these ground water samples, however, is below our detection limit (<5000 cells/ml). This contrasts with shallow sedimentary aquifers where H2 levels of tens of nM are regulated by the coexistence of autotrophs/lithotrophs and heterotrophs for maximum efficiency of H2 utilization. The excessive H2 found in deep crustal environments implies that these microbial ecosystems are electron-acceptor and or substrate limited. The oxidants generated by water radiolysis interact with the reduced solid phases in the rock matrix, e.g. pyrite, producing potential electron acceptors, e.g. Fe3 +, that may be readily available for consumption by microbial communities than H . Nitrogen doesn't appear to be2 limited, because ammonia concentrations range upwards to tens of μM, but its origin remains a mystery. The unused H2 , CH4 and He continue to migrate upward to shallow aquifers. Microbial H2 oxidation may dominate over Fischer-Tropsch reactions in crustal environments where formation temperatures are <120o C; and vice versa for deeper crustal environments. This H2 cycle should be present on extraterrestrial bodies, producing potential chemical energy and crustal scale diffusive fluxes from the interaction subsurface ice/water and radiogenic decay.
Chlorate origin and fate in shallow groundwater below agricultural landscapes.
Mastrocicco, Micòl; Di Giuseppe, Dario; Vincenzi, Fabio; Colombani, Nicolò; Castaldelli, Giuseppe
2017-12-01
In agricultural lowland landscapes, intensive agricultural is accompanied by a wide use of agrochemical application, like pesticides and fertilizers. The latter often causes serious environmental threats such as N compounds leaching and surface water eutrophication; additionally, since perchlorate can be present as impurities in many fertilizers, the potential presence of perchlorates and their by-products like chlorates and chlorites in shallow groundwater could be a reason of concern. In this light, the present manuscript reports the first temporal and spatial variation of chlorates, chlorites and major anions concentrations in the shallow unconfined aquifer belonging to Ferrara province (in the Po River plain). The study was made in 56 different locations to obtain insight on groundwater chemical composition and its sediment matrix interactions. During the monitoring period from 2010 to 2011, in June 2011 a nonpoint pollution of chlorates was found in the shallow unconfined aquifer belonging to Ferrara province. Detected chlorates concentrations ranged between 0.01 and 38 mg/l with an average value of 2.9 mg/l. Chlorates were found in 49 wells out of 56 and in all types of lithology constituting the shallow aquifer. Chlorates concentrations appeared to be linked to NO 3 - , volatile fatty acids (VFA) and oxygen reduction potential (ORP) variations. Chlorates behaviour was related to the biodegradation of perchlorates, since perchlorates are favourable electron acceptors for the oxidation of labile dissolved organic carbon (DOC) in groundwater. Further studies must take into consideration to monitor ClO 4 - in pore waters and groundwater to better elucidate the mass flux of ClO 4 - in shallow aquifers belonging to agricultural landscapes. Copyright © 2017 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Kabyshev, A. V.; Konusov, F. V.; Pavlov, S. K.; Remnev, G. E.
2016-02-01
The paper is focused on the study of the structural, electrical and optical characteristics of the ceramic silicon carbide before and after irradiation in the regimes of the high-power ion beams (HPIB) and high-intensity short-pulse implantation (HISPI) of carbon ions. The dominant mechanism of transport of charge carriers, their type and the energy spectrum of localized states (LS) of defects determining the properties of SiC were established. Electrical and optical characteristics of ceramic before and after irradiation are determined by the biographical and radiation defects whose band gap (BG) energy levels have a continuous energetic distribution. A dominant p-type activation component of conduction with participation of shallow acceptor levels 0.05-0.16 eV is complemented by hopping mechanism of conduction involving the defects LS with a density of 1.2T017-2.4T018 eV-Am-3 distributed near the Fermi level.The effect of radiation defects with deep levels in the BG on properties change dominates after HISPI. A new material with the changed electronic structure and properties is formed in the near surface layer of SiC after the impact of the HPIB.
Effect of TiO2 on the Gas Sensing Features of TiO2/PANi Nanocomposites
Huyen, Duong Ngoc; Tung, Nguyen Trong; Thien, Nguyen Duc; Thanh, Le Hai
2011-01-01
A nanocomposite of titanium dioxide (TiO2) and polyaniline (PANi) was synthesized by in-situ chemical polymerization using aniline (ANi) monomer and TiCl4 as precursors. SEM pictures show that the nanocomposite was created in the form of long PANi chains decorated with TiO2 nanoparticles. FTIR, Raman and UV-Vis spectra reveal that the PANi component undergoes an electronic structure modification as a result of the TiO2 and PANi interaction. The electrical resistor of the nanocomposite is highly sensitive to oxygen and NH3 gas, accounting for the physical adsorption of these gases. A nanocomposite with around 55% TiO2 shows an oxygen sensitivity of 600–700%, 20–25 times higher than that of neat PANi. The n-p contacts between TiO2 nanoparticles and PANi matrix give rise to variety of shallow donors and acceptor levels in the PANi band gap which enhance the physical adsorption of gas molecules. PMID:22319389
Fine structure of the red luminescence band in undoped GaN
DOE Office of Scientific and Technical Information (OSTI.GOV)
Reshchikov, M. A., E-mail: mreshchi@vcu.edu; Usikov, A.; Saint-Petersburg National Research University of Information Technologies, Mechanics and Optics, 49 Kronverkskiy Ave., 197101 Saint Petersburg
2014-01-20
Many point defects in GaN responsible for broad photoluminescence (PL) bands remain unidentified. Their presence in thick GaN layers grown by hydride vapor phase epitaxy (HVPE) detrimentally affects the material quality and may hinder the use of GaN in high-power electronic devices. One of the main PL bands in HVPE-grown GaN is the red luminescence (RL) band with a maximum at 1.8 eV. We observed the fine structure of this band with a zero-phonon line (ZPL) at 2.36 eV, which may help to identify the related defect. The shift of the ZPL with excitation intensity and the temperature-related transformation of the RLmore » band fine structure indicate that the RL band is caused by transitions from a shallow donor (at low temperature) or from the conduction band (above 50 K) to an unknown deep acceptor having an energy level 1.130 eV above the valence band.« less
NASA Astrophysics Data System (ADS)
Cheng, Nongyi; Peng, Yuelin; Andrew, Trisha L.
2017-09-01
Vapor-deposited, planar heterojunction organic solar cells containing a periflanthene donor and either a fullerene or non-fullerene acceptor are investigated. A high VOC of 1.16 V is observed in devices containing the non-fullerene, pyrrolo[3,4-c]pyrrole-1,4-dione, 3,6-bis(4-chlorophenyl)-2,5-dihydro acceptor, whereas analogous devices containing C60 only result in a VOC of 0.8 V. The measured band energy levels of the two different acceptors do not readily explain the observed difference. Small-perturbation transient photovoltage and transient photocurrent measurements reveal that interfacial charge recombination is comparatively slower for the non-fullerene acceptor, resulting in relatively higher Voc values.
Organic solar cells based on non-fullerene acceptors
NASA Astrophysics Data System (ADS)
Hou, Jianhui; Inganäs, Olle; Friend, Richard H.; Gao, Feng
2018-02-01
Organic solar cells (OSCs) have been dominated by donor:acceptor blends based on fullerene acceptors for over two decades. This situation has changed recently, with non-fullerene (NF) OSCs developing very quickly. The power conversion efficiencies of NF OSCs have now reached a value of over 13%, which is higher than the best fullerene-based OSCs. NF acceptors show great tunability in absorption spectra and electron energy levels, providing a wide range of new opportunities. The coexistence of low voltage losses and high current generation indicates that new regimes of device physics and photophysics are reached in these systems. This Review highlights these opportunities made possible by NF acceptors, and also discuss the challenges facing the development of NF OSCs for practical applications.
Ahner, Johannes; Nowotny, Jürgen; Schubert, Ulrich S.; Hager, Martin D.
2017-01-01
Abstract The synthesis and characterization of a novel 2,5-diketopyrrolo[3,4-c]pyrrole(DPP)-based accepting building block with the scheme DPP-neutral small linker-DPP (Bi-DPP) is presented, which was utilized as electron accepting moiety for low band gap π-conjugated donor–acceptor copolymers as well as for a donor–acceptor small molecule. The electron accepting moiety Bi-DPP was prepared via a novel synthetic pathway by building up two DPP moieties step by step simultaneously starting from a neutral phenyl core unit. Characterization of the synthesized oligomeric and polymeric materials via cyclic voltammetry afford LUMO energy levels from −3.49 to −3.59 eV as well as HOMO energy levels from −5.07 to −5.34 eV resulting in low energy band gaps from 1.52 to 1.81 eV. Spin coating of the prepared donor–acceptor oligomers/polymers resulted in well-defined films. Moreover, UV–vis measurements of the investigated donor–acceptor systems showed a broad absorption over the whole visible region. It is demonstrated that Bi-DPP as an electron accepting moiety in donor–acceptor systems offer potential properties for organic solar cell devices. PMID:29491794
Hong, Feng; Lin, Wenjun; Meng, Weiwei; Yan, Yanfa
2016-02-14
We propose trigonal Cu2-II-Sn-VI4 (II = Ba, Sr and VI = S, Se) quaternary compounds for earth-abundant solar cell applications. Through density functional theory calculations, we show that these compounds exhibit similar electronic and optical properties to kesterite Cu2ZnSnS4 (CZTS): high optical absorption with band gaps suitable for efficient single-junction solar cell applications. However, the trigonal Cu2-II-Sn-VI4 compounds exhibit defect properties more suitable for photovoltaic applications than those of CZTS. In CZTS, the dominant defects are the deep acceptors, Cu substitutions on Zn sites, which cause non-radiative recombination and limit the open-circuit voltages of CZTS solar cells. On the contrary, the dominant defects in trigonal Cu2-II-Sn-VI4 are the shallow acceptors, Cu vacancies, similar to those in CuInSe2. Our results suggest that the trigonal Cu2-II-Sn-VI4 quaternary compounds could be promising candidates for efficient earth-abundant thin-film solar cell and photoeletrochemical water-splitting applications.
Dou, Chuandong; Long, Xiaojing; Ding, Zicheng; Xie, Zhiyuan; Liu, Jun; Wang, Lixiang
2016-01-22
A double B←N bridged bipyridyl (BNBP) is a novel electron-deficient building block for polymer electron acceptors in all-polymer solar cells. The B←N bridging units endow BNBP with fixed planar configuration and low-lying LUMO/HOMO energy levels. As a result, the polymer based on BNBP units (P-BNBP-T) exhibits high electron mobility, low-lying LUMO/HOMO energy levels, and strong absorbance in the visible region, which is desirable for polymer electron acceptors. Preliminary all-polymer solar cell (all-PSC) devices with P-BNBP-T as the electron acceptor and PTB7 as the electron donor exhibit a power conversion efficiency (PCE) of 3.38%, which is among the highest values of all-PSCs with PTB7 as the electron donor. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
High-Frequency EPR and ENDOR Spectroscopy on Semiconductor Quantum Dots.
Baranov, Pavel G; Orlinskii, Sergei B; de Mello Donegá, Celso; Schmidt, Jan
2010-10-01
It is shown that high-frequency electron paramagnetic resonance (EPR) and electron-nuclear double resonance (ENDOR) spectroscopy are excellent tools for the investigation of the electronic properties of semiconductor quantum dots (QDs). The great attractions of these techniques are that, in contrast to optical methods, they allow the identification of the dopants and provide information about the spatial distribution of the electronic wave function. This latter aspect is particularly attractive because it allows for a quantitative measurement of the effect of confinement on the shape and properties of the wave function. In this contribution EPR and ENDOR results are presented on doped ZnO QDs. Shallow donors (SDs), related to interstitial Li and Na and substitutional Al atoms, have been identified in this material by pulsed high-frequency EPR and ENDOR spectroscopy. The shallow character of the wave function of the donors is evidenced by the multitude of ENDOR transitions of the (67)Zn nuclear spins and by the hyperfine interaction of the (7)Li, (23)Na and (27)Al nuclear spins that are much smaller than for atomic lithium, sodium and aluminium. The EPR signal of an exchange-coupled pair consisting of a shallow donor and a deep Na-related acceptor has been identified in ZnO nanocrystals with radii smaller than 1.5 nm. From ENDOR experiments it is concluded that the deep Na-related acceptor is located at the interface of the ZnO core and the Zn(OH)(2) capping layer, while the shallow donor is in the ZnO core. The spatial distribution of the electronic wave function of a shallow donor in ZnO semiconductor QDs has been determined in the regime of quantum confinement by using the nuclear spins as probes. Hyperfine interactions as monitored by ENDOR spectroscopy quantitatively reveal the transition from semiconductor to molecular properties upon reduction of the size of the nanoparticles. In addition, the effect of confinement on the g-factor of SDs in ZnO as well as in CdS QDs is observed. Finally, it is shown that an almost complete dynamic nuclear polarization (DNP) of the (67)Zn nuclear spins in the core of ZnO QDs and of the (1)H nuclear spins in the Zn(OH)(2) capping layer can be obtained. This DNP is achieved by saturating the EPR transition of SDs present in the QDs with resonant high-frequency microwaves at low temperatures. This nuclear polarization manifests itself as a hole and an antihole in the EPR absorption line of the SD in the QDs and a shift of the hole (antihole). The enhancement of the nuclear polarization opens the possibility to study semiconductor nanostructures with nuclear magnetic resonance techniques.
High-Frequency EPR and ENDOR Spectroscopy on Semiconductor Quantum Dots
Baranov, Pavel G.; de Mello Donegá, Celso; Schmidt, Jan
2010-01-01
It is shown that high-frequency electron paramagnetic resonance (EPR) and electron-nuclear double resonance (ENDOR) spectroscopy are excellent tools for the investigation of the electronic properties of semiconductor quantum dots (QDs). The great attractions of these techniques are that, in contrast to optical methods, they allow the identification of the dopants and provide information about the spatial distribution of the electronic wave function. This latter aspect is particularly attractive because it allows for a quantitative measurement of the effect of confinement on the shape and properties of the wave function. In this contribution EPR and ENDOR results are presented on doped ZnO QDs. Shallow donors (SDs), related to interstitial Li and Na and substitutional Al atoms, have been identified in this material by pulsed high-frequency EPR and ENDOR spectroscopy. The shallow character of the wave function of the donors is evidenced by the multitude of ENDOR transitions of the 67Zn nuclear spins and by the hyperfine interaction of the 7Li, 23Na and 27Al nuclear spins that are much smaller than for atomic lithium, sodium and aluminium. The EPR signal of an exchange-coupled pair consisting of a shallow donor and a deep Na-related acceptor has been identified in ZnO nanocrystals with radii smaller than 1.5 nm. From ENDOR experiments it is concluded that the deep Na-related acceptor is located at the interface of the ZnO core and the Zn(OH)2 capping layer, while the shallow donor is in the ZnO core. The spatial distribution of the electronic wave function of a shallow donor in ZnO semiconductor QDs has been determined in the regime of quantum confinement by using the nuclear spins as probes. Hyperfine interactions as monitored by ENDOR spectroscopy quantitatively reveal the transition from semiconductor to molecular properties upon reduction of the size of the nanoparticles. In addition, the effect of confinement on the g-factor of SDs in ZnO as well as in CdS QDs is observed. Finally, it is shown that an almost complete dynamic nuclear polarization (DNP) of the 67Zn nuclear spins in the core of ZnO QDs and of the 1H nuclear spins in the Zn(OH)2 capping layer can be obtained. This DNP is achieved by saturating the EPR transition of SDs present in the QDs with resonant high-frequency microwaves at low temperatures. This nuclear polarization manifests itself as a hole and an antihole in the EPR absorption line of the SD in the QDs and a shift of the hole (antihole). The enhancement of the nuclear polarization opens the possibility to study semiconductor nanostructures with nuclear magnetic resonance techniques. PMID:20936163
Do, Thu Trang; Pham, Hong Duc; Manzhos, Sergei; Bell, John M; Sonar, Prashant
2017-05-24
We designed, synthesized, and characterized a series of novel electron deficient small molecule nonfullerene acceptors based on 1,8-naphthalimide (NAI) and 9-fluorenone (FN) with different branched alkyl chains using various techniques. These molecules are based on an acceptor-donor-acceptor-donor-acceptor (A1-D-A2-D-A1) molecular design configuration with NAI as the end-capping acceptor (A1), FN as electron-withdrawing central (A2) group, and thiophene ring as a donor (D) unit. These materials are named as NAI-FN-NAI (BO) and NAI-FN-NAI (HD) where BO and HD represent butyloctyl and hexyldecyl alkyl groups, respectively. To further modify energy levels of these materials, we converted the weak electron withdrawing ketonic group (C═O) attached to the FN moiety of NAI-FN-NAI (BO) to a stronger electron withdrawing cyano group (C≡N) to obtain the compound NAI-FCN-NAI (BO) by keeping the same alkyl chain. The optical, electrochemical, and thermal properties of the new acceptors were studied. The materials exhibited higher to medium band gaps, low lowest unoccupied molecular orbital (LUMO) energy levels, and highly thermally stable properties. Organic solar cell devices employing conventional poly(3-hexylthiophene) (P3HT) a donor polymer and the newly designed small molecules as the acceptor were investigated. Among all new materials, organic solar cell devices based on NAI-FN-NAI (BO) as an acceptor exhibit the highest performance with an open circuit voltage (V OC ) of 0.88 V, a short-circuit current density (J SC ) of 9.1 mAcm -2 , a fill factor (FF) of 45%, and an overall power conversion efficiency (PCE) of 3.6%. This is the first report of 9-fluorenone based nonfullerene acceptor with P3HT donor in organic solar cell devices with such a promising performance.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Putilov, L.P., E-mail: lev.putilov@gmail.com; Tsidilkovski, V.I.
The impact of deep acceptor centers on defect thermodynamics and oxidation of wide-band-gap acceptor-doped perovskites without mixed-valence cations is studied. These deep centers are formed by the acceptor-bound small hole polarons whose stabilization energy can be high enough (significantly higher than the hole-acceptor Coulomb interaction energy). It is shown that the oxidation enthalpy ΔH{sub ox} of oxide is determined by the energy ε{sub A} of acceptor-bound states along with the formation energy E{sub V} of oxygen vacancies. The oxidation reaction is demonstrated to be either endothermic or exothermic, and the regions of ε{sub A} and E{sub V} values corresponding tomore » the positive or negative ΔH{sub ox} are determined. The contribution of acceptor-bound holes to the defect thermodynamics strongly depends on the acceptor states depth ε{sub A}: it becomes negligible at ε{sub A} less than a certain value (at which the acceptor levels are still deep). With increasing ε{sub A}, the concentration of acceptor-bound small hole polarons can reach the values comparable to the dopant content. The results are illustrated with the acceptor-doped BaZrO{sub 3} as an example. It is shown that the experimental data on the bulk hole conductivity of barium zirconate can be described both in the band transport model and in the model of hopping small polarons localized on oxygen ions away from the acceptor centers. Depending on the ε{sub A} magnitude, the oxidation reaction can be either endothermic or exothermic for both mobility mechanisms.« less
NASA Astrophysics Data System (ADS)
van Dommelen, Paphavee; Daengngam, Chalongrat; Kalasuwan, Pruet
2018-04-01
In this paper, we explore THz range optical intersubband transition energies in a donor doped quantum well of a GaAs/AlGaAs system as a function of the insertion position of an AlAs monolayer in the GaAs quantum well. In simulated models, the optical transition energies between electron subband levels 1 and 2 were higher in the doped structure than in the undoped structure. This may be because the envelope wave function of the second electron subband strongly overlapped the envelope wave function of the first electron subband and influenced the optical intersubband transition between the two levels in the THz range. At different levels of bias voltage at the Schottky barrier on the donor doped structure, the electric field in the growth direction of the structure linearly increased the further away the AlAs monolayer was placed from the reference position. We also simulated the optical transition energies between acceptor energy levels of the acceptor doped structure as a function of the insertion position of the AlAs monolayer. The acceptor doped structure induced THz range emission whereas the undoped structure induced mid-IR emission.
Next-generation organic photovoltaics based on non-fullerene acceptors
NASA Astrophysics Data System (ADS)
Cheng, Pei; Li, Gang; Zhan, Xiaowei; Yang, Yang
2018-03-01
Over the past three years, a particularly exciting and active area of research within the field of organic photovoltaics has been the use of non-fullerene acceptors (NFAs). Compared with fullerene acceptors, NFAs possess significant advantages including tunability of bandgaps, energy levels, planarity and crystallinity. To date, NFA solar cells have not only achieved impressive power conversion efficiencies of 13-14%, but have also shown excellent stability compared with traditional fullerene acceptor solar cells. This Review highlights recent progress on single-junction and tandem NFA solar cells and research directions to achieve even higher efficiencies of 15-20% using NFA-based organic photovoltaics are also proposed.
Chemical trend of acceptor levels of Be, Mg, Zn, and Cd in GaAs, GaP, InP and GaN
NASA Astrophysics Data System (ADS)
Wang, Hao; Chen, An-Ban
2000-03-01
We are investigating the “shallow” acceptor levels in the III-nitride semiconductors theoretically. The k·p Hamiltonians and a model central-cell impurity potential have been used to evaluate the ordering of the ionization energies of impurities Be, Mg, Zn, and Cd in GaN. The impurity potential parameters were obtained from studying the same set of impurities in GaAs. These parameters were then transferred to the calculation for other hosts, leaving only one adjustable screening parameter for each host. This procedure was tested in GaP and InP and remarkably good results were obtained. When applied to GaN, this procedure produced a consistent set of acceptor levels with different k·p Hamiltonians. The calculated ionization energies for Be, Mg, Zn and Cd acceptors in GaN are respectively145, 156, 192, and 312 meV for the zincblende structure, and 229, 250, 320, and 510 meV for the wurtzite structure. These and other results will be discussed.
Theoretical study of bismuth-doped cadmium telluride
NASA Astrophysics Data System (ADS)
Menendez-Proupin, E.; Rios-Gonzalez, J. A.; Pena, J. L.
Cadmium telluride heavily doped with bismuth has been proposed as an absorber with an intermediate band for solar cells. Increase in the photocurrent has been shown recently, although the overall cell efficiency has not improved. In this work, we study the electronic structure and the formation energies of the defects associated to bismuth impurities. We have performed electronic structure calculations within generalized density functional theory, using the exchange-correlation functional HSE(w) , where the range-separation parameter w has been tuned to reproduce the CdTe bandgap. Improving upon previous reports, we have included the spin-orbit interaction, which modifies the structure of the valence band and the energy levels of bismuth. We have found that interstitial Bi (Bii) tends to occupy Cd vacancies, cadmium substitution (BiCd) creates single donor level, while tellurium substitution (BiTe) is a shallow single acceptor. We investigate the interaction between these point defects and how can they be combined to create a partially filled intermediate band. Supported by FONDECYT Grant 1130437, CONACYT-SENER SUSTENTABILIDAD ENERGETICA/project CeMIE-Sol PY-207450/25 and PY-207450/26. JARG acknowledges CONACYT fellowship for research visit. Powered@NLHPC (ECM-02).
Single and double acceptor-levels of a carbon-hydrogen defect in n-type silicon
NASA Astrophysics Data System (ADS)
Stübner, R.; Scheffler, L.; Kolkovsky, Vl.; Weber, J.
2016-05-01
In the present study, we discuss the origin of two dominant deep levels (E42 and E262) observed in n-type Si, which is subjected to hydrogenation by wet chemical etching or a dc H-plasma treatment. Their activation enthalpies determined from Laplace deep level transient spectroscopy measurements are EC-0.06 eV (E42) and EC-0.51 eV (E262). The similar annealing behavior and identical depth profiles of E42 and E262 correlate them with two different charge states of the same defect. E262 is attributed to a single acceptor state due to the absence of the Poole-Frenkel effect and the lack of a capture barrier for electrons. The emission rate of E42 shows a characteristic enhancement with the electric field, which is consistent with the assignment to a double acceptor state. In samples with different carbon and hydrogen content, the depth profiles of E262 can be explained by a defect with one H-atom and one C-atom. From a comparison with earlier calculations [Andersen et al., Phys. Rev. B 66, 235205 (2002)], we attribute E42 to the double acceptor and E262 to the single acceptor state of the CH1AB configuration, where one H atom is directly bound to carbon in the anti-bonding position.
Single and double acceptor-levels of a carbon-hydrogen defect in n-type silicon
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stübner, R.; Scheffler, L.; Kolkovsky, Vl., E-mail: kolkov@ifpan.edu.pl
In the present study, we discuss the origin of two dominant deep levels (E42 and E262) observed in n-type Si, which is subjected to hydrogenation by wet chemical etching or a dc H-plasma treatment. Their activation enthalpies determined from Laplace deep level transient spectroscopy measurements are E{sub C}-0.06 eV (E42) and E{sub C}-0.51 eV (E262). The similar annealing behavior and identical depth profiles of E42 and E262 correlate them with two different charge states of the same defect. E262 is attributed to a single acceptor state due to the absence of the Poole-Frenkel effect and the lack of a capture barrier formore » electrons. The emission rate of E42 shows a characteristic enhancement with the electric field, which is consistent with the assignment to a double acceptor state. In samples with different carbon and hydrogen content, the depth profiles of E262 can be explained by a defect with one H-atom and one C-atom. From a comparison with earlier calculations [Andersen et al., Phys. Rev. B 66, 235205 (2002)], we attribute E42 to the double acceptor and E262 to the single acceptor state of the CH{sub 1AB} configuration, where one H atom is directly bound to carbon in the anti-bonding position.« less
Hydrogen-impurity complexes in III V semiconductors
NASA Astrophysics Data System (ADS)
Ulrici, W.
2004-12-01
This review summarizes the presently available knowledge concerning hydrogen-impurity complexes in III-V compounds. The impurities form shallow acceptors on group III sites (Be, Zn, Cd) and on group V sites (C, Si, Ge) as well as shallow donors on group V sites (S, Se, Te) and on group III sites (Si, Sn). These complexes are mainly revealed by their hydrogen stretching modes. Therefore, nearly all information about their structure and dynamic properties is derived from vibrational spectroscopy. The complexes of shallow impurities with hydrogen have been most extensively investigated in GaAs, GaP and InP. This holds also for Mg-H in GaN. The complexes exhibit a different microscopic structure, which is discussed in detail. The isoelectronic impurity nitrogen, complexed with one hydrogen atom, is investigated in detail in GaAs and GaP. Those complexes can exist in different charge states. The experimental results such as vibrational frequencies, the microscopic structure and the activation energy for reorientation for many of these complexes are in very good agreement with results of ab initio calculations. Different types of oxygen-hydrogen complexes in GaAs and GaP are described, with one hydrogen atom or two hydrogen atoms bonded to oxygen. Three of these complexes in GaAs were found to be electrically active.
Bin, Haijun; Gao, Liang; Zhang, Zhi-Guo; Yang, Yankang; Zhang, Yindong; Zhang, Chunfeng; Chen, Shanshan; Xue, Lingwei; Yang, Changduk; Xiao, Min; Li, Yongfang
2016-01-01
Simutaneously high open circuit voltage and high short circuit current density is a big challenge for achieving high efficiency polymer solar cells due to the excitonic nature of organic semdonductors. Herein, we developed a trialkylsilyl substituted 2D-conjugated polymer with the highest occupied molecular orbital level down-shifted by Si–C bond interaction. The polymer solar cells obtained by pairing this polymer with a non-fullerene acceptor demonstrated a high power conversion efficiency of 11.41% with both high open circuit voltage of 0.94 V and high short circuit current density of 17.32 mA cm−2 benefitted from the complementary absorption of the donor and acceptor, and the high hole transfer efficiency from acceptor to donor although the highest occupied molecular orbital level difference between the donor and acceptor is only 0.11 eV. The results indicate that the alkylsilyl substitution is an effective way in designing high performance conjugated polymer photovoltaic materials. PMID:27905397
Bin, Haijun; Gao, Liang; Zhang, Zhi-Guo; Yang, Yankang; Zhang, Yindong; Zhang, Chunfeng; Chen, Shanshan; Xue, Lingwei; Yang, Changduk; Xiao, Min; Li, Yongfang
2016-12-01
Simutaneously high open circuit voltage and high short circuit current density is a big challenge for achieving high efficiency polymer solar cells due to the excitonic nature of organic semdonductors. Herein, we developed a trialkylsilyl substituted 2D-conjugated polymer with the highest occupied molecular orbital level down-shifted by Si-C bond interaction. The polymer solar cells obtained by pairing this polymer with a non-fullerene acceptor demonstrated a high power conversion efficiency of 11.41% with both high open circuit voltage of 0.94 V and high short circuit current density of 17.32 mA cm -2 benefitted from the complementary absorption of the donor and acceptor, and the high hole transfer efficiency from acceptor to donor although the highest occupied molecular orbital level difference between the donor and acceptor is only 0.11 eV. The results indicate that the alkylsilyl substitution is an effective way in designing high performance conjugated polymer photovoltaic materials.
Wang, Yan-Ling; Li, Quan-Song; Li, Ze-Sheng
2018-05-15
Acceptor-π-donor-π-acceptor (A-π-D-π-A)-types of small molecules are very promising nonfullerene acceptors to overcome the drawbacks of fullerene derivatives such as the weak absorption ability and electronic adjustability. However, only few attempts have been made to develop π-bridge units to construct highly efficient acceptors in OSCs. Herein, taking the reported acceptor P1 as a reference, five small-structured acceptors (P2, P3, P4, P5, and P6) have been designed via the replacement of the π-bridge unit. A combination of quantum chemistry and Marcus theory approaches is employed to investigate the effect of different π-bridge units on the optical, electronic, and charge transport properties of P1-P6. The calculation results show that the designed molecules P2 and P5 can become potential acceptor replacements of P1 due to their red-shifted absorption bands, appropriate energy levels, low exciton binding energy, and high electron affinity and electron mobility. Additionally, compared with P3HT/P1, P3HT/P2 and P3HT/P5 exhibit stronger and wider absorption peaks, larger electron transfer distances (DCT), greater transferred charge amounts (Δq), and smaller overlaps (Λ), which shows that P2 and P5 have more significant electron transfer characteristics and favorable exciton dissociation capabilities for enhancing the short-circuit current density (JSC) and thus, they are potential acceptors in OSCs.
A survey of acceptor dopants for β-Ga2O3
NASA Astrophysics Data System (ADS)
Lyons, John L.
2018-05-01
With a wide band gap, high critical breakdown voltage and commercially available substrates, Ga2O3 is a promising material for next-generation power electronics. Like most wide-band-gap semiconductors, obtaining better control over its electrical conductivity is critically important, but has proven difficult to achieve. Although efficient p-type doping in Ga2O3 is not expected, since theory and experiment indicate the self-trapping of holes, the full development of this material will require a better understanding of acceptor dopants. Here the properties of group 2, group 5 and group 12 acceptor impurities in β-Ga2O3 are explored using hybrid density functional calculations. All impurities are found to exhibit acceptor transition levels above 1.3 eV. After examining formation energies as a function of chemical potential, Mg (followed closely by Be) is determined to be the most stable acceptor species.
Zu, Fengshuo; Amsalem, Patrick; Ralaiarisoa, Maryline; Schultz, Thorsten; Schlesinger, Raphael; Koch, Norbert
2017-11-29
Substantial variations in the electronic structure and thus possibly conflicting energetics at interfaces between hybrid perovskites and charge transport layers in solar cells have been reported by the research community. In an attempt to unravel the origin of these variations and enable reliable device design, we demonstrate that donor-like surface states stemming from reduced lead (Pb 0 ) directly impact the energy level alignment at perovskite (CH 3 NH 3 PbI 3-x Cl x ) and molecular electron acceptor layer interfaces using photoelectron spectroscopy. When forming the interfaces, it is found that electron transfer from surface states to acceptor molecules occurs, leading to a strong decrease in the density of ionized surface states. As a consequence, for perovskite samples with low surface state density, the initial band bending at the pristine perovskite surface can be flattened upon interface formation. In contrast, for perovskites with a high surface state density, the Fermi level is strongly pinned at the conduction band edge, and only minor changes in surface band bending are observed upon acceptor deposition. Consequently, depending on the initial perovskite surface state density, very different interface energy level alignment situations (variations over 0.5 eV) are demonstrated and rationalized. Our findings help explain the rather dissimilar reported energy levels at interfaces with perovskites, refining our understanding of the operating principles in devices comprising this material.
A study of acceptors and non-acceptors of family planning methods among three tribal communities.
Mutharayappa, R
1995-03-01
Primary data were collected from 399 currently married women of the Marati, Malekudiya, and Koraga tribes in the Dakshina Kannada district of Karnataka State in this study of the implementation of family planning programs in tribal areas. The Marati, Malekudiya, and Koraga tribes are three different endogamous tribal populations living in similar ecological conditions. Higher levels of literacy and a high rate of acceptance of family planning methods, however, have been observed among these tribes compared to the rest of the tribal population in the state. 46.4% of currently married women aged 15-49 years in the tribes were acceptors of family planning methods, having a mean 3.7 children. The majority of acceptors opted for tubectomy and vasectomy. The adoption of spacing methods is less common among tribal people. Most acceptors received their operations through government health facilities. They were motivated mainly by female health workers and received both cash and other incentives to accept family planning. The main reason for non-acceptance of family planning among non-acceptors was the desire to conceive and bear more children. The data indicate that most of the tribal households are nuclear families with household size more or less similar to that of the general population. They have a higher literacy rate than the rest of the tribal population in the state, with literacy levels between males and females and between the three tribes being quite different; the school enrollment ratio is relatively higher for both boys and girls.
Sediment Sulfur Isotopes Reflect Seawater Oxygen Rise in Neoarchean
NASA Astrophysics Data System (ADS)
Fakhraee, M.; Crowe, S.; Katsev, S.
2017-12-01
The oxygenation of the ocean-atmosphere system is recorded in S isotopes preserved in sedimentary pyrites. Disappearance of mass independent fractionation of S (S-MIF) around 2.45 Ga signals the first large-scale oxygenation of the atmosphere (the GOE), while a narrow range of pyritic δ34S during the Archean eon suggests limited oxidative cycling of S. Both δ34S and S-MIF ranges, however, undergo a clear and unexplained expansion in the Neoarchean between 2.7 and 2.45 Ga, indicating a change in global S-cycling. By analyzing the preservation patterns of isotopic signals with a 1D reaction-transport model, we show that the rock record points to the rise of oxygen in shallow marine environments around 2.7 billion years ago. The model tracks d34S and Δ33S isotopic transformations during early diagenesis in a reaction-transport framework. The results indicate that δ34S and MIF signatures in >2.7Ga sulfides require deposition from anoxic or minimally oxygenated seawater, whereas the 2.7-2.4 Ga expansion in both δ34S and D33S ranges points to at least localized accumulation oxygen to low μM levels, accompanied by a moderate rise in sulfate from low μM concentrations to up to 200 μM. In contrast to the role of oxygen in the atmosphere where it suppresses the production of MIF, oxygen in seawater at levels below 25 μM does not necessarily suppress the MIF preservation, which instead depends on the availability of reactive organic matter, sulfate, and electron acceptors for sulfide re-oxidation. The S-isotopes in Neoarchean sulfides thus paint a picture of gradual oxygenation of shallow marine environments under a nearly anoxic atmosphere where the atmospherically produced S isotopic signals are overprinted by increasingly oxidative diagenesis, rising sulfate levels, and increasing organic sedimentation.
Pankov, R; Markovska, T; Antonov, P; Ivanova, L; Momchilova, A
2006-09-01
Investigations were carried out on the influence of phospholipid composition of model membranes on the processes of spontaneous lipid transfer between membranes. Acceptor vesicles were prepared from phospholipids extracted from plasma membranes of control and ras-transformed fibroblasts. Acceptor model membranes with manipulated levels of phosphatidylethanolamine (PE), sphingomyelin and phosphatidic acid were also used in the studies. Donor vesicles were prepared of phosphatidylcholine (PC) and contained two fluorescent lipid analogues, NBD-PC and N-Rh-PE, at a self-quenching concentration. Lipid transfer rate was assessed by measuring the increase of fluorescence in acceptor membranes due to transfer of fluorescent lipid analogues from quenched donor to unquenched acceptor vesicles. The results showed that spontaneous NBD-PC transfer increased upon fluidization of acceptor vesicles. In addition, elevation of PE concentration in model membranes was also accompanied by an increase of lipid transfer to all series of acceptor vesicles. The results are discussed with respect to the role of lipid composition and structural order of cellular plasma membranes in the processes of spontaneous lipid exchange between membrane bilayers.
Rissanen, Antti J; Karvinen, Anu; Nykänen, Hannu; Peura, Sari; Tiirola, Marja; Mäki, Anita; Kankaala, Paula
2017-07-01
The role of anaerobic CH4 oxidation in controlling lake sediment CH4 emissions remains unclear. Therefore, we tested how relevant EAs (SO42-, NO3-, Fe3+, Mn4+, O2) affect CH4 production and oxidation in the sediments of two shallow boreal lakes. The changes induced to microbial communities by the addition of Fe3+ and Mn4+ were studied using next-generation sequencing targeting the 16S rRNA and methyl-coenzyme M reductase (mcrA) genes and mcrA transcripts. Putative anaerobic CH4-oxidizing archaea (ANME-2D) and bacteria (NC 10) were scarce (up to 3.4% and 0.5% of archaeal and bacterial 16S rRNA genes, respectively), likely due to the low environmental stability associated with shallow depths. Consequently, the potential anaerobic CH4 oxidation (0-2.1 nmol g-1dry weight (DW)d-1) was not enhanced by the addition of EAs, nor important in consuming the produced CH4 (0.6-82.5 nmol g-1DWd-1). Instead, the increased EA availability suppressed CH4 production via the outcompetition of methanogens by anaerobically respiring bacteria and via the increased protection of organic matter from microbial degradation induced by Fe3+ and Mn4+. Future studies could particularly assess whether anaerobic CH4 oxidation has any ecological relevance in reducing CH4 emissions from the numerous CH4-emitting shallow lakes in boreal and tundra landscapes. © FEMS 2017. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
Reduced energy offset via substitutional doping for efficient organic/inorganic hybrid solar cells.
Jin, Xiao; Sun, Weifu; Zhang, Qin; Ruan, Kelian; Cheng, Yuanyuan; Xu, Haijiao; Xu, Zhongyuan; Li, Qinghua
2015-06-01
Charge carrier transport in bulk heterojunction that is central to the device performance of solar cells is sensitively dependent on the energy level alignment of acceptor and donor. However, the effect of energy level regulation induced by nickel ions on the primary photoexcited electron transfer and the performance of P3HT/TiO2 hybrid solar cells remains being poorly understood and rarely studied. Here we demonstrate that the introduction of the versatile nickel ions into TiO2 nanocrystals can significantly elevate the conduction and valence band energy levels of the acceptor, thus resulting in a remarkable reduction of energy level offset between the conduction band of acceptor and lowest unoccupied molecular orbital of donor. By applying transient photoluminescence and femtosecond transient absorption spectroscopies, we demonstrate that the electron transfer becomes more competitive after incorporating nickel ions. In particular, the electron transfer life time is shortened from 30.2 to 16.7 ps, i.e., more than 44% faster than pure TiO2 acceptor, thus leading to a notable increase of power conversion efficiency in organic/inorganic hybrid solar cells. This work underscores the promising virtue of engineering the reduction of 'excess' energy offset to accelerate electron transport and demonstrates the potential of nickel ions in applications of solar energy conversion and photon detectors.
Kan, Bin; Zhang, Jiangbin; Liu, Feng; Wan, Xiangjian; Li, Chenxi; Ke, Xin; Wang, Yunchuang; Feng, Huanran; Zhang, Yamin; Long, Guankui; Friend, Richard H; Bakulin, Artem A; Chen, Yongsheng
2018-01-01
Organic solar cell optimization requires careful balancing of current-voltage output of the materials system. Here, such optimization using ultrafast spectroscopy as a tool to optimize the material bandgap without altering ultrafast photophysics is reported. A new acceptor-donor-acceptor (A-D-A)-type small-molecule acceptor NCBDT is designed by modification of the D and A units of NFBDT. Compared to NFBDT, NCBDT exhibits upshifted highest occupied molecular orbital (HOMO) energy level mainly due to the additional octyl on the D unit and downshifted lowest unoccupied molecular orbital (LUMO) energy level due to the fluorination of A units. NCBDT has a low optical bandgap of 1.45 eV which extends the absorption range toward near-IR region, down to ≈860 nm. However, the 60 meV lowered LUMO level of NCBDT hardly changes the V oc level, and the elevation of the NCBDT HOMO does not have a substantial influence on the photophysics of the materials. Thus, for both NCBDT- and NFBDT-based systems, an unusually slow (≈400 ps) but ultimately efficient charge generation mediated by interfacial charge-pair states is observed, followed by effective charge extraction. As a result, the PBDB-T:NCBDT devices demonstrate an impressive power conversion efficiency over 12%-among the best for solution-processed organic solar cells. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Defect Tolerant Semiconductors for Solar Energy Conversion.
Zakutayev, Andriy; Caskey, Christopher M; Fioretti, Angela N; Ginley, David S; Vidal, Julien; Stevanovic, Vladan; Tea, Eric; Lany, Stephan
2014-04-03
Defect tolerance is the tendency of a semiconductor to keep its properties despite the presence of crystallographic defects. Scientific understanding of the origin of defect tolerance is currently missing. Here we show that semiconductors with antibonding states at the top of the valence band are likely to be tolerant to defects. Theoretical calculations demonstrate that Cu3N with antibonding valence band maximum has shallow intrinsic defects and no surface states, in contrast to GaN with bonding valence band maximum. Experimental measurements indicate shallow native donors and acceptors in Cu3N thin films, leading to 10(16)-10(17) cm(-3) doping with either electrons or holes depending on the growth conditions. The experimentally measured bipolar doping and the solar-matched optical absorption onset (1.4 eV) make Cu3N a promising candidate absorber for photovoltaic and photoelectrochemical solar cells, despite the calculated indirect fundamental band gap (1.0 eV). These conclusions can be extended to other materials with antibonding character of the valence band, defining a class of defect-tolerant semiconductors for solar energy conversion applications.
Barrow, Paul Andrew; Berchieri, Angelo; Freitas Neto, Oliveiro Caetano de; Lovell, Margaret
2015-10-01
The basic mechanism whereby Salmonella serovars colonize the chicken intestine remains poorly understood. Previous studies have indicated that proton-translocating proteins utilizing oxygen as terminal electron acceptor do not appear to be of major importance in the gut of the newly hatched chicken and consequently they would be even less significant during intestinal colonization of more mature chickens where the complex gut microflora would trap most of the oxygen in the lumen. Consequently, alternative electron acceptors may be more significant or, in their absence, substrate-level phosphorylation may also be important to Salmonella serovars in this environment. To investigate this we constructed mutants of Salmonella enterica serovar Typhimurium defective in various aspects of oxidative or substrate-level phosphorylation to assess their role in colonization of the chicken intestine, assessed through faecal shedding, and virulence. Mutations affecting use of oxygen or alternative electron acceptors did not eliminate faecal shedding. By contrast mutations in either pta (phosphotransacetylase) or ackA (acetate kinase) abolished shedding. The pta but not the ackA mutation also abolished systemic virulence for chickens. An additional ldhA (lactate dehydrogenase) mutant also showed poor colonizing ability. We hypothesise that substrate-level phosphorylation may be more important than respiration using oxygen or alternative electron acceptors for colonization of the chicken caeca.
MnO2 nanosheet mediated "DD-A" FRET binary probes for sensitive detection of intracellular mRNA.
Ou, Min; Huang, Jin; Yang, Xiaohai; Quan, Ke; Yang, Yanjing; Xie, Nuli; Wang, Kemin
2017-01-01
The donor donor-acceptor (DD-A) FRET model has proven to have a higher FRET efficiency than donor-acceptor acceptor (D-AA), donor-acceptor (D-A), and donor donor-acceptor acceptor (DD-AA) FRET models. The in-tube and in-cell experiments clearly demonstrate that the "DD-A" FRET binary probes can indeed increase the FRET efficiency and provide higher imaging contrast, which is about one order of magnitude higher than the ordinary "D-A" model. Furthermore, MnO 2 nanosheets were employed to deliver these probes into living cells for intracellular TK1 mRNA detection because they can adsorb ssDNA probes, penetrate across the cell membrane and be reduced to Mn 2+ ions by intracellular GSH. The results indicated that the MnO 2 nanosheet mediated "DD-A" FRET binary probes are capable of sensitive and selective sensing gene expression and chemical-stimuli changes in gene expression levels in cancer cells. We believe that the MnO 2 nanosheet mediated "DD-A" FRET binary probes have the potential as a simple but powerful tool for basic research and clinical diagnosis.
NASA Astrophysics Data System (ADS)
Zhang, Chao-Zhi; Gu, Shu-Duo; Shen, Dan; Yuan, Yang; Zhang, Mingdao
2016-08-01
Electron-accepting molecules play an important role in developing organic solar cells. A new type of A-D-A molecule, 3,6-di([7-(5-bromothiophen-2-yl)-1,5,2,4,6,8-dithiotetrazocin-3-yl]thiophen-2-yl)-9-(2-ethylhexyl)carbazole, was synthesized. The lowest unoccupied molecular orbital (LUMO) and highest occupied molecular orbital (HOMO) energy levels are -3.55 and -5.85 eV, respectively. Therefore, the A-D-A type of compound could be used as electron acceptor for fabricating organic solar cell with a high open circuit voltage. Gibbs free energy (-49.2 kJ/mol) reveals that the process of A-D-A acceptor accepting an electron from poly(3-hexylthiophene) at excited state is spontaneous. The value of entropy (118 J/mol) in the process of an electron transferring from P3HT to the A-D-A acceptor at organic interface suggests that electrons generated from separation of electron-hole pairs at donor/acceptor interface would be delocalized efficiently. Therefore, the A-D-A molecule would be a potential acceptor for efficient organic BHJ solar cells.
Exciplex formation in blended spin-cast films of fluorene-linked dyes and bisphthalimide quenchers.
Stewart, David J; Dalton, Matthew J; Swiger, Rachel N; Cooper, Thomas M; Haley, Joy E; Tan, Loon-Seng
2013-05-16
Spin-cast films of dyes (donor-π-donor, donor-π-acceptor, and acceptor-π-acceptor type, where the donor is Ph2N-, the acceptor is 2-benzothiazoyl, and the π-linker is 9,9-diethylfluorene) blended with nonconjugated bisphthalimides were prepared. Upon visible-light excitation of the dyes, quenching of the excited state occurs by exciplex formation between dye and bisphthalimide molecules or, in some cases, by excimer formation or aggregation-induced emission between two dye molecules. The extent of exciplex formation is dependent on the driving force, which can be calculated using the energy difference between the lowest unoccupied molecular orbitals (LUMOs) of the dyes and bisphthalimides. The results show that complete exciplex formation occurs when this driving force is greater than 0.57 eV whereas partial exciplex formation occurs when the driving force is between 0.28 and 0.57 eV. The exciplex emission energies can also be predicted by calculating the difference between the LUMO level of the bisphthalimide and the highest occupied molecular orbital (HOMO) of the dye. These calculated values, which were obtained from the electrochemically determined energy levels, showed good agreement with the observed emission energies. The exciplex lifetimes were found to be significantly longer than the lifetimes of the lone dyes. These exciplexes formed from nonlinked donors and acceptors in the solid state might have potential uses in nonlinear photonics.
Bertrand, Jane T; Makani, Paul Bukutuvwidi; Hernandez, Julie; Akilimali, Pierre; Mukengeshayi, Bitshi; Babazadeh, Saleh; Binanga, Arsene
2017-09-01
The objectives were to assess acceptors' attitudes toward Sayana® Press as a method and toward the mechanism of community-based distribution by medical and nursing (M/N) students, known locally as "DBCs," in Kinshasa, Democratic Republic of the Congo, and to evaluate the experience of these DBCs. In 2015, surveys were conducted among (1) acceptors of Sayana® Press on the day of the initial injection, (2) these same acceptors 3 months later and (3) the DBCs providing community-based services. The analysis was descriptive and involved no significance testing. Acceptors of Sayana® Press expressed high levels of satisfaction with the method, despite some pain experienced at injection and subsequent side effects. Although most were satisfied with the counseling and services received from the DBCs, less than one third realized that the providers were M/N students. The DBCs expressed satisfaction in serving as community-based distributors; more than 95% would recommend it to others. Their primary complaints were lack of remuneration, stockouts and need for greater supervision. Consistent with results from previous pilot introductions of Sayana® Press in three African countries, clients were highly satisfied with Sayana® Press as a method. The reported preference for resupply at health centers may reflect a lack of client awareness that the DBCs administering methods near the health center were not in fact staff from the health center. The pilot served to gain acceptance for the use of M/N students in community-based distribution, paving the way for additional task-shifting pilots in Kinshasa. Sayana® Press represents a promising new method for increasing access to modern contraception in low-income countries. The Kinshasa experience is the first to test the use of medical and nursing students as providers at the community level. The study reports high levels of satisfaction on three counts: acceptors of the contraceptive method, acceptors of the mode of service delivery, and DBCs in their role as providers of contraception at the community level. However, many clients were not aware that the DBCs were students. The study represents an important contribution to the literature on task-shifting, especially in a country with chronic shortages of healthcare personnel. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.
Yin, Yuli; Yang, Jing; Guo, Fengyun; Zhou, Erjun; Zhao, Liancheng; Zhang, Yong
2018-05-09
We report three n-type polymeric electron acceptors (PFPDI-TT, PFPDI-T, and PFPDI-Se) based on the fused perylene diimide (FPDI) and thieno[3,2- b]thiophene, thiophene, or selenophene units for all-polymer solar cells (all-PSCs). These FPDI-based polymer acceptors exhibit strong absorption between 350 and 650 nm with wide optical bandgap of 1.86-1.91 eV, showing good absorption compensation with the narrow bandgap polymer donor. The lowest unoccupied molecular orbital (LUMO) energy levels were located at around -4.11 eV, which are comparable with those of the fullerene derivatives and other small molecular electron acceptors. The conventional all-PSCs based on the three polymer acceptors and PTB7-Th as polymer donor gave remarkable power conversion efficiencies (PCEs) of >6%, and the PFPDI-Se-based all-PSC achieved the highest PCE of 6.58% with a short-circuit current density ( J sc ) of 13.96 mA/cm 2 , an open-circuit voltage ( V oc ) of 0.76 V, and a fill factor (FF) of 62.0%. More interestingly, our results indicate that the photovoltaic performances of the FPDI-based polymer acceptors are mainly determined by the FPDI unit with a small effect from the comonomers, which is quite different from the others reported rylenediimide-based polymer acceptors. This intriguing phenomenon is speculated as the huge geometry configuration of the FPDI unit, which minimizes the effect of the comonomer. These results highlight a promising future for the application of the FPDI-based polymer acceptors in the highly efficient all-PSCs.
Deep donor state of the copper acceptor as a source of green luminescence in ZnO
NASA Astrophysics Data System (ADS)
Lyons, J. L.; Alkauskas, A.; Janotti, A.; Van de Walle, C. G.
2017-07-01
Copper impurities have long been linked with green luminescence (GL) in ZnO. Copper is known to introduce an acceptor level close to the conduction band of ZnO, and the GL has conventionally been attributed to transitions involving an excited state which localizes holes on neighboring oxygen atoms. To date, a theoretical description of the optical properties of such deep centers has been difficult to achieve due to the limitations of functionals in the density functional theory. Here, we employ a screened hybrid density functional to calculate the properties of Cu in ZnO. In agreement with the experiment, we find that CuZn features an acceptor level near the conduction band of ZnO. However, we find that CuZn also gives rise to a deep donor level 0.46 eV above the valence band of ZnO; the calculated optical transitions involving this state agree well with the GL observed in ZnO:Cu.
NASA Astrophysics Data System (ADS)
Rassamesard, Areefen; Pengpan, Teparksorn
2017-02-01
This research assessed the effects of various chemical structures and molecular sizes on the simulated geometric parameters, electron structures, and spectroscopic properties of single-chain complex alternating donor-acceptor (D-A) monomers and copolymers that are intended for use as photoactive layer in a polymer solar cell by using Kohn-Sham density functional theory with B3LYP exchange-correlation functional. The 3-hexylthiophene (3HT) was selected for electron donor, while eight chemicals, namely thiazole (Z), thiadiazole (D), thienopyrazine (TP), thienothiadiazole (TD), benzothiadiazole (BT), thiadiazolothieno-pyrazine (TPD), oxadiazole (OXD) and 5-diphenyl-1,2,4-triazole (TAZ), were employed as electron acceptor functional groups. The torsional angle, bridge bond length, intramolecular charge transfer, energy levels, and molecular orbitals were analyzed. The simulation results reveal that the geometry and electron structure of donor-acceptor monomer and copolymer are significantly impacted by heterocyclic rings, heteroatoms, fused rings, degree of steric hindrance and coplanarity of the acceptor molecular structure. Planar conformation was obtained from the D copolymer, and a pseudo-planar structure with the TD copolymer. The TAZ acceptor exhibited strong steric hindrance due to its bulky structure and non-planarity of its structure. An analysis of the electron structures indicated that the degree of intramolecular electron-withdrawing capability had the rank order TAZ < Z < D < TPD < OXD < TP < BT < TD. The TD is indicated as the most effective acceptor among those that were simulated. However, the small energy gaps of TD as well as TPD copolymer indicate that these two copolymers can be used in transparent conducting materials. The copolymer based on BT acceptor exhibited good intramolecular charge transfer and absorbed at 656 nm wavelength which is close to the maximum flux of solar spectrum. Hence, the BT acceptor functional group provides a compromise in the characteristics of a donor-acceptor copolymer, useful in a polymeric candidate material for the photoactive layer in a polymer solar cell.
Electrically active induced energy levels and metastability of B and N vacancy-complexes in 4H-SiC.
Igumbor, E; Olaniyan, O; Mapasha, R E; Danga, H T; Omotoso, E; Meyer, W E
2018-05-10
Electrically active induced energy levels in semiconductor devices could be beneficial to the discovery of an enhanced p or n-type semiconductor. Nitrogen (N) implanted into 4H-SiC is a high energy process that produced high defect concentrations which could be removed during dopant activation annealing. On the other hand, boron (B) substituted for silicon in SiC causes a reduction in the number of defects. This scenario leads to a decrease in the dielectric properties and induced deep donor and shallow acceptor levels. Complexes formed by the N, such as the nitrogen-vacancy centre, have been reported to play a significant role in the application of quantum bits. In this paper, results of charge states thermodynamic transition level of the N and B vacancy-complexes in 4H-SiC are presented. We explore complexes where substitutional N[Formula: see text]/N[Formula: see text] or B[Formula: see text]/B[Formula: see text] sits near a Si (V[Formula: see text]) or C (V[Formula: see text]) vacancy to form vacancy-complexes (N[Formula: see text]V[Formula: see text], N[Formula: see text]V[Formula: see text], N[Formula: see text]V[Formula: see text], N[Formula: see text]V[Formula: see text], B[Formula: see text]V[Formula: see text], B[Formula: see text]V[Formula: see text], B[Formula: see text]V[Formula: see text] and B[Formula: see text]V[Formula: see text]). The energies of formation of the N related vacancy-complexes showed the N[Formula: see text]V[Formula: see text] to be energetically stable close to the valence band maximum in its double positive charge state. The N[Formula: see text]V[Formula: see text] is more energetically stable in the double negative charge state close to the conduction band minimum. The N[Formula: see text]V[Formula: see text] on the other hand, induced double donor level and the N[Formula: see text]V[Formula: see text] induced a double acceptor level. For B related complexes, the B[Formula: see text]V[Formula: see text] and B[Formula: see text]V[Formula: see text] were energetically stable in their single positive charge state close to the valence band maximum. As the Fermi energy is varied across the band gap, the neutral and single negative charge states of the B[Formula: see text]V[Formula: see text] become more stable at different energy levels. B and N related complexes exhibited charge state controlled metastability behaviour.
Jiang, Weigang; Yu, Runnan; Liu, Zhiyang; Peng, Ruixiang; Mi, Dongbo; Hong, Ling; Wei, Qiang; Hou, Jianhui; Kuang, Yongbo; Ge, Ziyi
2018-01-01
A novel small-molecule acceptor, (2,2'-((5E,5'E)-5,5'-((5,5'-(4,4,9,9-tetrakis(5-hexylthiophen-2-yl)-4,9-dihydro-s-indaceno[1,2-b:5,6-b']dithiophene-2,7-diyl)bis(4-(2-ethylhexyl)thiophene-5,2-diyl))bis(methanylylidene)) bis(3-hexyl-4-oxothiazolidine-5,2-diylidene))dimalononitrile (ITCN), end-capped with electron-deficient 2-(3-hexyl-4-oxothiazolidin-2-ylidene)malononitrile groups, is designed, synthesized, and used as the third component in fullerene-free ternary polymer solar cells (PSCs). The cascaded energy-level structure enabled by the newly designed acceptor is beneficial to the carrier transport and separation. Meanwhile, the three materials show a complementary absorption in the visible region, resulting in efficient light harvesting. Hence, the PBDB-T:ITCN:IT-M ternary PSCs possess a high short-circuit current density (J sc ) under an optimal weight ratio of donors and acceptors. Moreover, the open-circuit voltage (V oc ) of the ternary PSCs is enhanced with an increase of the third acceptor ITCN content, which is attributed to the higher lowest unoccupied molecular orbital energy level of ITCN than that of IT-M, thus exhibits a higher V oc in PBDB-T:ITCN binary system. Ultimately, the ternary PSCs achieve a power conversion efficiency of 12.16%, which is higher than the PBDB-T:ITM-based PSCs (10.89%) and PBDB-T:ITCN-based ones (2.21%). This work provides an effective strategy to improve the photovoltaic performance of PSCs. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Pirotte, Geert; Kesters, Jurgen; Cardeynaels, Tom; Verstappen, Pieter; D'Haen, Jan; Lutsen, Laurence; Champagne, Benoît; Vanderzande, Dirk; Maes, Wouter
2018-04-22
Push-pull-type conjugated polymers applied in organic electronics do not always contain a perfect alternation of donor and acceptor building blocks. Misscouplings can occur, which have a noticeable effect on the device performance. In this work, the influence of homocoupling on the optoelectronic properties and photovoltaic performance of PDTSQx ff polymers is investigated, with a specific focus on the quinoxaline acceptor moieties. A homocoupled biquinoxaline segment is intentionally inserted in specific ratios during the polymerization. These homocoupled units cause a gradually blue-shifted absorption, while the highest occupied molecular orbital energy levels decrease only significantly upon the presence of 75-100% of homocouplings. Density functional theory calculations show that the homocoupled acceptor unit generates a twist in the polymer backbone, which leads to a decreased conjugation length and a reduced aggregation tendency. The virtually defect-free PDTSQx ff affords a solar cell efficiency of 5.4%, which only decreases substantially upon incorporating a homocoupling degree over 50%. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Astrophysics Data System (ADS)
Jindal, Shikha; Giripunje, Sushama M.
2017-11-01
Quantum dots (QDs) are the suitable material for solar cell devices owing to its distinctive optical, electrical and electronic properties. Currently, the most efficient devices have employed the toxic QDs which cause destructive impact on environment. In the present article, we have used environment benign CuInS2 QDs as an acceptor material in bulk heterojunction device of P3HT and QDs. The energy level positions corroborated from UPS spectra substantiates the acceptor property of CuInS2. We scrutinized the hybrid solar cell by tailoring the acceptor content in active layer. The increased acceptor content intensifies the performance of device. The enhancement in photovoltaic parameters is mainly due to the fast dissociation and extraction of photogenerated excitons which occurs with the larger wt% of acceptor QDs. Current density-voltage characteristics describes the greater V oc and I sc in the 60 wt% CuInS2 QDs based solar cell as compared to the low wt% of QDs in the active layer.
Miller, Robin L.; Fujii, Roger; Schmidt, Paul E.
2011-01-01
The Sacramento-San Joaquin Delta in California was an historic, vast inland freshwater wetland, where organic soils almost 20 meters deep formed over the last several millennia as the land surface elevation of marshes kept pace with sea level rise. A system of levees and pumps were installed in the late 1800s and early 1900s to drain the land for agricultural use. Since then, land surface has subsided more than 7 meters below sea level in some areas as organic soils have been lost to aerobic decomposition. As land surface elevations decrease, costs for levee maintenance and repair increase, as do the risks of flooding. Wetland restoration can be a way to mitigate subsidence by re-creating the environment in which the organic soils developed. A preliminary study of the effect of hydrologic regime on carbon cycling conducted on Twitchell Island during the mid-1990s showed that continuous, shallow flooding allowing for the growth of emergent marsh vegetation re-created a wetland environment where carbon preservation occurred. Under these conditions annual plant biomass carbon inputs were high, and microbial decomposition was reduced. Based on this preliminary study, the U.S. Geological Survey re-established permanently flooded wetlands in fall 1997, with shallow water depths of 25 and 55 centimeters, to investigate the potential to reverse subsidence of delta islands by preserving and accumulating organic substrates over time. Ten years after flooding, elevation gains from organic matter accumulation in areas of emergent marsh vegetation ranged from almost 30 to 60 centimeters, with average annual carbon storage rates approximating 1 kg/m2, while areas without emergent vegetation cover showed no significant change in elevation. Differences in accretion rates within areas of emergent marsh vegetation appeared to result from temporal and spatial variability in hydrologic factors and decomposition rates in the wetlands rather than variability in primary production. Decomposition rates were related to differences in hydrologic conditions, including water temperature, pH, dissolved oxygen concentration, and availability of alternate electron acceptors. The study showed that marsh re-establishment with permanent, low energy, shallow flooding can limit oxidation of organic soils, thus, effectively turning subsiding land from atmospheric carbon sources to carbon sinks, and at the same time reducing flood vulnerability.
NASA Astrophysics Data System (ADS)
Ilyas, Usman; Rawat, R. S.; Tan, T. L.
2013-10-01
This paper reports the tailoring of acceptor defects in oxygen rich ZnO thin films at different post-deposition annealing temperatures (500-800°C) and Mn doping concentrations. The XRD spectra exhibited the nanocrystalline nature of ZnO thin films along with inconsistent variation in lattice parameters suggesting the temperature-dependent activation of structural defects. Photoluminescence emission spectra revealed the temperature dependent variation in deep level emissions (DLE) with the presence of acceptors as dominating defects. The concentration of native defects was estimated to be increased with temperature while a reverse trend was observed for those with increasing doping concentration. A consistent decrease in DLE spectra, with increasing Mn content, revealed the quenching of structural defects in the optical band gap of ZnO favorable for good quality thin films with enhanced optical transparency.
