Crack-closure and crack-growth measurements in surface-flawed titanium alloy Ti6Al-4V
NASA Technical Reports Server (NTRS)
Elber, W.
1975-01-01
The crack-closure and crack-growth characteristics of the titanium alloy Ti-6Al-4V were determined experimentally on surface-flawed plate specimens. Under cyclic loading from zero to tension, cracks deeper than 1 mm opened at approximately 50 percent of the maximum load. Cracks shallower than 1 mm opened at higher loads. The correlation between crack-growth rate and the total stress-intensity range showed a lower threshold behavior. This behavior was attributed to the high crack-opening loads at short cracks because the lower threshold was much less evident in correlations between the crack-growth rates and the effective stress-intensity range.
NASA Technical Reports Server (NTRS)
Mcgowan, J. J.; Smith, C. W.
1974-01-01
A technique consisting of a marriage between stress freezing photoelasticity and a numerical method was used to obtain stress intensity factors for natural cracks emanating from the corner at which a hole intersects a plate surface. Geometrics studied were: crack depth to thickness ratios of approximately 0.2, 0.5, and 0.75; crack depth to crack length ratios of approximately 1.0 to 2.0. All final crack geometries were grown under monotonic loading and growth was not self similar with most of the growth occurring through the thickness under remote extension. Stress intensity plate surface K sub s factors were determined at the intersection of the flaw border with the plate surface K sub s and with the edge of the hole K sub h. Results showed that for the relatively shallow flaws K sub h approximately equal to 1.5 K sub s, for the moderately deep flaws K sub h approximately equal to K sub s, and for the deep flaws K sub h approximately equal to 0.5 K sub s, revealing a severe sensitivity of K to flaw geometry.
NASA Technical Reports Server (NTRS)
Mcgowan, J. J.; Smith, C. W.
1976-01-01
The stress intensity factors (SIFs) at the end points of flaws emanating from the corner formed by the intersection of a plate with a hole were determined using stress freezing photoelasticity and a numerical technique known as the Taylor series correction method to extract the SIF values from the photoelastic data. The geometries studied were crack depth to thickness ratios of about 0.2, 0.5, and 0.75; crack depth to crack length ratios of about 1.0 to 2.0; and crack length to hole radius ratios of about 0.5 to 2.0. The SIFs were determined at the intersection of the flaw border with the plate surface (KS) and with the edge of the hole (KH). It is shown that extension of a crack emanating from a corner of intersection of a hole with a plate under monotonically increasing load is not self-similar and that as the flaw depth increases, KH decreases and KS increases. Existing theories and design criteria significantly overestimate the SIF at both the hole and the surface except for shallow flaws at the hole and deep flaws at the surface.
NASA Astrophysics Data System (ADS)
Xu, Jun; Zheng, Zheyuan; Xiao, Xiaochun; Li, Zhaoxia
2018-06-01
Non-penetrating surface flaws play a key role in the fracture process of rock-like material, and could cause localized collapse and even failure of the materials. Until now, the mechanism and the effect of surface crack propagation have remained unclear. In this paper, compression tests on gypsum (a soft rock material) are conducted to investigate crack propagation and coalescence due to non-penetrating surface flaws and their effect on the material strength. Specimens are tested under dual pre-existing surface flaws with various combinations of depth and spacing. The results show that when the pre-existing flaws are non-penetrating, the d/t ratio (flaw depth ratio, d is the pre-existing flaw cutting depth and t is the specimen thickness) and the spacing (the distance between the two flaw internal tips) have a strong influence on surface crack patterns and specimen strength. Few cracks emanate from the pre-existing flaws when the flaw depth ratio is equal to 1/3, and more cracks occur with the increase of the flaw depth ratio. When the pre-existing flaw penetrates completely through the specimen, the spacing has a small effect on the specimen strength. A larger flaw depth ratio could advance the occurrence of the peak load (PL) and result in a smaller specimen residual strength. The failure process of the specimen is divided into several stages featured by a stepped decline of the load value after PL, which is closely related to the initiation and propagation of secondary cracks. In addition, the spalling (failure of a portion of the surface caused by coalescence of cracks) can be regarded as indicating the failure of the specimen, and two possible types of spalling formation are briefly discussed.
NASA Astrophysics Data System (ADS)
Lin, Yung-Chiang; Cheng, Chia-Chi; Wang, Hong-Hua; Hsu, Keng-Tsang; Chiang, Chih-Hung
2018-03-01
A new flaw detection method for concrete plate-like structure is realized using the dispersion profile of the group velocity of surface waves obtained by a sensor with proper distance from the transient impacting load. The waveform obtained by the sensor is analyzed using STFT and reassigned method to obtain a group velocity spectrogram. The delaminating crack or honeycomb which locates underneath the test line between the impactor and the receiver as well as the low-density layer on top of sound concrete are proved to be detectable in both numerical and experimental studies. The velocity turning point in the wavelength-velocity profile is about 1.6 to 2.2 times of the depths of the flaws or the low-density layer wavelength. As the proposed method is easy to operate, inexpensive and effective on solving many problems of concrete deterioration, one essential question to be concerned is the effect of dense reinforcing rebar to the stress wave propagation. In this preliminary study, the theoretical modal dispersion curves for a plain concrete plate and a concrete plate containing a thin steel layer are compared. A 2D numerical model with concrete and steel layers was constructed. The images of slowness spectrograms obtained by placing impactor and receiver at variant distances are compared with theoretical modal dispersion curve. Experiments are performed on a heavy lattice arranged bridge pier. The results show that the response of the rebar layers is near 0.3 ms/m in slowness spectrogram instead of around 0.5 ms/m plain concrete. The steel rebar layer affects the results more severely when the test line is parallel to the direction of shallower rebars. For more clearly observing the condition of concrete, one can filter the response in the waveform with the time less than 0.4 ms/m multiplying the impactor-receiver distance.
On fractography of shallow and deep HY-100 cracked bend specimens
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yuan, D.W.; Zarzour, J.F.; Kleinosky, M.J.
1994-12-01
The influence of shallow cracks on the fracture behavior of structural components has been studied extensively in recent years. Finite element analyses have indicated dramatic differences in the crack-tip stress states between shallow and deep cracked bend specimens. In this study, an experimental program was carried out to investigate the fracture behavior of HY-100 steel containing various initial flaw depths. Four a/w ratios ranging from 0.05 to 0.5 were chosen for the notched three-point bend tests. Test results showed that higher fracture toughness values are associated with specimens having shorter surface cracks. Also, fractographic studies indicated that two sets ofmore » dimples are present for a/w = 0.5 specimen, one set of equiaxed dimple for a/w = 0.05 specimen near the crack initiation zone. As the crack grows, increase in the volume fraction of the small dimple were observed. Finally, it showed that the characteristic features of the fracture surfaces can be correlated with the previous numerical predictions.« less
NASA Technical Reports Server (NTRS)
Shah, R. C.
1974-01-01
This experimental program was undertaken to determine the effects of (1) combined tensile and bending loadings, (2) combined tensile and shear loadings, and (3) proof overloads on fracture and flaw growth characteristics of aerospace alloys. Tests were performed on four alloys: 2219-T87 aluminum, 5Al-2.5Sn (ELl) titanium, 6Al-4V beta STA titanium and high strength 4340 steel. Tests were conducted in room air, gaseous nitrogen at -200F (144K), liquid nitrogen and liquid hydrogen. Flat center cracked and surface flawed specimens, cracked tube specimens, circumferentially notched round bar and surface flawed cylindrical specimens were tested. The three-dimensional photoelastic technique of stress freezing and slicing was used to determine stress intensity factors for surface flawed cylindrical specimens subjected to tension or torsion. Results showed that proof load/temperature histories used in the tests have a small beneficial effect or no effect on subsequent fracture strength and flaw growth rates.
Fatigue loading and R-curve behavior of a dental glass-ceramic with multiple flaw distributions.
Joshi, Gaurav V; Duan, Yuanyuan; Della Bona, Alvaro; Hill, Thomas J; St John, Kenneth; Griggs, Jason A
2013-11-01
To determine the effects of surface finish and mechanical loading on the rising toughness curve (R-curve) behavior of a fluorapatite glass-ceramic (IPS e.max ZirPress) and to determine a statistical model for fitting fatigue lifetime data with multiple flaw distributions. Rectangular beam specimens were fabricated by pressing. Two groups of specimens (n=30) with polished (15 μm) or air abraded surface were tested under rapid monotonic loading in oil. Additional polished specimens were subjected to cyclic loading at 2 Hz (n=44) and 10 Hz (n=36). All fatigue tests were performed using a fully articulated four-point flexure fixture in 37°C water. Fractography was used to determine the critical flaw size and estimate fracture toughness. To prove the presence of R-curve behavior, non-linear regression was used. Forward stepwise regression was performed to determine the effects on fracture toughness of different variables, such as initial flaw type, critical flaw size, critical flaw eccentricity, cycling frequency, peak load, and number of cycles. Fatigue lifetime data were fit to an exclusive flaw model. There was an increase in fracture toughness values with increasing critical flaw size for both loading methods (rapid monotonic loading and fatigue). The values for the fracture toughness ranged from 0.75 to 1.1 MPam(1/2) reaching a plateau at different critical flaw sizes based on loading method. Cyclic loading had a significant effect on the R-curve behavior. The fatigue lifetime distribution was dependent on the flaw distribution, and it fit well to an exclusive flaw model. Copyright © 2013 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.
Fatigue loading and R-curve behavior of a dental glass-ceramic with multiple flaw distributions
Joshi, Gaurav V.; Duan, Yuanyuan; Bona, Alvaro Della; Hill, Thomas J.; John, Kenneth St.; Griggs, Jason A.
2013-01-01
Objectives To determine the effects of surface finish and mechanical loading on the rising toughness curve (R-curve) behavior of a fluorapatite glass-ceramic (IPS e.max ZirPress) and to determine a statistical model for fitting fatigue lifetime data with multiple flaw distributions. Materials and Methods Rectangular beam specimens were fabricated by pressing. Two groups of specimens (n=30) with polished (15 μm) or air abraded surface were tested under rapid monotonic loading in oil. Additional polished specimens were subjected to cyclic loading at 2 Hz (n=44) and 10 Hz (n=36). All fatigue tests were performed using a fully articulated four-point flexure fixture in 37°C water. Fractography was used to determine the critical flaw size and estimate fracture toughness. To prove the presence of R-curve behavior, non-linear regression was used. Forward stepwise regression was performed to determine the effects on fracture toughness of different variables, such as initial flaw type, critical flaw size, critical flaw eccentricity, cycling frequency, peak load, and number of cycles. Fatigue lifetime data were fit to an exclusive flaw model. Results There was an increase in fracture toughness values with increasing critical flaw size for both loading methods (rapid monotonic loading and fatigue). The values for the fracture toughness ranged from 0.75 to 1.1 MPa·m1/2 reaching a plateau at different critical flaw sizes based on loading method. Significance Cyclic loading had a significant effect on the R-curve behavior. The fatigue lifetime distribution was dependent on the flaw distribution, and it fit well to an exclusive flaw model. PMID:24034441
Fatigue flaw growth behavior in stiffened and unstiffened panels loaded in biaxial tension
NASA Technical Reports Server (NTRS)
Beck, E. J.
1973-01-01
The effect was investigated of biaxial loading on the flaw growth rate of 2219-T87 aluminum alloy that would be typical of Space Shuttle cryogenic tankage design. The stress distribution and stress concentration factors for several integrally stiffened panels under various loading conditions were obtained. The flaw growth behavior of both stiffened and unstiffened panels under biaxial loading conditions was determined. The effect of a complex stress state was studied by introducing flaws in fillet areas of biaxially loaded stiffened panels.
Stress Intensity Factor Plasticity Correction for Flaws in Stress Concentration Regions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Friedman, E.; Wilson, W.K.
2000-02-01
Plasticity corrections to elastically computed stress intensity factors are often included in brittle fracture evaluation procedures. These corrections are based on the existence of a plastic zone in the vicinity of the crack tip. Such a plastic zone correction is included in the flaw evaluation procedure of Appendix A to Section XI of the ASME Boiler and Pressure Vessel Code. Plasticity effects from the results of elastic and elastic-plastic explicit flaw finite element analyses are examined for various size cracks emanating from the root of a notch in a panel and for cracks located at fillet fadii. The results ofmore » these caluclations provide conditions under which the crack-tip plastic zone correction based on the Irwin plastic zone size overestimates the plasticity effect for crack-like flaws embedded in stress concentration regions in which the elastically computed stress exceeds the yield strength of the material. A failure assessment diagram (FAD) curve is employed to graphically c haracterize the effect of plasticity on the crack driving force. The Option 1 FAD curve of the Level 3 advanced fracture assessment procedure of British Standard PD 6493:1991, adjusted for stress concentration effects by a term that is a function of the applied load and the ratio of the local radius of curvature at the flaw location to the flaw depth, provides a satisfactory bound to all the FAD curves derived from the explicit flaw finite element calculations. The adjusted FAD curve is a less restrictive plasticity correction than the plastic zone correction of Section XI for flaws embedded in plastic zones at geometric stress concentrators. This enables unnecessary conservatism to be removed from flaw evaluation procedures that utilize plasticity corrections.« less
Design Manual for Impact Damage Tolerant Aircraft Structure. Addendum
1988-03-01
Effective Flaw Size 20 22 Effective Flaws for Cubical Fragments Impacting Graphite/Epoxy Laminates 21 23 Effective Flaws for Aligned and Tumbled Armour ... armour -piercing projectiles impact, penetrate, and traverse a fuel tank and generate intensive pressure waves that act on the fuel tank. Since...eg. aerodynamic smoothnessflutter, etc.) and the repai concept (eag boiled repar external bonded pateh. flush scar bonded patch, etc., and (3) dhe
NASA Astrophysics Data System (ADS)
Sakata, Yoshitaro; Terasaki, Nao; Sakai, Kazufumi; Nonaka, Kazuhiro
2016-03-01
Fine polishing techniques, such as chemical mechanical polishing (CMP), are important to glass substrate manufacturing. When these techniques involve mechanical interaction in the form of friction between the abrasive and the substrate surface during polishing, latent flaws may form on the product. Fine polishing induced latent flaws in glass substrates may become obvious during a subsequent cleaning process if the glass surface is eroded away by chemical interaction with a cleaning liquid. Thus, latent flaws reduce product yield. A novel technique (the stress-induced light scattering method; SILSM) which was combined with light scattering method and stress effects was proposed for inspecting surface to detect polishing induced latent flaws. This method is able to distinguish between latent flaws and tiny particles on the surface. In this method, an actuator deforms a sample inducing stress effects around the tip of a latent flaw caused by the deformation, which in turn changes the refractive index of the material around the tip of the latent flaw because of the photoelastic effect. A CCD camera detects this changed refractive index as variations in light-scattering intensity. In this study, the changes in reflection coefficients and polarization states after application of stress to a glass substrate were calculated and evaluated qualitatively using Jones matrix-like ellipsometry. As the results, it was shown that change in the polarization states around the tip of latent flaw were evaluated between before and after applied stress, qualitatively.
Modeling the X-Ray Process, and X-Ray Flaw Size Parameter for POD Studies
NASA Technical Reports Server (NTRS)
Khoshti, Ajay
2014-01-01
Nondestructive evaluation (NDE) method reliability can be determined by a statistical flaw detection study called probability of detection (POD) study. In many instances the NDE flaw detectability is given as a flaw size such as crack length. The flaw is either a crack or behaving like a crack in terms of affecting the structural integrity of the material. An alternate approach is to use a more complex flaw size parameter. The X-ray flaw size parameter, given here, takes into account many setup and geometric factors. The flaw size parameter relates to X-ray image contrast and is intended to have a monotonic correlation with the POD. Some factors such as set-up parameters including X-ray energy, exposure, detector sensitivity, and material type that are not accounted for in the flaw size parameter may be accounted for in the technique calibration and controlled to meet certain quality requirements. The proposed flaw size parameter and the computer application described here give an alternate approach to conduct the POD studies. Results of the POD study can be applied to reliably detect small flaws through better assessment of effect of interaction between various geometric parameters on the flaw detectability. Moreover, a contrast simulation algorithm for a simple part-source-detector geometry using calibration data is also provided for the POD estimation.
Modeling the X-ray Process, and X-ray Flaw Size Parameter for POD Studies
NASA Technical Reports Server (NTRS)
Koshti, Ajay M.
2014-01-01
Nondestructive evaluation (NDE) method reliability can be determined by a statistical flaw detection study called probability of detection (POD) study. In many instances, the NDE flaw detectability is given as a flaw size such as crack length. The flaw is either a crack or behaving like a crack in terms of affecting the structural integrity of the material. An alternate approach is to use a more complex flaw size parameter. The X-ray flaw size parameter, given here, takes into account many setup and geometric factors. The flaw size parameter relates to X-ray image contrast and is intended to have a monotonic correlation with the POD. Some factors such as set-up parameters, including X-ray energy, exposure, detector sensitivity, and material type that are not accounted for in the flaw size parameter may be accounted for in the technique calibration and controlled to meet certain quality requirements. The proposed flaw size parameter and the computer application described here give an alternate approach to conduct the POD studies. Results of the POD study can be applied to reliably detect small flaws through better assessment of effect of interaction between various geometric parameters on the flaw detectability. Moreover, a contrast simulation algorithm for a simple part-source-detector geometry using calibration data is also provided for the POD estimation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Simonen, Fredric A.; Gosselin, Stephen R.; Doctor, Steven R.
2013-04-22
This document describes a new method to determine whether the flaws in a particular reactor pressure vessel are consistent with the assumptions regarding the number and sizes of flaws used in the analyses that formed the technical justification basis for the new voluntary alternative Pressurized Thermal Shock (PTS) rule (Draft 10 CFR 50.61a). The new methodology addresses concerns regarding prior methodology because ASME Code Section XI examinations do not detect all fabrication flaws, they have higher detection performance for some flaw types, and there are flaw sizing errors always present (e.g., significant oversizing of small flaws and systematic under sizingmore » of larger flaws). The new methodology allows direct comparison of ASME Code Section XI examination results with values in the PTS draft rule Tables 2 and 3 in order to determine if the number and sizes of flaws detected by an ASME Code Section XI examination are consistent with those assumed in the probabilistic fracture mechanics calculations performed in support of the development of 10 CFR 50.61a.« less
NASA Astrophysics Data System (ADS)
Cui, Ximing; Wang, Zhe; Kang, Yihua; Pu, Haiming; Deng, Zhiyang
2018-05-01
Singular value decomposition (SVD) has been proven to be an effective de-noising tool for flaw echo signal feature detection in ultrasonic non-destructive evaluation (NDE). However, the uncertainty in the arbitrary manner of the selection of an effective singular value weakens the robustness of this technique. Improper selection of effective singular values will lead to bad performance of SVD de-noising. What is more, the computational complexity of SVD is too large for it to be applied in real-time applications. In this paper, to eliminate the uncertainty in SVD de-noising, a novel flaw indicator, named the maximum singular value indicator (MSI), based on short-time SVD (STSVD), is proposed for flaw feature detection from a measured signal in ultrasonic NDE. In this technique, the measured signal is first truncated into overlapping short-time data segments to put feature information of a transient flaw echo signal in local field, and then the MSI can be obtained from the SVD of each short-time data segment. Research shows that this indicator can clearly indicate the location of ultrasonic flaw signals, and the computational complexity of this STSVD-based indicator is significantly reduced with the algorithm proposed in this paper. Both simulation and experiments show that this technique is very efficient for real-time application in flaw detection from noisy data.
Strengths of balloon films with flaws and repairs
NASA Technical Reports Server (NTRS)
Portanova, M. A.
1989-01-01
The effects of manufacture flaws and repairs in high altitude scientific balloons was examined. A right circular cylinder was used to induce a biaxial tension-tension stress field in the polyethlene film used to manufacture these balloons. A preliminary investigation of the effect that cylinder geometry has on stress rate as a function of inflation rate was conducted. The ultimate goal was to rank, by order of degrading effects, the flaws and repairs commonly found in current high altitude balloons.
NASA Astrophysics Data System (ADS)
Wang, Ruzhuan; Li, Xiaobo; Wang, Jing; Jia, Bi; Li, Weiguo
2018-06-01
This work shows a new rational theoretical model for quantitatively predicting fracture strength and critical flaw size of the ZrB2-ZrC composites at different temperatures, which is based on a new proposed temperature dependent fracture surface energy model and the Griffith criterion. The fracture model takes into account the combined effects of temperature and damage terms (surface flaws and internal flaws) with no any fitting parameters. The predictions of fracture strength and critical flaw size of the ZrB2-ZrC composites at high temperatures agree well with experimental data. Then using the theoretical method, the improvement and design of materials are proposed. The proposed model can be used to predict the fracture strength, find the critical flaw and study the effects of microstructures on the fracture mechanism of the ZrB2-ZrC composites at high temperatures, which thus could become a potential convenient, practical and economical technical means for predicting fracture properties and material design.
Quantitative flaw characterization with scanning laser acoustic microscopy
NASA Technical Reports Server (NTRS)
Generazio, E. R.; Roth, D. J.
1986-01-01
Surface roughness and diffraction are two factors that have been observed to affect the accuracy of flaw characterization with scanning laser acoustic microscopy. In accuracies can arise when the surface of the test sample is acoustically rough. It is shown that, in this case, Snell's law is no longer valid for determining the direction of sound propagation within the sample. The relationship between the direction of sound propagation within the sample, the apparent flaw depth, and the sample's surface roughness is investigated. Diffraction effects can mask the acoustic images of minute flaws and make it difficult to establish their size, depth, and other characteristics. It is shown that for Fraunhofer diffraction conditions the acoustic image of a subsurface defect corresponds to a two-dimensional Fourier transform. Transforms based on simulated flaws are used to infer the size and shape of the actual flaw.
Effect of thermal profile on cyclic flaw growth in aluminum
NASA Technical Reports Server (NTRS)
Engstrom, W. L.
1975-01-01
Surface flawed and single edge notch tension specimens of 2219-T851 and -T87 aluminum were tested to determine static fracture characteristics and base line (constant amplitude, constant temperature) cyclic flaw growth behavior. Subsequent testing was then conducted in which flawed specimens were subjected to a thermal profile in which the applied stress was varied simultaneously with the temperature. The profile used represents a simplified space shuttle orbiter load/temperature flight cycle. Test temperatures included the range from 144K (-200 F) up to 450K (350 F). The measured flaw growth rates obtained from the thermal profile tests were then compared with rates predicted by assuming linear cumulative damage of base line rates.
Progress on ultrasonic flaw sizing in turbine-engine rotor components: bore and web geometries
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rose, J.H.; Gray, T.A.; Thompson, R.B.
1983-01-01
The application of generic flaw-sizing techniques to specific components generally involves difficulties associated with geometrical complexity and simplifications arising from a knowledge of the expected flaw distribution. This paper is concerned with the case of ultrasonic flaw sizing in turbine-engine rotor components. The sizing of flat penny-shaped cracks in the web geometry discussed and new crack-sizing algorithms based on the Born and Kirchhoff approximations are introduced. Additionally, we propose a simple method for finding the size of a flat, penny-shaped crack given only the magnitude of the scattering amplitude. The bore geometry is discussed with primary emphasis on the cylindricalmore » focusing of the incident beam. Important questions which are addressed include the effects of diffraction and the position of the flaw with respect to the focal line. The appropriate deconvolution procedures to account for these effects are introduced. Generic features of the theory are compared with experiment. Finally, the effects of focused transducers on the Born inversion algorithm are discussed.« less
The fracture behavior of filament wound cylinders with surface flaws
NASA Technical Reports Server (NTRS)
Harris, C. E.; Morris, D. H.; Poe, C. C., Jr.
1985-01-01
The behavior of tensile coupons with surface notches of various semielliptical shapes has been evaluated for specimens obtained from a thick filament wound graphite/epoxy cylinder. Specimens with very shallow notches were observed to be notch insensitive and the unnotched strength from these specimens was determined to be 54.97 Ksi with an associated failure strain of 1.328 percent. Specimens with deeper notches were sensitive to notch depth and notch aspect ratio. Isotropic linear elastic fracture mechanics with an estimated fracture toughness of 27.2 Ksi-in.-to the 1/2 correctly predicted the influence of notch depth, aspect ratio and specimen finite width.
NASA Technical Reports Server (NTRS)
Masters, J. N.; Bixler, W. D.; Finger, R. W.
1973-01-01
Conditions controlling the growth and fracture of deep surface flaws in aerospace alloys were investigated. Static fracture tests were performed on 7075-T651 and 2219-T87 aluminum, and 6Ai-4V STA titanium . Cyclic flaw growth tests were performed on the two latter alloys, and sustain load tests were performed on the titanium alloy. Both the cyclic and the sustain load tests were performed with and without a prior proof overload cycle to investigate possible growth retardation effects. Variables included in all test series were thickness, flaw depth-to-thickness ratio, and flaw shape. Results were analyzed and compared with previously developed data to determine the limits of applicability of available modified linear elastic fracture solutions.
Detection of fatigue cracks by nondestructive testing methods
NASA Technical Reports Server (NTRS)
Anderson, R. T.; Delacy, T. J.; Stewart, R. C.
1973-01-01
The effectiveness was assessed of various NDT methods to detect small tight cracks by randomly introducing fatigue cracks into aluminum sheets. The study included optimizing NDT methods calibrating NDT equipment with fatigue cracked standards, and evaluating a number of cracked specimens by the optimized NDT methods. The evaluations were conducted by highly trained personnel, provided with detailed procedures, in order to minimize the effects of human variability. These personnel performed the NDT on the test specimens without knowledge of the flaw locations and reported on the flaws detected. The performance of these tests was measured by comparing the flaws detected against the flaws present. The principal NDT methods utilized were radiographic, ultrasonic, penetrant, and eddy current. Holographic interferometry, acoustic emission monitoring, and replication methods were also applied on a reduced number of specimens. Generally, the best performance was shown by eddy current, ultrasonic, penetrant and holographic tests. Etching provided no measurable improvement, while proof loading improved flaw detectability. Data are shown that quantify the performances of the NDT methods applied.
Deep flaws in weldments of aluminum and titanium
NASA Technical Reports Server (NTRS)
Masters, J. N.; Engstrom, W. L.; Bixler, W. D.
1974-01-01
Surface flawed specimens of 2219-T87 and 6Al-4V STA titanium weldments were tested to determine static failure modes, failure strength, and fatigue flaw growth characteristics. Thicknesses selected for this study were purposely set at values where, for most test conditions, abrupt instability of the flaw at fracture would not be expected. Static tests for the aluminum weldments were performed at room, LN2 and LH2 temperatures. Titanium static tests for tests were performed at room and LH2 temperatures. Results of the static tests were used to plot curves relating initial flaw size to leakage- or failure-stresses (i.e. "failure" locus curves). Cyclic tests, for both materials, were then performed at room temperature, using initial flaws only slightly below the previously established failure locus for typical proof stress levels. Cyclic testing was performed on pairs of specimens, one with and one without a simulated proof test cycle. Comparisons were made then to determine the value and effect of proof testing as affected by the various variables of proof and operating stress, flaw shape, material thickness, and alloy.
The effectiveness of the practice of correction and republication in the biomedical literature
Peterson, Gabriel M
2010-01-01
Objective: This research measures the effectiveness of the practice of correction and republication of invalidated articles in the biomedical literature by analyzing the rate of citation of the flawed and corrected versions of scholarly articles over time. If the practice of correction and republication is effective, then the incidence of citation of flawed versions should diminish over time and increased incidence of citation of the republication should be observed. Methods: This is a bibliometric study using citation analysis and statistical analysis of pairs of flawed and corrected articles in MEDLINE and Web of Science. Results: The difference between citation levels of flawed originals and corrected republications does not approach statistical significance until eight to twelve years post-republication. Results showed substantial variability among bibliographic sources in their provision of authoritative bibliographic information. Conclusions: Correction and republication is a marginally effective biblioremediative practice. The data suggest that inappropriate citation behavior may be partly attributable to author ignorance. PMID:20428278
Usability Flaws in Medication Alerting Systems: Impact on Usage and Work System.
Marcilly, R; Ammenwerth, E; Roehrer, E; Pelayo, S; Vasseur, F; Beuscart-Zéphir, M-C
2015-08-13
Previous research has shown that medication alerting systems face usability issues. There has been no previous attempt to systematically explore the consequences of usability flaws in such systems on users (i.e. usage problems) and work systems (i.e. negative outcomes). This paper aims at exploring and synthesizing the consequences of usability flaws in terms of usage problems and negative outcomes on the work system. A secondary analysis of 26 papers included in a prior systematic review of the usability flaws in medication alerting was performed. Usage problems and negative outcomes were extracted and sorted. Links between usability flaws, usage problems, and negative outcomes were also analyzed. Poor usability generates a large variety of consequences. It impacts the user from a cognitive, behavioral, emotional, and attitudinal perspective. Ultimately, usability flaws have negative consequences on the workflow, the effectiveness of the technology, the medication management process, and, more importantly, patient safety. Only few complete pathways leading from usability flaws to negative outcomes were identified. Usability flaws in medication alerting systems impede users, and ultimately their work system, and negatively impact patient safety. Therefore, the usability dimension may act as a hidden explanatory variable that could explain, at least partly, the (absence of) intended outcomes of new technology.
Usability Flaws in Medication Alerting Systems: Impact on Usage and Work System
Ammenwerth, E.; Roehrer, E.; Pelayo, S.; Vasseur, F.; Beuscart-Zéphir, M.-C.
2015-01-01
Summary Objectives Previous research has shown that medication alerting systems face usability issues. There has been no previous attempt to systematically explore the consequences of usability flaws in such systems on users (i.e. usage problems) and work systems (i.e. negative outcomes). This paper aims at exploring and synthesizing the consequences of usability flaws in terms of usage problems and negative outcomes on the work system. Methods A secondary analysis of 26 papers included in a prior systematic review of the usability flaws in medication alerting was performed. Usage problems and negative outcomes were extracted and sorted. Links between usability flaws, usage problems, and negative outcomes were also analyzed. Results Poor usability generates a large variety of consequences. It impacts the user from a cognitive, behavioral, emotional, and attitudinal perspective. Ultimately, usability flaws have negative consequences on the workflow, the effectiveness of the technology, the medication management process, and, more importantly, patient safety. Only few complete pathways leading from usability flaws to negative outcomes were identified. Conclusion Usability flaws in medication alerting systems impede users, and ultimately their work system, and negatively impact patient safety. Therefore, the usability dimension may act as a hidden explanatory variable that could explain, at least partly, the (absence of) intended outcomes of new technology. PMID:26123906
Effect of Combined Loading Due to Bending and Internal Pressure on Pipe Flaw Evaluation Criteria
NASA Astrophysics Data System (ADS)
Miura, Naoki; Sakai, Shinsuke
Considering a rule for the rationalization of maintenance of Light Water Reactor piping, reliable flaw evaluation criteria are essential for determining how a detected flaw will be detrimental to continuous plant operation. Ductile fracture is one of the dominant failure modes that must be considered for carbon steel piping and can be analyzed by elastic-plastic fracture mechanics. Some analytical efforts have provided various flaw evaluation criteria using load correction factors, such as the Z-factors in the JSME codes on fitness-for-service for nuclear power plants and the section XI of the ASME boiler and pressure vessel code. The present Z-factors were conventionally determined, taking conservativity and simplicity into account; however, the effect of internal pressure, which is an important factor under actual plant conditions, was not adequately considered. Recently, a J-estimation scheme, LBB.ENGC for the ductile fracture analysis of circumferentially through-wall-cracked pipes subjected to combined loading was developed for more accurate prediction under more realistic conditions. This method explicitly incorporates the contributions of both bending and tension due to internal pressure by means of a scheme that is compatible with an arbitrary combined-loading history. In this study, the effect of internal pressure on the flaw evaluation criteria was investigated using the new J-estimation scheme. The Z-factor obtained in this study was compared with the presently used Z-factors, and the predictability of the current flaw evaluation criteria was quantitatively evaluated in consideration of the internal pressure.
NASA Astrophysics Data System (ADS)
Kraft, R. H.; Molinari, J. F.; Ramesh, K. T.; Warner, D. H.
A two-dimensional finite element model is used to investigate compressive loading of a brittle ceramic. Intergranular cracking in the microstructure is captured explicitly by using a distribution of cohesive interfaces. The addition of confining stress increases the maximum strength and if high enough, can allow the effective material response to reach large strains before failure. Increasing the friction at the grain boundaries also increases the maximum strength until saturation of the strength is approached. Above a transitional strain rate, increasing the rate-of-deformation also increases the strength and as the strain rate increases, fragment sizes of the damaged specimen decrease. The effects of flaws within the specimen were investigated using a random distribution at various initial flaw densities. The model is able to capture an effective modulus change and degradation of strength as the initial flaw density increases. Effects of confinement, friction, and spatial distribution of flaws seem to depend on the crack coalescence and dilatation of the specimen, while strain-rate effects are result of inertial resistance to motion.
New techniques for modeling the reliability of reactor pressure vessels
DOE Office of Scientific and Technical Information (OSTI.GOV)
Johnson, K.I.; Simonen, F.A.; Liebetrau, A.M.
1985-12-01
In recent years several probabilistic fracture mechanics codes, including the VISA code, have been developed to predict the reliability of reactor pressure vessels. This paper describes new modeling techniques used in a second generation of the VISA code entitled VISA-II. Results are presented that show the sensitivity of vessel reliability predictions to such factors as inservice inspection to detect flaws, random positioning of flaws within the vessel walls thickness, and fluence distributions that vary through-out the vessel. The algorithms used to implement these modeling techniques are also described. Other new options in VISA-II are also described in this paper. Themore » effect of vessel cladding has been included in the heat transfer, stress, and fracture mechanics solutions in VISA-II. The algorithm for simulating flaws has been changed to consider an entire vessel rather than a single flaw in a single weld. The flaw distribution was changed to include the distribution of both flaw depth and length. A menu of several alternate equations has been included to predict the shift in RTNDT. For flaws that arrest and later re-initiate, an option was also included to allow correlating the current arrest thoughness with subsequent initiation toughnesses. 21 refs.« less
Fracture mechanics data for 2024-T861 and 2124-T851 aluminum
NASA Technical Reports Server (NTRS)
Pionke, L. J.; Linback, R. K.
1974-01-01
The fracture toughness and fatigue flaw growth characteristics of 2024-T861 and 2124-T851 aluminum were evaluated under plane stress conditions. Center cracked tension specimens were employed to evaluate these properties under a number of different test conditions which included variations in specimen thickness, specimen orientation, test environment, and initial flaw size. The effect of buckling was also investigated for all tests of thin gage specimens, and the effect of frequency and stress ratio was evaluated for the cyclic tests. Fracture toughness test results were analyzed and presented in terms of fracture resistance curves; fatigue flaw growth data was analyzed using empirical rate models. The results of the study indicate that both fracture toughness and resistance to fatigue crack growth improve with increasing temperature and decreasing thickness. The presence of buckling during testing of thin gage panels was found to degrade the resistance to fatigue flaw growth only at elevated temperatures.
Techniques for increasing boron fiber fracture strain
NASA Technical Reports Server (NTRS)
Dicarlo, J. A.
