Sample records for shallow disk injection

  1. Estrogen Transport in Surface Runoff from Agricultural Fields Treated with Two Application Methods of Dairy Manure.

    PubMed

    Mina, Odette; Gall, Heather E; Saporito, Louis S; Kleinman, Peter J A

    2016-11-01

    This study compares two methods of dairy manure application-surface broadcast and shallow disk injection-on the fate and transport of natural estrogens in surface runoff from 12 field plots in central Pennsylvania. Ten natural surface runoff events were sampled over a 9-mo period after fall manure application. Results show that the range of estrogen concentrations observed in surface runoff from the broadcast plots was several orders of magnitude higher (>5000 ng L) than the concentrations in runoff from the shallow disk injection plots (<10 ng L). Additionally, the transport dynamics differed, with the majority of the estrogen loads from the surface broadcast plots occurring during the first rainfall event after application, whereas the majority of the loads from the shallow disk injection plots occurred more than 6 mo later during a hail storm event. Total estrogen loads were, on average, two orders of magnitude lower for shallow disk injection compared with surface broadcast. Independent of the method of manure application, 17α-estradiol and estrone were preserved in the field for as long as 9 mo after application. Overall, injection of manure shows promise in reducing the potential for off-site losses of hormones from manure-amended soils. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.

  2. Environmental and economic comparisons of manure application methods in farming systems.

    PubMed

    Rotz, C A; Kleinman, P J A; Dell, C J; Veith, T L; Beegle, D B

    2011-01-01

    Alternative methods for applying livestock manure to no-till soils involve environmental and economic trade-offs. A process-level farm simulation model (Integrated Farm System Model) was used to evaluate methods for applying liquid dairy (Bos taurus L.) and swine (Sus scrofa L.) manure, including no application, broadcast spreading with and without incorporation by tillage, band application with soil aeration, and shallow disk injection. The model predicted ammonia emissions, nitrate leaching, and phosphorus (P) runoff losses similar to those measured over 4 yr of field trials. Each application method was simulated over 25 yr of weather on three Pennsylvania farms. On a swine and cow-calf beef operation under grass production, shallow disk injection increased profit by $340 yr(-1) while reducing ammonia nitrogen and soluble P losses by 48 and 70%, respectively. On a corn (Zea mays L.)-and-grass-based grazing dairy farm, shallow disk injection reduced ammonia loss by 21% and soluble P loss by 76% with little impact on farm profit. Incorporation by tillage and band application with aeration provided less environmental benefit with a net decrease in farm profit. On a large corn-and-alfalfa (Medicago sativa L.)-based dairy farm where manure nutrients were available in excess of crop needs, incorporation methods were not economically beneficial, but they provided environmental benefits with relatively low annual net costs ($13 to $18 cow). In all farming systems, shallow disk injection provided the greatest environmental benefit at the least cost or greatest profit for the producer. With these results, producers are better informed when selecting manure application equipment.

  3. Estrogen transport in surface runoff from agricultural fields treated with two different application methods of dairy manure

    USDA-ARS?s Scientific Manuscript database

    While the land-application of animal manure provides many benefits, concerns exist regarding the subsequent transport of hormones and potential effects on aquatic ecosystems. This study compares two methods of dairy manure application, surface broadcasting and shallow disk injection, on the fate and...

  4. [Calcifications after intra-disk injection of triamcinolone hexacetonide in lumbar disk hernia. Evaluation of therapeutical results in 3 years].

    PubMed

    Debiais, F; Bontoux, D; Alcalay, M; Vandermarcq, P; Azais, O; Denis, A; Azais, I; Gasquet, C

    1991-10-01

    The development of disk or epidural calcifications is a frequent possibility following intra-disk injection of triamcinolone hexacetonide. It was found 10 times in 26 follow-up CT scans obtained 2 to 3 years after the injection. These calcifications are often clinically silent, but they sometimes accompany a recurrence of the initial painful symptomatology. Furthermore, evaluation at 3 years of therapeutic results in a previously published series of patients who had received an intra-disk injection of triamcinolone hexacetonide showed a marked decrease in favourable results (30% vs 67% at 6 months). These two arguments: disappointing long term results and possibility of disk calcifications, are felt by the authors to justify abandoning the technique of triamcinolone hexacetonide by intra-disk injection in the treatment of lumbar disk prolapse.

  5. Local heat transfer in turbine disk-cavities. II - Rotor cooling with radial location injection of coolant

    NASA Astrophysics Data System (ADS)

    Bunker, R. S.; Metzger, D. E.; Wittig, S.

    1990-06-01

    The detailed radial distributions of rotor heat-transfer coefficients for three basic disk-cavity geometries applicable to gas turbines are presented. The coefficients are obtained over a range of parameters including disk rotational Reynolds numbers of 200,000 to 50,000, rotor/stator spacing-to-disk ratios of 0.025 to 0.15, and jet mass flow rates between 0.10 and 0.40 times the turbulent pumped flow rate of a free disk. The effects of a parallel rotor are analyzed, and strong variations in local Nusselt numbers for all but the rotational speed are pointed out and compared with the associated hub-injection data from a previous study. It is demonstrated that the overall rotor heat transfer is optimized by either the hub injection or radial location injection of a coolant, dependent on the configuration.

  6. Premixed direct injection disk

    DOEpatents

    York, William David; Ziminsky, Willy Steve; Johnson, Thomas Edward; Lacy, Benjamin; Zuo, Baifang; Uhm, Jong Ho

    2013-04-23

    A fuel/air mixing disk for use in a fuel/air mixing combustor assembly is provided. The disk includes a first face, a second face, and at least one fuel plenum disposed therebetween. A plurality of fuel/air mixing tubes extend through the pre-mixing disk, each mixing tube including an outer tube wall extending axially along a tube axis and in fluid communication with the at least one fuel plenum. At least a portion of the plurality of fuel/air mixing tubes further includes at least one fuel injection hole have a fuel injection hole diameter extending through said outer tube wall, the fuel injection hole having an injection angle relative to the tube axis. The invention provides good fuel air mixing with low combustion generated NOx and low flow pressure loss translating to a high gas turbine efficiency, that is durable, and resistant to flame holding and flash back.

  7. Intravitreal gas injection without vitrectomy for macular detachment associated with an optic disk pit.

    PubMed

    Akiyama, Hideo; Shimoda, Yukitoshi; Fukuchi, Mariko; Kashima, Tomoyuki; Mayuzumi, Hideyasu; Shinohara, Yoichiro; Kishi, Shoji

    2014-02-01

    To evaluate the clinical outcomes after gas tamponade without vitrectomy for retinal detachment associated with an optic disk pit using optical coherence tomography. Intravitreal gas injection was performed on 8 consecutive patients (mean age, 35.0 years; range, 15-74 years) with unilateral macular detachment associated with an optic disk pit. A 0.3-mL injection of 100% sulfur hexafluoride 6 gas was carried out without an anterior chamber tap. Patients treated with gas injection were instructed to remain facedown for 5 days. Complete retinal reattachment after only gas tamponade was achieved in four out of eight eyes. The mean number of gas injections was 1.8. The mean best-corrected visual acuity before and after the treatment with gas tamponade was approximately 30/100 and 20/20, respectively. The period required for reattachment after final gas treatment was 12 months. There were no incidences of recurrence after complete reattachment by gas tamponade in any of the cases during the 94-month average follow-up period (range, 64-132 months). Gas tamponade appears to be an effective alternative method for macular detachment associated with an optic disk pit, even though the mechanisms of optic disk pit maculopathy are still unknown.

  8. Debris Disks in Aggregate: Using Hubble Space Telescope Coronagraphic Imagery to Understand the Scattered-Light Disk Detection Rate

    NASA Technical Reports Server (NTRS)

    Grady, Carol A.

    2011-01-01

    Despite more than a decade of coronagraphic imaging of debris disk candidate stars, only 16 have been imaged in scattered light. Since imaged disks provide our best insight into processes which sculpt disks, and can provide signposts of the presence of giant planets at distances which would elude radial velocity and transit surveys, we need to understand under what conditions we detect the disks in scattered light, how these disks differ from the majority of debris disks, and how to increase the yield of disks which are imaged with 0.1" angular resolution. In this talk, I will review what we have learned from a shallow HSTINICMOS NIR survey of debris disks, and present first results from our on-going HST /STIS optical imaging of bright scattered-light disks.

  9. The Efficacy of Platelets Rich Plasma Injection in the Superior Joint Space of the Tempromandibular Joint Guided by Ultra Sound in Patients with Non-reducing Disk Displacement.

    PubMed

    Al-Delayme, Ra'ed M Ayoub; Alnuamy, Shefaa H; Hamid, Firas Taha; Azzamily, Tariq Jassim; Ismaeel, Salah AbdulMahdy; Sammir, R; Hadeel, M; Nabeel, Jafaar; Shwan, R; Alfalahi, Shahad Jamal; Yasin, Alaa

    2017-03-01

    The objective of this study was to determine average improvement during the rest and active mouth opening after ultrasound guided platelets rich plasma injection in the tempromandibular superior joint space for the patients complaining from non-reducing disk displacement. Thirty-four patients with non-reducing disk displacement underwent guided ultrasound injection of platelet rich plasma to the upper joint space. The extent of maximal mouth opening, chewing efficiency, sound intensity of the TMJ, and tenderness of the TMJ and the masticatory muscles at rest, motion and mastication were thoroughly assessed at the beginning of the study and scheduled for next follow-up at 1st, 3rd, and 6th months. Injection with platelets rich plasma was significantly more effective in improvements of the extent of maximal mouth opening, statistics result demonstrated a significant reduction in the VAS values of pain at rest, motion and mastication compared to the baseline VAS values. PRP injection to the upper temporomandibular joint space provided improvement in signs and symptoms of patient with non-reducing disk displacement of the temporomandibular joint.

  10. Local heat transfer in turbine disk-cavities. I - Rotor and stator cooling with hub injection of coolant

    NASA Astrophysics Data System (ADS)

    Bunker, R. S.; Metzger, D. E.; Wittig, S.

    1990-06-01

    Detailed radial heat-transfer coefficient distributions applicable to the cooling of disk-cavity regions of gas turbines are obtained experimentally from local heat-transfer data on both the rotating and stationary surfaces of a parallel-geometry disk-cavity system. Attention is focused on the hub injection of a coolant over a wide range of parameters including disk rotational Reynolds numbers of 200,000 to 50,000, rotor/stator spacing-to-disk ratios of 0.025 to 0.15, and jet mass flow rates between 0.10 and 0.40 times the turbulent pumped flow rate of a free disk. It is shown that rotor heat transfer exhibits regions of impingement and rotational domination with a transition region between, while stator heat transfer displays flow reattachment and convection regions with an inner recirculation zone.

  11. A Strong Shallow Heat Source in the Accreting Neutron Star MAXI J0556-332

    NASA Astrophysics Data System (ADS)

    Deibel, Alex; Cumming, Andrew; Brown, Edward F.; Page, Dany

    2015-08-01

    An accretion outburst in an X-ray transient deposits material onto the neutron star primary; this accumulation of matter induces reactions in the neutron star’s crust. During the accretion outburst these reactions heat the crust out of thermal equilibrium with the core. When accretion halts, the crust cools to its long-term equilibrium temperature on observable timescales. Here we examine the accreting neutron star transient MAXI J0556-332, which is the hottest transient, at the start of quiescence, observed to date. Models of the quiescent light curve require a large deposition of heat in the shallow outer crust from an unknown source. The additional heat injected is ≈4-10 MeV per accreted nucleon; when the observed decline in accretion rate at the end of the outburst is accounted for, the required heating increases to ≈6-16 MeV. This shallow heating is still required to fit the light curve even after taking into account a second accretion episode, uncertainties in distance, and different surface gravities. The amount of shallow heating is larger than that inferred for other neutron star transients and is larger than can be supplied by nuclear reactions or compositionally driven convection; but it is consistent with stored mechanical energy in the accretion disk. The high crust temperature ({T}b≳ {10}9 {{K}}) makes its cooling behavior in quiescence largely independent of the crust composition and envelope properties, so that future observations will probe the gravity of the source. Fits to the light curve disfavor the presence of Urca cooling pairs in the crust.

  12. Investigating Disk-halo Flows and Accretion: A Kinematic and Morphological Analysis of Extraplanar H I in NGC 3044 and NGC 4302

    NASA Astrophysics Data System (ADS)

    Zschaechner, Laura K.; Rand, Richard J.; Walterbos, Rene

    2015-01-01

    To further understand the origins of and physical processes operating in extra-planar gas, we present observations and kinematic models of H I in the two nearby, edge-on spiral galaxies NGC 3044 and NGC 4302. We model NGC 3044 as a single, thick disk. Substantial amounts of extra-planar H I are also detected. We detect a decrease in rotation speed with height (a lag) that shallows radially, reaching zero at approximately R 25. The large-scale kinematic asymmetry of the approaching and receding halves suggests a recent disturbance. The kinematics and morphology of NGC 4302, a Virgo Cluster member, are greatly disturbed. We model NGC 4302 as a combination of a thin disk and a second, thicker disk, the latter having a hole near the center. We detect lagging extra-planar gas, with indications of shallowing in the receding half, although its characteristics are difficult to constrain. A bridge is detected between NGC 4302 and its companion, NGC 4298. We explore trends involving the extra-planar H I kinematics of these galaxies, as well as galaxies throughout the literature, as well as possible connections between lag properties with star formation and environment. Measured lags are found to be significantly steeper than those modeled by purely ballistic effects, indicating additional factors. Radial shallowing of extra-planar lags is typical and occurs between 0.5R 25 and R 25, suggesting internal processes are important in dictating extra-planar kinematics.

  13. Submucosal injection of normal saline may prevent tissue damage from argon plasma coagulation: an experimental study using resected porcine esophagus, stomach, and colon.

    PubMed

    Fujishiro, Mitsuhiro; Yahagi, Naohisa; Nakamura, Masanori; Kakushima, Naomi; Kodashima, Shinya; Ono, Satoshi; Kobayashi, Katsuya; Hashimoto, Takuhei; Yamamichi, Nobutake; Tateishi, Ayako; Shimizu, Yasuhito; Oka, Masashi; Ichinose, Masao; Omata, Masao

    2006-10-01

    Argon plasma coagulation (APC) is considered to be a safe thermocoagulation technique, but some reports show perforation and deformity during and after APC. In this study, we investigated the usefulness of prior submucosal injection for APC. APC over the mucosa was performed on fresh resected porcine esophagus, stomach, and colon with prior submucosal injection of normal saline (injection group) and without it (control group). The depth of tissue damage increased linearly with pulse duration up to the shallower submucosal layer in both groups. After that, tissue damage in the injection group remained confined to the shallower submucosal layer under any condition, whereas that in the control group continued to extend. The tissue damages of the injection groups were significantly (P<0.05) shallower than those of the control groups that reached the deeper submucosal layer in all the organs. Submucosal injection of normal saline before the application of APC may limit tissue damage and prevent perforation and deformity.

  14. Leak detection aid

    DOEpatents

    Steeper, Timothy J.

    1989-01-01

    A leak detection apparatus and method for detecting leaks across an O-ring sealing a flanged surface to a mating surface is an improvement in a flanged surface comprising a shallow groove following O-ring in communication with an entrance and exit port intersecting the shallow groove for injecting and withdrawing, respectively, a leak detection fluid, such as helium. A small quantity of helium injected into the entrance port will flow to the shallow groove, past the O-ring and to the exit port.

  15. Use of egg traps to investigate lake trout spawning in the Great Lakes

    USGS Publications Warehouse

    Schreiner, Donald R.; Bronte, Charles R.; Payne, N. Robert; Fitzsimons, John D.; Casselman, John M.

    1995-01-01

    Disk-shaped traps were used to examine egg deposition by lake trout (Salvelinus namaycush) at 29 sites in the Great Lakes. The main objectives were to; first, evaluate the disk trap as a device for sampling lake trout eggs in the Great Lakes, and second, summarize what has been learned about lake trout spawning through the use of disk traps. Of the 5,085 traps set, 60% were classified as functional when retrieved. Evidence of lake trout egg deposition was documented in each of the lakes studied at 14 of 29 sites. A total of 1,147 eggs were trapped. The percentage of traps functioning and catch per effort were compared among sites based on depth, timing of egg deposition, distance from shore, size of reef, and type of reef (artificial or natural). Most eggs were caught on small, shallow, protected reefs that were close to shore. Use of disk traps on large, shallow, unprotected offshore reefs or along unprotected shorelines was generally unsuccessful due to the effects of heavy wind and wave action. Making multiple lifts at short intervals, and retrieval before and re-deployment after storms are recommended for use in exposed areas. On large reefs, preliminary surveys to identify preferred lake trout spawning habitat may be required to deploy disk traps most effectively. Egg deposition by hatchery-reared fish was widespread throughout the Great Lakes, and the use of artificial structures by these fish was extensive.

  16. Leak detection aid

    DOEpatents

    Steeper, T.J.

    1989-12-26

    A leak detection apparatus and method for detecting leaks across an O-ring sealing a flanged surface to a mating surface is an improvement in a flanged surface comprising a shallow groove following O-ring in communication with an entrance and exit port intersecting the shallow groove for injecting and withdrawing, respectively, a leak detection fluid, such as helium. A small quantity of helium injected into the entrance port will flow to the shallow groove, past the O-ring and to the exit port. 2 figs.

  17. Massive Gas Injection Valve Development for NSTX-U

    DOE Data Explorer

    Raman, R. [Princeton Plasma Physics Lab. (PPPL), Princeton, NJ (United States); Plunkett, G. J. [Princeton Plasma Physics Lab. (PPPL), Princeton, NJ (United States); Way, W.-S. [Princeton Plasma Physics Lab. (PPPL), Princeton, NJ (United States)

    2016-05-01

    NSTX-U research will offer new insight by studying gas assimilation efficiencies for MGI injection from different poloidal locations using identical gas injection systems. In support of this activity, an electromagnetic MGI valve has been built and tested. The valve operates by repelling two conductive disks due to eddy currents induced on them by a rapidly changing magnetic field created by a pancake disk solenoid positioned beneath the circular disk attached to a piston. The current is driven in opposite directions in the two solenoids, which creates a cancelling torque when the valve is operated in an ambient magnetic field, as would be required in a tokamak installation. The valve does not use ferromagnetic materials. Results from the operation of the valve, including tests conducted in 1 T external magnetic fields, are described. The pressure rise in the test chamber is measured directly using a fast time response baratron gauge. At a plenum pressure of just 1.38 MPa (~200 psig), the valve injects 27 Pa.m^3 (~200 Torr.L) of nitrogen with a pressure rise time of 3 ms.

  18. [Predicting Spectra of Accretion Disks Around Galactic Black Holes

    NASA Technical Reports Server (NTRS)

    Krolik, Julian H.

    2004-01-01

    The purpose of this grant was to construct detailed atmosphere solutions in order to predict the spectra of accretion disks around Galactic black holes. Our plan of action was to take an existing disk atmosphere code (TLUSTY, created by Ivan Hubeny) and introduce those additional physical processes necessary to make it applicable to disks of this variety. These modifications include: treating Comptonization; introducing continuous opacity due to heavy elements; incorporating line opacity due to heavy elements; adopting a disk structure that reflects readjustments due to radiation pressure effects; and injecting heat via a physically-plausible vertical distribution.

  19. Mixing and Transport in the Solar Nebula

    NASA Technical Reports Server (NTRS)

    Boss, Alan P.

    2003-01-01

    Boss & Vanhala (2000, 2001) prepared reviews of triggered collapse and injection models, using Prudence Foster's finite differences code at very high spatial resolution (440 x 1440 cells) to demonstrate the convergence of the R-T fingers in triggered injection models. A two dimensional hydrodynamical calculation with unprecedentedly high spatial resolution (960 x 2880 zones, or almost 3 million grid points) demonstrated that it suitable shock front can both trigger the collapse of an otherwise stable presolar cloud, and inject shock front particles into the collapsing cloud through the formation of what become Rayleigh-Taylor fingers of compressed fluid layers falling into the gravitational potential well of the growing protostar. These calculations suggest that heterogeneity derived from these R-T fingers will persist down to the scale of their injection onto the surface of the solar nebula. Haghighipour developed a numerical code capable of calculating the orbital evolution of dust grains of varied sizes in a gaseous nebula, subject to Epstein and Stokes drag as well as the self-gravity of the disk. In collaboration with the PI and George W. Wetherill, Haghighipour has been involved in development of a new idea on the possibility of rapid formation of ice giant planets via the disk instability mechanism. Haghighipour studied the stability of a five-body system consisting of the Sun and four protoplanets by numerically integrating their equations of motions. Using Levison and Duncan s SWIFT integrator, Haghighipour showed that, depending on the orbital parameters of the bodies, such a system can be stable for 0.1-10 Myr. Time periods of 1 Myr or more are long enough to be consistent with the time scale proposed for the formation of giant planets by the disk instability mechanism and the photoevaporation of the gaseous envelopes of the outermost protoplanets by a nearby OB star, resulting in the formation of ice giant planets. The PI has used his three dimensional models of marginally gravitationally unstable disks to study the preservation of isotopic heterogeneity in evolving protoplanetary disks. Such heterogeneity might arise from the infall onto the disk s surface of solids processed in the X-wind region of the disk, or derived from stellar nucleosynthesis and injected by R-T fingers. The technique used consists of solving a color equation, identical to the gas continuity equation, which follows the time evolution in three space dimensions of an arbitrarily placed initial color field, i.e., a dye inserted the disk. The models show that significant concentrations of color could persist for time periods of about a thousand years or more, even in the most dynamically active region of such a disk. Such a time period might be long enough for solids to coagulate and grow to significant sizes while retaining the isotopic signature of their birth region in the nebula.

  20. Meteoritic Evidence for Injection of Trans-Neptunian Objects into the Inner Solar System

    NASA Technical Reports Server (NTRS)

    Zolensky, M.; Johnson, J.; Ziegler, K.; Chan, Q.; Kebukawa, Y.; Bottke, W.; Fries, M.; Martinez, J.; Le, L.

    2018-01-01

    There is excellent evidence that a dynamical instability in the early solar system led to gravitational interactions between the giant planets and trans-Neptunian planetesimals. Giant planetary migration triggered by the instability dispersed a disk of primordial trans-Neptunian object (TNOs) and created a number of small body reservoirs (e.g. the Kuiper Belt, scattered disk, irregular satellites, and the Jupiter/Neptune Trojan populations). It also injected numerous bodies into the main asteroid belt, where modeling shows they can successfully reproduce the observed P and D-type asteroid populations.

  1. Comparison of Fit of Dentures Fabricated by Traditional Techniques Versus CAD/CAM Technology.

    PubMed

    McLaughlin, J Bryan; Ramos, Van; Dickinson, Douglas P

    2017-11-14

    To compare the shrinkage of denture bases fabricated by three methods: CAD/CAM, compression molding, and injection molding. The effect of arch form and palate depth was also tested. Nine titanium casts, representing combinations of tapered, ovoid, and square arch forms and shallow, medium, and deep palate depths, were fabricated using electron beam melting (EBM) technology. For each base fabrication method, three poly(vinyl siloxane) impressions were made from each cast, 27 dentures for each method. Compression-molded dentures were fabricated using Lucitone 199 poly methyl methacrylate (PMMA), and injection molded dentures with Ivobase's Hybrid Pink PMMA. For CAD/CAM, denture bases were designed and milled by Avadent using their Light PMMA. To quantify the space between the denture and the master cast, silicone duplicating material was placed in the intaglio of the dentures, the titanium master cast was seated under pressure, and the silicone was then trimmed and recovered. Three silicone measurements per denture were recorded, for a total of 243 measurements. Each silicone measurement was weighed and adjusted to the surface area of the respective arch, giving an average and standard deviation for each denture. Comparison of manufacturing methods showed a statistically significant difference (p = 0.0001). Using a ratio of the means, compression molding had on average 41% to 47% more space than injection molding and CAD/CAM. Comparison of arch/palate forms showed a statistically significant difference (p = 0.023), with shallow palate forms having more space with compression molding. The ovoid shallow form showed CAD/CAM and compression molding had more space than injection molding. Overall, injection molding and CAD/CAM fabrication methods produced equally well-fitting dentures, with both having a better fit than compression molding. Shallow palates appear to be more affected by shrinkage than medium or deep palates. Shallow ovoid arch forms appear to benefit from the use of injection molding compared to CAD/CAM and compression molding. © 2017 by the American College of Prosthodontists.

  2. Viability of modelling gas transport in shallow injection-monitoring experiment field at Maguelone, France

    NASA Astrophysics Data System (ADS)

    Basirat, Farzad; Perroud, Hervé; Lofi, Johanna; Denchik, Nataliya; Lods, Gérard; Fagerlund, Fritjof; Sharma, Prabhakar; Pezard, Philippe; Niemi, Auli

    2015-04-01

    In this study, TOUGH2/EOS7CA model is used to simulate the shallow injection-monitoring experiment carried out at Maguelone, France, during 2012 and 2013. The possibility of CO2 leakage from storage reservoir to upper layers is one of the issues that need to be addressed in CCS projects. Developing reliable monitoring techniques to detect and characterize CO2 leakage is necessary for the safety of CO2 storage in reservoir formations. To test and cross-validate different monitoring techniques, a series of shallow gas injection-monitoring experiments (SIMEx) has been carried out at the Maguelone. The experimental site is documented in Lofi et al [2013]. At the site, a series of nitrogen and one CO2 injection experiment have been carried out during 2012-2013 and different monitoring techniques have been applied. The purpose of modelling is to acquire understanding of the system performance as well as to further develop and validate modelling approaches for gas transport in the shallow subsurface, against the well-controlled data sets. The preliminary simulation of the experiment including the simulation for the Nitrogen injection test in 2012 was presented in Basirat et al [2013]. In this work, the simulations represent the gaseous CO2 distribution and dissolved CO2 within range obtained by monitoring approaches. The Multiphase modelling in combination with geophysical monitoring can be used for process understanding of gas phase migration- and mass transfer processes resulting from gaseous CO2 injection. Basirat, F., A. Niemi, H. Perroud, J. Lofi, N. Denchik, G. Lods, P. Pezard, P. Sharma, and F. Fagerlund (2013), Modeling Gas Transport in the Shallow Subsurface in Maguelone Field Experiment, Energy Procedia, 40, 337-345. Lofi, J., P. Pezard, F. Bouchette, O. Raynal, P. Sabatier, N. Denchik, A. Levannier, L. Dezileau, and R. Certain (2013), Integrated Onshore-Offshore Investigation of a Mediterranean Layered Coastal Aquifer, Groundwater, 51(4), 550-561.

  3. Planar micromixer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fiechtner, Gregory J; Singh, Anup K; Wiedenman, Boyd J

    2008-03-18

    The present embodiment describes a laminar-mixing embodiment that utilizes simple, three-dimensional injection. Also described is the use of the embodiment in combination with wide and shallow sections of channel to affect rapid mixing in microanalytical systems. The shallow channel sections are constructed using all planar micromachining techniques, including those based on isotropic etching. The planar construction enables design using minimum dispersion concepts that, in turn, enable simultaneous mixing and injection into subsequent chromatography channels.

  4. A New Paradigm for Gamma Ray Bursts: Long Term Accretion Rate Modulation by an External Accretion Disk

    NASA Technical Reports Server (NTRS)

    Cannizzo, John; Gehrels, Neil

    2009-01-01

    We present a new way of looking at the very long term evolution of GRBs in which the disk of material surrounding the putative black hole powering the GRB jet modulates the mass flow, and hence the efficacy of the process that extracts rotational energy from the black hole and inner accretion disk. The pre-Swift paradigm of achromatic, shallow-to-steep "breaks" in the long term GRB light curves has not been borne out by detailed Swift data amassed in the past several years. We argue that, given the initial existence of a fall-back disk near the progenitor, an unavoidable consequence will be the formation of an "external disk" whose outer edge continually moves to larger radii due to angular momentum transport and lack of a confining torque. The mass reservoir at large radii moves outward with time and gives a natural power law decay to the GRB light curves. In this model, the different canonical power law decay segments in the GRB identified by Zhang et al. and Nousek et al. represent different physical states of the accretion disk. We identify a physical disk state with each power law segment.

  5. Aerodynamic and torque characteristics of enclosed Co/counter rotating disks

    NASA Astrophysics Data System (ADS)

    Daniels, W. A.; Johnson, B. V.; Graber, D. J.

    1989-06-01

    Experiments were conducted to determine the aerodynamic and torque characteristics of adjacent rotating disks enclosed in a shroud, in order to obtain an extended data base for advanced turbine designs such as the counterrotating turbine. Torque measurements were obtained on both disks in the rotating frame of reference for corotating, counterrotating and one-rotating/one-static disk conditions. The disk models used in the experiments included disks with typical smooth turbine geometry, disks with bolts, disks with bolts and partial bolt covers, and flat disks. A windage diaphragm was installed at mid-cavity for some experiments. The experiments were conducted with various amounts of coolant throughflow injected into the disk cavity from the disk hub or from the disk OD with swirl. The experiments were conducted at disk tangential Reynolds number up to 1.6 x 10 to the 7th with air as the working fluid. The results of this investigation indicated that the static shroud contributes a significant amount to the total friction within the disk system; the torque on counterrotating disks is essentially independent of coolant flow total rate, flow direction, and tangential Reynolds number over the range of conditions tested; and a static windage diaphragm reduces disk friction in counterrotating disk systems.

  6. Sleipner vest CO{sub 2} disposal, CO{sub 2} injection into a shallow underground aquifer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Baklid, A.; Korbol, R.; Owren, G.

    1996-12-31

    This paper describes the problem of disposing large amounts of CO{sub 2} into a shallow underground aquifer from an offshore location in the North Sea. The solutions presented is an alternative for CO{sub 2} emitting industries in addressing the growing concern for the environmental impact from such activities. The topside injection facilities, the well and reservoir aspects are discussed as well as the considerations made during establishing the design basis and the solutions chosen. The CO{sub 2} injection issues in this project differs from industry practice in that the CO{sub 2} is wet and contaminated with methane, and further, becausemore » of the shallow depth, the total pressure resistance in the system is not sufficient for the CO{sub 2} to naturally stay in the dense phase region. To allow for safe and cost effective handling of the CO{sub 2}, it was necessary to develop an injection system that gave a constant back pressure from the well corresponding to the output pressure from the compressor, and being independent of the injection rate. This is accomplished by selecting a high injectivity sand formation, completing the well with a large bore, and regulating the dense phase CO{sub 2} temperature and thus the density of the fluid in order to account for the variations in back pressure from the well.« less

  7. Modifying the Standard Disk Model for the Ultraviolet Spectral Analysis of Disk-dominated Cataclysmic Variables. I. The Novalikes MV Lyrae, BZ Camelopardalis, and V592 Cassiopeiae.

    PubMed

    Godon, Patrick; Sion, Edward M; Balman, Şölen; Blair, William P

    2017-09-01

    The standard disk is often inadequate to model disk-dominated cataclysmic variables (CVs) and generates a spectrum that is bluer than the observed UV spectra. X-ray observations of these systems reveal an optically thin boundary layer (BL) expected to appear as an inner hole in the disk. Consequently, we truncate the inner disk. However, instead of removing the inner disk, we impose the no-shear boundary condition at the truncation radius, thereby lowering the disk temperature and generating a spectrum that better fits the UV data. With our modified disk, we analyze the archival UV spectra of three novalikes that cannot be fitted with standard disks. For the VY Scl systems MV Lyr and BZ Cam, we fit a hot inflated white dwarf (WD) with a cold modified disk ( [Formula: see text] ~ a few 10 -9 M ⊙ yr -1 ). For V592 Cas, the slightly modified disk ( [Formula: see text] ~ 6 × 10 -9 M ⊙ yr -1 ) completely dominates the UV. These results are consistent with Swift X-ray observations of these systems, revealing BLs merged with ADAF-like flows and/or hot coronae, where the advection of energy is likely launching an outflow and heating the WD, thereby explaining the high WD temperature in VY Scl systems. This is further supported by the fact that the X-ray hardness ratio increases with the shallowness of the UV slope in a small CV sample we examine. Furthermore, for 105 disk-dominated systems, the International Ultraviolet Explorer spectra UV slope decreases in the same order as the ratio of the X-ray flux to optical/UV flux: from SU UMa's, to U Gem's, Z Cam's, UX UMa's, and VY Scl's.

  8. Hydrologic monitoring of a waste-injection well near Milton, Florida, June 1975 - June 1977

    USGS Publications Warehouse

    Pascale, Charles A.; Martin, J.B.

    1978-01-01

    This report presents the hydraulic and chemical data collected from June 1, 1975, when injection began, to June 30, 1977 through a monitoring program at a deep-well waste-injection system at the American Cyanamid Company's plant near Milton, about 12 miles northwest of Pensacola. The injection system consists of a primary injection well, a standby injection well, and two deep monitor wells all completed open hole in the lower limestone of the Floridan aquifer and one shallow-monitor well completed in the upper limestone of the Floridan aquifer. Two of the monitor wells and the standby injection well are used to observe hydraulic and geochemical effects of waste injection in the injection zone at locations 8,180 feet northeast, 1,560 feet south, and 1,025 feet southwest of the primary injection well. The shallow-monitor well, used to observe any effects in the first permeable zone above the 200-foot-thick confining bed, is 28 feet north of the primary injection well. Since injection began in June 1975, 607 million gallons of treated industrial liquid waste with a pH of 4.6 to 6.3 and containing high concentrations of nitrate, organic nitrogen and carbon have been injected into a saline-water-filled limestone aquifer. Wellhead pressure at the injection well in June 1977 average 137 pounds per square inch and the hydraulic pressure gradient was 0.53 pound per square inch per foot of depth to the top of the injection zone. Water levels rose from 36 to 74 feet at the three wells used to monitor the injection zone during the 25-month period. The water level in the shallow-monitor well declined about 8 feet. No changes were detected in the chemical character of water from the shallow-monitor well and deep-monitor well-north. Increases in concentration of bicarbonate and dissolved organic carbon were detected in water from the deep-test monitor well in February 1976 and at the standby injection well in August 1976. In addition to increases in bicarbonate and dissolved organic carbon, sulfate, total organic nitrogen, and total nitrogen concentrations have also increased substantially in samples from these wells. Nitrogen gas concentrations in water samples collected at the three deep-monitor wells ranged from 19 to 176 milligrams per liter, methane from 4.5 to 11.4 milligrams per liter, and carbon dioxide from 7.7 to 44 milligrams per liter. The most probable number of denitrifying bacteria in water samples collected at the three deep-monitor wells ranged from less than 2 colonies to 17 colonies per 100 milliliters. None of the water samples collected in April 1977 at the three deep-monitor wells showed positive concentrations of acetone, ethanol, methanol, or acrylonitrile.

  9. Synthesis and characterization of injectable composites of poly[D,L-lactide-co-(ε-caprolactone)] reinforced with β-TCP and CaCO3 for intervertebral disk augmentation.

    PubMed

    López, Alejandro; Persson, Cecilia; Hilborn, Jöns; Engqvist, Håkan

    2010-10-01

    Degeneration of the intervertebral disk constitutes one of the major causes of low back pain in adults aged 20-50 years old. In this study, injectable, in situ setting, degradable composites aimed for intervertebral disk replacement were prepared. β-TCP and calcium carbonate particles were mixed into acrylic-terminated oligo[D,L-lactide-co-(ε-caprolactone)], which were crosslinked at room temperature. The structure of the oligomers was confirmed by 1H-NMR spectroscopy. The composites were examined via SEM, and the mechanical properties of the crosslinked networks were determined. The porous β-TCP particles showed good mechanical anchorage to the matrix due to polymer penetration into the pores. In vitro degradation tests showed that the composites containing β-TCP slowly degraded, whereas the composites containing CaCO3 exhibited apatite formation capacity. It was concluded that the surface area, morphology, and solubility of the fillers might be used to control the degradation properties. The incorporation of fillers also increased both the elastic modulus and the maximum compression strength of the composites, properties that were similar to those of the physiological disk. These materials have potential for long-term intervertebral disk replacement and regenerative scaffolds because of their low degradation rates, bioactivity, and mechanical properties.

  10. Forecasting magma-chamber rupture at Santorini volcano, Greece.

    PubMed

    Browning, John; Drymoni, Kyriaki; Gudmundsson, Agust

    2015-10-28

    How much magma needs to be added to a shallow magma chamber to cause rupture, dyke injection, and a potential eruption? Models that yield reliable answers to this question are needed in order to facilitate eruption forecasting. Development of a long-lived shallow magma chamber requires periodic influx of magmas from a parental body at depth. This redistribution process does not necessarily cause an eruption but produces a net volume change that can be measured geodetically by inversion techniques. Using continuum-mechanics and fracture-mechanics principles, we calculate the amount of magma contained at shallow depth beneath Santorini volcano, Greece. We demonstrate through structural analysis of dykes exposed within the Santorini caldera, previously published data on the volume of recent eruptions, and geodetic measurements of the 2011-2012 unrest period, that the measured 0.02% increase in volume of Santorini's shallow magma chamber was associated with magmatic excess pressure increase of around 1.1 MPa. This excess pressure was high enough to bring the chamber roof close to rupture and dyke injection. For volcanoes with known typical extrusion and intrusion (dyke) volumes, the new methodology presented here makes it possible to forecast the conditions for magma-chamber failure and dyke injection at any geodetically well-monitored volcano.

  11. KSC-97PC1277

    NASA Image and Video Library

    1997-08-22

    In the Payload Hazardous Servicing Facility (PHSF), Dan Maynard, a Jet Propulsion Laboratory technician, inserts the Digital Video Disk (DVD) into a shallow cavity between two pieces of aluminum that will protect it from micrometeoroid impacts. The package will be mounted to the side of the two-story-tall spacecraft beneath a pallet carrying cameras and other space instruments that will be used to study the Saturnian system. A specially designed, multicolored patch of thermal blanket material will be installed over the disk package. Along with the spacecraft, the disk will reside in Saturn's orbit centuries after the primary mission is completed in July 2008. The Cassini mission is managed for NASA's Office of Space Science, Washington, D.C., by the Jet Propulsion Laboratory, a division of the California Institute of Technology

  12. An inner warp in the DoAr 44 T Tauri transition disk

    NASA Astrophysics Data System (ADS)

    Casassus, Simon; Avenhaus, Henning; Pérez, Sebastián; Navarro, Víctor; Cárcamo, Miguel; Marino, Sebastián; Cieza, Lucas; Quanz, Sascha P.; Alarcón, Felipe; Zurlo, Alice; Osses, Axel; Rannou, Fernando R.; Román, Pablo E.; Barraza, Marcelo

    2018-04-01

    Optical/IR images of transition disks (TDs) have revealed deep intensity decrements in the rings of HAeBes HD 142527 and HD 100453, that can be interpreted as shadowing from sharply tilted inner disks, such that the outer disks are directly exposed to stellar light. Here we report similar dips in SPHERE+IRDIS differential polarized imaging (DPI) of TTauri DoAr 44. With a fairly axially symmetric ring in the sub mm radio continuum, DoAr 44 is likely also a warped system. We constrain the warp geometry by comparing radiative transfer predictions with the DPI data in H band (Qϕ(H)) and with a re-processing of archival 336 GHz ALMA observations. The observed DPI shadows have coincident radio counterparts, but the intensity drops are much deeper in Qϕ(H) (˜88%), compared to the shallow drops at 336 GHz (˜24%). Radiative transfer predictions with an inner disk tilt of ˜30 ± 5 deg approximately account for the observations. ALMA long-baseline observations should allow the observation of the warped gas kinematics inside the cavity of DoAr 44.

  13. DISCOVERY OF A DISK GAP CANDIDATE AT 20 AU IN TW HYDRAE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Akiyama, E.; Kusakabe, N.; Kandori, R.

    We present a new Subaru/HiCIAO high-contrast H-band polarized intensity (PI) image of a nearby transitional disk associated with TW Hydrae. The scattered light from the disk was detected from 0.″ 2 to 1.″ 5 (11–81 AU) and the PI image shows a clear axisymmetric depression in PI at ∼0.″ 4 (∼20 AU) from the central star, similar to the ∼80 AU gap previously reported from Hubble Space Telescope images. The azimuthal PI profile also shows that the disk beyond 0.″ 2 is almost axisymmetric. We discuss two possible scenarios explaining the origin of the PI depression: (1) a gap structuremore » may exist at ∼20 AU from the central star because of a shallow slope seen in the PI profile, and (2) grain growth may be occurring in the inner region of the disk. Multi-band observations at near-infrared and millimeter/submillimeter wavelengths play a complementary role in investigating dust opacity and may help reveal the origin of the gap more precisely.« less

  14. Evolution of UV-Irradiated Protoplanetary Disks

    NASA Astrophysics Data System (ADS)

    Bally, J.; Moeckel, N.; Throop, H.

    2005-12-01

    Most stars are born in transient clusters within OB associations. Within the first few million years of birth, stars and their protoplanetary disks can be exposed to intense UV radiation, close-passages of sibling stars, stellar winds, and supernova explosions. Disk photo-ablation may promote the rapid formation of kilometer-scale planetesimals by preferentially removing gas and small grains, and enhancing the relative abundance of centimeter and meter-scale bodies. Disk perturbations produced by close-by passages of sibling stars or binary companions can trigger tidally induced shocks which anneal grains. Close-by supernovae can inject live radioactive species such as 26Al and 60Fe either before or after the formation of a low-mass star and its disk. Intense UV radiation from the pre-supernova blue-supergiant and Wolf-Rayet phases of the most massive stars can result in enhanced disk photo-ablation.

  15. Silicate dust in a Vega-excess system

    NASA Technical Reports Server (NTRS)

    Skinner, C. J.; Barlow, M. J.; Justtanont, K.

    1992-01-01

    The 10-micron spectrum of the K5V star SAO 179815 (= HD 98800) is presented, and conclusively demonstrates the presence of small silicate dust grains around this star. The 9.7-micron silicate dust feature is unusually broad and shallow in this system. This, together with the slow fall-off of flux at longer wavelengths, constrains the size and density distributions of dust grains in models of the disk. It is found that there must be a significant population of small grains, as well as a population of large grains in order to explain all the observed properties of the disk.

  16. Controlled CO2 injection into a shallow aquifer and leakage detection monitoring practices at the K-COSEM site, Korea

    NASA Astrophysics Data System (ADS)

    Lee, S. S.; Joun, W.; Ju, Y. J.; Ha, S. W.; Jun, S. C.; Lee, K. K.

    2017-12-01

    Artificial carbon dioxide injection into a shallow aquifer system was performed with two injection types imitating short- and long-term CO2 leakage events into a shallow aquifer. One is pulse type leakage of CO2 (6 hours) under a natural hydraulic gradient (0.02) and the other is long-term continuous injection (30 days) under a forced hydraulic gradient (0.2). Injection and monitoring tests were performed at the K-COSEM site in Eumseong, Korea where a specially designed well field had been installed for artificial CO2 release tests. CO2-infused and tracer gases dissolved groundwater was injected through a well below groundwater table and monitoring were conducted in both saturated and unsaturated zones. Real-time monitoring data on CO2 concentration and hydrochemical parameters, and periodical measurements of several gas tracers (He, Ar, Kr, SF6) were obtained. The pulse type short-term injection test was carried out prior to the long-term injection test. Results of the short-term injection test, under natural hydraulic gradient, showed that CO2 plume migrated along the preferential pathway identified through hydraulic interference tests. On the other hand, results of the long-term injection test indicated the CO2 plume migration path was aligned to the forced hydraulic gradient. Compared to the short-term test, the long-term injection formed detectable CO2 concentration change in unsaturated wellbores. Recovery data of tracer gases made breakthrough curves compatible to numerical simulation results. The monitoring results indicated that detection of CO2 leakage into groundwater was more effectively performed by using a pumping and monitoring method in order to capture by-passing plume. With this concept, an effective real-time monitoring method was proposed. Acknowledgement: Financial support was provided by the "R&D Project on Environmental Management of Geologic CO2storage" from the KEITI (Project number : 2014001810003)

  17. Homarine as a feeding deterrent in common shallow-water antarctic lamellarian gastropodMarseniopsis mollis: A rare example of chemical defense in a marine prosobranch.

    PubMed

    McClintock, J B; Baker, B J; Hamann, M T; Yoshida, W; Slattery, M; Heine, J N; Bryan, P J; Jayatilake, G S; Moon, B H

    1994-10-01

    The common bright yellow antarctic lamellarian gastropodMarseniopsis mollis was examined for the presence of defensive chemistry. Proton nuclear magnetic resonance (NMR) spectroscopy indicated that a major component of ethanolic extracts purified by reversed-phase column chromatography was homarine. Further high-performance liquid chromatography (HPLC) analysis of the mantle, foot, and viscera verified the presence of homarine in all body tissues at concentrations ranging from 6 to 24 mg/g dry tissue. A conspicuous macroinvertebrate predator of the shallow antarctic benthos, the sea starOdontaster validus, always rejected live individuals ofM. mollis, while readily feeding on pieces of fish tail muscle. Filter paper disks treated with shrimp elicited a broad range of feeding behaviors in the sea starO. validus (movement of disc to mouth, extrusion of cardiac stomach, humped feeding posture). Shrimp disks treated with homarine (0.4 and 4 mg/disk) were rejected byO. validus significantly more frequently than control disks treated with solvent carrier and shrimp or shrimp alone. The highest concentration of homarine tested not only caused feeding deterrence, but in several sea stars a flight response was noted. Homarine was not detected in the tunic of the antarctic ascidianCnemidocarpa verrucosa, a presumed primary prey ofM. mollis. Nonetheless, crude extracts of the epizooites that foul the tunic (primarily the bryozoans and hydroids) contain homarine, suggestingM. mollis may ingest and derive its chemistry from these organisms. This appears to be only the third example of chemical defense in a member of the Order Mesogastropoda. As the vestigial internalized shell ofM. mollis is considered a primitive condition, the findings of this study lend support to the hypothesis that chemical defense evolved prior to shell loss in shell-less gastropods.

  18. Monitoring a pilot CO2 injection experiment in a shallow aquifer using 3D cross-well electrical resistance tomography

    NASA Astrophysics Data System (ADS)

    Yang, X.; Lassen, R. N.; Looms, M. C.; Jensen, K. H.

    2014-12-01

    Three dimensional electrical resistance tomography (ERT) was used to monitor a pilot CO2 injection experiment at Vrøgum, Denmark. The purpose was to evaluate the effectiveness of the ERT method for monitoring the two opposing effects from gas-phase and dissolved CO2 in a shallow unconfined siliciclastic aquifer. Dissolved CO2 increases water electrical conductivity (EC) while gas phase CO2 reduce EC. We injected 45kg of CO2 into a shallow aquifer for 48 hours. ERT data were collected for 50 hours following CO2 injection. Four ERT monitoring boreholes were installed on a 5m by 5m square grid and each borehole had 24 electrodes at 0.5 m electrode spacing at depths from 1.5 m to 13 m. ERT data were inverted using a difference inversion algorithm for bulk EC. 3D ERT successfully detected the CO2 plume distribution and growth in the shallow aquifer. We found that the changes of bulk EC were dominantly positive following CO2 injection, indicating that the effect of dissolved CO2 overwhelmed that of gas phase CO2. The pre-injection baseline resistivity model clearly showed a three-layer structure of the site. The electrically more conductive glacial sand layer in the northeast region are likely more permeable than the overburden and underburden and CO2 plumes were actually confined in this layer. Temporal bulk EC increase from ERT agreed well with water EC and cross-borehole ground penetrating radar data. ERT monitoring offers a competitive advantage over water sampling and GPR methods because it provides 3D high-resolution temporal tomographic images of CO2 distribution and it can also be automated for unattended operation. This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under contract DE-AC52-07NA27344. Lawrence Livermore National Security, LLC. LLNL IM release#: LLNL-PROC-657944.

  19. Field demonstration of CO2 leakage detection and potential impacts on groundwater quality at Brackenridge Field Laboratory

    NASA Astrophysics Data System (ADS)

    Zou, Y.; Yang, C.; Guzman, N.; Delgado, J.; Mickler, P. J.; Horvoka, S.; Trevino, R.

    2015-12-01

    One concern related to GCS is possible risk of unintended CO2 leakage from the storage formations into overlying potable aquifers on underground sources of drinking water (USDW). Here we present a series of field tests conducted in an alluvial aquifer which is on a river terrace at The University of Texas Brackenridge Field Laboratory. Several shallow groundwater wells were completed to the limestone bedrock at a depth of 6 m and screened in the lower 3 m. Core sediments recovered from the shallow aquifer show that the sediments vary in grain size from clay-rich layers to coarse sandy gravels. Two main types of field tests were conducted at the BFL: single- (or double-) well push-pull test and pulse-like CO2 release test. A single- (or double-) well push-pull test includes three phases: the injection phase, the resting phase and pulling phase. During the injection phase, groundwater pumped from the shallow aquifer was stored in a tank, equilibrated with CO2 gasand then injected into the shallow aquifer to mimic CO2 leakage. During the resting phase, the groundwater charged with CO2 reacted with minerals in the aquifer sediments. During the pulling phase, groundwater was pumped from the injection well and groundwater samples were collected continuously for groundwater chemistry analysis. In such tests, large volume of groundwater which was charged with CO2 can be injected into the shallow aquifer and thus maximize contact of groundwater charged with CO2. Different than a single- (or double-) well push-pull test, a pulse-like CO2 release test for validating chemical sensors for CO2 leakage detection involves a CO2 release phase that CO2 gas was directly bubbled into the testing well and a post monitoring phase that groundwater chemistry was continuously monitored through sensors and/or grounder sampling. Results of the single- (or double-) well push-pull tests conducted in the shallow aquifer shows that the unintended CO2 leakage could lead to dissolution of carbonates and some silicates and mobilization of heavy metals from the aquifer sediments to groundwater, however, such mobilization posed no risks on groundwater quality at this site. The pulse-like tests have demonstrated it is plausible to use chemical sensors for CO2 leakage detection in groundwater.

  20. Forecasting magma-chamber rupture at Santorini volcano, Greece

    PubMed Central

    Browning, John; Drymoni, Kyriaki; Gudmundsson, Agust

    2015-01-01

    How much magma needs to be added to a shallow magma chamber to cause rupture, dyke injection, and a potential eruption? Models that yield reliable answers to this question are needed in order to facilitate eruption forecasting. Development of a long-lived shallow magma chamber requires periodic influx of magmas from a parental body at depth. This redistribution process does not necessarily cause an eruption but produces a net volume change that can be measured geodetically by inversion techniques. Using continuum-mechanics and fracture-mechanics principles, we calculate the amount of magma contained at shallow depth beneath Santorini volcano, Greece. We demonstrate through structural analysis of dykes exposed within the Santorini caldera, previously published data on the volume of recent eruptions, and geodetic measurements of the 2011–2012 unrest period, that the measured 0.02% increase in volume of Santorini’s shallow magma chamber was associated with magmatic excess pressure increase of around 1.1 MPa. This excess pressure was high enough to bring the chamber roof close to rupture and dyke injection. For volcanoes with known typical extrusion and intrusion (dyke) volumes, the new methodology presented here makes it possible to forecast the conditions for magma-chamber failure and dyke injection at any geodetically well-monitored volcano. PMID:26507183

  1. A high-altitude barium radial injection experiment

    NASA Technical Reports Server (NTRS)

    Wescott, E. M.; Stenbaek-Nielsen, H. C.; Hallinan, T. J.; Deehr, C. S.; Romick, G. J.; Olson, J. V.; Roederer, J. G.; Sydora, R.

    1980-01-01

    A rocket launched from Poker Flat, Alaska, carried a new type of high-explosive barium shaped charge to 571 km, where detonation injected a thin disk of barium vapor with high velocity nearly perpendicular to the magnetic field. The TV images of the injection are spectacular, revealing three major regimes of expanding plasma which showed early instabilities in the neutral gas. The most unusual effect of the injection is a peculiar rayed barium-ion structure lying in the injection plane and centered on a 5 km 'black hole' surrounding the injection point. Preliminary electrostatic computer simulations show a similar rayed development.

  2. Lake Aquilla - Habitat Survey Hill County, Texas

    DTIC Science & Technology

    2017-08-01

    the year, when the ground is covered with herbage; when the trees are in their green leaf, and the glens are enlivened by running streams. I shall not...Mutel 1997). Shallow disking, with the blades oriented to the direction being pulled can be used to reduce the vigor of native plants (e.g. switchgrass

  3. Numerical Treatment of Thin Accretion Disk Dynamics around Rotating Black Holes

    NASA Astrophysics Data System (ADS)

    Yildiran, Deniz; Donmez, Orhan

    In the present study, we perform the numerical simulation of a relativistic thin accretion disk around the nonrotating and rapidly rotating black holes using the general relativistic hydrodynamic code with Kerr in Kerr-Schild coordinate that describes the central rotating black hole. Since the high energy X-rays are produced close to the event horizon resulting the black hole-disk interaction, this interaction should be modeled in the relativistic region. We have set up two different initial conditions depending on the values of thermodynamical variables around the black hole. In the first setup, the computational domain is filled with constant parameters without injecting gas from the outer boundary. In the second, the computational domain is filled with the matter which is then injected from the outer boundary. The matter is assumed to be at rest far from the black hole. Both cases are modeled over a wide range of initial parameters such as the black hole angular momentum, adiabatic index, Mach number and asymptotic velocity of the fluid. It has been found that initial values and setups play an important role in determining the types of the shock cone and in designating the events on the accretion disk. The continuing injection from the outer boundary presents a tail shock to the steady state accretion disk. The opening angle of shock cone grows as long as the rotation parameter becomes larger. A more compressible fluid (bigger adiabatic index) also presents a bigger opening angle, a spherical shock around the rotating black hole, and less accumulated gas in the computational domain. While results from [J. A. Font, J. M. A. Ibanez and P. Papadopoulos, Mon. Not. R. Astron. Soc. 305 (1999) 920] indicate that the tail shock is warped around for the rotating hole, our study shows that it is the case not only for the warped tail shock but also for the spherical and elliptical shocks around the rotating black hole. The warping around the rotating black hole in our case is much smaller than the one by [J. A. Font, J. M. A. Ibanez and P. Papadopoulos, Mon. Not. R. Astron. Soc. 305 (1999) 920], due to the representation of results at the different coordinates. Contrary to the nonrotating black hole, the tail shock is slightly warped around the rotating black hole. The filled computational domain without any injection leads to an unstable accretion disk. However much of it reaches a steady state for a short period of time and presents quasi-periodic oscillation (QPO). Furthermore, the disk tends to loose mass during the whole dynamical evolution. The time-variability of these types of accretion flowing close to the black hole may clarify the light curves in Sgr A*.

  4. Relativistic Dynamics and Mass Exchange in Binary Black Hole Mini-disks

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bowen, Dennis B.; Campanelli, Manuela; Mewes, Vassilios

    We present the first exploration of gas dynamics in a relativistic binary black hole (BH) system in which an accretion disk (a “mini-disk”) orbits each BH. We focus on 2D hydrodynamical studies of comparable-mass, non-spinning systems. Relativistic effects alter the dynamics of gas in this environment in several ways. Because the gravitational potential between the two BHs becomes shallower than in the Newtonian regime, the mini-disks stretch toward the L1 point and the amount of gas passing back and forth between the mini disks increases sharply with decreasing binary separation. This “sloshing” is quasi-periodically modulated at 2 and 2.75 timesmore » the binary orbital frequency, corresponding to timescales of hours to days for supermassive binary black holes (SMBBHs). In addition, relativistic effects add an m = 1 component to the tidally driven spiral waves in the disks that are purely m = 2 in Newtonian gravity; this component becomes dominant when the separation is ≲100 gravitational radii. Both the sloshing and the spiral waves have the potential to create distinctive radiation features that may uniquely mark SMBBHs in the relativistic regime.« less

  5. Relativistic Dynamics and Mass Exchange in Binary Black Hole Mini-disks

    NASA Astrophysics Data System (ADS)

    Bowen, Dennis B.; Campanelli, Manuela; Krolik, Julian H.; Mewes, Vassilios; Noble, Scott C.

    2017-03-01

    We present the first exploration of gas dynamics in a relativistic binary black hole (BH) system in which an accretion disk (a “mini-disk”) orbits each BH. We focus on 2D hydrodynamical studies of comparable-mass, non-spinning systems. Relativistic effects alter the dynamics of gas in this environment in several ways. Because the gravitational potential between the two BHs becomes shallower than in the Newtonian regime, the mini-disks stretch toward the L1 point and the amount of gas passing back and forth between the mini disks increases sharply with decreasing binary separation. This “sloshing” is quasi-periodically modulated at 2 and 2.75 times the binary orbital frequency, corresponding to timescales of hours to days for supermassive binary black holes (SMBBHs). In addition, relativistic effects add an m = 1 component to the tidally driven spiral waves in the disks that are purely m = 2 in Newtonian gravity; this component becomes dominant when the separation is ≲100 gravitational radii. Both the sloshing and the spiral waves have the potential to create distinctive radiation features that may uniquely mark SMBBHs in the relativistic regime.

  6. Modifying the Standard Disk Model for the Ultraviolet Spectral Analysis of Disk-dominated Cataclysmic Variables. I. The Novalikes MV Lyrae, BZ Camelopardalis, and V592 Cassiopeiae

    NASA Astrophysics Data System (ADS)

    Godon, Patrick; Sion, Edward M.; Balman, Şölen; Blair, William P.

    2017-09-01

    The standard disk is often inadequate to model disk-dominated cataclysmic variables (CVs) and generates a spectrum that is bluer than the observed UV spectra. X-ray observations of these systems reveal an optically thin boundary layer (BL) expected to appear as an inner hole in the disk. Consequently, we truncate the inner disk. However, instead of removing the inner disk, we impose the no-shear boundary condition at the truncation radius, thereby lowering the disk temperature and generating a spectrum that better fits the UV data. With our modified disk, we analyze the archival UV spectra of three novalikes that cannot be fitted with standard disks. For the VY Scl systems MV Lyr and BZ Cam, we fit a hot inflated white dwarf (WD) with a cold modified disk (\\dot{M} ˜ a few 10-9 M ⊙ yr-1). For V592 Cas, the slightly modified disk (\\dot{M}˜ 6× {10}-9 {M}⊙ {{yr}}-1) completely dominates the UV. These results are consistent with Swift X-ray observations of these systems, revealing BLs merged with ADAF-like flows and/or hot coronae, where the advection of energy is likely launching an outflow and heating the WD, thereby explaining the high WD temperature in VY Scl systems. This is further supported by the fact that the X-ray hardness ratio increases with the shallowness of the UV slope in a small CV sample we examine. Furthermore, for 105 disk-dominated systems, the International Ultraviolet Explorer spectra UV slope decreases in the same order as the ratio of the X-ray flux to optical/UV flux: from SU UMa’s, to U Gem’s, Z Cam’s, UX UMa’s, and VY Scl’s.

  7. PHOTOIONIZATION MODELS OF THE INNER GASEOUS DISK OF THE HERBIG BE STAR BD+65 1637

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Patel, P.; Sigut, T. A. A.; Landstreet, J. D., E-mail: ppatel54@uwo.ca

    2016-01-20

    We attempt to constrain the physical properties of the inner, gaseous disk of the Herbig Be star BD+65 1637 using non-LTE, circumstellar disk codes and observed spectra (3700–10500 Å) from the ESPaDOnS instrument on the Canada–France–Hawaii Telescope. The photoionizing radiation of the central star is assumed to be the sole source of input energy for the disk. We model optical and near-infrared emission lines that are thought to form in this region using standard techniques that have been successful in modeling the spectra of classical Be stars. By comparing synthetic line profiles of hydrogen, helium, iron, and calcium with themore » observed line profiles, we try to constrain the geometry, density structure, and kinematics of the gaseous disk. Reasonable matches have been found for all line profiles individually; however, no disk density model based on a single power law for the equatorial density was able to simultaneously fit all of the observed emission lines. Among the emission lines, the metal lines, especially the Ca ii IR triplet, seem to require higher disk densities than the other lines. Excluding the Ca ii lines, a model in which the equatorial disk density falls as 10{sup −10} (R{sub *}/R){sup 3} g cm{sup −3} seen at an inclination of 45° for a 50 R{sub *} disk provides reasonable matches to the overall line shapes and strengths. The Ca ii lines seem to require a shallower drop-off as 10{sup −10} (R{sub *}/R){sup 2} g cm{sup −3} to match their strength. More complex disk density models are likely required to refine the match to the BD+65 1637 spectrum.« less

  8. Photoionization Models of the Inner Gaseous Disk of the Herbig Be Star BD+65 1637

    NASA Astrophysics Data System (ADS)

    Patel, P.; Sigut, T. A. A.; Landstreet, J. D.

    2016-01-01

    We attempt to constrain the physical properties of the inner, gaseous disk of the Herbig Be star BD+65 1637 using non-LTE, circumstellar disk codes and observed spectra (3700-10500 Å) from the ESPaDOnS instrument on the Canada-France-Hawaii Telescope. The photoionizing radiation of the central star is assumed to be the sole source of input energy for the disk. We model optical and near-infrared emission lines that are thought to form in this region using standard techniques that have been successful in modeling the spectra of classical Be stars. By comparing synthetic line profiles of hydrogen, helium, iron, and calcium with the observed line profiles, we try to constrain the geometry, density structure, and kinematics of the gaseous disk. Reasonable matches have been found for all line profiles individually; however, no disk density model based on a single power law for the equatorial density was able to simultaneously fit all of the observed emission lines. Among the emission lines, the metal lines, especially the Ca II IR triplet, seem to require higher disk densities than the other lines. Excluding the Ca II lines, a model in which the equatorial disk density falls as 10-10 (R*/R)3 g cm-3 seen at an inclination of 45° for a 50 R* disk provides reasonable matches to the overall line shapes and strengths. The Ca II lines seem to require a shallower drop-off as 10-10 (R*/R)2 g cm-3 to match their strength. More complex disk density models are likely required to refine the match to the BD+65 1637 spectrum.

  9. Multiple isotopes (O, C, Li, Sr) as tracers of CO2 and brine leakage from CO2-enhanced oil recovery activities in Permian Basin, Texas, USA

    NASA Astrophysics Data System (ADS)

    Phan, T. T.; Sharma, S.; Gardiner, J. B.; Thomas, R. B.; Stuckman, M.; Spaulding, R.; Lopano, C. L.; Hakala, A.

    2017-12-01

    Potential CO2 and brine migration or leakage into shallow groundwater is a critical issue associated with CO2 injection at both enhanced oil recovery (EOR) and carbon sequestration sites. The effectiveness of multiple isotope systems (δ18OH2O, δ13C, δ7Li, 87Sr/86Sr) in monitoring CO2 and brine leakage at a CO2-EOR site located within the Permian basin (Seminole, Texas, USA) was studied. Water samples collected from an oil producing formation (San Andres), a deep groundwater formation (Santa Rosa), and a shallow groundwater aquifer (Ogallala) over a four-year period were analyzed for elemental and isotopic compositions. The absence of any change in δ18OH2O or δ13CDIC values of water in the overlying Ogallala aquifer after CO2 injection indicates that injected CO2 did not leak into this aquifer. The range of Ogallala water δ7Li (13-17‰) overlaps the San Andres water δ7Li (13-15‰) whereas 87Sr/86Sr of Ogallala (0.70792±0.00005) significantly differs from San Andres water (0.70865±0.00003). This observation demonstrates that Sr isotopes are much more sensitive than Li isotopes in tracking brine leakage into shallow groundwater at the studied site. In contrast, deep groundwater δ7Li (21-25‰) is isotopically distinct from San Andres produced water; thus, monitoring this intermitted formation water can provide an early indication of CO2 injection-induced brine migration from the underlying oil producing formation. During water alternating with gas (WAG) operations, a significant shift towards more positive δ13CDIC values was observed in the produced water from several of the San Andres formation wells. The carbon isotope trend suggests that the 13C enriched injected CO2 and formation carbonates became the primary sources of dissolved inorganic carbon in the area surrounding the injection wells. Moreover, one-way ANOVA statistical analysis shows that the differences in δ7Li (F(1,16) = 2.09, p = 0.17) and 87Sr/86Sr (F(1,18) = 4.47, p = 0.05) values of shallow groundwater collected before and during the WAG period are not statistically significant. The results to date suggest that the water chemistry of shallow groundwater has not been influenced by the CO2 injection activities. The efficacy of each isotope system as a monitoring tool will be evaluated and discussed using a Bayesian mixing model.

  10. Seasonal persistence of faecal indicator organisms in soil following dairy slurry application to land by surface broadcasting and shallow injection.

    PubMed

    Hodgson, Christopher J; Oliver, David M; Fish, Robert D; Bulmer, Nicholas M; Heathwaite, A Louise; Winter, Michael; Chadwick, David R

    2016-12-01

    Dairy farming generates large volumes of liquid manure (slurry), which is ultimately recycled to agricultural land as a valuable source of plant nutrients. Different methods of slurry application to land exist; some spread the slurry to the sward surface whereas others deliver the slurry under the sward and into the soil, thus helping to reduce greenhouse gas (GHG) emissions from agriculture. The aim of this study was to investigate the impact of two slurry application methods (surface broadcast versus shallow injection) on the survival of faecal indicator organisms (FIOs) delivered via dairy slurry to replicated grassland plots across contrasting seasons. A significant increase in FIO persistence (measured by the half-life of E. coli and intestinal enterococci) was observed when slurry was applied to grassland via shallow injection, and FIO decay rates were significantly higher for FIOs applied to grassland in spring relative to summer and autumn. Significant differences in the behaviour of E. coli and intestinal enterococci over time were also observed, with E. coli half-lives influenced more strongly by season of application relative to the intestinal enterococci population. While shallow injection of slurry can reduce agricultural GHG emissions to air it can also prolong the persistence of FIOs in soil, potentially increasing the risk of their subsequent transfer to water. Awareness of (and evidence for) the potential for 'pollution-swapping' is critical in order to guard against unintended environmental impacts of agricultural management decisions. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.

  11. ABUNDANCES OF PLANETARY NEBULAE IN THE OUTER DISK OF M31

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kwitter, Karen B.; Lehman, Emma M. M.; Balick, Bruce

    2012-07-01

    We present spectroscopic observations and chemical abundances of 16 planetary nebulae (PNe) in the outer disk of M31. The [O III] {lambda}4363 line is detected in all objects, allowing a direct measurement of the nebular temperature essential for accurate abundance determinations. Our results show that the abundances in these M31 PNe display the same correlations and general behaviors as Type II PNe in the Milky Way. We also calculate photoionization models to derive estimates of central star properties. From these we infer that our sample PNe, all near the bright-end cutoff of the planetary nebula luminosity function, originated from starsmore » near 2 M{sub Sun }. Finally, under the assumption that these PNe are located in M31's disk, we plot the oxygen abundance gradient, which appears shallower than the gradient in the Milky Way.« less

  12. Evidence for unseen companions around T Tauri stars

    NASA Technical Reports Server (NTRS)

    Marsh, Kenneth A.; Mahoney, Michael J.

    1992-01-01

    The observed spectral energy distributions of HK Tau, T Tau, and R Y Tau exhibit shallow (but significant) dips at mid-infrared wavelengths. This behavior can be explained by the existence of discrete gaps in their circumstellar disks since, if the temperature in the disks decreases monotonically outward, a gap would result in a range of "missing" temperatures. The gap centers for the three objects occur at radial distances of 0.5, 1.4, and 1.6 AU, respectively, while the corresponding ratios of outer to inner radii of the gaps are 6:1, 7:1, and 15:1, respectively. Larger mid-infrared dips are observed for SU Aur and GM Aur and are interpreted as correspondingly larger gaps, with almost complete clearing of the inner region of the disk in the latter case. The gaps in all cases are consistent with the tidal effects of either companion stars or planets.

  13. Hydrodynamical Aspects of the Formation of Spiral-Vortical Structures in Rotating Gaseous Disks

    NASA Astrophysics Data System (ADS)

    Elizarova, T. G.; Zlotnik, A. A.; Istomina, M. A.

    2018-01-01

    This paper is dedicated to numerical simulations of spiral-vortical structures in rotating gaseous disks using a simple model based on two-dimensional, non-stationary, barotropic Euler equations with a body force. The results suggest the possibility of a purely hydrodynamical basis for the formation and evolution of such structures. New, axially symmetric, stationary solutions of these equations are derived that modify known approximate solutions. These solutions with added small perturbations are used as initial data in the non-stationary problem, whose solution demonstrates the formation of density arms with bifurcation. The associated redistribution of angular momentum is analyzed. The correctness of laboratory experiments using shallow water to describe the formation of large-scale vortical structures in thin gaseous disks is confirmed. The computations are based on a special quasi-gas-dynamical regularization of the Euler equations in polar coordinates.

  14. Lessons from accretion disks in cataclysmic variables

    NASA Astrophysics Data System (ADS)

    Horne, Keith

    1998-04-01

    We survey recent progress in the interpretation of observations of cataclysmic variables, whose accretion disks are heated by viscous dissipation rather than irradiation. Many features of standard viscous accretion disk models are confirmed by tomographic imaging studies of dwarf novae. Eclipse maps indicate that steady disk temperature structures are established during outbursts. Doppler maps of double-peaked emission lines suggest disk chromospheres heated by magnetic activity. Gas streams impacting on the disk rim leave expected signatures both in the eclipses and emission lines. Doppler maps of dwarf nova IP Peg at the beginning of an outburst show evidence for tidally-induced spiral shocks. While enjoying these successes, we must still face up to the dreaded ``SW Sex syndrome'' which afflicts most if not all cataclysmic variables in high accretion states. The anomalies include single-peaked emission lines with skewed kinematics, flat temperature-radius profiles, shallow offset line eclipses, and narrow low-ionization absorption lines at phase 0.5. The enigmatic behavior of AE Aqr is now largely understood in terms of a magnetic propeller model in which the rapidly spinning white dwarf magnetosphere expels the gas stream out of the system before an accretion disk can form. A final piece in this puzzle is the realization that an internal shock zone occurs in the exit stream at just the right place to explain the anomalous kinematics and violent flaring of the single-peaked emission lines. Encouraged by this success, we propose that disk-anchored magnetic propellers operate in the high accretion rate systems afflicted by the SW Sex syndrome. Magnetic fields anchored in the Keplerian disk sweep forward and apply a boost that expels gas stream material flowing above the disk plane. This working hypothesis offers a framework on which we can hang all the SW Sex anomalies. The lesson for theorists is that magnetic links appear to be transporting energy and angular momentum from the inner disk to distant parts of the flow without associated viscous heating in the disk.

  15. Disk Density Tuning of a Maximal Random Packing

    PubMed Central

    Ebeida, Mohamed S.; Rushdi, Ahmad A.; Awad, Muhammad A.; Mahmoud, Ahmed H.; Yan, Dong-Ming; English, Shawn A.; Owens, John D.; Bajaj, Chandrajit L.; Mitchell, Scott A.

    2016-01-01

    We introduce an algorithmic framework for tuning the spatial density of disks in a maximal random packing, without changing the sizing function or radii of disks. Starting from any maximal random packing such as a Maximal Poisson-disk Sampling (MPS), we iteratively relocate, inject (add), or eject (remove) disks, using a set of three successively more-aggressive local operations. We may achieve a user-defined density, either more dense or more sparse, almost up to the theoretical structured limits. The tuned samples are conflict-free, retain coverage maximality, and, except in the extremes, retain the blue noise randomness properties of the input. We change the density of the packing one disk at a time, maintaining the minimum disk separation distance and the maximum domain coverage distance required of any maximal packing. These properties are local, and we can handle spatially-varying sizing functions. Using fewer points to satisfy a sizing function improves the efficiency of some applications. We apply the framework to improve the quality of meshes, removing non-obtuse angles; and to more accurately model fiber reinforced polymers for elastic and failure simulations. PMID:27563162

  16. Disk Density Tuning of a Maximal Random Packing.

    PubMed

    Ebeida, Mohamed S; Rushdi, Ahmad A; Awad, Muhammad A; Mahmoud, Ahmed H; Yan, Dong-Ming; English, Shawn A; Owens, John D; Bajaj, Chandrajit L; Mitchell, Scott A

    2016-08-01

    We introduce an algorithmic framework for tuning the spatial density of disks in a maximal random packing, without changing the sizing function or radii of disks. Starting from any maximal random packing such as a Maximal Poisson-disk Sampling (MPS), we iteratively relocate, inject (add), or eject (remove) disks, using a set of three successively more-aggressive local operations. We may achieve a user-defined density, either more dense or more sparse, almost up to the theoretical structured limits. The tuned samples are conflict-free, retain coverage maximality, and, except in the extremes, retain the blue noise randomness properties of the input. We change the density of the packing one disk at a time, maintaining the minimum disk separation distance and the maximum domain coverage distance required of any maximal packing. These properties are local, and we can handle spatially-varying sizing functions. Using fewer points to satisfy a sizing function improves the efficiency of some applications. We apply the framework to improve the quality of meshes, removing non-obtuse angles; and to more accurately model fiber reinforced polymers for elastic and failure simulations.

  17. Effects of Slurry Injector Disk Shape on Reduction of Soil-Machine Resistance during Animal Effluent Application

    USDA-ARS?s Scientific Manuscript database

    Application of liquid manure to soil is commonly done by injecting the manure beneath the soil surface, to reduce emission of odors and greenhouse gases into the atmosphere and to avoid the spreading of liquid manure on leaves of crop plants. This manure injection is often done using knife-like inj...

  18. Accumulation of methylglyoxal increases the advanced glycation end-product levels in DRG and contributes to lumbar disk herniation-induced persistent pain.

    PubMed

    Liu, Cui-Cui; Zhang, Xin-Sheng; Ruan, Yu-Ting; Huang, Zhu-Xi; Zhang, Su-Bo; Liu, Meng; Luo, Hai-Jie; Wu, Shao-Ling; Ma, Chao

    2017-08-01

    Lumbar disk herniation (LDH) with discogenic low back pain and sciatica is a common and complicated musculoskeletal disorder. The underlying mechanisms are poorly understood, and there are no effective therapies for LDH-induced pain. In the present study, we found that the patients who suffered from LDH-induced pain had elevated plasma methylglyoxal (MG) levels. In rats, implantation of autologous nucleus pulposus (NP) to the left lumbar 5 spinal nerve root, which mimicked LDH, induced mechanical allodynia, increased MG level in plasma and dorsal root ganglion (DRG), and enhanced the excitability of small DRG neurons (<30 μm in diameter). Intrathecal injection of MG also induced mechanical allodynia, and its application to DRG neurons ex vivo increased the number of action potentials evoked by depolarizing current pulses. Furthermore, inhibition of MG accumulation by aminoguanidine attenuated the enhanced excitability of small DRG neurons and the mechanical allodynia induced by NP implantation. In addition, NP implantation increased levels of advanced glycation end products (AGEs) in DRG, and intrathecal injection of MG-derived AGEs induced the mechanical allodynia and DRG neuronal hyperactivity. Intrathecal injection of MG also significantly increased the expression of AGEs in DRG. Importantly, scavenging of MG by aminoguanidine also attenuated the increase in AGEs induced by NP implantation. These results suggested that LDH-induced MG accumulation contributed to persistent pain by increasing AGE levels. Thus generation of AGEs from MG may represent a target for treatment of LDH-induced pain. NEW & NOTEWORTHY Our study demonstrates that methylglyoxal accumulation via increasing advanced glycation end-product levels in dorsal root ganglion contributes to the persistent pain induced by lumbar disk herniation, which proposed potential targets for the treatment of lumbar disk herniation-induced persistent pain. Copyright © 2017 the American Physiological Society.

  19. Transient Changes in Shallow Groundwater Chemistry During the MSU-ZERT CO2 Injection Experiment

    NASA Astrophysics Data System (ADS)

    Zheng, L.; Apps, J. A.; Spycher, N.; Birkholzer, J. T.; Kharaka, Y. K.; Thordsen, J. J.; Kakouros, E.; Trautz, R. C.

    2009-12-01

    The Montana State University Zero Emission Research and Technology (MSU-ZERT) field experiment at Bozeman, Montana, is designed to evaluate atmospheric and near-surface monitoring and detection techniques applicable to the potential leakage of CO2 from deep storage reservoirs. However, the experiment also affords an excellent opportunity to investigate the transient changes in groundwater chemical composition in response to increasing CO2 partial pressures. Between July 9 and August 7, 2008, 300 kg/day of food-grade CO2 was injected into shallow groundwater through a horizontal perforated pipe about 2-2.3 m below the ground surface. Changes in groundwater quality were investigated through comprehensive chemical analyses of 80 water samples taken before, during and following CO2 injection from 10 shallow observation wells located 1-6 m from the injection pipe, and from two distant monitoring wells. Field and laboratory analyses suggest rapid and systematic changes in pH, alkalinity, and conductance, as well as increases in the aqueous concentrations of both major and trace element species. A principal component analysis and independent thermodynamic interpretation of the water quality analyses were conducted. Results were interpreted in conjunction with a mineralogical characterization of the shallow sediments and a review of historical records of the chemical composition of rainfall at neighboring monitoring sites. The interpretation permitted tentative identification of a complex array of adsorption/desorption, ion exchange, precipitation/dissolution, oxidation/reduction and infiltration processes that were operative during the test. Geochemical modeling was conducted using TOUGHREACT to test whether the observed water quality changes were consistent with the hypothesized processes, and very good agreement was obtained with respect to the behavior of both major and trace elements.

  20. Hydrogeochemical alteration of groundwater due to a CO2 injection test into a shallow aquifer in Northeast Germany

    NASA Astrophysics Data System (ADS)

    Dethlefsen, Frank; Peter, Anita; Hornbruch, Götz; Lamert, Hendrik; Garbe-Schönberg, Dieter; Beyer, Matthias; Dietrich, Peter; Dahmke, Andreas

    2014-05-01

    The accidental release of CO2 into potable aquifers, for instance as a consequence of a leakage out of a CO2 store site, can endanger drinking water resources due to the induced geochemical processes. A 10-day CO2 injection experiment into a shallow aquifer was carried out in Wittstock (Northeast Germany) in order to investigate the geochemical impact of a CO2 influx into such an aquifer and to test different monitoring methods. Information regarding the site investigation, the injection procedure monitoring setup, and first geochemical monitoring results are described in [1]. Apart from the utilization of the test results to evaluate monitoring approaches [2], further findings are presented on the evaluation of the geophysical monitoring [3], and the monitoring of stable carbon isotopes [4]. This part of the study focuses of the hydrogeochemical alteration of groundwater due to the CO2 injection test. As a consequence of the CO2 injection, major cations were released, i.e. concentrations increased, whereas major anion concentrations - beside bicarbonate - decreased, probably due to increased anion sorption capacity at variably charged exchange sites of minerals. Trace element concentrations increased as well significantly, whereas the relative concentration increase was far larger than the relative concentration increase of major cations. Furthermore, geochemical reactions show significant spatial heterogeneity, i.e. some elements such as Cr, Cu, Pb either increased in concentration or remained at stable concentrations with increasing TIC at different wells. Statistical analyses of regression coefficients confirm the different spatial reaction patterns at different wells. Concentration time series at single wells give evidence, that the trace element release is pH dependent, i.e. trace elements such as Zn, Ni, Co are released at pH of around 6.2-6.6, whereas other trace elements like As, Cd, Cu are released at pH of 5.6-6.4. [1] Peter, A., et al., Investigation of the geochemical impact of CO2; on shallow groundwater: design and implementation of a CO2; injection test in Northeast Germany. Environmental Earth Sciences, 2012. 67(2): p. 335-349. [2] Dethlefsen, F., et al., Monitoring approaches for detecting and evaluating CO2 and formation water leakages into near-surface aquifers. Energy Procedia, 2013. 37(0): p. 4886-4893. [3] Lamert, H., et al., Feasibility of geoelectrical monitoring and multiphase modeling for process understanding of gaseous CO2; injection into a shallow aquifer. Environmental Earth Sciences, 2012. 67(2): p. 447-462. [4] Schulz, A., et al., Monitoring of a simulated CO2 leakage in a shallow aquifer using stable carbon isotopes. Environmental Science & Technology, 2012. 46(20): p. 11243-11250.

  1. A model for 3-D sonic/supersonic transverse fuel injection into a supersonic air stream

    NASA Technical Reports Server (NTRS)

    Bussing, Thomas R. A.; Lidstone, Gary L.

    1989-01-01

    A model for sonic/supersonic transverse fuel injection into a supersonic airstream is proposed. The model replaces the hydrogen jet up to the Mach disk plane and the elliptic parts of the air flow field around the jet by an equivalent body. The main features of the model were validated on the basis of experimental data.

  2. Electrical and Magnetic Imaging of Proppants in Shallow Hydraulic Fractures

    NASA Astrophysics Data System (ADS)

    Denison, J. L. S.; Murdoch, L. C.; LaBrecque, D. J.; Slack, W. W.

    2015-12-01

    Hydraulic fracturing is an important tool to increase the productivity of wells used for oil and gas production, water resources, and environmental remediation. Currently there are relatively few tools available to monitor the distribution of proppants within a hydraulic fracture, or the propagation of the fracture itself. We have been developing techniques for monitoring hydraulic fractures by injecting electrically conductive, dielectric, or magnetically permeable proppants. We then use the resulting contrast with the enveloping rock to image the proppants using geophysical methods. Based on coupled laboratory and numerical modeling studies, three types of proppants were selected for field evaluation. Eight hydraulic fractures were created near Clemson, SC in May of 2015 by injecting specialized proppants at a depth of 1.5 m. The injections created shallow sub-horizontal fractures extending several meters from the injection point.Each cell had a dense array of electrodes and magnetic sensors on the surface and four shallow vertical electrode arrays that were used to obtain data before and after hydraulic fracturing. Net vertical displacement and transient tilts were also measured. Cores from 130 boreholes were used to characterize the general geometries, and trenching was used to characterize the forms of two of the fractures in detail. Hydraulic fracture geometries were estimated by inverting pre- and post-injection geophysical data. Data from cores and trenching show that the hydraulic fractures were saucer-shaped with a preferred propagation direction. The geophysical inversions generated images that were remarkably similar in form, size, and location to the ground truth from direct observation. Displacement and tilt data appear promising as a constraint on fracture geometry.

  3. Single hole multi-parameter downhole monitoring of shallow CO2 injection at Maguelone experimental site (Languedoc, France)

    NASA Astrophysics Data System (ADS)

    Denchik, N.; Pezard, P. A.; Abdoulghafour, H.; Lofi, J.; Neyens, D.; Perroud, H.; Henry, G.; Rolland, B.

    2015-12-01

    The Maguelone experimental site for shallow subsurface hydrogeophysical monitoring, located along the Mediterranean Lido near Montpellier (Languedoc, France) has proven over the years to provide a unique setup to test gas storage monitoring methods at shallow depth. The presence of two small reservoirs (R1: 13-16 m and R2: 8-9 m) with impermeable boundaries provides an opportunity to study a saline formation for geological storage both in the field and in a laboratory context. This integrated monitoring concept was first applied at Maguelone for characterization of the reservoir state before and during N2 and CO2 injections as part of the MUSTANG FP7 project. Multimethod monitoring was shown to be sensitive to gas storage within a saline reservoir with clear data changes immediately after the beginning of injection. Pressure remains the first indicator of gas storage at ~8-9 m depth in a small permeable unit (gravels/shells) under the Holocene lagoonal sediments. A good correlation is also obtained between the resistivity response and geochemical parameters from pore fluid sampling (pH, minor and major cation concentrations) at this depth. On the basis of previous gas injection experiments, new holes were drilled as part of PANACEA (EC project) in 2014, including an injection hole targeted for injection at 8-9 m depth in the R2 reservoir in order to have gas injection and gas storage at the same depth, a single hole multi-parameter observatory, and a seismic source hole. A total volume of ~48 m3 of CO2 was injected over ~2 hours on December 4, 2014. The injection rate varied from 24 to 30 m3/h, with a well head pressure of 1.8 bars. All downhole monitoring technologies (resistivity, temperature, pressure, SP and seismic measurements) were combined in the single hole observatory. Such device allows monitoring the downhole system before and after injection and the gas migration from the injection hole, helping to characterize the transport mechanism. Decreasing the number of monitoring-measurements and verification (MMV) holes enables a significant decrease of gas leakage risk. This specific monitoring approach is expected to give information about the safety and reliability of CO2 storage operation that guarantees public acceptance.

  4. Turbine disk cavity aerodynamics and heat transfer

    NASA Technical Reports Server (NTRS)

    Johnson, B. V.; Daniels, W. A.

    1992-01-01

    Experiments were conducted to define the nature of the aerodynamics and heat transfer for the flow within the disk cavities and blade attachments of a large-scale model, simulating the Space Shuttle Main Engine (SSME) turbopump drive turbines. These experiments of the aerodynamic driving mechanisms explored the following: (1) flow between the main gas path and the disk cavities; (2) coolant flow injected into the disk cavities; (3) coolant density; (4) leakage flows through the seal between blades; and (5) the role that each of these various flows has in determining the adiabatic recovery temperature at all of the critical locations within the cavities. The model and the test apparatus provide close geometrical and aerodynamic simulation of all the two-stage cavity flow regions for the SSME High Pressure Fuel Turbopump and the ability to simulate the sources and sinks for each cavity flow.

  5. Biotinylated lipid bilayer disks as model membranes for biosensor analyses.

    PubMed

    Lundquist, Anna; Hansen, Søren B; Nordström, Helena; Danielson, U Helena; Edwards, Katarina

    2010-10-15

    The aim of this study was to investigate the potential of polyethylene glycol (PEG)-stabilized lipid bilayer disks as model membranes for surface plasmon resonance (SPR)-based biosensor analyses. Nanosized bilayer disks that included 1,2-distearoyl-sn-glycero-3-phosphoethanolamine-N-[biotinyl(polyethylene glycol)(2000)] (DSPE-PEG(2000)-biotin) were prepared and structurally characterized by cryo-transmission electron microscopy (cryo-TEM) imaging. The biotinylated disks were immobilized via streptavidin to three different types of sensor chips (CM3, CM4, and CM5) varying in their degree of carboxymethylation and thickness of the dextran matrix. The bilayer disks were found to interact with and bind stably to the streptavidin-coated sensor surfaces. As a first step toward the use of these bilayer disks as model membranes in SPR-based studies of membrane proteins, initial investigations were carried out with cyclooxygenases 1 and 2 (COX 1 and COX 2). Bilayer disks were preincubated with the respective protein and thereafter allowed to interact with the sensor surface. The signal resulting from the interaction was, in both cases, significantly enhanced as compared with the signal obtained when disks alone were injected over the surface. The results of the study suggest that bilayer disks constitute a new and promising type of model membranes for SPR-based biosensor studies. Copyright 2010 Elsevier Inc. All rights reserved.

  6. UV spectroscopy of Z Chamaeleontis. I - Time dependent dips in superoutburst

    NASA Technical Reports Server (NTRS)

    Harlaftis, E. T.; Hassall, B. J. M.; Naylor, T.; Charles, P. A.; Sonneborn, G.

    1992-01-01

    Extensive IUE observations of the dwarf nova Z Cha during the 1987 April superoutburst and IUE-Exosat observations during the 1985 July superoutburst are presented. The UV light curve shows two dips when folded on the orbital period. One dip, at orbital phase 0.8 becomes shallower as the superoutburst progresses and can be associated with decreasing mass transfer rate from the secondary star. The other dip, at orbital phase 0.15, appears after the development of the superhump and some days after the occurrence of the largest dip at phase 0.8. The continuum flux distribution during superoutbursts is fainter and redder than in low-inclination dwarf novae during superoutbursts. This is interpreted in terms of the extended vertical disk structure which occults the hot inner parts of the disk with the development of a 'cool' bulge on the edge of the disk at orbital phase 0.75. Details of the behaviour of the UV emission lines during eclipse and away from eclipse are discussed.

  7. A Gap with a Deficit of Large Grains in the Protoplanetary Disk around TW Hya

    NASA Astrophysics Data System (ADS)

    Tsukagoshi, Takashi; Nomura, Hideko; Muto, Takayuki; Kawabe, Ryohei; Ishimoto, Daiki; Kanagawa, Kazuhiro D.; Okuzumi, Satoshi; Ida, Shigeru; Walsh, Catherine; Millar, T. J.

    2016-10-01

    We report ˜3 au resolution imaging observations of the protoplanetary disk around TW Hya at 145 and 233 GHz with the Atacama Large Millimeter/submillimeter Array. Our observations revealed two deep gaps (˜25%-50%) at 22 and 37 au and shallower gaps (a few percent) at 6, 28, and 44 au, as recently reported by Andrews et al. The central hole with a radius of ˜3 au was also marginally resolved. The most remarkable finding is that the spectral index α (R) between bands 4 and 6 peaks at the 22 au gap. The derived power-law index of the dust opacity β (R) is ˜1.7 at the 22 au gap and decreases toward the disk center to ˜0. The most prominent gap at 22 au could be caused by the gravitational interaction between the disk and an unseen planet with a mass of ≲1.5 M Neptune, although other origins may be possible. The planet-induced gap is supported by the fact that β (R) is enhanced at the 22 au gap, indicating a deficit of ˜millimeter-sized grains within the gap due to dust filtration by a planet.

  8. Intradiskal methylene blue treatment for diskogenic low back pain.

    PubMed

    Levi, David S; Horn, Scott; Walko, Edward

    2014-11-01

    Low back pain is a leading cause of pain and disability. The intervertebral disk has been identified as the most common source of chronic low back pain. Although prior treatments directed at intervertebral disks have been disappointing, recent studies show promising improvement of pain and function after a single intradiskal injection of methylene blue. To assess changes in pain and function in patients with diskogenic low back pain, diagnosed by diskography, after an intradiskal injection of methylene blue. Prospective trial. Patients diagnosed with diskogenic pain by diskography underwent a single treatment of intradiskal injection of methylene blue, determined by prior provocation diskography. Pain and function measurements were completed at baseline and 1, 2, and 6 months after treatment. Treatment was considered a categorical success based on a 30% improvement in pain according to a visual analog scale (VAS) and function on the Oswestry Disability Index (ODI). Treatment was considered a categorical failure if less than 30% improvement in pain and function was achieved or if the patient pursued other invasive treatment options during the trial period. Sixteen patients received the intradiskal methylene blue injection. Eleven patients received a single-level injection, 4 patients received a 2-level injection, and one patient received injections at 3 levels. For the VAS, at 1, 2, and 6 months after the injection, the categorical success rates were 25%, 21%, and 25%, respectively. For the ODI, at 1, 2 and 6 months after the injection, the categorical success rates were 25%, 21%, and 33%, respectively. The overall categorical success rates at 1, 2, and 6 months after the injection were 19%, 21%, and 25%, respectively. This small trial did not demonstrate overall clinical success of intradiskal methylene blue injection for patients diagnosed with diskogenic pain by diskography. Copyright © 2014 American Academy of Physical Medicine and Rehabilitation. Published by Elsevier Inc. All rights reserved.

  9. Numerical Modeling of Wastewater Injection in the Denver Basin combined disposal zone in northeast Colorado

    NASA Astrophysics Data System (ADS)

    Brown, M. R. M.; Ge, S.; Sheehan, A. F.

    2016-12-01

    Previous studies have correlated seismicity with high rate injection at Underground Injection Control Class II wastewater disposal wells. In this study, we examine the impact of injection in the Denver Basin combined disposal zone that is used by numerous Class II wells. The disposal zone includes the Lyons Formation, a sandstone unit, and the Fountain Formation, an arkose unit just above the basement. Within a 30-km radius of the deep Class II injection well (NGL C4A) closest to the June 1, 2014 M3.2 Greeley earthquake, there are fifteen deep wastewater disposal wells injecting into the disposal zone and two shallow wastewater disposal wells injecting into the Lyons Formation only. One of the shallow wells is located at the same disposal facility as NGL-C4A and started injection in October 2004; the earliest deep injection in this region, at well NGL-C6, began in November 2007. The major episode of seismicity in the area started in November 2013. The timing of injection operation and seismicity occurrence raises several questions. Why did seismicity not begin in the area until nearly 10 years after the start of injection? Nine of the deep wastewater disposal wells began injection after the M3.2 earthquake on June 1, 2014; how does the large increase in the number of injection wells in the area change the pore-pressure in the disposal zone? How does the injection from the various wells interact? Does this increase the chances of induced seismicity? We conduct numerical modeling of 18 injection wells from 2004 to 2016 to explore these questions by better understanding the pore-pressure changes through time, pore-pressure changes in areas of induced earthquakes, and the interactions between injection wells. We include the asymmetry of the basin geometry in the model. We also use this case study to refine how well spacing and injection rate influences the occurrence of induced earthquakes.