NASA Astrophysics Data System (ADS)
Nepal, Neeraj
Deep ultraviolet (UV) photoluminescence (PL) spectroscopy has been employed to study optical properties of AlGaN alloys, undoped and doped AlN epilayers and nanostructure AlN photonics crystals (PCs). Using a deep UV laser system with an excitation wave length at 197 nm, continuous wave PL, temperature dependent, and time-resolved PL have been carried out on these AlGaN and AlN epilayers and nanostructures. We have measured the compositional and temperature dependence of the energy bandgap of AlxGa1-xN alloys covering the entire alloy range of x, 0 ≤ x ≤ 1 and fitted with the Varshni equation. Varshni coefficients, alpha and beta, in AlGaN alloys have a parabolic dependence with alloy concentration x. Based on the experimental data, an empirical relation was thus obtained for the energy gap of AlGaN alloys for the entire alloy concentration and at any temperature below 800 K. The exciton localization energy in AlxGa1-xN alloys the entire composition range (0 ≤ x ≤ 1) has been measured by fitting the band edge emission peak energy with the Varshni equation. Deviations of the excitonic emission peak energy from the Varshni equation at low temperatures provide directly the exciton localization energies, ELoc in AlGaN alloys. It was found that ELoc increases with x for x ≤ 0.7, and decreases with x for x ≥ 0.8. The relations between the exciton localization energy, the activation energy, and the emission linewidth have been established. It thus provides three different and independent methods to determine the exciton localization energies in AlGaN alloys. Impurity transitions in AlGaN alloys have also been investigated. Continuous wave (CW) PL spectra of Si and undoped AlGaN alloys reveals groups of impurity transitions that have been assigned to the recombination between shallow donors and an isolated triply charged cation-vacancy (VIII)3-, a doubly charged cation-vacancy-complex (VIII-complex)2- , and a singly charged cation-vacancy-complex (VIII-complex) -1. The energy levels of these deep acceptors in AlxGa 1-xN (0 ≤ x ≤ 1) alloys are pinned to a common energy level in the vacuum. AlGaN alloys predominantly exhibiting the bandedge and (V III-complex)1- transitions possess improved conductivities over those emitting predominantly (VIII)3- and (V III-complex)2- related transitions. These results thus answer the very basic question of high resistivity in Al-rich AlGaN alloys. Acceptor doped AlGaN alloys have been studied by deep UV PL. A PL emission line at 6.02 eV has been observed at 10 K in Mg-doped AlN. It is due to the recombination of an exciton bound to the neutral Mg acceptor (I1) with a binding energy, Ebx of 40 meV, which indicates large activation energy of the Mg acceptor. The observed large binding energy of the acceptor-bound exciton is consistent with relatively large binding energy of the Mg acceptor in AlN. With the energy level of 0.51 eV for Mg dopants in AlN, it is interesting and important to study other suitable acceptor dopants for AlN. Growth and optical studies of Zn-doped AlN epilayers has been carried out. The PL spectra of Zn-doped AlN epilayers exhibited two impurity emission lines at 5.40 and 4.50 eV, which were absent in undoped epilayers. They are assigned respectively, to the transitions of free electrons and electrons bound to triply positively charged nitrogen vacancies (0.90 eV deep) to the Zn0 acceptors. It was deduced that the Zn energy level is about 0.74 eV above the valence band edge, which is about 0.23 eV deeper than the Mg energy level in AlN. Nitrogen vacancies are the compensating defects in acceptor doped AlGaN alloys. A nitrogen vacancy (VN) related emission line was also observed in ion-implanted AlN at 5.87 eV and the energy level of singly charged VN1+ is found at 260 meV below the conduction band. As a consequence of large binding energy of VN 1+ as well as high formation energy, VN1+ in AlN cannot contribute significant n-type conductivity, which is consistent with experimental observation. The temperature dependent PL study of the bandedge emissions in GaN and AlN epilayers up to 800 K has been carried out, which reveals two distinctive activation processes. The first process occurring below Tt = 325 K (Tt = 500 K) for GaN (AlN) is due to the activation of free excitons to free carriers, whereas the second occurring above Tt with an activation energy of 0.29 eV (0.3 eV) for GaN (AlN) is believed to be associated with a higher lying conduction band (Gamma3) at about 0.3 eV above the conduction band minimum (Gamma1). These higher lying bands could affect device performance of GaN and AlN at elevated temperatures. Two-dimensional nanostructured AlN photonic crystals (PCs) with a varying periodicity/diameter down to 150 nm/75 nm have also been studied by deep UV PL. With PCs formation, a 20-fold enhancement in the band edge emission intensity at 208 nm over unpatterned AlN epilayer has been observed. The emission intensity increases with the decrease in the lattice constant of the AlN PCs. AlN PCs represent photonic crystals with highest (shortest) bandgap (wavelength) semiconductors, which open up new opportunities for exploring novel physical phenomena in the artificially structured photonic band gap material systems and their applications, particularly in the area of deep UV as well as nano-photonics.
Magneto-optical far-infrared absorption spectroscopy of the hole states of indium phosphide
NASA Astrophysics Data System (ADS)
Lewis, R. A.; Wang, Y.-J.
2005-03-01
Far-infrared absorption spectroscopy in magnetic fields of up to 30 T of the zinc acceptor impurity in indium phosphide has revealed for the first time a series of free-hole transitions (Landau-related series) in addition to the familiar bound-hole transitions (Lyman series) as well as hitherto unobserved phonon replicas of both series. Analysis of these data permits the simultaneous direct experimental determination of (i) the hole effective mass, (ii) the species-specific binding energy of the acceptor impurity, (iii) the absolute energy levels of the acceptor excited states of both odd and even parity, (iv) more reliable, and in some cases the only, g factors for acceptor states, through relaxation of the selection rules for phonon replicas, and (v) the LO phonon energy. The method is applicable to other semiconductors and may lead to the reappraisal of their physical parameters.
Li, Zongbo; Weng, Kangkang; Chen, Aihua; Sun, Xiaobo; Wei, Donghui; Yu, Mingming; Huo, Lijun; Sun, Yanming
2018-01-01
Two donor-acceptor (D-A) type conjugated copolymers, P1 and P2, are designed and synthesized. A classical benzothiadiazole acceptor is used to replace a thiophene unit in the polymer chain of P1 to obtain P2 terpolymer. Compared with P1, P2 exhibits broader absorption spectra, higher absorption coefficient, deeper lowest unoccupied molecular orbital level, and a relatively lower band gap. As a result, the P2-based solar cell exhibits a high power conversion efficiency (PCE) of 6.60%, with a short-circuit current (J sc ) of 12.43 mA cm -2 , and a fill factor (FF) of 73.1%, which are higher than those of the P1-based device with a PCE of 4.70%, a J sc of 9.43 mA cm -2 , and an FF of 61.6%. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Augustyn, Kristie D Cox; Jackson, Michael R; Jorns, Marilyn Schuman
2017-02-21
Hydrogen sulfide (H 2 S) is an endogenously synthesized signaling molecule that is enzymatically metabolized in mitochondria. The metabolism of H 2 S maintains optimal concentrations of the gasotransmitter and produces sulfane sulfur (S 0 )-containing metabolites that may be functionally important in signaling. Sulfide:quinone oxidoreductase (SQOR) catalyzes the initial two-electron oxidation of H 2 S to S 0 using coenzyme Q as the electron acceptor in a reaction that requires a third substrate to act as the acceptor of S 0 . We discovered that sulfite is a highly efficient acceptor and proposed that sulfite is the physiological acceptor in a reaction that produces thiosulfate, a known metabolic intermediate. This model has been challenged by others who assume that the intracellular concentration of sulfite is very low, a scenario postulated to favor reaction of SQOR with a considerably poorer acceptor, glutathione. In this study, we measured the intracellular concentration of sulfite and other metabolites in mammalian tissues. The values observed for sulfite in rat liver (9.2 μM) and heart (38 μM) are orders of magnitude higher than previously assumed. We discovered that the apparent kinetics of oxidation of H 2 S by SQOR with glutathione as the S 0 acceptor reflect contributions from other SQOR-catalyzed reactions, including a novel glutathione:CoQ reductase reaction. We used observed metabolite levels and steady-state kinetic parameters to simulate rates of oxidation of H 2 S by SQOR at physiological concentrations of different S 0 acceptors. The results show that the reaction with sulfite as the S 0 acceptor is a major pathway in liver and heart and provide insight into the potential dynamics of H 2 S metabolism.
Isolation of Geobacter species from diverse sedimentary environments
Coaxes, J.D.; Phillips, E.J.P.; Lonergan, D.J.; Jenter, H.; Lovley, D.R.
1996-01-01
In an attempt to better understand the microorganisms responsible for Fe(III) reduction in sedimentary environments, Fe(III)-reducing microorganisms were enriched for and isolated from freshwater aquatic sediments, a pristine deep aquifer, and a petroleum-contaminated shallow aquifer. Enrichments were initiated with acetate or toluene as the electron donor and Fe(III) as the electron acceptor. Isolations were made with acetate or benzoate. Five new strains which could obtain energy for growth by dissimilatory Fe(III) reduction were isolated. All five isolates are gram- negative strict anaerobes which grow with acetate as the electron donor and Fe(III) as the electron acceptor. Analysis of the 16S rRNA sequence of the isolated organisms demonstrated that they all belonged to the genus Geobacter in the delta subdivision of the Proteobacteria. Unlike the type strain, Geobacter metallireducens, three of the five isolates could use H2 as an electron donor fur Fe(III) reduction. The deep subsurface isolate is the first Fe(III) reducer shown to completely oxidize lactate to carbon dioxide, while one of the freshwater sediment isolates is only the second Fe(III) reducer known that can oxidize toluene. The isolation of these organisms demonstrates that Geobacter species are widely distributed in a diversity of sedimentary environments in which Fe(III) reduction is an important process.
Interface states and internal photoemission in p-type GaAs metal-oxide-semiconductor surfaces
NASA Technical Reports Server (NTRS)
Kashkarov, P. K.; Kazior, T. E.; Lagowski, J.; Gatos, H. C.
1983-01-01
An interface photodischarge study of p-type GaAs metal-oxide-semiconductor (MOS) structures revealed the presence of deep interface states and shallow donors and acceptors which were previously observed in n-type GaAs MOS through sub-band-gap photoionization transitions. For higher photon energies, internal photoemission was observed, i.e., injection of electrons to the conduction band of the oxide from either the metal (Au) or from the GaAs valence band; the threshold energies were found to be 3.25 and 3.7 + or - 0.1 eV, respectively. The measured photoemission current exhibited a thermal activation energy of about 0.06 eV, which is consistent with a hopping mechanism of electron transport in the oxide.
Terrill, Kasia; Nesbitt, David J
2010-08-01
Ab initio anharmonic transition frequencies are calculated for strongly coupled (i) asymmetric and (ii) symmetric proton stretching modes in the X-H(+)-X linear ionic hydrogen bonded complexes for OCHCO(+) and N(2)HN(2)(+). The optimized potential surface is calculated in these two coordinates for each molecular ion at CCSD(T)/aug-cc-pVnZ (n = 2-4) levels and extrapolated to the complete-basis-set limit (CBS). Slices through both 2D surfaces reveal a relatively soft potential in the asymmetric proton stretching coordinate at near equilibrium geometries, which rapidly becomes a double minimum potential with increasing symmetric proton acceptor center of mass separation. Eigenvalues are obtained by solution of the 2D Schrödinger equation with potential/kinetic energy coupling explicity taken into account, converged in a distributed Gaussian basis set as a function of grid density. The asymmetric proton stretch fundamental frequency for N(2)HN(2)(+) is predicted at 848 cm(-1), with strong negative anharmonicity in the progression characteristic of a shallow "particle in a box" potential. The corresponding proton stretch fundamental for OCHCO(+) is anomalously low at 386 cm(-1), but with a strong alternation in the vibrational spacing due to the presence of a shallow D(infinityh) transition state barrier (Delta = 398 cm(-1)) between the two equivalent minimum geometries. Calculation of a 2D dipole moment surface and transition matrix elements reveals surprisingly strong combination and difference bands with appreciable intensity throughout the 300-1500 cm(-1) region. Corrected for zero point (DeltaZPE) and thermal vibrational excitation (DeltaE(vib)) at 300 K, the single and double dissociation energies in these complexes are in excellent agreement with thermochemical gas phase ion data.
Saw, Kim Guan; Tneh, Sau Siong; Yam, Fong Kwong; Ng, Sha Shiong; Hassan, Zainuriah
2014-01-01
The concentration of acceptor carriers, depletion width, magnitude of donor level movement as well as the sensitivity factor are determined from the UV response of a heterojunction consisting of ZnO on type IIb diamond. From the comparison of the I-V measurements in dark condition and under UV illumination we show that the acceptor concentration (∼1017 cm−3) can be estimated from p-n junction properties. The depletion width of the heterojunction is calculated and is shown to extend farther into the ZnO region in dark condition. Under UV illumination, the depletion width shrinks but penetrates both materials equally. The ultraviolet illumination causes the donor level to move closer to the conduction band by about 50 meV suggesting that band bending is reduced to allow more electrons to flow from the intrinsically n-type ZnO. The sensitivity factor of the device calculated from the change of threshold voltages, the ratio of dark and photocurrents and identity factor is consistent with experimental data. PMID:24586707
Native defect-assisted enhanced response to CH4 near room temperature by Al0.07Ga0.93N nanowires.
Parida, Santanu; Das, A; Prasad, Arun K; Ghatak, Jay; Dhara, Sandip
2018-06-26
Gas sensors at low operating temperature with high sensitivity require group III nitrides owing to their high chemical and thermal stabilities. For the first time, Al0.07Ga0.93N nanowires (NWs) have been utilized in CH4 sensing, and it has been demonstrated that they exhibit an improved response compared to GaN NWs at the low operating temperature of 50 °C. Al0.07Ga0.93N NWs have been synthesized via the ion beam mixing process using inert gas ion irradiation on the bilayer of Al/GaN NWs. The sensing mechanism is explained with the help of native defects present in the system. The number of shallow acceptors created by Ga vacancies (VGa) is found to be higher in Al0.07Ga0.93N NWs than in as-grown GaN NWs. The role of the O antisite defect (ON) for the formation of shallow VGa is inferred from photoluminescence spectroscopic analysis. These native defects strongly influence the gas sensing behaviour, which results in enhanced and low-temperature CH4 sensing.
High-resolution photoluminescence spectroscopy of Sn-doped ZnO single crystals
Kumar, E. Senthil; Mohammadbeigi, F.; Boatner, Lynn A.; ...
2016-01-01
Here, Group IV donors in ZnO are poorly understood, despite evidence that they are effective n-dopants. We present high-resolution photoluminescence spectroscopy studies of unintentionally doped and Sn doped ZnO single crystals grown by the chemical vapor transport method. Doped samples showed greatly increased emission from the I10 bound exciton transition which was recently proven to be related to the incorporation of Sn impurities based on radio-isotope studies. PL linewidths are exceptionally sharp for these samples, enabling clear identification of several donor species. Temperature dependent PL measurements of the I10 line emission energy and intensity dependence reveal a behavior similar tomore » other shallow donors in ZnO. Ionized donor bound exciton and two electron satellite transitions of the I10 transition are unambiguously identified and yield a donor binding energy of 71 meV. In contrast to recent reports of Ge-related donors in ZnO, the spectroscopic binding energy for the Sn-related donor bound exciton follows a linear relationship with donor binding energy (Haynes rule), confirming the shallow nature of this defect center, which we attribute to a SnZn double donor compensated by an unknown single acceptor.« less
NASA Astrophysics Data System (ADS)
Russell, Michael J.; Murray, Alison E.; Hand, Kevin P.
2017-12-01
Irradiated ice-covered ocean worlds with rocky mafic mantles may provide the conditions needed to drive the emergence and maintenance of life. Alkaline hydrothermal springs - relieving the geophysical, thermal, and chemical disequilibria between oceans and tidally stressed crusts - could generate inorganic barriers to the otherwise uncontrolled and kinetically disfavored oxidation of hydrothermal hydrogen and methane. Ionic gradients imposed across these inorganic barriers, comprising iron oxyhydroxides and sulfides, could drive the hydrogenation of carbon dioxide and the oxidation of methane through thermodynamically favorable metabolic pathways leading to early life-forms. In such chemostatic environments, fuels may eventually outweigh oxidants. Ice-covered oceans are primarily heated from below, creating convection that could transport putative microbial cells and cellular cooperatives upward to congregate beneath an ice shell, potentially giving rise to a highly focused shallow biosphere. It is here where electron acceptors, ultimately derived from the irradiated surface, could be delivered to such life-forms through exchange with the icy surface. Such zones would act as "electron disposal units" for the biosphere, and occupants might be transferred toward the surface by buoyant diapirs and even entrained into plumes.
Small polarons and point defects in LaFeO3
NASA Astrophysics Data System (ADS)
Zhu, Zhen; Peelaers, Hartwin; van de Walle, Chris G.
The proton-conductive perovskite-type LaFeO3 is a promising negative-electrode material for Ni/metal-hydride (Ni-MH) batteries. It has a discharge capacity up to 530 mAhg-1 at 333 K, which is significantly higher than commercialized AB5-type alloys. To elucidate the underlying mechanism of this performance, we have investigated the structural and electronic properties of bulk LaFeO3, as well as the effect of point defects, using hybrid density functional methods. LaFeO3 is antiferromagnetic in the ground state with a band gap of 3.54 eV. Small hole and electron polarons can form through self- or point-defect-assisted trapping. We find that La vacancies and Sr substitutional on La sites are shallow acceptors with the induced holes trapped as small polarons, while O and Fe vacancies are deep defect centers. Hydrogen interstitials behave like shallow donors, with the donor electrons localized on nearby iron sites as electron polarons. With a large trapping energy, these polarons can act as electron or hole traps and affect the electrical performance of LaFeO3 as the negative electrode for Ni-MH batteries. We acknowledge DOE for financial support.
Single molecule-level study of donor-acceptor interactions and nanoscale environment in blends
NASA Astrophysics Data System (ADS)
Quist, Nicole; Grollman, Rebecca; Rath, Jeremy; Robertson, Alex; Haley, Michael; Anthony, John; Ostroverkhova, Oksana
2017-02-01
Organic semiconductors have attracted considerable attention due to their applications in low-cost (opto)electronic devices. The most successful organic materials for applications that rely on charge carrier generation, such as solar cells, utilize blends of several types of molecules. In blends, the local environment strongly influences exciton and charge carrier dynamics. However, relationship between nanoscale features and photophysics is difficult to establish due to the lack of necessary spatial resolution. We use functionalized fluorinated pentacene (Pn) molecule as single molecule probes of intermolecular interactions and of the nanoscale environment in blends containing donor and acceptor molecules. Single Pn donor (D) molecules were imaged in PMMA in the presence of acceptor (A) molecules using wide-field fluorescence microscopy. Two sample configurations were realized: (i) a fixed concentration of Pn donor molecules, with increasing concentration of acceptor molecules (functionalized indenflouorene or PCBM) and (ii) a fixed concentration of acceptor molecules with an increased concentration of the Pn donor. The D-A energy transfer and changes in the donor emission due to those in the acceptor- modified polymer morphology were quantified. The increase in the acceptor concentration was accompanied by enhanced photobleaching and blinking of the Pn donor molecules. To better understand the underlying physics of these processes, we modeled photoexcited electron dynamics using Monte Carlo simulations. The simulated blinking dynamics were then compared to our experimental data, and the changes in the transition rates were related to the changes in the nanoscale environment. Our study provides insight into evolution of nanoscale environment during the formation of bulk heterojunctions.
Liu, Yi; He, Bo; Pun, Andrew
2015-11-24
A novel electron acceptor based on bay-annulated indigo (BAI) was synthesized and used for the preparation of a series of high performance donor-acceptor small molecules and polymers. The resulting materials possess low-lying LUMO energy level and small HOMO-LUMO gaps, while their films exhibited high crystallinity upon thermal treatment, commensurate with high field effect mobilities and ambipolar transfer characteristics.
Liu, Yi; He, Bo; Pun, Andrew
2016-04-19
A novel electron acceptor based on bay-annulated indigo (BAI) was synthesized and used for the preparation of a series of high performance donor-acceptor small molecules and polymers. The resulting materials possess low-lying LUMO energy level and small HOMO-LUMO gaps, while their films exhibited high crystallinity upon thermal treatment, commensurate with high field effect mobilities and ambipolar transfer characteristics.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kobilka, Brandon M.; Hale, Benjamin J.; Ewan, Monique D.
2013-01-01
Donor–acceptor conjugated polymers based on the novel donor 3,7-didodecyl-2,6-di(thiophen-2-yl)benzo[1,2-b:4,5-b']difuran, and 1,4-diketopyrrolo[3,4-c]pyrrole as the acceptor were synthesized via the Stille cross-coupling reaction. The alkyl chains on the diketopyrrolopyrrole monomers were varied to engineer the solubility and morphology of the materials. Thiophene and furan moieties were used to flank the DPP group and the impact of these heterocycles on the polymers' properties evaluated. All of the polymers have similar optoelectronic properties with optical band-gaps of 1.3–1.4 eV, LUMO levels of -3.7 to -3.8 eV and HOMO levels of -5.5 to -5.6 eV. The furan-containing polymers have better solubility than the all-thiophene polymers,more » as significantly higher molecular weight materials of the former were readily dissolved. When the polymers were used as donor materials along with PC71BM as the electron-acceptor in bulk-heterojunction photovoltaic cells, power conversion efficiencies of up to 2.9% were obtained, with the furan-containing polymers giving the best results.« less
NASA Astrophysics Data System (ADS)
Tajbakhsh, Mahmood; Kariminasab, Mohaddeseh; Ganji, Masoud Darvish; Alinezhad, Heshmatollah
2017-12-01
Organic solar cells, especially bulk hetero-junction polymer solar cells (PSCs), are the most successful structures for applications in renewable energy. The dramatic improvement in the performance of PSCs has increased demand for new conjugated polymer donors and fullerene derivative acceptors. In the present study, quantum chemical calculations were performed for several representative fullerene derivatives in order to determine their frontier orbital energy levels and electronic structures, thereby helping to enhance their performance in PSC devices. We found correlations between the theoretical lowest unoccupied molecular orbital levels and electrophilicity index of various fullerenes with the experimental open circuit voltage of photovoltaic devices according to the poly(3-hexylthiophene) (P3HT):fullerene blend. The correlations between the structure and descriptors may facilitate screening of the best fullerene acceptor for the P3HT donor. Thus, we considered fullerenes with new functional groups and we predicted the output factors for the corresponding P3HT:fullerene blend devices. The results showed that fullerene derivatives based on thieno-o-quinodimethane-C60 with a methoxy group will have enhanced photovoltaic properties. Our results may facilitate the design of new fullerenes and the development of favorable acceptors for use in photovoltaic applications.
Emission spectroscopy of divalent-cation-doped GaN photocatalysts
NASA Astrophysics Data System (ADS)
Hirai, Takeshi; Harada, Takashi; Ikeda, Shigeru; Matsumura, Michio; Saito, Nobuo; Nishiyama, Hiroshi; Inoue, Yasunobu; Harada, Yoshiyuki; Ohno, Nobuhito; Maeda, Kazuhiko; Kubota, Jun; Domen, Kazunari
2011-12-01
Photoluminescence (PL) and time-resolved photoluminescence (TRPL) spectra of GaN particles doped with divalent cations (Mg2+, Zn2+, and Be2+), which promote photocatalytic overall water splitting, were investigated. The PL and TRPL spectra were mainly attributed to donor-acceptor pair recombination between the divalent cation dopants and divalent anion impurities (O2- and S2-) unintentionally introduced from raw materials, which form acceptor and donor levels, respectively. These levels are likely to provide holes and electrons required for photocatalytic reactions, contributing to the photocatalytic activity of the GaN-based photocatalysts for overall water splitting.
NASA Astrophysics Data System (ADS)
Zou, Yunlong; Holmes, Russell
2013-03-01
Transition metal oxides including molybdenum oxide (MoOx) are characterized by large work functions and deep energy levels relative to the organic semiconductors used in photovoltaic cells (OPVs). These materials have been used in OPVs as interlayers between the indium-tin-oxide anode and the active layers to increase the open-circuit voltage (VOC) and power conversion efficiency. We examine the role of MoOx in determining the maximum achievable VOC in planar heterojunction OPVs based on the donor-acceptor pairing of boron subphthalocyanine chloride (SubPc) and C60. While causing minor changes in VOC at room temperature, the inclusion of MoOx significantly changes the temperature dependence of VOC. Devices containing no interlayer show a maximum VOC\\ of 1.2 V, while devices containing MoOx show no saturation in VOC, reaching a value of >1.4 V at 110 K. We propose that the MoOx-SubPc interface forms a dissociating Schottky junction that provides an additional contribution to VOC at low temperature. Separate measurements of photoluminescence confirm that excitons in SubPc can be quenched by MoOx. Charge transfer at this interface is by hole extraction from SubPc to MoOx, and this mechanism favors donors with a deep highest occupied molecular orbital (HOMO) energy level. Consistent with this expectation, the temperature dependence of VOC for devices constructed using a donor with a shallower HOMO level, e.g. copper phthalocyanine, is independent of the presence of MoOx.
A study of beryllium and beryllium-lithium complexes in single crystal silicon
NASA Technical Reports Server (NTRS)
Crouch, R. K.; Robertson, J. B.; Gilmer, T. E., Jr.
1972-01-01
When beryllium is thermally diffused into silicon, it gives rise to acceptor levels 191 MeV and 145 meV above the valence band. Quenching and annealing studies indicate that the 145-MeV level is due to a more complex beryllium configuration than the 191-MeV level. When lithium is thermally diffused into a beryllium-doped silicon sample, it produces two acceptor levels at 106 MeV and 81 MeV. Quenching and annealing studies indicate that these levels are due to lithium forming a complex with the defects responsible for the 191-MeV and 145-MeV beryllium levels, respectively. Electrical measurements imply that the lithium impurity ions are physically close to the beryllium impurity atoms. The ground state of the 106-MeV beryllium level is split into two levels, presumably by internal strains. Tentative models are proposed.
Energy transfer and correlations in cavity-embedded donor-acceptor configurations.
Reitz, Michael; Mineo, Francesca; Genes, Claudiu
2018-06-13
The rate of energy transfer in donor-acceptor systems can be manipulated via the common interaction with the confined electromagnetic modes of a micro-cavity. We analyze the competition between the near-field short range dipole-dipole energy exchange processes and the cavity mediated long-range interactions in a simplified model consisting of effective two-level quantum emitters that could be relevant for molecules in experiments under cryogenic conditions. We find that free-space collective incoherent interactions, typically associated with sub- and superradiance, can modify the traditional resonant energy transfer scaling with distance. The same holds true for cavity-mediated collective incoherent interactions in a weak-coupling but strong-cooperativity regime. In the strong coupling regime, we elucidate the effect of pumping into cavity polaritons and analytically identify an optimal energy flow regime characterized by equal donor/acceptor Hopfield coefficients in the middle polariton. Finally we quantify the build-up of quantum correlations in the donor-acceptor system via the two-qubit concurrence as a measure of entanglement.
Spin-enhanced organic bulk heterojunction photovoltaic solar cells.
Zhang, Ye; Basel, Tek P; Gautam, Bhoj R; Yang, Xiaomei; Mascaro, Debra J; Liu, Feng; Vardeny, Z Valy
2012-01-01
Recently, much effort has been devoted to improve the efficiency of organic photovoltaic solar cells based on blends of donors and acceptors molecules in bulk heterojunction architecture. One of the major losses in organic photovoltaic devices has been recombination of polaron pairs at the donor-acceptor domain interfaces. Here, we present a novel method to suppress polaron pair recombination at the donor-acceptor domain interfaces and thus improve the organic photovoltaic solar cell efficiency, by doping the device active layer with spin 1/2 radical galvinoxyl. At an optimal doping level of 3 wt%, the efficiency of a standard poly(3-hexylthiophene)/1-(3-(methoxycarbonyl)propyl)-1-1-phenyl)(6,6)C(61) solar cell improves by 18%. A spin-flip mechanism is proposed and supported by magneto-photocurrent measurements, as well as by density functional theory calculations in which polaron pair recombination rate is suppressed by resonant exchange interaction between the spin 1/2 radicals and charged acceptors, which convert the polaron pair spin state from singlet to triplet.
Design of donor-acceptor copolymers for organic photovoltaic materials: a computational study.
Turan, Haydar Taylan; Kucur, Oğuzhan; Kahraman, Birce; Salman, Seyhan; Aviyente, Viktorya
2018-01-31
80 different push-pull type organic chromophores which possess Donor-Acceptor (D-A) and Donor-Thiophene-Acceptor-Thiophene (D-T-A-T) structures have been systematically investigated by means of density functional theory (DFT) and time-dependent DFT (TD-DFT) at the B3LYP/6-311G* level. The introduction of thiophene (T) in the chain has allowed us to monitor the effect of π-spacers. Benchmark studies on the methodology have been carried out to predict the HOMO and LUMO energies and optical band gaps of the D-A systems accurately. The HOMO and LUMO energies and transition dipoles are seen to converge for tetrameric oligomers, and the latter have been used as optimal chain length to evaluate various geometrical and optoelectronic properties such as bond length alternations, distortion energies, frontier molecular orbital energies, reorganization energies and excited-state vertical transition of the oligomers. Careful analysis of our findings has allowed us to propose potential donor-acceptor couples to be used in organic photovoltaic cells.
Purification of p-type CdTe crystals by thermal treatment
NASA Astrophysics Data System (ADS)
Fochuk, P.; Rarenko, I.; Zakharuk, Z.; Nykoniuk, Ye.; Shlyakhovyj, V.; Bolotnikov, A. E.; Yang, Ge; James, R. B.
2014-09-01
We studied the influence of prolonged thermal treatment on the concentration and the acceptor energy level positions in p-CdTe samples. We found that heating them at 720 K entails a decrease in the concentration of electrically active centers, i.e., a "self-cleaning" of the adverse effects of some contaminants. In samples wherein the conductivity was determined by the concentration of acceptors of the A1 type (EV + 0.03-0.05) eV, after heating it becomes controlled by a deeper acceptor of the A2 type (EV + 0.13-0.14) eV, and both the charge-carrier's mobility and the ratio μр80/μр300 increase. This effect reflects the fact that during thermal treatment, the A1 acceptors and the compensating donors are removed from their electrically active positions, most likely due to their diffusion and trapping within the inclusions in the CdTe bulk, where they have little or no influence on carrier scattering and trapping.
NASA Astrophysics Data System (ADS)
Sokolov, V. I.; Gruzdev, N. B.; Pustovarov, V. A.; Churmanov, V. N.
2013-01-01
Crystals of Zn1-xCoxO and Zn1-xNixO are studied by photoluminescence at temperatures of 8 and 90 K. By resolving the spectra into sums of gaussian distributions and using the known positions of donor and acceptor levels of 3d-impurities relative to the edges of the allowed bands, the observed peaks in the photoluminescence spectra are interpreted in terms of radiative recombination through donor and acceptor levels of nickel and cobalt ions. These results are compared with previously observed features of the photoluminescence spectra of Zn1-xMnxO crystals.
New electron trap in p-type Czochralski silicon
NASA Technical Reports Server (NTRS)
Mao, B.-Y.; Lagowski, J.; Gatos, H. C.
1984-01-01
A new electron trap (acceptor level) was discovered in p-type Czochralski (CZ) silicon by current transient spectroscopy. The behavior of this trap was found to be similar to that of the oxygen thermal donors; thus, 450 C annealing increases the trap concentration while high-temperature annealing (1100-1200 C) leads to the virtual elimination of the trap. The new trap is not observed in either float-zone or n-type CZ silicon. Its energy level depends on the group III doping element in the sample. These findings suggest that the trap is related to oxygen, and probably to the acceptor impurity as well.
Band alignment and p -type doping of ZnSnN2
NASA Astrophysics Data System (ADS)
Wang, Tianshi; Ni, Chaoying; Janotti, Anderson
2017-05-01
Composed of earth-abundant elements, ZnSnN2 is a promising semiconductor for photovoltaic and photoelectrochemical applications. However, basic properties such as the precise value of the band gap and the band alignment to other semiconductors are still unresolved. For instance, reported values for the band gap vary from 1.4 to 2.0 eV. In addition, doping in ZnSnN2 remains largely unexplored. Using density functional theory with the Heyd-Scuseria-Ernzerhof hybrid functional, we investigate the electronic structure of ZnSnN2, its band alignment to GaN and ZnO, and the possibility of p -type doping. We find that the position of the valence-band maximum of ZnSnN2 is 0.39 eV higher than that in GaN, yet the conduction-band minimum is close to that in ZnO, which suggests that achieving p -type conductivity is likely as in GaN, yet it may be difficult to control unintentional n -type conductivity as in ZnO. Among possible p -type dopants, we explore Li, Na, and K substituting on the Zn site. We show that while LiZn is a shallow acceptor, NaZn and KZn are deep acceptors, which we trace back to large local relaxations around the Na and K impurities due to the atomic size mismatches.
Piezo-phototronic effect on electroluminescence properties of p-type GaN thin films.
Hu, Youfan; Zhang, Yan; Lin, Long; Ding, Yong; Zhu, Guang; Wang, Zhong Lin
2012-07-11
We present that the electroluminescence (EL) properties of Mg-doped p-type GaN thin films can be tuned by the piezo-phototronic effect via adjusting the minority carrier injection efficiency at the metal-semiconductor (M-S) interface by strain induced polarization charges. The device is a metal-semiconductor-metal structure of indium tin oxide (ITO)-GaN-ITO. Under different straining conditions, the changing trend of the transport properties of GaN films can be divided into two types, corresponding to the different c-axis orientations of the films. An extreme value was observed for the integral EL intensity under certain applied strain due to the adjusted minority carrier injection efficiency by piezoelectric charges introduced at the M-S interface. The external quantum efficiency of the blue EL at 430 nm was changed by 5.84% under different straining conditions, which is 1 order of magnitude larger than the change of the green peak at 540 nm. The results indicate that the piezo-phototronic effect has a larger impact on the shallow acceptor states related EL process than on the one related to the deep acceptor states in p-type GaN films. This study has great significance on the practical applications of GaN in optoelectronic devices under a working environment where mechanical deformation is unavoidable such as for flexible/printable light emitting diodes.
Rao, Joshi Laxmikanth; Bhanuprakash, Kotamarthi
2011-12-01
The molecular structures of the ground (S(0)) and first singlet excited (S(1)) states of Alq3 derivatives in which pyrazolyl and 3-methylpyrazolyl groups are substituted at the C4 positions of the 8-hydroxyquinolate ligands as electron acceptors, and piperidinyl and N-methylpiperazinyl groups are substituted at the same positions as electron donors, have been optimized using the B3LYP/6-31G and CIS/6-31G methods, respectively. In order to analyze the electronic transitions in these derivatives, the frontier molecular orbital characteristics were analyzed systematically, and it was found that the highest occupied molecular orbital is localized on the A ligand while the lowest unoccupied molecular orbital is localized on the B ligand in their ground states, similar to what is seen for mer-Alq3. The absorption and emission spectra were evaluated at the TD-PBE0/6-31G level, and it was observed that electron acceptor substitution causes a red-shift in the emission spectra, which is also seen experimentally. The reorganization energies were calculated at the B3LYP/6-31G level and the results show that acceptor/donor substitution has a significant effect on the intrinsic charge mobilities of these derivatives as compared to mer-Alq3.
Li, Yongfang
2012-05-15
Bulk heterojunction (BHJ) polymer solar cells (PSCs) sandwich a blend layer of conjugated polymer donor and fullerene derivative acceptor between a transparent ITO positive electrode and a low work function metal negative electrode. In comparison with traditional inorganic semiconductor solar cells, PSCs offer a simpler device structure, easier fabrication, lower cost, and lighter weight, and these structures can be fabricated into flexible devices. But currently the power conversion efficiency (PCE) of the PSCs is not sufficient for future commercialization. The polymer donors and fullerene derivative acceptors are the key photovoltaic materials that will need to be optimized for high-performance PSCs. In this Account, I discuss the basic requirements and scientific issues in the molecular design of high efficiency photovoltaic molecules. I also summarize recent progress in electronic energy level engineering and absorption spectral broadening of the donor and acceptor photovoltaic materials by my research group and others. For high-efficiency conjugated polymer donors, key requirements are a narrower energy bandgap (E(g)) and broad absorption, relatively lower-lying HOMO (the highest occupied molecular orbital) level, and higher hole mobility. There are three strategies to meet these requirements: D-A copolymerization for narrower E(g) and lower-lying HOMO, substitution with electron-withdrawing groups for lower-lying HOMO, and two-dimensional conjugation for broad absorption and higher hole mobility. Moreover, better main chain planarity and less side chain steric hindrance could strengthen π-π stacking and increase hole mobility. Furthermore, the molecular weight of the polymers also influences their photovoltaic performance. To produce high efficiency photovoltaic polymers, researchers should attempt to increase molecular weight while maintaining solubility. High-efficiency D-A copolymers have been obtained by using benzodithiophene (BDT), dithienosilole (DTS), or indacenodithiophene (IDT) donor unit and benzothiadiazole (BT), thienopyrrole-dione (TPD), or thiazolothiazole (TTz) acceptor units. The BDT unit with two thienyl conjugated side chains is a highly promising unit in constructing high-efficiency copolymer donor materials. The electron-withdrawing groups of ester, ketone, fluorine, or sulfonyl can effectively tune the HOMO energy levels downward. To improve the performance of fullerene derivative acceptors, researchers will need to strengthen absorption in the visible spectrum, upshift the LUMO (the lowest unoccupied molecular orbital) energy level, and increase the electron mobility. [6,6]-Phenyl-C(71)-butyric acid methyl ester (PC(70)BM) is superior to [6,6]-phenyl-C(61)-butyric acid methyl ester (PCBM) because C(70) absorbs visible light more efficiently. Indene-C(60) bisadduct (ICBA) and Indene-C(70) bisadduct (IC(70)BA) show 0.17 and 0.19 eV higher LUMO energy levels, respectively, than PCBM, due to the electron-rich character of indene and the effect of bisadduct. ICBA and IC(70)BA are excellent acceptors for the P3HT-based PSCs.
Giant first hyperpolarizabilities of donor-acceptor substituted graphyne: An ab initio study.
Chakraborti, Himadri
2016-01-15
Graphyne (Gy), a theoretically proposed material, has been utilized, for the first time, in a phenomenal donor-Gy-acceptor (D-Gy-A) structure to plan a superior nonlinear optical material. Owing to the extraordinary character of graphyne, this conjugate framework shows strikingly extensive static first hyperpolarizability (β(tot)) up to 128×10(-30) esu which is an enormous improvement than that of the bare graphyne. The donor-acceptor separation plays a key role in the change of β(tot) value. The π-conjugation of graphyne backbone has spread throughout some of the D-A attached molecules and leads to a low band gap state. Finally, two level model clarifies that the molecule having low transition energy should have high first hyperpolarizability. Copyright © 2015 Elsevier B.V. All rights reserved.
Reactivation of Deep Subsurface Microbial Community in Response to Methane or Methanol Amendment
Rajala, Pauliina; Bomberg, Malin
2017-01-01
Microbial communities in deep subsurface environments comprise a large portion of Earth’s biomass, but the microbial activity in these habitats is largely unknown. Here, we studied how microorganisms from two isolated groundwater fractures at 180 and 500 m depths of the Outokumpu Deep Drillhole (Finland) responded to methane or methanol amendment, in the presence or absence of sulfate as an additional electron acceptor. Methane is a plausible intermediate in the deep subsurface carbon cycle, and electron acceptors such as sulfate are critical components for oxidation processes. In fact, the majority of the available carbon in the Outokumpu deep biosphere is present as methane. Methanol is an intermediate of methane oxidation, but may also be produced through degradation of organic matter. The fracture fluid samples were incubated in vitro with methane or methanol in the presence or absence of sulfate as electron acceptor. The metabolic response of microbial communities was measured by staining the microbial cells with fluorescent redox sensitive dye combined with flow cytometry, and DNA or cDNA-derived amplicon sequencing. The microbial community of the fracture zone at the 180 m depth was originally considerably more respiratory active and 10-fold more numerous (105 cells ml-1 at 180 m depth and 104 cells ml-1 at 500 m depth) than the community of the fracture zone at the 500 m. However, the dormant microbial community at the 500 m depth rapidly reactivated their transcription and respiration systems in the presence of methane or methanol, whereas in the shallower fracture zone only a small sub-population was able to utilize the newly available carbon source. In addition, the composition of substrate activated microbial communities differed at both depths from original microbial communities. The results demonstrate that OTUs representing minor groups of the total microbial communities play an important role when microbial communities face changes in environmental conditions. PMID:28367144
Identification of rhenium donors and sulfur vacancy acceptors in layered MoS{sub 2} bulk samples
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brandão, F. D., E-mail: fdbrand@fisica.ufmg.br; Ribeiro, G. M.; Vaz, P. H.
2016-06-21
MoS{sub 2} monolayers, a two-dimensional (2D) direct semiconductor material with an energy gap of 1.9 eV, offer many opportunities to be explored in different electronic devices. Defects often play dominant roles in the electronic and optical properties of semiconductor devices. However, little experimental information about intrinsic and extrinsic defects or impurities is available for this 2D system, and even for macroscopic 3D samples for which MoS{sub 2} shows an indirect bandgap of 1.3 eV. In this work, we evaluate the nature of impurities with unpaired spins using electron paramagnetic resonance (EPR) in different geological macroscopic samples. Regarding the fact that monolayers aremore » mostly obtained from natural crystals, we expect that the majority of impurities found in macroscopic samples are also randomly present in MoS{sub 2} monolayers. By EPR at low temperatures, rhenium donors and sulfur vacancy acceptors are identified as the main impurities in bulk MoS{sub 2} with a corresponding donor concentration of about 10{sup 8–12} defects/cm{sup 2} for MoS{sub 2} monolayer. Electrical transport experiments as a function of temperature are in good agreement with the EPR results, revealing a shallow donor state with an ionization energy of 89 meV and a concentration of 7 × 10{sup 15 }cm{sup −3}, which we attribute to rhenium, as well as a second deeper donor state with ionization energy of 241 meV with high concentration of 2 × 10{sup 19 }cm{sup −3} and net acceptor concentration of 5 × 10{sup 18 }cm{sup −3} related to sulfur vacancies.« less
Xu, Qinqin; Yang, Guang; Ren, Yu; Lu, Futai; Zhang, Nuonuo; Qamar, Muhammad; Yang, Manlin; Zhang, Bao; Feng, Yaqing
2017-11-01
Three donor-π conjugated unit-acceptor (D-π-A) type zinc porphyrin sensitizers LX1, LX2 and LX3 bearing meso acrylic acid, α-cyanoacrylic acid, and α-cyanopentadienoic acid, respectively, as the π-bridged acceptors were designed and synthesized for use in dye-sensitized solar cells (DSCs). The interesting role of the cyano group attached to the α position of the acrylic and pentadienoic acid acceptor was investigated. It was shown that even though the introduction of the cyano group and the elongation of the π-bridge can both increase the light-harvesting as indicated by the UV-vis absorption spectra, the relevant cell performance dropped significantly. The photo to power conversion efficiencies (PCEs) of the devices increase in the order of LX1 > LX2 > LX3, with the highest PCE of 6.04% achieved for the LX1-based cell, which bears acrylic acid as the π-bridged acceptor. To further explore the effect of -CN and -CH[double bond, length as m-dash]CH- on the interaction between the absorbed dye and TiO 2 substrates, their density of states (DOS) and partial density of states (PDOS), as well as electronic properties were investigated in detail using theoretical calculations. The results suggest that introducing the -CN group into the acceptor and extending the conjugation of the π-bridge have decreased the LUMO levels of the dyes, leading to weak interfacial coupling, low electron injection driving force, low J sc , and thus poor cell performance.
Bin, Haijun; Yang, Yankang; Zhang, Zhi-Guo; Ye, Long; Ghasemi, Masoud; Chen, Shanshan; Zhang, Yindong; Zhang, Chunfeng; Sun, Chenkai; Xue, Lingwei; Yang, Changduk; Ade, Harald; Li, Yongfang
2017-03-29
In the last two years, polymer solar cells (PSCs) developed quickly with n-type organic semiconductor (n-OSs) as acceptor. In contrast, the research progress of nonfullerene organic solar cells (OSCs) with organic small molecule as donor and the n-OS as acceptor lags behind. Here, we synthesized a D-A structured medium bandgap organic small molecule H11 with bithienyl-benzodithiophene (BDTT) as central donor unit and fluorobenzotriazole as acceptor unit, and achieved a power conversion efficiency (PCE) of 9.73% for the all organic small molecules OSCs with H11 as donor and a low bandgap n-OS IDIC as acceptor. A control molecule H12 without thiophene conjugated side chains on the BDT unit was also synthesized for investigating the effect of the thiophene conjugated side chains on the photovoltaic performance of the p-type organic semiconductors (p-OSs). Compared with H12, the 2D-conjugated H11 with thiophene conjugated side chains shows intense absorption, low-lying HOMO energy level, higher hole mobility and ordered bimodal crystallite packing in the blend films. Moreover, a larger interaction parameter (χ) was observed in the H11 blends calculated from Hansen solubility parameters and differential scanning calorimetry measurements. These special features combined with the complementary absorption of H11 donor and IDIC acceptor resulted in the best PCE of 9.73% for nonfullerene all small molecule OSCs up to date. Our results indicate that fluorobenzotriazole based 2D conjugated p-OSs are promising medium bandgap donors in the nonfullerene OSCs.
Non-fullerene acceptors for organic solar cells
NASA Astrophysics Data System (ADS)
Yan, Cenqi; Barlow, Stephen; Wang, Zhaohui; Yan, He; Jen, Alex K.-Y.; Marder, Seth R.; Zhan, Xiaowei
2018-03-01
Non-fullerene acceptors (NFAs) are currently a major focus of research in the development of bulk-heterojunction organic solar cells (OSCs). In contrast to the widely used fullerene acceptors (FAs), the optical properties and electronic energy levels of NFAs can be readily tuned. NFA-based OSCs can also achieve greater thermal stability and photochemical stability, as well as longer device lifetimes, than their FA-based counterparts. Historically, the performance of NFA OSCs has lagged behind that of fullerene devices. However, recent developments have led to a rapid increase in power conversion efficiencies for NFA OSCs, with values now exceeding 13%, demonstrating the viability of using NFAs to replace FAs in next-generation high-performance OSCs. This Review discusses the important work that has led to this remarkable progress, focusing on the two most promising NFA classes to date: rylene diimide-based materials and materials based on fused aromatic cores with strong electron-accepting end groups. The key structure-property relationships, donor-acceptor matching criteria and aspects of device physics are discussed. Finally, we consider the remaining challenges and promising future directions for the NFA OSCs field.
Donors, Acceptors, and Traps in AlGaN and AlGaN/GaN Epitaxial Layers
2006-07-31
the background. 3.3 Positron annihilation spectroscopy (PAS): acceptor-type defects Positrons injected into defect-free GaN are annihilated by electrons...electron concentration n, and the average Ga-vacancy VGa concentration deduced from positron annihilation spectroscopy . 0.09 3.47 3.46 - 3.45 •ŗ.47225...of this paper, are often investigated by deep level transient spectroscopy (DLTS), and the usual analysis of DLTS data is based on the assumption that
Russell, Michael J; Murray, Alison E; Hand, Kevin P
2017-12-01
Irradiated ice-covered ocean worlds with rocky mafic mantles may provide the conditions needed to drive the emergence and maintenance of life. Alkaline hydrothermal springs-relieving the geophysical, thermal, and chemical disequilibria between oceans and tidally stressed crusts-could generate inorganic barriers to the otherwise uncontrolled and kinetically disfavored oxidation of hydrothermal hydrogen and methane. Ionic gradients imposed across these inorganic barriers, comprising iron oxyhydroxides and sulfides, could drive the hydrogenation of carbon dioxide and the oxidation of methane through thermodynamically favorable metabolic pathways leading to early life-forms. In such chemostatic environments, fuels may eventually outweigh oxidants. Ice-covered oceans are primarily heated from below, creating convection that could transport putative microbial cells and cellular cooperatives upward to congregate beneath an ice shell, potentially giving rise to a highly focused shallow biosphere. It is here where electron acceptors, ultimately derived from the irradiated surface, could be delivered to such life-forms through exchange with the icy surface. Such zones would act as "electron disposal units" for the biosphere, and occupants might be transferred toward the surface by buoyant diapirs and even entrained into plumes. Key Words: Biofilms-Europa-Extraterrestrial life-Hydrothermal systems. Astrobiology 17, 1265-1273.
Murray, Alison E.; Hand, Kevin P.
2017-01-01
Abstract Irradiated ice-covered ocean worlds with rocky mafic mantles may provide the conditions needed to drive the emergence and maintenance of life. Alkaline hydrothermal springs—relieving the geophysical, thermal, and chemical disequilibria between oceans and tidally stressed crusts—could generate inorganic barriers to the otherwise uncontrolled and kinetically disfavored oxidation of hydrothermal hydrogen and methane. Ionic gradients imposed across these inorganic barriers, comprising iron oxyhydroxides and sulfides, could drive the hydrogenation of carbon dioxide and the oxidation of methane through thermodynamically favorable metabolic pathways leading to early life-forms. In such chemostatic environments, fuels may eventually outweigh oxidants. Ice-covered oceans are primarily heated from below, creating convection that could transport putative microbial cells and cellular cooperatives upward to congregate beneath an ice shell, potentially giving rise to a highly focused shallow biosphere. It is here where electron acceptors, ultimately derived from the irradiated surface, could be delivered to such life-forms through exchange with the icy surface. Such zones would act as “electron disposal units” for the biosphere, and occupants might be transferred toward the surface by buoyant diapirs and even entrained into plumes. Key Words: Biofilms—Europa—Extraterrestrial life—Hydrothermal systems. Astrobiology 17, 1265–1273. PMID:29016193
Site preference of Mg acceptors and improvement of p-type doping efficiency in nitride alloys.
Park, Ji-Sang; Chang, K J
2013-06-19
We perform first-principles density functional calculations to investigate the effect of Al and In on the formation energy and acceptor level of Mg in group-III nitride alloys. Our calculations reveal a tendency for the Mg dopants to prefer to occupy the lattice sites surrounded with Al atoms, whereas hole carriers are generated in In- or Ga-rich sites. The separation of the Mg dopants and hole carriers is energetically more favourable than a random distribution of dopants, being attributed to the local bonding effect of weak In and strong Al potentials in alloys. As a consequence, the Mg acceptor level, which represents the activation energy of Mg, tends to decrease with increasing numbers of Al next-nearest neighbours, whereas it increases as the number of In next-nearest neighbours increases. Based on the results, we suggest that the incorporation of higher Al and lower In compositions will improve the p-type doping efficiency in quaternary alloys, in comparison with GaN or AlGaN ternary alloys with similar band gaps.
Site preference of Mg acceptors and improvement of p-type doping efficiency in nitride alloys
NASA Astrophysics Data System (ADS)
Park, Ji-Sang; Chang, K. J.
2013-06-01
We perform first-principles density functional calculations to investigate the effect of Al and In on the formation energy and acceptor level of Mg in group-III nitride alloys. Our calculations reveal a tendency for the Mg dopants to prefer to occupy the lattice sites surrounded with Al atoms, whereas hole carriers are generated in In- or Ga-rich sites. The separation of the Mg dopants and hole carriers is energetically more favourable than a random distribution of dopants, being attributed to the local bonding effect of weak In and strong Al potentials in alloys. As a consequence, the Mg acceptor level, which represents the activation energy of Mg, tends to decrease with increasing numbers of Al next-nearest neighbours, whereas it increases as the number of In next-nearest neighbours increases. Based on the results, we suggest that the incorporation of higher Al and lower In compositions will improve the p-type doping efficiency in quaternary alloys, in comparison with GaN or AlGaN ternary alloys with similar band gaps.
Study of polarization phenomena in Schottky CdTe diodes using infrared light illumination
NASA Astrophysics Data System (ADS)
Sato, Goro; Fukuyama, Taro; Watanabe, Shin; Ikeda, Hirokazu; Ohta, Masayuki; Ishikawa, Shin'nosuke; Takahashi, Tadayuki; Shiraki, Hiroyuki; Ohno, Ryoichi
2011-10-01
Schottky CdTe diode detectors suffer from a polarization phenomenon, which is characterized by degradation of the spectral properties over time following exposure to high bias voltage. This is considered attributable to charge accumulation at deep acceptor levels. A Schottky CdTe diode was illuminated with an infrared light for a certain period during a bias operation, and two opposite behaviors emerged. The detector showed a recovery when illuminated after the bias-induced polarization had completely progressed. Conversely, when the detector was illuminated before the emergence of bias-induced polarization, the degradation of the spectral properties was accelerated. Interpretation of these effects and discussion on the energy level of deep acceptors are presented.
The effect of Ga vacancies on the defect and magnetic properties of Mn-doped GaN
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kang, Joongoo; Chang, K. J.; Department of Physics, Korea Advanced Institute of Science and Technology, Daejeon 305-701, Korea and Korea Institute for Advanced Study, Seoul 130-722
2007-10-15
We perform first-principles theoretical calculations to investigate the effect of the presence of Ga vacancy on the defect and magnetic properties of Mn-doped GaN. When a Ga vacancy (V{sub Ga}) is introduced to the Mn ions occupying the Ga lattice sites, a charge transfer occurs from the Mn d band to the acceptor levels of V{sub Ga}, and strong Mn-N bonds are formed between the Mn ion and the N atoms in the neighborhood of V{sub Ga}. The charge transfer and chemical bonding effects significantly affect the defect and magnetic properties of Mn-doped GaN. In a Mn-V{sub Ga} complex, whichmore » consists of a Ga vacancy and one Mn ion, the dangling bond orbital of the N atom involved in the Mn-N bond is electrically deactivated, and the remaining dangling bond orbitals of V{sub Ga} lead to the shallowness of the defect level. When a Ga vacancy forms a complex with two Mn ions located at a distance of about 6 A, which corresponds to the percolation length in determining the Curie temperature in diluted Mn-doped GaN, the Mn d band is broadened and the density of states at the Fermi level is reduced due to two strong Mn-N bonds. Although the broadening and depopulation of the Mn d band weaken the ferromagnetic stability between the Mn ions, the ferromagnetism is still maintained because of the lack of antiferromagnetic superexchange interactions at the percolation length.« less
Hofmann, Andreas; Jaganyi, Deogratius; Munro, Orde Q; Liehr, Günter; van Eldik, Rudi
2003-03-10
pi-Acceptor effects are often used to account for the unusual high lability of [Pt(terpy)L]((2)(-)(n)+) (terpy = 2,2':6',2' '-terpyridine) complexes. To gain further insight into this phenomenon, the pi-acceptor effect was varied systematically by studying the lability of [Pt(diethylenetriamine)OH(2)](2+) (aaa), [Pt(2,6-bis-aminomethylpyridine)OH(2)](2+) (apa), [Pt(N-(pyridyl-2-methyl)-1,2-diamino-ethane)OH(2)](2+) (aap), [Pt(bis(2-pyridylmethyl)amine)OH(2)](2+) (pap), [Pt(2,2'-bipyridine)(NH(3))(OH(2))](2+) (app), and [Pt(terpy)OH(2)](2+) (ppp). The crystal structure of the apa precursor [Pt(2,6-bis-aminomethylpyridine)Cl]Cl.H(2)O was determined. The substitution of water by a series of nucleophiles, viz. thiourea, N,N-dimethylthiourea, N,N,N',N'-tetramethylthiourea, I(-), and SCN(-), was studied under pseudo-first-order conditions as a function of concentration, pH, temperature, and pressure, using stopped-flow techniques. The data enable an overall comparison of the substitution behavior of these complexes, emphasizing the role played by the kinetic cis and trans pi-acceptor effects. The results indicate that the cis pi-acceptor effect is larger than the trans pi-acceptor effect, and that the pi-acceptor effects are multiplicative. DFT calculations at the B3LYP/LACVP level of theory show that, by the addition of pi-acceptor ligands to the metal, the positive charge on the metal center increases, and the energy separation of the frontier molecular orbitals (E(LUMO) - E(HOMO)) of the ground state Pt(II) complexes decreases. The calculations collectively support the experimentally observed additional increase in reactivity when two pi-accepting rings are adjacent to each other (app and ppp), which is ascribed to "electronic communication" between the pyridine rings. The results furthermore indicate that the pK(a) value of the platinum bound water molecule is controlled by the pi-accepting nature of the chelate system and reflects the electron density around the metal center. This in turn controls the rate of the associative substitution reaction and was analyzed using the Hammett equation.
A theoretical probe on the non-covalent interactions of sulfadoxine drug with pi-acceptors
NASA Astrophysics Data System (ADS)
Sandhiya, L.; Senthilkumar, K.
2014-09-01
A detailed analysis of the interaction between an antimalarial drug sulfadoxine and four pi-acceptors, tetrachloro-catechol, picric acid, chloranil, and 2,3-dichloro-5,6-dicyano-1,4-benzoquinone is presented in this study. The interaction of the amine, amide, methoxy, Csbnd H groups and π electron density of the drug molecule with the acceptors are studied using DFT method at M06-2X level of theory with 6-31G(d,p) basis set. The interaction energy of the complexes is calculated using M06-2X, M06-HF, B3LYP-D and MP2 methods with 6-31G(d,p) basis set. The role of weak interactions on the formation and stability of the complexes is discussed in detail. The two aromatic platforms of sulfadoxine play a major role in determining the stability of the complexes. The electron density difference maps have been plotted for the most stable drug interacting complexes to understand the changes in electron density delocalization upon the complex formation. The nature of the non-covalent interaction has been addressed from NCI plot. The infrared spectra calculated at M06-2X/6-31G(d,p) level of theory is used to characterize the most stable complexes. The SDOX-pi acceptor complexation leads to characteristic changes in the NMR spectra. The 13C, 1H, 17O and 15N NMR chemical shifts have been calculated using GIAO method at M06-2X/6-311+G(d,p)//M06-2X/6-31G(d,p) level of theory. The results obtained from this study confirm the role of non-covalent interactions on the function of the sulfadoxine drug.
Wide Bandgap Extrinsic Photoconductive Switches
NASA Astrophysics Data System (ADS)
Sullivan, James Stephen
Wide Bandgap Extrinsic Photoconductive Switches Semi-insulating Gallium Nitride, 4H and 6H Silicon Carbide are attractive materials for compact, high voltage, extrinsic, photoconductive switches due to their wide bandgap, high dark resistance, high critical electric field strength and high electron saturation velocity. These wide bandgap semiconductors are made semi-insulating by the addition of vanadium (4H and 6H-SiC) and iron (2H-GaN) impurities that form deep acceptors. These deep acceptors trap electrons donated from shallow donor impurities. The electrons can be optically excited from these deep acceptor levels into the conduction band to transition the wide bandgap semiconductor materials from a semi-insulating to a conducting state. Extrinsic photoconductive switches with opposing electrodes have been constructed using vanadium compensated 6H-SiC and iron compensated 2H-GaN. These extrinsic photoconductive switches were tested at high voltage and high power to determine if they could be successfully used as the closing switch in compact medical accelerators. The successful development of a vanadium compensated, 6H-SiC extrinsic photoconductive switch for use as a closing switch for compact accelerator applications was realized by improvements made to the vanadium, nitrogen and boron impurity densities. The changes made to the impurity densities were based on the physical intuition outlined and simple rate equation models. The final 6H-SiC impurity 'recipe' calls for vanadium, nitrogen and boron densities of 2.5 e17 cm-3, 1.25e17 cm-3 and ≤ 1e16 cm-3, respectively. This recipe was originally developed to maximize the quantum efficiency of the vanadium compensated 6H-SiC, while maintaining a thermally stable semi-insulating material. The rate equation models indicate that, besides increasing the quantum efficiency, the impurity recipe should be expected to also increase the carrier recombination time. Three generations of 6H-SiC materials were tested. The third generation vanadium compensated 6H-SiC has average impurity densities close to the recipe values. Extrinsic photoconductive switches constructed from the third generation vanadium compensated, 6H-SiC, 1 mm thick, 1 cm2, substrates have achieved high power operation at 16 kV with pulsed currents exceeding 1400 Amperes and a minimum on resistance of 1 ohm. The extrinsic photoconductive switch performance of the third generation 6H-SiC material was improved by a factor of up to 50 for excitation at the 532 nm wavelength compared to the initial 6H-SiC material. Switches based on this material have been incorporated into a prototype compact proton medical accelerator being developed by the Compact Particle Acceleration Corporation (CPAC). The vanadium compensated, 6H-SiC, extrinsic photoconductive switch operates differently when excited by 1064, or 532 nm, wavelength light. The 6H-SiC extrinsic photoconductive switch is a unipolar device when excited with 1064 nm light. The carriers are electrons excited from filled vanadium acceptor levels and other electron traps located within 1.17 eV of the conduction band. The switch is bipolar at 532 nm since the carriers consist of holes, as well as electrons. The holes are primarily generated by the excitation of valence band electrons into empty trap/acceptor levels and by two-photon absorption. Carrier generation by two-photon absorption becomes more important at high applied optical intensity at 532 nm and contributes to the supralinear behavior of switch conductance as a function of optical power. The 6H-SiC switch material is trap dominated at low nitrogen to vanadium ratios. The trap dominated vanadium compensated 6H-SiC exhibits low quantum efficiency when excited with 1064 and 532 nm light and has a carrier recombination time of ˜ 150 - 300 ps. The vanadium compensated 6H-SiC transitions to an impurity dominated material as the ratio of nitrogen to vanadium is increased to 0.5. The increased nitrogen doping produces a material with much higher quantum efficiency and carrier recombination time of 0.9 to 1.0 ns. The iron compensated 2H-GaN did not perform well as an extrinsic photoconductive switch. The density of carriers generated at 1064 nm was, low indicating that there were very few electrons trapped in the iron acceptor level located at 0.5 - 0.6 eV below the conduction band. Carrier generation at 532 nm was dominated by two photon absorption resulting in the switch conductance increasing as the square of applied optical intensity. A minimum switch resistance of 0.8 ohms was calculated for the 400 nm thick, 1.2 by 1.2 cm, 2H-GaN switch for an applied optical intensity of 41.25 MW/cm2. An optical intensity of ˜ 70 MW/cm2 at 532 nm would be required to achieve a 0.8 ohm on resistance for a 1 mm thick, 1 cm2, 2H-GaN switch.
Effect of electron withdrawing unit for dye-sensitized solar cell based on D-A-π-A organic dyes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kwon, Dong Yuel; Chang, Dong Min; Kim, Young Sik, E-mail: youngkim@hongik.ac.kr
2014-10-15
Highlights: • To gain the red-shifted absorption spectra, withdrawing unit was substituted in dye. • By the introduction of additional withdrawing unit, LUMOs level of dye are decreased. • Decreasing LUMOs level of dye caused the red-shifted absorption spectra of dye. • Novel acceptor, DCRD, showed better photovoltaic properties than cyanoacetic acid. - Abstract: In this work, two novel D-A-π-A dye sensitizers with triarylamine as an electron donor, isoindigo and cyano group as electron withdrawing units and cyanoacetic acid and 2-(1,1-dicyanomethylene) rhodanine as an electron acceptor for an anchoring group (TICC, TICR) were designed and investigated with the ID6 dyemore » as the reference. The difference in HOMO and LUMO levels were compared according to the presence or absence of isoindigo in ID6 (TC and ID6). To gain insight into the factors responsible for photovoltaic performance, we used density functional theory (DFT) and time-dependent density functional theory (TDDFT) calculations. Owing to different LUMO levels for each acceptor, the absorption band and molar extinction coefficient of each dye was different. Among the dyes, TICR showed more red-shifted and broader absorption spectra than other dyes and had a higher molar extinction coefficient than the reference. It is expected that TICR would show better photovoltaic properties than the other dyes, including the reference dye.« less
NASA Astrophysics Data System (ADS)
Nagaoka, Akira; Masuda, Taizo; Yasui, Shintaro; Taniyama, Tomoyasu; Nose, Yoshitaro
2018-05-01
We investigated the thermoelectric properties of high-quality p-type Cu2ZnSnS4 single crystals. This material showed two advantages: low thermal conductivity because of lattice scattering caused by the easily formed Cu/Zn disordered structure, and high conductivity because of high doping from changes to the composition. All samples showed a thermal conductivity of 3.0 W m‑1 K‑1 at 300 K, and the Cu-poor sample showed a conductivity of 7.5 S/cm at 300 K because of the high density of shallow-acceptor Cu vacancies. The figure of merit of the Cu-poor Cu2ZnSnS4 reached 0.2 at 400 K, which is 1.4–45 times higher than those of related compounds.