1977-01-01
Improvement in the strain-to-failure of CVD boron fibers is shown possible by contracting the tungsten boride core region and its inherent flaws. The results of three methods are presented in which etching and thermal processing techniques were employed to achieve core flaw contraction by internal stresses available in the boron sheath. After commercially and treatment induced surface flaws were removed from 203 micrometers (8 mil) fibers, the core flaw was observed to be essentially the only source of fiber fracture. Thus, fiber strain-to-failure was found to improve by an amount equal to the treatment induced contraction on the core flaw. Commercial feasibility considerations suggest as the most cost effective technique that method in which as-produced fibers are given a rapid heat treatment above 700 C. Preliminary results concerning the contraction kinetics and fracture behavior observed are presented and discussed both for high vacuum and argon gas heat treatment environments.
Eddy current probe response to open and closed surface flaws
NASA Technical Reports Server (NTRS)
Auld, B. A.; Muennemann, F.; Winslow, D. K.
1981-01-01
A general analysis of eddy current response to certain types of open and closed surface flaws is presented for both standard low-frequency and ferromagnetic-resonance (FMR) probes. It is shown analytically that for two-dimensional and three-dimensional surface flaws interrogated by a uniform probe field, the crack opening sensitivity increases with the operating frequency of the probe, this behavior being due to the Faraday induction effect. Experiments with low-frequency probes operating at or below 1 MHz and with the FMR probe operating at approximately 1000 MHz confirm this increase of the crack mouth opening displacement for practical situations where the probe field is not uniform in the vicinity of the flaw.
New techniques for modeling the reliability of reactor pressure vessels
DOE Office of Scientific and Technical Information (OSTI.GOV)
Johnson, K.I.; Simonen, F.A.; Liebetrau, A.M.
1986-01-01
In recent years several probabilistic fracture mechanics codes, including the VISA code, have been developed to predict the reliability of reactor pressure vessels. This paper describes several new modeling techniques used in a second generation of the VISA code entitled VISA-II. Results are presented that show the sensitivity of vessel reliability predictions to such factors as inservice inspection to detect flaws, random positioning of flaws within the vessel wall thickness, and fluence distributions that vary throughout the vessel. The algorithms used to implement these modeling techniques are also described. Other new options in VISA-II are also described in this paper.more » The effect of vessel cladding has been included in the heat transfer, stress, and fracture mechanics solutions in VISA-II. The algorithms for simulating flaws has been changed to consider an entire vessel rather than a single flaw in a single weld. The flaw distribution was changed to include the distribution of both flaw depth and length. A menu of several alternate equations has been included to predict the shift in RT/sub NDT/. For flaws that arrest and later re-initiate, an option was also included to allow correlating the current arrest toughness with subsequent initiation toughnesses.« less
Intelligent feature selection techniques for pattern classification of Lamb wave signals
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hinders, Mark K.; Miller, Corey A.
2014-02-18
Lamb wave interaction with flaws is a complex, three-dimensional phenomenon, which often frustrates signal interpretation schemes based on mode arrival time shifts predicted by dispersion curves. As the flaw severity increases, scattering and mode conversion effects will often dominate the time-domain signals, obscuring available information about flaws because multiple modes may arrive on top of each other. Even for idealized flaw geometries the scattering and mode conversion behavior of Lamb waves is very complex. Here, multi-mode Lamb waves in a metal plate are propagated across a rectangular flat-bottom hole in a sequence of pitch-catch measurements corresponding to the double crossholemore » tomography geometry. The flaw is sequentially deepened, with the Lamb wave measurements repeated at each flaw depth. Lamb wave tomography reconstructions are used to identify which waveforms have interacted with the flaw and thereby carry information about its depth. Multiple features are extracted from each of the Lamb wave signals using wavelets, which are then fed to statistical pattern classification algorithms that identify flaw severity. In order to achieve the highest classification accuracy, an optimal feature space is required but it’s never known a priori which features are going to be best. For structural health monitoring we make use of the fact that physical flaws, such as corrosion, will only increase over time. This allows us to identify feature vectors which are topologically well-behaved by requiring that sequential classes “line up” in feature vector space. An intelligent feature selection routine is illustrated that identifies favorable class distributions in multi-dimensional feature spaces using computational homology theory. Betti numbers and formal classification accuracies are calculated for each feature space subset to establish a correlation between the topology of the class distribution and the corresponding classification accuracy.« less
Deep Flaw Detection with Giant Magnetoresistive (GMR) Based Self-Nulling Probe
NASA Technical Reports Server (NTRS)
Wincheski, Buzz; Namkung, Min
2004-01-01
In this paper a design modification to the Very-Low Frequency GMR Based Self-Nulling Probe has been presented to enable improved signal to noise ratio for deeply buried flaws. The design change consists of incorporating a feedback coil in the center of the flux focusing lens. The use of the feedback coil enables cancellation of the leakage fields in the center of the probe and biasing of the GMR sensor to a location of high magnetic field sensitivity. The effect of the feedback on the probe output was examined, and experimental results for deep flaw detection were presented. The experimental results show that the modified probe is capable of clearly identifying flaws up to 1 cm deep in aluminum alloy structures.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kupperman, D. S.; Sciammarella, C.; Lapinski, N. P.
1978-01-01
Several nondestructive-evaluation (NDE) techniques have been examined to establish their effectiveness for detecting critically sized flaws in silicon nitride gas-turbine rotors. Preliminary results have been obtained for holographic interferometry, acoustic microscopy, dye-enhanced radiography, acoustic emission, and acoustic-impact testing techniques. This report discusses the relative effectiveness of these techniques in terms of their applicability to the rotor geometry and ability to detect critically sized flaws. Where feasible, flaw indications were verified by alternative NDE techniques or destructive examination. This study has indicated that, since the various techniques have different advantages, ultimately a reliable interrogation of ceramic rotors may require the applicationmore » of several NDE methods.« less
Simulating the x-ray image contrast to setup techniques with desired flaw detectability
NASA Astrophysics Data System (ADS)
Koshti, Ajay M.
2015-04-01
The paper provides simulation data of previous work by the author in developing a model for estimating detectability of crack-like flaws in radiography. The methodology is developed to help in implementation of NASA Special x-ray radiography qualification, but is generically applicable to radiography. The paper describes a method for characterizing the detector resolution. Applicability of ASTM E 2737 resolution requirements to the model are also discussed. The paper describes a model for simulating the detector resolution. A computer calculator application, discussed here, also performs predicted contrast and signal-to-noise ratio calculations. Results of various simulation runs in calculating x-ray flaw size parameter and image contrast for varying input parameters such as crack depth, crack width, part thickness, x-ray angle, part-to-detector distance, part-to-source distance, source sizes, and detector sensitivity and resolution are given as 3D surfaces. These results demonstrate effect of the input parameters on the flaw size parameter and the simulated image contrast of the crack. These simulations demonstrate utility of the flaw size parameter model in setting up x-ray techniques that provide desired flaw detectability in radiography. The method is applicable to film radiography, computed radiography, and digital radiography.
Spedding, Simon
2014-04-11
Efficacy of Vitamin D supplements in depression is controversial, awaiting further literature analysis. Biological flaws in primary studies is a possible reason meta-analyses of Vitamin D have failed to demonstrate efficacy. This systematic review and meta-analysis of Vitamin D and depression compared studies with and without biological flaws. The systematic review followed the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines. The literature search was undertaken through four databases for randomized controlled trials (RCTs). Studies were critically appraised for methodological quality and biological flaws, in relation to the hypothesis and study design. Meta-analyses were performed for studies according to the presence of biological flaws. The 15 RCTs identified provide a more comprehensive evidence-base than previous systematic reviews; methodological quality of studies was generally good and methodology was diverse. A meta-analysis of all studies without flaws demonstrated a statistically significant improvement in depression with Vitamin D supplements (+0.78 CI +0.24, +1.27). Studies with biological flaws were mainly inconclusive, with the meta-analysis demonstrating a statistically significant worsening in depression by taking Vitamin D supplements (-1.1 CI -0.7, -1.5). Vitamin D supplementation (≥800 I.U. daily) was somewhat favorable in the management of depression in studies that demonstrate a change in vitamin levels, and the effect size was comparable to that of anti-depressant medication.
The acousto-ultrasonic approach
NASA Technical Reports Server (NTRS)
Vary, Alex
1987-01-01
The nature and underlying rationale of the acousto-ultrasonic approach is reviewed, needed advanced signal analysis and evaluation methods suggested, and application potentials discussed. Acousto-ultrasonics is an NDE technique combining aspects of acoustic emission methodology with ultrasonic simulation of stress waves. This approach uses analysis of simulated stress waves for detecting and mapping variations of mechanical properties. Unlike most NDE, acousto-ultrasonics is less concerned with flaw detection than with the assessment of the collective effects of various flaws and material anomalies. Acousto-ultrasonics has been applied chiefly to laminated and filament-wound fiber reinforced composites. It has been used to assess the significant strength and toughness reducing effects that can be wrought by combinations of essentially minor flaws and diffuse flaw populations. Acousto-ultrasonics assesses integrated defect states and the resultant variations in properties such as tensile, shear, and flexural strengths and fracture resistance. Matrix cure state, porosity, fiber orientation, fiber volume fraction, fiber-matrix bonding, and interlaminar bond quality are underlying factors.
Do item-writing flaws reduce examinations psychometric quality?
Pais, João; Silva, Artur; Guimarães, Bruno; Povo, Ana; Coelho, Elisabete; Silva-Pereira, Fernanda; Lourinho, Isabel; Ferreira, Maria Amélia; Severo, Milton
2016-08-11
The psychometric characteristics of multiple-choice questions (MCQ) changed when taking into account their anatomical sites and the presence of item-writing flaws (IWF). The aim is to understand the impact of the anatomical sites and the presence of IWF in the psychometric qualities of the MCQ. 800 Clinical Anatomy MCQ from eight examinations were classified as standard or flawed items and according to one of the eight anatomical sites. An item was classified as flawed if it violated at least one of the principles of item writing. The difficulty and discrimination indices of each item were obtained. 55.8 % of the MCQ were flawed items. The anatomical site of the items explained 6.2 and 3.2 % of the difficulty and discrimination parameters and the IWF explained 2.8 and 0.8 %, respectively. The impact of the IWF was heterogeneous, the Writing the Stem and Writing the Choices categories had a negative impact (higher difficulty and lower discrimination) while the other categories did not have any impact. The anatomical site effect was higher than IWF effect in the psychometric characteristics of the examination. When constructing MCQ, the focus should be in the topic/area of the items and only after in the presence of IWF.
Optimizing probability of detection point estimate demonstration
NASA Astrophysics Data System (ADS)
Koshti, Ajay M.
2017-04-01
The paper provides discussion on optimizing probability of detection (POD) demonstration experiments using point estimate method. The optimization is performed to provide acceptable value for probability of passing demonstration (PPD) and achieving acceptable value for probability of false (POF) calls while keeping the flaw sizes in the set as small as possible. POD Point estimate method is used by NASA for qualifying special NDE procedures. The point estimate method uses binomial distribution for probability density. Normally, a set of 29 flaws of same size within some tolerance are used in the demonstration. Traditionally largest flaw size in the set is considered to be a conservative estimate of the flaw size with minimum 90% probability and 95% confidence. The flaw size is denoted as α90/95PE. The paper investigates relationship between range of flaw sizes in relation to α90, i.e. 90% probability flaw size, to provide a desired PPD. The range of flaw sizes is expressed as a proportion of the standard deviation of the probability density distribution. Difference between median or average of the 29 flaws and α90 is also expressed as a proportion of standard deviation of the probability density distribution. In general, it is concluded that, if probability of detection increases with flaw size, average of 29 flaw sizes would always be larger than or equal to α90 and is an acceptable measure of α90/95PE. If NDE technique has sufficient sensitivity and signal-to-noise ratio, then the 29 flaw-set can be optimized to meet requirements of minimum required PPD, maximum allowable POF, requirements on flaw size tolerance about mean flaw size and flaw size detectability requirements. The paper provides procedure for optimizing flaw sizes in the point estimate demonstration flaw-set.
Spedding, Simon
2014-01-01
Efficacy of Vitamin D supplements in depression is controversial, awaiting further literature analysis. Biological flaws in primary studies is a possible reason meta-analyses of Vitamin D have failed to demonstrate efficacy. This systematic review and meta-analysis of Vitamin D and depression compared studies with and without biological flaws. The systematic review followed the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines. The literature search was undertaken through four databases for randomized controlled trials (RCTs). Studies were critically appraised for methodological quality and biological flaws, in relation to the hypothesis and study design. Meta-analyses were performed for studies according to the presence of biological flaws. The 15 RCTs identified provide a more comprehensive evidence-base than previous systematic reviews; methodological quality of studies was generally good and methodology was diverse. A meta-analysis of all studies without flaws demonstrated a statistically significant improvement in depression with Vitamin D supplements (+0.78 CI +0.24, +1.27). Studies with biological flaws were mainly inconclusive, with the meta-analysis demonstrating a statistically significant worsening in depression by taking Vitamin D supplements (−1.1 CI −0.7, −1.5). Vitamin D supplementation (≥800 I.U. daily) was somewhat favorable in the management of depression in studies that demonstrate a change in vitamin levels, and the effect size was comparable to that of anti-depressant medication. PMID:24732019
Simulating the X-Ray Image Contrast to Set-Up Techniques with Desired Flaw Detectability
NASA Technical Reports Server (NTRS)
Koshti, Ajay M.
2015-01-01
The paper provides simulation data of previous work by the author in developing a model for estimating detectability of crack-like flaws in radiography. The methodology is being developed to help in implementation of NASA Special x-ray radiography qualification, but is generically applicable to radiography. The paper describes a method for characterizing X-ray detector resolution for crack detection. Applicability of ASTM E 2737 resolution requirements to the model are also discussed. The paper describes a model for simulating the detector resolution. A computer calculator application, discussed here, also performs predicted contrast and signal-to-noise ratio calculations. Results of various simulation runs in calculating x-ray flaw size parameter and image contrast for varying input parameters such as crack depth, crack width, part thickness, x-ray angle, part-to-detector distance, part-to-source distance, source sizes, and detector sensitivity and resolution are given as 3D surfaces. These results demonstrate effect of the input parameters on the flaw size parameter and the simulated image contrast of the crack. These simulations demonstrate utility of the flaw size parameter model in setting up x-ray techniques that provide desired flaw detectability in radiography. The method is applicable to film radiography, computed radiography, and digital radiography.
NDE detectability of fatigue-type cracks in high-strength alloys: NDI reliability assessments
NASA Technical Reports Server (NTRS)
Christner, Brent K.; Long, Donald L.; Rummel, Ward D.
1988-01-01
This program was conducted to generate quantitative flaw detection capability data for the nondestructive evaluation (NDE) techniques typically practiced by aerospace contractors. Inconel 718 and Haynes 188 alloy test specimens containing fatigue flaws with a wide distribution of sizes were used to assess the flaw detection capabilities at a number of contractor and government facilities. During this program 85 inspection sequences were completed presenting a total of 20,994 fatigue cracks to 53 different inspectors. The inspection sequences completed included 78 liquid penetrant, 4 eddy current, and 3 ultrasonic evaluations. The results of the assessment inspections are presented and discussed. In generating the flaw detection capability data base, procedures for data collection, data analysis, and specimen care and maintenance were developed, demonstrated, and validated. The data collection procedures and methods that evolved during this program for the measurement of flaw detection capabilities and the effects of inspection variables on performance are discussed. The Inconel 718 and Haynes 188 test specimens that were used in conducting this program and the NDE assessment procedures that were demonstrated, provide NASA with the capability to accurately assess the flaw detection capabilities of specific inspection procedures being applied or proposed for use on current and future fracture control hardware program.
Flawed gun policy research could endanger public safety.
Webster, D W; Vernick, J S; Ludwig, J; Lester, K J
1997-01-01
A highly publicized recent study by Lott and Mustard concludes that laws easing restrictions on licenses for carrying concealed firearms in public substantially reduce violent crime. Several serious flaws in the study render the authors' conclusions insupportable. These flaws include misclassification of gun-carrying laws, endogeneity of predictor variables, omission of confounding variables, and failure to control for the cyclical nature of crime trends. Most of these problems should bias results toward overestimating the crime-reducing effects of laws making it easier to carry concealed firearms in public. Lott and Mustard's statistical models produce findings inconsistent with criminological theories and well-established facts about crime, and subsequent reanalysis of their data challenges their conclusions. Public health professionals should understand the methodological issues raised in this commentary, particularly when flawed research could influence the introduction of policies with potentially deleterious consequences. PMID:9224169
Electromagnetic radiation screening of microcircuits for long life applications
NASA Technical Reports Server (NTRS)
Brammer, W. G.; Erickson, J. J.; Levy, M. E.
1974-01-01
The utility of X-rays as a stimulus for screening high reliability semiconductor microcircuits was studied. The theory of the interaction of X-rays with semiconductor materials and devices was considered. Experimental measurements of photovoltages, photocurrents, and effects on specified parameters were made on discrete devices and on microcircuits. The test specimens included discrete devices with certain types of identified flaws and symptoms of flaws, and microcircuits exhibiting deviant electrical behavior. With a necessarily limited sample of test specimens, no useful correlation could be found between the X-ray-induced electrical response and the known or suspected presence of flaws.
Reliability of steam generator tubing
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kadokami, E.
1997-02-01
The author presents results on studies made of the reliability of steam generator (SG) tubing. The basis for this work is that in Japan the issue of defects in SG tubing is addressed by the approach that any detected defect should be repaired, either by plugging the tube or sleeving it. However, this leaves open the issue that there is a detection limit in practice, and what is the effect of nondetectable cracks on the performance of tubing. These studies were commissioned to look at the safety issues involved in degraded SG tubing. The program has looked at a numbermore » of different issues. First was an assessment of the penetration and opening behavior of tube flaws due to internal pressure in the tubing. They have studied: penetration behavior of the tube flaws; primary water leakage from through-wall flaws; opening behavior of through-wall flaws. In addition they have looked at the question of the reliability of tubing with flaws during normal plant operation. Also there have been studies done on the consequences of tube rupture accidents on the integrity of neighboring tubes.« less
NASA Technical Reports Server (NTRS)
Bergan, Andrew C.
2017-01-01
Damage tolerant design approaches require determination of critical damage modes and flaw sizes in order to establish nondestructive evaluation detection requirements. A finite element model is developed to assess the effect of circular facesheet-core disbonds on the strength of sandwich specimens subjected to edgewise compressive loads for the purpose of predicting the critical flaw size for a variety of design parameters. Postbuckling analyses are conducted in which an initial imperfection is seeded using results from a linear buckling analysis. Both the virtual crack closure technique (VCCT) and cohesive elements are considered for modeling disbond growth. Predictions from analyses using the VCCT and analyses using cohesive elements are in good correlation. A series of parametric analyses are conducted to investigate the effect of core thickness and material, facesheet layup, facesheet-core interface properties, and curvature on the criticality of facesheet-core disbonds of various sizes. The results from these analyses provide a basis for determining the critical flaw size for facesheet-core disbonds subjected to edgewise compression loads and, therefore, nondestructive evaluation flaw detection requirements for this configuration.
Wilks, Robert S.; Sturges, Jr., Robert H.
1983-01-01
The invention provides a method of and apparatus for optically inspecting nuclear fuel pellets for surface flaws. The inspection system includes a prism and lens arrangement for scanning the surface of each pellet as the same is rotated. The resulting scan produces data indicative of the extent and shape of each flaw which is employed to generate a flaw quality index for each detected flaw. The flaw quality indexes from all flaws are summed and compared with an acceptable surface quality index. The result of the comparison is utilized to control the acceptance or rejection of the pellet.
Does Educator Training or Experience Affect the Quality of Multiple-Choice Questions?
Webb, Emily M; Phuong, Jonathan S; Naeger, David M
2015-10-01
Physicians receive little training on proper multiple-choice question (MCQ) writing methods. Well-constructed MCQs follow rules, which ensure that a question tests what it is intended to test. Questions that break these are described as "flawed." We examined whether the prevalence of flawed questions differed significantly between those with or without prior training in question writing and between those with different levels of educator experience. We assessed 200 unedited MCQs from a question bank for our senior medical student radiology elective: an equal number of questions (50) were written by faculty with previous training in MCQ writing, other faculty, residents, and medical students. Questions were scored independently by two readers for the presence of 11 distinct flaws described in the literature. Questions written by faculty with MCQ writing training had significantly fewer errors: mean 0.4 errors per question compared to a mean of 1.5-1.7 errors per question for the other groups (P < .001). There were no significant differences in the total number of errors between the untrained faculty, residents, and students (P values .35-.91). Among trained faculty 17/50 questions (34%) were flawed, whereas other faculty wrote 38/50 (76%) flawed questions, residents 37/50 (74%), and students 44/50 (88%). Trained question writers' higher performance was mainly manifest in the reduced frequency of five specific errors. Faculty with training in effective MCQ writing made fewer errors in MCQ construction. Educator experience alone had no effect on the frequency of flaws; faculty without dedicated training, residents, and students performed similarly. Copyright © 2015 AUR. Published by Elsevier Inc. All rights reserved.
Solution to certain problems in the failure of composite structures
NASA Astrophysics Data System (ADS)
Goodsell, Johnathan
The present work contains the solution of two problems in composite structures. In the first, an approximate elasticity solution for prediction of the displacement, stress and strain fields within the m-layer, symmetric and balanced angle-ply composite laminate of finite-width subjected anticlastic bending deformation is developed. The solution is shown to recover classical laminated plate theory predictions at interior regions of the laminate and thereby illustrates the boundary layer character of this interlaminar phenomenon. The results exhibit the anticipated response in congruence with the solutions for uniform axial extension and uniform temperature change, where divergence of the interlaminar shearing stress is seen to occur at the intersection of the free-edge and planes between lamina of +theta and -theta orientation. The analytical results show excellent agreement with the finite-element predictions for the same boundary-value problem and thereby provide an efficient and compact solution available for parametric studies of the influence of geometry and material properties. The solution is combined with previously developed solutions for uniform axial extension and uniform temperature change of the identical laminate and the combined solution is exercised to compare the relative magnitudes of free-edge phenomenon arising from the different loading conditions, to study very thick laminates and laminates where the laminate width is less than the laminate thickness. Significantly, it was demonstrated that the solution is valid for arbitrary stacking sequence and the solution was exercised to examine antisymmetric and non-symmetric laminates. Finally, the solution was exercised to determine the dimensions of the boundary layer for very large numbers of layers. It was found that the dimension of the boundary layer width in bending is approximately twice that in uniform axial extension and uniform temperature change. In the second, the intrinsic flaw concept is extended to the determination of the intrinsic flaw length and the prediction of performance variability in the 10-degree off-axis specimen. The intrinsic flaw is defined as a fracture mechanics-type, through-thickness planar crack extending in the fiber direction from the failure initiation site of length, a. The distribution of intrinsic flaw lengths is postulated from multiple tests of 10-degree off-axis specimens by calculating the length of flaw that would cause fracture at each measured failure site and failure load given the fracture toughness of the material. The intrinsic flaw lengths on the homogeneous and micromechanical scales for unnotched (no hole) and specimens containing a centrally-located, through-thickness circular hole are compared. 8 hole-diameters ranging from 1.00--12.7 mm are considered. On the micromechanical scale, the intrinsic flaw ranges between approximately 10 and 100 microns in length, on the order of the relevant microstructural dimensions. The intrinsic flaw lengths on the homogeneous scale are determined to be an order of magnitude greater than that on the micromechanical scale. The effect of variation in the fiber volume fraction on the intrinsic flaw length is also considered. In the strength predictions for the specimens, the intrinsic flaw crack geometry and probability density function of intrinsic flaw lengths calculated from the unnotched specimens allow fracture mechanics predictions of strength variability. The strength prediction is dependent on the flaw density, the number of flaws per unit length along the free-edge. The flaw density is established by matching the predicted strength with the experimental strength. The distribution of intrinsic flaw lengths is used with the strength variability of the unnotched and of open-hole specimens to determine the flaw density at each hole-size. The flaw density is shown to be related to the fabrication machining speed suggesting machining damage as a mechanism for the hole-size dependence of the flaw density. (Abstract shortened by UMI.)
Determination of Flaw Size from Thermographic Data
NASA Technical Reports Server (NTRS)
Winfree, William P.; Howell, Patricia A.; Zalameda, Joseph N.
2014-01-01
Conventional methods for reducing the pulsed thermographic responses of delaminations tend to overestimate the size of the flaw. Since the heat diffuses in the plane parallel to the surface, the resulting temperature profile over the flaw is larger than the flaw. A variational method is presented for reducing the thermographic data to produce an estimated size for the flaw that is much closer to the true size of the flaw. The size is determined from the spatial thermal response of the exterior surface above the flaw and a constraint on the length of the contour surrounding the flaw. The technique is applied to experimental data acquired on a flat bottom hole composite specimen.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Simonen, E.P.; Johnson, K.I.; Simonen, F.A.
The Vessel Integrity Simulation Analysis (VISA-II) code was developed to allow calculations of the failure probability of a reactor pressure vessel subject to defined pressure/temperature transients. A version of the code, revised by Pacific Northwest Laboratory for the US Nuclear Regulatory Commission, was used to evaluate the sensitivities of calculated through-wall flaw probability to material, flaw and calculational assumptions. Probabilities were more sensitive to flaw assumptions than to material or calculational assumptions. Alternative flaw assumptions changed the probabilities by one to two orders of magnitude, whereas alternative material assumptions typically changed the probabilities by a factor of two or less.more » Flaw shape, flaw through-wall position and flaw inspection were sensitivities examined. Material property sensitivities included the assumed distributions in copper content and fracture toughness. Methods of modeling flaw propagation that were evaluated included arrest/reinitiation toughness correlations, multiple toughness values along the length of a flaw, flaw jump distance for each computer simulation and added error in estimating irradiated properties caused by the trend curve correlation error.« less
Fracture control method for composite tanks with load sharing liners
NASA Technical Reports Server (NTRS)
Bixler, W. D.
1975-01-01
The experimental program was based on the premise that the plastic sizing cycle, which each pressure vessel is subjected to prior to operation, acts as an effective proof test of the liner, screening out all flaws or cracks larger than a critical size. In doing so, flaw growth potential is available for cyclic operation at pressures less than the sizing pressure. Static fracture and cyclic life tests, involving laboratory type specimens and filament overwrapped tanks, were conducted on three liner materials: (1) 2219-T62 aluminum, (2) Inconel X750 STA, and (3) cryoformed 301 stainless steel. Variables included material condition, thickness, flaw size, flaw shape, temperature, sizing stress level, operating stress level and minimum-to-maximum operating stress ratio. From the empirical data base obtained, a procedure was established by which the service life of composite tanks with load sharing liners could be guaranteed with a high degree of confidence.
Signal processing for non-destructive testing of railway tracks
NASA Astrophysics Data System (ADS)
Heckel, Thomas; Casperson, Ralf; Rühe, Sven; Mook, Gerhard
2018-04-01
Increased speed, heavier loads, altered material and modern drive systems result in an increasing number of rail flaws. The appearance of these flaws also changes continually due to the rapid change in damage mechanisms of modern rolling stock. Hence, interpretation has become difficult when evaluating non-destructive rail testing results. Due to the changed interplay between detection methods and flaws, the recorded signals may result in unclassified types of rail flaws. Methods for automatic rail inspection (according to defect detection and classification) undergo continual development. Signal processing is a key technology to master the challenge of classification and maintain resolution and detection quality, independent of operation speed. The basic ideas of signal processing, based on the Glassy-Rail-Diagram for classification purposes, are presented herein. Examples for the detection of damages caused by rolling contact fatigue also are given, and synergetic effects of combined evaluation of diverse inspection methods are shown.
Short beam shear tests of polymeric laminates and unidirectional composites
NASA Technical Reports Server (NTRS)
Stinchcomb, W. W.; Henneke, E. G.
1980-01-01
The application of advanced composite materials in aerospace, ground transportation, and sporting industries are discussed. Failure theories for the design and mechanical behavior of composite materials are emphasized. Methods for detecting specific types of flaws are outlined. The effect of detected flaws on mechanical properties such as stiffness, strength, fatigue lifetime, or residual strength is described.
Reliably detectable flaw size for NDE methods that use calibration
NASA Astrophysics Data System (ADS)
Koshti, Ajay M.
2017-04-01
Probability of detection (POD) analysis is used in assessing reliably detectable flaw size in nondestructive evaluation (NDE). MIL-HDBK-1823 and associated mh18232 POD software gives most common methods of POD analysis. In this paper, POD analysis is applied to an NDE method, such as eddy current testing, where calibration is used. NDE calibration standards have known size artificial flaws such as electro-discharge machined (EDM) notches and flat bottom hole (FBH) reflectors which are used to set instrument sensitivity for detection of real flaws. Real flaws such as cracks and crack-like flaws are desired to be detected using these NDE methods. A reliably detectable crack size is required for safe life analysis of fracture critical parts. Therefore, it is important to correlate signal responses from real flaws with signal responses form artificial flaws used in calibration process to determine reliably detectable flaw size.
Reliably Detectable Flaw Size for NDE Methods that Use Calibration
NASA Technical Reports Server (NTRS)
Koshti, Ajay M.
2017-01-01
Probability of detection (POD) analysis is used in assessing reliably detectable flaw size in nondestructive evaluation (NDE). MIL-HDBK-1823 and associated mh1823 POD software gives most common methods of POD analysis. In this paper, POD analysis is applied to an NDE method, such as eddy current testing, where calibration is used. NDE calibration standards have known size artificial flaws such as electro-discharge machined (EDM) notches and flat bottom hole (FBH) reflectors which are used to set instrument sensitivity for detection of real flaws. Real flaws such as cracks and crack-like flaws are desired to be detected using these NDE methods. A reliably detectable crack size is required for safe life analysis of fracture critical parts. Therefore, it is important to correlate signal responses from real flaws with signal responses form artificial flaws used in calibration process to determine reliably detectable flaw size.
Evaluation of flaws in carbon steel piping. Final report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zahoor, A.; Gamble, R.M.; Mehta, H.S.
1986-10-01
The objective of this program was to develop flaw evaluation procedures and allowable flaw sizes for ferritic piping used in light water reactor (LWR) power generation facilities. The program results provide relevant ASME Code groups with the information necessary to define flaw evaluation procedures, allowable flaw sizes, and their associated bases for Section XI of the code. Because there are several possible flaw-related failure modes for ferritic piping over the LWR operating temperature range, three analysis methods were employed to develop the evaluation procedures. These include limit load analysis for plastic collapse, elastic plastic fracture mechanics (EPFM) analysis for ductilemore » tearing, and linear elastic fracture mechanics (LEFM) analysis for non ductile crack extension. To ensure the appropriate analysis method is used in an evaluation, a step by step procedure also is provided to identify the relevant acceptance standard or procedure on a case by case basis. The tensile strength and toughness properties required to complete the flaw evaluation for any of the three analysis methods are included in the evaluation procedure. The flaw evaluation standards are provided in tabular form for the plastic collapse and ductile tearing modes, where the allowable part through flaw depth is defined as a function of load and flaw length. For non ductile crack extension, linear elastic fracture mechanics analysis methods, similar to those in Appendix A of Section XI, are defined. Evaluation flaw sizes and procedures are developed for both longitudinal and circumferential flaw orientations and normal/upset and emergency/faulted operating conditions. The tables are based on margins on load of 2.77 and 1.39 for circumferential flaws and 3.0 and 1.5 for longitudinal flaws for normal/upset and emergency/faulted conditions, respectively.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Crawford, S. L.; Cinson, A. D.; Diaz, A. A.
2015-11-23
In the summer of 2009, Pacific Northwest National Laboratory (PNNL) staff traveled to the Electric Power Research Institute (EPRI) NDE Center in Charlotte, North Carolina, to conduct phased-array ultrasonic testing on a large bore, reactor coolant pump nozzle-to-safe-end mockup. This mockup was fabricated by FlawTech, Inc. and the configuration originated from the Port St. Lucie nuclear power plant. These plants are Combustion Engineering-designed reactors. This mockup consists of a carbon steel elbow with stainless steel cladding joined to a cast austenitic stainless steel (CASS) safe-end with a dissimilar metal weld and is owned by Florida Power & Light. The objectivemore » of this study, and the data acquisition exercise held at the EPRI NDE Center, were focused on evaluating the capabilities of advanced, low-frequency phased-array ultrasonic testing (PA-UT) examination techniques for detection and characterization of implanted circumferential flaws and machined reflectors in a thick-section CASS dissimilar metal weld component. This work was limited to PA-UT assessments using 500 kHz and 800 kHz probes on circumferential flaws only, and evaluated detection and characterization of these flaws and machined reflectors from the CASS safe-end side only. All data were obtained using spatially encoded, manual scanning techniques. The effects of such factors as line-scan versus raster-scan examination approaches were evaluated, and PA-UT detection and characterization performance as a function of inspection frequency/wavelength, were also assessed. A comparative assessment of the data is provided, using length-sizing root-mean-square-error and position/localization results (flaw start/stop information) as the key criteria for flaw characterization performance. In addition, flaw signal-to-noise ratio was identified as the key criterion for detection performance.« less
Common methodological flaws in economic evaluations.
Drummond, Michael; Sculpher, Mark
2005-07-01
Economic evaluations are increasingly being used by those bodies such as government agencies and managed care groups that make decisions about the reimbursement of health technologies. However, several reviews of economic evaluations point to numerous deficiencies in the methodology of studies or the failure to follow published methodological guidelines. This article, written for healthcare decision-makers and other users of economic evaluations, outlines the common methodological flaws in studies, focussing on those issues that are likely to be most important when deciding on the reimbursement, or guidance for use, of health technologies. The main flaws discussed are: (i) omission of important costs or benefits; (ii) inappropriate selection of alternatives for comparison; (iii) problems in making indirect comparisons; (iv) inadequate representation of the effectiveness data; (v) inappropriate extrapolation beyond the period observed in clinical studies; (vi) excessive use of assumptions rather than data; (vii) inadequate characterization of uncertainty; (viii) problems in aggregation of results; (ix) reporting of average cost-effectiveness ratios; (x) lack of consideration of generalizability issues; and (xi) selective reporting of findings. In each case examples are given from the literature and guidance is offered on how to detect flaws in economic evaluations.
Flaw depth sizing using guided waves
NASA Astrophysics Data System (ADS)
Cobb, Adam C.; Fisher, Jay L.
2016-02-01
Guided wave inspection technology is most often applied as a survey tool for pipeline inspection, where relatively low frequency ultrasonic waves, compared to those used in conventional ultrasonic nondestructive evaluation (NDE) methods, propagate along the structure; discontinuities cause a reflection of the sound back to the sensor for flaw detection. Although the technology can be used to accurately locate a flaw over long distances, the flaw sizing performance, especially for flaw depth estimation, is much poorer than other, local NDE approaches. Estimating flaw depth, as opposed to other parameters, is of particular interest for failure analysis of many structures. At present, most guided wave technologies estimate the size of the flaw based on the reflected signal amplitude from the flaw compared to a known geometry reflection, such as a circumferential weld in a pipeline. This process, however, requires many assumptions to be made, such as weld geometry and flaw shape. Furthermore, it is highly dependent on the amplitude of the flaw reflection, which can vary based on many factors, such as attenuation and sensor installation. To improve sizing performance, especially depth estimation, and do so in a way that is not strictly amplitude dependent, this paper describes an approach to estimate the depth of a flaw based on a multimodal analysis. This approach eliminates the need of using geometric reflections for calibration and can be used for both pipeline and plate inspection applications. To verify the approach, a test set was manufactured on plate specimens with flaws of different widths and depths ranging from 5% to 100% of total wall thickness; 90% of these flaws were sized to within 15% of their true value. A description of the initial multimodal sizing strategy and results will be discussed.