  10. Regional-scale brine migration along vertical pathways due to CO2 injection - Part 2: A simulated case study in the North German Basin

    NASA Astrophysics Data System (ADS)

    Kissinger, Alexander; Noack, Vera; Knopf, Stefan; Konrad, Wilfried; Scheer, Dirk; Class, Holger

    2017-06-01

    Saltwater intrusion into potential drinking water aquifers due to the injection of CO2 into deep saline aquifers is one of the hazards associated with the geological storage of CO2. Thus, in a site-specific risk assessment, models for predicting the fate of the displaced brine are required. Practical simulation of brine displacement involves decisions regarding the complexity of the model. The choice of an appropriate level of model complexity depends on multiple criteria: the target variable of interest, the relevant physical processes, the computational demand, the availability of data, and the data uncertainty. In this study, we set up a regional-scale geological model for a realistic (but not real) onshore site in the North German Basin with characteristic geological features for that region. A major aim of this work is to identify the relevant parameters controlling saltwater intrusion in a complex structural setting and to test the applicability of different model simplifications. The model that is used to identify relevant parameters fully couples flow in shallow freshwater aquifers and deep saline aquifers. This model also includes variable-density transport of salt and realistically incorporates surface boundary conditions with groundwater recharge. The complexity of this model is then reduced in several steps, by neglecting physical processes (two-phase flow near the injection well, variable-density flow) and by simplifying the complex geometry of the geological model. The results indicate that the initial salt distribution prior to the injection of CO2 is one of the key parameters controlling shallow aquifer salinization. However, determining the initial salt distribution involves large uncertainties in the regional-scale hydrogeological parameterization and requires complex and computationally demanding models (regional-scale variable-density salt transport). In order to evaluate strategies for minimizing leakage into shallow aquifers, other target variables can be considered, such as the volumetric leakage rate into shallow aquifers or the pressure buildup in the injection horizon. Our results show that simplified models, which neglect variable-density salt transport, can reach an acceptable agreement with more complex models.

  11. Performance of a High-Speed Compression-Ignition Engine Using Multiple Orifice Fuel Injection Nozzles

    NASA Technical Reports Server (NTRS)

    Spanogle, J A; Foster, H H

    1930-01-01

    This report presents test results obtained at the Langley Memorial Aeronautical Laboratory of the National Advisory Committee for Aeronautics during an investigation to determine the relative performance of a single-cylinder, high-speed, compression-ignition engine when using fuel injection valve nozzles with different numbers, sizes, and directions of round orifices. A spring-loaded, automatic injection valve was used, centrally located at the top of a vertical disk-type combustion chamber formed between horizontally opposed inlet and exhaust valves of a 5 inch by 7 inch engine.

  12. Tracking agricultural soil nitric oxide emission variations with novel isotopic measurements

    NASA Astrophysics Data System (ADS)

    Miller, D. J.; Chai, J.; Guo, F.; Overby, S.; Dell, C. J.; Karsten, H.; Hastings, M. G.

    2016-12-01

    Agricultural production systems impact the reactive nitrogen cycle via atmospheric nitrogen emissions including nitric oxide, denoted as total nitrogen oxides (NOx). NOx serve as precursors to ozone and nitrate aerosols, influencing air quality, radiative forcing, and ecosystem health. With recent declines in fuel combustion sources, soil emissions are an increasing contributor to NOx budgets. However, spatially heterogeneous, episodic soil NOx pulses are challenging to constrain and remain highly uncertain. Using a novel hourly resolution soil flux chamber-based NOx collection method, we investigate fertilizer management and climatic controls on cropland soil NOx flux and nitrogen isotopic composition (δ15N-NOx) natural abundance variations with field-based and laboratory measurements. No-till, rain-fed corn plots were sampled daily (triplicate isotope samples per treatment per day) following broadcast and shallow-disk injected dairy manure applications as part of a sustainable dairy cropping study in State College, PA (Penn State University; USDA-ARS). Injected manure plots exhibited median fluxes two times higher with larger spatial variations than that for broadcast manure. Soil emission δ15N-NOx signatures of -45 to -20 ‰ were correlated with flux magnitudes across both treatments. Median δ15N-NOx signatures for injected manure were lower with larger spatial variations (-32 ± 9 ‰) than that for broadcast manure (-24 ± 1.5 ‰). These differences are likely linked with higher NH4+ availability for nitrification with injected manure in contrast with higher NH3 volatilization and higher soil δ15N-NH4+ for broadcast manure. Although NOx fluxes were suppressed 1-2 days after heavy rainfall (>35 % water-filled pore space), δ15N-NOx remained consistent. Controlled laboratory incubation studies will also be presented quantifying links with inorganic substrate and fertilizer δ15N. Our observations suggest that agricultural soil δ15N-NOx signatures are linked with fertilizer δ15N and soil NH4+ availability and could serve as an observational tracer of regional fertilizer management gradients. Our results have significant implications for field-scale validations of soil NOx emission inventories and predictions of soil NOx influences on atmospheric oxidation chemistry.

  13. Lunar and Planetary Science XXXV: Origin of Planetary Systems

    NASA Technical Reports Server (NTRS)

    2004-01-01

    The session titled Origin of Planetary Systems" included the following reports:Convective Cooling of Protoplanetary Disks and Rapid Giant Planet Formation; When Push Comes to Shove: Gap-opening, Disk Clearing and the In Situ Formation of Giant Planets; Late Injection of Radionuclides into Solar Nebula Analogs in Orion; Growth of Dust Particles and Accumulation of Centimeter-sized Objects in the Vicinity of a Pressure enhanced Region of a Solar Nebula; Fast, Repeatable Clumping of Solid Particles in Microgravity ; Chondrule Formation by Current Sheets in Protoplanetary Disks; Radial Migration of Phyllosilicates in the Solar Nebula; Accretion of the Outer Planets: Oligarchy or Monarchy?; Resonant Capture of Irregular Satellites by a Protoplanet ; On the Final Mass of Giant Planets ; Predicting the Atmospheric Composition of Extrasolar Giant Planets; Overturn of Unstably Stratified Fluids: Implications for the Early Evolution of Planetary Mantles; and The Evolution of an Impact-generated Partially-vaporized Circumplanetary Disk.

  14. Self-sustained radial oscillating flows between parallel disks

    NASA Astrophysics Data System (ADS)

    Mochizuki, S.; Yang, W.-J.

    1985-05-01

    It is pointed out that radial flow between parallel circular disks is of interest in a number of physical systems such as hydrostatic air bearings, radial diffusers, and VTOL aircraft with centrally located downward-positioned jets. The present investigation is concerned with the problem of instability in radial flow between parallel disks. A time-dependent numerical study and experiments are conducted. Both approaches reveal the nucleation, growth, migration, and decay of annular separation bubbles (i.e. vortex or recirculation zones) in the laminar-flow region. A finite-difference technique is utilized to solve the full unsteady vorticity transport equation in the theoretical procedure, while the flow patterns in the experiments are visualized with the aid of dye-injection, hydrogen-bubble, and paraffin-mist methods. It is found that the separation and reattachment of shear layers in the radial flow through parallel disks are unsteady phenomena. The sequence of nucleation, growth, migration, and decay of the vortices is self-sustained.

  15. Three Radial Gaps in the Disk of TW Hydrae Imaged with SPHERE

    NASA Astrophysics Data System (ADS)

    van Boekel, R.; Henning, Th.; Menu, J.; de Boer, J.; Langlois, M.; Müller, A.; Avenhaus, H.; Boccaletti, A.; Schmid, H. M.; Thalmann, Ch.; Benisty, M.; Dominik, C.; Ginski, Ch.; Girard, J. H.; Gisler, D.; Lobo Gomes, A.; Menard, F.; Min, M.; Pavlov, A.; Pohl, A.; Quanz, S. P.; Rabou, P.; Roelfsema, R.; Sauvage, J.-F.; Teague, R.; Wildi, F.; Zurlo, A.

    2017-03-01

    We present scattered light images of the TW Hya disk performed with the Spectro-Polarimetric High-contrast Exoplanet REsearch instrument in Polarimetric Differential Imaging mode at 0.63, 0.79, 1.24, and 1.62 μm. We also present H2/H3-band angular differential imaging (ADI) observations. Three distinct radial depressions in the polarized intensity distribution are seen, around ≈85, ≈21, and ≲6 au.21 The overall intensity distribution has a high degree of azimuthal symmetry; the disk is somewhat brighter than average toward the south and darker toward the north-west. The ADI observations yielded no signifiant detection of point sources in the disk. Our observations have a linear spatial resolution of 1-2 au, similar to that of recent ALMA dust continuum observations. The sub-micron-sized dust grains that dominate the light scattering in the disk surface are strongly coupled to the gas. We created a radiative transfer disk model with self-consistent temperature and vertical structure iteration and including grain size-dependent dust settling. This method may provide independent constraints on the gas distribution at higher spatial resolution than is feasible with ALMA gas line observations. We find that the gas surface density in the “gaps” is reduced by ≈50% to ≈80% relative to an unperturbed model. Should embedded planets be responsible for carving the gaps then their masses are at most a few 10 {{{M}}}\\oplus . The observed gaps are wider, with shallower flanks, than expected for planet-disk interaction with such low-mass planets. If forming planetary bodies have undergone collapse and are in the “detached phase,” then they may be directly observable with future facilities such as the Mid-Infrared E-ELT Imager and Spectrograph at the E-ELT.

  16. HST eclipse mapping of dwarf nova OY Carinae in quiescence: An 'Fe II curtain' with Mach approx. = 6 velocity dispersion veils the white dwarf

    NASA Technical Reports Server (NTRS)

    Horne, Keith; Marsh, T. R.; Cheng, F. H.; Hubeny, Ivan; Lanz, Theirry

    1994-01-01

    Hubble Space Telescope (HST) observations of the eclipsing dwarf nova OY Car in its quiescent state are used to isolate the ultraviolet spectrum (1150-2500 A at 9.2 A Full Width at Half Maximum (FWHM) resolution) of the white dwarf, the accretion disk, and the bright spot. The white dwarf spectrum has a Stark-broadened photospheric L(alpha) absorption, but is veiled by a forest of blended Fe II features that we attribute to absorption by intervening disk material. A fit gives T(sub w) approx. = 16.5 x 10(exp 3) K for the white dwarf with a solar-abundance, log g = 8 model atmosphere, and T approx. = 10(exp 4) K, n(sub e) approx. = 10(exp 13)/cu cm, N(sub H) approx. = 10(exp 22) sq cm, and velocity dispersion delta V approx. = 60 km/s for the veil of homogeneous solar-abundance local thermodynamic equilibrium (LTE) gas. The veil parameters probably measure characteristic physical conditions in the quiescent accretion disk or its chromosphere. The large velocity dispersion is essential for a good fit; it lowers (chi square)/778 from 22 to 4. Keplerian shear can produce the velocity dispersion if the veiling gas is located at R approx. = 5 R(sub W) with (delta R)/R approx. = 0.3, but this model leaves an unobscured view to the upper hemisphere of the white dwarf, incompatible with absorptions that are up to 80% deep. The veiling gas may be in the upper atmosphere of the disk near its outer rim, but we then require supersonic (Mach approx. = 6) but sub-Keplerian (delta V/V(sub Kep) approx. = 0.07) velocity disturbances in this region to produce both the observed radial velocity dispersion and vertical motions sufficient to elevate the gas to z/R = cos i = 0.12. Such motions might be driven by the gas stream, since it may take several Kepler periods to reestablish the disk's vertical hydrostatic equilibrium. The temperature and column density of the gas we see as Fe II absorption in the ultraviolet are similar to what is required to produce the strong Balmer jump and line emissions seen in optical spectra of OY Car and similar quiescent dwarf novae. The outer accretion disk is detected at mid-eclipse with a spectrum that rises from 0.05 to 0.3 mJy between 2000 and 2500 A, consistent with combinations of cool blackbodies, blended Fe II emission lines, and Balmer continuum emission. The total disk flux density is 0.5 mJy at 2500 A, and this shallow disk eclipse implies a roughly flat surface brightness distribution. The bright spot, somewhat bluer than the disk, has a flux density rising from 0.05 to 0.15 mJy between 1600 and 2500 A. The C IV emission line has a broad shallow eclipse, but the radial velocity variations observed during the eclipse do not clearly distinguish between a disk or wind origin. The only possible indications of boundary layer emission are fast UV flares that appear to arise from near the central object -- not from the bright spot.

  17. Effects of different operating parameters on the particle size of silver chloride nanoparticles prepared in a spinning disk reactor

    NASA Astrophysics Data System (ADS)

    Dabir, Hossein; Davarpanah, Morteza; Ahmadpour, Ali

    2015-07-01

    The aim of this research was to present an experimental method for large-scale production of silver chloride nanoparticles using spinning disk reactor. Silver nitrate and sodium chloride were used as the reactants, and the protecting agent was gelatin. The experiments were carried out in a continuous mode by injecting the reactants onto the surface of the spinning disk, where a chemical precipitation reaction took place to form AgCl particles. The effects of various operating variables, including supersaturation, disk rotational speed, reactants flow rate, disk diameter, and excess ions, on the particle size of products were investigated. In addition, the AgCl nanoparticles were characterized by scanning electron microscopy, energy-dispersive X-ray spectroscopy, and X-ray diffraction. According to the results, smaller AgCl particles are obtained under higher supersaturations and also higher disk rotation speeds. Moreover, in the range of our investigation, the use of lower reactants flow rates and larger disk diameter can reduce the particle size of products. The non-stoichiometric condition of reactants has a significant influence on the reduction in particle aggregation. It was also found that by optimizing the operating conditions, uniform AgCl nanoparticles with the mean size of around 37 nm can be produced.

  18. Temperature characteristics of epitaxially grown InAs quantum dot micro-disk lasers on silicon for on-chip light sources

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wan, Yating; Li, Qiang; Lau, Kei May, E-mail: eekmlau@ust.hk

    2016-07-04

    Temperature characteristics of optically pumped micro-disk lasers (MDLs) incorporating InAs quantum dot active regions are investigated for on-chip light sources. The InAs quantum dot MDLs were grown on V-groove patterned (001) silicon, fully compatible with the prevailing complementary metal oxide-semiconductor technology. By combining the high-quality whispering gallery modes and 3D confinement of injected carriers in quantum dot micro-disk structures, we achieved lasing operation from 10 K up to room temperature under continuous optical pumping. Temperature dependences of the threshold, lasing wavelength, slope efficiency, and mode linewidth are examined. An excellent characteristic temperature T{sub o} of 105 K has been extracted.

  19. Triggering collapse of the presolar dense cloud core and injecting short-lived radioisotopes with a shock wave. III. Rotating three-dimensional cloud cores

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Boss, Alan P.; Keiser, Sandra A., E-mail: boss@dtm.ciw.edu

    2014-06-10

    A key test of the supernova triggering and injection hypothesis for the origin of the solar system's short-lived radioisotopes is to reproduce the inferred initial abundances of these isotopes. We present here the most detailed models to date of the shock wave triggering and injection process, where shock waves with varied properties strike fully three-dimensional, rotating, dense cloud cores. The models are calculated with the FLASH adaptive mesh hydrodynamics code. Three different outcomes can result: triggered collapse leading to fragmentation into a multiple protostar system; triggered collapse leading to a single protostar embedded in a protostellar disk; or failure tomore » undergo dynamic collapse. Shock wave material is injected into the collapsing clouds through Rayleigh-Taylor fingers, resulting in initially inhomogeneous distributions in the protostars and protostellar disks. Cloud rotation about an axis aligned with the shock propagation direction does not increase the injection efficiency appreciably, as the shock parameters were chosen to be optimal for injection even in the absence of rotation. For a shock wave from a core-collapse supernova, the dilution factors for supernova material are in the range of ∼10{sup –4} to ∼3 × 10{sup –4}, in agreement with recent laboratory estimates of the required amount of dilution for {sup 60}Fe and {sup 26}Al. We conclude that a type II supernova remains as a promising candidate for synthesizing the solar system's short-lived radioisotopes shortly before their injection into the presolar cloud core by the supernova's remnant shock wave.« less

  20. Scoping Alternatives for Negative Emission Technologies. FRACCC - Possible Routes to Biomass-Derived Carbon Injection in Shallow Aquifers?

    NASA Astrophysics Data System (ADS)

    Correa Silva, R.; Larter, S.

    2016-12-01

    Atmospheric CO2 capture into biomass is one of the capture options for negative emission technologies, although proposed sequestration systems such as the permanent burial of total fresh biomass, algal lipids or soil amendment with biochar are yet to be successfully demonstrated as effective at scale. In the context of carbon sequestration, shallow geological reservoirs have not been exhaustively explored, even though they pose, away from groundwater protection zones, potentially low implementation cost, and geographically abundant potential carbon storage reservoirs. Typical carbon storage vectors considered, such as CO2 and biochar, are not suitable for shallow aquifer disposal, due either to cap rock containment requirements, or shallow aquifer CO2 densities, or issues related to formation damage from solid particles. Thus, a cost-effective technology, aimed at converting biomass into a large-scale carbon vector fit-for-disposal in shallow formations could be significant, linking promising carbon capture and containment strategies. In this work, we discuss the development of unconventional carbon vectors for subsurface storage in the form of Functionalized, Refractory and Aqueous Compatible Carbon Compounds (FRACCC), as a potential alternative negative emission technology (Larter et al., 2010). The concept is based on CO2 capture into microbial and algal biomass, followed by the modification of biomass constituents through facile chemical reactions aimed at rendering the biomass efficiently into a stable, biologically refractory but water soluble form, similar in some regards, to dissolved organic matter in the oceans, then sequestering the material in geological settings. As the injected material is not buoyant, containment specifications are more modest than for CO2 injection and potentially, more reservoirs could be accessible! This work analyses the technological, economic and societal implications of such potential FRACCC technologies, and make an assessment of whether such routes are likely to be technically, economically and politically viable.

  1. 50 Mb/s, 220-mW Laser-Array Transmitter

    NASA Technical Reports Server (NTRS)

    Cornwell, Donald M., Jr.

    1992-01-01

    Laser transmitter based on injection locking produces single-wavelength, diffraction-limited, single-lobe beam. Output stage is array of laser diodes producing non-diffraction-limited, multi-mode beam in absence of injection locking. Suitable for both free-space and optical-fiber communication systems. Because beam from transmitter focused to spot as small as 5 micrometers, devices usable for reading and writing optical disks at increased information densities. Application also in remote sensing and ranging.

  2. Turbine vane leading edge gas film cooling with spanwise angled coolant holes

    NASA Technical Reports Server (NTRS)

    Hanus, G. J.; Lecuyer, M. R.

    1976-01-01

    An experimental film cooling study was conducted on a 3x size model turbine vane. Injection at the leading edge was from a single row of holes angled in a spanwise direction for two configurations of holes at 18 or 35 deg to the surface. The reduction in the local Stanton number for injection at a coolant-to-mainstream density ratio of 2.18 was calculated from heat flux measurements downstream of injection. Results indicate that optimum cooling occurs near a coolant-to-mainstream velocity ratio of 0.5. Shallow injection angles appear to be most beneficial when injecting into a highly accelerated mainstream.

  3. Modelling gas transport in the shallow subsurface in the Maguelone field experiment

    NASA Astrophysics Data System (ADS)

    Basirat, Farzad; Niemi, Auli; Perroud, Hervé; Lofi, Johanna; Denchik, Nataliya; Lods, Gérard; Pezard, Philippe; Sharma, Prabhakar; Fagerlund, Fritjof

    2013-04-01

    Developing reliable monitoring techniques to detect and characterize CO2 leakage in shallow subsurface is necessary for the safety of any GCS project. To test different monitoring techniques, shallow injection-monitoring experiment have and are being carried out at the Maguelone, along the Mediterranean lido of the Gulf of Lions, near Montpellier, France. This experimental site was developed in the context of EU FP7 project MUSTANG and is documented in Lofi et al. (2012). Gas injection experiments are being carried out and three techniques of pressure, electrical resistivity and seismic monitoring have been used to detect the nitrogen and CO2 release in the near surface environment. In the present work we use the multiphase and multicomponent TOUGH2/EOS7CA model to simulate the gaseous nitrogen and CO2 transport of the experiments carried out so far. The objective is both to gain understanding of the system performance based on the model analysis as well as to further develop and validate modelling approaches for gas transport in the shallow subsurface, against the well-controlled data sets. Numerical simulation can also be used for the prediction of experimental setup limitations. We expect the simulations to represent the breakthrough time for the different tested injection rates. Based on the hydrogeological formation data beneath the lido, we also expect the vertical heterogeneities in grain size distribution create an effective capillary barrier against upward gas transport in numerical simulations. Lofi J., Pezard P.A., Bouchette F., Raynal O., Sabatier P., Denchik N., Levannier A., Dezileau L., and Certain R. Integrated onshore-offshore geophysical investigation of a layered coastal aquifer, NW Mediterranean. Ground Water, (2012).

  4. Multi-epoch Detections of Water Ice Absorption in Edge-on Disks around Herbig Ae Stars: PDS 144N and PDS 453

    NASA Astrophysics Data System (ADS)

    Terada, Hiroshi; Tokunaga, Alan T.

    2017-01-01

    We report the multi-epoch detections of water ice in 2.8-4.2 μ {{m}} spectra of two Herbig Ae stars, PDS 144N (A2 IVe) and PDS 453 (F2 Ve), which have an edge-on circumstellar disk. The detected water ice absorption is found to originate from their protoplanetary disks. The spectra show a relatively shallow absorption of water ice of around 3.1 μ {{m}} for both objects. The optical depths of the water ice absorption are ˜0.1 and ˜0.2 for PDS 144N and PDS 453, respectively. Compared to the water ice previously detected in low-mass young stellar objects with an edge-on disk with a similar inclination angle, these optical depths are significantly lower. It suggests that stronger UV radiation from the central stars effectively decreases the water ice abundance around the Herbig Ae stars through photodesorption. The water ice absorption in PDS 453 shows a possible variation of the feature among the six observing epochs. This variation could be due to a change of absorption materials passing through our line of sight to the central star. The overall profile of the water ice absorption in PDS 453 is quite similar to the absorption previously reported in the edge-on disk object d216-0939, and this unique profile may be seen only at a high inclination angle in the range of 76°-80°.

  5. An automated flow injection system for metal determination by flame atomic absorption spectrometry involving on-line fabric disk sorptive extraction technique.

    PubMed

    Anthemidis, A; Kazantzi, V; Samanidou, V; Kabir, A; Furton, K G

    2016-08-15

    A novel flow injection-fabric disk sorptive extraction (FI-FDSE) system was developed for automated determination of trace metals. The platform was based on a minicolumn packed with sol-gel coated fabric media in the form of disks, incorporated into an on-line solid-phase extraction system, coupled with flame atomic absorption spectrometry (FAAS). This configuration provides minor backpressure, resulting in high loading flow rates and shorter analytical cycles. The potentials of this technique were demonstrated for trace lead and cadmium determination in environmental water samples. The applicability of different sol-gel coated FPSE media was investigated. The on-line formed complex of metal with ammonium pyrrolidine dithiocarbamate (APDC) was retained onto the fabric surface and methyl isobutyl ketone (MIBK) was used to elute the analytes prior to atomization. For 90s preconcentration time, enrichment factors of 140 and 38 and detection limits (3σ) of 1.8 and 0.4μgL(-1) were achieved for lead and cadmium determination, respectively, with a sampling frequency of 30h(-1). The accuracy of the proposed method was estimated by analyzing standard reference materials and spiked water samples. Copyright © 2016 Elsevier B.V. All rights reserved.

  6. Characterizing near-surface CO2 conditions before injection - Perspectives from a CCS project in the Illinois Basin, USA

    USGS Publications Warehouse

    Locke, R.A.; Krapac, I.G.; Lewicki, J.L.; Curtis-Robinson, E.

    2011-01-01

    The Midwest Geological Sequestration Consortium is conducting a large-scale carbon capture and storage (CCS) project in Decatur, Illinois, USA to demonstrate the ability of a deep saline formation to store one million tonnes of carbon dioxide (CO2) from an ethanol facility. Beginning in early 2011, CO2 will be injected at a rate of 1,000 tonnes/day for three years into the Mount Simon Sandstone at a depth of approximately 2,100 meters. An extensive Monitoring, Verification, and Accounting (MVA) program has been undertaken for the Illinois Basin Decatur Project (IBDP) and is focused on the 0.65 km2 project site. Goals include establishing baseline conditions to evaluate potential impacts from CO2 injection, demonstrating that project activities are protective of human health and the environment, and providing an accurate accounting of stored CO2. MVA efforts are being conducted pre-, during, and post- CO2 injection. Soil and net CO2 flux monitoring has been conducted for more than one year to characterize near-surface CO2 conditions. More than 2,200 soil CO2 flux measurements have been manually collected from a network of 118 soil rings since June 2009. Three ring types have been evaluated to determine which type may be the most effective in detecting potential CO 2 leakage. Bare soil, shallow-depth rings were driven 8 cm into the ground and were prepared to minimize surface vegetation in and near the rings. Bare soil, deep-depth rings were prepared similarly, but were driven 46 cm. Natural-vegetation, shallow-depth rings were driven 8 cm and are most representative of typical vegetation conditions. Bare-soil, shallow-depth rings had the smallest observed mean flux (1.78 ??mol m-2 s-1) versus natural-vegetation, shallow-depth rings (3.38 ??mol m-2 s-1). Current data suggest bare ring types would be more sensitive to small CO2 leak signatures than natural ring types because of higher signal to noise ratios. An eddy covariance (EC) system has been in use since June 2009. Baseline data from EC monitoring is being used to characterize pre-injection conditions, and may then be used to detect changes in net exchange CO2 fluxes (Fc) that could be the result of CO2 leakage into the near-surface environment during or following injection. When injection at IBDP begins, soil and net CO2 monitoring efforts will have established a baseline of near-surface conditions that will be important to help demonstrate the effectiveness of storage activities. ?? 2011 Published by Elsevier Ltd.

  7. Hydrologic hydrochemical characterization of texas frio formation used for deep-well injection of chemical wastes

    NASA Astrophysics Data System (ADS)

    Kreitler, Charles W.; Akhter, M. Saleem; Donnelly, Andrew C. A.

    1990-09-01

    Hydrologic hydrochemical investigations were conducted to determine the long-term fate of hazardous chemical waste disposed in the Texas Gulf Coast Tertiary formations by deep-well injection. The study focused on the hydrostatic section of the Frio Formation because it is the host of a very large volume of injected waste and because large data bases of formation pressures and water chemistry are available. Three hydrologic regimes exist within the Frio Formation: a shallow fresh to moderately saline water section in the upper 3,000 4,000 ft (914 1,219 m); an underlying 4,000- to 5,000-ft-thick (1,219- to 1,524-m) section with moderate to high salinities: and a deeper overpressured section with moderate to high salinities. The upper two sections are normally pressured and reflect either freshwater or brine hydrostatic pressure gradients. Geopressured conditions are encountered as shallow as 6,000 ft (1,829 m). The complexity of the hydrologic environment is enhanced due to extensive depressurization in the 4,000- to 8,000-ft-depth (1,219- to 2,438-m) interval, which presumably results from the estimated production of over 10 billion barrels (208 × 106 m3) of oil equivalent and associated brines from the Frio in the past 50 yr. Because of the higher fluid density and general depressurization in the brine hydrostatic section, upward migration of these brines to shallow fresh groundwaters should not occur. Depressured oil and gas fields, however, may become sinks for the injected chemical wastes. Water samples appear to be in approximate oxygen isotopic equilibrium with the rock matrix, suggesting that active recharge of the Frio by continental waters is not occurring. In the northern Texas Gulf Coast region salt dome dissolution is a prime process controlling water chemistry. In the central and southern Frio Formation, brines from the deeper geopressured section may be leaking into the hydrostatic section. The lack of organic acids and the alteration of Frio oils from samples collected from depths shallower than approximately 7,000 ft (2,133 m) suggest microbial degradation of organic material. This has useful implications for degradation of injected chemical wastes and needs to be investigated further.

  8. The near-infrared properties of compact binary systems

    NASA Astrophysics Data System (ADS)

    Froning, Cynthia Suzanne

    I present H- and K-band light curves of the dwarf nova cataclysmic variable (CV), IP Peg, and the novalike CV, RW Tri, and an H-band light curve of the novalike CV, SW Sex. All three systems showed contributions from the late-type secondary star and the accretion disk, including a primary eclipse of the accretion disk by the secondary star and a secondary eclipse of the star by the disk. The ellipsoidal variations of the secondary star in IP Peg were modeled and subtracted from the data. The subtracted light curves show a pronounced double-hump variation, resembling those seen in the dwarf novae WZ Sge and AL Com. The primary eclipse was modeled using maximum entropy disk mapping techniques. The accretion disk has a flat intensity distribution and a low brightness temperature (Tbr ~= 3000-4000 K). Superimposed on the face of the disk is the bright spot, where the mass accretion stream impacts the disk; the position of the bright spot is different from the range of positions seen at visible wavelengths. The near-infrared accretion disk flux is dominated by optically thin emission. The eclipse depth is too shallow to be caused by a fully opaque accretion disk. The NIR light curves in RW Tri show a deep primary eclipse of the accretion disk, ellipsoidal variations from the secondary star, a secondary eclipse, and strong flickering in the disk flux. The depth of the secondary eclipse indicates that the accretion disk is opaque. The light curve also has a hump extending from φ = 0.1-0.9 which was successfully modeled as flux from the inner face of the secondary star when heated by a ~0.2 L Lsolar source. The radial brightness temperature profile of the outer disk is consistent with models of a disk in steady-state for a mass transfer rate of M~=5×10- 10 Msolaryr- 1 . At small disk radii, however, the brightness temperature profile is flatter than the steady-state model. The H-band light curve of SW Sex is dominated by emission from the accretion disk. As in RW Tri, the light curve has a hump outside of primary eclipse which was modeled as flux from the secondary star when irradiated by a 0.2-0.3 Lsolar source. The light curve has a dip at φ = 0.5 which is consistent with an eclipse of the irradiated face of the secondary star by an opaque accretion disk. The accretion disk has a brightness temperature profile much flatter than the theoretical profile of a steady- state disk. The disk is asymmetric, with the front of the disk (the side facing the secondary star at mid-eclipse) hotter than the back. The bright spot, which appears in visible disk maps of SW Sex, is not seen in the NIR light curve. I also present H-band light curves of the X-ray binary system, A0620-00, and NIR spectra of two X-ray binaries, CI Cam, and the relativistic jet source, SS 433. (Abstract shortened by UMI.)

  9. Consequences of Relativistic Neutron Outflow beyond the Accretion Disks of Active Galaxies

    NASA Astrophysics Data System (ADS)

    Ekejiuba, I. E.; Okeke, P. N.

    1993-05-01

    Three channels of relativistic electron injection in the jets of extragalactic radio sources (EGRSs) are discussed. With the assumption that an active galactic nucleus (AGN) is powered by a spinning supermassive black hole of mass ~ 10(8) M_⊙ which sits at the center of the nucleus and ingests matter and energy through an accretion disk, a model for extracting relativistic neutrons from the AGN is forged. In this model, the inelastic proton--proton and proton--photon interactions within the accretion disk, of relativistic protons with background thermal protons and photons, respectively, produce copious amounts of relativistic neutrons. These neutrons travel ballistically for ~ 10(3gamma_n ) seconds and escape from the disk before they decay. The secondary particles produced from the neutron decays then interact with the ambient magnetic field and/or other particles to produce the radio emissions observed in the jets of EGRSs. IEE acknowledges the support of the World Bank and the Federal University of Technology, Yola, Nigeria as well as the hospitality of Georgia State University.

  10. What Are M31 Disk Planetary Nebulae Trying to Tell Us?

    NASA Astrophysics Data System (ADS)

    Kwitter, Karen B.; Balick, Bruce; Henry, Richard B. C.; Corradi, Romano L. M.

    2015-01-01

    Over the past eight years we have observed optical spectra of planetary nebulae (PNe) in the disk of M31 using DIS on the 3.5-m ARC telescope at Apache Point Observatory and OSIRIS on the 10.4-m GTC on La Palma. We have so far studied more than two dozen objects over a projected galactocentric radius range from 5 - 33 kpc; this corresponds to a deprojected in-disk range of 15 - 106 kpc. Using ELSA, a five-level atom package, we have derived nebular diagnostics and ionic and total nebular abundances of He and O, as well as estimates for other elements. The average 12+log(O/H) for 23 disk PNe we have observed is 8.6, or about 80% of the solar value. The inferred oxygen abundance gradient across the disk is surprisingly shallow (~ -0.004 dex/kpc) out to R(deprojected)~60 kpc. CLOUDY models we have computed for many of these objects indicate central star masses whose main-sequence progenitors are estimated to be in the range of 1.7-2.5 solar masses, with lifetimes under ~2 Gyr. The existence of such young, relatively massive, and metal-rich stars past the outer edge of the spiral arms at ~18 kpc and the H I warp at ~30 kpc (beyond which stellar [Fe/H] < -1) is unexpected, and disagrees with standard models of outer galaxy assembly via assimilation of metal-poor dwarf galaxies. Star formation from inner-disk ISM ejected by a putative gravitational encounter between M31 and M33 about 3 GY ago (Bernard et al. 2012, ApJ 420, 2625) supplies a possible explanation.

  11. CSI 2264: Characterizing Young Stars in NGC 2264 With Short-Duration Periodic Flux Dips in Their Light Curves

    NASA Technical Reports Server (NTRS)

    Stauffer, John; Cody, Ann Marie; McGinnis, Pauline; Rebull, Luisa; Hillenbrand, Lynne A.; Turner, Neal J.; Carpenter, John; Plavchan, Peter; Carey, Sean; Terebey, Susan; hide

    2015-01-01

    We identify nine young stellar objects (YSOs) in the NGC 2264 star-forming region with optical CoRoT light curves exhibiting short-duration, shallow, periodic flux dips. All of these stars have infrared (IR) excesses that are consistent with their having inner disk walls near the Keplerian corotation radius. The repeating photometric dips have FWHM generally less than one day, depths almost always less than 15%, and periods (3 < P < 11 days) consistent with dust near the Keplerian co-rotation period. The flux dips vary considerably in their depth from epoch to epoch, but usually persist for several weeks and, in two cases, were present in data collected on successive years. For several of these stars, we also measure the photospheric rotation period and find that the rotation and dip periods are the same, as predicted by standard \\disk-locking" models. We attribute these flux dips to clumps of material in or near the inner disk wall, passing through our line of sight to the stellar photosphere. In some cases, these dips are also present in simultaneous Spitzer IRAC light curves at 3.6 and 4.5 microns. We characterize the properties of these dips, and compare the stars with light curves exhibiting this behavior to other classes of YSO in NGC 2264. A number of physical mechanisms could locally increase the dust scale height near the inner disk wall, and we discuss several of those mechanisms; the most plausible mechanisms are either a disk warp due to interaction with the stellar magnetic field or dust entrained in funnel- ow accretion columns arising near the inner disk wall.

  12. New insights on the formation and assembly of M83 from deep near-infrared imaging

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Barnes, Kate L.; Van Zee, Liese; Dale, Daniel A.

    2014-07-10

    We present results from new near-infrared (NIR) imaging from the Spitzer Space Telescope that trace the low surface brightness features of the outer disk and stellar stream in the nearby spiral galaxy, M83. Previous observations have shown that M83 hosts a faint stellar stream to the northwest and a star-forming disk that extends to ∼3 times the optical radius (R{sub 25}). By combining the NIR imaging with archival far-ultraviolet (FUV) and H I imaging, we study the star formation history of the system. The NIR surface brightness profile has a break at ∼5.'8 (equivalent to 8.1 kpc and 0.9 R{submore » 25}) with a shallower slope beyond this radius, which may result from the recent accretion of gas onto the outer disk and subsequent star formation. Additionally, the ratio of FUV to NIR flux increases with increasing radius in several arms throughout the extended star forming disk, indicating an increase in the ratio of the present to past star formation rate with increasing radius. This sort of inside-out disk formation is consistent with observations of gas infall onto the outer disk of M83. Finally, the flux, size, and shape of the stellar stream are measured and the origin of the stream is explored. The stream has a total NIR flux of 11.6 mJy, which implies a stellar mass of 1 × 10{sup 8} M{sub ☉} in an area subtending ∼80°. No FUV emission is detected in the stream at a level greater than the noise, confirming an intermediate-age or old stellar population in the stream.« less

  13. Injection of Spin-Polarized Electrons into a AlGaN/GaN Device from an Electrochemical Cell: Evidence for an Extremely Long Spin Lifetime.

    PubMed

    Kumar, Anup; Capua, Eyal; Fontanesi, Claudio; Carmieli, Raanan; Naaman, Ron

    2018-04-24

    Spin-polarized electrons are injected from an electrochemical cell through a chiral self-assembled organic monolayer into a AlGaN/GaN device in which a shallow two-dimensional electron gas (2DEG) layer is formed. The injection is monitored by a microwave signal that indicates a coherent spin lifetime that exceeds 10 ms at room temperature. The signal was found to be magnetic field independent; however, it depends on the current of the injected electrons, on the length of the chiral molecules, and on the existence of 2DEG.

  14. The nova-like cataclysmic variable star: KUV 0859+415

    NASA Astrophysics Data System (ADS)

    Grauer, Albert D.; Ringwald, F. A.; Wegner, Gary; Liebert, James; Schmidt, Gary D.; Green, Richard F.

    1994-07-01

    KUV 0859+415 has been found to be an eclipsing, nova-like cataclysmic variable with an orbital period of 3 h and 40 min. We find that it differs from other eclipsing systems of similar period (sometimes called the SW Sex stars) in several important respects. First, the eclipses are shallow, V-shaped dips, suggesting that the inclination angle is relatively low. Also, while the excitation of the emission lines are relatively high (He II comparable to H-beta), they are relatively weak compared to the continuum. The high Balmer lines have broad absorption wings, characteristic of an optically thick accretion disk. Yet there is evidence for a 'hot spot' in the system, which reaches peak brightness near phase 0.9 before the eclipse. Perhaps the most puzzling property of this system is that the H-alpha emission line radial velocity leads rather than lags the expected position for the location of the accretion disk. We present briefly a phenomenological model for the system which has a hot spot located at the normal location for the accretion stream to first impact the disk and is the source of excess optical continuum. However, the velocity curve of the emission lines requires us to conclude that the bulk of this radiation forms on the opposite side of the disk. This also explains the fact that the peak equivalent widths of H-alpha occur at phases 0.4-0.5.

  15. Dust Density Distribution and Imaging Analysis of Different Ice Lines in Protoplanetary Disks

    NASA Astrophysics Data System (ADS)

    Pinilla, P.; Pohl, A.; Stammler, S. M.; Birnstiel, T.

    2017-08-01

    Recent high angular resolution observations of protoplanetary disks at different wavelengths have revealed several kinds of structures, including multiple bright and dark rings. Embedded planets are the most used explanation for such structures, but there are alternative models capable of shaping the dust in rings as it has been observed. We assume a disk around a Herbig star and investigate the effect that ice lines have on the dust evolution, following the growth, fragmentation, and dynamics of multiple dust size particles, covering from 1 μm to 2 m sized objects. We use simplified prescriptions of the fragmentation velocity threshold, which is assumed to change radially at the location of one, two, or three ice lines. We assume changes at the radial location of main volatiles, specifically H2O, CO2, and NH3. Radiative transfer calculations are done using the resulting dust density distributions in order to compare with current multiwavelength observations. We find that the structures in the dust density profiles and radial intensities at different wavelengths strongly depend on the disk viscosity. A clear gap of emission can be formed between ice lines and be surrounded by ring-like structures, in particular between the H2O and CO2 (or CO). The gaps are expected to be shallower and narrower at millimeter emission than at near-infrared, opposite to model predictions of particle trapping. In our models, the total gas surface density is not expected to show strong variations, in contrast to other gap-forming scenarios such as embedded giant planets or radial variations of the disk viscosity.

  16. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chandler, D.P.; Welt, M.; Leung, F.C.

    An efficient one-step injection technique for gene insertion into fertilized rainbow trout (Oncorhynchus mykiss) eggs is described, and basic parameters affecting egg survival are reported. Freshly fertilized rainbow trout eggs were injected in the perivitelline space with a recombinant mouse metallothionein-genomic bovine growth hormone (bGH) DNA construct using a 30-gauge hypodermic needle and a standard microinjection system. Relative to control, site of injection and DNA concentration did not affect the egg survival, but injections later than 3--4 hours post fertilization were detrimental. The injection technique permitted treatment of 100 eggs/hr with survivals up to 100%, resulting in a 4% DNAmore » uptake rate as indicated by DNA dot blot analysis. Positive dot blot results also indicated that the injected DNA is able to cross the vitelline membrane and persist for 50--60 days post hatching, obviating the need for direct injection into the germinal disk. Results are consistent with previous transgenic fish work, underscoring the usefulness of the technique for generating transgenic trout and salmonids. 24 refs., 6 figs., 3 tabs.« less

  17. The X-ray eclipse of the LMC binary CAL 87

    NASA Technical Reports Server (NTRS)

    Schmidtke, P. C.; Mcgrath, T. K.; Cowley, A. P.; Frattare, L. M.

    1993-01-01

    ROSAT-PSPC observations of the LMC eclipsing binary CAL 87 show a short-duration, shallow X-ray eclipse which coincides in phase with the primary optical minimum. Characteristics of the eclipse suggest the X-ray emitting region is only partially occulted. Similarities with the eclipse of the accretion-disk corona in X 1822-37 are discussed. However, no temperature variation through eclipse is found for CAL 87. A revised orbital period, combining published data and recent optical photometry, is given.

  18. Recovery of energetically overexploited urban aquifers using surface water

    NASA Astrophysics Data System (ADS)

    García-Gil, Alejandro; Vázquez-Suñé, Enric; Sánchez-Navarro, José Ángel; Mateo Lázaro, Jesús

    2015-12-01

    Shallow aquifers have an important role in reducing greenhouse gases through helping manage the temperature of urban environments. Nevertheless, the uncontrolled rapid use of shallow groundwater resources to heat or cool urban environments can cause thermal pollution that will limit the long term sustainability of the resource. Therefore, there is a need for appropriate mitigation/remediation strategies capable of recovering energetically overexploited aquifers. In this work, a novel remediation strategy based on surface water recharge into aquifers is presented. To evaluate the capabilities of such measures for effective remediation, this strategy is optimized for a management problem raised in the overheated "Urban Alluvial Aquifer of Zaragoza" (Spain). The application of a transient groundwater flow and heat transport model under 512 different mitigation scenarios has enabled to quantify and discuss the magnitude of the remediation effect as a respond to injection rates of surface water, seasonal schedule of the injection and location of injection. The quantification of the relationship between these variables together with the evaluation of the amount of surface water injected per year in each scenario proposed have provided a better understanding of the system processes and an optimal management alternative. This work also makes awareness of the magnitude of the remediation procedure which is in an order of magnitude of tenths of years.

  19. The Origin of Soft X-rays in DQ Herculis

    NASA Technical Reports Server (NTRS)

    White, Nicholas E. (Technical Monitor); Mukai, K.; Still, M.; Ringwald, F. A.

    2002-01-01

    DQ Herculis (Nova Herculis 1934) is a deeply eclipsing cataclysmic variable containing a magnetic white dwarf primary. The accretion disk is thought to block our line of sight to the white dwarf at all orbital phases due to its extreme inclination angle. Nevertheless, soft X-rays were detected from DQ Her with ROSAT PSPC. To probe the origin of these soft X-rays, we have performed Chandra ACIS observations. We confirm that DQ Her is an X-ray source. The bulk of the X-rays are from a point-like source and exhibit a shallow partial eclipse. We interpret this as due to scattering of the unseen central X-ray source, probably in an accretion disk wind. At the same time, we detect weak extended X-ray features around DQ Her, which we interpret as an X-ray emitting knot in the nova shell.

  20. CO2/Brine transport into shallow aquifers along fault zones.

    PubMed

    Keating, Elizabeth H; Newell, Dennis L; Viswanathan, Hari; Carey, J W; Zyvoloski, G; Pawar, Rajesh

    2013-01-02

    Unintended release of CO(2) from carbon sequestration reservoirs poses a well-recognized risk to groundwater quality. Research has largely focused on in situ CO(2)-induced pH depression and subsequent trace metal mobilization. In this paper we focus on a second mechanism: upward intrusion of displaced brine or brackish-water into a shallow aquifer as a result of CO(2) injection. Studies of two natural analog sites provide insights into physical and chemical mechanisms controlling both brackish water and CO(2) intrusion into shallow aquifers along fault zones. At the Chimayó, New Mexico site, shallow groundwater near the fault is enriched in CO(2) and, in some places, salinity is significantly elevated. In contrast, at the Springerville, Arizona site CO(2) is leaking upward through brine aquifers but does not appear to be increasing salinity in the shallow aquifer. Using multiphase transport simulations we show conditions under which significant CO(2) can be transported through deep brine aquifers into shallow layers. Only a subset of these conditions favor entrainment of salinity into the shallow aquifer: high aspect-ratio leakage pathways and viscous coupling between the fluid phases. Recognition of the conditions under which salinity is favored to be cotransported with CO(2) into shallow aquifers will be important in environmental risk assessments.

  1. Arsenic migration to deep groundwater in Bangladesh influenced by adsorption and water demand.

    PubMed

    Radloff, K A; Zheng, Y; Michael, H A; Stute, M; Bostick, B C; Mihajlov, I; Bounds, M; Huq, M R; Choudhury, I; Rahman, M W; Schlosser, P; Ahmed, K M; van Geen, A

    2011-10-01

    Drinking shallow groundwater with naturally elevated concentrations of arsenic is causing widespread disease in many parts of South and Southeast Asia. In the Bengal Basin, growing reliance on deep (>150 m) groundwater has lowered exposure. In the most affected districts of Bangladesh, shallow groundwater concentrations average 100 to 370 μg L(-1), while deep groundwater is typically < 10 μg L(-1). Groundwater flow simulations have suggested that, even when deep pumping is restricted to domestic use, deep groundwater in some areas of the Bengal Basin is at risk of contamination. However, these simulations have neglected the impedance of As migration by adsorption to aquifer sediments. Here we quantify for the first time As sorption on deeper sediments in situ by replicating the intrusion of shallow groundwater through injection of 1,000 L of deep groundwater modified with 200 μg L(-1) of As into a deeper aquifer. Arsenic concentrations in the injected water were reduced by 70% due to adsorption within a single day. Basin-scale modelling indicates that while As adsorption extends the sustainable use of deep groundwater, some areas remain vulnerable; these areas can be prioritized for management and monitoring.

  2. Shallow aquifer storage and recovery (SASR): Initial findings from the Willamette Basin, Oregon

    NASA Astrophysics Data System (ADS)

    Neumann, P.; Haggerty, R.

    2012-12-01

    A novel mode of shallow aquifer management could increase the volumetric potential and distribution of groundwater storage. We refer to this mode as shallow aquifer storage and recovery (SASR) and gauge its potential as a freshwater storage tool. By this mode, water is stored in hydraulically connected aquifers with minimal impact to surface water resources. Basin-scale numerical modeling provides a linkage between storage efficiency and hydrogeological parameters, which in turn guides rulemaking for how and where water can be stored. Increased understanding of regional groundwater-surface water interactions is vital to effective SASR implementation. In this study we (1) use a calibrated model of the central Willamette Basin (CWB), Oregon to quantify SASR storage efficiency at 30 locations; (2) estimate SASR volumetric storage potential throughout the CWB based on these results and pertinent hydrogeological parameters; and (3) introduce a methodology for management of SASR by such parameters. Of 3 shallow, sedimentary aquifers in the CWB, we find the moderately conductive, semi-confined, middle sedimentary unit (MSU) to be most efficient for SASR. We estimate that users overlying 80% of the area in this aquifer could store injected water with greater than 80% efficiency, and find efficiencies of up to 95%. As a function of local production well yields, we estimate a maximum annual volumetric storage potential of 30 million m3 using SASR in the MSU. This volume constitutes roughly 9% of the current estimated summer pumpage in the Willamette basin at large. The dimensionless quantity lag #—calculated using modeled specific capacity, distance to nearest in-layer stream boundary, and injection duration—exhibits relatively high correlation to SASR storage efficiency at potential locations in the CWB. This correlation suggests that basic field measurements could guide SASR as an efficient shallow aquifer storage tool.

  3. Hydrodynamic Studies of Turbulent AGN Tori

    NASA Astrophysics Data System (ADS)

    Schartmann, M.; Meisenheimer, K.; Klahr, H.; Camenzind, M.; Wolf, S.; Henning, Th.; Burkert, A.; Krause, M.

    Recently, the MID-infrared Interferometric instrument (MIDI) at the VLTI has shown that dust tori in the two nearby Seyfert galaxies NGC 1068 and the Circinus galaxy are geometrically thick and can be well described by a thin, warm central disk, surrounded by a colder and fluffy torus component. By carrying out hydrodynamical simulations with the help of the TRAMP code (Klahr et al. 1999), we follow the evolution of a young nuclear star cluster in terms of discrete mass-loss and energy injection from stellar processes. This naturally leads to a filamentary large scale torus component, where cold gas is able to flow radially inwards. The filaments join into a dense and very turbulent disk structure. In a post-processing step, we calculate spectral energy distributions and images with the 3D radiative transfer code MC3D Wolf (2003) and compare them to observations. Turbulence in the dense disk component is investigated in a separate project.

  4. Identifying Methane Sources in Groundwater; Quantifying Changes in Compositional and Stable Isotope Values during Multiphase Transport

    NASA Astrophysics Data System (ADS)

    Larson, T.; Sathaye, K.

    2014-12-01

    A dramatic expansion of hydraulic fracturing and horizontal drilling for natural gas in unconventional reserves is underway. This expansion is fueling considerable public concern, however, that extracted natural gas, reservoir brines and associated fracking fluids may infiltrate to and contaminate shallower (< 500m depth) groundwater reservoirs, thereby posing a health threat. Attributing methane found in shallow groundwater to either deep thermogenic 'fracking' operations or locally-derived shallow microbial sources utilizes geochemical methods including alkane wetness and stable carbon and hydrogen isotope ratios of short chain (C1-C5) hydrocarbons. Compared to shallow microbial gas, thermogenic gas is wetter and falls within a different range of δ13C and δD values. What is not clear, however, is how the transport of natural gas through water saturated geological media may affect its compositional and stable isotope values. What is needed is a means to differentiate potential flow paths of natural gas including 'fast paths' along preexisting fractures and drill casings vs. 'slow paths' through low permeability rocks. In this study we attempt quantify transport-related effects using experimental 1-dimensional two-phase column experiments and analytical solutions to multi-phase gas injection equations. Two-phase experimental results for an injection of natural gas into a water saturated column packed with crushed illite show that the natural gas becomes enriched in methane compared to ethane and propane during transport. Carbon isotope measurements are ongoing. Results from the multi-phase gas injection equations that include methane isotopologue solubility and diffusion effects predict the development of a 'bank' of methane depleted in 13C relative to 12C at the front of a plume of fugitive natural gas. These results, therefore, suggest that transport of natural gas through water saturated geological media may complicate attribution methods needed to distinguish thermogenic and microbial methane.

  5. Application of Geochemical Parameters for the Early Detection of CO2 Leakage from Sequestration Sites into Groundwater

    NASA Astrophysics Data System (ADS)

    Kharaka, Y. K.; Beers, S.; Thordsen, J.; Thomas, B.; Campbell, P.; Herkelrath, W. N.; Abedini, A. A.

    2011-12-01

    Geologically sequestered CO2 is buoyant, has a low viscosity and, when dissolved in brine, becomes reactive to minerals and well pipes. These properties of CO2 may cause it to leak upward, possibly contaminating underground sources of drinking water. We have participated in several multi-laboratory field experiments to investigate the chemical and isotopic parameters that are applicable to monitoring the flow of injected CO2 into deep saline aquifers and into potable shallow groundwater. Geochemical results from the deep SECARB Phase III tests at Cranfield oil field, Mississippi, and from the Frio Brine I and II pilots located in the S. Liberty oil field, Dayton, Texas, proved powerful tools in: 1- Tracking the successful injection and flow of CO2 into the injection sandstones; 2- showing major changes in the chemical (pH, alkalinity, and major divalent cations) and isotopic (δ13C values of CO2, and δ18O values of CO2 and brine) compositions of formation water; 3-. showing mobilization of metals, including Fe Mn and Pb, and organic compounds , including DOC, BTEX, PAHs, and phenols following CO2 injection; and 4- showing that some of the CO2 injected into the Frio "C" sandstone was detected in the overlying "B" sandstone that is separated from it by 15 m of shale and siltstone. Rapid, significant and systematic changes were also observed in the isotopic and chemical compositions of shallow groundwater at the Zero Emissions Research and Technology (ZERT) site located in Bozeman, Montana, in response to four yearly injections of variable amounts of CO2 gas through a slotted pipe placed horizontally at a depth of ~2 m below ground level. The observed changes, included the lowering of groundwater pH from ~7.0 to values as low as 5.6, increases in the alkalinity from about 400 mg/L as HCO3 to values of up to 1330 mg/L, increases in the electrical conductance from ~600 μS/cm to up to 1800 μS/cm, as well as increases in the concentrations of cations and metals following CO2 injection. Geochemical modeling, sequential extractions of cations from the ZERT-aquifer sediments, and controlled laboratory CO2-groundwater-sediment interactions demonstrated that calcite dissolution and ion exchange on organic material and inorganic mineral surfaces are responsible for the observed chemical changes. Results from both the deep and shallow field tests show that geochemical methods have highly sensitive chemical and isotopic tracers that are needed at CO2 injection sites to monitor injection performance and for early detection of any CO2 and brine leakages.

  6. The effects of season and sand mining activities on thermal regime and water quality in a large shallow tropical lake.

    PubMed

    Sharip, Zati; Zaki, Ahmad Taqiyuddin Ahmad

    2014-08-01

    Thermal structure and water quality in a large and shallow lake in Malaysia were studied between January 2012 and June 2013 in order to understand variations in relation to water level fluctuations and in-stream mining activities. Environmental variables, namely temperature, turbidity, dissolved oxygen, pH, electrical conductivity, chlorophyll-A and transparency, were measured using a multi-parameter probe and a Secchi disk. Measurements of environmental variables were performed at 0.1 m intervals from the surface to the bottom of the lake during the dry and wet seasons. High water level and strong solar radiation increased temperature stratification. River discharges during the wet season, and unsustainable sand mining activities led to an increased turbidity exceeding 100 NTU, and reduced transparency, which changed the temperature variation and subsequently altered the water quality pattern.

  7. Circumstellar Structure Properties of Young Stellar Objects: Envelopes, Bipolar Outflows, and Disks

    NASA Astrophysics Data System (ADS)

    Kwon, Woojin

    2009-12-01

    Physical properties of the three main structures in young stellar objects (YSOs), envelopes, bipolar outflows, and circumstellar disks, have been studied using radio interferometers: the Berkeley-Illinois-Maryland Association (BIMA) array and the Combined Array for Research in Millimeter-wave Astronomy (CARMA). (1) Envelopes. Three Class 0 YSOs (L1448 IRS 2, L1448 IRS 3, and L1157) have been observed by CARMA at λ = 1.3 mm and 2.7 mm continuum. Through visibility modeling to fit the two wavelength continuum data simultaneously, we found that the dust opacity spectral index (β) of Class 0 YSOs is around unity, which implies that dust grains have significantly grown already at the earliest stage. In addition, we discussed the radial dependence of β detected in L1448 IRS 3B and also estimated the density distribution of the three targets. (2) Bipolar outflows. Polarimetric observations in the λ = 1.3 mm continuum and CO, as well as spectral line observations in 13CO and C18O have been carried out toward L1448 IRS 3, which has three Class 0 YSOs, using BIMA. We clearly identified two interacting bipolar outflows from the "binary system" of IRS 3A and 3B and estimated the velocity, inclination, and opening angle of the 3B bipolar outflow, using Bayesian inference. Also, we showed that the "binary system" can be bound gravitationally and we estimated the specific angular momentum, which is between those of binary stars and molecular cloud cores. In addition, we marginally detected linear polarizations at the center of IRS 3B (implying a toroidal magnetic field) in continuum and at the bipolar outflow region in CO. (3) Circumstellar disks. We present the results of 6 objects (CI Tau, DL Tau, DO Tau, FT Tau, Haro 6-13, and HL Tau) in our T Tauri disk survey using CARMA. The data consist of λ = 1.3 mm and 2.7 mm continuum with an angular resolution up to 0.13". Through visibility modeling of two disk models (power-law disk with a Gaussian edge and viscous accretion disk) to fit the two wavelength data simultaneously in Bayesian inference, we constrained disk properties. In addition, we detected a dust lane at 100 AU radius of HL Tau, which is gravitationally unstable and can be fragmented. Besides, CI Tau and DL Tau appear to have a spiral pattern. Moreover, we found that more evolved disks have a shallower density gradient and that disks with a smaller β are less massive, which implies "hidden" masses in the cold midplane and/or in large grains. Finally, we found that the accretion disk model is preferred by HL Tau, which has a strong bipolar outflow and accretion, while the power-law disk model is preferred by DL Tau, which has experienced dust settlement and has weak accretion. This implies that the accretion disk model could be applied to disks only in a limited age range.

  8. Dust Density Distribution and Imaging Analysis of Different Ice Lines in Protoplanetary Disks

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pinilla, P.; Pohl, A.; Stammler, S. M.

    Recent high angular resolution observations of protoplanetary disks at different wavelengths have revealed several kinds of structures, including multiple bright and dark rings. Embedded planets are the most used explanation for such structures, but there are alternative models capable of shaping the dust in rings as it has been observed. We assume a disk around a Herbig star and investigate the effect that ice lines have on the dust evolution, following the growth, fragmentation, and dynamics of multiple dust size particles, covering from 1 μ m to 2 m sized objects. We use simplified prescriptions of the fragmentation velocity threshold,more » which is assumed to change radially at the location of one, two, or three ice lines. We assume changes at the radial location of main volatiles, specifically H{sub 2}O, CO{sub 2}, and NH{sub 3}. Radiative transfer calculations are done using the resulting dust density distributions in order to compare with current multiwavelength observations. We find that the structures in the dust density profiles and radial intensities at different wavelengths strongly depend on the disk viscosity. A clear gap of emission can be formed between ice lines and be surrounded by ring-like structures, in particular between the H{sub 2}O and CO{sub 2} (or CO). The gaps are expected to be shallower and narrower at millimeter emission than at near-infrared, opposite to model predictions of particle trapping. In our models, the total gas surface density is not expected to show strong variations, in contrast to other gap-forming scenarios such as embedded giant planets or radial variations of the disk viscosity.« less

  9. Characterization of thermal tracer tests and heat exchanges in fractured media

    NASA Astrophysics Data System (ADS)

    de La Bernardie, Jérôme; Bour, Olivier; Guihéneuf, Nicolas; Chatton, Eliot; Labasque, Thierry; Longuevergne, Laurent; Le Lay, Hugo; Koch, Florian; Gerard, Marie-Françoise; Lavenant, Nicolas; Le Borgne, Tanguy

    2016-04-01

    Geothermal energy is a renewable energy source particularly attractive due to associated low greenhouse gas emission rates. Crystalline rocks are in general considered of poor interest for geothermal applications at shallow depths (< 100m), because of the low permeability of the medium. In some cases, fractures may enhance permeability, but thermal energy storage at these shallow depths is still remaining very challenging because of the low storativity of the medium. Within this framework, the purpose of this study is to test the possibility of efficient thermal energy storage in shallow fractured rocks with a single well semi open loop heat exchanger (standing column well). For doing so, several heat tracer tests have been achieved along a borehole between two connected fractures. The heat tracer tests have been achieved at the experimental site of Ploemeur (H+ observatory network). The tracer tests consist in monitoring the temperature in the upper fracture while injecting hot water in the deeper one thanks to a field boiler. For such an experimental setup, the main difficulty to interpret the data comes from the requirement for separating the temperature advective signal of the tracer test (temperature recovery) from the heat increase due to injection of hot water through the borehole which induces heat losses all along the injection tube in the water column. For doing so, in addition to a double straddle packer used for isolating the injection chamber, the particularity of the experimental set up is the use of fiber optic distributed temperature sensing (FO-DTS); an innovative technology which allows spatial and temporal monitoring of the temperature all along the well. Thanks to this tool, we were able to estimate heat increases coming from diffusion along the injection tube which is found much lower than localized temperature increases resulting from tracer test recovery. With local temperatures probes, separating both effects would not have been feasible. We also show through signal processing how diffusive and advective effects may be differentiated. This allowed us to estimate temperature recovery for different heat tracer durations and setups. In particular we show that temperature recovery is highly dependent on hydraulic configuration such as perfect dipole or fully convergent heat tracer tests.

  10. Forming Spirals From Shadows

    NASA Astrophysics Data System (ADS)

    Kohler, Susanna

    2016-07-01

    What causes the large-scale spiral structures found in some protoplanetary disks? Most models assume theyre created by newly-forming planets, but a new study suggests that planets might have nothing to do with it.Perturbations from Planets?In some transition disks protoplanetary disks with gaps in their inner regions weve directly imaged large-scale spiral arms. Many theories currently attribute the formation of these structures to young planets: either the direct perturbations of a planet embedded in the disk cause the spirals, or theyre indirectly caused by the orbit of a planetary body outside of the arms.Another example of spiral arms detected in a protoplanetary disk, MWC 758. [NASA/ESA/ESO/M. Benisty et al.]But what if you could get spirals without any planets? A team of scientists led by Matas Montesinos (University of Chile) have recently published a study in which they examine what happens to a shadowed protoplanetary disk.Casting Shadows with WarpsIn the teams setup, they envision a protoplanetary disk that is warped: the inner region is slightly tilted relative to the outer region. As the central star casts light out over its protoplanetary disk, this disk warping would cause some regions of the disk to be shaded in a way that isnt axially symmetric with potentially interesting implications.Montesinos and collaborators ran 2D hydrodynamics simulations to determine what happens to the motion of particles within the disk when they pass in and out of the shadowed regions. Since the shadowed regions are significantly colder than the illuminated disk, the pressure in these regions is much lower. Particles are therefore accelerated and decelerated as they pass through these regions, and the lack of axial symmetry causes spiral density waves to form in the disk as a result.Initial profile for the stellar heating rate per unit area for one of the authors simulations. The regions shadowed as a result of the disk warp subtend 0.5 radians each (shown on the left and right sides of the disks here). [Montesinos et al. 2016]Observations of Shadow SpiralsIn the authors models, two shadowed regions result in the formation of two spiral arms. The arms that develop start at a pitch angle of 1522, and gradually evolve to a shallower 1114 pitch at distances of ~65150 AU.The more luminous the central star, the more quickly the spiral arms form, due to the greater contrast between illuminated and shadowed disk regions: for a 0.25 solar-mass disk illuminated by a 1 solar-luminosity star, arms start to form after about 2500 orbits. If we increasethe stars brightness to 100 solar luminosities, the arms form after only 150 orbits.Montesinos and collaborators conclude by testing whether or not such spiral structures would be observable. They use a 3D radiative transfer code to produce scattered-light predictions of what the disk would look like to direct-imaging telescopes. They find that these shadow-induced spirals should be detectable.This first study clearly demonstrates that large-scale spiral density waves can form in protoplanetary disks without the presence of planets. The authors now plan to add more detailed physics to their models to better understand what we might observe when looking at systems that were shapedin this way.Density evolution in two shadowed disks. Top row: disk illuminated by a 100 L star, at 150, 250, and 500 orbits (from left to right). Bottom row: disk illuminated by a 1 L star, at 2500, 3500, and 4000 orbits. The rightmost top and bottom panels show control simulations (no shadows were present on the disk) after 1000 and 6000 orbits. (A different type of spiral starts to develop in the bottom control simulation as a result of a gravitational instability, but it never extends to the edges of the disk.) [Montesinos et al. 2016]CitationMatas Montesinos et al 2016 ApJ 823 L8. doi:10.3847/2041-8205/823/1/L8

  11. Microbial Stimulation and Succession following a Test Well Injection Simulating CO₂ Leakage into a Shallow Newark Basin Aquifer

    PubMed Central

    O’Mullan, Gregory; Dueker, M. Elias; Clauson, Kale; Yang, Qiang; Umemoto, Kelsey; Zakharova, Natalia; Matter, Juerg; Stute, Martin; Takahashi, Taro; Goldberg, David

    2015-01-01

    In addition to efforts aimed at reducing anthropogenic production of greenhouse gases, geological storage of CO2 is being explored as a strategy to reduce atmospheric greenhouse gas emission and mitigate climate change. Previous studies of the deep subsurface in North America have not fully considered the potential negative effects of CO2 leakage into shallow drinking water aquifers, especially from a microbiological perspective. A test well in the Newark Rift Basin was utilized in two field experiments to investigate patterns of microbial succession following injection of CO2-saturated water into an isolated aquifer interval, simulating a CO2 leakage scenario. A decrease in pH following injection of CO2 saturated aquifer water was accompanied by mobilization of trace elements (e.g. Fe and Mn), and increased bacterial cell concentrations in the recovered water. 16S ribosomal RNA gene sequence libraries from samples collected before and after the test well injection were compared to link variability in geochemistry to changes in aquifer microbiology. Significant changes in microbial composition, compared to background conditions, were found following the test well injections, including a decrease in Proteobacteria, and an increased presence of Firmicutes, Verrucomicrobia and microbial taxa often noted to be associated with iron and sulfate reduction. The concurrence of increased microbial cell concentrations and rapid microbial community succession indicate significant changes in aquifer microbial communities immediately following the experimental CO2 leakage event. Samples collected one year post-injection were similar in cell number to the original background condition and community composition, although not identical, began to revert toward the pre-injection condition, indicating microbial resilience following a leakage disturbance. This study provides a first glimpse into the in situ successional response of microbial communities to CO2 leakage after subsurface injection in the Newark Basin and the potential microbiological impact of CO2 leakage on drinking water resources. PMID:25635675

  12. Lessons from Coronagraphic Imaging with HST that may apply to JWST

    NASA Astrophysics Data System (ADS)

    Grady, C. A.; Hines, Dean C.; Schneider, Glenn; McElwain, Michael W.

    2017-06-01

    One of the major capabilities offered by JWST is coronagraphic imaging from space, covering the near through mid-IR and optimized for study of planet formation and the evolution of planetary systems. Planning for JWST has resulted in expectations for instrument performance, observation strategies and data reduction approaches. HST with 20 years of coronagraphic imaging offers some experience which may be useful to those planning for JWST. 1) Real astronomical sources do not necessarily conform to expectations. Debris disks may be accompanied by more distant material, and some systems may be conspicuous in scattered light when offering only modest IR excesses. Proto-planetary disks are not constantly illuminated, and thus a single epoch observation of the source may not be sufficient to reveal everything about it. 2) The early expectation with NICMOS was that shallow, 2-roll observations would reveal a wealth of debris disks imaged in scattered light, and that only a limited set of PSF observations would be required. Instead, building up a library of spatially resolved disks in scattered light has proven to require alternate observing strategies, is still on-going, and has taken far longer than expected. 3) A wealth of coronagraphic options with an instrument may not be scientifically informative, unless there is a similar time investment in acquisition of calibration data in support of the science observations. 4) Finally, no one anticipated what can be gleaned from coronagraphic imaging. We should expect similar, unexpected, and ultimately revolutionary discoveries with JWST.

  13. Thermal evolution of magma reservoirs in the shallow crust and incidence on magma differentiation: the St-Jean-du-Doigt layered intrusion (Brittany, France)

    NASA Astrophysics Data System (ADS)

    Barboni, M.; Bussy, F.; Ovtcharova, M.; Schoene, B.

    2009-12-01

    Understanding the emplacement and growth of intrusive bodies in terms of mechanism, duration, thermal evolution and rates are fundamental aspects of crustal evolution. Recent studies show that many plutons grow in several Ma by in situ accretion of discrete magma pulses, which constitute small-scale magmatic reservoirs. The residence time of magmas, and hence their capacities to interact and differentiate, are controlled by the local thermal environment. The latter is highly dependant on 1) the emplacement depth, 2) the magmas and country rock composition, 3) the country rock thermal conductivity, 4) the rate of magma injection and 5) the geometry of the intrusion. In shallow level plutons, where magmas solidify quickly, evidence for magma mixing and/or differentiation processes is considered by many authors to be inherited from deeper levels. We show however that in-situ differentiation and magma interactions occurred within basaltic and felsic sills at shallow depth (0.3 GPa) in the St-Jean-du-Doigt bimodal intrusion, France. Field evidence coupled to high precision zircon U-Pb dating document progressive thermal maturation within the incrementally built laccolith. Early m-thick mafic sills are homogeneous and fine-grained with planar contacts with neighbouring felsic sills; within a minimal 0.5 Ma time span, the system gets warmer, adjacent sills interact and mingle, and mafic sills are differentiating in the top 40 cm of the layer. Rheological and thermal modelling show that observed in-situ differentiation-accumulation processes may be achieved in less than 10 years at shallow depth, provided that (1) the differentiating sills are injected beneath consolidated, yet still warm basalt sills, which act as low conductive insulating screens, (2) the early mafic sills accreted under the roof of the laccolith as a 100m thick top layer within 0.5 My, and (3) subsequent and sustained magmatic activity occurred on a short time scale (years) at an injection rate of ca. 0.5m/y. Extraction of differentiated residual liquids might eventually take place and mix with newly injected magma as documented in active syn-emplacement shear-zones. These low-pressure differentiated liquids can potentially contribute to subaerial volcanic activity along the major shear-zones.

  14. GALACTIC WINDS DRIVEN BY ISOTROPIC AND ANISOTROPIC COSMIC-RAY DIFFUSION IN DISK GALAXIES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pakmor, R.; Pfrommer, C.; Simpson, C. M.

    2016-06-20

    The physics of cosmic rays (CRs) is a promising candidate for explaining the driving of galactic winds and outflows. Recent galaxy formation simulations have demonstrated the need for active CR transport either in the form of diffusion or streaming to successfully launch winds in galaxies. However, due to computational limitations, most previous simulations have modeled CR transport isotropically. Here, we discuss high-resolution simulations of isolated disk galaxies in a 10{sup 11} M {sub ⊙} halo with the moving-mesh code Arepo that include injection of CRs from supernovae, advective transport, CR cooling, and CR transport through isotropic or anisotropic diffusion. Wemore » show that either mode of diffusion leads to the formation of strong bipolar outflows. However, they develop significantly later in the simulation with anisotropic diffusion compared to the simulation with isotropic diffusion. Moreover, we find that isotropic diffusion allows most of the CRs to quickly diffuse out of the disk, while in the simulation with anisotropic diffusion, most CRs remain in the disk once the magnetic field becomes dominated by its azimuthal component, which occurs after ∼300 Myr. This has important consequences for the gas dynamics in the disk. In particular, we show that isotropic diffusion strongly suppresses the amplification of the magnetic field in the disk compared to anisotropic or no diffusion models. We therefore conclude that reliable simulations which include CR transport inevitably need to account for anisotropic diffusion.« less

  15. Microbial succession and stimulation following a test well injection simulating CO2 leakage into shallow Newark Basin aquifers

    NASA Astrophysics Data System (ADS)

    Dueker, M.; Clauson, K.; Yang, Q.; Umemoto, K.; Seltzer, A. M.; Zakharova, N. V.; Matter, J. M.; Stute, M.; Takahashi, T.; Goldberg, D.; O'Mullan, G. D.

    2012-12-01

    Despite growing appreciation for the importance of microbes in altering geochemical reactions in the subsurface, the microbial response to geological carbon sequestration injections and the role of microbes in altering metal mobilization following leakage scenarios in shallow aquifers remain poorly constrained. A Newark Basin test well was utilized in field experiments to investigate patterns of microbial succession following injection of CO2 saturated water into isolated aquifer intervals. Additionally, laboratory mesocosm experiments, including microbially-active and inactive (autoclave sterilized) treatments, were used to constrain the microbial role in mineral dissolution, trace metal release, and gas production (e.g. hydrogen and methane). Hydrogen production was detected in both sterilized and unsterilized laboratory mesocosm treatments, indicating abiotic hydrogen production may occur following CO2 leakage, and methane production was detected in unsterilized, microbially active mesocosms. In field experiments, a decrease in pH following injection of CO2 saturated aquifer water was accompanied by mobilization of trace elements (e.g. Fe and Mn), the production of hydrogen gas, and increased bacterial cell concentrations. 16S ribosomal RNA clone libraries, from samples collected before and after the test well injection, were compared in an attempt to link variability in geochemistry to changes in aquifer microbiology. Significant changes in microbial composition, compared to background conditions, were found following the test well injection, including a decrease in Proteobacteria, and an increased presence of Firmicutes, Verrucomicrobia, Acidobacteria and other microbes associated with iron reducing and syntrophic metabolism. The concurrence of increased microbial cell concentration, and rapid microbial community succession, with increased concentrations of hydrogen gas suggests that abiotically produced hydrogen may serve as an ecologically-relevant energy source stimulating changes in aquifer microbial communities immediately following CO2 leakage.

  16. Seismic rupture and ground accelerations induced by CO 2 injection in the shallow crust

    DOE PAGES

    Cappa, Frédéric; Rutqvist, Jonny

    2012-09-01

    We present that because of the critically stressed nature of the upper crust, the injection of large volumes of carbon dioxide (CO 2) into shallow geological reservoirs can trigger seismicity and induce ground deformations when the injection increases the fluid pressure in the vicinity of potentially seismic faults. The increased fluid pressure reduces the strength against fault slip, allowing the stored elastic energy to be released in seismic events that can produce felt ground accelerations. Here, we seek to explore the likelihood ground motions induced by a CO 2 injection using hydromechanical modelling with multiphase fluid flow and dynamic rupture,more » including fault-frictional weakening. We extend the previous work of Cappa and Rutqvist, in which activation of a normal fault at critical stress may be possible for fast rupture nucleating by localized increase in fluid pressure and large decrease in fault friction. In this paper, we include seismic wave propagation generated by the rupture. For our assumed system and injection rate, simulations show that after a few days of injection, a dynamic fault rupture of few centimetres nucleates at the base of the CO 2 reservoir and grows bilaterally, both toward the top of the reservoir and outside. The rupture is asymmetric and affects a larger zone below the reservoir where the rupture is self-propagating (without any further pressure increase) as a result of fault-strength weakening. The acceleration and deceleration of the rupture generate waves and result in ground accelerations (~0.1–0.6 g) consistent with observed ground motion records. Finally, the maximum ground acceleration is obtained near the fault, and horizontal accelerations are generally markedly higher than vertical accelerations.« less

  17. Interim Report: 100-NR-2 Apatite Treatability Test: Low Concentration Calcium Citrate-Phosphate Solution Injection for In Situ Strontium-90 Immobilization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Williams, Mark D.; Fritz, Brad G.; Mendoza, Donaldo P.

    2008-07-11

    Following an evaluation of potential Sr-90 treatment technologies and their applicability under 100-NR-2 hydrogeologic conditions, U.S. Department of Energy, Fluor Hanford, Inc., Pacific Northwest National Laboratory, and the Washington Department of Ecology agreed that the long-term strategy for groundwater remediation at 100-N Area will include apatite sequestration as the primary treatment, followed by a secondary treatment if necessary (most likely phytoremediation). Since then, the agencies have worked together to agree on which apatite sequestration technology has the greatest chance of reducing Sr-90 flux to the river at a reasonable cost. In July 2005, aqueous injection, (i.e., the introduction of apatite-formingmore » chemicals into the subsurface) was endorsed as the interim remedy and selected for field testing. Studies are in progress to assess the efficacy of in situ apatite formation by aqueous solution injection to address both the vadose zone and the shallow aquifer along the 300 ft of shoreline where Sr-90 concentrations are highest. This report describes the field testing of the shallow aquifer treatment.« less

  18. A Prospective Method to Increase Oil Recovery in Waxy-Shallow Reservoir

    NASA Astrophysics Data System (ADS)

    Hidayat, F.; Abdurrahman, M.

    2018-02-01

    Waxy oil has been the main characteristics of The X field. Initial screening criteria studies indicated that cyclic steam stimulation (CSS) would be the optimum option because favorable reservoir condition. Based on this method we would like to know how much oil gain and the effect of steam for the stimulated and surrounding well. The injection of steam was done for 7 days followed by 14 days of soaking period. 39,000 liter of Marine fuel oil was used to generate steam for stimulation with an average produce steam quality about 80%. Average of 255 MMBTU of steam was injected each day with total steam injected was about 1.7 BBTU. The oil production was increased four times from 5 bopd into 21 bopd. Proper well candidate and high permeability are some reason for this method successfully increase oil production. Additional heat from steam reduced the damage near wellbore due to wax deposition. This is verifying by increasing productivity index from 3 bbl/psi to 4 bbl/psi. From results and observation data, this method can be a platform for typical shallow depth reservoir with high paraffinic content especially other reservoir in Sihapas formation.

  19. Instrumental Implementation of an Experiment to Demonstrate αω -dynamos in Accretion Disks

    NASA Astrophysics Data System (ADS)

    Si, Jiahe; Sonnenfeld, Richard; Colgate, Art; Li, Hui; Nornberg, Mark

    2016-10-01

    The New Mexico Liquid Metal αω -dynamo experiment is aimed to demonstrate a galactic dynamo. Our goal is to generate the ω-effect and α-effect by two semi-coherent flows in laboratory. Two coaxial cylinders are used to generate Taylor-Couette flows to simulate the differential rotation of accretion disks. Plumes induced by jets injected into the Couette flows are expected to produce helicities necessary for the α-effect. We have demonstrated an 8-fold poloidal-to-toroidal flux amplification from differential rotation (the ω-effect) by minimizing turbulence in our apparatus. To demonstrate the α-effect, the experimental apparatus is undergoing significant upgrade. We have constructed a helicity injection facility, and are also designing and testing a new data acquisition system capable of transmitting data in a high speed rotating frame. Additional magnetic field diagnostics will also be included. The upgrade is intended to answer the question of whether a self-sustaining αω -dynamo can be constructed with a realistic fluid flow field, as well as to obtain more details to understand dynamo action in highly turbulent Couette flow.

  20. Impact of Air Injection on Jet Noise

    NASA Technical Reports Server (NTRS)

    Henderson, Brenda; Norum, Tom

    2007-01-01

    The objective of this viewgraph presentation is to review the program to determine impact of core fluidic chevrons on noise produced by dual stream jets (i.e., broadband shock noise - supersonic, and mixing noise - subsonic and supersonic). The presentation reviews the sources of jet noise. It shows designs of Generation II Fluidic Chevrons. The injection impacts shock structure and stream disturbances through enhanced mixing. This may impact constructive interference between acoustic sources. The high fan pressures may inhibit mixing produced by core injectors. A fan stream injection may be required for better noise reduction. In future the modification of Gen II nozzles to allow for some azimuthal control: will allow for higher mass flow rates and will allow for shallower injection angles A Flow field study is scheduled for spring, 2008 The conclusions are that injection can reduce well-defined shock noise and injection reduces mixing noise near peak jet noise angle

  1. Restoring Segmental Biomechanics Through Nucleus Augmentation: An In Vitro Study.

    PubMed

    Pelletier, Matthew H; Cohen, Charles S; Ducheyne, Paul; Walsh, William R

    2016-12-01

    In vitro biomechanical laboratory study. The purpose of this study is to evaluate a mechanical treatment to create a degenerative motion segment and the ability of nucleus augmentation to restore biomechanics. In cases with an intact annulus fibrosus, the replacement or augmentation of the nucleus pulposus alone may provide a less invasive option to restore normal biomechanics and disk height when compared with spinal fusion or total disk replacement. Laboratory testing allows these changes to be fully characterized. However, without preexisting pathology, nucleus augmentation therapies are difficult to evaluate in vitro. The present study evaluated pure moment bending and compressive biomechanics in 3 states (n=6): (1) intact, (2) after creep loading and nucleus disruption to induce degenerative biomechanical changes, and (3) after nucleus augmentation through an injectable polymer (DiscCell). Neutral zone and ROM were increased in all modes of bending after the degenerative treatment. The most sensitive mode of bending was lateral bending, with intact ROM (20.0±2.9 degrees) increased to 22.3±2.6 degrees after degenerative treatment and reduced to 18.4±1.6 degrees after injection of the polymer. All bending ROM and NZ changes induced by the degenerative treatment were reversed by nucleus augmentation. This material was shown to be effective at altering motion segment biomechanics and restoring disk height during time zero tests. This technique may provide a model to examine the time zero performance of a nucleus augmentation device/material.

  2. Potential for iron oxides to control metal releases in CO2 sequestration scenarios

    USGS Publications Warehouse

    Berger, P.M.; Roy, W.R.

    2011-01-01

    The potential for the release of metals into groundwater following the injection of carbon dioxide (CO2) into the subsurface during carbon sequestration projects remains an open research question. Changing the chemical composition of even the relatively deep formation brines during CO2 injection and storage may be of concern because of the recognized risks associated with the limited potential for leakage of CO2-impacted brine to the surface. Geochemical modeling allows for proactive evaluation of site geochemistry before CO2 injection takes place to predict whether the release of metals from iron oxides may occur in the reservoir. Geochemical modeling can also help evaluate potential changes in shallow aquifers were CO2 leakage to occur near the surface. In this study, we created three batch-reaction models that simulate chemical changes in groundwater resulting from the introduction of CO2 at two carbon sequestration sites operated by the Midwest Geological Sequestration Consortium (MGSC). In each of these models, we input the chemical composition of groundwater samples into React??, and equilibrated them with selected mineral phases and CO 2 at reservoir pressure and temperature. The model then simulated the kinetic reactions with other mineral phases over a period of up to 100 years. For two of the simulations, the water was also at equilibrium with iron oxide surface complexes. The first model simulated a recently completed enhanced oil recovery (EOR) project in south-central Illinois in which the MGSC injected into, and then produced CO2, from a sandstone oil reservoir. The MGSC afterwards periodically measured the brine chemistry from several wells in the reservoir for approximately two years. The sandstone contains a relatively small amount of iron oxide, and the batch simulation for the injection process showed detectable changes in several aqueous species that were attributable to changes in surface complexation sites. After using the batch reaction configuration to match measured geochemical changes due to CO2 injection, we modeled potential changes in groundwater chemistry at the Illinois Basin - Decatur Project (IBDP) site in Decatur, Illinois, USA. At the IBDP, the MGSC will inject 1 million tonnes of CO2 over the course of three years at a depth of about 2 km below the surface into the Mt. Simon Formation. Sections of the Mt. Simon Formation contain up to 10 percent iron oxide, and therefore surface complexes on iron oxides should play a major role in controlling brine chemistry. The batch simulation of this system showed a significant decrease in pH after the injection of CO2 with corresponding changes in brine chemistry resulting from both mineral precipitation/dissolution reactions and changes in the chemistry on iron oxide surfaces. To ensure the safety of shallow drinking water sources, there are several shallow monitoring wells at the IBDP that the MGSC samples regularly to determine baseline chemical concentrations. Knowing what geochemical parameters are most sensitive to CO2 disturbances allows us to focus monitoring efforts. Modeling a major influx of CO2 into the shallow groundwater allowed us to determine that were an introduction of CO2 to occur, the only immediate effect will be dolomite dissolution and calcite precipitation. ?? 2011 Published by Elsevier Ltd.

  3. The HIP 79977 debris disk in polarized light

    NASA Astrophysics Data System (ADS)

    Engler, N.; Schmid, H. M.; Thalmann, Ch.; Boccaletti, A.; Bazzon, A.; Baruffolo, A.; Beuzit, J. L.; Claudi, R.; Costille, A.; Desidera, S.; Dohlen, K.; Dominik, C.; Feldt, M.; Fusco, T.; Ginski, C.; Gisler, D.; Girard, J. H.; Gratton, R.; Henning, T.; Hubin, N.; Janson, M.; Kasper, M.; Kral, Q.; Langlois, M.; Lagadec, E.; Ménard, F.; Meyer, M. R.; Milli, J.; Mouillet, D.; Olofsson, J.; Pavlov, A.; Pragt, J.; Puget, P.; Quanz, S. P.; Roelfsema, R.; Salasnich, B.; Siebenmorgen, R.; Sissa, E.; Suarez, M.; Szulagyi, J.; Turatto, M.; Udry, S.; Wildi, F.

    2017-11-01

    Context. Debris disks are observed around 10 to 20% of FGK main-sequence stars as infrared excess emission. They are important signposts for the presence of colliding planetesimals and therefore provide important information about the evolution of planetary systems. Direct imaging of such disks reveals their geometric structure and constrains their dust-particle properties. Aims: We present observations of the known edge-on debris disk around HIP 79977 (HD 146897) taken with the ZIMPOL differential polarimeter of the SPHERE instrument. We measure the observed polarization signal and investigate the diagnostic potential of such data with model simulations. Methods: SPHERE-ZIMPOL polarimetric data of the 15 Myr-old F star HIP 79977 (Upper Sco, 123 pc) were taken in the Very Broad Band (VBB) filter (λc = 735 nm, Δλ = 290 nm) with a spatial resolution of about 25 mas. Imaging polarimetry efficiently suppresses the residual speckle noise from the AO system and provides a differential signal with relatively small systematic measuring uncertainties. We measure the polarization flux along and perpendicular to the disk spine of the highly inclined disk for projected separations between 0.2'' (25 AU) and 1.6'' (200 AU). We perform model calculations for the polarized flux of an optically thin debris disk which are used to determine or constrain the disk parameters of HIP 79977. Results: We measure a polarized flux contrast ratio for the disk of (Fpol)disk/F∗ = (5.5 ± 0.9) × 10-4 in the VBB filter. The surface brightness of the polarized flux reaches a maximum of SBmax = 16.2 mag arcsec-2 at a separation of 0.2''-0.5'' along the disk spine with a maximum surface brightness contrast of 7.64 mag arcsec-2. The polarized flux has a minimum near the star <0.2'' because no or only little polarization is produced by forward or backward scattering in the disk section lying in front of or behind the star. The width of the disk perpendicular to the spine shows a systematic increase in FWHM from 0.1'' (12 AU) to 0.3''-0.5'', when going from a separation of 0.2'' to >1''. This can be explained by a radial blow-out of small grains. The data are modelled as a circular dust belt with a well defined disk inclination I = 85( ± 1.5)° and a radius between r0 = 60 and 90 AU. The radial density dependence is described by (r/r0)α with a steep (positive) power law index α = 5 inside r0 and a more shallow (negative) index α = -2.5 outside r0. The scattering asymmetry factor lies between g = 0.2 and 0.6 (forward scattering) adopting a scattering-angle dependence for the fractional polarization such as that for Rayleigh scattering. Conclusions: Polarimetric imaging with SPHERE-ZIMPOL of the edge-on debris disk around HIP 79977 provides accurate profiles for the polarized flux. Our data are qualitatively very similar to the case of AU Mic and they confirm that edge-on debris disks have a polarization minimum at a position near the star and a maximum near the projected separation of the main debris belt. The comparison of the polarized flux contrast ratio (Fpol)disk/F∗ with the fractional infrared excess provides strong constraints on the scattering albedo of the dust.

  4. Induced seismicity response of hydraulic fracturing: results of a multidisciplinary monitoring at the Wysin site, Poland.

    PubMed

    López-Comino, J A; Cesca, S; Jarosławski, J; Montcoudiol, N; Heimann, S; Dahm, T; Lasocki, S; Gunning, A; Capuano, P; Ellsworth, W L

    2018-06-05

    Shale oil and gas exploitation by hydraulic fracturing experienced a strong development worldwide over the last years, accompanied by a substantial increase of related induced seismicity, either consequence of fracturing or wastewater injection. In Europe, unconventional hydrocarbon resources remain underdeveloped and their exploitation controversial. In UK, fracturing operations were stopped after the M w 2.3 Blackpool induced earthquake; in Poland, operations were halted in 2017 due to adverse oil market conditions. One of the last operated well at Wysin, Poland, was monitored independently in the framework of the EU project SHEER, through a multidisciplinary system including seismic, water and air quality monitoring. The hybrid seismic network combines surface mini-arrays, broadband and shallow borehole sensors. This paper summarizes the outcomes of the seismological analysis of these data. Shallow artificial seismic noise sources were detected and located at the wellhead active during the fracturing stages. Local microseismicity was also detected, located and characterised, culminating in two events of M w 1.0 and 0.5, occurring days after the stimulation in the vicinity of the operational well, but at very shallow depths. A sharp methane peak was detected ~19 hours after the M w 0.5 event. No correlation was observed between injected volumes, seismicity and groundwater parameters.

  5. Enhancement of Feedback Efficiency by Active Galactic Nucleus Outflows via the Magnetic Tension Force in the Inhomogeneous Interstellar Medium

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Asahina, Yuta; Ohsuga, Ken; Nomura, Mariko, E-mail: asahina@cfca.jp

    By performing three-dimensional magnetohydrodynamics simulations of subrelativistic jets and disk winds propagating into the magnetized inhomogeneous interstellar medium (ISM), we investigate the magnetic effects on the active galactic nucleus feedback. Our simulations reveal that the magnetic tension force promotes the acceleration of the dense gas clouds, since the magnetic field lines, which are initially straight, bend around the gas clouds. In the jet models, the velocity dispersion of the clouds increases with an increase in the initial magnetic fields. The increment of the kinetic energy of the clouds is proportional to the initial magnetic fields, implying that the magnetic tensionmore » force increases the energy conversion efficiency from the jet to the gas clouds. Through simulations of the mildly collimated disk wind and the funnel-shaped disk wind, we confirm that such an enhancement of the energy conversion efficiency via the magnetic fields appears even if the energy is injected via the disk winds. The enhancement of the acceleration of the dense part of the magnetized ISM via the magnetic tension force will occur wherever the magnetized inhomogeneous matter is blown away.« less

  6. Chymopapain chemonucleolysis: CT changes after treatment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gentry, L.R.; Turski, P.A.; Strother, C.M.

    1985-08-01

    Chymopapain chemonucleolysis is now used extensively in this country to treat lumbar disk herniation. Despite increasing experience in patient selection, there continue to be patients who do not respond to treatment and require diagnostic reevaluation. Interpretation of postchemonucleolysis computed tomographic (CT) scans in these patients requires a knowledge of the CT changes that normally occur after treatment with chemonucleolysis. To define these temporal changes, a prospective CT evaluation was performed of 29 treated interspaces in 26 patients who returned for routine postchemonucleolysis follow-up. Despite a successful clinical response in 17 of 21 patients, changes in the size, location, shape, homogeneity,more » and density of the disk herniation were uncommon at the 6 week follow-up. In 24 treated interspaces, the most common changes at 6 week CT follow-up were the development of vacuum phenomenon in three (12.5%) and a slight decrease in the size of two (8.3%) disk herniations. A successful response was noted in 17 of 21 patients scanned at 6 month follow-up, with five (22.7%) of 22 injected interspaces exhibiting vacuum phenomenon and 13 (59.1%) interspaces showing an observable decrease in the size of the disk herniation.« less

  7. Submillimeter Array {sup 12}CO (2-1) Imaging of the NGC 6946 Giant Molecular Clouds

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wu, Ya-Lin; Sakamoto, Kazushi; Pan, Hsi-An, E-mail: yalinwu@email.arizona.edu

    2017-04-10

    We present a {sup 12}CO (2–1) mosaic map of the spiral galaxy NGC 6946 by combining data from the Submillimeter Array and the IRAM 30 m telescope. We identify 390 giant molecular clouds (GMCs) from the nucleus to 4.5 kpc in the disk. GMCs in the inner 1 kpc are generally more luminous and turbulent, some of which have luminosities >10{sup 6} K km s{sup −1} pc{sup 2} and velocity dispersions >10 km s{sup −1}. Large-scale bar-driven dynamics likely regulate GMC properties in the nuclear region. Similar to the Milky Way and other disk galaxies, GMC mass function of NGCmore » 6946 has a shallower slope (index > −2) in the inner region, and a steeper slope (index < −2) in the outer region. This difference in mass spectra may be indicative of different cloud formation pathways: gravitational instabilities might play a major role in the nuclear region, while cloud coalescence might be dominant in the outer disk. Finally, the NGC 6946 clouds are similar to those in M33 in terms of statistical properties, but they are generally less luminous and turbulent than the M51 clouds.« less

  8. Assessment of hydrogeologic conditions with emphasis on water quality and wastewater injection, southwest Sarasota and West Charlotte counties, Florida

    USGS Publications Warehouse

    Hutchinson, C.B.