Katz, R A; Kotler, M; Skalka, A M
1988-01-01
The full-length retroviral RNA transcript serves as (i) mRNA for the gag and pol gene products, (ii) genomic RNA that is assembled into progeny virions, and (iii) a pre-mRNA for spliced subgenomic mRNAs. Therefore, a balance of spliced and unspliced RNA is required to generate the appropriate levels of protein and RNA products for virion production. We have introduced an insertion mutation near the avian sarcoma virus env splice acceptor site that results in a significant increase in splicing to form functional env mRNA. The mutant virus is replication defective, but phenotypic revertant viruses that have acquired second-site mutations near the splice acceptor site can be isolated readily. Detailed analysis of one of these viruses revealed that a single nucleotide change at -20 from the splice acceptor site, within the original mutagenic insert, was sufficient to restore viral growth and significantly decrease splicing efficiency compared with the original mutant and wild-type viruses. Thus, minor sequence alterations near the env splice acceptor site can produce major changes in the balance of spliced and unspliced RNAs. Our results suggest a mechanism of control in which splicing is modulated by cis-acting sequences at the env splice acceptor site. Furthermore, this retroviral system provides a powerful genetic method for selection and analysis of mutations that affect splicing control. Images PMID:2839694
Optical orientation of electrons in compensated semiconductors
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kokurin, I. A., E-mail: kokorinia@math.mrsu.ru; Petrov, P. V.; Averkiev, N. S.
2013-09-15
The theory of the optical orientation of charge carriers in compensated III-V semiconductors and quantum wells for the case where electrons are excited to the conduction band from Mn-charged acceptor states is presented. It is shown that, in GaAs/AlGaAs quantum wells, the degree of the spin orientation of conduction-band electrons in this excitation scheme can be as high as 85%. This spin-orientation enhancement results from an increase in the heavy-hole contribution to the acceptor state in the vicinity of the defect center rather than from level splitting caused by quantum confinement. It is shown that the degree of circular polarizationmore » of the photoluminescence emitted upon the recombination of electrons thermalized at the bottom of the band with holes occupying the acceptor ground state in a quantum well can exceed 70%.« less
NASA Astrophysics Data System (ADS)
Mouser, P. J.; Ansari, M.; Hartsock, A.; Lui, S.; Lenhart, J.
2012-12-01
The use of fluids containing chemicals and variable water sources during the hydrofracking of unconventional shale is the source of considerable controversy due to perceived risks from altered subsurface biogeochemistry and the potential for contaminating potable water supplies. Rapid shifts in subsurface biogeochemistry are often driven by available macronutrients combined with the abundance and metabolic condition of the subsurface microbiota. While the depth that fracturing occurs in the Marcellus formation is reasonably deep to pose little risk to groundwater supplies, no published studies have systematically characterized the indigenous microbial population and how this community is altered through variable fluid management practices (e.g., chemical composition, source water makeup). In addition, limited information is available on how shallower microbial communities and geochemical conditions might be affected through the accidental release of these fluids to groundwater aquifers. Our measurements indicate field-applied and laboratory-generated fracking fluids contain levels of organic carbon greater than 300 mg/l and nitrogen concentrations greater than 80 mg/l that may differentially stimulate microbial growth in subsurface formations. In contrast to certain inorganic constituents (e.g., chloride) which increase in concentration through the flowback period; dissolved organic carbon levels decrease with time after the fracturing process through multiple attenuation processes (dilution, sorption, microbial utilization). Pyrosequencing data of the 16S rRNA gene indicate a shift from a more diverse source water microbial community to a less diverse community typical of a brine formation as time after fracturing increases. The introduction of varying percentages of a laboratory-generated fracking fluid to microcosm bottles containing groundwater and aquifer media stimulated biogeochemical changes similar to the introduction of landfill leachate, another wastewater containing elevated carbon, nitrogen, and complex organic constituents (e.g., decreased redox conditions, stepwise utilization of available terminal electron acceptors, enriched Fe(II) and sulfide concentrations). These research findings are important for understanding how fluids used during shale energy development may alter in situ microbial communities and provide insight into processes that attenuate the migration of these fluids in shallow aquifers and deep shale formations.
Silicon carbide white light LEDs for solid-state lighting
NASA Astrophysics Data System (ADS)
Bet, Sachin; Quick, Nathaniel; Kar, Aravinda
2007-02-01
White light emitting diodes (LEDs) have been successfully fabricated for the first time in silicon carbide substrates (4H-SiC) using a novel laser doping technique. The donor-acceptor pair (DAP) recombination mechanism for luminescence has been used to tailor these LEDs. Chromium (Cr), which produces multiple acceptor sites per atom, and selenium which produces multiple donor sites per atom were successfully incorporated into SiC for the first time using laser doping. Aluminum (Al) and nitrogen (N) were also laser-doped into SiC. Green (521-575 nm) and blue (460-498 nm) wavelengths were observed due to radiative recombination transitions between donor-acceptors pairs of N-Cr and N-Al respectively, while a prominent violet (408 nm) wavelength was observed due to transitions from the nitrogen level to the valence band level. The red (698-738 nm) luminescence was mainly due to nitrogen excitons and other defect levels. This RGB combination produced a broadband white light spectrum extending from 380 to 900 nm. The color space tri-stimulus values were X = 0.3322, Y = 0.3320 and Z = 0.3358 as per 1931 CIE (International Commission on Illumination) for 4H-SiC corresponding to a color rendering index of 96.56; the color temperature of 5510 K is very close to average daylight (5500 K).
A new strategy to construct a FRET platform for ratiometric sensing of hydrogen sulfide.
He, Longwei; Lin, Weiying; Xu, Qiuyan; Wei, Haipeng
2015-01-28
We introduce a new FRET strategy to construct a ratiometric fluorescent H2S sensor. The ratio emission signal of the coumarin-naphthalimide dyad is modulated by the FRET process, which works in coordination with the ICT mechanism. The FRET process on/off is controlled through tuning the overlap level of the donor emission spectrum with the acceptor absorption via modulation of the acceptor fluorophore absorption wavelength. was applied to visualize both the intracellular exogenous and endogenous H2S through blue and green emission channels.
Wang, Wengong; Shen, Ping; Dong, Xinning; Weng, Chao; Wang, Guo; Bin, Haijun; Zhang, Jing; Zhang, Zhi-Guo; Li, Yongfang
2017-02-08
Three acceptor-π-donor-π-acceptor (A-π-D-π-A) small molecules (STFYT, STFRDN, and STFRCN) with spiro[cyclopenta[1,2-b:5,4-b']dithiophene-4,9'-fluorene] (STF) as the central donor unit, terthiophene as the π-conjugated bridge, indenedione, 3-ethylrhodanine, or 2-(1,1-dicyanomethylene)rhodanine as the acceptor unit are designed, synthesized, and characterized as electron donor materials in solution-processing organic solar cells (OSCs). The effects of the spiro STF-based central core and different acceptors on the molecular configuration, absorption properties, electronic energy levels, carrier transport properties, the morphology of active layers, and photovoltaic properties are investigated in detail. The three molecules exhibit desirable physicochemical features: wide absorption bands (300-850 nm) and high molar absorption coefficients (4.82 × 10 4 to 7.56 × 10 4 M -1 cm -1 ) and relatively low HOMO levels (-5.15 to -5.38 eV). Density functional theory calculations reveal that the spiro STF central core benefits to reduce the steric hindrance effect between the central donor block and terthiophene bridge and suppress excessive intermolecular aggregations. The optimized OSCs based on these molecules deliver power conversion efficiencies (PCEs) of 6.68%, 3.30%, and 4.33% for STFYT, STFRDN, and STFRCN, respectively. The higher PCE of STFYT-based OSCs should be ascribed to its better absorption ability, higher and balanced hole and electron mobilities, and superior active layer morphology as compared to the other two compounds. So far, this is the first example of developing the A-π-D-π-A type small molecules with a spiro central donor core for high-performance OSC applications. Meanwhile, these results demonstrate that using spiro central block to construct A-π-D-π-A molecule is an alternative and effective strategy for achieving high-performance small molecule donor materials.
Two Well-Miscible Acceptors Work as One for Efficient Fullerene-Free Organic Solar Cells.
Yu, Runnan; Zhang, Shaoqing; Yao, Huifeng; Guo, Bing; Li, Sunsun; Zhang, Hao; Zhang, Maojie; Hou, Jianhui
2017-07-01
High-performance ternary organic solar cells are fabricated by using a wide-bandgap polymer donor (bithienyl-benzodithiophene-alt-fluorobenzotriazole copolymer, J52) and two well-miscible nonfullerene acceptors, methyl-modified nonfullerene acceptor (IT-M) and 2,2'-((2Z,2'Z)-((5,5'-(4,4,9,9-tetrakis(4-hexylphenyl)-4,9-dihydros-indaceno[1,2-b:5,6-b']dithiophene-2,7-diyl)bis(4-((2-ethylhexyl)oxy)thiophene-5,2-diyl))bis(methanylylidene))bis(3-oxo-2,3-dihydro-1H-indene-2,1-diylidene))dimalononitrile (IEICO). The two acceptors with complementary absorption spectra and similar lowest unoccupied molecular orbital levels show excellent compatibility in the blend due to their very similar chemical structures. Consequently, the obtained ternary organic solar cells (OSC) exhibits a high efficiency of 11.1%, with an enhanced short-circuit current density of 19.7 mA cm -2 and a fill factor of 0.668. In this ternary system, broadened absorption, similar output voltages, and compatible morphology are achieved simultaneously, demonstrating a promising strategy to further improve the performance of ternary OSCs. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Medium-Bandgap Small-Molecule Donors Compatible with Both Fullerene and Nonfullerene Acceptors.
Huo, Yong; Yan, Cenqi; Kan, Bin; Liu, Xiao-Fei; Chen, Li-Chuan; Hu, Chen-Xia; Lau, Tsz-Ki; Lu, Xinhui; Sun, Chun-Lin; Shao, Xiangfeng; Chen, Yongsheng; Zhan, Xiaowei; Zhang, Hao-Li
2018-03-21
Much effort has been devoted to the development of new donor materials for small-molecule organic solar cells due to their inherent advantages of well-defined molecular weight, easy purification, and good reproducibility in photovoltaic performance. Herein, we report two small-molecule donors that are compatible with both fullerene and nonfullerene acceptors. Both molecules consist of an (E)-1,2-di(thiophen-2-yl)ethane-substituted (TVT-substituted) benzo[1,2-b:4,5-b']dithiophene (BDT) as the central unit, and two rhodanine units as the terminal electron-withdrawing groups. The central units are modified with either alkyl side chains (DRBDT-TVT) or alkylthio side chains (DRBDT-STVT). Both molecules exhibit a medium bandgap with complementary absorption and proper energy level offset with typical acceptors like PC 71 BM and IDIC. The optimized devices show a decent power conversion efficiency (PCE) of 6.87% for small-molecule organic solar cells and 6.63% for nonfullerene all small-molecule organic solar cells. Our results reveal that rationally designed medium-bandgap small-molecule donors can be applied in high-performance small-molecule organic solar cells with different types of acceptors.
NASA Astrophysics Data System (ADS)
Satoh, Motoki; Arimoto, Keisuke; Yamanaka, Junji; Sawano, Kentarou; Shiraki, Yasuhiro; Nakagawa, Kiyokazu
2018-04-01
The electronic properties of SiGe on insulator (SGOI) structure are under intense investigation due to its importance as an electronic material. In the previous investigations, a p-type conduction was observed in SGOI even in the absence of extrinsic chemical acceptors, which is a serious problem for device applications. In this paper, the electrical properties of intrinsic-defect-related acceptor states generated during the SGOI formation are reported. It is found that freeze-out is hard to be achieved even at temperatures below 10 K, which indicates that the Fermi level lies near the valence band at low temperatures. With an aim to annihilate these defects, thermal annealing at 1050 °C for 12 h in N2 ambient was carried out. It was found that the thermal treatment is effective in reducing the densities of the acceptor states and in improving the crystalline quality.
Bacterial Community Morphogenesis Is Intimately Linked to the Intracellular Redox State
Okegbe, Chinweike; Price-Whelan, Alexa; Sakhtah, Hassan; Hunter, Ryan C.; Newman, Dianne K.
2013-01-01
Many microbial species form multicellular structures comprising elaborate wrinkles and concentric rings, yet the rules governing their architecture are poorly understood. The opportunistic pathogen Pseudomonas aeruginosa produces phenazines, small molecules that act as alternate electron acceptors to oxygen and nitrate to oxidize the intracellular redox state and that influence biofilm morphogenesis. Here, we show that the depth occupied by cells within colony biofilms correlates well with electron acceptor availability. Perturbations in the environmental provision, endogenous production, and utilization of electron acceptors affect colony development in a manner consistent with redox control. Intracellular NADH levels peak before the induction of colony wrinkling. These results suggest that redox imbalance is a major factor driving the morphogenesis of P. aeruginosa biofilms and that wrinkling itself is an adaptation that maximizes oxygen accessibility and thereby supports metabolic homeostasis. This type of redox-driven morphological change is reminiscent of developmental processes that occur in metazoans. PMID:23292774
NASA Astrophysics Data System (ADS)
Refat, Moamen S.; Saad, Hosam A.; Adam, Abdel Majid A.
2015-04-01
Understanding the interaction between drugs and small inorganic or organic molecules is critical in being able to interpret the drug-receptor interactions and acting mechanism of these drugs. A combined solution and solid state study was performed to describe the complexation chemistry of drug metronidazole (MZ) which has a broad-spectrum antibacterial activity with two types of acceptors. The acceptors include, σ-acceptor (i.e., iodine) and π-acceptors (i.e., dichlorodicyanobenzoquinone (DDQ), chloranil (CHL) and picric acid (PA)). The molecular structure, spectroscopic characteristics, the binding modes as well as the thermal stability were deduced from IR, UV-vis, 1H NMR and thermal studies. The binding ratio of complexation (MZ: acceptor) was determined to be 1:2 for the iodine acceptor and 1:1 for the DDQ, CHL or PA acceptor, according to the CHN elemental analyses and spectrophotometric titrations. It has been found that the complexation with CHL and PA acceptors increases the values of enthalpy and entropy, while the complexation with DDQ and iodine acceptors decreases the values of these parameters compared with the free MZ donor.
Anaerobic methane oxidation in two tropical freshwater systems
NASA Astrophysics Data System (ADS)
Roland, Fleur; Darchambeau, François; Crowe, Sean A.; Borges, Alberto V.
2014-05-01
Lake Kivu is one of the East African Great Lakes. It is located at the border between Rwanda and the Democratic Republic of the Congo. It is a deep meromictic lake characterized by huge amounts of methane (CH4) (60 km3 at 0° C and 1 atm) dissolved in its deep waters. Two thirds of the CH4 originates from anoxic bacterial reduction of dissolved carbon dioxide and one third from anaerobic degradation of settling organic material. CH4 then diffuses slowly from the monimolimnion to surface waters where many is oxidised by methanotrophic microorganisms. In Lake Kivu, this biological oxidation of CH4 could occur with different final electron acceptors: oxygen (aerobic oxidation) but also nitrate (NO3-), nitrite, sulfate (SO42-), iron (Fe) or manganese (Mn) in anaerobic conditions. If the anaerobic oxidation of CH4 (AOM) is generally coupled to SO42- reduction in marine waters, electron acceptors of the AOM were rarely investigated in freshwater systems. Five field campaigns were conducted from 2011 to 2013 during periods with contrasted ventilations of the upper water column. The dry season is characterized by a deeper mixing of surface waters ended by a steep gradient of physico-chemical conditions at the redox interface, while during the rainy season the mixed layer is shallower and ended at its deeper part by a NO3- accumulation zone. Sampling was conducted in the main basin of Lake Kivu but also in a particular sub-basin located northeast of the lake, the Kabuno Bay. Both systems are meromictic but differ in terms of morphometry and geochemistry with a shallower permanent chemocline and higher concentrations of CH4, Fe and Mn in the anoxic waters in Kabuno Bay compared to the main lake. Samples were collected for the measurements of CH4 concentrations and the various potential electron acceptors of the AOM. CH4 oxidation rates were measured along vertical profiles at 5 m and 0.5 m depth intervals respectively in the main basin and Kabuno bay water columns. Results indicate high rates of AOM in both main basin (up to 7 μmol L-1 d-1) and Kabuno bay (up to 16 μmol L-1 d-1). In the main basin, we observed a co-occurrence of the AOM and the SO42- reduction in the dry season. During the rainy season, higher oxidation rates occurred in the NO3- accumulation zone, which is in favour of a coupling between AOM and NO3- reduction. In Kabuno Bay, the higher AOM rates were observed at depths with highest particulate Fe concentrations. Our results suggest that AOM coupled with SO42-reduction may occur during the dry season in the main basin, whereas this oxidation could be coupled with NO3- reduction during the rainy season. In Kabuno Bay, the co-occurrence of the Fe [III] peak with high AOM suggests a coupling between the AOM and Fe reduction.
NASA Astrophysics Data System (ADS)
Chen, C.-H.; Gösele, U. M.; Tan, T. Y.
We have mentioned previously that in the third part of the present series of papers, a variety of n-doping associated phenomena will be treated. Instead, we have decided that this paper, in which the subject treated is diffusion of Si into GaAs, shall be the third paper of the series. This choice is arrived at because this subject is a most relevent heterostructure problem, and also because of space and timing considerations. The main n-type dopant Si in GaAs is amphoteric which may be incorporated as shallow donor species SiGa+ and as shallow acceptor species SiAs-. The solubility of SiAs- is much lower than that of SiGa+ except at very high Si concentration levels. Hence, a severe electrical self-compensation occurs at very high Si concentrations. In this study we have modeled the Si distribution process in GaAs by assuming that the diffusing species is SiGa+ which will convert into SiAs- in accordance with their solubilities and that the point defect species governing the diffusion of SiGa+ are triply-negatively-charged Ga vacancies VGa3-. The outstanding features of the Si indiffusion profiles near the Si/GaAs interface have been quantitatively explained for the first time. Deposited on the GaAs crystal surface, the Si source material is a polycrystalline Si layer which may be undoped or n+-doped using As or P. Without the use of an As vapor phase in the ambient, the As- and P-doped source materials effectively render the GaAs crystals into an As-rich composition, which leads to a much more efficient Si indiffusion process than for the case of using undoped source materials which maintains the GaAs crystals in a relatively As-poor condition. The source material and the GaAs crystal together form a heterostructure with its junction influencing the electron distribution in the region, which, in turn, affects the Si indiffusion process prominently.
Samanta, Suman K; Bhattacharya, Santanu
2012-12-03
We have synthesized two new low-molecular-mass organogelators based on tri-p-phenylene vinylene derivatives, one of which could be designated as the donor whereas the other one is an acceptor. These were prepared specifically to show the intergelator interactions at the molecular level by using donor-acceptor self-assembly to achieve appropriate control over their macroscopic properties. Intermolecular hydrogen-bonding, π-stacking, and van der Waals interactions operate for both the individual components and the mixtures, leading to the formation of gels in the chosen organic solvents. Evidence for intergelator interactions was acquired from various spectroscopic, microscopic, thermal, and mechanical investigations. Due to the photochromic nature of these molecules, interesting photophysical properties, such as solvatochromism and J-type aggregation, were clearly observed. An efficient energy transfer was exhibited by the mixture of donor-acceptor assemblies. An array of four chromophores was built up by inclusion of two known dyes (anthracene and rhodamine 6G) for the energy-transfer studies. Interestingly, an energy-transfer cascade was observed in the assembly of four chromophores in a particular order (anthracene-donor-acceptor-rhodamine 6G), and if one of the components was removed from the assembly the energy transfer process was discontinued. This allowed the build up of a light-harvesting process with a wide range. Excitation at one end produces an emission at the other end of the assembly. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Theory of copper impurities in ZnO
NASA Astrophysics Data System (ADS)
Lyons, John; Alkauskas, Audrius; Janotti, Anderson; van de Walle, Chris G.
Due to its connection to deep luminescence signals and its potential use as an acceptor dopant, copper has been one the most studied impurities in ZnO. From experiment, copper incorporating on the Zn site (CuZn) is known to lead to an acceptor level residing near the conduction band of ZnO, making CuZn an exceedingly deep acceptor. CuZn in ZnO has also long been linked with broad 2.4 eV green luminescence (GL) signals. In this work we explore the electrical and optical properties of Cu in ZnO using density functional theory (DFT). Due to the limitations of traditional forms of DFT, an accurate theoretical description of the electrical and optical properties of such deep centers has been difficult to achieve. Here we employ a screened hybrid density functional (HSE) to calculate the properties of Cu in ZnO. We determine the thermodynamic transition levels associated with CuZn in ZnO as well as the associated luminescence lineshapes of characteristic optical transitions. We find that HSE-calculated optical transitions are in close agreement with experimental studies. This work was supported in part by NSF and by ARO.
Zarrabi, Nasim; Burn, Paul L; Meredith, Paul; Shaw, Paul E
2016-07-21
Transient absorption spectroscopy on organic semiconductor blends for solar cells typically shows efficient charge generation within ∼100 fs, accounting for the majority of the charge carriers. In this Letter, we show using transient absorption spectroscopy on blends containing a broad range of acceptor content (0.01-50% by weight) that the rise of the polaron signal is dependent on the acceptor concentration. For low acceptor content (<10% by weight), the polaron signal rises gradually over ∼1 ps with most polarons generated after 200 fs, while for higher acceptor concentrations (>10%) most polarons are generated within 200 fs. The rise time in blends with low acceptor content was also found to be sensitive to the pump fluence, decreasing with increasing excitation density. These results indicate that the sub-100 fs rise of the polaron signal is a natural consequence of both the high acceptor concentrations in many donor-acceptor blends and the high excitation densities needed for transient absorption spectroscopy, which results in a short average distance between the exciton and the donor-acceptor interface.
Volga shallow offing dynamics investigation based on space photography
NASA Astrophysics Data System (ADS)
Kovalev, E. E.
Volga mouth region is investigated much better, than sea mouths of other river in Russia. In spite of the fact, not enough attention was devoted to Volga shallow offing. Volga shallow offing covers area about 9,3 ths. sq. km and has great significance for Caspian sea fish industry, because environmental conditions of this region and neighboring shallows of Northern Caspian Sea are determinative for passage, spawning and young fish growth of valuable sorts of fish. Insufficient investigation of Volga shallow offing is caused as by difficulty of access to this region through small depths (1 - 2 m) and intensive vegetation, so by data deficiency. Data deficiency notably intensified during recent 10 - 15 years, when significant reduction of hydro-meteorological investigations in Volga mouth area occurred. Gradual accumulation of on-site data, development of new technologies of map material analysis and space photography data processing allows to expect new scientific and application results. The purpose of our investigation concludes in determination of space-time mechanism of hydro-meteorological processes in Volga shallow offing based on space photography materials. Main results of our investigation can be summarized in following basic statements: (1) The most efficient method of Volga shallow offing investigation appears to be combined application of space photography data and on-site materials. (2) Electronic atlas of Volga shallow offing photomaps for the period of 1975 to 1997 yrs. is created. (3) Maps of above-water flora of Volga shallow offing for 1975 and 1997 yrs are created. (4) Electronic atlas of streams in Volga shallow offing for the period of 1975 to 1997 yrs. is created. On basis of it four maps of drain streams at Volga shallow offing are created. (5) Landscape zoning of Volga shallow offing is made and most active and passive regions are determined depending on drain streams and water vegetation. (6) It is shown, that development of Volga shallow offing and delta determines by river runoff fluctuations and sea level. The influence of sea level on intensity of shallow offing processes development is explored. New information about river flow paths advancing into sea at the seacoast is obtained. Its determined, that most intensive delta flooding is possible at sea level (near Makhachkala) more than -27,4 m abs. (7) Recommendations for canals layout in Volga shallow offing are given. (9) Prognosis of future channel net in Volga shallow offing is made.
NASA Astrophysics Data System (ADS)
Glass, J. B.; Reed, B. C.; Sarode, N. D.; Kretz, C. B.; Bray, M. S.; DiChristina, T. J.; Stewart, F. J.; Fowle, D. A.; Crowe, S.
2014-12-01
Methane is the third most reduced environmentally relevant electron donor for microbial metabolisms after organic carbon and hydrogen. In anoxic ecosystems, the major sink for methane is anaerobic oxidation of methane (AOM) mediated by syntrophic microbial consortia that couple AOM to reduction of an oxidized electron acceptor to yield free energy. In marine sediments, AOM is generally coupled to reduction of sulfate despite an extremely small amount of free energy yield because sulfate is the most abundant electron acceptor in seawater. While AOM coupled to Fe(III) and Mn(IV) reduction (Fe- and Mn-AOM) is 10-30x more thermodynamically favorable than sulfate-AOM, and geochemical data suggests that it occurs in diverse environments, the microorganisms mediating Fe- and Mn-AOM remain unknown. Lake Matano, Indonesia is an ideal ecosystem to enrich for Fe- and Mn-AOM microbes because its anoxic ferruginous deep waters and sediments contain abundant Fe(III), Mn(IV) and methane, and extremely low sulfate and nitrate. Our research aims to isolate and characterize the microbes mediating Fe- and Mn-AOM from three layers of Lake Matano sediments through serial enrichment cultures in minimal media lacking nitrate and sulfate. 16S rRNA amplicon sequencing of sediment inoculum revealed the presence of the Fe(III)-reducing bacterium Geobacter (5-10% total microbial community in shallow sediment and 35-60% in deeper sediment) as well as 1-2% Euryarchaeota implicated in methane cycling, including ANME-1 and 2d and Methanosarcinales. After 90 days of primary enrichment, all three sediment layers showed high levels of Fe(III) reduction (60-90 μM Fe(II) d-1) in the presence of methane compared to no methane and heat-killed controls. Treatments with added Fe(III) as goethite contained higher abundances of Geobacter than the inoculum (60-80% in all layers), suggesting that Geobacter may be mediating Fe(III) reduction in these enrichments. Quantification of AOM rates is underway, and will be used to estimate the plausibility of metal-AOM as a thermodynamically favorable methane sink in anoxic ecosystems of both the modern and ancient Earth.
Post monitoring of a cyclodextrin remeditated chlorinated solvent contaminated aquifer
NASA Astrophysics Data System (ADS)
Blanford, W. J.
2006-12-01
Hydroxypropyl-â-cyclodextrin (HPâCD) has been tested successfully in the laboratory and in the field for enhanced flushing of low-polarity contaminants from aquifers. The cyclodextrin molecule forms a toroidal structure, which has a hydrophobic cavity. Within this cavity, organic compounds of appropriate shape and size can form inclusion complexes, which is the basis for the use of cyclodextrin in groundwater remediation. The hydrophilic exterior of the molecule makes cyclodextrin highly water-soluble. The solubility of cyclodextrins can be further enhanced by adding functional groups, such as hydroxypropyl groups, to the cyclodextrin core. The aqueous solubility of HPâCD exceeds 950 g/L. These high solubilities are advantageous for field applications because they permit relatively high concentrations of the flushing agent. In order for cyclodextrin to become a feasible remediative alternative, it must be demonstrate a short term resistance to biodegradation during field application, but ultimately biodegrade so as not to pose a long term presence in the aquifer. The potential for degradation of cyclodextrin as well as changes in the chlorinated solvents and groundwater geochemistry were examined during the post monitoring of a field demonstration in a shallow aquifer at Little Creek Naval Amphibious Base in Virginia. It was found that a portion of the cyclodextrin remaining in the aquifer after the cessation of field activities biodegraded during the 425 days of post monitoring. This degradation also led to the degradation of the chlorinated solvents trichloroethylene and 1,1-trichloroethane through both biological and chemical processes. The aquifer remained anaerobic with average dissolved oxygen levels below 0.5 mg/L. Dissolved nitrate and sulfate concentrations within the cyclodextrin plume decreased due their being used as terminal electron acceptors during the degradation of the cyclodextrin. The concentrations of total iron at the field site showed no change over time. It can be concluded from this research that cyclodextrin remaining in the subsurface after cessation of active remediation will degrade due to microbial processes. The chlorinated solvents will also degrade through both chemical and biological processes to their daughter products. The terminal electron acceptors present within the cyclodextrin plume will also be used for energy during the degradation processes.
Zhao, Yajie; Li, Zhou; Zhang, Jing; Song, Haiyan; Liang, Qianhui; Tao, Jianping; Cornelissen, Johannes H C; Liu, Jinchun
2017-04-01
Uneven soil depth and low water availability are the key limiting factors to vegetation restoration and reconstruction in limestone soils such as in vulnerable karst regions. Belowground competition will possibly increase under limited soil resources. Here, we investigate whether low resource availability (including shallow soil, low water availability, and shallow soil and low water availability combined) stimulates the competition between grasses with different root systems in karst soil, by assessing their growth response, biomass allocation, and morphological plasticity. In a full three-way factorial blocked design of soil depth by water availability by neighbor identity, we grew Festuca arundinacea (deep-rooted) and Lolium perenne (shallow-rooted) under normal versus shallow soil depth, high versus low water availability, and in monoculture (conspecific neighbor) versus mixture (neighbor of the other species). The key results were as follows: (1) total biomass and aboveground biomass in either of the species decreased with reduction of resources but were not affected by planting patterns (monoculture or mixture) even at low resource levels. (2) For F. arundinacea, root biomass, root mass fraction, total root length, and root volume were higher in mixture than in monoculture at high resource level (consistent with resource use complementarity), but lower in mixture than in monoculture at low resource levels (consistent with interspecific competition). In contrast for L. perenne, either at high or low resource level, these root traits had mostly similar values at both planting patterns. These results suggest that deep-rooted and shallow-rooted plant species can coexist in karst regions under current climatic regimes. Declining resources, due to shallow soil, a decrease in precipitation, or combined shallow soil and karst drought, increased the root competition between plants of deep-rooted and shallow-rooted species. The root systems of deep-rooted plants may be too small to get sufficient water and nutrients from dry, shallow soil, while shallow-rooted plants will maintain a dominant position with their already adaptive strategy in respect of root biomass allocation and root growth.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Haller, E.E.; Hubbard, G.S.; Hansen, W.L.
1976-09-01
A defect center with a single acceptor level at E/sub v/ + 0.08 eV appears in H/sub 2/-grown dislocation-free high-purity germanium. Its concentration changes reversibly upon annealing up to 650 K. By means of Hall-effect and conductivity measurements over a large temperature range the temperature dependence of the steady-state concentration between 450 and 720 K as well as the transients following changes in temperature were determined. The observed acceptor level is attributed to the divacancy-hydrogen complex V/sub 2/H. The complex reacts with hydrogen, dissolved in the Ge lattice or stored in traps, according to V/sub 2/H + H reversible V/submore » 2/H/sub 2/. An energy level associated with the divacancy-dihydrogen complex was not observed. These results are in good agreement with the idea that hydrogen in germanium forms a ''very deep donor'' (i.e., the energy level lies inside the valence band).« less
Hubbard, Laura E.; Keefe, Steffanie H.; Kolpin, Dana W.; Barber, Larry B.; Duris, Joseph W.; Hutchinson, Kasey J.; Bradley, Paul M.
2016-01-01
Effluent-impacted surface water has the potential to transport not only water, but wastewater-derived contaminants to shallow groundwater systems. To better understand the effects of effluent discharge on in-stream and near-stream hydrologic conditions in wastewater-impacted systems, water-level changes were monitored in hyporheic-zone and shallow-groundwater piezometers in a reach of Fourmile Creek adjacent to and downstream of the Ankeny (Iowa, USA) wastewater treatment plant (WWTP). Water-level changes were monitored from approximately 1.5 months before to 0.5 months after WWTP closure. Diurnal patterns in WWTP discharge were closely mirrored in stream and shallow-groundwater levels immediately upstream and up to 3 km downstream of the outfall, indicating that such discharge was the primary control on water levels before shutdown. The hydrologic response to WWTP shutdown was immediately observed throughout the study reach, verifying the far-reaching hydraulic connectivity and associated contaminant transport risk. The movement of WWTP effluent into alluvial aquifers has implications for potential WWTP-derived contamination of shallow groundwater far removed from the WWTP outfall.
Colwill, Karen; Wells, Clark D; Elder, Kelly; Goudreault, Marilyn; Hersi, Kadija; Kulkarni, Sarang; Hardy, W Rod; Pawson, Tony; Morin, Gregg B
2006-03-06
Recombinational systems have been developed to rapidly shuttle Open Reading Frames (ORFs) into multiple expression vectors in order to analyze the large number of cDNAs available in the post-genomic era. In the Creator system, an ORF introduced into a donor vector can be transferred with Cre recombinase to a library of acceptor vectors optimized for different applications. Usability of the Creator system is impacted by the ability to easily manipulate DNA, the number of acceptor vectors for downstream applications, and the level of protein expression from Creator vectors. To date, we have developed over 20 novel acceptor vectors that employ a variety of promoters and epitope tags commonly employed for proteomics applications and gene function analysis. We also made several enhancements to the donor vectors including addition of different multiple cloning sites to allow shuttling from pre-existing vectors and introduction of the lacZ alpha reporter gene to allow for selection. Importantly, in order to ameliorate any effects on protein expression of the loxP site between a 5' tag and ORF, we introduced a splicing event into our expression vectors. The message produced from the resulting 'Creator Splice' vector undergoes splicing in mammalian systems to remove the loxP site. Upon analysis of our Creator Splice constructs, we discovered that protein expression levels were also significantly increased. The development of new donor and acceptor vectors has increased versatility during the cloning process and made this system compatible with a wider variety of downstream applications. The modifications introduced in our Creator Splice system were designed to remove extraneous sequences due to recombination but also aided in downstream analysis by increasing protein expression levels. As a result, we can now employ epitope tags that are detected less efficiently and reduce our assay scale to allow for higher throughput. The Creator Splice system appears to be an extremely useful tool for proteomics.
Colwill, Karen; Wells, Clark D; Elder, Kelly; Goudreault, Marilyn; Hersi, Kadija; Kulkarni, Sarang; Hardy, W Rod; Pawson, Tony; Morin, Gregg B
2006-01-01
Background Recombinational systems have been developed to rapidly shuttle Open Reading Frames (ORFs) into multiple expression vectors in order to analyze the large number of cDNAs available in the post-genomic era. In the Creator system, an ORF introduced into a donor vector can be transferred with Cre recombinase to a library of acceptor vectors optimized for different applications. Usability of the Creator system is impacted by the ability to easily manipulate DNA, the number of acceptor vectors for downstream applications, and the level of protein expression from Creator vectors. Results To date, we have developed over 20 novel acceptor vectors that employ a variety of promoters and epitope tags commonly employed for proteomics applications and gene function analysis. We also made several enhancements to the donor vectors including addition of different multiple cloning sites to allow shuttling from pre-existing vectors and introduction of the lacZ alpha reporter gene to allow for selection. Importantly, in order to ameliorate any effects on protein expression of the loxP site between a 5' tag and ORF, we introduced a splicing event into our expression vectors. The message produced from the resulting 'Creator Splice' vector undergoes splicing in mammalian systems to remove the loxP site. Upon analysis of our Creator Splice constructs, we discovered that protein expression levels were also significantly increased. Conclusion The development of new donor and acceptor vectors has increased versatility during the cloning process and made this system compatible with a wider variety of downstream applications. The modifications introduced in our Creator Splice system were designed to remove extraneous sequences due to recombination but also aided in downstream analysis by increasing protein expression levels. As a result, we can now employ epitope tags that are detected less efficiently and reduce our assay scale to allow for higher throughput. The Creator Splice system appears to be an extremely useful tool for proteomics. PMID:16519801
Shallow Groundwater Movement in the Skagit River Delta Area, Skagit County, Washington
Savoca, Mark E.; Johnson, Kenneth H.; Fasser, Elisabeth T.
2009-01-01
Shallow groundwater movement in an area between the lower Skagit River and Puget Sound was characterized by the U.S. Geological Survey to assist Skagit County and the Washington State Department of Ecology with the identification of areas where water withdrawals from existing and new wells could adversely affect streamflow in the Skagit River. The shallow groundwater system consists of alluvial, lahar runout, and recessional outwash deposits composed of sand, gravel, and cobbles, with minor lenses of silt and clay. Upland areas are underlain by glacial till and outwash deposits that show evidence of terrestrial and shallow marine depositional environments. Bedrock exposures are limited to a few upland outcrops in the southwestern part of the study area, and consist of metamorphic, sedimentary, and igneous rocks. Water levels were measured in 47 wells on a quarterly basis (August 2007, November 2007, February 2008, and May 2008). Measurements from 34 wells completed in the shallow groundwater system were used to construct groundwater-level and flow-direction maps and perform a linear-regression analysis to estimate the overall, time averaged shallow groundwater-flow direction and gradient. Groundwater flow in the shallow groundwater system generally moves in a southwestward direction away from the Skagit River and toward the Swinomish Channel and Skagit Bay. Local groundwater flow towards the river was inferred during February 2008 in areas west and southwest of Mount Vernon. Water-level altitudes varied seasonally, however, and generally ranged from less than 3 feet (August 2007) in the west to about 15 feet (May 2008) in the east. The time-averaged, shallow groundwater-flow direction derived from regression analysis, 8.5 deg south of west, was similar to flow directions depicted on the quarterly water-level maps. Seasonal changes in groundwater levels in most wells in the Skagit River Delta follow a typical pattern for shallow wells in western Washington. Water levels rise from October through March, when precipitation is high, and decline from April through September, when precipitation is lower. Groundwater levels in wells along the eastern margin of the study area also are likely influenced by stage on the Skagit River. Water levels in these wells remained elevated through April, and did not seem to begin to decline until the end of May in response to declining river stage. Groundwater levels in a well equipped with a continuous water-level recorder exhibited periodic fluctuations that are characteristic of ocean tides. This well is less than 1 mile east of the tidally influenced Swinomish Channel, and exhibited water-level fluctuations that correspond closely to predicted tidal extremes obtained from a tide gage near La Conner, Washington.
Non-fullerene electron acceptors for organic photovoltaic devices
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jenekhe, Samson A.; Li, Haiyan; Earmme, Taeshik
Non-fullerene electron acceptors for highly efficient organic photovoltaic devices are described. The non-fullerene electron acceptors have an extended, rigid, .pi.-conjugated electron-deficient framework that can facilitate exciton and charge derealization. The non-fullerene electron acceptors can physically mix with a donor polymer and facilitate improved electron transport. The non-fullerene electron acceptors can be incorporated into organic electronic devices, such as photovoltaic cells.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Alley, Olivia J.; Dawidczyk, Thomas J.; Hardigree, Josué F. Martínez
2015-01-19
Interfacial fields within organic photovoltaics influence the movement of free charge carriers, including exciton dissociation and recombination. Open circuit voltage (V{sub oc}) can also be dependent on the interfacial fields, in the event that they modulate the energy gap between donor HOMO and acceptor LUMO. A rise in the vacuum level of the acceptor will increase the gap and the V{sub oc}, which can be beneficial for device efficiency. Here, we measure the interfacial potential differences at donor-acceptor junctions using Scanning Kelvin Probe Microscopy, and quantify how much of the potential difference originates from physical contact between the donor andmore » acceptor. We see a statistically significant and pervasive negative polarity on the phenyl-C{sub 61} butyric acid methyl ester (PCBM) side of PCBM/donor junctions, which should also be present at the complex interfaces in bulk heterojunctions. This potential difference may originate from molecular dipoles, interfacial interactions with donor materials, and/or equilibrium charge transfer due to the higher work function and electron affinity of PCBM. We show that the contact between PCBM and poly(3-hexylthiophene) doubles the interfacial potential difference, a statistically significant difference. Control experiments determined that this potential difference was not due to charges trapped in the underlying substrate. The direction of the observed potential difference would lead to increased V{sub oc}, but would also pose a barrier to electrons being injected into the PCBM and make recombination more favorable. Our method may allow unique information to be obtained in new donor-acceptor junctions.« less
Gao, Yazhi; Liu, Wei; Wang, Xiaoxiong; Yang, Lihua; Han, Su; Chen, Shiguo; Strasser, Reto Jörg; Valverde, Bernal E; Qiang, Sheng
2018-07-01
The effects of four phytotoxins usnic acid (UA), salicylic acid (SA), cinnamic acid (CA) and benzoic acid (BA) on photosynthesis of Chlamydomonas reinhardtii were studied in vivo to identify and localise their initial action sites on two photosystems. Our experimental evidence shows that the four phytotoxins have multiple targets in chloroplasts, which mainly lie in photosystem II (PSII), not photosystem I (PSI). They share an original action site by blocking electron transport beyond Q A (primary plastoquinone acceptor) at PSII acceptor side since a fast increase of the J-step level is the greatest change in chlorophyll a fluorescence induction kinetics OJIP in C. reinhardtii cells treated with the phytotoxins. UA decreases photosynthetic activity by reducing O 2 evolution rate, interrupting PSII electron transport at both the donor and acceptor sides, inactivating the PSII reaction centers (RCs), reducing the content of chlorophylls and carotenoids, destroying the conformation of antenna pigment assemblies, and casuing the degradation of D1/D2 proteins. SA damage to photosynthetic machinery is mainly attributed to inhibition of PSII electron transport beyond Q A at the acceptor side, inactivation of the PSII RCs, reduction of chlorophyll content, digestion of thylakoid ploypeptides and destabilization of thylakoid membranes. Both CA and BA affect the photosynthetic process by decreasing PSII electron transport efficiency at the acceptor side and the amount of active PSII RCs. Besides, the initial cause of BA-inhibiting photosynthesis is also assocaited with the O 2 evolution rate and the disconnection of some antenna molecules from PSII RCs. Copyright © 2018 Elsevier Masson SAS. All rights reserved.
Sanjeeva, Shilpa Kammaradi; Korrapati, Swathi; Nair, Chandrasekhar B; Rao, P V Subba; Pullela, Phani Kumar; Vijayalakshmi, U; Siva, Ramamoorthy
2014-07-01
Donor-linker-acceptor (DSSA) is a concept in fluorescence chemistry with acceptor being a fluorescent compound (FRET) or quencher. The DSSA probes used to measure thiol levels in vitro and in vivo. The reduction potential of these dyes are in the range of -0.60 V, much lower than the best thiol reductant reported in literature, the DTT (-0.33 V). DSSA disulphide having an unusually low reduction potential compared to the typical thiol reductants is a puzzle. Secondly, DSSA probes have a cyclized rhodamine ring as acceptor which does not have any spectral overlap with fluorescein, but quenches its absorbance and fluorescence. To understand the structural features of DSSA probes, we have synthesized DSSANa and DSSAOr. The calculated reduction potential of these dyes suggest that DSSA probes have an alternate mechanism from the FRET based quenching, namely hydrophobic interaction or dye to dye quenching. The standard reduction potential change with increasing complexity and steric hindrance of the molecule is small, suggesting that ultra- low Eo' has no contribution from the disulphide linker and is based on structural interactions between fluorescein and cyclized rhodamine. Our results help to understand the DSSA probe quenching mechanism and provide ways to design fluorescent probes.
Distinctive acceptor-end structure and other determinants of Escherichia coli tRNAPro identity.
McClain, W H; Schneider, J; Gabriel, K
1994-01-01
The previously uncharacterized determinants of the specificity of tRNAPro for aminoacylation (tRNAPro identity) were defined by a computer comparison of all Escherichia coli tRNA sequences and tested by a functional analysis of amber suppressor tRNAs in vivo. We determined the amino acid specificity of tRNA by sequencing a suppressed protein and the aminoacylation efficiency of tRNA by examining the steady-state level of aminoacyl-tRNA. On substituting nucleotides derived from the acceptor end and variable pocket of tRNAPro for the corresponding nucleotides in a tRNAPhe gene, the identity of the resulting tRNA changed substantially but incompletely to that of tRNAPro. The redesigned tRNAPhe was weakly active and aminoacyl-tRNA was not detected. Ethyl methanesulfonate mutagenesis of the redesigned tRNAPhe gene produced a mutant with a wobble pair in place of a base pair in the end of the acceptor-stem helix of the transcribed tRNA. This mutant exhibited both a tRNAPro identity and substantial aminoacyl-tRNA. The results speak for the importance of a distinctive conformation in the acceptor-stem helix of tRNAPro for aminoacylation by the prolyl-tRNA synthetase. The anticodon also contributes to tRNAPro identity but is not necessary in vivo. Images PMID:8127693
Gao, Hongfei; Wang, Wenwen; Wang, Zhenxing; Han, Jing; Fu, Zhifeng
2014-03-28
Amorphous carbon nanoparticles (ACNPs) showing highly efficient quenching of chemiluminescence (CL) were prepared from candle soot with a very simple protocol. The prepared ACNP was employed as the novel energy acceptor for a chemiluminescence resonance energy transfer (CRET)-based immunoassay. In this work, ACNP was linked with transferrin (TRF), and horseradish peroxidase (HRP) was conjugated to TRF antibody (HRP-anti-TRF). The immunoreaction rendered the distance between the ACNP acceptor and the HRP-catalyzed CL emitter to be short enough for CRET occurring. In the presence of TRF, this antigen competed with ACNP-TRF for HRP-anti-TRF, thus led to the decreased occurrence of CRET. A linear range of 20-400 ng mL(-1) and a limit of detection of 20 ng mL(-1) were obtained in this immunoassay. The proposed method was successfully applied for detection of TRF levels in human sera, and the results were in good agreement with ELISA method. Moreover, the ACNPs show higher energy transfer efficiency than other conventional nano-scaled energy acceptors such as graphene oxide in CRET assay. It is anticipated that this approach can be developed for determination of other analytes with low cost, simple manipulation and high specificity. Copyright © 2014 Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Waldstein, E.A.; Cao, E.H.; Miller, M.E.
Extracts of peripheral lymphocytes from six individuals with chronic lymphocytic leukemia (CLL) were assayed for the ability to remove O/sup 6/-methylguanine (O/sup 6/MeGua) from exogenous DNA. The O/sup 6/MeGua-removing activity in CLL lymphocytes, predominantly B cells, was approximately 7-fold higher than in B lymphocytes of normal individuals and about 2-fold higher than in the unstimulated T type cells of normal persons. The activity measured in extracts of lymphocytes from three blood relatives was in the upper range of the normal distribution. Over 80% of the removal of O/sup 6/MeGua was accomplished by the transfer of the methyl group to cysteinemore » moieties of acceptor proteins in a stoichiometric reaction. If one assumes one acceptor group per acceptor protein, the calculated number of acceptor molecules per CLL lymphocyte falls between 91,000 and 220,000. Thus CLL lymphocytes do not show lower O/sup 6/MeGua-removing activity, in contrast to many tumor cell strains or transformed cell lines, which are reported to have a deficient methyl excision repair phenotype (Mer/sup -/). Instead, the CLL lymphocytes act as if they have a super-Mer/sup +/ phenotype.« less
Terahertz laser spectroscopy of the water dimer intermolecular vibrations. II. (H2O)2
NASA Astrophysics Data System (ADS)
Braly, L. B.; Liu, K.; Brown, M. G.; Keutsch, F. N.; Fellers, R. S.; Saykally, R. J.
2000-06-01
Terahertz VRT laser spectra of four (H2O)2 intermolecular vibrations consisting of 362 transitions have been measured between 87 and 108 cm-1 with ca. 2 MHz precision. The results differ both qualitatively and quantitatively from the predictions of dimer potentials tested. The spectra also reveal an ordering of the intermolecular vibrations which differs dramatically from that predicted by normal mode analysis. Strong coupling is indicated between the low barrier tunneling motions and the intermolecular vibrations as well as among different vibrations. In particular the 102.1 cm-1 (H2O)2 vibration assigned as the acceptor wag (ν8) exhibits two types of perturbations. In one of these a component of Ka=1 coupling with a tunneling component of Ka=0 in the 108 cm-1 acceptor twist (ν11) vibration. There is also an indication that the 103.1 cm-1 (H2O)2 band assigned as the donor in-plane bend (ν6) is coupled to the acceptor wag resulting in a lower of the in-plane bend frequency and a higher acceptor wag frequency. Detailed analysis of the VRT levels confirms the extreme nonrigidity of this complex, indicating that the use of approximate models with reduced dimensionality to calculate its properties are likely to fail.
Evolutionary ecology during the rise of dioxygen in the Earth's atmosphere.
Sleep, Norman H; Bird, Dennis K
2008-08-27
Pre-photosynthetic niches were meagre with a productivity of much less than 10(-4) of modern photosynthesis. Serpentinization, arc volcanism and ridge-axis volcanism reliably provided H(2). Methanogens and acetogens reacted CO(2) with H(2) to obtain energy and make organic matter. These skills pre-adapted a bacterium for anoxygenic photosynthesis, probably starting with H(2) in lieu of an oxygen 'acceptor'. Use of ferrous iron and sulphide followed as abundant oxygen acceptors, allowing productivity to approach modern levels. The 'photobacterium' proliferated rooting much of the bacterial tree. Land photosynthetic microbes faced a dearth of oxygen acceptors and nutrients. A consortium of photosynthetic and soil bacteria aided weathering and access to ferrous iron. Biologically enhanced weathering led to the formation of shales and, ultimately, to granitic rocks. Already oxidized iron-poor sedimentary rocks and low-iron granites provided scant oxygen acceptors, as did freshwater in their drainages. Cyanobacteria evolved dioxygen production that relieved them of these vicissitudes. They did not immediately dominate the planet. Eventually, anoxygenic and oxygenic photosynthesis oxidized much of the Earth's crust and supplied sulphate to the ocean. Anoxygenic photosynthesis remained important until there was enough O(2) in downwelling seawater to quantitatively oxidize massive sulphides at mid-ocean ridge axes.
Method for producing and regenerating a synthetic CO.sub.2 acceptor
Lancet, Michael S [Pittsburgh, PA; Curran, George P [Pittsburgh, PA; Gorin, Everett [San Rafael, CA
1982-01-01
A method for producing a synthetic CO.sub.2 acceptor by feeding a mixture of finely divided silica and at least one finely divided calcium compound selected from the group consisting of calcium oxide and calcium carbonate to a fluidized bed; operating the fluidized bed at suitable conditions to produce pellets of synthetic CO.sub.2 acceptor and recovering the pellets of synthetic CO.sub.2 acceptor from the fluidized bed. Optionally, spent synthetic CO.sub.2 acceptor can be charged to the fluidized bed to produce regenerated pellets of synthetic CO.sub.2 acceptor.
Method for producing and regenerating a synthetic CO[sub 2] acceptor
Lancet, M. S.; Curran, G. P.; Gorin, E.
1982-05-18
A method is described for producing a synthetic CO[sub 2] acceptor by feeding a mixture of finely divided silica and at least one finely divided calcium compound selected from the group consisting of calcium oxide and calcium carbonate to a fluidized bed; operating the fluidized bed at suitable conditions to produce pellets of synthetic CO[sub 2] acceptor and recovering the pellets of synthetic CO[sub 2] acceptor from the fluidized bed. Optionally, spent synthetic CO[sub 2] acceptor can be charged to the fluidized bed to produce regenerated pellets of synthetic CO[sub 2] acceptor. 1 fig.
REVEAL: Receiver Exploiting Variability in Estimated Acoustic Levels
2013-08-07
water . Several structures have been or are being investigated. In shallow water , passive sonar context, the characteristics of received signals are...source, particularly in shallow water . Several structures have been or are being investigated. In shallow water , passive sonar context, the... dynamic and variable in time and space, a statistical approach is necessary. WORK COMPLETED In a shallow water waveguide, where the distance
40 CFR 230.43 - Vegetated shallows.
Code of Federal Regulations, 2011 CFR
2011-07-01
... Special Aquatic Sites § 230.43 Vegetated shallows. (a) Vegetated shallows are permanently inundated areas that under normal circumstances support communities of rooted aquatic vegetation, such as turtle grass...) releasing chemicals that adversely affect plants and animals; (4) increasing turbidity levels, thereby...
Grossman, Richard A.; Assawasena, Vinich; Chalpati, Sopon; Taewtong, Dilok
1977-01-01
The effect of the three-monthly injectable contraceptive depot medroxyprogesterone acetate (DMPA) on liver and lipid function was assessed in Thai women with liver fluke (Opisthorchis viverrini) infestation, DMPA administration being started in the immediate postpartum period. Immediate postpartum IUD and sterilization acceptors with fluke infestation were recruited as a comparison (control) group for the fluke-positiv DMPA acceptors. Comparable groups of fluke-negative acceptors were recruited in an area of Thailand free of liver fluke transmission. Results are presented for the first 6 follow-up months for 170 DMPA and 177 control fluke-positive subjects and for 153 DMPA and 150 control fluke-negative subjects. Small and similar increases occurred in each of the four groups for alanine amino transferase, isocitrate dehydrogenase, and total bilirubin levels while aspartate amino transferase levels changed less in the DMPA groups than in their respective control groups. None of the subjects in either DMPA group had clearly abnormal results in these tests at 6 months. Alkaline phosphatase, cholesterol, and triglycerides levels were markedly lower in each group at 6 months than in the puerperal specimens. There was a greater decrease in triglycerides levels in both DMPA groups than in their respective control groups. However, the decrease in the alkaline phosphatase and cholesterol levels was greater only in the fluke-positive DMPA group than in the fluke-positive control group. None of these biochemical results were related to differences in age, parity, or lactation status between the groups. The results indicate that DMPA did not cause any early deleterious effects in the metabolic factors studied in women with liver fluke infestation. PMID:302157
First-principles study of complex halide scintillators for radiation detection
NASA Astrophysics Data System (ADS)
Feng, Qingguo; Kang, Byungkyun; Mize, Jonathan; Biswas, Koushik
Current demands for cost-effective and high-performance scintillators have led to a discernible shift from simple binary halides (e.g., NaI, CsI) toward host compounds that are structurally and electronically more complex. Eu-doped SrI2 is a prominant example. Despite its advanced properties, improvements are needed for extensive deployment at low cost. Codoping techniques are often useful to improve the electronic response of such insulators. Using first-principles based approach we report on the influence of codoping with aliovalent and isovalent impurities. We find all codopants induce deep levels, show amphoteric character, and may bind with I-vacancy forming charge compensated donor-acceptor pairs. Lack of deep-to-shallow behavior upon codoping and its ramifications will be discussed. We studied another set of stable monoclinic phase of ternary ns2 containing iodides, e.g. TlBa2I5. One objective is to explore them as scintillators where ns2 ions play a central role. Interestingly, we predict Eu2+ activation will be rendered ineffective in these compounds, caused by changes in the valence and conduction band edges. However, the prospect of fast electron capture at ns2 sites and self-activated scintillation could be important for detector applications. This material is based upon work supported by the US Department of Homeland Security under Grant Award Number, 2014-DN-077-ARI075-04.
Socratous, Josephine; Banger, Kulbinder K; Vaynzof, Yana; Sadhanala, Aditya; Brown, Adam D; Sepe, Alessandro; Steiner, Ullrich; Sirringhaus, Henning
2015-01-01
The electronic structure of low temperature, solution-processed indium–zinc oxide thin-film transistors is complex and remains insufficiently understood. As commonly observed, high device performance with mobility >1 cm2 V−1 s−1 is achievable after annealing in air above typically 250 °C but performance decreases rapidly when annealing temperatures ≤200 °C are used. Here, the electronic structure of low temperature, solution-processed oxide thin films as a function of annealing temperature and environment using a combination of X-ray photoelectron spectroscopy, ultraviolet photoelectron spectroscopy, and photothermal deflection spectroscopy is investigated. The drop-off in performance at temperatures ≤200 °C to incomplete conversion of metal hydroxide species into the fully coordinated oxide is attributed. The effect of an additional vacuum annealing step, which is beneficial if performed for short times at low temperatures, but leads to catastrophic device failure if performed at too high temperatures or for too long is also investigated. Evidence is found that during vacuum annealing, the workfunction increases and a large concentration of sub-bandgap defect states (re)appears. These results demonstrate that good devices can only be achieved in low temperature, solution-processed oxides if a significant concentration of acceptor states below the conduction band minimum is compensated or passivated by shallow hydrogen and oxygen vacancy-induced donor levels. PMID:26190964
Merschjann, C; Mews, M; Mete, T; Karkatzinou, A; Rusu, M; Korzun, B V; Schorr, S; Schubert-Bischoff, P; Seeger, S; Schedel-Niedrig, Th; Lux-Steiner, M-Ch
2012-05-02
Thin films of chalcopyrite AgGaSe(2) have been successfully grown on glass and glass/molybdenum substrates using the technique of chemical close-spaced vapor transport. The high crystallinity of the samples is confirmed by grazing-incidence x-ray diffraction, scanning and transmission electron microscopy, and optical transmission/reflection spectroscopy. Here, two of the three expected direct optical bandgaps are found at 1.77(2) and 1.88(6) eV at 300 K. The lowest bandgap energy at 4 K is estimated to be 1.82(3) eV. Photoluminescence spectroscopy has further revealed the nature of the point defects within the AgGaSe(2), showing evidence for the existence of very shallow acceptor levels of 5(1) and 10(1) meV, and thus suggesting the AgGaSe(2) phase itself to exhibit a p-type conductivity. At the same time, electrical characterization by Hall, Seebeck and four-point-probe measurements indicate properties of a compensated semiconductor. The electrical properties of the investigated thin films are mainly influenced by the presence of Ag(2)Se and Ga(2)O(3) nanometer-scaled surface layers, as well as by Ag(2)Se inclusions in the bulk and Ag clusters at the layers' rear side. © 2012 IOP Publishing Ltd
Socratous, Josephine; Banger, Kulbinder K; Vaynzof, Yana; Sadhanala, Aditya; Brown, Adam D; Sepe, Alessandro; Steiner, Ullrich; Sirringhaus, Henning
2015-03-25
The electronic structure of low temperature, solution-processed indium-zinc oxide thin-film transistors is complex and remains insufficiently understood. As commonly observed, high device performance with mobility >1 cm 2 V -1 s -1 is achievable after annealing in air above typically 250 °C but performance decreases rapidly when annealing temperatures ≤200 °C are used. Here, the electronic structure of low temperature, solution-processed oxide thin films as a function of annealing temperature and environment using a combination of X-ray photoelectron spectroscopy, ultraviolet photoelectron spectroscopy, and photothermal deflection spectroscopy is investigated. The drop-off in performance at temperatures ≤200 °C to incomplete conversion of metal hydroxide species into the fully coordinated oxide is attributed. The effect of an additional vacuum annealing step, which is beneficial if performed for short times at low temperatures, but leads to catastrophic device failure if performed at too high temperatures or for too long is also investigated. Evidence is found that during vacuum annealing, the workfunction increases and a large concentration of sub-bandgap defect states (re)appears. These results demonstrate that good devices can only be achieved in low temperature, solution-processed oxides if a significant concentration of acceptor states below the conduction band minimum is compensated or passivated by shallow hydrogen and oxygen vacancy-induced donor levels.
Experimental confirmation of the predicted shallow donor hydrogen state in zinc oxide.
Cox, S F; Davis, E A; Cottrell, S P; King, P J; Lord, J S; Gil, J M; Alberto, H V; Vilão, R C; Piroto Duarte, J; Ayres de Campos, N; Weidinger, A; Lichti, R L; Irvine, S J
2001-03-19
We confirm the recent prediction that interstitial protium may act as a shallow donor in zinc oxide, by direct spectroscopic observation of its muonium counterpart. On implantation into ZnO, positive muons--chemically analogous to protons in this context--form paramagnetic centers below about 40 K. The muon-electron contact hyperfine interaction, as well as the temperature and activation energy for ionization, imply a shallow level. Similar results for the cadmium chalcogenides suggest that such shallow donor states are generic to the II-VI compounds. The donor level depths should serve as a guide for the electrical activity of interstitial hydrogen.
Iron and intrinsic deep level states in Ga2O3
NASA Astrophysics Data System (ADS)
Ingebrigtsen, M. E.; Varley, J. B.; Kuznetsov, A. Yu.; Svensson, B. G.; Alfieri, G.; Mihaila, A.; Badstübner, U.; Vines, L.
2018-01-01
Using a combination of deep level transient spectroscopy, secondary ion mass spectrometry, proton irradiation, and hybrid functional calculations, we identify two similar deep levels that are associated with Fe impurities and intrinsic defects in bulk crystals and molecular beam epitaxy and hydride vapor phase epitaxi-grown epilayers of β-Ga2O3. First, our results indicate that FeGa, and not an intrinsic defect, acts as the deep acceptor responsible for the often dominating E2 level at ˜0.78 eV below the conduction band minimum. Second, by provoking additional intrinsic defect generation via proton irradiation, we identified the emergence of a new level, labeled as E2*, having the ionization energy very close to that of E2, but exhibiting an order of magnitude larger capture cross section. Importantly, the properties of E2* are found to be consistent with its intrinsic origin. As such, contradictory opinions of a long standing literature debate on either extrinsic or intrinsic origin of the deep acceptor in question converge accounting for possible contributions from E2 and E2* in different experimental conditions.
NASA Astrophysics Data System (ADS)
Adam, Abdel Majid A.; Refat, Moamen S.; Saad, Hosam A.
2013-11-01
In this work, structural, thermal, morphological and pharmacological characterization was performed on the interactions between a hexamethylenediamine (HMDA) donor and three types of acceptors to understand the complexation behavior of diamines. The three types of acceptors include π-acceptors (i.e., quinol (QL) and picric acid (PA)), σ-acceptors (i.e., bromine and iodine) and vacant orbital acceptors (i.e., tin(IV) tetrachloride (SnCl4) and zinc chloride (ZnCl2)). The characterization of the obtained CT complexes was performed using elemental analysis, infrared (IR), Raman, 1H NMR and electronic absorption spectroscopy, powder X-ray diffraction (XRD) and thermogravimetric (TG) analysis. Their morphologies were studied using scanning electron microscopy with energy-dispersive X-ray analysis (SEM-EDX). The biological activities of the obtained CT complexes were tested for their antibacterial activities. The complex containing the QL acceptor exhibited a remarkable electronic spectrum with a strong, broad absorption band, which had an observed λmax that was at a much longer wavelength than those of the free reactants. In addition, this complex exhibited strong antimicrobial activities against various bacterial and fungal strains compared to standard drugs. The complexes containing the PA, iodine, Sn(IV) and Zn(II) acceptors exhibited good thermal stability up to 240, 330, 275 and 295 °C, respectively. The complexes containing bromine, Sn(IV) and Zn(II) acceptors exhibited good crystallinity. In addition to its good crystallinity properties, the complex containing the bromine acceptor exhibits a remarkable morphology feature.
NASA Astrophysics Data System (ADS)
Katayama-Yoshida, H.; Yamamoto, T.