Critical flaw size in silicon nitride ball bearings
NASA Astrophysics Data System (ADS)
Levesque, George Arthur
Aircraft engine and bearing manufacturers have been aggressively pursuing advanced materials technology systems solutions to meet main shaft-bearing needs of advanced military aircraft engines. Ceramic silicon nitride hybrid bearings are being developed for such high performance applications. Though silicon nitride exhibits many favorable properties such as high compressive strength, high hardness, a third of the density of steel, low coefficient of thermal expansion, and high corrosion and temperature resistance, they also have low fracture toughness and are susceptible to failure from fatigue spalls emanating from pre-existing surface flaws that can grow under rolling contact fatigue (RCF). Rolling elements and raceways are among the most demanding components in aircraft engines due to a combination of high cyclic contact stresses, long expected component lifetimes, corrosive environment, and the high consequence of fatigue failure. The cost of these rolling elements increases exponentially with the decrease in allowable flaw size for service applications. Hence the range of 3D non-planar surface flaw geometries subject to RCF is simulated to determine the critical flaw size (CFS) or the largest allowable flaw that does not grow under service conditions. This dissertation is a numerical and experimental investigation of surface flaws in ceramic balls subjected to RCF and has resulted in the following analyses: Crack Shape Determination: the nucleation of surface flaws from ball impact that occurs during the manufacturing process is simulated. By examining the subsurface Hertzian stresses between contacting spheres, their applicability to predicting and characterizing crack size and shape is established. It is demonstrated that a wide range of cone and partial cone cracks, observed in practice, can be generated using the proposed approaches. RCF Simulation: the procedure and concerns in modeling nonplanar 3D cracks subject to RCF using FEA for stress intensity factor (SIF) trends observed from parametrically varying different physical effects are plotted and discussed. Included are developments in contact algorithms for 3D nonplanar cracks, meshing of nonplanar cracks for SIFs, parametric studies via MATLAB and other subroutines in python and FORTRAN. Establishing Fracture Parameters: the fracture toughness, K c, is determined by using numerical techniques on experimental tests namely the Brazilian disc test and a novel compression test on an indented ball. The fatigue threshold for mixed-mode loading, Keff, is determined by using a combination of numerical modeling and results from the V-ring single ball RCF test. CFS Determination: the range of 3D non-planar surface flaw geometries subject to RCF are simulated to calculate mixed mode SIFs to determine the critical flaw size, or the largest allowable flaw that does not grow under service conditions. The CFS results are presented as a function of Hertzian contact stress, traction magnitude, and crack size. Empirical Equations: accurate empirical equations (response functions) for the KI, KII, and K III SIFs for semi-elliptical surface cracks subjected to RCF as a function of the contact patch diameter, angle of crack to the surface, max pressure, position along the crack front, and aspect ratio of the crack are developed via parametric 3D FEA. Statistical Probability of Failure: since the variability in mechanical properties for brittle materials is high a probabilistic investigation of variations in flaw size, flaw orientation, fracture toughness, and Hertzian load on failure probability is conducted to statistically determine the probability of ball failure for an existing flaw subjected to the service conditions. (Full text of this dissertation may be available via the University of Florida Libraries web site. Please check http://www.uflib.ufl.edu/etd.html)
Investigation of flaw geometry and loading effects on plane strain fracture in metallic structures
NASA Technical Reports Server (NTRS)
Hall, L. R.; Finger, R. W.
1971-01-01
The effects on fracture and flaw growth of weld-induced residual stresses, combined bending and tension stresses, and stress fields adjacent to circular holes in 2219-T87 aluminum and 5AI-2.5Sn(ELI) titanium alloys were evaluated. Static fracture tests were conducted in liquid nitrogen; fatigue tests were performed in room air, liquid nitrogen, and liquid hydrogen. Evaluation of results was based on linear elastic fracture mechanics concepts and was directed to improving existing methods of estimating minimum fracture strength and fatigue lives for pressurized structure in spacecraft and booster systems. Effects of specimen design in plane-strain fracture toughness testing were investigated. Four different specimen types were tested in room air, liquid nitrogen and liquid hydrogen environments using the aluminum and titanium alloys. Interferometry and holograph were used to measure crack-opening displacements in surface-flawed plexiglass test specimens. Comparisons were made between stress intensities calculated using displacement measurements, and approximate analytical solutions.
NASA Astrophysics Data System (ADS)
Raad Hussein, Alaa; Badri Albarody, Thar M.; Megat Yusoff, Puteri Sri Melor Bt
2018-05-01
Nowadays there is no viable non-destructive method that could detect flaws in complex composite products. Such a method could provide unique tools to allow engineers to minimize time consumption and cost during the evaluation of various product parameters without disturbing production. The latest research and development on propagation waves introduce micro, radio and millimetre waves as new potential non-destructive test methods for evaluation of mechanical flaws and prediction of failure in a product during production. This paper focuses on recent developments, usage, classification of electromagnetic waves under the range of radio frequency, millimetre and micro-waves. In addition, this paper reviews the application of propagation wave and proposed a new health monitoring technique based on Doppler Effect for vibration measurement in complex composite structures. Doppler Effect is influenced by dynamic behaviour of the composite structures and both are effect by flaws occurred inside the structure. Composite manufacturers, especially Aerospace industry are demanding these methods comprehensively inspect and evaluate the damages and defects in their products.
Montanini, R; Freni, F; Rossi, G L
2012-09-01
This paper reports one of the first experimental results on the application of ultrasound activated lock-in vibrothermography for quantitative assessment of buried flaws in complex cast parts. The use of amplitude modulated ultrasonic heat generation allowed selective response of defective areas within the part, as the defect itself is turned into a local thermal wave emitter. Quantitative evaluation of hidden damages was accomplished by estimating independently both the area and the depth extension of the buried flaws, while x-ray 3D computed tomography was used as reference for sizing accuracy assessment. To retrieve flaw's area, a simple yet effective histogram-based phase image segmentation algorithm with automatic pixels classification has been developed. A clear correlation was found between the thermal (phase) signature measured by the infrared camera on the target surface and the actual mean cross-section area of the flaw. Due to the very fast cycle time (<30 s/part), the method could potentially be applied for 100% quality control of casting components.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Montanini, R.; Freni, F.; Rossi, G. L.
This paper reports one of the first experimental results on the application of ultrasound activated lock-in vibrothermography for quantitative assessment of buried flaws in complex cast parts. The use of amplitude modulated ultrasonic heat generation allowed selective response of defective areas within the part, as the defect itself is turned into a local thermal wave emitter. Quantitative evaluation of hidden damages was accomplished by estimating independently both the area and the depth extension of the buried flaws, while x-ray 3D computed tomography was used as reference for sizing accuracy assessment. To retrieve flaw's area, a simple yet effective histogram-based phasemore » image segmentation algorithm with automatic pixels classification has been developed. A clear correlation was found between the thermal (phase) signature measured by the infrared camera on the target surface and the actual mean cross-section area of the flaw. Due to the very fast cycle time (<30 s/part), the method could potentially be applied for 100% quality control of casting components.« less
NASA Technical Reports Server (NTRS)
Raju, I. S.; Newman, J. C., Jr.
1979-01-01
Surface cracks are among the more common flaws in aircraft and pressure vessel components. Several calculations of stress-intensity factors for semi-elliptical surface cracks subjected to tension have appeared in the literature. However, some of these solutions are in disagreement by 50-100%. In this paper, stress-intensity factors for shallow and deep semi-elliptical surface cracks in plates subjected to tension are presented. To verify the accuracy of the three-dimensional finite-element models employed, convergence was studied by varying the number of degrees of freedom in the models from 1500 to 6900. The 6900 degrees of freedom used here were more than twice the number used in previously reported solutions. Also, the stress-intensity variations in the boundary-layer region at the intersection of the crack with the free surface were investigated.
Ultrasonic imaging of material flaws exploiting multipath information
NASA Astrophysics Data System (ADS)
Shen, Xizhong; Zhang, Yimin D.; Demirli, Ramazan; Amin, Moeness G.
2011-05-01
In this paper, we consider ultrasonic imaging for the visualization of flaws in a material. Ultrasonic imaging is a powerful nondestructive testing (NDT) tool which assesses material conditions via the detection, localization, and classification of flaws inside a structure. Multipath exploitations provide extended virtual array apertures and, in turn, enhance imaging capability beyond the limitation of traditional multisensor approaches. We utilize reflections of ultrasonic signals which occur when encountering different media and interior discontinuities. The waveforms observed at the physical as well as virtual sensors yield additional measurements corresponding to different aspect angles. Exploitation of multipath information addresses unique issues observed in ultrasonic imaging. (1) Utilization of physical and virtual sensors significantly extends the array aperture for image enhancement. (2) Multipath signals extend the angle of view of the narrow beamwidth of the ultrasound transducers, allowing improved visibility and array design flexibility. (3) Ultrasonic signals experience difficulty in penetrating a flaw, thus the aspect angle of the observation is limited unless access to other sides is available. The significant extension of the aperture makes it possible to yield flaw observation from multiple aspect angles. We show that data fusion of physical and virtual sensor data significantly improves the detection and localization performance. The effectiveness of the proposed multipath exploitation approach is demonstrated through experimental studies.
[Preliminary analysis about influence of porcelain thickness on interfacial crack of PFM].
Zhu, Ziyuan; Zhang, Baowei; Zhang, Xiuyin; Xu, Kan; Fang, Ruhua; Wang, Dongmei
2002-01-01
This study was about the influence of porcelain thickness on crack at interface. The effect of porcelain thickness on the flaw at the interface between porcelain and metal was studied in three groups with porcelain thickness of 0.5 mm, 1.5 mm and 2.5 mm (metal thickness of 0.5 mm) by means of moire interferometre and interfacial fracture mechanics. The parameter Jc was compared among the three groups and the growing of the flaw was observed. Jc and the extreme strength of group with porcelain thickness of 0.5 mm (2.813 N/m and 9.979 N) were lower than those of the groups with porcelain thickness of 1.5 mm and 2.5 mm (5.395 N/m, 19.134 N and 5.429 N/m, 19.256 N). Flaws extend along the interface in the groups with porcelain thickness of 1.5 mm and 0.5 mm. (1) Fracture resistance of the interface in the groups with porcelain thickness of 1.5 mm and 2.5 mm is similar and it decreases in the group with 0.5 mm thick porcelain. (2) When porcelain is 1.5 mm or 0.5 mm thick, flaws will extend along the interface. When porcelain is 2.5 mm thick, flaws will extend into the porcelain layer.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Johnson, C.; Burnett, M.; Goodman, C.
A survey of currency flaw severity was carried out using 300 banknotes and 37 judges. Each judge assigned each note to one of five flaw severity categories. These categories correspond to severity grades of 1 to 5 with 1 equivalent to ''always accepted'' and 5 ''never accepted.'' An average flaw severity grade for each note was obtained by taking the mean of the severity grades assigned to that note by the 37 judges. Thus, each note has a single numerical real-number flaw grade between 1 and 5. Mathematical modeling of the currency flaw survey results is continuing with some verymore » promising initial results. Our present model handles common excess ink and missing ink flaw types quite well. We plan to extend the model to ink level, mash, setoff and blanket impression flaw types.« less
Laser displacement sensor to monitor the layup process of composite laminate production
NASA Astrophysics Data System (ADS)
Miesen, Nick; Groves, Roger M.; Sinke, Jos; Benedictus, Rinze
2013-04-01
Several types of flaw can occur during the layup process of prepreg composite laminates. Quality control after the production process checks the end product by testing the specimens for flaws which are included during the layup process or curing process, however by then these flaws are already irreversibly embedded in the laminate. This paper demonstrates the use of a laser displacement sensor technique applied during the layup process of prepreg laminates for in-situ flaw detection, for typical flaws that can occur during the composite production process. An incorrect number of layers and fibre wrinkling are dominant flaws during the process of layup. These and other dominant flaws have been modeled to determine the requirements for an in-situ monitoring during the layup process of prepreg laminates.
Effect of Layering on Cracking Initiation and Propagation under Uniaxial Compression
NASA Astrophysics Data System (ADS)
Modiriasari, A.; Jiang, L.; Yoon, H.; Bobet, A.; Pyrak-Nolte, L. J.
2017-12-01
Rock anisotropy can arise from textural and structural causes both of which contribute to anisotropic strength and moduli. Rock variability makes it difficult to determine which properties dominate failure. Here, laboratory experiments were performed on 3D printed samples to examine the effect of layering on crack formation. Samples with two pre-existing coplanar flaws were fabricated using an additive 3D printing process (Projet CJP 360). Layers of gypsum (0.2 mm thick) were printed in either a horizontal (H) or a vertical (V) orientation to create prismatic samples (152.4 mm x 76.2 mm x 25.1 mm) with two 12.7 mm long coplanar flaws (19.05 mm apart) oriented at 450 with the load. Cracks were induced under uniaxial loading conditions. Digital image correlation (DIC) and acoustic emission (AE) (18 AE sensors with a frequency range of 100-450 kHz) were used to monitor crack evolution. DIC imaging of the V specimen during uniaxial compression showed that smooth cracks were initiated and propagated from the tips of the flaws parallel to the layering. Unlike the strongly bonded samples, no cracks were formed between the pre-existing flaws. The failure mechanism between the flaws was controlled by the weak bonding between the layers, and not by the coalescence of the new cracks. However, for the H specimen, failure was caused by crack coalescence between the two flaws. The new cracks exhibited a step-like roughness that was influenced by the layering in the sample. AE events were only detected when a synchronized mode was used. 3D printed samples can be effectively used to study the effect of anisotropic layering on crack initiation and propagation in a repeatable and controlled manner. Acknowledgements: Sandia National Laboratories is a multi-mission laboratory managed and operated by National Technology & Engineering Solutions of Sandia, LLC., a wholly owned subsidiary of Honeywell International, Inc., for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-NA0003525. This material is also based upon work supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, Geosciences Research Program under Award Number (DE-FG02-09ER16022) and by the National Science Foundation, Geomechanics and Geotechnical Systems Program (award No. CMMI-1162082).
Procedure for flaw detection in cast stainless steel
Kupperman, David S.
1988-01-01
A method of ultrasonic flaw detection in cast stainless steel components incorporating the steps of determining the nature of the microstructure of the cast stainless steel at the site of the flaw detection measurements by ultrasonic elements independent of the component thickness at the site; choosing from a plurality of flaw detection techniques, one such technique appropriate to the nature of the microstructure as determined and detecting flaws by use of the chosen technique.
Applicability of a Conservative Margin Approach for Assessing NDE Flaw Detectability
NASA Technical Reports Server (NTRS)
Koshti, ajay M.
2007-01-01
Nondestructive Evaluation (NDE) procedures are required to detect flaws in structures with a high percentage detectability and high confidence. Conventional Probability of Detection (POD) methods are statistical in nature and require detection data from a relatively large number of flaw specimens. In many circumstances, due to the high cost and long lead time, it is impractical to build the large set of flaw specimens that is required by the conventional POD methodology. Therefore, in such situations it is desirable to have a flaw detectability estimation approach that allows for a reduced number of flaw specimens but provides a high degree of confidence in establishing the flaw detectability size. This paper presents an alternative approach called the conservative margin approach (CMA). To investigate the applicability of the CMA approach, flaw detectability sizes determined by the CMA and POD approaches have been compared on actual datasets. The results of these comparisons are presented and the applicability of the CMA approach is discussed.
NASA Technical Reports Server (NTRS)
Clements, L. L.; Lee, P. R.
1980-01-01
Tension tests on graphite/epoxy composites were performed to determine the influence of various quality control variables on failure strength as a function of moisture and moderate temperatures. The extremely high and low moisture contents investigated were found to have less effect upon properties than did temperature or the quality control variables of specimen flaws and prepreg batch to batch variations. In particular, specimen flaws were found to drastically reduce the predicted strength of the composite, whereas specimens from different batches of prepreg displayed differences in strength as a function of temperature and extreme moisture exposure. The findings illustrate the need for careful specimen preparation, studies of flaw sensitivity, and careful quality control in any study of composite materials.
Acoustic Emission Weld Monitor System. Data Acquisition and Investigation
1979-10-01
improved weld intergrity by allowing repairs to be performed on a pass by pass basis as the flaws occur rather than after the completion of a heavy...effect on weld intergrity . Flaw confirmation was primarily accomplished through the use of radio- graphic inspection. Positive confirmation of porosity...Figures 14-21, the weld is represented by the horizontal dashed line. Transducer locations, derived from calibration files, are indicated by verti
Apparatus and method for detecting flaws in conductive material
Hockey, Ronald L.; Riechers, Douglas M.
1999-01-01
The present invention is an improved sensing unit for detecting flaws in conductive material wherein the sensing coil is positioned away from a datum of either the datum point, the datum orientation, or a combination thereof. Position of the sensing coil away from a datum increases sensitivity for detecting flaws having a characteristic volume less than about 1 mm.sup.3, and further permits detection of subsurface flaws. Use of multiple sensing coils permits quantification of flaw area or volume.
Digital ultrasonics signal processing: Flaw data post processing use and description
NASA Technical Reports Server (NTRS)
Buel, V. E.
1981-01-01
A modular system composed of two sets of tasks which interprets the flaw data and allows compensation of the data due to transducer characteristics is described. The hardware configuration consists of two main units. A DEC LSI-11 processor running under the RT-11 sngle job, version 2C-02 operating system, controls the scanner hardware and the ultrasonic unit. A DEC PDP-11/45 processor also running under the RT-11, version 2C-02, operating system, stores, processes and displays the flaw data. The software developed the Ultrasonics Evaluation System, is divided into two catagories; transducer characterization and flaw classification. Each category is divided further into two functional tasks: a data acquisition and a postprocessor ask. The flaw characterization collects data, compresses its, and writes it to a disk file. The data is then processed by the flaw classification postprocessing task. The use and operation of a flaw data postprocessor is described.
Fayyaz Khan, Humaira; Farooq Danish, Khalid; Saeed Awan, Azra; Anwar, Masood
2013-05-01
The purpose of the study was to identify technical item flaws in the multiple choice questions submitted for the final exams for the years 2009, 2010 and 2011. This descriptive analytical study was carried out in Islamic International Medical College (IIMC). The Data was collected from the MCQ's submitted by the faculty for the final exams for the year 2009, 2010 and 2011. The data was compiled and evaluated by a three member assessment committee. The data was analyzed for frequency and percentages the categorical data was analyzed by chi-square test. Overall percentage of flawed item was 67% for the year 2009 of which 21% were for testwiseness and 40% were for irrelevant difficulty. In year 2010 the total item flaws were 36% and 11% testwiseness and 22% were for irrelevant difficulty. The year 2011 data showed decreased overall flaws of 21%. The flaws of testwisness were 7%, irrelevant difficulty were 11%. Technical item flaws are frequently encountered during MCQ construction, and the identification of flaws leads to improved quality of the single best MCQ's.
Simple Tidal Prism Models Revisited
NASA Astrophysics Data System (ADS)
Luketina, D.
1998-01-01
Simple tidal prism models for well-mixed estuaries have been in use for some time and are discussed in most text books on estuaries. The appeal of this model is its simplicity. However, there are several flaws in the logic behind the model. These flaws are pointed out and a more theoretically correct simple tidal prism model is derived. In doing so, it is made clear which effects can, in theory, be neglected and which can not.
Evaluation of laminated aluminum plate for shuttle applications
NASA Technical Reports Server (NTRS)
Martin, M. J.
1973-01-01
Flaw growth behavior in roll diffusion bonded and adhesive bonded 2219-T87 aluminum alloy was compared to that in monolothic 2219-T87. Based on tests at 40 KSI cyclic stress, for equivalent cyclic life, a .004 interlayer laminate can tolerate a surface flaw twice as wide as in monolithic material, or provide an 8% weight saving by operating at higher stress for the same initial flaw. Roll diffusion bonded material with three structural plies of 2219-T87 and two interlayers of 1100 aluminum was prepared with interlayer thicknesses of .004, .007 and .010 in. Total laminate thickness was .130 in. The .004 interlayer laminate was most effective and gave better results than monolithic material at 40 and 48 ksi. Adhesive bonded specimens were fabricated of three sheets of 2219-T87 aluminum alloy bonded with METLBOND 329 adhesive. Adhesive bonded specimens gave longer lives to failure than diffusion bonded specimens at 40 ksi the diffusion bonded material was superior. Flaws initiated in one ply of the laminate grew to the edges of the specimen in that ply but did not propagate into adjacent plies.
Stress corrosion in silica optical fibers: Review of fatigue testing procedures
NASA Astrophysics Data System (ADS)
Severin, Irina; Borda, Claudia; Dumitrache-Rujinski, Alexandru; Caramihai, Mihai; Abdi, Rochdi El
2018-02-01
The expected lifetime of optical fibers used either in telecommunication technologies or smart applications are closely related to the chemical reaction on the silica network. Due to the manufacturing processes or the handling procedures, the flaws spread on the fiber surface are inherently present. The aging mechanism is assumed to enlarge or to extend these flaws. Based on systematic experiments one may notice that water may induce a certain curing effect. Silica optical fibers have been aged in water; series of samples have been subjected to overlapped stretching or bending. Other series have been subjected to overlapped aging effect of microwaves and hot water. Finally, samples were submitted to dynamic tensile testing. The Weibull's diagram analysis shows mono or bimodal dispersions of flaws on the fiber surface, but the polymer coating appears vital for fiber lifetime. While humidity usually affects the fiber strength, the series of testing has revealed that in controlled conditions of chemical environment and controlled applied stress, fiber strength may be increased. A similar effect may be obtained by external factors such as microwaves or previous elongation, too.
Alpha-Helical Protein Networks Are Self-Protective and Flaw-Tolerant
Ackbarow, Theodor; Sen, Dipanjan; Thaulow, Christian; Buehler, Markus J.
2009-01-01
Alpha-helix based protein networks as they appear in intermediate filaments in the cell’s cytoskeleton and the nuclear membrane robustly withstand large deformation of up to several hundred percent strain, despite the presence of structural imperfections or flaws. This performance is not achieved by most synthetic materials, which typically fail at much smaller deformation and show a great sensitivity to the existence of structural flaws. Here we report a series of molecular dynamics simulations with a simple coarse-grained multi-scale model of alpha-helical protein domains, explaining the structural and mechanistic basis for this observed behavior. We find that the characteristic properties of alpha-helix based protein networks are due to the particular nanomechanical properties of their protein constituents, enabling the formation of large dissipative yield regions around structural flaws, effectively protecting the protein network against catastrophic failure. We show that the key for these self protecting properties is a geometric transformation of the crack shape that significantly reduces the stress concentration at corners. Specifically, our analysis demonstrates that the failure strain of alpha-helix based protein networks is insensitive to the presence of structural flaws in the protein network, only marginally affecting their overall strength. Our findings may help to explain the ability of cells to undergo large deformation without catastrophic failure while providing significant mechanical resistance. PMID:19547709
NASA Technical Reports Server (NTRS)
Carver, Kyle L.; Saulsberry, Regor L.; Nichols, Charles T.; Spencer, Paul R.; Lucero, Ralph E.
2012-01-01
Eddy current testing (ET) was used to scan bare metallic liners used in the fabrication of composite overwrapped pressure vessels (COPVs) for flaws which could result in premature failure of the vessel. The main goal of the project was to make improvements in the areas of scan signal to noise ratio, sensitivity of flaw detection, and estimation of flaw dimensions. Scan settings were optimized resulting in an increased signal to noise ratio. Previously undiscovered flaw indications were observed and investigated. Threshold criteria were determined for the system software's flaw report and estimation of flaw dimensions were brought to an acceptable level of accuracy. Computer algorithms were written to import data for filtering and a numerical derivative filtering algorithm was evaluated.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Anandakumar, U.; Webb, J.E.; Singh, R.N.
The matrix cracking behavior of a zircon matrix - uniaxial SCS 6 fiber composite was studied as a function of initial flaw size and temperature. The composites were fabricated by a tape casting and hot pressing technique. Surface flaws of controlled size were introduced using a vicker`s indenter. The composite samples were tested in three point flexure at three different temperatures to study the non steady state and steady state matrix cracking behavior. The composite samples exhibited steady state and non steady matrix cracking behavior at all temperatures. The steady state matrix cracking stress and steady state crack size increasedmore » with increasing temperature. The results of the study correlated well with the results predicted by the matrix cracking models.« less
Ferenc, Jaroslav; Červenák, Filip; Birčák, Erik; Juríková, Katarína; Goffová, Ivana; Gorilák, Peter; Huraiová, Barbora; Plavá, Jana; Demecsová, Loriana; Ďuríková, Nikola; Galisová, Veronika; Gazdarica, Matej; Puškár, Marek; Nagy, Tibor; Nagyová, Soňa; Mentelová, Lucia; Slaninová, Miroslava; Ševčovicová, Andrea; Tomáška, Ľubomír
2018-01-01
As future scientists, university students need to learn how to avoid making errors in their own manuscripts, as well as how to identify flaws in papers published by their peers. Here we describe a novel approach on how to promote students' ability to critically evaluate scientific articles. The exercise is based on instructing teams of students to write intentionally flawed manuscripts describing the results of simple experiments. The teams are supervised by instructors advising the students during manuscript writing, choosing the 'appropriate' errors, monitoring the identification of errors made by the other team and evaluating the strength of their arguments in support of the identified errors. We have compared the effectiveness of the method with a journal club-type seminar. Based on the results of our assessment we propose that the described seminar may effectively complement the existing approaches to teach critical scientific thinking. © 2017 by The International Union of Biochemistry and Molecular Biology, 46(1):22-30, 2018. © 2017 The International Union of Biochemistry and Molecular Biology.
Nondestructive Evaluation of the J-2X Direct Metal Laser Sintered Gas Generator Discharge Duct
NASA Technical Reports Server (NTRS)
Esther, Elizabeth A.; Beshears, Ronald D.; Lash, Rhonda K.
2012-01-01
The J-2X program at NASA's Marshall Space Flight Center (MSFC) procured a direct metal laser sintered (DMLS) gas generator discharge duct from Pratt & Whitney Rocketdyne and Morris Technologies for a test program that would evaluate the material properties and durability of the duct in an engine-like environment. DMLS technology was pursued as a manufacturing alternative to traditional techniques, which used off nominal practices to manufacture the gas generator duct's 180 degree turn geometry. MSFC's Nondestructive Evaluation (NDE) Team performed radiographic, ultrasonic, computed tomographic, and fluorescent penetrant examinations of the duct. Results from the NDE examinations reveal some shallow porosity but no major defects in the as-manufactured material. NDE examinations were also performed after hot-fire testing the gas generator duct and yielded similar results pre and post-test and showed no flaw growth or development.
An interlaminar tension strength specimen
NASA Technical Reports Server (NTRS)
Jackson, Wade C.; Martin, Roderick H.
1992-01-01
This paper describes a technique to determine interlaminar tension strength, sigma(sub 3c) of a fiber reinforced composite material using a curved beam. The specimen was a unidirectional curved beam, bent 90 degrees, with straight arms. Attached to each arm was a hinged loading mechanism which was held by the grips of a tensile testing machine. Geometry effects of the specimen, including the effects of loading arm length, inner radius, thickness, and width, were studied. The data sets fell into two categories: low strength corresponding to a macroscopic flaw related failure and high strength corresponding to a microscopic flaw related failure. From the data available, the loading arm length had no effect on sigma(sub 3c). The inner radius was not expected to have a significant effect on sigma(sub 3c), but this conclusion could not be confirmed because of differences in laminate quality for each curve geometry. The thicker specimens had the lowest value of sigma(sub 3c) because of poor laminate quality. Width was found to affect the value of sigma(sub 3c) only slightly. The wider specimens generally had a slightly lower strength since more material was under high stress, and hence, had a larger probability of containing a significant flaw.
Usability flaws of medication-related alerting functions: A systematic qualitative review.
Marcilly, Romaric; Ammenwerth, Elske; Vasseur, Francis; Roehrer, Erin; Beuscart-Zéphir, Marie-Catherine
2015-06-01
Medication-related alerting functions may include usability flaws that limit their optimal use. A first step on the way to preventing usability flaws is to understand the characteristics of these usability flaws. This systematic qualitative review aims to analyze the type of usability flaws found in medication-related alerting functions. Papers were searched via PubMed, Scopus and Ergonomics Abstracts databases, along with references lists. Paper selection, data extraction and data analysis was performed by two to three Human Factors experts. Meaningful semantic units representing instances of usability flaws were the main data extracted. They were analyzed through qualitative methods: categorization following general usability heuristics and through an inductive process for the flaws specific to medication-related alerting functions. From the 6380 papers initially identified, 26 met all eligibility criteria. The analysis of the papers identified a total of 168 instances of usability flaws that could be classified into 13 categories of usability flaws representing either violations of general usability principles (i.e. they could be found in any system, e.g. guidance and workload issues) or infractions specific to medication-related alerting functions. The latter refer to issues of low signal-to-noise ratio, incomplete content of alerts, transparency, presentation mode and timing, missing alert features, tasks and control distribution. The list of 168 instances of usability flaws of medication-related alerting functions provides a source of knowledge for checking the usability of medication-related alerting functions during their design and evaluation process and ultimately constructs evidence-based usability design principles for these functions. Copyright © 2015 Elsevier Inc. All rights reserved.
Flawed Execution: A Case Study on Operational Contract Support
2016-06-01
NAVAL POSTGRADUATE SCHOOL MONTEREY, CALIFORNIA JOINT APPLIED PROJECT FLAWED EXECUTION: A CASE STUDY ON OPERATIONAL CONTRACT SUPPORT June 2016...applied project 4. TITLE AND SUBTITLE FLAWED EXECUTION: A CASE STUDY ON OPERATIONAL CONTRACT SUPPORT 5. FUNDING NUMBERS 6. AUTHOR(S) Scott F...unlimited FLAWED EXECUTION: A CASE STUDY ON OPERATIONAL CONTRACT SUPPORT Scott F. Taggart, Captain, United States Marine Corps Jacob Ledford
NASA Technical Reports Server (NTRS)
Winfree, William P.; Madaras, Eric I.
2005-01-01
The detection and repair of flaws such as voids and delaminations in the sprayed on foam insulation of the external tank reduces the probability of foam debris during shuttle ascent. The low density of sprayed on foam insulation along with it other physical properties makes detection of flaws difficult with conventional techniques. An emerging technology that has application for quantitative evaluation of flaws in the foam is pulsed electromagnetic waves at terahertz frequencies. The short wavelengths of these terahertz pulses make them ideal for imaging flaws in the foam. This paper examines the application of terahertz pulses for flaw detection in foam characteristic of the foam insulation of the external tank. Of particular interest is the detection of voids and delaminations, encapsulated in the foam or at the interface between the foam and a metal backing. The technique is shown to be capable of imaging small voids and delaminations through as much as 20 cm of foam. Methods for reducing the temporal responses of the terahertz pulses to improve flaw detection and yield quantitative characterizations of the size and location of the flaws are discussed.
One Size Does Not Fit All: How Acquisition Fails the Joint Force Commander
2010-04-02
Campaign Planning and Strategy . The contents of this paper reflect my own personal views and are not necessarily endorsed by the Joint Forces Staff...one-size-fits-all‖ approach has insidiously led to a flawed aircraft acquisition strategy that allows unacceptable risk to combat effectiveness in an...and 78% of the total US tactical aviation fleet. This ―one-size-fits-all‖ approach has insidiously led to a flawed aircraft acquisition strategy
Effects of a finite aperture on the Inverse Born Approximation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kogan, V.G.; Rose, J.H.
1983-01-01
One of the most important effects of complex part geometry is that the available entrance and exit angles for ultrasound are limited. We will present a study of the Inverse Born approximation in which we have data for incident (and exit) directions confined to a conical aperture. Modeling the direct problem by the Born Approximation, we obtained analytical results for (1) a weak spherical inclusion, and (2) a penny shaped crack (modeled by an oblate spheroid). General results are: (a) the value of the characteristic function ..gamma.. is constant in the interior of the flaw, but reduced in value; (b)more » the discontinuity at the boundary of the flaw occurs over the lighted portion of the flaw; (c) this discontinuity is contrasted by a region where ..gamma.. is negative; and (d) new non-physical discontinuities and non-analyticities appear in the reconstructed characteristic function. These general features also appear in numerical calculations which use as input strong scattering data from a spherical void and a flat penny shaped crack in Titanium. The numerical results can be straightforwardly interpreted in terms of the analytical calculation mentioned above, indicating that they will be useful in the study of realistic flaws. We conclude by discussing the stabilization of the aperture limited inversion problem and the removal of non-physical features in the reconstruction.« less
Analysis of unclad and sub-clad semi-elliptical flaws in pressure vessel steels
DOE Office of Scientific and Technical Information (OSTI.GOV)
Irizarry-Quinones, H.; Macdonald, B.D.; McAfee, W.J.
This study was conducted to support warm prestressing experiments on unclad and sub-clad flawed beams loaded in pure bending. Two cladding yield strengths were investigated: 0.6 Sy and 0.8 Sy, where Sy is the yield strength of the base metal. Cladding and base metal were assumed to be stress free at the stress relief temperature for the 3D elastic-plastic finite element analysis used to model the experiments. The model results indicated that when cooled from the stress relief temperature, the cladding was put in tension due to its greater coefficient of thermal expansion. When cooled, the cladding exhibited various amountsmore » of tensile yielding. The degree of yielding depended on the amount of cooling and the strength of the cladding relative to that of the base metal. When subjected to tensile bending stress, the sub-clad flaw elastic-plastic stress intensity factor, K{sub I}(J), was at first dominated by crack closing force due to tensile yielding in the cladding. Thus, imposed loads initially caused no increase in K{sub I}(J) near the clad-base interface. However, K{sub I}(J) at the flaw depth was little affected. When the cladding residual stress was overcome, K{sub I}(J) gradually increased until the cladding began to flow. Thereafter, the rate at which K{sub I}(J) increased with load was the same as that of an unclad beam. A plastic zone corrected K{sub I} approximation for the unclad flaw was found by the superposition of standard Newman and Raju solutions with those due to a cladding crack closure force approximated by the Kaya and Erdogan solution. These elastic estimates of the effect of cladding in reducing the crack driving force were quite in keeping with the 3D elastic-plastic finite element solution for the sub-clad flaw. The results were also compared with the analysis of clad beam experiments by Keeney and the conclusions by Miyazaki, et al. A number of sub-clad flaw specimens not subjected to warm prestressing were thought to have suffered degraded toughness caused by locally intensified strain aging embrittlement (LISAE) due to welding over the preexisting flaw.« less
ORNL Evaluation of Electrabel Safety Cases for Doel 3 / Tihange 2: Final Report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bass, Bennett Richard; Dickson, Terry L.; Gorti, Sarma B.