    1992-01-01

    The 250-square-mile area of southwest Sarasota and west Charlotte Counties is underlain by a complex hydrogeologic system having diverse ground-water quality. The surficial and intermediate aquifer systems and the Upper Floridan aquifer of the Floridan aquifer system contain six separate aquifers, or permeable zones, and have a total thickness of about 2,000 feet. Water in the clastic surficial aquifer system is potable and is tapped by hundreds of shallow, low-yielding supply wells. Water in the mixed clastic and carbonate intermediate aquifer system is potable in the upper part, but in the lower part, because of increasing salinity, it is used primarily for reverse-osmosis desalinization feed water and irrigation. Within the Upper Floridan aquifer, limestone and dolomite of the Suwannee permeable zone are tapped by irrigation and reverse-osmosis supply wells. The underlying, less permeable limestone of the Suwannee-Ocala semiconfining unit generally encompasses the transition zone between freshwater and very saline water. Interbedded limestone and dolomite of the Ocala-Avon Park moderately permeable zone and Avon Park highly permeable zone compose the deep, very saline injection zone. Potential ground-water contamination problems include flooding by storm tides, upward movement of saline water toward pumping centers by natural and induced leakage or through improperly constructed and abandoned wells, and lateral and vertical movement of treated sewage and reverse-osmosis wastewater injected into deep zones. Effects of flooding are evident in coastal areas where vertical layering of fresh and saline waters is observed. Approximately 100 uncontrolled flowing artesian wells that have interaquifer flow rates as high as 350 gallons per minute have been located and scheduled for plugging by the Southwest Florida Water Management District--in an attempt to improve ground-water quality of the shallow aquifers. Because each aquifer or permeable zone has unique head and water-quality characteristics, construction of single-zone wells would eliminate cross-contamination and borehole interflow. Such a program, when combined with the plugging of shallow-cased wells having long open-hole intervals connecting multiple zones, would safeguard ground-water resources in the study area. The study area encompasses seven wastewater injection sites that have a projected capacity for injecting 29 million gallons per day into the zone 1,100 to 2,050 feet below land surface. There are six additional sites within 20 miles. The first well began injecting reverse-osmosis wastewater in 1984, and since then, other wells have been drilled and permitted for injection of treated sewage. A numerical model was used to evaluate injection-well design and potential for movement of injected wastewater within the hydrogeologic framework. The numerical model was used to simulate injection through a representative well at a rate of 1 million gallons per day for 10 years. In this simulation, a convection cell developed around the injection well with the buoyant fresh injectant rising to form a lens within the injection zone below the lower Suwannee-Ocala semiconfining unit. Around an ideal, fully penetrating well cased 50 feet into the injection zone and open from a depth of 1,150 feet to 2,050 feet, simulations show that the injectant moves upward to a depth of 940 feet, forms a lens about 600 feet thick, and spreads radially outward to a distance of about 2,300 feet after 10 years. Comparison simulations of injection through wells having open depth intervals of 1,150 to 1,400 feet and 1,450 to 2,050 feet demonstrate that such changes in well construction have little effect on the areal spread of the injectant lens or the rate of upward movement. Simulations also indicate that reverse-osmosis wastewater injected beneath a supply well field, where water levels above the semiconfining unit are lowered 20 feet by pumping, would move upward after 10 years to a de

  9. Turbine vane gas film cooling with injection in the leading edge region from a single row of spanwise angled holes

    NASA Technical Reports Server (NTRS)

    Lecuyer, M. R.; Hanus, G. J.

    1976-01-01

    An experimental study of gas film cooling was conducted on a 3X size model turbine vane. Injection in the leading edge region was from a single row of holes angled in a spanwise direction. Measurements of the local heat flux downstream from the row of coolant holes, both with and without film coolant flow, were used to determine the film cooling performance presented in terms of the Stanton number ratio. Results for a range of coolant blowing ratio, M = 0 to 2.0, indicate a reduction in heat flux of up to 15 to 30 percent at a point 10 to 11 hole diameters downstream from injection. An optimum coolant blowing ratio corresponds to a coolant-to-freestream velocity ratio in the range of 0.5. The shallow injection angle resulted in superior cooling performance for injection closest to stagnation, while the effect of injection angle was insignificant for injection further from stagnation.

  10. Fate of herbicides in a shallow aerobic aquifer: A continuous field injection experiment (Vejen, Denmark)

    NASA Astrophysics Data System (ADS)

    Broholm, Mette M.; Rügge, Kirsten; Tuxen, Nina; HøJberg, Anker L.; MosbæK, Hans; Bjerg, Poul L.

    2001-12-01

    A continuous, natural gradient, field injection experiment, involving six herbicides and a tracer, was performed in a shallow aerobic aquifer near Vejen, Denmark. Bentazone, (±)-2-(4-chloro-2-methylphenoxy) propanoic acid (MCPP), dichlorprop, isoproturon, and the dichlobenil metabolite 2,6-dichlor-benzamide (BAM) were injected along with 2-methyl-4,6-dinitrophenol (not discussed in this paper) and the tracer bromide. The injection lasted for 216 days and created a continuous plume in the aquifer. The plume was monitored in three dimensions in 96 multilevel samplers of 6-9 points each for 230 days, with selected individual points for a longer period. The bromide plume followed a complex path through the monitoring network downgradient of the injection wells. The plume movement was controlled by spatially varied hydraulic conductivities of the sand deposit and influenced by asynchronous seasonal variation in groundwater potentials. An average flow velocity of 0.5 m/d was observed, as depicted by bromide. Bentazone, BAM, MCPP, and dichlorprop retardation was negligible, and only slight retardation of isoproturon was observed in the continuous injection experiment and a preceding pulse experiment. No degradation of bentazone was observed in the aerobic aquifer during the monitoring period. BAM and isoproturon were not degraded within 5 m downgradient of the injection. The two phenoxy acids MCPP and dichlorprop were both degraded in the aerobic aquifer. Near the source a lag phase was observed followed by fast degradation of the phenoxy acids, indicating growth kinetics. The phenoxy acids were completely degraded within l m downgradient of the injection wells, resulting in the plumes being divided into small plumes at the injection wells and pulses farther downgradient. During the lag phase, phenoxy acids had spread beyond the 25 m long monitoring network. However, the mass of the phenoxy acids passing the 10-25 m fences never matched the corresponding bentazone or bromide masses, and the pulse was observed to shrink in size. This indicates that this pulse of phenoxy acids was being partially degraded at a low rate as it traveled through the aquifer.

  11. Newberry Well 55-29 Stimulation Data 2014

    DOE Data Explorer

    Trenton T. Cladouhos

    2015-09-03

    The Newberry Volcano EGS Demonstration in central Oregon, a 5 year project begun in 2010, tests recent technological advances designed to reduce the cost of power generated by EGS in a hot, dry well (NWG 55-29) drilled in 2008. First, the stimulation pumps used were designed to run for weeks and deliver large volumes of water at moderate well-head pressure. Second, to stimulate multiple zones, AltaRock developed thermo-degradable zonal isolation materials (TZIMs) to seal off fractures in a geothermal well to stimulate secondary and tertiary fracture zones. The TZIMs degrade within weeks, resulting in an optimized injection/ production profile of the entire well. Third, the project followed a project-specific Induced Seismicity Mitigation Plan (ISMP) to evaluate, monitor for, and mitigate felt induced seismicity. An initial stimulation was conducted in 2012 and continued for 7 weeks, with over 41,000 m3 of water injected. Further analysis indicated a shallow casing leak and an unstable formation in the open hole. The well was repaired with a shallow casing tieback and perforated liner in the open hole and re-stimulated in 2014. The second stimulation started September 23rd, 2014 and continued for 3 weeks with over 9,500 m3 of water injected. The well was treated with several batches of newly tested TZIM diverter materials and a newly designed Diverter Injection Vessel Assembly (DIVA), which was the main modification to the original injection system design used in 2012. A second round of stimulation that included two perforation shots and additional batches of TZIM was conducted on November 11th, 2014 for 9 days with an additional 4,000 m3 of water injected. The stimulations resulted in a 3-4 fold increase in injectivity, and PTS data indicates partial blocking and creation of flow zones near the bottom of the well.

  12. Reactive multiphase flow at the pore-scale: the melting of a crystalline framework during the injection of buoyant hot volatiles

    NASA Astrophysics Data System (ADS)

    Andrea, P.; Huber, C.; Bachmann, O.; Chopard, B.

    2010-12-01

    Multiphase reactive flows occur naturally in various environments in the shallow subsurface, e.g. CO2 injections in saturated reservoirs, exsolved methane flux in shallow sediments and H20-CO2 volatiles in magmatic systems. Because of their multiphase nature together with the nonlinear feedbacks between reactions (dissolution/melting or precipitation) and the flow field at the pore-scale, the study of these dynamical processes remains a great challenge. In this study we focus on the injection of buoyant hot volatiles exsolved from a magmatic intrusion underplating a crystal-rich magma (porous medium). We use some simple theoretical models and a pore-scale multiphase reactive lattice Boltzmann model to investigate how the heat carried by the volatile phase affects the evolution of the porous medium spatially and temporally. We find that when the reaction rate is relatively slow and when the injection rate of volatiles is large (high injection Capillary number), the dissolution of the porous medium can be described by a local Peclet number (ratio of advective to diffusive flux of heat/reactant in the main gas channel). When the injection rate of volatile is reduced, or when the reaction rate is large, the dynamics transition to more complex regimes, where subvertical gas channels are no longer stable and can break into disconnected gas slugs. For the case of the injection of hot volatiles in crystal-rich magmatic systems, we find that the excess enthalpy advected by buoyant volatiles penetrates the porous medium over distances ~r Pe, where r is the average radius of the volatile channel (~pore size). The transport of heat by buoyant gases through a crystal mush is therefore in most cases limited to distances < meters. Our results also suggest that buoyant volatiles can carry chemical species (Li,F, Cl) far into a mush as their corresponding local Peclet number is several orders of magnitude greater than that for heat, owing to their low diffusion coefficients.

  13. High-density optical disk readout using a blue laser diode and a transparent plastic substrate with 0.3-mm thickness

    NASA Astrophysics Data System (ADS)

    Park, Kyung-Chan; Lee, TaekSoo; Kim, Hyung-Nam; Jeong, SeongYun; Ahn, Seong-Keun; Kim, Jin-Yong; Lee, Jun-Seok; Kim, Ji-Byung; Lee, SeongWon; Lee, Dong C.; Asai, Ikuo

    2000-09-01

    We prepared and tested a disc that has a transparent plastic substrate of 0.3 mm thickness to confirm the readout capability using a blue laser diode. And the test results of injection molding for the plastic substrate of 0.3 mm thickness are shown.

  14. A near atomic structure of the active human apoptosome

    PubMed Central

    Cheng, Tat Cheung; Hong, Chuan; Akey, Ildikó V; Yuan, Shujun; Akey, Christopher W

    2016-01-01

    In response to cell death signals, an active apoptosome is assembled from Apaf-1 and procaspase-9 (pc-9). Here we report a near atomic structure of the active human apoptosome determined by cryo-electron microscopy. The resulting model gives insights into cytochrome c binding, nucleotide exchange and conformational changes that drive assembly. During activation an acentric disk is formed on the central hub of the apoptosome. This disk contains four Apaf-1/pc-9 CARD pairs arranged in a shallow spiral with the fourth pc-9 CARD at lower occupancy. On average, Apaf-1 CARDs recruit 3 to 5 pc-9 molecules to the apoptosome and one catalytic domain may be parked on the hub, when an odd number of zymogens are bound. This suggests a stoichiometry of one or at most, two pc-9 dimers per active apoptosome. Thus, our structure provides a molecular framework to understand the role of the apoptosome in programmed cell death and disease. DOI: http://dx.doi.org/10.7554/eLife.17755.001 PMID:27697150

  15. Multitechnique testing of the viscous decretion disk model. I. The stable and tenuous disk of the late-type Be star β CMi

    NASA Astrophysics Data System (ADS)

    Klement, R.; Carciofi, A. C.; Rivinius, Th.; Panoglou, D.; Vieira, R. G.; Bjorkman, J. E.; Štefl, S.; Tycner, C.; Faes, D. M.; Korčáková, D.; Müller, A.; Zavala, R. T.; Curé, M.

    2015-12-01

    Context. The viscous decretion disk (VDD) model is able to explain most of the currently observable properties of the circumstellar disks of Be stars. However, more stringent tests, focusing on reproducing multitechnique observations of individual targets via physical modeling, are needed to study the predictions of the VDD model under specific circumstances. In the case of nearby, bright Be star β CMi, these circumstances are a very stable low-density disk and a late-type (B8Ve) central star. Aims: The aim is to test the VDD model thoroughly, exploiting the full diagnostic potential of individual types of observations, in particular, to constrain the poorly known structure of the outer disk if possible, and to test truncation effects caused by a possible binary companion using radio observations. Methods: We use the Monte Carlo radiative transfer code HDUST to produce model observables, which we compare with a very large set of multitechnique and multiwavelength observations that include ultraviolet and optical spectra, photometry covering the interval between optical and radio wavelengths, optical polarimetry, and optical and near-IR (spectro)interferometry. Results: A parametric VDD model with radial density exponent of n = 3.5, which is the canonical value for isothermal flaring disks, is found to explain observables typically formed in the inner disk, while observables originating in the more extended parts favor a shallower, n = 3.0, density falloff. Theoretical consequences of this finding are discussed and the outcomes are compared with the predictions of a fully self-consistent VDD model. Modeling of radio observations allowed for the first determination of the physical extent of a Be disk (35+10-5 stellar radii), which might be caused by a binary companion. Finally, polarization data allowed for an indirect measurement of the rotation rate of the star, which was found to be W ≳ 0.98, i.e., very close to critical. Based partly on observations from Ondřejov 2-m telescope, Czech Republic; partly on observations collected at the European Southern Observatory, Chile (Prop. No. 093.D-0571); as well as archival data from programs 072.D-0315, 082.D-0189, 084.C-0848, 085.C-0911, and 092.D-0311; partly on observations from APEX collected via CONICYT program C-092.F-9708A-2013, and partly on observations from CARMA collected via program c1100-2013a.Appendix A is available in electronic form at http://www.aanda.org

  16. Experimental investigation of turbine disk cavity aerodynamics and heat transfer

    NASA Technical Reports Server (NTRS)

    Daniels, W. A.; Johnson, B. V.

    1993-01-01

    An experimental investigation of turbine disk cavity aerodynamics and heat transfer was conducted to provide an experimental data base that can guide the aerodynamic and thermal design of turbine disks and blade attachments for flow conditions and geometries simulating those of the space shuttle main engine (SSME) turbopump drive turbines. Experiments were conducted to define the nature of the aerodynamics and heat transfer of the flow within the disk cavities and blade attachments of a large scale model simulating the SSME turbopump drive turbines. These experiments include flow between the main gas path and the disk cavities, flow within the disk cavities, and leakage flows through the blade attachments and labyrinth seals. Air was used to simulate the combustion products in the gas path. Air and carbon dioxide were used to simulate the coolants injected at three locations in the disk cavities. Trace amounts of carbon dioxide were used to determine the source of the gas at selected locations on the rotors, the cavity walls, and the interstage seal. The measurements on the rotor and stationary walls in the forward and aft cavities showed that the coolant effectiveness was 90 percent or greater when the coolant flow rate was greater than the local free disk entrainment flow rate and when room temperature air was used as both coolant and gas path fluid. When a coolant-to-gas-path density ratio of 1.51 was used in the aft cavity, the coolant effectiveness on the rotor was also 90 percent or greater at the aforementioned condition. However, the coolant concentration on the stationary wall was 60 to 80 percent at the aforementioned condition indicating a more rapid mixing of the coolant and flow through the rotor shank passages. This increased mixing rate was attributed to the destabilizing effects of the adverse density gradients.

  17. Influence of soil structure on contaminant leaching from injected slurry

    USDA-ARS?s Scientific Manuscript database

    Animal manure application to agricultural land provides beneficial organic matter and nutrients but can spread harmful contaminants to the environment. Contamination of fresh produce, surface water and shallow groundwater with the manure-borne pollutants can be a critical concern. Leaching and persi...

  18. E. coli transport through surface-connected biopores identified from smoke injection tests

    USDA-ARS?s Scientific Manuscript database

    Macropores are the primary mechanism by which fecal bacteria from surface-applied manure can be transported into subsurface drains or shallow groundwater bypassing the soil matrix. Limited research has been performed investigating fecal bacteria transport through specific macropores identified in th...

  19. Soil and nutrient retention in winter-flooded ricefields with implications for watershed management

    USGS Publications Warehouse

    Manley, S.W.; Kaminski, R.M.; Rodrigue, P.B.; Dewey, J.C.; Schoenholtz, S.H.; Gerard, P.D.; Reinecke, K.J.

    2009-01-01

    The ability of water resources to support aquatic life and human needs depends, in part, on reducing nonpoint source pollution amid contemporary agricultural practices. Winter retention of shallow water on rice and other agricultural fields is an accepted management practice for wildlife conservation; however, soil and water conservation benefits are not well documented. We evaluated the ability of four post-harvest ricefield treatment combinations (stubble-flooded, stubble-open, disked-flooded and disked-open) to abate nonpoint source exports into watersheds of the Mississippi Alluvial Valley. Total suspended solid exports were 1,121 kg ha-1 (1,000 lb ac-1) from disked-open fields where rice stubble was disked after harvest and fields were allowed to drain, compared with 35 kg ha-1 (31 lb ac-1) from stubble-flooded fields where stubble was left standing after harvest and fields captured rainfall from November 1 to March 1. Estimates of total suspended solid exports from ricefields based on Landsat imagery and USDA crop data are 0.43 and 0.40 Mg km-2 day-1 in the Big Sunflower and L'Anguille watersheds, respectively. Estimated reductions in total suspended solid exports from ricefields into the Big Sunflower and L'Anguille water-sheds range from 26% to 64% under hypothetical scenarios in which 65% to 100% of the rice production area is managed to capture winter rainfall. Winter ricefield management reduced nonpoint source export by decreasing concentrations of solids and nutrients in, and reducing runoff volume from, ricefields in the Mississippi Alluvial Valley.

  20. Magma differentiation in shallow sills controlled by compaction and surface tension: San Rafael desert, Utah

    NASA Astrophysics Data System (ADS)

    Diez, M.; Savov, I. P.; Connor, C.

    2010-12-01

    Veinlets, veins, sheet or layers of syenite are common structures found in alkaline basalt sills. The mechanism usually invoked to explain their formation are liquid immiscibility, multiple intrusion or crystal fractionation from primitive mafic melt. Syenite veins of few centimeters to sheets of up to 1-2 m thick are ubiquitous in remarkably well-exposed sills of the San Rafael subvolcanic field in the Colorado Plateau, Utah. In some of these exposures we have found an intriguing configuration in which the main body of the alkaline sill is underlain by a lower density sheet of syenite of ~ 1 m thick. The contact is flat and is not a chilled margin, therefore a multiple intrusion scenario with long intervals between injections can be disregarded. This implies that both layers were fluid at the time of magma emplacement. As the more felsic less dense syenite is at the bottom of the sill any mechanism governed exclusively by bouyancy would be problematic. In an attempt to shed light on this apparent riddle we propose the following geological scenario: The sill is built by continuous injections. Magma starts to cool and fractional crystallization operates at this stage to differentiate the alkaline magma into syenite. By the time ~60% of crystallization is attained the system can be described as two-phase flow consisting of pore-syenite melt in hot-creeping matrix. The forces acting to segregate melt into veins or sheets are the gravitational force and surface tension. When surface tension is stronger than the gravitational force, differences in average curvature or surface tension translates into pressure differences that drive melt flow from low to high porosity regions. If the last injections occur at the bottom of the sill a syenite layer may be formed. With the aid of dimensional analysis and two-phase numerical models that account for gravitational compaction and surface tension effects, we explore the conditions that allow for centimeter-scale veins to meter-scale sheets formation in shallow sills. After combining field observations, petrological studies and numerical models of shallow sills in the San Rafael subvolcanic field, we will report the conditions that control magma differentiation in shallow intraplate settings.

  1. Deteriorating water clarity in shallow waters: Evidence from long term MODIS and in-situ observations

    NASA Astrophysics Data System (ADS)

    Shi, Kun; Zhang, Yunlin; Zhu, Guangwei; Qin, Boqiang; Pan, Delu

    2018-06-01

    Water clarity (Secchi disk depth: SDD), as a proxy of water transparency, provides important information on the light availability to the water or lake ecosystem. Shallow lakes have been experienced dramatic environmental and climatic change. This study demonstrated using combination of long-term MODIS and in-situ measurements to track the dynamics of SDD with these environmental and climate changes in shallow water environments. We selected a typical turbid shallow Lake Taihu as our case study. Based on MODIS-Aqua data, an empirical model for estimating SDD was developed and validated. Subsequently, we employed the proposed model to derive the spatial and temporal SDD distribution patterns of Lake Taihu from 2003 to 2015. Combining MODIS-derived SDD time series of 2003-2015 and long-term in-situ SDD observations dated back to 1993, we elucidated SDD long-term variation trends and driving mechanism. Deteriorating water clarity from the long-term SDD observations indicated that Lake Taihu became more and more turbid and water quality was decreasing. Increasing in cyanobacterial bloom area, as a result of decreasing in wind speed and eutrophication, may partially be responsible for the decreasing trend. A predicted future decrease in the wind speed in Lake Taihu region could enhance the formation of cyanobacterial blooms and consequently lead to a further decrease in water clarity. This study suggested that coupling remote sensing monitoring and long-term in-situ observations could provide robust evidence and new insights to elucidate long-term dynamics in aquatic ecosystem evolution.

  2. The population of faint Jupiter family comets near the Earth

    NASA Astrophysics Data System (ADS)

    Fernández, Julio A.; Morbidelli, Alessandro

    2006-11-01

    We study the population of faint Jupiter family comets (JFCs) that approach the Earth (perihelion distances q<1.3 AU) by applying a debiasing technique to the observed sample. We found for the debiased cumulative luminosity function (CLF) of absolute total magnitudes H a bimodal distribution in which brighter comets ( H≲9) follow a linear relation with a steep slope α=0.65±0.14, while fainter comets follow a much shallower slope α=0.25±0.06 down to H˜18. The slope can be pushed up to α=0.35±0.09 if a second break in the H distribution to a much shallower slope is introduced at H˜16. We estimate a population of about 10 3 faint JFCs with q<1.3 AU and 10

  3. Downhole monitoring of biogenic gas production at the Maguelone shallow injection experimental site (Languedoc coastline, France).

    NASA Astrophysics Data System (ADS)

    Abdelghafour, H.; Brondolo, F.; Denchik, N.; Pezard, P. A.

    2014-12-01

    The controllability of CO2 geological storage can ensure the integrity of storage operations, requiring a precise monitoring of reservoir fluids and properties during injection and over time. In this context, deep saline aquifers offer a large capacity of storing CO2, but the accessibility to long term behavior studies remains limited until now. The Maguelone shallow experimental site located near Montpellier (Languedoc, France) provides such an opportunity for the understanding and accuracy of hydrogeophysical monitoring methods. The geology, petrophysic and hydrology of this site have been studied in details in previous studies, revealing the presence of a thin saline aquifer at 13-16 m depth surrounded by clay-rich materials. The site as a whole provides a natural laboratory to study CO2 injection at field scale, shallow depth, hence reasonable costs. The monitoring setup is composed of a series of hydrogeophysical and geochemical methods offering measurements of fluid pore pressure, electrical resistivity, acoustic velocities as well as pH and fluid properties and chemistry. To assess the response of the reservoir during CO2 injection, all measurements need to be compared to a representative baseline. Long after a series of gas injection experiments at Maguelone, fluctuations overtime of reservoir fluids and properties (such as pore fluid pH) were discovered at steady state, demonstrating the natural variability of the site in terms of biogenic gas (H2S, CH4, CO2) production and transfer. For this, a new resistivity baseline had to be constructed for all observatories. From this, the downhole gas saturation was determined versus depth and time from time-lapse resistivity logs analysed on the basis of other logs and laboratory measurements. The Waxman and Smits model (1968) for electrical properties of sand-clay formations was modified to estimate the gas saturation in 4D, to account for surface conductivity and pore connectivity. High frequency logging and monitoring of electrical properties both, with several measurements per hour and a dm-scale resolution, provide and insight into subsurface dynamics in terms of gas flow and storage, with biogenic gas saturations ranging from 0.1 to 5.0 %. This natural contribution has to be taken into account for upcoming experiments.

  4. Strong electroluminescence from direct band and defects in Ge n+/p shallow junctions at room temperature

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lin, Guangyang; Li, Cheng, E-mail: lich@xmu.edu.cn; Chen, Chaowen

    2016-05-09

    Strong room temperature electroluminescence with two emission peaks at around 0.786 eV and 0.747 eV from Ge n+/p shallow junctions was reported. The peak at around 0.786 eV comes from direct band luminescence (DBL) in n + Ge regions, while the peak fixing at 0.747 eV is resulted from defects induced by ion implantation. Heavy n-type doping in Ge renders realization of strong defect-related luminescence (DRL) feasible. The peak intensity ratio of DRL/DBL decreases with increase of injection current since more electrons are filled in Γ valley. Above all, the Ge n+/p shallow junction is fully compatible with the source and drain in Gemore » metal-oxide-semiconductor field effect transistors.« less

  5. Wind-driven angular momentum loss in binary systems. I - Ballistic case

    NASA Technical Reports Server (NTRS)

    Brookshaw, Leigh; Tavani, Marco

    1993-01-01

    We study numerically the average loss of specific angular momentum from binary systems due to mass outflow from one of the two stars for a variety of initial injection geometries and wind velocities. We present results of ballistic calculations in three dimensions for initial mass ratios q of the mass-losing star to primary star in the range q between 10 exp -5 and 10. We consider injection surfaces close to the Roche lobe equipotential surface of the mass-losing star, and also cases with the mass-losing star underfilling its Roche lobe. We obtain that the orbital period is expected to have a negative time derivative for wind-driven secular evolution of binaries with q greater than about 3 and with the mass-losing star near filling its Roche lobe. We also study the effect of the presence of an absorbing surface approximating an accretion disk on the average final value of the specific angular momentum loss. We find that the effect of an accretion disk is to increase the wind-driven angular momentum loss. Our results are relevant for evolutionary models of high-mass binaries and low-mass X-ray binaries.

  6. Application of preparative disk gel electrophoresis for antigen purification from inclusion bodies.

    PubMed

    Okegawa, Yuki; Koshino, Masanori; Okushima, Teruya; Motohashi, Ken

    2016-02-01

    Specific antibodies are a reliable tool to examine protein expression patterns and to determine the protein localizations within cells. Generally, recombinant proteins are used as antigens for specific antibody production. However, recombinant proteins from mammals and plants are often overexpressed as insoluble inclusion bodies in Escherichia coli. Solubilization of these inclusion bodies is desirable because soluble antigens are more suitable for injection into animals to be immunized. Furthermore, highly purified proteins are also required for specific antibody production. Plastidic acetyl-CoA carboxylase (ACCase: EC 6.4.1.2) from Arabidopsis thaliana, which catalyzes the formation of malonyl-CoA from acetyl-CoA in chloroplasts, formed inclusion bodies when the recombinant protein was overexpressed in E. coli. To obtain the purified protein to use as an antigen, we applied preparative disk gel electrophoresis for protein purification from inclusion bodies. This method is suitable for antigen preparation from inclusion bodies because the purified protein is recovered as a soluble fraction in electrode running buffer containing 0.1% sodium dodecyl sulfate that can be directly injected into immune animals, and it can be used for large-scale antigen preparation (several tens of milligrams). Copyright © 2015 Elsevier Inc. All rights reserved.

  7. Maturity of nearby faults influences seismic hazard from hydraulic fracturing.

    PubMed

    Kozłowska, Maria; Brudzinski, Michael R; Friberg, Paul; Skoumal, Robert J; Baxter, Nicholas D; Currie, Brian S

    2018-02-20

    Understanding the causes of human-induced earthquakes is paramount to reducing societal risk. We investigated five cases of seismicity associated with hydraulic fracturing (HF) in Ohio since 2013 that, because of their isolation from other injection activities, provide an ideal setting for studying the relations between high-pressure injection and earthquakes. Our analysis revealed two distinct groups: ( i ) deeper earthquakes in the Precambrian basement, with larger magnitudes (M > 2), b-values < 1, and many post-shut-in earthquakes, versus ( ii ) shallower earthquakes in Paleozoic rocks ∼400 m below HF, with smaller magnitudes (M < 1), b-values > 1.5, and few post-shut-in earthquakes. Based on geologic history, laboratory experiments, and fault modeling, we interpret the deep seismicity as slip on more mature faults in older crystalline rocks and the shallow seismicity as slip on immature faults in younger sedimentary rocks. This suggests that HF inducing deeper seismicity may pose higher seismic hazards. Wells inducing deeper seismicity produced more water than wells with shallow seismicity, indicating more extensive hydrologic connections outside the target formation, consistent with pore pressure diffusion influencing seismicity. However, for both groups, the 2 to 3 h between onset of HF and seismicity is too short for typical fluid pressure diffusion rates across distances of ∼1 km and argues for poroelastic stress transfer also having a primary influence on seismicity.

  8. Maturity of nearby faults influences seismic hazard from hydraulic fracturing

    NASA Astrophysics Data System (ADS)

    Kozłowska, Maria; Brudzinski, Michael R.; Friberg, Paul; Skoumal, Robert J.; Baxter, Nicholas D.; Currie, Brian S.

    2018-02-01

    Understanding the causes of human-induced earthquakes is paramount to reducing societal risk. We investigated five cases of seismicity associated with hydraulic fracturing (HF) in Ohio since 2013 that, because of their isolation from other injection activities, provide an ideal setting for studying the relations between high-pressure injection and earthquakes. Our analysis revealed two distinct groups: (i) deeper earthquakes in the Precambrian basement, with larger magnitudes (M > 2), b-values < 1, and many post–shut-in earthquakes, versus (ii) shallower earthquakes in Paleozoic rocks ˜400 m below HF, with smaller magnitudes (M < 1), b-values > 1.5, and few post–shut-in earthquakes. Based on geologic history, laboratory experiments, and fault modeling, we interpret the deep seismicity as slip on more mature faults in older crystalline rocks and the shallow seismicity as slip on immature faults in younger sedimentary rocks. This suggests that HF inducing deeper seismicity may pose higher seismic hazards. Wells inducing deeper seismicity produced more water than wells with shallow seismicity, indicating more extensive hydrologic connections outside the target formation, consistent with pore pressure diffusion influencing seismicity. However, for both groups, the 2 to 3 h between onset of HF and seismicity is too short for typical fluid pressure diffusion rates across distances of ˜1 km and argues for poroelastic stress transfer also having a primary influence on seismicity.

  9. Long-term effects of conventional and reduced tillage systems on soil condition and yield of maize

    NASA Astrophysics Data System (ADS)

    Rátonyi, Tamás; Széles, Adrienn; Harsányi, Endre

    2015-04-01

    As a consequence of operations which neglect soil condition and consist of frequent soil disturbance, conventional tillage (primary tillage with autumn ploughing) results in the degradation and compaction of soil structure, as well as the reduction of organic matter. These unfavourable processes pose an increasing economic and environmental protection problem today. The unfavourable physical condition of soils on which conventional tillage was performed indicate the need for preserving methods and tools. The examinations were performed in the multifactorial long-term tillage experiment established at the Látókép experiment site of DE MÉK. The experiment site is located in the Hajdúság loess ridge (Hungary) and its soil is loess-based calcareous chernozem with deep humus layer. The physical soil type is mid-heavy adobe. The long-term experiment has a split-split plot design. The main plots are different tillage methods (autumn ploughing, spring shallow tillage) without replication. In this paper, the effect of conventional and reduced (shallow) tillage methods on soil conditions and maize yield was examined. A manual penetrometer was used to determine the physical condition and compactedness of the soil. The soil moisture content was determined with deep probe measurement (based on capacitive method). In addition to soil analyses, the yield per hectare of different plots was also observed. In reduced tillage, one compacted layer is shown in the soil resistance profile determined with a penetrometer, while there are two compacted layers in autumn ploughing. The highest resistance was measured in the case of primary tillage performed at the same depth for several years in the compacted (pan disk) layer developed under the developed layer in both treatments. The unfavourable impact of spring shallow primary tillage on physical soil conditions is shown by the fact that the compaction of the pan disk exceed the critical limit value of 3 MPa. Over the years, further deterioration of physical conditions were observed below the regularly cultivated layer. In shallow tillage, soil contained more moisture (at 40-50 cm deep and below) than in the ploughed treatment. There are multiple reasons for this phenomenon. This tillage method is moisture preserving as the depth of disturbance (15 cm) is lower than in ploughed treatments (25-30 cm). Soil surface is covered by stem residues after sowing, which may reduce the extent of evaporation. The soil surface CO2 emission was determined based on primary tillage depth, intensity and the period which passed since primary tillage. Spring shallow primary tillage resulted in higher CO2 emission than conventional tillage. The average maize yield was significantly higher in the autumn ploughing treatment (6,6-13,9 t/ha) in the first half (7 years) of the examined period (2000-2014). Higher average yields were observed in two years in the spring shallow tillage treatment and no significant yield difference was observed between tillage treatments in other examined years. Reduced (shallow) tillage increases the risk of near-surface soil compaction and the biological activity of the soil, while it reduces the moisture loss of the soil. Reducing tillage intensity does not necessarily reduce the average yield of the produced crop (maize).

  10. Automated solid-phase extraction of phenolic acids using layered double hydroxide-alumina-polymer disks.

    PubMed

    Ghani, Milad; Palomino Cabello, Carlos; Saraji, Mohammad; Manuel Estela, Jose; Cerdà, Víctor; Turnes Palomino, Gemma; Maya, Fernando

    2018-01-26

    The application of layered double hydroxide-Al 2 O 3 -polymer mixed-matrix disks for solid-phase extraction is reported for the first time. Al 2 O 3 is embedded in a polymer matrix followed by an in situ metal-exchange process to obtain a layered double hydroxide-Al 2 O 3 -polymer mixed-matrix disk with excellent flow-through properties. The extraction performance of the prepared disks is evaluated as a proof of concept for the automated extraction using sequential injection analysis of organic acids (p-hydroxybenzoic acid, 3,4-dihydroxybenzoic acid, gallic acid) following an anion-exchange mechanism. After the solid-phase extraction, phenolic acids were quantified by reversed-phase high-performance liquid chromatography with diode-array detection using a core-shell silica-C18 stationary phase and isocratic elution (acetonitrile/0.5% acetic acid in pure water, 5:95, v/v). High sensitivity and reproducibility were obtained with limits of detection in the range of 0.12-0.25 μg/L (sample volume, 4 mL), and relative standard deviations between 2.9 and 3.4% (10 μg/L, n = 6). Enrichment factors of 34-39 were obtained. Layered double hydroxide-Al 2 O 3 -polymer mixed-matrix disks had an average lifetime of 50 extractions. Analyte recoveries ranged from 93 to 96% for grape juice and nonalcoholic beer samples. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Kiloparsec-scale Simulations of Star Formation in Disk Galaxies. IV. Regulation of Galactic Star Formation Rates by Stellar Feedback

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Butler, Michael J.; Tan, Jonathan C.; Teyssier, Romain

    2017-06-01

    Star formation from the interstellar medium of galactic disks is a basic process controlling the evolution of galaxies. Understanding the star formation rate (SFR) in a local patch of a disk with a given gas mass is thus an important challenge for theoretical models. Here we simulate a kiloparsec region of a disk, following the evolution of self-gravitating molecular clouds down to subparsec scales, as they form stars that then inject feedback energy by dissociating and ionizing UV photons and supernova explosions. We assess the relative importance of each feedback mechanism. We find that H{sub 2}-dissociating feedback results in themore » largest absolute reduction in star formation compared to the run with no feedback. Subsequently adding photoionization feedback produces a more modest reduction. Our fiducial models that combine all three feedback mechanisms yield, without fine-tuning, SFRs that are in excellent agreement with observations, with H{sub 2}-dissociating photons playing a crucial role. Models that only include supernova feedback—a common method in galaxy evolution simulations—settle to similar SFRs, but with very different temperatures and chemical states of the gas, and with very different spatial distributions of young stars.« less

  12. Geochemical and hydrological characterization of shallow aquifer water following a nearby deep CO2 injection in Wellington, Kansas

    NASA Astrophysics Data System (ADS)

    Datta, S.; Andree, I.; Johannesson, K. H.; Kempton, P. D.; Barker, R.; Birdie, T. R.; Watney, W. L.

    2017-12-01

    Salinization or CO2 leakage from local Enhanced Oil Recovery (EOR) projects has become a possible source for contamination and water quality degradation for local irrigation or potable well users in Wellington, Kansas. Shallow domestic and monitoring wells, as well as surface water samples collected from the site, were analyzed for a wide array of geochemical proxies including major and trace ions, rare earth elements (REE), stable isotopes, dissolved organic carbon and dissolved hydrocarbons; these analytes were employed as geotracers to understand the extent of hydrologic continuity throughout the Paleozoic stratigraphic section. Previous research by Barker et al. (2012) laid the foundation through a mineralogical and geochemical investigation of the Arbuckle injection zone and assessment of overlying caprock integrity, which led to the conclusion that the 4,910-5,050' interval will safely sequester CO2 with high confidence of a low leakage potential. EOR operations using CO2 as the injectant into the Mississippian 3,677-3,706' interval was initiated in Jan 2016. Two groundwater sampling events were conducted to investigate any temporal changes in the surface and subsurface waters. Dissolved (Ca+Mg)/Na and Na/Cl mass ratio values of two domestic wells and one monitoring well ranged from 0.67 to 2.01 and 0.19 to 0.39, respectively, whereas a nearby Mississippian oil well had values of 0.20 and 0.62, respectively . δ18O and δ2H ranged from -4.74 to -5.41 ‰VSMOW and -31.4 to -34.3 ‰VSMOW, respectively, among the domestic wells and shallowest monitoring well. Conservative ion relationships in drill-stem-test waters from Arbuckle and Mississippian injection zones displayed significant variability, indicating limited vertical hydrologic communication. Total aquifer connectivity is inconclusive based on the provided data; however, a paleoterrace and incised valley within the study site are thought to be connected through a Mississippian salt plume migration passing through the major domestic wells and a well at 200 ft depth. REE patterns of the shallow monitoring wells indicate a different water source than the domestic wells in the study area.

  13. Design, operation, and monitoring capability of an experimental artificial-recharge facility at East Meadow, Long Island, New York

    USGS Publications Warehouse

    Schneider, B.J.; Oaksford, E.T.

    1986-01-01

    Artificial recharge with tertiary-treated sewage is being tested at East Meadow to evaluate the physical and chemical effects on the groundwater system. The recharge facility contains 11 recharge basins and 5 injection wells and is designed to accept 4 million gallons of reclaimed water per day. Of the 11 basins, 7 are recently constructed and will accept 0.5 million gallons per day each. An observation manhole (12-foot inside diameter and extending 16 feet below the basin floor) was installed in each of two basins to enable monitoring and sampling of percolating reclaimed water in the unsaturated zone with instruments such as tensiometers, gravity lysimeters, thermocouples, and soil-gas samplers. Five shallow (100-feet deep) injection wells will each return 0.5 million gallons per day to the groundwater reservoir. Three types of injection-well design are being tested; the differences are in the type of gravel pack around the well screen. When clogging at the well screen occurs, redevelopment should restore the injection capability. Flow to the basins and wells is regulated by automatic flow controllers in which a desired flow rate is maintained by electronic sensors. Basins can also operate in a constant-head mode in which a specified head is maintained in the basin automatically. An observation-well network consisting of 2-inch- and 6-inch-diameter wells was installed within a 1-square-mile area at the recharge facility to monitor aquifer response and recharge. During 48 days of operation within a 17-week period (October 1982 through January 1983), 88.5 million gallons of reclaimed water was applied to the shallow water table aquifer through the recharge basins. A 4.29-foot-high groundwater mound developed during a 14-day test; some water level increase associated with the mound was detected 1,000 ft from the basins. Preliminary water quality data from wells affected by reclaimed water show evidence that mechanisms of mixing, dilution, and dispersion are affecting chemical concentrations of certain constituents, such as nitrogen and trichloroethane, in the shallow aquifer beneath the recharge area. (USGS)

  14. Lamina cribrosa position and Bruch's membrane opening differences between anterior ischemic optic neuropathy and open-angle glaucoma.

    PubMed

    Rebolleda, Gema; Pérez-Sarriegui, Ane; Díez-Álvarez, Laura; De Juan, Victoria; Muñoz-Negrete, Francisco J

    2018-06-01

    To compare the optic nerve head morphology among primary open-angle glaucoma, non-arteritic anterior ischemic optic neuropathy eyes, their fellow healthy eyes and control eyes, using spectral-domain optical coherence tomography with enhanced depth imaging. Observational cross-sectional study including 88 eyes of 68 patients. In this study, 23 non-arteritic anterior ischemic optic neuropathy eyes, 17 fellow unaffected eyes, 25 primary open-angle glaucoma eyes, and 23 age-matched control eyes were included. Peripapillary retinal nerve fiber layer thickness and optic disk area were evaluated. Bruch's membrane opening diameter, optic cup depth, anterior lamina cribrosa depth, and prelaminar tissue thickness were assessed. Non-arteritic anterior ischemic optic neuropathy and primary open-angle glaucoma eyes had similar visual field mean deviation and peripapillary retinal nerve fiber layer thickness (P = 0.6 and P = 0.56, respectively). Bruch's membrane opening diameter was significantly larger in primary open-angle glaucoma eyes than in control eyes (P = 0.02). Lamina cribrosa and disk cup were deeper in eyes with primary open-angle glaucoma than both control and non-arteritic anterior ischemic optic neuropathy eyes (P < 0.001). Prelaminar tissue thickness was significantly thinner in primary open-angle glaucoma eyes than in non-arteritic anterior ischemic optic neuropathy eyes (P < 0.001). Lamina cribrosa was shallower in both non-arteritic anterior ischemic optic neuropathy and unaffected fellow eyes compared to healthy eyes (P < 0.001 and P = 0.04, respectively). No differences were found in the optic disk area. A forward lamina cribrosa placement and not a smaller disk could be involved in the pathogenesis of non-arteritic anterior ischemic optic neuropathy. A significantly larger Bruch's membrane opening diameter was found in primary open-angle glaucoma eyes compared with control eyes. This issue has clinical implications because Bruch's membrane opening has been considered a stable reference for disk-related measures.

  15. Development of an Impinging-jet Fuel-injection Valve Nozzle

    NASA Technical Reports Server (NTRS)

    Spanogle, J A; Hemmeter, G H

    1931-01-01

    During an investigation to determine the possibilities and limitations of a two-stroke-cycle engine and ignition, it was necessary to develop a fuel injection valve nozzle to produce a disk-shaped, well dispersed spray. Preliminary tests showed that two smooth jets impinging upon each other at an angle of 74 degrees gave a spray with the desired characteristics. Nozzles were built on this basis and, when used in fuel-injection valves, produced a spray that fulfilled the original requirements. The spray is so well dispersed that it can be carried along with an air stream of comparatively low velocity or entrained with the fuel jet from a round-hole orifice. The characteristics of the spray from an impinging-jet nozzle limits its application to situations where wide dispersion is required by the conditions in the engine cylinder and the combustion chamber.

  16. Pattern Formation in Diffusion Flames Embedded in von Karman Swirling Flows

    NASA Technical Reports Server (NTRS)

    Nayagam, Vedha

    2006-01-01

    Pattern formation is observed in nature in many so-called excitable systems that can support wave propagation. It is well-known in the field of combustion that premixed flames can exhibit patterns through differential diffusion mechanism between heat and mass. However, in the case of diffusion flames where fuel and oxidizer are separated initially there have been only a few observations of pattern formation. It is generally perceived that since diffusion flames do not possess an inherent propagation speed they are static and do not form patterns. But in diffusion flames close to their extinction local quenching can occur and produce flame edges which can propagate along stoichiometric surfaces. Recently, we reported experimental observations of rotating spiral flame edges during near-limit combustion of a downward-facing polymethylmethacrylate disk spinning in quiescent air. These spiral flames, though short-lived, exhibited many similarities to patterns commonly found in quiescent excitable media including compound tip meandering motion. Flame disks that grow or shrink with time depending on the rotational speed and in-depth heat loss history of the fuel disk have also been reported. One of the limitations of studying flame patterns with solid fuels is that steady-state conditions cannot be achieved in air at normal atmospheric pressure for experimentally reasonable fuel thickness. As a means to reproduce the flame patterns observed earlier with solid fuels, but under steady-state conditions, we have designed and built a rotating, porous-disk burner through which gaseous fuels can be injected and burned as diffusion flames. The rotating porous disk generates a flow of air toward the disk by a viscous pumping action, generating what is called the von K rm n boundary layer which is of constant thickness over the entire burner disk. In this note we present a map of the various dynamic flame patterns observed during the combustion of methane in air as a function of fuel flow rate and the burner rotational speed.

  17. Poynting Robertson Battery and the Chiral Magnetic Fields of AGN Jets

    NASA Technical Reports Server (NTRS)

    Kazanas, Demosthenes

    2010-01-01

    We propose that the magnetic fields in the accretion disks of active galactic nuclei (AGNs) are generated by azimuthal electric currents due to the difference between the plasma electron and ion velocities that arises when the electrons are retarded by interactions with the AGN photons (the Poynting Robertson battery). This process provides a unique relation between the polarity of the poloidal B field to the angular velocity Omega of the accretion disk (B is parallel to Omega), a relation absent in the more popular dynamo B-field generation. This then leads to a unique direction for the toroidal B field induced by disk rotation. Observations of the toroidal fields of 29 AGN jets revealed by parsec-scale Faraday rotation measurements show a clear asymmetry that is consistent with this model, with the probability that this asymmetry comes about by chance being approx.0.06 %. This lends support to the hypothesis that the universe is seeded by B fields that are generated in AGNs via this mechanism and subsequently injected into intergalactic space by the jet outflows.

  18. Turbulent AGN tori .

    NASA Astrophysics Data System (ADS)

    Schartmann, M.; Meisenheimer, K.; Klahr, H.; Camenzind, M.; Wolf, S.; Henning, Th.

    Recently, the MID-infrared Interferometric instrument (MIDI) at the VLTI has shown that dust tori in the two nearby Seyfert galaxies NGC 1068 and the Circinus galaxy are geometrically thick and can be well described by a thin, warm central disk, surrounded by a colder and fluffy torus component. By carrying out hydrodynamical simulations with the help of the TRAMP code \\citep{schartmann_Klahr_99}, we follow the evolution of a young nuclear star cluster in terms of discrete mass-loss and energy injection from stellar processes. This naturally leads to a filamentary large scale torus component, where cold gas is able to flow radially inwards. The filaments open out into a dense and very turbulent disk structure. In a post-processing step, we calculate observable quantities like spectral energy distributions or images with the help of the 3D radiative transfer code MC3D \\citep{schartmann_Wolf_03}. Good agreement is found in comparisons with data due to the existence of almost dust-free lines of sight through the large scale component and the large column densities caused by the dense disk.

  19. Brine Flow Up a Borehole Caused by Pressure Perturbation From CO2 Storage: Static and Dynamic Evaluations

    EPA Science Inventory

    Industrial-scale storage of CO2 in saline sedimentary basins will cause zones of elevated pressure, larger than the CO2 plume itself. If permeable conduits (e.g., leaking wells) exist between the injection reservoir and overlying shallow aquifers, brine could be pushed upwards al...

  20. Disposal of saltwater during well construction--Problems and solutions

    USGS Publications Warehouse

    Pitt, William A.; Meyer, Frederick W.; Hull, John E.

    1977-01-01

    The recent interest in the disposal of treated sewage effluent by deep-well injection into salt-water-filled aquifers has increased the need for proper disposal of salt water as more wells are drilled and tested each year.The effects on an unconfined aquifer of the improper disposal of salt water associated with the construction of three wells in southeastern Florida emphasize this need. In two of the wells provisions to prevent and detect salt-water contamination of the unconfined aquifer were practically nonexistent, and in one well extensive provisions were made. Of the three drilling sites the one with proper provision for detection presented no serious problem, as the ground water contaminated by the salt water was easily located and removed. The provisions consisted of drilling a brine-injection well to dispose of salt water discharged in drilling and testing operations, using a closed drilling circulation system to reduce spillage, installing shallow observation wells to map the extent and depth of any salt-water contamination of the shallow aquifer, and installing a dewatering system to remove contaminated ground water.

  1. Time-Lapse Electrical Resistivity Investigations for Imaging the Grouting Injection in Shallow Subsurface Cavities

    PubMed Central

    Farooq, Muhammad; Kim, Jung Ho; Song, Young Soo; Amjad Sabir, Mohammad; Umar, Muhammad; Tariq, Mohammad; Muhammad, Said

    2014-01-01

    The highway of Yongweol-ri, Muan-gun, south-western part of the South Korean Peninsula, is underlain by the abandoned of subsurface cavities, which were discovered in 2005. These cavities lie at shallow depths with the range of 5∼15 meters below the ground surface. Numerous subsidence events have repeatedly occurred in the past few years, damaging infrastructure and highway. As a result of continuing subsidence issues, the Korean Institute of Geosciences and Mineral Resources (KIGAM) was requested by local administration to resolve the issue. The KIGAM used geophysical methods to delineate subsurface cavities and improve more refined understanding of the cavities network in the study area. Cement based grouting has been widely employed in the construction industry to reinforce subsurface ground. In this research work, time-lapse electrical resistivity surveys were accomplished to monitor the grouting injection in the subsurface cavities beneath the highway, which have provided a quasi-real-time monitoring for modifying the subsurface cavities related to ground reinforcement, which would be difficult with direct methods. The results obtained from time-lapse electrical resistivity technique have satisfactory imaged the grouting injection experiment in the subsurface cavities beneath the highway. Furthermore, the borehole camera confirmed the presence of grouting material in the subsurface cavities, and hence this procedure increases the mechanical resistance of subsurface cavities below the highway. PMID:24578621

  2. Shaking intensity from injection-induced versus tectonic earthquakes in the central-eastern United States

    USGS Publications Warehouse

    Hough, Susan E.

    2015-01-01

    Although instrumental recordings of earthquakes in the central and eastern United States (CEUS) remain sparse, the U. S. Geological Survey's “Did you feel it?” (DYFI) system now provides excellent characterization of shaking intensities caused by induced and tectonic earthquakes. Seventeen CEUS events are considered between 2013 and 2015. It is shown that for 15 events, observed intensities at epicentral distances greater than ≈ 10 km are lower than expected given a published intensity-prediction equation for the region. Using simple published relations among intensity, magnitude, and stress drop, the results suggest that 15 of the 17 events have low stress drop. For those 15 events, intensities within ≈ 10-km epicentral distance are closer to predicted values, which can be explained as a consequence of relatively shallow source depths. The results suggest that those 15 events, most of which occurred in areas where induced earthquakes have occurred previously, were likely induced. Although moderate injection-induced earthquakes in the central and eastern United States will be felt widely because of low regional attenuation, the damage from shallow earthquakes induced by injection will be more localized to event epicenters than shaking tectonic earthquakes, which tend to be somewhat deeper. Within approximately 10 km of the epicenter, intensities are generally commensurate with predicted levels expected for the event magnitude.

  3. Time-lapse electrical resistivity investigations for imaging the grouting injection in shallow subsurface cavities.

    PubMed

    Farooq, Muhammad; Park, Samgyu; Kim, Jung Ho; Song, Young Soo; Amjad Sabir, Mohammad; Umar, Muhammad; Tariq, Mohammad; Muhammad, Said

    2014-01-01

    The highway of Yongweol-ri, Muan-gun, south-western part of the South Korean Peninsula, is underlain by the abandoned of subsurface cavities, which were discovered in 2005. These cavities lie at shallow depths with the range of 5∼15 meters below the ground surface. Numerous subsidence events have repeatedly occurred in the past few years, damaging infrastructure and highway. As a result of continuing subsidence issues, the Korean Institute of Geosciences and Mineral Resources (KIGAM) was requested by local administration to resolve the issue. The KIGAM used geophysical methods to delineate subsurface cavities and improve more refined understanding of the cavities network in the study area. Cement based grouting has been widely employed in the construction industry to reinforce subsurface ground. In this research work, time-lapse electrical resistivity surveys were accomplished to monitor the grouting injection in the subsurface cavities beneath the highway, which have provided a quasi-real-time monitoring for modifying the subsurface cavities related to ground reinforcement, which would be difficult with direct methods. The results obtained from time-lapse electrical resistivity technique have satisfactory imaged the grouting injection experiment in the subsurface cavities beneath the highway. Furthermore, the borehole camera confirmed the presence of grouting material in the subsurface cavities, and hence this procedure increases the mechanical resistance of subsurface cavities below the highway.

  4. Numerical simulations with a FSI-calibrated actuator disk model of wind turbines operating in stratified ABLs

    NASA Astrophysics Data System (ADS)

    Gohari, S. M. Iman; Sarkar, Sutanu; Korobenko, Artem; Bazilevs, Yuri

    2017-11-01

    Numerical simulations of wind turbines operating under different regimes of stability are performed using LES. A reduced model, based on the generalized actuator disk model (ADM), is implemented to represent the wind turbines within the ABL. Data from the fluid-solid interaction (FSI) simulations of wind turbines have been used to calibrate and validate the reduced model. The computational cost of this method to include wind turbines is affordable and incurs an overhead as low as 1.45%. Using this reduced model, we study the coupling of unsteady turbulent flow with the wind turbine under different ABL conditions: (i) A neutral ABL with zero heat-flux and inversion layer at 350m, in which the incoming wind has the maximum mean shear between the heights of upper-tip and lower-tip; (2) A shallow ABL with surface cooling rate of -1 K/hr wherein the low level jet occurs at the wind turbine hub height. We will discuss how the differences in the unsteady flow between the two ABL regimes impact the wind turbine performance.

  5. Underground Injection Control, Hydraulic Fracturing, and Sources of Drinking Water in the Western United States

    NASA Astrophysics Data System (ADS)

    Jackson, R. B.; Kang, M.

    2016-12-01

    Oil and gas extraction is expanding in the United States, attributable to the success of high-volume hydraulic fracturing, and associated wastewater disposal is increasing as a result. The United States currently has approximately 180,000 Class II injection wells associated with the oil and gas industry, more than 50,000 of them in California. Hydraulic fracturing and underground injection often occur many thousands of feet belowground. Previously, however, we documented shallow hydraulic fracturing and other oil and gas activities across the western United States in particular, including California and Wyoming. In eight CA counties, for example, as many as 19% and 35% of oil/gas activities have occurred directly in freshwater zones and USDWs, respectively (Kang and Jackson 2016 PNAS). Here we expand this analysis to examine the underground injection control program and accompanying hydrogeologic variables found in California and elsewhere.

  6. Supernova feedback in numerical simulations of galaxy formation: separating physics from numerics

    NASA Astrophysics Data System (ADS)

    Smith, Matthew C.; Sijacki, Debora; Shen, Sijing

    2018-04-01

    While feedback from massive stars exploding as supernovae (SNe) is thought to be one of the key ingredients regulating galaxy formation, theoretically it is still unclear how the available energy couples to the interstellar medium and how galactic scale outflows are launched. We present a novel implementation of six sub-grid SN feedback schemes in the moving-mesh code AREPO, including injections of thermal and/or kinetic energy, two parametrizations of delayed cooling feedback and a `mechanical' feedback scheme that injects the correct amount of momentum depending on the relevant scale of the SN remnant resolved. All schemes make use of individually time-resolved SN events. Adopting isolated disk galaxy setups at different resolutions, with the highest resolution runs reasonably resolving the Sedov-Taylor phase of the SN, we aim to find a physically motivated scheme with as few tunable parameters as possible. As expected, simple injections of energy overcool at all but the highest resolution. Our delayed cooling schemes result in overstrong feedback, destroying the disk. The mechanical feedback scheme is efficient at suppressing star formation, agrees well with the Kennicutt-Schmidt relation and leads to converged star formation rates and galaxy morphologies with increasing resolution without fine tuning any parameters. However, we find it difficult to produce outflows with high enough mass loading factors at all but the highest resolution, indicating either that we have oversimplified the evolution of unresolved SN remnants, require other stellar feedback processes to be included, require a better star formation prescription or most likely some combination of these issues.

  7. [Efficacy of transforaminal lumbar epidural steroid injections in patients with lumbar radiculopathy].

    PubMed

    Çetin, Mehmet Fatih; Karaman, Haktan; Ölmez Kavak, Gönül; Tüfek, Adnan; Baysal Yildirim, Zeynep

    2012-01-01

    This study looks into the efficacy and safety of the transforaminal lumbar epidural steroid injection (TLESI) applied to patients with radiculopathy due to lumbar disk herniation. The patients' files which were applied TLESI, were retrospectively scanned. Patients who did not respond to one-month conservative treatment and who were detected to have bulging or protruding lumbar disk herniation as a result of imaging methods were included in the study. All applications were performed with C-arm fluoroscopy under local anesthesia by outpatient method. In all cases, a mix of 80 mg triamsinolone and 0.25% bupivacaine, was transforaminally injected to the anterior epidural area. Initial VAS pain scores were compared with the values of the 1, 3 and 6th months after the application. Patient satisfaction was determined through scoring. Furthermore, early and late term complications were collected for evaluation. A total of 222 patients were administered TLESI 460 times (average: 2.1, repeat interval: 1-6 times). The applications were carried out most frequently at the levels of L4-L5 and L5-S1. While the initial VAS score average was 8.2±0.7, after TLESI, it was 5.0±1.6, 4.8±1.5 and 5.1±1.5 in the 1, 3 and 6th months, respectively. 63.9% of the patients (n=142) defined the treatment as 'good and excellent'. No major complications were experienced and the overall minor complication rate was 11.1%. It was seen that TLESI was an efficient and safe method in the short and medium term.

  8. The structure and appearance of winds from supercritical accretion disks. II - Dynamical theory of supercritical winds

    NASA Technical Reports Server (NTRS)

    Meier, D. L.

    1982-01-01

    A general analytic theory is presented of winds driven by super-Eddington luminosities. The relevant parameters are the mass of the central object, the radius at which the luminosity and matter are injected, the ratio of the free-fall time to the heating time at this radius, and the total luminosity injected at the radius. Several different regimes of dynamical wind structure are identified, and the analytic expressions are shown to agree with the numerical results in Meier (1979) in the appropriate case. It is noted that, in its general form, the theory is the optically thick (to electron scattering) counterpart to optically thin radiation pressure-driven stellar winds.

  9. Aeroacoustic Improvements to Fluidic Chevron Nozzles

    NASA Technical Reports Server (NTRS)

    Henderson, Brenda; Kinzie, Kevin; Whitmire, Julia; Abeysinghe, Amal

    2006-01-01

    Fluidic chevrons use injected air near the trailing edge of a nozzle to emulate mixing and jet noise reduction characteristics of mechanical chevrons. While previous investigations of "first generation" fluidic chevron nozzles showed only marginal improvements in effective perceived noise levels when compared to nozzles without injection, significant improvements in noise reduction characteristics were achieved through redesigned "second generation" nozzles on a bypass ratio 5 model system. The second-generation core nozzles had improved injection passage contours, external nozzle contour lines, and nozzle trailing edges. The new fluidic chevrons resulted in reduced overall sound pressure levels over that of the baseline nozzle for all observation angles. Injection ports with steep injection angles produced lower overall sound pressure levels than those produced by shallow injection angles. The reductions in overall sound pressure levels were the result of noise reductions at low frequencies. In contrast to the first-generation nozzles, only marginal increases in high frequency noise over that of the baseline nozzle were observed for the second-generation nozzles. The effective perceived noise levels of the new fluidic chevrons are shown to approach those of the core mechanical chevrons.

  10. Fluoroscopically Guided Epidural Injections of the Cervical and Lumbar Spine.

    PubMed

    Shim, Euddeum; Lee, Joon Woo; Lee, Eugene; Ahn, Joong Mo; Kang, Yusuhn; Kang, Heung Sik

    2017-01-01

    Advances in imaging and the development of injection techniques have enabled spinal intervention to become an important tool in managing chronic spinal pain. Epidural steroid injection (ESI) is one of the most widely used spinal interventions; it directly delivers drugs into the epidural space to relieve pain originating from degenerative spine disorders-central canal stenoses and neural foraminal stenoses-or disk herniations. Knowledge of the normal anatomy of the epidural space is essential to perform an effective and safe ESI and to recognize possible complications. Although computed tomographic (CT) or combined CT-fluoroscopic guidance has been increasingly used in ESI, conventional fluoroscopic guidance is generally performed. In ESI, drugs are delivered into the epidural space by interlaminar or transforaminal routes in the cervical spine or by interlaminar, transforaminal, or caudal routes in the lumbar spine. Epidurography is usually performed before drug delivery to verify the proper position of the needle in the epidural space. A small amount of contrast agent is injected with fluoroscopic guidance. Familiarity with the findings on a typical "true" epidurogram (demonstrating correct needle placement in the epidural space) permits proper performance of ESI. Findings on "false" epidurograms (demonstrating incorrect needle placement) include muscular staining and evidence of intravascular injection, inadvertent facet joint injection, dural puncture, subdural injection, and intraneural or intradiscal injection. © RSNA, 2016 An earlier incorrect version of this article appeared online. This article was corrected on December 22, 2016.

  11. Undesirable leakage to overlying formations with horizontal and vertical injection wells

    NASA Astrophysics Data System (ADS)

    Mosaheb, M.; Zeidouni, M.

    2017-12-01

    Deep saline aquifers are considered for underground storage of carbon dioxide. Undesirable leakage of injected CO2 to adjacent layers would disturb the storage process and can pollute shallower fresh water resources as well as atmosphere. Leaky caprocks, faults, and abandoned wells are examples of leaky pathways. In addition, the overpressure can reactivate a sealing fault or damage the caprock layer. Pressure management is applicable during the storage operation to avoid these consequences and to reduce undesirable leakage.The fluids can be injected through horizontal wells with a wider interval than vertical wells. Horizontal well injection would make less overpressure by delocalizing induced pressure especially in thin formations. In this work, numerical and analytical approaches are applied to model different leaky pathways with horizontal and vertical injection wells. we compare leakage rate and overpressure for horizontal and vertical injection wells in different leaky pathway systems. Results show that the horizontal well technology would allow high injection rates with lower leakage rate for leaky well, leaky fault, and leaky caprock cases. The overpressure would reduce considerably by horizontal well comparing to vertical well injection especially in leaky fault system. The horizontal well injection is an effective method to avoid reaching to threshold pressure of fault reactivation and prevent the consequent induced seismicity.

  12. Relativistic dust accretion of charged particles in Kerr-Newman spacetime

    NASA Astrophysics Data System (ADS)

    Schroven, Kris; Hackmann, Eva; Lämmerzahl, Claus

    2017-09-01

    We describe a new analytical model for the accretion of particles from a rotating and charged spherical shell of dilute collisionless plasma onto a rotating and charged black hole. By assuming a continuous injection of particles at the spherical shell and by treating the black hole and a featureless accretion disk located in the equatorial plane as passive sinks of particles, we build a stationary accretion model. This may then serve as a toy model for plasma feeding an accretion disk around a charged and rotating black hole. Therefore, our new model is a direct generalization of the analytical accretion model introduced by E. Tejeda, P. A. Taylor, and J. C. Miller [Mon. Not. R. Astron. Soc. 429, 925 (2013), 10.1093/mnras/sts316]. We use our generalized model to analyze the influence of a net charge of the black hole, which will in general be very small, on the accretion of plasma. Within the assumptions of our model we demonstrate that already a vanishingly small charge of the black hole may in general still have a non-negligible effect on the motion of the plasma, as long as the electromagnetic field of the plasma is still negligible. Furthermore, we argue that the inner and outer edges of the forming accretion disk strongly depend on the charge of the accreted plasma. The resulting possible configurations of accretion disks are analyzed in detail.

  13. Lumbar Intradiskal Platelet-Rich Plasma (PRP) Injections: A Prospective, Double-Blind, Randomized Controlled Study.

    PubMed

    Tuakli-Wosornu, Yetsa A; Terry, Alon; Boachie-Adjei, Kwadwo; Harrison, Julian R; Gribbin, Caitlin K; LaSalle, Elizabeth E; Nguyen, Joseph T; Solomon, Jennifer L; Lutz, Gregory E

    2016-01-01

    To determine whether single injections of autologous platelet-rich plasma (PRP) into symptomatic degenerative intervertebral disks will improve participant-reported pain and function. Prospective, double-blind, randomized controlled study. Outpatient physiatric spine practice. Adults with chronic (≥6 months), moderate-to-severe lumbar diskogenic pain that was unresponsive to conservative treatment. Participants were randomized to receive intradiskal PRP or contrast agent after provocative diskography. Data on pain, physical function, and participant satisfaction were collected at 1 week, 4 weeks, 8 weeks, 6 months, and 1 year. Participants in the control group who did not improve at 8 weeks were offered the option to receive PRP and subsequently followed. Functional Rating Index (FRI), Numeric Rating Scale (NRS) for pain, the pain and physical function domains of the 36-item Short Form Health Survey, and the modified North American Spine Society (NASS) Outcome Questionnaire were used. Forty-seven participants (29 in the treatment group, 18 in the control group) were analyzed by an independent observer with a 92% follow-up rate. Over 8 weeks of follow-up, there were statistically significant improvements in participants who received intradiskal PRP with regards to pain (NRS Best Pain) (P = .02), function (FRI) (P = .03), and patient satisfaction (NASS Outcome Questionnaire) (P = .01) compared with controls. No adverse events of disk space infection, neurologic injury, or progressive herniation were reported following the injection of PRP. Participants who received intradiskal PRP showed significant improvements in FRI, NRS Best Pain, and NASS patient satisfaction scores over 8 weeks compared with controls. Those who received PRP maintained significant improvements in FRI scores through at least 1 year of follow-up. Although these results are promising, further studies are needed to define the subset of participants most likely to respond to biologic intradiskal treatment and the ideal cellular characteristics of the intradiskal PRP injectate. Copyright © 2016 American Academy of Physical Medicine and Rehabilitation. Published by Elsevier Inc. All rights reserved.

  14. Deconstructing the shallow internal structure of the Moon using GRAIL gravity and LOLA topography

    NASA Astrophysics Data System (ADS)

    Zuber, M. T.

    2015-12-01

    Globally-distributed, high-resolution gravity and topography observations of the Moon from the Gravity Recovery and Interior Laboratory (GRAIL) mission and Lunar Orbiter Laser Altimeter (LOLA) instrument aboard the Lunar Reconnaissance Orbiter (LRO) spacecraft afford the unprecedented opportunity to explore the shallow internal structure of the Moon. Gravity and topography can be combined to produce Bouguer gravity that reveals the distribution of mass in the subsurface, with high degrees in the spherical harmonic expansion of the Bouguer anomalies sensitive to shallowest structure. For isolated regions of the lunar highlands and several basins we have deconstructed the gravity field and mapped the subsurface distribution of density anomalies. While specified spherical harmonic degree ranges can be used to estimate contributions at different depths, such analyses require considerable caution in interpretation. A comparison of filtered Bouguer gravity with forward models of disk masses with plausible densities illustrates the interdependencies of the gravitational power of density anomalies with depth and spatial scale. The results have implications regarding the limits of interpretation of lunar subsurface structure.

  15. The rheological behaviour of fracture-filling cherts: example of Barite Valley dikes, Barberton Greenstone Belt, South Africa

    NASA Astrophysics Data System (ADS)

    Ledevin, M.; Arndt, N.; Davaille, A.; Ledevin, R.; Simionovici, A.

    2015-02-01

    In the Barberton Greenstone Belt, South Africa, a 100-250 m thick complex of carbonaceous chert dikes marks the transition from the Mendon Formation to the Mapepe Formation (3260 Ma). The sub-vertical- to vertical position of the fractures, the abundance of highly shattered zones with poorly rotated angular fragments and common jigsaw fit, radial structures, and multiple injection features point to repetitive hydraulic fracturing that released overpressured fluids trapped within the shallow crust. The chemical and isotopic compositions of the chert favour a model whereby seawater-derived fluids circulated at low temperature (< 100-150 °C) within the shallow crust. From the microscopic structure of the chert, the injected material was a slurry of abundant clay-sized, rounded particles of silica, carbonaceous matter and minor clay minerals, all suspended in a siliceous colloidal solution. The dike geometry and characteristics of the slurry concur on that the chert was viscoelastic, and most probably thixotropic at the time of injection: the penetration of black chert into extremely fine fractures is evidence for low viscosity at the time of injection and the suspension of large country rock fragments in the chert matrix provides evidence of high viscosity soon thereafter. We explain the rheology by the particulate and colloidal structure of the slurry, and by the characteristic of silica suspensions to form cohesive 3-D networks through gelation. Our results provide valuable information about the compositions, physical characteristics and rheological properties of the fluids that circulated through Archean volcano-sedimentary sequences, which is an additional step to understand conditions on the floor of Archean oceans, the habitat of early life.

  16. Characterization of an alluvial aquifer with thermal tracer tomography

    NASA Astrophysics Data System (ADS)

    Somogyvári, Márk; Bayer, Peter

    2017-04-01

    In the summer of 2015, a series of thermal tracer tests was performed at the Widen field site in northeast Switzerland. At this site numerous hydraulic, tracer, geophysical and hydrogeophysical field tests have been conducted in the past to investigate a shallow alluvial aquifer. The goals of the campaign in 2015 were to design a cost-effective thermal tracer tomography setup and to validate the concept of travel time-based thermal tracer tomography under field conditions. Thermal tracer tomography uses repeated thermal tracer injections with different injection depths and distributed temperature measurements to map the hydraulic conductivity distribution of a heterogeneous aquifer. The tracer application was designed with minimal experimental time and cost. Water was heated in inflatable swimming pools using direct sunlight of the warm summer days, and it was injected as low temperature pulses in a well. Because of the small amount of injected heat, no long recovery times were required between the repeated heat tracer injections and every test started from natural thermal conditions. At Widen, four thermal tracer tests were performed during a period of three days. Temperatures were measured in one downgradient well using a distributed temperature measurement system installed at seven depth points. Totally 12 temperature breakthrough curves were collected. Travel time based tomographic inversion assumes that thermal transport is dominated by advection and the travel time of the thermal tracer can be related to the hydraulic conductivities of the aquifer. This assumption is valid in many shallow porous aquifers where the groundwater flow is fast. In our application, the travel time problem was treated by a tomographic solver, analogous to seismic tomography, to derive the hydraulic conductivity distribution. At the test site, a two-dimensional cross-well hydraulic conductivity profile was reconstructed with the travel time based inversion. The reconstructed profile corresponds well with the findings of the earlier hydraulic and geophysical experiments at the site.

  17. A Consistent Picture Emerges: A Compact X-Ray Continuum Emission Region in the Gravitationally Lensed Quasar SDSS J0924+0219

    NASA Astrophysics Data System (ADS)

    MacLeod, Chelsea L.; Morgan, Christopher W.; Mosquera, A.; Kochanek, C. S.; Tewes, M.; Courbin, F.; Meylan, G.; Chen, B.; Dai, X.; Chartas, G.

    2015-06-01

    We analyze the optical, UV, and X-ray microlensing variability of the lensed quasar SDSS J0924+0219 using six epochs of Chandra data in two energy bands (spanning 0.4-8.0 keV, or 1-20 keV in the quasar rest frame), 10 epochs of F275W (rest-frame 1089 Å) Hubble Space Telescope data, and high-cadence R-band (rest-frame 2770 Å) monitoring spanning 11 years. Our joint analysis provides robust constraints on the extent of the X-ray continuum emission region and the projected area of the accretion disk. The best-fit half-light radius of the soft X-ray continuum emission region is between 5× {10}13 and 1015 cm, and we find an upper limit of 1015 cm for the hard X-rays. The best-fit soft-band size is about 13 times smaller than the optical size, and roughly 7{{GM}}{BH}/{c}2 for a 2.8× {10}8 {M}⊙ black hole, similar to the results for other systems. We find that the UV emitting region falls in between the optical and X-ray emitting regions at 1014 cm \\lt {r}1/2,{UV}\\lt 3× {10}15 cm. Finally, the optical size is significantly larger, by 1.5σ, than the theoretical thin-disk estimate based on the observed, magnification-corrected I-band flux, suggesting a shallower temperature profile than expected for a standard disk.

  18. CSI 2264: Characterizing Young Stars in NGC 2264 With Short-Duration Periodic Flux Dips in Their Light Curves

    NASA Astrophysics Data System (ADS)

    Stauffer, John; Cody, Ann Marie; McGinnis, Pauline; Rebull, Luisa; Hillenbrand, Lynne A.; Turner, Neal J.; Carpenter, John; Plavchan, Peter; Carey, Sean; Terebey, Susan; Morales-Calderón, María; Alencar, Silvia H. P.; Bouvier, Jerome; Venuti, Laura; Hartmann, Lee; Calvet, Nuria; Micela, Giusi; Flaccomio, Ettore; Song, Inseok; Gutermuth, Rob; Barrado, David; Vrba, Frederick J.; Covey, Kevin; Padgett, Debbie; Herbst, William; Gillen, Edward; Lyra, Wladimir; Medeiros Guimaraes, Marcelo; Bouy, Herve; Favata, Fabio

    2015-04-01

    We identify nine young stellar objects (YSOs) in the NGC 2264 star-forming region with optical CoRoT light curves exhibiting short-duration, shallow periodic flux dips. All of these stars have infrared excesses that are consistent with their having inner disk walls near the Keplerian co-rotation radius. The repeating photometric dips have FWHMs generally less than 1 day, depths almost always less than 15%, and periods (3 < P < 11 days) consistent with dust near the Keplerian co-rotation period. The flux dips vary considerably in their depth from epoch to epoch, but usually persist for several weeks and, in two cases, were present in data collected in successive years. For several of these stars, we also measure the photospheric rotation period and find that the rotation and dip periods are the same, as predicted by standard “disk-locking” models. We attribute these flux dips to clumps of material in or near the inner disk wall, passing through our line of sight to the stellar photosphere. In some cases, these dips are also present in simultaneous Spitzer IRAC light curves at 3.6 and 4.5 microns. We characterize the properties of these dips, and compare the stars with light curves exhibiting this behavior to other classes of YSOs in NGC 2264. A number of physical mechanisms could locally increase the dust scale height near the inner disk wall, and we discuss several of those mechanisms; the most plausible mechanisms are either a disk warp due to interaction with the stellar magnetic field or dust entrained in funnel-flow accretion columns arising near the inner disk wall. Based on data from the Spitzer and CoRoT missions, as well as the Canada France Hawaii Telescope (CFHT) MegaCam CCD, and the European Southern Observatory Very Large Telescope, Paranal Chile, under program 088.C-0239. The CoRoT space mission was developed and is operated by the French space agency CNES, with participation of ESA’s RSSD and Science Programmes, Austria, Belgium, Brazil, Germany, and Spain. MegaCam is a joint project of CFHT and CEA/DAPNIA, which is operated by the National Research Council (NRC) of Canada, the Institute National des Sciences de l’Univers of the Centre National de la Recherche Scientifique of France, and the University of Hawaii.

  19. Earthquake source properties of a shallow induced seismic sequence in SE Brazil

    NASA Astrophysics Data System (ADS)

    Agurto-Detzel, Hans; Bianchi, Marcelo; Prieto, Germán. A.; Assumpção, Marcelo

    2017-04-01

    We study source parameters of a cluster of 21 very shallow (<1 km depth) small-magnitude (Mw < 2) earthquakes induced by percolation of water by gravity in SE Brazil. Using a multiple empirical Green's functions (meGf) approach, we estimate seismic moments, corner frequencies, and static stress drops of these events by inversion of their spectral ratios. For the studied magnitude range (-0.3 < Mw < 1.9), we found an increase of stress drop with seismic moment. We assess associated uncertainties by considering different signal time windows and by performing a jackknife resampling of the spectral ratios. We also calculate seismic moments by full waveform inversion to independently validate our moments from spectral analysis. We propose repeated rupture on a fault patch at shallow depth, following continuous inflow of water, as the cause for the observed low absolute stress drop values (<1 MPa) and earthquake size dependency. To our knowledge, no other study on earthquake source properties of shallow events induced by water injection with no added pressure is available in the literature. Our study suggests that source parameter characterization may provide additional information of induced seismicity by hydraulic stimulation.

  20. The Need for Deeper Hydrology

    NASA Astrophysics Data System (ADS)

    Fogg, G. E.

    2016-12-01

    Hydrologists often compartmentalize subsurface fluid systems into soil, vadose zone, and groundwater even though such entities are all part of a dynamic continuum. Similarly, hydrogeologists mainly study the fresh groundwater that is essential to water resources upon which humans and ecosystems depend. While vast amounts of these fresh groundwater resources are in sedimentary basins, many of those basins contain vast amounts of saline groundwater and petroleum underneath the freshwater. Contrary to popular assumptions in the hydrogeology and petroleum communities, the saline groundwater and petroleum resources are not stagnant, but migrate in response to Tothian, topographically driven flow as well as other driving forces controlled by thermal, density and geomechanical processes. Importantly, the transition between fresh and saline groundwater does not necessarily represent a boundary between deep, stagnant groundwater and shallower, circulating groundwater. The deep groundwater is part of the subsurface fluid continuum, and exploitation of saline aquifer systems for conventional and unconventional (e.g., fracking) petroleum production or for injection of waste fluids should be done with some knowledge of the integrated fresh and saline water hydrogeologic system. Without sufficient knowledge of the deep and shallow hydrogeology, there will be significant uncertainty about the possible impacts of injection and petroleum extraction activities on overlying fresh groundwater quality and quantity. When significant uncertainty like this exists in science, public and scientific perceptions of consequences swing wildly from one extreme to another. Accordingly, professional and lay opinions on fracking range from predictions of doom to predictions of zero impact. This spastic range of opinions stems directly from the scientific uncertainty about hydrogeologic interactions between shallow and deep hydrogeologic systems. To responsibly manage both the fresh and saline, petroliferous groundwater resources, a new era of whole-system characterization is needed that integrates deep and shallow geologic and hydrogeologic models and data, including aquifer-aquitard frameworks, head and pressure in space and time, and hydrogeochemistry.

  1. Assessment of brine migration risks along vertical pathways due to CO2 injection

    NASA Astrophysics Data System (ADS)

    Kissinger, Alexander; Class, Holger

    2015-04-01

    Global climate change, shortage of resources and the growing usage of renewable energy sources has lead to a growing demand for the utilization of subsurface systems. Among these competing uses are Carbon Capture and Storage (CCS), geothermal energy, nuclear waste disposal, 'renewable' methane or hydrogen storage as well as the ongoing production of fossil resources like oil, gas and coal. Additionally, these technologies may also create conflicts with essential public interests such as water supply. For example, the injection of CO2 into the subsurface causes an increase in pressure reaching far beyond the actual radius of influence of the CO2 plume, potentially leading to large amounts of displaced salt water. In this work we focus on the large scale impacts of CO2 storage on brine migration but the methodology and the obtained results may also apply to other fields like waste water disposal, where large amounts of fluid are injected into the subsurface. In contrast to modeling on the reservoir scale the spatial scale required for this work is much larger in both vertical and lateral direction, as the regional hydrogeology has to be considered. Structures such as fault zones, hydrogeological windows in the Rupelian clay or salt domes are considered as potential pathways for displaced fluids into shallow systems and their influence has to be taken into account. We put the focus of our investigations on the latter type of scenario, since there is still a poor understanding of the role that salt diapirs would play in CO2 storage projects. As there is hardly any field data available on this scale, we compare different levels of model complexity in order to identify the relevant processes for brine displacement and simplify the modeling process wherever possible, for example brine injection vs. CO2 injection, simplified geometries vs. the complex formation geometry and the role of salt induced density differences on flow. Further we investigate the impact of the displaced brine due to CO2 injection and compare it to the natural fluid exchange between shallow and deep aquifers in order to asses possible damage.

  2. Influence of the Tumor Microenvironment on Genomic Changes Conferring Chemoresistance in Breast Cancer

    DTIC Science & Technology

    2013-04-01

    tumor microenvironment on clonal selection using intravital microscopy Jae-Hyun Park 1 , Miriam R. Fein 1 , Mikala Egeblad 1 1 Cold Spring Harbor...used surgically implanted mammary imaging windows in immunocompetent mice and injected “brainbow” expressing, syngeneic 4T1 breast carcinoma cells...under the windows. This allowed us to acquire multiple time- lapse imaging series by spinning disk confocal microscopy of the same tumor, done about 3

  3. The Quiescent-Chamber Type Compression-Ignition Engine

    NASA Technical Reports Server (NTRS)

    Foster, H H

    1937-01-01

    Report presents the results of performance tests of a single-cylinder 4-stroke-cycle compression-ignition engine having a vertical disk form of combustion chamber without air flow. The number, size, and direction of the orifices of the fuel-injection nozzles used were independently varied. A table and graphs are presented showing the performance of the engine with different nozzles; results of tests at different compression ratios, boost pressures, and coolant temperatures are also included.

  4. Transient changes in shallow groundwater chemistry during the MSU ZERT CO2 injection experiment

    USGS Publications Warehouse

    Apps, J.A.; Zheng, Lingyun; Spycher, N.; Birkholzer, J.T.; Kharaka, Y.; Thordsen, J.; Kakouros, E.; Trautz, R.

    2011-01-01

    Food-grade CO2 was injected into a shallow aquifer through a perforated pipe placed horizontally 1-2 m below the water table at the Montana State University Zero Emission Research and Technology (MSU-ZERT) field site at Bozeman, Montana. The possible impact of elevated CO2 levels on groundwater quality was investigated by analyzing 80 water samples taken before, during, and following CO2 injection. Field determinations and laboratory analyses showed rapid and systematic changes in pH, alkalinity, and conductance, as well as increases in the aqueous concentrations of trace element species. The geochemical data were first evaluated using principal component analysis (PCA) in order to identify correlations between aqueous species. The PCA findings were then used in formulating a geochemical model to simulate the processes likely to be responsible for the observed increases in the concentrations of dissolved constituents. Modeling was conducted taking into account aqueous and surface complexation, cation exchange, and mineral precipitation and dissolution. Reasonable matches between measured data and model results suggest that: (1) CO2 dissolution in the groundwater causes calcite to dissolve. (2) Observed increases in the concentration of dissolved trace metals result likely from Ca+2-driven ion exchange with clays (smectites) and sorption/desorption reactions likely involving Fe (hydr)oxides. (3) Bicarbonate from CO2 dissolution appears to compete for sorption with anionic species such as HAsO4-2, potentially increasing dissolved As levels in groundwater. ?? 2011 Published by Elsevier Ltd.

  5. Disk-integrated reflection light curves of planets

    NASA Astrophysics Data System (ADS)

    Garcia Munoz, A.

    2014-03-01

    The light scattered by a planet atmosphere contains valuable information on the planet's composition and aerosol content. Typically, the interpretation of that information requires elaborate radiative transport models accounting for the absorption and scattering processes undergone by the star photons on their passage through the atmosphere. I have been working on a particular family of algorithms based on Backward Monte Carlo (BMC) integration for solving the multiple-scattering problem in atmospheric media. BMC algorithms simulate statistically the photon trajectories in the reverse order that they actually occur, i.e. they trace the photons from the detector through the atmospheric medium and onwards to the illumination source following probability laws dictated by the medium's optical properties. BMC algorithms are versatile, as they can handle diverse viewing and illumination geometries, and can readily accommodate various physical phenomena. As will be shown, BMC algorithms are very well suited for the prediction of magnitudes integrated over a planet's disk (whether uniform or not). Disk-integrated magnitudes are relevant in the current context of exploration of extrasolar planets because spatial resolution of these objects will not be technologically feasible in the near future. I have been working on various predictions for the disk-integrated properties of planets that demonstrate the capacities of the BMC algorithm. These cases include the variability of the Earth's integrated signal caused by diurnal and seasonal changes in the surface reflectance and cloudiness, or by sporadic injection of large amounts of volcanic particles into the atmosphere. Since the implemented BMC algorithm includes a polarization mode, these examples also serve to illustrate the potential of polarimetry in the characterization of both Solar System and extrasolar planets. The work is complemented with the analysis of disk-integrated photometric observations of Earth and Venus drawn from various sources.

  6. A Discovery of a Compact High Velocity Cloud-Galactic Supershell System

    NASA Astrophysics Data System (ADS)

    Park, Geumsook; Koo, Bon-Chul; Kang, Ji-hyun; Gibson, Steven J.; Peek, Joshua Eli Goldston; Douglas, Kevin A.; Korpela, Eric J.; Heiles, Carl E.

    2017-01-01

    High velocity clouds (HVCs) are neutral hydrogen (HI) gas clouds having very different radial velocities from those of the Galactic disk material. While some large HVC complexes are known to be gas streams tidally stripped from satellite galaxies of the Milky Way, there are relatively isolated and small angular-sized HVCs, so called “compact HVCs (CHVCs)”, the origin of which remains controversial. There are about 300 known CHVCs in the Milky Way, and many of them show a head-tail structure, implying a ram pressure interaction with the diffuse Galactic halo gas. It is, however, not clear whether CHVCs are completely dissipated in the Galactic halo to feed the multi-phase circumgalactic medium or they can survive their trip through the halo and collide with the Galactic disk. The colliding CHVCs may leave a gigantic trail in the disk, and it had been suggested that some of HI supershells that require ≧ 3 x 1052 erg may be produced by the collision of such HVCs.Here we report the detection of a kiloparsec (kpc)-size supershell in the outskirts of the Milky Way with the compact HVC 040+01-282 (hereafter, CHVC040) at its geometrical center using the “Inner-Galaxy Arecibo L-band Feed Array” HI 21 cm survey data. The morphological and physical properties of both objects suggest that CHVC040, which is either a fragment of a nearby disrupted galaxy or a cloud that originated from an intergalactic accreting flow, collided with the disk ˜5 Myr ago to form the supershell. Our results show that some compact HVCs can survive their trip through the Galactic halo and inject energy and momentum into the Milky Way disk.

  7. A High-velocity Cloud Impact Forming a Supershell in the Milky Way

    NASA Astrophysics Data System (ADS)

    Park, Geumsook; Koo, Bon-Chul; Kang, Ji-hyun; Gibson, Steven J.; Peek, J. E. G.; Douglas, Kevin A.; Korpela, Eric J.; Heiles, Carl E.

    2016-08-01

    Neutral atomic hydrogen (H I) gas in interstellar space is largely organized into filaments, loops, and shells, the most prominent of which are “supershells.” These gigantic structures, which require ≳ 3× {10}52 erg to form, are generally thought to be produced by either the explosion of multiple supernovae (SNe) in OB associations or, alternatively, by the impact of high-velocity clouds (HVCs) falling into the Galactic disk. Here, we report the detection of a kiloparsec (kpc)-size supershell in the outskirts of the Milky Way with the compact HVC 040 + 01-282 (hereafter, CHVC040) at its geometrical center using the “Inner-Galaxy Arecibo L-band Feed Array” H I 21 cm survey data. The morphological and physical properties of both objects suggest that CHVC040, which is either a fragment of a nearby disrupted galaxy or a cloud that originated from an intergalactic accreting flow, collided with the disk ˜5 Myr ago to form the supershell. Our results show that some compact HVCs can survive their trip through the Galactic halo and inject energy and momentum into the Milky Way disk.

  8. Elevated levels of diesel range organic compounds in groundwater near Marcellus gas operations are derived from surface activities.

    PubMed

    Drollette, Brian D; Hoelzer, Kathrin; Warner, Nathaniel R; Darrah, Thomas H; Karatum, Osman; O'Connor, Megan P; Nelson, Robert K; Fernandez, Loretta A; Reddy, Christopher M; Vengosh, Avner; Jackson, Robert B; Elsner, Martin; Plata, Desiree L

    2015-10-27

    Hundreds of organic chemicals are used during natural gas extraction via high-volume hydraulic fracturing (HVHF). However, it is unclear whether these chemicals, injected into deep shale horizons, reach shallow groundwater aquifers and affect local water quality, either from those deep HVHF injection sites or from the surface or shallow subsurface. Here, we report detectable levels of organic compounds in shallow groundwater samples from private residential wells overlying the Marcellus Shale in northeastern Pennsylvania. Analyses of purgeable and extractable organic compounds from 64 groundwater samples revealed trace levels of volatile organic compounds, well below the Environmental Protection Agency's maximum contaminant levels, and low levels of both gasoline range (0-8 ppb) and diesel range organic compounds (DRO; 0-157 ppb). A compound-specific analysis revealed the presence of bis(2-ethylhexyl) phthalate, which is a disclosed HVHF additive, that was notably absent in a representative geogenic water sample and field blanks. Pairing these analyses with (i) inorganic chemical fingerprinting of deep saline groundwater, (ii) characteristic noble gas isotopes, and (iii) spatial relationships between active shale gas extraction wells and wells with disclosed environmental health and safety violations, we differentiate between a chemical signature associated with naturally occurring saline groundwater and one associated with alternative anthropogenic routes from the surface (e.g., accidental spills or leaks). The data support a transport mechanism of DRO to groundwater via accidental release of fracturing fluid chemicals derived from the surface rather than subsurface flow of these fluids from the underlying shale formation.

  9. Numerical Model of Hydraulic Fracturing Fluid Transport in the Subsurface with Pressure Transient, Density Effects, and Imbibition

    NASA Astrophysics Data System (ADS)

    Birdsell, D.; Rajaram, H.; Dempsey, D.; Viswanathan, H.

    2014-12-01

    Understanding the transport of hydraulic fracturing (HF) fluid that is injected into the deep subsurface for shale gas extraction is important to ensure that shallow drinking water aquifers are not contaminated from an environmental and public health perspective and to understand formation damage from an oil and gas production perspective. Upward pressure gradients, permeable pathways such as faults or improperly abandoned wellbores, and the density contrast of the HF fluid to the surrounding brine encourages upward HF fluid migration. In contrast, the very low shale permeability and the imbibition of water into partially-saturated shale may sequester much of the HF fluid. Using the Finite Element Heat and Mass Transfer Code (FEHM), single-phase flow and transport simulations are performed to quantify how much HF fluid is removed via the wellbore as flowback and produced water and how much reaches overlying aquifers; imbibition is calculated with a semi-analytical one-dimensional solution and treated as a sink term. The travel time for HF fluid to reach the shallow aquifers is highly dependent on the amount of water imbibed and the suction applied to the well. If imbibition rates and suction are small, the pressure transient due to injection and the density contrast allows rapid upward plume migration at early times. The density contrast diminishes considerably within tens to hundreds of years as mixing occurs. We present estimates of HF fluid migration to shallow aquifers during the first 1,000 years after hydraulic fracturing begins for ranges of subsurface properties.

  10. Elevated levels of diesel range organic compounds in groundwater near Marcellus gas operations are derived from surface activities

    PubMed Central

    Drollette, Brian D.; Hoelzer, Kathrin; Warner, Nathaniel R.; Darrah, Thomas H.; Karatum, Osman; O’Connor, Megan P.; Nelson, Robert K.; Fernandez, Loretta A.; Reddy, Christopher M.; Vengosh, Avner; Jackson, Robert B.; Elsner, Martin; Plata, Desiree L.

    2015-01-01

    Hundreds of organic chemicals are used during natural gas extraction via high-volume hydraulic fracturing (HVHF). However, it is unclear whether these chemicals, injected into deep shale horizons, reach shallow groundwater aquifers and affect local water quality, either from those deep HVHF injection sites or from the surface or shallow subsurface. Here, we report detectable levels of organic compounds in shallow groundwater samples from private residential wells overlying the Marcellus Shale in northeastern Pennsylvania. Analyses of purgeable and extractable organic compounds from 64 groundwater samples revealed trace levels of volatile organic compounds, well below the Environmental Protection Agency’s maximum contaminant levels, and low levels of both gasoline range (0–8 ppb) and diesel range organic compounds (DRO; 0–157 ppb). A compound-specific analysis revealed the presence of bis(2-ethylhexyl) phthalate, which is a disclosed HVHF additive, that was notably absent in a representative geogenic water sample and field blanks. Pairing these analyses with (i) inorganic chemical fingerprinting of deep saline groundwater, (ii) characteristic noble gas isotopes, and (iii) spatial relationships between active shale gas extraction wells and wells with disclosed environmental health and safety violations, we differentiate between a chemical signature associated with naturally occurring saline groundwater and one associated with alternative anthropogenic routes from the surface (e.g., accidental spills or leaks). The data support a transport mechanism of DRO to groundwater via accidental release of fracturing fluid chemicals derived from the surface rather than subsurface flow of these fluids from the underlying shale formation. PMID:26460018

  11. IMPACT OF ETHANOL ON THE NATURAL ATTENUATION OF BENZENE, TOLUENE, AND O-XYLENE IN A NORMALLY SULFATE-REDUCING AQUIFER

    EPA Science Inventory

    Two side-by-side field experiments were conducted in a shallow sulfate-reducing aquifer at a former service station site at Vandenberg Air Force Base, CA. On one side, we injected site groundwater amended with 1-3 mg/L benzene, toluene, and o-xylene (B, T, and o-X). On the othe...