1997-08-01
We propose an effective doping method, the codoping (doping with n- and p-type dopants at the same time) method, for the fabrication of low-resistivity p-type ZnSe and GaN with wide-band-gap based upon ab-initio electronic band structure calculations. p-type doping eminently leads to an increase in the electrostatic energy, called the Madelung energy, which shifts the Se 4p levels for p-type doped ZnSe and the N 2p levels for p-type doped GaN materials towards higher energy regions. This leads to a destabilization of ionic charge distributions in p-type ZnSe and p-type GaN crystals, resulting in the self-compensation of anion intrinsic defects. For ZnSe crystals, we propose the codoping of n-type In donors at Zn sites and p-type N acceptors at Se sites based on the calculation. In addition, we propose the codoping of n-type Si-donors at Ga sites (n-type O donors at N sites) and p-type Be- or Mg acceptors at Ga sites. The codoping decreases the Madelung energy and leads to an increase in the net acceptor carrier density.
Eastham, Nicholas D; Logsdon, Jenna L; Manley, Eric F; Aldrich, Thomas J; Leonardi, Matthew J; Wang, Gang; Powers-Riggs, Natalia E; Young, Ryan M; Chen, Lin X; Wasielewski, Michael R; Melkonyan, Ferdinand S; Chang, Robert P H; Marks, Tobin J
2018-01-01
Bulk-heterojunction organic photovoltaic materials containing nonfullerene acceptors (NFAs) have seen remarkable advances in the past year, finally surpassing fullerenes in performance. Indeed, acceptors based on indacenodithiophene (IDT) have become synonymous with high power conversion efficiencies (PCEs). Nevertheless, NFAs have yet to achieve fill factors (FFs) comparable to those of the highest-performing fullerene-based materials. To address this seeming anomaly, this study examines a high efficiency IDT-based acceptor, ITIC, paired with three donor polymers known to achieve high FFs with fullerenes, PTPD3T, PBTI3T, and PBTSA3T. Excellent PCEs up to 8.43% are achieved from PTPD3T:ITIC blends, reflecting good charge transport, optimal morphology, and efficient ITIC to PTPD3T hole-transfer, as observed by femtosecond transient absorption spectroscopy. Hole-transfer is observed from ITIC to PBTI3T and PBTSA3T, but less efficiently, reflecting measurably inferior morphology and nonoptimal energy level alignment, resulting in PCEs of 5.34% and 4.65%, respectively. This work demonstrates the importance of proper morphology and kinetics of ITIC → donor polymer hole-transfer in boosting the performance of polymer:ITIC photovoltaic bulk heterojunction blends. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Liu, Zhitian; Zhang, Linhua; Shao, Ming; Wu, Yao; Zeng, Di; Cai, Xiang; Duan, Jiashun; Zhang, Xiaolu; Gao, Xiang
2018-01-10
The geometries of acceptors based on perylene diimides (PDIs) are important for improving the phase separation and charge transport in organic solar cells. To fine-tune the geometry, biphenyl, spiro-bifluorene, and benzene were used as the core moiety to construct quasi-three-dimensional nonfullerene acceptors based on PDI building blocks. The molecular geometries, energy levels, optical properties, photovoltaic properties, and exciton kinetics were systematically studied. The structure-performance relationship was discussed as well. Owing to the finest phase separation, the highest charge mobility and smallest nongeminate recombination, the power conversion efficiency of nonfullerene solar cells using PDI derivatives with biphenyl core (BP-PDI 4 ) as acceptor reached 7.3% when high-performance wide band gap donor material poly[(2,6-(4,8-bis(5-(2-ethylhexyl)thiophen-2-yl)-benzo[1,2-b:4,5-b']dithiophene))-alt-(5,5-(1',3'-di-2-thienyl-5',7'-bis(2-ethylhexyl)benzo[1',2'-c:4',5'-c']dithiophene-4,8-dione))] was blended.
Postadsorption Work Function Tuning via Hydrogen Pressure Control
2015-01-01
The work function of metal substrates can be easily tuned, for instance, by adsorbing layers of molecular electron donors and acceptors. In this work, we discuss the possibility of changing the donor/acceptor mixing ratio reversibly after adsorption by choosing a donor/acceptor pair that is coupled via a redox reaction and that is in equilibrium with a surrounding gas phase. We discuss such a situation for the example of tetrafluoro-1,4-benzenediol (TFBD)/tetrafluoro-1,4-benzoquinone (TFBQ), adsorbed on Cu(111) and Ag(111) surfaces. We use density functional theory and ab initio thermodynamics to show that arbitrary TFBD/TFBQ mixing ratios can be set using hydrogen pressures attainable in low to ultrahigh vacuum. Adjusting the mixing ratio allows modifying the work function over a range of about 1 eV. Finally, we contrast single-species submonolayers with mixed layers to discuss why the resulting inhomogeneities in the electrostatic energy above the surface have different impacts on the interfacial level alignment and the work function. PMID:26692915
Mixed semiconductor nanocrystal compositions
Maskaly, Garry R [Los Alamos, NM; Schaller, Richard D [Santa Fe, NM; Klimov, Victor I [Los Alamos, NM
2011-02-15
Composition comprising one or more energy donors and one or more energy acceptors, wherein energy is transferred from the energy donor to the energy acceptor and wherein: the energy acceptor is a colloidal nanocrystal having a lower band gap energy than the energy donor; the energy donor and the energy acceptor are separated by a distance of 40 nm or less; wherein the average peak absorption energy of the acceptor is at least 20 meV greater than the average peak emission energy of the energy donor; and wherein the ratio of the number of energy donors to the number of energy acceptors is from about 2:1 to about 1000:1.
NASA Astrophysics Data System (ADS)
Gunawan, Oki; Gokmen, Tayfun; Warren, Charles W.; Cohen, J. David; Todorov, Teodor K.; Barkhouse, D. Aaron R.; Bag, Santanu; Tang, Jiang; Shin, Byungha; Mitzi, David B.
2012-06-01
Admittance spectra and drive-level-capacitance profiles of several high performance Cu2ZnSn(Se,S)4 (CZTSSe) solar cells with bandgap ˜1.0-1.5 eV are reported. In contrast to the case for Cu(In,Ga)(S,Se)2, the CZTSSe capacitance spectra exhibit a dielectric freeze out to the geometric capacitance plateau at moderately low frequencies and intermediate temperatures (120-200 K). These spectra reveal important information regarding the bulk properties of the CZTSSe films, such as the dielectric constant and a dominant acceptor with energy level of 0.13-0.2 eV depending on the bandgap. This deep acceptor leads to a carrier freeze out effect that quenches the CZTSSe fill factor and efficiency at low temperatures.
Native defects in Tl 6SI 4: Density functional calculations
Shi, Hongliang; Du, Mao -Hua
2015-05-05
In this study, Tl 6SI 4 is a promising room-temperature semiconductor radiation detection material. Here, we report density functional calculations of native defects and dielectric properties of Tl 6SI 4. Formation energies and defect levels of native point defects and defect complexes are calculated. Donor-acceptor defect complexes are shown to be abundant in Tl 6SI 4. High resistivity can be obtained by Fermi level pinning by native donor and acceptor defects. Deep donors that are detrimental to electron transport are identified and methods to mitigate such problem are discussed. Furthermore, we show that mixed ionic-covalent character of Tl 6SI 4more » gives rise to enhanced Born effective charges and large static dielectric constant, which provides effective screening of charged defects and impurities.« less
The intermolecular vibrations of the water dimer
NASA Astrophysics Data System (ADS)
Braly, Linda Beth
Terahertz laser spectra of water dimer intermolecular vibrations have yielded four (D2O)2 VRT bands (one previously published) and five (H2O)2 VRT bands measured with ca. 1 MHz precision and assigned between 65 and 142 cm-1. The results differ both qualitatively and quantitatively from the predictions of popular, effective pair potentials tested. The spectra also reveal an ordering of the intermolecular vibrations which differs dramatically from that predicted by a normal mode analysis. Strong coupling is indicated between the low barrier tunneling motions and the intermolecular vibrations as well as between different vibrations. In particular the 102.1 cm-1 (H2O) 2 band assigned as the acceptor wag has two types of perturbations. The first perturbation involves coupling of two of the tunneling components between the Ka = 0 and 1 levels similar to that occurring in ground state between Ka = 0 and 1 levels. This is treated with an effective Coriolis coupling constant. These seconded perturbation involves one tunneling component with Ka = 1 coupling with a tunneling component with Ka = 0 of the 108 cm-1 acceptor twist vibration. A more detailed Coriolis coupling scheme is required to deperturb these states. Also it is indicated that the 103.1 cm-1 (H2O) 2 band assigned as the donor in-plane bend is coupled to the acceptor wag resulting in a lowering of the in-plane bend frequency and raising the acceptor wag frequency. In addition the 141 cm-1 (H2O)2 band shows perturbations which could not be. resolved at this time. And the 83 cm-1 (acceptor wag) and 90 cm-1 (D2O)2 (acceptor twist) band are perturbing one another through a Coriolis interaction. A subset of the (D2O)2 data have been used in an ongoing effort to determine an accurate IPS via least-squares fitting to an analytical form. The results from the most recent fit which produced VRT(ASP- W)II are presented and compared with the experimental data. The IPS was used to calculate the eigenstates of the water dimer using the Split Wigner Psuedo Spectral (SWPS) method. The transitions could then be calculated from the eigenstates. This improved IPS reproduces the dominant features of the VRT spectra quite well. The ultimate goal of this water dimer research project is to determine the ``perfect'' water pair potential from the spectroscopic data.
NASA Astrophysics Data System (ADS)
Singh, Prashant; Kumar, Pradeep; Katyal, Anju; Kalra, Rashmi; Dass, Sujata K.; Prakash, Satya; Chandra, Ramesh
2010-03-01
In the present work, we report the synthesis and characterization of novel charge-transfer complexes of thiazolidine-2,4-dione (TZD) with sigma acceptor (iodine) and pi acceptors (chloranil, dichlorodicyanoquinone, picric acid and duraquinone). We also evaluated their thermal and electrochemical properties and we conclude that these complexes are frequency dependent. Charge-transfer complex between thiazolidine-2,4-dione and iodine give best conductivity. In conclusion, complex with sigma acceptors are more conducting than with pi acceptors.
Zhu, Kathy Q; Engrav, Loren H; Armendariz, Rebecca; Muangman, Pornprom; Klein, Matthew B; Carrougher, Gretchen J; Deubner, Heike; Gibran, Nicole S
2005-02-01
Despite decades of research, our understanding of human hypertrophic scar is limited. A reliable animal model could significantly increase our understanding. We previously confirmed similarities between scarring in the female, red, Duroc pig and human hypertrophic scarring. The purpose of this study was to: (1) measure vascular endothelial growth factor (VEGF) and nitric oxide (NO) levels in wounds on the female Duroc; and (2) to compare the NO levels to those reported for human hypertrophic scar. Shallow and deep wounds were created on four female Durocs. VEGF levels were measured using ELISA and NO levels with the Griess reagent. VEGF and NO levels were increased in deep wounds at 10 days when compared to shallow wounds (p < 0.05). At 15 weeks, VEGF and NO levels had returned to the level of shallow wounds. At 21 weeks, VEGF and NO levels had declined below baseline levels in deep wounds and the NO levels were significantly lower (p < 0.01). We found that VEGF and NO exhibit two distinctly different temporal patterns in shallow and deep wounds on the female Durocs. Furthermore, NO is decreased in female, Duroc scar as it is in human, hypertrophic scar further validating the usefulness of the model.
Influence of acceptor on charge mobility in stacked π-conjugated polymers
NASA Astrophysics Data System (ADS)
Sun, Shih-Jye; Menšík, Miroslav; Toman, Petr; Gagliardi, Alessio; Král, Karel
2018-02-01
We present a quantum molecular model to calculate mobility of π-stacked P3HT polymer layers with electron acceptor dopants coupled next to side groups in random position with respect to the linear chain. The hole density, the acceptor LUMO energy and the hybridization transfer integral between the acceptor and polymer were found to be very critical factors to the final hole mobility. For a dopant LUMO energy close and high above the top of the polymer valence band we have found a significant mobility increase with the hole concentration and with the dopant LUMO energy approaching the top of the polymer valence band. Higher mobility was achieved for small values of hybridization transfer integral between polymer and the acceptor, corresponding to the case of weakly bound acceptor. Strong couplings between the polymer and the acceptor with Coulomb repulsion interactions induced from the electron localizations was found to suppress the hole mobility.
NASA Astrophysics Data System (ADS)
Ganesamoorthy, Ramasamy; Vijayaraghavan, Rajagopalan; Sakthivel, Pachagounder
2017-12-01
Development of nonfullerene acceptors plays an important role in the commercial availability of plastic solar cells. We report herein synthesis of bay-substituted donor-acceptor-donor (D-A-D)-type perylene diimide (PDI)-based small molecules (SM-1 to SM-4) by Suzuki coupling method and their use as acceptors in bulk heterojunction organic solar cells (BHJ-OSCs) with poly(3-hexylthiophene) (P3HT) polymer donor. We varied the number of electron-rich thiophene units and the solubilizing side chains and also evaluated the optical and electrochemical properties of the small molecules. The synthesized small molecules were confirmed by Fourier-transform infrared (FT-IR) spectroscopy, nuclear magnetic resonance (NMR) spectroscopy, and high-resolution mass spectroscopy (HR-MS). The small molecules showed extensive and strong absorption in the ultraviolet-visible (UV-Vis) region up to 750 nm, with bandgap (E_{{g}}^{{opt}} ) reduced below <2 eV. The energy levels of small molecules SM-1 to SM-4 were suitable for use as electron-accepting materials. The small molecules showed good thermal stability up to 300°C. BHJ-OSCs with SM-1 and P3HT polymer donor showed maximum power conversion efficiency (PCE) of 0.19% with V oc of 0.30 V, J sc of 1.72 mA cm-2, and fill factor (FF) of 37%. The PCE decreased with the number of thiophene units. The PCE of SM-2 was lower than that of SM-1. This difference in PCE can be explained by the higher aggregation tendency of the bithiophene compared with the thiophene unit. Introduction of the solubilizing group in the bay position increased the aggregation property, leading to much lower PCE than for the small molecules without solubilizing group.
Spectral engineering in π-conjugated polymers with intramolecular donor-acceptor interactions.
Beaujuge, Pierre M; Amb, Chad M; Reynolds, John R
2010-11-16
With the development of light-harvesting organic materials for solar cell applications and molecular systems with fine-tuned colors for nonemissive electrochromic devices (e.g., smart windows, e-papers), a number of technical challenges remain to be overcome. Over the years, the concept of "spectral engineering" (tailoring the complex interplay between molecular physics and the various optical phenomena occurring across the electromagnetic spectrum) has become increasingly relevant in the field of π-conjugated organic polymers. Within the spectral engineering toolbox, the "donor-acceptor" approach uses alternating electron-rich and electron-deficient moieties along a π-conjugated backbone. This approach has proved especially valuable in the synthesis of dual-band and broadly absorbing chromophores with useful photovoltaic and electrochromic properties. In this Account, we highlight and provide insight into a present controversy surrounding the origin of the dual band of absorption sometimes encountered in semiconducting polymers structured using the "donor-acceptor" approach. Based on empirical evidence, we provide some schematic representations to describe the possible mechanisms governing the evolution of the two-band spectral absorption observed on varying the relative composition of electron-rich and electron-deficient substituents along the π-conjugated backbone. In parallel, we draw attention to the choice of the method employed to estimate and compare the absorption coefficients of polymer chromophores exhibiting distinct repeat unit lengths, and containing various extents of solubilizing side-chains along their backbone. Finally, we discuss the common assumption that "donor-acceptor" systems should have systematically lower absorption coefficients than their "all-donor" counterparts. The proposed models point toward important theoretical parameters which could be further explored at the macromolecular level to help researchers take full advantage of the complex interactions taking place in π-conjugated polymers with intramolecular "donor-acceptor" characteristics.
9.0% power conversion efficiency from ternary all-polymer solar cells
Li, Zhaojun; Xu, Xiaofeng; Zhang, Wei; ...
2017-01-01
High-performance ternary all-polymer solar cells with outstanding efficiency of 9.0% are realized by incorporating two donor and one acceptor polymers with complementary absorption and proper energy level alignment.
Sosorev, Andrey Yu; Parashchuk, Olga D; Zapunidi, Sergey A; Kashtanov, Grigoriy S; Golovnin, Ilya V; Kommanaboyina, Srikanth; Perepichka, Igor F; Paraschuk, Dmitry Yu
2016-02-14
In some donor-acceptor blends based on conjugated polymers, a pronounced charge-transfer complex (CTC) forms in the electronic ground state. In contrast to small-molecule donor-acceptor blends, the CTC concentration in polymer:acceptor solution can increase with the acceptor content in a threshold-like way. This threshold-like behavior was earlier attributed to the neighbor effect (NE) in the polymer complexation, i.e., next CTCs are preferentially formed near the existing ones; however, the NE origin is unknown. To address the factors affecting the NE, we record the optical absorption data for blends of the most studied conjugated polymers, poly(2-methoxy-5-(2-ethylhexyloxy)-1,4-phenylenevinylene) (MEH-PPV) and poly(3-hexylthiophene) (P3HT), with electron acceptors of fluorene series, 1,8-dinitro-9,10-antraquinone (), and 7,7,8,8-tetracyanoquinodimethane () in different solvents, and then analyze the data within the NE model. We have found that the NE depends on the polymer and acceptor molecular skeletons and solvent, while it does not depend on the acceptor electron affinity and polymer concentration. We conclude that the NE operates within a single macromolecule and stems from planarization of the polymer chain involved in the CTC with an acceptor molecule; as a result, the probability of further complexation with the next acceptor molecules at the adjacent repeat units increases. The steric and electronic microscopic mechanisms of NE are discussed.
Wilhelm, Philipp; Schedlbauer, Jakob; Hinderer, Florian; Hennen, Daniel; Höger, Sigurd; Vogelsang, Jan; Lupton, John M
2018-04-17
The breaking of molecular symmetry through photoexcitation is a ubiquitous but rather elusive process, which, for example, controls the microscopic efficiency of light harvesting in molecular aggregates. A molecular excitation within a π-conjugated segment will self-localize due to strong coupling to molecular vibrations, locally changing bond alternation in a process which is fundamentally nondeterministic. Probing such symmetry breaking usually relies on polarization-resolved fluorescence, which is most powerful on the level of single molecules. Here, we explore symmetry breaking by designing a large, asymmetric acceptor-donor-acceptor (A 1 -D-A 2 ) complex 10 nm in length, where excitation energy can flow from the donor, a π-conjugated oligomer, to either one of the two boron-dipyrromethene (bodipy) dye acceptors of different color. Fluorescence correlation spectroscopy (FCS) reveals a nondeterministic switching between the energy-transfer pathways from the oligomer to the two acceptor groups on the submillisecond timescale. We conclude that excitation energy transfer, and light harvesting in general, are fundamentally nondeterministic processes, which can be strongly perturbed by external stimuli. A simple demonstration of the relation between exciton localization within the extended π-system and energy transfer to the endcap is given by considering the selectivity of endcap emission through the polarization of the excitation light in triads with bent oligomer backbones. Bending leads to increased localization so that the molecule acquires bichromophoric characteristics in terms of its fluorescence photon statistics.
Ghosh, Tanwistha; Gopal, Anesh; Saeki, Akinori; Seki, Shu; Nair, Vijayakumar C
2015-04-28
Molecular and supramolecular properties play key roles in the optoelectronic properties and photovoltaic performances of organic materials. In the present work, we show how small changes in the molecular structure affect such properties, which in turn control the intrinsic and fundamental properties such as the p/n-polarity of organic semiconductors in bulk-heterojunction solar cells. Herein, we designed and synthesized two acceptor-donor-acceptor type semiconducting thiophene oligomers end-functionalized with oxazolone/isoxazolone derivatives (OT1 and OT2 respectively). The HOMO-LUMO energy levels of both derivatives were found to be positioned in such a way that they can act as electron acceptors to P3HT and electron donors to PCBM. However, OT1 functions as a donor (with PCBM) and OT2 as an acceptor (with P3HT) in BHJ photovoltaic cells, and their reverse roles results in either no or poor performance of the cells. Detailed studies using UV-vis absorption and fluorescence spectroscopy, time-correlated single photon counting, UV-photoelectron spectroscopy, density functional theory calculations, X-ray diffraction, and thermal gravimetric analysis proved that both molecular and supramolecular properties contributed equally but in a contrasting manner to the abovementioned observation. The obtained results were further validated by flash-photolysis time-resolved microwave conductivity studies which showed an excellent correlation between the structure, property, and device performances of the materials.
NASA Astrophysics Data System (ADS)
Zhao, Caibin; Jin, Lingxia; Ge, Hongguang; Guo, Xiaohua; Zhang, Qiang; Wang, Wenliang
2018-02-01
In this work, to develop efficient organic dye sensitisers, a series of novel donor-acceptor-π-acceptor metal-free dyes were designed based on the C217 dye by means of modifying different auxiliary acceptors, and their photovoltaic performances were theoretically investigated with systematic density functional theory calculations coupled with the incoherent charge-hopping model. Results showed that the designed dyes possess lower highest occupied molecular orbital (HOMO) and lowest unoccupied molecular orbital (LUMO) levels as well as narrower HOMO-LUMO gaps compared to C217, which indicate their higher light-harvesting efficiency. In addition, using the (TiO2)38 cluster and bidentate bridging model, we predicted that the photoelectric conversion efficiency (PCE) for the C217 dye is as high as 9.92% under air mass (AM) 1.5 illumination (100 mW.cm-2), which is in good agreement with its experimental value (9.60%-9.90%). More interestingly, the cell sensitised by the dye 7 designed in this work exhibits a middle-sized open-circuit voltage of 0.737 V, large short-circuit photocurrent density of 21.16 mAˑcm-2 and a fill factor of 0.801, corresponding to a quite high PCE of 12.49%, denoting the dye 7 is a more promising sensitiser candidate than the C217, and is worth further experimental study.
NASA Astrophysics Data System (ADS)
Refat, Moamen S.; Adam, Abdel Majid A.; Sharshar, T.; Saad, Hosam A.; Eldaroti, Hala H.
2014-03-01
In this work, structural, thermal, morphological, pharmacological screening and positron annihilation lifetime measurements were performed on the interactions between a N-(1-Naphthyl)ethylenediamine dihydrochloride (NEDA·2HCl) donor and three types of acceptors to characterize these CT complexes. The three types of acceptors include π-acceptors (quinol and picric acid), σ-acceptors (iodine) and vacant orbital acceptors (tin(IV) tetrachloride and zinc chloride). The positron annihilation lifetime parameters were found to be dependent on the structure, electronic configuration, the power of acceptors and molecular weight of the CT complexes. The positron annihilation lifetime spectroscopy can be used as a probe for the formation of charge-transfer (CT) complexes.
A New Acceptor (N-type) Polyphenylenevinylene Building Block: SF-PPV-I
NASA Technical Reports Server (NTRS)
Wang, Yiqing; Fan, Zhen; Taft, Charles; Sun, Sam-Shajing
2002-01-01
A new sulfone derivatized acceptor (n-type) polyphenylenevinylene "SF-PPV" with nano meter sizes and functional terminals has been synthesized and characterized. The SF-PPV-I that contains hydrocarbon alkyl-sulfone moieties has a strong photoluminescence in both solution and in solid thin film states. In dichloromethane, the 5-10 nm sized SF-PPV has a maximum emission at about 530 nm with excitation maximum at about 490 nm. UV-VIS shows a absorption peak onsite at about 500 nm. Optical spectroscopy and electrochemical studies revealed that the SF-PPV-I has an LUMO level at about -3.6 eV (relative to vacuum), and an HOMO level at about -6.1 eV. The average size (length) of SF-PPV-I can be controlled on the nano meter scale via synthetic means. The SF-PPV has the potential in developing polymer based supramolecular opto-electronic semiconductor devices.
Maurer, Douglas K.; Johnson, Ann K.; Welch, Alan H.
1996-01-01
Operating Criteria and Procedures for Newlands Project irrigation and Public Law 101-618 could result in reductions in surface water used for agriculture in the Carson Desert, potentially affecting ground-water supplies from shallow, intermediate, and basalt aquifers. A near-surface zone could exist at the top of the shallow aquifer near the center and eastern parts of the basin where underlying clay beds inhibit vertical flow and could limit the effects of changes in water use. In the basalt aquifer, water levels have declined about 10 feet from pre-pumping levels, and chloride and arsenic concentrations have increased. Conceptual models of the basin suggest that changes in water use in the western part of the basin would probably affect recharge to the shallow, intermediate, and basalt aquifers. Lining canals and removing land from production could cause water-level declines greater than 10 feet in the shallow aquifer up to 2 miles from lined canals. Removing land from production could cause water levels to decline from 4 to 17 feet, depending on the distribution of specific yield in the basin and the amount of water presently applied to irrigated fields. Where wells pump from a near-surface zone of the shallow aquifer, water level declines might not greatly affect pumping wells where the thickness of the zone is greatest, but could cause wells to go dry where the zone is thin.
Optical signature of Mg-doped GaN: Transfer processes
NASA Astrophysics Data System (ADS)
Callsen, G.; Wagner, M. R.; Kure, T.; Reparaz, J. S.; Bügler, M.; Brunnmeier, J.; Nenstiel, C.; Hoffmann, A.; Hoffmann, M.; Tweedie, J.; Bryan, Z.; Aygun, S.; Kirste, R.; Collazo, R.; Sitar, Z.
2012-08-01
Mg doping of high quality, metal organic chemical vapor deposition grown GaN films results in distinct traces in their photoluminescence and photoluminescence excitation spectra. We analyze GaN:Mg grown on sapphire substrates and identify two Mg related acceptor states, one additional acceptor state and three donor states that are involved in the donor-acceptor pair band transitions situated at 3.26-3.29 eV in GaN:Mg. The presented determination of the donor-acceptor pair band excitation channels by photoluminescence excitation spectroscopy in conjunction with temperature-dependent photoluminescence measurements results in a direct determination of the donor and acceptor binding, localization, and activation energies, which is put into a broader context based on Haynes's rule. Furthermore, we analyze the biexponential decay dynamics of the photoluminescence signal of the acceptor and donor bound excitons. As all observed lifetimes scale with the localization energy of the donor and acceptor related bound excitons, defect and complex bound excitons can be excluded as their origin. Detailed analysis of the exciton transfer processes in the close energetic vicinity of the GaN band edge reveals excitation via free and bound excitonic channels but also via an excited state as resolved for the deepest localized Mg related acceptor bound exciton. For the two Mg acceptor states, we determine binding energies of 164 ± 5 and 195 ± 5 meV, which is in good agreement with recent density functional theory results. This observation confirms and quantifies the general dual nature of acceptor states in GaN based on the presented analysis of the photoluminescence and photoluminescence excitation spectra.
Energy bands and acceptor binding energies of GaN
NASA Astrophysics Data System (ADS)
Xia, Jian-Bai; Cheah, K. W.; Wang, Xiao-Liang; Sun, Dian-Zhao; Kong, Mei-Ying
1999-04-01
The energy bands of zinc-blende and wurtzite GaN are calculated with the empirical pseudopotential method, and the pseudopotential parameters for Ga and N atoms are given. The calculated energy bands are in agreement with those obtained by the ab initio method. The effective-mass theory for the semiconductors of wurtzite structure is established, and the effective-mass parameters of GaN for both structures are given. The binding energies of acceptor states are calculated by solving strictly the effective-mass equations. The binding energies of donor and acceptor are 24 and 142 meV for the zinc-blende structure, 20 and 131, and 97 meV for the wurtzite structure, respectively, which are consistent with recent experimental results. It is proposed that there are two kinds of acceptor in wurtzite GaN. One kind is the general acceptor such as C, which substitutes N, which satisfies the effective-mass theory. The other kind of acceptor includes Mg, Zn, Cd, etc., the binding energy of these acceptors is deviated from that given by the effective-mass theory. In this report, wurtzite GaN is grown by the molecular-beam epitaxy method, and the photoluminescence spectra were measured. Three main peaks are assigned to the donor-acceptor transitions from two kinds of acceptors. Some of the transitions were identified as coming from the cubic phase of GaN, which appears randomly within the predominantly hexagonal material.
Anaerobic electron acceptor chemotaxis in Shewanella putrefaciens
NASA Technical Reports Server (NTRS)
Nealson, K. H.; Moser, D. P.; Saffarini, D. A.
1995-01-01
Shewanella putrefaciens MR-1 can grow either aerobically or anaerobically at the expense of many different electron acceptors and is often found in abundance at redox interfaces in nature. Such redox interfaces are often characterized by very strong gradients of electron acceptors resulting from rapid microbial metabolism. The coincidence of S. putrefaciens abundance with environmental gradients prompted an examination of the ability of MR-1 to sense and respond to electron acceptor gradients in the laboratory. In these experiments, taxis to the majority of the electron acceptors that S. putrefaciens utilizes for anaerobic growth was seen. All anaerobic electron acceptor taxis was eliminated by the presence of oxygen, nitrate, nitrite, elemental sulfur, or dimethyl sulfoxide, even though taxis to the latter was very weak and nitrate and nitrite respiration was normal in the presence of dimethyl sulfoxide. Studies with respiratory mutants of MR-1 revealed that several electron acceptors that could not be used for anaerobic growth nevertheless elicited normal anaerobic taxis. Mutant M56, which was unable to respire nitrite, showed normal taxis to nitrite, as well as the inhibition of taxis to other electron acceptors by nitrite. These results indicate that electron acceptor taxis in S. putrefaciens does not conform to the paradigm established for Escherichia coli and several other bacteria. Carbon chemo-taxis was also unusual in this organism: of all carbon compounds tested, the only positive response observed was to formate under anaerobic conditions.
2012 Gordon Research Conference, Electron donor-acceptor interactions, August 5-10 2012
DOE Office of Scientific and Technical Information (OSTI.GOV)
McCusker, James
The upcoming incarnation of the Gordon Research Conference on Electron Donor Acceptor Interactions will feature sessions on classic topics including proton-coupled electron transfer, dye-sensitized solar cells, and biological electron transfer, as well as emerging areas such as quantum coherence effects in donor-acceptor interactions, spintronics, and the application of donor-acceptor interactions in chemical synthesis.
Jepsen, Steven M; Priscu, John C; Grimm, Robert E; Bullock, Mark A
2007-04-01
We developed a numerical model to assess the lithoautotrophic habitability of Mars based on metabolic energy, nutrients, water availability, and temperature. Available metabolic energy and nutrient sources were based on a laboratory-produced Mars-analog inorganic chemistry. For this specific reference chemistry, the most efficient lithoautotrophic microorganisms would use Fe(2+) as a primary metabolic electron donor and NO(3)(-) or gaseous O(2) as a terminal electron acceptor. In a closed model system, biomass production was limited by the electron donor Fe(2+) and metabolically required P, and typically amounted to approximately 800 pg of dry biomass/ml ( approximately 8,500 cells/ml). Continued growth requires propagation of microbes to new fecund environments, delivery of fresh pore fluid, or continued reaction with the host material. Within the shallow cryosphere--where oxygen can be accessed by microbes and microbes can be accessed by exploration-lithoautotrophs can function within as little as three monolayers of interfacial water formed either by adsorption from the atmosphere or in regions of ice stability where temperatures are within some tens of degrees of the ice melting point. For the selected reference host material (shergottite analog) and associated inorganic fluid chemistry, complete local reaction of the host material potentially yields a time-integrated biomass of approximately 0.1 mg of dry biomass/g of host material ( approximately 10(9) cells/g). Biomass could also be sustained where solutes can be delivered by advection (cryosuction) or diffusion in interfacial water; however, both of these processes are relatively inefficient. Lithoautotrophs in near-surface thin films of water, therefore, would optimize their metabolism by deriving energy and nutrients locally. Although the selected chemistry and associated model output indicate that lithoautotrophic microbial biomass could accrue within shallow interfacial water on Mars, it is likely that these organisms would spend long periods in maintenance or survival modes, with instantaneous biomass comparable to or less than that observed in extreme environments on Earth.
Vaccine perception among acceptors and non-acceptors in Sokoto State, Nigeria.
Murele, Bola; Vaz, Rui; Gasasira, Alex; Mkanda, Pascal; Erbeto, Tesfaye; Okeibunor, Joseph
2014-05-30
Vaccine perceptions among acceptors and non-acceptors of childhood vaccination were explored. Seventy-two care givers, among them, acceptors and non-acceptors were interviewed in-depth with an interview guide that assessed vaccine acceptance, social and personality factors, and health belief model (HBM) categories in relation to oral polio vaccine (perceived susceptibility, severity, cost barriers, general barriers, benefits, knowledge, and engagement in preventative health behaviours). Community leaders were purposively selected while parents were selected on the basis of availability while ensuring the different attitude to vaccines was covered. Results showed that the HBM framework was found to be appropriate for identifying and distinguishing vaccine acceptors and non-acceptors. In addition, the HBM categories of benefits and susceptibility were found to influence oral polio vaccine acceptance. Second, the opinion of family members about the oral polio vaccine moderated the relationship between number of social ties and vaccine acceptance. Further, oral polio vaccine acceptance was related to outbreaks of paralysis of any sort, but not aggregate scores of other preventative health behaviours. Implications of this study include the investigation of vaccine acceptance in a high risk population. Research was done to investigate vaccine acceptance. Copyright © 2014 Elsevier Ltd. All rights reserved.
Molecular helices as electron acceptors in high-performance bulk heterojunction solar cells
Yu M. Zhong; Nam, Chang -Yong; Trinh, M. Tuan; ...
2015-09-18
Despite numerous organic semiconducting materials synthesized for organic photovoltaics in the past decade, fullerenes are widely used as electron acceptors in highly efficient bulk-heterojunction solar cells. None of the non-fullerene bulk heterojunction solar cells have achieved efficiencies as high as fullerene-based solar cells. Design principles for fullerene-free acceptors remain unclear in the field. Here we report examples of helical molecular semiconductors as electron acceptors that are on par with fullerene derivatives in efficient solar cells. We achieved an 8.3% power conversion efficiency in a solar cell, which is a record high for non-fullerene bulk heterojunctions. Femtosecond transient absorption spectroscopy revealedmore » both electron and hole transfer processes at the donor–acceptor interfaces. Atomic force microscopy reveals a mesh-like network of acceptors with pores that are tens of nanometres in diameter for efficient exciton separation and charge transport. As a result, this study describes a new motif for designing highly efficient acceptors for organic solar cells.« less
Molecular helices as electron acceptors in high-performance bulk heterojunction solar cells.
Zhong, Yu; Trinh, M Tuan; Chen, Rongsheng; Purdum, Geoffrey E; Khlyabich, Petr P; Sezen, Melda; Oh, Seokjoon; Zhu, Haiming; Fowler, Brandon; Zhang, Boyuan; Wang, Wei; Nam, Chang-Yong; Sfeir, Matthew Y; Black, Charles T; Steigerwald, Michael L; Loo, Yueh-Lin; Ng, Fay; Zhu, X-Y; Nuckolls, Colin
2015-09-18
Despite numerous organic semiconducting materials synthesized for organic photovoltaics in the past decade, fullerenes are widely used as electron acceptors in highly efficient bulk-heterojunction solar cells. None of the non-fullerene bulk heterojunction solar cells have achieved efficiencies as high as fullerene-based solar cells. Design principles for fullerene-free acceptors remain unclear in the field. Here we report examples of helical molecular semiconductors as electron acceptors that are on par with fullerene derivatives in efficient solar cells. We achieved an 8.3% power conversion efficiency in a solar cell, which is a record high for non-fullerene bulk heterojunctions. Femtosecond transient absorption spectroscopy revealed both electron and hole transfer processes at the donor-acceptor interfaces. Atomic force microscopy reveals a mesh-like network of acceptors with pores that are tens of nanometres in diameter for efficient exciton separation and charge transport. This study describes a new motif for designing highly efficient acceptors for organic solar cells.
Wu, Yongzhen; Zhu, Weihong
2013-03-07
The high performance and low cost of dye-sensitized solar cells (DSSCs) have drawn great interest from both academic and industrial circles. The research on exploring novel efficient sensitizers, especially on inexpensive metal-free pure organic dyes, has never been suspended. The donor-π bridge-acceptor (D-π-A) configuration is mainstream in the design of organic sensitizers due to its convenient modulation of the intramolecular charge-transfer nature. Recently, it has been found that incorporation of additional electron-withdrawing units (such as benzothiadiazole, benzotriazole, quinoxaline, phthalimide, diketopyrrolopyrrole, thienopyrazine, thiazole, triazine, cyanovinyl, cyano- and fluoro-substituted phenyl) into the π bridge as internal acceptors, termed the D-A-π-A configuration, displays several advantages such as tuning of the molecular energy levels, red-shift of the charge-transfer absorption band, and distinct improvement of photovoltaic performance and stability. We apply the D-A-π-A concept broadly to the organic sensitizers containing additional electron-withdrawing units between electron donors and acceptors. This review is projected to summarize the category of pure organic sensitizers on the basis of the D-A-π-A feature. By comparing the structure-property relationship of typical photovoltaic D-A-π-A dyes, the important guidelines in the design of such materials are highlighted.
Calculations of acceptor ionization energies in GaN
NASA Astrophysics Data System (ADS)
Wang, H.; Chen, A.-B.
2001-03-01
The k.p Hamiltonian and a model potential are used to deduce the acceptor ionization energies in GaN from a systematic study of the chemical trend in GaAs, GaP, and InP. The acceptors studied include Be, Mg, Ca, Zn, and Cd on the cation sites and C, Si, and Ge on the anion sites. Our calculated acceptor ionization energies are estimated to be accurate to better than 10% across the board. The ionization energies of C and Be (152 and 187 meV, respectively) in wurtzite GaN are found to be lower than that of Mg (224 meV). The C was found to behave like the hydrogenic acceptor in all systems and it has the smallest ionization energy among all the acceptors studied.
Acceptor Ionization Energies in GaN*
NASA Astrophysics Data System (ADS)
Wang, Hao; Ban Chen, An
2001-03-01
The k.p Hamiltonian and a model potential are used to deduce the acceptor ionization energies in GaN from a systematic study of the chemical trend in GaAs, GaP, and InP. The acceptors studied include Be, Mg, Ca, Zn, and Cd on the cation sites and C, Si, and Ge on the anion sites. Our calculated acceptor ionization energies are estimated to be accurate to better than ten percent across the board. The ionization energies of C and Be (152 and 187 meV respectively) in wurtzite GaN are found to be lower than that of Mg (224 meV). The C was found to behave like the hydrogenic acceptor in all systems and it has the smallest ionization energy among all the acceptors studied.
Mapping the Relationship between Glycosyl Acceptor Reactivity and Glycosylation Stereoselectivity.
van der Vorm, Stefan; van Hengst, Jacob M A; Bakker, Marloes; Overkleeft, Herman S; van der Marel, Gijsbert A; Codée, Jeroen D C
2018-03-30
The reactivity of both coupling partners-the glycosyl donor and acceptor-is decisive for the outcome of a glycosylation reaction, in terms of both yield and stereoselectivity. Where the reactivity of glycosyl donors is well understood and can be controlled through manipulation of the functional/protecting-group pattern, the reactivity of glycosyl acceptor alcohols is poorly understood. We here present an operationally simple system to gauge glycosyl acceptor reactivity, which employs two conformationally locked donors with stereoselectivity that critically depends on the reactivity of the nucleophile. A wide array of acceptors was screened and their structure-reactivity/stereoselectivity relationships established. By systematically varying the protecting groups, the reactivity of glycosyl acceptors can be adjusted to attain stereoselective cis-glucosylations. © 2018 The Authors. Published by Wiley-VCH Verlag GmbH & Co. KGaA.
NASA Astrophysics Data System (ADS)
Kim, Hyun-su; Jaffé, Peter R.; Young, Lily Y.
2004-04-01
Heterotropic bacteria can degrade organic substrates utilizing different terminal electron acceptors. The sequence of electron acceptor utilization depends on the energy yield of the individual reaction pathway, which decreases as the redox potential decreases. Due to these differences in energy yield, and an inhibiting activity of oxygen on some enzymatic processes, the simultaneous utilization of oxygen and nitrate as terminal electron acceptors may not occur for many degradation processes, unless the oxygen concentration falls below a given threshold level (about 0.2 mg/l). Two sand column experiments were conducted, with toluene as the carbon source, and showed an apparent simultaneous utilization of oxygen and nitrate as electron acceptors in regions where the oxygen concentration was significantly higher (⩾1.1 mg/l) than the above mentioned threshold concentration. Results from aerobic and anaerobic plate-count analyses showed growth of both aerobes and denitrifiers in the zone of the column where simultaneous utilization of oxygen and nitrate was observed. From these observations, it was postulated that the porous media contained oxygen-free microlocations where the denitrifiers were able to degrade the toluene. To simulate the observed dynamics, a dual biofilm model was implemented. This model formulation assumes that the biofilm is composed of two distinct layers, where the outer layer is colonized by aerobic bacteria and the inner layer by denitrifying bacteria. The thickness of the aerobic layer is such that oxygen is depleted at the boundary of these two layers, resulting in oxygen-free microlocations that allows denitrification to proceed, even though oxygen is still present in the bulk fluid phase. The model simulations compared well to the experimental profiles. Model analyses indicated that changes in physical, chemical, and hydrologic parameters could change the length and location of the zone where at the macroscopic level, oxygen and nitrate are utilized simultaneously. Comparisons of the proposed model to macroscopic modeling approaches showed that a dual biofilm model is able to describe the simultaneous utilization of oxygen and nitrate more accurately.
Chemical trends for acceptor impurities in GaN
NASA Astrophysics Data System (ADS)
Neugebauer, Jörg; Van de Walle, Chris G.
1999-03-01
We present a comprehensive investigation of acceptor impurities in GaN, based on first-principles total-energy calculations. Two main factors are identified that determine acceptor incorporation: the strength of chemical bonding between the acceptor and its neighbors (which can be assessed by comparison with existing compounds) and the atomic size match between the acceptor and the host atom for which it substitutes. None of the candidates (Li, Na, K, Be, Zn, and Ca) exhibits characteristics which surpass those of Mg in all respects. Only Be emerges as a potential alternative dopant, although it may suffer from compensation by Be interstitial donors.
Organic photosensitive cells having a reciprocal-carrier exciton blocking layer
Rand, Barry P [Princeton, NJ; Forrest, Stephen R [Princeton, NJ; Thompson, Mark E [Anaheim Hills, CA
2007-06-12
A photosensitive cell includes an anode and a cathode; a donor-type organic material and an acceptor-type organic material forming a donor-acceptor junction connected between the anode and the cathode; and an exciton blocking layer connected between the acceptor-type organic material of the donor-acceptor junction and the cathode, the blocking layer consisting essentially of a material that has a hole mobility of at least 10.sup.-7 cm.sup.2/V-sec or higher, where a HOMO of the blocking layer is higher than or equal to a HOMO of the acceptor-type material.
Johnson, James O.; Dinegar, Robert H.
1988-01-01
A detonator assembly is provided which is usable at high temperatures about 300.degree. C. A detonator body is provided with an internal volume defining an anvil surface. A first acceptor explosive is disposed on the anvil surface. A donor assembly having an ignition element, an explosive material, and a flying plate, are placed in the body effective to accelerate the flying plate to impact the first acceptor explosive on the anvil for detonating the first acceptor explosive. A second acceptor explosive is eccentrically located in detonation relationship with the first acceptor explosive to thereafter effect detonation of a main charge.
Yao, Huifeng; Ye, Long; Hou, Junxian; ...
2017-03-29
Here, a new acceptor–donor–acceptor-structured nonfullerene acceptor ITCC (3,9-bis(4-(1,1-dicyanomethylene)-3-methylene-2-oxo-cyclopenta[b]thiophen)-5,5,11,11-tetrakis(4-hexylphenyl)-dithieno[2,3- d':2,3- d'] -s-indaceno[1,2- b:5,6- b']-dithiophene) is designed and synthesized via simple end-group modification. ITCC shows improved electron-transport properties and a high-lying lowest unoccupied molecular orbital level. A power conversion efficiency of 11.4% with an impressive V OC of over 1 V is recorded in photovoltaic devices, suggesting that ITCC has great potential for applications in tandem organic solar cells.
Activation of acceptor levels in Mn implanted Si by pulsed laser annealing
NASA Astrophysics Data System (ADS)
Li, Lin; Bürger, Danilo; Shalimov, Artem; Kovacs, Gy J.; Schmidt, Heidemarie; Zhou, Shengqiang
2018-04-01
In this paper, we report the magnetic and electrical properties of Mn implanted nearly intrinsic Si wafers after subsecond thermal treatment. Activation of acceptors is realized in pulsed laser annealing (PLA) films with a free hole concentration of 6.29 × 1020 cm‑3 while the sample annealed by rapid thermal annealing (RTA) shows n-type conductivity with a much smaller free electron concentration in the order of 1015 cm‑3. Ferromagnetism is probed for all films by a SQUID magnetometer at low temperatures. The formation of ferromagnetic MnSi1.7 nanoparticles which was proven in RTA films can be excluded in Mn implanted Si annealed by PLA.
Kumar, Challa V; Duff, Michael R
2008-12-01
Specific donor and acceptor pairs have been assembled in bovine serum albumin (BSA), at neutral pH and room temperature, and these dye-protein complexes indicated efficient donor to acceptor singlet-singlet energy transfer. For example, pyrene-1-butyric acid served as the donor and Coumarin 540A served as the acceptor. Both the donor and the acceptor bind to BSA with affinity constants in excess of 2x10(5) M(-1), as measured in absorption and circular dichroism (CD) spectral titrations. Simultaneous binding of both the donor and the acceptor chromophores was supported by CD spectra and one chromophore did not displace the other from the protein host, even when limited concentrations of the host were used. For example, a 1:1:1 complex between the donor, acceptor and the host can be readily formed, and spectral data clearly show that the binding sites are mutually exclusive. The ternary complexes (two different ligands bound to the same protein molecule) provided opportunities to examine singlet-singlet energy transfer between the protein-bound chromophores. Donor emission was quenched by the addition of the acceptor, in the presence of limited amounts of BSA, while no energy transfer was observed in the absence of the protein host, under the same conditions. The excitation spectra of the donor-acceptor-host complexes clearly show the sensitization of acceptor emission by the donor. Protein denaturation, as induced by the addition of urea or increasing the temperature to 360 K, inhibited energy transfer, which indicate that protein structure plays an important role. Sensitization also proceeded at low temperature (77 K) and diffusion of the donor or the acceptor is not required for energy transfer. Stern-Volmer quenching plots show that the quenching constant is (3.1+/-0.2)x10(4) M(-1), at low acceptor concentrations (<35 microM). Other albumins such as human and porcine proteins also served as good hosts for the above experiments. For the first time, non-natural systems have been self-assembled which can capture donor-acceptor pairs and facilitate singlet-singlet energy transfer. Such systems may form a basis for the design and construction of protein-based multi-chromophore self-assemblies for solar light harvesting, conversion and storage.
Improving single-molecule FRET measurements by confining molecules in nanopipettes
NASA Astrophysics Data System (ADS)
Vogelsang, J.; Doose, S.; Sauer, M.; Tinnefeld, P.
2007-07-01
In recent years Fluorescence Resonance Energy Transfer (FRET) has been widely used to determine distances, observe distance dynamics, and monitor molecular binding at the single-molecule level. A basic constraint of single-molecule FRET studies is the limited distance resolution owing to low photon statistics. We demonstrate that by confining molecules in nanopipettes (50-100 nm diameter) smFRET can be measured with improved photon statistics reducing the width of FRET proximity ratio distributions (PRD). This increase in distance resolution makes it possible to reveal subpopulations and dynamics in biomolecular complexes. Our data indicate that the width of PRD is not only determined by photon statistics (shot noise) and distance distributions between the chromophores but that photoinduced dark states of the acceptor also contribute to the PRD width. Furthermore, acceptor dark states such as triplet states influence the accuracy of determined mean FRET values. In this context, we present a strategy for the correction of the shift of the mean PR that is related to triplet induced blinking of the acceptor using reference FCS measurements.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Haiyan; Hwang, Ye-Jin; Earmme, Taeshik
2015-03-02
Two n-type semiconducting polymers with alternating arylene (thiophene or selenophene)–tetraazabenzodifluoranthene diimide (BFI) donor–acceptor architecture have been investigated as new electron acceptors in polymer/polymer blend solar cells. The new selenophene-linked polymer, PBFI-S, has a significantly smaller optical band gap (1.13 eV) than the thiophene-linked PBFI-T (1.38 eV); however, both polymers have similar HOMO/LUMO energy levels determined from cyclic voltammetry. Blends of PBFI-T with the thiazolothiazole–dithienylsilole donor polymer (PSEHTT) gave a 2.60% power conversion efficiency (PCE) with a 7.34 mA/cm2 short-circuit current. In contrast, PBFI-S:PSEHTT blends had a 0.75% PCE with similarly reduced photocurrent and external quantum efficiency. Reduced free energy formore » charge transfer and reduced bulk electron mobility in PBFI-S:PSEHTT blends compared to PBFI-T:PSEHTT blends as well as significant differences in bulk film morphology are among the reasons for the large loss in efficiency in PBFI-S:PSEHTT blend solar cells.« less
NASA Astrophysics Data System (ADS)
Ito, Yuta; Akaike, Kouki; Fukuda, Takeshi; Sato, Daisuke; Fuse, Takuya; Iwahashi, Takashi; Ouchi, Yukio; Kanai, Kaname
2018-05-01
Molybdenum oxide (MoOx) is widely used as the hole-transport layer in bulk-heterojunction organic photovoltaics (BHJ-OPVs). During the fabrication of solution-processed BHJ-OPVs on vacuum-deposited MoOx film, the film must be exposed to N2 atmosphere in a glove box, where the donor/acceptor blends are spin-coated from a mixed solution. Employing photoelectron spectroscopy, we reveal that the exposure of the MoOx film to such atmosphere contaminates the MoOx surface. Annealing the contaminated MoOx film at 160 °C for 5 min, prior to spin-coating the blend film, can partially remove the carbon and oxygen adsorbed on the MoOx surface during the exposure of MoOx. However, the contamination layer on the MoOx surface does not affect the energy-level alignment at the interface between MoOx and the donor/acceptor blend. Hence, significant improvement in the performance of BHJ-OPVs by mildly annealing the MoOx layer, which was previously reported, can be explained by the reduction of undesired contamination.
Baumeier, Björn; Andrienko, Denis; Rohlfing, Michael
2012-08-14
Excited states of donor-acceptor dimers are studied using many-body Green's functions theory within the GW approximation and the Bethe-Salpeter equation. For a series of prototypical small-molecule based pairs, this method predicts energies of local Frenkel and intermolecular charge-transfer excitations with the accuracy of tens of meV. Application to larger systems is possible and allowed us to analyze energy levels and binding energies of excitons in representative dimers of dicyanovinyl-substituted quarterthiophene and fullerene, a donor-acceptor pair used in state of the art organic solar cells. In these dimers, the transition from Frenkel to charge transfer excitons is endothermic and the binding energy of charge transfer excitons is still of the order of 1.5-2 eV. Hence, even such an accurate dimer-based description does not yield internal energetics favorable for the generation of free charges either by thermal energy or an external electric field. These results confirm that, for qualitative predictions of solar cell functionality, accounting for the explicit molecular environment is as important as the accurate knowledge of internal dimer energies.
NASA Astrophysics Data System (ADS)
Lee, Donghwa; Mitchell, Brandon; Fujiwara, Y.; Dierolf, V.
2014-05-01
An understanding of the formation and dissociation process of Mg-H defects in GaN is of paramount importance for high efficient GaN-based solid-state lighting. Through a combination of first-principle calculations and experimental observations, we find the existence of three types of Mg related centers forming different Mg-H-VN complexes in Mg:GaN. Our study shows that the three different arrangements, which differ by the relative position of the H, determine the degree of acceptor passivation by changing their charge state from +3 to +1. The energetic study demonstrates that the relative stability of the defect complexes can vary with the location of the Fermi level, as well as thermal annealing and electron beam irradiation. The inclusion of a VN is shown to produce an additional variance in optical spectra associated with Mg acceptor activation, resulting from changes in the defect configurations and charge states. Our study shows that these three Mg-H-VN complexes are key components for understanding the Mg acceptor activation and passivation processes.
NASA Astrophysics Data System (ADS)
Lee, Seungwoon; Jeong, Jaewook
2017-08-01
In this paper, the annealing effect of solution-processed amorphous indium-gallium-zinc-oxide thin-film transistors (a-IGZO TFTs), under ambient He (He-device), is systematically analyzed by comparison with those under ambient O2 (O2-device) and N2 (N2-device), respectively. The He-device shows high field-effect mobility and low subthreshold slope owing to the minimization of the ambient effect. The degradation of the O2- and N2-device performances originate from their respective deep acceptor-like and shallow donor-like characteristics, which can be verified by comparison with the He-device. However, the three devices show similar threshold voltage instability under prolonged positive bias stress due to the effect of excess oxygen. Therefore, annealing in ambient He is the most suitable method for the fabrication of reference TFTs to study the various effects of the ambient during the annealing process in solution-processed a-IGZO TFTs.
Gray, N D; Sherry, A; Hubert, C; Dolfing, J; Head, I M
2010-01-01
Hydrocarbons are common constituents of surface, shallow, and deep-subsurface environments. Under anaerobic conditions, hydrocarbons can be degraded to methane by methanogenic microbial consortia. This degradation process is widespread in the geosphere. In comparison with other anaerobic processes, methanogenic hydrocarbon degradation is more sustainable over geological time scales because replenishment of an exogenous electron acceptor is not required. As a consequence, this process has been responsible for the formation of the world's vast deposits of heavy oil, which far exceed conventional oil assets such as those found in the Middle East. Methanogenic degradation is also a potentially important component of attenuation in hydrocarbon contamination plumes. Studies of the organisms, syntrophic partnerships, mechanisms, and geochemical signatures associated with methanogenic hydrocarbon degradation have identified common themes and diagnostic markers for this process in the subsurface. These studies have also identified the potential to engineer methanogenic processes to enhance the recovery of energy assets as biogenic methane from residual oils stranded in petroleum systems. Copyright 2010 Elsevier Inc. All rights reserved.
Characteristics of n-GaN After Cl2/Ar and Cl2/N2 Inductively Coupled Plasma Etching
NASA Astrophysics Data System (ADS)
Han, Yan-Jun; Xue, Song; Guo, Wen-Ping; Sun, Chang-Zheng; Hao, Zhi-Biao; Luo, Yi
2003-10-01
A systematic study on the effect of inductively coupled plasma (ICP) etching on n-type GaN is presented. The optical and electrical properties and surface stoichiometry of n-type GaN are evaluated using room-temperature photoluminescence (PL) and current-voltage (I-V) characteristic measurements, and X-ray photoelectron spectroscopy (XPS), respectively. Investigation of the effect of additive gas (N2 and Ar) and RF power on these characteristics has also been carried out. It is shown that the decrease in the O/Ga ratio after ICP etching can suppress the deterioration of the near-band-edge emission intensity. Furthermore, N vacancy (VN) with a shallow donor nature and Ga vacancy (VGa) with a deep acceptor nature are generated after ICP etching upon the addition of Ar and N2 to Cl2 plasma, respectively. Lower ohmic contact resistance could be obtained when VN or ion-bombardment-induced defect is dominant at the surface. Improved etching conditions have been obtained based on these results.
Easily doped p-type, low hole effective mass, transparent oxides
Sarmadian, Nasrin; Saniz, Rolando; Partoens, Bart; Lamoen, Dirk
2016-01-01
Fulfillment of the promise of transparent electronics has been hindered until now largely by the lack of semiconductors that can be doped p-type in a stable way, and that at the same time present high hole mobility and are highly transparent in the visible spectrum. Here, a high-throughput study based on first-principles methods reveals four oxides, namely X2SeO2, with X = La, Pr, Nd, and Gd, which are unique in that they exhibit excellent characteristics for transparent electronic device applications – i.e., a direct band gap larger than 3.1 eV, an average hole effective mass below the electron rest mass, and good p-type dopability. Furthermore, for La2SeO2 it is explicitly shown that Na impurities substituting La are shallow acceptors in moderate to strong anion-rich growth conditions, with low formation energy, and that they will not be compensated by anion vacancies VO or VSe. PMID:26854336
Mn doped InSb studied at the atomic scale by cross-sectional scanning tunneling microscopy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mauger, S. J. C.; Bocquel, J.; Koenraad, P. M., E-mail: p.m.koenraad@tue.nl
2015-11-30
We present an atomically resolved study of metal-organic vapor epitaxy grown Mn doped InSb. Both topographic and spectroscopic measurements have been performed by cross-sectional scanning tunneling microscopy (STM). The measurements on the Mn doped InSb samples show a perfect crystal structure without any precipitates and reveal that Mn acts as a shallow acceptor. The Mn concentration of the order of ∼10{sup 20 }cm{sup −3} obtained from the cross-sectional STM data compare well with the intended doping concentration. While the pair correlation function of the Mn atoms showed that their local distribution is uncorrelated beyond the STM resolution for observing individual dopants,more » disorder in the Mn ion location giving rise to percolation pathways is clearly noted. The amount of clustering that we see is thus as expected for a fully randomly disordered distribution of the Mn atoms and no enhanced clustering or second phase material was observed.« less
Thermodynamic Stability and Defect Chemistry of Bismuth-Based Lead-Free Double Perovskites.
Xiao, Zewen; Meng, Weiwei; Wang, Jianbo; Yan, Yanfa
2016-09-22
Bismuth- or antimony-based lead-free double perovskites represented by Cs 2 AgBiBr 6 have recently been considered promising alternatives to the emerging lead-based perovskites for solar cell applications. These new perovskites belong to the Fm3‾ m space group and consist of two types of octahedra alternating in a rock-salt face-centered cubic structure. We show, by density functional theory calculations, that the stable chemical potential region for pure Cs 2 AgBiBr 6 is narrow. Ag vacancies are a shallow accepters and can easily form, leading to intrinsic p-type conductivity. Bi vacancies and Ag Bi antisites are deep acceptors and should be the dominant defects under the Br-rich growth conditions. Our results suggest that the growth of Cs 2 AgBiBr 6 under Br-poor/Bi-rich conditions is preferred for suppressing the formation of the deep defects, which is beneficial for maximizing the photovoltaic performance. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Khlyabich, Petr P; Rudenko, Andrey E; Burkhart, Beate; Thompson, Barry C
2015-02-04
Here two contrasting approaches to polymer-fullerene solar cells are compared. In the first approach, two distinct semi-random donor-acceptor copolymers are blended with phenyl-C61-butyric acid methyl ester (PC61BM) to form ternary blend solar cells. The two poly(3-hexylthiophene)-based polymers contain either the acceptor thienopyrroledione (TPD) or diketopyrrolopyrrole (DPP). In the second approach, semi-random donor-acceptor copolymers containing both TPD and DPP acceptors in the same polymer backbone, termed two-acceptor polymers, are blended with PC61BM to give binary blend solar cells. The two approaches result in bulk heterojunction solar cells that have the same molecular active-layer components but differ in the manner in which these molecular components are mixed, either by physical mixing (ternary blend) or chemical "mixing" in the two-acceptor (binary blend) case. Optical properties and photon-to-electron conversion efficiencies of the binary and ternary blends were found to have similar features and were described as a linear combination of the individual components. At the same time, significant differences were observed in the open-circuit voltage (Voc) behaviors of binary and ternary blend solar cells. While in case of two-acceptor polymers, the Voc was found to be in the range of 0.495-0.552 V, ternary blend solar cells showed behavior inherent to organic alloy formation, displaying an intermediate, composition-dependent and tunable Voc in the range from 0.582 to 0.684 V, significantly exceeding the values achieved in the two-acceptor containing binary blend solar cells. Despite the differences between the physical and chemical mixing approaches, both pathways provided solar cells with similar power conversion efficiencies, highlighting the advantages of both pathways toward highly efficient organic solar cells.
NASA Astrophysics Data System (ADS)
Rajesh, Kallarakkal Ramakrishnan; Paudel, Keshab; Johnson, Brian; Hallani, Rawad; Anthony, John; Ostroverkhova, Oksana
2015-01-01
We explored relationships between photophysical processes and solar cell characteristics in solution-processable bulk heterojunctions (BHJs), in particular: (1) polymer donor:fullerene acceptor:small-molecule (SM) nonfullerene acceptor, (2) polymer donor:SM donor:SM nonfullerene acceptor, and (3) SM donor:SM nonfullerene or fullerene acceptor. Addition of a nonfullerene SM acceptor to "efficient" polymer:fullerene BHJs led to a reduction in power conversion efficiency (PCE), mostly due to decreased charge photogeneration efficiency and increased disorder. By contrast, addition of an SM donor to "inefficient" polymer:SM nonfullerene acceptor BHJs led to a factor of two to three improvement in the PCE, due to improved charge photogeneration efficiency and transport. In most blends, exciplex formation was observed and correlated with a reduced short-circuit current (Jsc) without negatively impacting the open-circuit voltage (Voc). A factor of ˜5 higher PCE was observed in SM donor:fullerene acceptor BHJs as compared to SMBHJs with the same SM donor but nonfullerene acceptor, due to enhanced charge carrier photogeneration in the blend with fullerene. Our study revealed that the HOMO and LUMO energies of molecules comprising a blend are not reliable parameters for predicting Voc of the blend, and an understanding of the photophysics is necessary for interpreting solar cell characteristics and improving the molecular design of BHJs.
NASA Astrophysics Data System (ADS)
Jang, Seogjoo
2007-11-01
The Förster resonance energy transfer theory is generalized for inelastic situations with quantum mechanical modulation of the donor-acceptor coupling. Under the assumption that the modulations are independent of the electronic excitation of the donor and the acceptor, a general rate expression is derived, which involves two dimensional frequency-domain convolution of the donor emission line shape, the acceptor absorption line shape, and the spectral density of the modulation of the donor-acceptor coupling. For two models of modulation, detailed rate expressions are derived. The first model is the fluctuation of the donor-acceptor distance, approximated as a quantum harmonic oscillator coupled to a bath of other quantum harmonic oscillators. The distance fluctuation results in additional terms in the rate, which in the small fluctuation limit depend on the inverse eighth power of the donor-acceptor distance. The second model is the fluctuation of the torsional angle between the two transition dipoles, which is modeled as a quantum harmonic oscillator coupled to a bath of quantum harmonic oscillators and causes sinusoidal modulation of the donor-acceptor coupling. The rate expression has new elastic and inelastic terms, depending sensitively on the value of the minimum energy torsional angle. Experimental implications of the present theory and some of the open theoretical issues are discussed.
Kinetics of cluster-related defects in silicon sensors irradiated with monoenergetic electrons
NASA Astrophysics Data System (ADS)
Radu, R.; Pintilie, I.; Makarenko, L. F.; Fretwurst, E.; Lindstroem, G.