Oak Ridge National Laboratory (ORNL) performed a detailed technical review of the 2015 Electrabel (EBL) Safety Cases prepared for the Belgium reactor pressure vessels (RPVs) at Doel 3 and Tihange 2 (D3/T2). The Federal Agency for Nuclear Control (FANC) in Belgium commissioned ORNL to provide a thorough assessment of the existing safety margins against cracking of the RPVs due to the presence of almost laminar flaws found in each RPV. Initial efforts focused on surveying relevant literature that provided necessary background knowledge on the issues related to the quasilaminar flaws observed in D3/T2 reactors. Next, ORNL proceeded to develop anmore » independent quantitative assessment of the entire flaw population in the two Belgian reactors according to the American Society of Mechanical Engineers (ASME) Boiler and Pressure Vessel Code, Section XI, Appendix G, Fracture Toughness Criteria for Protection Against Failure, New York (1992 and 2004). That screening assessment of all EBL-characterized flaws in D3/T2 used ORNL tools, methodologies, and the ASME Code Case N-848, Alternative Characterization Rules for QuasiLaminar Flaws . Results and conclusions from the ORNL flaw acceptance assessments of D3/T2 were compared with those from the 2015 EBL Safety Cases. Specific findings of the ORNL evaluation of that part of the EBL structural integrity assessment focusing on stability of the flaw population subjected to primary design transients include the following: ORNL s analysis results were similar to those of EBL in that very few characterized flaws were found not compliant with the ASME (1992) acceptance criterion. ORNL s application of the more recent ASME Section XI (2004) produced only four noncompliant flaws, all due to LOCAs. The finding of a greater number of non-compliant flaws in the EBL screening assessment is due principally to a significantly more restrictive (conservative) criterion for flaw size acceptance used by EBL. ORNL s screening assessment results (obtained using an analysis methodology different from that of EBL) are interpreted herein as confirming the EBL screening results for D3/T2. ORNL s independent refined analysis demonstrated the EBL-characterized flaw 1660, which is non-compliant in the ORNL and EBL screening assessment, is rendered compliant when modeled as a more realistic individual quasi-laminar flaw using a 3-D XFEM analysis approach. ORNL s and EBL s refined analyses are in good agreement for the flaw 1660 close to the clad/base metal interface; ORNL is not persuaded that repeating this exercise for more than one non-compliant flaw is necessary to accept the EBL conclusions derived from the aggregate of EBL refined analysis results. ORNL General Conclusions Regarding the Structural Integrity Assessment (SIA) Conducted by EBL for D3/T2 Based on comparative evaluations of ORNL and EBL SIA analyses and on consideration of other results, ORNL is in agreement with the general conclusions reported by Electrabel in their RPV D3/T2 Technical Summary Note of April 14, 2015: More than 99 percent of flaws in D3/T2 meet the defined screening criterion, rendering them benign with respect to initiation in the event of a design transient. Refined analyses of non-compliant flaws from the screening assessment indicate that only 11 of the 16196 detected flaws have a critical reference-temperature material index (designated RTNDT) that implies the possibility of the initiation of cleavage fracture at some future time. For those 11 2 flaws, the calculated margin in RTNDT (a measure of acceptable embrittlement relative to end-ofservice-life conditions) is significant, being greater than 80 C. Fatigue crack growth is not a concern in the flaw-acceptability analyses. Primary stress re-evaluation confirms that the collapse pressure is more than 1.5 times the design pressure in the presence of defects detected in D3/T2. Sufficient conservatisms are built into the input data and into the different steps of the SIA; in some cases, those conservatisms are quantified and imply that additional margins exist in the SIA. Taken as a whole, the foregoing results and conclusions confirm the structural integrity of Doel 3 and Tihange 2 under all design transients with ample margin in the presence of the 16196 detected flaws.« less
Residual Stresses and Critical Initial Flaw Size Analyses of Welds
NASA Technical Reports Server (NTRS)
Brust, Frederick W.; Raju, Ivatury, S.; Dawocke, David S.; Cheston, Derrick
2009-01-01
An independent assessment was conducted to determine the critical initial flaw size (CIFS) for the flange-to-skin weld in the Ares I-X Upper Stage Simulator (USS). A series of weld analyses are performed to determine the residual stresses in a critical region of the USS. Weld residual stresses both increase constraint and mean stress thereby having an important effect on the fatigue life. The purpose of the weld analyses was to model the weld process using a variety of sequences to determine the 'best' sequence in terms of weld residual stresses and distortions. The many factors examined in this study include weld design (single-V, double-V groove), weld sequence, boundary conditions, and material properties, among others. The results of this weld analysis are included with service loads to perform a fatigue and critical initial flaw size evaluation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Moran, Traci L.; Anderson, Michael T.; Cinson, Anthony D.
2014-08-01
The Pacific Northwest National Laboratory (PNNL) is conducting studies for the U.S. Nuclear Regulatory Commission (NRC) to assess the capability, effectiveness, and reliability of ultrasonic testing (UT) as a replacement method for radiographic testing (RT) for volumetric examination of nuclear power plant (NPP) components. This particular study focused on evaluating the use of UT on carbon steel plate welds. Welding fabrication flaws included a combination of planar and volumetric types, e.g., incomplete fusion, lack of penetration, cracks, porosity, and slag inclusions. The examinations were conducted using phased-array (PA) UT techniques applied primarily for detection and flaw type characterization. This papermore » will discuss the results of using UT in lieu of RT for detection and classification of fabrication flaws in carbon steel plate welds.« less
Assessment of item-writing flaws in multiple-choice questions.
Nedeau-Cayo, Rosemarie; Laughlin, Deborah; Rus, Linda; Hall, John
2013-01-01
This study evaluated the quality of multiple-choice questions used in a hospital's e-learning system. Constructing well-written questions is fraught with difficulty, and item-writing flaws are common. Study results revealed that most items contained flaws and were written at the knowledge/comprehension level. Few items had linked objectives, and no association was found between the presence of objectives and flaws. Recommendations include education for writing test questions.
NASA Astrophysics Data System (ADS)
Du, Mao-Kang; He, Bo; Wang, Yong
2011-01-01
Recently, the cryptosystem based on chaos has attracted much attention. Wang and Yu (Commun. Nonlin. Sci. Numer. Simulat. 14 (2009) 574) proposed a block encryption algorithm based on dynamic sequences of multiple chaotic systems. We analyze the potential flaws in the algorithm. Then, a chosen-plaintext attack is presented. Some remedial measures are suggested to avoid the flaws effectively. Furthermore, an improved encryption algorithm is proposed to resist the attacks and to keep all the merits of the original cryptosystem.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lisin, M.A.
1996-11-01
Black light photography of fluorescent penetrant and wet fluorescent magnetic particle indications can yield spectacular and useful results. The technique provides a lasting record of a flaw`s severity and location, as well as its physical relation to other components and important features. The procedures are easily learned and do not require sophisticated apparatus. In fact, equipment costs can often be justified on the basis of a single application. Using the techniques described in this article, black light photography can be a cost-effective, informative NDT tool.
Advanced Flaw Manufacturing and Crack Growth Control
NASA Astrophysics Data System (ADS)
Kemppainen, M.; Pitkänen, J.; Virkkunen, I.; Hänninen, H.
2004-02-01
Advanced artificial flaw manufacturing method has become available. The method produces true fatigue cracks, which are representative of most service-induced cracks. These cracks can be used to simulate behaviour of realistic cracks under service conditions. This paper introduces studies of the effects of different thermal loading cycles to crack opening and residual stress state as seen at the surface of the sample and in the ultrasonic signal. In-situ measurements were performed under dynamic thermal fatigue loading of a 20 mm long artificial crack.
Artificial Intelligence Assists Ultrasonic Inspection
NASA Technical Reports Server (NTRS)
Schaefer, Lloyd A.; Willenberg, James D.
1992-01-01
Subtle indications of flaws extracted from ultrasonic waveforms. Ultrasonic-inspection system uses artificial intelligence to help in identification of hidden flaws in electron-beam-welded castings. System involves application of flaw-classification logic to analysis of ultrasonic waveforms.
Elastic-Plastic Fracture Mechanics Analysis of Critical Flaw Size in ARES I-X Flange-to-Skin Welds
NASA Technical Reports Server (NTRS)
Chell, G. Graham; Hudak, Stephen J., Jr.
2008-01-01
NASA's Ares 1 Upper Stage Simulator (USS) is being fabricated from welded A516 steel. In order to insure the structural integrity of these welds it is of interest to calculate the critical initial flaw size (CIFS) to establish rational inspection requirements. The CIFS is in turn dependent on the critical final flaw size (CFS), as well as fatigue flaw growth resulting from transportation, handling and service-induced loading. These calculations were made using linear elastic fracture mechanics (LEFM), which are thought to be conservative because they are based on a lower bound, so called elastic, fracture toughness determined from tests that displayed significant plasticity. Nevertheless, there was still concern that the yield magnitude stresses generated in the flange-to-skin weld by the combination of axial stresses due to axial forces, fit-up stresses, and weld residual stresses, could give rise to significant flaw-tip plasticity, which might render the LEFM results to be non-conservative. The objective of the present study was to employ Elastic Plastic Fracture Mechanics (EPFM) to determine CFS values, and then compare these values to CFS values evaluated using LEFM. CFS values were calculated for twelve cases involving surface and embedded flaws, EPFM analyses with and without plastic shakedown of the stresses, LEFM analyses, and various welding residual stress distributions. For the cases examined, the computed CFS values based on elastic analyses were the smallest in all instances where the failures were predicted to be controlled by the fracture toughness. However, in certain cases, the CFS values predicted by the elastic-plastic analyses were smaller than those predicted by the elastic analyses; in these cases the failure criteria were determined by a breakdown in stress intensity factor validity limits for deep flaws (a greater than 0.90t), rather than by the fracture toughness. Plastic relaxation of stresses accompanying shakedown always increases the calculated CFS values compared to the CFS values determined without shakedown. Thus, it is conservative to ignore shakedown effects.
Magnetoresistive flux focusing eddy current flaw detection
NASA Technical Reports Server (NTRS)
Wincheski, Russell A. (Inventor); Simpson, John W. (Inventor); Namkung, Min (Inventor)
2005-01-01
A giant magnetoresistive flux focusing eddy current device effectively detects deep flaws in thick multilayer conductive materials. The probe uses an excitation coil to induce eddy currents in conducting material perpendicularly oriented to the coil's longitudinal axis. A giant magnetoresistive (GMR) sensor, surrounded by the excitation coil, is used to detect generated fields. Between the excitation coil and GMR sensor is a highly permeable flux focusing lens which magnetically separates the GMR sensor and excitation coil and produces high flux density at the outer edge of the GMR sensor. The use of feedback inside the flux focusing lens enables complete cancellation of the leakage fields at the GMR sensor location and biasing of the GMR sensor to a location of high magnetic field sensitivity. In an alternate embodiment, a permanent magnet is positioned adjacent to the GMR sensor to accomplish the biasing. Experimental results have demonstrated identification of flaws up to 1 cm deep in aluminum alloy structures. To detect deep flaws about circular fasteners or inhomogeneities in thick multilayer conductive materials, the device is mounted in a hand-held rotating probe assembly that is connected to a computer for system control, data acquisition, processing and storage.
C-Sphere Strength-Size Scaling in a Bearing-Grade Silicon Nitride
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wereszczak, Andrew A; Jadaan, Osama M.; Kirkland, Timothy Philip
2008-01-01
A C-sphere specimen geometry was used to determine the failure strength distributions of a commercially available bearing-grade silicon nitride (Si3N4) having ball diameters of 12.7 and 25.4 mm. Strengths for both diameters were determined using the combination of failure load, C sphere geometry, and finite element analysis and fitted using two-parameter Weibull distributions. Effective areas of both diameters were estimated as a function of Weibull modulus and used to explore whether the strength distributions predictably strength-scaled between each size. They did not. That statistical observation suggested that the same flaw type did not limit the strength of both ball diametersmore » indicating a lack of material homogeneity between the two sizes. Optical fractography confirmed that. It showed there were two distinct strength-limiting flaw types in both ball diameters, that one flaw type was always associated with lower strength specimens, and that significantly higher fraction of the 24.5-mm-diameter c-sphere specimens failed from it. Predictable strength-size-scaling would therefore not result as a consequence of this because these flaw types were not homogenously distributed and sampled in both c-sphere geometries.« less
Magnetoresistive Flux Focusing Eddy Current Flaw Detection
NASA Technical Reports Server (NTRS)
Wincheski, Russell A. (Inventor); Namkung, Min (Inventor); Simpson, John W. (Inventor)
2005-01-01
A giant magnetoresistive flux focusing eddy current device effectively detects deep flaws in thick multilayer conductive materials. The probe uses an excitation coil to induce eddy currents in conducting material perpendicularly oriented to the coil s longitudinal axis. A giant magnetoresistive (GMR) sensor, surrounded by the excitation coil, is used to detect generated fields. Between the excitation coil and GMR sensor is a highly permeable flux focusing lens which magnetically separates the GMR sensor and excitation coil and produces high flux density at the outer edge of the GMR sensor. The use of feedback inside the flux focusing lens enables complete cancellation of the leakage fields at the GMR sensor location and biasing of the GMR sensor to a location of high magnetic field sensitivity. In an alternate embodiment, a permanent magnet is positioned adjacent to the GMR sensor to accomplish the biasing. Experimental results have demonstrated identification of flaws up to 1 cm deep in aluminum alloy structures. To detect deep flaws about circular fasteners or inhomogeneities in thick multi-layer conductive materials, the device is mounted in a hand-held rotating probe assembly that is connected to a computer for system control, data acquisition, processing and storage.
Uniaxial Tensile Strength and Flaw Characterization of SiC-N
2014-01-01
study has been largely limited to tiles less than 40 mm thick, especially versus small caliber threats (1, 3, 4). Research and production of ceramic... production of very large ceramic components. One issue that may occur in the production of large ceramic components is uneven powder packing during the...flaw is important because flaws originate from different stages during the production process. Flaws associated with the processing of the material
The HMDS Coating Flaw Removal Tool
DOE Office of Scientific and Technical Information (OSTI.GOV)
Monticelli, M V; Nostrand, M C; Mehta, N
2008-10-24
In many high energy laser systems, optics with HMDS sol gel antireflective coatings are placed in close proximity to each other making them particularly susceptible to certain types of strong optical interactions. During the coating process, halo shaped coating flaws develop around surface digs and particles. Depending on the shape and size of the flaw, the extent of laser light intensity modulation and consequent probability of damaging downstream optics may increase significantly. To prevent these defects from causing damage, a coating flaw removal tool was developed that deploys a spot of decane with a syringe and dissolves away the coatingmore » flaw. The residual liquid is evacuated leaving an uncoated circular spot approximately 1mm in diameter. The resulting uncoated region causes little light intensity modulation and thus has a low probability of causing damage in optics downstream from the mitigated flaw site.« less
Acoustic emission testing of 12-nickel maraging steel pressure vessels
NASA Technical Reports Server (NTRS)
Dunegan, H. L.
1973-01-01
Acoustic emission data were obtained from three point bend fracture toughness specimens of 12-nickel maraging steel, and two pressure vessels of the same material. One of the pressure vessels contained a prefabricated flaw which was extended and sharpened by fatigue cycling. It is shown that the flawed vessel had similar characteristics to the fracture specimens, thereby allowing estimates to be made of its nearness to failure during a proof test. Both the flawed and unflawed pressure vessel survived the proof pressure and 5 cycles to the working pressure, but it was apparent from the acoustic emission response during the proof cycle and the 5 cycles to the working pressure that the flawed vessel was very near failure. The flawed vessel did not survive a second cycle to the proof pressure before failure due to flaw extension through the wall (causing a leak).
Stress intensity factors for long, deep surface flaws in plates under extensional fields
NASA Technical Reports Server (NTRS)
Harms, A. E.; Smith, C. W.
1973-01-01
Using a singular solution for a part circular crack, a Taylor Series Correction Method (TSCM) was verified for extracting stress intensity factors from photoelastic data. Photoelastic experiments were then conducted on plates with part circular and flat bottomed cracks for flaw depth to thickness ratios of 0.25, 0.50 and 0.75 and for equivalent flaw depth to equivalent ellipse length values ranging from 0.066 to 0.319. Experimental results agreed well with the Smith theory but indicated that the use of the ''equivalent'' semi-elliptical flaw results was not valid for a/2c less than 0.20. Best overall agreement for the moderate (a/t approximately 0.5) to deep flaws (a/t approximatelly 0.75) and a/2c greater than 0.15 was found with a semi-empirical theory, when compared on the basis of equivalent flaw depth and area.
An Overview of Meta-Analyses of Danhong Injection for Unstable Angina.
Zhang, Xiaoxia; Wang, Hui; Chang, Yanxu; Wang, Yuefei; Lei, Xiang; Fu, Shufei; Zhang, Junhua
2015-01-01
Objective. To systematically collect evidence and evaluate the effects of Danhong injection (DHI) for unstable angina (UA). Methods. A comprehensive search was conducted in seven electronic databases up to January 2015. The methodological and reporting quality of included studies was assessed by using AMSTAR and PRISMA. Result. Five articles were included. The conclusions suggest that DHI plus conventional medicine treatment was effective for UA pectoris treatment, could alleviate symptoms of angina and ameliorate electrocardiograms. Flaws of the original studies and systematic reviews weaken the strength of evidence. Limitations of the methodology quality include performing an incomprehensive literature search, lacking detailed characteristics, ignoring clinical heterogeneity, and not assessing publication bias and other forms of bias. The flaws of reporting systematic reviews included the following: not providing a structured summary, no standardized search strategy. For the pooled findings, researchers took statistical heterogeneity into consideration, but clinical and methodology heterogeneity were ignored. Conclusion. DHI plus conventional medicine treatment generally appears to be effective for UA treatment. However, the evidence is not hard enough due to methodological flaws in original clinical trials and systematic reviews. Furthermore, rigorous designed randomized controlled trials are also needed. The methodology and reporting quality of systematic reviews should be improved.
An Overview of Meta-Analyses of Danhong Injection for Unstable Angina
Zhang, Xiaoxia; Chang, Yanxu; Wang, Yuefei; Lei, Xiang; Fu, Shufei; Zhang, Junhua
2015-01-01
Objective. To systematically collect evidence and evaluate the effects of Danhong injection (DHI) for unstable angina (UA). Methods. A comprehensive search was conducted in seven electronic databases up to January 2015. The methodological and reporting quality of included studies was assessed by using AMSTAR and PRISMA. Result. Five articles were included. The conclusions suggest that DHI plus conventional medicine treatment was effective for UA pectoris treatment, could alleviate symptoms of angina and ameliorate electrocardiograms. Flaws of the original studies and systematic reviews weaken the strength of evidence. Limitations of the methodology quality include performing an incomprehensive literature search, lacking detailed characteristics, ignoring clinical heterogeneity, and not assessing publication bias and other forms of bias. The flaws of reporting systematic reviews included the following: not providing a structured summary, no standardized search strategy. For the pooled findings, researchers took statistical heterogeneity into consideration, but clinical and methodology heterogeneity were ignored. Conclusion. DHI plus conventional medicine treatment generally appears to be effective for UA treatment. However, the evidence is not hard enough due to methodological flaws in original clinical trials and systematic reviews. Furthermore, rigorous designed randomized controlled trials are also needed. The methodology and reporting quality of systematic reviews should be improved. PMID:26539221
Flaw tolerance promoted by dissipative deformation mechanisms between material building blocks
NASA Astrophysics Data System (ADS)
Verho, Tuukka; Buehler, Markus J.
2014-09-01
Novel high-performance composite materials often draw inspiration from natural materials such as bone or mollusc shells. A prime feature of such composites is that they are, like their natural counterparts, quasibrittle. They are tolerant to material flaws up to a certain characteristic flaw-tolerant size scale, exhibiting high strength and toughness, but start to behave in a brittle manner when sufficiently large flaws are present. Here, we establish that better flaw tolerance can be achieved by maximizing fracture toughness relative to the maximum elastic energy available in the material, and we demonstrate this concept with simple two-dimensional coarse-grained simulations where the transition from brittle to quasibrittle behaviour is examined.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Killian, D.E.; Yoon, K.K.
1996-12-01
Flaws on the inside surface of cladded reactor vessels are often analyzed by modelling the carbon steel base metal without consideration of a layer of stainless steel cladding material, thus ignoring the effects of this bimetallic discontinuity. Adding cladding material to the inside surface of a finite element model of a vessel raises concerns regarding adequate mesh refinement in the vicinity of the base metal/cladding interface. This paper presents results of three-dimensional linear stress analysis that has been performed to obtain stress intensity factors for clad and unclad reactor vessels subjected to internal pressure loading. The study concentrates on semi-ellipticalmore » longitudinal surface flaws with a 6 to 1 length-to-depth ratio and flaw depths of 1/8 and 1/4 of the base metal thickness. Various meshing schemes are evaluated for modelling the crack front profile, with particular emphasis on the region near the inside surface and at the base metal/cladding interface. The shape of the crack front profile through the cladding layer and the number of finite elements used to discretize the cladding thickness are found to have a significant influence on typical fracture mechanic measures of the crack tip stress fields. Results suggest that the stress intensity factor at the inner surface of a cladded vessel may be affected as much by the finite element mesh near the surface as by the material discontinuity between the two parts of the structure.« less
On flaw tolerance of nacre: a theoretical study
Shao, Yue; Zhao, Hong-Ping; Feng, Xi-Qiao
2014-01-01
As a natural composite, nacre has an elegant staggered ‘brick-and-mortar’ microstructure consisting of mineral platelets glued by organic macromolecules, which endows the material with superior mechanical properties to achieve its biological functions. In this paper, a microstructure-based crack-bridging model is employed to investigate how the strength of nacre is affected by pre-existing structural defects. Our analysis demonstrates that owing to its special microstructure and the toughening effect of platelets, nacre has a superior flaw-tolerance feature. The maximal crack size that does not evidently reduce the tensile strength of nacre is up to tens of micrometres, about three orders higher than that of pure aragonite. Through dimensional analysis, a non-dimensional parameter is proposed to quantify the flaw-tolerance ability of nacreous materials in a wide range of structural parameters. This study provides us some inspirations for optimal design of advanced biomimetic composites. PMID:24402917
Experimental quantum key distribution with source flaws
NASA Astrophysics Data System (ADS)
Xu, Feihu; Wei, Kejin; Sajeed, Shihan; Kaiser, Sarah; Sun, Shihai; Tang, Zhiyuan; Qian, Li; Makarov, Vadim; Lo, Hoi-Kwong
2015-09-01
Decoy-state quantum key distribution (QKD) is a standard technique in current quantum cryptographic implementations. Unfortunately, existing experiments have two important drawbacks: the state preparation is assumed to be perfect without errors and the employed security proofs do not fully consider the finite-key effects for general attacks. These two drawbacks mean that existing experiments are not guaranteed to be proven to be secure in practice. Here, we perform an experiment that shows secure QKD with imperfect state preparations over long distances and achieves rigorous finite-key security bounds for decoy-state QKD against coherent attacks in the universally composable framework. We quantify the source flaws experimentally and demonstrate a QKD implementation that is tolerant to channel loss despite the source flaws. Our implementation considers more real-world problems than most previous experiments, and our theory can be applied to general discrete-variable QKD systems. These features constitute a step towards secure QKD with imperfect devices.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Crutzen, S.; Koble, T.D.; Lemaitre, P.
Applications of the Leak Before Break (LBB) concept involve the knowledge of flaw presence and characteristics. In Service Inspection is given the responsibility of detecting flaws of a determined importance to locate them precisely and to classify them in broad families. Often LBB concepts application imply the knowledge of flaw characteristics such as through wall depth; length at the inner diameter (ID) or outer diameter (OD) surface; orientation or tilt and skew angles; branching; surface roughness; opening or width; crack tip aspect. Besides detection and characterization, LBB evaluations consider important the fact that a crack could be in the weldmore » material or in the base material or in the heat affected zone. Cracks in tee junctions, in homogenous simple welds and in elbows are not considered in the same way. Essential variables of a flaw or defect are illustrated, and examples of flaws found in primary piping as reported by plant operators or service vendors are given. If such flaw variables are important in the applications of LBB concepts, essential is then the knowledge of the performance achievable by NDE techniques, during an ISI, in detecting such flaws, in locating them and in correctly evaluating their characteristics.« less
Full waveform inversion for ultrasonic flaw identification
NASA Astrophysics Data System (ADS)
Seidl, Robert; Rank, Ernst
2017-02-01
Ultrasonic Nondestructive Testing is concerned with detecting flaws inside components without causing physical damage. It is possible to detect flaws using ultrasound measurements but usually no additional details about the flaw like position, dimension or orientation are available. The information about these details is hidden in the recorded experimental signals. The idea of full waveform inversion is to adapt the parameters of an initial simulation model of the undamaged specimen by minimizing the discrepancy between these simulated signals and experimentally measured signals of the flawed specimen. Flaws in the structure are characterized by a change or deterioration in the material properties. Commonly, full waveform inversion is mostly applied in seismology on a larger scale to infer mechanical properties of the earth. We propose to use acoustic full waveform inversion for structural parameters to visualize the interior of the component. The method is adapted to US NDT by combining multiple similar experiments on the test component as the typical small amount of sensors is not sufficient for a successful imaging. It is shown that the combination of simulations and multiple experiments can be used to detect flaws and their position, dimension and orientation in emulated simulation cases.
2007-05-24
The Secret of Future Defeat: the Evolution of US Joint and Army Doctrine 1993-2006 and the Flawed Conception of Stability Operations A...4. TITLE AND SUBTITLE The Secret of Future Defeat: the Evolution of US Joint and 5a. CONTRACT NUMBER Army Doctrine 1993-2006 and the Flawed... The Secret of Future Defeat: the Evolution of US Joint and Army Doctrine 1993-2006 and the Flawed Conception of Stability Operations Approved by
Flaw Growth of 6Al-4V Titanium in a Freon TF Environment
NASA Technical Reports Server (NTRS)
Tiffany, C. F.; Masters, J. N.; Bixler, W. D.
1969-01-01
The plane strain threshold stress intensity and sustained stress flaw growth rates were experimentally determined for 6AI-4V S.T.A. titanium forging and weldments in environments of Freon TF at room temperature. Sustained load tests of surface flawed specimens were conducted with the experimental approach based on linear elastic fracture mechanics. It was concluded that sustained stress flaw growth rates, in conjunction with threshold stress intensities, can be used in assessing the service life of pressure vessels.
Quantification technology study on flaws in steam-filled pipelines based on image processing
NASA Astrophysics Data System (ADS)
Sun, Lina; Yuan, Peixin
2009-07-01
Starting from exploiting the applied detection system of gas transmission pipeline, a set of X-ray image processing methods and pipeline flaw quantificational evaluation methods are proposed. Defective and non-defective strings and rows in gray image were extracted and oscillogram was obtained. We can distinguish defects in contrast with two gray images division. According to the gray value of defects with different thicknesses, the gray level depth curve is founded. Through exponential and polynomial fitting way to obtain the attenuation mathematical model which the beam penetrates pipeline, thus attain flaw deep dimension. This paper tests on the PPR pipe in the production of simulated holes flaw and cracks flaw, 135KV used the X-ray source on the testing. Test results show that X-ray image processing method, which meet the needs of high efficient flaw detection and provide quality safeguard for thick oil recovery, can be used successfully in detecting corrosion of insulated pipe.
Quantification technology study on flaws in steam-filled pipelines based on image processing
NASA Astrophysics Data System (ADS)
Yuan, Pei-xin; Cong, Jia-hui; Chen, Bo
2008-03-01
Starting from exploiting the applied detection system of gas transmission pipeline, a set of X-ray image processing methods and pipeline flaw quantificational evaluation methods are proposed. Defective and non-defective strings and rows in gray image were extracted and oscillogram was obtained. We can distinguish defects in contrast with two gray images division. According to the gray value of defects with different thicknesses, the gray level depth curve is founded. Through exponential and polynomial fitting way to obtain the attenuation mathematical model which the beam penetrates pipeline, thus attain flaw deep dimension. This paper tests on the PPR pipe in the production of simulated holes flaw and cracks flaw. The X-ray source tube voltage was selected as 130kv and valve current was 1.5mA.Test results show that X-ray image processing methods, which meet the needs of high efficient flaw detection and provide quality safeguard for thick oil recovery, can be used successfully in detecting corrosion of insulated pipe.
Application of elastic and elastic-plastic fracture mechanics methods to surface flaws
NASA Astrophysics Data System (ADS)
McCabe, Donald E.; Ernst, Hugo A.; Newman, James C., Jr.
Fuel tanks that are a part of the External Tank assembly for the Space Shuttle are made of relatively thin 2219-T87 aluminum plate. These tanks contain about 917 m of fusion weld seam, all of which is nondestructively inspected for flaws and all those found are repaired. The tanks are subsequently proof-tested to a pressure that is sufficiently severe to cause weld metal yielding in a few local regions of the weld seam. The work undertaken in the present project was to develop a capability to predict flaw growth from undetected surface flaws that are assumed to be located in the highly stressed regions. The technical challenge was to develop R-curve prediction capability for surface cracks in specimens that contain the flaws of unusual sizes and shapes deemed to be of interest. The test techniques developed and the elastic-plastic analysis concepts adopted are presented. The flaws of interest were quite small surface cracks that were narrow-deep ellipses that served to exacerbate the technical difficulties involved.
Application of elastic and elastic-plastic fracture mechanics methods to surface flaws
NASA Technical Reports Server (NTRS)
Mccabe, Donald E.; Ernst, Hugo A.; Newman, James C., Jr.
1992-01-01
Fuel tanks that are a part of the External Tank assembly for the Space Shuttle are made of relatively thin 2219-T87 aluminum plate. These tanks contain about 917 m of fusion weld seam, all of which is nondestructively inspected for flaws and all those found are repaired. The tanks are subsequently proof-tested to a pressure that is sufficiently severe to cause weld metal yielding in a few local regions of the weld seam. The work undertaken in the present project was to develop a capability to predict flaw growth from undetected surface flaws that are assumed to be located in the highly stressed regions. The technical challenge was to develop R-curve prediction capability for surface cracks in specimens that contain the flaws of unusual sizes and shapes deemed to be of interest. The test techniques developed and the elastic-plastic analysis concepts adopted are presented. The flaws of interest were quite small surface cracks that were narrow-deep ellipses that served to exacerbate the technical difficulties involved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Muscara, Joseph; Kupperman, David S.; Bakhtiari, Sasab
2002-07-01
This paper discusses round-robin exercises using the NRC steam generator (SG) mock-up at Argonne National Laboratory to assess inspection reliability. The purpose of the round robins was to assess the current reliability of SG tubing inservice inspection, determine the probability of detection (POD) as function of flaw size or severity, and assess the capability for sizing of flaws. For the round robin and subsequent evaluation completed in 2001, eleven teams participated. Bobbin and rotating coil mock-up data collected by qualified industry personnel were evaluated. The mock-up contains hundreds of cracks and simulations of artifacts such as corrosion deposits and tubemore » support plates that make detection and characterization of cracks more difficult in operating steam generators than in most laboratory situations. An expert Task Group from industry, Argonne National Laboratory, and the NRC have reviewed the signals from the laboratory-grown cracks used in the mock-up to ensure that they provide reasonable simulations of those obtained in the field. The mock-up contains 400 tube openings. Each tube contains nine 22.2-mm (7/8-in.) diameter, 30.5-cm (1-ft) long, Alloy 600 test sections. The flaws are located in the tube sheet near the roll transition zone (RTZ), in the tube support plate (TSP), and in the free-span. The flaws are primarily intergranular stress corrosion cracks (axial and circumferential, ID and OD) though intergranular attack (IGA) wear and fatigue cracks are also present, as well as cracks in dents. In addition to the simulated tube sheet and TSP the mock-up has simulated sludge and magnetite deposits. A multiparameter eddy current algorithm, validated for mock-up flaws, provided a detailed isometric plot for every flaw and was used to establish the reference state of defects in the mock-up. The detection results for the 11 teams were used to develop POD curves as a function of maximum depth, voltage and the parameter m p, for the various types of flaws. The POD curves were represented as linear logistic curves, and the curve parameters were determined by the method of Maximum Likelihood. The effect of both statistical uncertainties inherent in sampling from distributions and the uncertainties due to errors in the estimates of maximum depth and m p was investigated. The 95% one-sided confidence limits (OSL), which include errors in maximum depth estimates, are presented along with the POD curves. For the second round robin a reconfigured mock-up is being used to evaluate the effectiveness of eddy current array probes. The primary emphasis is on the X-Probe. Progress with the X-Probe round robin is discussed in this paper. (authors)« less
Flaws in Commercial Reading Materials.
ERIC Educational Resources Information Center
Axelrod, Jerome
Three flaws found in commercial reading materials, such as workbooks and kits, are discussed in this paper, and examples of the flaws are taken from specific materials. The first problem noted is that illustrations frequently provide the information that the learner is supposed to supply through phonetic or structural analysis; the illustrations…
Ductile fracture of cylindrical vessels containing a large flaw
NASA Technical Reports Server (NTRS)
Erdogan, F.; Irwin, G. R.; Ratwani, M.
1976-01-01
The fracture process in pressurized cylindrical vessels containing a relatively large flaw is considered. The flaw is assumed to be a part-through or through meridional crack. The flaw geometry, the yield behavior of the material, and the internal pressure are assumed to be such that in the neighborhood of the flaw the cylinder wall undergoes large-scale plastic deformations. Thus, the problem falls outside the range of applicability of conventional brittle fracture theories. To study the problem, plasticity considerations are introduced into the shell theory through the assumptions of fully-yielded net ligaments using a plastic strip model. Then a ductile fracture criterion is developed which is based on the concept of net ligament plastic instability. A limited verification is attempted by comparing the theoretical predictions with some existing experimental results.
ULTRASONIC FLAW DETECTION METHOD AND MEANS
Worlton, D.C.
1961-08-15
A method of detecting subsurface flaws in an object using ultrasonic waves is described. An ultnasonic wave of predetermined velocity and frequency is transmitted to engage the surface of the object at a predetermined angle of inci dence thereto. The incident angle of the wave to the surface is determined with respect to phase velocity, incident wave velocity, incident wave frequency, and the estimated depth of the flaw so that Lamb waves of a particular type and mode are induced only in the portion of the object between the flaw and the surface. These Lamb waves are then detected as they leave the object at an angle of exit equal to the angle of incidence. No waves wlll be generated in the object and hence received if no flaw exists beneath the surface. (AEC)
On an image reconstruction method for ECT
NASA Astrophysics Data System (ADS)
Sasamoto, Akira; Suzuki, Takayuki; Nishimura, Yoshihiro
2007-04-01
An image by Eddy Current Testing(ECT) is a blurred image to original flaw shape. In order to reconstruct fine flaw image, a new image reconstruction method has been proposed. This method is based on an assumption that a very simple relationship between measured data and source were described by a convolution of response function and flaw shape. This assumption leads to a simple inverse analysis method with deconvolution.In this method, Point Spread Function (PSF) and Line Spread Function(LSF) play a key role in deconvolution processing. This study proposes a simple data processing to determine PSF and LSF from ECT data of machined hole and line flaw. In order to verify its validity, ECT data for SUS316 plate(200x200x10mm) with artificial machined hole and notch flaw had been acquired by differential coil type sensors(produced by ZETEC Inc). Those data were analyzed by the proposed method. The proposed method restored sharp discrete multiple hole image from interfered data by multiple holes. Also the estimated width of line flaw has been much improved compared with original experimental data. Although proposed inverse analysis strategy is simple and easy to implement, its validity to holes and line flaw have been shown by many results that much finer image than original image have been reconstructed.
Identify Structural Flaw Location and Type with an Inverse Algorithm of Resonance Inspection
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xu, Wei; Lai, Canhai; Sun, Xin
To evaluate the fitness-for-service of a structural component and to quantify its remaining useful life, aging and service-induced structural flaws must be quantitatively determined in service or during scheduled maintenance shutdowns. Resonance inspection (RI), a non-destructive evaluation (NDE) technique, distinguishes the anomalous parts from the good parts based on changes in the natural frequency spectra. Known for its numerous advantages, i.e., low inspection cost, high testing speed, and broad applicability to complex structures, RI has been widely used in the automobile industry for quality inspection. However, compared to other contemporary direct visualization-based NDE methods, a more widespread application of RImore » faces a fundamental challenge because such technology is unable to quantify the flaw details, e.g. location, dimensions, and types. In this study, the applicability of a maximum correlation-based inverse RI algorithm developed by the authors is further studied for various flaw cases. It is demonstrated that a variety of common structural flaws, i.e. stiffness degradation, voids, and cracks, can be accurately retrieved by this algorithm even when multiple different types of flaws coexist. The quantitative relations between the damage identification results and the flaw characteristics are also developed to assist the evaluation of the actual state of health of the engineering structures.« less
NASA Astrophysics Data System (ADS)
Prinsenberg, S. J.