  12. Internal Technical Report, 1981 Annual Report, An Analysis of the Response of the Raft River Geothermal Site Monitor Wells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Thurow, T.L.; Large, R.M.; Allman, D.W.

    1982-04-01

    A groundwater monitoring program has been established on the Raft River Geothermal Site since 1978. The objective of this program is to document possible impacts that may be caused by geothermal production and injection on the shallow aquifers used for culinary and irrigation purposes. This annual progress report summarizes data from 12 monitor wells during 1981. These data are compared with long-term trends and are correlated with seasonal patterns, irrigation water use and geothermal production and testing. These results provide a basis for predicting long-term impacts of sustained geothermal production and testing. To date, there has been no effect onmore » the water quality of the shallow aquifers.« less

  13. Nickel hydrogen common pressure vessel battery development

    NASA Technical Reports Server (NTRS)

    Jones, Kenneth R.; Zagrodnik, Jeffrey P.

    1992-01-01

    Our present design for a common pressure vessel (CPV) battery, a nickel hydrogen battery system to combine all of the cells into a common pressure vessel, uses an open disk which allows the cell to be set into a shallow cavity; subsequent cells are stacked on each other with the total number based on the battery voltage required. This approach not only eliminates the assembly error threat, but also more readily assures equal contact pressure to the heat fin between each cell, which further assures balanced heat transfer. These heat fin dishes with their appropriate cell stacks are held together with tie bars which in turn are connected to the pressure vessel weld rings at each end of the tube.

  14. Maps summarizing geohydrologic information in an area of salt-water disposal, eastern Altamount-Bluebell Petroleum Field, Uinta Basin, Utah

    USGS Publications Warehouse

    Freethey, Geoffrey W.

    1994-01-01

    In the Altamont-Bluebell Petroleum Field within the Uinta Basin of Utah, saline oil-production water is being injected into the Duchesne River Formation. On the basis of geohydrologic information, a qualitative assessment of the possible effects of this injection indicates that fresh groundwater in certain areas of the Duchesne River formation may be more susceptible than water in other areas to becoming mixed with injected oil-production water. The reason for this possible mixing is because these areas containing the susceptible groundwater lack a thick shale layer above the disposal zone, as indicated in geophysical logs. In other areas, naturally occurring moderately saline water exists at shallow depths and may be withdrawn from water wells completed more than 200 ft below land surface. Additional geohydrologic information will need to be collected to allow investigators to make a quantitative determination of the rate of horizontal and vertical migration of injected oil-production water within and above the disposal zone.

  15. MUFITS Code for Modeling Geological Storage of Carbon Dioxide at Sub- and Supercritical Conditions

    NASA Astrophysics Data System (ADS)

    Afanasyev, A.

    2012-12-01

    Two-phase models are widely used for simulation of CO2 storage in saline aquifers. These models support gaseous phase mainly saturated with CO2 and liquid phase mainly saturated with H2O (e.g. TOUGH2 code). The models can be applied to analysis of CO2 storage only in relatively deeply-buried reservoirs where pressure exceeds CO2 critical pressure. At these supercritical reservoir conditions only one supercritical CO2-rich phase appears in aquifer due to CO2 injection. In shallow aquifers where reservoir pressure is less than the critical pressure CO2 can split in two different liquid-like and gas-like phases (e.g. Spycher et al., 2003). Thus a region of three-phase flow of water, liquid and gaseous CO2 can appear near the CO2 injection point. Today there is no widely used and generally accepted numerical model capable of the three-phase flows with two CO2-rich phases. In this work we propose a new hydrodynamic simulator MUFITS (Multiphase Filtration Transport Simulator) for multiphase compositional modeling of CO2-H2O mixture flows in porous media at conditions of interest for carbon sequestration. The simulator is effective both for supercritical flows in a wide range of pressure and temperature and for subcritical three-phase flows of water, liquid CO2 and gaseous CO2 in shallow reservoirs. The distinctive feature of the proposed code lies in the methodology for mixture properties determination. Transport equations and Darcy correlation are solved together with calculation of the entropy maximum that is reached in thermodynamic equilibrium and determines the mixture composition. To define and solve the problem only one function - mixture thermodynamic potential - is required. The potential is determined using a three-parametric generalization of Peng-Robinson equation of state fitted to experimental data (Todheide, Takenouchi, Altunin etc.). We apply MUFITS to simple 1D and 2D test problems of CO2 injection in shallow reservoirs subjected to phase changes between liquid and gaseous CO2. We consider CO2 injection into highly heterogeneous the 10th SPE reservoir. We provide analysis of physical phenomena that have control temperature distribution in the reservoir. The distribution is non-monotonic with regions of high and low temperature. The main phenomena responsible for considerable temperature decline around CO2 injection point is the liquid CO2 evaporation process. We also apply the code to real-scale 3D simulations of CO2 geological storage at supercritical conditions in Sleipner field and Johansen formation (Fig). The work is supported financially by the Russian Foundation for Basic Research (12-01-31117) and grant for leading scientific schools (NSh 1303.2012.1). CO2 phase saturation in Johansen formation after 50 years of injection and 1000 years of rest period

  16. Final Scientific/Technical Report for project “Geomechanical Monitoring for CO 2 Hub Storage: Production and Injection at Kevin Dome

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Daley, Thomas M.; Vasco, Don; Ajo-Franklin, Jonathan

    After learning that the TDS value in the target injection formation at the Kevin Dome site is too low to qualify for an EPA Class VI CO2 injection permit, the BSCSP project was re-scoped such that injection of CO2 is no longer planned. With no injection planned, the Geomechanics project was closed. In this final report, we describe the objective and approach of the project as proposed, and the limited results obtained before stopping work. The objective of the proposed research was the development & validation of an integrated monitoring approach for quantifying the interactions between large-scale geological carbon storagemore » (GCS) and subsurface geomechanical state, particularly perturbations relevant to reservoir integrity such as fault reactivation and induced fracturing. In the short period of work before knowing the fate of the Kevin Dome project, we (1) researched designs for both the proposed InSAR corner reflectors as well as the near-surface 3C seismic stations; (2) developed preliminary elastic geomechanical models; (3) developed a second generation deformation prediction for the BSCSP Kevin Dome injection site; and (4) completed a preliminary map of InSAR monuments and shallow MEQ wells in the vicinity of the BSCSP injection pad.« less

  17. The design and development of a computer game on insulin injection.

    PubMed

    Ebrahimpour, Fatemeh; Najafi, Mostafa; Sadeghi, Narges

    2014-01-01

    Insulin therapy is of high importance in glycemic control and prevention of complications in type 1 diabetes in children. However, this treatment is unpleasant and stressful for many children, and it is difficult for them to accept. The purpose of the study was to design and develop an educational computer game for diabetic children to familiarize them with insulin injections. After a review of the literature and the collection of basic information, we discussed the purpose of this research with some diabetic children, their parents, and nurses. The findings that we acquired from the discussion were considered in designing and developing the game. Then, following the principles associated with the development of computer games, we developed seven different games that related to insulin injections, and the games were evaluated in a pilot study. The games developed through the design and programming environment of Adobe Flash Player and stored on a computer disk (CD). The seven games were a pairs game, a puzzle game, a question and answer game, an insulin kit game, a drawing room game, a story game, and an insulin injection-room game). The idea was that diabetic children could become acquainted with insulin injections and the injection toolkit by playing a variety of entertaining and fun games. They also learned about some of the issues associated with insulin and experienced insulin injection in a simulated environment. It seems that the use of new technologies, such as computer games, can influence diabetic children's acquaintance with the correct method of insulin injection, psychological readiness to initiate insulin therapy, reduction in stress, anxiety, and fear of insulin injection.

  18. Evidence for supernova injection into the solar nebula and the decoupling of r-process nucleosynthesis

    PubMed Central

    Brennecka, Gregory A.; Borg, Lars E.; Wadhwa, Meenakshi

    2013-01-01

    The isotopic composition of our Solar System reflects the blending of materials derived from numerous past nucleosynthetic events, each characterized by a distinct isotopic signature. We show that the isotopic compositions of elements spanning a large mass range in the earliest formed solids in our Solar System, calcium–aluminum-rich inclusions (CAIs), are uniform, and yet distinct from the average Solar System composition. Relative to younger objects in the Solar System, CAIs contain positive r-process anomalies in isotopes A < 140 and negative r-process anomalies in isotopes A > 140. This fundamental difference in the isotopic character of CAIs around mass 140 necessitates (i) the existence of multiple sources for r-process nucleosynthesis and (ii) the injection of supernova material into a reservoir untapped by CAIs. A scenario of late supernova injection into the protoplanetary disk is consistent with formation of our Solar System in an active star-forming region of the galaxy. PMID:24101483

  19. Evidence for supernova injection into the solar nebula and the decoupling of r-process nucleosynthesis.

    PubMed

    Brennecka, Gregory A; Borg, Lars E; Wadhwa, Meenakshi

    2013-10-22

    The isotopic composition of our Solar System reflects the blending of materials derived from numerous past nucleosynthetic events, each characterized by a distinct isotopic signature. We show that the isotopic compositions of elements spanning a large mass range in the earliest formed solids in our Solar System, calcium-aluminum-rich inclusions (CAIs), are uniform, and yet distinct from the average Solar System composition. Relative to younger objects in the Solar System, CAIs contain positive r-process anomalies in isotopes A < 140 and negative r-process anomalies in isotopes A > 140. This fundamental difference in the isotopic character of CAIs around mass 140 necessitates (i) the existence of multiple sources for r-process nucleosynthesis and (ii) the injection of supernova material into a reservoir untapped by CAIs. A scenario of late supernova injection into the protoplanetary disk is consistent with formation of our Solar System in an active star-forming region of the galaxy.

  20. Breaking the Pressure Barrier: A History of the Spacesuit Injection Patch

    NASA Technical Reports Server (NTRS)

    McFarland, Shane M.; Weaver, Aaron S.

    2013-01-01

    The spacesuit assembly has a fascinating and complicated history dating back to the early 1930s. Much has been written on this history from an assembly perspective and, to a lesser extent, a component perspective. However, little has been written or preserved specifically on smaller, lesser-known aspects of pressure suit design. One example of this is the injection patch - a small 2-in.-diameter disk on the leg of the Apollo suit that facilitated a medical injection when pressurized, and the only known implementation of such a feature on a flight suit. Whereas many people are aware this feature existed, very little is known of its origin, design, and use, and the fact that the Apollo flight suit was not the only instance in which such a feature was implemented. This paper serves to tell the story of this seeming "afterthought" of a feature, as well as the design considerations heeded during the initial development of subsequent suits.

  1. Bypassing adverse injection reactions to nanoparticles through shape modification and attachment to erythrocytes

    NASA Astrophysics Data System (ADS)

    Wibroe, Peter Popp; Anselmo, Aaron C.; Nilsson, Per H.; Sarode, Apoorva; Gupta, Vivek; Urbanics, Rudolf; Szebeni, Janos; Hunter, Alan Christy; Mitragotri, Samir; Mollnes, Tom Eirik; Moghimi, Seyed Moein

    2017-07-01

    Intravenously injected nanopharmaceuticals, including PEGylated nanoparticles, induce adverse cardiopulmonary reactions in sensitive human subjects, and these reactions are highly reproducible in pigs. Although the underlying mechanisms are poorly understood, roles for both the complement system and reactive macrophages have been implicated. Here, we show the dominance and importance of robust pulmonary intravascular macrophage clearance of nanoparticles in mediating adverse cardiopulmonary distress in pigs irrespective of complement activation. Specifically, we show that delaying particle recognition by macrophages within the first few minutes of injection overcomes adverse reactions in pigs using two independent approaches. First, we changed the particle geometry from a spherical shape (which triggers cardiopulmonary distress) to either rod- or disk-shape morphology. Second, we physically adhered spheres to the surface of erythrocytes. These strategies, which are distinct from commonly leveraged stealth engineering approaches such as nanoparticle surface functionalization with poly(ethylene glycol) and/or immunological modulators, prevent robust macrophage recognition, resulting in the reduction or mitigation of adverse cardiopulmonary distress associated with nanopharmaceutical administration.

  2. Symptomatic, Magnetic Resonance Imaging-Confirmed Cervical Disk Herniation Patients: A Comparative-Effectiveness Prospective Observational Study of 2 Age- and Sex-Matched Cohorts Treated With Either Imaging-Guided Indirect Cervical Nerve Root Injections or Spinal Manipulative Therapy.

    PubMed

    Peterson, Cynthia K; Pfirrmann, Christian W A; Hodler, Jürg; Leemann, Serafin; Schmid, Christof; Anklin, Bernard; Humphreys, B Kim

    2016-01-01

    The purpose of this study was to compare the outcomes of overall improvement, pain reduction, and treatment costs in matched patients with symptomatic, magnetic resonance imaging-confirmed cervical disk herniations treated with either spinal manipulative therapy (SMT) or imaging-guided cervical nerve root injection blocks (CNRI). This prospective cohort comparative-effectiveness study included 104 patients with magnetic resonance imaging-confirmed symptomatic cervical disk herniation. Fifty-two patients treated with CNRI were age and sex matched with 52 patients treated with SMT. Baseline numerical rating scale (NRS) pain data were collected. Three months after treatment, NRS pain levels were recorded and overall "improvement" was assessed using the Patient Global Impression of Change scale. Only responses "much better" or "better" were considered "improved." The proportion of patients "improved" was calculated for each treatment method and compared using the χ(2) test. The NRS and NRS change scores for the 2 groups were compared at baseline and 3 months using the unpaired t test. Acute and subacute/chronic patients in the 2 groups were compared for "improvement" using the χ(2) test. "Improvement" was reported in 86.5% of SMT patients and 49.0% of CNRI patients (P = .0001). Significantly more CNRI patients were in the subacute/chronic category (77%) compared with SMT patients (46%). A significant difference between the proportion of subacute/chronic CNRI patients (37.5%) and SMT patients (78.3%) reporting "improvement" was noted (P = .002). Subacute/chronic patients treated with SMT were significantly more likely to report relevant "improvement" compared with CNRI patients. There was no difference in outcomes when comparing acute patients only. Copyright © 2016 National University of Health Sciences. Published by Elsevier Inc. All rights reserved.

  3. The 2013–2016 induced earthquakes in Harper and Sumner Counties, southern Kansas

    USGS Publications Warehouse

    Rubinstein, Justin L.; Ellsworth, William L.; Dougherty, Sara L.

    2018-01-01

    We examine the first four years (2013–2016) of the ongoing seismicity in southern Kansas using high‐precision locations derived from a local seismometer network. The earthquakes occur almost exclusively in the shallow crystalline basement, below the wastewater injection horizon of the Arbuckle Group at the base of the sedimentary section. Multiple lines of evidence lead us to conclude that disposal of wastewater from the production of oil and gas by deep injection is the probable cause for the surge of seismicity that began in 2013. First, the seismicity correlates in space and time with the injection. We observe increases in seismicity subsequent to increases in injection and decreases in seismicity in response to decreases in injection. Second, the earthquake‐rate change is statistically improbable to be of natural origin. From 1974 through the time of the injection increase in 2012, no ML">ML 4 or larger earthquakes occurred in the study area, while six occurred between 2012 and 2016. The probability of this rate change occurring randomly is ∼0.16%">∼0.16%. Third, the other potential industrial drivers of seismicity (hydraulic fracturing and oil production) do not correlate in space or time with seismicity. Local geological conditions are important in determining whether injection operations will induce seismicity, as shown by absence of seismicity near the largest injection operations in the southwest portion of our study area. In addition to local operations, the presence of seismicity 10+ km from large injection wells indicates that regional injection operations also need to be considered to understand the effects of injection on seismicity.

  4. Modeling the formation of porphyry-copper ores

    USGS Publications Warehouse

    Ingebritsen, Steven E.

    2012-01-01

    Porphyry-copper ore systems, the source of much of the world's copper and molybdenum, form when metal-bearing fluids are expelled from shallow, degassing magmas. On page 1613 of this issue, Weis et al. (1) demonstrate that self-organizing processes focus metal deposition. Specifically, their simulation studies indicate that ores develop as consequences of dynamic variations in rock permeability driven by injection of volatile species from rising magmas. Scenarios with a static permeability structure could not reproduce key field observations, whereas dynamic permeability responses to magmatic-fluid injection localized a metal-precipitation front where enrichment by a factor of 103 could be achieved [for an overview of their numerical-simulation model CSMP++, see (2)].

  5. 2.5D global-disk oscillation models of the Be shell star ζ Tauri. I. Spectroscopic and polarimetric analysis

    NASA Astrophysics Data System (ADS)

    Escolano, C.; Carciofi, A. C.; Okazaki, A. T.; Rivinius, T.; Baade, D.; Štefl, S.

    2015-04-01

    Context. A large number of Be stars exhibit intensity variations of their violet and red emission peaks in their H i lines observed in emission. This is the so-called V/R phenomenon, usually explained by the precession of a one-armed spiral density perturbation in the circumstellar disk. That global-disk oscillation scenario was confirmed, both observationally and theoretically, in the previous series of two papers analyzing the Be shell star ζ Tauri. The vertically averaged (2D) global-disk oscillation model used at the time was able to reproduce the V/R variations observed in Hα, as well as the spatially resolved interferometric data from AMBER/VLTI. Unfortunately, that model failed to reproduce the V/R phase of Br15 and the amplitude of the polarization variation, suggesting that the inner disk structure predicted by the model was incorrect. Aims: The first aim of the present paper is to quantify the temporal variations of the shell-line characteristics of ζ Tauri. The second aim is to better understand the physics underlying the V/R phenomenon by modeling the shell-line variations together with the V/R and polarimetric variations. The third aim is to test a new 2.5D disk oscillation model, which solves the set of equations that describe the 3D perturbed disk structure but keeps only the equatorial (i.e., 2D) component of the solution. This approximation was adopted to allow comparisons with the previous 2D model, and as a first step toward a future 3D model. Methods: We carried out an extensive analysis of ζ Tauri's spectroscopic variations by measuring various quantities characterizing its Balmer line profiles: red and violet emission peak intensities (for Hα, Hβ, and Br15), depth and asymmetry of the shell absorption (for Hβ, Hγ, and Hδ), and the respective position (i.e., radial velocity) of each component. We attempted to model the observed variations by implementing in the radiative transfer code HDUST the perturbed disk structure computed with a recently developed 2.5D global-disk oscillation model. Results: The observational analysis indicates that the peak separation and the position of the shell absorption both exhibit variations following the V/R variations and, thus, may provide good diagnostic tools of the global-disk oscillation phenomenon. The shell absorption seems to become slightly shallower close to the V/R maximum, but the scarcity of the data does not allow the exact pattern to be identified. The asymmetry of the shell absorption does not seem to correlate with the V/R cycle; no significant variations of this parameter are observed, except during certain periods where Hα and Hβ exhibit perturbed emission profiles. The origin of these so-called triple-peak phases remains unknown. On the theoretical side, the new 2.5D formalism appears to improve the agreement with the observed V/R variations of Hα and Br15, under the proviso that a large value of the viscosity parameter, α = 0.8, be adopted. It remains challenging for the models to reproduce consistently the amplitude and the average level of the polarization data. The 2D formalism provides a better match to the peak separation, although the variation amplitude predicted by both the 2D and 2.5D models is smaller than the observed value. Shell-line variations are difficult for the models to reproduce, whatever formalism is adopted. Appendices are available in electronic form at http://www.aanda.org

  6. Effect of Microjet Injection on Supersonic Jet Noise

    NASA Technical Reports Server (NTRS)

    Zaman, K. B. M. Q.; Podboy, G. G.

    2010-01-01

    The effect of microjet (jet) injection on the noise from supersonic jets is investigated. Three convergent-divergent (C-D) nozzles and one convergent nozzle, all having the same exit diameters, are used in the study. The jets are injected perpendicular to the primary jet close to the nozzle lip from six equally-spaced ports having a jet-to-primary-jet diameter ratio of 0.0054. Effects in the over-expanded, fully expanded as well as underexpanded flow regimes are explored. Relative to the effect on subsonic jets, larger reductions in the overall sound pressure level (OASPL) are achieved in most supersonic conditions. The largest reductions are typically associated with suppression of screech and transonic tones. For a shock-free, fully expanded case, the OASPL reductions achieved are comparable to that in the subsonic case; the same correlation, found for subsonic jet noise reduction at shallow observation angle, applies.

  7. Optimizing injectable poly-L-lactic acid administration for soft tissue augmentation: The rationale for three treatment sessions

    PubMed Central

    Bauer, Ute; Graivier, Miles H

    2011-01-01

    BACKGROUND: The availability and variety of different injectable modalities has led to a dramatic increase in soft tissue augmentation procedures in recent years. Injectable poly-L-lactic acid (PLLA) is a synthetic, biodegradable polymer device approved in the United States for use in immunocompetent patients as a single regimen of up to four treatment sessions for correction of shallow to deep nasolabial fold contour deficiencies and other facial wrinkles. Injectable PLLA is also approved for restoration and/or correction of signs of facial fat loss (lipoatrophy) in individuals with HIV. METHODS: The present article provides an overview of previous studies with injectable PLLA, and specifically focuses on the number of recommended treatment sessions and intervals between treatment sessions. The authors also provide two case studies to support their recommendations for an average of three treatment sessions. RESULTS: Although the specific mechanisms remain hypothetical, injections of PLLA are believed to cause a cascade of cellular events that lead to collagen repair and subsequent restoration of facial volume. Because the development of a response to injectable PLLA is gradual and its duration of effect is long lasting, sufficient time between treatment sessions should be allocated to avoid overcorrection. CONCLUSION: Studies of injectable PLLA support the hypothesized mode of operation, and the experience and clinical recommendations of the authors that suggest that three treatment sessions are an optimal regimen for use of injectable PLLA in the majority of patients. PMID:22942665

  8. Time series geophysical monitoring of permanganate injections and in situ chemical oxidation of PCE, OU1 area, Savage Superfund Site, Milford, NH, USA

    NASA Astrophysics Data System (ADS)

    Harte, Philip T.; Smith, Thor E.; Williams, John H.; Degnan, James R.

    2012-05-01

    In situ chemical oxidation (ISCO) treatment with sodium permanganate, an electrically conductive oxidant, provides a strong electrical signal for tracking of injectate transport using time series geophysical surveys including direct current (DC) resistivity and electromagnetic (EM) methods. Effective remediation is dependent upon placing the oxidant in close contact with the contaminated aquifer. Therefore, monitoring tools that provide enhanced tracking capability of the injectate offer considerable benefit to guide subsequent ISCO injections. Time-series geophysical surveys were performed at a superfund site in New Hampshire, USA over a one-year period to identify temporal changes in the bulk electrical conductivity of a tetrachloroethylene (PCE; also called tetrachloroethene) contaminated, glacially deposited aquifer due to the injection of sodium permanganate. The ISCO treatment involved a series of pulse injections of sodium permanganate from multiple injection wells within a contained area of the aquifer. After the initial injection, the permanganate was allowed to disperse under ambient groundwater velocities. Time series geophysical surveys identified the downward sinking and pooling of the sodium permanganate atop of the underlying till or bedrock surface caused by density-driven flow, and the limited horizontal spread of the sodium permanganate in the shallow parts of the aquifer during this injection period. When coupled with conventional monitoring, the surveys allowed for an assessment of ISCO treatment effectiveness in targeting the PCE plume and helped target areas for subsequent treatment.

  9. Time series geophysical monitoring of permanganate injections and in situ chemical oxidation of PCE, OU1 area, Savage Superfund Site, Milford, NH, USA

    USGS Publications Warehouse

    Harte, Philip T.; Smith, Thor E.; Williams, John H.; Degnan, James R.

    2012-01-01

    In situ chemical oxidation (ISCO) treatment with sodium permanganate, an electrically conductive oxidant, provides a strong electrical signal for tracking of injectate transport using time series geophysical surveys including direct current (DC) resistivity and electromagnetic (EM) methods. Effective remediation is dependent upon placing the oxidant in close contact with the contaminated aquifer. Therefore, monitoring tools that provide enhanced tracking capability of the injectate offer considerable benefit to guide subsequent ISCO injections. Time-series geophysical surveys were performed at a superfund site in New Hampshire, USA over a one-year period to identify temporal changes in the bulk electrical conductivity of a tetrachloroethylene (PCE; also called tetrachloroethene) contaminated, glacially deposited aquifer due to the injection of sodium permanganate. The ISCO treatment involved a series of pulse injections of sodium permanganate from multiple injection wells within a contained area of the aquifer. After the initial injection, the permanganate was allowed to disperse under ambient groundwater velocities. Time series geophysical surveys identified the downward sinking and pooling of the sodium permanganate atop of the underlying till or bedrock surface caused by density-driven flow, and the limited horizontal spread of the sodium permanganate in the shallow parts of the aquifer during this injection period. When coupled with conventional monitoring, the surveys allowed for an assessment of ISCO treatment effectiveness in targeting the PCE plume and helped target areas for subsequent treatment.

  10. Time series geophysical monitoring of permanganate injections and in situ chemical oxidation of PCE, OU1 area, Savage Superfund Site, Milford, NH, USA.

    PubMed

    Harte, Philip T; Smith, Thor E; Williams, John H; Degnan, James R

    2012-05-01

    In situ chemical oxidation (ISCO) treatment with sodium permanganate, an electrically conductive oxidant, provides a strong electrical signal for tracking of injectate transport using time series geophysical surveys including direct current (DC) resistivity and electromagnetic (EM) methods. Effective remediation is dependent upon placing the oxidant in close contact with the contaminated aquifer. Therefore, monitoring tools that provide enhanced tracking capability of the injectate offer considerable benefit to guide subsequent ISCO injections. Time-series geophysical surveys were performed at a superfund site in New Hampshire, USA over a one-year period to identify temporal changes in the bulk electrical conductivity of a tetrachloroethylene (PCE; also called tetrachloroethene) contaminated, glacially deposited aquifer due to the injection of sodium permanganate. The ISCO treatment involved a series of pulse injections of sodium permanganate from multiple injection wells within a contained area of the aquifer. After the initial injection, the permanganate was allowed to disperse under ambient groundwater velocities. Time series geophysical surveys identified the downward sinking and pooling of the sodium permanganate atop of the underlying till or bedrock surface caused by density-driven flow, and the limited horizontal spread of the sodium permanganate in the shallow parts of the aquifer during this injection period. When coupled with conventional monitoring, the surveys allowed for an assessment of ISCO treatment effectiveness in targeting the PCE plume and helped target areas for subsequent treatment. Published by Elsevier B.V.

  11. Investigating the Capabilities of Ground Penetrating Radar for Imaging Shallow Experimental Fractures

    NASA Astrophysics Data System (ADS)

    Dogan, M.; Moysey, S. M.; Murdoch, L. C.; Denison, J. L. S.; Ahmadian, M.

    2017-12-01

    We have used ground penetrating radar (GPR) to image fractures formed in shallow sediments as a result of high-pressure injection. Understanding fracture formation and behavior is important for a variety of reasons, ranging from validating fracture formation theories to characterizing fracture networks induced for enhancing recovery schemes in low permeability rocks. GPR is a high resolution geophysical method that is sensitive to electromagnetic property changes in the subsurface. The resolution of GPR is, however, typically on the order of ¼ of the wavelength, which for the 900MHz GPR data is on the order of 2-5cm. Thus it was not clear prior to the experiment whether it would be possible for GPR to image the fractures formed during the injection. We found that the GPR was indeed able to image the fractures very well as they evolved through time. Over the course of the experiment, we were able to collect pseudo-3D data that allowed us to monitor the growth of the fracture over time. The experiment was also repeated for different injection materials to examine how the fill in the fractures impacts the GPR signal. From the GPR data we are able to reconstruct the approximate three-dimensional shape of the facture over time. At the end of the experiment, the experimental cells were trenched so that the actual fracture distribution could be mapped. Overall, the GPR interpretation showed reasonable agreement with what we could observed in the trenches. The experimental results suggest that GPR characterization of fractures is feasible.

  12. Interpreting DNAPL saturations in a laboratory-scale injection using one- and two-dimensional modeling of GPR Data

    USGS Publications Warehouse

    Johnson, R.H.; Poeter, E.P.

    2005-01-01

    Ground-penetrating radar (GPR) is used to track a dense non-aqueous phase liquid (DNAPL) injection in a laboratory sand tank. Before modeling, the GPR data provide a qualitative image of DNAPL saturation and movement. One-dimensional (1D) GPR modeling provides a quantitative interpretation of DNAPL volume within a given thickness during and after the injection. DNAPL saturation in sublayers of a specified thickness could not be quantified because calibration of the 1D GPR model is nonunique when both permittivity and depth of multiple layers are unknown. One-dimensional GPR modeling of the sand tank indicates geometric interferences in a small portion of the tank. These influences are removed from the interpretation using an alternate matching target. Two-dimensional (2D) GPR modeling provides a qualitative interpretation of the DNAPL distribution through pattern matching and tests for possible 2D influences that are not accounted for in the 1D GPR modeling. Accurate quantitative interpretation of DNAPL volumes using GPR modeling requires (1) identification of a suitable target that produces a strong reflection and is not subject to any geometric interference; (2) knowledge of the exact depth of that target; and (3) use of two-way radar-wave travel times through the medium to the target to determine the permittivity of the intervening material, which eliminates reliance on signal amplitude. With geologic conditions that are suitable for GPR surveys (i.e., shallow depths, low electrical conductivities, and a known reflective target), the procedures in this laboratory study can be adapted to a field site to delineate shallow DNAPL source zones.

  13. SUSTAINED TURBULENCE IN DIFFERENTIALLY ROTATING MAGNETIZED FLUIDS AT A LOW MAGNETIC PRANDTL NUMBER

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nauman, Farrukh; Pessah, Martin E., E-mail: nauman@nbi.ku.dk

    2016-12-20

    We show for the first time that sustained turbulence is possible at a low magnetic Prandtl number in local simulations of Keplerian flows with no mean magnetic flux. Our results indicate that increasing the vertical domain size is equivalent to increasing the dynamical range between the energy injection scale and the dissipative scale. This has important implications for a large variety of differentially rotating systems with low magnetic Prandtl number such as protostellar disks and laboratory experiments.

  14. Global Sampling for Integrating Physics-Specific Subsystems and Quantifying Uncertainties of CO 2 Geological Sequestration

    DOE PAGES

    Sun, Y.; Tong, C.; Trainor-Guitten, W. J.; ...

    2012-12-20

    The risk of CO 2 leakage from a deep storage reservoir into a shallow aquifer through a fault is assessed and studied using physics-specific computer models. The hypothetical CO 2 geological sequestration system is composed of three subsystems: a deep storage reservoir, a fault in caprock, and a shallow aquifer, which are modeled respectively by considering sub-domain-specific physics. Supercritical CO 2 is injected into the reservoir subsystem with uncertain permeabilities of reservoir, caprock, and aquifer, uncertain fault location, and injection rate (as a decision variable). The simulated pressure and CO 2/brine saturation are connected to the fault-leakage model as amore » boundary condition. CO 2 and brine fluxes from the fault-leakage model at the fault outlet are then imposed in the aquifer model as a source term. Moreover, uncertainties are propagated from the deep reservoir model, to the fault-leakage model, and eventually to the geochemical model in the shallow aquifer, thus contributing to risk profiles. To quantify the uncertainties and assess leakage-relevant risk, we propose a global sampling-based method to allocate sub-dimensions of uncertain parameters to sub-models. The risk profiles are defined and related to CO 2 plume development for pH value and total dissolved solids (TDS) below the EPA's Maximum Contaminant Levels (MCL) for drinking water quality. A global sensitivity analysis is conducted to select the most sensitive parameters to the risk profiles. The resulting uncertainty of pH- and TDS-defined aquifer volume, which is impacted by CO 2 and brine leakage, mainly results from the uncertainty of fault permeability. Subsequently, high-resolution, reduced-order models of risk profiles are developed as functions of all the decision variables and uncertain parameters in all three subsystems.« less

  15. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sun, Y.; Tong, C.; Trainor-Guitten, W. J.

    The risk of CO 2 leakage from a deep storage reservoir into a shallow aquifer through a fault is assessed and studied using physics-specific computer models. The hypothetical CO 2 geological sequestration system is composed of three subsystems: a deep storage reservoir, a fault in caprock, and a shallow aquifer, which are modeled respectively by considering sub-domain-specific physics. Supercritical CO 2 is injected into the reservoir subsystem with uncertain permeabilities of reservoir, caprock, and aquifer, uncertain fault location, and injection rate (as a decision variable). The simulated pressure and CO 2/brine saturation are connected to the fault-leakage model as amore » boundary condition. CO 2 and brine fluxes from the fault-leakage model at the fault outlet are then imposed in the aquifer model as a source term. Moreover, uncertainties are propagated from the deep reservoir model, to the fault-leakage model, and eventually to the geochemical model in the shallow aquifer, thus contributing to risk profiles. To quantify the uncertainties and assess leakage-relevant risk, we propose a global sampling-based method to allocate sub-dimensions of uncertain parameters to sub-models. The risk profiles are defined and related to CO 2 plume development for pH value and total dissolved solids (TDS) below the EPA's Maximum Contaminant Levels (MCL) for drinking water quality. A global sensitivity analysis is conducted to select the most sensitive parameters to the risk profiles. The resulting uncertainty of pH- and TDS-defined aquifer volume, which is impacted by CO 2 and brine leakage, mainly results from the uncertainty of fault permeability. Subsequently, high-resolution, reduced-order models of risk profiles are developed as functions of all the decision variables and uncertain parameters in all three subsystems.« less

  16. Time-lapse 3-D seismic imaging of shallow subsurface contaminant flow.

    PubMed

    McKenna, J; Sherlock, D; Evans, B

    2001-12-01

    This paper presents a physical modelling study outlining a technique whereby buoyant contaminant flow within water-saturated unconsolidated sand was remotely monitored utilizing the time-lapse 3-D (TL3-D) seismic response. The controlled temperature and pressure conditions, along with the high level of acquisition repeatability attainable using sandbox physical models, allow the TL3-D seismic response to pore fluid movement to be distinguished from all other effects. TL3-D seismic techniques are currently being developed to monitor hydrocarbon reserves within producing reservoirs in an endeavour to improve overall recovery. However, in many ways, sandbox models under atmospheric conditions more accurately simulate the shallow subsurface than petroleum reservoirs. For this reason, perhaps the greatest application for analogue sandbox modelling is to improve our understanding of shallow groundwater and environmental flow mechanisms. Two fluid flow simulations were conducted whereby air and kerosene were injected into separate water-saturated unconsolidated sand models. In both experiments, a base 3-D seismic volume was recorded and compared with six later monitor surveys recorded while the injection program was conducted. Normal incidence amplitude and P-wave velocity information were extracted from the TL3-D seismic data to provide visualization of contaminant migration. Reflection amplitudes displayed qualitative areal distribution of fluids when a suitable impedance contrast existed between pore fluids. TL3-D seismic reflection tomography can potentially monitor the change in areal distribution of fluid contaminants over time, indicating flow patterns. However, other research and this current work have not established a quantifiable relationship between either normal reflection amplitudes and attenuation and fluid saturation. Generally, different pore fluids will have unique seismic velocities due to differences in compressibility and density. The predictable relationships that exist between P-wave velocity and fluid saturation can allow a quantitative assessment of contaminant migration.

  17. Metal-organic framework mixed-matrix disks: Versatile supports for automated solid-phase extraction prior to chromatographic separation.

    PubMed

    Ghani, Milad; Font Picó, Maria Francesca; Salehinia, Shima; Palomino Cabello, Carlos; Maya, Fernando; Berlier, Gloria; Saraji, Mohammad; Cerdà, Víctor; Turnes Palomino, Gemma

    2017-03-10

    We present for the first time the application of metal-organic framework (MOF) mixed-matrix disks (MMD) for the automated flow-through solid-phase extraction (SPE) of environmental pollutants. Zirconium terephthalate UiO-66 and UiO-66-NH 2 MOFs with different size (90, 200 and 300nm) have been incorporated into mechanically stable polyvinylidene difluoride (PVDF) disks. The performance of the MOF-MMDs for automated SPE of seven substituted phenols prior to HPLC analysis has been evaluated using the sequential injection analysis technique. MOF-MMDs enabled the simultaneous extraction of phenols with the concomitant size exclusion of molecules of larger size. The best extraction performance was obtained using a MOF-MMD containing 90nm UiO-66-NH 2 crystals. Using the selected MOF-MMD, detection limits ranging from 0.1 to 0.2μgL -1 were obtained. Relative standard deviations ranged from 3.9 to 5.3% intra-day, and 4.7-5.7% inter-day. Membrane batch-to-batch reproducibility was from 5.2 to 6.4%. Three different groundwater samples were analyzed with the proposed method using MOF-MMDs, obtaining recoveries ranging from 90 to 98% for all tested analytes. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. CO2 geosequestration at the laboratory scale: Combined geophysical and hydromechanical assessment of weakly-cemented shallow Sleipner-like reservoirs

    NASA Astrophysics Data System (ADS)

    Falcon-Suarez, I.; North, L. J.; Best, A. I.

    2017-12-01

    To date, the most promising mitigation strategy for reducing global carbon emissions is Carbon Capture and Storage (CCS). The storage technology (i.e., CO2 geosequestration, CGS) consists of injecting CO2 into deep geological formations, specifically selected for such massive-scale storage. To guarantee the mechanical stability of the reservoir during and after injection, it is crucial to improve existing monitoring techniques for controlling CGS activities. We developed a comprehensive experimental program to investigate the integrity of the Sleipner CO2 storage site in the North Sea - the first commercial CCS project in history where 1 Mtn/y of CO2 has been injected since 1996. We assessed hydro-mechanical effects and the related geophysical signatures of three synthetic sandstones and samples from the Utsira Sand formation (main reservoir at Sleipner), at realistic pressure-temperature (PT) conditions and fluid compositions. Our experimental approach consists of brine-CO2 flow-through tests simulating variable inflation/depletion scenarios, performed in the CGS-rig (Fig. 1; Falcon-Suarez et al., 2017) at the National Oceanography Centre (NOC) in Southampton. The rig is designed for simultaneous monitoring of ultrasonic P- and S-wave velocities and attenuations, electrical resistivity, axial and radial strains, pore pressure and flow, during the co-injection of up to two fluids under controlled PT conditions. Our results show velocity-resistivity and seismic-geomechanical relations of practical importance for the distinction between pore pressure and pore fluid distribution during CGS activities. By combining geophysical and thermo-hydro-mechano-chemical coupled information, we can provide laboratory datasets that complement in situ seismic, geomechanical and electrical survey information, useful for the CO2 plume monitoring in Sleipner site and other shallow weakly-cemented sand CCS reservoirs. Falcon-Suarez, I., Marín-Moreno, H., Browning, F., Lichtschlag, A., Robert, K., North, L.J., Best, A.I., 2017. Experimental assessment of pore fluid distribution and geomechanical changes in saline sandstone reservoirs during and after CO2 injection. International Journal of Greenhouse Gas Control 63, 356-369.

  19. The Design and Development of a Computer Game on Insulin Injection

    PubMed Central

    Ebrahimpour, Fatemeh; Najafi, Mostafa; Sadeghi, Narges

    2014-01-01

    Background: Insulin therapy is of high importance in glycemic control and prevention of complications in type 1 diabetes in children. However, this treatment is unpleasant and stressful for many children, and it is difficult for them to accept. The purpose of the study was to design and develop an educational computer game for diabetic children to familiarize them with insulin injections. Methods: After a review of the literature and the collection of basic information, we discussed the purpose of this research with some diabetic children, their parents, and nurses. The findings that we acquired from the discussion were considered in designing and developing the game. Then, following the principles associated with the development of computer games, we developed seven different games that related to insulin injections, and the games were evaluated in a pilot study. Results: The games developed through the design and programming environment of Adobe Flash Player and stored on a computer disk (CD). The seven games were a pairs game, a puzzle game, a question and answer game, an insulin kit game, a drawing room game, a story game, and an insulin injection-room game). The idea was that diabetic children could become acquainted with insulin injections and the injection toolkit by playing a variety of entertaining and fun games. They also learned about some of the issues associated with insulin and experienced insulin injection in a simulated environment. Conclusions: It seems that the use of new technologies, such as computer games, can influence diabetic children’s acquaintance with the correct method of insulin injection, psychological readiness to initiate insulin therapy, reduction in stress, anxiety, and fear of insulin injection. PMID:25763157

  20. Top-down Controls on Bacterial Transport in Oxic and Suboxic Subsurface Environments

    NASA Astrophysics Data System (ADS)

    Choi, K.; Dobbs, F. C.

    2001-12-01

    The purpose of this investigation was to assess the impact of top-down processes (protistan grazing and viral infection) on bacterial transport through a shallow, unconfined, sandy aquifer at the Department of Energy study site in Oyster, Virginia. A cultured, adhesion-deficient, viably stained, indigenous bacterial strain (DA001) was injected during a field experiment performed at an oxic site in October 1999, while DA001 and an iron-reducing bacterial strain (OY107) were co-injected at a nearby suboxic site in July 2001. Groundwater samples were collected before and after injection and abundance of protists and virus-like particles (the latter at the oxic site only) was determined. Three major groups of protists (flagellates, amoebae, and ciliates) were found at both sites during the experiments, with flagellate abundance greatly dominating the others. Following bacterial injections, concentrations up to 5000 and 3000 protists per ml were observed at the oxic and suboxic sites, respectively. However, removal of bacteria in groundwater by predation, estimated with a mass balance approach, was apparently minimal. Elevated hydraulic gradients during the injections may explain the estimated low impact of predation. The abundance of virus-like particles increased as much as six-fold in the month following injection of DA001 at the oxic site, yet plaque assays revealed no evidence supporting lytic infection of the injected bacteria.

  1. Spectral and Temporal Properties of Galactic Black Hole Systems

    NASA Technical Reports Server (NTRS)

    Wheeler, J. Craig

    1997-01-01

    Kusunose, Mineshige & Yamada (1996; hereafter KMY) extended the model of Kusunose & Mineshige (1995) to the Galactic black hole candidates by considering nonthermal electron injection with gamma(EQ\\0(,\\s\\up2(less than),\\s\\do-l(_))) 10. The effects of pair escape and advection on the disk structure and general relativistic effects on the emission spectrum were also examined. They found that the energy spectral index (alpha)(sub x) of the power law X-rays is about-0.8 and-2.0 when 1(sub soft)/1 = 0.2 and 2, respectively, where 1(sub soft)/1 is the ratio of the compactness of the injected soft photons to that of the gravitational energy. The power law index was found to be nearly independent of the mass accretion which is consistent with the observed luminosity independence. The model with small 1(sub soft)/1 (less than 1) shows promise for explaining the low state observed in Galactic black hole candidates. Model fits were provided for GX339-4 and Cyg X- 1 data from COMPTEL and OSSE on the Compton Gamma Ray Observatory. The difference in emission spectra between thermal disks and the model of KMY appears only in the energy range greater than 100 keV. Li, Kusunose and Liang (1996) studied stochastic particle acceleration to produce nonthermal particle distributions which then were used in the model of Kusunose & Mineshige (1995) to model the spectrum above 1 Mev from GBHC's. Under certain conditions, stochastic electron acceleration overcame Coulomb and Compton losses resulting in a suprathermal electron population. Good fits were obtained by COMPTEL and OSSE observations of Cyg X-1 and GRO J0422+23. Kusunose & Mineshige (1996a) examined the role of electron-positron pairs in advection-dominated disks. They found that the results for advection-dominated disks without pairs are not qualitatively changed by including pairs. Summaries of work sponsored by this grant are given in Wheeler, Kim, Moscoso, Kusunose & Mineshige (1996) and Kusunose (1996) Work was also done on developing a model for an e(+-) pair wind from the inner disk region of a black hole. The model consists of three zones: a pair production/annihilation zone at the base of the wind, a pair annihilation zone slightly further out from the disk and a wind zone extending to infinity where no annihilation occurs. The model assumes an input X-ray / gamma-ray power-law spectrum as a function of photon energy and angular distribution. Pairs are created in the pair production/annihilation zone via photon-photon, photonparticle and particle-particle collisions. The bulk velocity of the pairs is obtained from the momentum component perpendicular to the disk taking into account the radiation pressure acceleration of the pairs. Energy balance in the pair production/annihilation zone is calculated by assuming that the momentum component parallel to the disk is thermalized and by taking into account heating/cooling via anisotropic thermal Compton scattering along with the cooling processes of bremsstrahlung and synchrotron radiation. The pair density is also calculated. The outer boundary of the pair production/annihilation zone is where the optical depth for photon-photon pair produciton is unity. Beyond this point only pair annihilation will occur in the pair annihilation zone. When the pair density becomes small, pair annihilation will be negligible and the pairs will flow freely to infinity. In this model we have found that the X-ray power-law spectral index, alpha(sub x) is the primary parameter which determines the density, temperature and velocity of the pair production/annihilation zone (Moscoso, Kusunose & Wheeler 1996).

  2. Modifiying shallow-water equations as a model for wave-vortex turbulence

    NASA Astrophysics Data System (ADS)

    Mohanan, A. V.; Augier, P.; Lindborg, E.

    2017-12-01

    The one-layer shallow-water equations is a simple two-dimensional model to study the complex dynamics of the oceans and the atmosphere. We carry out forced-dissipative numerical simulations, either by forcing medium-scale wave modes, or by injecting available potential energy (APE). With pure wave forcing in non-rotating cases, a statistically stationary regime is obtained for a range of forcing Froude numbers Ff = ɛ /(kf c), where ɛ is the energy dissipation rate, kf the forcing wavenumber and c the wave speed. Interestingly, the spectra scale as k-2 and third and higher order structure functions scale as r. Such statistics is a manifestation of shock turbulence or Burgulence, which dominate the flow. Rotating cases exhibit some inverse energy cascade, along with a stronger forward energy cascade, dominated by wave-wave interactions. We also propose two modifications to the classical shallow-water equations to construct a toy model. The properties of the model are explored by forcing in APE at a small and a medium wavenumber. The toy model simulations are then compared with results from shallow-water equations and a full General Circulation Model (GCM) simulation. The most distinctive feature of this model is that, unlike shallow-water equations, it avoids shocks and conserves quadratic energy. In Fig. 1, for the shallow-water equations, shocks appear as thin dark lines in the divergence (∇ .{u}) field, and as discontinuities in potential temperature (θ ) field; whereas only waves appear in the corresponding fields from toy model simulation. Forward energy cascade results in a wave field with k-5/3 spectrum, along with equipartition of KE and APE at small scales. The vortical field develops into a k-3 spectrum. With medium forcing wavenumber, at large scales, energy converted from APE to KE undergoes inverse cascade as a result of nonlinear fluxes composed of vortical modes alone. Gradually, coherent vortices emerge with a strong preference for anticyclonic motion. The model can serve as a closer representation of real geophysical turbulence than the classical shallow-water equations. Fig 1. Divergence and potential temperature fields of shallow-water (top row) and toy model (bottom row) simulations.

  3. Physics-Based Spectra of Accretion Disks around Black Holes

    NASA Technical Reports Server (NTRS)

    Krolik, Julian H.

    2005-01-01

    The purpose of this grant was to begin the process of deriving the light output of accretion disks around black holes directly from the actual processes that inject heat into the accreting matter, rather than from guessed dependences of heating rate on physical parameters. At JHU, the effort has focussed so far on models of accretion onto "intermediate mass black holes", a possible class of black holes, examples of which may have recently been discovered in nearby galaxies. There, Krolik and his student (Yawei Hui) have computed stellar atmospheres for uniformly-heated disks around this class of black holes. Their models serve two purposes: they are the very first serious attempts to compute the spectrum from accreting black holes in this mass range; and a library of such models can be used later in this program as contrasts for those computed on the basis of real disk dynamics. The output from these local disk calculations has also been successfully coupled to a program that applies the appropriate relativistic transformations and computes photon trajectories in order to predict the spectrum received by observers located at different polar angles. The principal new result of these calculations is the discovery of potentially observable ionization edges of H-like C and O at frequencies near the peak in flux from these objects. Most of the grant money at UCSB was spent on supporting graduate student Shane Davis. In addition. some money was spent on supporting two other students: Ari Socrates (now a Hubble Fellow at Princeton), and Laura Melling. Davis spent the year constructing stellar atmosphere models of accretion disks appropriate for the high/soft (thermal) state of black hole X-ray binaries. As with AGN models published previously by our collaboration with NASA support. our models include a complete general relativistic treatment of both the disk structure and the propagation of photons from the disk to a distant observer. They also include all important continuum opacity sources, including Compton scattering and bound-free opacity from abundant metal species. The principal new result is that bound-free opacity is very significant in altering the continuum spectral shape, resulting for example in quite different "color correction factors" compared to those predicted previously. In addition, the models predict a relationship between luminosity and inner disk temperature that is, for the first time, in accord with that observed. The primary purpose of the grant was to incorporate more realistic accretion disk physics, learned largely from simulations, into such spectral models. The Davis et al. paper includes consideration of a vertical dissipation profile computed from radiation magneto-hydrodynamic simulations of MRI turbulence by N. J. Turner (2004). So long as the disk is effectively thick, such dissipation profiles do not affect the predicted spectrum significantly. (More work needs to be done on these simulations, however.) A potentially more serious issue is that MRI turbulence produces substantial inhomogeneities, as do photon bubble instabilities. These inhomogeneities can affect the spectra by enhancing the effects of absorption opacity over scattering opacity. We have done some preliminary Monte Carlo calculations to explore these effects.

  4. The effect of heterogeneity identifying the leakage of carbon dioxide in a shallow aquifer: an experimental study

    NASA Astrophysics Data System (ADS)

    Ha, S. W.; Lee, S. H.; Jeon, W. T.; Joo, Y. J.; Lee, K. K.

    2014-12-01

    Carbon dioxide (CO2) leakage into the shallow aquifer is one of the main concerns at a CO2 sequestration site. Various hydrogeochemical parameters have been suggested to determine the leakage (i.e., pH, EC, Alkalinity, Ca and δ13C). For the practical point of view, direct and continuous measurement of the dissolved CO2 concentration at the proper location can be the most useful strategy for the CO2 leakage detection in a shallow aquifer. In order to enhance possibility of identifying leaked CO2, monitoring location should be determined with regard to the shallow aquifer heterogeneity. In this study, a series of experiments were conducted to investigate the effects of heterogeneity on the dissolved CO2 concentrations. A 2-D sand tank of homogeneous medium sands including a single heterogeneity layer was designed. Two NDIR CO2 sensors, modified for continuous measuring in aquatic system, were installed above and below the single heterogeneous layer (clay, fine and medium sand lenses). Also, temperature and water contents were measured continuously at a same position. Bromocresol purple which is one of the acid-base indicator was used to visualize CO2 migration. During the gas phase CO2 injection at the bottom of the sand tank, dissolved CO2 in the water is continuously measured. In the results, significant differences of concentrations were observed due to the presence of heterogeneity layer, even the locations were close. These results suggested that monitoring location should be determined considering vertical heterogeneity of shallow aquifer at a CO2 leakage site.

  5. Shallow Aquifer Vulnerability From Subsurface Fluid Injection at a Proposed Shale Gas Hydraulic Fracturing Site

    NASA Astrophysics Data System (ADS)

    Wilson, M. P.; Worrall, F.; Davies, R. J.; Hart, A.

    2017-11-01

    Groundwater flow resulting from a proposed hydraulic fracturing (fracking) operation was numerically modeled using 91 scenarios. Scenarios were chosen to be a combination of hydrogeological factors that a priori would control the long-term migration of fracking fluids to the shallow subsurface. These factors were induced fracture extent, cross-basin groundwater flow, deep low hydraulic conductivity strata, deep high hydraulic conductivity strata, fault hydraulic conductivity, and overpressure. The study considered the Bowland Basin, northwest England, with fracking of the Bowland Shale at ˜2,000 m depth and the shallow aquifer being the Sherwood Sandstone at ˜300-500 m depth. Of the 91 scenarios, 73 scenarios resulted in tracked particles not reaching the shallow aquifer within 10,000 years and 18 resulted in travel times less than 10,000 years. Four factors proved to have a statistically significant impact on reducing travel time to the aquifer: increased induced fracture extent, absence of deep high hydraulic conductivity strata, relatively low fault hydraulic conductivity, and magnitude of overpressure. Modeling suggests that high hydraulic conductivity formations can be more effective barriers to vertical flow than low hydraulic conductivity formations. Furthermore, low hydraulic conductivity faults can result in subsurface pressure compartmentalization, reducing horizontal groundwater flow, and encouraging vertical fluid migration. The modeled worst-case scenario, using unlikely geology and induced fracture lengths, maximum values for strata hydraulic conductivity and with conservative tracer behavior had a particle travel time of 130 years to the base of the shallow aquifer. This study has identified hydrogeological factors which lead to aquifer vulnerability from shale exploitation.

  6. Effects of phencyclidine, secobarbital and diazepam on eye tracking in rhesus monkeys.

    PubMed

    Ando, K; Johanson, C E; Levy, D L; Yasillo, N J; Holzman, P S; Schuster, C R

    1983-01-01

    Rhesus monkeys were trained to track a moving disk using a procedure in which responses on a lever were reinforced with water delivery only when the disk, oscillating in a horizontal plane on a screen at a frequency of 0.4 Hz in a visual angle of 20 degrees, dimmed for a brief period. Pursuit eye movements were recorded by electrooculography (EOG). IM phencyclidine, secobarbital, and diazepam injections decreased the number of reinforced lever presses in a dose-related manner. Both secobarbital and diazepam produced episodic jerky-pursuit eye movements, while phencyclidine had no consistent effects on eye movements. Lever pressing was disrupted at doses which had little effect on the quality of smooth-pursuit eye movements in some monkeys. This separation was particularly pronounced with diazepam. The similarities of the drug effects on smooth-pursuit eye movements between the present study and human studies indicate that the present method using rhesus monkeys may be useful for predicting drug effects on eye tracking and oculomotor function in humans.

  7. Baryons Matter: Why Luminous Satellite Galaxies have Reduced Central Masses

    NASA Astrophysics Data System (ADS)

    Zolotov, Adi; Brooks, Alyson M.; Willman, Beth; Governato, Fabio; Pontzen, Andrew; Christensen, Charlotte; Dekel, Avishai; Quinn, Tom; Shen, Sijing; Wadsley, James

    2012-12-01

    Using high-resolution cosmological hydrodynamical simulations of Milky Way-massed disk galaxies, we demonstrate that supernovae feedback and tidal stripping lower the central masses of bright (-15 < MV < -8) satellite galaxies. These simulations resolve high-density regions, comparable to giant molecular clouds, where stars form. This resolution allows us to adopt a prescription for H2 formation and destruction that ties star formation to the presence of shielded, molecular gas. Before infall, supernova feedback from the clumpy, bursty star formation captured by this physically motivated model leads to reduced dark matter (DM) densities and shallower inner density profiles in the massive satellite progenitors (M vir >= 109 M ⊙, M * >= 107 M ⊙) compared with DM-only simulations. The progenitors of the lower mass satellites are unable to maintain bursty star formation histories, due to both heating at reionization and gas loss from initial star-forming events, preserving the steep inner density profile predicted by DM-only simulations. After infall, gas stripping from satellites reduces the total central masses of satellites simulated with DM+baryons relative to DM-only satellites. Additionally, enhanced tidal stripping after infall due to the baryonic disk acts to further reduce the central DM densities of the luminous satellites. Satellites that enter with cored DM halos are particularly vulnerable to the tidal effects of the disk, exacerbating the discrepancy in the central masses predicted by baryon+DM and DM-only simulations. We show that DM-only simulations, which neglect the highly non-adiabatic evolution of baryons described in this work, produce denser satellites with larger central velocities. We provide a simple correction to the central DM mass predicted for satellites by DM-only simulations. We conclude that DM-only simulations should be used with great caution when interpreting kinematic observations of the Milky Way's dwarf satellites.

  8. Numerical modeling of experimental observations on gas formation and multi-phase flow of carbon dioxide in subsurface formations

    NASA Astrophysics Data System (ADS)

    Pawar, R.; Dash, Z.; Sakaki, T.; Plampin, M. R.; Lassen, R. N.; Illangasekare, T. H.; Zyvoloski, G.

    2011-12-01

    One of the concerns related to geologic CO2 sequestration is potential leakage of CO2 and its subsequent migration to shallow groundwater resources leading to geochemical impacts. Developing approaches to monitor CO2 migration in shallow aquifer and mitigate leakage impacts will require improving our understanding of gas phase formation and multi-phase flow subsequent to CO2 leakage in shallow aquifers. We are utilizing an integrated approach combining laboratory experiments and numerical simulations to characterize the multi-phase flow of CO2 in shallow aquifers. The laboratory experiments involve a series of highly controlled experiments in which CO2 dissolved water is injected in homogeneous and heterogeneous soil columns and tanks. The experimental results are used to study the effects of soil properties, temperature, pressure gradients and heterogeneities on gas formation and migration. We utilize the Finite Element Heat and Mass (FEHM) simulator (Zyvoloski et al, 2010) to numerically model the experimental results. The numerical models capture the physics of CO2 exsolution, multi-phase fluid flow as well as sand heterogeneity. Experimental observations of pressure, temperature and gas saturations are used to develop and constrain conceptual models for CO2 gas-phase formation and multi-phase CO2 flow in porous media. This talk will provide details of development of conceptual models based on experimental observation, development of numerical models for laboratory experiments and modelling results.

  9. A HELIOSEISMIC SURVEY OF NEAR-SURFACE FLOWS AROUND ACTIVE REGIONS AND THEIR ASSOCIATION WITH FLARES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Braun, D. C., E-mail: dbraun@cora.nwra.com

    We use helioseismic holography to study the association of shallow flows with solar flare activity in about 250 large sunspot groups observed between 2010 and 2014 with the Helioseismic and Magnetic Imager on the Solar Dynamics Observatory. Four basic flow parameters: horizontal speed, horizontal component of divergence, vertical component of vorticity, and a vertical kinetic helicity proxy, are mapped for each active region (AR) during its passage across the solar disk. Flow indices are derived representing the mean and standard deviation of these parameters over magnetic masks and compared with contemporary measures of flare X-ray flux. A correlation exists formore » several of the flow indices, especially those based on the speed and the standard deviation of all flow parameters. However, their correlation with X-ray flux is similar to that observed with the mean unsigned magnetic flux density over the same masks. The temporal variation of the flow indices are studied, and a superposed epoch analysis with respect to the occurrence to 70 M and X-class flares is made. While flows evolve with the passage of the ARs across the disk, no discernible precursors or other temporal changes specifically associated with flares are detected.« less

  10. Transport of Gas and Solutes in Permeable Estuarine Sediments

    DTIC Science & Technology

    2010-09-30

    inhabited by microphytobenthos and seagrass . 2) To quantify the size range and composition of the gas bubbles in the sediment and the overlying water...characteristics of bubble ebullition in a shallow coastal environment with strong benthic photosynthesis (May 26-28). The goal was to determine the spatial and...each 50 μL air injection. Detection of small bubbles produced by benthic photosynthesis The goal was to assess whether the small bubbles

  11. Hydrogeochemical and mineralogical effects of sustained CO2 contamination in a shallow sandy aquifer: A field-scale controlled release experiment

    NASA Astrophysics Data System (ADS)

    Cahill, Aaron G.; Marker, Pernille; Jakobsen, Rasmus

    2014-02-01

    A shallow aquifer CO2 contamination experiment was performed to investigate evolution of water chemistry and sediment alteration following leakage from geological storage by physically simulating a leak from a hypothetical storage site. In a carbonate-free aquifer, in western Denmark, a total of 1600 kg of gas phase CO2 was injected at 5 and 10 m depth over 72 days through four inclined injection wells into aeolian and glacial sands. Water chemistry was monitored for pH, EC, and dissolved element evolution through an extensive network of multilevel sampling points over 305 days. Sediment cores were taken pre and postinjection and analyzed to search for effects on mineralogy and sediment properties. Results showed the simulated leak to evolve in two distinct phases; an advective elevated ion pulse followed by increasing persistent acidification. Spatial and temporal differences in evolution of phases suggest separate chemical mechanisms and geochemical signatures. Dissolved element concentrations developed exhibiting four behaviors: (1) advective pulse (Ca, Mg, Na, Si, Ba, and Sr), (2) pH sensitive abundance dependent (Al and Zn), (3) decreasing (Mn and Fe), and (4) unaffected (K). Concentration behaviors were characterized by: (1) a maximal front moving with advective flow, (2) continual increase in close proximity to the injection plane, (3) removal from solution, and (4) no significant change. Only Al was observed to exceed WHO guidelines, however significantly so (10-fold excess). The data indicate that pH is controlled by equilibrium with gibbsite which is again coupled to cation exchange processes. Pre and postinjection sediment analysis indicated alteration of sediment composition and properties including depletion of reactive mineral species.

  12. The resolution of reservoir dynamics with noise based technologies: A case study from the 2006 Basel injection experiment

    NASA Astrophysics Data System (ADS)

    Hillers, Gregor; Husen, Stephan; Obermann, Anne; Planes, Thomas; Campillo, Michel; Larose, Eric

    2014-05-01

    We explore the applicability of noise-based monitoring and imaging techniques in the context of the 2006 Basel stimulation experiment using data from five borehole velocimeters and five surface accelerometers located around the injection site. We observe a significant perturbation of medium properties associated with the reservoir stimulation. The transient perturbation, with a duration of 20-30 days, reaches its maximum about 15 days after shut in, when microseismic activity has ceased; it is thus associated with aseismic deformation. Inverting relative velocity change and decorrelation observations using techniques developed and applied on laboratory and local to regional seismological scales, we can image the associated deformation pattern. We discuss limits of the the frequency- and lapse-time dependent resolution and suggestions for improvements considering the 3-D network geometry together with wave propagation models. The depth sensitivity of the analyzed wave field indicates resolution of perturbation in the shallow parts of the sedimentary layer above the stimulated deep volume located in the crystalline base layer. The deformation pattern is similar to InSAR/satellite observations associated with CO2 sequestration experiments, and indicates the transfer of deformation beyond scales associated with the instantaneously stimulated volume. Our detection and localization of delayed induced shallow aseismic transient deformation indicates that monitoring the evolution of reservoir properties using the ambient seismic field provides observables that complement information obtained with standard microseismic approaches. The results constitute a significant advance for the resolution of reservoir dynamics; the technology has the potential to provide critical constraints in related geotechnical situations associated with fluid injection, fracking, (nuclear) waste management, and carbon capture and storage.

  13. Nutrient Runoff Losses from Liquid Dairy Manure Applied with Low-Disturbance Methods.

    PubMed

    Jokela, William; Sherman, Jessica; Cavadini, Jason

    2016-09-01

    Manure applied to cropland is a source of phosphorus (P) and nitrogen (N) in surface runoff and can contribute to impairment of surface waters. Tillage immediately after application incorporates manure into the soil, which may reduce nutrient loss in runoff as well as N loss via NH volatilization. However, tillage also incorporates crop residue, which reduces surface cover and may increase erosion potential. We applied liquid dairy manure in a silage corn ( L.)-cereal rye ( L.) cover crop system in late October using methods designed to incorporate manure with minimal soil and residue disturbance. These include strip-till injection and tine aerator-band manure application, which were compared with standard broadcast application, either incorporated with a disk or left on the surface. Runoff was generated with a portable rainfall simulator (42 mm h for 30 min) three separate times: (i) 2 to 5 d after the October manure application, (ii) in early spring, and (iii) after tillage and planting. In the postmanure application runoff, the highest losses of total P and dissolved reactive P were from surface-applied manure. Dissolved P loss was reduced 98% by strip-till injection; this result was not statistically different from the no-manure control. Reductions from the aerator band method and disk incorporation were 53 and 80%, respectively. Total P losses followed a similar pattern, with 87% reduction from injected manure. Runoff losses of N had generally similar patterns to those of P. Losses of P and N were, in most cases, lower in the spring rain simulations with fewer significant treatment effects. Overall, results show that low-disturbance manure application methods can significantly reduce nutrient runoff losses compared with surface application while maintaining residue cover better than incorporation by tillage. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.

  14. The NACA Apparatus for Studying the Formation and Combustion of Fuel Sprays and the Results from Preliminary Tests

    NASA Technical Reports Server (NTRS)

    Rothrock, A M

    1933-01-01

    This report describes the apparatus as designed and constructed at the Langley Memorial Aeronautical Laboratory, for studying the formation and combustion of fuel sprays under conditions closely simulating those occurring in a high-speed compression-ignition engine. The apparatus consists of a single-cylinder modified test engine, a fuel-injection system so designed that a single charge of fuel can be injected into the combustion chamber of the engine, an electric driving motor, and a high-speed photographic apparatus. The cylinder head of the engine has a vertical-disk form of combustion chamber whose sides are glass windows. When the fuel is injected into the combustion chamber, motion pictures at the rate of 2,000 per second are taken of the spray formation by means of spark discharges. When combustion takes place the light of the combustion is recorded on the same photographic film as the spray photographs. The report includes the results of some tests to determine the effect of air temperature, air flow, and nozzle design on the spray formation.

  15. An investigation of ground-water recharge by injection in the Palo Alto Baylands, California : hydraulic and chemical interactions; final report

    USGS Publications Warehouse

    Hamlin, S.N.

    1985-01-01

    The U.S. Geological Survey, in cooperation with the Santa Clara Valley Water District, has completed a study of ground-water recharge by injection in the Palo Alto baylands along San Francisco Bay, California. Selected wells within the Water District 's injection-extraction network were monitored to determine hydraulic and chemical interactions affecting well-field operation. The well field was installed to prevent and eliminate saline contamination in the local shallow aquifer system. The primary focus of this study is on factors that affect injection efficiency, specifically well and aquifer clogging. Mixing and break-through curves for major chemical constituents indicate ion exchange, adsorption, and dissolution reactions. Freshwater breakthrough was detected in water-level data, which reflected fluid-density change as well as head buildup. Dissolution of calcium carbonate caused by dilution of saline ground water probably accounts for an apparent increase in specific capacity possibly related to improved aquifer permeability. Adsorption evidently removed trace elements during passage of injected water through the aquifer. In terms of hydraulic and chemical compatibility, the well field is a viable system for ground-water recharge. Aquifer heterogeneity and operational constraints reduce the efficiency of the system. Efficiency may be maximized by careful attention to extraction distribution and quantity and to injection distribution, quantity, and water quality. (USGS)

  16. [Role of interventional radiology in diagnosis and management of the painful spine].

    PubMed

    Ruiz Santiago, Fernando; Castellano García, María Del Mar; Aparisi Rodríguez, Francisco

    2013-05-13

    The aim of this article is to perform a general review of the different radiological percutaneous procedures used to diagnose and treat the many causes of back pain. These procedures can be merely diagnostic, such as discography and biopsy, diagnostic and therapeutic, such as epidural and facets injections, or only therapeutic, such as vertebroplasty, decompressive techniques of the intervertebral disk and tumour ablation. We review the indications, advantages and complications of these techniques. Copyright © 2012 Elsevier España, S.L. All rights reserved.

  17. The Exoplant Migration Timescale from K2 Young Clusters

    NASA Astrophysics Data System (ADS)

    Rizzuto, Aaron C.; Mann, Andrew; Kraus, Adam L.; Ireland, Michael

    2017-01-01

    Planetary Migration models for close-in exoplanets(a < 0.1 AU, P < 20 days) can be loosely divided into three categories: Disk-driven migration, binary-star planet interaction, and planet-planet interaction. Disk migration, occurs over the lifetime of the protoplanetary disk (<5 Myr), while migration involving dynamical multi-body interactions operate on timescales of ~100’s of Myr to ~1Gyr, a lengthier process than disk migration. It is unclear which of these is the dominating mechanism.The K2 mission has measured planet formation timescales and migration pathways by sampling groups of stars at key pre-main-sequence ages: Over the past 10 campaigns, multiple groups of young stars have been observed by K2, ranging from the 10 Myr Upper Scorpius OB association, through the ˜120 Myr Pleiades, the ˜600-800 Myr Hyades and Praesepe moving groups, to the original Kepler Field. The frequency, orbital and compositional properties of the exoplanet population in these samples of different age, with careful treatment of detection completeness, will be sufficient to address the question of exoplanet migration as their host stars are settling onto the main sequence.We will present the initial results of a program to directly address the question of planet migration with a uniform injection-recovery tests on a new K2 detrending pipeline that is optimized for the particular case of young, rotationally variable stars in K2 to robustly measure the detectability of planets of differing size and orbit. Initial results point towards a migration timescale of 200-700 Myr, which is consistent with the slower planet-planet scattering or Kozai migration models.

  18. Proton Range Uncertainty Due to Bone Cement Injected Into the Vertebra in Radiation Therapy Planning

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lim, Young Kyung; Hwang, Ui-Jung; Shin, Dongho, E-mail: dongho@ncc.re.kr

    2011-10-01

    We wanted to evaluate the influence of bone cement on the proton range and to derive a conversion factor predicting the range shift by correcting distorted computed tomography (CT) data as a reference to determine whether the correction is needed. Two CT datasets were obtained with and without a bone cement disk placed in a water phantom. Treatment planning was performed on a set of uncorrected CT images with the bone cement disk, and the verification plan was applied to the same set of CT images with an effective CT number for the bone cement disk. The effective CT numbermore » was determined by measuring the actual proton range with the bone cement disk. The effects of CT number, thicknesses, and position of bone cement on the proton range were evaluated in the treatment planning system (TPS) to draw a conversion factor predicting the range shift by correcting the CT number of bone cement. The effective CT number of bone cement was 260 Hounsfield units (HU). The calculated proton range for native CT data was significantly shorter than the measured proton range. However, the calculated range for the corrected CT data with the effective CT number coincided exactly with the measured range. The conversion factor was 209.6 [HU . cm/mm] for bone cement and predicted the range shift by approximately correcting the CT number. We found that the heterogeneity of bone cement could cause incorrect proton ranges in treatment plans using CT images. With an effective CT number of bone cement derived from the proton range and relative stopping power, a more actual proton range could be calculated in the TPS. The conversion factor could predict the necessity for CT data correction with sufficient accuracy.« less

  19. Entrainment in Laboratory Simulations of Cumulus Cloud Flows

    NASA Astrophysics Data System (ADS)

    Narasimha, R.; Diwan, S.; Subrahmanyam, D.; Sreenivas, K. R.; Bhat, G. S.

    2010-12-01

    A variety of cumulus cloud flows, including congestus (both shallow bubble and tall tower types), mediocris and fractus have been generated in a water tank by simulating the release of latent heat in real clouds. The simulation is achieved through ohmic heating, injected volumetrically into the flow by applying suitable voltages between diametral cross-sections of starting jets and plumes of electrically conducting fluid (acidified water). Dynamical similarity between atmospheric and laboratory cloud flows is achieved by duplicating values of an appropriate non-dimensional heat release number. Velocity measurements, made by laser instrumentation, show that the Taylor entrainment coefficient generally increases just above the level of commencement of heat injection (corresponding to condensation level in the real cloud). Subsequently the coefficient reaches a maximum before declining to the very low values that characterize tall cumulus towers. The experiments also simulate the protected core of real clouds. Cumulus Congestus : Atmospheric cloud (left), simulated laboratory cloud (right). Panels below show respectively total heat injected and vertical profile of heating in the laboratory cloud.

  20. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dempsey, Adam B.; Curran, Scott; Reitz, Rolf D.

    The focus of the present paper was to characterize Reactivity Controlled Compression Ignition (RCCI) using a single-fuel approach of gasoline and gasoline mixed with a commercially available cetane improver on a multi-cylinder engine. RCCI was achieved by port-injecting a certification grade 96 research octane gasoline and direct-injecting the same gasoline mixed with various levels of a cetane improver, 2-ethylhexyl nitrate (EHN). The EHN volume percentages investigated in the direct-injected fuel were 10, 5, and 2.5%. The combustion phasing controllability and emissions of the different fueling combinations were characterized at 2300 rpm and 4.2 bar brake mean effective pressure over amore » variety of parametric investigations including direct injection timing, premixed gasoline percentage, and intake temperature. Comparisons were made to gasoline/diesel RCCI operation on the same engine platform at nominally the same operating condition. The experiments were conducted on a modern four cylinder light-duty diesel engine that was modified with a port-fuel injection system while maintaining the stock direct injection fuel system. The pistons were modified for highly premixed operation and feature an open shallow bowl design. The results indicate that the authority to control the combustion phasing through the fuel delivery strategy (e.g., direct injection timing or premixed gasoline percentage) is not a strong function of the EHN concentration in the direct-injected fuel. It was also observed that NOx emissions are a strong function of the global EHN concentration in-cylinder and the combustion phasing. Finally, in general, NOx emissions are significantly elevated for gasoline/gasoline+EHN operation compared with gasoline/diesel RCCI operation at a given operating condition.« less

  1. ALMA continuum observations of the protoplanetary disk AS 209. Evidence of multiple gaps opened by a single planet

    NASA Astrophysics Data System (ADS)

    Fedele, D.; Tazzari, M.; Booth, R.; Testi, L.; Clarke, C. J.; Pascucci, I.; Kospal, A.; Semenov, D.; Bruderer, S.; Henning, Th.; Teague, R.

    2018-02-01

    This paper presents new high angular resolution ALMA 1.3 mm dust continuum observations of the protoplanetary system AS 209 in the Ophiuchus star forming region. The dust continuum emission is characterized by a main central core and two prominent rings at r = 75 au and r = 130 au intervaled by two gaps at r = 62 au and r = 103 au. The two gaps have different widths and depths, with the inner one being narrower and shallower. We determined the surface density of the millimeter dust grains using the 3D radiative transfer disk code DALI. According to our fiducial model the inner gap is partially filled with millimeter grains while the outer gap is largely devoid of dust. The inferred surface density is compared to 3D hydrodynamical simulations (FARGO-3D) of planet-disk interaction. The outer dust gap is consistent with the presence of a giant planet (Mplanet 0.7 MSaturn); the planet is responsible for the gap opening and for the pile-up of dust at the outer edge of the planet orbit. The simulations also show that the same planet could be the origin of the inner gap at r = 62 au. The relative position of the two dust gaps is close to the 2:1 resonance and we have investigated the possibility of a second planet inside the inner gap. The resulting surface density (including location, width and depth of the two dust gaps) are in agreement with the observations. The properties of the inner gap pose a strong constraint to the mass of the inner planet (Mplanet < 0.1 MJ). In both scenarios (single or pair of planets), the hydrodynamical simulations suggest a very low disk viscosity (α < 10‑4). Given the young age of the system (0.5-1 Myr), this result implies that the formation of giant planets occurs on a timescale of ≲1 Myr. The reduced image (FITS file) is only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (http://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/610/A24

  2. Simulation of Orientation in Injection Molding of High Aspect Ratio Particle Thermoplastic Composites

    NASA Astrophysics Data System (ADS)

    Vélez-García, Gregorio M.; Ortman, Kevin C.; Eberle, Aaron P. R.; Wapperom, Peter; Baird, Donald G.

    2008-07-01

    A 2D coupled Hele-Shaw flow approximation for predicting the flow-induced orientation of high aspect ratio particles in injection molded composite parts is presented. For a highly concentrated short glass fiber PBT suspension, the impact of inter-particle interactions and the orientation at the gate is investigated for a center-gated disk using material parameters determined from rheometry. Experimental orientation is determined from confocal laser micrographs using the methods of ellipses. The constitutive equations are discretized using discontinuous Galerkin Finite Elements. Model predictions are significantly improved by using a localized orientation measured experimentally at the gate region instead of random or averaged gapwise measured orientation assumed in previous studies. The predicted profile in different radial positions can be related to the layered structure along the gapwise direction. Model modifications including interactions have lower impact than the initial conditions.

  3. Symptomatic magnetic resonance imaging-confirmed lumbar disk herniation patients: a comparative effectiveness prospective observational study of 2 age- and sex-matched cohorts treated with either high-velocity, low-amplitude spinal manipulative therapy or imaging-guided lumbar nerve root injections.

    PubMed

    Peterson, Cynthia K; Leemann, Serafin; Lechmann, Marco; Pfirrmann, Christian W A; Hodler, Juerg; Humphreys, B Kim

    2013-05-01

    The purpose of this study was to compare self-reported pain and "improvement" of patients with symptomatic, magnetic resonance imaging-confirmed, lumbar disk herniations treated with either high-velocity, low-amplitude spinal manipulative therapy (SMT) or nerve root injections (NRI). This prospective cohort comparative effectiveness study included 102 age- and sex-matched patients treated with either NRI or SMT. Numerical rating scale (NRS) pain data were collected before treatment. One month after treatment, current NRS pain levels and overall improvement assessed using the Patient Global Impression of Change scale were recorded. The proportion of patients, "improved" or "worse," was calculated for each treatment. Comparison of pretreatment and 1-month NRS scores used the paired t test. Numerical rating scale and NRS change scores for the 2 groups were compared using the unpaired t test. The groups were also compared for "improvement" using the χ(2) test. Odds ratios with 95% confidence intervals were calculated. Average direct procedure costs for each treatment were calculated. No significant differences for self-reported pain or improvement were found between the 2 groups. "Improvement" was reported in 76.5% of SMT patients and in 62.7% of the NRI group. Both groups reported significantly reduced NRS scores at 1 month (P = .0001). Average cost for treatment with SMT was Swiss Francs 533.77 (US $558.75) and Swiss Francs 697 (US $729.61) for NRI. Most SMT and NRI patients with radicular low back pain and magnetic resonance imaging-confirmed disk herniation matching symptomatic presentation reported significant and clinically relevant reduction in self-reported pain level and increased global perception of improvement. There were no significant differences in outcomes between NRI and SMT. When considering direct procedure costs, the average cost of SMT was slightly less expensive. Copyright © 2013 National University of Health Sciences. Published by Mosby, Inc. All rights reserved.

  4. 4-D High-Resolution Seismic Reflection Monitoring of Miscible CO2 Injected into a Carbonate Reservoir

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Richard D. Miller; Abdelmoneam E. Raef; Alan P. Byrnes

    2007-06-30

    The objective of this research project was to acquire, process, and interpret multiple high-resolution 3-D compressional wave and 2-D, 2-C shear wave seismic data in the hopes of observing changes in fluid characteristics in an oil field before, during, and after the miscible carbon dioxide (CO{sub 2}) flood that began around December 1, 2003, as part of the DOE-sponsored Class Revisit Project (DOE No.DE-AC26-00BC15124). Unique and key to this imaging activity is the high-resolution nature of the seismic data, minimal deployment design, and the temporal sampling throughout the flood. The 900-m-deep test reservoir is located in central Kansas oomoldic limestonesmore » of the Lansing-Kansas City Group, deposited on a shallow marine shelf in Pennsylvanian time. After 30 months of seismic monitoring, one baseline and eight monitor surveys clearly detected changes that appear consistent with movement of CO{sub 2} as modeled with fluid simulators and observed in production data. Attribute analysis was a very useful tool in enhancing changes in seismic character present, but difficult to interpret on time amplitude slices. Lessons learned from and tools/techniques developed during this project will allow high-resolution seismic imaging to be routinely applied to many CO{sub 2} injection programs in a large percentage of shallow carbonate oil fields in the midcontinent.« less

  5. Ground-water quality at the site of a proposed deep-well injection system for treated wastewater, West Palm Beach, Florida

    USGS Publications Warehouse

    Pitt, William A.; Meyer, Frederick W.

    1976-01-01

    The U.S. Geological Survey collected scientific and technical information before, during, and after construction of a deep test well at the location of a future regional waste-water treatment plant to be built for the city of West Palm Beach, Florida. Data from the test well will be used by the city in the design of a proposed deep-well injection system for disposal of effluent from the treatment plant. Shallow wells in the vicinity of the drilling site were inventoried and sampled to provide a data base for detecting changes in ground water quality during construction and later operation of the deep wells. In addition, 16 small-diameter monitor wells, ranging in depth from 10 to 162 feet, were drilled at the test site. During the drilling of the deep test well, water samples were collected weekly from the 16 monitor wells for determination of chloride content and specific conductance. Evidence of small spills of salt water were found in monitor wells ranging in depth from 10 to 40 feet. Efforts to remove the salt water from the shallow unconfined aquifer by pumping were undertaken by the drilling contractor at the request of the city of West Palm Beach. The affected area is small and there has been a reduction of chloride concentration.

  6. Contrasting magmatic structures between small plutons and batholiths emplaced at shallow crustal level (Sierras de Córdoba, Argentina)

    NASA Astrophysics Data System (ADS)

    Pinotti, Lucio P.; D'Eramo, Fernando J.; Weinberg, Roberto F.; Demartis, Manuel; Tubía, José María; Coniglio, Jorge E.; Radice, Stefania; Maffini, M. Natalia; Aragón, Eugenio

    2016-11-01

    Processes like injection, magma flow and differentiation and influence of the regional strain field are here described and contrasted to shed light on their role in the formation of small plutons and large batholiths their magmatic structures. The final geometric and compositional arrangement of magma bodies are a complex record of their construction and internal flow history. Magma injection, flow and differentiation, as well as regional stresses, all control the internal nature of magma bodies. Large magma bodies emplaced at shallow crustal levels result from the intrusion of multiple magma batches that interact in a variety of ways, depending on internal and external dynamics, and where the early magmatic, growth-related structures are commonly overprinted by subsequent history. In contrast, small plutons emplaced in the brittle-ductile transition more likely preserve growth-related structures, having a relatively simple cooling history and limited internal magma flow. Outcrop-scale magmatic structures in both cases record a rich set of complementary information that can help elucidate their evolution. Large and small granitic bodies of the Sierra Pampeanas preserve excellent exposures of magmatic structures that formed as magmas stepped through different rheological states during pluton growth and solidification. These structures reveal not only the flow pattern inside magma chambers, but also the rheological evolution of magmas in response to temperature evolution.

  7. Refractive and Biometric Outcomes in Patients with Retinopathy of Prematurity Treated with Intravitreal Injection of Ranibizumab as Compared with Bevacizumab: A Clinical Study of Correction at Three Years of Age.

    PubMed

    Chen, Yen-Chih; Chen, San-Ni; Yang, Benjamin Chi-Lan; Lee, Kun-Hsien; Chuang, Chih-Chun; Cheng, Chieh-Yin

    2018-01-01

    To compare refractive and biometric outcomes in patients with type 1 retinopathy of prematurity (ROP) treated with intravitreal injection of ranibizumab (IVR) versus bevacizumab (IVB), at a corrected age of 3 years. A retrospective case series compared cycloplegic refractive statuses and biometric statuses in patients who received either IVR or IVB for type 1 ROP, from April 2011 to April 2014. A total of 62 eyes (33 patients) with type 1 ROP were evaluated (26 eyes in 13 IVR patients and 36 eyes in 20 IVB patients). There were no differences in birth statuses including gestational age and birth body weight between the two groups. The prevalence of refractive error greater than 1 D was higher in the IVB group ( p = 0.03), and there was a higher prevalence of high myopia (<-5.0 D, p = 0.03) in the IVB group. Comparisons in biometric finding showed that IVB patients had shallower anterior chamber depth ( p = 0.01). Both IVR and IVB showed low refractive errors, even followed at the corrected age of 3 years. No difference was noted between the two groups in refractive statuses. However, IVB was associated with shallower anterior chamber and higher prevalence of refractive error at the corrected age of 3 years. This trial is registered with NCT03334513.

  8. Characterization of Reactivity Controlled Compression Ignition (RCCI) Using Premixed Gasoline and Direct-Injected Gasoline with a Cetane Improver on a Multi-Cylinder Engine

    DOE PAGES

    Dempsey, Adam B.; Curran, Scott; Reitz, Rolf D.

    2015-04-14

    The focus of the present paper was to characterize Reactivity Controlled Compression Ignition (RCCI) using a single-fuel approach of gasoline and gasoline mixed with a commercially available cetane improver on a multi-cylinder engine. RCCI was achieved by port-injecting a certification grade 96 research octane gasoline and direct-injecting the same gasoline mixed with various levels of a cetane improver, 2-ethylhexyl nitrate (EHN). The EHN volume percentages investigated in the direct-injected fuel were 10, 5, and 2.5%. The combustion phasing controllability and emissions of the different fueling combinations were characterized at 2300 rpm and 4.2 bar brake mean effective pressure over amore » variety of parametric investigations including direct injection timing, premixed gasoline percentage, and intake temperature. Comparisons were made to gasoline/diesel RCCI operation on the same engine platform at nominally the same operating condition. The experiments were conducted on a modern four cylinder light-duty diesel engine that was modified with a port-fuel injection system while maintaining the stock direct injection fuel system. The pistons were modified for highly premixed operation and feature an open shallow bowl design. The results indicate that the authority to control the combustion phasing through the fuel delivery strategy (e.g., direct injection timing or premixed gasoline percentage) is not a strong function of the EHN concentration in the direct-injected fuel. It was also observed that NOx emissions are a strong function of the global EHN concentration in-cylinder and the combustion phasing. Finally, in general, NOx emissions are significantly elevated for gasoline/gasoline+EHN operation compared with gasoline/diesel RCCI operation at a given operating condition.« less

  9. Active cooling-based surface confinement system for thermal soil treatment

    DOEpatents

    Aines, R.D.; Newmark, R.L.

    1997-10-28

    A thermal barrier is disclosed for surface confinement with active cooling to control subsurface pressures during thermal remediation of shallow (5-20 feet) underground contaminants. If steam injection is used for underground heating, the actively cooled thermal barrier allows the steam to be injected into soil at pressures much higher (20-60 psi) than the confining strength of the soil, while preventing steam breakthrough. The rising steam is condensed to liquid water at the thermal barrier-ground surface interface. The rapid temperature drop forced by the thermal barrier drops the subsurface pressure to below atmospheric pressure. The steam and contaminant vapors are contained by the thermal blanket, which can be made of a variety of materials such as steel plates, concrete slabs, membranes, fabric bags, or rubber bladders. 1 fig.

  10. Active cooling-based surface confinement system for thermal soil treatment

    DOEpatents

    Aines, Roger D.; Newmark, Robin L.

    1997-01-01

    A thermal barrier is disclosed for surface confinement with active cooling to control subsurface pressures during thermal remediation of shallow (5-20 feet) underground contaminants. If steam injection is used for underground heating, the actively cooled thermal barrier allows the steam to be injected into soil at pressures much higher (20-60 psi) than the confining strength of the soil, while preventing steam breakthrough. The rising steam is condensed to liquid water at the thermal barrier-ground surface interface. The rapid temperature drop forced by the thermal barrier drops the subsurface pressure to below atmospheric pressure. The steam and contaminant vapors are contained by the thermal blanket, which can be made of a variety of materials such as steel plates, concrete slabs, membranes, fabric bags, or rubber bladders.

  11. Hydro-geochemical impact of CO2 leakage from geological storage on shallow potable aquifers: A field scale pilot experiment.

    NASA Astrophysics Data System (ADS)

    Cahill, A.; Jakobsen, R.

    2012-04-01

    In order to assess the environmental implications of leakage of CO2 from a geological sequestration site into overlying shallow potable aquifers, a 3 month field release experiment is planned to commence in spring 2012 at Vrøgum plantation, Western Denmark. To test the injection and sampling methodologies and as a study of short term effects, a pilot experiment was conducted at the field site: 45 kg of food grade CO2 was injected at 10 m depth over 48 hours into an unconfined, aeolian/glacial sand aquifer and the effects on water chemistry studied. The CO2 was injected through an inclined well installed with a 1 m length of porous polyethylene well screen (20 µm pore size) initially at a rate of 5 litres per minute increasing to 10 litres per minute after 24 hours. Water samples were taken from a network of multi-level sample points (8, 4 and 2.4m depth) before, during and after the injection and measured for physico-chemical parameters and major/trace element composition. Although the site possesses a relatively high hydraulic conductivity (12-16 m/day), due to the small hydraulic gradient (0.0039) 6 days elapsed before effects of CO2 on the ground water were detected in the first sampling point located 0.5 m down flow from the injection well. The dissolved plume of CO2 was observed only in the 8 m depth sample points and moved with flow (approximately 0.10 - 0.12 m/day). The plume spread laterally to 2m width as little as 1 m from the injection screen after 26 days, indicating that CO2 bubbles change the hydraulics of the medium. Dissolved CO2 was not detected in sample points at 4 or 2.4 m depth at any time during the experiment, suggesting gas could not move into the slightly finer grained upper sand. Effects of CO2 dissolution at 8 m depth were manifest as a clear and stable increase in electrical conductivity (approximately 160 to 300 µS/cm), a relatively small increase in total dissolved ions (approximately 30 to 50 mg/l) and an unstable depression of pH (approximately 5.8 to 4.73). The dissolved CO2 plume evolved with a distinct maximal front observed to pass through sample points followed by a slowly dissipating tail. After 56 days the CO2 plume reached the end of the monitoring network and was at its greatest extent (5 m length by 1 m width) however still appeared to be increasing in size suggesting residual gas phase CO2 trapped within the pore space continuously dissolving. Water quality did not significantly deteriorate and only small increases in major and trace elements were observed. Overall, groundwater chemistry results indicate that for an aquifer composed primarily of slowly reacting silicate sediments, such as Vrøgum, the risks to water resources from a short term leak from CCS into shallow overlying aquifers are minimal. However, a potential accumulation effect within the plume front as it moves through the formation was observed inferring a large scale leak may develop a CO2 charged plume exceeding guideline values for major and trace elements.

  12. Formation of shallow boron emitters in crystalline silicon using flash lamp annealing: Role of excess silicon interstitials

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Riise, Heine Nygard, E-mail: h.n.riise@fys.uio.no; Azarov, Alexander; Svensson, Bengt G.

    2015-07-13

    Shallow, Boron (B)-doped p{sup +} emitters have been realized using spin-on deposition and Flash Lamp Annealing (FLA) to diffuse B into monocrystalline float zone Silicon (Si). The emitters extend between 50 and 140 nm in depth below the surface, have peak concentrations between 9 × 10{sup 19 }cm{sup –3} and 3 × 10{sup 20 }cm{sup –3}, and exhibit sheet resistances between 70 and 3000 Ω/□. An exceptionally large increase in B diffusion occurs for FLA energy densities exceeding ∼93 J/cm{sup 2} irrespective of 10 or 20 ms pulse duration. The effect is attributed to enhanced diffusion of B caused by Si interstitial injection following a thermally activated reaction betweenmore » the spin-on diffusant film and the silicon wafer.« less

  13. A shallow subsurface controlled release facility in Bozeman, Montana, USA, for testing near surface CO2 detection techniques and transport models

    USGS Publications Warehouse

    Spangler, L.H.; Dobeck, L.M.; Repasky, K.S.; Nehrir, A.R.; Humphries, S.D.; Keith, C.J.; Shaw, J.A.; Rouse, J.H.; Cunningham, A.B.; Benson, S.M.; Oldenburg, C.M.; Lewicki, J.L.; Wells, A.W.; Diehl, J.R.; Strazisar, B.R.; Fessenden, J.E.; Rahn, T.A.; Amonette, J.E.; Barr, J.L.; Pickles, W.L.; Jacobson, J.D.; Silver, E.A.; Male, E.J.; Rauch, H.W.; Gullickson, K.S.; Trautz, R.; Kharaka, Y.; Birkholzer, J.; Wielopolski, L.

    2010-01-01

    A controlled field pilot has been developed in Bozeman, Montana, USA, to study near surface CO2 transport and detection technologies. A slotted horizontal well divided into six zones was installed in the shallow subsurface. The scale and CO2 release rates were chosen to be relevant to developing monitoring strategies for geological carbon storage. The field site was characterized before injection, and CO2 transport and concentrations in saturated soil and the vadose zone were modeled. Controlled releases of CO2 from the horizontal well were performed in the summers of 2007 and 2008, and collaborators from six national labs, three universities, and the U.S. Geological Survey investigated movement of CO2 through the soil, water, plants, and air with a wide range of near surface detection techniques. An overview of these results will be presented. ?? 2009 The Author(s).

  14. Sensitivity of CO2 storage performance to varying rates and dynamic injectivity in the Bunter Sandstone, UK

    NASA Astrophysics Data System (ADS)

    Kolster, C.; Mac Dowell, N.; Krevor, S. C.; Agada, S.