2018-04-01
This work focuses on the kinetic mechanisms responsible for the annealing behavior of radiation cluster-related defects with impact on the electrical performance of silicon sensors. Such sensors were manufactured on high resistivity n-type standard float-zone (STFZ) and oxygen enriched float-zone (DOFZ) material and had been irradiated with mono-energetic electrons of 3.5 MeV energy and fluences of 3 × 1014 cm-2 and 6 × 1014 cm-2. After irradiation, the samples were subjected either to isochronal or isothermal heat treatments in the temperature range from 80 °C to 300 °C. The specific investigated defects are a group of three deep acceptors [H(116 K), H(140 K), and H(152 K)] with energy levels in the lower half of the band gap and a shallow donor E(30 K) with a level at 0.1 eV below the conduction band. The stability and kinetics of these defects at high temperatures are discussed on the basis of the extracted activation energies and frequency factors. The annealing of the H defects takes place similarly in both types of materials, suggesting a migration rather than a dissociation mechanism. On the contrary, the E(30 K) defect shows a very different annealing behavior, being stable in STFZ even at 300 °C, but annealing-out quickly in DOFZ material at temperatures higher than 200 °C , with a high frequency factor of the order of 1013 s-1. Such a behavior rules out a dissociation process, and the different annealing behavior is suggested to be related to a bistable behavior of the defect.
Satisfied IUD acceptors as family planning motivators in Sri Lanka.
Fisher, A A; de Silva, V
1986-01-01
In this study, government midwives were teamed with currently satisfied IUD acceptors to strengthen field motivational and recruitment efforts. The objective was to increase the number of new IUD acceptors. In the experimental study areas, a total of 3,019 new IUD acceptors were recruited. Time series regression analysis revealed a significant difference between the experimental and comparison areas that was over and above what might be expected on the basis of the past history of differences between these two areas. These and other findings suggest that teaming currently satisfied acceptors with government field-workers can have a substantial impact on the recruitment of new family planning users.
An Overview of Electron Acceptors in Microbial Fuel Cells
Ucar, Deniz; Zhang, Yifeng; Angelidaki, Irini
2017-01-01
Microbial fuel cells (MFC) have recently received increasing attention due to their promising potential in sustainable wastewater treatment and contaminant removal. In general, contaminants can be removed either as an electron donor via microbial catalyzed oxidization at the anode or removed at the cathode as electron acceptors through reduction. Some contaminants can also function as electron mediators at the anode or cathode. While previous studies have done a thorough assessment of electron donors, cathodic electron acceptors and mediators have not been as well described. Oxygen is widely used as an electron acceptor due to its high oxidation potential and ready availability. Recent studies, however, have begun to assess the use of different electron acceptors because of the (1) diversity of redox potential, (2) needs of alternative and more efficient cathode reaction, and (3) expanding of MFC based technologies in different areas. The aim of this review was to evaluate the performance and applicability of various electron acceptors and mediators used in MFCs. This review also evaluated the corresponding performance, advantages and disadvantages, and future potential applications of select electron acceptors (e.g., nitrate, iron, copper, perchlorate) and mediators. PMID:28469607
Molecular design of donor-acceptor dyes for efficient dye-sensitized solar cells I: a DFT study.
El-Shishtawy, Reda M; Asiri, Abdullah M; Aziz, Saadullah G; Elroby, Shaaban A K
2014-06-01
Dye-sensitized solar cells (DSSCs) have drawn great attention as low cost and high performance alternatives to conventional photovoltaic devices. The molecular design presented in this work is based on the use of pyran type dyes as donor based on frontier molecular orbitals (FMO) and theoretical UV-visible spectra in combination with squaraine type dyes as an acceptor. Density functional theory has been used to investigate several derivatives of pyran type dyes for a better dye design based on optimization of absorption, regeneration, and recombination processes in gas phase. The frontier molecular orbital (FMO) of the HOMO and LUMO energy levels plays an important role in the efficiency of DSSCs. These energies contribute to the generation of exciton, charge transfer, dissociation and exciton recombination. The computations of the geometries and electronic structures for the predicted dyes were performed using the B3LYP/6-31+G** level of theory. The FMO energies (EHOMO, ELUMO) of the studied dyes are calculated and analyzed in the terms of the UV-visible absorption spectra, which have been examined using time-dependent density functional theory (TD-DFT) techniques. This study examined absorption properties of pyran based on theoretical UV-visible absorption spectra, with comparisons between TD-DFT using B3LYP, PBE, and TPSSH functionals with 6-31+G (d) and 6-311++G** basis sets. The results provide a valuable guide for the design of donor-acceptor (D-A) dyes with high molar absorptivity and current conversion in DSSCs. The theoretical results indicated 4-(dicyanomethylene)-2-methyl-6-(p-dimethylaminostyryl)-4H-pyran dye (D2-Me) can be effectively used as a donor dye for DSSCs. This dye has a low energy gap by itself and a high energy gap with squaraine acceptor type dye, the design that reduces the recombination and improves the photocurrent generation in solar cell.
SULFATE-REDUCING BACTERIA IN THE SEAGRASS RHIZOSPHERE
Seagrasses are rooted in anoxic sediments that support high levels of microbial activity including utilization of sulfate as a terminal electron acceptor which is reduced to sulfide. Sulfate reduction in seagrass bed sediments is stimulated by input of organic carbon through the ...
Wang, Li-Jun; Fan, Ling; Loescher, Wayne; Duan, Wei; Liu, Guo-Jie; Cheng, Jian-Shan; Luo, Hai-Bo; Li, Shao-Hua
2010-02-23
Although the effect of salicylic acid (SA) on photosynthesis of plants including grapevines has been investigated, very little is yet known about the effects of SA on carbon assimilation and several components of PSII electron transport (donor side, reaction center and acceptor side). In this study, the impact of SA pretreatment on photosynthesis was evaluated in the leaves of young grapevines before heat stress (25 degrees C), during heat stress (43 degrees C for 5 h), and through the following recovery period (25 degrees C). Photosynthetic measures included gas exchange parameters, PSII electron transport, energy dissipation, and Rubisco activation state. The levels of heat shock proteins (HSPs) in the chloroplast were also investigated. SA did not significantly (P < 0.05) influence the net photosynthesis rate (Pn) of leaves before heat stress. But, SA did alleviate declines in Pn and Rubisco activation state, and did not alter negative changes in PSII parameters (donor side, acceptor side and reaction center QA) under heat stress. Following heat treatment, the recovery of Pn in SA-treated leaves was accelerated compared with the control (H2O-treated) leaves, and, donor and acceptor parameters of PSII in SA-treated leaves recovered to normal levels more rapidly than in the controls. Rubisco, however, was not significantly (P < 0.05) influenced by SA. Before heat stress, SA did not affect level of HSP 21, but the HSP21 immune signal increased in both SA-treated and control leaves during heat stress. During the recovery period, HSP21 levels remained high through the end of the experiment in the SA-treated leaves, but decreased in controls. SA pretreatment alleviated the heat stress induced decrease in Pn mainly through maintaining higher Rubisco activation state, and it accelerated the recovery of Pn mainly through effects on PSII function. These effects of SA may be related in part to enhanced levels of HSP21.
Terahertz laser spectroscopy of the water dimer intermolecular vibrations. II. (H{sub 2}O){sub 2}
DOE Office of Scientific and Technical Information (OSTI.GOV)
Braly, L. B.; Liu, K.; Brown, M. G.
Terahertz VRT laser spectra of four (H{sub 2}O){sub 2} intermolecular vibrations consisting of 362 transitions have been measured between 87 and 108 cm{sup -1} with ca. 2 MHz precision. The results differ both qualitatively and quantitatively from the predictions of dimer potentials tested. The spectra also reveal an ordering of the intermolecular vibrations which differs dramatically from that predicted by normal mode analysis. Strong coupling is indicated between the low barrier tunneling motions and the intermolecular vibrations as well as among different vibrations. In particular the 102.1 cm{sup -1} (H{sub 2}O){sub 2} vibration assigned as the acceptor wag ({nu}{sub 8})more » exhibits two types of perturbations. In one of these a component of K{sub a}=1 coupling with a tunneling component of K{sub a}=0 in the 108 cm{sup -1} acceptor twist ({nu}{sub 11}) vibration. There is also an indication that the 103.1 cm{sup -1} (H{sub 2}O){sub 2} band assigned as the donor in-plane bend ({nu}{sub 6}) is coupled to the acceptor wag resulting in a lower of the in-plane bend frequency and a higher acceptor wag frequency. Detailed analysis of the VRT levels confirms the extreme nonrigidity of this complex, indicating that the use of approximate models with reduced dimensionality to calculate its properties are likely to fail. (c) 2000 American Institute of Physics.« less
Frontiers of controlling energy levels at interfaces
NASA Astrophysics Data System (ADS)
Koch, Norbert
The alignment of electron energy levels at interfaces between semiconductors, dielectrics, and electrodes determines the function and efficiency of all electronic and optoelectronic devices. Reliable guidelines for predicting the level alignment for a given material combination and methods to adjust the intrinsic energy landscape are needed to enable efficient engineering approaches. These are sufficiently understood for established electronic materials, e.g., Si, but for the increasing number of emerging materials, e.g., organic and 2D semiconductors, perovskites, this is work in progress. The intrinsic level alignment and the underlying mechanisms at interfaces between organic and inorganic semiconductors are discussed first. Next, methods to alter the level alignment are introduced, which all base on proper charge density rearrangement at a heterojunction. As interface modification agents we use molecular electron acceptors and donors, as well as molecular photochromic switches that add a dynamic aspect and allow device multifunctionality. For 2D semiconductors surface transfer doping with molecular acceptors/donors transpires as viable method to locally tune the Fermi-level position in the energy gap. The fundamental electronic properties of a prototypical 1D interface between intrinsic and p-doped 2D semiconductor regions are derived from local (scanning probe) and area-averaged (photoemission) spectroscopy experiments. Future research opportunities for attaining unsurpassed interface control through charge density management are discussed.
Charge collection in Si detectors irradiated in situ at superfluid helium temperature
NASA Astrophysics Data System (ADS)
Verbitskaya, Elena; Eremin, Vladimir; Zabrodskii, Andrei; Dehning, Bernd; Kurfürst, Christoph; Sapinski, Mariusz; Bartosik, Marcin R.; Egorov, Nicolai; Härkönen, Jaakko
2015-10-01
Silicon and diamond detectors operated in a superfluid helium bath are currently being considered for the upgrade of the LHC beam loss monitoring system. The detectors would be installed in immediate proximity of the superconducting coils of the triplet magnets. We present here the results of the in situ irradiation test for silicon detectors using 23 GeV protons while keeping the detectors at a temperature of 1.9 K. Red laser (630 nm) Transient Current Technique and DC current measurements were used to study the pulse response and collected charge for silicon detectors irradiated to a maximum radiation fluence of 1×1016 p/cm2. The dependence between collected charge and irradiation fluence was parameterized using the Hecht equation and assumption of a uniform electric field distribution. The collected charge was found to degrade with particle fluence for both bias polarities. We observed that the main factor responsible for this degradation was related to trapping of holes on the donor-type radiation-induced defects. In contrast to expectations, along with formation of donors, acceptor-type defects (electron traps) are introduced into the silicon bulk. This suggests that the current models describing charge collection in irradiated silicon detectors require an extension for taking into account trapping at low temperatures with a contribution of shallow levels. New in situ irradiation tests are needed and planned now to extend statistics of the results and gain a deeper insight into the physics of low temperature detector operation in harsh radiation environment.
Barrier experiment: Shock initiation under complex loading
DOE Office of Scientific and Technical Information (OSTI.GOV)
Menikoff, Ralph
2016-01-12
The barrier experiments are a variant of the gap test; a detonation wave in a donor HE impacts a barrier and drives a shock wave into an acceptor HE. The question we ask is: What is the trade-off between the barrier material and threshold barrier thickness to prevent the acceptor from detonating. This can be viewed from the perspective of shock initiation of the acceptor subject to a complex pressure drive condition. Here we consider key factors which affect whether or not the acceptor undergoes a shock-to-detonation transition. These include the following: shock impedance matches for the donor detonation wavemore » into the barrier and then the barrier shock into the acceptor, the pressure gradient behind the donor detonation wave, and the curvature of detonation front in the donor. Numerical simulations are used to illustrate how these factors affect the reaction in the acceptor.« less
Effective Tuning of Ketocyanine Derivatives through Acceptor Substitution.
Poe, Ambata; Della Pelle, Andrea; Byrnes, Sean; Thayumanavan, S
2015-05-18
A series of ketocyanine derivatives possessing bis(diarylamino)fluorenyl donors and variable acceptors installed at the bridging carbon atom were synthesized to investigate how the electronic structure of the dye can be systemically tuned through stabilization of the cyanine-like character of the donor by increasing the acceptor strength. Analysis of the (1) H NMR spectra indicates that the "charge-separated" species dominates in these dyes, given that carbons possessing a positive or negative charge in the resonance structures of this state purposefully shift downfield or upfield, respectively, depending on the strength of the acceptor moiety. In DAA-Fl-PI, the acceptor strength and the gain of acceptor aromaticity indicates a predisposition of the separated state, indicated by asymmetry in the (1) H NMR spectrum, as well as uneven distribution of the HOMO on the fluorenyl donor. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Rise-Time of FRET-Acceptor Fluorescence Tracks Protein Folding
Lindhoud, Simon; Westphal, Adrie H.; van Mierlo, Carlo P. M.; Visser, Antonie J. W. G.; Borst, Jan Willem
2014-01-01
Uniform labeling of proteins with fluorescent donor and acceptor dyes with an equimolar ratio is paramount for accurate determination of Förster resonance energy transfer (FRET) efficiencies. In practice, however, the labeled protein population contains donor-labeled molecules that have no corresponding acceptor. These FRET-inactive donors contaminate the donor fluorescence signal, which leads to underestimation of FRET efficiencies in conventional fluorescence intensity and lifetime-based FRET experiments. Such contamination is avoided if FRET efficiencies are extracted from the rise time of acceptor fluorescence upon donor excitation. The reciprocal value of the rise time of acceptor fluorescence is equal to the decay rate of the FRET-active donor fluorescence. Here, we have determined rise times of sensitized acceptor fluorescence to study the folding of double-labeled apoflavodoxin molecules and show that this approach tracks the characteristics of apoflavodoxinʼs complex folding pathway. PMID:25535076
Supporting aspartate biosynthesis is an essential function of respiration in proliferating cells
Sullivan, Lucas B.; Gui, Dan Y.; Hosios, Aaron M.; Bush, Lauren N.; Freinkman, Elizaveta; Vander Heiden, Matthew G.
2015-01-01
Summary Mitochondrial respiration is important for cell proliferation, however the specific metabolic requirements fulfilled by respiration to support proliferation have not been defined. Here we show that a major role of respiration in proliferating cells is to provide electron acceptors for aspartate synthesis. This finding is consistent with the observation that cells lacking a functional respiratory chain are auxotrophic for pyruvate, which serves as an exogenous electron acceptor. Further, the pyruvate requirement can be fulfilled with an alternative electron acceptor, alpha-ketobutyrate, which provides cells neither carbon nor ATP. Alpha-ketobutyrate restores proliferation when respiration is inhibited, suggesting that an alternative electron acceptor can substitute for respiration to support proliferation. We find that electron acceptors are limiting for producing aspartate, and supplying aspartate enables proliferation of respiration deficient cells in the absence of exogenous electron acceptors. Together, these data argue a major function of respiration in proliferating cells is to support aspartate synthesis. PMID:26232225
Crone, Timothy J; Tolstoy, Maya; Gibson, James C; Mountain, Gregory
2017-01-01
Shallow water marine seismic surveys are necessary to understand a range of Earth processes in coastal environments, including those that represent major hazards to society such as earthquakes, tsunamis, and sea-level rise. Predicting the acoustic radiation of seismic sources in shallow water, which is required for compliance with regulations designed to limit impacts on protected marine species, is a significant challenge in this environment because of variable reflectivity due to local geology, and the susceptibility of relatively small bathymetric features to focus or shadow acoustic energy. We use data from the R/V Marcus G. Langseth's towed hydrophone streamer to estimate the acoustic radiation of the ship's seismic source during a large survey of the shallow shelf off the coast of New Jersey. We use the results to estimate the distances from the source to acoustic levels of regulatory significance, and use bathymetric data from the ship's multibeam system to explore the relationships between seafloor depth and slope and the measured acoustic radiation patterns. We demonstrate that existing models significantly overestimate mitigation radii, but that the variability of received levels in shallow water suggest that in situ real-time measurements would help improve these estimates, and that post-cruise revisions of received levels are valuable in accurately determining the potential acoustic impact of a seismic survey.
High doping effect on the thermoelectric properties of p-type lead telluride
NASA Astrophysics Data System (ADS)
Dmitriev, A. V.
2018-04-01
We study theoretically the effect of heavy doping on the thermoelectric properties of p-type PbTe in the acceptor doping interval of 5 × 1019 to 4 × 1020 cm-3 and in the temperature range of 300 to 900 K. In our calculations, a three-band model of the PbTe electron energy spectrum is used that takes into account not only the light electron and hole bands but also the heavy-hole band. This so-called Σ-band plays an important role in the emergence of the figure-of-merit increase in this material at heavy acceptor doping. The calculated thermoelectric characteristics appear to be sensitive to the doping level. An increase in the figure-of-merit up to ZT ≈ 1.3 at 900 K was found at the doping level of 2 × 1020 cm-3. The maximum of ZT on the temperature axis is situated close to the temperature at which the light hole and heavy hole band edges coincide and hence, a prominent density-of-states singularity appears in the valence band, and the Fermi level lies near this singularity.
Kinetic Effects Of Increased Proton Transfer Distance On Proton-Coupled Oxidations Of Phenol-Amines
Rhile, Ian J.
2011-01-01
To test the effect of varying the proton donor-acceptor distance in proton-coupled electron transfer (PCET) reactions, the oxidation of a bicyclic amino-indanol (2) is compared with that of a closely related phenol with an ortho CPh2NH2 substituent (1). Spectroscopic, structural, thermochemical and computational studies show that the two amino-phenols are very similar, except that the O⋯N distance (dON) is >0.1 Å longer in 2 than in 1. The difference in dON is 0.13 ± 0.03 Å from X-ray crystallography and 0.165 Å from DFT calculations. Oxidations of these phenols by outer-sphere oxidants yield distonic radical cations •OAr–NH3+ by concerted proton-electron transfer (CPET). Simple tunneling and classical kinetic models both predict that the longer donor-acceptor distance in 2 should lead to slower reactions, by ca. two orders of magnitude, as well as larger H/D kinetic isotope effects (KIEs). However, kinetic studies show that the compound with the longer proton-transfer distance, 2, exhibits smaller KIEs and has rate constants that are quite close to those of 1. For example, the oxidation of 2 by the triarylamminium radical cation N(C6H4OMe)3•+ (3a+) occurs at (1.4 ± 0.1) × 104 M-1 s-1, only a factor of two slower than the closely related reaction of 1 with N(C6H4OMe)2(C6H4Br)•+ (3b+). This difference in rate constants is well accounted for by the slightly different free energies of reaction: ΔG°(2 + 3a+) = +0.078 V vs. ΔG°(1 + 3b+) = +0.04 V. The two phenol-amines do display some subtle kinetic differences: for instance, compound 2 has a shallower dependence of CPET rate constants on driving force (Brønsted α, Δln(k)/Δln(Keq)). These results show that the simple tunneling model is not a good predictor of the effect of proton donor-acceptor distance on concerted-electron transfer reactions involving strongly hydrogen-bonded systems. Computational analysis of the observed similarity of the two phenols emphasizes the importance of the highly anharmonic O⋯H⋯N potential energy surface and the influence of proton vibrational excited states. PMID:21919508
NASA Astrophysics Data System (ADS)
Deshpande, Sachin M.; Dhangar, N.; Das, S. K.; Kalapureddy, M. C. R.; Chakravarty, K.; Sonbawne, S.; Konwar, M.
2015-11-01
Single Doppler analysis techniques known as velocity azimuth display (VAD) and volume velocity processing (VVP) are used to analyze kinematics of mesoscale flow such as horizontal wind and divergence using X-band Doppler weather radar observations, for selected cases of convective, stratiform, and shallow cloud systems near tropical Indian sites Pune (18.58°N, 73.92°E, above sea level (asl) 560 m) and Mandhardev (18.51°N, 73.85°E, asl 1297 m). The vertical profiles of horizontal wind estimated from radar VVP/VAD methods agree well with GPS radiosonde profiles, with the low-level jet at about 1.5 km during monsoon season well depicted in both. The vertical structure and temporal variability of divergence and reflectivity profiles are indicative of the dynamical and microphysical characteristics of shallow convective, deep convective, and stratiform cloud systems. In shallow convective systems, vertical development of reflectivity profiles is limited below 5 km. In deep convective systems, reflectivity values as large as 55 dBZ were observed above freezing level. The stratiform system shows the presence of a reflectivity bright band (~35 dBZ) near the melting level. The diagnosed vertical profiles of divergence in convective and stratiform systems are distinct. In shallow convective conditions, convergence was seen below 4 km with divergence above. Low-level convergence and upper level divergence are observed in deep convective profiles, while stratiform precipitation has midlevel convergence present between lower level and upper level divergence. The divergence profiles in stratiform precipitation exhibit intense shallow layers of "melting convergence" at 0°C level, near 4.5 km altitude, with a steep gradient on the both sides of the peak. The level of nondivergence in stratiform situations is lower than that in convective situations. These observed vertical structures of divergence are largely indicative of latent heating profiles in the atmosphere, an important ingredient of monsoon dynamics.
Controlled temperature expansion in oxygen production by molten alkali metal salts
Erickson, Donald C.
1985-06-04
A continuous process is set forth for the production of oxygen from an oxygen containing gas stream, such as air, by contacting a feed gas stream with a molten solution of an oxygen acceptor to oxidize the acceptor and cyclically regenerating the oxidized acceptor by releasing oxygen from the acceptor wherein the oxygen-depleted gas stream from the contact zone is treated sequentially to temperature reduction by heat exchange against the feed stream so as to condense out entrained oxygen acceptor for recycle to the process, combustion of the gas stream with fuel to elevate its temperature and expansion of the combusted high temperature gas stream in a turbine to recover power.
Controlled temperature expansion in oxygen production by molten alkali metal salts
Erickson, D.C.
1985-06-04
A continuous process is set forth for the production of oxygen from an oxygen containing gas stream, such as air, by contacting a feed gas stream with a molten solution of an oxygen acceptor to oxidize the acceptor and cyclically regenerating the oxidized acceptor by releasing oxygen from the acceptor wherein the oxygen-depleted gas stream from the contact zone is treated sequentially to temperature reduction by heat exchange against the feed stream so as to condense out entrained oxygen acceptor for recycle to the process, combustion of the gas stream with fuel to elevate its temperature and expansion of the combusted high temperature gas stream in a turbine to recover power. 1 fig.
NASA Astrophysics Data System (ADS)
Leforestier, Claude; van Harrevelt, Rob; van der Avoird, Ad
2009-05-01
The 12-dimensional ab initio potential for the water dimer with flexible monomers from Huang et al. (J. Chem. Phys. 2008, 128, 034312) was used in accurate calculations of the vibration-rotation-tunneling (VRT) levels of (H2O)2 and (D2O)2 involving the intermolecular rovibrational and tunneling states as well as the intramolecular vibrations. For the intermolecular VRT levels we used a 6 + 6d model in which the fast intramolecular vibrations are adiabatically separated from the much slower intermolecular vibrations, tunneling motions, and overall rotations. We also tested two six-dimensional (6d) rigid monomer models in which the monomers were frozen either at their equilibrium geometry or at their ground state vibrationally averaged geometry. All the results from the 6 + 6d model agree well with the large amount of detailed experimental data available from high-resolution spectroscopy. For most of the parameters characterizing the spectra the results of the two 6d rigid monomer models do not significantly differ from the 6 + 6d results. An exception is the relatively large acceptor tunneling splitting, which was the only quantity for which the 6d model with the monomers frozen at their equilibrium geometry was not in good agreement with the experimental data. The 6d model with monomers at their vibrationally averaged geometry performs considerably better, and the full 6 + 6d results agree with the measurements also for this quantity. For the excited intramolecular vibrations we tested two 6 + 6d models. In the first model the excitation was assumed to be either on the donor in the hydrogen bond or on the acceptor, and to hop from one monomer to the other upon donor-acceptor interchange. In the second model the monomer excitation remains localized on a given monomer for all dimer geometries. Almost the same frequencies of the intramolecular vibrations were found for the two models. The calculations show considerable variations in the frequencies of the intramolecular modes for transitions involving different tunneling levels and different values of the rotational quantum number K. For K = 0 → 0 transitions these variations largely cancel, however. A comparison with experimental data is difficult, except for the acceptor asymmetric stretch mode observed in high-resolution spectra, because it is not clear how much the different transitions contribute to the (unresolved) peaks in most of the experimental spectra. The large red shift of the donor bound OH stretch mode is correctly predicted, but the value calculated for this red shift is too small by more than 20%. Also in the smaller shifts of the other modes we find relatively large errors. It is useful, however, that our detailed calculations including all ground and excited state tunneling levels provide an explanation for the splitting of the acceptor asymmetric stretch band observed in He nanodroplet spectra, as well as for the fact that the other bands in these spectra show much smaller or no splittings.
Interaction of deep and shallow convection is key to Madden-Julian Oscillation simulation
NASA Astrophysics Data System (ADS)
Zhang, Guang J.; Song, Xiaoliang
2009-05-01
This study investigates the role of the interaction between deep and shallow convection in MJO simulation using the NCAR CAM3. Two simulations were performed, one using a revised Zhang-McFarlane convection scheme for deep convection and the Hack scheme for shallow convection, and the other disallowing shallow convection below 700 mb in the tropical belt. The two simulations produce dramatically different MJO characteristics. While the control simulation produces realistic MJOs, the simulation without shallow convection has very weak MJO signals in the Indian Ocean and western Pacific. Composite analysis finds that shallow convection serves to precondition the lower troposphere by moistening it ahead of deep convection. It also produces enhanced low-level mass convergence below 850 mb ahead of deep convection. This work, together with previous studies, suggests that a correct simulation of the interaction between deep and shallow convection is key to MJO simulation in global climate models.
Investigating charge generation in polymer:non-fullerene acceptor bulk heterojunction films
Stoltzfus, Dani M.; Larson, Bryon W.; Zarrabi, Nasim; ...
2018-01-31
Non-fullerene acceptors are now capable of being used in high efficiency bulk heterojunction (BHJ) donor-acceptor organic solar cells. Acceptors comprising single or multiple linked chromophores have been used. We have developed a new non-fullerene molecular acceptor as well as two non-polymeric macromolecular materials that contain four equivalents of a similar chromophore, but can adopt different spatial arrangements of the chromophores. We compare the effect of having single and multiple chromophores within a macromolecule on the charge generation processes in P3HT:non-fullerene acceptor BHJ films using Transient Absorption Spectroscopy (TAS) and Time Resolved Microwave Conductivity (TRMC) measurements. It was found from themore » TAS measurements that at low weight percent (5 wt%) the single chromophore formed more polarons than the acceptors in which chromophores were linked, due to it having a more even distribution within the film. At higher concentrations (50 wt%) the trend was reversed due to the single chromophore forming crystalline domains, which reduced the interface area with the P3HT donor. The TRMC measurements showed that more mobile carriers were formed in the macromolecular acceptors when used at low concentrations in the blend and, independent of concentration, mobile carriers had a longer lifetime when compared to films containing the molecular material, which we ascribe to the charges being able to sample more than one chromophore and thus reduce recombination events.« less
Feng, Liang-Wen; Ren, Hai; Xiong, Hu; Wang, Pan; Wang, Lijia; Tang, Yong
2017-03-06
A ligand-promoted catalytic [4+2] annulation reaction using indole derivatives and donor-acceptor (D-A) cyclobutanes is reported, thus providing an efficient and atom-economical access to versatile cyclohexa-fused indolines with excellent levels of diastereoselectivity and a broad substrate scope. In the presence of a chiral SaBOX ligand, excellent enantioselectivity was realized with up to 94 % ee. This novel synthetic method is applied as a general protocol for the total synthesis of (±)-akuammicine and the formal total synthesis of (±)-strychnine from the same common-core scaffold. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Astrophysics Data System (ADS)
Iwinska, Malgorzata; Piotrzkowski, Ryszard; Litwin-Staszewska, Elzbieta; Sochacki, Tomasz; Amilusik, Mikolaj; Fijalkowski, Michal; Lucznik, Boleslaw; Bockowski, Michal
2017-01-01
GaN crystals were grown by hydride vapor phase epitaxy (HVPE) and doped with C. The seeds were high-structural-quality ammonothermally crystallized GaN. The grown crystals were highly resistive at 296 K and of high structural quality. High-temperature Hall effect measurements revealed p-type conductivity and a deep acceptor level in the material with an activation energy of 1 eV. This is in good agreement with density functional theory calculations based on hybrid functionals as presented by the Van de Walle group. They obtained an ionization energy of 0.9 eV when C was substituted for N in GaN and acted as a deep acceptor.
Assessment of a New Type of Coin Acceptor
DOT National Transportation Integrated Search
1983-04-01
An assessment of the Mars Money Systems Model CD 540-1 coin acceptor associated with farecard vendors was conducted at the Port Authority Transit Corp. as part of an appraisal of automatic fare collection (AFC) equipment. The Mars acceptor consistent...
Schott, Björn H; Wüstenberg, Torsten; Wimber, Maria; Fenker, Daniela B; Zierhut, Kathrin C; Seidenbecher, Constanze I; Heinze, Hans-Jochen; Walter, Henrik; Düzel, Emrah; Richardson-Klavehn, Alan
2013-02-01
New episodic memory traces represent a record of the ongoing neocortical processing engaged during memory formation (encoding). Thus, during encoding, deep (semantic) processing typically establishes more distinctive and retrievable memory traces than does shallow (perceptual) processing, as assessed by later episodic memory tests. By contrast, the hippocampus appears to play a processing-independent role in encoding, because hippocampal lesions impair encoding regardless of level of processing. Here, we clarified the neural relationship between processing and encoding by examining hippocampal-cortical connectivity during deep and shallow encoding. Participants studied words during functional magnetic resonance imaging and freely recalled these words after distraction. Deep study processing led to better recall than shallow study processing. For both levels of processing, successful encoding elicited activations of bilateral hippocampus and left prefrontal cortex, and increased functional connectivity between left hippocampus and bilateral medial prefrontal, cingulate and extrastriate cortices. Successful encoding during deep processing was additionally associated with increased functional connectivity between left hippocampus and bilateral ventrolateral prefrontal cortex and right temporoparietal junction. In the shallow encoding condition, on the other hand, pronounced functional connectivity increases were observed between the right hippocampus and the frontoparietal attention network activated during shallow study processing. Our results further specify how the hippocampus coordinates recording of ongoing neocortical activity into long-term memory, and begin to provide a neural explanation for the typical advantage of deep over shallow study processing for later episodic memory. Copyright © 2011 Wiley Periodicals, Inc.
Weidelener, Martin; Powar, Satvasheel; Kast, Hannelore; Yu, Ze; Boix, Pablo P; Li, Chen; Müllen, Klaus; Geiger, Thomas; Kuster, Simon; Nüesch, Frank; Bach, Udo; Mishra, Amaresh; Bäuerle, Peter
2014-11-01
Four new donor-π-acceptor dyes differing in their acceptor group have been synthesized and employed as model systems to study the influence of the acceptor groups on the photophysical properties and in NiO-based p-type dye-sensitized solar cells. UV/Vis absorption spectra showed a broad range of absorption coverage with maxima between 331 and 653 nm. Redox potentials as well as HOMO and LUMO energies of the dyes were determined from cyclic voltammetry measurements and evaluated concerning their potential use as sensitizers in p-type dye-sensitized solar cells (p-DSCs). Quantum-chemical density functional theory calculations gave further insight into the frontier orbital distributions, which are relevant for the electronic processes in p-DSCs. In p-DSCs using an iodide/triiodide-based electrolyte, the polycyclic 9,10-dicyano-acenaphtho[1,2-b]quinoxaline (DCANQ) acceptor-containing dye gave the highest power conversion efficiency of 0.08%, which is comparable to that obtained with the perylenemonoimide (PMI)-containing dye. Interestingly, devices containing the DCANQ-based dye achieve a higher V(OC) of 163 mV compared to 158 mV for the PMI-containing dye. The result was further confirmed by impedance spectroscopic analysis showing higher recombination resistance and thus a lower recombination rate for devices containing the DCANQ dye than for PMI dye-based devices. However, the use of the strong electron-accepting tricyanofurane (TCF) group played a negative role in the device performance, yielding an efficiency of only 0.01% due to a low-lying LUMO energy level, thus resulting in an insufficient driving force for efficient dye regeneration. The results demonstrate that a careful molecular design with a proper choice of the acceptor unit is essential for development of sensitizers for p-DSCs. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Long, Run; Prezhdo, Oleg V
2011-11-30
Following recent experiments [Science 2010, 328, 1543; PNAS 2011, 108, 965], we report an ab initio nonadiabatic molecular dynamics (NAMD) simulation of the ultrafast photoinduced electron transfer (ET) from a PbSe quantum dot (QD) into the rutile TiO(2) (110) surface. The system forms the basis for QD-sensitized semiconductor solar cells and demonstrates that ultrafast interfacial ET is instrumental for achieving high efficiencies in solar-to-electrical energy conversion. The simulation supports the observation that the ET successfully competes with energy losses due to electron-phonon relaxation. The ET proceeds by the adiabatic mechanism because of strong donor-acceptor coupling. High frequency polar vibrations of both QD and TiO(2) promote the ET, since these modes can rapidly influence the donor-acceptor state energies and coupling. Low frequency vibrations generate a distribution of initial conditions for ET, which shows a broad variety of scenarios at the single-molecule level. Compared to the molecule-TiO(2) interfaces, the QD-TiO(2) system exhibits pronounced differences that arise due to the larger size and higher rigidity of QDs relative to molecules. Both donor and acceptor states are more delocalized in the QD system, and the ET is promoted by optical phonons, which have relatively low frequencies in the QD materials composed of heavy elements. In contrast, in molecular systems, optical phonons are not thermally accessible under ambient conditions. Meanwhile, TiO(2) acceptor states resemble surface impurities due to the local influence of molecular chromophores. At the same time, the photoinduced ET at both QD-TiO(2) and molecule-TiO(2) interfaces is ultrafast and occurs by the adiabatic mechanism, as a result of strong donor-acceptor coupling. The reported state-of-the-art simulation generates a detailed time-domain atomistic description of the interfacial ET process that is fundamental to a wide variety of applications.
Kurowska, Aleksandra; Zassowski, Pawel; Kostyuchenko, Anastasia S; Zheleznova, Tatyana Yu; Andryukhova, Kseniya V; Fisyuk, Alexander S; Pron, Adam; Domagala, Wojciech
2017-11-15
A structure-property study across a series of donor-acceptor-donor structures composed of mono- and bi-(1,3,4-oxadiazole) units symmetrically substituted with alkyl functionalized bi-, ter- and quaterthiophene segments is presented. Synthetically tailoring the ratio of electron-withdrawing 1,3,4-oxadiazole to electron-releasing thiophene units and their alkyl grafting pattern permitted us to scrutinize the impact of these structural factors on the redox, absorptive and emissive properties of these push-pull molecules. Contrasting trends of redox potentials were observed, with the oxidation potential closely following the donor-to-acceptor ratio, whereas the reduction potential being tuned independently by either the number of acceptor units or the conjugation length of the donor-acceptor system. Increasing the thiophene unit contribution delivered a shift from blue to green luminescence, while the structural rigidity afforded by intramolecular non-covalent interactions between 1,3,4-oxadiazole and the thiophene moieties has been identified as the prime factor determining the emission efficiency of these molecules. All six structures investigated electro-polymerize easily, yielding electroactive and electrochromic polymers. The polymer doping process is largely influenced by the length of the oligothiophene repeating unit and the alkyl chain grafting density. Polymers with relatively short oligothiophene segments are able to support polarons and polaron-pairs, whereas those with segments longer than six thiophene units could also stabilize diamagnetic charge carries - bipolarons. Increasing the alkyl chain grafting density improved the reversibility and broadened the working potential window of the p-doping process. Stable radical anions have also been investigated, bringing detailed information about the conjugation pattern of these electron-surplus species. This study delivers interesting clues towards the conscious structural design of bespoke frontier energy level oligothiophene functional materials and their polymers by incorporating a structurally matching 1,3,4-oxadiazole unit.
A Novel SLC27A4 Splice Acceptor Site Mutation in Great Danes with Ichthyosis.
Metzger, Julia; Wöhlke, Anne; Mischke, Reinhard; Hoffmann, Annalena; Hewicker-Trautwein, Marion; Küch, Eva-Maria; Naim, Hassan Y; Distl, Ottmar
2015-01-01
Ichthyoses are a group of various different types of hereditary disorders affecting skin cornification. They are characterized by hyperkeratoses of different severity levels and are associated with a dry and scaling skin. Genome-wide association analysis of nine affected and 13 unaffected Great Danes revealed a genome-wide significant peak on chromosome 9 at 57-58 Mb in the region of SLC27A4. Sequence analysis of genomic DNA of SLC27A4 revealed the non-synonymous SNV SLC27A4:g.8684G>A in perfect association with ichthyosis-affection in Great Danes. The mutant transcript of SLC27A4 showed an in-frame loss of 54 base pairs in exon 8 probably induced by a new splice acceptor site motif created by the mutated A- allele of the SNV. Genotyping 413 controls from 35 different breeds of dogs and seven wolves revealed that this mutation could not be found in other populations except in Great Danes. Affected dogs revealed high amounts of mutant transcript but only low levels of the wild type transcript. Targeted analyses of SLC27A4 protein from skin tissues of three affected and two unaffected Great Danes indicated a markedly reduced or not detectable wild type and truncated protein levels in affected dogs but a high expression of wild type SLC27A4 protein in unaffected controls. Our data provide evidence of a new splice acceptor site creating SNV that results in a reduction or loss of intact SLC27A4 protein and probably explains the severe skin phenotype in Great Danes. Genetic testing will allow selective breeding to prevent ichthyosis-affected puppies in the future.
Slouka, Christoph; Kainz, Theresa; Navickas, Edvinas; Walch, Gregor; Hutter, Herbert; Reichmann, Klaus; Fleig, Jürgen
2016-11-22
The different properties of acceptor-doped (hard) and donor-doped (soft) lead zirconate titanate (PZT) ceramics are often attributed to different amounts of oxygen vacancies introduced by the dopant. Acceptor doping is believed to cause high oxygen vacancy concentrations, while donors are expected to strongly suppress their amount. In this study, La 3+ donor-doped, Fe 3+ acceptor-doped and La 3+ /Fe 3+ -co-doped PZT samples were investigated by oxygen tracer exchange and electrochemical impedance spectroscopy in order to analyse the effect of doping on oxygen vacancy concentrations. Relative changes in the tracer diffusion coefficients for different doping and quantitative relations between defect concentrations allowed estimates of oxygen vacancy concentrations. Donor doping does not completely suppress the formation of oxygen vacancies; rather, it concentrates them in the grain boundary region. Acceptor doping enhances the amount of oxygen vacancies but estimates suggest that bulk concentrations are still in the ppm range, even for 1% acceptor doping. Trapped holes might thus considerably contribute to the charge balancing of the acceptor dopants. This could also be of relevance in understanding the properties of hard and soft PZT.
Slouka, Christoph; Kainz, Theresa; Navickas, Edvinas; Walch, Gregor; Hutter, Herbert; Reichmann, Klaus; Fleig, Jürgen
2016-01-01
The different properties of acceptor-doped (hard) and donor-doped (soft) lead zirconate titanate (PZT) ceramics are often attributed to different amounts of oxygen vacancies introduced by the dopant. Acceptor doping is believed to cause high oxygen vacancy concentrations, while donors are expected to strongly suppress their amount. In this study, La3+ donor-doped, Fe3+ acceptor-doped and La3+/Fe3+-co-doped PZT samples were investigated by oxygen tracer exchange and electrochemical impedance spectroscopy in order to analyse the effect of doping on oxygen vacancy concentrations. Relative changes in the tracer diffusion coefficients for different doping and quantitative relations between defect concentrations allowed estimates of oxygen vacancy concentrations. Donor doping does not completely suppress the formation of oxygen vacancies; rather, it concentrates them in the grain boundary region. Acceptor doping enhances the amount of oxygen vacancies but estimates suggest that bulk concentrations are still in the ppm range, even for 1% acceptor doping. Trapped holes might thus considerably contribute to the charge balancing of the acceptor dopants. This could also be of relevance in understanding the properties of hard and soft PZT. PMID:28774067
Protein carboxyl methylation increases in parallel with differentiation of neuroblastoma cells.
Kloog, Y; Axelrod, J; Spector, I
1983-02-01
Cells of mouse neuroblastoma clone N1E-115 in the confluent phase of growth can catalyze the formation of endogenous protein carboxyl methyl esters, using a protein carboxyl methylase and membrane-bound methyl acceptor proteins. The enzyme is localized predominantly in the cytosol of the cells and has a molecular weight of about 20,000 daltons. Treatment of the cells with dimethylsulfoxide (DMSO) or hexamethylene-bisacetamide (HMBA), agents that induce morphological and electrophysiological differentiation, results in a marked increase in protein carboxyl methylase activity. Maximal levels are reached 6-7 days after exposure to the agents, a time course that closely parallels the development of electrical excitability mechanisms in these cells. Serum deprivation also causes neurite outgrowth but does not enhance electrical excitability or enzyme activity. The capacity of membrane-bound neuroblastoma protein(s) to be carboxyl methylated is increased by the differentiation procedures that have been examined. However, the increase in methyl acceptor proteins induced by DMSO or HMBA is the largest, and its time course parallels electrophysiological differentiation. In contrast, serum deprivation induced a small increase that reached maximal levels within 24 h. The data suggest that increased protein carboxyl methylation is a developmentally regulated property of neuroblastoma cells and that at least two groups of methyl acceptor proteins are induced during differentiation: a minor group related to morphological differentiation, and a major group that may be related to ionic permeability mechanisms of the excitable membrane.
2011-01-14
thieno[3,4-c] pyrrole -4,6-dione (TPD)–based donor–acceptor polymer, PBTTPD, that exhibits high crystallinity and a low-lying highest occupied molecular...release; distribution unlimited 13. SUPPLEMENTARY NOTES 14. ABSTRACT Bithiophene/thieno[3,4-c] pyrrole -4,6-dione (TPD)?based donor?acceptor polymer...nearby fullerene acceptors. The electron-deficient thieno[3,4-c] pyrrole -4,6-dione (TPD) moiety exhibits a symmetric, rigidly fused, coplanar
Lee, Jaewon; Singh, Ranbir; Sin, Dong Hun; Kim, Heung Gyu; Song, Kyu Chan; Cho, Kilwon
2016-01-06
A new 3D nonfullerene small-molecule acceptor is reported. The 3D interlocking geometry of the small-molecule acceptor enables uniform molecular conformation and strong intermolecular connectivity, facilitating favorable nanoscale phase separation and electron charge transfer. By employing both a novel polymer donor and a nonfullerene small-molecule acceptor in the solution-processed organic solar cells, a high-power conversion efficiency of close to 6% is demonstrated. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Probes labelled with energy transfer coupled dyes
Mathies, R.A.; Glazer, A.; Ju, J.
1997-11-18
Compositions are provided comprising sets of fluorescent labels carrying pairs of donor and acceptor dye molecules, designed for efficient excitation of the donors at a single wavelength and emission from the acceptor in each of the pairs at different wavelengths. The different molecules having different donor-acceptor pairs can be modified to have substantially the same mobility under separation conditions, by varying the distance between the donor and acceptor in a given pair. Particularly, the fluorescent compositions find use as labels in sequencing nucleic acids. 7 figs.
Fluorescent labels and their use in separations
Mathies, Richard A.; Glazer, Alexander; Ju, Jingyue
1997-01-01
Compositions are provided comprising sets of fluorescent labels carrying pairs of donor and acceptor dye molecules, designed for efficient excitation of the donors at a single wavelength and emission from the acceptor in each of the pairs at different wavelengths. The different molecules having different donor-acceptor pairs can be modified to have substantially the same mobility under separation conditions, by varying the distance between the donor and acceptor in a given pair. Particularly, the fluorescent compositions find use as labels in sequencing nucleic acids.
Probes labelled with energy transfer coupled dyes
Mathies, Richard A.; Glazer, Alexander; Ju, Jingyue
1997-01-01
Compositions are provided comprising sets of fluorescent labels carrying pairs of donor and acceptor dye molecules, designed for efficient excitation of the donors at a single wavelength and emission from the acceptor in each of the pairs at different wavelengths. The different molecules having different donor-acceptor pairs can be modified to have substantially the same mobility under separation conditions, by varying the distance between the donor and acceptor in a given pair. Particularly, the fluorescent compositions find use as labels in sequencing nucleic acids.
Schaap, Bryan D.; Zogorski, John S.
2006-01-01
This report describes the occurrence of trihalomethanes (THMs) in the Nation's ground water and drinking-water supply wells based on analysis of 5,642 samples of untreated ground water and source water collected or compiled during 1985-2002 by the U.S. Geological Survey National Water-Quality Assessment (NAWQA) Program. THMs are a group of volatile organic compounds (VOCs) with natural and anthropogenic sources that are of interest because they are associated with acute and chronic health problems in humans. THMs occur in water primarily from chlorination and are classified as disinfection by-products. In this report, the four THMs are discussed in the order of chloroform, bromodichloromethane, dibromochloromethane, and then bromoform; this sequence corresponds to largest to smallest chlorine content and smallest to largest bromine content. Four trihalomethanes were detected in less than 20 percent of samples from studies of (1) aquifers, (2) shallow ground water in agricultural areas, (3) shallow ground water in urban areas, (4) domestic wells, and (5) public wells. Detection frequencies for individual THMs in the five studies ranged from zero for shallow ground water in agricultural areas to 19.5 percent for shallow ground water in urban areas. None of the samples from aquifer studies, domestic wells, or public wells had total THM concentrations (the sum of the concentrations of chloroform, bromodichloromethane, dibromochloromethane, and bromoform) greater than or equal to the U.S. Environmental Protection Agency Maximum Contaminant Level of 80 micrograms per liter (?g/L). Comparisons of results among studies of aquifers, shallow ground water in agricultural areas, and shallow ground water in urban areas were used to describe the occurrence of the four THMs in ground water for three different land-use settings-mixed, agricultural, and urban, respectively. At the 0.2-?g/L assessment level, one or more of the four THMs were detected in 7.9 percent of the samples from aquifer studies, 2.2 percent of the samples from shallow ground water in agricultural areas, and 19.5 percent of the samples from shallow ground water in urban areas. In general, detection frequencies and concentrations of the four THMs were greater in shallow ground water in urban areas compared to aquifer studies and to shallow ground water in agricultural areas. For all three of these studies, the most common two-THM mixture at the 0.2-?g/L assessment level was chloroform-bromodichloromethane, and this was the only two-THM mixture found in samples of shallow ground water in agricultural areas. Comparisons of results between studies of domestic wells and public wells were used to describe the occurrence of the four THMs in two different supplies of ground water used for drinking water. At the 0.2-?g/L assessment level, one or more of the four THMs were detected in 5.2 percent of the domestic well samples and in 14.7 percent of the public well samples. In general, detection frequencies and THM concentrations were greater in samples from public wells than from domestic wells. At the 0.2-?g/L assessment level, the six possible two-THM mixtures occurred about six times more frequently in samples from public wells than from domestic wells. One of the most common two-THM mixtures in samples from domestic and public wells was bromodichloromethane-dibromochloromethane. Detection frequency is associated with the chlorine content of the THM compound. In general, for each of the five studies, as the chlorine content of the THM compound decreased, the detection frequency at the 0.2-?g/L assessment level also decreased. The exception was the study of public wells in which the detection frequency of the THMs decreased in the following order: chloroform, bromoform, dibromochloromethane, and bromodichloromethane. At the 0.2-?g/L assessment level, the median concentration for one or more of the four THMs ranged from 0.3 ?g/L (shallow ground water in agricultural a
Cohen, D.A.; Shedlock, R.J.
1986-01-01
Since the settling ponds were sealed, the concentration of boron has decreased while concentrations of cadmium, arsenic, zinc, and molybdenum in shallow ground water downgradient of the ponds show no definite trends in time. Arsenic, boron and molybdenum have remained at concentrations above those of shallow ground water in areas unaffected by settling-pond seepage.
Shallow moonquakes - How they compare with earthquakes
NASA Technical Reports Server (NTRS)
Nakamura, Y.
1980-01-01
Of three types of moonquakes strong enough to be detectable at large distances - deep moonquakes, meteoroid impacts and shallow moonquakes - only shallow moonquakes are similar in nature to earthquakes. A comparison of various characteristics of moonquakes with those of earthquakes indeed shows a remarkable similarity between shallow moonquakes and intraplate earthquakes: (1) their occurrences are not controlled by tides; (2) they appear to occur in locations where there is evidence of structural weaknesses; (3) the relative abundances of small and large quakes (b-values) are similar, suggesting similar mechanisms; and (4) even the levels of activity may be close. The shallow moonquakes may be quite comparable in nature to intraplate earthquakes, and they may be of similar origin.
Spatial structure of single and interacting Mn acceptors in GaAs
NASA Astrophysics Data System (ADS)
Koenraad, Paul
2005-03-01
Ferromagnetic semiconductors such as Ga1-xMnxAs are receiving a lot of attention at the moment because of their application in spintronic devices. However, despite intense study of deep acceptors in III-V semiconductors such as MnGa, little information has been obtained on their electronic properties at the atomic scale. Yet the spatial shape of the Mn acceptor state will influence the hole-mediated Mn-Mn coupling and thus all of the magnetic properties of ferromagnetic semiconductors such as Ga1-xMnxAs. This study presents an experimental and theoretical description of the spatial symmetry of the Mn acceptor wave-function in GaAs. We present measurements of the spatial mapping of the anisotropic wavefunction of a hole localized at a Mn acceptor. To achieve this, we have used the STM tip not only to image the Mn acceptor but also to manipulate its charge state A^0/A^- at room temperature. Within an envelope function effective mass model (EFM) the anisotropy in the acceptor wave-function can be traced to the influence of the cubic symmetry of the GaAs crystal which selects specific d-states that mix into the ground state due to the spin-orbit interaction in the valence band. Comparison with calculations based on a tight-binding model (TBM) for the Mn acceptor structure supports this conclusion. Using the same experimental and theoretical approach we furthermore explored the interaction between Mn acceptors directly by analyzing close Mn-Mn pairs, which were separated by less than 2 nm. We will discuss some implications of these results for Mn delta-doped layers grown on differently oriented growth surfaces.
High-k shallow traps observed by charge pumping with varying discharging times
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ho, Szu-Han; Chen, Ching-En; Tseng, Tseung-Yuen
2013-11-07
In this paper, we investigate the influence of falling time and base level time on high-k bulk shallow traps measured by charge pumping technique in n-channel metal-oxide-semiconductor field-effect transistors with HfO{sub 2}/metal gate stacks. N{sub T}-V{sub high} {sub level} characteristic curves with different duty ratios indicate that the electron detrapping time dominates the value of N{sub T} for extra contribution of I{sub cp} traps. N{sub T} is the number of traps, and I{sub cp} is charge pumping current. By fitting discharge formula at different temperatures, the results show that extra contribution of I{sub cp} traps at high voltage are inmore » fact high-k bulk shallow traps. This is also verified through a comparison of different interlayer thicknesses and different Ti{sub x}N{sub 1−x} metal gate concentrations. Next, N{sub T}-V{sub high} {sub level} characteristic curves with different falling times (t{sub falling} {sub time}) and base level times (t{sub base} {sub level}) show that extra contribution of I{sub cp} traps decrease with an increase in t{sub falling} {sub time}. By fitting discharge formula for different t{sub falling} {sub time}, the results show that electrons trapped in high-k bulk shallow traps first discharge to the channel and then to source and drain during t{sub falling} {sub time}. This current cannot be measured by the charge pumping technique. Subsequent measurements of N{sub T} by charge pumping technique at t{sub base} {sub level} reveal a remainder of electrons trapped in high-k bulk shallow traps.« less
Nanographenes as electron-deficient cores of donor-acceptor systems.
Liu, Yu-Min; Hou, Hao; Zhou, Yan-Zhen; Zhao, Xin-Jing; Tang, Chun; Tan, Yuan-Zhi; Müllen, Klaus
2018-05-15
Conjugation of nanographenes (NGs) with electro-active molecules can establish donor-acceptor π-systems in which the former generally serve as the electron-donating moieties due to their electronic-rich nature. In contrast, here we report a series of reversed donor-acceptor structures are obtained by C-N coupling of electron-deficient perchlorinated NGs with electron-rich anilines. Selective amination at the vertexes of the NGs is unambiguously shown through X-ray crystallography. By varying the donating ability of the anilino groups, the optical and assembly properties of donor-acceptor NGs can be finely modulated. The electron-deficient concave core of the resulting conjugates can host electron-rich guest molecules by intermolecular donor-acceptor interactions and gives rise to charge-transfer supramolecular architectures.
NASA Astrophysics Data System (ADS)
Muret, P.; Pernot, J.; Azize, M.; Bougrioua, Z.
2007-09-01
Electrical transport and deep levels are investigated in GaN:Fe layers epitaxially grown on sapphire by low pressure metalorganic vapor phase epitaxy. Photoinduced current transient spectroscopy and current detected deep level spectroscopy are performed between 200 and 650 K on three Fe-doped samples and an undoped sample. A detailed study of the detected deep levels assigns dominant centers to a deep donor 1.39 eV below the conduction band edge EC and to a deep acceptor 0.75 eV above the valence band edge EV at low electric field. A strong Poole-Frenkel effect is evidenced for the donor. Schottky diodes characteristics and transport properties in the bulk GaN:Fe layer containing a homogenous concentration of 1019 Fe/cm3 are typical of a compensated semiconductor. They both indicate that the bulk Fermi level is located typically 1.4 eV below EC, in agreement with the neutrality equation and dominance of the deep donor concentration. This set of results demonstrates unambiguously that electrical transport in GaN:Fe is governed by both types, either donor or acceptor, of the iron impurity, either substitutional in gallium sites or associated with other defects.
Model for determination of mid-gap states in amorphous metal oxides from thin film transistors
NASA Astrophysics Data System (ADS)
Bubel, S.; Chabinyc, M. L.
2013-06-01
The electronic density of states in metal oxide semiconductors like amorphous zinc oxide (a-ZnO) and its ternary and quaternary oxide alloys with indium, gallium, tin, or aluminum are different from amorphous silicon, or disordered materials such as pentacene, or P3HT. Many ZnO based semiconductors exhibit a steep decaying density of acceptor tail states (trap DOS) and a Fermi level (EF) close to the conduction band energy (EC). Considering thin film transistor (TFT) operation in accumulation mode, the quasi Fermi level for electrons (Eq) moves even closer to EC. Classic analytic TFT simulations use the simplification EC-EF> `several'kT and cannot reproduce exponential tail states with a characteristic energy smaller than 1/2 kT. We demonstrate an analytic model for tail and deep acceptor states, valid for all amorphous metal oxides and include the effect of trap assisted hopping instead of simpler percolation or mobility edge models, to account for the observed field dependent mobility.
Surface acceptor states in MBE-grown CdTe layers
NASA Astrophysics Data System (ADS)
Wichrowska, Karolina; Wosinski, Tadeusz; Tkaczyk, Zbigniew; Kolkovsky, Valery; Karczewski, Grzegorz
2018-04-01
A deep-level hole trap associated with surface defect states has been revealed with deep-level transient spectroscopy investigations of metal-semiconductor junctions fabricated on nitrogen doped p-type CdTe layers grown by the molecular-beam epitaxy technique. The trap displayed the hole-emission activation energy of 0.33 eV and the logarithmic capture kinetics indicating its relation to extended defect states at the metal-semiconductor interface. Strong electric-field-induced enhancement of the thermal emission rate of holes from the trap has been attributed to the phonon-assisted tunneling effect from defect states involving very large lattice relaxation around the defect and metastability of its occupied state. Passivation with ammonium sulfide of the CdTe surface, prior to metallization, results in a significant decrease in the trap density. It also results in a distinct reduction in the width of the surface-acceptor-state-induced hysteresis loops in the capacitance vs. voltage characteristics of the metal-semiconductor junctions.
Supporting Aspartate Biosynthesis Is an Essential Function of Respiration in Proliferating Cells.
Sullivan, Lucas B; Gui, Dan Y; Hosios, Aaron M; Bush, Lauren N; Freinkman, Elizaveta; Vander Heiden, Matthew G
2015-07-30
Mitochondrial respiration is important for cell proliferation; however, the specific metabolic requirements fulfilled by respiration to support proliferation have not been defined. Here, we show that a major role of respiration in proliferating cells is to provide electron acceptors for aspartate synthesis. This finding is consistent with the observation that cells lacking a functional respiratory chain are auxotrophic for pyruvate, which serves as an exogenous electron acceptor. Further, the pyruvate requirement can be fulfilled with an alternative electron acceptor, alpha-ketobutyrate, which provides cells neither carbon nor ATP. Alpha-ketobutyrate restores proliferation when respiration is inhibited, suggesting that an alternative electron acceptor can substitute for respiration to support proliferation. We find that electron acceptors are limiting for producing aspartate, and supplying aspartate enables proliferation of respiration deficient cells in the absence of exogenous electron acceptors. Together, these data argue a major function of respiration in proliferating cells is to support aspartate synthesis. Copyright © 2015 Elsevier Inc. All rights reserved.
Floodplains within reservoirs promote earlier spawning of white crappies Pomoxis annularis
Miranda, Leandro E.; Dagel, Jonah D.; Kaczka, Levi J.; Mower, Ethan; Wigen, S. L.
2015-01-01
Reservoirs impounded over floodplain rivers are unique because they may include within their upper reaches extensive shallow water stored over preexistent floodplains. Because of their relatively flat topography and riverine origin, floodplains in the upper reaches of reservoirs provide broad expanses of vegetation within a narrow range of reservoir water levels. Elsewhere in the reservoir, topography creates a band of shallow water along the contour of the reservoir where vegetation often does not grow. Thus, as water levels rise, floodplains may be the first vegetated habitats inundated within the reservoir. We hypothesized that shallow water in reservoir floodplains would attract spawning white crappies Pomoxis annularis earlier than reservoir embayments. Crappie relative abundance over five years in floodplains and embayments of four reservoirs increased as spawning season approached, peaked, and decreased as fish exited shallow water. Relative abundance peaked earlier in floodplains than embayments, and the difference was magnified with higher water levels. Early access to suitable spawning habitat promotes earlier spawning and may increase population fitness. Recognition of the importance of reservoir floodplains, an understanding of how reservoir water levels can be managed to provide timely connectivity to floodplains, and conservation of reservoir floodplains may be focal points of environmental management in reservoirs.
Du, Yao; Ma, Teng; Deng, Yamin; Shen, Shuai; Lu, Zongjie
2017-02-22
High levels of ammonium from anthropogenic sources threaten the quality of surface waters and groundwaters in some areas worldwide, but elevated ammonium levels of natural sources also have been identified. High levels of ammonium have been detected in both surface water and shallow groundwater of the Jianghan Plain, an alluvial plain of the Yangtze River. This study used N isotopes coupled with ancillary chemistry to identify ammonium in this region. Ammonium in the Tongshun River (up to 10.25 mg L -1 ) showed a sharp accumulation in the upstream and gradual attenuation in the downstream. The δ 15 N values of ammonium in the TSR were high and ranged narrowly from +12.5 to +15.4‰, suggesting an anthropogenic source that was septic effluent from industrial waste discharge. Sorption and nitrification were likely to respectively serve as the principal processes contributing to ammonium attenuation in different reaches of the downstream TSR. In shallow groundwater, high levels of ammonium (up to 14.10 mg L -1 ) occurred in a reducing environment. The narrow δ 15 N variation with low values (+2.3 to +4.5‰) in the lower aquifer suggested a natural source that was organic N mineralization. The δ 15 N values in the shallow aquitard exhibited a wide range from -1.8 to +9.4‰, owing to various sources. Two types of water in the shallow aquitard could be identified: (1) type-1 water with relatively longer residence time was similar to those in the aquifer where ammonium was mainly sourced from organic N mineralization; (2) type-2 water with shorter residence time was jointly affected by surface input, chemical attenuation and mineralization of organic N. The aquitard prevents prompt ammonium exchange between the surface and aquifer, and the shallower part of the aquitard provides a sufficient reaction time and an active reaction rate for ammonium removal.
Anderholm, Scott K.
2002-01-01
As part of the National Water-Quality Assessment Program, surface-water and ground-water samples were collected in 1994 and 1995 for analysis of common constituents, nutrients, dissolved organic carbon, trace elements, radioactivity, volatile organic compounds, and pesticides to characterize surface- water quality and shallow ground-water quality and to determine factors affecting water quality in the Rincon Valley, south-central New Mexico. Samples of surface water were collected from three sites on the Rio Grande and from sites on three agricultural drains in the Rincon Valley in January 1994 and 1995, April 1994, and October 1994. Ground-water samples were collected in late April and early May 1994 from 30 shallow wells that were installed during the investigation. Dissolved-solids concentrations in surface water ranged from 434 to 1,510 milligrams per liter (mg/L). Dissolved-solids concentrations were smallest in water from the Rio Grande below Caballo Dam and largest in the drains. Nitrite plus nitrate concentrations ranged from less than 0.05 to 3.3 mg/L as nitrogen, and ammonia concentrations ranged from less than 0.015 to 0.33 mg/L as nitrogen in surface-water samples. Trace-element concentrations in surface water were significantly smaller than the acute-fisheries standards. One or more pesticides were detected in 34 of 37 surface-water samples. DCPA (dacthal) and metolachlor were the most commonly detected pesticides. No standards have been established for the pesticides analyzed for in this study. Dissolved-solids concentrations in shallow ground water ranged from 481 to 3,630 mg/L. All but 2 of 30 samples exceeded the secondary maximum contaminant level for dissolved solids of 500 mg/L. Water from about 73 percent of the wells sampled exceeded the secondary maximum contaminant level of 250 mg/L for sulfate, and water from about 7 percent of the wells sampled exceeded the secondary maximum contaminant level of 250 mg/L for chloride. Nitrite plus nitrate concentrations ranged from less than 0.05 to 33 mg/L as nitrogen in shallow ground water. Water from about 17 percent of the well samples exceeded the maximum contaminant level of 10 mg/L as nitrogen for nitrite plus nitrate. Trace-element concentrations in shallow ground water generally were small (1 to 10 micrograms per liter). The proposed maximum contaminant level of 20 micrograms per liter for uranium was exceeded in about 13 percent of the samples. The secondary maximum contaminant level of 300 micrograms per liter for iron was exceeded in about 17 percent of the samples and of 50 micrograms per liter for manganese was exceeded in about 83 percent of the samples. Samples from about 23 percent of the wells exceeded the maximum contaminant level of 15 picocuries per liter for gross alpha activity. One or more pesticides were detected in water from 12 of 30 wells sampled. The pesticides or pesticide metabolites diazinon, metolachlor, napropamide, p,p'-DDE, and prometon were detected in one or more samples. Metolachlor and prometon were the most commonly detected pesticides. Health advisories for the pesticides detected in shallow ground water (no maximum contaminant levels have been established for the pesticides detected) are 10 to 300 times larger than the concentrations detected. Infiltration, evaporation, and transpiration of irrigation water are important factors affecting the concentrations of common constituents in shallow ground water in the Rincon Valley. Dissolution and precipitation of minerals and mixing of shallow ground water and inflow of ground water from adjacent areas also affect the composition of shallow ground water and water in the drains. Relatively large nitrite plus nitrate concentrations in several shallow ground-water samples indicate leaching of fertilizers in some areas of th
NASA Astrophysics Data System (ADS)
Adam, Abdel Majid A.; Refat, Moamen S.; Sharshar, T.; Heiba, Z. K.