2009-12-01
Formation and ridging of flaw leads in the eastern Canadian Beaufort Sea. Simon Prinsenberg1 and Yves Graton2 1Bedford Inst. of Oceanography, Fisheries and Oceans Canada P.O. Box1006, Dartmouth, Nova Scotia, B2Y 4A2, Canada prinsenbergs@mar.dfo-mpo.gc.ca 2Inst. National de la Recherche Scientifique-Eau, INRS-ETE University of Quebec at Quebec City, Quebec yvesgratton@eteinrs.ca During the winter of 2008, the flaw lead south of Banks Island repeatedly opened and closed representing an elongated region where periodically the large ice growth stimulates the densification of the surface layer due to salt rejection and instigates a local circulation pattern that will affect the biological processes of the region. Helicopter-borne sensors were available to monitor the aftermath of one of the rapid closing of the flaw lead into extensive elongated rubble field using a Canadian Ice breaker, CCGS Amundsen, as a logistic base. After the wind reversed a new open flaw lead 20km wide restarting a new flaw lead formation cycle. Ice thickness and surface roughness data were collected from the rubble field and adjacent open flaw lead with an Electromagnetic-Laser system. The strong wind event of April 4-5 2009 generated a large linear 1.5km wide ice rubble field up to 8-10m thick when the 60cm thick, 18km wide flaw lead was crunched into land-fast by the 1.5m thick offshore pack ice. It is expected that during rapid ice growth in a flaw lead, salt rejection increase the density of the surface water layer producing a surface depression (Low) and cyclonic circulation. In contrast at depth, the extra surface dense water produces a high in the horizontal pressure field and anti-cyclonic circulation which remains after the rapid ice growth within the flaw lead stops. One of such remnants may have been observed during the CFL-IPY winter survey.
PROBLEMS OF RADIOLOGICAL PROTECTION IN FLAW DETECTION (in Polish)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Domanus, J.; Wolski, M.
1962-01-01
All industrial flaw detection laboratories are covered, with respect to their radiological protection, by the supervision of the Inst. of Electrotechnics. A discussion is given of the results of this action, especially the cases of exceeding the admissible doses. The analysis of endangerment by radiation of employees of flaw detection laboratories is given. (auth)
Does the Detection of Misunderstanding Lead to Its Revision?
ERIC Educational Resources Information Center
García-Rodicio, Héctor; Sánchez, Emilio
2014-01-01
When dealing with complex conceptual systems, low-prior- knowledge learners develop fragmentary and incorrect understanding. To learn complex topics deeply, these learners have to (a) monitor understanding to detect flaws and (b) generate explanations to revise and repair the flaws. In this research we explored if the detection of a flaw in…
Development of an Inverse Algorithm for Resonance Inspection
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lai, Canhai; Xu, Wei; Sun, Xin
2012-10-01
Resonance inspection (RI), which employs the natural frequency spectra shift between the good and the anomalous part populations to detect defects, is a non-destructive evaluation (NDE) technique with many advantages such as low inspection cost, high testing speed, and broad applicability to structures with complex geometry compared to other contemporary NDE methods. It has already been widely used in the automobile industry for quality inspections of safety critical parts. Unlike some conventionally used NDE methods, the current RI technology is unable to provide details, i.e. location, dimension, or types, of the flaws for the discrepant parts. Such limitation severely hindersmore » its wide spread applications and further development. In this study, an inverse RI algorithm based on maximum correlation function is proposed to quantify the location and size of flaws for a discrepant part. A dog-bone shaped stainless steel sample with and without controlled flaws are used for algorithm development and validation. The results show that multiple flaws can be accurately pinpointed back using the algorithms developed, and the prediction accuracy decreases with increasing flaw numbers and decreasing distance between flaws.« less
Nakashima, Etsuko; Isobe, Atsuhiko; Kako, Shin'ichiro; Itai, Takaaki; Takahashi, Shin; Guo, Xinyu
2016-06-15
The long-distance transport potential of toxic lead (Pb) by plastic marine debris was examined by pure water leaching experiments using plastic fishery floats containing high level of additive-Pb such as 5100±74.3mgkg(-1). The leaching of Pb ended after sequential 480-h leaching experiments, and the total leaching amount is equivalent to approximately 0.1% of total Pb in a float. But it recovered when the float was scratched using sandpaper. We propose that a "low-Pb layer," in which Pb concentration is negligibly small, be generated on the float surface by the initial leaching process. Thickness of the layer is estimated at 2.5±1.2μm, much shallower than flaws on floats scratched by sandpaper and floats littering beaches. The result suggests that the low-Pb layer is broken by physical abrasion when floats are washed ashore, and that Pb inside the floats can thereafter leach into beaches. Copyright © 2016 Elsevier Ltd. All rights reserved.
NASA Technical Reports Server (NTRS)
Temple, Enoch C.
1994-01-01
The space industry has developed many composite materials that have high durability in proportion to their weights. Many of these materials have a likelihood for flaws that is higher than in traditional metals. There are also coverings (such as paint) that develop flaws that may adversely affect the performance of the system in which they are used. Therefore there is a need to monitor the soundness of composite structures. To meet this monitoring need, many nondestructive evaluation (NDE) systems have been developed. An NDE system is designed to detect material flaws and make flaw measurements without destroying the inspected item. Also, the detection operation is expected to be performed in a rapid manner in a field or production environment. Some of the most recent video-based NDE methodologies are shearography, holography, thermography, and video image correlation.
Mutual Inductance Problem for a System Consisting of a Current Sheet and a Thin Metal Plate
NASA Technical Reports Server (NTRS)
Fulton, J. P.; Wincheski, B.; Nath, S.; Namkung, M.
1993-01-01
Rapid inspection of aircraft structures for flaws is of vital importance to the commercial and defense aircraft industry. In particular, inspecting thin aluminum structures for flaws is the focus of a large scale R&D effort in the nondestructive evaluation (NDE) community. Traditional eddy current methods used today are effective, but require long inspection times. New electromagnetic techniques which monitor the normal component of the magnetic field above a sample due to a sheet of current as the excitation, seem to be promising. This paper is an attempt to understand and analyze the magnetic field distribution due to a current sheet above an aluminum test sample. A simple theoretical model, coupled with a two dimensional finite element model (FEM) and experimental data will be presented in the next few sections. A current sheet above a conducting sample generates eddy currents in the material, while a sensor above the current sheet or in between the two plates monitors the normal component of the magnetic field. A rivet or a surface flaw near a rivet in an aircraft aluminum skin will disturb the magnetic field, which is imaged by the sensor. Initial results showed a strong dependence of the flaw induced normal magnetic field strength on the thickness and conductivity of the current-sheet that could not be accounted for by skin depth attenuation alone. It was believed that the eddy current imaging method explained the dependence of the thickness and conductivity of the flaw induced normal magnetic field. Further investigation, suggested the complexity associated with the mutual inductance of the system needed to be studied. The next section gives an analytical model to better understand the phenomenon.
Low frequency acoustic microscope
Khuri-Yakub, Butrus T.
1986-11-04
A scanning acoustic microscope is disclosed for the detection and location of near surface flaws, inclusions or voids in a solid sample material. A focused beam of acoustic energy is directed at the sample with its focal plane at the subsurface flaw, inclusion or void location. The sample is scanned with the beam. Detected acoustic energy specularly reflected and mode converted at the surface of the sample and acoustic energy reflected by subsurface flaws, inclusions or voids at the focal plane are used for generating an interference signal which is processed and forms a signal indicative of the subsurface flaws, inclusions or voids.
NASA Technical Reports Server (NTRS)
Hardrath, H. F.
1974-01-01
Fracture mechanics is a rapidly emerging discipline for assessing the residual strength of structures containing flaws due to fatigue, corrosion or accidental damage and for anticipating the rate of which such flaws will propagate if not repaired. The discipline is also applicable in the design of structures with improved resistance to such flaws. The present state of the design art is reviewed using this technology to choose materials, to configure safe and efficient structures, to specify inspection procedures, to predict lives of flawed structures and to develop reliability of current and future airframes.
FMC/TFM experimental comparisons
NASA Astrophysics Data System (ADS)
Spencer, Roger; Sunderman, Ruth; Todorov, Evgueni
2018-04-01
Ultrasonic full matrix capture/total focusing method (FMC/TFM) technology has progressed significantly over the past few years and has seen increased use in industry. The technology has the potential to provide better detection and measurement capabilities for weld flaws, as well as, many other applications including additive manufacturing. This project looked at the effectiveness of FMC/TFM for detection and sizing of both planar and volumetric flaw types. FMC/TFM experimental data was collected and processed using multiple combinations of probe types and wave propagation modes. The data was then compared to typical ultrasonic phased-array results, as well as FMC/TFM inspection simulations.
Structural integrity test and assessment.
NASA Technical Reports Server (NTRS)
Suggs, F.; Poe, R.; Sannicandro, R.
1972-01-01
The feasibility of using an ultrasonic system on board the Space Shuttle Orbiter to facilitate structural evaluation and assessment was studied. Two factors are considered that could limit the capability of an ultrasonic system: (1) the effect of structure configuration and (2) the noise generated during vehicle launch. Results of the study indicate that although the structural configuration has direct bearing on sound propagation, strategic location of transducers will still permit flaw detection. The ultrasonic response data show that a severe acoustic environment does not interfere significantly with either propagation and reflection of surface waves or detection of crack-like flaws in the structure.
Analysis of Subcritical Crack Growth in Dental Ceramics Using Fracture Mechanics and Fractography
Taskonak, Burak; Griggs, Jason A.; Mecholsky, John J.; Yan, Jia-Hau
2008-01-01
Objectives The aim of this study was to test the hypothesis that the flexural strengths and critical flaw sizes of dental ceramic specimens will be affected by the testing environment and stressing rate even though their fracture toughness values will remain the same. Methods Ceramic specimens were prepared from an aluminous porcelain (Vitadur Alpha; VITA Zahnfabrik, Bad Säckingen, Germany) and an alumina-zirconia-glass composite (In-Ceram® Zirconia; VITA Zahnfabrik). Three hundred uniaxial flexure specimens (150 of each material) were fabricated to dimensions of 25 mm × 4 mm × 1.2 mm according to the ISO 6872 standard. Each group of 30 specimens was fractured in water using one of four different target stressing rates ranging on a logarithmic scale from 0.1 to 100 MPa/s for Vitadur Alpha and from 0.01 to 10 MPa/s for In-Ceram® Zirconia. The fifth group was tested in inert environment (oil) with a target stressing rate of 100 MPa/s for Vitadur Alpha and 1000 MPa/s for In-Ceram® Zirconia. The effects of stressing rate and environment on flexural strength, critical flaw size, and fracture toughness were analyzed statistically by Kruskal-Wallis one-way ANOVA on ranks followed by post-hoc comparisons using Dunn’s test (α=0.05). In addition, 20 Vitadur Alpha specimens were fabricated with controlled flaws to simplify fractography. Half of these specimens were fracture tested in water and half in oil at a target stressing rate of 100 MPa/s, and the results were compared using Mann-Whitney rank sum tests (α=0.05). A logarithmic regression model was used to determine the fatigue parameters for each material. Results For each ceramic composition, specimens tested in oil had significantly higher strength (P≤0.05) and smaller critical flaw size (significant for Vitadur Alpha, P≤0.05) than those tested in water but did not have significantly different fracture toughness (P>0.05). Specimens tested at faster stressing rates had significantly higher strength (P≤0.05) but did not have significantly different fracture toughness (P>0.05). Regarding critical flaw size, stressing rate had a significant effect for In-Ceram® Zirconia specimens (P≤0.05) but not for Vitadur Alpha specimens (P>0.05). Fatigue parameters, n and ln B, were 38.4 and −12.7 for Vitadur Alpha and were 13.1 and 10.4 for In-Ceram® Zirconia. Significance Moisture assisted subcritical crack growth had a more deleterious effect on In-Ceram® Zirconia core ceramic than on Vitadur Alpha porcelain. Fracture surface analysis identified fracture surface features that can potentially mislead investigators into misidentifying the critical flaw. PMID:17845817
Analysis of subcritical crack growth in dental ceramics using fracture mechanics and fractography.
Taskonak, Burak; Griggs, Jason A; Mecholsky, John J; Yan, Jia-Hau
2008-05-01
The aim of this study was to test the hypothesis that the flexural strengths and critical flaw sizes of dental ceramic specimens will be affected by the testing environment and stressing rate even though their fracture toughness values will remain the same. Ceramic specimens were prepared from an aluminous porcelain (Vitadur Alpha; VITA Zahnfabrik, Bad Säckingen, Germany) and an alumina-zirconia-glass composite (In-Ceram Zirconia; VITA Zahnfabrik). Three hundred uniaxial flexure specimens (150 of each material) were fabricated to dimensions of 25 mmx4 mmx1.2 mm according to the ISO 6872 standard. Each group of 30 specimens was fractured in water using one of four different target stressing rates ranging on a logarithmic scale from 0.1 to 100 MPa/s for Vitadur Alpha and from 0.01 to 10 MPa/s for In-Ceram Zirconia. The fifth group was tested in inert environment (oil) with a target stressing rate of 100 MPa/s for Vitadur Alpha and 1000 MPa/s for In-Ceram Zirconia. The effects of stressing rate and environment on flexural strength, critical flaw size, and fracture toughness were analyzed statistically by Kruskal-Wallis one-way ANOVA on ranks followed by post hoc comparisons using Dunn's test (alpha=0.05). In addition, 20 Vitadur Alpha specimens were fabricated with controlled flaws to simplify fractography. Half of these specimens were fracture tested in water and half in oil at a target stressing rate of 100 MPa/s, and the results were compared using Mann-Whitney rank sum tests (alpha=0.05). A logarithmic regression model was used to determine the fatigue parameters for each material. For each ceramic composition, specimens tested in oil had significantly higher strength (P
NASA Astrophysics Data System (ADS)
Drygin, M. Yu; Kuryshkin, N. P.
2018-01-01
Active growth of coal extraction and underinvestment of coal mining in Russia lead to the fact that technical state of more than 86% of technological machines at opencast coal mines is unacceptable. One of the most significant problems is unacceptable state of supporting metallic structures of excavators and mine dump trucks. The analysis has shown that defects in these metallic structures had been accumulated for a long time. Their removal by the existing method of repair welding was not effective - the flaws reappeared in 2-6 months of technological machines’ service. The authors detected the prime causes that did not allow to make a good repair welding joint. A new technology of repair welding had been tested and endorsed, and this allowed to reduce the number of welded joints’ flaws by 85% without additional raising welders’ qualification. As a result the number of flaws in metallic structures of the equipment had been reduced by 35 % as early as in the first year of using the new technology.
NASA Technical Reports Server (NTRS)
Miller, James G.
1995-01-01
Development and application of linear array imaging technologies to address specific aging-aircraft inspection issues is described. Real-time video-taped images were obtained from an unmodified commercial linear-array medical scanner of specimens constructed to simulate typical types of flaws encountered in the inspection of aircraft structures. Results suggest that information regarding the characteristics, location, and interface properties of specific types of flaws in materials and structures may be obtained from the images acquired with a linear array. Furthermore, linear array imaging may offer the advantage of being able to compare 'good' regions with 'flawed' regions simultaneously, and in real time. Real-time imaging permits the inspector to obtain image information from various views and provides the opportunity for observing the effects of introducing specific interventions. Observation of an image in real-time can offer the operator the ability to 'interact' with the inspection process, thus providing new capabilities, and perhaps, new approaches to nondestructive inspections.
Effect of chloride contamination in MON-1 propellant on crack growth properties of metals
NASA Technical Reports Server (NTRS)
Moran, C. M.; Toth, L. R.
1981-01-01
The effect of a high level of chloride content (800 ppm) in MON-1 propellant on the crack growth properties of seven materials was investigated. Sustained load tests were conducted at 49 C (120 F) temperature with thin gauge tensile specimens having a semi-elliptical surface flaw. Alloys included aluminum 1100, 3003, 5086 and 6061; corrosion resistant steel types A286 and 347; and titanium 6Al-4V. The configurations tested with precracked flaws exposed to MON-1 were: parent or base metal, center weld, and heat affected zone. It was concluded that this chloride level in MON-1 does not affect the stress corrosion, crack growth properties of these alloys after 1000 hour exposure duration under high stresses.
Reactor Pressure Vessel Fracture Analysis Capabilities in Grizzly
DOE Office of Scientific and Technical Information (OSTI.GOV)
Spencer, Benjamin; Backman, Marie; Chakraborty, Pritam
2015-03-01
Efforts have been underway to develop fracture mechanics capabilities in the Grizzly code to enable it to be used to perform deterministic fracture assessments of degraded reactor pressure vessels (RPVs). Development in prior years has resulted a capability to calculate -integrals. For this application, these are used to calculate stress intensity factors for cracks to be used in deterministic linear elastic fracture mechanics (LEFM) assessments of fracture in degraded RPVs. The -integral can only be used to evaluate stress intensity factors for axis-aligned flaws because it can only be used to obtain the stress intensity factor for pure Mode Imore » loading. Off-axis flaws will be subjected to mixed-mode loading. For this reason, work has continued to expand the set of fracture mechanics capabilities to permit it to evaluate off-axis flaws. This report documents the following work to enhance Grizzly’s engineering fracture mechanics capabilities for RPVs: • Interaction Integral and -stress: To obtain mixed-mode stress intensity factors, a capability to evaluate interaction integrals for 2D or 3D flaws has been developed. A -stress evaluation capability has been developed to evaluate the constraint at crack tips in 2D or 3D. Initial verification testing of these capabilities is documented here. • Benchmarking for axis-aligned flaws: Grizzly’s capabilities to evaluate stress intensity factors for axis-aligned flaws have been benchmarked against calculations for the same conditions in FAVOR. • Off-axis flaw demonstration: The newly-developed interaction integral capabilities are demon- strated in an application to calculate the mixed-mode stress intensity factors for off-axis flaws. • Other code enhancements: Other enhancements to the thermomechanics capabilities that relate to the solution of the engineering RPV fracture problem are documented here.« less
NASA Technical Reports Server (NTRS)
Pai, Shantaram S.; Hoge, Peter A.; Patel, B. M.; Nagpal, Vinod K.
2009-01-01
The primary structure of the Ares I-X Upper Stage Simulator (USS) launch vehicle is constructed of welded mild steel plates. There is some concern over the possibility of structural failure due to welding flaws. It was considered critical to quantify the impact of uncertainties in residual stress, material porosity, applied loads, and material and crack growth properties on the reliability of the welds during its pre-flight and flight. A criterion--an existing maximum size crack at the weld toe must be smaller than the maximum allowable flaw size--was established to estimate the reliability of the welds. A spectrum of maximum allowable flaw sizes was developed for different possible combinations of all of the above listed variables by performing probabilistic crack growth analyses using the ANSYS finite element analysis code in conjunction with the NASGRO crack growth code. Two alternative methods were used to account for residual stresses: (1) The mean residual stress was assumed to be 41 ksi and a limit was set on the net section flow stress during crack propagation. The critical flaw size was determined by parametrically increasing the initial flaw size and detecting if this limit was exceeded during four complete flight cycles, and (2) The mean residual stress was assumed to be 49.6 ksi (the parent material s yield strength) and the net section flow stress limit was ignored. The critical flaw size was determined by parametrically increasing the initial flaw size and detecting if catastrophic crack growth occurred during four complete flight cycles. Both surface-crack models and through-crack models were utilized to characterize cracks in the weld toe.
NON-DESTRUCTIVE FLAW DETECTION APPARATUS
Stateman, M.J.; Holloway, H.R.
1957-12-17
An apparatus is described for the non-destructive detection of flaws in electrical conducting articles. The particular feature of the detection apparatus is that a flaw in the front or back of the test article will not be masked by signals caused by the passage of the end and front of the article through the detection apparatus. The present invention alleviates the above problem by mounting detection coils on directly opposite sides of the test passageway so that the axes of the pickup coils are perpendicular to the axis of an energizing coil through which the article is passed. A flaw in the article will cause a change in the voltage induced in one pickup coil, but passage of the end or front of the article will not produce unequal signals. The signals are compared in appropriate electrical circuitry to actuate a recorder only when unequal signals are present, indicating the presence of a flaw.
Optimizing Probability of Detection Point Estimate Demonstration
NASA Technical Reports Server (NTRS)
Koshti, Ajay M.
2017-01-01
Probability of detection (POD) analysis is used in assessing reliably detectable flaw size in nondestructive evaluation (NDE). MIL-HDBK-18231and associated mh18232POD software gives most common methods of POD analysis. Real flaws such as cracks and crack-like flaws are desired to be detected using these NDE methods. A reliably detectable crack size is required for safe life analysis of fracture critical parts. The paper provides discussion on optimizing probability of detection (POD) demonstration experiments using Point Estimate Method. POD Point estimate method is used by NASA for qualifying special NDE procedures. The point estimate method uses binomial distribution for probability density. Normally, a set of 29 flaws of same size within some tolerance are used in the demonstration. The optimization is performed to provide acceptable value for probability of passing demonstration (PPD) and achieving acceptable value for probability of false (POF) calls while keeping the flaw sizes in the set as small as possible.
Formal verification of a fault tolerant clock synchronization algorithm
NASA Technical Reports Server (NTRS)
Rushby, John; Vonhenke, Frieder
1989-01-01
A formal specification and mechanically assisted verification of the interactive convergence clock synchronization algorithm of Lamport and Melliar-Smith is described. Several technical flaws in the analysis given by Lamport and Melliar-Smith were discovered, even though their presentation is unusally precise and detailed. It seems that these flaws were not detected by informal peer scrutiny. The flaws are discussed and a revised presentation of the analysis is given that not only corrects the flaws but is also more precise and easier to follow. Some of the corrections to the flaws require slight modifications to the original assumptions underlying the algorithm and to the constraints on its parameters, and thus change the external specifications of the algorithm. The formal analysis of the interactive convergence clock synchronization algorithm was performed using the Enhanced Hierarchical Development Methodology (EHDM) formal specification and verification environment. This application of EHDM provides a demonstration of some of the capabilities of the system.
Risk assessment of turbine rotor failure using probabilistic ultrasonic non-destructive evaluations
NASA Astrophysics Data System (ADS)
Guan, Xuefei; Zhang, Jingdan; Zhou, S. Kevin; Rasselkorde, El Mahjoub; Abbasi, Waheed A.
2014-02-01
The study presents a method and application of risk assessment methodology for turbine rotor fatigue failure using probabilistic ultrasonic nondestructive evaluations. A rigorous probabilistic modeling for ultrasonic flaw sizing is developed by incorporating the model-assisted probability of detection, and the probability density function (PDF) of the actual flaw size is derived. Two general scenarios, namely the ultrasonic inspection with an identified flaw indication and the ultrasonic inspection without flaw indication, are considered in the derivation. To perform estimations for fatigue reliability and remaining useful life, uncertainties from ultrasonic flaw sizing and fatigue model parameters are systematically included and quantified. The model parameter PDF is estimated using Bayesian parameter estimation and actual fatigue testing data. The overall method is demonstrated using a realistic application of steam turbine rotor, and the risk analysis under given safety criteria is provided to support maintenance planning.
NASA Technical Reports Server (NTRS)
Paris, Isabelle L.; Krueger, Ronald; OBrien, T. Kevin
2004-01-01
The difference in delamination onset predictions based on the type and location of the assumed initial damage are compared in a specimen consisting of a tapered flange laminate bonded to a skin laminate. From previous experimental work, the damage was identified to consist of a matrix crack in the top skin layer followed by a delamination between the top and second skin layer (+45 deg./-45 deg. interface). Two-dimensional finite elements analyses were performed for three different assumed flaws and the results show a considerable reduction in critical load if an initial delamination is assumed to be present, both under tension and bending loads. For a crack length corresponding to the peak in the strain energy release rate, the delamination onset load for an assumed initial flaw in the bondline is slightly higher than the critical load for delamination onset from an assumed skin matrix crack, both under tension and bending loads. As a result, assuming an initial flaw in the bondline is simpler while providing a critical load relatively close to the real case. For the configuration studied, a small delamination might form at a lower tension load than the critical load calculated for a 12.7 mm (0.5") delamination, but it would grow in a stable manner. For the bending case, assuming an initial flaw of 12.7 mm (0.5") is conservative, the crack would grow unstably.
On self-propagating methodological flaws in performance normalization for strength and power sports.
Arandjelović, Ognjen
2013-06-01
Performance in strength and power sports is greatly affected by a variety of anthropometric factors. The goal of performance normalization is to factor out the effects of confounding factors and compute a canonical (normalized) performance measure from the observed absolute performance. Performance normalization is applied in the ranking of elite athletes, as well as in the early stages of youth talent selection. Consequently, it is crucial that the process is principled and fair. The corpus of previous work on this topic, which is significant, is uniform in the methodology adopted. Performance normalization is universally reduced to a regression task: the collected performance data are used to fit a regression function that is then used to scale future performances. The present article demonstrates that this approach is fundamentally flawed. It inherently creates a bias that unfairly penalizes athletes with certain allometric characteristics, and, by virtue of its adoption in the ranking and selection of elite athletes, propagates and strengthens this bias over time. The main flaws are shown to originate in the criteria for selecting the data used for regression, as well as in the manner in which the regression model is applied in normalization. This analysis brings into light the aforesaid methodological flaws and motivates further work on the development of principled methods, the foundations of which are also laid out in this work.
Burning characteristics and fiber retention of graphite/resin matrix composites
NASA Technical Reports Server (NTRS)
Bowles, K. J.
1980-01-01
Graphite fiber reinforced resin matrix composites were subjected to controlled burning conditions to determine their burning characteristics and fiber retention properties. Two types of burning equipment were used. Small samples were burned with a natural gas fired torch to study the effects of fiber orientation and structural flaws such as holes and slits that were machined into the laminates. Larger laminate samples were burned in a Heat Release Rate Calorimeter. Unidirectional epoxy/graphite and polyimide/graphite composites and boron powder filled samples of each of the two composite systems were burn tested and exposed to a thermal radiation. The effects of fiber orientation, flaws, and boron filler additives to the resins were evaluated. A high char forming polyimide resin was no more effective in retaining graphite fibers than a low char forming epoxy resin when burning in air.
NASA Technical Reports Server (NTRS)
Mikulas, Martin M., Jr.; Sumpter, Rod
1999-01-01
In a previous paper, a new merit function for determining the strength performance of flawed composite laminates was presented. This previous analysis was restricted to circular hole flaws that were large enough that failure could be predicted using the laminate stress concentration factor. In this paper, the merit function is expanded to include the flaw cases of an arbitrary size circular hole or a center crack. Failure prediction for these cases is determined using the point stress criterion. An example application of the merit function is included for a wide range of graphite/epoxy laminates.
NASA Technical Reports Server (NTRS)
Martin, Mikulas M., Jr.; Sumpter, Rod
2000-01-01
In a previous paper, a new merit function for determining the strength performance of flawed composite laminates was presented. This previous analysis was restricted to circular hole flaws that were large enough that failure could be predicted using the laminate stress concentration factor. In this paper, the merit function is expanded to include the flaw cases of an arbitrary size circular hole or center crack. Failure prediction for these cases is determined using the point stress criterion. An example application of the merit function is included for a wide range of graphite/epoxy laminates.
NASA Technical Reports Server (NTRS)
Mikulas, Martin M., Jr.; Sumpter, Rod
1997-01-01
In a previous paper, a new merit function for determining the strength performance of flawed composite laminates was presented. This previous analysis was restricted to circular hole flaws that were large enough that failure could be predicted using the laminate stress concentration factor. In this paper, the merit function is expanded to include the flaw cases of an arbitrary size circular hole or a center crack. Failure prediction for these cases is determined using the point stress criterion. An example application of the merit function is included for a wide range of graphite/epoxy laminates.
The detection of flaws in austenitic welds using the decomposition of the time-reversal operator
NASA Astrophysics Data System (ADS)
Cunningham, Laura J.; Mulholland, Anthony J.; Tant, Katherine M. M.; Gachagan, Anthony; Harvey, Gerry; Bird, Colin
2016-04-01
The non-destructive testing of austenitic welds using ultrasound plays an important role in the assessment of the structural integrity of safety critical structures. The internal microstructure of these welds is highly scattering and can lead to the obscuration of defects when investigated by traditional imaging algorithms. This paper proposes an alternative objective method for the detection of flaws embedded in austenitic welds based on the singular value decomposition of the time-frequency domain response matrices. The distribution of the singular values is examined in the cases where a flaw exists and where there is no flaw present. A lower threshold on the singular values, specific to austenitic welds, is derived which, when exceeded, indicates the presence of a flaw. The detection criterion is successfully implemented on both synthetic and experimental data. The datasets arising from welds containing a flaw are further interrogated using the decomposition of the time-reversal operator (DORT) method and the total focusing method (TFM), and it is shown that images constructed via the DORT algorithm typically exhibit a higher signal-to-noise ratio than those constructed by the TFM algorithm.
The detection of flaws in austenitic welds using the decomposition of the time-reversal operator
Cunningham, Laura J.; Mulholland, Anthony J.; Gachagan, Anthony; Harvey, Gerry; Bird, Colin
2016-01-01
The non-destructive testing of austenitic welds using ultrasound plays an important role in the assessment of the structural integrity of safety critical structures. The internal microstructure of these welds is highly scattering and can lead to the obscuration of defects when investigated by traditional imaging algorithms. This paper proposes an alternative objective method for the detection of flaws embedded in austenitic welds based on the singular value decomposition of the time-frequency domain response matrices. The distribution of the singular values is examined in the cases where a flaw exists and where there is no flaw present. A lower threshold on the singular values, specific to austenitic welds, is derived which, when exceeded, indicates the presence of a flaw. The detection criterion is successfully implemented on both synthetic and experimental data. The datasets arising from welds containing a flaw are further interrogated using the decomposition of the time-reversal operator (DORT) method and the total focusing method (TFM), and it is shown that images constructed via the DORT algorithm typically exhibit a higher signal-to-noise ratio than those constructed by the TFM algorithm. PMID:27274683
NASA Astrophysics Data System (ADS)
Kenok, R.; Jomdecha, C.; Jirarungsatian, C.
The aim of this paper is to study the acoustic emission (AE) parameters obtained from CNG cylinders during pressurization. AE from flaw propagation, material integrity, and pressuring of cylinder was the main objective for characterization. CNG cylinders of ISO 11439, resin fully wrapped type and metal liner type, were employed to test by hydrostatic stressing. The pressure was step increased until 1.1 time of operating pressure. Two AE sensors, resonance frequency of 150 kHz, were mounted on the cylinder wall to detect the AE throughout the testing. From the experiment results, AE can be detected from pressuring rate, material integrity, and flaw propagation from the cylinder wall. AE parameters including Amplitude, Count, Energy (MARSE), Duration and Rise time were analyzed to distinguish the AE data. The results show that the AE of flaw propagation was different in character from that of pressurization. Especially, AE detected from flaws of resin wrapped and metal liner was significantly different. To locate the flaw position, both the AE sensors can be accurately used to locate the flaw propagation in a linear pattern. The error was less than ±5 cm.
NASA Technical Reports Server (NTRS)
Generazio, Edward R.
2011-01-01
The capability of an inspection system is established by applications of various methodologies to determine the probability of detection (POD). One accepted metric of an adequate inspection system is that for a minimum flaw size and all greater flaw sizes, there is 0.90 probability of detection with 95% confidence (90/95 POD). Directed design of experiments for probability of detection (DOEPOD) has been developed to provide an efficient and accurate methodology that yields estimates of POD and confidence bounds for both Hit-Miss or signal amplitude testing, where signal amplitudes are reduced to Hit-Miss by using a signal threshold Directed DOEPOD uses a nonparametric approach for the analysis or inspection data that does require any assumptions about the particular functional form of a POD function. The DOEPOD procedure identifies, for a given sample set whether or not the minimum requirement of 0.90 probability of detection with 95% confidence is demonstrated for a minimum flaw size and for all greater flaw sizes (90/95 POD). The DOEPOD procedures are sequentially executed in order to minimize the number of samples needed to demonstrate that there is a 90/95 POD lower confidence bound at a given flaw size and that the POD is monotonic for flaw sizes exceeding that 90/95 POD flaw size. The conservativeness of the DOEPOD methodology results is discussed. Validated guidelines for binomial estimation of POD for fracture critical inspection are established.
Ultrasonic flaw detection in a monorail box beam
NASA Astrophysics Data System (ADS)
Zheng, Peng; Greve, David W.; Oppenheim, Irving J.
2009-03-01
A steel box beam in a monorail application is constructed with an epoxy grout wearing surface, precluding visual inspection of its top flange. This paper describes a sequence of experimental research tasks to develop an ultrasonic system to detect flaws (such as fatigue cracks) in that flange, and the results of a field test to demonstrate system performance. The problem is constrained by the fact that the flange is exposed only along its longitudinal edges, and by the fact that permanent installation of transducers at close spacing was deemed to be impractical. The system chosen for development, after experimental comparison of alternate technologies, features angle-beam ultrasonic transducers with fluid coupling to the flange edge; the emitting transducers create transverse waves that travel diagonally across the width of the flange, where an array of receiving transducers detect flaw reflections and flaw shadows. The system rolls along the box beam, surveying (screening) the top flange for the presence of flaws. In a first research task, conducted on a full-size beam specimen, we compared waves generated from different transducer locations, either the flange edge or the web face, and at different frequency ranges. At relatively low frequencies, such as 100 kHz, we observed Lamb wave modes, and at higher frequency, in the MHz range, we observed nearlylongitudinal waves with trailing pulses. In all cases we observed little attenuation by the wearing surface and little influence of reflection at the web-flange joints. At the conclusion of this task we made the design decision to use edgemounted transducers at relatively high frequency, with correspondingly short wavelength, for best scattering from flaws. In a second research task we conducted experiments at 55% scale on a steel plate, with machined flaws of different size, and detected flaws of target size for the intended application. We then compared the performance of bonded transducers, fluid-coupled transducers, and angle-beam (wedge) transducers; from that comparison we made the design decision to use wedges, which beam the wave to increase the scattering from flaws. We also compared the performance of wired transducers using fluid coupling to that of wireless (inductively coupled) transducers mounted permanently. Although the wireless transducers achieved flaw detection, the necessary spacing (determined experimentally) would have required an impractical number of transducers. Therefore, we made the design decision to use wedge transducers with fluid coupling. In a third research task we developed and tested a rolling system with a water channel for acoustic coupling, including a study of its sensitivity to misalignment, and in a fourth task we devised a data display to create a pattern of reflections or shadows that could be easily interpreted as evidence of a flaw. Finally, we conducted a field test on the full-size system in a region containing bolt holes, which act as a physical simulation of a flaw, and show successful detection of reflections and shadows from those holes.
Determination of Flaw Size and Depth From Temporal Evolution of Thermal Response
NASA Technical Reports Server (NTRS)
Winfree, William P.; Zalameda, Joseph N.; Cramer, Elliott; Howell, Patricia A.