    2016-12-01

    Carbon capture and storage (CCS) is needed for meeting legally binding greenhouse gas emissions targets in the UK (ECCC 2016). Energy systems models have been key to identifying the importance of CCS but they tend to impose few constraints on the availability and use of geologic CO2 storage reservoirs. Our aim is to develop simple models that use dynamic representations of limits on CO2 storage resources. This will allow for a first order representation of the storage reservoir for use in systems models with CCS. We use the ECLIPSE reservoir simulator and a model of the Southern North Sea Bunter Sandstone saline aquifer. We analyse reservoir performance sensitivities to scenarios of varying CO2 injection demand for a future UK low carbon energy market. With 12 injection sites, we compare the impact of injecting at a constant 2MtCO2/year per site and varying this rate by a factor of 1.8 and 0.2 cyclically every 5 and 2.5 years over 50 years of injection. The results show a maximum difference in average reservoir pressure of 3% amongst each case and a similar variation in plume migration extent. This suggests that simplified models can maintain accuracy by using average rates of injection over similar time periods. Meanwhile, by initiating injection at rates limited by pressurization at the wellhead we find that injectivity steadily increases. As a result, dynamic capacity increases. We find that instead of injecting into sites on a need basis, we can strategically inject the CO2 into 6 of the deepest sites increasing injectivity for the first 15 years by 13%. Our results show injectivity as highly dependent on reservoir heterogeneity near the injection site. Injecting 1MTCO2/year into a shallow, low permeability and porosity site instead of into a deep injection site with high permeability and porosity reduces injectivity in the first 5 years by 52%. ECCC. 2016. Future of Carbon Capture and Storage in the UK. UK Parliament House of Commons, Energy and Climate Change Committee, London: The Stationary Office Limited.

  15. Analysis of stress changes and fault stability related to CO2 injection at the Tomakomai offshore site

    NASA Astrophysics Data System (ADS)

    Kano, Y.; Funatsu, T.; Nakao, S.; Kusunose, K.; Ishido, T.; Lei, X.; Tosha, T.

    2013-12-01

    A carbon capture and storage demonstration project is planned at the Tomakomai offshore site, which is located in the southwestern part of Hokkaido, Japan. The project includes geological CO2 storage at a rate of 0.25 Mt/year for three and a half years and a coherent system of capture (from petroleum refineries) and transportation (Ministry of Economy, Trade and Industry, 2012). Two different reservoirs are candidates: one is the Moebetsu formation which is shallow, gently inclined and composed of relatively homogeneous sandstone, and another is the Takinoue T1 formation which is deep, sharply inclined, overpressured and composed of heterogeneous volcanic rocks. Effects of the CO2 injection are expected to be considerably different between these two reservoirs. As part of a safety assessment, Kano et al. (2013) investigated stress changes and corresponding fault stability in the deeper Takinoue T1 formation, based on an estimated initial stress field and numerically-simulated changes in fluid pressure caused by a planned CO2 injection. One of the important features was that the slip tendency becomes maximal near the top of the dipping Takinoue formation which is substantially shallower than the injection depth. This is thought to be due to a combination of the overpressure and heterogeneous structure. In this presentation we will report results of additional analysis and discuss different behaviours between the Takinoue and Moebetsu formations. Sensitivity to uncertain geomechanical properties such as the friction coefficient and the effects of poro-elastic stress development due to changes in fluid pressure and temperature are also discussed. This research was partly funded and supported by the Ministry of Economy, Trade and Industry. We would like to acknowledge Japan CCS Co., Ltd., for providing their survey and research data on the Tomakomai site. References: Ministry of Economy, Trade and Industry, 2012. CCS demonstration project at the Tomakomai site (in Japanese). http://www.meti.go.jp/information/downloadfiles/c120208a02j.pdf Kano, Y., Funatsu, T., Nakao, S., Kusunose, K., Ishido, T., Lei, X.-L., Tosha, T., 2013. Fault stability analysis related to CO2 injection at Tomakomai, Hokkaido, Japan. Proc. GHGT-11, Kyoto, Japan, 18-22 November. Energy Procedia 37, 4946-4953.

  16. Subsurface iron and arsenic removal for shallow tube well drinking water supply in rural Bangladesh.

    PubMed

    van Halem, D; Olivero, S; de Vet, W W J M; Verberk, J Q J C; Amy, G L; van Dijk, J C

    2010-11-01

    Subsurface iron and arsenic removal has the potential to be a cost-effective technology to provide safe drinking water in rural decentralized applications, using existing shallow tube wells. A community-scale test facility in Bangladesh was constructed for injection of aerated water (∼1 m(3)) into an anoxic aquifer with elevated iron (0.27 mmolL(-1)) and arsenic (0.27μmolL(-1)) concentrations. The injection (oxidation) and abstraction (adsorption) cycles were monitored at the test facility and simultaneously simulated in the laboratory with anoxic column experiments. Dimensionless retardation factors (R) were determined to represent the delayed arrival of iron or arsenic in the well compared to the original groundwater. At the test facility the iron removal efficacies increased after every injection-abstraction cycle, with retardation factors (R(Fe)) up to 17. These high removal efficacies could not be explained by the theory of adsorptive-catalytic oxidation, and therefore other ((a)biotic or transport) processes have contributed to the system's efficacy. This finding was confirmed in the anoxic column experiments, since the mechanism of adsorptive-catalytic oxidation dominated in the columns and iron removal efficacies did not increase with every cycle (stable at R(Fe)=∼8). R(As) did not increase after multiple cycles, it remained stable around 2, illustrating that the process which is responsible for the effective iron removal did not promote the co-removal of arsenic. The columns showed that subsurface arsenic removal was an adsorptive process and only the freshly oxidized adsorbed iron was available for the co-adsorption of arsenic. This indicates that arsenic adsorption during subsurface treatment is controlled by the amount of adsorbed iron that is oxidized, and not by the amount of removed iron. For operational purposes this is an important finding, since apparently the oxygen concentration of the injection water does not control the subsurface arsenic removal, but rather the injection volume. Additionally, no relation has been observed in this study between the amount of removed arsenic at different molar Fe:As ratios (28, 63, and 103) of the groundwater. It is proposed that the removal of arsenic was limited by the presence of other anions, such as phosphate, competing for the same adsorption sites. Copyright © 2010 Elsevier Ltd. All rights reserved.

  17. June 2006 seismic swarm and dike injection event beneath the Michoacan-Guanajuato volcanic field

    NASA Astrophysics Data System (ADS)

    Cox, T. F.; Gardine, M.; West, M.

    2008-12-01

    A seismic swarm of approximately 700 events, magnitude 2.5-3.5, occurred in June of 2006 approximately 15 km from the summit of the cinder cone Paricutin, in the Michoacan-Guanajuato Volcanic Field in central Mexico. The swarm was detected and located as part of an effort to develop a catalog of regional seismicity using stations fortuitously in place as part of two concurrent IRIS/PASSCAL supported projects- the Mapping of the Rivera Subduction Zone (MARS) project run by the University of Texas at Austin and New Mexico State University, and the Colima Volcano Deep Seismic Experiment (CODEX), run by the University of Alaska Fairbanks. Over a two-week period in June 2006, relocated hypocenters clearly show a shallowing trend with time, indicative of a possible dike injection event. The rate of injection appears to be 346 m/day. Following the injection, there is a period of earthquakes, which all occurred at approximately 5 km in depth, but which migrated southwards. The waveforms of all of these events show similarities within three major groupings: from May 28 to June 1, June 2 to June 9 (which marks the end of the ascent), and from June 9 to July 2.

  18. Droop-free AlxGa1-xN/AlyGa1-yN quantum-disks-in-nanowires ultraviolet LED emitting at 337 nm on metal/silicon substrates.

    PubMed

    Janjua, Bilal; Sun, Haiding; Zhao, Chao; Anjum, Dalaver H; Priante, Davide; Alhamoud, Abdullah A; Wu, Feng; Li, Xiaohang; Albadri, Abdulrahman M; Alyamani, Ahmed Y; El-Desouki, Munir M; Ng, Tien Khee; Ooi, Boon S

    2017-01-23

    Currently the AlGaN-based ultraviolet (UV) solid-state lighting research suffers from numerous challenges. In particular, low internal quantum efficiency, low extraction efficiency, inefficient doping, large polarization fields, and high dislocation density epitaxy constitute bottlenecks in realizing high power devices. Despite the clear advantage of quantum-confinement nanostructure, it has not been widely utilized in AlGaN-based nanowires. Here we utilize the self-assembled nanowires (NWs) with embedding quantum-disks (Qdisks) to mitigate these issues, and achieve UV emission of 337 nm at 32 A/cm2 (80 mA in 0.5 × 0.5 mm2 device), a turn-on voltage of ~5.5 V and droop-free behavior up to 120 A/cm2 of injection current. The device was grown on a titanium-coated n-type silicon substrate, to improve current injection and heat dissipation. A narrow linewidth of 11.7 nm in the electroluminescence spectrum and a strong wavefunctions overlap factor of 42% confirm strong quantum confinement within uniformly formed AlGaN/AlGaN Qdisks, verified using transmission electron microscopy (TEM). The nitride-based UV nanowires light-emitting diodes (NWs-LEDs) grown on low cost and scalable metal/silicon template substrate, offers a scalable, environment friendly and low cost solution for numerous applications, such as solid-state lighting, spectroscopy, medical science and security.

  19. N:P ratios, light limitation, and cyanobacterial dominance in a subtropical lake impacted by non-point source nutrient pollution.

    PubMed

    Havens, Karl E; James, R Thomas; East, Therese L; Smith, Val H

    2003-01-01

    A long-term (28-year) data set was used to investigate historical changes in concentrations of phosphorus (P), nitrogen (N), N:P ratios, and Secchi disk transparency in a shallow subtropical lake (Lake Okeechobee, Florida, USA). The aim was to evaluate changes in the risk of N2-fixing cyanobacterial blooms, which have infrequently occurred in the lake's pelagic zone. Predictions regarding bloom risk were based on previously published N:P ratio models. Temporal trends in the biomass of cyanobacteria were evaluated using phytoplankton data collected in 1974, 1989-1992, and 1997-2000. Concentrations of pelagic total P increased from near 50 microg l-1 in the mid-1970s to over 100 microg l-1 in the late 1990s. Coincidentally, the total N:P (mass) ratio decreased from 30:1 to below 15:1, and soluble N:P ratio decreased from 15:1 to near 6:1, in the lake water. Published empirical models predict that current conditions favor cyanobacteria. The observations confirm this prediction: cyanobacteria presently account for 50-80% of total phytoplankton biovolume. The historical decrease in TN:TP ratio in the lake can be attributed to a decreased TN:TP ratio in the inflow water and to a decline in the lake's assimilation of P, relative to N. Coincident with these declines in total and soluble N:P ratios, Secchi disk transparency declined from 0.6 m to near 0.3 m, possibly due to increased mineral turbidity in the lake water. Empirical models predict that under the turbid, low irradiance conditions that prevail in this lake, non-heterocystous cyanobacteria should dominate the phytoplankton. Our observations confirmed this prediction: non-N2-fixing taxa (primarily Oscillatoria and Lyngbya spp.) typically dominated the cyanobacteria community during the last decade. The only exception was a year with very low water levels, when heterocystous N2-fixing Anabaena became dominant. In the near-shore regions of this shallow lake, low N:P ratios potentially favor blooms of N2-fixing cyanobacteria, but their occurrence in the pelagic zone is restricted by low irradiance and lack of stable stratification.

  20. The 1994-2001 eruptive period at Rabaul, Papua New Guinea: Petrological and geochemical evidence for basalt injections into a shallow dacite magma reservoir, and significant SO2 flux

    NASA Astrophysics Data System (ADS)

    Patia, H.; Eggins, S. M.; Arculus, R. J.; McKee, C. O.; Johnson, R. W.; Bradney, A.

    2017-10-01

    The eruptions that began at Rabaul Caldera on 19 September 1994 had two focal points, the vents Tavurvur and Vulcan, located 6 km apart on opposing sides of the caldera. Vulcan eruptives define a tight cluster of dacite compositions, whereas Tavurvur eruptives span an array from equivalent dacite compositions to mafic andesites. The eruption of geochemically and mineralogically identical dacites from both vents indicates sourcing from the same magma reservoir. This, together with previously reported H2O-CO2 volatile contents of dacite melt inclusions, a caldera-wide seismic low-velocity zone, and a seismically active caldera ring fault structure are consistent with the presence at 3-6 km depth of an extensive, tabular dacitic magma body having volume of about 15-150 km3. The Tavurvur andesites form a linear compositional array and have strongly bimodal phenocryst assemblages that reflect dacite hybridisation with a mafic basalt. The moderately large volume SO2 flux documented in the Tavurvur volcanic plume (and negligible SO2 flux in the Vulcan plume) combined with high dissolved S contents of basaltic melt inclusions trapped in olivine of Tavurvur eruptives, indicate that the amount of degassed basaltic magma was 0.1 km3 and suggest that the injection of this magma was confined to the Tavurvur-side (eastern to northeastern sector) of the caldera. Circumstantial evidence suggests that the eruption was triggered and evolved in response to a series of basaltic magma injections that may have commenced in 1971 and continued up until at least the start of the 1994 eruptions. The presence of zoned plagioclase phenocrysts reflecting older basalt-dacite interaction events (i.e. anorthite cores overgrown with thick andesine rims), evaluation of limited available data for the products of previous eruptions in 1878 and 1937-1943, and the episodic occurrence of major intra-caldera seismo-deformational events indicates that the shallow magma system at Rabaul Caldera is subjected to repeated mafic magma injections at intervals of several years to several decades.

  1. Geochemical effects of CO2 injection on produced water chemistry at an enhanced oil recovery site in the Permian Basin of northwest Texas, USA: Preliminary geochemical and Li isotope results

    NASA Astrophysics Data System (ADS)

    Pfister, S.; Gardiner, J.; Phan, T. T.; Macpherson, G. L.; Diehl, J. R.; Lopano, C. L.; Stewart, B. W.; Capo, R. C.

    2014-12-01

    Injection of supercritical CO2 for enhanced oil recovery (EOR) presents an opportunity to evaluate the effects of CO2 on reservoir properties and formation waters during geologic carbon sequestration. Produced water from oil wells tapping a carbonate-hosted reservoir at an active EOR site in the Permian Basin of Texas both before and after injection were sampled to evaluate geochemical and isotopic changes associated with water-rock-CO2 interaction. Produced waters from the carbonate reservoir rock are Na-Cl brines with TDS levels of 16.5-34 g/L and detectable H2S. These brines are potentially diluted with shallow groundwater from earlier EOR water flooding. Initial lithium isotope data (δ7Li) from pre-injection produced water in the EOR field fall within the range of Gulf of Mexico Coastal sedimentary basin and Appalachian basin values (Macpherson et al., 2014, Geofluids, doi: 10.1111/gfl.12084). Pre-injection produced water 87Sr/86Sr ratios (0.70788-0.70795) are consistent with mid-late Permian seawater/carbonate. CO2 injection took place in October 2013, and four of the wells sampled in May 2014 showed CO2 breakthrough. Preliminary comparison of pre- and post-injection produced waters indicates no significant changes in the major inorganic constituents following breakthrough, other than a possible drop in K concentration. Trace element and isotope data from pre- and post-breakthrough wells are currently being evaluated and will be presented.

  2. Thermographic visualization of the superficial vein and extravasation using the temperature gradient produced by the injected materials

    NASA Astrophysics Data System (ADS)

    Nakamura, Katsumasa; Sasaki, Tomonari; Ohga, Saiji; Yoshitake, Tadamasa; Terashima, Kotaro; Asai, Kaori; Matsumoto, Keiji; Shinoto, Makoto; Shioyama, Yoshiyuki; Nishie, Akihoro; Honda, Hiroshi

    2014-11-01

    There are few effective methods to detect or prevent the extravasation of injected materials such as chemotherapeutic agents and radiographic contrast materials. To investigate whether a thermographic camera could visualize the superficial vein and extravasation using the temperature gradient produced by the injected materials, an infrared thermographic camera with a high resolution of 0.04 °C was used. At the room temperature of 26 °C, thermal images and the time course of the temperature changes of a paraffin phantom embedded with rubber tubes (diameter 3.2 mm, wall thickness 0.8 mm) were evaluated after the tubes were filled with water at 15 °C or 25 °C. The rubber tubes were embedded at depths of 0 mm, 1.5 mm, and 3.0 mm from the surface of the phantom. Temperature changes were visualized in the areas of the phantom where the tubes were embedded. In general, changes were more clearly detected when greater temperature differences between the phantom and the water and shallower tube locations were employed. The temperature changes of the surface of a volunteer's arm were also examined after a bolus injection of physiological saline into the dorsal hand vein or the subcutaneous space. The injection of 5 ml room-temperature (26 °C) saline into the dorsal hand vein enabled the visualization of the vein. When 3 ml of room-temperature saline was injected through the vein into the subcutaneous space, extravasation was detected without any visualization of the vein. The subtraction image before and after the injection clearly showed the temperature changes induced by the saline. Thermography may thus be useful as a monitoring system to detect extravasation of the injected materials.

  3. Correcting Nasojugal Groove with Autologous Cultured Fibroblast Injection: A Pilot Study.

    PubMed

    Moon, Kyung-Chul; Lee, Hyun-Su; Han, Seung-Kyu; Chung, Ho-Yun

    2018-06-01

    A new commercial drug that contains autologous cultured fibroblasts has been developed and approved by the United States Food and Drug Administration for improving the appearance of nasolabial folds. However, the treatment requires three sessions every 3-6 weeks. It is known that the skin overlying the nasojugal groove is thinner, and the wrinkle is generally shallower than nasolabial folds. Therefore, we hypothesized that the nasojugal groove could be improved by just one treatment session. Therefore, the purpose of this study was to evaluate the efficacy and safety of autologous cultured fibroblast injection to correct nasojugal grooves. Forty-six subjects with nasojugal grooves were enrolled in this study. They were injected with autologous cultured fibroblasts or placebo in one session. Blinded evaluators and subjects assessed the efficacy using a validated wrinkle assessment scale at 4, 12, and 24 weeks after the injection. Information of adverse events was collected at each visit. Based on the evaluators' assessment at 24 weeks after the injection, 76% of subjects treated with autologous cultured fibroblasts showed improvement whereas 0% of subjects treated with placebo showed improvement (P < 0.0001). Based on self-assessment at 24 weeks after the injection, 72% of subjects treated with autologous cultured fibroblasts and 45% of subjects treated with placebo showed improvement (P = 0.0662). There were no serious adverse events related to autologous cultured fibroblast injection. Autologous cultured fibroblast injection might be effective and safe to correct nasojugal grooves. This journal requires that authors assign a level of evidence to each article. For a full description of these Evidence-Based Medicine ratings, please refer to the Table of Contents or the online Instructions to Authors www.springer.com/00266 .

  4. A Transient Transit Signature Associated with the Young Star RIK-210

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    David, Trevor J.; Hillenbrand, Lynne A.; Howard, Andrew W.

    We find transient transit-like dimming events within the K2 time series photometry of the young star RIK-210 in the Upper Scorpius OB association. These dimming events are variable in depth, duration, and morphology. High spatial resolution imaging revealed that the star is single and radial velocity monitoring indicated that the dimming events cannot be due to an eclipsing stellar or brown dwarf companion. Archival and follow-up photometry suggest the dimming events are transient in nature. The variable morphology of the dimming events suggests they are not due to a single spherical body. The ingress of each dimming event is alwaysmore » shallower than egress, as one would expect for an orbiting body with a leading tail. The dimming events are periodic and synchronous with the stellar rotation. However, we argue it is unlikely the dimming events could be attributed to anything on the stellar surface based on the observed depths and durations. Variable obscuration by a protoplanetary disk is unlikely on the basis that the star is not actively accreting and lacks the infrared excess associated with an inner disk. Rather, we explore the possibilities that the dimming events are due to magnetospheric clouds, a transiting protoplanet surrounded by circumplanetary dust and debris, eccentric orbiting bodies undergoing periodic tidal disruption, or an extended field of dust or debris near the corotation radius.« less

  5. Packing loops into annular cavities.

    PubMed

    Sobral, T A; Gomes, M A F

    2017-02-01

    The continuous packing of a flexible rod in two-dimensional cavities yields a countable set of interacting domains that resembles nonequilibrium cellular systems and belongs to a new class of lightweight material. However, the link between the length of the rod and the number of domains requires investigation, especially in the case of non-simply connected cavities, where the number of avoided regions emulates an effective topological temperature. In the present article we report the results of an experiment of injection of a single flexible rod into annular cavities in order to find the total length needed to insert a given number of loops (domains of one vertex). Using an exponential model to describe the experimental data we quite minutely analyze the initial conditions, the intermediary behavior, and the tight packing limit. This method allows the observation of a new fluctuation phenomenon associated with instabilities in the dynamic evolution of the packing process. Furthermore, the fractal dimension of the global pattern enters the discussion under a novel point of view. A comparison with the classical problems of the random close packing of disks and jammed disk packings is made.

  6. Packing loops into annular cavities

    NASA Astrophysics Data System (ADS)

    Sobral, T. A.; Gomes, M. A. F.

    2017-02-01

    The continuous packing of a flexible rod in two-dimensional cavities yields a countable set of interacting domains that resembles nonequilibrium cellular systems and belongs to a new class of lightweight material. However, the link between the length of the rod and the number of domains requires investigation, especially in the case of non-simply connected cavities, where the number of avoided regions emulates an effective topological temperature. In the present article we report the results of an experiment of injection of a single flexible rod into annular cavities in order to find the total length needed to insert a given number of loops (domains of one vertex). Using an exponential model to describe the experimental data we quite minutely analyze the initial conditions, the intermediary behavior, and the tight packing limit. This method allows the observation of a new fluctuation phenomenon associated with instabilities in the dynamic evolution of the packing process. Furthermore, the fractal dimension of the global pattern enters the discussion under a novel point of view. A comparison with the classical problems of the random close packing of disks and jammed disk packings is made.

  7. Cervical radiculopathy: epidemiology, etiology, diagnosis, and treatment.

    PubMed

    Woods, Barrett I; Hilibrand, Alan S

    2015-06-01

    Cervical radiculopathy is a relatively common neurological disorder resulting from nerve root dysfunction, which is often due to mechanical compression; however, inflammatory cytokines released from damaged intervertebral disks can also result in symptoms. Cervical radiculopathy can often be diagnosed with a thorough history and physical examination, but an magnetic resonance imaging or computed tomographic myelogram should be used to confirm the diagnosis. Because of the ubiquity of degenerative changes found on these imaging modalities, the patient's symptoms must correlate with pathology for a successful diagnosis. In the absence of myelopathy or significant muscle weakness all patients should be treated conservatively for at least 6 weeks. Conservative treatments consist of immobilization, anti-inflammatory medications, physical therapy, cervical traction, and epidural steroid injections. Cervical radiculopathy typically is self-limiting with 75%-90% of patients achieving symptomatic improvement with nonoperative care. For patients who are persistently symptomatic despite conservative treatment, or those who have a significant functional deficit surgical treatment is appropriate. Surgical options include anterior cervical decompression and fusion, cervical disk arthroplasty, and posterior foraminotomy. Patient selection is critical to optimize outcome.

  8. Advection-dominated Inflow/Outflows from Evaporating Accretion Disks.

    PubMed

    Turolla; Dullemond

    2000-03-01

    In this Letter we investigate the properties of advection-dominated accretion flows (ADAFs) fed by the evaporation of a Shakura-Sunyaev accretion disk (SSD). In our picture, the ADAF fills the central cavity evacuated by the SSD and extends beyond the transition radius into a coronal region. We find that, because of global angular momentum conservation, a significant fraction of the hot gas flows away from the black hole, forming a transsonic wind, unless the injection rate depends only weakly on radius (if r2sigma&d2;~r-xi, xi<1&solm0;2). The Bernoulli number of the inflowing gas is negative if the transition radius is less, similar100 Schwarzschild radii, so matter falling into the hole is gravitationally bound. The ratio of inflowing to outflowing mass is approximately 1/2, so in these solutions the accretion rate is of the same order as in standard ADAFs and much larger than in advection-dominated inflow/outflow models. The possible relevance of evaporation-fed solutions to accretion flows in black hole X-ray binaries is briefly discussed.

  9. Utilizing Stable Isotopes and Isotopic Anomalies to Study Early Solar System Formation Processes

    NASA Technical Reports Server (NTRS)

    Simon, Justin

    2017-01-01

    Chondritic meteorites contain a diversity of particle components, i.e., chondrules and calcium-, aluminum-rich refractory inclusions (CAIs), that have survived since the formation of the Solar System. The chemical and isotopic compositions of these materials provide a record of the conditions present in the protoplanetary disk where they formed and can aid our understanding of the processes and reservoirs in which solids formed in the solar nebula, an important step leading to the accretion of planetesimals. Isotopic anomalies associated with nucleosynthetic processes are observed in these discrete materials, and can be compared to astronomical observations and astrophysical formation models of stars and more recently proplyds. The existence and size of these isotopic anomalies are typically thought to reflect a significant state of isotopic heterogeneity in the earliest Solar System, likely left over from molecular cloud heterogeneities on the grain scale, but some could also be due to late stellar injection. The homogenization of these isotopic anomalies towards planetary values can be used to track the efficiency and timescales of disk wide mixing,

  10. Automated generation of influence functions for planar crack problems

    NASA Technical Reports Server (NTRS)

    Sire, Robert A.; Harris, David O.; Eason, Ernest D.

    1989-01-01

    A numerical procedure for the generation of influence functions for Mode I planar problems is described. The resulting influence functions are in a form for convenient evaluation of stress-intensity factors for complex stress distributions. Crack surface displacements are obtained by a least-squares solution of the Williams eigenfunction expansion for displacements in a cracked body. Discrete values of the influence function, evaluated using the crack surface displacements, are curve fit using an assumed functional form. The assumed functional form includes appropriate limit-behavior terms for very deep and very shallow cracks. Continuous representation of the influence function provides a convenient means for evaluating stress-intensity factors for arbitrary stress distributions by numerical integration. The procedure is demonstrated for an edge-cracked strip and a radially cracked disk. Comparisons with available published results demonstrate the accuracy of the procedure.

  11. Early warning of freshwater salinization due to upward brine displacement by species transport simulations combined with a hydrochemical genesis model

    NASA Astrophysics Data System (ADS)

    Langer, Maria; Kühn, Michael

    2016-04-01

    Shallow groundwater resources could be possibly affected by intruding brines, which are displaced along hydraulically conductive faults as result of subsurface activities like CO2 injection. To avoid salinization of potable freshwater aquifers an early detection of intruding saline water is necessary, especially in regions where an initial geogenic salinization already exists. Our study is based on work of Tillner et al. [1] and Langer et al. [2] who investigated the influence of permeable fault systems on brine displacement for the prospective storage site Beeskow-Birkholz in the Northeast German Basin. With a 3D regional scale model considering the deep groundwater system, they demonstrated that the existence of hydraulically conductive faults is not necessarily an exclusion criterion for potential injection sites, because salinization of shallower aquifers strongly depends on the effective damage zone volume, the initial salinity distribution and overlying reservoirs [2], while permeability of fault zones does not influence salinization of shallower aquifers significantly [1]. Here we extracted a 2D cross section regarding the upper 220 m of the study area mainly represented by shallow freshwater aquifers, but also considering an initial geogenic salinization [3]. We took flow rates of the intruding brines from the previous studies [2] and implemented species transport simulations with the program code SHEMAT [4]. Results are investigated and interpreted with the hydrochemical genesis model GEBAH [5] which has been already applied as early warning of saltwater intrusions into freshwater aquifers and surface water [6]. GEBAH allows a categorization of groundwater by the ion ratios of the dissolved components and offers a first indicative determination for an existence and the intensity of saline water intrusion in shallow groundwater aquifer, independent of the concentration of the solution. With our model we investigated the migration of saline water through a fault or an erosional channel which both allows an exchange between the shallow freshwater and the deeper saline water complex. The salinization potential of a drinking water well in vicinity to the brine source was determined for different scenarios. [1] Tillner E., Kempka T., Nakaten B., Kühn M. (2013) Brine migration through fault zones: 3D numerical simulations for a prospective CO2 storage site in Northeast Germany. International Journal of Greenhouse Gas Control 19, 689-703. doi: 10.1016/ j.ijggc.2013.03.012 [2] Langer M., Tillner E., Kempka T., Kühn M. (2015) Effective damage zone volume of fault zones and initial salinity distribution determine intensity of shallow aquifer salinization in geological underground utilization. Hydrology and Earth System Sciences Discussion, 12, 5703-5748. doi: 10.5194/hessd-12-5703-2015 [3] Hotzan, G., and Voss, T. (2013): Complex hydrogeochemic-genetic mapping for evaluation of the endangerment of pleistocene and tertiary aquifers by saline waters in the region Storkow-Frankfurt (Oder)-Eisenhüttenstadt. Brandenburgische Geowissenschaftliche Beiträge, 20 (1/2), 62-82. (in German) [4] Clauser C. (2003) SHEMAT and Processing SHEMAT - Numerical simulation of reactive flow in hot aquifers, Springer Publishers, Heidelberg [5] Rechlin, B., Hoffknecht, A., Scholz, H., Helms, A. (2010): Genetic evaluation of analyses from the hydrosphere. Software GEBAH Vers. 1.1 LBGR/GCI, Cottbus, Königs Wusterhausen (in German) [6] Rechlin, B. (2008): A method for a concentration free early detection of saltwater intrusions into freshwater aquifers and surface water. Brandenburgische Geowissenschaftliche Beiträge, 15 (1/2), 57-68. (in German)

  12. An improved model to estimate trapping parameters in polymeric materials and its application on normal and aged low-density polyethylenes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Ning, E-mail: nl4g12@soton.ac.uk; He, Miao; Alghamdi, Hisham

    2015-08-14

    Trapping parameters can be considered as one of the important attributes to describe polymeric materials. In the present paper, a more accurate charge dynamics model has been developed, which takes account of charge dynamics in both volts-on and off stage into simulation. By fitting with measured charge data with the highest R-square value, trapping parameters together with injection barrier of both normal and aged low-density polyethylene samples were estimated using the improved model. The results show that, after long-term ageing process, the injection barriers of both electrons and holes is lowered, overall trap depth is shallower, and trap density becomesmore » much greater. Additionally, the changes in parameters for electrons are more sensitive than those of holes after ageing.« less

  13. Recombination activity of light-activated copper defects in p-type silicon studied by injection- and temperature-dependent lifetime spectroscopy

    NASA Astrophysics Data System (ADS)

    Inglese, Alessandro; Lindroos, Jeanette; Vahlman, Henri; Savin, Hele

    2016-09-01

    The presence of copper contamination is known to cause strong light-induced degradation (Cu-LID) in silicon. In this paper, we parametrize the recombination activity of light-activated copper defects in terms of Shockley—Read—Hall recombination statistics through injection- and temperature dependent lifetime spectroscopy (TDLS) performed on deliberately contaminated float zone silicon wafers. We obtain an accurate fit of the experimental data via two non-interacting energy levels, i.e., a deep recombination center featuring an energy level at Ec-Et=0.48 -0.62 eV with a moderate donor-like capture asymmetry ( k =1.7 -2.6 ) and an additional shallow energy state located at Ec-Et=0.1 -0.2 eV , which mostly affects the carrier lifetime only at high-injection conditions. Besides confirming these defect parameters, TDLS measurements also indicate a power-law temperature dependence of the capture cross sections associated with the deep energy state. Eventually, we compare these results with the available literature data, and we find that the formation of copper precipitates is the probable root cause behind Cu-LID.

  14. A rapid method for hydraulic profiling in unconsolidated formations

    USGS Publications Warehouse

    Dietrich, P.; Butler, J.J.; Faiss, K.

    2008-01-01

    Information on vertical variations in hydraulic conductivity (K) can often shed much light on how a contaminant will move in the subsurface. The direct-push injection logger has been developed to rapidly obtain such information in shallow unconsolidated settings. This small-diameter tool consists of a short screen located just behind a drive point. The tool is advanced into the subsurface while water is injected through the screen to keep it clear. Upon reaching a depth at which information about K is desired, advancement ceases and the injection rate and pressure are measured on the land surface. The rate and pressure values are used in a ratio that serves as a proxy for K. A vertical profile of this ratio can be transformed into a K profile through regressions with K estimates determined using other techniques. The viability of the approach was assessed at an extensively studied field site in eastern Germany. The assessment demonstrated that this tool can rapidly identify zones that may serve as conduits for or barriers to contaminant movement. ?? 2007 The Author(s).

  15. Implications and concerns of deep-seated disposal of hydrocarbon exploration produced water using three-dimensional contaminant transport model in Bhit Area, Dadu District of Southern Pakistan.

    PubMed

    Ahmad, Zulfiqar; Akhter, Gulraiz; Ashraf, Arshad; Fryar, Alan

    2010-11-01

    A three-dimensional contaminant transport model has been developed to simulate and monitor the migration of disposal of hydrocarbon exploration produced water in Injection well at 2,100 m depth in the Upper Cretaceous Pab sandstone, Bhit area in Dadu district of Southern Pakistan. The regional stratigraphic and structural geological framework of the area, landform characteristics, meteorological parameters, and hydrogeological milieu have been used in the model to generate the initial simulation of steady-state flow condition in the underlying aquifer's layers. The geometry of the shallow and deep-seated characteristics of the geological formations was obtained from the drilling data, electrical resistivity sounding surveys, and geophysical well-logging information. The modeling process comprised of steady-state simulation and transient simulation of the prolific groundwater system of contamination transport after 1, 10, 30 years of injection. The contaminant transport was evaluated from the bottom of the injection well, and its short- and long-term effects were determined on aquifer system lying in varying hydrogeological and geological conditions.

  16. Continuous CO2 gas monitoring to clarify natural pattern and artificial leakage signals

    NASA Astrophysics Data System (ADS)

    Joun, W.; Ha, S. W.; Joo, Y. J.; Lee, S. S.; Lee, K. K.

    2017-12-01

    Continuous CO2 gas monitoring at shallow aquifer is significant for early detection and immediate handling of an aquifer impacted by leaking CO2 gas from the sequestration reservoir. However, it is difficult to decide the origin of CO2 gas because detected CO2 includes not only leaked CO2 but also naturally emitted CO2. We performed CO2 injection and monitoring tests in a shallow aquifer. Before the injection of CO2 infused water, we have conducted continuous monitoring of multi-level soil CO2 gas concentration and physical parameters such as temperature, humidity, pressure, wind speed and direction, and precipitation. The monitoring data represented that CO2 gas concentrations in unsaturated soil zone borehole showed differences at depths and daily variation (360 to 6980 ppm volume). Based on the observed data at 5 m and 8 m depths, vertical flux of gas was calculated as 0.471 L/min (LPM) for inflow from 5 m to 8 m and 9.42E-2 LPM for outflow from 8 m to 5 m. The numerical and analytical models were used to calculate the vertical flux of gas and to compare with observations. The results showed that pressure-based modeling could not explain the rapid change of CO2 gas concentration in borehole. Acknowledgement Financial support was provided by the "R&D Project on Environmental Management of Geologic CO2 Storage" from the KEITI (Project Number: 2014001810003)

  17. Effects of artificial hypolimnetic oxygenation in a shallow lake. Part 1: phenomenological description and management.

    PubMed

    Toffolon, Marco; Ragazzi, Marco; Righetti, Maurizio; Teodoru, Cristian R; Tubino, Marco; Defrancesco, Chiara; Pozzi, Sabrina

    2013-01-15

    Artificial oxygenation is a common management technique for lake restoration, but the use of hypolimnetic aeration in shallow basins can have dramatic effects on the dynamics of thermal stratification. This study presents the results of extensive field measurements performed in Lake Serraia (Trentino, Italy) after the installation of a Side Stream Pumping System, whereby oxygen-rich water is injected through 24 jets, uniformly distributed along an octagonal-shaped pipe at approximately 1 m above the sediment floor (10 m in depth). The lake is characterised by an average depth of 7 m, a volume of 3.1 × 10(6) m(3) and a residence time of about one year. Prior to the installation of the pumping system, the undisturbed hypolimnion thickness during summer stratification was relatively small. After the start of oxygen injection (up to 0.5 m(3)/s of oxygen-saturated water), an increase of in-lake temperature over the entire water column was noted with a maximum hypolimnetic temperature increase of up to 9 °C. The analysis of the flow field data and the results of numerical simulations (presented in the companion paper), indicate that the jets were solely responsible for the observed increase in temperature. Moreover, this study shows that modelling efforts are useful to provide guidelines for optimising contrasting needs (e.g., increase in oxygen supply versus jet discharge rate). Copyright © 2012 Elsevier Ltd. All rights reserved.

  18. Kern River steam expansion

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rintoul, B.

    1970-09-15

    The newest addition to Getty Oil Co.'s imposing array of steam equipment at Kern River is a 240-million-btu-per-hr boiler. This boiler is almost 5 times more powerful than the previous largest piece of steam-generating hardware in use in the field. The huge boiler went into operation in Aug. on the Canfield Fee property on Sec. 29, 28S-28E. It is being used to furnish steam for 60 wells in a displacement project. The components that have made Getty Oil Co. the leading steamer at Kern River and the field, in turn, the world capital for oil-field steam operations include shallow wells,more » steam generators, and--since last year--a computer. There are more than 4,500 oil wells in the Kern River field, including more than 2,600 on Getty Oil properties. Getty Oil's steam operations involve 2,469 producing wells and 151 injection wells, including 2,167 producing wells in stimulation projects and 302 producing wells in displacement projects. The Kern River drilling program for 1970 consists of 313 wells of which 179 are steam-injection wells for the expansion of displacement projects. Wells are shallow, drilled mainly to the Kern River Series sands at an average depth of 900 ft, with a few drilled to the China Grade zone at an average depth of 1,300 ft. To furnish steam for the massive Kern River program, Getty Oil has assembled a force of 96 steam generators.« less

  19. Comparison of Heat and Bromide as Ground Water Tracers Near Streams

    USGS Publications Warehouse

    Constantz, J.; Cox, M.H.; Su, G.W.

    2003-01-01

    Heat and bromide were compared as tracers for examining stream/ground water exchanges along the middle reaches of the Santa Clara River, California, during a 10-hour surface water sodium bromide injection test. Three cross sections that comprise six shallow (<1 m) piezometers were installed at the upper, middle, and lower sections of a 17 km long study reach, to monitor temperatures and bromide concentrations in the shallow ground water beneath the stream. A heat and ground water transport simulation model and a closely related solute and ground water transport simulation model were matched up for comparison of simulated and observed temperatures and bromide concentrations in the streambed. Vertical, one-dimensional simulations of sediment temperature were fitted to observed temperature results, to yield apparent streambed hydraulic conductivities in each cross section. The temperature-based hydraulic conductivities were assigned to a solute and ground water transport model to predict sediment bromide concentrations, during the sodium bromide injection test. Vertical, one-dimensional simulations of bromide concentrations in the sediments yielded a good match to the observed bromide concentrations, without adjustment of any model parameters except solute dispersivities. This indicates that, for the spatial and temporal scales examined on the Santa Clara River, the use of heat and bromide as tracers provide comparable information with respect to apparent hydraulic conductivities and fluxes for sediments near streams. In other settings, caution should be used due to differences in the nature of conservative (bromide) versus nonconservative (heat) tracers, particularly when preferential flowpaths are present.

  20. Radio observations of GRB 100418a: Test of an energy injection model explaining long-lasting GRB afterglows

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Moin, A.; Wang, Z.; Chandra, P.

    We present the results of our radio observational campaign of gamma-ray burst (GRB) 100418a, for which we used the Australia Telescope Compact Array, the Very Large Array, and the Very Long Baseline Array. GRB 100418a was a peculiar GRB with unusual X-ray and optical afterglow profiles featuring a plateau phase with a very shallow rise. This observed plateau phase was believed to be due to a continued energy injection mechanism that powered the forward shock, giving rise to an unusual and long-lasting afterglow. The radio afterglow of GRB 100418a was detectable several weeks after the prompt emission. We conducted long-termmore » monitoring observations of the afterglow and attempted to test the energy injection model advocating that the continuous energy injection is due to shells of material moving at a wide range of Lorentz factors. We obtained an upper limit of γ < 7 for the expansion rate of the GRB 100418a radio afterglow, indicating that the range-of-Lorentz factor model could only be applicable for relatively slow-moving ejecta. A preferred explanation could be that continued activity of the central engine may have powered the long-lasting afterglow.« less

  1. Evidence of a Non-universal Stellar Initial Mass Function. Insights from HST Optical Imaging of Six Ultra-faint Dwarf Milky Way Satellites

    NASA Astrophysics Data System (ADS)

    Gennaro, Mario; Tchernyshyov, Kirill; Brown, Thomas M.; Geha, Marla; Avila, Roberto J.; Guhathakurta, Puragra; Kalirai, Jason S.; Kirby, Evan N.; Renzini, Alvio; Simon, Joshua D.; Tumlinson, Jason; Vargas, Luis C.

    2018-03-01

    Using deep observations obtained with the Advanced Camera for Surveys (ACS) on board the Hubble Space Telescope (HST), we demonstrate that the sub-solar stellar initial mass function (IMF) of six ultra-faint dwarf Milky Way satellites (UFDs) is more bottom light than the IMF of the Milky Way disk. Our data have a lower-mass limit of ∼0.45 M ⊙, while the upper limit is ∼0.8 M ⊙, set by the turnoff mass of these old, metal-poor systems. If formulated as a single power law, we obtain a shallower IMF slope than the Salpeter value of ‑2.3, ranging from ‑1.01 for Leo IV to ‑1.87 for Boötes I. The significance of these deviations depends on the galaxy and is typically 95% or more. When modeled as a log-normal, the IMF fit results in a higher peak mass than in the Milky Way disk, but a Milky Way disk value for the characteristic system mass (∼0.22 M ⊙) is excluded at only 68% significance, and only for some UFDs in the sample. We find that the IMF slope correlates well with the galaxy mean metallicity, and to a lesser degree, with the velocity dispersion and the total mass. The strength of the observed correlations is limited by shot noise in the number of observed stars, but future space-based missions like the James Webb Space Telescope (JWST) and the Wide-Field Infrared Survey Telescope ( WFIRST) will enhance both the number of dwarf Milky Way satellites that can be studied in such detail and the observation depth for individual galaxies. Based on observations made with the NASA/ESA Hubble Space Telescope, obtained at the Space Telescope Science Institute, which is operated by the Association of Universities for Research in Astronomy, Inc., under NASA contract NAS 5-26555. These observations are associated with program GO-12549.

  2. A New Determination of the Luminosity Function of the Galactic Halo.

    NASA Astrophysics Data System (ADS)

    Dawson, Peter Charles

    The luminosity function of the galactic halo is determined by subtracting from the observed numbers of proper motion stars in the LHS Catalogue the expected numbers of main-sequence, degenerate, and giant stars of the disk population. Selection effects are accounted for by Monte Carlo simulations based upon realistic colour-luminosity relations and kinematic models. The catalogue is shown to be highly complete, and a calibration of the magnitude estimates therein is presented. It is found that, locally, the ratio of disk to halo material is close to 950, and that the mass density in main sequence and subgiant halo stars with 3 < M(,v) < 14 is about 2 x 10('-5) M(,o) pc('-3). With due allowance for white dwarfs and binaries, and taking into account the possibility of a moderate rate of halo rotation, it is argued that the total density does not much exceed 5 x 10('-5) M(,o) pc('-3), in which case the total mass interior to the sun is of the order of 5 x 10('8) M(,o) for a density distribution which projects to a de Vaucouleurs r(' 1/4) law. It is demonstrated that if the Wielen luminosity function is a faithful representation of the stellar distribution in the solar neighbourhood, then the observed numbers of large proper motion stars are inconsistent with the presence of an intermediate popula- tion at the level, and with the kinematics advocated recently by Gilmore and Reid. The initial mass function (IMF) of the halo is considered, and weak evidence is presented that its slope is at least not shallower than that of the disk population IMF. A crude estimate of the halo's age, based on a comparison of the main sequence turnoff in the reduced proper motion diagram with theoretical models is obtained; a tentative lower limit is 15 Gyr with a best estimate of between 15 and 18 Gyr. Finally, the luminosity function obtained here is compared with those determined in other investigations.

  3. ZFIRE: 3D Modeling of Rotation, Dispersion, and Angular Momentum of Star-forming Galaxies at z ∼ 2

    NASA Astrophysics Data System (ADS)

    Alcorn, Leo Y.; Tran, Kim-Vy; Glazebrook, Karl; Straatman, Caroline M.; Cowley, Michael; Forrest, Ben; Kacprzak, Glenn G.; Kewley, Lisa J.; Labbé, Ivo; Nanayakkara, Themiya; Spitler, Lee R.; Tomczak, Adam; Yuan, Tiantian

    2018-05-01

    We perform a kinematic and morphological analysis of 44 star-forming galaxies at z ∼ 2 in the COSMOS legacy field using near-infrared spectroscopy from Keck/MOSFIRE and F160W imaging from CANDELS/3D-HST as part of the ZFIRE survey. Our sample consists of cluster and field galaxies from 2.0 < z < 2.5 with K-band multi-object slit spectroscopic measurements of their Hα emission lines. Hα rotational velocities and gas velocity dispersions are measured using the Heidelberg Emission Line Algorithm (HELA), which compares directly to simulated 3D data cubes. Using a suite of simulated emission lines, we determine that HELA reliably recovers input S 0.5 and angular momentum at small offsets, but V 2.2/σ g values are offset and highly scattered. We examine the role of regular and irregular morphology in the stellar mass kinematic scaling relations, deriving the kinematic measurement S 0.5, and finding {log}({S}0.5)=(0.38+/- 0.07){log}(M/{M}ȯ -10)+(2.04+/- 0.03) with no significant offset between morphological populations and similar levels of scatter (∼0.16 dex). Additionally, we identify a correlation between M ⋆ and V 2.2/σ g for the total sample, showing an increasing level of rotation dominance with increasing M ⋆, and a high level of scatter for both regular and irregular galaxies. We estimate the specific angular momenta (j disk) of these galaxies and find a slope of 0.36 ± 0.12, shallower than predicted without mass-dependent disk growth, but this result is possibly due to measurement uncertainty at M ⋆ < 9.5 However, through a Kolmogorov–Smirnov test we find irregular galaxies to have marginally higher j disk values than regular galaxies, and high scatter at low masses in both populations.

  4. Characteristics of a trapped-vortex (TV) combustor

    NASA Technical Reports Server (NTRS)

    Hsu, K.-Y.; Gross, L. P.; Trump, D. D.; Roquemore, W. M.

    1994-01-01

    The characteristics of a Trapped-Vortex (TV) combustor are presented. A vortex is trapped in the cavity established between two disks mounted in tandem. Fuel and air are injected directly into the cavity in such a way as to increase the vortex strength. Some air from the annular flow is also entrained into the recirculation zone of the vortex. Lean blow-out limits of the combustor are determined for a wide range of annular air flow rates. These data indicate that the lean blow-out limits are considerably lower for the TV combustor than for flames stabilized using swirl or bluff-bodies. The pressure loss through the annular duct is also low, being less than 2% for the flow conditions in this study. The instantaneous shape of the recirculation zone of the trapped vortex is measured using a two-color PIV technique. Temperature profiles obtained with CARS indicate a well mixed recirculation zone and demonstrate the impact of primary air injection on the local equivalence ratio.

  5. [Neurosurgical treatment of complications of intra-disk injections of triamcinolone hexacetonide. Value of a radio-clinical classification].

    PubMed

    Privat, J M; Finiels, P J

    1997-01-01

    Epidural granulomas following intra-discal injection of triamcinolone hexacetonide are a well-known complication of this procedure, which is still encountered, even if its utilization was discontinued several years ago. According to the results of their experience, the authors propose a new radio-clinical grading system: grade I: disc calcification with aspect of "sub-ligamentar hernia" on CT scan; grade II: ascendant or descendant retrosomatic migration of distal content; grade III: pseudotumoral epidural infiltrate producing progressive narrowing of the spinal canal with neurological disturbance. Surgical indications in these cases can be drawn from their evolution: posterior approach can be used, with or without laminectomy, for excision as complete as possible of the involved disc (grades I and II); anterior approach should be preferred in cases of multiples recurrences after medical treatment and failure of classical posterior approach, or in case of necrotico-inflammatory proliferation with narrowing of the spinal canal (grade III).

  6. Management of Chronic Hypotony following Bilateral Uveitis in a Patient Treated with Pembrolizumab for Cutaneous Metastatic Melanoma.

    PubMed

    Reid, Gerard; Lorigan, Paul; Heimann, Heinrich; Hovan, Marta

    2018-04-19

    To describe the presentation and management of severe ocular adverse events following treatment with pembrolizumab for cutaneous metastatic melanoma. Interventional case report. A 73-year-old Caucasian man receiving pembrolizumab treatment for metastatic melanoma presented with panuveitis and subsequent profound hypotony, choroidal effusions, and optic disk swelling bilaterally. Oral prednisolone controlled intraocular inflammation. However, bilateral hypotony persisted which was managed over a 12-month period with ocular viscoelastic device injections into the anterior chamber of both eyes. There was also phacoemulsification with pars plana vitrectomy (PPV) and silicone oil (SO) tamponade performed on the left eye only. Intraocular pressure (IOP) stabilized (>6 mmHg) with best-corrected visual acuity of 6/60. We report a severe adverse event from pembrolizumab therapy resulting in uveitis and persistent hypotony. Repeat injections of high viscosity OVD achieved an increase in IOP up to 12 months. This technique may be a useful adjuvant or alternative to PPV and SO.

  7. The Role of Dopant Ions on Charge Injection and Transport in Electrochemically Doped Quantum Dot Films.

    PubMed

    Gudjonsdottir, Solrun; van der Stam, Ward; Kirkwood, Nicholas; Evers, Wiel H; Houtepen, Arjan J

    2018-05-16

    Control over the charge density is very important for implementation of colloidal semiconductor nanocrystals into various optoelectronic applications. A promising approach to dope nanocrystal assemblies is charge injection by electrochemistry, in which the charge compensating electrolyte ions can be regarded as external dopant ions. To gain insight into the doping mechanism and the role of the external dopant ions, we investigate charge injection in ZnO nanocrystal assemblies for a large series of charge compensating electrolyte ions with spectroelectrochemical and electrochemical transistor measurements. We show that charge injection is limited by the diffusion of cations in the nanocrystal films as their diffusion coefficient are found to be ∼7 orders of magnitude lower than those of electrons. We further show that the rate of charge injection depends strongly on the cation size and cation concentration. Strikingly, the onset of electron injection varies up to 0.4 V, depending on the size of the electrolyte cation. For the small ions Li + and Na + the onset is at significantly less negative potentials. For larger ions (K + , quaternary ammonium ions) the onset is always at the same, more negative potential, suggesting that intercalation may take place for Li + and Na + . Finally, we show that the nature of the charge compensating cation does not affect the source-drain electronic conductivity and mobility, indicating that shallow donor levels from intercalating ions fully hybridize with the quantum confined energy levels and that the reorganization energy due to intercalating ions does not strongly affect electron transport in these nanocrystal assemblies.

  8. The Role of Dopant Ions on Charge Injection and Transport in Electrochemically Doped Quantum Dot Films

    PubMed Central

    2018-01-01

    Control over the charge density is very important for implementation of colloidal semiconductor nanocrystals into various optoelectronic applications. A promising approach to dope nanocrystal assemblies is charge injection by electrochemistry, in which the charge compensating electrolyte ions can be regarded as external dopant ions. To gain insight into the doping mechanism and the role of the external dopant ions, we investigate charge injection in ZnO nanocrystal assemblies for a large series of charge compensating electrolyte ions with spectroelectrochemical and electrochemical transistor measurements. We show that charge injection is limited by the diffusion of cations in the nanocrystal films as their diffusion coefficient are found to be ∼7 orders of magnitude lower than those of electrons. We further show that the rate of charge injection depends strongly on the cation size and cation concentration. Strikingly, the onset of electron injection varies up to 0.4 V, depending on the size of the electrolyte cation. For the small ions Li+ and Na+ the onset is at significantly less negative potentials. For larger ions (K+, quaternary ammonium ions) the onset is always at the same, more negative potential, suggesting that intercalation may take place for Li+ and Na+. Finally, we show that the nature of the charge compensating cation does not affect the source-drain electronic conductivity and mobility, indicating that shallow donor levels from intercalating ions fully hybridize with the quantum confined energy levels and that the reorganization energy due to intercalating ions does not strongly affect electron transport in these nanocrystal assemblies. PMID:29718666

  9. Numerical simulation of surfactant-enhanced remediation using UTCHEM

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Freeze, G.A.; Fountain, J.C.; Pope, G.A.

    1995-12-31

    The UTCHEM multiphase compositional simulator was used to model the migration and surfactant-enhanced remediation of perchloroethylene (PCE) in a test cell at Canadian Forces Base Borden, Ontario. A line of five injection wells was installed on one side of the test cell and a line of five withdrawal wells was installed on the opposite side of the cell. The injection and withdrawal wells penetrated the entire depth of the sand aquifer. A total of 231 liters of PCE was injected into a shallow well in the center of the test cell. Prior to surfactant flushing, 47 liters of free-phase PCE,more » which flowed into the injection and withdrawal wells over a two week period, was removed using a small-diameter plastic tube and a peristaltic pump. One to two months of water flooding (pump-and-treat), using the injection-withdrawal well system, flushed an additional 12 liters of PCE. Following the water flooding, an aqueous surfactant solution of 1% nonyl phenol ethoxylate and 1% phosphate ester of the nonyl phenol ethoxylate was circulated through the test cell via the injection-withdrawal wells. Between November 11, 1990 and May 29, 1991, a total of 130,000 liters of surfactant solution were recirculated through the test cell, during which time 62 liters of PCE were recovered. This paper describes preliminary scoping simulations of the surfactant flushing process at the Borden test site to demonstrate the capability of UTCHEM to model surfactant-enhanced remediation of a non-aqueous-phase liquid (NAPL). A discussion of efforts to simulate PCE migration is also presented.« less

  10. Temporal changes in VOC discharge to surface water from a fractured rock aquifer during well installation and operation, Greenville, South Carolina

    USGS Publications Warehouse

    Vroblesky, D.A.; Robertson, J.F.

    1996-01-01

    Analysis of the vapor in passive vapor samplers retrieved from a streambed in fractured rock terrain implied that volatile organic carbon (VOC) discharge from ground water to surface water substantially increased following installation of a contaminant recovery well using air rotary drilling. The air rotary technique forced air into the aquifer near the stream. The injection produced an upward hydraulic gradient that appears to have transported water and contaminants from deeper parts of the aquifer through fractures into shallow parts of the aquifer. Once in the shallow flow regime, the contamination was transported to the stream, where it discharged during the next several weeks following well installation. After the recovery well was activated and began continuously pumping contaminated ground water to a treatment facility, the VOC concentrations in the stream bottom passive vapor samplers decreased to below detectable concentrations, suggesting that the withdrawal had captured the contaminated ground water that previously had discharged to the stream.

  11. Effect of Temperature on Formation and Stability of Shallow Trap at a Dielectric Interface of the Multilayer

    NASA Astrophysics Data System (ADS)

    Rogti, F.

    2015-12-01

    Space-charge behavior at dielectric interfaces in multilayer low-density polyethylene (LDPE) and fluorinated ethylene propylene (FEP) subjected to a direct-current (DC) field has been investigated as a function of temperature using the pulsed electroacoustic technique. A sandwich structure constituted by two nonidentical LDPE/FEP dielectric films was used to study the charging propensity of electrode/dielectric and dielectric/dielectric interfaces. The time dependence of the space-charge distribution was subsequently recorded at four temperatures, 20°C, 25°C, 40°C, and 60°C, under field (polarization) and short-circuit (depolarization) conditions. The experimental results demonstrate that temperature plays a significant role in the space-charge dynamics at the dielectric interface. It affects the charge injection, increases the charge mobility and electrical conductivity, and increases the density of shallow traps and trap filling. It is found that traps formed during polarization at high temperature do not remain stable after complete discharge of the multidielectric structure and when poled at low temperatures.

  12. Riverbank filtration potential of pharmaceuticals in a wastewater-impacted stream

    USGS Publications Warehouse

    Bradley, Paul M.; Barber, Larry B.; Duris, Joseph W.; Foreman, William T.; Furlong, Edward T.; Hubbard, Laura E.; Hutchinson, Kasey J.; Keefe, Steffanie H.; Kolpin, Dana W.

    2014-01-01

    Pharmaceutical contamination of shallow groundwater is a substantial concern in effluent-dominated streams, due to high aqueous mobility, designed bioactivity, and effluent-driven hydraulic gradients. In October and December 2012, effluent contributed approximately 99% and 71%, respectively, to downstream flow in Fourmile Creek, Iowa, USA. Strong hydrologic connectivity was observed between surface-water and shallow-groundwater. Carbamazepine, sulfamethoxazole, and immunologically-related compounds were detected in groundwater at greater than 0.02 μg L−1 at distances up to 6 m from the stream bank. Direct aqueous-injection HPLC-MS/MS revealed 43% and 55% of 110 total pharmaceutical analytes in surface-water samples in October and December, respectively, with 16% and 6%, respectively, detected in groundwater approximately 20 m from the stream bank. The results demonstrate the importance of effluent discharge as a driver of local hydrologic conditions in an effluent-impacted stream and thus as a fundamental control on surface-water to groundwater transport of effluent-derived pharmaceutical contaminants.

  13. Lung vagal afferent activity in rats with bleomycin-induced lung fibrosis.

    PubMed

    Schelegle, E S; Walby, W F; Mansoor, J K; Chen, A T

    2001-05-01

    Bleomycin treatment in rats results in pulmonary fibrosis that is characterized by a rapid shallow breathing pattern, a decrease in quasi-static lung compliance and a blunting of the Hering-Breuer Inflation Reflex. We examined the impulse activity of pulmonary vagal afferents in anesthetized, mechanically ventilated rats with bleomycin-induced lung fibrosis during the ventilator cycle and static lung inflations/deflations and following the injection of capsaicin into the right atrium. Bleomycin enhanced volume sensitivity of slowly adapting stretch receptors (SARs), while it blunted the sensitivity of these receptors to increasing transpulmonary pressure. Bleomycin treatment increased the inspiratory activity, while it decreased the expiratory activity of rapidly adapting stretch receptors (RARs). Pulmonary C-fiber impulse activity did not appear to be affected by bleomycin treatment. We conclude that the fibrosis-related shift in discharge profile and enhanced volume sensitivity of SARs combined with the increased inspiratory activity of RARs contributes to the observed rapid shallow breathing of bleomycin-induced lung fibrosis.

  14. High-directionality fiber-chip grating coupler with interleaved trenches and subwavelength index-matching structure.

    PubMed

    Benedikovic, Daniel; Alonso-Ramos, Carlos; Cheben, Pavel; Schmid, Jens H; Wang, Shurui; Xu, Dan-Xia; Lapointe, Jean; Janz, Siegfried; Halir, Robert; Ortega-Moñux, Alejandro; Wangüemert-Pérez, J Gonzalo; Molina-Fernández, Iñigo; Fédéli, Jean-Marc; Vivien, Laurent; Dado, Milan

    2015-09-15

    We present the first experimental demonstration of a new fiber-chip grating coupler concept that exploits the blazing effect by interleaving the standard full (220 nm) and shallow etch (70 nm) trenches in a 220 nm thick silicon layer. The high directionality is obtained by controlling the separation between the deep and shallow trenches to achieve constructive interference in the upward direction and destructive interference toward the silicon substrate. Utilizing this concept, the grating directionality can be maximized independent of the bottom oxide thickness. The coupler also includes a subwavelength-engineered index-matching region, designed to reduce the reflectivity at the interface between the injection waveguide and the grating. We report a measured fiber-chip coupling efficiency of -1.3  dB, the highest coupling efficiency achieved to date for a surface grating coupler in a 220 nm silicon-on-insulator platform fabricated in a conventional dual-etch process without high-index overlays or bottom mirrors.

  15. Finite element flow analysis; Proceedings of the Fourth International Symposium on Finite Element Methods in Flow Problems, Chuo University, Tokyo, Japan, July 26-29, 1982

    NASA Astrophysics Data System (ADS)

    Kawai, T.

    Among the topics discussed are the application of FEM to nonlinear free surface flow, Navier-Stokes shallow water wave equations, incompressible viscous flows and weather prediction, the mathematical analysis and characteristics of FEM, penalty function FEM, convective, viscous, and high Reynolds number FEM analyses, the solution of time-dependent, three-dimensional and incompressible Navier-Stokes equations, turbulent boundary layer flow, FEM modeling of environmental problems over complex terrain, and FEM's application to thermal convection problems and to the flow of polymeric materials in injection molding processes. Also covered are FEMs for compressible flows, including boundary layer flows and transonic flows, hybrid element approaches for wave hydrodynamic loadings, FEM acoustic field analyses, and FEM treatment of free surface flow, shallow water flow, seepage flow, and sediment transport. Boundary element methods and FEM computational technique topics are also discussed. For individual items see A84-25834 to A84-25896

  16. An overview of results from the CO2SINK 3D baseline seismic survey at Ketzin, Germany

    NASA Astrophysics Data System (ADS)

    Juhlin, C.; Giese, R.; Cosma, C.; Kazemeini, H.; Juhojuntti, N.; Lüth, S.; Norden, B.; Förster, A.; Yordkayhun, S.

    2009-04-01

    A 3D seismic survey was acquired at the CO2SINK project site over the Ketzin anticline in the fall of 2005. Main objectives of the survey were (1) to verify earlier geological interpretations of the structure based on vintage 2D seismic and borehole data, (2) to provide, if possible, an understanding of the structural geometry for flow pathways within the reservoir, (3) a baseline for later evaluation of the time evolution of rock properties as CO2 is injected into the reservoir, and (4) detailed sub-surface images near the injection borehole for planning of the drilling operations. Overlapping templates with 5 receiver lines containing 48 active channels in each template were used for the acquisition. In each template, 200 nominal source points were activated using an accelerated weight drop, giving a nominal fold of 25. Due to logistics, the number of actual source points in each template varied. In spite of the relatively low fold and the simple source used, data quality is generally good with the uppermost 1000 m being well imaged. Data processing results clearly show a fault system across the top of the Ketzin anticline that is termed the Central Graben Fault Zone (CGFZ). The fault zone consists of west-southwest-east-northeast- to east-west-trending normal faults bounding a 600-800 m wide graben. Within the Jurassic section, discrete faults are well developed, and the main graben-bounding faults have throws of up to 30 m. At shallower levels, the fault system appears to disappear in the Tertiary Rupelian clay. The main bounding faults of the CGFZ can be traced downwards to the top of the Weser Formation and possibly to the Stuttgart level, the target formation for CO2 injection. No faults were imaged near the injection site on the southern limb of the anticline. Remnant gas, cushion and residual gas from a previous natural gas storage facility at the site, is present near the top of the anticline in the depth interval of about 250-400 m and has a clear seismic signature. In addition to the standard processing and interpretation applied, attribute analysis, detailed shallow reflection seismic processing, tomographic inversion of first arrival times, and initial seismic modeling of the CO2 response have been performed. Attribute analysis of the target horizon using the continuous wavelet transform indicates that the injection site penetrates the target reservoir near the edge of a north-northwest-south-southeast striking channel.

  17. Laboratory Investigation of a Leaking Type 316 Socket Weld in a Boron Injection Tank Sampling Line

    NASA Astrophysics Data System (ADS)

    Xu, Hongqing; Fyfitch, Steve; Hosier, Ryan; Hyres, James

    A leak was discovered in a Type 316 stainless steel socket weld in the sampling line for the boron injection tank. A section of the pipeline containing the leaking weld was removed for laboratory investigation that included visual and Stereovisual inspections, liquid penetrant (PT) testing, metallography, scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS), and ferrite content determinations. The leak path was a through-wall transgranular crack in the socket weld. Cracking initiated along the weld-metal-to-base-metal interface at the tip of the crevice between the socket and pipe. The crevice was exposed to oxygenated boron solution at <180°F. Shallow intergranular attack (IGA) was found in the exposed base metal inside the crevice. Based on the investigation results, it was concluded that transgranular stress corrosion cracking (TGSCC) is the primary cracking mechanism.

  18. Environmental effects of large impacts on Mars.

    PubMed

    Segura, Teresa L; Toon, Owen B; Colaprete, Anthony; Zahnle, Kevin

    2002-12-06

    The martian valley networks formed near the end of the period of heavy bombardment of the inner solar system, about 3.5 billion years ago. The largest impacts produced global blankets of very hot ejecta, ranging in thickness from meters to hundreds of meters. Our simulations indicated that the ejecta warmed the surface, keeping it above the freezing point of water for periods ranging from decades to millennia, depending on impactor size, and caused shallow subsurface or polar ice to evaporate or melt. Large impacts also injected steam into the atmosphere from the craters or from water innate to the impactors. From all sources, a typical 100-, 200-, or 250-kilometers asteroid injected about 2, 9, or 16 meters, respectively, of precipitable water into the atmosphere, which eventually rained out at a rate of about 2 meters per year. The rains from a large impact formed rivers and contributed to recharging aquifers.

  19. Comparative evaluation of surface and downhole steam-generation techniques

    NASA Astrophysics Data System (ADS)

    Hart, C.

    The application of heat to reservoirs containing high API gravity oils can substantially improve recovery. Although steam injection is currently the principal thermal recovery method, heat transmission losses associated with delivery of the steam from the surface generators to the oil bearing formation has limited conventional steam injection to shallow reservoirs. The objective of the Department of Energy's Project DEEP STEAM is to develop the technology required to economically produce heavy oil from deep reservoirs. The tasks included in this effort are the development and evaluation of thermally efficient delivery systems and downhole steam generation systems. The technical and economic performance of conventional surface steam drives, which are strongly influenced by heat losses are compared. The selection of a preferred technology based upon either total efficiency or cost is found to be strongly influenced by reservoir depth, steam mass flow rate, and sandface steam quality.

  20. NGC 1866: First Spectroscopic Detection of Fast-rotating Stars in a Young LMC Cluster

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dupree, A. K.; Dotter, A.; Johnson, C. I.

    High-resolution spectroscopic observations were taken of 29 extended main-sequence turnoff (eMSTO) stars in the young (∼200 Myr) Large Magellanic Cloud (LMC) cluster, NGC 1866, using the Michigan/ Magellan Fiber System and MSpec spectrograph on the Magellan -Clay 6.5 m telescope. These spectra reveal the first direct detection of rapidly rotating stars whose presence has only been inferred from photometric studies. The eMSTO stars exhibit H α emission (indicative of Be-star decretion disks), others have shallow broad H α absorption (consistent with rotation ≳150 km s{sup −1}), or deep H α core absorption signaling lower rotation velocities (≲150 km s{sup −1}).more » The spectra appear consistent with two populations of stars—one rapidly rotating, and the other, younger and slowly rotating.« less

  1. Electronic properties of light-induced recombination centers in boron-doped Czochralski silicon

    NASA Astrophysics Data System (ADS)

    Schmidt, Jan; Cuevas, Andrés

    1999-09-01

    In order to study the electronic properties of the recombination centers responsible for the light-induced carrier lifetime degradation commonly observed in high-purity boron-doped Czochralski (Cz) silicon, injection-level dependent carrier lifetime measurements are performed on a large number of boron-doped p-type Cz silicon wafers of various resistivities (1-31 Ω cm) prior to and after light degradation. The measurement technique used is the contactless quasi-steady-state photoconductance method, allowing carrier lifetime measurements over a very broad injection range between 1012 and 1017cm-3. To eliminate all recombination channels not related to the degradation effect, the difference of the inverse lifetimes measured after and before light degradation is evaluated. A detailed analysis of the injection level dependence of the carrier lifetime change using the Shockley-Read-Hall theory shows that the fundamental recombination center created during illumination has an energy level between Ev+0.35 and Ec-0.45 eV and an electron/hole capture time constant ratio between 0.1 and 0.2. This deep-level center is observed in all samples and is attributed to a new type of boron-oxygen complex. Besides this fundamental defect, in some samples an additional shallow-level recombination center at 0.15 eV below Ec or above Ev is found to be activated during light exposure. This second center dominates the light-degraded carrier lifetime only under high-injection conditions and is hence only of minor importance for low-injection operated devices.

  2. Why Buckling Stellar Bars Weaken in Disk Galaxies

    NASA Astrophysics Data System (ADS)

    Martinez-Valpuesta, Inma; Shlosman, Isaac

    2004-09-01

    Young stellar bars in disk galaxies experience a vertical buckling instability that terminates their growth and thickens them, resulting in a characteristic peanut/boxy shape when viewed edge-on. Using N-body simulations of galactic disks embedded in live halos, we have analyzed the bar structure throughout this instability and found that the outer (approximately) third of the bar dissolves completely while the inner part (within the vertical inner Lindblad resonance) becomes less oval. The bar acquires the frequently observed peanut/boxy-shaped isophotes. We also find that the bar buckling is responsible for a mass injection above the plane, which is subsequently trapped by specific three-dimensional families of periodic orbits of particular shapes explaining the observed isophotes, in line with previous work. Using a three-dimensional orbit analysis and surfaces of sections, we infer that the outer part of the bar is dissolved by a rapidly widening stochastic region around its corotation radius-a process related to the bar growth. This leads to a dramatic decrease in the bar size, decrease in the overall bar strength, and a mild increase in its pattern speed but is not expected to lead to a complete bar dissolution. The buckling instability appears primarily responsible for shortening the secular diffusion timescale to a dynamical one when building the boxy isophotes. The sufficiently long timescale of the described evolution, ~1 Gyr, can affect the observed bar fraction in the local universe and at higher redshifts, both through reduced bar strength and the absence of dust offset lanes in the bar.

  3. First stars of the ρ Ophiuchi dark cloud. XMM-Newton view of ρ Oph and its neighbors

    NASA Astrophysics Data System (ADS)

    Pillitteri, I.; Wolk, S. J.; Chen, H. H.; Goodman, A.

    2016-08-01

    Star formation in molecular clouds can be triggered by the dynamical action of winds from massive stars. Furthermore, X-ray and UV fluxes from massive stars can influence the life time of surrounding circumstellar disks. We present the results of a 53 ks XMM-Newton observation centered on the ρ Ophiuchi A+B binary system. ρ Ophiuchi lies in the center of a ring of dust, likely formed by the action of its winds. This region is different from the dense core of the cloud (L1688 Core F) where star formation is at work. X-rays are detected from ρ Ophiuchi as well as a group of surrounding X-ray sources. We detected 89 X-ray sources, 47 of them have at least one counterpart in 2MASS+All-WISE catalogs. Based on IR and X-ray properties, we can distinguish between young stellar objects (YSOs) belonging to the cloud and background objects. Among the cloud members, we detect three debris-disk objects and 22 disk-less - Class III young stars.We show that these stars have ages in 5-10 Myr, and are significantly older than the YSOs in L1688. We speculate that they are the result of an early burst of star formation in the cloud. An X-ray energy of ≥5 × 1044 erg has been injected into the surrounding mediumover the past 5 Myr, we discuss the effects of such energy budget in relation to the cloud properties and dynamics.

  4. A characteristic oxygen abundance gradient in galaxy disks unveiled with CALIFA

    NASA Astrophysics Data System (ADS)

    Sánchez, S. F.; Rosales-Ortega, F. F.; Iglesias-Páramo, J.; Mollá, M.; Barrera-Ballesteros, J.; Marino, R. A.; Pérez, E.; Sánchez-Blazquez, P.; González Delgado, R.; Cid Fernandes, R.; de Lorenzo-Cáceres, A.; Mendez-Abreu, J.; Galbany, L.; Falcon-Barroso, J.; Miralles-Caballero, D.; Husemann, B.; García-Benito, R.; Mast, D.; Walcher, C. J.; Gil de Paz, A.; García-Lorenzo, B.; Jungwiert, B.; Vílchez, J. M.; Jílková, Lucie; Lyubenova, M.; Cortijo-Ferrero, C.; Díaz, A. I.; Wisotzki, L.; Márquez, I.; Bland-Hawthorn, J.; Ellis, S.; van de Ven, G.; Jahnke, K.; Papaderos, P.; Gomes, J. M.; Mendoza, M. A.; López-Sánchez, Á. R.

    2014-03-01

    We present the largest and most homogeneous catalog of H ii regions and associations compiled so far. The catalog comprises more than 7000 ionized regions, extracted from 306 galaxies observed by the CALIFA survey. We describe the procedures used to detect, select, and analyze the spectroscopic properties of these ionized regions. In the current study we focus on characterizing of the radial gradient of the oxygen abundance in the ionized gas, based on the study of the deprojecteddistribution of H ii regions. We found that all galaxies without clear evidence of an interaction present a common gradient in the oxygen abundance, with a characteristic slope of αO/H = -0.1 dex/re between 0.3 and 2 disk effective radii (re), and a scatter compatible with random fluctuations around this value, when the gradient is normalized to the disk effective radius. The slope is independent of morphology, the incidence of bars, absolute magnitude, or mass. Only those galaxies with evidence of interactions and/or clear merging systems present a significantly shallower gradient, consistent with previous results. The majority of the 94 galaxies with H ii regions detected beyond two disk effective radii present a flattening in the oxygen abundance. The flattening is statistically significant. We cannot provide a conclusive answer regarding the origin of this flattening. However, our results indicate that its origin is most probably related to the secular evolution of galaxies. Finally, we find a drop/truncation of the oxygen abundance in the inner regions for 26 of the galaxies. All of them are non-interacting, mostly unbarred Sb/Sbc galaxies. This feature is associated with a central star-forming ring, which suggests that both features are produced by radial gas flows induced by resonance processes. Our result suggests that galaxy disks grow inside-out, with metal enrichment driven by the local star formation history and with a small variation galaxy-by-galaxy. At a certain galactocentric distance, the oxygen abundance seems to be correlated well with the stellar mass density and total stellar mass of the galaxies, independently of other properties of the galaxies. Other processes, such as radial mixing and inflows/outflows seem to have a limited effect on shaping of the radial distribution of oxygen abundances, although they are not ruled out. Appendices are available in electronic form at http://www.aanda.orgBased on observations collected at the Centro Astronómico Hispano Alemán (CAHA) at Calar Alto, operated jointly by the Max-Planck Institut für Astronomie and the Instituto de Astrofísica de Andalucía (CSIC).

  5. Modelling of deep gaps created by giant planets in protoplanetary disks

    NASA Astrophysics Data System (ADS)

    Kanagawa, Kazuhiro D.; Tanaka, Hidekazu; Muto, Takayuki; Tanigawa, Takayuki

    2017-12-01

    A giant planet embedded in a protoplanetary disk creates a gap. This process is important for both theory and observation. Using results of a survey for a wide parameter range with two-dimensional hydrodynamic simulations, we constructed an empirical formula for the gap structure (i.e., the radial surface density distribution), which can reproduce the gap width and depth obtained by two-dimensional simulations. This formula enables us to judge whether an observed gap is likely to be caused by an embedded planet or not. The propagation of waves launched by the planet is closely connected to the gap structure. It makes the gap wider and shallower as compared with the case where an instantaneous wave damping is assumed. The hydrodynamic simulations show that the waves do not decay immediately at the launching point of waves, even when the planet is as massive as Jupiter. Based on the results of hydrodynamic simulations, we also obtained an empirical model of wave propagation and damping in cases of deep gaps. The one-dimensional gap model with our wave propagation model is able to reproduce the gap structures in hydrodynamic simulations well. In the case of a Jupiter-mass planet, we also found that the waves with a smaller wavenumber (e.g., m = 2) are excited and transport the angular momentum to a location far away from the planet. The wave with m = 2 is closely related with a secondary wave launched by a site opposite from the planet.

  6. The Evolution of Dwarf Galaxy Satellites with Different Dark Matter Density Profiles in the ErisMod Simulations. I. The Early Infalls

    NASA Astrophysics Data System (ADS)

    Tomozeiu, Mihai; Mayer, Lucio; Quinn, Thomas

    2016-02-01

    We present the first simulations of tidal stirring of dwarf galaxies in the Local Group carried out in a fully cosmological context. We use the ErisDARK cosmological simulation of a Milky Way (MW)-sized galaxy to identify some of the most massive subhalos (Mvir > 108 M⊙) that fall into the main host before z = 2. Subhalos are replaced before infall with extremely high-resolution models of dwarf galaxies comprising a faint stellar disk embedded in a dark matter halo. The set of models contains cuspy halos as well as halos with “cored” profiles (with the cusp coefficient γ = 0.6) consistent with recent results of hydrodynamical simulations of dwarf galaxy formation. The simulations are then run to z = 0 with as many as 54 million particles and resolutions as small as ∼4 pc using the new parallel N-body code ChaNGa. The stellar components of all satellites are significantly affected by tidal stirring, losing stellar mass, and undergoing a morphological transformation toward a pressure supported spheroidal system. However, while some remnants with cuspy halos maintain significant rotational flattening and disk-like features, all the shallow halo models achieve vrot/σ⋆ < 0.5 and round shapes typical of dSph satellites of the MW and M31. Mass loss is also enhanced in the latter, and remnants can reach luminosities and velocity dispersions as low as those of ultra-faint dwarfs.

  7. Investigating the Relation between Sunspots and Umbral Dots

    NASA Astrophysics Data System (ADS)

    Yadav, Rahul; Louis, Rohan E.; Mathew, Shibu K.

    2018-03-01

    Umbral dots (UDs) are transient, bright features observed in the umbral region of a sunspot. We study the physical properties of UDs observed in sunspots of different sizes. The aim of our study is to relate the physical properties of UDs with the large-scale properties of sunspots. For this purpose, we analyze high-resolution G-band images of 42 sunspots observed by Hinode/SOT, located close to disk center. The images were corrected for instrumental stray light and restored with the modeled point-spread function. An automated multilevel tracking algorithm was employed to identify the UDs located in selected G-band images. Furthermore, we employed Solar Dynamics Observatory/HMI, limb-darkening-corrected, full-disk continuum images to estimate the sunspot phase and epoch for the selected sunspots. The number of UDs identified in different umbrae exhibits a linear relation to the umbral size. The observed filling factor ranges from 3% to 7% and increases with the mean umbral intensity. Moreover, the filling factor shows a decreasing trend with the umbral size. We also found that the observed mean and maximum intensities of UDs are correlated with the mean umbral intensity. However, we do not find any significant relationship between the mean (and maximum) intensity and effective diameter of UDs and the sunspot area, epoch, and decay rate. We suggest that this lack of relation could be due to either the distinct transition of spatial scales associated with overturning convection in the umbra or the shallow depth associated with UDs, or both.

  8. Site-targeted non-viral gene delivery by direct DNA injection into the pancreatic parenchyma and subsequent in vivo electroporation in mice.

    PubMed

    Sato, Masahiro; Inada, Emi; Saitoh, Issei; Ohtsuka, Masato; Nakamura, Shingo; Sakurai, Takayuki; Watanabe, Satoshi

    2013-11-01

    The pancreas is considered an important gene therapy target because the organ is the site of several high burden diseases, including diabetes mellitus, cystic fibrosis, and pancreatic cancer. We aimed to develop an efficient in vivo gene delivery system using non-viral DNA. Direct intra-parenchymal injection of a solution containing circular plasmid pmaxGFP DNA was performed on adult anesthetized ICR female mice. The injection site was sandwiched with a pair of tweezer-type electrode disks, and electroporated using a square-pulse generator. Green fluorescent protein (GFP) expression within the injected pancreatic portion was observed one day after gene delivery. GFP expression reduced to baseline within a week of transfection. Application of voltages over 40 V resulted in tissue damage during electroporation. We demonstrate that electroporation is effective for safe and efficient transfection of pancreatic cells. This novel gene delivery method to the pancreatic parenchyma may find application in gene therapy strategies for pancreatic diseases and in investigation of specific gene function in situ. © 2013 The Authors. Biotechnology Journal published by Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim. This is an open access article under the terms of the Creative Commons Attribution-NonCommercial-NoDerivs License, which permits use and distribution in any medium, provided the original work is properly cited, the use is non-commercial and no modifications or adaptions are made.

  9. Two types of seismicity accompanying hydraulic fracturing in Harrison County, Ohio - implications for seismic hazard and seismogenic mechanism

    NASA Astrophysics Data System (ADS)

    Kozlowska, M.; Brudzinski, M.; Friberg, P. A.; Skoumal, R.; Baxter, N. D.; Currie, B.

    2017-12-01

    While induced seismicity in the United States has mainly been attributed to wastewater disposal, Eastern Ohio has provided cases of seismicity induced by both hydraulic fracturing (HF) and wastewater disposal. In this study, we investigate five cases of seismicity associated with HF in Harrison County, OH. Because of their temporal and spatial isolation from other injection activities, this provide an ideal setting for studying the relationships between high pressure injection and earthquakes. Our analysis reveals two distinct groups of seismicity. Deeper earthquakes occur in the Precambrian crystalline basement, reach larger magnitudes (M>2), have lower b-values (<1), and continue for weeks following stimulation shut down. Shallower earthquakes, on the other hand, occur in Paleozoic sedimentary rocks 400 m below HF, are limited to smaller magnitudes (M<1), have higher b-values (>1.5), and lack post-stimulation activity. We seek the physical explanation of observed difference in earthquakes character and hypothesize that the maturity of faults is the main factor determining sequences b-values. Based on published results of laboratory experiments and fault modeling, we interpret the deep seismicity as slip on more mature faults in the older crystalline rocks and the shallow seismicity as slip on immature faults in the younger, lower viscosity sedimentary rocks. This suggests that HF inducing seismicity on deeper, more mature faults poses higher seismic hazards. The analysis of water and gas production data from these wells suggests that wells inducing deeper seismicity produced more water than wells with shallow seismicity. This indicates more extensive hydrologic connections outside the target reservoir, which may explain why gas production drops more quickly for wells with deeper seismicity. Despite these indications that hydraulic pressure fluctuations induce seismicity, we also find only 2-3 hours between onset of stimulation of HF wells and seismicity that is too short for typical fluid pressure diffusion rates across distances of 1 km. We conclude that a combination of pore fluid pressure changes and poroelastic stress changes are responsible for inducing shear slip during HF.

  10. Efficient infiltration of water in the subsurface by using point-wells: A field study

    NASA Astrophysics Data System (ADS)

    Lopik, J. V.; Schotting, R.; Raoof, A.

    2017-12-01

    The ability to infiltrate large volumes of water in the subsurface would have great value for battling flooding in urban regions. Moreover, efficient water infiltration is key to optimize underground aquifer storage and recovery (ASR), aquifer thermal energy storage (ATES), as well as construction dewatering systems. Usually, variable infiltration rates of large water quantities could have a huge hydrogeological impact in the upper part of (phreatic) aquifer systems. In urban regions, minimizing excessive groundwater table fluctuations are necessary. A newly developed method, Fast, High Volume Infiltration (FHVI), by Dutch dewatering companies can be used to enable fast injection into the shallow subsurface. Conventional infiltration methods are using injection wells that screen large parts of the aquifer depth, whereas FHVI uses a specific infiltration point (1-m well screen) in the aquifer. These infiltration points are generally thin, high permeable layers in the aquifer of approximately 0.5-2 meter thick, and are embedded by less permeable layers. Currently, much higher infiltration pressures in shallow aquifers can be achieved with FHVI (up to 1 bar) compared to conventional infiltration methods ( 0.2 bar). Despite the high infiltration pressures and high discharge rate near the FHVI-filter, the stresses on shallow groundwater levels are significantly reduced with FHVI. In order to investigate the mechanisms that enable FHVI, a field experiment is conducted in a sandy aquifer to obtain insight in the 3-D hydraulic pressure distribution and flow patterns around a FHVI-filter during infiltration. A detailed characterization of the soil profile is obtained by using soil samples and cone pressure tests with a specific hydraulic profiling tool to track the vertical variation in aquifer permeability. A tracer test with bromide and heat is conducted to investigate preferential flow paths. The experimental data show that tracking small heterogeneities in aquifers and analysing the permeability difference ratio between the aimed infiltration layer and the surrounding layers in the aquifer are key to optimize the configuration of the FHVI-well. The results show that the use of point wells in thin, high permeable layers could drastically improve the efficiency of the infiltration system.

  11. Thermogenic methane injection via bubble transport into the upper Arctic Ocean from the hydrate-charged Vestnesa Ridge, Svalbard

    NASA Astrophysics Data System (ADS)

    Smith, Andrew J.; Mienert, Jürgen; Bünz, Stefan; Greinert, Jens

    2014-05-01

    We use new gas-hydrate geochemistry analyses, echosounder data, and three-dimensional P-Cable seismic data to study a gas-hydrate and free-gas system in 1200 m water depth at the Vestnesa Ridge offshore NW Svalbard. Geochemical measurements of gas from hydrates collected at the ridge revealed a thermogenic source. The presence of thermogenic gas and temperatures of ˜3.3°C result in a shallow top of the hydrate stability zone (THSZ) at ˜340 m below sea level (mbsl). Therefore, hydrate-skinned gas bubbles, which inhibit gas-dissolution processes, are thermodynamically stable to this shallow water depth. This was confirmed by hydroacoustic observations of flares in 2010 and 2012 reaching water depths between 210 and 480 mbsl. At the seafloor, bubbles are released from acoustically transparent zones in the seismic data, which we interpret as regions where free gas is migrating through the hydrate stability zone (HSZ). These intrusions result in vertical variations in the base of the HSZ (BHSZ) of up to ˜150 m, possibly making the shallow hydrate reservoir more susceptible to warming. Such Arctic gas-hydrate and free-gas systems are important because of their potential role in climate change and in fueling marine life, but remain largely understudied due to limited data coverage in seasonally ice-covered Arctic environments.

  12. Decreased waterborne pathogenic bacteria in an urban aquifer related to intense shallow geothermal exploitation.

    PubMed

    García-Gil, Alejandro; Gasco-Cavero, Samanta; Garrido, Eduardo; Mejías, Miguel; Epting, Jannis; Navarro-Elipe, Mercedes; Alejandre, Carmen; Sevilla-Alcaine, Elena

    2018-08-15

    The implications of intensive use of shallow geothermal energy resources in shallow urban aquifers are still not known for waterborne pathogens relevant to human health. Firstly, we hypothesized that waterborne enteric pathogens would be relatively increased in heated groundwater plumes. To prove this, microbiological sampling of 31 piezometers covering the domain of an urban groundwater body affected by microbiological contamination and energetically exploited by 70 groundwater heat pump systems was performed. Mean differences of pathogenic bacteria contents between impacted and non-impacted monitoring points were assessed with a two-tailed independent Student's t-test or Mann-Whitney U and correlation coefficients were also calculated. Surprisingly, the results obtained revealed a significant and generalized decrease in waterborne pathogen contents in thermally impacted piezometers compared to that of non-impacted piezometers. This decrease is hypothesized to be caused by a heat shock to bacteria within the heat exchangers. The statistically significant negative correlations obtained between waterborne pathogen counts and temperature could be explained by the spatial distribution of the bacteria, finding that bacteria start to recover with increasing distance from the injection point. Also, different behavior groups fitting exponential regression models were found for the bacteria species studied, justified by the different presence and influence of several aquifer parameters and major, minor and trace elements studied, as well as the coexistence with other bacteria species. The results obtained from this work reinforce the concept of shallow geothermal resources as a clean energy source, as they could also provide the basis to control the pathogenic bacteria contents in groundwater bodies. Copyright © 2018 Elsevier B.V. All rights reserved.

  13. Impacts of CO2 Leakage on a Shallow Aquifer System: Laboratory Column Experiments and Reactive Transport Modeling

    NASA Astrophysics Data System (ADS)

    Ha, Jong Heon; Jeen, Sung-Wook

    2017-04-01

    Groundwater quality change due to the leakage of CO2 in a shallow aquifer system is an important aspect of environmental impact assessment in a carbon dioxide capture and storage (CCS) site. This study evaluated geochemical changes in a shallow aquifer system resulting from leakage of CO2 through laboratory column experiments and reactive transport modeling. In the column experiments, two columns were set up and filled with the sediment from the Environmental Impact Test (EIT) facility of the Korea CO2 Storage Environmental Management (K-COSEM) Research Center. Groundwater, also collected form the EIT site, was purged with CO2 or Ar gases, and was pumped into the columns with the pumping rates of 200-1000 mL day-1 (0.124-0.62 m day-1). Profile and time-series effluent samplings were conducted to evaluate the spatial and temporal geochemical changes in the aquifer materials upon contact with CO2. The experimental results showed that after injecting CO2-purged groundwater, the pH was decreased, and alkalinity, electrical conductivity (EC) and concentrations of major cations were increased. The spatial and temporal geochemical changes from the column experiments indicate that dissolution of aquifer materials in contact with dissolved CO2 is the major contributor to the changes in groundwater geochemistry. The reactive transport modeling has been conducted to reproduce these geochemical changes in the aquifer system by incorporating dissolution of the dominant aluminosilicate minerals in the aquifer such as microcline, anorthite, albite, and biotite. This study suggests that pH, alkalinity, EC and concentrations of major cations are important monitoring parameters for detecting CO2 leakage in a shallow groundwater aquifer system.

  14. ATMOSPHERIC CIRCULATION OF BROWN DWARFS: JETS, VORTICES, AND TIME VARIABILITY

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Xi; Showman, Adam P., E-mail: xiz@lpl.arizona.edu

    2014-06-10

    A variety of observational evidence demonstrates that brown dwarfs exhibit active atmospheric circulations. In this study we use a shallow-water model to investigate the global atmospheric dynamics in the stratified layer overlying the convective zone on these rapidly rotating objects. We show that the existence and properties of the atmospheric circulation crucially depend on key parameters including the energy injection rate and radiative timescale. Under conditions of strong internal heat flux and weak radiative dissipation, a banded flow pattern comprised of east-west jet streams spontaneously emerges from the interaction of atmospheric turbulence with the planetary rotation. In contrast, when themore » internal heat flux is weak and/or radiative dissipation is strong, turbulence injected into the atmosphere damps before it can self-organize into jets, leading to a flow dominated by transient eddies and isotropic turbulence instead. The simulation results are not very sensitive to the form of the forcing. Based on the location of the transition between jet-dominated and eddy-dominated regimes, we suggest that many brown dwarfs may exhibit atmospheric circulations dominated by eddies and turbulence (rather than jets) due to the strong radiative damping on these worlds, but a jet structure is also possible under some realistic conditions. Our simulated light curves capture important features from observed infrared light curves of brown dwarfs, including amplitude variations of a few percent and shapes that fluctuate between single-peak and multi-peak structures. More broadly, our work shows that the shallow-water system provides a useful tool to illuminate fundamental aspects of the dynamics on these worlds.« less

  15. Atmospheric volatilization and distribution of (Z)- and (E)-1,3-dichloropropene in field beds with and without plastic covers.

    PubMed

    Thomas, John E; Allen, L Hartwell; McCormack, Leslie A; Vu, Joseph C; Dickson, Donald W; Ou, Li-Tse

    2004-01-01

    The fumigant 1,3-dichloropropene (1,3-D) is considered to be a potential replacement for methyl bromide when methyl bromide is phased out in 2005. This study on surface emissions and subsurface diffusion of 1,3-D in a Florida sandy soil was conducted in field beds with or without plastic covers. After injection of the commercial fumigant Telone II by conventional chisels to field beds at 30cm depth which were covered with polyethylene film (PE), virtually impermeable film, or no cover (bare), (Z)- and (E)-1,3-D rapidly diffused upward. Twenty hours after injection, majority of (Z)- and (E)-1,3-D had moved upward from 30 cm depth to the layer of 5-20 cm depth. Downward movement of the two isomers in the beds with or without a plastic cover was not significant. (Z)-1,3-D diffused more rapidly than (E)-1,3-D. Virtually impermeable films (VIF) had a good capacity to retain (Z)- and (E)-1,3-D in soil pore air space. Vapor concentrations of the two isomers in the shallow subsurface of the field bed covered with VIF were greater than that in the two beds covered with polyethylene film (PE) or no cover (bare). In addition, VIF cover provided more uniform distribution of (Z)- and (E)-1,3-D in shallow subsurface than PE cover or no cover. Virtually impermeable film also had a better capability to retard surface emissions of the two isomers from soil in field beds than PE cover or no cover.

  16. A model for estimating seasonal trends of ammonia emission from cattle manure applied to grassland in the Netherlands

    NASA Astrophysics Data System (ADS)

    Huijsmans, J. F. M.; Vermeulen, G. D.; Hol, J. M. G.; Goedhart, P. W.