Molecular charge-transfer complexes of the tetramethylethylenediamine (TMEDA) with picric acid (Pi-OH), benzene-1,4-diol (QL), tin(IV) tetrachloride (SnCl4), iodine, bromine, and zinc chloride (ZnCl2) have been synthesized and investigated by elemental and thermal analysis, electronic, infrared, Raman and proton-NMR, energy-dispersive X-ray spectroscopy, X-ray powder diffraction and positron annihilation lifetime spectroscopy, and scanning electron microscopy. In this work, three types of acceptors π-acceptors (Pi-OH and QL), σ-acceptors (iodine and bromine), and vacant orbital acceptors (SnCl4 and ZnCl2) were covered. The results of elemental analysis indicated that the CT complexes were formed with ratios 1:1 and 1:2 for QL, SnCl4, and ZnCl2 acceptors and iodine, Pi-OH, and Br2 acceptors, respectively. The type of chelating between the TMEDA donor and the mentioned acceptors depends upon the behavior of both items. The positron annihilation lifetime parameters were found to be dependent on the structure, electronic configuration, and the power of acceptors. The correlation between these parameters and the molecular weight and biological activities of studied complexes was also observed. Regarding the electrical properties, the AC conductivity and the dielectric coefficients were measured as a function of frequency at room temperature. The TMEDA charge-transfer complexes were screened against antibacterial (Escherichia coli, Staphylococcus aureus, Bacillus subtilis, and Pseudomonas aeruginosa) and antifungal (Aspergillus flavus and Candida albicans) activities.
Halliwell, J V; Othman, I B; Pelchen-Matthews, A; Dolly, J O
1986-01-01
Dendrotoxin, a small single-chain protein from the venom of Dendroaspis angusticeps, is highly toxic following intracerebroventricular injection into rats. Voltage-clamp analysis of CA1 neurons in hippocampal slices, treated with tetrodotoxin, revealed that nanomolar concentrations of dendrotoxin reduce selectively a transient, voltage-dependent K conductance. Epileptiform activity known to be induced by dendrotoxin can be attributed to such an action. Membrane currents not affected directly by the toxin include (i) Ca-activated K conductance; (ii) noninactivating voltage-dependent K conductance; (iii) inactivating and noninactivating Ca conductances; (iv) persistent inward (anomalous) rectifier current. Persistence of the effects of the toxin when Cd was included to suppress spontaneous transmitter release indicates a direct action on the neuronal membrane. Using biologically active, 125I-labeled dendrotoxin, protein acceptor sites of high affinity were detected on cerebrocortical synaptosomal membranes and sections of rat brain. In hippocampus, toxin binding was shown autoradiographically to reside in synapse-rich and white matter regions, with lower levels in cell body layers. This acceptor is implicated in the action of toxin because its affinities for dendrotoxin congeners are proportional to their central neurotoxicities and potencies in reducing the transient, voltage-dependent K conductance.
NASA Astrophysics Data System (ADS)
Aghdassi, Nabi; Wang, Qi; Ji, Ru-Ru; Wang, Bin; Fan, Jian; Duhm, Steffen
2018-05-01
7,8,15,16-tetraazaterrylene (TAT) thin films grown on highly oriented pyrolytic graphite (HOPG) substrates were studied extensively with regard to their intrinsic and interfacial electronic properties by means of ultraviolet photoelectron spectroscopy (UPS). Merely weak substrate–adsorbate interaction occurs at the TAT/HOPG interface, with interface energetics being only little affected by the nominal film thickness. Photon energy-dependent UPS performed perpendicular to the molecular planes of TAT multilayer films at room temperature clearly reveals band-like intermolecular dispersion of the TAT highest occupied molecular orbital (HOMO) energy. Based on a comparison with a tight-binding model, a relatively narrow bandwidth of 54 meV is derived, which points to the presence of an intermediate regime between hopping and band-like hole transport. Upon additional deposition of 2,2‧:5‧,2″:5″,2″‧-quaterthiophene (4T), a 4T:TAT donor–acceptor bulk heterojunction with a considerable HOMO-level offset at the donor–acceptor interface is formed. The 4T:TAT bulk heterojunction likewise exhibits intermolecular dispersion of the TAT HOMO energy, yet with a significant decreased bandwidth.
Electricity generation by anaerobic bacteria and anoxic sediments from hypersaline soda lakes
Miller, L.G.; Oremland, R.S.
2008-01-01
Anaerobic bacteria and anoxic sediments from soda lakes produced electricity in microbial fuel cells (MFCs). No electricity was generated in the absence of bacterial metabolism. Arsenate respiring bacteria isolated from moderately hypersaline Mono Lake (Bacillus selenitireducens), and salt-saturated Searles Lake, CA (strain SLAS-1) oxidized lactate using arsenate as the electron acceptor. However, these cultures grew equally well without added arsenate using the MFC anode as their electron acceptor, and in the process oxidized lactate more efficiently. The decrease in electricity generation by consumption of added alternative electron acceptors (i.e. arsenate) which competed with the anode for available electrons proved to be a useful indicator of microbial activity and hence life in the fuel cells. Shaken sediment slurries from these two lakes also generated electricity, with or without added lactate. Hydrogen added to sediment slurries was consumed but did not stimulate electricity production. Finally, electricity was generated in statically incubated "intact" sediment cores from these lakes. More power was produced in sediment from Mono Lake than from Searles Lake, however microbial fuel cells could detect low levels of metabolism operating under moderate and extreme conditions of salt stress. ?? 2008 US Government.
F4TCNQ on Cu, Ag, and Au as prototypical example for a strong organic acceptor on coinage metals
NASA Astrophysics Data System (ADS)
Rangger, Gerold M.; Hofmann, Oliver T.; Romaner, Lorenz; Heimel, Georg; Bröker, Benjamin; Blum, Ralf-Peter; Johnson, Robert L.; Koch, Norbert; Zojer, Egbert
2009-04-01
Metal work-function modification with the help of organic acceptors is an efficient tool to significantly enhance the performance of modern state-of-the-art organic molecular electronic devices. Here, the prototypical organic acceptor 2,3,5,6-tetrafluoro-7,7,8,8-tetracyanoquinodimethane, F4TCNQ, is characterized on Ag(111), Au(111), and Cu(111) metal surfaces by means of density-functional theory calculations. Particular attention is paid to charge-transfer processes at the metal-organic interface; a subtle balance between charge forward and backward donations in combination with a strong adsorption-induced geometry change are found to be responsible for the observed increase in the system work function. A larger effect is obtained for the metals with larger initial work function. Interestingly, this results in similar charge-injection barriers from the substrate metal into an organic semiconductor deposited on top of the F4TCNQ layer. The impact of the F4TCNQ packing density of the electronic properties of the interface is also addressed. Comparing the calculated energy-level alignments and work-function modifications to experimental data from ultraviolet photoelectron spectroscopy yields good agreement between experiments and simulations.
NASA Astrophysics Data System (ADS)
Webb, Kevin; Gaind, Vaibhav; Tsai, Hsiaorho; Bentz, Brian; Chelvam, Venkatesh; Low, Philip
2012-02-01
We describe an approach for the evaluation of targeted anti-cancer drug delivery in vivo. The method emulates the drug release and activation process through acceptor release from a targeted donor-acceptor pair that exhibits fluorescence resonance energy transfer (FRET). In this case, folate targeting of the cancer cells is used - 40 % of all human cancers, including ovarian, lung, breast, kidney, brain and colon cancer, over-express folate receptors. We demonstrate the reconstruction of the spatially-dependent FRET parameters in a mouse model and in tissue phantoms. The FRET parameterization is incorporated into a source for a diffusion equation model for photon transport in tissue, in a variant of optical diffusion tomography (ODT) called FRET-ODT. In addition to the spatially-dependent tissue parameters in the diffusion model (absorption and diffusion coefficients), the FRET parameters (donor-acceptor distance and yield) are imaged as a function of position. Modulated light measurements are made with various laser excitation positions and a gated camera. More generally, our method provides a new vehicle for studying disease at the molecular level by imaging FRET parameters in deep tissue, and allows the nanometer FRET ruler to be utilized in deep tissue.
Aghdassi, Nabi; Wang, Qi; Ji, Ru-Ru; Wang, Bin; Fan, Jian; Duhm, Steffen
2018-05-11
7,8,15,16-tetraazaterrylene (TAT) thin films grown on highly oriented pyrolytic graphite (HOPG) substrates were studied extensively with regard to their intrinsic and interfacial electronic properties by means of ultraviolet photoelectron spectroscopy (UPS). Merely weak substrate-adsorbate interaction occurs at the TAT/HOPG interface, with interface energetics being only little affected by the nominal film thickness. Photon energy-dependent UPS performed perpendicular to the molecular planes of TAT multilayer films at room temperature clearly reveals band-like intermolecular dispersion of the TAT highest occupied molecular orbital (HOMO) energy. Based on a comparison with a tight-binding model, a relatively narrow bandwidth of 54 meV is derived, which points to the presence of an intermediate regime between hopping and band-like hole transport. Upon additional deposition of 2,2':5',2″:5″,2″'-quaterthiophene (4T), a 4T:TAT donor-acceptor bulk heterojunction with a considerable HOMO-level offset at the donor-acceptor interface is formed. The 4T:TAT bulk heterojunction likewise exhibits intermolecular dispersion of the TAT HOMO energy, yet with a significant decreased bandwidth.
NASA Astrophysics Data System (ADS)
Cui, Bo; Yan, Lingpeng; Gu, Huimin; Yang, Yongzhen; Liu, Xuguang; Ma, Chang-Qi; Chen, Yongkang; Jia, Husheng
2018-01-01
Excitation-wavelength-dependent blue-greenish fluorescent carbon quantum dots (CQDs) with graphite structure were synthesized by chemical vapor deposition (CVD) method. In comparison with those synthesized by hydrothermal method (named H-CQDs), C-CQDs have less hydrophilic terminal groups, showing good solubility in common organic solvents. Furthermore, these synthesized C-CQDs show a low LUMO energy level (LUMO = -3.84 eV), which is close to that of phenyl-C61-butyric acid methyl ester (PC61BM, LUMO = -4.01 eV), the most widely used electron acceptor in polymer solar cells. Photoluminescence quenching of the poly(3-hexylthiophene-2,5-diyl):C-CQDs blended film (P3HT:C-CQDs) indicated that a photo-induced charge transfer between P3HT and C-CQDs occurs in such a composite film. Bulk heterojunction solar cells using C-CQDs as electron acceptors or doping materials were fabricated and tested. High fill factors were achieved for these C-CQDs based polymer solar cells, demonstrating that CQDs synthesized by CVD could be alternative to the fullerene derivatives for applying in polymer solar cells.
Gallium interstitial in irradiated germanium: Deep level transient spectroscopy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kolkovsky, Vl.; Petersen, M. Christian; Larsen, A. Nylandsted
Two electronic levels at 0.34 eV above the valence band and 0.32 eV below the conduction band, in gallium doped, p-type Ge irradiated with 2 MeV electrons have been studied by deep level transient spectroscopy (DLTS) with both majority- and minority-carrier injections, and Laplace DLTS spectroscopy. It is concluded that these levels, having donor and acceptor characters, respectively, are correlated with interstitial Ga atoms, formed by the Watkins-replacement mechanism via self-interstitials.
Gallium interstitial in irradiated germanium: Deep level transient spectroscopy
NASA Astrophysics Data System (ADS)
Kolkovsky, Vl.; Petersen, M. Christian; Mesli, A.; van Gheluwe, J.; Clauws, P.; Larsen, A. Nylandsted
2008-12-01
Two electronic levels at 0.34 eV above the valence band and 0.32 eV below the conduction band, in gallium doped, p -type Ge irradiated with 2 MeV electrons have been studied by deep level transient spectroscopy (DLTS) with both majority- and minority-carrier injections, and Laplace DLTS spectroscopy. It is concluded that these levels, having donor and acceptor characters, respectively, are correlated with interstitial Ga atoms, formed by the Watkins-replacement mechanism via self-interstitials.
Tolstoy, Maya; Gibson, James C.; Mountain, Gregory
2017-01-01
Shallow water marine seismic surveys are necessary to understand a range of Earth processes in coastal environments, including those that represent major hazards to society such as earthquakes, tsunamis, and sea-level rise. Predicting the acoustic radiation of seismic sources in shallow water, which is required for compliance with regulations designed to limit impacts on protected marine species, is a significant challenge in this environment because of variable reflectivity due to local geology, and the susceptibility of relatively small bathymetric features to focus or shadow acoustic energy. We use data from the R/V Marcus G. Langseth’s towed hydrophone streamer to estimate the acoustic radiation of the ship’s seismic source during a large survey of the shallow shelf off the coast of New Jersey. We use the results to estimate the distances from the source to acoustic levels of regulatory significance, and use bathymetric data from the ship’s multibeam system to explore the relationships between seafloor depth and slope and the measured acoustic radiation patterns. We demonstrate that existing models significantly overestimate mitigation radii, but that the variability of received levels in shallow water suggest that in situ real-time measurements would help improve these estimates, and that post-cruise revisions of received levels are valuable in accurately determining the potential acoustic impact of a seismic survey. PMID:28800634
Zheng, Zhong; Awartani, Omar M; Gautam, Bhoj; Liu, Delong; Qin, Yunpeng; Li, Wanning; Bataller, Alexander; Gundogdu, Kenan; Ade, Harald; Hou, Jianhui
2017-02-01
Fullerene-free organic solar cells show over 11% power conversion efficiency, processed by low toxic solvents. The applied donor and acceptor in the bulk heterojunction exhibit almost the same highest occupied molecular orbital level, yet exhibit very efficient charge creation. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Homnick, Paul J.; Lahti, P. M.
2012-01-01
Push–pull organic molecules composed of electron donor diarylamines at the 2- and 2,7-positions of fluorenone exhibit intramolecular charge-transfer behaviour in static absorption and emission spectra. Electrochemical and spectral data combined in a modular electronic analysis model show how the donor HOMO and acceptor LUMO act as major determinants of the frontier molecular orbital energy levels.
Effect of hydrogen on Ca and Mg acceptors in GaN
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lee, J.W.; Pearton, S.J.; Zolper, J.C.
The influence of minority carrier injection on the reactivation of hydrogen passivated Mg in GaN at 175 C has been investigated in p-n junction diodes. The dissociation of the neutral MgH complexes is greatly enhanced in the presence of minority carrier and the reactivation process follows second order kinetics. Conventional annealing under zero-bias conditions does not produce Mg-H dissociation until temperatures {ge} 450 C. These results provide an explanation for the e-beam induced reactivation of Mg acceptors in hydrogenated GaN. Exposure to a hydrogen plasma at 250 C of p-type GaN (Ca) prepared by either Ca{sup +} or Ca{sup +}more » plus P{sup +} coimplantation leads to a reduction in sheet carrier density of approximately an order of magnitude (1.6 {times} 10{sup 12} cm{sup {minus}2} to 1.8 {times} 10{sup 11} cm{sup {minus}2}), and an accompanying increase in hole mobility (6 cm{sup 2}/Vs to 18 cm{sup 2}/Vs). The passivation process can be reversed by post-hydrogenation annealing at 400--500 C under a N{sub 2} ambient. This reactivation of the acceptors is characteristic of the formation of neutral (Ca-H) complexes in the GaN. The thermal stability of the passivation is similar to that of Mg-H complexes in material prepared in the same manner (implantation) with similar initial doping levels. Hydrogen passivation of acceptor dopants in GaN appears to be a ubiquitous phenomenon, as it is in other p-type semiconductors.« less
ERIC Educational Resources Information Center
Card, Roger
The properties of an associative memory are examined in this paper from the viewpoint of automata theory. A device called an associative memory acceptor is studied under real-time operation. The family "L" of languages accepted by real-time associative memory acceptors is shown to properly contain the family of languages accepted by one-tape,…
Cohen, M.R.; Gal, E.
1993-04-13
A process and system are described for simultaneously removing from a gaseous mixture, sulfur oxides by means of a solid sulfur oxide acceptor on a porous carrier, nitrogen oxides by means of ammonia gas and particulate matter by means of filtration and for the regeneration of loaded solid sulfur oxide acceptor. Finely-divided solid sulfur oxide acceptor is entrained in a gaseous mixture to deplete sulfur oxides from the gaseous mixture, the finely-divided solid sulfur oxide acceptor being dispersed on a porous carrier material having a particle size up to about 200 microns. In the process, the gaseous mixture is optionally pre-filtered to remove particulate matter and thereafter finely-divided solid sulfur oxide acceptor is injected into the gaseous mixture.
Alternansucrase acceptor reactions with D-tagatose and L-glucose.
Côté, Gregory L; Dunlap, Christopher A; Appell, Michael; Momany, Frank A
2005-02-07
Alternansucrase (EC 2.4.1.140) is a d-glucansucrase that synthesizes an alternating alpha-(1-->3), (1-->6)-linked d-glucan from sucrose. It also synthesizes oligosaccharides via d-glucopyranosyl transfer to various acceptor sugars. Two of the more efficient monosaccharide acceptors are D-tagatose and L-glucose. In the presence of d-tagatose, alternansucrase produced the disaccharide alpha-d-glucopyranosyl-(1-->1)-beta-D-tagatopyranose via glucosyl transfer. This disaccharide is analogous to trehalulose. We were unable to isolate a disaccharide product from L-glucose, but the trisaccharide alpha-D-glucopyranosyl-(1-->6)-alpha-d-glucopyranosyl-(1-->4)-l-glucose was isolated and identified. This is analogous to panose, one of the structural units of pullulan, in which the reducing-end D-glucose residue has been replaced by its L-enantiomer. The putative L-glucose disaccharide product, produced by glucoamylase hydrolysis of the trisaccharide, was found to be an acceptor for alternansucrase. The disaccharide, alpha-D-glucopyranosyl-(1-->4)-L-glucose, was a better acceptor than maltose, previously the best known acceptor for alternansucrase. A structure comparison of alpha-D-glucopyranosyl-(1-->4)-L-glucose and maltose was performed through computer modeling to identify common features, which may be important in acceptor affinity by alternansucrase.
ERIC Educational Resources Information Center
Simpson, Peter
1989-01-01
The ideas behind electrophilic addition to alkenes, and electrophilic substitution in benzene derivatives are discussed. Teaching these concepts to secondary school students is stressed. Five main points useful at this age level are summarized. (Author/CW)
Ensuring food safety in food donations: Case study of the Belgian donation/acceptation chain.
De Boeck, E; Jacxsens, L; Goubert, H; Uyttendaele, M
2017-10-01
The food donation process in Belgium is mapped and analyzed to identify bottlenecks in compliance with the legal framework and implementation of food safety management, based on literature search and interviews with stakeholders (donors, acceptors, regulators and facilitators) in Belgium and at EU level. The study revealed that the food donation/acceptation chain is far less structured and organized than the conventional food supply chain. The fragmented landscape of many small food banks and charity organizations (acceptors), often directed by and working with volunteers without training in food safety and lack of knowledge of legal food hygiene requirements is a bottleneck to generate trust among food donors and restricts the provision of perishable products in food donations. Lack of refrigerated transport and insufficient cold/freezing capacity in food banks and charity organizations was identified as a barrier to distribute perishable products. Furthermore, in two cities in Flanders (Belgium), at some food donation centers, donated perishable food samples (n=72) were taken and subjected to microbiological analysis to determine their overall food quality, hygiene and food safety status. Twenty-two of 72 analyzed samples showed marginal microbiological quality based on numbers of yeast, lactic acid bacteria or total viable count. In three samples Listeria monocytogenes was detected per 25g among which one ready-to-eat cooked meat product which showed increased numbers of L. monocytogenes (3.5logCFU/g) and Enterobacteriaceae (6.7logCFU/g). Overall, in Belgium, most of the donated foods considers nonperishable foods, with more or less half of the food collected by the food banks being purchased with funds from FEAD (Fund for European Aid to the Most Deprived) and thus not derived from food losses. Efforts are being made by facilitators to provide a platform for better coordination of donors and acceptors to make more efficient use of food losses. Regulators at the national level are taking action to clarify and provide some flexibility in food hygiene regulation and initiatives on EU level to facilitate food donation in the combat of food losses are pending. As from the side of the acceptors, it is recommended to professionalize the acceptation chain in Belgium and seek for a more harmonized approach and concerted action. Copyright © 2017 Elsevier Ltd. All rights reserved.
Zhang, Weiwei; Wu, Yongzhen; Li, Xin; Li, Erpeng; Song, Xiongrong; Jiang, Huiyun; Shen, Chao; Zhang, Hao; Tian, He; Zhu, Wei-Hong
2017-03-01
In dye-sensitized solar cells (DSSCs), it is essential to use rational molecular design to obtain promising photosensitizers with well-matched energy levels and narrow optical band gaps. However, the "trade-off" effect between the photocurrent and photovoltage is still a challenge. Here we report four benzoxidazole based D-A-π-A metal-free organic dyes ( WS-66 , WS-67 , WS-68 and WS-69 ) with different combinations of π-spacer units and anchoring-acceptor groups. Either extending the π-spacer or enhancing the electron acceptor can efficiently modulate the molecular energy levels, leading to a red-shift in the absorption spectra. The optimal dye, WS-69 , containing a cyclopentadithiophene (CPDT) spacer and cyanoacetic acid acceptor, shows the narrowest energy band gap, which displays a very high photocurrent density of 19.39 mA cm -2 , but suffers from a relatively low photovoltage of 696 mV, along with the so-called deleterious "trade-off" effect. A cosensitization strategy is further adopted for enhancing the device performance. Optimization of the dye loading sequence is found to be capable of simultaneously improving the photocurrent and photovoltage, and distinctly preventing the "trade-off" effect. The superior cosensitized cell exhibits an excellent power-conversion efficiency (PCE) of 10.09% under one-sun irradiation, and 11.12% under 0.3 sun irradiation, which constitutes a great achievement in that the efficiency of a pure metal-free organic dye with iodine electrolyte can exceed 11% even under relatively weak light irradiation. In contrast with the previous cosensitization strategy which mostly focused on compensation of light-harvesting, we propose a novel cosensitization architecture, in which the large molecular-sized, high photocurrent dye WS-69 takes charge of broadening the light-harvesting region to generate a high short-circuit current ( J SC ) while the small molecular-sized, high photovoltage dye WS-5 is responsible for retarding charge recombination to generate a high open-circuit voltage ( V OC ). In addition, adsorption amount and photo-stability studies suggest that the cyano group in the anchoring acceptor is important for the stability since it is beneficial towards decreasing the LUMO levels and enhancing the binding of dyes onto TiO 2 nanocrystals.
NASA Astrophysics Data System (ADS)
Greco, Patrick F.
Part I. The design and development of organic second-order nonlinear optical (NLO) materials have attracted much interest due to their applications in optoelectronic devices and modern communications technology. Donor-pi-acceptor compounds, D-(CH=CH)n-A, often exhibit hyperpolarizability that results in laser frequency doubling (second harmonic generation) and spectroscopic solvatochromism. To study the effect of donor amine geometry upon properties associated with second-order NLO behavior in simple donor-pi-acceptor compounds, equilibrium geometries and hyperpolarizabilities (beta) for donor-acceptor polyenes with amine donors were calculated at several levels of computational theory. Two new molecules with donors that only differ by one methylene group were chosen for comparison. Thus, 5-(N-methylindolin-5-yl)-2, 4-pentadienal (1a) and 5-(N-methyl-2, 3, 4-trihydroquinolin-6-yl)-2, 4-pentadienal (2a) were synthesized in two steps from starting materials described in the literature. These aldehydes were converted into stronger acceptors in one step to give diethylthiobarbituric acid derivatives 1c and 2c, as well as tricyanofuran derivatives 1d and 2d. Positive UV solvatochromism was observed in all three derivatives. NMR solvatochromism was most pronounced in 1c, and 2c vs. 1a and 2a as measured by changes in chemical shifts. Additionally, coupling constants showed more conjugation in 1c and 2c, where 1a and 2a showed less conjugation. Finally, differential scanning calorimetry and thermal gravimetric analysis were used to compare decomposition and melting temperatures of these compounds to determine their stability. Aldehydes, 1a and 2a had distinct melting points, while the 1c, 2c, 1d, and 2d derivatives decomposed at temperatures above 150 °C. Part II. This longitudinal study focused on an introductory chemistry course taught using two different modes of delivery: online and face-to-face (FtF). The sections of the course using the different delivery modes covered the same material at the same level, used the same textbook, and were taught by the same instructor. Student success was tracked over a period of nine consecutive years along with other important dependent variables including the number of developmental courses taken, student age, math and reading placement scores, overall GPA and full time status. Surprisingly, student success correlated negatively to their placement scores. The students who chose the online course had higher overall GPA's and better placement test scores than the FtF students. Despite these advantages, online students were less successful than their FtF counterparts. This result suggests that FtF instruction was more effective, even with better students. These findings have important implications for institutions evaluating the role online instruction will play at their institutions.
Ludt, William B.; Bernal, Moisés A.; Bowen, Brian W.; Rocha, Luiz A.
2012-01-01
Sea level fluctuations during glacial cycles affect the distribution of shallow marine biota, exposing the continental shelf on a global scale, and displacing coral reef habitat to steep slopes on oceanic islands. In these circumstances we expect that species inhabiting lagoons should show shallow genetic architecture relative to species inhabiting more stable outer reefs. Here we test this expectation on an ocean-basin scale with four wrasses (genus Halichoeres): H. claudia (N = 194, with ocean-wide distribution) and H. ornatissimus (N = 346, a Hawaiian endemic) inhabit seaward reef slopes, whereas H. trimaculatus (N = 239) and H. margaritaceus (N = 118) inhabit lagoons and shallow habitats throughout the Pacific. Two mitochondrial markers (cytochrome oxidase I and control region) were sequenced to resolve population structure and history of each species. Haplotype and nucleotide diversity were similar among all four species. The outer reef species showed significantly less population structure, consistent with longer pelagic larval durations. Mismatch distributions and significant negative Fu’s F values indicate Pleistocene population expansion for all species, and (contrary to expectations) shallower histories in the outer slope species. We conclude that lagoonal wrasses may persist through glacial habitat disruptions, but are restricted to refugia during lower sea level stands. In contrast, outer reef slope species have homogeneous and well-connected populations through their entire ranges regardless of sea level fluctuations. These findings contradict the hypothesis that shallow species are less genetically diverse as a consequence of glacial cycles. PMID:22701597
Theory of Semiconducting Superlattices and Microstructures
1992-03-01
theory elucidated the various factors affecting deep levels, sets forth the conditions for obtaining shallow-deep transitions, and predicts that Si (a...theory elucidates the various factors affecting deep levels, sets forth the conditions for obtaining shallow-deep transitions, and predicts that Si (a...ondenotes the anion vacancy, which can be thought any quantitative theoretical factor are theof as originating from Column-O of the Period strengths of
A fused-ring acceptor unit in d-a copolymers benefits photovoltaic performance.
Zuo, Chuantian; Cao, Jiamin; Ding, Liming
2014-08-01
Pentacyclic lactam acceptor unit TPTI invented by our group is proved to be a good building block for efficient D-A copolymers used in organic solar cells. Here, two D-A copolymers PBTTPTI and PTTTPTI are developed by copolymerizing TPTI with 2,2'-bithiophene (BT) or thieno[3,2-b]thiophene (TT). PBTTPTI and PTTTPTI exhibit good solubility and strong interchain π-π interaction even in dilute solution. They possess deep HOMO levels (ca. -5.3 eV), partial crystallinity, and good hole mobilities. Blending with PC71 BM, PBTTPTI and PTTTPTI give decent power conversion efficiencies (PCE) up to 6.83% and 5.86%, with outstanding fill factors (FF) of 74.3% and 71.3%, respectively. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Astrophysics Data System (ADS)
Gao, Yueyue; Yang, Yulin; Zhang, Yong
2017-12-01
A novel donor-acceptor type conjugated polymer PTBFTPD based on two-dimensional (2D) conjugated alkylthienyl substituted thieno[2,3-f]benzofuran (TBF) and thienopyrroledione (TPD) unit, was synthesized and applied as donor material for bulk heterojunction solar cells. The novol polymer possesses a narrow bandgap of 1.83 eV, a deep HOMO energy level (-5.64 eV) and a closer π-π stacking. After conventional devices were fabricated using PTBFTPD as donor blending with PC70BM as acceptor, a power conversion efficiency (PCE) of 4.33% with a high open circuit voltage (Voc) of 1.09 V was obtained. The result indicates the promising potential of thieno [2, 3-f] benzofuran unit for high efficient polymer solar cells with a high voltage.
Biochemical characterization of the 49 kDa penicillin-binding protein of Mycobacterium smegmatis.
Mukherjee, T; Basu, D; Mahapatra, S; Goffin, C; van Beeumen, J; Basu, J
1996-01-01
The 49 kDa penicillin-binding protein (PBP) of Mycobacterium smegmatis catalyses the hydrolysis of the peptide or S-ester bond of carbonyl donors R1-CONH-CHR2-COX-CHR2-COO- (where X is NH or S). In the presence of a suitable amino acceptor, the reaction partitions between the transpeptidation and hydrolysis pathways, with the amino acceptor, behaving as a simple alternative nucleophile at the level of the acyl-enzyme. By virtue of its N-terminal sequence similarity, the 49 kDa PBP represents one of the class of monofunctional low-molecular-mass PBPs. An immunologically related protein of M(r) 52,000 is present in M. tuberculosis. The 49 kDa PBP is sensitive towards amoxycillin, imipenem, flomoxef and cefoxitin. PMID:8947487
NASA Astrophysics Data System (ADS)
Gibson, Gregory Laird
One advantage of conjugated polymers as organic materials is that their properties may be readily tuned through covalent modifications. This thesis presents studies on the structure-property relationships resulting from single- and double-atom substitutions on an alternating donor-acceptor conjugated polymer. Specifically, single selenium and tellurium atoms have been incorporated into the acceptor monomer in place of sulfur; silicon and germanium atoms have been substituted in place of carbon at the donor monomer bridge position. The carbon-donor/ tellurium-acceptor polymer was synthesized by a post-polymerization reaction sequence and demonstrated the utility of heavy group 16 atoms to red shift a polymer absorption spectrum. Density functional theory calculations point to a new explanation for this result invoking the lower heavy atom ionization energy and reduced aromaticity of acceptor monomers containing selenium and tellurium compared to sulfur. Absorption and emission experiments demonstrate that both silicon and germanium substitutions in the donor slightly blue shift the polymer absorption spectrum. Polymers containing sulfur in the acceptor are the strongest light absorbers of all polymers studied here. Molecular weight and phenyl end capping studies show that molecular weight appears to affect polymer absorption to the greatest degree in a medium molecular weight regime and that these effects have a significant aggregation component. Solar cell devices containing either the silicon- or germanium-donor/selenium-acceptor polymer display improved red light harvesting or hole mobility relative to their structural analogues. Overall, these results clarify the effects of single atom substitution on donor-acceptor polymers and aid in the future design of polymers containing heavy atoms.
Temperature-Dependent Compensation and Optical Quenching by Thermal Oxygen Donors in Germanium
NASA Technical Reports Server (NTRS)
Watson, D.; Guptill, M.; Huffman, J.; Krabach, T.; Raines, S.
1994-01-01
Photothermal ionization spectroscopy of germanium, doped in the impurity-band conduction range with gallium acceptors and with thermal oxygen donors, reveals that the donors and acceptors compensate each other at temperatures higher than about 5K, but that the impurities coexist as neutral donors and acceptors at lower temperatures.
Robertson, Patrick A; Villani, Luigi; Dissanayake, Uresha L M; Duncan, Luke F; Abbott, Belinda M; Wilson, David J D; Robertson, Evan G
2018-03-28
The electronic spectra of 2-bromoethylbenzene and its chloro and fluoro analogues have been recorded by resonant two-photon ionisation (R2PI) spectroscopy. Anti and gauche conformers have been assigned by rotational band contour analysis and IR-UV ion depletion spectroscopy in the CH region. Hydrate clusters of the anti conformers have also been observed, allowing the role of halocarbons as hydrogen bond acceptors to be examined in this context. The donor OH stretch of water bound to chlorine is red-shifted by 36 cm -1 , or 39 cm -1 in the case of bromine. Although classed as weak H-bond acceptors, halocarbons are favourable acceptor sites compared to π systems. Fluorine stands out as the weakest H-bond acceptor amongst the halogens. Chlorine and bromine are also weak H-bond acceptors, but allow for more geometric lability, facilitating complimentary secondary interactions within the host molecule. Ab initio and DFT quantum chemical calculations, both harmonic and anharmonic, aid the structural assignments and analysis.
Muraoka, Azusa; Fujii, Mikiya; Mishima, Kenji; Matsunaga, Hiroki; Benten, Hiroaki; Ohkita, Hideo; Ito, Shinzaburo; Yamashita, Koichi
2018-05-07
Herein, we theoretically and experimentally investigated the mechanisms of charge separation processes of organic thin-film solar cells. PTB7, PTB1, and PTBF2 have been chosen as donors and PC 71 BM has been chosen as an acceptor considering that effective charge generation depends on the difference between the material combinations. Experimental results of transient absorption spectroscopy show that the hot process is a key step for determining external quantum efficiency (EQE) in these systems. From the quantum chemistry calculations, it has been found that EQE tends to increase as the transferred charge, charge transfer distance, and variation of dipole moments between the ground and excited states of the donor/acceptor complexes increase; this indicates that these physical quantities are a good descriptor to assess the donor-acceptor charge transfer quality contributing to the solar cell performance. We propose that designing donor/acceptor interfaces with large values of charge transfer distance and variation of dipole moments of the donor/acceptor complexes is a prerequisite for developing high-efficiency polymer/PCBM solar cells.
Hydrogeology of shallow basin-fill deposits in areas of Salt Lake Valley, Salt Lake County, Utah
Thiros, Susan A.
2003-01-01
A study of recently developed residential/commercial areas of Salt Lake Valley, Utah, was done from 1999 to 2001 in areas in which shallow ground water has the potential to move to a deeper aquifer that is used for public supply. Thirty monitoring wells were drilled and sampled in 1999 as part of the study. The ground water was either under unconfined or confined conditions, depending on depth to water and the presence or absence of fine-grained deposits. The wells were completed in the shallowest water-bearing zone capable of supplying water. Monitoring-well depths range from 23 to 154 feet. Lithologic, geophysical, hydraulic-conductivity, transmissivity, water-level, and water-temperature data were obtained for or collected from the wells.Silt and clay layers noted on lithologic logs correlate with increases in electrical conductivity and natural gamma radiation shown on many of the electromagnetic-induction and natural gamma logs. Relatively large increases in electrical conductivity, determined from the electromagnetic-induction logs, with no major changes in natural gamma radiation are likely caused by increased dissolved-solids content in the ground water. Some intervals with high electrical conductivity correspond to areas in which water was present during drilling.Unconfined conditions were present at 7 of 20 monitoring wells on the west side and at 2 of 10 wells on the east side of Salt Lake Valley. Fine-grained deposits confine the ground water. Anthropogenic compounds were detected in water sampled from most of the wells, indicating a connection with the land surface. Data were collected from 20 of the monitoring wells to estimate the hydraulic conductivity and transmissivity of the shallow ground-water system. Hydraulic-conductivity values of the shallow aquifer ranged from 30 to 540 feet per day. Transmissivity values of the shallow aquifer ranged from 3 to 1,070 feet squared per day. There is a close linear relation between transmissivity determined from slug-test analysis and transmissivity estimated from specific capacity.Water-level fluctuations were measured in the 30 monitoring wells from 1999 to July 2001. Generally, water-level changes measured in wells on the west side of the valley followed a seasonal trend and wells on the east side showed less fluctuation or a gradual decline during the 2-year period. This may indicate that a larger percentage of recharge to the shallow ground-water system on the west side is from somewhat consistent seasonal sources, such as canals and unconsumed irrigation water, as compared to sources on the east side. Water levels measured in monitoring wells completed in the shallow ground-water system near large-capacity public-supply wells varied in response to ground-water withdrawals from the deeper confined aquifer. Water temperature was monitored in 23 wells. Generally, little or no change in water temperature was measured in monitoring wells with a depth to water greater than about 40 feet. The shallower the water level in the well, the greater the water-temperature change measured during the study.Comparison of water levels measured in the monitoring wells and deeper wells in the same area indicate a downward gradient on the east side of the valley. Water levels in the shallow and deeper aquifers in the secondary recharge area on the west side of the valley were similar to those on the east side. Water levels measured in the monitoring wells and nearby wells completed in the deeper aquifer indicate that the vertical gradient can change with time and stresses on the system.
Banks, William S.L.; Masterson, John P.; Johnson, Carole D.
2012-01-01
The U.S. Geological Survey, as part of its Climate and Land Use Change Research and Development Program, is conducting a multi-year investigation to assess potential impacts on the natural resources of Assateague Island National Seashore, Maryland that may result from changes in the hydrologic system in response to projected sea-level rise. As part of this effort, 26 monitoring wells were installed in pairs along five east-west trending transects. Each of the five transects has between two and four pairs of wells, consisting of a shallow well and a deeper well. The shallow well typically was installed several feet below the water table—usually in freshwater about 10 feet below land surface (ft bls)—to measure water-level changes in the shallow groundwater system. The deeper well was installed below the anticipated depth to the freshwater-saltwater interface—usually in saltwater about 45 to 55 ft bls—for the purpose of borehole geophysical logging to characterize local differences in lithology and salinity and to monitor tidal influences on groundwater. Four of the 13 shallow wells and 5 of the 13 deeper wells were instrumented with water-level recorders that collected water-level data at 15-minute intervals from August 12 through September 28, 2010. Data collected from these instrumented wells were compared with tide data collected north of Assateague Island at the Ocean City Inlet tide gage, and precipitation data collected by National Park Service staff on Assateague Island. These data indicate that precipitation events coupled with changes in ambient sea level had the largest effect on groundwater levels in all monitoring wells near the Atlantic Ocean and Chincoteague and Sinepuxent Bays, whereas precipitation events alone had the greatest impact on shallow groundwater levels near the center of the island. Daily and bi-monthly tidal cycles appeared to have minimal influence on groundwater levels throughout the island and the water-level changes that were observed appeared to vary among well sites, indicating that changes in lithology and salinity also may affect the response of water levels in the shallow and deeper groundwater systems throughout the island. Borehole geophysical logs were collected at each of the 13 deeper wells along the 5 transects. Electromagnetic induction logs were collected to identify changes in lithology; determine the approximate location of the freshwater-saltwater interface; and characterize the distribution of fresh and brackish water in the shallow aquifer, and the geometry of the fresh groundwater lens beneath the island. Natural gamma logs were collected to provide information on the geologic framework of the island including the presence and thickness of finer-grained deposits found in the subsurface throughout the island during previous investigations. Results of this investigation show the need for collection of continuous water-level data in both the shallow and deeper parts of the flow system and electromagnetic induction and natural gamma geophysical logging data to better understand the response of this groundwater system to changes in precipitation and tidal forcing. Hydrologic data collected as part of this investigation will serve as the foundation for the development of numerical flow models to assess the potential effects of climate change on the coastal groundwater system of Assateague Island.
Mamidala, Venkatesh; Polavarapu, Lakshminarayana; Balapanuru, Janardhan; Loh, Kian Ping; Xu, Qing-Hua; Ji, Wei
2010-12-06
By complexion of donor and acceptor using ionic interactions, the enhanced nonlinear optical responses of donor-acceptor ionic complexes in aqueous solution were studied with 7-ns laser pulses at 532 nm. The optical limiting performance of negatively charged gold nanoparticles or graphene oxide (Acceptor) was shown to be improved significantly when they were mixed with water-soluble, positively-charged porphyrin (Donor) derivative. In contrast, no enhancement was observed when mixing with negatively-charged porphyrin. Transient absorption studies of the donor-acceptor complexes confirmed that the addition of energy transfer pathway were responsible for excited-state deactivation, which results in the observed enhancement. Fluence, angle-dependent scattering and time correlated single photon counting measurements suggested that the enhanced nonlinear scattering due to faster nonradiative decay should play a major role in the enhanced optical limiting responses.
Cougnon, Fabien B L; Au-Yeung, Ho Yu; Pantoş, G Dan; Sanders, Jeremy K M
2011-03-09
The discovery through dynamic combinatorial chemistry (DCC) of a new generation of donor-acceptor [2]catenanes highlights the power of DCC to access unprecedented structures. While conventional thinking has limited the scope of donor-acceptor catenanes to strictly alternating stacks of donor (D) and acceptor (A) aromatic units, DCC is demonstrated in this paper to give access to unusual DAAD, DADD, and ADAA stacks. Each of these catenanes has specific structural requirements, allowing control of their formation. On the basis of these results, and on the observation that the catenanes represent kinetic bottlenecks in the reaction pathway, we propose a mechanism that explains and predicts the structures formed. Furthermore, the spontaneous assembly of catenanes in aqueous dynamic systems gives a fundamental insight into the role played by hydrophobic effect and donor-acceptor interactions when building such complex architectures.
Increase in diarrheal disease associated with arsenic mitigation in Bangladesh.
Wu, Jianyong; van Geen, Alexander; Ahmed, Kazi Matin; Alam, Yasuyuki Akita Jahangir; Culligan, Patricia J; Escamilla, Veronica; Feighery, John; Ferguson, Andrew S; Knappett, Peter; Mailloux, Brian J; McKay, Larry D; Serre, Marc L; Streatfield, P Kim; Yunus, Mohammad; Emch, Michael
2011-01-01
Millions of households throughout Bangladesh have been exposed to high levels of arsenic (As) causing various deadly diseases by drinking groundwater from shallow tubewells for the past 30 years. Well testing has been the most effective form of mitigation because it has induced massive switching from tubewells that are high (>50 µg/L) in As to neighboring wells that are low in As. A recent study has shown, however, that shallow low-As wells are more likely to be contaminated with the fecal indicator E. coli than shallow high-As wells, suggesting that well switching might lead to an increase in diarrheal disease. Approximately 60,000 episodes of childhood diarrhea were collected monthly by community health workers between 2000 and 2006 in 142 villages of Matlab, Bangladesh. In this cross-sectional study, associations between childhood diarrhea and As levels in tubewell water were evaluated using logistic regression models. Adjusting for wealth, population density, and flood control by multivariate logistic regression, the model indicates an 11% (95% confidence intervals (CIs) of 4-19%) increase in the likelihood of diarrhea in children drinking from shallow wells with 10-50 µg/L As compared to shallow wells with >50 µg/L As. The same model indicates a 26% (95%CI: 9-42%) increase in diarrhea for children drinking from shallow wells with ≤10 µg/L As compared to shallow wells with >50 µg/L As. Children drinking water from shallow low As wells had a higher prevalence of diarrhea than children drinking water from high As wells. This suggests that the health benefits of reducing As exposure may to some extent be countered by an increase in childhood diarrhea. © 2011 Wu et al.
The Role of ABC Proteins in Drug-Resistant Breast Cancer Cells
2007-04-01
and a biotin acceptor domain) under control of the alcohol oxidase promoter (Figure 2). Upon methanol induction, the yeast expressed high levels of...as native cDNA. Therefore, we backtranslated the protein into a nucleotide sequence codon-optimized for expression in Pichia pastoris yeast. Yeast
Donor-Acceptor-Collector Ternary Crystalline Films for Efficient Solid-State Photon Upconversion.
Ogawa, Taku; Hosoyamada, Masanori; Yurash, Brett; Nguyen, Thuc-Quyen; Yanai, Nobuhiro; Kimizuka, Nobuo
2018-06-25
It is pivotal to achieve efficient triplet-triplet annihilation based photon upconversion (TTA-UC) in the solid-state for enhancing potentials of renewable energy production devices. However, the UC efficiency of solid materials is largely limited by low fluorescence quantum yields that originate from the aggregation of TTA-UC chromophores, and also by severe back energy transfer from the acceptor singlet state to the singlet state of the triplet donor in the condensed state. In this work, to overcome these issues, we introduce a highly fluorescent singlet energy collector as the third component of donor-doped acceptor crystalline films, in which dual energy migration, i.e., triplet energy migration for TTA-UC and succeeding singlet energy migration for transferring energy to a collector, takes place. To demonstrate this scheme, a highly fluorescent singlet energy collector was added as the third component of donor-doped acceptor crystalline films. An anthracene-based acceptor containing alkyl chains and a carboxylic moiety is mixed with the triplet donor Pt(II) octaethylporphyrin (PtOEP) and the energy collector 2,5,8,11-tetra- tert-butylperylene (TTBP) in solution, and spin-coating of the mixed solution gives acceptor films of nanofibrous crystals homogeneously doped with PtOEP and TTBP. Interestingly, delocalized singlet excitons in acceptor crystals are found to diffuse effectively over the distance of ~37 nm. Thanks to this high diffusivity, only 0.5 mol% of doped TTBP can harvest most of the singlet excitons, which successfully doubles the solid-state fluorescent quantum yield of acceptor/TTBP blend films to 76%. Furthermore, since the donor PtOEP and the collector TTBP are separately isolated in the nanofibrous acceptor crystals, the singlet back energy transfer from the collector to the donor is effectively avoided. Such efficient singlet energy collection and inhibited back energy transfer processes result in a large increase of UC efficiency up to 9.0%, offering rational design principles towards ultimately efficient solid-state upconverters.
Characteristics of contraceptive acceptors in an urban Nigerian setting.
Ayangade, O
1984-02-01
Intensive efforts in promoting family planning concepts and contraceptive delivery in the Third World over the past two- and one-half decades have yielded only token dividends . This has occurred in Nigeria, despite the favorable government attitude. A study of the characteristics of current contraceptive acceptors showed an overwhelming percentage of acceptors are uneducated , married and from the lower socioeconomic class, a striking departure from usual expectations. Most acceptors prefer oral contraceptives. The status of acceptance of modern contraception by the educated population is still undetermined. Contraceptives appeared to be used primarily by women aged 30 and older in our population.
p-type doping by platinum diffusion in low phosphorus doped silicon
NASA Astrophysics Data System (ADS)
Ventura, L.; Pichaud, B.; Vervisch, W.; Lanois, F.
2003-07-01
In this work we show that the cooling rate following a platinum diffusion strongly influences the electrical conductivity in weakly phosphorus doped silicon. Diffusions were performed at the temperature of 910 °C in the range of 8 32 hours in 0.6, 30, and 60 Ωrm cm phosphorus doped silicon samples. Spreading resistance profile analyses clearly show an n-type to p-type conversion under the surface when samples are cooled slowly. On the other hand, a compensation of the phosphorus donors can only be observed when samples are quenched. One Pt related acceptor deep level at 0.43 eV from the valence band is assumed to be at the origin of the type conversion mechanism. Its concentration increases by lowering the applied cooling rate. A complex formation with fast species such as interstitial Pt atoms or intrinsic point defects is expected. In 0.6 Ωrm cm phosphorus doped silicon, no acceptor deep level in the lower band gap is detected by DLTS measurement. This removes the opportunity of a pairing between phosphorus and platinum and suggests the possibility of a Fermi level controlled complex formation.
BODIPY-Based Donor-Acceptor Pi-Conjugated Alternating Copolymers
DOE Office of Scientific and Technical Information (OSTI.GOV)
Popere, Bhooshan C.; Della Pelle, Andrea M.; Thayumanavan, S.
2011-06-28
Four novel π-conjugated copolymers incorporating 4,4-difluoro-4-borata-3a-azonia-4a-aza-s-indacene (BODIPY) core as the “donor” and quinoxaline (Qx), 2,1,3-benzothiadiazole (BzT), N,N'-di(2'-ethyl)hexyl-3,4,7,8-naphthalenetetracarboxylic diimide (NDI), and N,N'-di(2'-ethyl)hexyl-3,4,9,10-perylene tetracarboxylic diimide (PDI) as acceptors were designed and synthesized via Sonogashira polymerization. The polymers were characterized by ¹H NMR spectroscopy, gel permeation chromatography (GPC), UV–vis absorption spectroscopy, and cyclic voltammetry. Density functional theory (DFT) calculations were performed on polymer repeat units, and the highest occupied molecular orbital (HOMO) and the lowest unoccupied molecular orbital (LUMO) energy levels were estimated from the optimized geometry using B3LYP functional and 6-311g(d,p) basis set. Copolymers with Qx and BzT possessed HOMO and LUMOmore » energy levels comparable to those of BODIPY homopolymer, while PDI stabilized both HOMO and LUMO levels. Semiconductor behavior of these polymers was estimated in organic thin-film transistors (OTFT). While the homopolymer, Qx, and BzT-based copolymers showed only p-type semiconductor behavior, copolymers with PDI and NDI showed only n-type behavior.« less
NASA Astrophysics Data System (ADS)
Mimila-Arroyo, J.; Bland, S.; Barbé, M.
2002-05-01
The reactivation kinetics of the acceptor behavior of carbon, its dependence on dopant precursors, doping level, layer thickness, and annealing temperature, as well as the behavior of carbon-hydrogen complexes in GaAs grown by metalorganic chemical vapor deposition are studied. Independent of the carbon source, in the "as grown" material, systematically carbon hydrogen complexes are present and the hole concentration is lower than the corresponding carbon concentration. The carbon reactivation kinetics was achieved by ex situ rapid thermal annealing through a series of multistage annealing experiments and assessed at each annealing stage by infrared absorption, hydrogen secondary ion mass spectroscopy profiling, and hole concentration measurements. Carbon reactivation occurs solely by the debonding of hydrogen from the isolated carbon acceptor and its out-diffusion from the sample. The carbon reactivation kinetics can be treated as a first order one with an activation energy, Ea=1.42±0.01 eV, independent of doping precursors, doping level, and layer thickness. The reactivation constant results to decrease as doping level and layer thickness increase. An empirical formula has been obtained that allows one to calculate the reactivation constant as a function of the carbon doping, layer thickness, and annealing temperature, allowing one to determine the optimal carbon reactivation conditions for any C:GaAs layer.
Park, Soohyung; Jeong, Junkyeong; Hyun, Gyeongho; Kim, Minju; Lee, Hyunbok; Yi, Yeonjin
2016-01-01
The energy level alignments at donor/acceptor interfaces in organic photovoltaics (OPVs) play a decisive role in device performance. However, little is known about the interfacial energetics in polymer OPVs due to technical issues of the solution process. Here, the frontier ortbial line-ups at the donor/acceptor interface in high performance polymer OPVs, PTB7/PC71BM, were investigated using in situ UPS, XPS and IPES. The evolution of energy levels during PTB7/PC71BM interface formation was investigated using vacuum electrospray deposition, and was compared with that of P3HT/PC61BM. At the PTB7/PC71BM interface, the interface dipole and the band bending were absent due to their identical charge neutrality levels. In contrast, a large interfacial dipole was observed at the P3HT/PC61BM interface. The measured photovoltaic energy gap (EPVG) was 1.10 eV for PTB7/PC71BM and 0.90 eV for P3HT/PC61BM. This difference in the EPVG leads to a larger open-circuit voltage of PTB7/PC71BM than that of P3HT/PC61BM. PMID:27734957
Park, Soohyung; Jeong, Junkyeong; Hyun, Gyeongho; Kim, Minju; Lee, Hyunbok; Yi, Yeonjin
2016-10-13
The energy level alignments at donor/acceptor interfaces in organic photovoltaics (OPVs) play a decisive role in device performance. However, little is known about the interfacial energetics in polymer OPVs due to technical issues of the solution process. Here, the frontier ortbial line-ups at the donor/acceptor interface in high performance polymer OPVs, PTB7/PC 71 BM, were investigated using in situ UPS, XPS and IPES. The evolution of energy levels during PTB7/PC 71 BM interface formation was investigated using vacuum electrospray deposition, and was compared with that of P3HT/PC 61 BM. At the PTB7/PC 71 BM interface, the interface dipole and the band bending were absent due to their identical charge neutrality levels. In contrast, a large interfacial dipole was observed at the P3HT/PC 61 BM interface. The measured photovoltaic energy gap (E PVG ) was 1.10 eV for PTB7/PC 71 BM and 0.90 eV for P3HT/PC 61 BM. This difference in the E PVG leads to a larger open-circuit voltage of PTB7/PC 71 BM than that of P3HT/PC 61 BM.
The effect of shallow vs. deep level doping on the performance of thermoelectric materials
NASA Astrophysics Data System (ADS)
Song, Qichen; Zhou, Jiawei; Meroueh, Laureen; Broido, David; Ren, Zhifeng; Chen, Gang
2016-12-01
It is well known that the efficiency of a good thermoelectric material should be optimized with respect to doping concentration. However, much less attention has been paid to the optimization of the dopant's energy level. Thermoelectric materials doped with shallow levels may experience a dramatic reduction in their figures of merit at high temperatures due to the excitation of minority carriers that reduces the Seebeck coefficient and increases bipolar heat conduction. Doping with deep level impurities can delay the excitation of minority carriers as it requires a higher temperature to ionize all dopants. We find through modeling that, depending on the material type and temperature range of operation, different impurity levels (shallow or deep) will be desired to optimize the efficiency of a thermoelectric material. For different materials, we further clarify where the most preferable position of the impurity level within the bandgap falls. Our research provides insight on why different dopants often affect thermoelectric transport properties differently and directions in searching for the most appropriate dopants for a thermoelectric material in order to maximize the device efficiency.
Optically nonlinear energy transfer in light-harvesting dendrimers.
Andrews, David L; Bradshaw, David S
2004-08-01
Dendrimeric polymers are the subject of intense research activity geared towards their implementation in nanodevice applications such as energy harvesting systems, organic light-emitting diodes, photosensitizers, low-threshold lasers, and quantum logic elements, etc. A recent development in this area has been the construction of dendrimers specifically designed to exhibit novel forms of optical nonlinearity, exploiting the unique properties of these materials at high levels of photon flux. Starting from a thorough treatment of the underlying theory based on the principles of molecular quantum electrodynamics, it is possible to identify and characterize several optically nonlinear mechanisms for directed energy transfer and energy pooling in multichromophore dendrimers. Such mechanisms fall into two classes: first, those where two-photon absorption by individual donors is followed by transfer of the net energy to an acceptor; second, those where the excitation of two electronically distinct but neighboring donor groups is followed by a collective migration of their energy to a suitable acceptor. Each transfer process is subject to minor dissipative losses. In this paper we describe in detail the balance of factors and the constraints that determines the favored mechanism, which include the excitation statistics, structure of the energy levels, laser coherence factors, chromophore selection rules and architecture, possibilities for the formation of delocalized excitons, spectral overlap, and the overall distribution of donors and acceptors. Furthermore, it transpires that quantum interference between different mechanisms can play an important role. Thus, as the relative importance of each mechanism determines the relevant nanophotonic characteristics, the results reported here afford the means for optimizing highly efficient light-harvesting dendrimer devices. (c) 2004 American Institute of Physics.
Optically nonlinear energy transfer in light-harvesting dendrimers
NASA Astrophysics Data System (ADS)
Andrews, David L.; Bradshaw, David S.
2004-08-01
Dendrimeric polymers are the subject of intense research activity geared towards their implementation in nanodevice applications such as energy harvesting systems, organic light-emitting diodes, photosensitizers, low-threshold lasers, and quantum logic elements, etc. A recent development in this area has been the construction of dendrimers specifically designed to exhibit novel forms of optical nonlinearity, exploiting the unique properties of these materials at high levels of photon flux. Starting from a thorough treatment of the underlying theory based on the principles of molecular quantum electrodynamics, it is possible to identify and characterize several optically nonlinear mechanisms for directed energy transfer and energy pooling in multichromophore dendrimers. Such mechanisms fall into two classes: first, those where two-photon absorption by individual donors is followed by transfer of the net energy to an acceptor; second, those where the excitation of two electronically distinct but neighboring donor groups is followed by a collective migration of their energy to a suitable acceptor. Each transfer process is subject to minor dissipative losses. In this paper we describe in detail the balance of factors and the constraints that determines the favored mechanism, which include the excitation statistics, structure of the energy levels, laser coherence factors, chromophore selection rules and architecture, possibilities for the formation of delocalized excitons, spectral overlap, and the overall distribution of donors and acceptors. Furthermore, it transpires that quantum interference between different mechanisms can play an important role. Thus, as the relative importance of each mechanism determines the relevant nanophotonic characteristics, the results reported here afford the means for optimizing highly efficient light-harvesting dendrimer devices.
Luo, Zhenghui; Bin, Haijun; Liu, Tao; Zhang, Zhi-Guo; Yang, Yankang; Zhong, Cheng; Qiu, Beibei; Li, Guanghao; Gao, Wei; Xie, Dongjun; Wu, Kailong; Sun, Yanming; Liu, Feng; Li, Yongfang; Yang, Chuluo
2018-03-01
A novel small molecule acceptor MeIC with a methylated end-capping group is developed. Compared to unmethylated counterparts (ITCPTC), MeIC exhibits a higher lowest unoccupied molecular orbital (LUMO) level value, tighter molecular packing, better crystallites quality, and stronger absorption in the range of 520-740 nm. The MeIC-based polymer solar cells (PSCs) with J71 as donor, achieve high power conversion efficiency (PCE), up to 12.54% with a short-circuit current (J SC ) of 18.41 mA cm -2 , significantly higher than that of the device based on J71:ITCPTC (11.63% with a J SC of 17.52 mA cm -2 ). The higher J SC of the PSC based on J71:MeIC can be attributed to more balanced μ h /μ e , higher charge dissociation and charge collection efficiency, better molecular packing, and more proper phase separation features as indicated by grazing incident X-ray diffraction and resonant soft X-ray scattering results. It is worth mentioning that the as-cast PSCs based on MeIC also yield a high PCE of 11.26%, which is among the highest value for the as-cast nonfullerene PSCs so far. Such a small modification that leads to so significant an improvement of the photovoltaic performance is a quite exciting finding, shining a light on the molecular design of the nonfullerene acceptors. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Fluorescent and colorimetric molecular recognition probe for hydrogen bond acceptors.
Pike, Sarah J; Hunter, Christopher A
2017-11-22
The association constants for formation of 1 : 1 complexes between a H-bond donor, 1-naphthol, and a diverse range of charged and neutral H-bond acceptors have been measured using UV/vis absorption and fluorescence emission titrations. The performance of 1-naphthol as a dual colorimetric and fluorescent molecular recognition probe for determining the H-bond acceptor (HBA) parameters of charged and neutral solutes has been investigated in three solvents. The data were employed to establish self-consistent H-bond acceptor parameters (β) for benzoate, azide, chloride, thiocyanate anions, a series of phosphine oxides, phosphate ester, sulfoxide and a tertiary amide. The results demonstrate both the transferability of H-bond parameters between different solvents and the utility of the naphthol-based dual molecular recognition probe to exploit orthogonal spectroscopic techniques to determine the HBA properties of neutral and charged solutes. The benzoate anion is the strongest HBA studied with a β parameter of 15.4, and the neutral tertiary amide is the weakest H-bond acceptor investigated with a β parameter of 8.5. The H-bond acceptor strength of the azide anion is higher than that of chloride (12.8 and 12.2 respectively), and the thiocyanate anion has a β value of 10.8 and thus is a significantly weaker H-bond acceptor than both the azide and chloride anions.
NASA Astrophysics Data System (ADS)
Zhong, Hong-Xia; Shi, Jun-Jie; Zhang, Min; Jiang, Xin-He; Huang, Pu; Ding, Yi-Min
2014-10-01
Improving p-type doping efficiency in Al-rich AlGaN alloys is a worldwide problem for the realization of AlGaN-based deep ultraviolet optoelectronic devices. In order to solve this problem, we calculate Mg acceptor activation energy and investigate its relationship with Mg local structure in nanoscale (AlN)5/(GaN)1 superlattice (SL), a substitution for Al0.83Ga0.17N disorder alloy, using first-principles calculations. A universal picture to reduce acceptor activation energy in wide-gap semiconductors is given for the first time. By reducing the volume of the acceptor local structure slightly, its activation energy can be decreased remarkably. Our results show that Mg acceptor activation energy can be reduced significantly from 0.44 eV in Al0.83Ga0.17N disorder alloy to 0.26 eV, very close to the Mg acceptor activation energy in GaN, and a high hole concentration in the order of 1019 cm-3 can be obtained in (AlN)5/(GaN)1 SL by MgGa δ-doping owing to GaN-monolayer modulation. We thus open up a new way to reduce Mg acceptor activation energy and increase hole concentration in Al-rich AlGaN.
Zhong, Hong-xia; Shi, Jun-jie; Zhang, Min; Jiang, Xin-he; Huang, Pu; Ding, Yi-min
2014-10-23
Improving p-type doping efficiency in Al-rich AlGaN alloys is a worldwide problem for the realization of AlGaN-based deep ultraviolet optoelectronic devices. In order to solve this problem, we calculate Mg acceptor activation energy and investigate its relationship with Mg local structure in nanoscale (AlN)5/(GaN)1 superlattice (SL), a substitution for Al(0.83)Ga(0.17)N disorder alloy, using first-principles calculations. A universal picture to reduce acceptor activation energy in wide-gap semiconductors is given for the first time. By reducing the volume of the acceptor local structure slightly, its activation energy can be decreased remarkably. Our results show that Mg acceptor activation energy can be reduced significantly from 0.44 eV in Al(0.83)Ga(0.17)N disorder alloy to 0.26 eV, very close to the Mg acceptor activation energy in GaN, and a high hole concentration in the order of 10(19) cm(-3) can be obtained in (AlN)5/(GaN)1 SL by Mg(Ga) δ-doping owing to GaN-monolayer modulation. We thus open up a new way to reduce Mg acceptor activation energy and increase hole concentration in Al-rich AlGaN.
Electron paramagnetic resonance study of neutral Mg acceptors in β-Ga2O3 crystals
NASA Astrophysics Data System (ADS)
Kananen, B. E.; Halliburton, L. E.; Scherrer, E. M.; Stevens, K. T.; Foundos, G. K.; Chang, K. B.; Giles, N. C.
2017-08-01
Electron paramagnetic resonance (EPR) is used to directly observe and characterize neutral Mg acceptors ( M gGa0 ) in a β-Ga2O3 crystal. These acceptors, best considered as small polarons, are produced when the Mg-doped crystal is irradiated at or near 77 K with x rays. During the irradiation, neutral acceptors are formed when holes are trapped at singly ionized Mg acceptors ( M gGa- ). Unintentionally present Fe3+ (3d5) and Cr3+ (3d3) transition-metal ions serve as the corresponding electron traps. The hole is localized in a nonbonding p orbital on a threefold-coordinated oxygen ion adjacent to an Mg ion at a sixfold-coordinated Ga site. These M gGa0 acceptors (S = 1/2) have a slightly anisotropic g matrix (principal values are 2.0038, 2.0153, and 2.0371). There is also partially resolved 69Ga and 71Ga hyperfine structure resulting from unequal interactions with the two Ga ions adjacent to the hole. With the magnetic field along the a direction, hyperfine parameters are 2.61 and 1.18 mT for the 69Ga nuclei at the two inequivalent neighboring Ga sites. The M gGa0 acceptors thermally convert back to their nonparamagnetic M gGa- charge state when the temperature of the crystal is raised above approximately 250 K.
Lancet, Michael S.; Curran, George P.