2015-01-01
Simple methods for reducing the pulsed thermographic responses of flaws have tended to be based on either the spatial or temporal response. This independent assessment limits the accuracy of characterization. A variational approach is presented for reducing the thermographic data to produce an estimated size for a flaw that incorporates both the temporal and spatial response to improve the characterization. The size and depth are determined from both the temporal and spatial thermal response of the exterior surface above a flaw and constraints on the length of the contour surrounding the delamination. Examples of the application of the technique to simulation and experimental data acquired are presented to investigate the limitations of the technique.
Estimating probable flaw distributions in PWR steam generator tubes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gorman, J.A.; Turner, A.P.L.
1997-02-01
This paper describes methods for estimating the number and size distributions of flaws of various types in PWR steam generator tubes. These estimates are needed when calculating the probable primary to secondary leakage through steam generator tubes under postulated accidents such as severe core accidents and steam line breaks. The paper describes methods for two types of predictions: (1) the numbers of tubes with detectable flaws of various types as a function of time, and (2) the distributions in size of these flaws. Results are provided for hypothetical severely affected, moderately affected and lightly affected units. Discussion is provided regardingmore » uncertainties and assumptions in the data and analyses.« less
Tensile cracking of a brittle conformal coating on a rough substrate
Reedy, Jr., E. D.
2016-04-07
This note examines the effect of interfacial roughness on the initiation and growth of channel cracks in a brittle film. A conformal film with cusp-like surface flaws that replicate the substrate roughness is investigated. This type of surface flaw is relatively severe in the sense that stress diverges as the cusp-tip is approached (i.e., there is a power-law stress singularity). For the geometry and range of film properties considered, the analysis suggests that smoothing the substrate could substantially increase the film’s resistance to the formation of the through-the-thickness cracks that precede channel cracking. Furthermore, smoothing the substrate’s surface has amore » relatively modest effect on the film stress needed to propagate a channel crack.« less
Slow crack growth in spinel in water
NASA Technical Reports Server (NTRS)
Schwantes, S.; Elber, W.
1983-01-01
Magnesium aluminate spinel was tested in a water environment at room temperature to establish its slow crack-growth behavior. Ring specimens with artificial flaws on the outside surface were loaded hydraulically on the inside surface. The time to failure was measured. Various precracking techniques were evaluated and multiple precracks were used to minimize the scatter in the static fatigue tests. Statistical analysis techniques were developed to determine the strength and crack velocities for a single flaw. Slow crack-growth rupture was observed at stress intensities as low as 70 percent of K sub c. A strengthening effect was observed in specimens that had survived long-time static fatigue tests.
Grain fracture model and its application to strength evaluation in engineering ceramics
NASA Astrophysics Data System (ADS)
Hoshide, Toshihiko
1993-02-01
A new model of cracking process in ceramics is developed assuming the fracture of the grain just ahead of a flaw, such as a crack or a notch, during the loading process, prior to the final unstable fracture. Based on the grain fracture model, a simulation was carried out to explain the anomalous behavior of small flaws and the notch width effect, which were reported by Evans and Langdon (1976) and Hoshide et al. (1984) and by Bertolotti (1973) and Pabst et al. (1982), respectively. It is shown that the analytical relations of the new model can explain the experimental results for both situations.
NASA Astrophysics Data System (ADS)
Hatsukade, Yoshimi; Kosugi, Akifumi; Mori, Kazuaki; Tanaka, Saburo
2004-11-01
An eddy-current-based nondestructive inspection (NDI) system using superconducting quantum interference device (SQUID) cooled using a coaxial pulse tube cryocooler was constructed for the inspection of microflaws on copper tubes employing a high-Tc SQUID gradiometer and a Helmholtz-like coil inducer. The detection of artificial flaws several tens of μm in depth on copper tubes 6.35 mm in outer diameter and 0.825 mm in thickness was demonstrated using the SQUID-NDI system. With an excitation field of 1.6 μT at 5 kHz, a 30-μm-depth flaw was successfully detected by the system at an SN ratio of at least 20. The magnetic signal amplitude due to the flaw was proportional to both excitation frequency and the square of flaw depth. With consideration of the system’s sensitivity, the results indicate that sub-10-μm-depth flaws are detectable by the SQUID-NDI system.
Steam generator tube integrity flaw acceptance criteria
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cochet, B.
1997-02-01
The author discusses the establishment of a flaw acceptance criteria with respect to flaws in steam generator tubing. The problem is complicated because different countries take different approaches to the problem. The objectives in general are grouped in three broad areas: to avoid the unscheduled shutdown of the reactor during normal operation; to avoid tube bursts; to avoid excessive leak rates in the event of an accidental overpressure event. For each degradation mechanism in the tubes it is necessary to know answers to an array of questions, including: how well does NDT testing perform against this problem; how rapidly doesmore » such degradation develop; how well is this degradation mechanism understood. Based on the above information it is then possible to come up with a policy to look at flaw acceptance. Part of this criteria is a schedule for the frequency of in-service inspection and also a policy for when to plug flawed tubes. The author goes into a broad discussion of each of these points in his paper.« less
Finite Element Modeling of the Thermographic Inspection for Composite Materials
NASA Technical Reports Server (NTRS)
Bucinell, Ronald B.
1996-01-01
The performance of composite materials is dependent on the constituent materials selected, material structural geometry, and the fabrication process. Flaws can form in composite materials as a result of the fabrication process, handling in the manufacturing environment, and exposure in the service environment to anomalous activity. Often these flaws show no indication on the surface of the material while having the potential of substantially degrading the integrity of the composite structure. For this reason it is important to have available inspection techniques that can reliably detect sub-surface defects such as inter-ply disbonds, inter-ply cracks, porosity, and density changes caused by variations in fiber volume content. Many non-destructive evaluation techniques (NDE) are capable of detecting sub-surface flaws in composite materials. These include shearography, video image correlation, ultrasonic, acoustic emissions, and X-ray. The difficulty with most of these techniques is that they are time consuming and often difficult to apply to full scale structures. An NDE technique that appears to have the capability to quickly and easily detect flaws in composite structure is thermography. This technique uses heat to detect flaws. Heat is applied to the surface of a structure with the use of a heat lamp or heat gun. A thermographic camera is then pointed at the surface and records the surface temperature as the composite structure cools. Flaws in the material will cause the thermal-mechanical material response to change. Thus, the surface over an area where a flaw is present will cool differently than regions where flaws do not exist. This paper discusses the effort made to thermo-mechanically model the thermography process. First the material properties and physical parameters used in the model will be explained. This will be followed by a detailed discussion of the finite element model used. Finally, the result of the model will be summarized along with recommendations for future work.
Raef, A.
2009-01-01
The recent proliferation of the 3D reflection seismic method into the near-surface area of geophysical applications, especially in response to the emergence of the need to comprehensively characterize and monitor near-surface carbon dioxide sequestration in shallow saline aquifers around the world, justifies the emphasis on cost-effective and robust quality control and assurance (QC/QA) workflow of 3D seismic data preprocessing that is suitable for near-surface applications. The main purpose of our seismic data preprocessing QC is to enable the use of appropriate header information, data that are free of noise-dominated traces, and/or flawed vertical stacking in subsequent processing steps. In this article, I provide an account of utilizing survey design specifications, noise properties, first breaks, and normal moveout for rapid and thorough graphical QC/QA diagnostics, which are easy to apply and efficient in the diagnosis of inconsistencies. A correlated vibroseis time-lapse 3D-seismic data set from a CO2-flood monitoring survey is used for demonstrating QC diagnostics. An important by-product of the QC workflow is establishing the number of layers for a refraction statics model in a data-driven graphical manner that capitalizes on the spatial coverage of the 3D seismic data. ?? China University of Geosciences (Wuhan) and Springer-Verlag GmbH 2009.
Traditional Indian medicine and homeopathy for HIV/AIDS: a review of the literature
Fritts, M; Crawford, CC; Quibell, D; Gupta, A; Jonas, WB; Coulter, I; Andrade, SA
2008-01-01
Background Allopathic practitioners in India are outnumbered by practitioners of traditional Indian medicine and homeopathy (TIMH), which is used by up to two-thirds of its population to help meet primary health care needs, particularly in rural areas. India has an estimated 2.5 million HIV infected persons. However, little is known about TIMH use, safety or efficacy in HIV/AIDS management in India, which has one of the largest indigenous medical systems in the world. The purpose of this review was to assess the quality of peer-reviewed, published literature on TIMH for HIV/AIDS care and treatment. Results Of 206 original articles reviewed, 21 laboratory studies, 17 clinical studies, and 6 previous reviews of the literature were identified that covered at least one system of TIMH, which includes Ayurveda, Unani medicine, Siddha medicine, homeopathy, yoga and naturopathy. Most studies examined either Ayurvedic or homeopathic treatments. Only 4 of these studies were randomized controlled trials, and only 10 were published in MEDLINE-indexed journals. Overall, the studies reported positive effects and even "cure" and reversal of HIV infection, but frequent methodological flaws call into question their internal and external validity. Common reasons for poor quality included small sample sizes, high drop-out rates, design flaws such as selection of inappropriate or weak outcome measures, flaws in statistical analysis, and reporting flaws such as lack of details on products and their standardization, poor or no description of randomization, and incomplete reporting of study results. Conclusion This review exposes a broad gap between the widespread use of TIMH therapies for HIV/AIDS, and the dearth of high-quality data supporting their effectiveness and safety. In light of the suboptimal effectiveness of vaccines, barrier methods and behavior change strategies for prevention of HIV infection and the cost and side effects of antiretroviral therapy (ART) for its treatment, it is both important and urgent to develop and implement a rigorous research agenda to investigate the potential risks and benefits of TIMH and to identify its role in the management of HIV/AIDS and associated illnesses in India. PMID:19102742
Nemesis Autonomous Test System
NASA Technical Reports Server (NTRS)
Barltrop, Kevin J.; Lee, Cin-Young; Horvath, Gregory A,; Clement, Bradley J.
2012-01-01
A generalized framework has been developed for systems validation that can be applied to both traditional and autonomous systems. The framework consists of an automated test case generation and execution system called Nemesis that rapidly and thoroughly identifies flaws or vulnerabilities within a system. By applying genetic optimization and goal-seeking algorithms on the test equipment side, a "war game" is conducted between a system and its complementary nemesis. The end result of the war games is a collection of scenarios that reveals any undesirable behaviors of the system under test. The software provides a reusable framework to evolve test scenarios using genetic algorithms using an operation model of the system under test. It can automatically generate and execute test cases that reveal flaws in behaviorally complex systems. Genetic algorithms focus the exploration of tests on the set of test cases that most effectively reveals the flaws and vulnerabilities of the system under test. It leverages advances in state- and model-based engineering, which are essential in defining the behavior of autonomous systems. It also uses goal networks to describe test scenarios.
Das, Ashok Kumar; Bruhadeshwar, Bezawada
2013-10-01
Recently Lee and Liu proposed an efficient password based authentication and key agreement scheme using smart card for the telecare medicine information system [J. Med. Syst. (2013) 37:9933]. In this paper, we show that though their scheme is efficient, their scheme still has two security weaknesses such as (1) it has design flaws in authentication phase and (2) it has design flaws in password change phase. In order to withstand these flaws found in Lee-Liu's scheme, we propose an improvement of their scheme. Our improved scheme keeps also the original merits of Lee-Liu's scheme. We show that our scheme is efficient as compared to Lee-Liu's scheme. Further, through the security analysis, we show that our scheme is secure against possible known attacks. In addition, we simulate our scheme for the formal security verification using the widely-accepted AVISPA (Automated Validation of Internet Security Protocols and Applications) tool to show that our scheme is secure against passive and active attacks.
Simulation of the Thermographic Response of Near Surface Flaws in Reinforced Carbon-Carbon Panels
NASA Technical Reports Server (NTRS)
Winfree, William P.; Howell, Patricia A.; Burke, Eric R.
2009-01-01
Thermographic inspection is a viable technique for detecting in-service damage in reinforced carbon-carbon (RCC) composites that are used for thermal protection in the leading edge of the shuttle orbiter. A thermographic technique for detection of near surface flaws in RCC composite structures is presented. A finite element model of the heat diffusion in structures with expected flaw configurations is in good agreement with the experimental measurements.
JPRS Report, Science & Technology, USSR: Electronics & Electrical Engineering.
1988-02-05
Sirena -1 Self-propelled Flaw Detector [PRIBORYI SISTEMY UPRAVLENIYA, Jan 87] 14 Crane Strain-measurement Scales With Data Processing by a Microprocessor...was 3-5 m. 06415/06662 UDC 620.179.1:620.165.29 Algorithimization of Control of Electric Motor Drive of Sirena -1 Self-propelled Flaw Detector...The article describes one of the most optimum algorithms of control of the electric motor drive of the Sirena -1 self-propelled flaw detector
NASA Technical Reports Server (NTRS)
Finger, R. W.
1978-01-01
Static fracture tests were performed on surface flawed specimens of aluminum and titanium alloys. A simulated proof overload cycle was applied prior to all of the cyclic tests. Variables included in each test series were flaw shapes and thickness. Additionally, test temperature was a variable for the aluminum test series. The crack opening displacement and stress-strain data obtained are presented.
Automatic Inspection Of Heat Seals Between Plastic Sheets
NASA Technical Reports Server (NTRS)
Rai, Kula R.; Lew, Thomas M.; Sinclair, Robert B.
1995-01-01
Automatic inspection apparatus detects flaws in heat seals between films of polyethylene or other thermoplastic material. Heat-sealed strip in multilayer plastic sheet continuously moved lengthwise over illuminators. Variations in light transmitted through sheet interpreted to find flaws in heat seal. Site of flaw marked to facilitate subsequent manual inspection. Heat sealing used to join plastic films in manufacturing of variety of products, including inflatable toys and balloons carrying scientific instruments to high altitudes.
Development of an optical fiber interferometer for detection of surface flaws in aluminum
NASA Technical Reports Server (NTRS)
Gilbert, John A.
1991-01-01
The main objective was to demonstrate the potential of using an optical fiber interferometer (OFI) to detect surface flaws in aluminum samples. Standard ultrasonic excitation was used to generate Rayleigh surface waves. After the waves interacted with a defect, the modified responses were detected using the OFI and the results were analyzed for time-of-flight and frequency content to predict the size and location of the flaws.
Crack Coalescence in Molded Gypsum and Carrara Marble
NASA Astrophysics Data System (ADS)
Wong, N.; Einstein, H. H.
2007-12-01
This research investigates the fracturing and coalescence behavior in prismatic laboratory-molded gypsum and Carrara marble specimens, which consist of either one or two pre-existing open flaws, under uniaxial compression. The tests are monitored by a high speed video system with a frame rate up to 24,000 frames/second. It allows one to precisely observe the cracking mechanisms, in particular if shear or tensile fracturing takes place. Seven crack types and nine crack coalescence categories are identified. The flaw inclination angle, the ligament length and the bridging angle between two flaws have different extents of influence on the coalescence patterns. For coplanar flaws, as the flaw inclination angle increases, there is a general trend of variation from shear coalescence to tensile coalescence. For stepped flaws, as the bridging angle changes from negative to small positive, and further up to large positive values, the coalescence generally progresses from categories of no coalescence, indirect coalescence to direct coalescence. For direct coalescence, it generally progresses from shear, mixed shear-tensile to tensile as the bridging angle increases. Some differences in fracturing and coalescence processes are observed in gypsum and marble, particularly the crack initiation in marble is preceded by the development of macroscopic white patches, but not in gypsum. Scanning Electron Microprobe (SEM) study reveals that the white patches consist of zones of microcracks (process zones).
NASA Astrophysics Data System (ADS)
Hiramatsu, Yoichi; Ishii, Jun; Funato, Kazuhiro
A significant number of hydraulic turbines operated in Japan were installed in the first half of the 20th century. Today, aging degradation and flaws are observed in these turbine equipments. So far, Japanese engineers have applied NDI technology of Ultrasonic Testing (UT) to detect the flaws, and after empirical evaluation of the remaining life they decided an adequate moment to replace the equipments. Since the replacement requires a large-scale field site works and high-cost, one of the solutions for life-extension of the equipments is introduction of repair services. We have been working in order to enhance the accuracy of results during the detection of flaws and flaws dimensioning, in particular focusing on the techniques of Tip-echo, TOFD and Phased-Array UT, accompanied by the conventional UT. These NDI methods made possible to recognize the entire image of surface and embedded flaws with complicated geometry. Then, we have developed an evaluation system of these flaws based on the theory of crack propagation, of the logic of crack growth driven by the stress-intensity factor of the crack tip front. The sophisticated evaluation system is constituted by a hand-made software and database of stress-intensity factor. Based on these elemental technologies, we propose a technique of repair welding to provide a life-extension of hydraulic turbine components.
Detection and assessment of flaws in friction stir welded metallic plates
NASA Astrophysics Data System (ADS)
Fakih, Mohammad Ali; Mustapha, Samir; Tarraf, Jaafar; Ayoub, Georges; Hamade, Ramsey
2017-04-01
Investigated is the ability of ultrasonic guided waves to detect flaws and assess the quality of friction stir welds (FSW). AZ31B magnesium plates were friction stir welded. While process parameters of spindle speed and tool feed were fixed, shoulder penetration depth was varied resulting in welds of varying quality. Ultrasonic waves were excited at different frequencies using piezoelectric wafers and the fundamental symmetric (S0) mode was selected to detect the flaws resulting from the welding process. The front of the first transmitted wave signal was used to capture the S0 mode. A damage index (DI) measure was defined based on the amplitude attenuation after wave interaction with the welded zone. Computed Tomography (CT) scanning was employed as a nondestructive testing (NDT) technique to assess the actual weld quality. Derived DI values were plotted against CT-derived flaw volume resulting in a perfectly linear fit. The proposed approach showed high sensitivity of the S0 mode to internal flaws within the weld. As such, this methodology bears great potential as a future predictive method for the evaluation of FSW weld quality.
NASA Technical Reports Server (NTRS)
Nemeth, Noel
2013-01-01
Models that predict the failure probability of monolithic glass and ceramic components under multiaxial loading have been developed by authors such as Batdorf, Evans, and Matsuo. These "unit-sphere" failure models assume that the strength-controlling flaws are randomly oriented, noninteracting planar microcracks of specified geometry but of variable size. This report develops a formulation to describe the probability density distribution of the orientation of critical strength-controlling flaws that results from an applied load. This distribution is a function of the multiaxial stress state, the shear sensitivity of the flaws, the Weibull modulus, and the strength anisotropy. Examples are provided showing the predicted response on the unit sphere for various stress states for isotropic and transversely isotropic (anisotropic) materials--including the most probable orientation of critical flaws for offset uniaxial loads with strength anisotropy. The author anticipates that this information could be used to determine anisotropic stiffness degradation or anisotropic damage evolution for individual brittle (or quasi-brittle) composite material constituents within finite element or micromechanics-based software
van Gelder, P.H.A.J.M.; Nijs, M.
2011-01-01
Decisions about pharmacotherapy are being taken by medical doctors and authorities based on comparative studies on the use of medications. In studies on fertility treatments in particular, the methodological quality is of utmost importance in the application of evidence-based medicine and systematic reviews. Nevertheless, flaws and omissions appear quite regularly in these types of studies. Current study aims to present an overview of some of the typical statistical flaws, illustrated by a number of example studies which have been published in peer reviewed journals. Based on an investigation of eleven studies at random selected on fertility treatments with cryopreservation, it appeared that the methodological quality of these studies often did not fulfil the required statistical criteria. The following statistical flaws were identified: flaws in study design, patient selection, and units of analysis or in the definition of the primary endpoints. Other errors could be found in p-value and power calculations or in critical p-value definitions. Proper interpretation of the results and/or use of these study results in a meta analysis should therefore be conducted with care. PMID:24753877
van Gelder, P H A J M; Nijs, M
2011-01-01
Decisions about pharmacotherapy are being taken by medical doctors and authorities based on comparative studies on the use of medications. In studies on fertility treatments in particular, the methodological quality is of utmost -importance in the application of evidence-based medicine and systematic reviews. Nevertheless, flaws and omissions appear quite regularly in these types of studies. Current study aims to present an overview of some of the typical statistical flaws, illustrated by a number of example studies which have been published in peer reviewed journals. Based on an investigation of eleven studies at random selected on fertility treatments with cryopreservation, it appeared that the methodological quality of these studies often did not fulfil the -required statistical criteria. The following statistical flaws were identified: flaws in study design, patient selection, and units of analysis or in the definition of the primary endpoints. Other errors could be found in p-value and power calculations or in critical p-value definitions. Proper -interpretation of the results and/or use of these study results in a meta analysis should therefore be conducted with care.
An Interlaminar Tensile Strength Specimen
NASA Technical Reports Server (NTRS)
Martin, Roderick H.; Jackson, Wade C.
1993-01-01
This paper describes a technique to determine interlaminar tensile strength, sigma(sub 3c), of a fiber reinforced composite material using a curved beam. The specimen was a unidirectional curved beam, bent 90 deg, with straight arms. Attached to each arm was a hinged loading mechanism that was held by the grips of a tension testing machine. Geometry effects of the specimen, including the effects of loading arm length, inner radius, thickness, and width, were studied. The data sets fell into two categories: low strength corresponding to a macroscopic flaw related failure and high strength corresponding to a microscopic flaw related failure. From the data available, the specimen width and loading arm length had little effect on sigma(sub 3c). The inner radius was not expected to have a significant effect on sigma(sub 3c), but this conclusion could not be confirmed because of differences in laminate quality for each curve geometry. The thicker specimens had the lowest value of sigma(sub 3c) because of poor laminate quality.
Fundamentally Flawed: Extension Administrative Practice (Part 1).
ERIC Educational Resources Information Center
Patterson, Thomas F., Jr.
1997-01-01
Extension's current administrative techniques are based on the assumptions of classical management from the early 20th century. They are fundamentally flawed and inappropriate for the contemporary workplace. (SK)
Virtual containment system for composite flywheels
NASA Astrophysics Data System (ADS)
Shiue, Fuh-Wen
2001-07-01
There is much interest in advanced composite flywheel systems for use on satellites mainly because of the potential for considerable weight savings associated with combined energy and momentum management. The additional weight of a containment system needed to protect the satellite in the event of a flywheel failure, however, could negate the potential savings. Therefore, the development of a condition monitoring and virtual containment system is essential to ensure the wide acceptance of flywheel batteries for spacecraft applications. A virtual containment system is a near real-time condition monitoring system, plus additional logic to adjust the operating conditions (maximum rotational speed) accordingly when a flaw or fault is detected. Flaws of primary interest in this study are those unique to composite flywheels, such as delamination and debonding of interfaces. Such flaws change the balance state of a flywheel through small, but detectable, motion of the mass center and principal axes of inertia. A proposed monitoring technique determines the existence and the extent of such flaws by a method similar to the influence-coefficient rotor balancing method. Because of the speed-dependence of the imbalance caused by elastic flaws, a normalized imbalance change, which is a direct measure of the flaw size, was defined. To account for the possibility that flaw growth could actually improve the balance state of a rotor, a new concept of accumulated imbalance change was also introduced. Laboratory tests showed the proposed method was able to detect small simulated flaws that result in as little as 2--3 microns of mass center movement. Fracture mechanics concepts were used to evaluate the severity and growth rate of the detected flaw. An interesting discovery that coincided with some experimental observations reported in the literature was the energy release rate reduction with a large crack. This finding indicates a possible stress relief and crack arrest when a circumferential crack grows over certain size. This phenomenon is largely due to crack curvature unique to filament-wound composite flywheels. Several virtual containment strategies were investigated numerically to demonstrate the feasibility of virtual containment systems. Once a flaw is detected during flywheel operation, the maximum operating speed can be reduced to prevent catastrophic failure, achieve a specific design life, and maximize energy storage capacity over the remaining life. A numerical example showed 4--5 times of improvement in cumulative energy storage through lifetime with a virtual containment. A closed-loop speed controller using condition monitoring sensor feedback was investigated numerically to account for possible imperfection of the fracture mechanics model. Finally, an integrated virtual containment system without any complex fracture mechanics analysis was also developed and successfully demonstrated experimentally.
NASA Technical Reports Server (NTRS)
Gross, Bernard
1996-01-01
Material characterization parameters obtained from naturally flawed specimens are necessary for reliability evaluation of non-deterministic advanced ceramic structural components. The least squares best fit method is applied to the three parameter uniaxial Weibull model to obtain the material parameters from experimental tests on volume or surface flawed specimens subjected to pure tension, pure bending, four point or three point loading. Several illustrative example problems are provided.
Liquid impact and fracture of free-standing CVD diamond
NASA Astrophysics Data System (ADS)
Kennedy, Claire F.; Telling, Robert H.; Field, John E.
1999-07-01
The Cavendish Laboratory has developed extensive facilities for studies of liquid and solid particle erosion. This paper describes the high-speed liquid impact erosion of thin CVD diamond discs and the variation with grain sizes of the absolute damage threshold velocity (ADTV), viz., the threshold below which the specimen shows no damage. All specimens fail by rear surface cracking and there is shown to be a shallow dependence of rear surface ADTV on grain size. Fracture propagation in CVD diamond has also been monitored using a specially-designed double-torsion apparatus and data for K1C are presented. Tentatively, the results suggest that finer-grained CVD diamond exhibits a higher fracture toughness, although the differences are slight even over a fourfold variation in the mean grain size. No preference for intergranular fracture was observed and one may conclude from this that the grain boundaries themselves do not seriously weaken the material. The large pre-existing flaws, both within and between grains, whose size varies the grain size are believed to be the dominant source of weakness.
Alzheimer’s Disease Drug Development in 2008 and Beyond: Problems and Opportunities
Becker, Robert E.; Greig, Nigel H.
2008-01-01
Recently, a number of Alzheimer’s disease (AD) multi-center clinical trials (CT) have failed to provide statistically significant evidence of drug efficacy. To test for possible design or execution flaws we analyzed in detail CTs for two failed drugs that were strongly supported by preclinical evidence and by proven CT AD efficacy for other drugs in their class. Studies of the failed commercial trials suggest that methodological flaws may contribute to the failures and that these flaws lurk within current drug development practices ready to impact other AD drug development [1]. To identify and counter risks we considered the relevance to AD drug development of the following factors: (1) effective dosing of the drug product, (2) reliable evaluations of research subjects, (3) effective implementation of quality controls over data at research sites, (4) resources for practitioners to effectively use CT results in patient care, (5) effective disease modeling, (6) effective research designs. New drugs currently under development for AD address a variety of specific mechanistic targets. Mechanistic targets provide AD drug development opportunities to escape from many of the factors that currently undermine AD clinical pharmacology, especially the problems of inaccuracy and imprecision associated with using rated outcomes. In this paper we conclude that many of the current problems encountered in AD drug development can be avoided by changing practices. Current problems with human errors in clinical trials make it difficult to differentiate drugs that fail to evidence efficacy from apparent failures due to Type II errors. This uncertainty and the lack of publication of negative data impede researchers’ abilities to improve methodologies in clinical pharmacology and to develop a sound body of knowledge about drug actions. We consider the identification of molecular targets as offering further opportunities for overcoming current failures in drug development. PMID:18690832
Environmental effects on defect growth in composite materials
NASA Technical Reports Server (NTRS)
Porter, T. R.
1981-01-01
Data for evaluating the effects of moisture and temperature on the integrity of fiber composite components was gathered. In particular, the static and cyclic performance of three composite laminates containing flaws was investigated at room temperature and at 422 K (300 F) in wet and dry conditions.
Competition and Students' Perceptions in a Game-Based Language Learning Environment
ERIC Educational Resources Information Center
Vandercruysse, Sylke; Vandewaetere, Mieke; Cornillie, Frederik; Clarebout, Geraldine
2013-01-01
Although educational games have become quite popular in recent research, only a limited number of studies have focused on the effectiveness of these games. While numerous claims have been made about the effectiveness of games, the studies that examine educational effectiveness often contain flaws resulting in unclear conclusions. One possible…
Flaws in Flynn Effect Research with the Wechsler Scales
ERIC Educational Resources Information Center
Weiss, Lawrence G.; Gregoire, Jacques; Zhu, Jianjun
2016-01-01
Many Flynn effect (FE) studies compare scores across different editions of Wechsler's IQ tests. When construct changes are introduced by the test developers in the new edition, however, the presumed generational effects are difficult to untangle from changes due to test content. To remove this confound, we use the same edition of Wechsler…
NASA Astrophysics Data System (ADS)
Meyer, Ryan M.; Komura, Ichiro; Kim, Kyung-cho; Zetterwall, Tommy; Cumblidge, Stephen E.; Prokofiev, Iouri
2016-02-01
In February 2012, the U.S. Nuclear Regulatory Commission (NRC) executed agreements with VTT Technical Research Centre of Finland, Nuclear Regulatory Authority of Japan (NRA, former JNES), Korea Institute of Nuclear Safety (KINS), Swedish Radiation Safety Authority (SSM), and Swiss Federal Nuclear Safety Inspectorate (ENSI) to establish the Program to Assess the Reliability of Emerging Nondestructive Techniques (PARENT). The goal of PARENT is to investigate the effectiveness of current emerging and perspective novel nondestructive examination procedures and techniques to find flaws in nickel-alloy welds and base materials. This is done by conducting a series of open and blind international round-robin tests on a set of large-bore dissimilar metal welds (LBDMW), small-bore dissimilar metal welds (SBDMW), and bottom-mounted instrumentation (BMI) penetration weld test blocks. The purpose of blind testing is to study the reliability of more established techniques and included only qualified teams and procedures. The purpose of open testing is aimed at a more basic capability assessment of emerging and novel technologies. The range of techniques applied in open testing varied with respect to maturity and performance uncertainty and were applied to a variety of simulated flaws. This paper will include a brief overview of the PARENT blind and open testing techniques and test blocks and present some of the blind testing results.
Myths, Artifacts, and Fatal Flaws: Identifying Limitations and Opportunities in Vitamin C Research
Michels, Alexander J.; Frei, Balz
2013-01-01
Research progress to understand the role of vitamin C (ascorbic acid) in human health has been slow in coming. This is predominantly the result of several flawed approaches to study design, often lacking a full appreciation of the redox chemistry and biology of ascorbic acid. In this review, we summarize our knowledge surrounding the limitations of common approaches used in vitamin C research. In human cell culture, the primary issues are the high oxygen environment, presence of redox-active transition metal ions in culture media, and the use of immortalized cell lines grown in the absence of supplemental ascorbic acid. Studies in animal models are also limited due to the presence of endogenous ascorbic acid synthesis. Despite the use of genetically altered rodent strains lacking synthesis capacity, there are additional concerns that these models do not adequately recapitulate the effects of vitamin C deprivation and supplementation observed in humans. Lastly, several flaws in study design endemic to randomized controlled trials and other human studies greatly limit their conclusions and impact. There also is anecdotal evidence of positive and negative health effects of vitamin C that are widely accepted but have not been substantiated. Only with careful attention to study design and experimental detail can we further our understanding of the possible roles of vitamin C in promoting human health and preventing or treating disease. PMID:24352093
ERIC Educational Resources Information Center
Leung, Kim Chau
2015-01-01
Previous meta-analyses of the effects of peer tutoring on academic achievement have been plagued with theoretical and methodological flaws. Specifically, these studies have not adopted both fixed and mixed effects models for analyzing the effect size; they have not evaluated the moderating effect of some commonly used parameters, such as comparing…
Space shuttle Production Verification Motor 1 (PV-1) static fire
NASA Technical Reports Server (NTRS)
1989-01-01
All inspection and instrumentation data indicate that the PV-1 static test firing conducted 18 Aug. 1988 was successful. With the exception of the intentionally flawed joints and static test modifications, PV-1 was flight configuration. Fail-safe flaws guaranteeing pressure to test the sealing capability of primary O-rings were included in the aft field joint, case-to-nozzle joint, and nozzle internal Joint 5. The test was conducted at ambient conditions, with the exception of the field joints and case/nozzle joints which were maintained at a minimum of 75 F. Ballistics performance values were within specification requirements. The PV-1 motor exhibited chamber pressure oscillations similar to previously tested Space Shuttle redesigned solid rocket motors, particularly QM-7. The first longitudinal mode oscillations experienced by PV-1 were the strongest ever measured in a Space Shuttle motor. Investigation into this observation is being conducted. Joint insulation performed as designed with no evidence of gas flow within unflawed forward field joints. The intentionally flawed center and aft case field joint insulation performance was excellent. There was no evidence of hot gas past the center field joint capture feature O-ring, the case-to-nozzle joint primary O-ring, or the aft field joint primary O-ring. O-ring seals and barriers with assured pressure at the flaws showed erosion and heat effect, but all sealed against passage of hot gases with the exception of the aft field joint capture feature O-ring. There was no evidence of erosion, heat effect, or blowby on any O-ring seals or barriers at the unflawed joints. Nozzle performance was nominal with typical erosion. Post-test examination revealed that the forward nose ring was of the old high performance motor design configuration with the 150-deg ply angle. All nozzle components remained intact for post-test evaluation. The thrust vector control system operated correctly. The water deluge system, CO2 quench, and other test equipment performed as planned during all required test operations.
Improved flaw detection and characterization with difference thermography
NASA Astrophysics Data System (ADS)
Winfree, William P.; Zalameda, Joseph N.; Howell, Patricia A.
2011-05-01
Flaw detection and characterization with thermographic techniques in graphite polymer composites is often limited by localized variations in the thermographic response. Variations in properties such as acceptable porosity, variations in fiber volume content and surface polymer thickness result in variations in the thermal response that in general cause significant variations in the initial thermal response. These variations result in a noise floor that increases the difficulty of detecting and characterizing deeper flaws. The paper investigates comparing thermographic responses taken before and after a change in state in a composite to improve the detection of subsurface flaws. A method is presented for registration of the responses before finding the difference. A significant improvement in the detectability is achieved by comparing the differences in response. Examples of changes in state due to application of a load and impact are presented.
Improved Flaw Detection and Characterization with Difference Thermography
NASA Technical Reports Server (NTRS)
Winfree, William P.; Zalameda, Joseph N.; Howell, Patricia A.
2011-01-01
Flaw detection and characterization with thermographic techniques in graphite polymer composites is often limited by localized variations in the thermographic response. Variations in properties such as acceptable porosity, variations in fiber volume content and surface polymer thickness result in variations in the thermal response that in general cause significant variations in the initial thermal response. These variations result in a noise floor that increases the difficulty of detecting and characterizing deeper flaws. The paper investigates comparing thermographic responses taken before and after a change in state in a composite to improve the detection of subsurface flaws. A method is presented for registration of the responses before finding the difference. A significant improvement in the detectability is achieved by comparing the differences in response. Examples of changes in state due to application of a load and impact are presented.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lam, P.; Sindelar, R.
2015-03-09
A typical multipurpose canister (MPC) is made of austenitic stainless steel and is loaded with spent nuclear fuel assemblies. The canister may be subject to service-induced degradation when it is exposed to aggressive atmospheric environments during a possibly long-term storage period if the permanent repository is yet to be identified and readied. Because heat treatment for stress relief is not required for the construction of an MPC, stress corrosion cracking may be initiated on the canister surface in the welds or in the heat affected zone. An acceptance criteria methodology is being developed for flaw disposition should the crack-like defectsmore » be detected by periodic In-service Inspection. The first-order instability flaw sizes has been determined with bounding flaw configurations, that is, through-wall axial or circumferential cracks, and part-through-wall long axial flaw or 360° circumferential crack. The procedure recommended by the American Petroleum Institute (API) 579 Fitness-for-Service code (Second Edition) is used to estimate the instability crack length or depth by implementing the failure assessment diagram (FAD) methodology. The welding residual stresses are mostly unknown and are therefore estimated with the API 579 procedure. It is demonstrated in this paper that the residual stress has significant impact on the instability length or depth of the crack. The findings will limit the applicability of the flaw tolerance obtained from limit load approach where residual stress is ignored and only ligament yielding is considered.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lam, Poh -Sang; Sindelar, Robert L.