    2018-01-01

    Field data on ammonia emission after liquid cattle manure ('slurry') application to grassland were statistically analysed to reveal the effect of manure and field characteristics and of weather conditions in eight consecutive periods after manure application. Logistic regression models, modelling the emission expressed as a percentage of the ammonia still present at the start of each period as the response variable, were developed separately for broadcast spreading, narrow band application (trailing shoe) and shallow injection. Wind speed, temperature, soil type, total ammoniacal nitrogen (TAN) content and dry matter content of the manure, application rate and grass height were selected as significant explanatory variables. Their effects differed for each application method and among periods. Temperature and wind speed were generally the most important drivers for emission. The fitted regression models were used to reveal seasonal trends in NH3 emission employing historical meteorological data for the years 1991-2014. The overall average emission was higher in early and midsummer than in early spring and late summer. This seasonal trend was most pronounced for broadcast spreading followed by narrow band application, and was almost absent for shallow injection. However, due to the large variation in weather conditions, emission on a particular day in early spring can be higher than on a particular day in summer. The analysis further revealed that, in a specific scenario and depending on the application technique, emission could be reduced with 20-30% by restricting manure application to favourable days, i.e. with weather conditions with minimal emission levels.

  17. MASSIV: Mass Assembly Survey with SINFONI in VVDS. III. Evidence for positive metallicity gradients in z ~ 1.2 star-forming galaxies

    NASA Astrophysics Data System (ADS)

    Queyrel, J.; Contini, T.; Kissler-Patig, M.; Epinat, B.; Amram, P.; Garilli, B.; Le Fèvre, O.; Moultaka, J.; Paioro, L.; Tasca, L.; Tresse, L.; Vergani, D.; López-Sanjuan, C.; Perez-Montero, E.

    2012-03-01

    Aims: The estimate of radial abundance gradients in high-redshift galaxies allows to constrain their star formation history and their interplay with the surrounding intergalactic medium. Methods: We present VLT/SINFONI integral-field spectroscopy of a first sample of 50 galaxies at z ~ 1.2 in the MASSIV survey. Using the N2 ratio between the [N ii]6584 and Hα rest-frame optical emission lines as a proxy for oxygen abundance in the interstellar medium, we measured the metallicity of the sample galaxies. We developed a tool to extract spectra in annular regions, leading to a spatially resolved estimate of the oxygen abundance in each galaxy. We were able to derive a metallicity gradient for 26 galaxies in our sample and discovered a significant fraction of galaxies with a "positive" gradient. Using a simple chemical evolution model, we derived infall rates of pristine gas onto the disks. Results: Seven galaxies display a positive gradient at a high confidence level. Four out of these are interacting, and one is a chain galaxy. We suggest that interactions might be responsible for shallowing and even inverting the abundance gradient. We also identify two interesting correlations in our sample: a) galaxies with higher gas velocity dispersion have shallower/positive gradients; and b) metal-poor galaxies tend to show a positive gradient, whereas metal-rich ones tend to show a negative one. This last observation can be explained by the infall of metal-poor gas into the center of the disks. We address the question of the origin of this infall under the influence of gas flows triggered by interactions and/or cold gas accretion. All the data published in this paper are publicly available at the time of publication following this link: http://cosmosdb.lambrate.inaf.it/VVDS-SINFONI. This work is based on observations collected at the European Southern Observatory (ESO) Very Large Telescope, Paranal, Chile, as part of the Programs 179.A-0823, 78.A-0177, and 75.A-0318. This work also benefits from data products produced at TERAPIX and the Canadian Astronomy Data Centre as part of the Canada-France-Hawaii Telescope Legacy Survey, a collaborative project of NRC and the CNRS.

  18. Combining microseismic and geomechanical observations to interpret storage integrity at the In Salah CCS site

    NASA Astrophysics Data System (ADS)

    Goertz-Allmann, Bettina P.; Kühn, Daniela; Oye, Volker; Bohloli, Bahman; Aker, Eyvind

    2014-07-01

    We present results from microseismic monitoring and geomechanical analysis obtained at the industrial-scale CO2 sequestration site at the In Salah gas development project in Algeria. More than 5000 microseismic events have been detected at a pilot monitoring well using a master event cross-correlation method. The microseismic activity occurs in four distinct clusters and thereof three clearly correlate with injection rates and wellhead pressures. These event clusters are consistent with a location within the reservoir interval. However, due to insufficient network geometry there are large uncertainties on event location. We estimate a fracture pressure of 155 bar (at the wellhead) from the comparison of injection pressure and injection rate and conclude that reservoir fracture pressure of the injection horizon has most likely been exceeded occasionally, accompanied by increased microseismic activity. Our analysis of 3-D ray tracing for direct and converted phases suggests that one of the event clusters is located at a shallower depth than the reservoir injection interval. However, this event cluster is most likely unrelated to changes in the injection activity at a single well, as the event times do not correlate with the wellhead pressures. Furthermore, this event cluster shows b-values close to one, indicating re-activated natural or tectonic seismicity on pre-existing weakness zones rather than injection induced seismicity. Analysis of event azimuths and significant shear wave splitting of up to 5 per cent provide further valuable insight into fluid migration and fracture orientation at the reservoir level. Although only one geophone was available during the critical injection period, the microseismic monitoring of CO2 injection at In Salah is capable of addressing some of the most relevant questions about fluid migration and reservoir integrity. An improved monitoring array with larger aperture and higher sensitivity is highly recommended, as it could greatly enhance the value of this technique. As such, real-time microseismic monitoring can be used to guide the injection pressure below fracture pressure, thus providing a tool to mitigate the risk of inducing felt seismicity and compromising seal integrity.

  19. Comparison of Candida Albicans Adherence to Conventional Acrylic Denture Base Materials and Injection Molding Acrylic Materials

    PubMed Central

    Aslanimehr, Masoomeh; Rezvani, Shirin; Mahmoudi, Ali; Moosavi, Najmeh

    2017-01-01

    Statement of the Problem: Candida species are believed to play an important role in initiation and progression of denture stomatitis. The type of the denture material also influences the adhesion of candida and development of stomatitis. Purpose: The aim of this study was comparing the adherence of candida albicans to the conventional and injection molding acrylic denture base materials. Materials and Method: Twenty injection molding and 20 conventional pressure pack acrylic discs (10×10×2 mm) were prepared according to their manufacturer’s instructions. Immediately before the study, samples were placed in sterile water for 3 days to remove residual monomers. The samples were then sterilized using an ultraviolet light unit for 10 minutes. 1×108 Cfu/ml suspension of candida albicans ATCC-10231 was prepared from 48 h cultured organism on sabouraud dextrose agar plates incubated at 37oC. 100 μL of this suspension was placed on the surface of each disk. After being incubated at 37oC for 1 hour, the samples were washed with normal saline to remove non-adherent cells. Attached cells were counted using the colony count method after shaking at 3000 rmp for 20 seconds. Finally, each group was tested for 108 times and the data were statistically analyzed by t-test. Results: Quantitative analysis revealed that differences in colony count average of candida albicans adherence to conventional acrylic materials (8.3×103) comparing to injection molding acrylic resins (6×103) were statistically significant (p<0.001). Conclusion: Significant reduction of candida albicans adherence to the injection acrylic resin materials makes them valuable for patients with high risk of denture stomatitis. PMID:28280761

  20. Comparison of Candida Albicans Adherence to Conventional Acrylic Denture Base Materials and Injection Molding Acrylic Materials.

    PubMed

    Aslanimehr, Masoomeh; Rezvani, Shirin; Mahmoudi, Ali; Moosavi, Najmeh

    2017-03-01

    Candida species are believed to play an important role in initiation and progression of denture stomatitis. The type of the denture material also influences the adhesion of candida and development of stomatitis. The aim of this study was comparing the adherence of candida albicans to the conventional and injection molding acrylic denture base materials. Twenty injection molding and 20 conventional pressure pack acrylic discs (10×10×2 mm) were prepared according to their manufacturer's instructions. Immediately before the study, samples were placed in sterile water for 3 days to remove residual monomers. The samples were then sterilized using an ultraviolet light unit for 10 minutes. 1×10 8 Cfu/ml suspension of candida albicans ATCC-10231 was prepared from 48 h cultured organism on sabouraud dextrose agar plates incubated at 37oC. 100 μL of this suspension was placed on the surface of each disk. After being incubated at 37oC for 1 hour, the samples were washed with normal saline to remove non-adherent cells. Attached cells were counted using the colony count method after shaking at 3000 rmp for 20 seconds. Finally, each group was tested for 108 times and the data were statistically analyzed by t-test. Quantitative analysis revealed that differences in colony count average of candida albicans adherence to conventional acrylic materials (8.3×10 3 ) comparing to injection molding acrylic resins (6×10 3 ) were statistically significant ( p <0.001). Significant reduction of candida albicans adherence to the injection acrylic resin materials makes them valuable for patients with high risk of denture stomatitis.

  1. Breakdown pressures and characteristic flaw sizes during fluid injection experiments in shale at elevated confining pressures.

    NASA Astrophysics Data System (ADS)

    Chandler, M.; Mecklenburgh, J.; Rutter, E. H.; Taylor, R.; Fauchille, A. L.; Ma, L.; Lee, P. D.

    2017-12-01

    Fracture propagation trajectories in gas-bearing shales depend on the interaction between the anisotropic mechanical properties of the shale and the anisotropic in-situ stress field. However, there is a general paucity of available experimental data on their anisotropic mechanical, physical and fluid-flow properties, especially at elevated confining pressures. A suite of mechanical, flow and elastic measurements have been made on two shale materials, the Whitby mudrock and the Mancos shale (an interbedded silt and mudstone), as well as Pennant sandstone, an isotropic baseline and tight-gas sandstone analogue. Mechanical characterization includes standard triaxial experiments, pressure-dependent permeability, brazilian disk tensile strength, and fracture toughness determined using double-torsion experiments. Elastic characterisation was performed through ultrasonic velocities determined using a cross-correlation method. Additionally, we report the results of laboratory-scale fluid injection experiments for the same materials. Injection experiments involved the pressurisation of a blind-ending central hole in a dry cylindrical sample. Pressurisation is conducted under constant volume-rate control, using silicon oils of varying viscosities. Breakdown pressure is not seen to exhibit a strong dependence on rock type or orientation, and increases linearly with confining pressure. In most experiments, a small drop in the injection pressure record is observed at what is taken to be fracture initiation, and in the Pennant sandstone this is accompanied by a small burst of acoustic energy. The shale materials were acoustically quiet. Breakdown is found to be rapid and uncontrollable after initiation if injection is continued. A simplified 2-dimensional model for explaining this is presented in terms of the stress intensities at the tip of a pressurised crack, and is used alongside the triaxial data to derive a characteristic flaw size from which the fractures have initiated in the borehole wall.

  2. Hydrothermal fluid flow and deformation in large calderas: Inferences from numerical simulations

    USGS Publications Warehouse

    Hurwitz, S.; Christiansen, L.B.; Hsieh, P.A.

    2007-01-01

    Inflation and deflation of large calderas is traditionally interpreted as being induced by volume change of a discrete source embedded in an elastic or viscoelastic half-space, though it has also been suggested that hydrothermal fluids may play a role. To test the latter hypothesis, we carry out numerical simulations of hydrothermal fluid flow and poroelastic deformation in calderas by coupling two numerical codes: (1) TOUGH2 [Pruess et al., 1999], which simulates flow in porous or fractured media, and (2) BIOT2 [Hsieh, 1996], which simulates fluid flow and deformation in a linearly elastic porous medium. In the simulations, high-temperature water (350??C) is injected at variable rates into a cylinder (radius 50 km, height 3-5 km). A sensitivity analysis indicates that small differences in the values of permeability and its anisotropy, the depth and rate of hydrothermal injection, and the values of the shear modulus may lead to significant variations in the magnitude, rate, and geometry of ground surface displacement, or uplift. Some of the simulated uplift rates are similar to observed uplift rates in large calderas, suggesting that the injection of aqueous fluids into the shallow crust may explain some of the deformation observed in calderas.

  3. 3-D numerical evaluation of density effects on tracer tests.

    PubMed

    Beinhorn, M; Dietrich, P; Kolditz, O

    2005-12-01

    In this paper we present numerical simulations carried out to assess the importance of density-dependent flow on tracer plume development. The scenario considered in the study is characterized by a short-term tracer injection phase into a fully penetrating well and a natural hydraulic gradient. The scenario is thought to be typical for tracer tests conducted in the field. Using a reference case as a starting point, different model parameters were changed in order to determine their importance to density effects. The study is based on a three-dimensional model domain. Results were interpreted using concentration contours and a first moment analysis. Tracer injections of 0.036 kg per meter of saturated aquifer thickness do not cause significant density effects assuming hydraulic gradients of at least 0.1%. Higher tracer input masses, as used for geoelectrical investigations, may lead to buoyancy-induced flow in the early phase of a tracer test which in turn impacts further plume development. This also holds true for shallow aquifers. Results of simulations with different tracer injection rates and durations imply that the tracer input scenario has a negligible effect on density flow. Employing model cases with different realizations of a log conductivity random field, it could be shown that small variations of hydraulic conductivity in the vicinity of the tracer injection well have a major control on the local tracer distribution but do not mask effects of buoyancy-induced flow.

  4. Shaking from injection-induced earthquakes in the central and eastern United States

    USGS Publications Warehouse

    Hough, Susan E.

    2014-01-01

    In this study I consider the ground motions generated by 11 moderate (Mw4.0-5.6) earthquakes in the central and eastern United States that are thought or suspected to be induced by fluid injection. Using spatially rich intensity data from the USGS “Did You Feel It?” system, I show that the distance decay of intensities for all events is consistent with that observed for tectonic earthquakes in the region, but for all of the events, intensities are lower than values predicted from an intensity prediction equation that successfully characterizes intensities for regional tectonic events. I introduce an effective intensity magnitude, MIE, defined as the magnitude that on average would generate a given intensity distribution. For all 11 events, MIE is lower than the event magnitude by 0.4-1.3 magnitude units, with an average difference of 0.82 units. This suggests that stress drops of injection-induced earthquakes are systematically lower than tectonic earthquakes by an estimated factor of 2-10. However, relatively limited data suggest that intensities for epicentral distances less than 10 km are more commensurate with expectations for the event magnitude, which can be reasonably explained by the shallow focal depth of the events. The results suggest that damage from injection-induced earthquakes will be especially concentrated in the immediate epicentral region.

  5. Monitoring regional effects of high pressure injection of wastewater in a limestone aquifer

    USGS Publications Warehouse

    Faulkner, Glen L.; Pascale, Charles A.

    1975-01-01

    More than 10 billion gallons (38 × 106 m3) of acid industrial liquid waste has been injected in about 11 years under high pressure into a saline-water-filled part of a limestone aquifer of low transmissivity between 1,400 and 1,700 feet (430 and 520 m) below land surface near Pensacola, Florida. A similar waste disposal system is planned for the same zone at a site about 8.5 miles (13.7 km) to the east. The injection zone is the lower limestone of the Floridan aquifer. The lower limestone is overlain by a confining layer of plastic clay about 220 feet (67 m) thick at the active injection site and underlain by another confining layer of shale and clay. The upper confining layer is overlain by the upper limestone of the Floridan aquifer.The active injection system consists of two injection wells about a quarter of a mile (0.4 km) apart and three monitor wells. Two of the monitor wells (deep monitors) are used to observe hydraulic and geochemical effects of waste injection in the injection zone at locations about 1.5 miles (2.4 km) south and 1.9 miles (3.1 km) north of the center of the injection site. The third well (shallow monitor), used to observe any effects in the upper limestone, is about 100 feet (30 m) from one of the injection wells. Since 1972 the injection zone has also been monitored at a test well at the planned new injection site. Three more monitor wells in the injection zone were activated in early 1974 at sites 17 miles (27 km) northeast, 22 miles (35 km) east and 33 miles (53 km) northeast of the injection site. The six deep monitors provide a system for evaluating the regional effects of injecting wastes. No change in pressure or water quality due to injection was, by mid-1974, evident in the upper limestone at the injection site, but static pressures in the lower limestone at the site had increased 8 fold since injection began in 1963. Chemical analyses indicated probable arrival of the diluted waste at the south monitor well in 1973. By mid-1974 waste evidently had not reached the north monitor well.Calculations indicate that by mid-1974 pressure effects from waste injection extended radially more than 40 miles (64 km) from the injection site. By mid-1974 pressure effects of injection were evident from water-level measurements made at the five deep monitor wells nearest the active injection site. No effects were recognized at the well 33 miles (53 km) away. Less than 20 miles (32 km) northeast of the active injection site, the lower limestone contains fresh water. Changes in the pressure regime due to injection indicate a tendency for northeastward movement of the fresh-water/salt-water interface in the lower limestone.

  6. Protecting Coastal Areas from Flooding by Injecting Solids into the Subsurface

    NASA Astrophysics Data System (ADS)

    Germanovich, L. N.; Murdoch, L.

    2008-12-01

    Subsidence and sea level rise conspire to increase the risk of flooding in coastal cities throughout the world, and these processes were key contributors to the devastation of New Orleans by hurricane Katrina. Constructing levees and placing fill to raise ground elevations are currently the main options for reducing flooding risks in coastal areas, and both of these options have drawbacks. We suggest that hydromechanical injection of solid compounds suspended in liquid can be used to lift the ground surface and thereby expand the options for protecting such coastal cities as New Orleans, Venice, and Shanghai from flooding. These techniques are broadly related to hydraulic fracturing and compensation grouting, where solid compounds are injected as slurries and cause upward displacements at the ground surface. The equipment and logistics required for hydromechanical solid injection and ground lifting are readily available from current geotechnical and petroleum operations. Hydraulic fractures are routinely created in the upper tens of meters of sediments, where they are filled with a wide range of different proppants for environmental applications. At shallow depths, many of these fractures are sub-parallel to the ground surface and lift their overburden by a few mm to cm, although lifting is not the objective of these fractures. Much larger, vertical displacements, of the order of several meters, could be created in low-cohesion sediments over areas as large as square kilometers. This would be achieved as a result of multiple injections. Injecting solid particulates provides the benefits of a permanent displacement supported by the solids. We have demonstrated that hydraulic fractures will lift the ground surface at shallow depths in Texas near the Sabine River, where the geological setting is generally similar to that of New Orleans (and where, incidentally, hurricane Rita landed in 2005). In these regions, the soft surficial sediments are underlain by relatively stiff Pleistocene deposits, which create in-situ stress conditions favorable for sub-horizontal orientation of hydraulic fractures. Based on the poroelastic effect, these conditions can further be improved by subsurface manipulations of pore fluid. Also, there are many geological examples of natural, sub- horizontal hydraulic fractures. These include multiple igneous sills (e.g., Henry Mountains, Utah) and sand- filled sills intruded into sedimentary formations (e.g., Shetland-Faroe Islands). Techniques that are currently used, or planned, for protecting coastal cities from flood are typically based on the concept of a barrier to the seawater (e.g., levees or water gates). However, the failure of any barrier to flood waters can be catastrophic when the city it protects is below sea level. Hydromechanical injection of solid compounds could permanently lift elevations above a Category 5 hurricane surge, so the risk of a catastrophic failure and subsequent flooding becomes insignificant. We envision that the hydromechanical method can be used in combination with other strategies. For example, in some areas it may be efficient to let most of a city retreat and only lift localized regions of particularly high value, such as airports, port facilities, refineries, historical areas, military bases, etc. In other cases, the protecting equipment itself may begin subsiding (e.g., massive, metal water gates on a soft-sediment foundation). Then, hydromechanical injections could be used to lift the region supporting this equipment.

  7. Brine migration resulting from pressure increases in a layered subsurface system

    NASA Astrophysics Data System (ADS)

    Delfs, Jens-Olaf; Nordbeck, Johannes; Bauer, Sebastian

    2016-04-01

    Brine originating from the deep subsurface impairs parts of the freshwater resources in the North German Basin. Some of the deep porous formations (esp. Trias and Jurassic) exhibit considerable storage capacities for waste fluids (CO2, brine from oil production or cavern leaching), raising concerns among water providers that this type of deep subsurface utilization might impair drinking water supplies. On the one hand, overpressures induced by fluid injections and the geothermal gradient support brine migration from deep into shallow formations. On the other hand, the rising brine is denser than the surrounding less-saline formation waters and, therefore, tends to settle down. Aim of this work is to investigate the conditions under which pressurized formation brine from deep formations can reach shallow freshwater resources. Especially, the role of intermediate porous formations between the storage formation and the groundwater is studied. For this, complex thermohaline simulations using a coupled numerical process model are necessary and performed in this study, in which fluid density depends on fluid pressure, temperature and salt content and the governing partial differential equations are coupled. The model setup is 2D and contains a hypothetic series of aquifers and barriers, each with a thickness of 200 m. Formation pressure is increased at depths of about 2000 m in proximity to a salt wall and a permeable fault. The domain size reaches up to tens of kilometers horizontally to the salt wall. The fault connects the injection formation and the freshwater aquifer such that conditions can be considered as extremely favorable for induced brine migration (worst case scenarios). Brine, heat, and salt fluxes are quantified with reference to hydraulic permeabilities, storage capacities (in terms of domain size), initial salt and heat distribution, and operation pressures. The simulations reveal the development of a stagnation point in the fault region in each intermediate aquifer above the injection formation, where brine settles down and flows from the fault zone into the aquifer. This effect changes buoyancy so that lower density brine from the upper aquifers can rise higher and at larger fluxes compared to the case when no intermediary aquifers are present. In general, uplift of brine originating from the intermediary aquifers is mainly restricted to the next overlying two to three permeable aquifers (200m-1000m) or even only to the next aquifer if injection pressures are lower than about 10 bar. If injection induced over-pressures are high, brine from the injection reservoir can dominate inflow into the freshwater reservoir at late times (tens of years). An extensive parameter variation shows the effects of individual parameters. It is found, e.g., that no brine enters the freshwater aquifer if fault permeability is lower than about 10-14 m2. Acknowledgments: This work is part of the ANGUS+ project (www.angusplus.de) and funded by the German Federal Ministry of Education and Research (BMBF) as part of the energy storage initiative "Energiespeicher".

  8. The value of short-term pain relief in predicting the long-term outcome of 'indirect' cervical epidural steroid injections.

    PubMed

    Joswig, Holger; Neff, Armin; Ruppert, Christina; Hildebrandt, Gerhard; Stienen, Martin Nikolaus

    2018-05-01

    The predictive value of short-term arm pain relief after 'indirect' cervical epidural steroid injection (ESI) for the 1-month treatment response has been previously demonstrated. It remained to be answered whether the long-term response could be estimated by the early post-interventional pain course as well. Prospective observational study, following a cohort of n = 45 patients for a period of 24 months after 'indirect' ESI for radiculopathy secondary to a single-level cervical disk herniation (CDH). Arm and neck pain on the visual analog scale (VAS), health-related quality of life with the Short Form-12 (SF-12), and functional outcome with the Neck Pain and Disability (NPAD) Scale were assessed. Any additional invasive treatment after a single injection (second injection or surgery) defined treatment outcome as 'non-response'. At 24 months, n = 30 (66.7%) patients were responders and n = 15 (33.3%) were non-responders. Non-responders exited the follow-up at 1 month (n = 10), at 3 months (n = 4), and at 6 months (n = 1). No patients were injected again or operated on between the 6- and 24-month follow-up. Patients with favorable treatment response at 24 months had significantly lower VAS arm pain (p < 0.05) than non-responders at days 6, 8-11, and at the 3-month follow-up. The previously defined cut-off of > 50% short term pain reduction was not a reliable predictor of the 24-month responder status. SF-12 and NPAD scores were better among treatment responders in the long term. Patients who require a second injection or surgery after 'indirect' cervical ESI for a symptomatic CDH do so within the first 6 months. Short-term pain relief cannot reliably predict the long-term outcome.

  9. An application of thermometry to the study of ground water

    USGS Publications Warehouse

    Schneider, Robert

    1962-01-01

    The precise measurement of fluctuations in ground-water temperature, based on monthly readings in shallow glacial-outwash aquifers (up to about 70 feet deep), is useful in the study of ground-water movement and recharge. In addition to the study of natural phenomena in the hydrologic cycle, thermometry may be used as a tool in making detailed studies of (1) the effects of inducing the infiltration of surface water, (2) artificial recharge, (3) the effects of injecting petroleum products or radioactive or other wastes into the ground, and (4) ground-water movement in mines.

  10. Push-pull tests for estimating effective porosity: expanded analytical solution and in situ application

    NASA Astrophysics Data System (ADS)

    Paradis, Charles J.; McKay, Larry D.; Perfect, Edmund; Istok, Jonathan D.; Hazen, Terry C.

    2018-03-01

    The analytical solution describing the one-dimensional displacement of the center of mass of a tracer during an injection, drift, and extraction test (push-pull test) was expanded to account for displacement during the injection phase. The solution was expanded to improve the in situ estimation of effective porosity. The truncated equation assumed displacement during the injection phase was negligible, which may theoretically lead to an underestimation of the true value of effective porosity. To experimentally compare the expanded and truncated equations, single-well push-pull tests were conducted across six test wells located in a shallow, unconfined aquifer comprised of unconsolidated and heterogeneous silty and clayey fill materials. The push-pull tests were conducted by injection of bromide tracer, followed by a non-pumping period, and subsequent extraction of groundwater. The values of effective porosity from the expanded equation (0.6-5.0%) were substantially greater than from the truncated equation (0.1-1.3%). The expanded and truncated equations were compared to data from previous push-pull studies in the literature and demonstrated that displacement during the injection phase may or may not be negligible, depending on the aquifer properties and the push-pull test parameters. The results presented here also demonstrated the spatial variability of effective porosity within a relatively small study site can be substantial, and the error-propagated uncertainty of effective porosity can be mitigated to a reasonable level (< ± 0.5%). The tests presented here are also the first that the authors are aware of that estimate, in situ, the effective porosity of fine-grained fill material.

  11. Probabilistic 3-D time-lapse inversion of magnetotelluric data: application to an enhanced geothermal system

    NASA Astrophysics Data System (ADS)

    Rosas-Carbajal, M.; Linde, N.; Peacock, J.; Zyserman, F. I.; Kalscheuer, T.; Thiel, S.

    2015-12-01

    Surface-based monitoring of mass transfer caused by injections and extractions in deep boreholes is crucial to maximize oil, gas and geothermal production. Inductive electromagnetic methods, such as magnetotellurics, are appealing for these applications due to their large penetration depths and sensitivity to changes in fluid conductivity and fracture connectivity. In this work, we propose a 3-D Markov chain Monte Carlo inversion of time-lapse magnetotelluric data to image mass transfer following a saline fluid injection. The inversion estimates the posterior probability density function of the resulting plume, and thereby quantifies model uncertainty. To decrease computation times, we base the parametrization on a reduced Legendre moment decomposition of the plume. A synthetic test shows that our methodology is effective when the electrical resistivity structure prior to the injection is well known. The centre of mass and spread of the plume are well retrieved. We then apply our inversion strategy to an injection experiment in an enhanced geothermal system at Paralana, South Australia, and compare it to a 3-D deterministic time-lapse inversion. The latter retrieves resistivity changes that are more shallow than the actual injection interval, whereas the probabilistic inversion retrieves plumes that are located at the correct depths and oriented in a preferential north-south direction. To explain the time-lapse data, the inversion requires unrealistically large resistivity changes with respect to the base model. We suggest that this is partly explained by unaccounted subsurface heterogeneities in the base model from which time-lapse changes are inferred.

  12. Probabilistic 3-D time-lapse inversion of magnetotelluric data: Application to an enhanced geothermal system

    USGS Publications Warehouse

    Rosas-Carbajal, Marina; Linde, Nicolas; Peacock, Jared R.; Zyserman, F. I.; Kalscheuer, Thomas; Thiel, Stephan

    2015-01-01

    Surface-based monitoring of mass transfer caused by injections and extractions in deep boreholes is crucial to maximize oil, gas and geothermal production. Inductive electromagnetic methods, such as magnetotellurics, are appealing for these applications due to their large penetration depths and sensitivity to changes in fluid conductivity and fracture connectivity. In this work, we propose a 3-D Markov chain Monte Carlo inversion of time-lapse magnetotelluric data to image mass transfer following a saline fluid injection. The inversion estimates the posterior probability density function of the resulting plume, and thereby quantifies model uncertainty. To decrease computation times, we base the parametrization on a reduced Legendre moment decomposition of the plume. A synthetic test shows that our methodology is effective when the electrical resistivity structure prior to the injection is well known. The centre of mass and spread of the plume are well retrieved.We then apply our inversion strategy to an injection experiment in an enhanced geothermal system at Paralana, South Australia, and compare it to a 3-D deterministic time-lapse inversion. The latter retrieves resistivity changes that are more shallow than the actual injection interval, whereas the probabilistic inversion retrieves plumes that are located at the correct depths and oriented in a preferential north-south direction. To explain the time-lapse data, the inversion requires unrealistically large resistivity changes with respect to the base model. We suggest that this is partly explained by unaccounted subsurface heterogeneities in the base model from which time-lapse changes are inferred.

  13. Magmatic dyking and recharge in the Asal Rift, Republic of Djibouti

    NASA Astrophysics Data System (ADS)

    Peltzer, G.; Harrington, J.; Doubre, C.; Tomic, J.

    2012-12-01

    The Asal Rift, Republic of Djibouti, has been the locus of a major magmatic event in 1978 and seems to have maintained a sustained activity in the three decade following the event. We compare the dyking event of 1978 with the magmatic activity occurring in the rift during the 1997-2008 time period. We use historical air photos and satellite images to quantify the horizontal opening on the major faults activated in 1978. These observations are combined with ground based geodetic data acquired between 1973 and 1979 across the rift to constrain a kinematic model of the 1978 rifting event, including bordering faults and mid-crustal dykes under the Asal Rift and the Ghoubbet Gulf. The model indicates that extension was concentrated between the surface and a depth of 3 km in the crust, resulting in the opening of faults, dykes and fissures between the two main faults, E and gamma, and that the structure located under the Asal Rift, below 3 km, deflated. These results suggest that, during the 1978 event, magmatic fluids transferred from a mid-crustal reservoir to the shallow structures, injecting dykes and filling faults and fissures, and reaching the surface in the Ardoukoba fissural eruption. Surface deformation observed by InSAR during the 1997-2008 decade reveals a slow, yet sustained inflation and extension across the Asal Rift combined with continuous subsidence of the rift inner floor. Modeling shows that these observations cannot be explained by visco-elastic relaxation, a process, which mostly vanishes 20 to 30 years after the 1978 event. However, the InSAR observations over this decade are well explained by a kinematic model in which an inflating body is present at mid-crustal depth, approximately under the Fieale caldera, and shallow faults accommodate both horizontal opening and down-dip slip. The total geometric moment rate, or inflation rate, due to the opening of the mid-crustal structure and the deeper parts of the opening faults is 3 106 m3yr. Such a volume change per year corresponds to 1-2% of the total volume of magma estimated to have been mobilized during the 1978 seismo-magmatic event. The comparison of the 1978-dyking and post-dyking models of rift suggests that the source of the injected magma during the 1978 event lies at mi-crustal depth under the Fieale caldera and appears to be recharging at a sustained rate more than 20 years after the event. Whether this rate is a transient rate or a long-term rate will determine the time of the next magma injection in the shallow crust. However, at the current rate, the 1978 total volume would be replenished in 50-100 years.

  14. Unlocking the jaw: advanced imaging of the temporomandibular joint.

    PubMed

    Petscavage-Thomas, Jonelle M; Walker, Eric A

    2014-11-01

    Temporomandibular joint (TMJ) dysfunction is a common condition, affecting up to 28% of the population. The TMJ can be affected by abnormal dynamics of the disk-condyle complex, degenerative arthritis, inflammatory arthritis, and crystal arthropathy. Less commonly, neoplasms and abnormal morphologic features of the condyle are causes of TMJ symptoms. Cross-sectional imaging is frequently used for diagnosis. Knowledge of the normal imaging appearance of the TMJ, its appearance on radiological examination, and interventional techniques are useful for providing a meaningful radiologic contribution. This article will review normal TMJ anatomy; describe the normal ultrasound, CT, and MRI appearances of TMJ; provide imaging examples of abnormal TMJs; and illustrate imaging-guided therapeutic TMJ injection.

  15. System and Method for High-Speed Data Recording

    NASA Technical Reports Server (NTRS)

    Taveniku, Mikael B. (Inventor)

    2017-01-01

    A system and method for high speed data recording includes a control computer and a disk pack unit. The disk pack is provided within a shell that provides handling and protection for the disk packs. The disk pack unit provides cooling of the disks and connection for power and disk signaling. A standard connection is provided between the control computer and the disk pack unit. The disk pack units are self sufficient and able to connect to any computer. Multiple disk packs are connected simultaneously to the system, so that one disk pack can be active while one or more disk packs are inactive. To control for power surges, the power to each disk pack is controlled programmatically for the group of disks in a disk pack.

  16. Effect of neonatal gene therapy on lumbar spine disease in mucopolysaccharidosis VII dogs.

    PubMed

    Smith, Lachlan J; Martin, John T; O'Donnell, Patricia; Wang, Ping; Elliott, Dawn M; Haskins, Mark E; Ponder, Katherine P

    2012-09-01

    Mucopolysaccharidosis VII (MPS VII) is due to deficient β-glucuronidase (GUSB) activity, which leads to accumulation of chondroitin, heparan, and dermatan sulfate glycosaminoglycans in various tissues including those of the spine. Associated spine disease can be due to abnormalities in the vertebrae, the intervertebral disks, or other spine tissues. The goal of this study was to determine if neonatal gene therapy could prevent lumbar spine disease in MPS VII dogs. MPS VII dogs were injected intravenously with a retroviral vector (RV) expressing canine GUSB at 2 to 3 days after birth, which resulted in transduction of hepatocytes that secreted GUSB into blood. Expression was stable for up to 11 years, and mean survival was increased from 0.4 years in untreated dogs to 6.1 years in treated dogs. Despite a profound positive clinical effect, 6-month-old RV-treated MPS VII dogs still had hypoplastic ventral epiphyses with reduced calcification in the lumbar spine, which resulted in a reduced stiffness and increased range of motion that were not improved relative to untreated MPS VII dogs. At six to 11 years of age, ventral vertebrae remained hypoplastic in RV-treated MPS VII dogs, and there was desiccation of the nucleus pulposus in some disks. Histochemical staining demonstrated that disks did not have detectable GUSB activity despite high serum GUSB activity, which is likely due to poor diffusion into this relatively avascular structure. Thus, neonatal gene therapy cannot prevent lumbar spine disease in MPS VII dogs, which predicts that enzyme replacement therapy (ERT) will similarly be relatively ineffective even if started at birth. Copyright © 2012 Elsevier Inc. All rights reserved.

  17. Quantification of Propionic Acid in the Bovine Spinal Disk After Infection of the Tissue With Propionibacteria acnes Bacteria.

    PubMed

    Magnitsky, Sergey; Dudli, Stefan; Tang, Xinyan; Kaur, Jaskanwaljeet; Diaz, Joycelyn; Miller, Steve; Lotz, Jeffrey C

    2018-06-01

    Research. The goal of this study was to investigate whether Propionibacteria acnes infection of the intervertebral disc can be detected noninvasively by nuclear magnetic resonance (NMR) spectroscopy. Microbiological studies of surgical samples suggest that a significant subpopulation of back pain patients may have occult disc infection with P. acnes bacteria. This hypothesis is further supported by a double-blind clinical trial showing that back pain patients with Modic type 1 changes may respond to antibiotic treatment. Because significant side effects are associated with antibiotic treatment, there is a need for a noninvasive method to detect whether specific discs in back pain patients are infected with P acnes bacteria. P. acnes bacteria were obtained from human patients. NMR detection of a propionic acid (PA) in the bacteria extracts was conducted on 500 MHz high-resolution spectrometer, whereas in vivo NMR spectroscopy of an isolated bovine disk tissue infected with P. acnes was conducted on 7 T magnetic resonance imaging scanner. NMR spectra of P. acnes metabolites revealed a distinct NMR signal with identical chemical shits (1.05 and 2.18 ppm) as PA (a primary P. acne metabolite). The 1.05 ppm signal does not overlap with other bacteria metabolites, and its intensity increases linearly with P. acnes concentration. Bovine disks injected with P. acnes bacteria revealed a very distinct NMR signal at 1.05 ppm, which linearly increased with P. acnes concentration. The 1.05 ppm NMR signal from PA can be used as a marker of P. acnes infection of discs. This signal does not overlap with other disc metabolites and linearly depends on P. acnes concentration. Consequently, NMR spectroscopy may provide a noninvasive method to detect disc infection in the clinical setting. N/A.

  18. Monitoring Shallow Subsurface CO2 Migration using Electrical Imaging Technique, Pilot Site in Brazil

    NASA Astrophysics Data System (ADS)

    Oliva, A.; Chang, H. K.; Moreira, A.

    2013-12-01

    Carbon Capture and Geological Sequestration (CCGS or CCS) is one of the main technological strategies targeting Greenhouse Gases (GHG) emissions reduction, with special emphasis on carbon dioxide (CO2) coming from industrial sources. CCGS integrates the so called Carbon Management Strategies, as indicated by the Intergovernmental Panel on Climate Change (IPCC), and is the basis of main technical route likely to enable substantial emission reduction in a safe, quick and cost-effective way. Currently one of the main challenges in the area of CO2 storage research is to grant the development, testing and validation of accurate and efficient measuring, monitoring and verification (MMV) techniques to be deployed at the final storage site, targeting maximum storage efficiency at the minimal leakage risk levels. The implementation of the first CO2 MMV field lab in Brazil, located in Florianópolis, Santa Catarina state, offered an excellent opportunity for running controlled release experiments in a real open air environment. The purpose of this work is to present the results of a time lapse monitoring experiment of CO2 migration in both saturated and unsaturated sand-rich sediments, using electrical imaging technique. The experiment covered an area of approximately 6300 m2 and CO2 was continuously injected at depth of 8 m, during 12 days, at an average rate of 90 g/ day, totalizing 1080 g of injected CO2. 2D and 3D electrical images using Wenner array were acquired daily during 13 consecutive days. Comparison of post injection electrical imaging results with pre injection images shows change in resistivity values consistent with migration pathways of CO2. A pronounced increase in resistivity values (up to ~ 500 ohm.m) with respect to the pre-injection values occurs in the vicinity of the injection well. Background values of 530 ohm.m have changed to 1118 ohm.m, right after injection. Changes in resistivity values progressively diminish outward of the well, following groundwater flow path.

  19. The problem of scattering in fibre-fed VPH spectrographs and possible solutions

    NASA Astrophysics Data System (ADS)

    Ellis, S. C.; Saunders, Will; Betters, Chris; Croom, Scott

    2014-07-01

    All spectrographs unavoidably scatter light. Scattering in the spectral direction is problematic for sky subtraction, since atmospheric spectral lines are blurred. Scattering in the spatial direction is problematic for fibre fed spectrographs, since it limits how closely fibres can be packed together. We investigate the nature of this scattering and show that the scattering wings have both a Lorentzian component, and a shallower (1/r) component. We investigate the causes of this from a theoretical perspective, and argue that for the spectral PSF the Lorentzian wings are in part due to the profile of the illumination of the pupil of the spectrograph onto the diffraction grating, whereas the shallower component is from bulk scattering. We then investigate ways to mitigate the diffractive scattering by apodising the pupil. In the ideal case of a Gaussian apodised pupil, the scattering can be significantly improved. Finally we look at realistic models of the spectrograph pupils of fibre fed spectrographs with a centrally obstructed telescope, and show that it is possible to apodise the pupil through non-telecentric injection into the fibre.

  20. Summary of ground-water quality impacts of uranium mining and milling in the Grants mineral belt, New Mexico. Technical note (final)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kaufmann, R.F.; Eadie, G.G.; Russell, C.R.

    Ground-water contamination from uranium mining and milling results from the infiltration of radium-bearing mine, mill, and ion-exchange plant effluents. Radium, selenium, and nitrate were of most value as indicators of contamination. In recent years, mining has increased radium in mine effluents from several picocuries/liter (pCi/1) or less, to 100-150 pCi/1. The shallow aquifer in use in the vicinity of one mill was grossly contaminated with selenium, attributable to the mill tailings. Seepage from two other mill tailings ponds averaged 67,400,000 liters/year and, to date, has contributed an estimated 1.1 curies of radium to ground water. At one of these, anmore » injection well was used to dispose of over 3,400,000,000 liters of waste from 1960-1973. The wastes have not been properly monitored and have apparently migrated to more shallow, potable aquifers. No adverse impacts on municipal water quality in Paguate, Bluewater, Grants, Milan, and Gallup were observed. (GRA)« less

  1. Progress on Botulinum Toxin Type A-Induced Pain Relief in the Field of Plastics.

    PubMed

    Lu, Xiaona; Chen, Guocheng; Ren, Pengjie; Yang, Yan; Fan, Fei

    2017-11-01

    To retrospectively evaluate the effectiveness of Botulinum Toxin Type A (BTX-A) injections relieve pain in the field of plastic surgery and postoperative rehabilitation, and discuss the analgesic mechanism of BTX- A in plastics and related research progress. From appearance to September 1, 2016, PUBMED, EMBASE, and Web of Science were searched, using the key words related to "Botulinum Toxin Type A" and "Pain." Furtherly, nonplastic surgery-related literature was excluded by manual screening. Eleven literatures met the inclusion criteria, including 6 prospective controlled cohorts, 4 patient series, and 1 retrospective cohort. These studies involved Lower Limb, Breast, Hallux, Amputees, and Temporomandibular joint disk disfigurement and enrolled 402 patients. Among the patients, 360 received intraoperative BTX-A injection at the time of the main surgical procedure, 16 injected postoperatively and 26 did not undergo surgery. And 85.32% reported pain alleviation and 69.96% got favorable side effects and no one occurred major adverse effects. But 1.83% accepted injections more than once. Mechanism analysis explained these studies' results and demonstrated the analgesic effectiveness of BTX-A in plastics with nociceptive pain, inflammatory pain, and neuropathic pain. The results suggest that BTX-A may induce postoperative pain associated with plastic surgeries relief. But the available data of outcome assessment involved in this review are inconsistent and failed to meet methodological rigor. And pain alleviations are influenced by many factors. So further randomized controlled clinical trials with large sample sizes are needed to support this practice, determine standard usage methods, and establish corresponding specification systems.

  2. Reflex effects following selective stimulation of J receptors in the cat.

    PubMed Central

    Anand, A; Paintal, A S

    1980-01-01

    1. Experiments carried out on anaesthetized cats showed that increasing blood flow, through the lobes of a lung, by 133% (S.E. 33%) generated an average of 0.75 impulses/sec (S.E. 0.3) in ten almost silent J receptors. Equivalent activity was produced by injecting 12-18 micrograms phenyl diguanide/kg into the right atrium. Such activity caused marked reflex effects, i.e. apnoea, rapid shallow breathing and reduction in the knee jerk. 2. The reflex effects of J receptors were studied after blocking the activity from cardiac receptors by intrapericardial injections of xylocaine. This was necessary because left atrial injections of phenyl diguanide produced reflex respiratory effects and inhibition of the knee jerk. 3. Hypoxia, but not hypercapnia, attenuated the reflex effects of J receptors, apnoea being abolished if the Pa,O2 fell below 35 mmHg. This was a central effect as it occurred in spite of increased activity of J receptors following phenyl diguanide, and effects of hypoxia persisted after cutting both carotid nerves. 4. The only invariable reflex effect of J receptors was a reduction in the total number and the average frequency of phrenic impulses in each breath. The changes in inspiratory time (ti) and expiratory time (te) following apnoea were variable although most frequently both were reduced. In about half the observations the first effect before the apnoea was a reduction in ti, in the other half it was a reduction in te. It was concluded that an input from J receptors inhibits inspiratory and expiratory mechanisms directly. 5. In some cats apnoea and rapid shallow breathing produced by J receptors continued after interrupting their activity by vagotomy and this did not diminish the reduction in ti or te; in other cats it did. The reduction in te was at times quite independent of changes in ti, i.e. pulmonary stretch receptor activity. 6. It was concluded that J receptors must be stimulated during moderate exercise to levels that produce marked respiratory reflex effects and inhibition of muscles. PMID:6770080

  3. Comparison of CO 2 Detection Methods Tested in Shallow Groundwater Monitoring Wells at a Geological Sequestration Site

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Edenborn, Harry M.; Jain, Jinesh N.

    The geological storage of anthropogenic carbon dioxide (CO 2) is one method of reducing the amount of CO 2 released into the atmosphere. Monitoring programs typically determine baseline conditions in surface and near-surface environments before, during, and after CO 2 injection to evaluate if impacts related to injection have occurred. Because CO 2 concentrations in groundwater fluctuate naturally due to complex geochemical and geomicrobiologicalinteractions, a clear understanding of the baseline behavior of CO 2 in groundwater near injection sites is important. Numerous ways of measuring aqueous CO 2 in the field and lab are currently used, but most methods havemore » significant shortcomings (e.g., are tedious, lengthy, have interferences, or have significant lag time before a result is determined). In this study, we examined the effectiveness of two novel CO 2 detection methods and their ability to rapidly detect CO2in shallow groundwater monitoring wells associated with the Illinois Basin –Decatur Project geological sequestration site. The CarboQC beverage carbonation meter was used to measure the concentration of CO 2 in water by monitoring temperature and pressure changes and calculating the PCO 2 from the ideal gas law. Additionally, a non-dispersive infrared (NDIR) CO< sub>2sensor enclosed in a gas-permeable, water-impermeable membrane measured CO2by determining an equilibrium concentration. Results showed that the CarboQC method provided rapid (< 3 min) and repeatable results under field conditions within a measured concentration range of 15 –125 mg/L CO 2. The NDIR sensor results correlated well (r 2= 0.93) with the CarboQC data, but CO 2 equilibration required at least 15 minutes, making the method somewhat less desirable under field conditions. In contrast, NDIR-based sensors have a greater potential for long-term deployment. Both systems are adaptable to in-line groundwater sampling methods. Other specific advantages and disadvantages associated with the two approaches, and anomalies associated with specific samples, are discussed in greater detail in this poster.« less

  4. Tutorial: Performance and reliability in redundant disk arrays

    NASA Technical Reports Server (NTRS)

    Gibson, Garth A.

    1993-01-01

    A disk array is a collection of physically small magnetic disks that is packaged as a single unit but operates in parallel. Disk arrays capitalize on the availability of small-diameter disks from a price-competitive market to provide the cost, volume, and capacity of current disk systems but many times their performance. Unfortunately, relative to current disk systems, the larger number of components in disk arrays leads to higher rates of failure. To tolerate failures, redundant disk arrays devote a fraction of their capacity to an encoding of their information. This redundant information enables the contents of a failed disk to be recovered from the contents of non-failed disks. The simplest and least expensive encoding for this redundancy, known as N+1 parity is highlighted. In addition to compensating for the higher failure rates of disk arrays, redundancy allows highly reliable secondary storage systems to be built much more cost-effectively than is now achieved in conventional duplicated disks. Disk arrays that combine redundancy with the parallelism of many small-diameter disks are often called Redundant Arrays of Inexpensive Disks (RAID). This combination promises improvements to both the performance and the reliability of secondary storage. For example, IBM's premier disk product, the IBM 3390, is compared to a redundant disk array constructed of 84 IBM 0661 3 1/2-inch disks. The redundant disk array has comparable or superior values for each of the metrics given and appears likely to cost less. In the first section of this tutorial, I explain how disk arrays exploit the emergence of high performance, small magnetic disks to provide cost-effective disk parallelism that combats the access and transfer gap problems. The flexibility of disk-array configurations benefits manufacturer and consumer alike. In contrast, I describe in this tutorial's second half how parallelism, achieved through increasing numbers of components, causes overall failure rates to rise. Redundant disk arrays overcome this threat to data reliability by ensuring that data remains available during and after component failures.

  5. 3D numerical modeling of the carrier transport and radiative efficiency for InGaN/GaN light emitting diodes with V-shaped pits

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Chi-Kang; Wu, Chen-Kuo; Hsu, Chung-Cheng

    2016-05-15

    In this paper, influence of a V-pit embedded inside the multiple quantum wells (MQWs) LED was studied. A fully three-dimensional stress-strain solver and Poisson-drift-diffusion solver are employed to study the current path, where the quantum efficiency and turn-on voltage will be discussed. Our results show that the hole current is not only from top into lateral quantum wells (QWs) but flowing through shallow sidewall QWs and then injecting into the deeper lateral QWs in V-pit structures, where the V-pit geometry provides more percolation length for holes to make the distribution uniform along lateral MQWs. The IQE behavior with different V-pitmore » sizes, threading dislocation densities, and current densities were analyzed. Substantially, the variation of the quantum efficiency for different V-pit sizes is due to the trap-assisted nonradiative recombination, effective QW ratio, and ability of hole injections.« less

  6. Source spectral properties of small-to-moderate earthquakes in southern Kansas

    USGS Publications Warehouse

    Trugman, Daniel T.; Dougherty, Sara L.; Cochran, Elizabeth S.; Shearer, Peter M.

    2017-01-01

    The source spectral properties of injection-induced earthquakes give insight into their nucleation, rupture processes, and influence on ground motion. Here we apply a spectral decomposition approach to analyze P-wave spectra and estimate Brune-type stress drop for more than 2000 ML1.5–5.2 earthquakes occurring in southern Kansas from 2014 to 2016. We find that these earthquakes are characterized by low stress drop values (median ∼0.4MPa) compared to natural seismicity in California. We observe a significant increase in stress drop as a function of depth, but the shallow depth distribution of these events is not by itself sufficient to explain their lower stress drop. Stress drop increases with magnitude from M1.5–M3.5, but this scaling trend may weaken above M4 and also depends on the assumed source model. Although we observe a nonstationary, sequence-specific temporal evolution in stress drop, we find no clear systematic relation with the activity of nearby injection wells.

  7. The Optical Gravitational Lensing Experiment. Planetary and Low-Luminosity Object Transits in the Carina Fields of the Galactic Disk

    NASA Astrophysics Data System (ADS)

    Udalski, A.; Szewczyk, O.; Zebrun, K.; Pietrzynski, G.; Szymanski, M.; Kubiak, M.; Soszynski, I.; Wyrzykowski, L.

    2002-12-01

    We present results of the second "planetary and low-luminosity object transit" campaign conducted by the OGLE-III survey. Three fields (35' X 35' each) located in the Carina regions of the Galactic disk (l ≈ 290°) were monitored continuously in February-May 2002. About 1150 epochs were collected for each field. The search for low depth transits was conducted on about 103 000 stars with photometry better than 15 mmag. In total, we discovered 62 objects with shallow depth (≤ 0.08 mag) flat-bottomed transits. For each of these objects several individual transits were detected and photometric elements were determined. Also lower limits on radii of the primary and companion were calculated. The 2002 OGLE sample of stars with transiting companions contains considerably more objects that may be Jupiter-sized (R < 1.6 R_Jup) compared to our 2001 sample. There is a group of planetary candidates with the orbital periods close to or shorter than one day. If confirmed as planets, they would be the shortest period extrasolar planetary systems. In general, the transiting objects may be extrasolar planets, brown dwarfs, or M-type dwarfs. One should be, however, aware that in some cases unresolved blends of regular eclipsing stars can mimic transits. Future spectral analysis and eventual determination of the amplitude of radial velocity should allow final classification. High resolution spectroscopic follow-up observations are, therefore, strongly encouraged. All photometric data are available to the astronomical community from the OGLE INTERNET archive.

  8. Herschel evidence for disk flattening or gas depletion in transitional disks

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Keane, J. T.; Pascucci, I.; Espaillat, C.

    Transitional disks are protoplanetary disks characterized by reduced near- and mid-infrared emission, with respect to full disks. This characteristic spectral energy distribution indicates the presence of an optically thin inner cavity within the dust disk believed to mark the disappearance of the primordial massive disk. We present new Herschel Space Observatory PACS spectra of [O I] 63.18 μm for 21 transitional disks. Our survey complements the larger Herschel GASPS program ({sup G}as in Protoplanetary Systems{sup )} by quadrupling the number of transitional disks observed with PACS in this wavelength. [O I] 63.18 μm traces material in the outer regions ofmore » the disk, beyond the inner cavity of most transitional disks. We find that transitional disks have [O I] 63.18 μm line luminosities ∼2 times fainter than their full disk counterparts. We self-consistently determine various stellar properties (e.g., bolometric luminosity, FUV excess, etc.) and disk properties (e.g., disk dust mass, etc.) that could influence the [O I] 63.18 μm line luminosity, and we find no correlations that can explain the lower [O I] 63.18 μm line luminosities in transitional disks. Using a grid of thermo-chemical protoplanetary disk models, we conclude that either transitional disks are less flared than full disks or they possess lower gas-to-dust ratios due to a depletion of gas mass. This result suggests that transitional disks are more evolved than their full disk counterparts, possibly even at large radii.« less

  9. Investigating the Hydro-geochemical Impact of Fugitive Methane on Groundwater: The Borden Aquifer Controlled Release Study

    NASA Astrophysics Data System (ADS)

    Cahill, A. G.; Parker, B. L.; Cherry, J. A.; Mayer, K. U.; Mayer, B.; Ryan, C.

    2014-12-01

    Shale gas development by hydraulic fracturing is believed by many to have the potential to transform the world's energy economy. The propensity of this technique to cause significant environmental impact is strongly contested and lacks evidence. Fugitive methane (CH4), potentially mobilized during well drilling, the complex extraction process and/or leaking well seals over time is arguably the greatest concern. Advanced understanding of CH4 mobility and fate in the subsurface is needed in order to assess risks, design suitable monitoring systems and gain public trust. Currently knowledge on subsurface CH4 mobilization and migration at scales relevant to shale gas development is lacking. Consequently a shallow aquifer controlled CH4 release experiment is being conducted at the Borden aquifer research facility (an unconfined, unconsolidated silicate sand aquifer) in Ontario, Canada. During the experiment, 100 m3 of gas phase CH4 was injected into the saturated zone over approximately 60 days through 2 inclined sparging wells (4.5 and 9 m depth) at rates relevant to natural gas well casing vent flows. The gas mobility and fate is being comprehensively monitored temporally and spatially in both the saturated and unsaturated zones considering; aqueous chemistry (including stable isotopes), soil gas characterization, surface efflux, geophysics (GPR and ERT), real time sensors (total dissolved gas pressure, soil moisture content, CH4 and CO2), mineralogical and microbiological characterization before, during and after injection. An overview of this unique study will be given including experimental design, monitoring system configuration and preliminary results. This multidisciplinary study will provide important insights regarding the mechanisms and rates for shallow CH4 migration, attenuation and water quality impacts that will inform baseline groundwater monitoring programs and retrospective forensic studies.

  10. Investigating the Hydro-geochemical Impact of Fugitive Methane on Groundwater: The Borden Aquifer Controlled Release Study

    NASA Astrophysics Data System (ADS)

    Cahill, A. G.; Parker, B. L.; Cherry, J. A.; Mayer, K. U.; Mayer, B.; Ryan, C.

    2015-12-01

    Shale gas development by hydraulic fracturing is believed by many to have the potential to transform the world's energy economy. The propensity of this technique to cause significant environmental impact is strongly contested and lacks evidence. Fugitive methane (CH4), potentially mobilized during well drilling, the complex extraction process and/or leaking well seals over time is arguably the greatest concern. Advanced understanding of CH4 mobility and fate in the subsurface is needed in order to assess risks, design suitable monitoring systems and gain public trust. Currently knowledge on subsurface CH4 mobilization and migration at scales relevant to shale gas development is lacking. Consequently a shallow aquifer controlled CH4 release experiment is being conducted at the Borden aquifer research facility (an unconfined, unconsolidated silicate sand aquifer) in Ontario, Canada. During the experiment, 100 m3 of gas phase CH4 was injected into the saturated zone over approximately 60 days through 2 inclined sparging wells (4.5 and 9 m depth) at rates relevant to natural gas well casing vent flows. The gas mobility and fate is being comprehensively monitored temporally and spatially in both the saturated and unsaturated zones considering; aqueous chemistry (including stable isotopes), soil gas characterization, surface efflux, geophysics (GPR and ERT), real time sensors (total dissolved gas pressure, soil moisture content, CH4 and CO2), mineralogical and microbiological characterization before, during and after injection. An overview of this unique study will be given including experimental design, monitoring system configuration and preliminary results. This multidisciplinary study will provide important insights regarding the mechanisms and rates for shallow CH4 migration, attenuation and water quality impacts that will inform baseline groundwater monitoring programs and retrospective forensic studies.

  11. Hydrogeologic aspects of brine disposal in the East Poplar oil field, Fort Peck Indian Reservation, northeastern Montana

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Craigg, S.D.; Thamke, J.N.

    1993-04-01

    The East Poplar Oil Field encompasses about 70 square miles in the south-central part of the Fort Peck Indian Reservation. Oil production began in 1952 from the Mississippian Madison Group. Production depths range from about 5,500 to 6,000 feet below land surface. Large quantities of brine (water having a dissolved-solids concentration greater than 35,000 milligrams per liter) have been produced with the oil. The brine has a dissolved-solids concentration of as much as 160,000 milligrams per liter. Most of the brine has been disposed of by injection into shallower subsurface formations (mainly the Lower Cretaceous Dakota Sandstone at depths ofmore » about 3,300 feet and the Upper Cretaceous Judith River Formation at depths of about 1,000 feet). Smaller quantities of brine have been directed to storage and evaporation pits. Handling, transport, and disposal of the brine have resulted in its movement into and migration through shallow Quaternary alluvial and glacial deposits along the Poplar River valley. Locally, domestic water supplies are obtained from these deposits. The major point, sources of shallow ground-water contamination probably is leakage of brine from corroded disposal-well casing and pipelines. Using electromagnetic geophysical techniques and auger drilling, three saline-water plumes in alluvial deposits and one plum in glacial deposits have been delineated. Dominant constituents in plume areas are sodium and chloride, whereas those in nonplume areas are sodium and bicarbonate.« less

  12. Dramatic Evolution of the Disk-shaped Secondary in the Orion Trapezium Star θ1 Ori B1 (BM Ori): MOST Satellite Observations

    NASA Astrophysics Data System (ADS)

    Windemuth, Diana; Herbst, William; Tingle, Evan; Fuechsl, Rachel; Kilgard, Roy; Pinette, Melanie; Templeton, Matthew; Henden, Arne

    2013-05-01

    The eclipsing binary θ1 Orionis B1, variable star designation BM Ori, is the faintest of the four well-known Trapezium stars at the heart of the Orion Nebula. The primary is a B3 star (~6 M ⊙) but the nature of the secondary (~2 M ⊙) has long been mysterious, since the duration and shape of primary eclipse are inappropriate for any sort of ordinary star. Here we report nearly continuous photometric observations obtained with the MOST satellite over ~4 cycles of the 6.47 d binary period. The light curve is of unprecedented quality, revealing a deep, symmetric primary eclipse as well as a clear reflection effect and secondary eclipse. In addition, there are other small disturbances, some of which repeat at the same phase over the four cycles monitored. The shape of the primary light curve has clearly evolved significantly over the past 40 years. While its overall duration and depth have remained roughly constant, the slopes of the descent and ascent phases are significantly shallower now than in the past and its distinctive flat-bottomed "pseudo-totality" is much less obvious or even absent in the most recent data. We further demonstrate that the primary eclipse was detected at X-ray wavelengths during the Chandra Orion Ultradeep Project (COUP) study. The light curve continues to be well modeled by a self-luminous and reflective disk-shaped object seen nearly edge-on orbiting the B3 primary. The dramatic change in shape over four decades is modeled as an opacity variation in a tenuous outer envelope or disk of the secondary object. We presume that the secondary is an extremely young protostar at an earlier evolutionary phase than can be commonly observed elsewhere in the Galaxy and that the opacity variations observed are related to its digestion of some accreted matter over the last 50-100 years. Indeed, this object deserves continued observational and theoretical attention as the youngest known eclipsing binary system.

  13. Dramatic Evolution of the Disk-Shaped Secondary in the Orion Trapezium Star θ1 Ori B1 (BM Ori): MOST Satellite Observations

    NASA Astrophysics Data System (ADS)

    Windemuth, Diana; Herbst, W.; Tingle, E. D.; Fuechsl, R.; Kilgard, R. E.; Pinette, M.; Templeton, M. R.; Henden, A. A.

    2013-01-01

    θ1 Orionis B1 (BM Ori), the faintest of four well-known Trapezium stars in Orion, is the youngest known eclipsing binary system with a contraction age < 105 years. While the primary is a B3 star, the secondary component 2M⊙ based on radial velocities) has eluded classification since the duration and shape of the eclipse do not conform to those of an ordinary star. We report nearly continuous photometric observations obtained with the Microvariability & Oscillations of STars (MOST) satellite over ~4 cycles of the 6.47d binary period, which contain both primary and secondary eclipses, as well as a clear reflection effect. We find that the shape of the primary light curve has evolved significantly over the past 40 years. While its overall duration and depth have remained constant, ingress and egress are notably shallower now, and the flat bottom that has distinguished BM Ori’s light curve in the past is ill defined or even absent in the most recent data. Furthermore, small perturbations, some of which are repeated over the four cycles monitored, indicate semi-stable structures outside the Robe lobe of the secondary. In addition, we re-examine data from the Chandra Orion Ultradeep Project (COUP) study and detect the primary eclipse at X-ray wavelengths. The optical light curve continues to be well modeled by a self-luminous and reflective disk-shaped object seen nearly edge-on, orbiting a normal ZAMS primary. We treat the change in shape over the past four decades as an opacity variation in a tenuous outer envelope or disk surrounding the secondary, perhaps related to the digestion of accreted matter over the last 50-100 years. This work was partially funded by the NASA ROSES program and NASA’s Origins of Solar Systems program. Undergraduate participation in this research was supported by NSF/REU grants in support of Wesleyan University as a part of the Keck Northeast Astronomy Consortium.

  14. DRAMATIC EVOLUTION OF THE DISK-SHAPED SECONDARY IN THE ORION TRAPEZIUM STAR {theta}{sup 1} Ori B{sub 1} (BM Ori): MOST SATELLITE OBSERVATIONS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Windemuth, Diana; Herbst, William; Tingle, Evan

    2013-05-01

    The eclipsing binary {theta}{sup 1} Orionis B{sub 1}, variable star designation BM Ori, is the faintest of the four well-known Trapezium stars at the heart of the Orion Nebula. The primary is a B3 star ({approx}6 M{sub Sun }) but the nature of the secondary ({approx}2 M{sub Sun }) has long been mysterious, since the duration and shape of primary eclipse are inappropriate for any sort of ordinary star. Here we report nearly continuous photometric observations obtained with the MOST satellite over {approx}4 cycles of the 6.47 d binary period. The light curve is of unprecedented quality, revealing a deep,more » symmetric primary eclipse as well as a clear reflection effect and secondary eclipse. In addition, there are other small disturbances, some of which repeat at the same phase over the four cycles monitored. The shape of the primary light curve has clearly evolved significantly over the past 40 years. While its overall duration and depth have remained roughly constant, the slopes of the descent and ascent phases are significantly shallower now than in the past and its distinctive flat-bottomed ''pseudo-totality'' is much less obvious or even absent in the most recent data. We further demonstrate that the primary eclipse was detected at X-ray wavelengths during the Chandra Orion Ultradeep Project (COUP) study. The light curve continues to be well modeled by a self-luminous and reflective disk-shaped object seen nearly edge-on orbiting the B3 primary. The dramatic change in shape over four decades is modeled as an opacity variation in a tenuous outer envelope or disk of the secondary object. We presume that the secondary is an extremely young protostar at an earlier evolutionary phase than can be commonly observed elsewhere in the Galaxy and that the opacity variations observed are related to its digestion of some accreted matter over the last 50-100 years. Indeed, this object deserves continued observational and theoretical attention as the youngest known eclipsing binary system.« less

  15. Transport of Chemical Vapors from Subsurface Sources to Atmosphere as Affected by Shallow Subsurface and Atmospheric Conditions

    NASA Astrophysics Data System (ADS)

    Rice, A. K.; Smits, K. M.; Hosken, K.; Schulte, P.; Illangasekare, T. H.

    2012-12-01

    Understanding the movement and modeling of chemical vapor through unsaturated soil in the shallow subsurface when subjected to natural atmospheric thermal and mass flux boundary conditions at the land surface is of importance to applications such as landmine detection and vapor intrusion into subsurface structures. New, advanced technologies exist to sense chemical signatures at the land/atmosphere interface, but interpretation of these sensor signals to make assessment of source conditions remains a challenge. Chemical signatures are subject to numerous interactions while migrating through the unsaturated soil environment, attenuating signal strength and masking contaminant source conditions. The dominant process governing movement of gases through porous media is often assumed to be Fickian diffusion through the air phase with minimal or no quantification of other processes contributing to vapor migration, such as thermal diffusion, convective gas flow due to the displacement of air, expansion/contraction of air due to temperature changes, temporal and spatial variations of soil moisture and fluctuations in atmospheric pressure. Soil water evaporation and interfacial mass transfer add to the complexity of the system. The goal of this work is to perform controlled experiments under transient conditions of soil moisture, temperature and wind at the land/atmosphere interface and use the resulting dataset to test existing theories on subsurface gas flow and iterate between numerical modeling efforts and experimental data. Ultimately, we aim to update conceptual models of shallow subsurface vapor transport to include conditionally significant transport processes and inform placement of mobile sensors and/or networks. We have developed a two-dimensional tank apparatus equipped with a network of sensors and a flow-through head space for simulation of the atmospheric interface. A detailed matrix of realistic atmospheric boundary conditions was applied in a series of experiments. Water saturation, capillary pressure, air and soil temperature, and relative humidity were continuously monitored. Aqueous TCE was injected into the tank below the water table and allowed to volatilize. TCE concentration exiting the tank head space was measured through interval sampling by direct injection into a gas chromatograph. To quantify the transient concentration of TCE vapor in the soil pore space a novel use of Solid Phase Micro-Extraction (SPME) was developed. Results from our numerical simulations were compared with the experimental data, which demonstrated the importance of considering the interaction of the atmosphere with the subsurface in conceptualization and numerical model development. Results also emphasize that soil saturation and transient sorption have a significant effect on vapor transport through the vadose zone. Follow-up tests and detailed analyses are still underway. Additional applications of this work include carbon sequestration leakage, methane contamination in the shallow subsurface and environmental impact of hydraulic fracturing.

  16. The nature of fracturing and stress distribution in quartzite around the 1128-M (3700-FT) level of the crescent mine, Coeur d'Alene mining district, Idaho

    USGS Publications Warehouse

    Miller, C.H.; Skinner, E.H.

    1980-01-01

    Silver and copper are the principal ores mined from the quartzite at the Crescent mine. Both the main ore-bearing veins and foliation in the quartzite are parallel to the nearly vertical formational contacts. Anisotropy of the quartzite is indicated by both dynamic and static tests. Disking and breakage of core from holes perpendicular to the foliation are about twice what they are in core from holes parallel to foliation. Natural cleavage as well as slabbing and blasting fractures around the tunnels are also controlled by the foliation. Extensive overcore deformation measurements indicate that most of the influence of the tunnels on the "free" stress field is between the rib and a depth of 2.7 m (1 tunnel diameter). The maximum principal stress axis in the free field is nearly horizontal; its magnitude is not much greater than the vertical component and calculations indicate a nearly hydrostatic free stress field. Stress considerably greater than the free field was measured between about 0.3-2.7 m behind the rib and is caused by a transfer of load from above the tunnel opening. Peak stress is in the vertical direction and about 1.7 m behind the rib. An air-injection survey shows that high permeabilities are confined to the highly fractured annulus around a tunnel to a depth of at least 0.6 m. Air-injection measurements could be taken in the interval of about 0.6-1.8 m, but more fractures with high permeabilities may also be present in the annulus from about 0.6-1.2 m. Permeabilities measured deeper than about 1.8 m by the air-injection technique are either very low or nonexistent. The absence of open and noncontinuous fractures beyond about 1.8 m is also indicated by very low porosities and permeabilities of core, very high stresses (which presumably would close fractures), the lack of stains or secondary fillings in disking fractures, a conspicuous lack of ground water in the tunnels, and the fact that fractures encountered in an experimental 0.9-m tunnel did not extend into the 1.8-m tunnel that was mined over it. Air-injection techniques exceed the accuracy of any field deformation measurement now in use, and they are sensitive to permeabilities as small as one microdarcy and to fracture widths as small as 250 nanometers. This technique was applied for future reference in mining design and, perhaps, to be used later to detect microfracturing prior to rockbursts. ?? 1980 Elsevier Scientific Publishing Company.

  17. Quantification of the association between intervertebral disk calcification and disk herniation in Dachshunds.

    PubMed

    Jensen, Vibeke F; Beck, Sarah; Christensen, Knud A; Arnbjerg, Jens

    2008-10-01

    To quantify the association between intervertebral disk calcification and disk herniation in Dachshunds. Longitudinal study. 61 Dachshunds that had been radiographically screened for calcification of intervertebral disks at 2 years of age in other studies. Thirty-seven of the dogs had survived to the time of the present study and were > or = 8 years of age; 24 others had not survived. Radiographic examination of 36 surviving dogs was performed, and information on occurrence of disk calcification at 2 years of age were obtained from records of all 61 Dachshunds. Information on occurrence of disk herniation between 2 and 8 years of age was obtained from owners via questionnaire. Associations between numbers of calcified disks and disk herniation were analyzed via maximum likelihood logistic regression. Disk calcification at 2 years of age was a significant predictor of clinical disk herniation (odds ratio per calcified disk, 1.42; 95% confidence interval, 1.19 to 1.81). Number of calcified disks in the full vertebral column was a better predictor than number of calcified disks between vertebrae T10 and L3. Numbers of calcified disks at > or = 8 years of age and at 2 years of age were significantly correlated. Number of calcified disks at 2 years of age was a good predictor of clinical disk herniation in Dachshunds. Because of the high heritability of disk calcification, it is possible that an effective reduction in occurrence of severe disk herniation in Dachshunds could be obtained by selective breeding against high numbers of calcified disks at 2 years of age.

  18. Particle fueling experiments with a series of pellets in LHD

    NASA Astrophysics Data System (ADS)

    Baldzuhn, J.; Damm, H.; Dinklage, A.; Sakamoto, R.; Motojima, G.; Yasuhara, R.; Ida, K.; Yamada, H.; LHD Experiment Group; Wendelstein 7-X Team

    2018-03-01

    Ice pellet injection is performed in the heliotron Large Helical Device (LHD). The pellets are injected in short series, with up to eight individual pellets. Parameter variations are performed for the pellet ice isotopes, the LHD magnetic configurations, the heating scenario, and some others. These experiments are performed in order to find out whether deeper fueling can be achieved with a series of pellets compared to single pellets. An increase of the fueling efficiency is expected since pre-cooling of the plasma by the first pellets within a series could aid deeper penetration of later pellets in the same series. In addition, these experiments show which boundary conditions must be fulfilled to optimize the technique. The high-field side injection of pellets, as proposed for deep fueling in a tokamak, will not be feasible with the same efficiency in a stellarator or heliotron because there the magnetic field gradient is smaller than in a tokamak of comparable size. Hence, too shallow pellet fueling, in particular in a large device or a fusion reactor, will be an issue that can be overcome only by extremely high pellet velocities, or other techniques that will have to be developed in the future. It turned out by our investigations that the fueling efficiency can be enhanced by the injection of a series of pellets to some extent. However, further investigations will be needed in order to optimize this approach for deep particle fueling.

  19. Structural valve deterioration in a starr-edwards mitral caged-disk valve prosthesis.

    PubMed

    Aoyagi, Shigeaki; Tayama, Kei-Ichiro; Okazaki, Teiji; Shintani, Yusuke; Kono, Michitaka; Wada, Kumiko; Kosuga, Ken-Ichi; Mori, Ryusuke; Tanaka, Hiroyuki

    2013-01-01

    The durability of the Starr-Edwards (SE) mitral caged-disk valve, model 6520, is not clearly known, and structural valve deterioration in the SE disk valve is very rare. Replacement of the SE mitral disk valve was performed in 7 patients 23-40 years after implantation. Macroscopic examination of the removed disk valves showed no structural abnormalities in 3 patients, in whom the disk valves were removed at <26 years after implantation. Localized disk wear was found at the sites where the disk abutted the struts of the cage, in disk valves excised >36 years after implantation in 4 patients. Disk fracture, a longitudinal split in the disk along its circumference at the site of incorporation of the titanium ring, was detected in the valves removed 36 and 40 years after implantation, respectively, and many cracks were also observed on the outflow aspect of the disk removed 40 years after implantation. Disk fracture and localized disk wear were found in the SE mitral disk valves implanted >36 years previously. The present results suggest that SE mitral caged-disk valves implanted >20 years previously should be carefully followed up, and that those implanted >30 years previously should be electively replaced with modern prosthetic valves

  20. Network simulation-based optimization of centrifugo-pneumatic blood plasma separation

    PubMed Central

    Zehnle, S.; Zengerle, R.; von Stetten, F.; Paust, N.

    2017-01-01

    Automated and robust separation of 14 μl of plasma from 40 μl of whole blood at a purity of 99.81% ± 0.11% within 43 s is demonstrated for the hematocrit range of 20%–60% in a centrifugal microfluidic polymer disk. At high rotational frequency, red blood cells (RBCs) within whole blood are concentrated in a radial outer RBC collection chamber. Simultaneously, plasma is concentrated in a radial inner pneumatic chamber, where a defined air volume is enclosed and compressed. Subsequent reduction of the rotational frequency to not lower than 25 Hz enables rapid transfer of supernatant plasma into a plasma collection chamber, with highly suppressed resuspension of red blood cells. Disk design and the rotational protocol are optimized to make the process fast, robust, and insusceptible for undesired cell resuspension. Numerical network simulation with lumped model elements is used to predict and optimize the fluidic characteristics. Lysis of the remaining red blood cells in the purified plasma, followed by measurement of the hemoglobin concentration, was used to determine plasma purity. Due to the pneumatic actuation, no surface treatment of the fluidic cartridge or any additional external means are required, offering the possibility for low-cost mass fabrication technologies, such as injection molding or thermoforming. PMID:28798850

  1. Improved turbine disk design to increase reliability of aircraft jet engines

    NASA Technical Reports Server (NTRS)

    Alver, A. S.; Wong, J. K.

    1975-01-01

    An analytical study was conducted on a bore entry cooled turbine disk for the first stage of the JT8D-17 high pressure turbine which had the potential to improve disk life over existing design. The disk analysis included the consideration of transient and steady state temperature, blade loading, creep, low cycle fatigue, fracture mechanics and manufacturing flaws. The improvement in life of the bore entry cooled turbine disk was determined by comparing it with the existing disk made of both conventional and advanced (Astroloy) disk materials. The improvement in crack initiation life of the Astroloy bore entry cooled disk is 87% and 67% over the existing disk made of Waspaloy and Astroloy, respectively. Improvement in crack propagation life is 124% over the Waspaloy and 465% over the Astroloy disks. The available kinetic energies of disk fragments calculated for the three disks indicate a lower fragment energy level for the bore entry cooled turbine disk.

  2. Floppy disk utility user's guide

    NASA Technical Reports Server (NTRS)

    Akers, J. W.

    1981-01-01

    The Floppy Disk Utility Program transfers programs between files on the hard disk and floppy disk. It also copies the data on one floppy disk onto another floppy disk and compares the data. The program operates on the Data General NOVA-4X under the Real Time Disk Operating System (RDOS).

  3. Accretion Disk Spectra of the Ultra-luminous X-ray Sources in Nearby Spiral Galaxies and Galactic Superluminal Jet Sources

    NASA Technical Reports Server (NTRS)

    White, Nicholas E. (Technical Monitor); Ebisawa, Ken; Zycki, Piotr; Kubota, Aya; Mizuno, Tsunefumi; Watarai, Ken-ya

    2003-01-01

    Ultra-luminous Compact X-ray Sources (ULXs) in nearby spiral galaxies and Galactic superluminal jet sources share the common spectral characteristic that they have unusually high disk temperatures which cannot be explained in the framework of the standard optically thick accretion disk in the Schwarzschild metric. On the other hand, the standard accretion disk around the Kerr black hole might explain the observed high disk temperature, as the inner radius of the Kerr disk gets smaller and the disk temperature can be consequently higher. However, we point out that the observable Kerr disk spectra becomes significantly harder than Schwarzschild disk spectra only when the disk is highly inclined. This is because the emission from the innermost part of the accretion disk is Doppler-boosted for an edge-on Kerr disk, while hardly seen for a face-on disk. The Galactic superluminal jet sources are known to be highly inclined systems, thus their energy spectra may be explained with the standard Kerr disk with known black hole masses. For ULXs, on the other hand, the standard Kerr disk model seems implausible, since it is highly unlikely that their accretion disks are preferentially inclined, and, if edge-on Kerr disk model is applied, the black hole mass becomes unreasonably large (greater than or approximately equal to 300 Solar Mass). Instead, the slim disk (advection dominated optically thick disk) model is likely to explain the observed super- Eddington luminosities, hard energy spectra, and spectral variations of ULXs. We suggest that ULXs are accreting black holes with a few tens of solar mass, which is not unexpected from the standard stellar evolution scenario, and their X-ray emission is from the slim disk shining at super-Eddington luminosities.

  4. Case history of the Seven Rivers Sand Waterflood, Crockett County, Texas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Riley, E.A.; Bates, T.P.

    1965-04-22

    The Noelke Field is located approximately 6 1/2 miles SE of Iraan in Crockett County, Texas. The field covers some 2760 proven productive acres with an estimated 1300 acres being oil-productive and the remainder being high enough structurally to carry gas saturation. This report covers only the southern segment. The Noelke field produces from the Seven Rivers sand of the Permian System. The sand is found at depths ranging from 1006 to 1756 ft from the surface. Illustrations show field location, gas cap and oil segments, structure of the southern segment, isopachs, production history of the southern segment, and themore » injection pattern. Initial water injection was realized on Nov. 17, 1957, with all wells taking water readily at zero pressure. Initial flood response was detected in the first well in July 1958, or 8 months after initial injection. The response was positive and significant, reaching 75 bbl oil per day and no water in a month. Production rapidly increased during all of 1959 and reached a peak rate of 2580 bbl in Jan. 1960. Production declined mildly thereafter, and reached a level of 401 bbl during Dec. 1962, then gradually declined thereafter through 1964 to the economic limit. This shallow waterflood project proved highly successful.« less

  5. Rhodamine-WT dye losses in a mountain stream environment

    USGS Publications Warehouse

    Bencala, Kenneth E.; Rathburn, Ronald E.; Jackman, Alan P.; Kennedy, Vance C.; Zellweger, Gary W.; Avanzino, Ronald J.

    1983-01-01

    A significant fraction of rhodamine WT dye was lost during a short term multitracer injection experiment in a mountain stream environment. The conservative anion chloride and the sorbing cation lithium were concurrently injected. In-stream rhodamine WT concentrations were as low as 45 percent of that expected, based on chloride data. Concentration data were available from shallow‘wells’dug near the stream course and from a seep of suspected return flow. Both rhodamine WT dye and lithium were nonconservative with respect to the conservative chloride, with rhodamine WT dye closely following the behavior of the sorbing lithium.Nonsorption and sorption mechanisms for rhodamine WT loss in a mountain stream were evaluated in laboratory experiments. Experiments evaluating nonsorption losses indicated minimal losses by such mechanisms. Laboratory experiments using sand and gravel size streambed sediments show an appreciable capacity for rhodamine WT sorption.The detection of tracers in the shallow wells and seep indicates interaction between the stream and the flow in the surrounding subsurface, intergravel water, system. The injected tracers had ample opportunity for intimate contact with materials shown in the laboratory experiments to be potentially sorptive. It is suggested that in the study stream system, interaction with streambed gravel was a significant mechanism for the attenuation of rhodamine WT dye (relative to chloride).

  6. Geohydrologic reconnaissance of drainage wells in Florida; an interim report

    USGS Publications Warehouse

    Kimrey, Joel O.; Fayard, Larry D.

    1982-01-01

    Drainage wells are used to inject surface waters directly into an aquifer, or shallow ground waters directly into a deeper aquifer, primarily by gravity. Such wells in Florida may be grouped into two broad types: (1) Surface-water injection wells, and (2) interaquifer connector wells. Surface-water injection wells are commonly used to supplement drainage for urban areas in karst terranes of central and north Florida. Data are available for 25 wells in the Ocala, Live Oak, and Orlando areas that allow comparison of the quality of water samples from these Floridan aquifer drainage wells with allowable contaminant levels. Comparison indicates that maximum contaminant levels for turbidity, color, and iron, manganese, and lead concentrations are equaled or exceeded in some drainage-well samples, and relatively high counts for coliform bacteria are present in most wells. Interaquifer connector wells are used in the phosphate mining areas of Polk and Hillsborough Counties, to drain mining operations and recharge the Floridan aquifer. Water-quality data available from 13 connector wells indicate that samples from most of these wells exceed standards values for iron concentration and turbidity. One well yielded a highly mineralized water, and samples from 6 of the other 12 wells exceed standards values for gross alpha concentrations. (USGS)

  7. Use of Landsat data to predict the trophic state of Minnesota lakes

    NASA Technical Reports Server (NTRS)

    Lillesand, T. M.; Johnson, W. L.; Deuell, R. L.; Lindstrom, O. M.; Meisner, D. E.

    1983-01-01

    Near-concurrent Landsat Multispectral Scanner (MSS) and ground data were obtained for 60 lakes distributed in two Landsat scene areas. The ground data included measurement of secchi disk depth, chlorophyll-a, total phosphorous, turbidity, color, and total nitrogen, as well as Carlson Trophic State Index (TSI) values derived from the first three parameters. The Landsat data best correlated with the TSI values. Prediction models were developed to classify some 100 'test' lakes appearing in the two analysis scenes on the basis of TSI estimates. Clouds, wind, poor image data, small lake size, and shallow lake depth caused some problems in lake TSI prediction. Overall, however, the Landsat-predicted TSI estimates were judged to be very reliable for the secchi-derived TSI estimation, moderately reliable for prediction of the chlorophyll-a TSI, and unreliable for the phosphorous value. Numerous Landsat data extraction procedures were compared, and the success of the Landsat TSI prediction models was a strong function of the procedure employed.

  8. Analysis of the spatio-temporal variability of seawater quality in the southeastern Arabian Gulf.

    PubMed

    Mezhoud, Nahla; Temimi, Marouane; Zhao, Jun; Al Shehhi, Maryam Rashed; Ghedira, Hosni

    2016-05-15

    In this study, seawater quality measurements, including salinity, sea surface temperature (SST), chlorophyll-a (Chl-a), Secchi disk depth (SDD), pH, and dissolved oxygen (DO), were made from June 2013 to November 2014 at 52 stations in the southeastern Arabian Gulf. Significant variability was noticed for all collected parameters. Salinity showed a decreasing trend, and Chl-a, DO, pH, and SDD demonstrated increasing trends from shallow onshore stations to deep offshore ones, which could be attributed to variations of ocean circulation and meteorological conditions from onshore to offshore waters, and the likely effects of desalination plants along the coast. Salinity and temperature were high in summer and low in winter while Chl-a, SDD, pH, and DO indicated an opposite trend. The CTD profiles showed vertically well-mixed structures. Qualitative analysis of phytoplankton showed a high diversity of species without anomalous species found except in Ras Al Khaimah stations where diatoms were the dominating ones. Copyright © 2016 Elsevier Ltd. All rights reserved.

  9. Stress concentration in the vicinity of a hole defect under conditions of Hertzian contact

    NASA Technical Reports Server (NTRS)

    Yamamoto, T.; Eguchi, M.; Murayama, K.

    1981-01-01

    Two dimensional photoelastic stress analyses were conducted for epoxy resin models containing a hole defect under the conditions of Hertzian contact. Stress concentrations around the defect were determined as a function of several parameters. The effect of tangential traction on the stress concentration was also determined. Sharp stress concentrations occur in the vicinity of both the left and the right side of the hole. The stress concentration becomes more distinct the larger the hole diameter and the smaller distance between the hole and the contact surface. The stress concentration is greatest when the disk imposing a normal load is located at the contact surface directly over the hole. The magnitude and the location of stress concentration varies with the distance between the Hertzian contact area and the hole. The area involved in a process of rolling contact fatigue is confined to a shallow region at both sides of the hole. It was found that the effect of tangential traction is comparatively small on the stress concentration around the hole.

  10. Transitional Disks Associated with Intermediate-Mass Stars: Results of the SEEDS YSO Survey

    NASA Technical Reports Server (NTRS)

    Grady, C.; Fukagawa, M.; Maruta, Y.; Ohta, Y.; Wisniewski, J.; Hashimoto, J.; Okamoto, Y.; Momose, M.; Currie, T.; McElwain, M.; hide

    2014-01-01

    Protoplanetary disks are where planets form, grow, and migrate to produce the diversity of exoplanet systems we observe in mature systems. Disks where this process has advanced to the stage of gap opening, and in some cases central cavity formation, have been termed pre-transitional and transitional disks in the hope that they represent intermediate steps toward planetary system formation. Recent reviews have focussed on disks where the star is of solar or sub-solar mass. In contrast to the sub-millimeter where cleared central cavities predominate, at H-band some T Tauri star transitional disks resemble primordial disks in having no indication of clearing, some show a break in the radial surface brightness profile at the inner edge of the outer disk, while others have partially to fully cleared gaps or central cavities. Recently, the Meeus Group I Herbig stars, intermediate-mass PMS stars with IR spectral energy distributions often interpreted as flared disks, have been proposed to have transitional and pre-transitional disks similar to those associated with solar-mass PMS stars, based on thermal-IR imaging, and sub-millimeter interferometry. We have investigated their appearance in scattered light as part of the Strategic Exploration of Exoplanets and Disks with Subaru (SEEDS), obtaining H-band polarimetric imagery of 10 intermediate-mass stars with Meeus Group I disks. Augmented by other disks with imagery in the literature, the sample is now sufficiently large to explore how these disks are similar to and differ from T Tauri star disks. The disk morphologies seen in the Tauri disks are also found for the intermediate-mass star disks, but additional phenomena are found; a hallmark of these disks is remarkable individuality and diversity which does not simply correlate with disk mass or stellar properties, including age, including spiral arms in remnant envelopes, arms in the disk, asymmetrically and potentially variably shadowed outer disks, gaps, and one disk where only half of the disk is seen in scattered light at H. We will discuss our survey results in terms of spiral arm theory, dust trapping vortices, and systematic differences in the relative scale height of these disks compared to those around Solar-mass stars. For the disks with spiral arms we discuss the planet-hosting potential, and limits on where giant planets can be located. We also discuss the implications for imaging with extreme adaptive optics instruments. Grady is supported under NSF AST 1008440 and through the NASA Origins of Solar Systems program on NNG13PB64P. JPW is supported NSF AST 100314. 0) in marked contrast to protoplanetary disks, transitional disks exhibit wide range of structural features1) arm visibility correlated with relative scale height in disk2) asymmetric and possibly variable shadowing of outer portions some transitional disks3) confirm pre-transitional disk nature of Oph IRS 48, MWC 758, HD 169142, etc.

  11. Modification of the quality of water injected into Louisiana gulf coast sands: Effects of cation exchange

    NASA Astrophysics Data System (ADS)

    Hanor, Jeffrey S.

    1982-06-01

    Interest in artificially recharging selected shallow sands in South Louisiana with fresh water has been stimulated by the desire to retard contamination of municipal groundwater supplies by brackish water, to retard ground subsidence and decrease pumping lifts, and to develop emergency subsurface supplies of potable water for communities dependent on surface waters susceptible to contamination. Results of field experiments, laboratory work, and model calculations demonstrate that ion exchange reactions involving clays dispersed in aquifer sands can be expected to modify significantly the composition of waters injected into Gulf Coast sediments. As little as 0.1 weight percent smectite (montmorillonite) can remove, by exchange with absorbed Na, a significant fraction of the dissolved Ca and Mg present in the injected water. The hardness of the water is thus reduced, which may be a desirable modification in water quality. Exchange occurs as fast as the fluids can be pumped into or out of the aquifer, and the water-softening capacity of the aquifer can be restored by allowing sodium-rich native pore waters to sweep back over the dispersed clays. Each acre of an aquifer 50 feet thick and containing 0.1 wt % smectite could soften half a million gallons of injected Mississippi River water. Many individual Gulf Coast aquifers underlie tens of thousands of acres, and their potential softening capacity is thus enormous. Additional exchange processes involving adjacent aquitard shales presumably will operate over long-term periods. It is possible that Gulf Coast aquifers will be used at some point in the future as processing plants to treat injected water to improve its quality for a variety of municipal and industrial purposes.

  12. [Research on the application of in-situ biological stabilization solidification technology in chromium contaminated site management].

    PubMed

    Zhang, Jian-rong; Li, Juan; Xu, Wei

    2013-09-01

    In-situ biological stabilization solidification (SS) technology is an effective ground water risk control method for chromium contaminated sites. Through on-site engineering test, this paper has preliminarily validated the remediation effect of in-situ SS method on a southern chromium contaminated site. The engineering test site has an area of approximately 600 m2, and is located at the upstream of the contaminated area. Due to the severe contamination of chromium, the total chromium concentration reached up to 11,850 mg x kg(-1), while the hexavalent chromium concentration reached up to 349 mg x kg(-1), and the most severely contaminated soil had a depth of -0.5 - -2 m. Variations in hexavalent chromium and total chromium concentration in groundwater were observed through the injection of reducing agents and microbial regulators into the injection wells in the test site, and through the monitoring analysis at different time and different depth under the action of the injection agents. Results of the engineering test showed that the on-site SS technology significantly changed the chromium speciation in soil and then reduced the migration of chromium, thus the groundwater risk was reduced. The injected agents had a good effect of hexavalent chromium remediation in groundwater within the effective range of the injection wells, and the SS rate of hexavalent chromium into trivalent chromium reached 94%-99.9%, the SS rate of total chromium fixation reached 83.9%-99.8%. The test results are of significant reference value for the remediation of contaminated sites with features of shallow groundwater depth and soil mainly consisting of silty clay and sandy clay.

  13. 3D Electrical resistivity tomography monitoring of an artificial tracer injected within the hyporheic zone

    NASA Astrophysics Data System (ADS)

    Houzé, Clémence; Pessel, Marc; Durand, Veronique

    2016-04-01

    Due to the high complexity level of hyporheic flow paths, hydrological and biogeochemical processes which occur in this mixing place are not fully understood yet. Some previous studies made in flumes show that hyporheic flow is strongly connected to the streambed morphology and sediment heterogeneity . There is still a lack of practical field experiment considering a natural environment and representation of natural streambed heterogeneities will be always limited in laboratories. The purpose of this project is to propose an innovative method using 3D Electrical Resistivity Tomography (ERT) monitoring of an artificial tracer injection directly within the streambed sediments in order to visualize the water pathways within the hyporheic zone. Field experiment on a small stream was conducted using a plastic tube as an injection piezometer and home-made electrodes strips arranged in a rectangular form made of 180 electrodes (15 strips of 12 electrodes each). The injection of tracer (NaCl) lasted approximatively 90 minutes, and 24h monitoring with increasing step times was performed. The physical properties of the water are controlled by CTD probes installed upstream and downstream within the river. Inverse time-lapse tomographs show development and persistence of a conductive water plume around the injection point. Due to the low hydraulic conductivity of streambed sediments (clay and overlying loess), the tracer movement is barely visible, as it dilutes gradually in the pore water. Impact of boundary conditions on inversion results can lead to significant differences on images, especially in the shallow part of the profiles. Preferential paths of transport are not highlighted here, but this experiment allows to follow spatially and temporarily the evolution of the tracer in a complex natural environment .

  14. Floppy disk utility user's guide

    NASA Technical Reports Server (NTRS)

    Akers, J. W.

    1980-01-01

    A floppy disk utility program is described which transfers programs between files on a hard disk and floppy disk. It also copies the data on one floppy disk onto another floppy disk and compares the data. The program operates on the Data General NOVA-4X under the Real Time Disk Operating System. Sample operations are given.

  15. THE KOZAI–LIDOV MECHANISM IN HYDRODYNAMICAL DISKS. II. EFFECTS OF BINARY AND DISK PARAMETERS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fu, Wen; Lubow, Stephen H.; Martin, Rebecca G., E-mail: wf5@rice.edu

    2015-07-01

    Martin et al. showed that a substantially misaligned accretion disk around one component of a binary system can undergo global damped Kozai–Lidov (KL) oscillations. During these oscillations, the inclination and eccentricity of the disk are periodically exchanged. However, the robustness of this mechanism and its dependence on the system parameters were unexplored. In this paper, we use three-dimensional hydrodynamical simulations to analyze how various binary and disk parameters affect the KL mechanism in hydrodynamical disks. The simulations include the effect of gas pressure and viscosity, but ignore the effects of disk self-gravity. We describe results for different numerical resolutions, binarymore » mass ratios and orbital eccentricities, initial disk sizes, initial disk surface density profiles, disk sound speeds, and disk viscosities. We show that the KL mechanism can operate for a wide range of binary-disk parameters. We discuss the applications of our results to astrophysical disks in various accreting systems.« less

  16. The Kozai-Lidov mechanism in hydrodynamical disks. II. Effects of binary and disk parameters

    DOE PAGES

    Fu, Wen; Lubow, Stephen H.; Martin, Rebecca G.