1981-08-18
A synthetic CO.sub.2 acceptor consisting essentially of at least one compound selected from the group consisting of calcium oxide and calcium carbonate supported in a refractory carrier matrix, the carrier having the general formula Ca.sub.5 (SiO.sub.4).sub.2 CO.sub.3. A method for producing the synthetic CO.sub.2 acceptor is also disclosed.
Luminescence properties of Al0.48In0.52As under hydrostatic pressure
NASA Astrophysics Data System (ADS)
Zhou, Hai-Ping; Sotomayor-Torres, Cliva M.
1992-07-01
The low-temperature photoluminescence (PL) and photoluminescence excitation (PLE) spectra characteristics of Al0.48In0.52As have been studied under high pressure from 1 bar up to 92 kbar. We have obtained, for the first time, the (Gamma) -(Chi) crossover critical pressure Pc (approximately 52.5 +/- 0.5 kbar), the linear pressure coefficients (alpha) (Gamma ) and (alpha) (Chi ) (7.9 meV/kbar and -2.9 meV/kbar, respectively) at helium temperature. By measuring temperature and excitation intensity dependences of the PL spectra together with the PLE spectra, we have demonstrated that the low-temperature luminescence of the Al0.48In0.52As is not excitonic but due to (D degree(s), A degree(s))transitions with a relatively deep acceptor of 68 meV, which occurs in both the direct- and indirect-band gap. We suggest that the shallow donor ground state associated with the (Chi) - and (Gamma) -conduction bands seem to be tied quite rigidly to these conduction bands. Variations in the donor binding energies with the pressure and the direct-indirect crossover seem to be minor.
First-principles study of native defects in bulk Sm2CuO4 and its (001) surface structure
NASA Astrophysics Data System (ADS)
Zheng, Fubao; Zhang, Qinfang; Meng, Qiangqiang; Wang, Baolin; Song, Fengqi; Yunoki, Seiji; Wang, Guanghou
2018-04-01
Using the first-principles calculations based on the density functional theory, we have studied the bulk defect formation and surface structures of Sm2CuO4. To ensure the accuracy of calculations, the spin order of Cu atoms is rechecked and it is the well-known nearest-neighbor antiferromagnetic ground state, which can be attributed to the hole-mediated superexchange through the strong pdσ hybridization interaction between Cu dx2-y2 electron and the neighboring oxygen px (or py) electron. Under each present experimental condition, the Sm vacancy has a very high formation energy and is unlikely to be stable. The Cu vacancy is a shallow acceptor, which is preferred under O-rich conditions, whereas the O vacancy is a donor and energetically favorable under O-poor conditions. To construct its (001) surface structure, CuOO, CuO, and Cu terminated surfaces are found to be most favorable under different experimental conditions. The stable surface structures are always accompanied by significant surface atomic reconstructions and electron charge redistribution, which are intimately correlated to each other.
Colour-causing defects and their related optoelectronic transitions in single crystal CVD diamond.
Khan, R U A; Cann, B L; Martineau, P M; Samartseva, J; Freeth, J J P; Sibley, S J; Hartland, C B; Newton, M E; Dhillon, H K; Twitchen, D J
2013-07-10
Defects causing colour in nitrogen-doped chemical vapour-deposited (CVD) diamond can adversely affect the exceptional optical, electronic and spintronic properties of the material. Several techniques were used to study these defects, namely optical absorption spectroscopy, thermoluminescence (TL) and electron paramagnetic resonance (EPR). From our studies, the defects causing colour in nitrogen-doped CVD diamond are clearly not the same as those causing similar colour in natural diamonds. The brown colour arises due to a featureless absorption profile that decreases in intensity with increasing wavelength, and a broad feature at 360 nm (3.49 eV) that scales in intensity with it. Another prominent absorption band, centred at 520 nm (2.39 eV), is ascribed to the neutral nitrogen-vacancy-hydrogen defect. The defects responsible for the brown colour possess acceptor states that are 1.5 eV from the valence band (VB) edge. The brown colour is removed by heat treatment at 1600 ° C, whereupon new defects possessing shallow (<1 eV) trap states are generated.
Investigation of Short Channel Effects on Device Performance for 60nm NMOS Transistor
NASA Astrophysics Data System (ADS)
Chinnappan, U.; Sanudin, R.
2017-08-01
In the aggressively scaled complementary metal oxide semiconductor (CMOS) devices, shallower p-n junctions and low sheet resistances are essential for short-channel effect (SCE) control and high device performance. The SCE are attributed to two physical phenomena that are the limitation imposed on electron drift characteristics in channel and the modification of the threshold voltage (Vth) due to the shortening channel length. The decrement of Vth with decrement in gate length is a well-known attribute in SCE known as “threshold voltage roll-off’. In this research, the Technology Computer Aided Design (TCAD) was used to model the SCE phenomenon effect on 60nm n-type metal oxide semiconductor (NMOS) transistor. There are three parameters being investigated, which are the oxide thickness (Tox), gate length (L), acceptor concentration (Na). The simulation data were used to visualise the effect of SCE on the 60nm NMOS transistor. Simulation data suggest that all three parameters have significant effect on Vth, and hence on the transistor performance. It is concluded that there is a trade-off among these three parameters to obtain an optimized transistor performance.
Noble metal-free RGO/TiO2 composite nanofiber with enhanced photocatalytic H2-production performance
NASA Astrophysics Data System (ADS)
Xu, Difa; Li, Lingling; He, Rongan; Qi, Lifang; Zhang, Liuyang; Cheng, Bei
2018-03-01
1D reduced graphene oxide (RGO)/TiO2 nanocomposite fibers were fabricated by a facile two-step method. These samples demonstrated high photocatalytic H2-production activity from methanol aqueous solution, even without the aid of noble metal. When the ratio of RGO is 0.25 wt%, the highest H2-production rate was achieved. It increased by 10 fold than bare TiO2, reaching 149 μmol h-1 g-1 with quantum efficiency (QE) of 0.75%. The reasons were as follows. Firstly, the RGO nanosheets acted as electron acceptors. Secondly, some shallow trap states at the surface or interface of TiO2 were created by the reduction of GO during calcination. Thirdly, the redox potential position of graphene/graphene- was suitable. Fourthly, RGO could efficiently promote the separation of photogenerated electron-hole pairs and significantly enhance the photocatalytic H2-production activity. This interpretation was corroborated by transient photocurrent response. The aforementioned marvelous results provided a probable solution to replace noble metals (such as Pt) by graphene as an effective cocatalyst.
Spin-lattice relaxation of optically polarized nuclei in p -type GaAs
NASA Astrophysics Data System (ADS)
Kotur, M.; Dzhioev, R. I.; Vladimirova, M.; Cherbunin, R. V.; Sokolov, P. S.; Yakovlev, D. R.; Bayer, M.; Suter, D.; Kavokin, K. V.
2018-04-01
Spin-lattice relaxation of the nuclear spin system in p -type GaAs is studied using a three-stage experimental protocol including optical pumping and measuring the difference of the nuclear spin polarization before and after a dark interval of variable length. This method allows us to measure the spin-lattice relaxation time T1 of optically pumped nuclei "in the dark," that is, in the absence of illumination. The measured T1 values fall into the subsecond time range, being three orders of magnitude shorter than in earlier studied n -type GaAs. The drastic difference is further emphasized by magnetic-field and temperature dependencies of T1 in p -GaAs, showing no similarity to those in n -GaAs. This unexpected behavior finds its explanation in the spatial selectivity of the optical pumping in p -GaAs, that is only efficient in the vicinity of shallow donors, together with the quadrupole relaxation of nuclear spins, which is induced by electric fields within closely spaced donor-acceptor pairs. The developed theoretical model explains the whole set of experimental results.
Bidad, Natalie; MacDonald, Lindsay; Winters, Zoë E; Edwards, Sarah J L; Emson, Marie; Griffin, Clare L; Bliss, Judith; Horne, Rob
2016-09-02
Randomised controlled trials (RCTs) often fail to recruit sufficient participants, despite altruism being cited as their motivation. Previous investigations of factors influencing participation decisions have been methodologically limited. This study evaluated how women weigh up different motivations after initially expressing altruism, and explored their understanding of a trial and its alternatives. The trial was the 'Quality of Life after Mastectomy and Breast Reconstruction' (QUEST) trial. Thirty-nine women participated in qualitative interviews 1 month post-surgery. Twenty-seven women (10 trial decliners and 17 acceptors) who spontaneously mentioned 'altruism' were selected for thematic analysis. Verbatim transcripts were coded independently by two researchers. Participants' motivations to accept or decline randomisation were cross-referenced with their understanding of the QUEST trials and the process of randomisation. The seven emerging themes were: (1) altruism expressed by acceptors and decliners; (2) overriding personal needs in decliners; (3) pure altruism in acceptors; (4) 'hypothetical altruism' amongst acceptors; (5) weak altruism amongst acceptors; (6) conditional altruism amongst acceptors; and (7) sense of duty to participate. Poor understanding of the trial rationale and its implications was also evident. Altruism was a motivating factor for participation in the QUEST randomised controlled trials where the main outcomes comprised quality of life and allocated treatments comprised established surgical procedures. Women's decisions were influenced by their understanding of the trial. Both acceptors and decliners of the trial expressed 'altruism', but most acceptors lacked an obvious treatment preference, hoped for personal benefits regarding a treatment allocation, or did not articulate complete understanding of the trial. QUEST A, ISRCTN38846532 ; Date assigned 6 January 2010. QUEST B, ISRCTN92581226 ; Date assigned 6 January 2010.
Ye, Long; Sun, Kai; Jiang, Wei; Zhang, Shaoqing; Zhao, Wenchao; Yao, Huifeng; Wang, Zhaohui; Hou, Jianhui
2015-05-06
Among the diverse nonfullerene acceptors, perylene bisimides (PBIs) have been attracting much attention due to their excellent electron mobility and tunable molecular and electronic properties by simply engineering the bay and head linkages. Herein, guided by two efficient small molecular acceptors, we designed, synthesized, and characterized a new nonfullerene small molecule PPDI with fine-tailored alkyl chains. Notably, a certificated PCE of 5.40% is realized in a simple structured fullerene-free polymer solar cell comprising PPDI as the electron acceptor and a fine-tailored 2D-conjugated polymer PBDT-TS1 as the electron donor. Moreover, the device behavior, morphological feature, and origin of high efficiency in PBDT-TS1/PPDI-based fullerene-free PSC were investigated. The synchronous selection and design of donor and acceptor materials reported here offer a feasible strategy for realizing highly efficient fullerene-free organic photovoltaics.
Synthesis and Characterization of SF-PPV-I
NASA Technical Reports Server (NTRS)
Wang, Y.; Fan, Z.; Taft, C.; Sun, S.
2001-01-01
Conjugated electro-active polymers find their potential applications in developing variety inexpensive and flexible shaped electronic and photonic devices, such as photovoltaic or photo/electro light emitting devices. In many of these opto-electronic polymeric materials, certain electron rich donors and electron deficient acceptors are needed in order to fine-tune the electronic or photonic properties of the desired materials and structures. While many donor type of conjugated polymers have been widely studied and developed in the past decades, there are relatively fewer acceptor type of conjugated polymers have been developed. Key acceptor type conjugated polymers developed so far include C60 and CN-PPV, and each has its limitations. Due to the complexity and diversity of variety future electronic materials and structural needs, alternative and synthetically amenable acceptor conjugated polymers need to be developed. In this paper, we present the synthesis and characterization of a new acceptor conjugated polymer, a sulfone derivatized polyphenylenevinylene "SF-PPV".
Awareness and attitudes toward hepatitis B among Malaysian dentists.
Razak, I A; Latifah, R J; Nasruddin, J; Esa, R
1991-01-01
A questionnaire was mailed to 1217 dentists whose names appear in the Dentist Register of 1987 in order to assess their awareness and acceptance of hepatitis B vaccine and their pattern of glove usage. Almost all the respondents (99.6%) were aware of the availability of the hepatitis B vaccine yet only 44.8% have received the vaccine. This is in spite of the fact that the majority (61.2%) of the vaccine non-acceptors have no reservations concerning the vaccine. About 71% and 63% of the vaccine-acceptors and non-acceptors respectively believed that the risk of their contracting hepatitis B was high or very high. About 22% of the vaccine non-acceptors never used gloves when treating patients as compared to 9% among vaccine acceptors. Overall, about 78% of the respondents have experienced needleprick injuries in the 3 years preceding the survey.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ran, Niva A.; Roland, Steffen; Love, John A.
Here, a long standing question in organic electronics concerns the effects of molecular orientation at donor/acceptor heterojunctions. Given a well-controlled donor/acceptor bilayer system, we uncover the genuine effects of molecular orientation on charge generation and recombination. These effects are studied through the point of view of photovoltaics—however, the results have important implications on the operation of all optoelectronic devices with donor/acceptor interfaces, such as light emitting diodes and photodetectors. Our findings can be summarized by two points. First, devices with donor molecules face-on to the acceptor interface have a higher charge transfer state energy and less non-radiative recombination, resulting inmore » larger open-circuit voltages and higher radiative efficiencies. Second, devices with donor molecules edge-on to the acceptor interface are more efficient at charge generation, attributed to smaller electronic coupling between the charge transfer states and the ground state, and lower activation energy for charge generation.« less
NASA Astrophysics Data System (ADS)
Li, Xue; Ye, Si-Yuan; Wei, Ai-Hua; Zhou, Peng-Peng; Wang, Li-Heng
2017-09-01
A three-dimensional groundwater flow model was implemented to quantify the temporal variation of shallow groundwater levels in response to combined climate and water-diversion scenarios over the next 40 years (2011-2050) in Beijing-Tianjin-Hebei (Jing-Jin-Ji) Plain, China. Groundwater plays a key role in the water supply, but the Jing-Jin-Ji Plain is facing a water crisis. Groundwater levels have declined continuously over the last five decades (1961-2010) due to extensive pumping and climate change, which has resulted in decreased recharge. The implementation of the South-to-North Water Diversion Project (SNWDP) will provide an opportunity to restore the groundwater resources. The response of groundwater levels to combined climate and water-diversion scenarios has been quantified using a groundwater flow model. The impacts of climate change were based on the World Climate Research Programme's (WCRP's) Coupled Model Intercomparison Project phase 3 (CMIP3) multi-model dataset for future high (A2), medium (A1B), and low (B1) greenhouse gas scenarios; precipitation data from CMIP3 were applied in the model. The results show that climate change will slow the rate of decrease of the shallow groundwater levels under three climate-change scenarios over the next 40 years compared to the baseline scenario; however, the shallow groundwater levels will rise significantly (maximum of 6.71 m) when considering scenarios that combine climate change and restrictions on groundwater exploitation. Restrictions on groundwater exploitation for water resource management are imperative to control the decline of levels in the Jing-Jin-Ji area.
Franseen, E.K.; Goldstein, R.H.; Farr, M.R.
1997-01-01
Sequence stratigraphy, pinning-point relative sea-level curves, and magnetostratigraphy provide the quantitative data necessary to understand how rates of sea-level change and different substrate paleoslopes are dominant controls on accumulation rate, carbonate depositional sequence location, and internal architecture. Five third-order (1-10 my) and fourth-order (0.1-1.0 my) upper Miocene carbonate depositional sequences (DS1A, DS1B, DS2, DS3, TCC) formed with superimposed higher-frequency sea-level cycles in an archipelago setting in SE Spain. Overall, our study indicates when areas of high substrate slope (> 15??) are in shallow water, independent of climate, the location and internal architecture of carbonate deposits are not directly linked to sea-level position but, instead, are controlled by location of gently sloping substrates and processes of bypass. In contrast, if carbonate sediments are generated where substrates of low slope ( 15.6 cm/ky to ??? 2 cm/ky and overall relative sea level rose at rates of 17-21.4 cm/ky. Higher frequency sea-level rates were about 111 to more than 260 cm/ky, producing onlapping, fining- (deepening-) upward cycles. Decreasing accumulation rates resulted from decreasing surface area for shallow-water sediment production, drowning of shallow-water substrates, and complex sediment dispersal related to the archipelago setting. Typical systems tract and parasequence development should not be expected in "bypass ramp" settings; facies of onlapping strata do not track base level and are likely to be significantly different compared to onlapping strata associated with coastal onlap. Basal and upper DS2 reef megabreccias (indicating the transition from cool to warmer climatic conditions) were eroded from steep upslope positions and redeposited downslope onto areas of gentle substrate during rapid sea-level falls (> 22.7 cm/ky) of short duration. Such rapid sea-level falls and presence of steep slopes are not conducive to formation of forced regressive systems tracts composed of down-stepping reef clinoforms. The DS3 reefal platform formed where shallow water coincided with gently sloping substrates created by earlier deposition. Slow progradation (0.39-1.45 km/my) is best explained by the lack of an extensive bank top, progressively falling sea level, and low productivity resulting from siliciclastic debris and excess nutrients shed from nearby volcanic islands. Although DS3 strata were deposited during a third-order relative sea-level cycle, a typical transgressive systems tract is not recognizable, indicating that the initial relative rise in sea level was too rapid (??? 19 cm/ky). Downstepping reefs, forming a forced regressive systems tract, were deposited during the relative sea-level fall at the end of DS3, indicating that relatively slow rates of fall (10 cm/ky or less) over favorable paleoslope conditions are conducive to generation of forced regressive systems tracts consisting of downstepping reef clinoforms. The TCC sequence consists of four shallow-water sedimentary cycles that were deposited during a 400 ky to 100 ky time span. Such shallow-water cycles, typical of many platforms, form only where shallow water intersects gently sloping substrates. The relative thicknesses of cycles (< 2 m to 15 m thick), magnitudes of relative sea-level fluctuations associated with each cycle (25-30 m), high rates of relative sea-level fluctuations (minimum of 25-120 cm/ky), and the widespread distribution of similar TCC cycles in the Mediterranean and elsewhere are supportive of a glacio-eustatic
Franseen, E.K.; Goldstein, R.H.; Farr, M.R.
1998-01-01
Sequence stratigraphy, pinning-point relative sea-level curves, and magnetostratigraphy provide the quantitative data necessary to understand how rates of sea-level change and different substrate paleoslopes are dominant controls on accumulation rate, carbonate depositional sequence location, and internal architecture. Five third-order (1-10 my) and fourth-order (0.1-1.0 my) upper Miocene carbonate depositional sequences (DS1A, DS1B, DS2, DS3, TCC) formed with superimposed higher-frequency sea-level cycles in an archipelago setting in SE Spain. Overall, our study indicates when areas of high substrate slope (> 15??) are in shallow water, independent of climate, the location and internal architecture of carbonate deposits are not directly linked to sea-level position but, instead, are controlled by location of gently sloping substrates and processes of bypass. In contrast, if carbonate sediments are generated where substrates of low slope ( 15.6 cm/ky to ??? 2 cm/ky and overall relative sea level rose at rates of 17-21.4 cm/ky. Higher frequency sea-level rates were about 111 to more than 260 cm/ky, producing onlapping, fining- (deepening-) upward cycles. Decreasing accumulation rates resulted from decreasing surface area for shallow-water sediment production, drowning of shallow-water substrates, and complex sediment dispersal related to the archipelago setting. Typical systems tract and parasequence development should not be expected in "bypass ramp" settings; facies of onlapping strata do not track base level and are likely to be significantly different compared to onlapping strata associated with coastal onlap. Basal and upper DS2 reef megabreccias (indicating the transition from cool to warmer climatic conditions) were eroded from steep upslope positions and redeposited downslope onto areas of gentle substrate during rapid sea-level falls (> 22.7 cm/ky) of short duration. Such rapid sea-level falls and presence of steep slopes are not conducive to formation of forced regressive systems tracts composed of downstepping reef clinoforms. The DS3 reefal platform formed where shallow water coincided with gently sloping substrates created by earlier deposition. Slow progradation (0.39-1.45 km/my) is best explained by the lack of an extensive bank top, progressively falling sea level, and low productivity resulting from siliciclastic debris and excess nutrients shed from nearby volcanic islands. Although DS3 strata were deposited during a third-order relative sea-level cycle, a typical transgresse??e systems tract is not recognizable, indicating that the initial relative rise in sea level was too rapid (??? 19 cm/ky). Downstepping reefs, forming a forced regressive systems tract, were deposited during the relative sea-level fall at the end of DS3, indicating that relatively slow rates of fall (10 cm/ky or less) over favorable paleoslope conditions are conducive to generation of forced regressive systems tracts consisting of downstepping reef clinoforms. The TCC sequence consists of four shallow -water sedimentary cycles that were deposited during a 400 ky to 100 ky time span. Such shallow-water cycles, typical of many platforms, form only where shallow water intersects gently sloping substrates. The relative thicknesses of cycles (< 2 m to 15 m thick), magnitudes of relative sea-level fluctuations associated with each cycle (25-30 m), high rates of relative sea-level fluctuations (minimum of 25-120 cm/ky), and the widespread distribution of similar TCC cycles in the Mediterranean and elsewhere are supportive of a glacio-eustati
Vilar-Sanz, Ariadna; Puig, Sebastià; García-Lledó, Arantzazu; Trias, Rosalia; Balaguer, M. Dolors; Colprim, Jesús; Bañeras, Lluís
2013-01-01
The biocathodic reduction of nitrate in Microbial Fuel Cells (MFCs) is an alternative to remove nitrogen in low carbon to nitrogen wastewater and relies entirely on microbial activity. In this paper the community composition of denitrifiers in the cathode of a MFC is analysed in relation to added electron acceptors (nitrate and nitrite) and organic matter in the cathode. Nitrate reducers and nitrite reducers were highly affected by the operational conditions and displayed high diversity. The number of retrieved species-level Operational Taxonomic Units (OTUs) for narG, napA, nirS and nirK genes was 11, 10, 31 and 22, respectively. In contrast, nitrous oxide reducers remained virtually unchanged at all conditions. About 90% of the retrieved nosZ sequences grouped in a single OTU with a high similarity with Oligotropha carboxidovorans nosZ gene. nirS-containing denitrifiers were dominant at all conditions and accounted for a significant amount of the total bacterial density. Current production decreased from 15.0 A·m−3 NCC (Net Cathodic Compartment), when nitrate was used as an electron acceptor, to 14.1 A·m−3 NCC in the case of nitrite. Contrarily, nitrous oxide (N2O) accumulation in the MFC was higher when nitrite was used as the main electron acceptor and accounted for 70% of gaseous nitrogen. Relative abundance of nitrite to nitrous oxide reducers, calculated as (qnirS+qnirK)/qnosZ, correlated positively with N2O emissions. Collectively, data indicate that bacteria catalysing the initial denitrification steps in a MFC are highly influenced by main electron acceptors and have a major influence on current production and N2O accumulation. PMID:23717427
Yang, Xiaolan; Hu, Xiaolei; Xu, Bangtian; Wang, Xin; Qin, Jialin; He, Chenxiong; Xie, Yanling; Li, Yuanli; Liu, Lin; Liao, Fei
2014-06-17
A fluorometric titration approach was proposed for the calibration of the quantity of monoclonal antibody (mcAb) via the quench of fluorescence of tryptophan residues. It applied to purified mcAbs recognizing tryptophan-deficient epitopes, haptens nonfluorescent at 340 nm under the excitation at 280 nm, or fluorescent haptens bearing excitation valleys nearby 280 nm and excitation peaks nearby 340 nm to serve as Förster-resonance-energy-transfer (FRET) acceptors of tryptophan. Titration probes were epitopes/haptens themselves or conjugates of nonfluorescent haptens or tryptophan-deficient epitopes with FRET acceptors of tryptophan. Under the excitation at 280 nm, titration curves were recorded as fluorescence specific for the FRET acceptors or for mcAbs at 340 nm. To quantify the binding site of a mcAb, a universal model considering both static and dynamic quench by either type of probes was proposed for fitting to the titration curve. This was easy for fitting to fluorescence specific for the FRET acceptors but encountered nonconvergence for fitting to fluorescence of mcAbs at 340 nm. As a solution, (a) the maximum of the absolute values of first-order derivatives of a titration curve as fluorescence at 340 nm was estimated from the best-fit model for a probe level of zero, and (b) molar quantity of the binding site of the mcAb was estimated via consecutive fitting to the same titration curve by utilizing such a maximum as an approximate of the slope for linear response of fluorescence at 340 nm to quantities of the mcAb. This fluorometric titration approach was proved effective with one mcAb for six-histidine and another for penicillin G.
Vilar-Sanz, Ariadna; Puig, Sebastià; García-Lledó, Arantzazu; Trias, Rosalia; Balaguer, M Dolors; Colprim, Jesús; Bañeras, Lluís
2013-01-01
The biocathodic reduction of nitrate in Microbial Fuel Cells (MFCs) is an alternative to remove nitrogen in low carbon to nitrogen wastewater and relies entirely on microbial activity. In this paper the community composition of denitrifiers in the cathode of a MFC is analysed in relation to added electron acceptors (nitrate and nitrite) and organic matter in the cathode. Nitrate reducers and nitrite reducers were highly affected by the operational conditions and displayed high diversity. The number of retrieved species-level Operational Taxonomic Units (OTUs) for narG, napA, nirS and nirK genes was 11, 10, 31 and 22, respectively. In contrast, nitrous oxide reducers remained virtually unchanged at all conditions. About 90% of the retrieved nosZ sequences grouped in a single OTU with a high similarity with Oligotropha carboxidovorans nosZ gene. nirS-containing denitrifiers were dominant at all conditions and accounted for a significant amount of the total bacterial density. Current production decreased from 15.0 A · m(-3) NCC (Net Cathodic Compartment), when nitrate was used as an electron acceptor, to 14.1 A · m(-3) NCC in the case of nitrite. Contrarily, nitrous oxide (N2O) accumulation in the MFC was higher when nitrite was used as the main electron acceptor and accounted for 70% of gaseous nitrogen. Relative abundance of nitrite to nitrous oxide reducers, calculated as (qnirS+qnirK)/qnosZ, correlated positively with N2O emissions. Collectively, data indicate that bacteria catalysing the initial denitrification steps in a MFC are highly influenced by main electron acceptors and have a major influence on current production and N2O accumulation.
Huang, Chuixiu; Eibak, Lars Erik Eng; Gjelstad, Astrid; Shen, Xiantao; Trones, Roger; Jensen, Henrik; Pedersen-Bjergaard, Stig
2014-01-24
In this work, a single-well electromembrane extraction (EME) device was developed based on a thin (100μm) and flat porous membrane of polypropylene supporting a liquid membrane. The new EME device was operated with a relatively large acceptor solution volume to promote a high recovery. Using this EME device, exhaustive extraction of the basic drugs quetiapine, citalopram, amitriptyline, methadone and sertraline was investigated from both acidified water samples and human plasma. The volume of acceptor solution, extraction time, and extraction voltage were found to be important factors for obtaining exhaustive extraction. 2-Nitrophenyl octyl ether was selected as the optimal organic solvent for the supported liquid membrane. From spiked acidified water samples (600μl), EME was carried out with 600μl of 20mM HCOOH as acceptor solution for 15min and with an extraction voltage of 250V. Under these conditions, extraction recoveries were in the range 89-112%. From human plasma samples (600μl), EME was carried out with 600μl of 20mM HCOOH as acceptor solution for 30min and with an extraction voltage of 300V. Under these conditions, extraction recoveries were in the range of 83-105%. When combined with LC-MS, the new EME device provided linearity in the range 10-1000ng/ml for all analytes (R(2)>0.990). The repeatability at low (10ng/ml), medium (100ng/ml), and high (1000ng/ml) concentration level for all five analytes were less than 10% (RSD). The limits of quantification (S/N=10) were found to be in the range 0.7-6.4ng/ml. Copyright © 2013 Elsevier B.V. All rights reserved.
Bin, Haijun; Zhang, Zhi-Guo; Gao, Liang; Chen, Shanshan; Zhong, Lian; Xue, Lingwei; Yang, Changduk; Li, Yongfang
2016-04-06
Non-fullerene polymer solar cells (PSCs) with solution-processable n-type organic semiconductor (n-OS) as acceptor have seen rapid progress recently owing to the synthesis of new low bandgap n-OS, such as ITIC. To further increase power conversion efficiency (PCE) of the devices, it is of a great challenge to develop suitable polymer donor material that matches well with the low bandgap n-OS acceptors thus providing complementary absorption and nanoscaled blend morphology, as well as suppressed recombination and minimized energy loss. To address this challenge, we synthesized three medium bandgap 2D-conjugated bithienyl-benzodithiophene-alt-fluorobenzotriazole copolymers J52, J60, and J61 for the application as donor in the PSCs with low bandgap n-OS ITIC as acceptor. The three polymers were designed with branched alkyl (J52), branched alkylthio (J60), and linear alkylthio (J61) substituent on the thiophene conjugated side chain of the benzodithiophene (BDT) units for studying effect of the substituents on the photovoltaic performance of the polymers. The alkylthio side chain, red-shifted absorption down-shifted the highest occupied molecular orbital (HOMO) level and improved crystallinity of the 2D conjugated polymers. With linear alkylthio side chain, the tailored polymer J61 exhibits an enhanced JSC of 17.43 mA/cm(2), a high VOC of 0.89 V, and a PCE of 9.53% in the best non-fullerene PSCs with the polymer as donor and ITIC as acceptor. To the best of our knowledge, the PCE of 9.53% is one of the highest values reported in literature to date for the non-fullerene PSCs. The results indicate that J61 is a promising medium bandgap polymer donor in non-fullerene PSCs.
NASA Astrophysics Data System (ADS)
Barrejón, Myriam; Gobeze, Habtom B.; Gómez-Escalonilla, María J.; Fierro, José Luis G.; Zhang, Minfang; Yudasaka, Masako; Iijima, Sumio; D'Souza, Francis; Langa, Fernando
2016-08-01
Building all-carbon based functional materials for light energy harvesting applications could be a solution to tackle and reduce environmental carbon output. However, development of such all-carbon based donor-acceptor hybrids and demonstration of photoinduced charge separation in such nanohybrids is a challenge since in these hybrids part of the carbon material should act as an electron donating or accepting photosensitizer while the second part should fulfil the role of an electron acceptor or donor. In the present work, we have successfully addressed this issue by synthesizing covalently linked all-carbon-based donor-acceptor nanoensembles using single-walled carbon nanotubes (SWCNTs) as the donor and C60 as the acceptor. The donor-acceptor entities in the nanoensembles were connected by phenylene-ethynylene spacer units to achieve better electronic communication and to vary the distance between the components. These novel SWCNT-C60 nanoensembles have been characterized by a number of techniques, including TGA, FT-IR, Raman, AFM, absorbance and electrochemical methods. The moderate number of fullerene addends present on the side-walls of the nanotubes largely preserved the electronic structure of the nanotubes. The thermodynamic feasibility of charge separation in these nanoensembles was established using spectral and electrochemical data. Finally, occurrence of ultrafast electron transfer from the excited nanotubes in these donor-acceptor nanohybrids has been established by femtosecond transient absorption studies, signifying their utility in building light energy harvesting devices.Building all-carbon based functional materials for light energy harvesting applications could be a solution to tackle and reduce environmental carbon output. However, development of such all-carbon based donor-acceptor hybrids and demonstration of photoinduced charge separation in such nanohybrids is a challenge since in these hybrids part of the carbon material should act as an electron donating or accepting photosensitizer while the second part should fulfil the role of an electron acceptor or donor. In the present work, we have successfully addressed this issue by synthesizing covalently linked all-carbon-based donor-acceptor nanoensembles using single-walled carbon nanotubes (SWCNTs) as the donor and C60 as the acceptor. The donor-acceptor entities in the nanoensembles were connected by phenylene-ethynylene spacer units to achieve better electronic communication and to vary the distance between the components. These novel SWCNT-C60 nanoensembles have been characterized by a number of techniques, including TGA, FT-IR, Raman, AFM, absorbance and electrochemical methods. The moderate number of fullerene addends present on the side-walls of the nanotubes largely preserved the electronic structure of the nanotubes. The thermodynamic feasibility of charge separation in these nanoensembles was established using spectral and electrochemical data. Finally, occurrence of ultrafast electron transfer from the excited nanotubes in these donor-acceptor nanohybrids has been established by femtosecond transient absorption studies, signifying their utility in building light energy harvesting devices. Electronic supplementary information (ESI) available: Synthesis, TGA, FTIR, AFM and XPS data, UV-vis and transient absorption spectra (Fig. S1-S15 and Tables S1 and S2). See DOI: 10.1039/c6nr02829b
Rh(II)-catalyzed reactions of differentially substituted bis(diazo) functionalities.
Bonderoff, Sara A; Padwa, Albert
2013-08-16
The chemoselective reaction of donor/acceptor (D/A) and acceptor/acceptor (A/A) diazo moieties in the same molecule was examined using 3-diazo-1-(ethyl 2-diazomalonyl)indolin-2-one under rhodium(II) catalysis. The D/A diazo group undergoes selective cyclopropanation as well as XH-insertion, leaving behind the second diazo group for a further intramolecular dipolar cycloaddition reaction.
Bacterial manganese reduction and growth with manganese oxide as the sole electron acceptor
NASA Technical Reports Server (NTRS)
Myers, Charles R.; Nealson, Kenneth H.
1988-01-01
Microbes that couple growth to the reduction of manganese could play an important role in the biogeochemistry of certain anaerobic environments. Such a bacterium, Alteromonas putrefaciens MR-1, couples its growth to the reduction of manganese oxides only under anaerobic conditions. The characteristics of this reduction are consistent with a biological, and not an indirect chemical, reduction of manganese, which suggest that this bacterium uses manganic oxide as a terminal electron acceptor. It can also utilize a large number of other compounds as terminal electron acceptors; this versatility could provide a distinct advantage in environments where electron-acceptor concentrations may vary.
Impact of Group-II Acceptors on the Electrical and Optical Properties of GaN
NASA Astrophysics Data System (ADS)
Lyons, John L.; Janotti, Anderson; Van de Walle, Chris G.
2013-08-01
We explore the properties of group-II acceptors in GaN by performing hybrid density functional calculations. We find that MgGa gives rise to hole localization in zinc-blende GaN, similar to the behavior in the wurtzite phase. Alternative acceptor impurities, such as Zn and Be, also lead to localized holes in wurtzite GaN, and their ionization energies are larger than that of Mg. All these group-II acceptors also cause large lattice distortions in their neutral charge state, which in turn lead to deep and broad luminescence signals. We explore the consequences of these results for p-type doping.
NASA Astrophysics Data System (ADS)
Chi, Xiao-Chun; Wang, Ying-Hui; Gao, Yu; Sui, Ning; Zhang, Li-Quan; Wang, Wen-Yan; Lu, Ran; Ji, Wen-Yu; Yang, Yan-Qiang; Zhang, Han-Zhuang
2018-04-01
Three push-pull chromophores comprising a triphenylamine (TPA) as electron-donating moiety and functionalized β-diketones as electron acceptor units are studied by various spectroscopic techniques. The time-correlated single-photon counting data shows that increasing the number of electron acceptor units accelerates photoluminescence relaxation rate of compounds. Transient spectra data shows that intramolecular charge transfer (ICT) takes place from TPA units to β-diketones units after photo-excitation. Increasing the number of electron acceptor units would prolong the generation process of ICT state, and accelerate the excited molecule reorganization process and the relaxation process of ICT state.
NASA Astrophysics Data System (ADS)
Lix, Kelsi; Algar, W. Russ
2016-09-01
Semiconducting polymer dots (Pdots) are rapidly emerging fluorescent probes for bioanalysis. Pdots have extraordinarily strong absorption and bright emission compared to other commonly used fluorescent probes, making them very attractive for applications involving Förster resonance energy transfer (FRET). Here, we investigated two FRET systems with green-emitting poly(9,9-dioctylfluorene-alt-benzothiadiazole) (F8BT) Pdots as donors and two different Cyanine 5 (Cy5) dyes as acceptors. A hydrophilic sulfo-Cy5 dye was directly conjugated to the Pdot surface using carbodiimide chemistry, and a hydrophobic Cy5 dye was observed to spontaneously partition into the core of the Pdot. FRET was observed to depend on the acceptor dye concentration with both systems, and was characterized using a combination of fluorescence emission spectra, excitation spectra, and lifetime measurements. Much stronger quenching of Pdot emission and FRET-sensitized acceptor dye emission were observed for the hydrophobic Cy5 system, and these trends were attributed to reduced donor-acceptor distances in comparison to the hydrophilic sulfo-Cy5 system. Current limitations in the experimental format are discussed. The results show that Pdots are effective FRET donors for acceptor dyes located both within and at the surface of Pdots.
Defining donor and acceptor strength in conjugated copolymers
NASA Astrophysics Data System (ADS)
Hedström, Svante; Wang, Ergang; Persson, Petter
2017-03-01
The progress in efficiency of organic photovoltaic devices is largely driven by the development of new donor-acceptor (D-A) copolymers. The number of possible D-A combinations escalates rapidly with the ever-increasing number of donor and acceptor units, and the design process often involves a trial-and-error approach. We here present a computationally efficient methodology for the prediction of optical and electronic properties of D-A copolymers based on density functional theory calculations of donor- and acceptor-only homopolymers. Ten donors and eight acceptors are studied, as well as all of their 80 D-A copolymer combinations, showing absorption energies of 1.3-2.3 eV, and absorption strengths varying by up to a factor of 2.5. Focus lies on exhibited trends in frontier orbital energies, optical band gaps, and absorption intensities, as well as their relation to the molecular structure. Based on the results, we define the concept of donor and acceptor strength, and calculate this quantity for all investigated units. The light-harvesting capabilities of the 80 D-A copolymers were also assessed. This gives a valuable theoretical guideline to the design of D-A copolymers with the potential to reduce the synthesis efforts in the development of new polymers.
Upadhyay, Anjali; S, Karpagam
2016-03-01
We report on the synthesis of conjugated polymer (CV-QP) containing carbazole (donor) and quinoline (acceptor) using Wittig methodology. The structural, optical and thermal properties of the polymer were investigated by FT-IR, NMR, GPC, UV, PL, cyclic voltammetry, atomic force microscopy (AFM) and thermogravimetric analysis (TGA). The polymer exhibits thermal stability upto 200 °C and shows good solubility in common organic solvents. The polymer has optical absorption band in a thin film at 360 nm and emission band formed at 473 nm. The optical energy band gap was found to be 2.69 eV as calculated from the onset absorption edge. Fluorescence quenching of the polymer CV-QP was found by using DMA (electron donor) and DMTP (electron acceptor). AFM image indicated that triangular shaped particles were observed and the particle size was found as 1.1 μm. The electrochemical studies of CV-QP reveal that, the highest occupied molecular orbital (HOMO) and lowest unoccupied molecular orbital (LUMO) energy levels of the CV-QP are 6.35 and 3.70 eV, which indicated that the polymers are expected to provide charge transporting properties for the development of polymer light-emitting diodes (PLEDs).
Inostroza, Natalia; Mendizabal, Fernando; Arratia-Pérez, Ramiro; Orellana, Carlos; Linares-Flores, Cristian
2016-01-01
We report a computational study of a series of organic dyes built with triphenylamine (TPA) as an electron donor group. We designed a set of six dyes called (TPA-n, where n = 0-5). In order to enhance the electron-injection process, the electron-donor effect of some specific substituent was studied. Thus, we gave insights into the rational design of organic TPA-based chromophores for use in dye-sensitized solar cells (DSSCs). In addition, we report the HOMO, LUMO, the calculated excited state oxidized potential E(dye*)(eV) and the free energy change for electron-injection ΔGinject(eV), and the UV-visible absorption bands for TPA-n dyes by a time-dependent density functional theory (TDDFT) procedure at the B3LYP and CAM-B3LYP levels with solvent effect. The results demonstrate that the introduction of the electron-acceptor groups produces an intramolecular charge transfer showing a shift of the absorption wavelengths of TPA-n under studies. Graphical Abstract Several organic dyes TPA-n with different donors and acceptors are modeled. A strong conjugation acrros the donor and anchoring groips (TPA-n) bas been studied. Candidate TPA-3 shows a promising results.
Fauzi, Hamid; Agyeman, Akwasi; Hines, Jennifer V.
2008-01-01
Many bacteria utilize riboswitch transcription regulation to monitor and appropriately respond to cellular levels of important metabolites or effector molecules. The T box transcription antitermination riboswitch responds to cognate uncharged tRNA by specifically stabilizing an antiterminator element in the 5′-untranslated mRNA leader region and precluding formation of a thermodynamically more stable terminator element. Stabilization occurs when the tRNA acceptor end base pairs with the first four nucleotides in the seven nucleotide bulge of the highly conserved antiterminator element. The significance of the conservation of the antiterminator bulge nucleotides that do not base pair with the tRNA is unknown, but they are required for optimal function. In vitro selection was used to determine if the isolated antiterminator bulge context alone dictates the mode in which the tRNA acceptor end binds the bulge nucleotides. No sequence conservation beyond complementarity was observed and the location was not constrained to the first four bases of the bulge. The results indicate that formation of a structure that recognizes the tRNA acceptor end in isolation is not the determinant driving force for the high phylogenetic sequence conservation observed within the antiterminator bulge. Additional factors or T box leader features more likely influenced the phylogenetic sequence conservation. PMID:19152843
NASA Astrophysics Data System (ADS)
Neumann, Katharina; Thelakkat, Mukundan
2012-09-01
The synthesis and analysis of solution processable polymers for organic solar cells is crucial for innovative solar cell technologies such as printing processes. In the field of donor materials for photovoltaic applications, polymers based on tetraphenylamine (TPA) are well known hole conducting materials. Here, we synthesized two conjugated TPA containing copolymers via Suzuki polycondensation. We investigated the tuning of the energy levels of the TPA based polymers by two different concepts. Firstly, we introduced an acceptor unit in the side chain. The main-chain of this copolymer was built from TPA units. The resulting copolymer 2-(4-((4'-((4-(2-ethylhexyloxy)phenyl)(paratolyl) amino)biphenyl-4-yl)(para-tolyl)amino)benzylidene) malononitrile P1 showed a broader absorption up to 550 nm. Secondly, we used a donor-acceptor concept by synthesizing a copolymer with alternating electron donating TPA and electron withdrawing Thieno[3,4-b]thiophene ester units. Consequently, the absorption maximum in the copolymer octyl-6-(4-((4-(2-ethylhexyloxy)phenyl)(p-tolyl)amino)phenyl)-4-methylthieno[3,4-b]thiophene-2-carboxylate P2 was red shifted to 580 nm. All three polymers showed high thermal stability. By UV-vis and Cyclic voltammetry measurements the optical and electrochemical properties of the polymers were analyzed.
Self-reliance through FP program.
1988-03-01
The Yogyakarta Chapter of the Indonesian Planned Parenthood Association (IPPA), having been successful in bringing about a realization by the local community of the importance of family planning, has broadened its activities in an effort to further promote family welfare. Since 1980, the organization has begun a number of projects designed to increase the income of its client population. Given the fact that family planning acceptors of IPPA's Yogyakarta Chapter range from government officials' wives to farmers and school dropouts, its family income increase projects have been varied. Skills in such areas as bee breeding and hairdressing have been taught, and credit cooperatives have been established. These projects have been integrated with the group's family planning activities and have been paid for entirely with local funds. An integrated family planning/income increase project currently being operated by the Yogyakarta Chapter of IPPA is known as KBP2K. Along with the attempt to increase family income, the project aims to expand the acceptance of family planning and to retain existing acceptors in the family planning program. As of the 3rd quarter of 1987, 235 people had participated in the project and 59 new acceptors had been acquired. Family planning education was provided and classes were taught in various handicraft industries. Studies have revealed that the income levels of program participants significantly increased.
Fischer, John N.
1986-01-01
In the United States, low-level radioactive waste is disposed of by shallow land burial. Commercial low-level radioactive waste has been buried at six sites, and low-level radioactive waste generated by the Federal Government has been buried at nine major and several minor sites. Several existing low-level radioactive waste sites have not provided expected protection of the environment. These shortcomings are related, at least in part, to an inadequate understanding of site hydrogeology at the time the sites were selected. To better understand the natural systems and the effect of hydrogeologic factors on long-term site performance, the U.S. Geological Survey has conducted investigations at five of the six commercial low-level radioactive waste sites and at three Federal sites. These studies, combined with those of other Federal and State agencies, have identified and confirmed important hydrogeologic factors in the effective disposal of low-level radioactive waste by shallow land burial. These factors include precipitation, surface drainage, topography, site stability, geology, thickness of the host soil-rock horizon, soil and sediment permeability, soil and water chemistry, and depth to the water table.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Eisenhardt, A.; Reiß, S.; Krischok, S., E-mail: stefan.krischok@tu-ilmenau.de
2014-01-28
The influence of selected donor- and acceptor-type adsorbates on the electronic properties of InN(0001) surfaces is investigated implementing in-situ photoelectron spectroscopy. The changes in work function, surface band alignment, and chemical bond configurations are characterized during deposition of potassium and exposure to oxygen. Although an expected opponent charge transfer characteristic is observed with potassium donating its free electron to InN, while dissociated oxygen species extract partial charge from the substrate, a reduction of the surface electron accumulation occurs in both cases. This observation can be explained by adsorbate-induced saturation of free dangling bonds at the InN resulting in the disappearancemore » of surface states, which initially pin the Fermi level and induce downward band bending.« less
Zhong, Hong-xia; Shi, Jun-jie; Zhang, Min; Jiang, Xin-he; Huang, Pu; Ding, Yi-min
2014-01-01
Improving p-type doping efficiency in Al-rich AlGaN alloys is a worldwide problem for the realization of AlGaN-based deep ultraviolet optoelectronic devices. In order to solve this problem, we calculate Mg acceptor activation energy and investigate its relationship with Mg local structure in nanoscale (AlN)5/(GaN)1 superlattice (SL), a substitution for Al0.83Ga0.17N disorder alloy, using first-principles calculations. A universal picture to reduce acceptor activation energy in wide-gap semiconductors is given for the first time. By reducing the volume of the acceptor local structure slightly, its activation energy can be decreased remarkably. Our results show that Mg acceptor activation energy can be reduced significantly from 0.44 eV in Al0.83Ga0.17N disorder alloy to 0.26 eV, very close to the Mg acceptor activation energy in GaN, and a high hole concentration in the order of 1019 cm−3 can be obtained in (AlN)5/(GaN)1 SL by MgGa δ-doping owing to GaN-monolayer modulation. We thus open up a new way to reduce Mg acceptor activation energy and increase hole concentration in Al-rich AlGaN. PMID:25338639
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kang, Hyun Suk; Sisto, Thomas J.; Peurifoy, Samuel
Nonfullerene electron acceptors have facilitated a recent surge in the efficiencies of organic solar cells, although fundamental studies of the nature of exciton dissociation at interfaces with nonfullerene electron acceptors are still relatively sparse. Semiconducting single-walled carbon nanotubes (s-SWCNTs), unique one-dimensional electron donors with molecule-like absorption and highly mobile charges, provide a model system for studying interfacial exciton dissociation. Here, we investigate excited-state photodynamics at the heterojunction between (6,5) s-SWCNTs and two perylene diimide (PDI)-based electron acceptors. Each of the PDI-based acceptors, hPDI2-pyr-hPDI2 and Trip-hPDI2, is deposited onto (6,5) s-SWCNT films to form a heterojunction bilayer. Transient absorption measurements demonstratemore » that photoinduced hole/electron transfer occurs at the photoexcited bilayer interfaces, producing long-lived separated charges with lifetimes exceeding 1.0 us. Both exciton dissociation and charge recombination occur more slowly for the hPDI2-pyr-hPDI2 bilayer than for the Trip-hPDI2 bilayer. To explain such differences, we discuss the potential roles of the thermodynamic charge transfer driving force available at each interface and the different molecular structure and intermolecular interactions of PDI-based acceptors. As a result, detailed photophysical analysis of these model systems can develop the fundamental understanding of exciton dissociation between organic electron donors and nonfullerene acceptors, which has not been systematically studied.« less
Karasawa, Satoshi; Araki, Toshio; Nagai, Takeharu; Mizuno, Hideaki; Miyawaki, Atsushi
2004-07-01
GFP (green fluorescent protein)-based FRET (fluorescence resonance energy transfer) technology has facilitated the exploration of the spatio-temporal patterns of cellular signalling. While most studies have used cyan- and yellow-emitting FPs (fluorescent proteins) as FRET donors and acceptors respectively, this pair of proteins suffers from problems of pH-sensitivity and bleeding between channels. In the present paper, we demonstrate the use of an alternative additional donor/acceptor pair. We have cloned two genes encoding FPs from stony corals. We isolated a cyan-emitting FP from Acropara sp., whose tentacles exhibit cyan coloration. Similar to GFP from Renilla reniformis, the cyan FP forms a tight dimeric complex. We also discovered an orange-emitting FP from Fungia concinna. As the orange FP exists in a complex oligomeric structure, we converted this protein into a monomeric form through the introduction of three amino acid substitutions, recently reported to be effective for converting DsRed into a monomer (Clontech). We used the cyan FP and monomeric orange FP as a donor/acceptor pair to monitor the activity of caspase 3 during apoptosis. Due to the close spectral overlap of the donor emission and acceptor absorption (a large Förster distance), substantial pH-resistance of the donor fluorescence quantum yield and the acceptor absorbance, as well as good separation of the donor and acceptor signals, the new pair can be used for more effective quantitative FRET imaging.
Kang, Hyun Suk; Sisto, Thomas J.; Peurifoy, Samuel; ...
2018-04-13
Nonfullerene electron acceptors have facilitated a recent surge in the efficiencies of organic solar cells, although fundamental studies of the nature of exciton dissociation at interfaces with nonfullerene electron acceptors are still relatively sparse. Semiconducting single-walled carbon nanotubes (s-SWCNTs), unique one-dimensional electron donors with molecule-like absorption and highly mobile charges, provide a model system for studying interfacial exciton dissociation. Here, we investigate excited-state photodynamics at the heterojunction between (6,5) s-SWCNTs and two perylene diimide (PDI)-based electron acceptors. Each of the PDI-based acceptors, hPDI2-pyr-hPDI2 and Trip-hPDI2, is deposited onto (6,5) s-SWCNT films to form a heterojunction bilayer. Transient absorption measurements demonstratemore » that photoinduced hole/electron transfer occurs at the photoexcited bilayer interfaces, producing long-lived separated charges with lifetimes exceeding 1.0 us. Both exciton dissociation and charge recombination occur more slowly for the hPDI2-pyr-hPDI2 bilayer than for the Trip-hPDI2 bilayer. To explain such differences, we discuss the potential roles of the thermodynamic charge transfer driving force available at each interface and the different molecular structure and intermolecular interactions of PDI-based acceptors. As a result, detailed photophysical analysis of these model systems can develop the fundamental understanding of exciton dissociation between organic electron donors and nonfullerene acceptors, which has not been systematically studied.« less
Random benzotrithiophene-based donor-acceptor copolymers for efficient organic photovoltaic devices.
Nielsen, Christian B; Ashraf, Raja Shahid; Schroeder, Bob C; D'Angelo, Pasquale; Watkins, Scott E; Song, Kigook; Anthopoulos, Thomas D; McCulloch, Iain
2012-06-14
A series of benzotrithiophene-containing random terpolymers for polymer solar cells is reported. Through variations of the two other components in the terpolymers, the absorption profile and the frontier energy levels are optimized and maximum power conversion efficiencies are nearly doubled (5.14%) relative to the parent alternating copolymer.
Levels-Of-Processing Effect on Word Recognition in Schizophrenia
Ragland, J. Daniel; Moelter, Stephen T.; McGrath, Claire; Hill, S. Kristian; Gur, Raquel E.; Bilker, Warren B.; Siegel, Steven J.; Gur, Ruben C.
2015-01-01
Background Individuals with schizophrenia have difficulty organizing words semantically to facilitate encoding. This is commonly attributed to organizational rather than semantic processing limitations. By requiring participants to classify and encode words on either a shallow (e.g., uppercase/lowercase) or deep level (e.g., concrete/abstract), the levels-of-processing paradigm eliminates the need to generate organizational strategies. Methods This paradigm was administered to 30 patients with schizophrenia and 30 healthy comparison subjects to test whether providing a strategy would improve patient performance. Results Word classification during shallow and deep encoding was slower and less accurate in patients. Patients also responded slowly during recognition testing and maintained a more conservative response bias following deep encoding; however, both groups showed a robust levels-of-processing effect on recognition accuracy, with unimpaired patient performance following both shallow and deep encoding. Conclusions This normal levels-of-processing effect in the patient sample suggests that semantic processing is sufficiently intact for patients to benefit from organizational cues. Memory remediation efforts may therefore be most successful if they focus on teaching patients to form organizational strategies during initial encoding. PMID:14643082
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bondarenko, Anton; Vyvenko, Oleg
2014-02-21
Dislocation network (DN) at hydrophilically bonded Si wafers interface is placed in space charge region (SCR) of a Schottky diode at a depth of about 150 nm from Schottky electrode for simultaneous investigation of its electrical and luminescent properties. Our recently proposed pulsed traps refilling enhanced luminescence (Pulsed-TREL) technique based on the effect of transient luminescence induced by refilling of charge carrier traps with electrical pulses is further developed and used as a tool to establish DN energy levels responsible for D1 band of dislocation-related luminescence in Si (DRL). In present work we do theoretical analysis and simulation of trapsmore » refilling kinetics dependence on refilling pulse magnitude (Vp) in two levels model: shallow and deep. The influence of initial charge state of deep level on shallow level occupation-Vp dependence is discussed. Characteristic features predicted by simulations are used for Pulsed-TREL experimental results interpretation. We conclude that only shallow (∼0.1 eV from conduction and valence band) energetic levels in the band gap participate in D1 DRL.« less
Levels-of-processing effect on word recognition in schizophrenia.
Ragland, J Daniel; Moelter, Stephen T; McGrath, Claire; Hill, S Kristian; Gur, Raquel E; Bilker, Warren B; Siegel, Steven J; Gur, Ruben C
2003-12-01
Individuals with schizophrenia have difficulty organizing words semantically to facilitate encoding. This is commonly attributed to organizational rather than semantic processing limitations. By requiring participants to classify and encode words on either a shallow (e.g., uppercase/lowercase) or deep level (e.g., concrete/abstract), the levels-of-processing paradigm eliminates the need to generate organizational strategies. This paradigm was administered to 30 patients with schizophrenia and 30 healthy comparison subjects to test whether providing a strategy would improve patient performance. Word classification during shallow and deep encoding was slower and less accurate in patients. Patients also responded slowly during recognition testing and maintained a more conservative response bias following deep encoding; however, both groups showed a robust levels-of-processing effect on recognition accuracy, with unimpaired patient performance following both shallow and deep encoding. This normal levels-of-processing effect in the patient sample suggests that semantic processing is sufficiently intact for patients to benefit from organizational cues. Memory remediation efforts may therefore be most successful if they focus on teaching patients to form organizational strategies during initial encoding.
Nazim, M; Ameen, Sadia; Seo, Hyung-Kee; Shin, Hyung Shik
2015-06-12
A new and novel organic π-conjugated chromophore (named as RCNR) based on fumaronitrile-core acceptor and terminal alkylated bithiophene was designed, synthesized and utilized as an electron-donor material for the solution-processed fabrication of bulk-heterojunction (BHJ) small molecule organic solar cells (SMOSCs). The synthesized organic chromophore exhibited a broad absorption peak near green region and strong emission peak due to the presence of strong electron-withdrawing nature of two nitrile (-CN) groups of fumaronitrile acceptor. The highest occupied molecular orbital (HOMO) energy level of -5.82 eV and the lowest unoccupied molecular orbital (LUMO) energy level of -3.54 eV were estimated for RCNR due to the strong electron-accepting tendency of -CN groups. The fabricated SMOSC devices with RCNR:PC60BM (1:3, w/w) active layer exhibited the reasonable power conversion efficiency (PCE) of ~2.69% with high short-circuit current density (JSC) of ~9.68 mA/cm(2) and open circuit voltage (VOC) of ~0.79 V.
Nazim, M.; Ameen, Sadia; Seo, Hyung-Kee; Shin, Hyung Shik
2015-01-01
A new and novel organic π-conjugated chromophore (named as RCNR) based on fumaronitrile-core acceptor and terminal alkylated bithiophene was designed, synthesized and utilized as an electron-donor material for the solution-processed fabrication of bulk-heterojunction (BHJ) small molecule organic solar cells (SMOSCs). The synthesized organic chromophore exhibited a broad absorption peak near green region and strong emission peak due to the presence of strong electron-withdrawing nature of two nitrile (–CN) groups of fumaronitrile acceptor. The highest occupied molecular orbital (HOMO) energy level of –5.82 eV and the lowest unoccupied molecular orbital (LUMO) energy level of –3.54 eV were estimated for RCNR due to the strong electron-accepting tendency of –CN groups. The fabricated SMOSC devices with RCNR:PC60BM (1:3, w/w) active layer exhibited the reasonable power conversion efficiency (PCE) of ~2.69% with high short-circuit current density (JSC) of ~9.68 mA/cm2 and open circuit voltage (VOC) of ~0.79 V. PMID:26066557
Athar, Habib-Ur-Rehman; Ambreen, Sarah; Javed, Muhammad; Hina, Mehwish; Rasul, Sumaira; Zafar, Zafar Ullah; Manzoor, Hamid; Ogbaga, Chukwuma C; Afzal, Muhammad; Al-Qurainy, Fahad; Ashraf, Muhammad
2016-09-01
Maize tolerance potential to oil pollution was assessed by growing Zea mays in soil contaminated with varying levels of crude oil (0, 2.5 and 5.0 % v/w basis). Crude oil contamination reduced soil microflora which may be beneficial to plant growth. It was observed that oil pollution caused a remarkable decrease in biomass, leaf water potential, turgor potential, photosynthetic pigments, quantum yield of photosystem II (PSII) (Fv/Fm), net CO2 assimilation rate, leaf nitrogen and total free amino acids. Gas exchange characteristics suggested that reduction in photosynthetic rate was mainly due to metabolic limitations. Fast chlorophyll a kinetic analysis suggested that crude oil damaged PSII donor and acceptor sides and downregulated electron transport as well as PSI end electron acceptors thereby resulting in lower PSII efficiency in converting harvested light energy into biochemical energy. However, maize plants tried to acclimate to moderate level of oil pollution by increasing root diameter and root length relative to its shoot biomass, to uptake more water and mineral nutrients.
Impact of Fluorine Atoms on Perylene Diimide Derivative for Fullerene-Free Organic Photovoltaics.
Zhao, Liang; Sun, Hua; Liu, Xiaoyuan; Liu, Changmei; Shan, Haiquan; Xia, Jiuxu; Xu, Zongxiang; Chen, Fei; Chen, Zhi-Kuan; Huang, Wei
2017-08-17
The incorporation of fluorine atoms in organic semiconducting materials has attracted much attention recently due to its unique function to manipulate the molecular packing, film morphology and molecular energy levels. In this work, two perylenediimide (PDI) derivatives FPDI-CDTph and FPDI-CDTph2F were designed and synthesized to investigate the impact of fluorination on non-fullerene acceptors. Both FPDI-CDTph and FPDI-CDTph2F exhibited strong and broad absorption profiles, suitable lowest unoccupied molecular orbital (LUMO) and highest occupied molecular orbital (HOMO) energy levels, and good electron transport ability. Compared with FPDI-CDTph, the fluorinated acceptor (FPDI-CDTph2F) afforded an optimal bulk heterojunction morphology with an interconnected and nanoscale phase separated structure that allowed more efficient exciton dissociation and balanced charge transport. Consequently, organic solar cells based on FPDI-CDTph2F showed a much higher power conversion efficiency (PCE) of 6.03 % than that of FPDI-CDTph based devices (4.10 %) without any post-fabrication treatment. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Radiative recombination in GaN/InGaN heterojunction bipolar transistors
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kao, Tsung-Ting; Lee, Yi-Che; Kim, Hee-Jin
2015-12-14
We report an electroluminescence (EL) study on npn GaN/InGaN heterojunction bipolar transistors (HBTs). Three radiative recombination paths are resolved in the HBTs, corresponding to the band-to-band transition (3.3 eV), conduction-band-to-acceptor-level transition (3.15 eV), and yellow luminescence (YL) with the emission peak at 2.2 eV. We further study possible light emission paths by operating the HBTs under different biasing conditions. The band-to-band and the conduction-band-to-acceptor-level transitions mostly arise from the intrinsic base region, while a defect-related YL band could likely originate from the quasi-neutral base region of a GaN/InGaN HBT. The I{sub B}-dependent EL intensities for these three recombination paths are discussed. The resultsmore » also show the radiative emission under the forward-active transistor mode operation is more effective than that using a diode-based emitter due to the enhanced excess electron concentration in the base region as increasing the collector current increases.« less
Relative stability of deep- versus shallow-side bone levels in angular proximal infrabony defects.
Heins, P; Hartigan, M; Low, S; Chace, R
1989-01-01
The relative changes with time, in the position of the coronal margin of the mesial and distal bone of proximal, angular infrabony defects, were investigated. Tracings of the radiographs of 51 mandibular posterior sites, treated by flap curettage, with a mean post-surgical duration of 11.8 years, were measured using a digitizer pad. The group consisting of shallow-side sites (N = 51), exhibited no significant change in the bone height with time; however, there was a significant decrease in bone height in the deep-side group (N = 51). The mean area of proximal bone decreased significantly with time. The defects were divided into early (N = 25) and advanced (N = 26) angular groups, and then into deep- and shallow-side subgroups. In the early defect group, there was a significant decrease in the mean bone height of the deep-side subgroup. There were no differences in the changes of mean bone level of the remaining 3 subgroups with time. There was no correlation between changes in bone levels of adjacent mesial and distal sides of angular defects with time (r = 0.27). There was no difference between the deep- and shallow-side groups in the number of sites which gained, lost or evidenced no change in bone height. In the study population, the bone height of 73% of the deep-side, and 84% of the shallow-side sites was either unchanged or in a more coronal position.(ABSTRACT TRUNCATED AT 250 WORDS)
Diketopyrrolopyrrole-based π-bridged donor-acceptor polymer for photovoltaic applications.
Li, Wenting; Lee, Taegweon; Oh, Soong Ju; Kagan, Cherie R
2011-10-01
We report the synthesis, properties, and photovoltaic applications of a new conjugated copolymer (C12DPP-π-BT) containing a donor group (bithiophene) and an acceptor group (2,5-didodecylpyrrolo[3,4-c]pyrrole-1,4(2H,5H)-dione), bridged by a phenyl group. Using cyclic voltammetry, we found the energy levels of C12DPP-π-BT are intermediate to common electron donor and acceptor photovoltaic materials, poly (3-hexylthiophene-2,5-diyl) (P3HT) and [6,6]-phenyl-C61-butyric acid methyl ester (PCBM), respectively. Whereas P3HT and PCBM are exclusively electron donating or accepting, we predict C12DPP-π-BT may uniquely serve as either an electron donor or an acceptor when paired with PCBM or P3HT forming junctions with large built-in potentials. We confirmed the ambipolar nature of C12DPP-π-BT in space charge limited current measurements and in C12DPP-π-BT:PCBM and C12DPP-π-BT:P3HT bulk heterojunction solar cells, achieving power conversion efficiencies of 1.67% and 0.84%, respectively, under illumination of AM 1.5G (100 mW/cm(2)). Adding diiodooctane to C12DPP-π-BT:PCBM improved donor-acceptor inter-mixing and film uniformity, and therefore enhanced charge separation and overall device efficiency. Using higher-molecular-weight polymer C12DPP-π-BT in both C12DPP-π-BT:PCBM and C12DPP-π-BT:P3HT devices improved charge transport and hence the performance of the solar cells. In addition, we compared the structural and electronic properties of C12DPP-π-BT:PCBM and C12DPP-π-BT:P3HT blends, representing the materials classes of polymer:fullerene and polymer:polymer blends. In C12DPP-π-BT:PCBM blends, higher short circuit currents were obtained, consistent with faster charge transfer and balanced electron and hole transport, but lower open circuit voltages may be reduced by trap-assisted recombination and interfacial recombination losses. In contrast, C12DPP-π-BT:P3HT blends exhibit higher open circuit voltage, but short circuit currents were limited by charge transfer between the polymers. In conclusion, C12DPP-π-BT is a promising material with intrinsic ambipolar characteristics for organic photovoltaics and may operate as either a donor or acceptor in the design of bulk heterojunction solar cells. © 2011 American Chemical Society
Hansen, Cristi V.; Lanning-Rush, Jennifer L.; Ziegler, Andrew C.