2015-03-09
A typical multipurpose canister (MPC) is made of austenitic stainless steel and is loaded with spent nuclear fuel assemblies. The canister may be subject to service-induced degradation when it is exposed to aggressive atmospheric environments during a possibly long-term storage period if the permanent repository is yet to be identified and readied. Because heat treatment for stress relief is not required for the construction of an MPC, stress corrosion cracking may be initiated on the canister surface in the welds or in the heat affected zone. An acceptance criteria methodology is being developed for flaw disposition should the crack-like defectsmore » be detected by periodic in-service Inspection. The first-order instability flaw sizes has been determined with bounding flaw configurations, that is, through-wall axial or circumferential cracks, and part-through-wall long axial flaw or 360° circumferential crack. The procedure recommended by the American Petroleum Institute (API) 579 Fitness-for-Service code (Second Edition) is used to estimate the instability crack length or depth by implementing the failure assessment diagram (FAD) methodology. The welding residual stresses are mostly unknown and are therefore estimated with the API 579 procedure. It is demonstrated in this paper that the residual stress has significant impact on the instability length or depth of the crack. The findings will limit the applicability of the flaw tolerance obtained from limit load approach where residual stress is ignored and only ligament yielding is considered.« less
Sholapurkar, Shashikant L
2017-04-01
Cardiotocography (CTG) has disappointingly failed to show good predictability for fetal acidemia or neonatal outcomes in several large studies. A complete rethink of CTG interpretation will not be out of place. Fetal heart rate (FHR) decelerations are the most common deviations, benign as well as manifestation of impending fetal hypoxemia/acidemia, much more commonly than FHR baseline or variability. Their specific nomenclature is important (center-stage) because it provides the basic concepts and framework on which the complex "pattern recognition" of CTG interpretation by clinicians depends. Unfortunately, the discrimination of FHR decelerations seems to be muddled since the British obstetrics adopted the concept of vast majority of FHR decelerations being "variable" (cord-compression). With proliferation of confusing waveform criteria, "atypical variables" became the commonest cause of suspicious/pathological CTG. However, National Institute for Health and Care Excellence (NICE) (2014) had to disband the "typical" and "atypical" terminology because of flawed classifying criteria. This analytical review makes a strong case that there are major and fundamental framing and confirmation fallacies (not just biases) in interpretation of FHR decelerations by NICE (2014) and International Federation of Gynecology and Obstetrics (FIGO) (2015), probably the biggest in modern medicine. This "post-truth" approach is incompatible with scientific practice. Moreover, it amounts to setting oneself for failure. The inertia to change could be best described as "backfire effect". There is abundant evidence that head-compression (and other non-hypoxic mediators) causes rapid rather than shallow/gradual decelerations. Currently, the vast majority of decelerations are attributed to unproven cord compression underpinned by flawed disproven pathophysiological hypotheses. Their further discrimination based on abstract, random, trial and error criteria remains unresolved suggesting a false premise to begin with. This is not surprising considering that the commonest pathophysiology of intrapartum hypoxemia is contraction-induced reduction in uteroplacental perfusion (sometimes already compromised) and not cord compression at all. This distorted categorization causes confusion, false-alarm fatigue and difficulty in focusing on real pathological decelerations making CTG interpretation dysfunctional ultimately compromising patient safety. Obstetricians/midwives should demand reverting to the previous more scientific British categorization of decelerations based solely on time relationship to contractions as advocated by the pioneers like Hon and Caldeyro-Barcia, rather than accepting the current "post-truth" scenario.
Transformation: Effectively Marketing Change in the Army
2004-03-19
reveals a failure of marketing strategy . The Army has an effective strategy for Transformation. It is widely accepted that the Army led the way in...contributing to this dilemma. The Army’s marketing strategy appears to have been flawed from the start it continued to erode eventually culminating in public
Gun Shows and Gun Violence: Fatally Flawed Study Yields Misleading Results
Hemenway, David; Webster, Daniel; Pierce, Glenn; Braga, Anthony A.
2010-01-01
A widely publicized but unpublished study of the relationship between gun shows and gun violence is being cited in debates about the regulation of gun shows and gun commerce. We believe the study is fatally flawed. A working paper entitled “The Effect of Gun Shows on Gun-Related Deaths: Evidence from California and Texas” outlined this study, which found no association between gun shows and gun-related deaths. We believe the study reflects a limited understanding of gun shows and gun markets and is not statistically powered to detect even an implausibly large effect of gun shows on gun violence. In addition, the research contains serious ascertainment and classification errors, produces results that are sensitive to minor specification changes in key variables and in some cases have no face validity, and is contradicted by 1 of its own authors’ prior research. The study should not be used as evidence in formulating gun policy. PMID:20724672
Gun shows and gun violence: fatally flawed study yields misleading results.
Wintemute, Garen J; Hemenway, David; Webster, Daniel; Pierce, Glenn; Braga, Anthony A
2010-10-01
A widely publicized but unpublished study of the relationship between gun shows and gun violence is being cited in debates about the regulation of gun shows and gun commerce. We believe the study is fatally flawed. A working paper entitled "The Effect of Gun Shows on Gun-Related Deaths: Evidence from California and Texas" outlined this study, which found no association between gun shows and gun-related deaths. We believe the study reflects a limited understanding of gun shows and gun markets and is not statistically powered to detect even an implausibly large effect of gun shows on gun violence. In addition, the research contains serious ascertainment and classification errors, produces results that are sensitive to minor specification changes in key variables and in some cases have no face validity, and is contradicted by 1 of its own authors' prior research. The study should not be used as evidence in formulating gun policy.
EHR Safety: The Way Forward to Safe and Effective Systems
Walker, James M.; Carayon, Pascale; Leveson, Nancy; Paulus, Ronald A.; Tooker, John; Chin, Homer; Bothe, Albert; Stewart, Walter F.
2008-01-01
Diverse stakeholders—clinicians, researchers, business leaders, policy makers, and the public—have good reason to believe that the effective use of electronic health care records (EHRs) is essential to meaningful advances in health care quality and patient safety. However, several reports have documented the potential of EHRs to contribute to health care system flaws and patient harm. As organizations (including small hospitals and physician practices) with limited resources for care-process transformation, human-factors engineering, software safety, and project management begin to use EHRs, the chance of EHR-associated harm may increase. The authors propose a coordinated set of steps to advance the practice and theory of safe EHR design, implementation, and continuous improvement. These include setting EHR implementation in the context of health care process improvement, building safety into the specification and design of EHRs, safety testing and reporting, and rapid communication of EHR-related safety flaws and incidents. PMID:18308981
Effect of Loading Rate and Surface Conditions on Flexural Strength of Borosilicate Glass
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nie, X; Chen, Wayne; Wereszczak, Andrew A
2009-01-01
This study evaluates the loading rate and surface condition dependence of the flexural strength of a borosilicate glass. The glass specimens are subjected to three different surface treatments before four-point bending tests to study the effect of surface flaws. Quasistatic (Material Test System 810) and dynamic (Kolsky bar) experiments are performed at loading rates ranging from 0.7 to 4 x 10{sup 6} MPa/s. The results show that the flexural strength of the borosilicate glass has a strong dependence on the loading rate. A chemically etched surface produces an enhanced flexural strength by about an order of magnitude. Scanning electron microscopymore » images on fracture surfaces indicate that the failure is governed by different types of flaws under different surface treatment conditions. Edge failure is also identified for samples possessing high flexural strength.« less
Crack propagation from a filled flaw in rocks considering the infill influences
NASA Astrophysics Data System (ADS)
Chang, Xu; Deng, Yan; Li, Zhenhua; Wang, Shuren; Tang, C. A.
2018-05-01
This study presents a numerical and experimental study of the cracking behaviour of rock specimen containing a single filled flaw under compression. The primary aim is to investigate the influences of infill on crack patterns, load-displacement response and specimen strength. The numerical code RFPA2D (Rock Failure Process Analysis) featured by the capability of modeling heterogeneous materials is employed to develop the numerical model, which is further calibrated by physical tests. The results indicate that there exists a critical infill strength which controls crack patterns for a given flaw inclination angle. For case of infill strength lower than the critical value, the secondary or anti-cracks are disappeared by increasing the infill strength. If the infill strength is greater than the critical value, the filled flaw has little influence on the cracking path and the specimen fails by an inclined crack, as if there is no flaw. The load-displacement responses show specimen stiffness increases by increasing infill strength until the infill strength reaches its critical value. The specimen strength increases by increasing the infill strength and almost keeps constant as the infill strength exceeds its critical value.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Guan, Xuefei; Zhou, S. Kevin; Rasselkorde, El Mahjoub
The study presents a data processing methodology for weld build-up using multiple scan patterns. To achieve an overall high probability of detection for flaws with different orientations, an inspection procedure with three different scan patterns is proposed. The three scan patterns are radial-tangential longitude wave pattern, axial-radial longitude wave pattern, and tangential shear wave pattern. Scientific fusion of the inspection data is implemented using volume reconstruction techniques. The idea is to perform spatial domain forward data mapping for all sampling points. A conservative scheme is employed to handle the case that multiple sampling points are mapped to one grid location.more » The scheme assigns the maximum value for the grid location to retain the largest equivalent reflector size for the location. The methodology is demonstrated and validated using a realistic ring of weld build-up. Tungsten balls and bars are embedded to the weld build-up during manufacturing process to represent natural flaws. Flat bottomed holes and side drilled holes are installed as artificial flaws. Automatic flaw identification and extraction are demonstrated. Results indicate the inspection procedure with multiple scan patterns can identify all the artificial and natural flaws.« less
NASA Technical Reports Server (NTRS)
Rummel, W. D.; Rathke, R. A.; Todd, P. H., Jr.; Mullen, S. J.
1975-01-01
Liquid penetrant, ultrasonic, eddy current and X-radiographic techniques were optimized and applied to the evaluation of 2219-T87 aluminum alloy test specimens in integrally stiffened panel, and weld panel configurations. Fatigue cracks in integrally stiffened panels, lack-of-fusion in weld panels, and fatigue cracks in weld panels were the flaw types used for evaluation. A 2319 aluminum alloy weld filler rod was used for all welding to produce the test specimens. Forty seven integrally stiffened panels containing a total of 146 fatigue cracks, ninety three lack-of-penetration (LOP) specimens containing a total of 239 LOP flaws, and one-hundred seventeen welded specimens containing a total of 293 fatigue cracks were evaluated. Nondestructive test detection reliability enhancement was evaluated during separate inspection sequences in the specimens in the 'as-machined or as-welded', post etched and post proof loaded conditions. Results of the nondestructive test evaluations were compared to the actual flaw size obtained by measurement of the fracture specimens after completing all inspection sequences. Inspection data were then analyzed to provide a statistical basis for determining the flaw detection reliability.
NASA Technical Reports Server (NTRS)
Springfield, C. W., Jr.
1986-01-01
Various pieces of the registration fittings for the Radial Scientific instrument (SI) module of the Space Telescope were examined from a fracture mechanics point of view and deemed to be fail-safe or else have had maximum allowable flaw sizes specified for them. The results of these analyses are summarized in tabular form. In many instances the applied stress levels were so low that the threshold stress intensity factor range was never reached. In most of the others the allowable flaw sizes were large enough to be detected by visual inspection. However, for some parts, such as the flexures connecting the aluminum cover to the ball retainer in the fitting at point A, the flaw sizes were rather small. Eddy current tests are capable of detecting flaws of this size (0.022 inches x 0.1 inches), so for those which have been so tested these small flaws should represent no danger of going undetected. In every instance approximations were made to err on the conservative side. These were pointed out in the discussions of the analyses for each fitting. One conservative approximation that was not mentioned, however, is the fact that retardation was not included in the crack propagation computations.
Multilayer material characterization using thermographic signal reconstruction
NASA Astrophysics Data System (ADS)
Shepard, Steven M.; Beemer, Maria Frendberg
2016-02-01
Active-thermography has become a well-established Nondestructive Testing (NDT) method for detection of subsurface flaws. In its simplest form, flaw detection is based on visual identification of contrast between a flaw and local intact regions in an IR image sequence of the surface temperature as the sample responds to thermal stimulation. However, additional information and insight can be obtained from the sequence, even in the absence of a flaw, through analysis of the logarithmic derivatives of individual pixel time histories using the Thermographic Signal Reconstruction (TSR) method. For example, the response of a flaw-free multilayer sample to thermal stimulation can be viewed as a simple transition between the responses of infinitely thick samples of the individual constituent layers over the lifetime of the thermal diffusion process. The transition is represented compactly and uniquely by the logarithmic derivatives, based on the ratio of thermal effusivities of the layers. A spectrum of derivative responses relative to thermal effusivity ratios allows prediction of the time scale and detectability of the interface, and measurement of the thermophysical properties of one layer if the properties of the other are known. A similar transition between steady diffusion states occurs for flat bottom holes, based on the hole aspect ratio.
NASA Astrophysics Data System (ADS)
Guan, Xuefei; Rasselkorde, El Mahjoub; Abbasi, Waheed; Zhou, S. Kevin
2015-03-01
The study presents a data processing methodology for weld build-up using multiple scan patterns. To achieve an overall high probability of detection for flaws with different orientations, an inspection procedure with three different scan patterns is proposed. The three scan patterns are radial-tangential longitude wave pattern, axial-radial longitude wave pattern, and tangential shear wave pattern. Scientific fusion of the inspection data is implemented using volume reconstruction techniques. The idea is to perform spatial domain forward data mapping for all sampling points. A conservative scheme is employed to handle the case that multiple sampling points are mapped to one grid location. The scheme assigns the maximum value for the grid location to retain the largest equivalent reflector size for the location. The methodology is demonstrated and validated using a realistic ring of weld build-up. Tungsten balls and bars are embedded to the weld build-up during manufacturing process to represent natural flaws. Flat bottomed holes and side drilled holes are installed as artificial flaws. Automatic flaw identification and extraction are demonstrated. Results indicate the inspection procedure with multiple scan patterns can identify all the artificial and natural flaws.
In-situ thermography of automated fiber placement parts
NASA Astrophysics Data System (ADS)
Gregory, Elizabeth D.; Juarez, Peter D.
2018-04-01
Automated fiber placement (AFP) provides precision and repeatable manufacturing of both simple and complex geometry composite parts. However, AFP also introduces the possibility for unique flaws such as overlapping tows, gaps between tows, tow twists, lack of layer adhesion and foreign object debris. These types of flaws can all result in a significant loss of performance in the final part. The current inspection method for these flaws is a costly and time intensive visual inspection of each ply layer. This work describes some initial efforts to incorporate thermal inspection on the AFP head and analysis of the data to identify the previously mentioned flaws. Previous bench-top laboratory experiments demonstrated that laps, gaps, and twists were identified from a thermal image. The AFP head uses an on- board lamp to preheat the surface of the part during layup to increase ply consolidation. The preheated surface is used as a thermal source to observe the state of the new material after compaction. We will present data collected with the Integrated Structural Assembly of Advanced Composites (ISAAC) AFP machine at Langley Research Center showing that changes to the temperature profile is sufficient for identifying all types of flaws.
Strength of a Ceramic Sectored Flexure Specimen
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wereszczak, Andrew A; Duffy, Stephen F; Baker, E. H.
2008-01-01
A new test specimen, defined here as the "sectored flexure strength specimen", was developed to measure the strength of ceramic tubes specifically for circumstances when flaws located at the tube's outer diameter are the strength-limiter and subjected to axial tension. The understanding of such strength-limitation is relevant for when ceramic tubes are subjected to bending or when the internal temperature is hotter than the tube's exterior (e.g., heat exchangers). The specimen is both economically and statistically attractive because eight specimens (eight in the case of this project - but the user is not necessarily limited to eight) were extracted outmore » of each length of tube. An analytic expression for maximum or failure stress, and relationships portraying effective area and effective volume as a function of Weibull modulus were developed. Lastly, it was proven from the testing of two ceramics that the sectored flexure specimen was very effective at producing failures caused by strength-limiting flaws located on the tube's original outer diameter. Keywords: ceramics, strength, sectored flexure specimen, effective area, effective volume, finite-element analysis, Weibull distribution, and fractography.« less
Automatically Inspecting Thin Ceramics For Pinholes
NASA Technical Reports Server (NTRS)
Honaker, James R.
1988-01-01
Proposed apparatus for inspecting prefired ceramic materials detects minute flaws that might escape ordinary visual inspections. Method detects flaws and marks locations. Intended for such thin ceramic parts as insulation in capacitors and some radio-frequency filters.
NASA Astrophysics Data System (ADS)
Haftbaradaran, H.; Maddahian, A.; Mossaiby, F.
2017-05-01
It is well known that phase separation could severely intensify mechanical degradation and expedite capacity fading in lithium-ion battery electrodes during electrochemical cycling. Experiments have frequently revealed that such degradation effects could be substantially mitigated via reducing the electrode feature size to the nanoscale. The purpose of this work is to present a fracture mechanics study of the phase separating planar electrodes. To this end, a phase field model is utilized to predict how phase separation affects evolution of the solute distribution and stress profile in a planar electrode. Behavior of the preexisting flaws in the electrode in response to the diffusion induced stresses is then examined via computing the time dependent stress intensity factor arising at the tip of flaws during both the insertion and extraction half-cycles. Further, adopting a sharp-interphase approximation of the system, a critical electrode thickness is derived below which the phase separating electrode becomes flaw tolerant. Numerical results of the phase field model are also compared against analytical predictions of the sharp-interphase model. The results are further discussed with reference to the available experiments in the literature. Finally, some of the limitations of the model are cautioned.
Corrosion fatigue characterization of reactor pressure vessel steels. [PWR; BWR
DOE Office of Scientific and Technical Information (OSTI.GOV)
Van Der Sluys, W.A.
1982-12-01
During routine operation, light water reactor (LWR) pressure vessels are subjected to a variety of transients that result in time-varying stresses. Consequently, fatigue and environmentally-assisted fatigue are mechanisms of growth relevant to flaws in these pressure vessels. To provide a better understanding of the resistance of nuclear pressure vessel steels to these flaw growth processes, fracture mechanics data were generated on the rates of fatigue crack growth for SA508-2 and SA533B-1 steels in both room temperature air and 288/sup 0/C water. Areas investigated were: the relationship of crack growth rate to prior loading history; the effects of loading frequency andmore » R ratio (K/sub min//K/sub max/) on crack growth rate as a function of the stress intensity factor range (..delta..K); transient aspects of the fatigue crack growth behavior; the effect of material chemistry (sulphur content) on fatigue crack; and growth rate; water chemistry effects (high-purity water versus simulated pressurized water reactotr (PWR) primary coolant).« less
The End of the Rainbow? Color Schemes for Improved Data Graphics
NASA Astrophysics Data System (ADS)
Light, Adam; Bartlein, Patrick J.
2004-10-01
Modern computer displays and printers enable the widespread use of color in scientific communication, but the expertise for designing effective graphics has not kept pace with the technology for producing them. Historically, even the most prestigious publications have tolerated high defect rates in figures and illustrations, and technological advances that make creating and reproducing graphics easier do not appear to have decreased the frequency of errors. Flawed graphics consequently beget more flawed graphics as authors emulate published examples. Color has the potential to enhance communication, but design mistakes can result in color figures that are less effective than gray scale displays of the same data. Empirical research on human subjects can build a fundamental understanding of visual perception and scientific methods can be used to evaluate existing designs, but creating effective data graphics is a design task and not fundamentally a scientific pursuit. Like writing well, creating good data graphics requires a combination of formal knowledge and artistic sensibility tempered by experience: a combination of ``substance, statistics, and design''.
Flaw imaging and ultrasonic techniques for characterizing sintered silicon carbide
NASA Technical Reports Server (NTRS)
Baaklini, George Y.; Abel, Phillip B.
1987-01-01
The capabilities were investigated of projection microfocus x-radiography, ultrasonic velocity and attenuation, and reflection scanning acoustic microscopy for characterizing silicon carbide specimens. Silicon carbide batches covered a range of densities and different microstructural characteristics. Room temperature, four point flexural strength tests were conducted. Fractography was used to identify types, sizes, and locations of fracture origins. Fracture toughness values were calculated from fracture strength and flaw characterization data. Detection capabilities of radiography and acoustic microscopy for fracture-causing flaws were evaluated. Applicability of ultrasonics for verifying material strength and toughness was examined.
Enhanced Eddy-Current Detection Of Weld Flaws
NASA Technical Reports Server (NTRS)
Van Wyk, Lisa M.; Willenberg, James D.
1992-01-01
Mixing of impedances measured at different frequencies reduces noise and helps reveal flaws. In new method, one excites eddy-current probe simultaneously at two different frequencies; usually, one of which integral multiple of other. Resistive and reactive components of impedance of eddy-current probe measured at two frequencies, mixed in computer, and displayed in real time on video terminal of computer. Mixing of measurements obtained at two different frequencies often "cleans up" displayed signal in situations in which band-pass filtering alone cannot: mixing removes most noise, and displayed signal resolves flaws well.
Initial Probabilistic Evaluation of Reactor Pressure Vessel Fracture with Grizzly and Raven
DOE Office of Scientific and Technical Information (OSTI.GOV)
Spencer, Benjamin; Hoffman, William; Sen, Sonat
2015-10-01
The Grizzly code is being developed with the goal of creating a general tool that can be applied to study a variety of degradation mechanisms in nuclear power plant components. The first application of Grizzly has been to study fracture in embrittled reactor pressure vessels (RPVs). Grizzly can be used to model the thermal/mechanical response of an RPV under transient conditions that would be observed in a pressurized thermal shock (PTS) scenario. The global response of the vessel provides boundary conditions for local models of the material in the vicinity of a flaw. Fracture domain integrals are computed to obtainmore » stress intensity factors, which can in turn be used to assess whether a fracture would initiate at a pre-existing flaw. These capabilities have been demonstrated previously. A typical RPV is likely to contain a large population of pre-existing flaws introduced during the manufacturing process. This flaw population is characterized stastistically through probability density functions of the flaw distributions. The use of probabilistic techniques is necessary to assess the likelihood of crack initiation during a transient event. This report documents initial work to perform probabilistic analysis of RPV fracture during a PTS event using a combination of the RAVEN risk analysis code and Grizzly. This work is limited in scope, considering only a single flaw with deterministic geometry, but with uncertainty introduced in the parameters that influence fracture toughness. These results are benchmarked against equivalent models run in the FAVOR code. When fully developed, the RAVEN/Grizzly methodology for modeling probabilistic fracture in RPVs will provide a general capability that can be used to consider a wider variety of vessel and flaw conditions that are difficult to consider with current tools. In addition, this will provide access to advanced probabilistic techniques provided by RAVEN, including adaptive sampling and parallelism, which can dramatically decrease run times.« less
Does the International Substitution Effect Help Explain the Slope of the Aggregate Demand Curve?
ERIC Educational Resources Information Center
Fields, T. Windsor; Elwood, S. Kirk
1998-01-01
Observes that the textbook explanation of the relationship between the international substitution effect and the downward slope of the aggregate demand curve is generally presented uncritically. Argues that the international substitution effect is sufficiently flawed and that it should be eliminated in teaching as a justification for the slope of…
... by a flaw in one gene, the VHL gene, which regulates cell growth causing patients to battle a series of tumors ... by a flaw in one gene, the VHL gene, which regulates cell growth causing patients to battle a series of tumors ...
Fixing Flawed Body Parts: Engineering New Tissues and Organs
... 2015 Print this issue Fixing Flawed Body Parts Engineering New Tissues and Organs En español Send us ... ones. This type of research is called tissue engineering. Exciting advances continue to emerge in this fast- ...
Steam generator tubes integrity: In-service-inspection
DOE Office of Scientific and Technical Information (OSTI.GOV)
Comby, R.J.
1997-02-01
The author`s approach to tube integrity is in terms of looking for flaws in tubes. The basis for this approach is that no simple rules can be fixed to adopt a universal inspection methodology because of various concepts related to experience, leak acceptance, leak before break approach, etc. Flaw specific management is probably the most reliable approach as a compromise between safety, availability and economic issues. In that case, NDE capabilities have to be in accordance with information required by structural integrity demonstration. The author discusses the types of probes which can be used to search for flaws in additionmore » to the types of flaws which are being sought, with examples of specific analysis experiences. The author also discusses the issue of a reporting level as it relates to avoiding false calls, classifying faults, and allowing for automation in analysis.« less
Flaw characterization through nonlinear ultrasonics and wavelet cross-correlation algorithms
NASA Astrophysics Data System (ADS)
Bunget, Gheorghe; Yee, Andrew; Stewart, Dylan; Rogers, James; Henley, Stanley; Bugg, Chris; Cline, John; Webster, Matthew; Farinholt, Kevin; Friedersdorf, Fritz
2018-04-01
Ultrasonic measurements have become increasingly important non-destructive techniques to characterize flaws found within various in-service industrial components. The prediction of remaining useful life based on fracture analysis depends on the accurate estimation of flaw size and orientation. However, amplitude-based ultrasonic measurements are not able to estimate the plastic zones that exist ahead of crack tips. Estimating the size of the plastic zone is an advantage since some flaws may propagate faster than others. This paper presents a wavelet cross-correlation (WCC) algorithm that was applied to nonlinear analysis of ultrasonically guided waves (GW). By using this algorithm, harmonics present in the waveforms were extracted and nonlinearity parameters were used to indicate both the tip of the cracks and size of the plastic zone. B-scans performed with the quadratic nonlinearities were sensitive to micro-damage specific to plastic zones.
Evaluation of ultrasonics and optimized radiography for 2219-T87 aluminum weldments
NASA Technical Reports Server (NTRS)
Clotfelter, W. N.; Hoop, J. M.; Duren, P. C.
1975-01-01
Ultrasonic studies are described which are specifically directed toward the quantitative measurement of randomly located defects previously found in aluminum welds with radiography or with dye penetrants. Experimental radiographic studies were also made to optimize techniques for welds of the thickness range to be used in fabricating the External Tank of the Space Shuttle. Conventional and innovative ultrasonic techniques were applied to the flaw size measurement problem. Advantages and disadvantages of each method are discussed. Flaw size data obtained ultrasonically were compared to radiographic data and to real flaw sizes determined by destructive measurements. Considerable success was achieved with pulse echo techniques and with 'pitch and catch' techniques. The radiographic work described demonstrates that careful selection of film exposure parameters for a particular application must be made to obtain optimized flaw detectability. Thus, film exposure techniques can be improved even though radiography is an old weld inspection method.
Tarrant, Marie; Knierim, Aimee; Hayes, Sasha K; Ware, James
2006-12-01
Multiple-choice questions are a common assessment method in nursing examinations. Few nurse educators, however, have formal preparation in constructing multiple-choice questions. Consequently, questions used in baccalaureate nursing assessments often contain item-writing flaws, or violations to accepted item-writing guidelines. In one nursing department, 2770 MCQs were collected from tests and examinations administered over a five-year period from 2001 to 2005. Questions were evaluated for 19 frequently occurring item-writing flaws, for cognitive level, for question source, and for the distribution of correct answers. Results show that almost half (46.2%) of the questions contained violations of item-writing guidelines and over 90% were written at low cognitive levels. Only a small proportion of questions were teacher generated (14.1%), while 36.2% were taken from testbanks and almost half (49.4%) had no source identified. MCQs written at a lower cognitive level were significantly more likely to contain item-writing flaws. While there was no relationship between the source of the question and item-writing flaws, teacher-generated questions were more likely to be written at higher cognitive levels (p<0.001). Correct answers were evenly distributed across all four options and no bias was noted in the placement of correct options. Further training in item-writing is recommended for all faculty members who are responsible for developing tests. Pre-test review and quality assessment is also recommended to reduce the occurrence of item-writing flaws and to improve the quality of test questions.
Methodological Controversies in the Treatment of Panic Disorder.
ERIC Educational Resources Information Center
McNally, Richard J.
1996-01-01
Although the National Institutes of Health Consensus Development Conference on the Treatment of Panic Disorder endorsed the effectiveness of cognitive-behavior therapy (CBT), D. F. Klein argues that fatal flaws in all but one CBT study undermine claims about the effectiveness of CBT for panic disorder. This article critiques Klein's arguments and…
Effects of an Uncertain Literature on All Facets of Clinical Decision Making
ERIC Educational Resources Information Center
Sammons, Morgan T.; Newman, Russ
2010-01-01
Greenberg (2010) is correct in his assertion that the investigational heuristic used to measure the efficacy of antidepressants is flawed. Robust placebo effects are endemic in the psychiatric literature, particularly in studies of antidepressants, and estimates of placebo responding have increased over time (Rief et al., 2009). In the case of…
Effectiveness of Computers in ALBE Classrooms: An Analytical Review of the Literature.
ERIC Educational Resources Information Center
Berger, Jim I.
2001-01-01
Review of 23 studies on the effectiveness of computers in adult literacy and basic education indicated that just under half found statistically significant improvements in reading scores. Many studies evidenced design flaws, lacked clear descriptions of the research, or were hampered by classroom-related difficulties. (Contains 31 references.) (SK)
Drug Court Effectiveness: A Matched Cohort Study in the Dane County Drug Treatment Court
ERIC Educational Resources Information Center
Brown, Randall
2011-01-01
Drug treatment courts (DTCs) are widely viewed as effective diversion programs for drug-involved offenders; however, previous studies frequently used flawed comparison groups. In the current study, the author compared rates of recidivism for drug court participants to rates for a traditionally adjudicated comparison group matched on potentially…
NASA Astrophysics Data System (ADS)
Liu, X.; Y Luo, Y.; Wang, Z. W.
2014-03-01
As an important component of the blade-control system in Kaplan turbines, piston rods are subjected to fluctuating forces transferred by the turbines blades from hydraulic pressure oscillations. Damage due to unsteady hydraulic loads might generate unexpected down time and high repair cost. In one running hydropower plant, the fracture failure of the piston rod was found twice at the same location. With the transient dynamic analysis, the retainer ring structure of the piston rod existed a relative high stress concentration. This predicted position of the stress concentration agreed well with the actual fracture position in the plant. However, the local strain approach was not able to explain why this position broke frequently. Since traditional structural fatigue analyses use a local stress strain approach to assess structural integrity, do not consider the effect of flaws which can significantly degrade structural life. Using linear elastic fracture mechanism (LEFM) approaches that include the effect of flaws is becoming common practice in many industries. In this research, a case involving a small semi-ellipse crack was taken into account at the stress concentration area, crack growth progress was calculated by FEM. The relationship between crack length and remaining life was obtained. The crack propagation path approximately agreed with the actual fracture section. The results showed that presence of the crack had significantly changed the local stress and strain distributions of the piston rod compared with non-flaw assumption.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Anderson, Michael T.; Cinson, Anthony D.; Crawford, Susan L.
2010-12-01
Pacific Northwest National Laboratory (PNNL) is assisting the United States Nuclear Regulatory Commission (NRC) in developing a position on the management of primary water stress corrosion cracking (PWSCC) in leak-before-break piping systems. Part of this involves determining whether inspections alone, or inspections plus mitigation, are needed. This work addresses the reliability of ultrasonic testing (UT) of cracks that have been mitigated by the mechanical stress improvement process (MSIP). The MSIP has been approved by the NRC (NUREG-0313) since 1986 and modifies residual stresses remaining after welding with compressive, or neutral, stresses near the inner diameter surface of the pipe. Thismore » compressive stress is thought to arrest existing cracks and inhibit new crack formation. To evaluate the effectiveness of the MSIP and the reliability of ultrasonic inspections, flaws were evaluated both before and after MSIP application. An initial investigation was based on data acquired from cracked areas in 325-mm-diameter piping at the Ignalina Nuclear Power Plant (INPP) in Lithuania. In a follow-on exercise, PNNL acquired and evaluated similar UT data from a dissimilar metal weld (DMW) specimen containing implanted thermal fatigue cracks. The DMW specimen is a carbon steel nozzle-to-safe end-to-stainless steel pipe section that simulates a pressurizer surge nozzle. The flaws were implanted in the nozzle-to-safe end Alloy 82/182 butter region. Results are presented on the effects of MSIP on specimen surfaces, and on UT flaw responses.« less
14 CFR 29.571 - Fatigue evaluation of structure.
Code of Federal Regulations, 2011 CFR
2011-01-01
... AIRCRAFT AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY ROTORCRAFT Strength Requirements Fatigue Evaluation... fatigue, considering the effects of environment, intrinsic/discrete flaws, or accidental damage will be avoided. Parts to be evaluated include, but are not limited to, rotors, rotor drive systems between the...
14 CFR 29.571 - Fatigue evaluation of structure.
Code of Federal Regulations, 2010 CFR
2010-01-01
... AIRCRAFT AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY ROTORCRAFT Strength Requirements Fatigue Evaluation... fatigue, considering the effects of environment, intrinsic/discrete flaws, or accidental damage will be avoided. Parts to be evaluated include, but are not limited to, rotors, rotor drive systems between the...
Ferromagnetic resonance probe liftoff suppression apparatus
Davis, Thomas J.; Tomeraasen, Paul L.
1985-01-01
A liftoff suppression apparatus utilizing a liftoff sensing coil to sense the amount a ferromagnetic resonance probe lifts off the test surface during flaw detection and utilizing the liftoff signal to modulate the probe's field modulating coil to suppress the liftoff effects.
Stability and failure analysis of steering tie-rod
NASA Astrophysics Data System (ADS)
Jiang, GongFeng; Zhang, YiLiang; Xu, XueDong; Ding, DaWei
2008-11-01
A new car in operation of only 8,000 km, because of malfunction, resulting in lost control and rammed into the edge of the road, and then the basic vehicle scrapped. According to the investigation of the site, it was found that the tie-rod of the car had been broken. For the subjective analysis of the accident and identifying the true causes of rupture of the tierod, a series of studies, from the angle of theory to experiment on the bended broken tie-rod, were conducted. The mechanical model was established; the stability of the defective tie-rod was simulated based on ANSYS software. Meanwhile, the process of the accident was simulated considering the effect of destabilization of different vehicle speed and direction of the impact. Simultaneously, macro graphic test, chemical composition analysis, microstructure analysis and SEM analysis of the fracture were implemented. The results showed that: 1) the toughness of the tie-rod is at a normal level, but there is some previous flaws. One quarter of the fracture surface has been cracked before the accident. However, there is no relationship between the flaw and this incident. The direct cause is the dynamic instability leading to the large deformation of impact loading. 2) The declining safety factor of the tie-rod greatly due to the previous flaws; the result of numerical simulation shows that previous flaw is the vital factor of structure instability, on the basis of the comparison of critical loads of the accident tie-rod and normal. The critical load can decrease by 51.3% when the initial defect increases 19.54% on the cross-sectional area, which meets the Theory of Koiter.