    2015-07-01

    Martin et al. (2014b) showed that a substantially misaligned accretion disk around one component of a binary system can undergo global damped Kozai–Lidov (KL) oscillations. During these oscillations, the inclination and eccentricity of the disk are periodically exchanged. However, the robustness of this mechanism and its dependence on the system parameters were unexplored. In this paper, we use three-dimensional hydrodynamical simulations to analyze how various binary and disk parameters affect the KL mechanism in hydrodynamical disks. The simulations include the effect of gas pressure and viscosity, but ignore the effects of disk self-gravity. We describe results for different numerical resolutions,more » binary mass ratios and orbital eccentricities, initial disk sizes, initial disk surface density profiles, disk sound speeds, and disk viscosities. We show that the KL mechanism can operate for a wide range of binary-disk parameters. We discuss the applications of our results to astrophysical disks in various accreting systems.« less

  17. The thermally stimulated discharge of ion-irradiated oxide films

    NASA Astrophysics Data System (ADS)

    Wang, Qiuru; Zeng, Huizhong; Zhang, Wanli

    2018-01-01

    The ion irradiation technique is utilized to modify the surface structure of amorphous insulating oxide films. While introducing defects, a number of surface charges are injected into the films and captured in the traps during ion irradiation. The variation of surface morphology and the enhancement of emission spectrum corresponding to vacancy defects are respectively verified by atomic force microscopy and photoluminescence measurements. The surface charges trapped in the shallow traps are easy to release caused by thermal excitation, and discharge is observed during heating. Based on the thermally stimulated discharge measurements, the trap parameters of oxide films, such as activation energy and relaxation time, are calculated from experimental data.

  18. Recent crustal subsidence at Yellowstone Caldera, Wyoming

    USGS Publications Warehouse

    Dzurisin, D.; Savage, J.C.; Fournier, R.O.

    1990-01-01

    Following a period of net uplift at an average rate of 15??1 mm/year from 1923 to 1984, the east-central floor of Yellowstone Caldera stopped rising during 1984-1985 and then subsided 25??7 mm during 1985-1986 and an additional 35??7 mm during 1986-1987. The average horizontal strain rates in the northeast part of the caldera for the period from 1984 to 1987 were: {Mathematical expression}1 = 0.10 ?? 0.09 ??strain/year oriented N33?? E??9?? and {Mathematical expression}2 = 0.20 ?? 0.09 ??strain/year oriented N57?? W??9?? (extension reckoned positive). A best-fit elastic model of the 1985-1987 vertical and horizontal displacements in the eastern part of the caldera suggests deflation of a horizontal tabular body located 10??5 km beneath Le Hardys Rapids, i.e., within a deep hydrothermal system or within an underlying body of partly molten rhyolite. Two end-member models each explain most aspects of historical unrest at Yellowstone, including the recent reversal from uplift to subsidence. Both involve crystallization of an amount of rhyolitic magma that is compatible with the thermal energy requirements of Yellowstone's vigorous hydrothermal system. In the first model, injection of basalt near the base of the rhyolitic system is the primary cause of uplift. Higher in the magmatic system, rhyolite crystallizes and releases all of its magmatic volatiles into the shallow hydrothermal system. Uplift stops and subsidence starts whenever the supply rate of basalt is less than the subsidence rate produced by crystallization of rhyolite and associated fluid loss. In the second model, uplift is caused primarily by pressurization of the deep hydrothermal system by magmatic gas and brine that are released during crystallization of rhyolite and them trapped at lithostatic pressure beneath an impermeable self-sealed zone. Subsidence occurs during episodic hydrofracturing and injection of pore fluid from the deep lithostatic-pressure zone into a shallow hydrostatic-pressure zone. Heat input from basaltic intrusions is required to maintain Yellowstone's silicic magmatic system and shallow hydrothermal system over time scales longer than about 105 years, but for the historical time period crystallization of rhyolite can account for most aspects of unrest at Yellowstone, including seismicity, uplift, subsidence, and hydrothermal activity. ?? 1990 Springer-Verlag.

  19. Towards a Global Evolutionary Model of Protoplanetary Disks

    NASA Astrophysics Data System (ADS)

    Bai, Xue-Ning

    2016-04-01

    A global picture of the evolution of protoplanetary disks (PPDs) is key to understanding almost every aspect of planet formation, where standard α-disk models have been continually employed for their simplicity. In the meantime, disk mass loss has been conventionally attributed to photoevaporation, which controls disk dispersal. However, a paradigm shift toward accretion driven by magnetized disk winds has taken place in recent years, thanks to studies of non-ideal magnetohydrodynamic effects in PPDs. I present a framework of global PPD evolution aiming to incorporate these advances, highlighting the role of wind-driven accretion and wind mass loss. Disk evolution is found to be largely dominated by wind-driven processes, and viscous spreading is suppressed. The timescale of disk evolution is controlled primarily by the amount of external magnetic flux threading the disks, and how rapidly the disk loses the flux. Rapid disk dispersal can be achieved if the disk is able to hold most of its magnetic flux during the evolution. In addition, because wind launching requires a sufficient level of ionization at the disk surface (mainly via external far-UV (FUV) radiation), wind kinematics is also affected by the FUV penetration depth and disk geometry. For a typical disk lifetime of a few million years, the disk loses approximately the same amount of mass through the wind as through accretion onto the protostar, and most of the wind mass loss proceeds from the outer disk via a slow wind. Fractional wind mass loss increases with increasing disk lifetime. Significant wind mass loss likely substantially enhances the dust-to-gas mass ratio and promotes planet formation.

  20. The chemical evolution of Dwarf Galaxies with galactic winds - the role of mass and gas distribution

    NASA Astrophysics Data System (ADS)

    Hensler, Gerhard; Recchi, Simone

    2015-08-01

    Energetic feedback from Supernovae and stellar winds can drive galactic winds. Dwarf galaxies (DGs), due to their shallower potential wells, are assumed to be more vulnera-ble to these energetic processes. Metal loss through galactic winds is also commonly invoked to explain the low metal content of DGs.Our main aim in this presentation is to show that galactic mass cannot be the only pa-rameter determining the fraction of metals lost by a galaxy. In particular, the distribution of gas must play an equally important role. We perform 2-D chemo-dynamical simula-tions of galaxies characterized by different gas distributions, masses and gas fractions. The gas distribution can change the fraction of lost metals through galactic winds by up to one order of magnitude. In particular, disk-like galaxies tend to lose metals more easily than roundish ones. Consequently, also the final element abundances attained by models with the same mass but with different gas distributions can vary by up to one dex. Confirming previous studies, we also show that the fate of gas and freshly pro-duced metals strongly depends on the mass of the galaxy. Smaller galaxies (with shal-lower potential wells) more easily develop large-scale outflows; therefore, the fraction of lost metals tends to be higher.Another important issue is that the invoked mechanism to transform central cusps to cored dark-matter distributions by baryon loss due to strong galactic winds cannot work in general, must be critically tested, and should be clearly discernible by the chemical evolution of DGs.

  1. Numerical Simulations of Naturally Tilted, Retrogradely Precessing, Nodal Superhumping Accretion Disks

    NASA Astrophysics Data System (ADS)

    Montgomery, M. M.

    2012-02-01

    Accretion disks around black hole, neutron star, and white dwarf systems are thought to sometimes tilt, retrogradely precess, and produce hump-shaped modulations in light curves that have a period shorter than the orbital period. Although artificially rotating numerically simulated accretion disks out of the orbital plane and around the line of nodes generate these short-period superhumps and retrograde precession of the disk, no numerical code to date has been shown to produce a disk tilt naturally. In this work, we report the first naturally tilted disk in non-magnetic cataclysmic variables using three-dimensional smoothed particle hydrodynamics. Our simulations show that after many hundreds of orbital periods, the disk has tilted on its own and this disk tilt is without the aid of radiation sources or magnetic fields. As the system orbits, the accretion stream strikes the bright spot (which is on the rim of the tilted disk) and flows over and under the disk on different flow paths. These different flow paths suggest the lift force as a source to disk tilt. Our results confirm the disk shape, disk structure, and negative superhump period and support the source to disk tilt, source to retrograde precession, and location associated with X-ray and He II emission from the disk as suggested in previous works. Our results identify the fundamental negative superhump frequency as the indicator of disk tilt around the line of nodes.

  2. Connecting the shadows: probing inner disk geometries using shadows in transitional disks

    NASA Astrophysics Data System (ADS)

    Min, M.; Stolker, T.; Dominik, C.; Benisty, M.

    2017-08-01

    Aims: Shadows in transitional disks are generally interpreted as signs of a misaligned inner disk. This disk is usually beyond the reach of current day high contrast imaging facilities. However, the location and morphology of the shadow features allow us to reconstruct the inner disk geometry. Methods: We derive analytic equations of the locations of the shadow features as a function of the orientation of the inner and outer disk and the height of the outer disk wall. In contrast to previous claims in the literature, we show that the position angle of the line connecting the shadows cannot be directly related to the position angle of the inner disk. Results: We show how the analytic framework derived here can be applied to transitional disks with shadow features. We use estimates of the outer disk height to put constraints on the inner disk orientation. In contrast with the results from Long et al. (2017, ApJ, 838, 62), we derive that for the disk surrounding HD 100453 the analytic estimates and interferometric observations result in a consistent picture of the orientation of the inner disk. Conclusions: The elegant consistency in our analytic framework between observation and theory strongly support both the interpretation of the shadow features as coming from a misaligned inner disk as well as the diagnostic value of near infrared interferometry for inner disk geometry.

  3. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Espaillat, C.; D'Alessio, P.; Hernandez, J.

    In the past few years, several disks with inner holes that are relatively empty of small dust grains have been detected and are known as transitional disks. Recently, Spitzer has identified a new class of 'pre-transitional disks' with gaps based on near-infrared photometry and mid-infrared spectra; these objects have an optically thick inner disk separated from an optically thick outer disk by an optically thin disk gap. A near-infrared spectrum provided the first confirmation of a gap in the pre-transitional disk of LkCa 15 by verifying that the near-infrared excess emission in this object was due to an optically thickmore » inner disk. Here, we investigate the difference between the nature of the inner regions of transitional and pre-transitional disks using the same veiling-based technique to extract the near-infrared excess emission above the stellar photosphere. However, in this work we use detailed disk models to fit the excess continua as opposed to the simple blackbody fits previously used. We show that the near-infrared excess emission of the previously identified pre-transitional disks of LkCa 15 and UX Tau A in the Taurus cloud as well as the newly identified pre-transitional disk of ROX 44 in Ophiuchus can be fit with an inner disk wall located at the dust destruction radius. We also present detailed modeling of the broadband spectral energy distributions of these objects, taking into account the effect of shadowing by the inner disk on the outer disk, but considering the finite size of the star, unlike other recent treatments. The near-infrared excess continua of these three pre-transitional disks, which can be explained by optically thick inner disks, are significantly different from that of the transitional disks of GM Aur, whose near-infrared excess continuum can be reproduced by emission from sub-micron-sized optically thin dust, and DM Tau, whose near-infrared spectrum is consistent with a disk hole that is relatively free of small dust. The structure of pre-transitional disks may be a sign of young planets forming in these disks and future studies of pre-transitional disks will provide constraints to aid in theoretical modeling of planet formation.« less

  4. Improvement of Sweep Efficiency in Gasflooding

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kishore Mohanty

    2008-12-31

    Miscible and near-miscible gasflooding has proven to be one of the few cost effective enhance oil recovery techniques in the past twenty years. As the scope of gas flooding is being expanded to medium viscosity oils in shallow sands in Alaska and shallower reservoirs in the lower 48, there are questions about sweep efficiency in near-miscible regions. The goal of this research is to evaluate sweep efficiency of various gas flooding processes in a laboratory model and develop numerical tools to estimate their effectiveness in the field-scale. Quarter 5-spot experiments were conducted at reservoir pressure to evaluate the sweep efficiencymore » of gas, WAG and foam floods. The quarter 5-spot model was used to model vapor extraction (VAPEX) experiments at the lab scale. A streamline-based compositional simulator and a commercial simulator (GEM) were used to model laboratory scale miscible floods and field-scale pattern floods. An equimolar mixture of NGL and lean gas is multicontact miscible with oil A at 1500 psi; ethane is a multicontact miscible solvent for oil B at pressures higher than 607 psi. WAG improves the microscopic displacement efficiency over continuous gas injection followed by waterflood in corefloods. WAG improves the oil recovery in the quarter 5-spot over the continuous gas injection followed by waterflood. As the WAG ratio increases from 1:2 to 2:1, the sweep efficiency in the 5-spot increases, from 39.6% to 65.9%. A decrease in the solvent amount lowers the oil recovery in WAG floods, but significantly higher amount of oil can be recovered with just 0.1 PV solvent injection over just waterflood. Use of a horizontal production well lowers the oil recovery over the vertical production well during WAG injection phase in this homogeneous 5-spot model. Estimated sweep efficiency decreases from 61.5% to 50.5%. In foam floods, as surfactant to gas slug size ratio increases from 1:10 to 1:1, oil recovery increases. In continuous gasflood VAPEX processes, as the distance between the injection well and production well decreases, the oil recovery and rate decreases in continuous gasflood VAPEX processes. Gravity override is observed for gas injection simulations in vertical (X-Z) cross-sections and 3-D quarter five spot patterns. Breakthrough recovery efficiency increases with the viscous-to-gravity ratio in the range of 1-100. The speed up for the streamline calculations alone is almost linear with the number of processors. The overall speed up factor is sub-linear because of the overhead time spent on the finite-difference calculation, inter-processor communication, and non-uniform processor load. Field-scale pattern simulations showed that recovery from gas and WAG floods depends on the vertical position of high permeability regions and k{sub v}/k{sub h} ratio. As the location of high permeability region moves down and k{sub v}/k{sub h} ratio decreases, oil recovery increases. There is less gravity override. The recovery from the field model is lower than that from the lab 5-spot model, but the effect of WAG ratio is similar.« less

  5. Effect of Summon Preferred Food Source on feeding, tunneling, and bait station discovery by the formosan subterranean termite (Isoptera: Rhinotermitidae).

    PubMed

    Cornelius, Mary L; Lax, Alan R

    2005-04-01

    This study evaluated the effect of Summon Preferred Food Source on feeding, tunneling, and bait station discovery by the Formosan subterranean termite, Coptotermes formosanus Shiraki. Bioassays were conducted to determine whether Summon disks affected the aggregation and feeding behavior of termites and to determine whether the presence of Summon disks caused increased recruitment of termites to wood blocks. When termites encountered the disk, they immediately clustered on top of the disk. Termites were observed aggregating on top of the disk throughout the experiment. Consumption of Summon disks was significantly greater than consumption of cardboard disks in paired choice tests. The presence of a Summon disk on top of a wood block caused a significant increase in consumption of the wood block. Bioassays also were conducted to determine whether water extracts of Summon disks affected termite behavior. Consumption of filter paper disks treated with a water extract of Summon disks was significantly greater than consumption of control filter paper disks. Termites tunneled through sand treated with a water extract of Summon disks faster than they tunneled through untreated sand. In a field test, the rate of infestation of monitoring stations with a Summon disk was 3 times greater than the rate of infestations of stations without a disk.

  6. Influence of lithostatic stress on earthquake stress drops in North America

    USGS Publications Warehouse

    Boyd, Oliver; McNamara, Daniel E.; Hartzell, Stephen; Choy, George

    2017-01-01

    We estimate stress drops for earthquakes in and near the continental United States using the method of spectral ratios. The ratio of acceleration spectra between collocated earthquakes recorded at a given station removes the effects of path and recording site and yields source parameters including corner frequency for, and the ratio of seismic moment between, the two earthquakes. We determine stress drop from these parameters for 1121 earthquakes greater than M∼3 in 60 earthquake clusters. We find that the average Brune stress drop for the few eastern United States (EUS) tectonic mainshocks studied (2.6–36 MPa) is about three times greater than that of tectonic mainshocks in the western United States (WUS, 1.0–7.9 MPa) and five times greater than mainshocks potentially induced by wastewater injection in the central United States (CUS, 0.6–5.6 MPa). EUS events tend to be deeper thrusting events, whereas WUS events tend to be shallower but have a wide range of focal mechanisms. CUS events tend to be shallow with strike‐slip to normal‐faulting mechanisms. With the possible exception of CUS aftershocks, we find that differences in stress drop among all events can be taken into account, within one standard deviation of significance, by differences in the shear failure stress as outlined by Mohr–Coulomb theory. The shear failure stress is a function of vertical stress (or depth), the fault style (normal, strike slip, or reverse), and coefficient of friction (estimated here to be, on average, 0.64). After accounting for faulting style and depth dependence, we find that the average Brune stress drop is about 3% of the failure stress. These results suggest that high‐frequency shaking hazard (>∼1  Hz) from shallow induced events and aftershocks is reduced to some extent by lower stress drop. However, the shallow hypocenters will increase hazard within several kilometers of the source.

  7. Surface-Water to Groundwater Transport of Pharmaceuticals in a Wastewater-Impacted Stream in the U.S.

    NASA Astrophysics Data System (ADS)

    Bradley, P. M.; Barber, L. B.; Duris, J. W.; Foreman, W. T.; Furlong, E. T.; Hubbard, L. E.; Hutchinson, K. J.; Keefe, S. H.; Kolpin, D. W.

    2014-12-01

    Wastewater pharmaceutical contamination of shallow groundwater is a substantial concern in effluent-dominated streams, due to aqueous mobility and designed bioactivity of pharmaceuticals and due to effluent-driven hydraulic gradients. Improved understanding of the environmental fate and transport of wastewater-derived pharmaceuticals is essential for effective protection of vital aquatic ecosystem services, environmental health, and drinking-water supplies. Substantial longitudinal (downstream) transport of pharmaceutical contaminants has been documented in effluent-impacted streams. The comparative lack of information on vertical and lateral transport (infiltration) of wastewater contaminants from surface-water to hyporheic and shallow groundwater compartments is a critical scientific data gap, given the potential for contamination of groundwater supplies in effluent-impacted systems. Growing dependencies on bank filtration and artificial recharge applications for release of wastewater to the environment and for pretreatment of poor-quality surface-water for drinking water emphasize the critical need to better understand the exchange of wastewater contaminants, like pharmaceuticals, between surface-water and groundwater compartments. The potential transport of effluent-derived pharmaceutical contaminants from surface-water to hyporheic-water and shallow groundwater compartments was examined in a wastewater-treatment-facility (WWTF) impacted stream in Ankeny, Iowa under effluent-dominated (71-99% of downstream flow) conditions. Strong hydraulic gradients and hydrologic connectivity were evident between surface-water and shallow-groundwater compartments in the vicinity of the WWTF outfall. Carbamazepine, sulfamethoxazole, and immunologically-related compounds were detected in groundwater 10-20 meters from the stream bank. Direct aqueous-injection HPLC-MS/MS revealed high percentage detections of pharmaceuticals (110 total analytes) in surface-water and groundwater samples. The results demonstrate the importance of effluent discharge as a driver of local hydrologic conditions in an effluent-impacted stream and thus as a fundamental control on surface-water to groundwater transport of effluent-derived pharmaceutical contaminants.

  8. Coevolution of Binaries and Circumbinary Gaseous Disks

    NASA Astrophysics Data System (ADS)

    Fleming, David; Quinn, Thomas R.

    2018-04-01

    The recent discoveries of circumbinary planets by Kepler raise questions for contemporary planet formation models. Understanding how these planets form requires characterizing their formation environment, the circumbinary protoplanetary disk, and how the disk and binary interact. The central binary excites resonances in the surrounding protoplanetary disk that drive evolution in both the binary orbital elements and in the disk. To probe how these interactions impact both binary eccentricity and disk structure evolution, we ran N-body smooth particle hydrodynamics (SPH) simulations of gaseous protoplanetary disks surrounding binaries based on Kepler 38 for 10^4 binary orbital periods for several initial binary eccentricities. We find that nearly circular binaries weakly couple to the disk via a parametric instability and excite disk eccentricity growth. Eccentric binaries strongly couple to the disk causing eccentricity growth for both the disk and binary. Disks around sufficiently eccentric binaries strongly couple to the disk and develop an m = 1 spiral wave launched from the 1:3 eccentric outer Lindblad resonance (EOLR). This wave corresponds to an alignment of gas particle longitude of periastrons. We find that in all simulations, the binary semi-major axis decays due to dissipation from the viscous disk.

  9. Effects of Disk Warping on the Inclination Evolution of Star-Disk-Binary Systems

    NASA Astrophysics Data System (ADS)

    Zanazzi, J. J.; Lai, Dong

    2018-04-01

    Several recent studies have suggested that circumstellar disks in young stellar binaries may be driven into misalignement with their host stars due to secular gravitational interactions between the star, disk and the binary companion. The disk in such systems is twisted/warped due to the gravitational torques from the oblate central star and the external companion. We calculate the disk warp profile, taking into account of bending wave propagation and viscosity in the disk. We show that for typical protostellar disk parameters, the disk warp is small, thereby justifying the "flat-disk" approximation adopted in previous theoretical studies. However, the viscous dissipation associated with the small disk warp/twist tends to drive the disk toward alignment with the binary or the central star. We calculate the relevant timescales for the alignment. We find the alignment is effective for sufficiently cold disks with strong external torques, especially for systems with rapidly rotating stars, but is ineffective for the majority of star-disk-binary systems. Viscous warp driven alignment may be necessary to account for the observed spin-orbit alignment in multi-planet systems if these systems are accompanied by an inclined binary companion.

  10. The influence of disk's flexibility on coupling vibration of shaft disk blades systems

    NASA Astrophysics Data System (ADS)

    Yang, Chia-Hao; Huang, Shyh-Chin

    2007-03-01

    The coupling vibrations among shaft-torsion, disk-transverse and blade-bending in a shaft-disk-blades unit are investigated. The equations of motion for the shaft-disk-blades unit are first derived from the energy approach in conjunction with the assumed modes method. The effects of disk flexibility, blade's stagger angle and rotational speed upon the natural frequencies and mode shapes are particularly studied. Previous studies have shown that there were four types of coupling modes, the shaft-blade (SB), the shaft-disk-blades (SDBs), the disk-blades (DB) and the blade-blade (BB) in such a unit. The present research focuses on the influence of disk flexibility on the coupling behavior and discovers that disk's flexibility strongly affects the modes bifurcation and the transition of modes. At slightly flexible disk, the BB modes bifurcate into BB and DB modes. As disk goes further flexible, SB modes shift into SDB modes. If it goes furthermore, additional disk-predominating modes are generated and DB modes appear before the SDB mode. Examination of stagger angle β proves that at two extreme cases; at β=0° the shaft and blades coupled but not the disk, and at β=90° the disk and blades coupled but not the shaft. In between, coupling exists among three components. Increasing β may increase or decrease SB modes, depending on which, the disk or shaft's first mode, is more rigid. The natural frequencies of DB modes usually decrease with the increase of β. Rotation effects show that bifurcation, veering and merging phenomena occur due to disk flexibility. Disk flexibility is also observed to induce more critical speeds in the SDBs systems.

  11. SU-F-T-10: Validation of ELP Dosimetry Using PRESAGE Dosimeter: Feasibility Test and Practical Considerations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lambson, K; Lafata, K; Miles, D

    Purpose: To validate the use of a PRESAGE dosimeter as a method to quantitatively measure dose distributions of injectable brachytherapy based on elastin-like polypeptide (ELP) nanoparticles. PRESAGE is a solid, transparent polyurethane-based dosimeter whose dose is proportional to a change in optical density, making it useful for visualizing the dose from a radionuclide-tagged-ELP injection. Methods: A PRESAGE dosimeter was designed to simulate an ELP injection. To calibrate, cuvette samples from the batch of PRESAGE were exposed to varying levels of radiation from 0–35.9Gy applied via a linear accelerator, then placed into a spectrophotometer to obtain the optical density change asmore » a function of dose. A pre-optical-CT scan was acquired of the phantom to obtain a baseline tomographic optical density. A 1cc saline solution of I-125 tagged-ELP with and activity concentration of 1mCi/cc was injected into the phantom and left for five days. After five days, the ELP was removed and the cavity cleaned of all remaining radioactive material. Post tomographic optical images were acquired to obtain a differential optical density dataset. Results: Initial results after the 5-day exposure revealed an opaque white film that resembled the volume of the ELP solution injected into the phantom. We think this is possibly due to the saline solution diffusing into the PRESAGE and causing a change in the index of refraction at this shallow depth. Therefore, initially the optical scanner yielded inconclusive results. After several more days, the saline seemed to have evaporated out of the injection site and the ELP dose distribution was visible via color change in the dosimeter. Conclusion: We have created the first experimental design to measure the dose distribution of I-125-tagged-ELP. The PRESAGE formulation proves to be a feasible option for such measurements. Future experimental measurements need to be obtained to further characterize ELP dosimetry.« less

  12. Southwestern Regional Partnership For Carbon Sequestration (Phase 2) Pump Canyon CO2- ECBM/Sequestration Demonstration, San Juan Basin, New Mexico

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Advanced Resources International

    2010-01-31

    Within the Southwest Regional Partnership on Carbon Sequestration (SWP), three demonstrations of geologic CO{sub 2} sequestration are being performed -- one in an oilfield (the SACROC Unit in the Permian basin of west Texas), one in a deep, unmineable coalbed (the Pump Canyon site in the San Juan basin of northern New Mexico), and one in a deep, saline reservoir (underlying the Aneth oilfield in the Paradox basin of southeast Utah). The Pump Canyon CO{sub 2}-enhanced coalbed methane (CO{sub 2}/ECBM) sequestration demonstration project plans to demonstrate the effectiveness of CO{sub 2} sequestration in deep, unmineable coal seams via a small-scalemore » geologic sequestration project. The site is located in San Juan County, northern New Mexico, just within the limits of the high-permeability fairway of prolific coalbed methane production. The study area for the SWP project consists of 31 coalbed methane production wells located in a nine section area. CO{sub 2} was injected continuously for a year and different monitoring, verification and accounting (MVA) techniques were implemented to track the CO{sub 2} movement inside and outside the reservoir. Some of the MVA methods include continuous measurement of injection volumes, pressures and temperatures within the injection well, coalbed methane production rates, pressures and gas compositions collected at the offset production wells, and tracers in the injected CO{sub 2}. In addition, time-lapse vertical seismic profiling (VSP), surface tiltmeter arrays, a series of shallow monitoring wells with a regular fluid sampling program, surface measurements of soil composition, CO{sub 2} fluxes, and tracers were used to help in tracking the injected CO{sub 2}. Finally, a detailed reservoir model was constructed to help reproduce and understand the behavior of the reservoir under production and injection operation. This report summarizes the different phases of the project, from permitting through site closure, and gives the results of the different MVA techniques.« less

  13. OT1_ipascucc_1: Understanding the Origin of Transition Disks via Disk Mass Measurements

    NASA Astrophysics Data System (ADS)

    Pascucci, I.

    2010-07-01

    Transition disks are a distinguished group of few Myr-old systems caught in the phase of dispersing their inner dust disk. Three different processes have been proposed to explain this inside-out clearing: grain growth, photoevaporation driven by the central star, and dynamical clearing by a forming giant planet. Which of these processes lead to a transition disk? Distinguishing between them requires the combined knowledge of stellar accretion rates and disk masses. We propose here to use 43.8 hours of PACS spectroscopy to detect the [OI] 63 micron emission line from a sample of 21 well-known transition disks with measured mass accretion rates. We will use this line, in combination with ancillary CO millimeter lines, to measure their gas disk mass. Because gas dominates the mass of protoplanetary disks our approach and choice of lines will enable us to trace the bulk of the disk mass that resides beyond tens of AU from young stars. Our program will quadruple the number of transition disks currently observed with Herschel in this setting and for which disk masses can be measured. We will then place the transition and the ~100 classical/non-transition disks of similar age (from the Herschel KP "Gas in Protoplanetary Systems") in the mass accretion rate-disk mass diagram with two main goals: 1) reveal which gaps have been created by grain growth, photoevaporation, or giant planet formation and 2) from the statistics, determine the main disk dispersal mechanism leading to a transition disk.

  14. Gaps in Protoplanetary Disks as Signatures of Planets. III. Polarization

    NASA Astrophysics Data System (ADS)

    Jang-Condell, Hannah

    2017-01-01

    Polarimetric observations of T Tauri and Herbig Ae/Be stars are a powerful way to image protoplanetary disks. However, interpretation of these images is difficult because the degree of polarization is highly sensitive to the angle of scattering of stellar light off the disk surface. We examine how disks with and without gaps created by planets appear in scattered polarized light as a function of inclination angle. Isophotes of inclined disks without gaps are distorted in polarized light, giving the appearance that the disks are more eccentric or more highly inclined than they truly are. Apparent gap locations are unaffected by polarization, but the gap contrast changes. In face-on disks with gaps, we find that the brightened far edge of the gap scatters less polarized light than the rest of the disk, resulting in slightly decreased contrast between the gap trough and the brightened far edge. In inclined disks, gaps can take on the appearance of being localized “holes” in brightness rather than full axisymmetric structures. Photocenter offsets along the minor axis of the disk in both total intensity and polarized intensity images can be readily explained by the finite thickness of the disk. Alone, polarized scattered light images of disks do not necessarily reveal intrinsic disk structure. However, when combined with total intensity images, the orientation of the disk can be deduced and much can be learned about disk structure and dust properties.

  15. Turbine inter-disk cavity cooling air compressor

    DOEpatents

    Chupp, Raymond E.; Little, David A.

    1998-01-01

    The inter-disk cavity between turbine rotor disks is used to pressurize cooling air. A plurality of ridges extend radially outwardly over the face of the rotor disks. When the rotor disks are rotated, the ridges cause the inter-disk cavity to compress air coolant flowing through the inter-disk cavity en route to the rotor blades. The ridges eliminate the need for an external compressor to pressurize the air coolant.

  16. Redundant disk arrays: Reliable, parallel secondary storage. Ph.D. Thesis

    NASA Technical Reports Server (NTRS)

    Gibson, Garth Alan

    1990-01-01

    During the past decade, advances in processor and memory technology have given rise to increases in computational performance that far outstrip increases in the performance of secondary storage technology. Coupled with emerging small-disk technology, disk arrays provide the cost, volume, and capacity of current disk subsystems, by leveraging parallelism, many times their performance. Unfortunately, arrays of small disks may have much higher failure rates than the single large disks they replace. Redundant arrays of inexpensive disks (RAID) use simple redundancy schemes to provide high data reliability. The data encoding, performance, and reliability of redundant disk arrays are investigated. Organizing redundant data into a disk array is treated as a coding problem. Among alternatives examined, codes as simple as parity are shown to effectively correct single, self-identifying disk failures.

  17. Disks, Young Stars, and Radio Waves: The Quest for Forming Planetary Systems

    NASA Astrophysics Data System (ADS)

    Chandler, C. J.; Shepherd, D. S.

    2008-08-01

    Kant and Laplace suggested the Solar System formed from a rotating gaseous disk in the 18th century, but convincing evidence that young stars are indeed surrounded by such disks was not presented for another 200 years. As we move into the 21st century the emphasis is now on disk formation, the role of disks in star formation, and on how planets form in those disks. Radio wavelengths play a key role in these studies, currently providing some of the highest-spatial-resolution images of disks, along with evidence of the growth of dust grains into planetesimals. The future capabilities of EVLA and ALMA provide extremely exciting prospects for resolving disk structure and kinematics, studying disk chemistry, directly detecting protoplanets, and imaging disks in formation.

  18. A new solid-phase extraction disk based on a sheet of single-walled carbon nanotubes.

    PubMed

    Niu, Hong Yun; Cai, Ya Qi; Shi, Ya Li; Wei, Fu Sheng; Liu, Jie Min; Jiang, Gui Bin

    2008-11-01

    A new kind of solid-phase extraction disk based on a sheet of single-walled carbon nanotubes (SWCNTs) is developed in this study. The properties of such disks are tested, and different disks showed satisfactory reproducibility. One liter of aqueous solution can pass through the disk within 10-100 min while still allowing good recoveries. Two disks (DD-disk) can be stacked to enrich phthalate esters, bisphenol A (BPA), 4-n-nonylphenol (4-NP), 4-tert-octylphenol (4-OP) and chlorophenols from various volumes of solution. The results show that SWCNT disks have high extraction ability for all analytes. The SWCNT disk can extract polar chlorophenols more efficiently than a C(18) disk from water solution. Unlike the activated carbon disk, analytes adsorbed by the new disks can be eluted completely with 8-15 mL of methanol or acetonitrile. Finally, the DD-disk system is used to pretreat 1000-mL real-world water samples spiked with BPA, 4-OP and 4-NP. Detection limits of 7, 25, and 38 ng L(-1) for BPA, 4-OP, and 4-NP, respectively, were achieved under optimized conditions. The advantages of this new disk include its strong adsorption ability, its high flow rate and its easy preparation.

  19. Using Ice and Dust Lines to Constrain the Surface Densities of Protoplanetary Disks

    NASA Astrophysics Data System (ADS)

    Powell, Diana; Murray-Clay, Ruth; Schlichting, Hilke E.

    2017-05-01

    We present a novel method for determining the surface density of protoplanetary disks through consideration of disk “dust lines,” which indicate the observed disk radial scale at different observational wavelengths. This method relies on the assumption that the processes of particle growth and drift control the radial scale of the disk at late stages of disk evolution such that the lifetime of the disk is equal to both the drift timescale and growth timescale of the maximum particle size at a given dust line. We provide an initial proof of concept of our model through an application to the disk TW Hya and are able to estimate the disk dust-to-gas ratio, CO abundance, and accretion rate in addition to the total disk surface density. We find that our derived surface density profile and dust-to-gas ratio are consistent with the lower limits found through measurements of HD gas. The CO ice line also depends on surface density through grain adsorption rates and drift and we find that our theoretical CO ice line estimates have clear observational analogues. We further apply our model to a large parameter space of theoretical disks and find three observational diagnostics that may be used to test its validity. First, we predict that the dust lines of disks other than TW Hya will be consistent with the normalized CO surface density profile shape for those disks. Second, surface density profiles that we derive from disk ice lines should match those derived from disk dust lines. Finally, we predict that disk dust and ice lines will scale oppositely, as a function of surface density, across a large sample of disks.

  20. Near-infrared structure of fast and slow-rotating disk galaxies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schechtman-Rook, Andrew; Bershady, Matthew A., E-mail: andrew@astro.wisc.edu

    We investigate the stellar disk structure of six nearby edge-on spiral galaxies using high-resolution JHK {sub s}-band images and three-dimensional radiative transfer models. To explore how mass and environment shape spiral disks, we selected galaxies with rotational velocities between 69 km s{sup –1} 150 km s{sup –1}) galaxies, only NGC 4013 has the super-thin+thin+thick nested disk structure seen in NGC 891 and the Milky Way, albeit with decreased oblateness, while NGC 1055, a disturbed massive spiral galaxy, contains disks with h{sub z} ≲ 200 pc. NGC 4565, another fast-rotator, contains a prominent ring at a radius ∼5 kpc but nomore » super-thin disk. Despite these differences, all fast-rotating galaxies in our sample have inner truncations in at least one of their disks. These truncations lead to Freeman Type II profiles when projected face-on. Slow-rotating galaxies are less complex, lacking inner disk truncations and requiring fewer disk components to reproduce their light distributions. Super-thin disk components in undisturbed disks contribute ∼25% of the total K {sub s}-band light, up to that of the thin-disk contribution. The presence of super-thin disks correlates with infrared flux ratios; galaxies with super-thin disks have f{sub K{sub s}}/f{sub 60} {sub μm}≤0.12 for integrated light, consistent with super-thin disks being regions of ongoing star-formation. Attenuation-corrected vertical color gradients in (J – K {sub s}) correlate with the observed disk structure and are consistent with population gradients with young-to-intermediate ages closer to the mid-plane, indicating that disk heating—or cooling—is a ubiquitous phenomenon.« less

  1. Free-fall dynamics of a pair of rigidly linked disks

    NASA Astrophysics Data System (ADS)

    Kim, Taehyun; Chang, Jaehyeock; Kim, Daegyoum

    2018-03-01

    We investigate experimentally the free-fall motion of a pair of identical disks rigidly connected to each other. The three-dimensional coordinates of the pair of falling disks were constructed to quantitatively describe its trajectory, and the flow structure formed by the disk pair was identified by using dye visualization. The rigidly linked disk pair exhibits a novel falling pattern that creates a helical path with a conical configuration in which the lower disk rotates in a wider radius than the upper disk with respect to a vertical axis. The helical motion occurs consistently for the range of disk separation examined in this study. The dye visualization reveals that a strong, noticeable helical vortex core is generated from the outer tip of the lower disk during the helical motion. With an increasing length ratio, which is the ratio of the disk separation to the diameter of the disks, the nutation angle and the rate of change in the precession angle that characterize the combined helical and conical kinematics decrease linearly, whereas the pitch of the helical path increases linearly. Although all disk pairs undergo this helical motion, the horizontal-drift patterns of the disk pair depend on the length ratio.

  2. THICK DISKS OF EDGE-ON GALAXIES SEEN THROUGH THE SPITZER SURVEY OF STELLAR STRUCTURE IN GALAXIES (S{sup 4}G): LAIR OF MISSING BARYONS?

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Comeron, Sebastien; Elmegreen, Bruce G.; Knapen, Johan H.

    Most, if not all, disk galaxies have a thin (classical) disk and a thick disk. In most models thick disks are thought to be a necessary consequence of the disk formation and/or evolution of the galaxy. We present the results of a study of the thick disk properties in a sample of carefully selected edge-on galaxies with types ranging from T = 3 to T = 8. We fitted one-dimensional luminosity profiles with physically motivated functions-the solutions of two stellar and one gaseous isothermal coupled disks in equilibrium-which are likely to yield more accurate results than other functions used inmore » previous studies. The images used for the fits come from the Spitzer Survey of Stellar Structure in Galaxies (S{sup 4}G). We found that thick disks are on average more massive than previously reported, mostly due to the selected fitting function. Typically, the thin and thick disks have similar masses. We also found that thick disks do not flare significantly within the observed range in galactocentric radii and that the ratio of thick-to-thin disk scale heights is higher for galaxies of earlier types. Our results tend to favor an in situ origin for most of the stars in the thick disk. In addition, the thick disk may contain a significant amount of stars coming from satellites accreted after the initial buildup of the galaxy and an extra fraction of stars coming from the secular heating of the thin disk by its own overdensities. Assigning thick disk light to the thin disk component may lead to an underestimate of the overall stellar mass in galaxies because of different mass-to-light ratios in the two disk components. On the basis of our new results, we estimate that disk stellar masses are between 10% and 50% higher than previously thought and we suggest that thick disks are a reservoir of 'local missing baryons'.« less

  3. Variation on the similar-size disk tower of hanoi puzzle

    NASA Astrophysics Data System (ADS)

    Zuchri, S.

    2017-02-01

    The famous Tower of Hanoi puzzle was invented by Edouard Lucas in 1883. This puzzle proposed three pegs, and the number of disks with different size. The puzzle starts with the disks in a neat stack in ascending order of size on one peg, the smallest at the top. The objective of the puzzle is to move the entire stack to another peg, by following these simple rules: (1) only one disk can be moved at a time; (2) Each move consists of taking the upper disk from one of the stacks and placing it on top of another stack; (2) No disk is placed on the top of a smaller disk and the minimum number of move is the goal of this puzzle. Many variations have been proposed as exercises and challenges. Some have more than three pegs and some with colours. This paper poses a new variation. There are two or more disks with similar size. The goal is to move each stack of the disk from its initial location to its final location. As usual, disk must be moved one at a time and a disk can never sit above a disk of smaller. Let n be a number of disks and there are p similar size disks. The disks are labelled from 1 to n - p + 1 in increasing order of size so the disk with similar size has the same label. If m is the label of the similar disks, so Mp(n; m) is the minimum number moves needed to move all the disks in original peg to destination peg. We have, M2(n; m) = 2n-1 + 2n-m-1 - 1 M3(n; m) = 2n-2 + 2n-m-1 - 1 The number moves needed to move if there are p1 similar size disks m1 and p2 similar size disks m2 is Mp1,p2 (n; m1, m2) = 2n-p1-p2 + 2[(p12-m1 + p22-m2 ) - (2-m1 + 2-m2 + 1] - 1

  4. Effects of hot-water extract of banana (Musa acuminata) fruit's peel on the antibacterial activity, and anti-hypothermal stress, immune responses and disease resistance of the giant freshwater prawn, Macrobrachium rosenbegii.

    PubMed

    Rattanavichai, Wutti; Cheng, Winton

    2014-08-01

    The hot-extracts isolated from fruit's peel of banana, Musa acuminata, was evaluated on the antibacterial activity to pathogens from aquatic animals, and immunostimulating potential, disease resistance and anti-hypothermal stress in giant freshwater prawn, Macrobrachium rosenbergii through injection administration. The banana peel extract (BPE) showed good activity against 1 Gram-positive and 3 Gram-negative pathogens, including Lactococcus garvieae, Photobacteria damsella, Vibrio alginolyticus and Vibrio parahemolyticus especially in prawn pathogen of L. garvieae strain, which were carried out by a disk diffusion method. Prawn received BPE via injection administration at 1-6 μg (g prawn)(-1) significantly increased total haemocyte count (THC), hyaline cell (HC), granular cell (GC), phenoloxidase (PO) activity and phagocytic activity against L. garvieae from 3 to 6 days, and significantly increased clearance efficiency against L. garvieae and a significantly decreased coagulation time of prawn from 1 to 6 days. Prawn injected with BPE at 6.0 μg (g prawn)(-1) for 6 days showed significantly increased superoxide dismutase (SOD) activity, but significantly decreased respiratory bursts (RBs) of per haemocyte. Survival rates of M. rosenbergii injected with BPE at concentrations of 1, 3 and 6 μg (g prawn)(-1) were significantly higher than those injected with saline control after challenge with L. garvieae for 4-6 days, and the respective relative survival percentages of prawn were 28.6%, 38.1%, and 47.8%, respectively at 6 days. The sublethal time of prawns that had received saline and BPE at 1, 3 and 6 μg (g prawn)(-1) for 6 days and then were transferred from 28 °C to 14 °C were 69.4, 79.8, 83.6, and 90.2 h, respectively. It was concluded that the BPE can be used as the bacteriostat, and immunostimulant and physiological regulator for prawn through injection administration to enhance immunity, physiological responses, and resistance against L. garvieae. Copyright © 2014 Elsevier Ltd. All rights reserved.

  5. Caprock Integrity during Hydrocarbon Production and CO2 Injection in the Goldeneye Reservoir

    NASA Astrophysics Data System (ADS)

    Salimzadeh, Saeed; Paluszny, Adriana; Zimmerman, Robert

    2016-04-01

    Carbon Capture and Storage (CCS) is a key technology for addressing climate change and maintaining security of energy supplies, while potentially offering important economic benefits. UK offshore, depleted hydrocarbon reservoirs have the potential capacity to store significant quantities of carbon dioxide, produced during power generation from fossil fuels. The Goldeneye depleted gas condensate field, located offshore in the UK North Sea at a depth of ~ 2600 m, is a candidate for the storage of at least 10 million tons of CO2. In this research, a fully coupled, full-scale model (50×20×8 km), based on the Goldeneye reservoir, is built and used for hydro-carbon production and CO2 injection simulations. The model accounts for fluid flow, heat transfer, and deformation of the fractured reservoir. Flow through fractures is defined as two-dimensional laminar flow within the three-dimensional poroelastic medium. The local thermal non-equilibrium between injected CO2 and host reservoir has been considered with convective (conduction and advection) heat transfer. The numerical model has been developed using standard finite element method with Galerkin spatial discretisation, and finite difference temporal discretisation. The geomechanical model has been implemented into the object-oriented Imperial College Geomechanics Toolkit, in close interaction with the Complex Systems Modelling Platform (CSMP), and validated with several benchmark examples. Fifteen major faults are mapped from the Goldeneye field into the model. Modal stress intensity factors, for the three modes of fracture opening during hydrocarbon production and CO2 injection phases, are computed at the tips of the faults by computing the I-Integral over a virtual disk. Contact stresses -normal and shear- on the fault surfaces are iteratively computed using a gap-based augmented Lagrangian-Uzawa method. Results show fault activation during the production phase that may affect the fault's hydraulic conductivity and its connection to the reservoir rocks. The direction of growth is downward during production and it is expected to be upward during injection. Elevated fluid pressures inside faults during CO2 injection may further facilitate fault activation by reducing normal effective stresses. Activated faults can act as permeable conduits and potentially jeopardise caprock integrity for CO2 storage purposes.

  6. Imaging the Disk and Jet of the Classical T Tauri Star AA Tau

    NASA Astrophysics Data System (ADS)

    Cox, Andrew; Grady, C.; Hammel, H. B.; Hornbeck, J.; Russell, R. W.; Sitko, M. L.; Woodgate, B. E.

    2013-01-01

    Previous studies of the classical T Tauri star AA Tau have interpreted the UX Orionis-like photo-polarimetric variability as being due to a warp in the inner disk caused by an inclined stellar magnetic dipole field. We test that these effects are macroscopically observable in the inclination and alignment of the disk. We use HST/STIS coronagraphic imagery to measure the V magnitude of the star for both STIS corona graphic observations, compare these data with optical photometry in the literature and find that unlike other classical T Tauri stars observed on the same HST program, the disk is most robustly detected at optical minimum light. We measure the outer disk radius, major axis position angle, and disk inclination, and find that the inner disk, as reported in the literature, is both mis-inclined and misaligned with respect to the outer disk. AA Tau drives a faint jet which is also misaligned with respect to the projection of the outer disk minor axis and which is poorly collimated near the star. The measured outer disk inclination, 71±1 degrees, is out of the inclination band suggested for stars with UX Orionis-like variability where no grain growth has occurred in the disk. The faintness of the disk, the small disk size, and visibility of the star and despite the high inclination, all indicate that the disk must have experienced grain growth and settling toward the disk midplane, which we verify by comparing the observed disk with model imagery from the literature.

  7. On Estimating the Mass of Keplerian Accretion Disks in H2O Maser Galaxies

    NASA Astrophysics Data System (ADS)

    Kuo, C. Y.; Reid, M. J.; Braatz, J. A.; Gao, F.; Impellizzeri, C. M. V.; Chien, W. T.

    2018-06-01

    H2O maser disks with Keplerian rotation in active galactic nuclei offer a clean way to determine accurate black hole mass and the Hubble constant. An important assumption made in using a Keplerian H2O maser disk for measuring black hole mass and the Hubble constant is that the disk mass is negligible compared to the black hole mass. A simple and useful model of Huré et al. can be used to test this assumption. In that work, the authors apply a linear disk model to a position–dynamical mass diagram and re-analyze position–velocity data from H2O maser disks associated with active galactic nuclei. They claim that a maser disk with nearly perfect Keplerian rotation could have a disk mass comparable to the black hole mass. This would imply that ignoring the effects of disk self-gravity can lead to large systematic errors in the measurement of black hole mass and the Hubble constant. We examine their methods and find that their large estimated disk masses of Keplerian disks are likely the result of their use of projected instead of three-dimensional position and velocity information. To place better constraints on the disk masses of Keplerian maser systems, we incorporate disk self-gravity into a three-dimensional Bayesian modeling program for maser disks and also evaluate constraints based on the physical conditions for disks that support water maser emission. We find that there is little evidence that disk masses are dynamically important at the ≲1% level compared to the black holes.

  8. Space-Time Evolution of Magma Storage and Transfer at Mt. Etna Volcano (Italy): The 2015-2016 Reawakening of Voragine Crater

    NASA Astrophysics Data System (ADS)

    Cannata, Andrea; Di Grazia, Giuseppe; Giuffrida, Marisa; Gresta, Stefano; Palano, Mimmo; Sciotto, Mariangela; Viccaro, Marco; Zuccarello, Francesco

    2018-02-01

    The eruptions of December 2015 and May 2016 at Voragine crater were among the most explosive recorded during the last two decades at Mt. Etna volcano. Here we present data coming from geophysics (infrasound, LP, VLP, volcanic tremor, VT earthquakes, and ground deformations) and petrology (textural and microanalytical data on plagioclase and olivine crystals) to investigate the preeruptive magma storage and transfer dynamics leading to these exceptional explosive eruptions. Integration of all the available data has led us to constrain chemically, physically, and kinetically the environments where magmas were stored before the eruption, and how they have interacted during the transfer en-route to the surface. Although the evolution and behavior of volcanic phenomena at the surface was rather similar, some differences in storage and transfer dynamics were observed for 2015 and 2016 eruptions. Specifically, the 2015 eruptions have been fed by magmas stored at shallow levels that were pushed upward as a response of magma injections from deeper environments, whereas evidence of chemical interaction between shallow and deep magmatic environments becomes more prominent during the 2016 eruptions. Main findings evidence the activation of magmatic environments deeper than those generally observed for other recent Etnean eruptions, with involvement of deep basic magmas that were brought to shallow crustal levels in very short time scales (˜1 month). The fast transfer from the deepest levels of the plumbing system of basic, undegassed magmas might be viewed as the crucial triggering factor leading to development of exceptionally violent volcanic phenomena even with only basic magma involved.

  9. Finite-element modeling of magma chamber-host rock interactions prior to caldera collapse

    NASA Astrophysics Data System (ADS)

    Kabele, Petr; Žák, Jiří; Somr, Michael

    2017-06-01

    Gravity-driven failure of shallow magma chamber roofs and formation of collapse calderas are commonly accompanied by ejection of large volumes of pyroclastic material to the Earth's atmosphere and thus represent severe volcanic hazards. In this respect, numerical analysis has proven as a key tool in understanding the mechanical conditions of caldera collapse. The main objective of this paper is to find a suitable approach to finite-element simulation of roof fracturing and caldera collapse during inflation and subsequent deflation of shallow magma chambers. Such a model should capture the dominant mechanical phenomena, for example, interaction of the host rock with magma and progressive deformation of the chamber roof. To this end, a comparative study, which involves various representations of magma (inviscid fluid, nearly incompressible elastic, or plastic solid) and constitutive models of the host rock (fracture and plasticity), was carried out. In particular, the quasi-brittle fracture model of host rock reproduced well the formation of tension-induced radial and circumferential fractures during magma injection into the chamber (inflation stage), especially at shallow crustal levels. Conversely, the Mohr-Coulomb shear criterion has shown to be more appropriate for greater depths. Subsequent magma withdrawal from the chamber (deflation stage) results in further damage or even collapse of the chamber roof. While most of the previous studies of caldera collapse rely on the elastic stress analysis, the proposed approach advances modeling of the process by incorporating non-linear failure phenomena and nearly incompressible behaviour of magma. This leads to a perhaps more realistic representation of the fracture processes preceding roof collapse and caldera formation.

  10. Consequences and mitigation of saltwater intrusion induced by short-circuiting during aquifer storage and recovery in a coastal subsurface

    NASA Astrophysics Data System (ADS)

    Gerardus Zuurbier, Koen; Stuyfzand, Pieter Jan

    2017-02-01

    Coastal aquifers and the deeper subsurface are increasingly exploited. The accompanying perforation of the subsurface for those purposes has increased the risk of short-circuiting of originally separated aquifers. This study shows how this short-circuiting negatively impacts the freshwater recovery efficiency (RE) during aquifer storage and recovery (ASR) in coastal aquifers. ASR was applied in a shallow saltwater aquifer overlying a deeper, confined saltwater aquifer, which was targeted for seasonal aquifer thermal energy storage (ATES). Although both aquifers were considered properly separated (i.e., a continuous clay layer prevented rapid groundwater flow between both aquifers), intrusion of deeper saltwater into the shallower aquifer quickly terminated the freshwater recovery. The presumable pathway was a nearby ATES borehole. This finding was supported by field measurements, hydrochemical analyses, and variable-density solute transport modeling (SEAWAT version 4; Langevin et al., 2007). The potentially rapid short-circuiting during storage and recovery can reduce the RE of ASR to null. When limited mixing with ambient groundwater is allowed, a linear RE decrease by short-circuiting with increasing distance from the ASR well within the radius of the injected ASR bubble was observed. Interception of deep short-circuiting water can mitigate the observed RE decrease, although complete compensation of the RE decrease will generally be unattainable. Brackish water upconing from the underlying aquitard towards the shallow recovery wells of the ASR system with multiple partially penetrating wells (MPPW-ASR) was observed. This leakage may lead to a lower recovery efficiency than based on current ASR performance estimations.

  11. Turbine inter-disk cavity cooling air compressor

    DOEpatents

    Chupp, R.E.; Little, D.A.

    1998-01-06

    The inter-disk cavity between turbine rotor disks is used to pressurize cooling air. A plurality of ridges extend radially outwardly over the face of the rotor disks. When the rotor disks are rotated, the ridges cause the inter-disk cavity to compress air coolant flowing through the inter-disk cavity en route to the rotor blades. The ridges eliminate the need for an external compressor to pressurize the air coolant. 5 figs.

  12. Damage Tolerant Design for Cold-Section Turbine Engine Disks

    DTIC Science & Technology

    1981-06-01

    Ti-6Al-4V Disks ......... .. 59 28. FIOO 2nd-Stage Fan Disk Designs ........ ................ .. 61 29. Fan Disk Tangential Stress Profile... 61 30. Life-Limiting Features of Damage-Tolerant Disk .......... ... 62 31. Disk Life Limits .... ...................... 62 32. Life Test...Stress Rati• Model ..... .......... .. 113 61 . Thick-Section Center-Notched Specimen ....... ............. .. 116 62. Bolthole Specimen

  13. Exploring Our Galaxy's Thick Disk

    NASA Astrophysics Data System (ADS)

    Kohler, Susanna

    2017-12-01

    What is the structure of the Milky Ways disk, and how did it form? A new study uses giant stars to explore these questions.A View from the InsideSchematic showing an edge-on, not-to-scale view of what we think the Milky Ways structurelookslike. The thick disk is shown in yellow and the thin disk is shown in green. [Gaba p]Spiral galaxies like ours are often observed to have disks consisting of two components: a thin disk that lies close to the galactic midplane, and a thick disk that extends above and below this. Past studies have suggested that the Milky Ways disk hosts the same structure, but our position embedded in the Milky Way makes this difficult to confirm.If we can measure the properties of a broad sample of distant tracer stars and use this to better understand the construction of the Milky Ways disk, then we can start to ask additional questions like, how did the disk components form? Formation pictures for the thick disk generally fall into two categories:Stars in the thick disk formed within the Milky Way either in situ or by migrating to their current locations.Stars in the thick disk formed in satellite galaxies around the Milky Way and then accreted when the satellites were disrupted.Scientists Chengdong Li and Gang Zhao (NAO Chinese Academy of Sciences, University of Chinese Academy of Sciences) have now used observations of giant stars which can be detected out to great distances due to their brightness to trace the properties of the Milky Ways thick disk and address the question of its origin.Best fits for the radial (top) and vertical (bottom) metallicity gradients of the thick-disk stars. [Adapted from Li Zhao 2017]Probing OriginsLi and Zhao used data from the Large Sky Area Multi-Object Fiber Spectroscopic Telescope (LAMOST) in China to examine a sample of 35,000 giant stars. The authors sorted these stars into different disk components halo, thin disk, and thick disk based on their kinematic properties, and then explored how the orbital and chemical properties of these stars differed in the different components.Li and Zhao found that the scale length for the thick disk is roughly the same as that of the thin disk ( 3 kpc), i.e., both disk components extend out to the same radial distance. The scale height found for the thick disk is 1 kpc, compared to the thin disks few hundred parsecs or so.The metallicity of the thick-disk stars is roughly constant with radius; this could be a consequence of radial migration of the stars within the disk, which blurs any metallicity distribution that might have once been there. The metallicity of the stars decreases with distance above or below the galactic midplane, however a result consistent with formation of the thick disk via heating or radial migration of stars formed within the galaxy.Orbital eccentricity distribution for the thick-disk stars. [Li Zhao 2017]Further supporting these formation scenarios, the orbital eccentricities of the stars in the authors thick-disk sample indicate that they were born in the Milky Way, not accreted from disrupted satellites.The authors acknowledge that the findings in this study may still be influenced by selection effects resulting from our viewpoint within our galaxy. Nonetheless, this is interesting new data to add to our understanding of the structure and origins of the Milky Ways disk.CitationChengdong Li and Gang Zhao 2017 ApJ 850 25. doi:10.3847/1538-4357/aa93f4

  14. Shallow Carbon Sequestration Demonstration Project

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pendergrass, Gary; Fraley, David; Alter, William

    The potential for carbon sequestration at relatively shallow depths was investigated at four power plant sites in Missouri. Exploratory boreholes were cored through the Davis Shale confining layer into the St. Francois aquifer (Lamotte Sandstone and Bonneterre Formation). Precambrian basement contact ranged from 654.4 meters at the John Twitty Energy Center in Southwest Missouri to over 1100 meters near the Sioux Power Plant in St. Charles County. Investigations at the John Twitty Energy Center included 3D seismic reflection surveys, downhole geophysical logging and pressure testing, and laboratory analysis of rock core and water samples. Plans to perform injectivity tests atmore » the John Twitty Energy Center, using food grade CO{sub 2}, had to be abandoned when the isolated aquifer was found to have very low dissolved solids content. Investigations at the Sioux Plant and Thomas Hill Energy Center in Randolph County found suitably saline conditions in the St. Francois. A fourth borehole in Platte County was discontinued before reaching the aquifer. Laboratory analyses of rock core and water samples indicate that the St. Charles and Randolph County sites could have storage potentials worthy of further study. The report suggests additional Missouri areas for further investigation as well.« less

  15. Flares, Magnetic Reconnections and Accretion Disk Viscosity

    NASA Astrophysics Data System (ADS)

    Welsh, William

    2001-07-01

    Accretion disks are invoked to explain a host of astrophysical phenomena, from protostellar objects to AGN. And yet the mechanism allowing accretion disks to operate are completely unknown. This proposal seeks to observe the ``smoking gun'' signature of magnetically-driven viscosity in accretion disks. Magnetically-induced viscosity is a plausible and generally accepted hypothesis {for esthetic reasons}, but it is completely untested. Determining the cause of accretion disk viscosity is of major significance to all accretion-disk powered systems {e.g. CVs, X-ray binaries, AGN and protostellar disks}. These data will also firmly establish the importance of magnetic fields in accretion disks. Because of its known flaring properites, we will observe the accretion disk in EM Cyg simulataneously with STIS/FUV and CHANDRA. The simultaneous X-rays are absolutely necessary for the unambiguous detection of accretion disk magnetic reconnection flares.

  16. Magnetorotational instability in decretion disks of critically rotating stars and the outer structure of Be and Be/X-ray disks

    NASA Astrophysics Data System (ADS)

    Krtička, J.; Kurfürst, P.; Krtičková, I.

    2015-01-01

    Context. Evolutionary models of fast-rotating stars show that the stellar rotational velocity may approach the critical speed. Critically rotating stars cannot spin up more, therefore they lose their excess angular momentum through an equatorial outflowing disk. The radial extension of such disks is unknown, partly because we lack information about the radial variations of the viscosity. Aims: We study the magnetorotational instability, which is considered to be the origin of anomalous viscosity in outflowing disks. Methods: We used analytic calculations to study the stability of outflowing disks submerged in the magnetic field. Results: The magnetorotational instability develops close to the star if the plasma parameter is large enough. At large radii the instability disappears in the region where the disk orbital velocity is roughly equal to the sound speed. Conclusions: The magnetorotational instability is a plausible source of anomalous viscosity in outflowing disks. This is also true in the region where the disk radial velocity approaches the sound speed. The disk sonic radius can therefore be roughly considered as an effective outer disk radius, although disk material may escape from the star to the insterstellar medium. The radial profile of the angular momentum-loss rate already flattens there, consequently, the disk mass-loss rate can be calculated with the sonic radius as the effective disk outer radius. We discuss a possible observation determination of the outer disk radius by using Be and Be/X-ray binaries.

  17. Disk Alloy Development

    NASA Technical Reports Server (NTRS)

    Gabb, Tim; Gayda, John; Telesman, Jack

    2001-01-01

    The advanced powder metallurgy disk alloy ME3 was designed using statistical screening and optimization of composition and processing variables in the NASA HSR/EPM disk program to have extended durability at 1150 to 1250 "Fin large disks. Scaled-up disks of this alloy were produced at the conclusion of this program to demonstrate these properties in realistic disk shapes. The objective of the UEET disk program was to assess the mechanical properties of these ME3 disks as functions of temperature, in order to estimate the maximum temperature capabilities of this advanced alloy. Scaled-up disks processed in the HSR/EPM Compressor / Turbine Disk program were sectioned, machined into specimens, and tested in tensile, creep, fatigue, and fatigue crack growth tests by NASA Glenn Research Center, in cooperation with General Electric Engine Company and Pratt & Whitney Aircraft Engines. Additional sub-scale disks and blanks were processed and tested to explore the effects of several processing variations on mechanical properties. Scaled-up disks of an advanced regional disk alloy, Alloy 10, were used to evaluate dual microstructure heat treatments. This allowed demonstration of an improved balance of properties in disks with higher strength and fatigue resistance in the bores and higher creep and dwell fatigue crack growth resistance in the rims. Results indicate the baseline ME3 alloy and process has 1300 to 1350 O F temperature capabilities, dependent on detailed disk and engine design property requirements. Chemistry and process enhancements show promise for further increasing temperature capabilities.

  18. GAPS IN PROTOPLANETARY DISKS AS SIGNATURES OF PLANETS. III. POLARIZATION

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jang-Condell, Hannah

    2017-01-20

    Polarimetric observations of T Tauri and Herbig Ae/Be stars are a powerful way to image protoplanetary disks. However, interpretation of these images is difficult because the degree of polarization is highly sensitive to the angle of scattering of stellar light off the disk surface. We examine how disks with and without gaps created by planets appear in scattered polarized light as a function of inclination angle. Isophotes of inclined disks without gaps are distorted in polarized light, giving the appearance that the disks are more eccentric or more highly inclined than they truly are. Apparent gap locations are unaffected bymore » polarization, but the gap contrast changes. In face-on disks with gaps, we find that the brightened far edge of the gap scatters less polarized light than the rest of the disk, resulting in slightly decreased contrast between the gap trough and the brightened far edge. In inclined disks, gaps can take on the appearance of being localized “holes” in brightness rather than full axisymmetric structures. Photocenter offsets along the minor axis of the disk in both total intensity and polarized intensity images can be readily explained by the finite thickness of the disk. Alone, polarized scattered light images of disks do not necessarily reveal intrinsic disk structure. However, when combined with total intensity images, the orientation of the disk can be deduced and much can be learned about disk structure and dust properties.« less

  19. NON-NEUTRALIZED ELECTRIC CURRENT PATTERNS IN SOLAR ACTIVE REGIONS: ORIGIN OF THE SHEAR-GENERATING LORENTZ FORCE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Georgoulis, Manolis K.; Titov, Viacheslav S.; Mikic, Zoran

    Using solar vector magnetograms of the highest available spatial resolution and signal-to-noise ratio, we perform a detailed study of electric current patterns in two solar active regions (ARs): a flaring/eruptive and a flare-quiet one. We aim to determine whether ARs inject non-neutralized (net) electric currents in the solar atmosphere, responding to a debate initiated nearly two decades ago that remains inconclusive. We find that well-formed, intense magnetic polarity inversion lines (PILs) within ARs are the only photospheric magnetic structures that support significant net current. More intense PILs seem to imply stronger non-neutralized current patterns per polarity. This finding revises previousmore » works that claim frequent injections of intense non-neutralized currents by most ARs appearing in the solar disk but also works that altogether rule out injection of non-neutralized currents. In agreement with previous studies, we also find that magnetically isolated ARs remain globally current-balanced. In addition, we confirm and quantify the preference of a given magnetic polarity to follow a given sense of electric currents, indicating a dominant sense of twist in ARs. This coherence effect is more pronounced in more compact ARs with stronger PILs and must be of sub-photospheric origin. Our results yield a natural explanation of the Lorentz force, invariably generating velocity and magnetic shear along strong PILs, thus setting a physical context for the observed pre-eruption evolution in solar ARs.« less

  20. Synthesis and characterization of pHLIP® coated gold nanoparticles.

    PubMed

    Daniels, Jennifer L; Crawford, Troy M; Andreev, Oleg A; Reshetnyak, Yana K

    2017-07-01

    Novel approaches in synthesis of spherical and multispiked gold nanoparticles coated with polyethylene glycol (PEG) and pH Low Insertion Peptide (pHLIP ® ) were introduced. The presence of a tumor-targeting pHLIP ® peptide in the nanoparticle coating enhances the stability of particles in solution and promotes a pH-dependent cellular uptake. The spherical particles were prepared with sodium citrate as a gold reducing agent to form particles of 7.0±2.5 nm in mean metallic core diameter and ∼43 nm in mean hydrodynamic diameter. The particles that were injected into tumors in mice (21 µg of gold) were homogeneously distributed within a tumor mass with no staining of the muscle tissue adjacent to the tumor. Up to 30% of the injected gold dose remained within the tumor one hour post-injection. The multispiked gold nanoparticles with a mean metallic core diameter of 146.0±50.4 nm and a mean hydrodynamic size of ~161 nm were prepared using ascorbic acid as a reducing agent and disk-like bicelles as a template. Only the presence of a soft template, like bicelles, ensured the appearance of spiked nanoparticles with resonance in the near infrared region. The irradiation of spiked gold nanoparticles by an 805 nm laser led to the time- and concentration-dependent increase of temperature. Both pHLIP ® and PEG coated gold spherical and multispiked nanoparticles might find application in radiation and thermal therapies of tumors.

  1. The onset of planet formation in brown dwarf disks.

    PubMed

    Apai, Dániel; Pascucci, Ilaria; Bouwman, Jeroen; Natta, Antonella; Henning, Thomas; Dullemond, Cornelis P

    2005-11-04

    The onset of planet formation in protoplanetary disks is marked by the growth and crystallization of sub-micrometer-sized dust grains accompanied by dust settling toward the disk mid-plane. Here, we present infrared spectra of disks around brown dwarfs and brown dwarf candidates. We show that all three processes occur in such cool disks in a way similar or identical to that in disks around low- and intermediate-mass stars. These results indicate that the onset of planet formation extends to disks around brown dwarfs, suggesting that planet formation is a robust process occurring in most young circumstellar disks.

  2. Head-Disk Interface Technology: Challenges and Approaches

    NASA Astrophysics Data System (ADS)

    Liu, Bo

    Magnetic hard disk drive (HDD) technology is believed to be one of the most successful examples of modern mechatronics systems. The mechanical beauty of magnetic HDD includes simple but super high accuracy positioning head, positioning technology, high speed and stability spindle motor technology, and head-disk interface technology which keeps the millimeter sized slider flying over a disk surface at nanometer level slider-disk spacing. This paper addresses the challenges and possible approaches on how to further reduce the slider disk spacing whilst retaining the stability and robustness level of head-disk systems for future advanced magnetic disk drives.

  3. On Magnetic Dynamos in Thin Accretion Disks around Compact and Young Stars

    NASA Technical Reports Server (NTRS)

    Stepinski, T. F.

    1993-01-01

    A variety of geometrically thin accretion disks commonly associated with such astronomical objects as X-ray binaries, cataclysmic variables, and protostars are likely to be seats of MHD dynamo actions. Thin disk geometry and the particular physical environment make accretion disk dynamos different from stellar, planetary, or even galactic dynamos. We discuss those particular features of disk dynamos with emphasis on the difference between protoplanetary disk dynamos and those associated with compact stars. We then describe normal mode solutions for thin disk dynamos and discuss implications for the dynamical behavior of dynamo-magnetized accretion disks.

  4. Surface monitoring of microseismicity at the Decatur, Illinois, CO2 sequestration demonstration site

    USGS Publications Warehouse

    Kaven, Joern; Hickman, Stephen H.; McGarr, Arthur F.; Ellsworth, William L.

    2015-01-01

    Sequestration of CO2 into subsurface reservoirs can play an important role in limiting future emission of CO2 into the atmosphere (e.g., Benson and Cole, 2008). For geologic sequestration to become a viable option to reduce greenhouse gas emissions, large-volume injection of supercritical CO2 into deep sedimentary formations is required. These formations offer large pore volumes and good pore connectivity and are abundant (Bachu, 2003; U.S. Geological Survey Geologic Carbon Dioxide Storage Resources Assessment Team, 2013). However, hazards associated with injection of CO2 into deep formations require evaluation before widespread sequestration can be adopted safely (Zoback and Gorelick, 2012). One of these hazards is the potential to induce seismicity on pre-existing faults or fractures. If these faults or fractures are large and critically stressed, seismic events can occur with magnitudes large enough to pose a hazard to surface installations and, possibly more critical, the seal integrity of the cap rock. The Decatur, Illinois, carbon capture and storage (CCS) demonstration site is the first, and to date, only CCS project in the United States that injects a large volume of supercritical CO2 into a regionally extensive, undisturbed saline formation. The first phase of the Decatur CCS project was completed in November 2014 after injecting a million metric tons of supercritical CO2 over three years. This phase was led by the Illinois State Geological Survey (ISGS) and included seismic monitoring using deep borehole sensors, with a few sensors installed within the injection horizon. Although the deep borehole network provides a more comprehensive seismic catalog than is presented in this paper, these deep data are not publically available. We contend that for monitoring induced microseismicity as a possible seismic hazard and to elucidate the general patterns of microseismicity, the U.S. Geological Survey (USGS) surface and shallow borehole network described below provides an adequate event detection threshold. The formation targeted for injection is the Mount Simon Sandstone, which is laterally extensive, has high porosity and permeability and has the potential to host future CCS projects due to its favorable hydrologic characteristics and proximity to industrial sources of CO2 (Birkholzer and Zhou, 2009). At Decatur, CO2, a byproduct of ethanol production at the Archer Daniels Midland (ADM) facility, is compressed to supercritical state and injected at 2.1 km depth into the 460 m thick Mount Simon Sandstone. This sandstone has varying properties, ranging from the lower, fine- to coarse-grained sandstone with high permeability and porosity, to the middle and upper Mount Simon, which consist of planar, cross-bedded layers of varied permeability and porosity (Leetaru and Freiburg, 2014). The changes in permeability and porosity within the Mount Simon Sandstone, due to depositional and diagenetic differences, create horizontal baffles, which inhibit vertical flow and restrict the injected CO2 to remain near the injection horizon (Bowen et al., 2011). The lowest portion of the Mount Simon Sandstone overlying the Precambrian rhyolite basement is the Pre-Mount Simon interval, generally  < 15 m in thickness and composed of fine- to medium-grain size sandstone that is highly deformed (Leetaru and Freiburg, 2014). The basement rhyolite has a clayrich matrix and is fractured, with significant alterations within the fractures. The primary sealing cap rock is the Eau Claire Formation, a 100–150 m thick unit at a depth of roughly 1.69 km (Leetaru and Freiburg, 2014). The Maquoketa Shale Group and the New Albany Shale serve as secondary and tertiary seals at shallower depths of ∼820 and ∼650 m, respectively. The ISGS managed the Illinois Basin–Decatur Project (IBDP), a three-year project beginning in November 2011, during which carbon dioxide was injected at a rate of ∼1000 metric tons per day until November 2014 (Finley et al., 2011, 2013). ADM manages the Illinois Industrial CCS (ICCS) project, which will inject ∼3000 metric tons/day into a second injection well starting in the summer of 2015. The USGS began monitoring microseismicity with a 13- station seismic network at Decatur in July 2013 (Fig. 1). This network provides good detection capabilities and azimuthal (focal sphere) coverage for microseismicity with moment magnitudes (Mw) above about −0:5. Here, we report on 19 months of microseismicity monitoring at the Decatur CO2 sequestration site, which permits a detailed look at the evolution and character of injection-induced seismicity.

  5. The Grism Lens-amplified Survey from Space (GLASS). X. Sub-kiloparsec Resolution Gas-phase Metallicity Maps at Cosmic Noon behind the Hubble Frontier Fields Cluster MACS1149.6+2223

    NASA Astrophysics Data System (ADS)

    Wang, Xin; Jones, Tucker A.; Treu, Tommaso; Morishita, Takahiro; Abramson, Louis E.; Brammer, Gabriel B.; Huang, Kuang-Han; Malkan, Matthew A.; Schmidt, Kasper B.; Fontana, Adriano; Grillo, Claudio; Henry, Alaina L.; Karman, Wouter; Kelly, Patrick L.; Mason, Charlotte A.; Mercurio, Amata; Rosati, Piero; Sharon, Keren; Trenti, Michele; Vulcani, Benedetta

    2017-03-01

    We combine deep Hubble Space Telescope grism spectroscopy with a new Bayesian method to derive maps of gas-phase metallicity for 10 star-forming galaxies at high redshift (1.2≲ z≲ 2.3). Exploiting lensing magnification by the foreground cluster MACS1149.6+2223, we reach sub-kiloparsec spatial resolution and push the limit of stellar mass associated with such high-z spatially resolved measurements below {10}8 {M}⊙ for the first time. Our maps exhibit diverse morphologies, indicative of various effects such as efficient radial mixing from tidal torques, rapid accretion of low-metallicity gas, and other physical processes that can affect the gas and metallicity distributions in individual galaxies. Based upon an exhaustive sample of all existing sub-kiloparesec resolution metallicity gradient measurements at high z, we find that predictions given by analytical chemical evolution models assuming a relatively extended star-formation profile in the early disk-formation phase can explain the majority of observed metallicity gradients, without involving galactic feedback or radial outflows. We observe a tentative correlation between stellar mass and metallicity gradients, consistent with the “downsizing” galaxy formation picture that more massive galaxies are more evolved into a later phase of disk growth, where they experience more coherent mass assembly at all radii and thus show shallower metallicity gradients. In addition to the spatially resolved analysis, we compile a sample of homogeneously cross-calibrated integrated metallicity measurements spanning three orders of magnitude in stellar mass at z ˜ 1.8. We use this sample to study the mass-metallicity relation (MZR) and find that the slope of the observed MZR can rule out the momentum-driven wind model at a 3σ confidence level.

  6. The Optical Gravitational Lensing Experiment. Planetary and Low-Luminosity Object Transits in the Fields of Galactic Disk. Results of the 2003 OGLE Observing Campaigns

    NASA Astrophysics Data System (ADS)

    Udalski, A.; Szymanski, M. K.; Kubiak, M.; Pietrzynski, G.; Soszynski, I.; Zebrun, K.; Szewczyk, O.; Wyrzykowski, L.

    2004-12-01

    We present results of two observing campaigns conducted by the OGLE-III survey in the 2003 observing season aiming at the detection of new objects with planetary transiting companions. Six fields of 35'x35' each located in the Galactic disk were monitored with high frequency for several weeks in February-July 2003. Additional observations of three of these fields were also collected in the 2004 season. Altogether about 800 and 1500 epochs were collected for the fields of both campaigns, respectively. The search for low depth transits was conducted on about 230 000 stars with photometry better than 15 mmag. It was focused on detection of planetary companions, thus clear non-planetary cases were not included in the final list of selected objects. Altogether we discovered 40 stars with shallow (<=0.05 mag) flat-bottomed transits. In each case several individual transits were observed allowing determination of photometric elements. Additionally, the lower limits on radii of the primary and companion were calculated. From the photometric point of view the new OGLE sample contains many very good candidates for extrasolar transiting planets. However, only the future spectroscopic follow-up observations of the OGLE sample - determination of the amplitude of radial velocity and exclusion of blending possibilities - may allow to confirm their planetary status. In general, the transiting objects may be extrasolar planets, brown dwarfs, M-type dwarfs or fake transits caused by blending. All photometric data of objects with transiting companions discovered during the 2003 campaigns are available to the astronomical community from the OGLE Internet archive.

  7. THE OBSCURED FRACTION OF ACTIVE GALACTIC NUCLEI IN THE XMM-COSMOS SURVEY: A SPECTRAL ENERGY DISTRIBUTION PERSPECTIVE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lusso, E.; Hennawi, J. F.; Richards, G. T.

    2013-11-10

    The fraction of active galactic nucleus (AGN) luminosity obscured by dust and re-emitted in the mid-IR is critical for understanding AGN evolution, unification, and parsec-scale AGN physics. For unobscured (Type 1) AGNs, where we have a direct view of the accretion disk, the dust covering factor can be measured by computing the ratio of re-processed mid-IR emission to intrinsic nuclear bolometric luminosity. We use this technique to estimate the obscured AGN fraction as a function of luminosity and redshift for 513 Type 1 AGNs from the XMM-COSMOS survey. The re-processed and intrinsic luminosities are computed by fitting the 18 bandmore » COSMOS photometry with a custom spectral energy distribution fitting code, which jointly models emission from hot dust in the AGN torus, from the accretion disk, and from the host galaxy. We find a relatively shallow decrease of the luminosity ratio as a function of L{sub bol}, which we interpret as a corresponding decrease in the obscured fraction. In the context of the receding torus model, where dust sublimation reduces the covering factor of more luminous AGNs, our measurements require a torus height that increases with luminosity as h ∝ L{sub bol}{sup 0.3-0.4}. Our obscured-fraction-luminosity relation agrees with determinations from Sloan Digital Sky Survey censuses of Type 1 and Type 2 quasars and favors a torus optically thin to mid-IR radiation. We find a much weaker dependence of the obscured fraction on 2-10 keV luminosity than previous determinations from X-ray surveys and argue that X-ray surveys miss a significant population of highly obscured Compton-thick AGNs. Our analysis shows no clear evidence for evolution of the obscured fraction with redshift.« less

  8. Dynamo magnetic field modes in thin astrophysical disks - An adiabatic computational approximation

    NASA Technical Reports Server (NTRS)

    Stepinski, T. F.; Levy, E. H.

    1991-01-01

    An adiabatic approximation is applied to the calculation of turbulent MHD dynamo magnetic fields in thin disks. The adiabatic method is employed to investigate conditions under which magnetic fields generated by disk dynamos permeate the entire disk or are localized to restricted regions of a disk. Two specific cases of Keplerian disks are considered. In the first, magnetic field diffusion is assumed to be dominated by turbulent mixing leading to a dynamo number independent of distance from the center of the disk. In the second, the dynamo number is allowed to vary with distance from the disk's center. Localization of dynamo magnetic field structures is found to be a general feature of disk dynamos, except in the special case of stationary modes in dynamos with constant dynamo number. The implications for the dynamical behavior of dynamo magnetized accretion disks are discussed and the results of these exploratory calculations are examined in the context of the protosolar nebula and accretion disks around compact objects.

  9. Investigation of selected disk systems

    NASA Technical Reports Server (NTRS)

    1976-01-01

    The large disk systems offered by IBM, UNIVAC, Digital Equipment Corporation, and Data General were examined. In particular, these disk systems were analyzed in terms of how well available operating systems take advantage of the respective disk controller's transfer rates, and to what degree all available data for optimizing disk usage is effectively employed. In the course of this analysis, generic functions and components of disk systems were defined and the capabilities of the surveyed disk system were investigated.

  10. Comparison of central axis and jet ring coolant supply for turbine disk cooling on a SSME-HPOTP model

    NASA Technical Reports Server (NTRS)

    Kim, Y. W.; Metzger, D. E.

    1992-01-01

    The test facility, test methods and results are presented for an experimental study modeling the cooling of turbine disks in the blade attachment regions with multiple impinging jets, in a configuration simulating the disk cooling method employed on the Space Shuttle Main Engine oxygen turbopump. The study's objective was to provide a comparison of detailed local convection heat transfer rates obtained for a single center-supply of disk coolant with those obtained with the present flight configuration where disk coolant is supplied through an array of 19 jets located near the disk outer radius. Specially constructed disk models were used in a program designed to evaluate possible benefits and identify any possible detrimental effects involved in employing an alternate disk cooling scheme. The study involved the design, construction and testing of two full scale rotating model disks, one plane and smooth for baseline testing and the second contoured to the present flight configuration, together with the corresponding plane and contoured stator disks. Local heat transfer rates are determined from the color display of encapsulated liquid crystals coated on the disk in conjunction with use of a computer vision system. The test program was composed of a wide variety of disk speeds, flowrates, and geometrical configurations, including testing for the effects of disk boltheads and gas ingestion from the gas path region radially outboard of the disk-cavity.

  11. Injection and Monitoring at the Wallula Basalt Pilot Project

    DOE PAGES

    McGrail, B. Peter; Spane, Frank A.; Amonette, James E.; ...

    2014-01-01

    Continental flood basalts represent one of the largest geologic structures on earth but have received comparatively little attention for geologic storage of CO2. Flood basalt lava flows have flow tops that are porous, permeable, and have large potential capacity for storage of CO2. In appropriate geologic settings, interbedded sediment layers and dense low-permeability basalt rock flow interior sections may act as effective seals allowing time for mineralization reactions to occur. Previous laboratory experiments showed the relatively rapid chemical reaction of CO2-saturated pore water with basalts to form stable carbonate minerals. However, recent laboratory tests with water-saturated supercritical CO2 show thatmore » mineralization reactions occur in this phase as well, providing a second and potentially more important mineralization pathway than was previously understood. Field testing of these concepts is proceeding with drilling of the world’s first supercritical CO2 injection well in flood basalt being completed in May 2009 near the township of Wallula in Washington State and corresponding CO2 injection permit granted by the State of Washington in March 2011. Injection of a nominal 1000 MT of CO2 was completed in August 2013 and site monitoring is in progress. Well logging conducted immediately after injection termination confirmed the presence of CO2 predominantly within the upper flow top region, and showed no evidence of vertical CO2 migration outside the well casing. Shallow soil gas samples collected around the injection well show no evidence of leakage and fluid and gas samples collected from the injection zone show strongly elevated concentrations of Ca, Mg, Mn, and Fe and 13C/18O isotopic shifts that are consistent with basalt-water chemical reactions. If proven viable by this field test and others that are in progress or being planned, major flood basalts in the U.S., India, and perhaps Australia would provide significant additional CO2 storage capacity and additional geologic sequestration options in regions of these countries where conventional storage options are limited.« less

  12. An Induced Infiltration and Groundwater Transfer Project to Enhance Recharge in the Lower Mississippi River Valley Alluvial Aquifer: Modeling and Analysis

    NASA Astrophysics Data System (ADS)

    Rigby, J.; Haugh, C. J.; Barlow, J.

    2015-12-01

    The Lower Mississippi River Basin is one of the major agricultural production regions in the United States producing over two-thirds of the rice, nearly half of sugarcane produced in the U.S., as well as significant amounts of soybeans, corn, and cotton. While the region experiences over 50 inches of precipitation annually, reaching yield potential for crops requires irrigation. Approximately 75% of crop acres in the alluvial valley are irrigated, and the expectation is that all acreage will eventually be irrigated. Currently over 90% of water for crop irrigation is derived from the shallow alluvial aquifer outpacing net recharge by several million acre-feet per year. This has resulted in severe groundwater declines in Arkansas and an increasingly threatening situation in northwestern Mississippi. In Mississippi, direct injection has received increasing attention as a means of artificial recharge, though water quality remains a concern both for the integrity of the aquifer and efficiency of injection. This project considers the use of pumping wells near major rivers known to be in connection with the aquifer to induce additional infiltration of surface water by steepening local gradients. The pumped water would be transferred by pipeline to areas within the regional cone of depression where it is then injected to enhance groundwater recharge. Groundwater flow modeling with zone budget analysis is used to evaluate the potential for net supply gains from induced infiltration at potential sites along major rivers in the region. The groundwater model will further evaluate the impact of the transfer and direct injection on regional water tables.

  13. Jet Noise Reduction by Microjets - A Parametric Study

    NASA Technical Reports Server (NTRS)

    Zaman, K. B. M. Q.

    2010-01-01

    The effect of injecting tiny secondary jets (microjets ) on the radiated noise from a subsonic primary jet is studied experimentally. The microjets are injected on to the primary jet near the nozzle exit with variable port geometry, working fluid and driving pressure. A clear noise reduction is observed that improves with increasing jet pressure. It is found that smaller diameter ports with higher driving pressure, but involving less thrust and mass fraction, can produce better noise reduction. A collection of data from the present as well as past experiments is examined in an attempt to correlate the noise reduction with the operating parameters. The results indicate that turbulent mixing noise reduction, as monitored by OASPL at a shallow angle, correlates with the ratio of jet to primary jet driving pressures normalized by the ratio of corresponding diameters (p d /pjD). With gaseous injection, the spectral amplitudes decrease at lower frequencies while an increase is noted at higher frequencies. It is apparent that this amplitude crossover is at least partly due to shock-associated noise from the underexpanded jets themselves. Such crossover is not seen with water injection since the flow in that case is incompressible and there is no shock-associated noise. Centerline velocity data show that larger noise reduction is accompanied by faster jet decay as well as significant reduction in turbulence intensities. While a physical understanding of the dependence of noise reduction on p d /pjD remains unclear, given this correlation, an analysis explains the observed dependence of the effect on various other parameters.

  14. Numerical modeling of fracking fluid migration through fault zones and fractures in the North German Basin

    NASA Astrophysics Data System (ADS)

    Pfunt, Helena; Houben, Georg; Himmelsbach, Thomas

    2016-09-01

    Gas production from shale formations by hydraulic fracturing has raised concerns about the effects on the quality of fresh groundwater. The migration of injected fracking fluids towards the surface was investigated in the North German Basin, based on the known standard lithology. This included cases with natural preferential pathways such as permeable fault zones and fracture networks. Conservative assumptions were applied in the simulation of flow and mass transport triggered by a high pressure boundary of up to 50 MPa excess pressure. The results show no significant fluid migration for a case with undisturbed cap rocks and a maximum of 41 m vertical transport within a permeable fault zone during the pressurization. Open fractures, if present, strongly control the flow field and migration; here vertical transport of fracking fluids reaches up to 200 m during hydraulic fracturing simulation. Long-term transport of the injected water was simulated for 300 years. The fracking fluid rises vertically within the fault zone up to 485 m due to buoyancy. Progressively, it is transported horizontally into sandstone layers, following the natural groundwater flow direction. In the long-term, the injected fluids are diluted to minor concentrations. Despite the presence of permeable pathways, the injected fracking fluids in the reported model did not reach near-surface aquifers, either during the hydraulic fracturing or in the long term. Therefore, the probability of impacts on shallow groundwater by the rise of fracking fluids from a deep shale-gas formation through the geological underground to the surface is small.

  15. DEVELOPMENT OF A LAMINATED DISK FOR THE SPIN TEK ROTARY MICROFILTER

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Herman, D.

    2011-06-03

    Funded by the Department of Energy Office of Environmental Management, EM-31, the Savannah River National Laboratory (SRNL) partnered with SpinTek Filtration{trademark} to develop a filter disk that would withstand a reverse pressure or flow during operation of the rotary microfilter. The ability to withstand a reverse pressure and flow eliminates a potential accident scenario that could have resulted in damage to the filter membranes. While the original welded filter disks have been shown to withstand and reverse pressure/flow in the static condition, the filter disk design discussed in this report will allow a reverse pressure/flow while the disks are rotating.more » In addition, the laminated disk increases the flexibility during filter startup and cleaning operations. The new filter disk developed by SRNL and SpinTek is manufactured with a more open structure significantly reducing internal flow restrictions in the disk. The prototype was tested at the University of Maryland and demonstrated to withstand the reverse pressure due to the centrifugal action of the rotary filter. The tested water flux of the disk was demonstrated to be 1.34 gpm in a single disk test. By comparison, the water flux of the current disk was 0.49 gpm per disk during a 25 disk test. The disk also demonstrated rejection of solids by filtering a 5 wt % Strontium Carbonate slurry with a filtrate clarity of less the 1.4 Nephelometric Turbidity Units (NTU) throughout the two hour test. The Savannah River National Laboratory (SRNL) has been working with SpinTek Filtration{trademark} to adapt the rotary microfilter for radioactive service in the Department of Energy (DOE) Complex. One potential weakness is the loose nature of the membrane on the filter disks. The current disk is constructed by welding the membrane at the outer edge of the disk. The seal for the center of the membrane is accomplished by an o-ring in compression for the assembled stack. The remainder of the membrane is free floating on the disk. This construction requires that a positive pressure be applied to the rotary filter tank to prevent the membrane from rising from the disk structure and potentially contacting the filter turbulence promoter. In addition, one accident scenario is a reverse flow through the filtrate line due to mis-alignment of valves resulting in the membrane rising from the disk structure. The structural integrity of the current disk has been investigated, and shown that the disk can withstand a significant reverse pressure in a static condition. However, the disk will likely incur damage if the filter stack is rotated during a reverse pressure. The development of a laminated disk would have several significant benefits for the operation of the rotary filter including the prevention of a compromise in filter disk integrity during a reverse flow accident, increasing operational flexibility, and increasing the self cleaning ability of the filter. A laminated disk would allow the filter rotor operation prior to a positive pressure in the filter tank. This would prevent the initial dead-head of the filter and prevent the resulting initial filter cake buildup. The laminated disk would allow rotor operation with cleaning fluid, eliminating the need for a recirculation pump. Additionally, a laminated disk would allow a reverse flow of fluid through the membrane pores removing trapped particles.« less

  16. Disk Detective Follow-Up Program

    NASA Astrophysics Data System (ADS)

    Kuchner, Marc

    As new data on exoplanets and young stellar associations arrive, we will want to know: which of these planetary systems and young stars have circumstellar disks? The vast allsky database of 747 million infrared sources from NASA's Wide-field Infrared Survey Explorer (WISE) mission can supply answers. WISE is a discovery tool intended to find targets for JWST, sensitive enough to detect circumstellar disks as far away as 3000 light years. The vast WISE archive already serves us as a roadmap to guide exoplanet searches, provide information on disk properties as new planets are discovered, and teach us about the many hotly debated connections between disks and exoplanets. However, because of the challenges of utilizing the WISE data, this resource remains underutilized as a tool for disk and planet hunters. Attempts to use WISE to find disks around Kepler planet hosts were nearly scuttled by confusion noise. Moreover, since most of the stars with WISE infrared excesses were too red for Hipparcos photometry, most of the disks sensed by WISE remain obscure, orbiting stars unlisted in the usual star databases. To remedy the confusion noise problem, we have begun a massive project to scour the WISE data archive for new circumstellar disks. The Disk Detective project (Kuchner et al. 2016) engages layperson volunteers to examine images from WISE, NASA's Two Micron All-Sky Survey (2MASS) and optical surveys to search for new circumstellar disk candidates via the citizen science website DiskDetective.org. Fueled by the efforts of > 28,000 citizen scientists, Disk Detective is the largest survey for debris disks with WISE. It has already uncovered 4000 disk candidates worthy of follow-up. However, most host stars of the new Disk Detective disk candidates have no known spectral type or distance, especially those with red colors: K and M stars and Young Stellar Objects. Others require further observations to check for false positives. The Disk Detective project is supported by NASA ADAP funds, which are not allowed to fund a major observational follow-up campaign. So here we propose a campaign of follow-up observations that will turn the unique, growing catalog of Disk Detective disk candidates into a reliable, publically-available treasure trove of new data on nearby disks in time to complement the upcoming new catalogs of planet hosts and stellar moving groups. We will use automated adaptive optics (AO) instruments to image disk candidates and check them for contamination from background objects. We will correlate our discoveries with the vast Gaia and LAMOST surveys to study disks in associations with other young stars. We will follow up disk candidates spectroscopically to remove more false positives. We will search for cold dust around our disk candidates with the James Clerk Maxwell Telescope (JCMT) and analyze data from the Gemini Planet Imager (GPI) to image young, nearby disk candidates. This follow up work will realize the full potential of the WISE mission as a roadmap to future exoplanet discoveries. It will yield contamination rates that will be crucial for interpreting all disk searches done with WISE. Our search will yield 2000 well-vetted nearby disks, including 60 that the Gaia mission will likely find to contain giant planets. This crucial follow-up work should be done now to take full advantage of Gaia during JWST's planned lifetime.

  17. Biomechanical influence of disk properties on the load transfer of healthy and degenerated disks using a poroelastic finite element model.