2013-01-01
Beginning in the 1940s, the Wichita well field was developed in the Equus Beds aquifer in southwestern Harvey County and northwestern Sedgwick County to supply water to the city of Wichita. The decline of water levels in the aquifer was noted soon after the development of the Wichita well field began. Development of irrigation wells began in the 1960s. City and agricultural withdrawals led to substantial water-level declines. Water-level declines enhanced movement of brines from past oil and gas activities near Burrton, Kansas and enhanced movement of natural saline water from the Arkansas River into the well field area. Large chloride concentrations may limit use or require the treatment of water from the well field for irrigation or public supply. In 1993, the city of Wichita adopted the Integrated Local Water Supply Program (ILWSP) to ensure an adequate water supply for the city through 2050 and as part of its effort to effectively manage the part of the Equus Beds aquifer it uses. ILWSP uses several strategies to do this including the Equus Beds Aquifer Storage and Recovery (ASR) project. The purpose of the ASR project is to store water in the aquifer for later recovery and to help protect the aquifer from encroachment of a known oilfield brine plume near Burrton and saline water from the Arkansas River. As part of Wichita’s ASR permits, Wichita is prohibited from artificially recharging water into the aquifer in a Basin Storage area (BSA) grid cell if water levels in that cell are above the January 1940 water levels or are less than 10 feet below land surface. The map previously used for this purpose did not provide an accurate representation of the shallow water table. The revised predevelopment water-level altitude map of the shallow part of the aquifer is presented in this report. The city of Wichita’s ASR permits specify that the January 1993 water-level altitudes will be used as a lower baseline for regulating the withdrawal of artificial rechage credits from the Equus Beds aquifer by the city of Wichita. The 1993 water levels correspond to the lowest recorded levels and largest storage declines since 1940. Revised and new water-level maps of shallow and deep layers were developed to better represent the general condition of the aquifer. Only static water levels were used to better represent the general condition of the aquifer and comply with Wichita’s ASR permits. To ensure adequate data density, the January 1993 period was expanded to October 1992 through February 1993. Static 1993 water levels from the deep aquifer layer of the Equus Beds aquifer possibly could be used as the lower baseline for regulatory purposes. Previously, maps of water-level changes used to estimate the storage-volume changes included a combination of static (unaffected by pumping or nearby pumping) and stressed (affected by pumping or nearby pumping) water levels from wells. Some of these wells were open to the shallow aquifer layer and some were open to the deep aquifer layer of the Equus Beds aquifer. In this report, only static water levels in the shallow aquifer layer were used to determine storage-volume changes. The effects on average water-level and storage-volume change from the use of mixed, stressed water levels and a specific yield of 0.20 were compared to the use of static water levels in the shallow aquifer and a specific yield of 0.15. This comparison indicates that the change in specific yield causes storage-volume changes to decrease about 25 percent, whereas the use of static water levels in the shallow aquifer layer causes an increase of less than 4 percent. Use of a specific yield of 0.15 will result in substantial decreases in the amount of storage-volume change compared to those reported previously that were calculated using a specific yield of 0.20. Based on these revised water-level maps and computations, the overall decline and change in storage from predevelopment to 1993 represented a loss in storage of about 6 percent (-202,000 acre-feet) of the overall storage volume within the newly defined study area.
Li, Yuan; Guo, Huaming; Hao, Chunbo
2014-12-01
Indigenous microbes play crucial roles in arsenic mobilization in high arsenic groundwater systems. Databases concerning the presence and the activity of microbial communities are very useful in evaluating the potential of microbe-mediated arsenic mobilization in shallow aquifers hosting high arsenic groundwater. This study characterized microbial communities in groundwaters at different depths with different arsenic concentrations by DGGE and one sediment by 16S rRNA gene clone library, and evaluated arsenic mobilization in microcosm batches with the presence of indigenous bacteria. DGGE fingerprints revealed that the community structure changed substantially with depth at the same location. It indicated that a relatively higher bacterial diversity was present in the groundwater sample with lower arsenic concentration. Sequence analysis of 16S rRNA gene demonstrated that the sediment bacteria mainly belonged to Pseudomonas, Dietzia and Rhodococcus, which have been widely found in aquifer systems. Additionally, NO3(-)-reducing bacteria Pseudomonas sp. was the largest group, followed by Fe(III)-reducing, SO4(2-)-reducing and As(V)-reducing bacteria in the sediment sample. These anaerobic bacteria used the specific oxyanions as electron acceptor and played a significant role in reductive dissolution of Fe oxide minerals, reduction of As(V), and release of arsenic from sediments into groundwater. Microcosm experiments, using intact aquifer sediments, showed that arsenic release and Fe(III) reduction were microbially mediated in the presence of indigenous bacteria. High arsenic concentration was also observed in the batch without amendment of organic carbon, demonstrating that the natural organic matter in sediments was the potential electron donor for microbially mediated arsenic release from these aquifer sediments.
Perez-Rodriguez, Ileana M.; Rawls, Matthew; Coykendall, D. Katharine; Foustoukos, Dionysis I.
2016-01-01
A novel thermophilic, anaerobic, mixotrophic bacterium, designated strain MAG-PB1T, was isolated from a shallow-water hydrothermal vent system in Palaeochori Bay off the coast of the island of Milos, Greece. The cells were Gram-negative, rugose, short rods, approximately 1.0 μm long and 0.5 μm wide. Strain MAG-PB1T grew at 30–70 °C (optimum 60 °C), 0–50 g NaCl l− 1 (optimum 15–20 g l− 1) and pH 5.5–8.0 (optimum pH 6.0). Generation time under optimal conditions was 2.5 h. Optimal growth occurred under chemolithoautotrophic conditions with H2 as the energy source and CO2 as the carbon source. Fe(III), Mn(IV), arsenate and selenate were used as electron acceptors. Peptone, tryptone, Casamino acids, sucrose, yeast extract, d-fructose, α-d-glucose and ( − )-d-arabinose also served as electron donors. No growth occurred in the presence of lactate or formate. The G+C content of the genomic DNA was 66.7 mol%. Phylogenetic analysis of the 16S rRNA gene sequence indicated that this organism is closely related to Deferrisoma camini, the first species of a recently described genus in the Deltaproteobacteria. Based on the 16S rRNA gene phylogenetic analysis and on physiological, biochemical and structural characteristics, the strain was found to represent a novel species, for which the name Deferrisoma palaeochoriense sp. nov. is proposed. The type strain is MAG-PB1T ( = JCM 30394T = DSM 29363T).
Pérez-Rodríguez, Ileana; Rawls, Matthew; Coykendall, D Katharine; Foustoukos, Dionysis I
2016-02-01
A novel thermophilic, anaerobic, mixotrophic bacterium, designated strain MAG-PB1T, was isolated from a shallow-water hydrothermal vent system in Palaeochori Bay off the coast of the island of Milos, Greece. The cells were Gram-negative, rugose, short rods, approximately 1.0 μm long and 0.5 μm wide. Strain MAG-PB1T grew at 30-70 °C (optimum 60 °C), 0-50 g NaCl l- 1 (optimum 15-20 g l- 1) and pH 5.5-8.0 (optimum pH 6.0). Generation time under optimal conditions was 2.5 h. Optimal growth occurred under chemolithoautotrophic conditions with H2 as the energy source and CO2 as the carbon source. Fe(III), Mn(IV), arsenate and selenate were used as electron acceptors. Peptone, tryptone, Casamino acids, sucrose, yeast extract, d-fructose, α-d-glucose and ( - )-d-arabinose also served as electron donors. No growth occurred in the presence of lactate or formate. The G+C content of the genomic DNA was 66.7 mol%. Phylogenetic analysis of the 16S rRNA gene sequence indicated that this organism is closely related to Deferrisoma camini, the first species of a recently described genus in the Deltaproteobacteria. Based on the 16S rRNA gene phylogenetic analysis and on physiological, biochemical and structural characteristics, the strain was found to represent a novel species, for which the name Deferrisoma palaeochoriense sp. nov. is proposed. The type strain is MAG-PB1T ( = JCM 30394T = DSM 29363T).
DOE Office of Scientific and Technical Information (OSTI.GOV)
Litwin-Staszewska, E.; Suski, T.; Piotrzkowski, R.
Comprehensive studies of the electrical properties of Mg-doped bulk GaN crystals, grown by high-pressure synthesis, were performed as a function of temperature up to 750{degree}C. Annealing of the samples in nitrogen ambient modifies qualitatively their resistivity values {rho} and the {rho}(T) variation. It was found that our material is characterized by a high concentration of oxygen-related donors and that the charge transport in the studied samples is determined by two types of states, one of shallow character (Mg-related state, E{sub A}{approximately}0.15eV), and the second one much more deep, E{sub 2}{approximately}0.95eV (above the valence band). Depending on the effective concentration ofmore » either states, different resistivities {rho} can be observed: lower resistivity ({rho}{lt}10{sup 4}{Omega}cm at ambient temperature) in samples with dominant E{sub A} states and very high resistivity ({rho}{gt}10{sup 6}{Omega}cm at ambient temperature) in samples with dominant E{sub 2} states. For the first type of samples, annealing at T{sub ann}{lt}500{degree}C leads to a decrease of their resistivity and is associated with an increase of the effective concentration of the shallow Mg acceptors. Annealing of both types of samples at temperatures between 600 and 750{degree}C leads to an increase of the deep state concentration. The presence of hydrogen ambient during annealing of the low-resistivity samples strongly influences their properties. The increase of the sample resistivity and an appearance of a local vibrational mode of hydrogen at 3125 cm{minus}1 were observed. These effects can be removed by annealing in hydrogen-free ambient. {copyright} 2001 American Institute of Physics.« less
Biogeochemical gradients above a coal tar DNAPL.
Scherr, Kerstin E; Backes, Diana; Scarlett, Alan G; Lantschbauer, Wolfgang; Nahold, Manfred
2016-09-01
Naturally occurring distribution and attenuation processes can keep hydrocarbon emissions from dense non aqueous phase liquids (DNAPL) into the adjacent groundwater at a minimum. In a historically coal tar DNAPL-impacted site, the de facto absence of a plume sparked investigations regarding the character of natural attenuation and DNAPL resolubilization processes at the site. Steep vertical gradients of polycyclic aromatic hydrocarbons, microbial community composition, secondary water quality and redox-parameters were found to occur between the DNAPL-proximal and shallow waters. While methanogenic and mixed-electron acceptor conditions prevailed close to the DNAPL, aerobic conditions and very low dissolved contaminant concentrations were identified in three meters vertical distance from the phase. Comprehensive two-dimensional gas chromatography-mass spectrometry (GC×GC-MS) proved to be an efficient tool to characterize the behavior of the present complex contaminant mixture. Medium to low bioavailability of ferric iron and manganese oxides of aquifer samples was detected via incubation with Shewanella alga and evidence for iron and manganese reduction was collected. In contrast, 16S rDNA phylogenetic analysis revealed the absence of common iron reducing bacteria. Aerobic hydrocarbon degraders were abundant in shallow horizons, while nitrate reducers were dominating in deeper aquifer regions, in addition to a low relative abundance of methanogenic archaea. Partial Least Squares - Canonical Correspondence Analysis (PLS-CCA) suggested that nitrate and oxygen concentrations had the greatest impact on aquifer community structure in on- and offsite wells, which had a similarly high biodiversity (H' and Chao1). Overall, slow hydrocarbon dissolution from the DNAPL appears to dominate natural attenuation processes. This site may serve as a model for developing legal and technical strategies for the treatment of DNAPL-impacted sites where contaminant plumes are absent or shrinking. Copyright © 2015 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Palma, Ricardo M.; Kietzmann, Diego A.; Bressan, Graciela S.; Martín-Chivelet, Javier; López-Gómez, José; Farias, María E.; Iglesias Llanos, María P.
2013-11-01
The La Manga Formation consists of marine carbonates and represents most of the sedimentary record of the Callovian-Oxfordian in the Neuquén Basin. Three localities in the southern Mendoza province were studied and their cyclicity was determined by means of facies analysis and their vertical arrangement. Facies of inner ramp, that were deposited in extremely shallow-water environments with intermittent subaerial exposures have been broken down into shallow subtidal, and intertidal-supratidal environments. Shallow subtidal facies are arranged into decimetre scale upward-shallowing cycles composed of marls, laminated or massive mudstones or bioclastic wackestones and intraclastic wackestone-packstones. Intertidal-supratidal centimetre-scale cycles consist of an upward-shallowing succession of restricted facies, overlaid by horizontal or crinkle microbial laminites, flat pebble conglomerates or breccias beds. The defined cycles show a shallowing upward trend in which the evidence of relative sea-level lowering is accepted. The interpretation of Fischer plots allowed the recognition of changes in accommodation space.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Torregrosa, Frank; Etienne, Hasnaa; Mathieu, Gilles
Classical beam line implantation is limited in low energies and cannot achieve P+/N junctions requirements for <45nm node. Compared to conventional beam line ion implantation, limited to a minimum of about 200 eV, the efficiency of Plasma Immersion Ion Implantation (PIII) is no more to prove for the realization of Ultra Shallow Junctions (USJ) in semiconductor applications: this technique allows to get ultimate shallow profiles (as implanted) thanks to no lower limitation of energy and offers high dose rate. In the field of the European consortium NANOCMOS, Ultra Shallow Junctions implanted on a semi-industrial PIII prototype (PULSION registered ) designedmore » by the French company IBS, have been studied. Ultra shallow junctions implanted with BF3 at acceleration voltages down to 20V were realized. Contamination level, homogeneity and depth profile are studied. The SIMS profiles obtained show the capability to make ultra shallow profiles (as implanted) down to 2nm.« less
Low-temperature irradiation-induced defects in germanium: In situ analysis
NASA Astrophysics Data System (ADS)
Mesli, A.; Dobaczewski, L.; Nielsen, K. Bonde; Kolkovsky, Vl.; Petersen, M. Christian; Larsen, A. Nylandsted
2008-10-01
The electronic properties of defects resulting from electron irradiation of germanium at low temperatures have been investigated. The recent success in preparing n+p junctions on germanium has opened a new opportunity to address fundamental questions regarding point defects and their related energy levels by allowing an access to the lower half of the band gap. In this work we apply various space-charge capacitance-transient spectroscopy techniques connected on line with the electron-beam facility. In n -type germanium we identify a level at about 0.14 eV below the conduction band whose properties resemble in many respects those of a defect assigned previously to the close vacancy-interstitial or Frenkel pair. This pair seems to annihilate over a small barrier at about 70 K, and its stability is particularly sensitive to the irradiation temperature and energy. We also observe two coupled levels at 0.08 and 0.24 eV below the conduction band stable up to 160 K. Recent independent theoretical work has predicted the existence of the single and double donor of the germanium interstitial with energy levels matching exactly these two values. Given these identifications hold, they mark a major difference with silicon where both the Frenkel pair and self-interstitial have never been caught. In p -type germanium, two levels were found. The shallower one, located at about 0.14 eV above the valence band, is tentatively assigned to the vacancy. It exhibits a field-driven instability at about 80 K making its analysis quite difficult. The application of a reverse bias, required by the space-charge spectroscopy, leads to a strong drift process sweeping this defect out of the observation area without necessarily provoking its annealing. Unlike silicon, in which the vacancy has four charge states, only one vacancy-related level seems to exist in germanium and this level is very likely a double acceptor. Finally, a very peculiar observation is made on a hole midgap trap, which, in many respects, behaves as the boron interstitial in silicon. This has led us to suggest that it may stem from the gallium interstitial, a natural dopant of our germanium materials, whose presence would be the fingerprint of the Watkins replacement mechanism in germanium.
Duan, Yuwei; Xu, Xiaopeng; Yan, He; Wu, Wenlin; Li, Zuojia; Peng, Qiang
2017-02-01
A novel-small molecular acceptor with electron-deficient 1,3,5-triazine as the core and perylene diimides as the arms is developed as the acceptor material for efficient bulk heterojunction organic solar cells with an efficiency of 9.15%. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
The Effects of Test Trial and Processing Level on Immediate and Delayed Retention.
Chang, Sau Hou
2017-03-01
The purpose of the present study was to investigate the effects of test trial and processing level on immediate and delayed retention. A 2 × 2 × 2 mixed ANOVAs was used with two between-subject factors of test trial (single test, repeated test) and processing level (shallow, deep), and one within-subject factor of final recall (immediate, delayed). Seventy-six college students were randomly assigned first to the single test (studied the stimulus words three times and took one free-recall test) and the repeated test trials (studied the stimulus words once and took three consecutive free-recall tests), and then to the shallow processing level (asked whether each stimulus word was presented in capital letter or in small letter) and the deep processing level (whether each stimulus word belonged to a particular category) to study forty stimulus words. The immediate test was administered five minutes after the trials, whereas the delayed test was administered one week later. Results showed that single test trial recalled more words than repeated test trial in immediate final free-recall test, participants in deep processing performed better than those in shallow processing in both immediate and delayed retention. However, the dominance of single test trial and deep processing did not happen in delayed retention. Additional study trials did not further enhance the delayed retention of words encoded in deep processing, but did enhance the delayed retention of words encoded in shallow processing.
The Effects of Test Trial and Processing Level on Immediate and Delayed Retention
Chang, Sau Hou
2017-01-01
The purpose of the present study was to investigate the effects of test trial and processing level on immediate and delayed retention. A 2 × 2 × 2 mixed ANOVAs was used with two between-subject factors of test trial (single test, repeated test) and processing level (shallow, deep), and one within-subject factor of final recall (immediate, delayed). Seventy-six college students were randomly assigned first to the single test (studied the stimulus words three times and took one free-recall test) and the repeated test trials (studied the stimulus words once and took three consecutive free-recall tests), and then to the shallow processing level (asked whether each stimulus word was presented in capital letter or in small letter) and the deep processing level (whether each stimulus word belonged to a particular category) to study forty stimulus words. The immediate test was administered five minutes after the trials, whereas the delayed test was administered one week later. Results showed that single test trial recalled more words than repeated test trial in immediate final free-recall test, participants in deep processing performed better than those in shallow processing in both immediate and delayed retention. However, the dominance of single test trial and deep processing did not happen in delayed retention. Additional study trials did not further enhance the delayed retention of words encoded in deep processing, but did enhance the delayed retention of words encoded in shallow processing. PMID:28344679
NASA Astrophysics Data System (ADS)
Pan, X.; Yu, Q.; You, Y.
2014-12-01
Understanding hydrological and thermal regimes of thermokarst lakes is of great importance for predicting their responses to climate change. However, mechanism of water-level dynamics and associated thermal effects on thermoerosion of thermokarst lakes are still not well understood on the Qinghai-Tibet Plateau (QTP). In this study, we investigate two typical shallow thermokarst ponds (namely small lakes) in a warm permafrost region with thick active layer on the northeastern QTP through quantifying water budget. Results demonstrate that, rainfall induced subsurface lateral flow dominates pond water-level regime. Annual variation of pond water-level relies on areal water budget of surrounding active layer, particularly the high variable of precipitation. Besides, it is worth noting the extraordinary warming during the late ice-cover period, because marked air gap between upper ice-cover and underlying water, led by the upward thawing of thick ice-cover, might result in greenhouse-like condition due to the unique weather that strong solar radiation and little snowpack. This hydrological mechanism also exerts evident impacts on thermal regime and thermoerosion of the shallow thermokarst ponds, and they are closely related to retreat of thermokarst pondshore and underlying permafrost degradation. These findings imply a localized model addressing the unique hydrological and thermal regimes of thermokarst lakes would be essential to study the evolution of these shallow rainwater dominated thermokarst ponds on the QTP.
Poole-Frenkel-effect as dominating current mechanism in thin oxide films—An illusion?!
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schroeder, Herbert
2015-06-07
In many of the publications, over 50 per year for the last five years, the Poole-Frenkel-effect (PFE) is identified or suggested as dominating current mechanism to explain measured current–electric field dependencies in metal-insulator-metal (MIM) thin film stacks. Very often, the insulating thin film is a metal oxide as this class of materials has many important applications, especially in information technology. In the overwhelming majority of the papers, the identification of the PFE as dominating current mechanism is made by the slope of the current–electric field curve in the so-called Poole-Frenkel plot, i.e., logarithm of current density, j, divided by themore » applied electric field, F, versus the square root of that field. This plot is suggested by the simplest current equation for the PFE, which comprises this proportionality (ln(j/F) vs. F{sup 1/2}) leading to a straight line in this plot. Only one other parameter (except natural constants) may influence this slope: the optical dielectric constant of the insulating film. In order to identify the importance of the PFE simulation studies of the current through MIM stacks with thin insulating films were performed and the current–electric field curves without and with implementation of the PFE were compared. For the simulation, an advanced current model has been used combining electronic carrier injection/ejection currents at the interfaces, described by thermionic emission, with the carrier transport in the dielectric, described by drift and diffusion of electrons and holes in a wide band gap semiconductor. Besides the applied electric field (or voltage), many other important parameters have been varied: the density of the traps (with donor- and acceptor-like behavior); the zero-field energy level of the traps within the energy gap, this energy level is changed by the PFE (also called internal Schottky effect); the thickness of the dielectric film; the permittivity of the dielectric film simulating different oxide materials; the barriers for electrons and holes at the interfaces simulating different electrode materials; the temperature. The main results and conclusions are: (1) For a single type of trap present only (donor-like or acceptor-like), none of the simulated current density curves shows the expected behavior of the PFE and in most cases within the tested parameter field the effect of PFE is negligibly small. (2) For both types of traps present (compensation) only in the case of exact compensation, the expected slope in the PF-plot was nearly found for a wider range of the applied electric field, but for a very small range of the tested parameter field because of the very restricting additional conditions: first, the quasi-fermi level of the current controlling particle (electrons or holes) has to be 0.1 to 0.5 eV closer to the respective band limit than the zero-field energy level of the respective traps and, second, the compensating trap energy level has to be shallow. The conclusion from all these results is: the observation of the PFE as dominating current mechanism in MIM stacks with thin dielectric (oxide) films (typically 30 nm) is rather improbable!.« less
Photoinduced electron transfer in fixed distance chlorophyll-quinone donor-acceptor molecules
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wasielewski, M.R.; Johnson, D.G.; Svec, W.A.
1987-01-01
A series of fixed distance chlorophyll-quinone donor-acceptor molecules have been prepared. The donor consists of either methyl pyropheophorbide a or methyl pyrochlorophyllide a, while the acceptor is either benzoquinone or naphthoquinone. The acceptors are fused to a triptycene spacer group, which in turn is attached to the donors at their vinyl groups. Picosecond transient absorption measurements have been used to identify electron transfer from the lowest excited singlet state of the donor to the acceptor as the mechanism of fluorescence quenching in these molecules. The charge separation rate constants increase from 2 x 10/sup 10/ s/sup -1/ to 4 xmore » 10/sup 11/ s/sup -1/ as the free energy of charge separation increases, while the radical pair recombination rate constants decrease from 1.2 x 10/sup 11/ s/sup -1/ to 2 x 10/sup 9/ s/sup -1/ as the free energy of recombination increases. The resulting total reorganization energy lambda = 0.9 eV.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Belousov, Yu. M., E-mail: theorphys@phystech.edu
The formation of an ionized acceptor center by a negative muon in crystals with the diamond structure is considered. The negative muon entering a target is captured by a nucleus, forming a muonic atom {sub μ}A coupled to a lattice. The appearing radiation-induced defect has a significant electric dipole moment because of the violation of the local symmetry of the lattice and changes the phonon spectrum of the crystal. The ionized acceptor center is formed owing to the capture of an electron interacting with the electric dipole moment of the defect and with the radiation of a deformation-induced local-mode phonon.more » Upper and lower bounds of the formation rate of the ionized acceptor center in diamond, silicon, and germanium crystals are estimated. It is shown that the kinetics of the formation of the acceptor center should be taken into account when processing μSR experimental data.« less
Ran, Niva A.; Roland, Steffen; Love, John A.; ...
2017-07-19
Here, a long standing question in organic electronics concerns the effects of molecular orientation at donor/acceptor heterojunctions. Given a well-controlled donor/acceptor bilayer system, we uncover the genuine effects of molecular orientation on charge generation and recombination. These effects are studied through the point of view of photovoltaics—however, the results have important implications on the operation of all optoelectronic devices with donor/acceptor interfaces, such as light emitting diodes and photodetectors. Our findings can be summarized by two points. First, devices with donor molecules face-on to the acceptor interface have a higher charge transfer state energy and less non-radiative recombination, resulting inmore » larger open-circuit voltages and higher radiative efficiencies. Second, devices with donor molecules edge-on to the acceptor interface are more efficient at charge generation, attributed to smaller electronic coupling between the charge transfer states and the ground state, and lower activation energy for charge generation.« less
Cohen, Mitchell R.; Gal, Eli
1993-01-01
A process and system for simultaneously removing from a gaseous mixture, sulfur oxides by means of a solid sulfur oxide acceptor on a porous carrier, nitrogen oxides by means of ammonia gas and particulate matter by means of filtration and for the regeneration of loaded solid sulfur oxide acceptor. Finely-divided solid sulfur oxide acceptor is entrained in a gaseous mixture to deplete sulfur oxides from the gaseous mixture, the finely-divided solid sulfur oxide acceptor being dispersed on a porous carrier material having a particle size up to about 200 microns. In the process, the gaseous mixture is optionally pre-filtered to remove particulate matter and thereafter finely-divided solid sulfur oxide acceptor is injected into the gaseous The government of the United States of America has rights in this invention pursuant to Contract No. DE-AC21-88MC 23174 awarded by the U.S. Department of Energy.
Electron-Transfer Dynamics for a Donor-Bridge-Acceptor Complex in Ionic Liquids.
DeVine, Jessalyn A; Labib, Marena; Harries, Megan E; Rached, Rouba Abdel Malak; Issa, Joseph; Wishart, James F; Castner, Edward W
2015-08-27
Intramolecular photoinduced electron transfer from an N,N-dimethyl-p-phenylenediamine donor bridged by a diproline spacer to a coumarin 343 acceptor was studied using time-resolved fluorescence measurements in three ionic liquids and in acetonitrile. The three ionic liquids have the bis[(trifluoromethyl)sulfonyl]amide anion paired with the tributylmethylammonium, 1-butyl-1-methylpyrrolidinium, and 1-decyl-1-methylpyrrolidinium cations. The dynamics in the two-proline donor-bridge-acceptor complex are compared to those observed for the same donor and acceptor connected by a single proline bridge, studied previously by Lee et al. (J. Phys. Chem. C 2012, 116, 5197). The increased conformational freedom afforded by the second bridging proline resulted in multiple energetically accessible conformations. The multiple conformations have significant variations in donor-acceptor electronic coupling, leading to dynamics that include both adiabatic and nonadiabatic contributions. In common with the single-proline bridged complex, the intramolecular electron transfer in the two-proline system was found to be in the Marcus inverted regime.
NASA Astrophysics Data System (ADS)
Duymus, Hulya; Arslan, Mustafa; Kucukislamoglu, Mustafa; Zengin, Mustafa
2006-12-01
Charge transfer (CT) complexes of some non-steroidal anti-inflammatory drugs, naproxen and etodolac which are electron donors with some π-acceptors, such as tetracyanoethylene (TCNE), 2,3-dichloro-5,6-dicyano- p-benzoquinone (DDQ), p-chloranil ( p-CHL), have been investigated spectrophotometrically in chloroform at 21 °C. The coloured products are measured spectrophotometrically at different wavelength depending on the electronic transition between donors and acceptors. Beer's law is obeyed and colours were produced in non-aqueous media. All complexes were stable at least 2 h except for etodolac with DDQ stable for 5 min. The equilibrium constants of the CT complexes were determined by the Benesi-Hildebrand equation. The thermodynamic parameters Δ H, Δ S, Δ G° were calculated by Van't Hoff equation. Stochiometries of the complexes formed between donors and acceptors were defined by the Job's method of the continuous variation and found in 1:1 complexation with donor and acceptor at the maximum absorption bands in all cases.
Hydroperoxides as Hydrogen Bond Donors
NASA Astrophysics Data System (ADS)
Møller, Kristian H.; Tram, Camilla M.; Hansen, Anne S.; Kjaergaard, Henrik G.
2016-06-01
Hydroperoxides are formed in the atmosphere following autooxidation of a wide variety of volatile organics emitted from both natural and anthropogenic sources. This raises the question of whether they can form hydrogen bonds that facilitate aerosol formation and growth. Using a combination of Fourier transform infrared spectroscopy, FT-IR, and ab initio calculations, we have compared the gas phase hydrogen bonding ability of tert-butylhydroperoxide (tBuOOH) to that of tert-butanol (tBuOH) for a series of bimolecular complexes with different acceptors. The hydrogen bond acceptor atoms studied are nitrogen, oxygen, phosphorus and sulphur. Both in terms of calculated redshifts and binding energies (BE), our results suggest that hydroperoxides are better hydrogen bond donors than the corresponding alcohols. In terms of hydrogen bond acceptor ability, we find that nitrogen is a significantly better acceptor than the other three atoms, which are of similar strength. We observe a similar trend in hydrogen bond acceptor ability with other hydrogen bond donors including methanol and dimethylamine.
Li, Ning; Perea, José Darío; Kassar, Thaer; Richter, Moses; Heumueller, Thomas; Matt, Gebhard J.; Hou, Yi; Güldal, Nusret S.; Chen, Haiwei; Chen, Shi; Langner, Stefan; Berlinghof, Marvin; Unruh, Tobias; Brabec, Christoph J.
2017-01-01
The performance of organic solar cells is determined by the delicate, meticulously optimized bulk-heterojunction microstructure, which consists of finely mixed and relatively separated donor/acceptor regions. Here we demonstrate an abnormal strong burn-in degradation in highly efficient polymer solar cells caused by spinodal demixing of the donor and acceptor phases, which dramatically reduces charge generation and can be attributed to the inherently low miscibility of both materials. Even though the microstructure can be kinetically tuned for achieving high-performance, the inherently low miscibility of donor and acceptor leads to spontaneous phase separation in the solid state, even at room temperature and in the dark. A theoretical calculation of the molecular parameters and construction of the spinodal phase diagrams highlight molecular incompatibilities between the donor and acceptor as a dominant mechanism for burn-in degradation, which is to date the major short-time loss reducing the performance and stability of organic solar cells. PMID:28224984
NASA Astrophysics Data System (ADS)
Du, Mengyan; Yang, Fangfang; Mai, Zihao; Qu, Wenfeng; Lin, Fangrui; Wei, Lichun; Chen, Tongsheng
2018-04-01
We here introduce a fluorescence resonance energy transfer (FRET) two-hybrid assay method to measure the maximal donor(D)- and acceptor(A)-centric FRET efficiency (ED,max and EA,max) of the D-A complex and its stoichiometry by linearly fitting the donor-centric FRET efficiency (ED) to the acceptor-to-donor concentration ratio (RC) and acceptor-centric FRET efficiency (EA) to 1/RC, respectively. We performed this method on a wide-field fluorescence microscope for living HepG2 cells co-expressing FRET tandem constructs and free donor/acceptor and obtained correct ED, EA, and stoichiometry values of those tandem constructs. Evaluation on the binding of Bad with Bcl-XL in Hela cells showed that Bad interacted strongly with Bcl-XL to form a Bad-Bcl-XL complex on mitochondria, and one Bad interacted mainly with one Bcl-XL molecule in healthy cells, while with multiple (maybe 2) Bcl-XL molecules in apoptotic cells.
Serrano, X; Baums, I B; O'Reilly, K; Smith, T B; Jones, R J; Shearer, T L; Nunes, F L D; Baker, A C
2014-09-01
The deep reef refugia hypothesis proposes that deep reefs can act as local recruitment sources for shallow reefs following disturbance. To test this hypothesis, nine polymorphic DNA microsatellite loci were developed and used to assess vertical connectivity in 583 coral colonies of the Caribbean depth-generalist coral Montastraea cavernosa. Samples were collected from three depth zones (≤10, 15-20 and ≥25 m) at sites in Florida (within the Upper Keys, Lower Keys and Dry Tortugas), Bermuda, and the U.S. Virgin Islands. Migration rates were estimated to determine the probability of coral larval migration from shallow to deep and from deep to shallow. Finally, algal symbiont (Symbiodinium spp.) diversity and distribution were assessed in a subset of corals to test whether symbiont depth zonation might indicate limited vertical connectivity. Overall, analyses revealed significant genetic differentiation by depth in Florida, but not in Bermuda or the U.S. Virgin Islands, despite high levels of horizontal connectivity between these geographic locations at shallow depths. Within Florida, greater vertical connectivity was observed in the Dry Tortugas compared to the Lower or Upper Keys. However, at all sites, and regardless of the extent of vertical connectivity, migration occurred asymmetrically, with greater likelihood of migration from shallow to intermediate/deep habitats. Finally, most colonies hosted a single Symbiodinium type (C3), ruling out symbiont depth zonation of the dominant symbiont type as a structuring factor. Together, these findings suggest that the potential for shallow reefs to recover from deep-water refugia in M. cavernosa is location-specific, varying among and within geographic locations likely as a consequence of local hydrology. © 2014 John Wiley & Sons Ltd.
NASA Astrophysics Data System (ADS)
Gariano, S. L.; Brunetti, M. T.; Iovine, G.; Melillo, M.; Peruccacci, S.; Terranova, O.; Vennari, C.; Guzzetti, F.
2015-01-01
Empirical rainfall thresholds are tools to forecast the possible occurrence of rainfall-induced shallow landslides. Accurate prediction of landslide occurrence requires reliable thresholds, which need to be properly validated before their use in operational warning systems. We exploited a catalogue of 200 rainfall conditions that have resulted in at least 223 shallow landslides in Sicily, southern Italy, in the 11-year period 2002-2011, to determine regional event duration-cumulated event rainfall (ED) thresholds for shallow landslide occurrence. We computed ED thresholds for different exceedance probability levels and determined the uncertainty associated to the thresholds using a consolidated bootstrap nonparametric technique. We further determined subregional thresholds, and we studied the role of lithology and seasonal periods in the initiation of shallow landslides in Sicily. Next, we validated the regional rainfall thresholds using 29 rainfall conditions that have resulted in 42 shallow landslides in Sicily in 2012. We based the validation on contingency tables, skill scores, and a receiver operating characteristic (ROC) analysis for thresholds at different exceedance probability levels, from 1% to 50%. Validation of rainfall thresholds is hampered by lack of information on landslide occurrence. Therefore, we considered the effects of variations in the contingencies and the skill scores caused by lack of information. Based on the results obtained, we propose a general methodology for the objective identification of a threshold that provides an optimal balance between maximization of correct predictions and minimization of incorrect predictions, including missed and false alarms. We expect that the methodology will increase the reliability of rainfall thresholds, fostering the operational use of validated rainfall thresholds in operational early warning system for regional shallow landslide forecasting.
Divalent carbon(0) chemistry, part 1: Parent compounds.
Tonner, Ralf; Frenking, Gernot
2008-01-01
Quantum-chemical calculations with DFT (BP86) and ab initio methods [MP2, SCS-MP2, CCSD(T)] have been carried out for the molecules C(PH(3))(2) (1), C(PMe(3))(2) (2), C(PPh(3))(2) (3), C(PPh(3))(CO) (4), C(CO)(2) (5), C(NHC(H))(2) (6), C(NHC(Me))(2) (7) (Me(2)N)(2)C=C=C(NMe(2))(2) (8), and NHC (9), where NHC=N-heterocyclic carbene and NHC(Me)=N-methyl-substituted NHC. The electronic structure in 1-9 was analyzed with charge- and energy-partitioning methods. The results show that the bonding situations in L(2)C compounds 1-8 can be interpreted in terms of donor-acceptor interactions between closed-shell ligands L and a carbon atom which has two lone-pair orbitals L-->C<--L. This holds particularly for the carbodiphosphoranes 1-3 where L=PR(3), which therefore are classified as divalent carbon(0) compounds. The NBO analysis suggests that the best Lewis structures for the carbodicarbenes 6 and 7 where L is a NHC ligand have C==C==C double bonds as in the tetraaminoallene 8. However, the Lewis structures of 6-8, in which two lone-pair orbitals at the central carbon atom are enforced, have only a slightly higher residual density. Visual inspection of the frontier orbitals of the latter species reveals their pronounced lone-pair character, which suggests that even the quasi-linear tetraaminoallene 8 is a "masked" divalent carbon(0) compound. This explains the very shallow bending potential of 8. The same conclusion is drawn for phosphoranylketene 4 and for carbon suboxide (5), which according to the bonding analysis have hidden double-lone-pair character. The AIM analysis and the EDA calculations support the assignment of carbodiphosphoranes as divalent carbon(0) compounds, while NHC 9 is characterized as a divalent carbon(II) compound. The L-->C((1)D) donor-acceptor bonds are roughly twice as strong as the respective L-->BH(3) bond.
Geomicrobiological Features of Ferruginous Sediments from Lake Towuti, Indonesia
Vuillemin, Aurèle; Friese, André; Alawi, Mashal; Henny, Cynthia; Nomosatryo, Sulung; Wagner, Dirk; Crowe, Sean A.; Kallmeyer, Jens
2016-01-01
Lake Towuti is a tectonic basin, surrounded by ultramafic rocks. Lateritic soils form through weathering and deliver abundant iron (oxy)hydroxides but very little sulfate to the lake and its sediment. To characterize the sediment biogeochemistry, we collected cores at three sites with increasing water depth and decreasing bottom water oxygen concentrations. Microbial cell densities were highest at the shallow site—a feature we attribute to the availability of labile organic matter (OM) and the higher abundance of electron acceptors due to oxic bottom water conditions. At the two other sites, OM degradation and reduction processes below the oxycline led to partial electron acceptor depletion. Genetic information preserved in the sediment as extracellular DNA (eDNA) provided information on aerobic and anaerobic heterotrophs related to Nitrospirae, Chloroflexi, and Thermoplasmatales. These taxa apparently played a significant role in the degradation of sinking OM. However, eDNA concentrations rapidly decreased with core depth. Despite very low sulfate concentrations, sulfate-reducing bacteria were present and viable in sediments at all three sites, as confirmed by measurement of potential sulfate reduction rates. Microbial community fingerprinting supported the presence of taxa related to Deltaproteobacteria and Firmicutes with demonstrated capacity for iron and sulfate reduction. Concomitantly, sequences of Ruminococcaceae, Clostridiales, and Methanomicrobiales indicated potential for fermentative hydrogen and methane production. Such first insights into ferruginous sediments showed that microbial populations perform successive metabolisms related to sulfur, iron, and methane. In theory, iron reduction could reoxidize reduced sulfur compounds and desorb OM from iron minerals to allow remineralization to methane. Overall, we found that biogeochemical processes in the sediments can be linked to redox differences in the bottom waters of the three sites, like oxidant concentrations and the supply of labile OM. At the scale of the lacustrine record, our geomicrobiological study should provide a means to link the extant subsurface biosphere to past environments. PMID:27446046
DOE Office of Scientific and Technical Information (OSTI.GOV)
Varley, J. B.; Lordi, V.
We investigate point defects in the buffer layers CdS and ZnS that may arise from intermixing with Cu(In,Ga)(S,Se) 2 (CIGS) or Cu 2ZnSn(S,Se) 4 (CZTS) absorber layers in thin-film photovoltaics. Using hybrid functional calculations, we characterize the electrical and optical behavior of Cu, In, Ga, Se, Sn, Zn, Na, and K impurities in the buffer. We find that In and Ga substituted on the cation site act as shallow donors in CdS and tend to enhance the prevailing n-type conductivity at the interface facilitated by Cd incorporation in CIGS, whereas they are deep donors in ZnS and will be lessmore » effective dopants. Substitutional In and Ga can favorably form complexes with cation vacancies (A-centers) which may contribute to the “red kink” effect observed in some CIGS-based devices. For CZTS absorbers, we find that Zn and Sn defects substituting on the buffer cation site are electrically inactive in n-type buffers and will not supplement the donor doping at the interface as in CIGS/CdS or ZnS devices. Sn may also preferentially incorporate on the S site as a deep acceptor in n-type ZnS, which suggests possible concerns with absorber-related interfacial compensation in CZTS devices with ZnS-derived buffers. Cu, Na, and K impurities are found to all have the same qualitative behavior, most favorably acting as compensating acceptors when substituting on the cation site. Lastly, our results suggest one beneficial role of K and Na incorporation in CIGS or CZTS devices is the partial passivation of vacancy-related centers in CdS and ZnS buffers, rendering them less effective interfacial hole traps and recombination centers.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Varley, J. B.; Lordi, V.
We investigate point defects in the buffer layers CdS and ZnS that may arise from intermixing with Cu(In,Ga)(S,Se){sub 2} (CIGS) or Cu{sub 2}ZnSn(S,Se){sub 4} (CZTS) absorber layers in thin-film photovoltaics. Using hybrid functional calculations, we characterize the electrical and optical behavior of Cu, In, Ga, Se, Sn, Zn, Na, and K impurities in the buffer. We find that In and Ga substituted on the cation site act as shallow donors in CdS and tend to enhance the prevailing n-type conductivity at the interface facilitated by Cd incorporation in CIGS, whereas they are deep donors in ZnS and will be lessmore » effective dopants. Substitutional In and Ga can favorably form complexes with cation vacancies (A-centers) which may contribute to the “red kink” effect observed in some CIGS-based devices. For CZTS absorbers, we find that Zn and Sn defects substituting on the buffer cation site are electrically inactive in n-type buffers and will not supplement the donor doping at the interface as in CIGS/CdS or ZnS devices. Sn may also preferentially incorporate on the S site as a deep acceptor in n-type ZnS, which suggests possible concerns with absorber-related interfacial compensation in CZTS devices with ZnS-derived buffers. Cu, Na, and K impurities are found to all have the same qualitative behavior, most favorably acting as compensating acceptors when substituting on the cation site. Our results suggest one beneficial role of K and Na incorporation in CIGS or CZTS devices is the partial passivation of vacancy-related centers in CdS and ZnS buffers, rendering them less effective interfacial hole traps and recombination centers.« less
Varley, J. B.; Lordi, V.
2014-08-08
We investigate point defects in the buffer layers CdS and ZnS that may arise from intermixing with Cu(In,Ga)(S,Se) 2 (CIGS) or Cu 2ZnSn(S,Se) 4 (CZTS) absorber layers in thin-film photovoltaics. Using hybrid functional calculations, we characterize the electrical and optical behavior of Cu, In, Ga, Se, Sn, Zn, Na, and K impurities in the buffer. We find that In and Ga substituted on the cation site act as shallow donors in CdS and tend to enhance the prevailing n-type conductivity at the interface facilitated by Cd incorporation in CIGS, whereas they are deep donors in ZnS and will be lessmore » effective dopants. Substitutional In and Ga can favorably form complexes with cation vacancies (A-centers) which may contribute to the “red kink” effect observed in some CIGS-based devices. For CZTS absorbers, we find that Zn and Sn defects substituting on the buffer cation site are electrically inactive in n-type buffers and will not supplement the donor doping at the interface as in CIGS/CdS or ZnS devices. Sn may also preferentially incorporate on the S site as a deep acceptor in n-type ZnS, which suggests possible concerns with absorber-related interfacial compensation in CZTS devices with ZnS-derived buffers. Cu, Na, and K impurities are found to all have the same qualitative behavior, most favorably acting as compensating acceptors when substituting on the cation site. Lastly, our results suggest one beneficial role of K and Na incorporation in CIGS or CZTS devices is the partial passivation of vacancy-related centers in CdS and ZnS buffers, rendering them less effective interfacial hole traps and recombination centers.« less
Process for gasification using a synthetic CO.sub.2 acceptor
Lancet, Michael S.; Curran, George P.
1980-01-01
A gasification process is disclosed using a synthetic CO.sub.2 acceptor consisting essentially of at least one compound selected from the group consisting of calcium oxide and calcium carbonate supported in a refractory carrier matrix, the carrier having the general formula Ca.sub.5 (SiO.sub.4).sub.2 CO.sub.3. A method for producing the synthetic CO.sub.2 acceptor is also disclosed.
Zhang, Weiwei; Wu, Yongzhen; Li, Xin; Li, Erpeng; Song, Xiongrong; Jiang, Huiyun; Shen, Chao; Zhang, Hao; Tian, He
2017-01-01
In dye-sensitized solar cells (DSSCs), it is essential to use rational molecular design to obtain promising photosensitizers with well-matched energy levels and narrow optical band gaps. However, the “trade-off” effect between the photocurrent and photovoltage is still a challenge. Here we report four benzoxidazole based D–A–π–A metal-free organic dyes (WS-66, WS-67, WS-68 and WS-69) with different combinations of π-spacer units and anchoring-acceptor groups. Either extending the π-spacer or enhancing the electron acceptor can efficiently modulate the molecular energy levels, leading to a red-shift in the absorption spectra. The optimal dye, WS-69, containing a cyclopentadithiophene (CPDT) spacer and cyanoacetic acid acceptor, shows the narrowest energy band gap, which displays a very high photocurrent density of 19.39 mA cm–2, but suffers from a relatively low photovoltage of 696 mV, along with the so-called deleterious “trade-off” effect. A cosensitization strategy is further adopted for enhancing the device performance. Optimization of the dye loading sequence is found to be capable of simultaneously improving the photocurrent and photovoltage, and distinctly preventing the “trade-off” effect. The superior cosensitized cell exhibits an excellent power-conversion efficiency (PCE) of 10.09% under one-sun irradiation, and 11.12% under 0.3 sun irradiation, which constitutes a great achievement in that the efficiency of a pure metal-free organic dye with iodine electrolyte can exceed 11% even under relatively weak light irradiation. In contrast with the previous cosensitization strategy which mostly focused on compensation of light-harvesting, we propose a novel cosensitization architecture, in which the large molecular-sized, high photocurrent dye WS-69 takes charge of broadening the light-harvesting region to generate a high short-circuit current (J SC) while the small molecular-sized, high photovoltage dye WS-5 is responsible for retarding charge recombination to generate a high open-circuit voltage (V OC). In addition, adsorption amount and photo-stability studies suggest that the cyano group in the anchoring acceptor is important for the stability since it is beneficial towards decreasing the LUMO levels and enhancing the binding of dyes onto TiO2 nanocrystals. PMID:28507663
Irreversible Heavy Chain Transfer to Chondroitin*
Lauer, Mark E.; Hascall, Vincent C.; Green, Dixy E.; DeAngelis, Paul L.; Calabro, Anthony
2014-01-01
We have recently demonstrated that the transfer of heavy chains (HCs) from inter-α-inhibitor, via the enzyme TSG-6 (tumor necrosis factor-stimulated gene 6), to hyaluronan (HA) oligosaccharides is an irreversible event in which subsequent swapping of HCs between HA molecules does not occur. We now describe our results of HC transfer experiments to chondroitin sulfate A, chemically desulfated chondroitin, chemoenzymatically synthesized chondroitin, unsulfated heparosan, heparan sulfate, and alginate. Of these potential HC acceptors, only chemically desulfated chondroitin and chemoenzymatically synthesized chondroitin were HC acceptors. The kinetics of HC transfer to chondroitin was similar to HA. At earlier time points, HCs were more widely distributed among the different sizes of chondroitin chains. As time progressed, the HCs migrated to lower molecular weight chains of chondroitin. Our interpretation is that TSG-6 swaps the HCs from the larger, reversible sites on chondroitin chains, which function as HC acceptors, onto smaller chondroitin chains, which function as irreversible HC acceptors. HCs transferred to smaller chondroitin chains were unable to be swapped off the smaller chondroitin chains and transferred to HA. HCs transferred to high molecular weight HA were unable to be swapped onto chondroitin. We also present data that although chondroitin was a HC acceptor, HA was the preferred acceptor when chondroitin and HA were in the same reaction mixture. PMID:25135638
Zhao, Yan-hui; Zhao, Yang-guo; Guo, Liang
2016-03-15
The feasibility of treating pretreated excess sludge and capacity of supplying continuous power of microbial fuel cells (MFCs) were investigated. Two-chamber microbial fuel cells were started up and operated by using thermal pretreated excess sludge as the substrate. Potential fluctuations were achieved by changing the cathode electron acceptor. During the changes of electron acceptor, the operational stability of MFCs was assessed. The results indicated that the MFCs started successfully with oxygen as the cathode electron acceptor and reached 0.24 V after 148 hours. When the cathode electron acceptor was replaced by potassium ferricyanide, MFCs could obtain the maximum output voltage and maximum power density of 0.66 V and 4.21 W · m⁻³, respectively. When the cathode electron acceptor was changed from oxygen to potassium ferricyanide or the MFCs were closed circuit, the output power of MFCs recovered rapidly. In addition, changes of electron acceptor showed no effect on the removal of COD and ammonia nitrogen. Their removal efficiencies approached to 70% and 80%, respectively. This study concluded that MFC could treat the pretreated excess sludge and produce electricity simultaneously with a high power density. The MFC could also achieve discontinuous electricity supply during operation.
Crystal growth and structure, electrical, and optical characterization of the semiconductor Cu2SnSe3
NASA Astrophysics Data System (ADS)
Marcano, G.; Rincón, C.; de Chalbaud, L. M.; Bracho, D. B.; Pérez, G. Sánchez
2001-08-01
X-ray powder diffraction by p-type Cu2SnSe3, prepared by the vertical Bridgman-Stockbarger technique, shows that this material crystallizes in a monoclinic structure, space group Cc, with unit cell parameters a=6.5936(1) Å, b=12.1593(4) Å, c=6.6084(3) Å, and β=108.56(2)°. The temperature variation of the hole concentration p obtained from the Hall effect and electrical resistivity measurements from about 160 to 300 K, is explained as due to the thermal activation of an acceptor level with an ionization energy of 0.067 eV, whereas below 100 K, the conduction in the impurity band dominates the electrical transport process. From the analysis of the p vs T data, the density-of-states effective mass of the holes is estimated to be nearly of the same magnitude as the free electron mass. In the valence band, the temperature variation of the hole mobility is analyzed by taking into account the scattering of charge carriers by ionized and neutral impurities, and acoustic phonons. In the impurity band, the mobility is explained as due to the thermally activated hopping transport. From the analysis of the optical absorption spectra at room temperature, the fundamental energy gap was determined to be 0.843 eV. The photoconductivity spectra show the presence of a narrow band gap whose main peak is observed at 0.771 eV. This band is attributed to a free-to-bound transition from the defect acceptor level to the conduction band. The origin of this acceptor state, consistent with the chemical composition of the samples and screening effects, is tentatively attributed to selenium interstitials.
Shallow trapping vs. deep polarons in a hybrid lead halide perovskite, CH3NH3PbI3.
Kang, Byungkyun; Biswas, Koushik
2017-10-18
There has been considerable speculation over the nature of charge carriers in organic-inorganic hybrid perovskites, i.e., whether they are free and band-like, or they are prone to self-trapping via short range deformation potentials. Unusually long minority-carrier diffusion lengths and moderate-to-low mobilities, together with relatively few deep defects add to their intrigue. Here we implement density functional methods to investigate the room-temperature, tetragonal phase of CH 3 NH 3 PbI 3 . We compare charge localization behavior at shallow levels and associated lattice relaxation versus those at deep polaronic states. The shallow level originates from screened Coulomb interaction between the perturbed host and an excited electron or hole. The host lattice has a tendency towards forming these shallow traps where the electron or hole is localized not too far from the band edge. In contrast, there is a considerable potential barrier that must be overcome in order to initiate polaronic hole trapping. The formation of a hole polaron (I 2 - center) involves strong lattice relaxation, including large off-center displacement of the organic cation, CH 3 NH 3 + . This type of deep polaron is energetically unfavorable, and active shallow traps are expected to shape the carrier dynamics in this material.
Hybrid coconut seedlings, scholarships, and discount cards for family planning acceptors.
Sumarsono
1989-10-01
Having learned from failed family planning (FP) incentive schemes in other countries, Indonesia implemented a reward system designed to popularize FP in the community. In order to overcome cultural opposition to FP, many countries in the 1970s opted to give incentives--money, materials, etc.--to new contraceptive acceptors and the FP workers who successfully recruited them. These countries, which oftentimes spent up to 1/4 of their program budget on incentives, saw rapid increases in the number of new acceptors. The results, however, only reflected a superficial acceptance of FP. When the incentives stopped, the number of acceptors dropped considerably. Recognizing this, the Indonesian government set out to increase FP acceptance by making the small family the norm in the community. And one of the approaches for doing so was a reward system. The goals of the reward program were: 1) to raise awareness of the recognition given to individuals or groups that have accepted FP; 2) to create pride among FP workers and new acceptors; and 3) to generate leadership in the community. Villages with high FP acceptance receive rewards such as deep-wells that provide clean water or income generating projects. Individuals also receive rewards that sometimes include hybrid coconut seedlings which, after 3 years, can yield up to 700 coconuts, which can provide a family with a significant supplemental income. The government also gives scholarships to children of FP acceptors. Also, the president of Indonesia publicly recognized family planning acceptors. In 1989, over 800,000 couples received awards for practicing contraception over the past 5-16 years.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Feier, Hilary M.; Reid, Obadiah G.; Pace, Natalie A.
2016-03-23
How free charge is generated at organic donor-acceptor interfaces is an important question, as the binding energy of the lowest energy (localized) charge transfer states should be too high for the electron and hole to escape each other. Recently, it has been proposed that delocalization of the electronic states participating in charge transfer is crucial, and aggregated or otherwise locally ordered structures of the donor or the acceptor are the precondition for this electronic characteristic. The effect of intermolecular aggregation of both the polymer donor and fullerene acceptor on charge separation is studied. In the first case, the dilute electronmore » acceptor triethylsilylhydroxy-1,4,8,11,15,18,22,25-octabutoxyphthalocyaninatosilicon(IV) (SiPc) is used to eliminate the influence of acceptor aggregation, and control polymer order through side-chain regioregularity, comparing charge generation in 96% regioregular (RR-) poly(3-hexylthiophene) (P3HT) with its regiorandom (RRa-) counterpart. In the second case, ordered phases in the polymer are eliminated by using RRa-P3HT, and phenyl-C61-butyric acid methyl ester (PC61BM) is used as the acceptor, varying its concentration to control aggregation. Time-resolved microwave conductivity, time-resolved photoluminescence, and transient absorption spectroscopy measurements show that while ultrafast charge transfer occurs in all samples, long-lived charge carriers are only produced in films with intermolecular aggregates of either RR-P3HT or PC61BM, and that polymer aggregates are just as effective in this regard as those of fullerenes.« less
Susceptibility and triggering scenarios at a regional scale for shallow landslides
NASA Astrophysics Data System (ADS)
Gullà, G.; Antronico, L.; Iaquinta, P.; Terranova, O.
2008-07-01
The work aims at identifying susceptible areas and pluviometric triggering scenarios at a regional scale in Calabria (Italy), with reference to shallow landsliding events. The proposed methodology follows a statistical approach and uses a database linked to a GIS that has been created to support the various steps of spatial data management and manipulation. The shallow landslide predisposing factors taken into account are derived from (i) the 40-m digital terrain model of the region, an ˜ 15,075 km 2 extension; (ii) outcropping lithology; (iii) soils; and (iv) land use. More precisely, a map of the slopes has been drawn from the digital terrain model. Two kinds of covers [prevalently coarse-grained (CG cover) or fine-grained (FG cover)] were identified, referring to the geotechnical characteristics of geomaterial covers and to the lithology map; soilscapes were drawn from soil maps; and finally, the land use map was employed without any prior processing. Subsequently, the inventory maps of some shallow landsliding events, totaling more than 30,000 instabilities of the past and detected by field surveys and photo aerial restitution, were employed to calibrate the relative importance of these predisposing factors. The use of single factors (first level analysis) therefore provides three different susceptibility maps. Second level analysis, however, enables better location of areas susceptible to shallow landsliding events by crossing the single susceptibility maps. On the basis of the susceptibility map obtained by the second level analysis, five different classes of susceptibility to shallow landsliding events have been outlined over the regional territory: 8.9% of the regional territory shows very high susceptibility, 14.3% high susceptibility, 15% moderate susceptibility, 3.6% low susceptibility, and finally, about 58% very low susceptibility. Finally, the maps of two significant shallow landsliding events of the past and their related rainfalls have been utilized to identify the relevant pluviometric triggering scenarios. By using 205 daily rainfall series, different triggering pluviometric scenarios have been identified with reference to CG and FG covers: a value of 365 mm of the total rainfall of the event and/or 170 mm/d of the rainfall maximum intensity and a value of 325 mm of the total rainfall of the event and/or 158 mm/d of the rainfall maximum intensity are able to trigger shallow landsliding events for CG and FG covers, respectively. The results obtained from this study can help administrative authorities to plan future development activities and mitigation measures in shallow landslide-prone areas. In addition, the proposed methodology can be useful in managing emergency situations at a regional scale for shallow landsliding events triggered by intense rainfalls; through this approach, the susceptibility and the pluviometric triggering scenario maps will be improved by means of finer calibration of the involved factors.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gupta, Rohitesh, E-mail: rohitesh.gupta@gmail.com; Matta, Khushi L.; Neelamegham, Sriram, E-mail: neel@buffalo.edu
2016-01-15
Sialyltransferases (STs) catalyze the addition of sialic acids to the non-reducing ends of glycoproteins and glycolipids. In this work, we examined the acceptor specificity of five human α(2,3)sialyltransferases, namely ST3Gal -I, -II, -III, -IV and -VI. K{sub M} values for each of these enzymes is presented using radioactivity for acceptors containing Type-I (Galβ1,3GlcNAc), Type-II (Galβ1,4GlcNAc), Type-III (Galβ1,3GalNAc) and Core-2 (Galβ1,3(GlcNAcβ1,6)GalNAc) reactive groups. Several variants of acceptors inhibited ST3Gal activity emphasizing structural role of acceptor in enzyme-catalyzed reactions. In some cases, mass spectrometry was performed for structural verification. The results demonstrate human ST3Gal-I catalysis towards Type-III and Core-2 acceptors with K{submore » M} = 5–50 μM and high V{sub Max} values. The K{sub M} for ST3Gal-I and ST3Gal-II was 100 and 30-fold lower, respectively, for Type-III compared to Type-I acceptors. Variants of Type-I and Type-II structures characterized ST3Gal-III, -IV and -VI for their catalytic specificity. This manuscript also estimates K{sub M} for human ST3Gal-VI using Type-I and Type-II substrates. Together, these findings built a platform for designing inhibitors of STs having therapeutic potential. - Highlights: • K{sub M} for five Human ST3Gals is reported towards Type-I, Type-II & Type-III acceptors. • LC-MS simultaneously quantifies CMP-Neu5Ac & Glycans in a sialylation reaction. • Efficient Core2 sialylation indicates co-operativitiy between ST3Gal-I & C2GnT1. • ST3Gal-I inhibition study proposes iso- or random-sequential bi-bi mechanism.« less
Tsuji, A; Sato, Y; Hirano, M; Suga, T; Koshimoto, H; Taguchi, T; Ohsuka, S
2001-01-01
We previously showed that a specific kind of mRNA (c-fos) was detected in a living cell under a microscope by introducing two fluorescently labeled oligodeoxynucleotides, each labeled with donor or acceptor, into the cytoplasm, making them hybridize to adjacent locations on c-fos mRNA, and taking images of fluorescence resonance energy transfer (FRET) (A. Tsuji, H. Koshimoto, Y. Sato, M. Hirano. Y. Sei-Iida, S. Kondo, and K. Ishibashi, 2000, Biophys. J. 78:3260-3274). On the formed hybrid, the distance between donor and acceptor becomes close and FRET occurs. To observe small numbers of mRNA in living cells using this method, it is required that FRET fluorescence of hybrid must be distinguished from fluorescence of excess amounts of non-hybridizing probes and from cell autofluorescence. To meet these requirements, we developed a time-resolved method using acceptor fluorescence decays. When a combination of a donor having longer fluorescence lifetime and an acceptor having shorter lifetime is used, the measured fluorescence decays of acceptors under FRET becomes slower than the acceptor fluorescence decay with direct excitation. A combination of Bodipy493/503 and Cy5 was selected as donor and acceptor. When the formed hybrid had a configuration where the target RNA has no single-strand part between the two fluorophores, the acceptor fluorescence of hybrid had a sufficiently longer delay to detect fluorescence of hybrid in the presence of excess amounts of non-hybridizing probes. Spatial separation of 10-12 bases between two fluorophores on the hybrid is also required. The decay is also much slower than cell autofluorescence, and smaller numbers of hybrid were detected with less interference of cell autofluorescence in the cytoplasm of living cells under a time-resolved fluorescence microscope with a time-gated function equipped camera. The present method will be useful when observing induced expressions of mRNA in living cells. PMID:11423432
NASA Astrophysics Data System (ADS)
Wijewarnasuriya, P. S.
HgCdTe alloy is currently the most important semiconductor material for IR detection technology. Different growth techniques are used to produce HgCdTe, but achieving a high-quality material is still a major objective in the field. Among the growth techniques for HgCdTe, molecular beam epitaxy (MBE) is one of the most promising, mainly because of its versatility. Furthermore, the growth by MBE is carried out at a low temperature which limits interdiffusion processes. The focus of this research is the understanding of the electrical properties of HgCdTe layers grown by MBE technique. Using a model based on a single discrete acceptor level near the valence band and a corresponding fully ionized donor level, a good fit to the observed Hall data on p-type epilayers was obtained. In some samples, another acceptor level was needed. Also, analysis of R _{h} data and low temperature mobilities indicated that the p-type MBE growth layers were highly compensated. This was also confirmed by mercury saturated annealing experiments. Annealing of (111)B epilayers with Hg pressure leads us to believe that Hg vacancies are responsible for the p-type character. The findings reveal that the electrical properties differ drastically between different growth orientations, with (111)B having the highest residual doping levels for a particular Cd composition. It is concluded that MBE growth for HgCdTe is essentially a Te rich growth and our understanding is that this extra Te is responsible for the n-type character in the epilayers. A comparison between HgCdTe twinned layers and twin-free layers has shown that electrically active acceptors and high hole mobilities are associated with the presence of twins. Incorporation of several foreign elements also tried and all were found to substitute the metal sites during growth. With magnetic field studies on R_ {h}, resistivity and conductivity tensor analysis, the band structure of the HgCdTe alloy is also investigated. Junction depth and the doping profile on low energy Ar ion sputtered epilayers are investigated and they are found to behave similar to the ion implanted layers.