    PubMed

    Chagnon, Amélie; Aubin, Carl-Eric; Villemure, Isabelle

    2010-11-01

    Spine degeneration is a pathology that will affect 80% of the population. Since the intervertebral disks play an important role in transmitting loads through the spine, the aim of this study was to evaluate the biomechanical impact of disk properties on the load carried by healthy (Thompson grade I) and degenerated (Thompson grades III and IV) disks. A three-dimensional parametric poroelastic finite element model of the L4/L5 motion segment was developed. Grade I, grade II, and grade IV disks were modeled by altering the biomechanical properties of both the annulus and nucleus. Models were validated using published creep experiments, in which a constant compressive axial stress of 0.35 MPa was applied for 4 h. Pore pressure (PP) and effective stress (S(E)) were analyzed as a function of time following loading application (1 min, 5 min, 45 min, 125 min, and 245 min) and discal region along the midsagittal profile for each disk grade. A design of experiments was further implemented to analyze the influence of six disk parameters (disk height (H), fiber proportion (%F), drained Young's modulus (E(a),E(n)), and initial permeability (k(a),k(n)) of both the annulus and nucleus) on load-sharing for disk grades I and IV. Simulations of grade I, grade III, and grade IV disks agreed well with the available published experimental data. Disk height (H) had a significant influence (p<0.05) on the PP and S(E) during the entire loading history for both healthy and degenerated disk models. Young's modulus of the annulus (E(a)) significantly affected not only S(E) in the annular region for both disk grades in the initial creep response but also S(E) in the nucleus zone for degenerated disks with further creep response. The nucleus and annulus permeabilities had a significant influence on the PP distribution for both disk grades, but this effect occurred at earlier stages of loading for degenerated than for healthy disk models. This is the first study that investigates the biomechanical influence of both geometrical and material disk properties on the load transfer of healthy and degenerated disks. Disk height is a significant parameter for both healthy and degenerated disks during the entire loading. Changes in the annulus stiffness, as well as in the annulus and nucleus permeability, control load-sharing in different ways for healthy and degenerated disks.

  18. The Last Gasp of Gas Giant Planet Formation: A Spitzer Study of the 5 Myr Old Cluster NGC 2362

    NASA Astrophysics Data System (ADS)

    Currie, Thayne; Lada, Charles J.; Plavchan, Peter; Robitaille, Thomas P.; Irwin, Jonathan; Kenyon, Scott J.

    2009-06-01

    Expanding upon the Infrared Array Camera (IRAC) survey from Dahm & Hillenbrand, we describe Spitzer IRAC and Multiband Imaging Photometer for Spitzer observations of the populous, 5 Myr old open cluster NGC 2362. We analyze the mid-IR colors of cluster members and compared their spectral energy distributions (SEDs) to star+circumstellar disk models to constrain the disk morphologies and evolutionary states. Early/intermediate-type confirmed/candidate cluster members either have photospheric mid-IR emission or weak, optically thin IR excess emission at λ >= 24 μm consistent with debris disks. Few late-type, solar/subsolar-mass stars have primordial disks. The disk population around late-type stars is dominated by disks with inner holes (canonical "transition disks") and "homologously depleted" disks. Both types of disks represent an intermediate stage between primordial disks and debris disks. Thus, in agreement with previous results, we find that multiple paths for the primordial-to-debris disk transition exist. Because these "evolved primordial disks" greatly outnumber primordial disks, our results undermine standard arguments in favor of a lsim105 yr timescale for the transition based on data from Taurus-Auriga. Because the typical transition timescale is far longer than 105 yr, these data also appear to rule out standard ultraviolet photoevaporation scenarios as the primary mechanism to explain the transition. Combining our data with other Spitzer surveys, we investigate the evolution of debris disks around high/intermediate-mass stars and investigate timescales for giant planet formation. Consistent with Currie et al., the luminosity of 24 μm emission in debris disks due to planet formation peaks at ≈10-20 Myr. If the gas and dust in disks evolve on similar timescales, the formation timescale for gas giant planets surrounding early-type, high/intermediate-mass (gsim1.4 M sun) stars is likely 1-5 Myr. Most solar/subsolar-mass stars detected by Spitzer have SEDs that indicate their disks may be actively leaving the primordial disk phase. Thus, gas giant planet formation may also occur by ~5 Myr around solar/subsolar-mass stars as well.

  19. High-resolution 25 μm Imaging of the Disks around Herbig Ae/Be Stars

    NASA Astrophysics Data System (ADS)

    Honda, M.; Maaskant, K.; Okamoto, Y. K.; Kataza, H.; Yamashita, T.; Miyata, T.; Sako, S.; Fujiyoshi, T.; Sakon, I.; Fujiwara, H.; Kamizuka, T.; Mulders, G. D.; Lopez-Rodriguez, E.; Packham, C.; Onaka, T.

    2015-05-01

    We imaged circumstellar disks around 22 Herbig Ae/Be stars at 25 μm using Subaru/COMICS and Gemini/T-ReCS. Our sample consists of an equal number of objects from each of the two categories defined by Meeus et al.; 11 group I (flaring disk) and II (flat disk) sources. We find that group I sources tend to show more extended emission than group II sources. Previous studies have shown that the continuous disk is difficult to resolve with 8 m class telescopes in the Q band due to the strong emission from the unresolved innermost region of the disk. This indicates that the resolved Q-band sources require a hole or gap in the disk material distribution to suppress the contribution from the innermost region of the disk. As many group I sources are resolved at 25 μm, we suggest that many, but not all, group I Herbig Ae/Be disks have a hole or gap and are (pre-)transitional disks. On the other hand, the unresolved nature of many group II sources at 25 μm supports the idea that group II disks have a continuous flat disk geometry. It has been inferred that group I disks may evolve into group II through the settling of dust grains into the mid-plane of the protoplanetary disk. However, considering the growing evidence for the presence of a hole or gap in the disk of group I sources, such an evolutionary scenario is unlikely. The difference between groups I and II may reflect different evolutionary pathways of protoplanetary disks. Based on data collected at the Subaru Telescope, via the time exchange program between Subaru and the Gemini Observatory. The Subaru Telescope is operated by the National Astronomical Observatory of Japan.

  20. THE EVOLUTION OF INNER DISK GAS IN TRANSITION DISKS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hoadley, K.; France, K.; McJunkin, M.

    2015-10-10

    Investigating the molecular gas in the inner regions of protoplanetary disks (PPDs) provides insight into how the molecular disk environment changes during the transition from primordial to debris disk systems. We conduct a small survey of molecular hydrogen (H{sub 2}) fluorescent emission, using 14 well-studied Classical T Tauri stars at two distinct dust disk evolutionary stages, to explore how the structure of the inner molecular disk changes as the optically thick warm dust dissipates. We simulate the observed Hi-Lyman α-pumped H{sub 2} disk fluorescence by creating a 2D radiative transfer model that describes the radial distributions of H{sub 2} emissionmore » in the disk atmosphere and compare these to observations from the Hubble Space Telescope. We find the radial distributions that best describe the observed H{sub 2} FUV emission arising in primordial disk targets (full dust disk) are demonstrably different than those of transition disks (little-to-no warm dust observed). For each best-fit model, we estimate inner and outer disk emission boundaries (r{sub in} and r{sub out}), describing where the bulk of the observed H{sub 2} emission arises in each disk, and we examine correlations between these and several observational disk evolution indicators, such as n{sub 13–31}, r{sub in,} {sub CO}, and the mass accretion rate. We find strong, positive correlations between the H{sub 2} radial distributions and the slope of the dust spectral energy distribution, implying the behavior of the molecular disk atmosphere changes as the inner dust clears in evolving PPDs. Overall, we find that H{sub 2} inner radii are ∼4 times larger in transition systems, while the bulk of the H{sub 2} emission originates inside the dust gap radius for all transitional sources.« less

  1. BREAKS IN THIN AND THICK DISKS OF EDGE-ON GALAXIES IMAGED IN THE SPITZER SURVEY OF STELLAR STRUCTURE IN GALAXIES (S{sup 4}G)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Comeron, Sebastien; Salo, Heikki; Laurikainen, Eija

    2012-11-10

    Breaks in the radial luminosity profiles of galaxies have until now been mostly studied averaged over disks. Here, we study separately breaks in thin and thick disks in 70 edge-on galaxies using imaging from the Spitzer Survey of Stellar Structure in Galaxies. We built luminosity profiles of the thin and thick disks parallel to midplanes and we found that thin disks often truncate (77%). Thick disks truncate less often (31%), but when they do, their break radius is comparable with that in the thin disk. This suggests either two different truncation mechanisms-one of dynamical origin affecting both disks simultaneously andmore » another one only affecting the thin disk-or a single mechanism that creates a truncation in one disk or in both depending on some galaxy property. Thin disks apparently antitruncate in around 40% of galaxies. However, in many cases, these antitruncations are an artifact caused by the superposition of a thin disk and a thick disk, with the latter having a longer scale length. We estimate the real thin disk antitruncation fraction to be less than 15%. We found that the ratio of the thick and thin stellar disk mass is roughly constant (0.2 < M{sub T} /M{sub t} < 0.7) for circular velocities v{sub c} > 120 km s{sup -1}, but becomes much larger at smaller velocities. We hypothesize that this is due to a combination of a high efficiency of supernova feedback and a slower dynamical evolution in lower-mass galaxies causing stellar thin disks to be younger and less massive than in higher-mass galaxies.« less

  2. Imaging the Disk and Jet of the Classical T Tauri Star AA Tau

    NASA Technical Reports Server (NTRS)

    Cox, Andrew W.; Grady, Carol A.; Hammel, Heidi B.; Hornbeck, Jeremy; Russell, Ray W.; Sitko, Michael L.; Woodgate, Bruce E.

    2013-01-01

    Previous studies of the classical T Tauri star AA Tau have interpreted the UX-Orionis-like photo-polarimetric variability as being due to a warp in the inner disk caused by an inclined stellar magnetic dipole field. We test that these effects are macroscopically observable in the inclination and alignment of the disk. We use Hubble Space Telescope (HST)/STIS coronagraphic imagery to measure the V magnitude of the star for both STIS coronagraphic observations, compare these data with optical photometry in the literature, and find that, unlike other classical T Tauri stars observed in the same HST program, the disk is most robustly detected in scattered light at stellar optical minimum light.We measure the outer disk radius, 1 inch.15 plus-minus 0 inch.10, major-axis position angle, and disk inclination and find that the inner disk, as reported in the literature, is both misinclined and misaligned with respect to the outer disk. AA Tau drives a faint jet, detected in both STIS observations and in follow-on Goddard Fabry-Perot imagery, which is also misaligned with respect to the projection of the outer disk minor axis and is poorly collimated near the star, but which can be traced 21 inches from the star in data from 2005. The measured outer disk inclination, 71deg plus-minus 1deg, is out of the range of inclinations suggested for stars with UX-Orionis-like variability when no grain growth has occurred in the disk. The faintness of the disk, small disk size, and detection of the star despite the high inclination all indicate that the dust disk must have experienced grain growth and settling toward the disk midplane, which we verify by comparing the observed disk with model imagery from the literature.

  3. TRANSITIONAL DISKS AND THEIR ORIGINS: AN INFRARED SPECTROSCOPIC SURVEY OF ORION A

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, K. H.; Watson, Dan M.; Manoj, P.

    Transitional disks are protoplanetary disks around young stars, with inner holes or gaps which are surrounded by optically thick outer, and often inner, disks. Here we present observations of 62 new transitional disks in the Orion A star-forming region. These were identified using the Spitzer Space Telescope's Infrared Spectrograph and followed up with determinations of stellar and accretion parameters using the Infrared Telescope Facility's SpeX. We combine these new observations with our previous results on transitional disks in Taurus, Chamaeleon I, Ophiuchus, and Perseus, and with archival X-ray observations. This produces a sample of 105 transitional disks of ''cluster'' agemore » 3 Myr or less, by far the largest hitherto assembled. We use this sample to search for trends between the radial structure in the disks and many other system properties, in order to place constraints on the possible origins of transitional disks. We see a clear progression of host-star accretion rate and the different disk morphologies. We confirm that transitional disks with complete central clearings have median accretion rates an order of magnitude smaller than radially continuous disks of the same population. Pre-transitional disks-those objects with gaps that separate inner and outer disks-have median accretion rates intermediate between the two. Our results from the search for statistically significant trends, especially related to M-dot , strongly support that in both cases the gaps are far more likely to be due to the gravitational influence of Jovian planets or brown dwarfs orbiting within the gaps, than to any of the photoevaporative, turbulent, or grain-growth processes that can lead to disk dissipation. We also find that the fraction of Class II YSOs which are transitional disks is large, 0.1-0.2, especially in the youngest associations.« less

  4. The Transitional Protoplanetary Disk Frequency as a Function of Age: Disk Evolution in the Coronet Cluster, Taurus, and Other 1--8 Myr-old Regions

    NASA Technical Reports Server (NTRS)

    Currie, Thayne; Sicilia-Aguilar, Auora

    2011-01-01

    We present Spitzer 3.6-24 micron photometry and spectroscopy for stars in the 1-3 Myr-old Coronet Cluster, expanding upon the survey of Sicilia-Aguilar et al. (2008). Using sophisticated radiative transfer models, we analyze these new data and those from Sicilia-Aguilar et al. (2008) to identify disks with evidence for substantial dust evolution consistent with disk clearing: transitional disks. We then analyze data in Taurus and others young clusters - IC 348, NGC 2362, and eta Cha -- to constrain the transitional disk frequency as a function of time. Our analysis confirms previous results finding evidence for two types of transitional disks -- those with inner holes and those that are homologously depleted. The percentage of disks in the transitional phase increases from approx.15-20% at 1-2 Myr to > 50% at 5-8 Myr; the mean transitional disk lifetime is closer to approx. 1 Myr than 0.1-0.5 Myr, consistent with previous studies by Currie et al. (2009) and Sicilia-Aguilar et al. (2009). In the Coronet Cluster and IC 348, transitional disks are more numerous for very low-mass M3--M6 stars than for more massive K5-M2 stars, while Taurus lacks a strong spectral type-dependent frequency. Assuming standard values for the gas-to-dust ratio and other disk properties, the lower limit for the masses of optically-thick primordial disks is Mdisk approx. 0.001-0.003 M*. We find that single color-color diagrams do not by themselves uniquely identify transitional disks or primordial disks. Full SED modeling is required to accurately assess disk evolution for individual sources and inform statistical estimates of the transitional disk population in large samples using mid-IR colors.

  5. ALMA Survey of Lupus Protoplanetary Disks. II. Gas Disk Radii

    NASA Astrophysics Data System (ADS)

    Ansdell, M.; Williams, J. P.; Trapman, L.; van Terwisga, S. E.; Facchini, S.; Manara, C. F.; van der Marel, N.; Miotello, A.; Tazzari, M.; Hogerheijde, M.; Guidi, G.; Testi, L.; van Dishoeck, E. F.

    2018-05-01

    We present Atacama Large Millimeter/Sub-Millimeter Array (ALMA) Band 6 observations of a complete sample of protoplanetary disks in the young (∼1–3 Myr) Lupus star-forming region, covering the 1.33 mm continuum and the 12CO, 13CO, and C18O J = 2–1 lines. The spatial resolution is ∼0.″25 with a medium 3σ continuum sensitivity of 0.30 mJy, corresponding to M dust ∼ 0.2 M ⊕. We apply Keplerian masking to enhance the signal-to-noise ratios of our 12CO zero-moment maps, enabling measurements of gas disk radii for 22 Lupus disks; we find that gas disks are universally larger than millimeter dust disks by a factor of two on average, likely due to a combination of the optically thick gas emission and the growth and inward drift of the dust. Using the gas disk radii, we calculate the dimensionless viscosity parameter, α visc, finding a broad distribution and no correlations with other disk or stellar parameters, suggesting that viscous processes have not yet established quasi-steady states in Lupus disks. By combining our 1.33 mm continuum fluxes with our previous 890 μm continuum observations, we also calculate the millimeter spectral index, α mm, for 70 Lupus disks; we find an anticorrelation between α mm and millimeter flux for low-mass disks (M dust ≲ 5), followed by a flattening as disks approach α mm ≈ 2, which could indicate faster grain growth in higher-mass disks, but may also reflect their larger optically thick components. In sum, this work demonstrates the continuous stream of new insights into disk evolution and planet formation that can be gleaned from unbiased ALMA disk surveys.

  6. IMAGING THE DISK AND JET OF THE CLASSICAL T TAURI STAR AA TAU

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cox, Andrew W.; Grady, Carol A.; Hammel, Heidi B.

    2013-01-01

    Previous studies of the classical T Tauri star AA Tau have interpreted the UX-Orionis-like photo-polarimetric variability as being due to a warp in the inner disk caused by an inclined stellar magnetic dipole field. We test that these effects are macroscopically observable in the inclination and alignment of the disk. We use Hubble Space Telescope (HST)/STIS coronagraphic imagery to measure the V magnitude of the star for both STIS coronagraphic observations, compare these data with optical photometry in the literature, and find that, unlike other classical T Tauri stars observed in the same HST program, the disk is most robustlymore » detected in scattered light at stellar optical minimum light. We measure the outer disk radius, 1.''15 {+-} 0.''10, major-axis position angle, and disk inclination and find that the inner disk, as reported in the literature, is both misinclined and misaligned with respect to the outer disk. AA Tau drives a faint jet, detected in both STIS observations and in follow-on Goddard Fabry-Perot imagery, which is also misaligned with respect to the projection of the outer disk minor axis and is poorly collimated near the star, but which can be traced 21'' from the star in data from 2005. The measured outer disk inclination, 71 Degree-Sign {+-} 1 Degree-Sign , is out of the range of inclinations suggested for stars with UX-Orionis-like variability when no grain growth has occurred in the disk. The faintness of the disk, small disk size, and detection of the star despite the high inclination all indicate that the dust disk must have experienced grain growth and settling toward the disk midplane, which we verify by comparing the observed disk with model imagery from the literature.« less

  7. THE NATURE OF TRANSITION CIRCUMSTELLAR DISKS. II. SOUTHERN MOLECULAR CLOUDS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Romero, Gisela A.; Schreiber, Matthias R.; Rebassa-Mansergas, Alberto

    2012-04-10

    Transition disk objects are pre-main-sequence stars with little or no near-IR excess and significant far-IR excess, implying inner opacity holes in their disks. Here we present a multifrequency study of transition disk candidates located in Lupus I, III, IV, V, VI, Corona Australis, and Scorpius. Complementing the information provided by Spitzer with adaptive optics (AO) imaging (NaCo, VLT), submillimeter photometry (APEX), and echelle spectroscopy (Magellan, Du Pont Telescopes), we estimate the multiplicity, disk mass, and accretion rate for each object in our sample in order to identify the mechanism potentially responsible for its inner hole. We find that our transitionmore » disks show a rich diversity in their spectral energy distribution morphology, have disk masses ranging from {approx}<1 to 10 M{sub JUP}, and accretion rates ranging from {approx}<10{sup -11} to 10{sup -7.7} M{sub Sun} yr{sup -1}. Of the 17 bona fide transition disks in our sample, three, nine, three, and two objects are consistent with giant planet formation, grain growth, photoevaporation, and debris disks, respectively. Two disks could be circumbinary, which offers tidal truncation as an alternative origin of the inner hole. We find the same heterogeneity of the transition disk population in Lupus III, IV, and Corona Australis as in our previous analysis of transition disks in Ophiuchus while all transition disk candidates selected in Lupus V, VI turned out to be contaminating background asymptotic giant branch stars. All transition disks classified as photoevaporating disks have small disk masses, which indicates that photoevaporation must be less efficient than predicted by most recent models. The three systems that are excellent candidates for harboring giant planets potentially represent invaluable laboratories to study planet formation with the Atacama Large Millimeter/Submillimeter Array.« less

  8. The Transitional Protoplanetary Disk Frequency as a Function of Age: Disk Evolution In the Coronet Cluster, Taurus, and Other 1-8 Myr Old Regions

    NASA Astrophysics Data System (ADS)

    Currie, Thayne; Sicilia-Aguilar, Aurora

    2011-05-01

    We present Spitzer 3.6-24 μm photometry and spectroscopy for stars in the 1-3 Myr old Coronet Cluster, expanding upon the survey of Sicilia-Aguilar et al. Using sophisticated radiative transfer models, we analyze these new data and those from Sicilia-Aguilar et al. to identify disks with evidence for substantial dust evolution consistent with disk clearing: transitional disks. We then analyze data in Taurus and others young clusters—IC 348, NGC 2362, and η Cha—to constrain the transitional disk frequency as a function of time. Our analysis confirms previous results finding evidence for two types of transitional disks—those with inner holes and those that are homologously depleted. The percentage of disks in the transitional phase increases from ~15%-20% at 1-2 Myr to >=50% at 5-8 Myr the mean transitional disk lifetime is closer to ~1 Myr than 0.1-0.5 Myr, consistent with previous studies by Currie et al. and Sicilia-Aguilar et al. In the Coronet Cluster and IC 348, transitional disks are more numerous for very low mass M3-M6 stars than for more massive K5-M2 stars, while Taurus lacks a strong spectral-type-dependent frequency. Assuming standard values for the gas-to-dust ratio and other disk properties, the lower limit for the masses of optically thick primordial disks is M disk ≈ 0.001-0.003 M sstarf. We find that single color-color diagrams do not by themselves uniquely identify transitional disks or primordial disks. Full spectral energy distribution modeling is required to accurately assess disk evolution for individual sources and inform statistical estimates of the transitional disk population in large samples using mid-IR colors.

  9. On the Star Formation Rate, Initial Mass Function, and Hubble Type of Disk Galaxies and the Age of the Universe

    NASA Astrophysics Data System (ADS)

    Sommer-Larsen, Jesper

    1996-01-01

    Evolutionary models for the disks of large disk galaxies, including effects of star formation, non-instantaneous gas recycling from stars, and infall of low-metallicity gas from the halo, have been calculated and compared with data for nearby, generally large disk galaxies on present disk star-formation rates (based on integrated Hα luminosities) as a function of disk gas fractions. The data were extracted from the work by Kennicutt, Tamblyn, & Congdon. The result of the comparison suggests that for disk galaxies the Hubble sequence is a disk age sequence, with early-type disks being the oldest and late types the youngest. Under the assumption of a minimum age of the Galactic disk of 10 Gyr, the mean age of Sa/Sab galaxies, and hence the age of the universe, is found to be at least 17±2 Gyr. It is furthermore found that the disk star-formation timescale is approximately independent of disk-galaxy type. Finally, it is found that the global initial mass function (IMF) in galactic disks is 2-3 times more weighted toward high-mass stars than the Scalo "best-fitting" model for the solar-neighborhood IMF. The more top-heavy model of Kennicutt provides a good fit to observation.

  10. Detailed Microstructural Characterization of the Disk Alloy ME3

    NASA Technical Reports Server (NTRS)

    Gabb, Timothy P.; Garg, Anita; Ellis, David L.; O'Connor, Kenneth M.

    2004-01-01

    The advanced powder metallurgy disk alloy ME3 was designed using statistical screening and optimization of composition and processing variables in the NASA/General Electric/Pratt & Whitney HSR/EPM disk program to have extended durability for large disks at maximum temperatures of 600 to 700 C. Scaled-up disks of this alloy were then produced at the conclusion of that program to demonstrate these properties in realistic disk shapes. The objective of the present study was to assess the microstructural characteristics of these ME3 disks at two consistent locations, in order to enable estimation of the variations in microstructure across each disk and across several disks of this advanced alloy. Scaled-up disks processed in the HSR/EPM Compressor/Turbine Disk program had been sectioned, machined into specimens, and tested in tensile, creep, fatigue, and fatigue crack growth tests by NASA Glenn Research Center, in cooperation with General Electric Engine Company and Pratt & Whitney Aircraft Engines. For this study, microstructures of grip sections from tensile specimens in the bore and rim were evaluated from these disks. The major and minor phases were identified and quantified using transmission electron microscopy (TEM). Particular attention was directed to the .' precipitates, which along with grain size can predominantly control the mechanical properties of superalloy disks.

  11. Indirect and Direct Signatures of Young Planets in Protoplanetary Disks

    NASA Astrophysics Data System (ADS)

    Zhu, Zhaohuan; Stone, James M.; Dong, Ruobing; Rafikov, Roman; Bai, Xue-Ning

    2015-12-01

    Directly finding young planets around protostars is challenging since protostars are highly variable and obscured by dust. However, young planets will interact with protoplanetary disks, inducing disk features such as gaps, spiral arms, and asymmetric features, which are much easier to be detected. Transitional disks, which are protoplanetary disks with gaps and holes, are excellent candidates for finding young planets. Although these disks have been studied extensively in observations (e.g. using Subaru, VLT, ALMA, EVLA), theoretical models still need to be developed to explain observations. We have constructed numerical simulations, including dust particle dynamics and MHD effects, to study planet-disk interaction, with an emphasis on explaining observations. Our simulations have successfully reproduced spiral arms, gaps and asymmetric features observed in transitional disks. Furthermore, by comparing with observations, we have constrained protoplanetary disk properties and pinpoint potential planets in these disks. We will present progress in constructing global simulations to study transitional disks, including using our recently developed Athena++ code with static-mesh-refinement for MHD. Finally we suggest that accreting circumplanetary disks can release an observable amount of energy and could be the key to detect young planets directly. We will discuss how JWST and next generation telescopes can help to find these young planets with circumplanetary disks.

  12. Hydrodynamical Modeling of Large Circumstellar Disks

    NASA Astrophysics Data System (ADS)

    Kurfürst, P.; Krtǐcka, J.

    2016-11-01

    Direct centrifugal ejection from a critically or near-critically rotating surface forms a gaseous equatorial decretion disk. Anomalous viscosity provides the efficient mechanism for transporting the angular momentum outwards. The outer part of the disk can extend up to a very large distance from the parent star. We study the evolution of density, radial and azimuthal velocity, and angular momentum loss rate of equatorial decretion disks out to very distant regions. We investigate how the physical characteristics of the disk depend on the distribution of temperature and viscosity. We also study the magnetorotational instability, which is considered to be the origin of anomalous viscosity in outflowing disks. We use analytical calculations to study the stability of outflowing disks submerged to the magnetic field. At large radii the instability disappears in the region where the disk orbital velocity is roughly equal to the sound speed. Therefore, the disk sonic radius can be roughly considered as an outer disk radius.

  13. The Disk and Jet of the Classical T Tauri Star AA Tau

    NASA Technical Reports Server (NTRS)

    Cox, A. W.; Grady, C. A.; Hamel, H.; Hornbeck, Jeremy; Russell, R.; Sitko, M.; Woodgate, B.

    2013-01-01

    Previous studies of the classical T Tauri star AA Tau have interpreted the UX Orionis-like photopolarimetric variability as being due to a warp in the inner disk caused by an inclined stellar magnetic dipolefield. We test that these effects are macroscopically observable in the inclination and alignment of the disk. We use the HST/STIS coronagraphic detection of the disk to measure the outer disk radius and inclination, and find that the inner disk is both misinclined and misaligned with respect to the outer disk. AA Tau drives a faint jet which is also misaligned with respect to the projection of the outer disk minor axis. The jet is also poorly collimated near the star. The measured inclination, 71+/-1deg, is above the inclination range suggested for stars with UX Orionis-like variability, indicating that dust grains in the disk have grown and settled toward the disk midplane.

  14. The role of the global magnetic field and thermal conduction on the structure of the accretion disks of all models

    NASA Astrophysics Data System (ADS)

    Farahinezhad, M.; Khesali, A. R.

    2018-05-01

    In this paper, the effects of global magnetic field and thermal conduction on the vertical structure of the accretion disks has been investigated. In this study, four types disks were examined: Gas pressure dominated the standard disk, while radiation pressure dominated the standard disk, ADAF disk, slim disk. Moreover, the general shape of the magnetic field, including toroidal and poloidal components, is considered. The magnetohydrodynamic equations were solved in spherical coordinates using self-similar assumptions in the radial direction. Following previous authors, the polar velocity vθ is non-zero and Trφ was considered as a dominant component of the stress tensor. The results show that the disk becomes thicker compared to the non-magnetic fields. It has also been shown that the presence of the thermal conduction in the ADAF model makes the disk thicker; the disk is expanded in the standard model.

  15. Effective detection of CO 2 leakage: a comparison of groundwater sampling and pressure monitoring

    DOE PAGES

    Keating, Elizabeth; Dai, Zhenxue; Dempsey, David; ...

    2014-12-31

    Shallow aquifer monitoring is likely to be a required aspect to any geologic CO 2 sequestration operation. Collecting groundwater samples and analyzing for geochemical parameters such as pH, alkalinity, total dissolved carbon, and trace metals has been suggested by a number of authors as a possible strategy to detect CO 2 leakage. The effectiveness of this approach, however, will depend on the hydrodynamics of the leak-induced CO 2 plume and the spatial distribution of the monitoring wells relative to the origin of the leak. To our knowledge, the expected effectiveness of groundwater sampling to detect CO 2 leakage has notmore » yet been quantitatively assessed. In this study we query hundreds of simulations developed for the National Risk Assessment Project (US DOE) to estimate risks to drinking water resources associated with CO 2 leaks. The ensemble of simulations represent transient, 3-D multi-phase reactive transport of CO 2 and brine leaked from a sequestration reservoir, via a leaky wellbore, into an unconfined aquifer. Key characteristics of the aquifer, including thickness, mean permeability, background hydraulic gradient, and geostatistical measures of aquifer heterogeneity, were all considered uncertain parameters. Complex temporally-varying CO 2 and brine leak rate scenarios were simulated using a heuristic scheme with ten uncertain parameters. The simulations collectively predict the spatial and temporal evolution of CO 2 and brine plumes over 200 years in a shallow aquifer under a wide range of leakage scenarios and aquifer characteristics. Using spatial data from an existing network of shallow drinking water wells in the Edwards Aquifer, TX, as one illustrative example, we calculated the likelihood of leakage detection by groundwater sampling. In this monitoring example, there are 128 wells available for sampling, with a density of about 2.6 wells per square kilometer. If the location of the leak is unknown a priori, a reasonable assumption in many cases, we found that the leak would be detected in at least one of the monitoring wells in less than 10% of the scenarios considered. This is because plume sizes are relatively small, and so the probability of detection decreases rapidly with distance from the leakage point. For example, 400m away from the leakage point there is less than 20% chance of detection. We then compared the effectiveness of groundwater quality sampling to shallow aquifer and/or reservoir pressure monitoring. For the Edwards Aquifer example, pressure monitoring in the same monitoring well network was found to be even less effective that groundwater quality monitoring. This is presumably due to the unconfined conditions and relatively high permeability, so pressure perturbations quickly dissipate. Although specific results may differ from site to site, this type of analysis should be useful to site operators and regulators when selecting leak detection strategies. Given the spatial characteristics of a proposed monitoring well network, probabilities of leakage detection can be rapidly calculated using this methodology. Although conditions such as these may not be favorable for leakage detection in shallow aquifers, leakage detection could be much more successful in the injection reservoir. We demonstrate proof-of-concept for this hypothesis, presenting a simulation where there is measurable pressure change at the injection well due to overpressurization, fault rupture, and consequent leakage up the fault into intermediate and shallow aquifers. The size of the detectible pressure change footprint is much larger in the reservoir than in either of the overlying aquifers. Further exploration of the range of conditions for which this technique would be successful is the topic of current study.« less

  16. Magnetically Induced Disk Winds and Transport in the HL Tau Disk

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hasegawa, Yasuhiro; Flock, Mario; Turner, Neal J.

    2017-08-10

    The mechanism of angular momentum transport in protoplanetary disks is fundamental to understanding the distributions of gas and dust in the disks. The unprecedented ALMA observations taken toward HL Tau at high spatial resolution and subsequent radiative transfer modeling reveal that a high degree of dust settling is currently achieved in the outer part of the HL Tau disk. Previous observations, however, suggest a high disk accretion rate onto the central star. This configuration is not necessarily intuitive in the framework of the conventional viscous disk model, since efficient accretion generally requires a high level of turbulence, which can suppressmore » dust settling considerably. We develop a simplified, semi-analytical disk model to examine under what condition these two properties can be realized in a single model. Recent, non-ideal MHD simulations are utilized to realistically model the angular momentum transport both radially via MHD turbulence and vertically via magnetically induced disk winds. We find that the HL Tau disk configuration can be reproduced well when disk winds are properly taken into account. While the resulting disk properties are likely consistent with other observational results, such an ideal situation can be established only if the plasma β at the disk midplane is β {sub 0} ≃ 2 × 10{sup 4} under the assumption of steady accretion. Equivalently, the vertical magnetic flux at 100 au is about 0.2 mG. More detailed modeling is needed to fully identify the origin of the disk accretion and quantitatively examine plausible mechanisms behind the observed gap structures in the HL Tau disk.« less

  17. Inferring a Gap in the Group II Disk of the Herbig Ae/Be Star HD 142666

    NASA Astrophysics Data System (ADS)

    Ezra Rubinstein, Adam; Macías, Enrique; Espaillat, Catherine; Calvet, Nuria; Robinson, Connor; Zhang, Ke

    2018-01-01

    Disks around Herbig Ae/Be (HAeBe) stars have been classified into Group I or Group II, which are thought to be flared and flat disks respectively. Most Group I disks have been shown to have large gaps, suggesting ongoing planet formation, while no large gaps have been found in Group II disks. We analyzed the Group II disk of HD 142666 using irradiated accretion disk modeling of the broad-band spectral energy distribution along with the 1.3 millimeter spatial brightness distribution traced by Atacama Large Millimeter and Submillimeter Array (ALMA) observations. Our model is able to reproduce the available data, predicting a high degree of settling in the disk, which is consistent with the Group II classification of HD 142666. Although the ALMA observations did not have enough angular resolution to fully resolve the inner parts of the disk, the observed visibilities and synthesized image can only be reproduced when including a gap between ~5 to 12 au in our disk model. In addition, we also infer that the disk has an outer radius of ~65 au, which may be evidence of radial migration of dust or an unseen, low-mass companion that is truncating the outer disk. These results may suggest that Group II disks around HAeBe stars have gaps, possibly carved by young giant planets in the disk. Further ALMA observations of HD 142666 and other Group II disks are needed to discern if gaps are common in this class of objects, as well as to reveal their possible origin.

  18. Magnetically Induced Disk Winds and Transport in the HL Tau Disk

    NASA Astrophysics Data System (ADS)

    Hasegawa, Yasuhiro; Okuzumi, Satoshi; Flock, Mario; Turner, Neal J.

    2017-08-01

    The mechanism of angular momentum transport in protoplanetary disks is fundamental to understanding the distributions of gas and dust in the disks. The unprecedented ALMA observations taken toward HL Tau at high spatial resolution and subsequent radiative transfer modeling reveal that a high degree of dust settling is currently achieved in the outer part of the HL Tau disk. Previous observations, however, suggest a high disk accretion rate onto the central star. This configuration is not necessarily intuitive in the framework of the conventional viscous disk model, since efficient accretion generally requires a high level of turbulence, which can suppress dust settling considerably. We develop a simplified, semi-analytical disk model to examine under what condition these two properties can be realized in a single model. Recent, non-ideal MHD simulations are utilized to realistically model the angular momentum transport both radially via MHD turbulence and vertically via magnetically induced disk winds. We find that the HL Tau disk configuration can be reproduced well when disk winds are properly taken into account. While the resulting disk properties are likely consistent with other observational results, such an ideal situation can be established only if the plasma β at the disk midplane is β 0 ≃ 2 × 104 under the assumption of steady accretion. Equivalently, the vertical magnetic flux at 100 au is about 0.2 mG. More detailed modeling is needed to fully identify the origin of the disk accretion and quantitatively examine plausible mechanisms behind the observed gap structures in the HL Tau disk.

  19. Storage Media for Microcomputers.

    ERIC Educational Resources Information Center

    Trautman, Rodes

    1983-01-01

    Reviews computer storage devices designed to provide additional memory for microcomputers--chips, floppy disks, hard disks, optical disks--and describes how secondary storage is used (file transfer, formatting, ingredients of incompatibility); disk/controller/software triplet; magnetic tape backup; storage volatility; disk emulator; and…

  20. Disks around stars and the growth of planetary systems.

    PubMed

    Greaves, Jane S

    2005-01-07

    Circumstellar disks play a vital evolutionary role, providing a way to move gas inward and onto a young star. The outward transfer of angular momentum allows the star to contract without breaking up, and the remnant disk of gas and particles is the reservoir for forming planets. High-resolution spectroscopy is uncovering planetary dynamics and motion within the remnant disk, and imaging at infrared to millimeter wavelengths resolves disk structure over billions of years of evolution. Most stars are born with a disk, and models of planet formation need to form such bodies from the disk material within the disk's 10-million-year life-span.

  1. Recent Observational Progress on Accretion Disks Around Compact Objects

    NASA Astrophysics Data System (ADS)

    Miller, Jon M.

    2016-04-01

    Studies of accretion disks around black holes and neutron stars over the last ten years have made remarkable progress. Our understanding of disk evolution as a function of mass accretion rate is pushing toward a consensus on thin/thick disk transitions; an apparent switching between disk-driven outflow modes has emerged; and monitoring observations have revealed complex spectral energy distributions wherein disk reprocessing must be important. Detailed studies of disk winds, in particular, have the potential to reveal the basic physical processes that mediate disk accretion, and to connect with numerical simulations. This talk will review these developments and look ahead to the potential of Astro-H.

  2. The Study of Galactic Disk Kinematics with SCUSS and SDSS Data

    NASA Astrophysics Data System (ADS)

    Peng, Xiyan; Wu, Zhenyu; Qi, Zhaoxiang; Du, Cuihua; Ma, Jun; Zhou, Xu; Jia, Yunpeng; Wang, Songhu

    2018-07-01

    We derive chemical and kinematics properties of G and K dwarfs from the SCUSS and SDSS data. We aim to characterize and explore the properties of the Galactic disk in order to understand their origins and evolutions. A kinematics approach is used to separate Galactic stellar populations into the likely thin disk and thick disk sample. Then, we explore rotational velocity gradients with metallicity of the Galactic disks to provide constraints on the various formation models. We identify a negative gradient of the rotational velocity of the thin disk stars with [Fe/H], ‑18.2 ± 2.3 km s‑1 dex‑1. For the thick disk, we identify a positive gradient of the rotational velocity with [Fe/H], 41.7 ± 6.1 km s‑1 dex‑1. The eccentricity does not change with metallicity for the thin disk sample. Thick disk stars exhibit a trend of orbital eccentricity with metallicity (‑0.13 dex‑1). The thin disk shows a negative metallicity gradient with Galactocentric radial distance R, while the thick disk shows a flat radial metallicity gradient. Our results suggest that radial migration may play an important role in the formation and evolution of the thin disk.

  3. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nesvold, Erika R.; Naoz, Smadar; Vican, Laura

    The first indication of the presence of a circumstellar debris disk is usually the detection of excess infrared emission from the population of small dust grains orbiting the star. This dust is short-lived, requiring continual replenishment, and indicating that the disk must be excited by an unseen perturber. Previous theoretical studies have demonstrated that an eccentric planet orbiting interior to the disk will stir the larger bodies in the belt and produce dust via interparticle collisions. However, motivated by recent observations, we explore another possible mechanism for heating a debris disk: a stellar-mass perturber orbiting exterior to and inclined tomore » the disk and exciting the disk particles’ eccentricities and inclinations via the Kozai–Lidov mechanism. We explore the consequences of an exterior perturber on the evolution of a debris disk using secular analysis and collisional N -body simulations. We demonstrate that a Kozai–Lidov excited disk can generate a dust disk via collisions and we compare the results of the Kozai–Lidov excited disk with a simulated disk perturbed by an interior eccentric planet. Finally, we propose two observational tests of a dust disk that can distinguish whether the dust was produced by an exterior brown dwarf or stellar companion or an interior eccentric planet.« less

  4. MIGRATION TRAPS IN DISKS AROUND SUPERMASSIVE BLACK HOLES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bellovary, Jillian M.; Low, Mordecai-Mark Mac; McKernan, Barry

    Accretion disks around supermassive black holes (SMBHs) in active galactic nuclei (AGNs) contain stars, stellar mass black holes, and other stellar remnants, which perturb the disk gas gravitationally. The resulting density perturbations exert torques on the embedded masses causing them to migrate through the disk in a manner analogous to planets in protoplanetary disks. We determine the strength and direction of these torques using an empirical analytic description dependent on local disk gradients, applied to two different analytic, steady-state disk models of SMBH accretion disks. We find that there are radii in such disks where the gas torque changes sign,more » trapping migrating objects. Our analysis shows that major migration traps generally occur where the disk surface density gradient changes sign from positive to negative, around 20–300R{sub g}, where R{sub g} = 2GM/c{sup 2} is the Schwarzschild radius. At these traps, massive objects in the AGN disk can accumulate, collide, scatter, and accrete. Intermediate mass black hole formation is likely in these disk locations, which may lead to preferential gap and cavity creation at these radii. Our model thus has significant implications for SMBH growth as well as gravitational wave source populations.« less

  5. Check valve

    DOEpatents

    Upton, Hubert Allen; Garcia, Pablo

    1999-08-24

    A check valve for use in a GDCS of a nuclear reactor and having a motor driven disk including a rotatable armature for rotating the check valve disk over its entire range of motion is described. In one embodiment, the check valve includes a valve body having a coolant flow channel extending therethrough. The coolant flow channel includes an inlet end and an outlet end. A valve body seat is located on an inner surface of the valve body. The check valve further includes a disk assembly, sometimes referred to as the motor driven disc, having a counterweight and a disk shaped valve. The disk valve includes a disk base having a seat for seating with the valve body seat. The disk assembly further includes a first hinge pin member which extends at least partially through the disk assembly and is engaged to the disk. The disk valve is rotatable relative to the first hinge pin member. The check valve also includes a motor having a stator frame with a stator bore therein. An armature is rotatably positioned within the stator bore and the armature is coupled to the disk valve to cause the disk valve to rotate about its full range of motion.

  6. Check valve

    DOEpatents

    Upton, H.A.; Garcia, P.

    1999-08-24

    A check valve for use in a GDCS of a nuclear reactor and having a motor driven disk including a rotatable armature for rotating the check valve disk over its entire range of motion is described. In one embodiment, the check valve includes a valve body having a coolant flow channel extending therethrough. The coolant flow channel includes an inlet end and an outlet end. A valve body seat is located on an inner surface of the valve body. The check valve further includes a disk assembly, sometimes referred to as the motor driven disc, having a counterweight and a disk shaped valve. The disk valve includes a disk base having a seat for seating with the valve body seat. The disk assembly further includes a first hinge pin member which extends at least partially through the disk assembly and is engaged to the disk. The disk valve is rotatable relative to the first hinge pin member. The check valve also includes a motor having a stator frame with a stator bore therein. An armature is rotatably positioned within the stator bore and the armature is coupled to the disk valve to cause the disk valve to rotate about its full range of motion. 5 figs.

  7. Elastic and hydrodynamic torques on a colloidal disk within a nematic liquid crystal.

    PubMed

    Rovner, Joel B; Borgnia, Dan S; Reich, Daniel H; Leheny, Robert L

    2012-10-01

    The orientationally dependent elastic energy and hydrodynamic behavior of colloidal disks with homeotropic surface anchoring suspended in the nematic liquid crystal 4-cyano-4'-pentylbiphenyl (5CB) have been investigated. In the absence of external torques, the disks align with the normal of the disk face â parallel to the nematic director n[over ^]. When a magnetic field is applied, the disks rotate â by an angle θ so that the magnetic torque and the elastic torque caused by distortion of the nematic director field are balanced. Over a broad range of angles, the elastic torque increases linearly with θ in quantitative agreement with a theoretical prediction based on an electrostatic analogy. When the disks are rotated to angles θ>π/2, the resulting large elastic distortion makes the disk orientation unstable, and the director undergoes a topological transition in which θ→π-θ. In the transition, a defect loop is shed from the disk surface, and the disks spin so that â sweeps through π radians as the loop collapses back onto the disk. Additional measurements of the angular relaxation of disks to θ=0 following removal of the external torque show a quasi-exponential time dependence from which an effective drag viscosity for the nematic can be extracted. The scaling of the angular time dependence with disk radius and observations of disks rotating about â indicate that the disk motion affects the director field at surprisingly modest Ericksen numbers.

  8. Long-lived Eccentric modes in Protoplanetary Disks

    NASA Astrophysics Data System (ADS)

    Lee, Wing-Kit; Dempsey, Adam M.; Lithwick, Yoram

    2018-04-01

    A theory is developed to understand global eccentric modes that are slowly precessing in protoplanetary disks. Using the typical self-similar density profiles, we found that these modes are trapped in the disk and are not sensitive to the uncertain boundary condition at the disk edge. This is contrary to common wisdom that the modes can only exist in disks with very sharp outer edge. Because of their discrete spectrum, once excited, a perturbed disk can stay eccentric for a long time until the mode is viscously damped. The physics behind the mode trapping depends ultimately on the relative importance of gas pressure and self-gravity, which is characterized by g = 1/ (Q h), where h is the disk aspect ratio and Q is the Toomre stability parameter. A very low mass disk (g ≪ 1) is pressure-dominated and supports pressure modes, in which the eccentricity is highest at the disk edge. The modes are trapped by a turning point due to the density drop in the outer disk. For a more massive disk with g of order of unity (Q~1/h~10-100), prograde modes are supported. Unlike the pressure modes, these modes are trapped by Q-barriers and result in a bump in the radial eccentricity profile. As the mode trapping is a generic phenomenon for typical disk profiles, the free linear eccentric modes are likely to be present in protoplanetary disks with a wide range of disk mass.

  9. Conservative GRMHD simulations of moderately thin, tilted accretion disks

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Teixeira, Danilo Morales; Fragile, P. Chris; Zhuravlev, Viacheslav V.

    2014-12-01

    This paper presents our latest numerical simulations of accretion disks that are misaligned with respect to the rotation axis of a Kerr black hole. In this work, we use a new, fully conservative version of the Cosmos++ general relativistic magnetohydrodynamics (GRMHD) code, coupled with an ad hoc cooling function designed to control the thickness of the disk. Together these allow us to simulate the thinnest tilted accretion disks ever using a GRMHD code. In this way, we are able to probe the regime where the dimensionless stress and scale height of the disk become comparable. We present results for bothmore » prograde and retrograde cases. The simulated prograde tilted disk shows no sign of Bardeen-Petterson alignment even in the innermost parts of the disk. The simulated retrograde tilted disk, however, does show modest alignment. The implication of these results is that the parameter space associated with Bardeen-Petterson alignment for prograde disks may be rather small, only including very thin disks. Unlike our previous work, we find no evidence for standing shocks in our simulated tilted disks. We ascribe this to the black hole spin, tilt angle, and disk scale height all being small in these simulations. We also add to the growing body of literature pointing out that the turbulence driven by the magnetorotational instability in global simulations of accretion disks is not isotropic. Finally, we provide a comparison between our moderately thin, untilted reference simulation and other numerical simulations of thin disks in the literature.« less

  10. Hydrologic Triggering of Shallow Landslides in a Field-scale Flume

    NASA Astrophysics Data System (ADS)

    Reid, M. E.; Iverson, R. M.; Iverson, N. R.; Brien, D. L.; Lahusen, R. G.; Logan, M.

    2006-12-01

    Hydrologic Triggering of Shallow Landslides in a Field-scale Flume Mark E. Reid, Richard M. Iverson, Neal R. Iverson, Dianne L. Brien, Richard G. LaHusen, and Mathew Logan Shallow landslides are often triggered by pore-water pressure increases driven by 1) groundwater inflow from underlying bedrock or soil, 2) prolonged moderate-intensity rainfall or snowmelt, or 3) bursts of high-intensity rainfall. These shallow failures are difficult to capture in the field, limiting our understanding of how different water pathways control failure style or timing. We used the field-scale, USGS debris-flow flume for 7 controlled landslide initiation experiments designed to examine the influence of different hydrologic triggers and the role of soil density, relative to critical state, on failure style and timing. Using sprinklers and/or groundwater injectors, we induced failure in a 0.65m thick, 2m wide, 6m3 prism of loamy sand on a 31° slope, placed behind a retaining wall. We monitored ~50 sensors to measure soil deformation (tiltmeters & extensometers), pore pressure (tensiometers and transducers), and soil moisture (TDR probes). We also extracted soil samples for laboratory estimates of porosity, shear strength, saturated hydraulic conductivity at differing porosities, unsaturated moisture retention characteristics, and compressibility. Experiments with loose soil all resulted in abrupt failure along the concrete flume bed with rapid mobilization into a debris flow. Each of the 3 water pathways, however, resulted in slightly different pore-pressure fields at failure and different times to failure. For example, groundwater injection at the flume bed led to a saturated zone that advanced upward, wetting over half the soil prism before pressures at the bed were sufficient to provoke collapse. With moderate-intensity surface sprinkling, an unsaturated wetting front propagated downward until reaching the bed, then a saturated zone built upward, with the highest pressures at the bed. With the third trigger, soils were initially wetted (but not saturated) with moderate-intensity sprinkling and then subjected to a high-intensity burst, causing failure without widespread positive pressures. It appears that a small pressure perturbation from the burst traveled rapidly downward through tension-saturated soil and led to positive pressure development at the flume bed resulting in failure. In contrast, failures in experiments with stronger, denser soil were gradual and episodic, requiring both sprinkling and groundwater injection. Numerical simulations of variably saturated groundwater flow mimic the behaviors described above. Simulated rainfall with an intensity greater than soil hydraulic conductivity generates rapid pressure perturbations, whereas lower intensity rainfall leads to wetting front propagation and water table buildup. Our results suggest that transient responses induced by high intensity bursts require relatively high frequency monitoring of unsaturated zone changes; in this case conventional piezometers would be unlikely to detect failure-inducing pore pressure changes. These experiments also indicate that although different water pathways control the timing of failure, initial soil density controls the style of failure.

  11. The structure of disks around intermediate-mass young stars from mid-infrared interferometry. Evidence for a population of group II disks with gaps

    NASA Astrophysics Data System (ADS)

    Menu, J.; van Boekel, R.; Henning, Th.; Leinert, Ch.; Waelkens, C.; Waters, L. B. F. M.

    2015-09-01

    Context. The disks around Herbig Ae/Be stars are commonly divided into group I and group II based on their far-infrared spectral energy distribution, and the common interpretation for that is flared and flat disks. Our understanding of the evolution of these disks is rapidly changing. Recent observations suggest that many flaring disks have gaps, whereas flat disks are thought to be gapless. Aims: The different groups of objects can be expected to have different structural signatures in high-angular-resolution data, related to gaps, dust settling, and flaring. We aim to use such data to gain new insight into disk structure and evolution. Methods: Over the past 10 years, the MIDI instrument on the Very Large Telescope Interferometer has collected observations of several tens of protoplanetary disks. We modeled the large set of observations with simple geometric models and compared the characteristic sizes among the different objects. A population of radiative-transfer models was synthesized for interpreting the mid-infrared signatures. Results: Objects with similar luminosities show very different disk sizes in the mid-infrared. This may point to an intrinsic diversity or could also hint at different evolutionary stages of the disks. Restricting this to the young objects of intermediate mass, we confirm that most group I disks are in agreement with being transitional (i.e., they have gaps). We find that several group II objects have mid-infrared sizes and colors that overlap with sources classified as group I, transition disks. This suggests that these sources have gaps, which has been demonstrated for a subset of them. This may point to an intermediate population between gapless and transition disks. Conclusions: Flat disks with gaps are most likely descendants of flat disks without gaps. Potentially related to the formation of massive bodies, gaps may therefore even develop in disks in a far stage of grain growth and settling. The evolutionary implications of this new population could be twofold. Either gapped flat disks form a separate population of evolved disks or some of them may evolve further into flaring disks with large gaps. The latter transformation may be governed by the interaction with a massive planet, carving a large gap and dynamically exciting the grain population in the disk. Appendices A and B are available in electronic form at http://www.aanda.org

  12. Chondrites and the Protoplanetary Disk, Part 3

    NASA Technical Reports Server (NTRS)

    2004-01-01

    Contents include the following: Ca-, Al-Rich Inclusions and Ameoboid Olivine Aggregates: What We Know and Don t Know About Their Origin. Aluminium-26 and Oxygen Isotopic Distributions of Ca-Al-rich Inclusions from Acfer 214 CH Chondrite. The Trapping Efficiency of Helium in Fullerene and Its Implicatiion to the Planetary Science. Constraints on the Origin of Chondritic Components from Oxygen Isotopic Compositions. Role of Planetary Impacts in Thermal Processing of Chondrite Materials. Formation of the Melilite Mantle of the Type B1 CAIs: Flash Heating or Transport? The Iodine-Xenon System in Outer and Inner Portions of Chondrules from the Unnamed Antarctic LL3 Chondrite. Nucleosynthesis of Short-lived Radioactivities in Massive Stars. The Two-Fluid Analysis of the Kelvin-Helmholtz Instability in the Dust Layer of a Protoplanetary Disk: A Possible Path to the Planetesimal Formation Through the Gravitational Instability. Shock-Wave Heating Model for Chonodrule Formation: Heating Rate and Cooling Rate Constraints. Glycine Amide Hydrolysis with Water and OH Radical: A Comparative DFT Study. Micron-sized Sample Preparation for AFM and SEM. AFM, FE-SEM and Optical Imaging of a Shocked L/LL Chondrite: Implications for Martensite Formation and Wave Propagation. Infrared Spectroscopy of Chondrites and Their Components: A Link Between Meteoritics and Astronomy? Mid-Infrared Spectroscopy of CAI and Their Mineral Components. The Origin of Iron Isotope Fractionation in Chondrules, CAIs and Matrix from Allende (CV3) and Chainpur (LL3) Chondrites. Protoplanetary Disk Evolution: Early Results from Spitzer. Kinetics of Evaporation-Condensation in a Melt-Solid System and Its Role on the Chemical Composition and Evolution of Chondrules. Oxygen Isotope Exchange Recorded Within Anorthite Single Crystal in Vigarano CAI: Evidence for Remelting by High Temperature Process in the Solar Nebula. Chondrule Forming Shock Waves in Solar Nebula by X-Ray Flares. Organic Globules with Anormalous Nitrogen Isotopic Compositions in the Tagish Lake Meteorite: Products of Primitive Organic Reactions. Yet Another Chondrule Formation Scenario. CAIs are Not Supernova Condensates. Microcrystals and Amorphous Material in Comets and Primitive Meteorites: Keys to Understanding Processes in the Early Solar System. A Nearby Supernova Injected Short-lived Radionuclides into Our Protoplanetary Disk. REE+Y Systematics in CC and UOC Chondrules. Meteoritic Constraints on Temperatures, Pressures, Cooling Rates, Chemical Compositions, and Modes of Condensation in the Solar Nebula. The I-Xe Record of Long Equilibration in Chondrules from the Unnamed Antarctic Meteorite L3/LL3. Early Stellar Evolution.

  13. Detection of 3-Minute Oscillations in Full-Disk Lyman-alpha Emission During A Solar Flare

    NASA Astrophysics Data System (ADS)

    Milligan, R. O.; Ireland, J.; Fleck, B.; Hudson, H. S.; Fletcher, L.; Dennis, B. R.

    2017-12-01

    We report the detection of chromospheric 3-minute oscillations in disk-integrated EUV irradiance observations during a solar flare. A wavelet analysis of detrended Lyman-alpha (from GOES/EUVS) and Lyman continuum (from SDO/EVE) emission from the 2011 February 15 X-class flare revealed a 3-minute period present during the flare's main phase. The formation temperature of this emission locates this radiation to the flare's chromospheric footpoints, and similar behaviour is found in the SDO/AIA 1600A and 1700A channels, which are dominated by chromospheric continuum. The implication is that the chromosphere responds dynamically at its acoustic cutoff frequency to an impulsive injection of energy. Since the 3-minute period was not found at hard X-ray energies (50-100 keV) in RHESSI data we can state that this 3-minute oscillation does not depend on the rate of energization of, or energy deposition by, non-thermal electrons. However, a second period of 120 s found in both hard X-ray and chromospheric emission is consistent with episodic electron energization on 2-minute timescales. Our finding on the 3-minute oscillation suggests that chromospheric mechanical energy should be included in the flare energy budget, and the fluctuations in the Lyman-alpha line may influence the composition and dynamics of planetary atmospheres during periods of high activity.

  14. Detection of Δ9-tetrahydrocannabinol in exhaled breath collected from cannabis users.

    PubMed

    Beck, Olof; Sandqvist, Sören; Dubbelboer, Ilse; Franck, Johan

    2011-10-01

    Exhaled breath has recently been proposed as a new possible matrix for drugs of abuse testing. A key drug is cannabis, and the present study was aimed at investigating the possibility of detecting tetrahydrocannabinol and tetrahydrocannabinol carboxylic acid in exhaled breath after cannabis smoking. Exhaled breath was sampled from 10 regular cannabis users and 8 controls by directing the exhaled breath by suction through an Empore C(18) disk. The disk was extracted with hexane/ethyl acetate, and the resulting extract was evaporated to dryness and redissolved in 100 μL hexane/ethyl acetate. A 3-μL aliquot was injected onto the LC-MS-MS system and analyzed using positive electrospray ionization and selected reaction monitoring. In samples collected 1-12 h after cannabis smoking, tetrahydrocannabinol was detected in all 10 subjects. The rate of excretion was between 9.0 and 77.3 pg/min. Identification of tetrahydrocannabinol was based on correct retention time relative to tetrahydrocannabinol-d(3) and correct product ion ratio. In three samples, peaks were observed for tetrahydrocannabinol carboxylic acid, but these did not fulfill identification criteria. Neither tetrahydrocannabinol or tetrahydrocannabinol carboxylic acid was detected in the controls. These results confirm older reports that tetrahydrocannabinol is present in exhaled breath following cannabis smoking and extend the detection time from minutes to hours. The results further support the idea that exhaled breath is a promising matrix for drugs-of-abuse testing.

  15. Characterization of the Temperature Capabilities of Advanced Disk Alloy ME3

    NASA Technical Reports Server (NTRS)

    Gabb, Timothy P.; Telesman, Jack; Kantzos, Peter T.; OConnor, Kenneth

    2002-01-01

    The successful development of an advanced powder metallurgy disk alloy, ME3, was initiated in the NASA High Speed Research/Enabling Propulsion Materials (HSR/EPM) Compressor/Turbine Disk program in cooperation with General Electric Engine Company and Pratt & Whitney Aircraft Engines. This alloy was designed using statistical screening and optimization of composition and processing variables to have extended durability at 1200 F in large disks. Disks of this alloy were produced at the conclusion of the program using a realistic scaled-up disk shape and processing to enable demonstration of these properties. The objective of the Ultra-Efficient Engine Technologies disk program was to assess the mechanical properties of these ME3 disks as functions of temperature in order to estimate the maximum temperature capabilities of this advanced alloy. These disks were sectioned, machined into specimens, and extensively tested. Additional sub-scale disks and blanks were processed and selectively tested to explore the effects of several processing variations on mechanical properties. Results indicate the baseline ME3 alloy and process can produce 1300 to 1350 F temperature capabilities, dependent on detailed disk and engine design property requirements.

  16. Optical Tip Clearance Measurements as a Tool for Rotating Disk Characterization

    PubMed Central

    García, Iker; Zubia, Joseba; Beloki, Josu; Arrue, Jon; Durana, Gaizka; Aldabaldetreku, Gotzon

    2017-01-01

    An experimental investigation on the vibrational behavior of a rotating disk by means of three optical fiber sensors is presented. The disk, which is a scale model of the real disk of an aircraft engine, was assembled in a wind tunnel in order to simulate real operation conditions. The pressure difference between the upstream and downstream sides of the disk causes an airflow that might force the disk to vibrate. To characterize this vibration, a set of parameters was determined by measuring the tip clearance of the disk: the amplitude, the frequency and the number of nodal diameters in the disk. All this information allowed the design of an upgraded prototype of the disk, whose performance was also characterized by the same method. An optical system was employed for the measurements, in combination with a strain gauge mounted on the disk surface, which served to confirm the results obtained. The data of the strain gauge coincided closely with those provided by the optical fiber sensors, thus demonstrating the suitability of this innovative technique to evaluate the vibrational behavior of rotating disks. PMID:28098845

  17. Accretion Disks in Supersoft X-ray Sources

    NASA Technical Reports Server (NTRS)

    Popham, Robert; DiStefano, Rosanne

    1996-01-01

    We examine the role of the accretion disk in the steady-burning white dwarf model for supersoft sources. The accretion luminosity of the disk is quite small compared to the nuclear burning luminosity of the central source. Thus, in contrast to standard accretion disks, the main role of the disk is to reprocess the radiation from the white dwarf. We calculate models of accretion disks around luminous white dwarfs and compare the resulting disk fluxes to optical and UV observations of the LMC supersoft sources CAL 83, CAL 87, and RX J0513.9-6951. We find that if the white dwarf luminosity is near the upper end of the steady-burning region, and the flaring of the disk is included, then reprocessing by the disk can account for the UV fluxes and a substantial fraction of the optical fluxes of these systems. Reprocessing by the companion star can provide additional optical flux, and here too the disk plays an important role: since the disk is fairly thick, it shadows a significant fraction of the companion's surface.

  18. High power disk lasers: advances and applications

    NASA Astrophysics Data System (ADS)

    Havrilla, David; Holzer, Marco

    2011-02-01

    Though the genesis of the disk laser concept dates to the early 90's, the disk laser continues to demonstrate the flexibility and the certain future of a breakthrough technology. On-going increases in power per disk, and improvements in beam quality and efficiency continue to validate the genius of the disk laser concept. As of today, the disk principle has not reached any fundamental limits regarding output power per disk or beam quality, and offers numerous advantages over other high power resonator concepts, especially over monolithic architectures. With well over 1000 high power disk lasers installations, the disk laser has proven to be a robust and reliable industrial tool. With advancements in running cost, investment cost and footprint, manufacturers continue to implement disk laser technology with more vigor than ever. This paper will explain important details of the TruDisk laser series and process relevant features of the system, like pump diode arrangement, resonator design and integrated beam guidance. In addition, advances in applications in the thick sheet area and very cost efficient high productivity applications like remote welding, remote cutting and cutting of thin sheets will be discussed.

  19. Comparison of disk diffusion and agar dilution methods for gentamicin susceptibility testing of Neisseria gonorrhoeae.

    PubMed

    Gianecini, Ricardo; Oviedo, Claudia; Irazu, Lucia; Rodríguez, Marcelo; Galarza, Patricia

    2018-03-29

    Gentamicin is a promising antibiotic for the treatment of multidrug-resistant gonorrhea. The aim of this study was to analyze the suitability and reliably of disk diffusion to monitor the susceptibility to gentamicin. We studied 237 Neisseria gonorrhoeae isolates obtained in 2013 and 2015. Reference MICs were correlated with inhibition zone diameters (in millimeters) of gentamicin 10 µg disks manufactured by BBL and Oxoid. The Pearson correlation between disk diffusion and agar dilution was r = -.68 (P < 0.001) for BBL disk and r = -.71 (P < 0.001) for Oxoid disk. No very major or major discrepancies were detected. However, a high percentage of minor discrepancies was observed (44.7%, BBL disk) and (21.9%, Oxoid disk). By adjusting the susceptible breakpoint to S ≥ 17 mm, the minor discrepancies rate was reduced to 19.4% (BBL disk) and 10.1% (Oxoid disk). The disk diffusion may be a screening method in clinical laboratories to detect the gentamicin susceptibility of N. gonorrhoeae. Copyright © 2018 Elsevier Inc. All rights reserved.

  20. Foundations of Black Hole Accretion Disk Theory.

    PubMed

    Abramowicz, Marek A; Fragile, P Chris

    2013-01-01

    This review covers the main aspects of black hole accretion disk theory. We begin with the view that one of the main goals of the theory is to better understand the nature of black holes themselves. In this light we discuss how accretion disks might reveal some of the unique signatures of strong gravity: the event horizon, the innermost stable circular orbit, and the ergosphere. We then review, from a first-principles perspective, the physical processes at play in accretion disks. This leads us to the four primary accretion disk models that we review: Polish doughnuts (thick disks), Shakura-Sunyaev (thin) disks, slim disks, and advection-dominated accretion flows (ADAFs). After presenting the models we discuss issues of stability, oscillations, and jets. Following our review of the analytic work, we take a parallel approach in reviewing numerical studies of black hole accretion disks. We finish with a few select applications that highlight particular astrophysical applications: measurements of black hole mass and spin, black hole vs. neutron star accretion disks, black hole accretion disk spectral states, and quasi-periodic oscillations (QPOs).

  1. Evolution of protoplanetary disks from their taxonomy in scattered light: Group I vs. Group II

    NASA Astrophysics Data System (ADS)

    Garufi, A.; Meeus, G.; Benisty, M.; Quanz, S. P.; Banzatti, A.; Kama, M.; Canovas, H.; Eiroa, C.; Schmid, H. M.; Stolker, T.; Pohl, A.; Rigliaco, E.; Ménard, F.; Meyer, M. R.; van Boekel, R.; Dominik, C.

    2017-07-01

    Context. High-resolution imaging reveals a large morphological variety of protoplanetary disks. To date, no constraints on their global evolution have been found from this census. An evolutionary classification of disks was proposed based on their IR spectral energy distribution, with the Group I sources showing a prominent cold component ascribed to an earlier stage of evolution than Group II. Aims: Disk evolution can be constrained from the comparison of disks with different properties. A first attempt at disk taxonomy is now possible thanks to the increasing number of high-resolution images of Herbig Ae/Be stars becoming available. Methods: Near-IR images of six Group II disks in scattered light were obtained with VLT/NACO in polarimetric differential imaging, which is the most efficient technique for imaging the light scattered by the disk material close to the stars. We compare the stellar/disk properties of this sample with those of well-studied Group I sources available from the literature. Results: Three Group II disks are detected. The brightness distribution in the disk of HD 163296 indicates the presence of a persistent ring-like structure with a possible connection with the CO snowline. A rather compact (<100 AU) disk is detected around HD 142666 and AK Sco. A taxonomic analysis of 17 Herbig Ae/Be sources reveals that the difference between Group I and Group II is due to the presence or absence of a large disk cavity (≳5 AU). There is no evidence supporting the evolution from Group I to Group II. Conclusions: Group II disks are not evolved versions of the Group I disks. Within the Group II disks, very different geometries exist (both self-shadowed and compact). HD 163296 could be the primordial version of a typical Group I disk. Other Group II disks, like AK Sco and HD 142666, could be smaller counterparts of Group I unable to open cavities as large as those of Group I. Based on observations collected at the European Organisation for Astronomical Research in the Southern Hemisphere, Chile, under program number 095.C-0658(A).

  2. Childhood to adolescence: dust and gas clearing in protoplanetary disks

    NASA Astrophysics Data System (ADS)

    Brown, Joanna Margaret

    Disks are ubiquitous around young stars. Over time, disks dissipate, revealing planets that formed hidden by their natal dust. Since direct detection of young planets at small orbital radii is currently impossible, other tracers of planet formation must be found. One sign of disk evolution, potentially linked to planet formation, is the opening of a gap or inner hole in the disk. In this thesis, I have identified and characterized several cold disks with large inner gaps but retaining massive primordial outer disks. While cold disks are not common, with ~5% of disks showing signs of inner gaps, they provide proof that at least some disks evolve from the inside-out. These large gaps are equivalent to dust clearing from inside the Earth's orbit to Neptune's orbit or even the inner Kuiper belt. Unlike more evolved systems like our own, the central star is often still accreting and a large outer disk remains. I identified four cold disks in Spitzer 5-40 μm spectra and modeled these disks using a 2-D radiative transfer code to determine the gap properties. Outer gap radii of 20-45 AU were derived. However, spectrophotometric identification is indirect and model-dependent. To validate this interpretation, I observed three disks with a submillimeter interferometer and obtained the first direct images of the central holes. The images agree well with the gap sizes derived from the spectrophotometry. One system, LkH&alpha 330, has a very steep outer gap edge which seems more consistent with gravitational perturbation rather than gradual processes, such as grain growth and settling. Roughly 70% of cold disks show CO v=1&rarr 0 gas emission from the inner 1 AU and therefore are unlikely to have evolved due to photoevaporation. The derived rotation temperatures are significantly lower for the cold disks than disks without gaps. Unresolved (sub)millimeter photometry shows that cold disks have steeper colors, indicating that they are optically thin at these wavelengths, unlike their classical T Tauri star counterparts. The gaps are cleared of most ~100 μm sized grains as well as the ~10 μm sized grains visible in the mid-infrared as silicate emission features.

  3. Simulation assessment of the direct‐push permeameter for characterizing vertical variations in hydraulic conductivity

    USGS Publications Warehouse

    Liu, Gaisheng; Bohling, Geoffrey C.; Butler, James J.

    2008-01-01

    The direct‐push permeameter (DPP) is a tool for the in situ characterization of hydraulic conductivity (K) in shallow, unconsolidated formations. This device, which consists of a short screened section with a pair of pressure transducers near the screen, is advanced into the subsurface with direct‐push technology. K is determined through a series of injection tests conducted between advancements. Recent field work by Butler et al. (2007) has shown that the DPP holds great potential for describing vertical variations in K at an unprecedented level of detail, accuracy and speed. In this paper, the fundamental efficacy of the DPP is evaluated through a series of numerical simulations. These simulations demonstrate that the DPP can provide accurate K information under conditions commonly faced in the field. A single DPP test provides an effective K for the domain immediately surrounding the interval between the injection screen and the most distant pressure transducer. Features that are thinner than that interval can be quantified by reducing the vertical distance between successive tests and analyzing the data from all tests simultaneously. A particular advantage of the DPP is that, unlike most other single borehole techniques, a low‐K skin or a clogged screen has a minimal impact on the K estimate. In addition, the requirement that only steady‐shape conditions be attained allows for a dramatic reduction in the time required for each injection test.

  4. Application of geochemical techniques to deduce the reservoir performance of the Palinpinon Geothermal Field, Philippines - an update

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ramos-Candelaria, M.N.; Garcia, S.E.; Hermoso, D.Z.

    1997-12-31

    Regular monitoring of various geochemical parameters in the water and vapor phases of the production wells at the Palinpinon I and II sectors of the Southern Negros Geothermal Field have been useful in the identification of the dominant reservoir processes occurring related to the present exploitation strategy. Observed geochemical and physical changes in the output of production wells have dictated production and injection strategies adopted to maximize production to meet the steam requirements of the power plant. Correlation of both physical and chemical data have identified the following reservoir processes: (1) Injection breakthrough via the Ticala Fault of the highlymore » mineralized (Cl {approximately}8,000-10,500 mg/kg), isotopically enriched ({delta}{sup 18}O = -3.00{per_thousand}, {delta}{sup 2} H = -39{per_thousand}), and gas depleted brine for wells in the SW and central Puhagan. Injection breakthrough is also occurring in Palinpinon II and has resulted in temperature drops of 5-10{degrees}C.2. Pressure drawdown enhanced boiling in the liquid reservoir with steam separation of 220-240{degrees}C, feeding wells tapping the natural steam zone. However, enhanced drawdown has induced the entry of shallow acid steam condensate fluids in some wells (e.g. OK-7, PN-29D, PN-18D), which if not arrested could reduce production.« less

  5. Tracking the Disk Wind Behavior of MAXI J1305-704

    NASA Astrophysics Data System (ADS)

    Sinclair, Kimberly Poppy; Miller, Jon M.

    2017-01-01

    There is still much to be understood about black hole accretion disks and their relationship to black hole disk winds. In an attempt to better understand these relationships, we have analyzed the x-ray transient black hole binary MAXI J1305-704 during its outburst in 2012 in order to draw conclusions about the parameters of its disk. The source showed strong absorption signs, as detected by Chandra, on April 21, 2012. From this date on, we analyzed SWIFT observations of the source, using XSPEC from HEASOFT, in order to find strong signals of absorption. By modeling 67 successive observations over the period of 74 days, we were able to closely track the evolution of various disk properties, from inner disk temperature, to power law index, to column density. We could also analyze various parameter relationships in order to determine if there is a statistically significant correlation between any of the properties of a disk. We found that there are strong linear relationships between disk temperature & ionization, photon index & disk temperature, and photon index & ionization. These relationships seem to imply that the corona, in addition to the disk, may be driving the wind properties. Additionally, the counterintuitive relationship between disk temperature and ionization, where disk temperature increases as ionization decreases, seems to imply that there are mechanisms at play in the disk system that are not yet fully understood.

  6. Protostellar Disk Instabilities and the Formation of Substellar Companions

    NASA Astrophysics Data System (ADS)

    Pickett, Brian K.; Durisen, Richard H.; Cassen, Patrick; Mejia, Annie C.

    2000-09-01

    Recent numerical simulations of self-gravitating protostellar disks have suggested that gravitational instabilities can lead to the production of substellar companions. In these simulations, the disk is typically assumed to be locally isothermal; i.e., the initial, axisymmetric temperature in the disk remains everywhere unchanged. Such an idealized condition implies extremely efficient cooling for outwardly moving parcels of gas. While we have seen disk disruption in our own locally isothermal simulations of a small, massive protostellar disk, no long-lived companions formed as a result of the instabilities. Instead, thermal and tidal effects and the complex interactions of the disk material prevented permanent condensations from forming, despite the vigorous growth of spiral instabilities. In order to compare our results more directly with those of other authors, we here present three-dimensional evolutions of an older, larger, but less massive protostellar disk. We show that potentially long-lived condensations form only for the extreme of local isothermality, and then only when severe restrictions are placed on the natural tendency of the protostellar disk to expand in response to gravitational instabilities. A more realistic adiabatic evolution leads to vertical and radial expansion of the disk but no clump formation. We conclude that isothermal disk calculations cannot demonstrate companion formation by disk fragmentation but only suggest it at best. It will be necessary in future numerical work on this problem to treat the disk thermodynamics more realistically.

  7. The DiskMass Survey. II. Error Budget

    NASA Astrophysics Data System (ADS)

    Bershady, Matthew A.; Verheijen, Marc A. W.; Westfall, Kyle B.; Andersen, David R.; Swaters, Rob A.; Martinsson, Thomas

    2010-06-01

    We present a performance analysis of the DiskMass Survey. The survey uses collisionless tracers in the form of disk stars to measure the surface density of spiral disks, to provide an absolute calibration of the stellar mass-to-light ratio (Υ_{*}), and to yield robust estimates of the dark-matter halo density profile in the inner regions of galaxies. We find that a disk inclination range of 25°-35° is optimal for our measurements, consistent with our survey design to select nearly face-on galaxies. Uncertainties in disk scale heights are significant, but can be estimated from radial scale lengths to 25% now, and more precisely in the future. We detail the spectroscopic analysis used to derive line-of-sight velocity dispersions, precise at low surface-brightness, and accurate in the presence of composite stellar populations. Our methods take full advantage of large-grasp integral-field spectroscopy and an extensive library of observed stars. We show that the baryon-to-total mass fraction ({F}_bar) is not a well-defined observational quantity because it is coupled to the halo mass model. This remains true even when the disk mass is known and spatially extended rotation curves are available. In contrast, the fraction of the rotation speed supplied by the disk at 2.2 scale lengths (disk maximality) is a robust observational indicator of the baryonic disk contribution to the potential. We construct the error budget for the key quantities: dynamical disk mass surface density (Σdyn), disk stellar mass-to-light ratio (Υ^disk_{*}), and disk maximality ({F}_{*,max}^disk≡ V^disk_{*,max}/ V_c). Random and systematic errors in these quantities for individual galaxies will be ~25%, while survey precision for sample quartiles are reduced to 10%, largely devoid of systematic errors outside of distance uncertainties.

  8. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Currie, Thayne; Sicilia-Aguilar, Aurora

    We present Spitzer 3.6-24 {mu}m photometry and spectroscopy for stars in the 1-3 Myr old Coronet Cluster, expanding upon the survey of Sicilia-Aguilar et al. Using sophisticated radiative transfer models, we analyze these new data and those from Sicilia-Aguilar et al. to identify disks with evidence for substantial dust evolution consistent with disk clearing: transitional disks. We then analyze data in Taurus and others young clusters-IC 348, NGC 2362, and {eta} Cha-to constrain the transitional disk frequency as a function of time. Our analysis confirms previous results finding evidence for two types of transitional disks-those with inner holes and thosemore » that are homologously depleted. The percentage of disks in the transitional phase increases from {approx}15%-20% at 1-2 Myr to {>=}50% at 5-8 Myr; the mean transitional disk lifetime is closer to {approx}1 Myr than 0.1-0.5 Myr, consistent with previous studies by Currie et al. and Sicilia-Aguilar et al. In the Coronet Cluster and IC 348, transitional disks are more numerous for very low mass M3-M6 stars than for more massive K5-M2 stars, while Taurus lacks a strong spectral-type-dependent frequency. Assuming standard values for the gas-to-dust ratio and other disk properties, the lower limit for the masses of optically thick primordial disks is M{sub disk} {approx} 0.001-0.003 M{sub *}. We find that single color-color diagrams do not by themselves uniquely identify transitional disks or primordial disks. Full spectral energy distribution modeling is required to accurately assess disk evolution for individual sources and inform statistical estimates of the transitional disk population in large samples using mid-IR colors.« less

  9. The Long-Lived Disks in the η Chamaeleontis Cluster

    NASA Astrophysics Data System (ADS)

    Sicilia-Aguilar, Aurora; Bouwman, Jeroen; Juhász, Attila; Henning, Thomas; Roccatagliata, Veronica; Lawson, Warrick A.; Acke, Bram; Feigelson, Eric D.; Tielens, A. G. G. M.; Decin, Leen; Meeus, Gwendolyn

    2009-08-01

    We present Infrared Spectrograph spectra and revised Multiband Imaging Photometer photometry for the 18 members of the η Chamaeleontis cluster. Aged 8 Myr, the η Cha cluster is one of the few nearby regions within the 5-10 Myr age range, during which the disk fraction decreases dramatically and giant planet formation must come to an end. For the 15 low-mass members, we measure a disk fraction ~50%, high for their 8 Myr age, and four of the eight disks lack near-IR excesses, consistent with the empirical definition of "transition" disks. Most of the disks are comparable to geometrically flat disks. The comparison with regions of different ages suggests that at least some of the "transition" disks may represent the normal type of disk around low-mass stars. Therefore, their flattened structure and inner holes may be related to other factors (initial masses of the disk and the star, environment, binarity), rather than to pure time evolution. We analyze the silicate dust in the disk atmosphere, finding moderate crystalline fractions (~10%-30%) and typical grain sizes ~1-3 μm, without any characteristic trend in the composition. These results are common to other regions of different ages, suggesting that the initial grain processing occurs very early in the disk lifetime (<1 Myr). Large grain sizes in the disk atmosphere cannot be used as a proxy for age, but are likely related to higher disk turbulence. The dust mineralogy varies between the 8-12 μm and the 20-30 μm features, suggesting high temperature dust processing and little radial mixing. Finally, the analysis of IR and optical data on the B9 star η Cha reveals that it is probably surrounded by a young debris disk with a large inner hole, instead of being a classical Be star.

  10. Induced Seismicity of the Paradox Valley Brine Injection

    NASA Astrophysics Data System (ADS)

    Bachmann, C. E.; Foxall, W.; Daley, T. M.

    2013-12-01

    The Paradox Valley Unit (PVU) is operated by the U.S. Bureau of Reclamation (USBR) and is built to control the water quality of the Dolores River - a feeder of the Colorado River. Brine is extracted along the river from several shallow wells. Before it is injected into a 4.8km deep well for long-term storage, it is filtered at a surface-treatment facility. The target zone of the injection is a subhorizontal formation of a Mississippian-age limestone. The first injection test started in 1991, continuous injections started in 1996 and are still ongoing. The injection of the fluid in the underground induces micro-seismicity that is monitored by the USBR with the 15-station Paradox Valley Seismic Network. This network located more then 5700 events in the 20 years since the injection started. The locations of the seismic events give crucial insights to the pathways of the injected fluid. In this study we analyze the seismicity up to the end of 2011, which does not include the magnitude 3.9 event that caused a temporary shut down of the PVU in January 2013. The largest event included in our study period is an event with M4.3 of May 2000. The majority (75%) of events are micro-seismic events with magnitudes of 1 or smaller; only 74 events have magnitudes larger or equal to 2.5 of which only 4 are larger or equal to 3.5. Most of the seismicity is constrained to the vicinity of the injection well with roughly 80% of the events occurring within a 4km radius. However, there is one active zone more then 10 km away from the injection well that showed first activity in late 2010. More than 500 micro-seismic events occurred within several weeks in this new zone. The goal behind this study is to understand the processes behind a long-term injection of fluid into the underground where no circulation takes place. While other such projects exist, such as different wastewater injections, none of them has been monitored as well as the Paradox Valley seismicity and or has been going on for such a long time. We aim to get more insight of long-term processes so it can be applied to the study of Carbon Capture and Sequestration (CCS), where large volumes of carbon are injected into the underground for long-term storage. A first step is to understand the frequency magnitude distributions (FMD) of the ongoing seismicity at Paradox Valley better. We divide the events into sub-clusters and examine them individually. We find that the b-Values of the Gutenberg-Richter relationship change substantially within the different clusters from values of 0.7 to 1.2. Comparing the b-Values from this study with earlier studies of induced seismicity in from an Enhanced Geothermal System in Basel, Switzerland, we find that while the values are smaller, the overall pattern is surprisingly similar. We find the largest b-Values closest to the injection well and early on during the injections. Unlike in Basel, we can't compare co-injection and post-injection seismicity, as the injection is still ongoing. However, there are biannual 20-day shutdowns of the injection since 1999, which were implemented to reduce the risk of large magnitude events. We investigate the different behavior of the seismicity during this shut-in compared to the seismicity during the active injection.

  11. Multilayer Disk Reduced Interlayer Crosstalk with Wide Disk-Fabrication Margin

    NASA Astrophysics Data System (ADS)

    Hirotsune, Akemi; Miyauchi, Yasushi; Endo, Nobumasa; Onuma, Tsuyoshi; Anzai, Yumiko; Kurokawa, Takahiro; Ushiyama, Junko; Shintani, Toshimichi; Sugiyama, Toshinori; Miyamoto, Harukazu

    2008-07-01

    To reduce interlayer crosstalk caused by the ghost spot which appears in a multilayer optical disk with more than three information layers, a multilayer disk structure which reduces interlayer crosstalk with a wide disk-fabrication margin was proposed in which the backward reflectivity of the information layers is sufficiently low. It was confirmed that the interlayer crosstalk caused by the ghost spot was reduced to less than the crosstalk from the adjacent layer by controlling backward reflectivity. The wide disk-fabrication margin of the proposed disk structure was indicated by experimentally confirming that the tolerance of the maximum deviation of the spacer-layer thickness is four times larger than that in the previous multilayer disk.

  12. Reliability model of disk arrays RAID-5 with data striping

    NASA Astrophysics Data System (ADS)

    Rahman, P. A.; D'K Novikova Freyre Shavier, G.

    2018-03-01

    Within the scope of the this scientific paper, the simplified reliability model of disk arrays RAID-5 (redundant arrays of inexpensive disks) and an advanced reliability model offered by the authors taking into the consideration nonzero time of the faulty disk replacement and different failure rates of disks in normal state of the disk array and in degraded and rebuild states are discussed. The formula obtained by the authors for calculation of the mean time to data loss (MTTDL) of the RAID-5 disk arrays on basis of the advanced model is also presented. Finally, the technique of estimation of the initial reliability parameters, which are used in the reliability model, and the calculation examples of the mean time to data loss of the RAID-5 disk arrays for the different number of disks are also given.

  13. Vertical Structure of NGC 4631

    NASA Astrophysics Data System (ADS)

    Ann, Hong Bae; Seo, Mira Seo; Baek, Su-Ja

    2011-02-01

    We present a deep CCD imaging in B and V bands which allows us to analyze the vertical structure of NGC 4631. We derive the scale heights of the thin and thick disks at a variety of positions along the major axis of the disk. The scale heights of the thin disk are nearly constant while those of the thick disk tend to increase with increasing galactocentric distance. The mean scale heights of the thin disk derived from B and V images are similar to each other (˜450 pc). Instead, those of the thick disk show a strong east-west asymmetry which is caused by the diffuse stellar emission that is most prominent in the north west regions above the disk plane. The ratio of scale heights (z_{thick}/z_{thin}) is about 2.5 in the east side of the disk. However, this ratio is greater than 4 for the thick disk above the disk plane in the west side of the galaxy.

  14. Stagger angle dependence of inertial and elastic coupling in bladed disks

    NASA Technical Reports Server (NTRS)

    Crawley, E. F.; Mokadam, D. R.

    1984-01-01

    Conditions which necessitate the inclusion of disk and shaft flexibility in the analysis of blade response in rotating blade-disk-shaft systems are derived in terms of nondimensional parameters. A simple semianalytical Rayleigh-Ritz model is derived in which the disk possesses all six rigid body degrees of freedom, which are elastically constrained by the shaft. Inertial coupling by the rigid body motion of the disk on a flexible shaft and out-of-plane elastic coupling due to disk flexure are included. Frequency ratios and mass ratios, which depend on the stagger angle, are determined for three typical rotors: a first stage high-pressure core compressor, a high bypass ratio fan, and an advanced turboprop. The stagger angle controls the degree of coupling in the blade-disk system. In the blade-disk-shaft system, the stagger angle determines whether blade-disk motion couples principally to the out-of-plane or in-plane motion of the disk on the shaft. The Ritz analysis shows excellent agreement with experimental results.

  15. Burst Testing and Analysis of Superalloy Disks With a Dual Grain Microstructure

    NASA Technical Reports Server (NTRS)

    Gayda, John; Kantzos, Pete

    2006-01-01

    Elastic-plastic finite element analyses of room temperature burst tests on four superalloy disks were conducted and reported in this paper. Two alloys, Rene 104 (General Electric Aircraft Engines) and Alloy 10 (Honeywell Engines & Systems), were studied. For both alloys an advanced dual microstructure disk, fine grain bore and coarse grain rim, were analyzed and compared with conventional disks with uniform microstructures, coarse grain for Rene 104 and fine grain for Alloy 10. The analysis and experimental data were in good agreement up to burst. At burst, the analysis underestimated the speed and growth of the Rene 104 disks, but overestimated the speed and growth of the Alloy 10 disks. Fractography revealed that the Alloy 10 disks displayed significant surface microcracking and coalescence in comparison to Rene 104 disks. This phenomenon may help explain the differences between the Alloy 10 disks and the Rene 104 disks, as well as the observed deviations between analytical and experimental data at burst.

  16. Developmental changes in the adhesive disk during Giardia differentiation.

    PubMed

    Palm, Daniel; Weiland, Malin; McArthur, Andrew G; Winiecka-Krusnell, Jadwiga; Cipriano, Michael J; Birkeland, Shanda R; Pacocha, Sarah E; Davids, Barbara; Gillin, Frances; Linder, Ewert; Svärd, Staffan

    2005-06-01

    Giardia lamblia is a protozoan parasite infecting the upper mammalian small intestine. Infection relies upon the ability of the parasite to attach to the intestine via a unique cytoskeletal organelle, the ventral disk. We determined the composition and structure of the disk throughout the life cycle of the parasite and identified a new disk protein, SALP-1. SALP-1 is an immunodominant protein related to striated fiber-assemblin (SFA). The disk is disassembled during encystation and stored as four fragments in the immobile cyst. Serial Analysis of Gene Expression (SAGE) showed that the mRNA levels of the disk proteins decreased in encystation but two-dimensional protein gels showed that the protein levels were more constant. The parasite emerges without a functional disk but the four disk fragments are quickly reassembled into two new disks on the dividing, early excysting form. Thus, disk proteins are stored within the cyst, ready to be used in the rapid steps of excystation.

  17. Inner Structure in the TW Hya Circumstellar Disk

    NASA Astrophysics Data System (ADS)

    Akeson, Rachel L.; Millan-Gabet, R.; Ciardi, D.; Boden, A.; Sargent, A.; Monnier, J.; McAlister, H.; ten Brummelaar, T.; Sturmann, J.; Sturmann, L.; Turner, N.

    2011-05-01

    TW Hya is a nearby (50 pc) young stellar object with an estimated age of 10 Myr and signs of active accretion. Previous modeling of the circumstellar disk has shown that the inner disk contains optically thin material, placing this object in the class of "transition disks". We present new near-infrared interferometric observations of the disk material and use these data, as well as previously published, spatially resolved data at 10 microns and 7 mm, to constrain disk models based on a standard flared disk structure. Our model demonstrates that the constraints imposed by the spatially resolved data can be met with a physically plausible disk but this requires a disk containing not only an inner gap in the optically thick disk as previously suggested, but also some optically thick material within this gap. Our model is consistent with the suggestion by previous authors of a planet with an orbital radius of a few AU. This work was conducted at the NASA Exoplanet Science Institute, California Institute of Technology.

  18. Course 6: Star Formation

    NASA Astrophysics Data System (ADS)

    Natta, A.

    Contents 1 Introduction 2 Collapse of molecular cores 2.1 Giant molecular clouds and cores 2.2 Conditions for collapse 2.3 Free-fall collapse 2.4 Collapse of an isothermal sphere of gas 2.5 Collapse of a slowly rotating core 3 Observable properties of protostars 3.1 Evidence of infall from molecular line profiles 3.2 SEDs of protostars 3.3 The line spectrumof a protostar 4 Protostellar and pre-main-sequence evolution 4.1 The protostellar phase 4.2 Pre-main-sequence evolution 4.3 The birthline 5 Circumstellar disks 5.1 Accretion disks 5.2 Properties of steady accretion disks 5.3 Reprocessing disks 5.4 Disk-star interaction 6 SEDs of disks 6.1 Power-law disks 6.2 Long-wavelength flux and disk mass 6.3 Comparison with TTS observations: Heating mechanism 7 Disk properties from observations 7.1 Mass accretion rate 7.2 Inner radius 7.3 Masses 7.4 Sizes 8 Disk lifetimes 8.1 Ground-based near and mid-infrared surveys 8.2 Mid-infrared ISOCAMsurveys 8.3 ISOPHOT 60 microm survey 8.4 Surveys at millimeter wavelengths 9 Disk evolution 9.1 Can we observe the early planet formation phase? 9.2 Evidence for grain growth 9.3 Evidence of planetesimals 9.4 Where is the diskmass? 10 Secondary or debris disks 11 Summary

  19. Evidence for Different Disk Mass Distributions between Early- and Late-type Be Stars in the BeSOS Survey

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Arcos, C.; Kanaan, S.; Curé, M.

    The circumstellar disk density distributions for a sample of 63 Be southern stars from the BeSOS survey were found by modeling their H α emission line profiles. These disk densities were used to compute disk masses and disk angular momenta for the sample. Average values for the disk mass are 3.4 × 10{sup −9} and 9.5 × 10{sup −10} M {sub ⋆} for early (B0–B3) and late (B4–B9) spectral types, respectively. We also find that the range of disk angular momentum relative to the star is (150–200) J {sub ⋆}/ M {sub ⋆} and (100–150) J {sub ⋆}/ M {submore » ⋆}, again for early- and late-type Be stars, respectively. The distributions of the disk mass and disk angular momentum are different between early- and late-type Be stars at a 1% level of significance. Finally, we construct the disk mass distribution for the BeSOS sample as a function of spectral type and compare it to the predictions of stellar evolutionary models with rapid rotation. The observed disk masses are typically larger than the theoretical predictions, although the observed spread in disk masses is typically large.« less

  20. The SEEDS of Planet Formation: Observations of Transitional Disks

    NASA Technical Reports Server (NTRS)

    Grady, Carol A.

    2011-01-01

    As part of its 5-year study, the Strategic Exploration of Exoplanets and Disk Systems (SEEDS) has already observed a number of YSOs with circumstellar disks, including 13 0.5-8 Myr old A-M stars with indications that they host wide gaps or central cavities in their circumstellar disks in millimeter or far-IR observations, or from deficits in warm dust thermal emission. For 8 of the disks, the 0.15" inner working angle of HiCIAO+A0188 samples material in the millimeter or mid-IR identified cavity. In one case we report detection of a previously unrecognized wide gap. For the remaining 4 stars, the SEEDS data sample the outer disk: in 3 cases, we present the first NIR imagery of the disks. The data for the youngest sample members 1-2 Myr) closely resemble coeval primordial disks. After approximately 3 Myr, the transitional disks show a wealth of structure including spiral features, rings, divots, and in some cases, largely cleared gaps in the disks which are not seen in coeval primordial disks. Some of these structural features are predicted consequences of Jovian-mass planets having formed in the disk, while others are novel features. We discuss the implications for massive planet formation timescales and mechanisms.

Top