NASA Technical Reports Server (NTRS)
Wincheski, Buzz; Fulton, Jim; Nath, Shridhar; Namkung, Min; Simpson, John
1993-01-01
Electromagnetic NDE techniques have in the past steered away from the use of ferromagnetic materials. Although their high permeabilities lead to increased field levels, the properties of ferrous elements in the presence of alternating magnetic fields are difficult to determine. In addition, their use leads to losses which can be minimized through the use of low conductivity ferrites. In fact, the eddy current probes which do incorporate ferromagnetic materials have focused on these losses and the shielding which can be obtained by surrounding a probe with a high permeability, conducting material. Eddy current probes enclosed in conducting and magnetic shields have been used to prevent the generated fields from interacting with materials in the vicinity of the probe, such as when testing near material boundaries. A recent invention has used ferromagnetic shielding to magnetically separate individual concentric eddy current probes in order to eliminate cross-talk between the probes so that simultaneous detection of different types of flaws at different depths can be achieved. In contrast to the previous uses of ferromagnetic materials purely as magnetic shields, an electromagnetic flaw detector recently developed at NASA Langley Research Center takes advantage of the flux focusing properties of a ferromagnetic mild steel in order to produce a simple, effective device for the non-destructive evaluation of conducting materials. The Flux Focusing Eddy Current Probe has been shown to accurately measure material thickness and fatigue damage. The straight forward flaw response of the probe makes the device ideal for rapid inspection of large structures, and has lead to its incorporation in a computer controlled search routine to locate fatigue crack tips and monitor experimental fatigue crack growth experiments.
Holographic analysis as an inspection method for welded thin-wall tubing
NASA Technical Reports Server (NTRS)
Brooks, Lawrence; Mulholland, John; Genin, Joseph; Matthews, Larryl
1990-01-01
The feasibility of using holographic interferometry for locating flaws in welded tubing is explored. Two holographic techniques are considered: traditional holographic interferometry and electronic speckle pattern interferometry. Several flaws including cold laps, discontinuities, and tube misalignments are detected.
Imaging flaws in thin metal plates using a magneto-optic device
NASA Technical Reports Server (NTRS)
Wincheski, B.; Prabhu, D. R.; Namkung, M.; Birt, E. A.
1992-01-01
An account is given of the capabilities of the magnetooptic/eddy-current imager (MEI) apparatus in the case of aging aircraft structure-type flaws in 2024-T3 Al alloy plates. Attention is given to images of cyclically grown fatigue cracks from rivetted joints in fabricated lap-joint structures, electrical discharge machining notches, and corrosion spots. Although conventional eddy-current methods could have been used, the speed and ease of MEI's use in these tests is unmatched by such means. Results are displayed in real time as a test piece is scanned, furnishing easily interpreted flaw images.
Internal Rot Detection with the Use of Low-Frequency Flaw Detector
NASA Astrophysics Data System (ADS)
Proskórnicki, Marek; Ligus, Grzegorz
2014-12-01
The issue of rot detection in standing timber or stocked wood is very important in forest management. Rot flaw detection used for that purpose is represented by invasive and non-invasive devices. Non-invasive devices are very accurate, but due to the cost and complicated operation they have not been applied on a large scale in forest management. Taking into account the practical needs of foresters a prototype of low-frequency flaw was developed. The principle of its operation is based on the difference in acoustic wave propagation in sound wood and wood with rot.
Computer Tomography Analysis of Fastrac Composite Thrust Chamber Assemblies
NASA Technical Reports Server (NTRS)
Beshears, Ronald D.
2000-01-01
Computed tomography (CT) inspection has been integrated into the production process for NASA's Fastrac composite thrust chamber assemblies (TCAs). CT has been proven to be uniquely qualified to detect the known critical flaw for these nozzles, liner cracks that are adjacent to debonds between the liner and overwrap. CT is also being used as a process monitoring tool through analysis of low density indications in the nozzle overwraps. 3d reconstruction of CT images to produce models of flawed areas is being used to give program engineers better insight into the location and nature of nozzle flaws.
Feasibility of Flaw Detection in Railroad Wheels Using Acoustic Signatures
DOT National Transportation Integrated Search
1976-10-01
The feasibility study on the use of acoustic signatures for detection of flaws in railway wheels was conducted with the ultimate objective of development of an intrack device for moving cars. Determinations of the natural modes of vibrating wheels un...
Prevention of design flaws in multicomputer systems
NASA Technical Reports Server (NTRS)
1975-01-01
Multicomputer configurations and redundancy management techniques used in various airborne systems were investigated to determine methods to prevent and/or treat generic design flaws. The findings are intended for use in the design of a computer system for use in the space shuttle orbiter.
NASA Technical Reports Server (NTRS)
Reuter, Walter G. (Editor); Underwood, John H. (Editor); Newman, James C., Jr. (Editor)
1990-01-01
The present volume on surface-crack growth modeling, experimental methods, and structures, discusses elastoplastic behavior, the fracture analysis of three-dimensional bodies with surface cracks, optical measurements of free-surface effects on natural surfaces and through cracks, an optical and finite-element investigation of a plastically deformed surface flaw under tension, fracture behavior prediction for rapidly loaded surface-cracked specimens, and surface cracks in thick laminated fiber composite plates. Also discussed are a novel study procedure for crack initiation and growth in thermal fatigue testing, the growth of surface cracks under fatigue and monotonically increasing load, the subcritical growth of a surface flaw, surface crack propagation in notched and unnotched rods, and theoretical and experimental analyses of surface cracks in weldments.
Getting educated: e-learning resources in the design and execution of surgical trials.
Bains, Simrit
2009-01-01
An evidence-based approach to research, which includes important aspects such as critical appraisal, is essential for the effective conduct of clinical trials. Researchers who are interested in educating themselves about its principles in order to incorporate them into their trials face challenges when attempting to acquire this information from traditional learning sources. E-learning resources offer an intriguing possibility of overcoming the challenges posed by traditional learning, and show promise as a way to expand accessibility to quality education about evidence-based principles. An assessment of existing e-learning resources reveals positive educational avenues for researchers, although significant flaws exist. The Global EducatorTM by Global Research Solutions addresses many of these flaws and is an e-learning resource that combines convenience with comprehensiveness.
Oxidation-induced contraction and strengthening of boron fibers
NASA Technical Reports Server (NTRS)
Dicarlo, J. A.; Wagner, T. C.
1981-01-01
An investigation of the physical and mechanical effects of thermal treatment in a controlled oxygen-argon atmosphere on boron fibers is reported, with attention to the optimization of such treatment as a secondary processing method for improvement of fiber strength. The strengthening mechanism is comprised of an oxidation-induced axial contraction of the fiber, accompanied by axial compression of strength-limiting flaws within the fiber's tungsten boride core. It was found that after an oxidation contraction of 0.3% near 900 C, and a slight surface etch near 100 C, the average tensile strength of 203-micron fibers increased from 500 to 800 ksi. Various physical observations are used to develop mechanistic models of oxidation, contraction, and the formation of new flaws in the boron sheath at contractions greater than 0.3%.
Reliability Analysis of Uniaxially Ground Brittle Materials
NASA Technical Reports Server (NTRS)
Salem, Jonathan A.; Nemeth, Noel N.; Powers, Lynn M.; Choi, Sung R.
1995-01-01
The fast fracture strength distribution of uniaxially ground, alpha silicon carbide was investigated as a function of grinding angle relative to the principal stress direction in flexure. Both as-ground and ground/annealed surfaces were investigated. The resulting flexural strength distributions were used to verify reliability models and predict the strength distribution of larger plate specimens tested in biaxial flexure. Complete fractography was done on the specimens. Failures occurred from agglomerates, machining cracks, or hybrid flaws that consisted of a machining crack located at a processing agglomerate. Annealing eliminated failures due to machining damage. Reliability analyses were performed using two and three parameter Weibull and Batdorf methodologies. The Weibull size effect was demonstrated for machining flaws. Mixed mode reliability models reasonably predicted the strength distributions of uniaxial flexure and biaxial plate specimens.
Probabilistic Fracture Mechanics of Reactor Pressure Vessels with Populations of Flaws
DOE Office of Scientific and Technical Information (OSTI.GOV)
Spencer, Benjamin; Backman, Marie; Williams, Paul
This report documents recent progress in developing a tool that uses the Grizzly and RAVEN codes to perform probabilistic fracture mechanics analyses of reactor pressure vessels in light water reactor nuclear power plants. The Grizzly code is being developed with the goal of creating a general tool that can be applied to study a variety of degradation mechanisms in nuclear power plant components. Because of the central role of the reactor pressure vessel (RPV) in a nuclear power plant, particular emphasis is being placed on developing capabilities to model fracture in embrittled RPVs to aid in the process surrounding decisionmore » making relating to life extension of existing plants. A typical RPV contains a large population of pre-existing flaws introduced during the manufacturing process. The use of probabilistic techniques is necessary to assess the likelihood of crack initiation at one or more of these flaws during a transient event. This report documents development and initial testing of a capability to perform probabilistic fracture mechanics of large populations of flaws in RPVs using reduced order models to compute fracture parameters. The work documented here builds on prior efforts to perform probabilistic analyses of a single flaw with uncertain parameters, as well as earlier work to develop deterministic capabilities to model the thermo-mechanical response of the RPV under transient events, and compute fracture mechanics parameters at locations of pre-defined flaws. The capabilities developed as part of this work provide a foundation for future work, which will develop a platform that provides the flexibility needed to consider scenarios that cannot be addressed with the tools used in current practice.« less
NASA Technical Reports Server (NTRS)
Workman, Gary L.; Davis, Jason; Farrington, Seth; Walker, James
2007-01-01
Low density polyurethane foam has been an important insulation material for space launch vehicles for several decades. The potential for damage from foam breaking away from the NASA External Tank was not realized until the foam impacts on the Columbia Orbiter vehicle caused damage to its Leading Edge thermal protection systems (TPS). Development of improved inspection techniques on the foam TPS is necessary to prevent similar occurrences in the future. Foamed panels with drilled holes for volumetric flaws and Teflon inserts to simulate debonded conditions have been used to evaluate and calibrate nondestructive testing (NDT) methods. Unfortunately the symmetric edges and dissimilar materials used in the preparation of these simulated flaws provide an artificially large signal while very little signal is generated from the actual defects themselves. In other words, the same signal are not generated from the artificial defects in the foam test panels as produced when inspecting natural defect in the ET foam TPS. A project to create more realistic voids similar to what actually occurs during manufacturing operations was began in order to improve detection of critical voids during inspections. This presentation describes approaches taken to create more natural voids in foam TPS in order to provide a more realistic evaluation of what the NDT methods can detect. These flaw creation techniques were developed with both sprayed foam and poured foam used for insulation on the External Tank. Test panels with simulated defects have been used to evaluate NDT methods for the inspection of the External Tank. A comparison of images between natural flaws and machined flaws generated from backscatter x-ray radiography, x-ray laminography, terahertz imaging and millimeter wave imaging show significant differences in identifying defect regions.
The Insignificance of Psycholinguistic Training: A Reply to Kavale.
ERIC Educational Resources Information Center
Sternberg, Les; Taylor, Ronald L.
1982-01-01
The authors cite methodological and interpretive flaws in K. Kavale's earlier article (ED 150 124) claiming that psycholinguistic training is effective with handicapped students. They suggest that the practical significance of research must be considered as well as the statistical significance. (CL)
Structural Design Methodology Based on Concepts of Uncertainty
NASA Technical Reports Server (NTRS)
Lin, K. Y.; Du, Jiaji; Rusk, David
2000-01-01
In this report, an approach to damage-tolerant aircraft structural design is proposed based on the concept of an equivalent "Level of Safety" that incorporates past service experience in the design of new structures. The discrete "Level of Safety" for a single inspection event is defined as the compliment of the probability that a single flaw size larger than the critical flaw size for residual strength of the structure exists, and that the flaw will not be detected. The cumulative "Level of Safety" for the entire structure is the product of the discrete "Level of Safety" values for each flaw of each damage type present at each location in the structure. Based on the definition of "Level of Safety", a design procedure was identified and demonstrated on a composite sandwich panel for various damage types, with results showing the sensitivity of the structural sizing parameters to the relative safety of the design. The "Level of Safety" approach has broad potential application to damage-tolerant aircraft structural design with uncertainty.
Lemay, Edward P; Clark, Margaret S
2009-06-01
Three studies provide evidence that people with low self-esteem, but not those with high self-esteem, distance themselves from a flawed partner in situations in which the flaws seem likely to reflect negatively on them. Participants with low (but not high) self-esteem reduced their motivation to care for the partner's needs when they felt they might share a partner's salient flaws (Study 1), when they were primed to focus on similarities between themselves and a socially devalued partner (Study 2), and when they learned that their partner was socially incompetent (Study 3). In Study 3, individuals with low (but not high) self-esteem provided less emotional support and experienced more public image threat when they learned that partners were socially incompetent. In addition, all three studies provided evidence that participants' distancing reduced their confidence in the partner's motivation to care for them, suggesting that distancing involves a cost to the self.
Seven Pervasive Statistical Flaws in Cognitive Training Interventions
Moreau, David; Kirk, Ian J.; Waldie, Karen E.
2016-01-01
The prospect of enhancing cognition is undoubtedly among the most exciting research questions currently bridging psychology, neuroscience, and evidence-based medicine. Yet, convincing claims in this line of work stem from designs that are prone to several shortcomings, thus threatening the credibility of training-induced cognitive enhancement. Here, we present seven pervasive statistical flaws in intervention designs: (i) lack of power; (ii) sampling error; (iii) continuous variable splits; (iv) erroneous interpretations of correlated gain scores; (v) single transfer assessments; (vi) multiple comparisons; and (vii) publication bias. Each flaw is illustrated with a Monte Carlo simulation to present its underlying mechanisms, gauge its magnitude, and discuss potential remedies. Although not restricted to training studies, these flaws are typically exacerbated in such designs, due to ubiquitous practices in data collection or data analysis. The article reviews these practices, so as to avoid common pitfalls when designing or analyzing an intervention. More generally, it is also intended as a reference for anyone interested in evaluating claims of cognitive enhancement. PMID:27148010
An undignified bioethics: there is no method in this madness.
De Melo-Martín, Inmaculada
2012-05-01
In a recent article, Alasdair Cochrane argues for the need to have an undignified bioethics. His is not, of course, a call to transform bioethics into an inelegant, pathetic discipline, or one failing to meet appropriate disciplinary standards. His is a call to simply eliminate the concept of human dignity from bioethical discourse. Here I argue that he fails to make his case. I first show that several of the flaws that Cochrane identifies are not flaws of the conceptions of dignity he discusses but rather flaws of his, often problematic, understanding of such conceptions. Second, I argue that Cochrane's case against the concept of human dignity goes too far. I thus show that were one to agree that these are indeed flaws that require that we discard our ethical concepts, then following Cochrane's recommendations would commit us not only to an undignified bioethics, i.e. a bioethics without dignity, but to a bioethics without much ethics at all. © 2010 Blackwell Publishing Ltd.
Characterization of flaws in a tube bundle mock-up for reliability studies
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kupperman, D.S.; Bakhtiari, S.
1997-02-01
As part of an assessment of in-service inspection of steam generator tubes, the authors will assemble a steam generator mock-up for round robin studies and use as a test bed in evaluating emerging technologies. Progress is reported on the characterization of flaws that will be part of the mock-up. Eddy current and ultrasonic techniques are being evaluated as a means to characterize the flaws in the mock-up tubes before final assembly. Twenty Inconel 600 tubes with laboratory-grown cracks, typical of those to be used in the mock-up, were provided by Pacific Northwest National Laboratory for laboratory testing. After the tubesmore » were inspected with eddy current and ultrasonic techniques, they were destructively analyzed to establish the actual depths, lengths, and profiles of the cracks. The analysis of the results will allow the best techniques to be used for characterizing the flaws in the mock-up tubes.« less
3D Modeling of Ultrasonic Wave Interaction with Disbonds and Weak Bonds
NASA Technical Reports Server (NTRS)
Leckey, C.; Hinders, M.
2011-01-01
Ultrasonic techniques, such as the use of guided waves, can be ideal for finding damage in the plate and pipe-like structures used in aerospace applications. However, the interaction of waves with real flaw types and geometries can lead to experimental signals that are difficult to interpret. 3-dimensional (3D) elastic wave simulations can be a powerful tool in understanding the complicated wave scattering involved in flaw detection and for optimizing experimental techniques. We have developed and implemented parallel 3D elastodynamic finite integration technique (3D EFIT) code to investigate Lamb wave scattering from realistic flaws. This paper discusses simulation results for an aluminum-aluminum diffusion disbond and an aluminum-epoxy disbond and compares results from the disbond case to the common artificial flaw type of a flat-bottom hole. The paper also discusses the potential for extending the 3D EFIT equations to incorporate physics-based weak bond models for simulating wave scattering from weak adhesive bonds.
Scoping Planning Agents With Shared Models
NASA Technical Reports Server (NTRS)
Bedrax-Weiss, Tania; Frank, Jeremy D.; Jonsson, Ari K.; McGann, Conor
2003-01-01
In this paper we provide a formal framework to define the scope of planning agents based on a single declarative model. Having multiple agents sharing a single model provides numerous advantages that lead to reduced development costs and increase reliability of the system. We formally define planning in terms of extensions of an initial partial plan, and a set of flaws that make the plan unacceptable. A Flaw Filter (FF) allows us to identify those flaws relevant to an agent. Flaw filters motivate the Plan Identification Function (PIF), which specifies when an agent is is ready hand control to another agent for further work. PIFs define a set of plan extensions that can be generated from a model and a plan request. FFs and PIFs can be used to define the scope of agents without changing the model. We describe an implementation of PIFsand FFswithin the context of EUROPA, a constraint-based planning architecture, and show how it can be used to easily design many different agents.
Heat-affected zone and phase composition of 0.09 C-2 Mn-1 Si-Fe steel depending on welding technique
NASA Astrophysics Data System (ADS)
Popova, Natalya; Ozhiganov, Eugeniy; Nikonenko, Elena; Ababkov, Nikolay; Smirnov, Aleksander; Koneva, Nina
2017-11-01
The paper presents the transmission electron microscopy (TEM) investigations of the structure and phase composition of the heat-affected zone (HAZ) in welded joint modified by four types of welding, namely: electrode welding and electropercussive welding both with and without the introduction of artificial flaws. Artificial flows are aluminum pieces. TEM investigations are carried out within HAZ between the deposited and base metal at 1 mm distance to the latter. The type 0.09C-2Mn-1Si-Fe steel is used as weld material. It is shown that the welding process has an effect on the material morphology, phase composition, faulted structure and its parameters. Long-range stresses are divided into plastic and elastic components. It is demonstrated that the type of welding does not change the structural quality of welded joint represented by perlite and ferrite as contrasted with their volume fraction. According to observations, any type of welding with the introduction of artificial flaws results in the destruction of perlite. Polarization of the dislocation structure occurs. The amplitude of mean internal stresses does not practically depend on the welding type. It is shown that the introduction of artificial flaws both during electrode and electropercussive welding reduce the quantitative parameters of the faulted structure.
Nd:YAG Pulsed Laser based flaw imaging techniques for noncontact NDE of an aluminum plate
NASA Astrophysics Data System (ADS)
Park, Woong-Ki; Lee, Changgil; Park, Seunghee
2012-04-01
Recently, the longitudinal, shear and surface waves have been very widely used as a kind of ultrasonic wave exploration methods to identify internal defects of metallic structures. The ultrasonic wave-based non-destructive testing (NDT) is one of main non-destructive inspection techniques for a health assessment about nuclear power plant, aircraft, ships, and/or automobile manufacturing. In this study, a noncontact pulsed laser-based flaw imaging NDT technique is implemented to detect the damage of a plate-like structure and to identify the location of the damage. To achieve this goal, the Nd:YAG pulsed laser equipment is used to generate a guided wave and scans a specific area to find damage location. The Nd: YAG pulsed laser is used to generate Lamb wave and piezoelectric sensors are installed to measure structural responses. Ann aluminum plate is investigated to verify the effectiveness and the robustness of the proposed NDT approach. A notch is a target to detect, which is inflicted on the surface of an aluminum plate. The damagesensitive features are extracted by comparing the time of flight of the guided wave obtained from an acoustic emission (AE) sensor and make use of the flaw imaging techniques of the aluminum plate.
Insensitivity to Flaws Leads to Damage Tolerance in Brittle Architected Meta-Materials
NASA Astrophysics Data System (ADS)
Montemayor, L. C.; Wong, W. H.; Zhang, Y.-W.; Greer, J. R.
2016-02-01
Cellular solids are instrumental in creating lightweight, strong, and damage-tolerant engineering materials. By extending feature size down to the nanoscale, we simultaneously exploit the architecture and material size effects to substantially enhance structural integrity of architected meta-materials. We discovered that hollow-tube alumina nanolattices with 3D kagome geometry that contained pre-fabricated flaws always failed at the same load as the pristine specimens when the ratio of notch length (a) to sample width (w) is no greater than 1/3, with no correlation between failure occurring at or away from the notch. Samples with (a/w) > 0.3, and notch length-to-unit cell size ratios of (a/l) > 5.2, failed at a lower peak loads because of the higher sample compliance when fewer unit cells span the intact region. Finite element simulations show that the failure is governed by purely tensile loading for (a/w) < 0.3 for the same (a/l); bending begins to play a significant role in failure as (a/w) increases. This experimental and computational work demonstrates that the discrete-continuum duality of architected structural meta-materials may give rise to their damage tolerance and insensitivity of failure to the presence of flaws even when made entirely of intrinsically brittle materials.
Rodríguez-Díez, María Cristina; Alegre, Manuel; Díez, Nieves; Arbea, Leire; Ferrer, Marta
2016-02-03
The main factor that determines the selection of a medical specialty in Spain after obtaining a medical degree is the MIR ("médico interno residente", internal medical resident) exam. This exam consists of 235 multiple-choice questions with five options, some of which include images provided in a separate booklet. The aim of this study was to analyze the technical quality of the multiple-choice questions included in the MIR exam over the last five years. All the questions included in the exams from 2009 to 2013 were analyzed. We studied the proportion of questions including clinical vignettes, the number of items related to an image and the presence of technical flaws in the questions. For the analysis of technical flaws, we adapted the National Board of Medical Examiners (NBME) guidelines. We looked for 18 different issues included in the manual, grouped into two categories: issues related to testwiseness and issues related to irrelevant difficulties. The final number of questions analyzed was 1,143. The percentage of items based on clinical vignettes increased from 50% in 2009 to 56-58% in the following years (2010-2013). The percentage of items based on an image increased progressively from 10% in 2009 to 15% in 2012 and 2013. The percentage of items with at least one technical flaw varied between 68 and 72%. We observed a decrease in the percentage of items with flaws related to testwiseness, from 30% in 2009 to 20% in 2012 and 2013. While most of these issues decreased dramatically or even disappeared (such as the imbalance in the correct option numbers), the presence of non-plausible options remained frequent. With regard to technical flaws related to irrelevant difficulties, no improvement was observed; this is especially true with respect to negative stem questions and "hinged" questions. The formal quality of the MIR exam items has improved over the last five years with regard to testwiseness. A more detailed revision of the items submitted, checking systematically for the presence of technical flaws, could improve the validity and discriminatory power of the exam, without increasing its difficulty.
ERIC Educational Resources Information Center
Luyten, Hams; Visscher, Adrie; Witziers, Bob
2005-01-01
School effectiveness research (SER) has flourished since the 1980s. In recent years, however, various authors have criticised several aspects of SER. A thorough review of recent criticism can serve as a good starting point for addressing the flaws of SER, where appropriate, thereby supporting its further development. This article begins by…
Research suggests 'weekend effect' may be all in the coding. Available at.
2016-06-10
'Looking at where we are now, you could only describe it as a shambles' Peter Rothwell as reported online in the Huffington Post (http://www.huffingtonpost.co.uk/entry/weekend-deaths-nhs-effect-flawed_uk_57305112e4b0e6da49a677c7 [Accessed 2 June 2016]).
Psychological Effects of Abortion: A Critical Review with Implications for Predicting Women at Risk.
ERIC Educational Resources Information Center
McFarlane, Mary Elaine
This paper examines facts and faults of some of the relevant research concerning abortion and its psychological effects. The paper notes that because of research design flaws, conclusions are tentative at best. However, it is concluded that research suggests or indicates: (1) women primarily experience relief and few negative psychological…
ERIC Educational Resources Information Center
Leshowitz, Barry; Okun, Morris
2011-01-01
Research in social cognition laboratories and in simulated legal settings demonstrates that people often do not understand the statistical properties of evidence and are unable to detect scientifically flawed studies. In a mock jury study, we examined the effects of an evidence-based transcript on scepticism towards evidence obtained in flawed…
ERIC Educational Resources Information Center
Cameron, Judy
2001-01-01
Prior meta analyses by J. Cameron and other researchers suggested that the negative effects of extrinsic reward on intrinsic motivation were limited and avoidable. E. Deci and others (2001) suggested that the analyses were flawed. This commentary makes the case that there is no inherent negative property of reward. (SLD)
[Sleep disorder of schizophrenia treated with shallow needling: a randomized controlled trial].
Huang, Yanxi; Zheng, Ying
2015-09-01
To compare the clinical effective differences between shallow needling and medication for the sleep disorder of schizophrenia. Ninety-six patients with the sleep disorder of schizophrenia were randomly divided into a shallow needling group and a medication group, 48 cases in each one (one case dropping in the shallow needling group and two cases dropping in the medication group). The same dose paliperidone tablets were adopted in the two groups. In the shallow needling group, the main acupoints were Baihui (GV 20), Shangenxue (Extra) and Ezhongxian (MS 1), and the acupoints based on syndrome differentiation were selected. The shallow needling manipulation was used once a day, 5 times a week. In the medication group, 3 mg eszopiclone tablets were prescribed orally before sleep once every night. The patients were treated for 6 weeks in the two groups. Sleep condition was evaluated by Pittsburgh sleep quality index (PSQI) before and after treatment, and the clinical efficacy and the adverse reaction were assessed by positive and negative symptoms scale (PANSS) and treatment emergent symptom scale (TESS) before and after 2-week, 4-week and 6-week treatment. The clinical effects between the two groups were compared. After treatment in the two groups, both the total scores and the each factor score of the PSQI and the PANSS were apparently decreased (P<0. 05, P<0. 01). As for the PSQI scale, after treatment the daytime dysfunctional score of the shallow needling group was reduced more obviously than that of the medication group (P<0. 05), and the falling asleep time in the medication group was declined more markedly compared with that in the shallow needling group (P<0. 05). Regarding the PANSS, the improvement of the pathological factor in the shallow needling group was better than that in the medication group after treatment (P<0. 05), and the improvement of the positive factor in the medication group was superior to that in the shallow needling group after treatment (P<0. 05). The total scores and each factor score of the PSQI and the PANSS were not statistically different between the two groups after treatment (P>0. 05). At the end of the 6th week, the curative and effective rate was 63. 9% (30/47) and the total effective rate was 95. 8% (45/47) in the shallow needling group;the curative and effective rate was 58. 7% (27/46) and the total effective rate was 91. 3% (42/46) in the medication group. The difference of the effect was not statistically significant between the two groups (P>0. 05). The scores of TESS in the shallow needling group were lower than those in the medication group (P<0. 01, P<0. 05). The effect of shallow needling for assisting the sleeping disorder of schizophrenia is reliable and it is similar with the efficacy of eszopiclone. Also, the shallow needling can improve the daytime dysfunction and the pathological factor apparently without adverse reaction and pain. Its safety is obviously better than that of eszopiclone.
Flaw growth behavior in thick welded plates of 2219-T87 aluminum at room and cryogenic temperatures
NASA Technical Reports Server (NTRS)
Forman, R. G.; Glorioso, S. V.; Medlock, J. D.
1973-01-01
Axial load fatigue and fracture tests were conducted on thick welded plates of 2219-T87 aluminum alloy to determine the tensile strength properties and the flaw growth behavior in electron beam, gas metal arc, and pulse current gas tungsten arc welds for plates 6.35 centimeters (2.5 in.) thick. The tests were conducted in room temperature air and in liquid nitrogen environments. Specimens were tested in both the as-welded and the aged after welding conditions. The experimental crack growth rate were correlated with theoretical crack growth rate predictions for semielliptical surface flaws.
Profiling USGA putting greens using GPR - an as-built surveying method
USDA-ARS?s Scientific Manuscript database
Putting greens installed using the United States Golf Association (USGS) specifications have a subsurface infrastructure constructed to exacting standards. It may be difficult to discern those drainage systems that possess installation flaws, as some flaws may not be readily obvious as their being ...
76 FR 74655 - Damage Tolerance and Fatigue Evaluation of Composite Rotorcraft Structures
Federal Register 2010, 2011, 2012, 2013, 2014
2011-12-01
... and discrete flaws, and impact or other accidental damage (including the discrete source of the... discrete manufacturing defects or accidental damage, is avoided throughout the operational life or... and discrete flaws, and impact or other accidental damage (including the discrete source of the...
The Case of the Similar Trees.
ERIC Educational Resources Information Center
Meyer, Rochelle Wilson
1982-01-01
A possible logical flaw based on similar triangles is discussed with the Sherlock Holmes mystery, "The Muskgrave Ritual." The possible flaw has to do with the need for two trees to have equal growth rates over a 250-year period in order for the solution presented to work. (MP)
Flawed Mathematical Conceptualizations: Marlon's Dilemma
ERIC Educational Resources Information Center
Garrett, Lauretta
2013-01-01
Adult developmental mathematics students often work under great pressure to complete the mathematics sequences designed to help them achieve success (Bryk & Treisman, 2010). Results of a teaching experiment demonstrate how the ability to reason can be impeded by flaws in students' mental representations of mathematics. The earnestness of the…
Analysis of propagation mechanisms of stimulation-induced fractures in rocks
NASA Astrophysics Data System (ADS)
Krause, Michael; Renner, Joerg
2016-04-01
Effectivity of geothermal energy production depends crucially on the heat exchange between the penetrated hot rock and the circulating water. Hydraulic stimulation of rocks at depth intends to create a network of fractures that constitutes a large area for exchange. Two endmembers of stimulation products are typically considered, tensile hydro-fractures that propagate in direction of the largest principal stress and pre-existing faults that are sheared when fluid pressure reduces the effective normal stress acting on them. The understanding of the propagation mechanisms of fractures under in-situ conditions is still incomplete despite intensive research over the last decades. Wing-cracking has been suggested as a mechanism of fracture extension from pre-existent faults with finite length that are induced to shear. The initiation and extension of the wings is believed to be in tensile mode. Open questions concern the variability of the nominal material property controlling tensile fracture initiation and extension, the mode I facture toughness KIC, with in-situ conditions, e.g., its mean-stress dependence. We investigated the fracture-propagation mechanism in different rocks (sandstones and granites) under varying conditions mimicking those representative for geothermal systems. To determine KIC-values we performed 3-point bending experiments. We varied the confining pressure, the piston velocity, and the position of the chevron notch relative to the loading configuration. Additional triaxial experiments at a range of confining pressures were performed to study wing crack propagation from artificial flaws whose geometrical characteristics, i.e., length, width, and orientation relative to the axial load are varied. We monitored acoustic emissions to constrain the spacio-temporal evolution of the fracturing. We found a significant effect of the length of the artificial flaw and the confining pressure on wing-crack initiation but did not observe a systematic dependence of wing-crack initiation on the orientation of the initial flaw in the range of tested angles. In fact, wings do not develop for artificial flaws shorter than 3 mm. The force required to initiate wing cracking increases with increasing confining pressure as does the apparent fracture toughness. So called ``anti-wing cracks'' were observed too, probably an artifact of the geometrical constraints imposed on the sample in a conventional triaxial compression test.
NASA Technical Reports Server (NTRS)
Wincheski, Buzz; Williams, Phillip; Simpson, John
2007-01-01
The use of eddy current techniques for the detection of outer diameter damage in tubing and many complex aerospace structures often requires the use of an inner diameter probe due to a lack of access to the outside of the part. In small bore structures the probe size and orientation are constrained by the inner diameter of the part, complicating the optimization of the inspection technique. Detection of flaws through a significant remaining wall thickness becomes limited not only by the standard depth of penetration, but also geometrical aspects of the probe. Recently, an orthogonal eddy current probe was developed for detection of such flaws in Space Shuttle Primary Reaction Control System (PRCS) Thrusters. In this case, the detection of deeply buried stress corrosion cracking by an inner diameter eddy current probe was sought. Probe optimization was performed based upon the limiting spatial dimensions, flaw orientation, and required detection sensitivity. Analysis of the probe/flaw interaction was performed through the use of finite and boundary element modeling techniques. Experimental data for the flaw detection capabilities, including a probability of detection study, will be presented along with the simulation data. The results of this work have led to the successful deployment of an inspection system for the detection of stress corrosion cracking in Space Shuttle Primary Reaction Control System (PRCS) Thrusters.
NASA Astrophysics Data System (ADS)
Zhou, Xiao-Ping; Zhang, Jian-Zhi; Wong, Louis Ngai Yuen
2018-05-01
The crack initiation, growth, wrapping and coalescence of two 3D pre-existing cross-embedded flaws in PMMA specimens under uniaxial compression are investigated. The stress-strain curves of PMMA specimens with 3D cross-embedded flaws are obtained. The tested PMMA specimens exhibit dominant elastic deformation and eventual brittle failure. The experimental results show that four modes of crack initiation and five modes of crack coalescence are observed. The initiations of oblique secondary crack and anti-wing crack in 3D cracking behaviors are first reported as well as the coalescence of anti-wing cracks. Moreover, two types of crack wrapping are found. Substantial wrapping of petal cracks, which includes open and closed modes of wrapping, appears to be the major difference between 2D and 3D cracking behaviors of pre-existing flaws, which are also first reported. Petal crack wraps symmetrically from either the propagated wing cracks or the coalesced wing cracks. Besides, only limited growth of petal cracks is observed, and ultimate failure of specimens is induced by the further growth of the propagated wing crack. The fracture mechanism of the tested PMMA specimens is finally revealed. In addition, the initiation stress and the peak stress versus the geometry of two 3D pre-existing cross-embedded flaws are also investigated in detail.
NASA Astrophysics Data System (ADS)
Shahriari, D.; Zolfaghari, A.; Masoumi, F.
2011-01-01
Nondestructive evaluation is explained as nondestructive testing, nondestructive inspection, and nondestructive examination. It is a desire to determine some characteristic of the object or to determine whether the object contains irregularities, discontinuities, or flaws. Ultrasound based inspection techniques are used extensively throughout industry for detection of flaws in engineering materials. The range and variety of imperfections encountered is large, and critical assessment of location, size, orientation and type is often difficult. In addition, increasing quality requirements of new standards and codes of practice relating to fitness for purpose are placing higher demands on operators. Applying of an expert knowledge-based analysis in ultrasonic examination is a powerful tool that can help assure safety, quality, and reliability; increase productivity; decrease liability; and save money. In this research, an expert module system is coupled with ultrasonic examination (A-Scan Procedure) to determine and evaluate type and location of flaws that embedded during welding parts. The processing module of this expert system is implemented based on EN standard to classify welding defects, acceptance condition and measuring of their location via echo static pattern and image processing. The designed module introduces new system that can automate evaluating of the results of A-scan method according to EN standard. It can simultaneously recognize the number and type of defects, and determine flaw position during each scan.
NASA Technical Reports Server (NTRS)
Gyekenyesi, John P.; Nemeth, Noel N.
1987-01-01
The SCARE (Structural Ceramics Analysis and Reliability Evaluation) computer program on statistical fast fracture reliability analysis with quadratic elements for volume distributed imperfections is enhanced to include the use of linear finite elements and the capability of designing against concurrent surface flaw induced ceramic component failure. The SCARE code is presently coupled as a postprocessor to the MSC/NASTRAN general purpose, finite element analysis program. The improved version now includes the Weibull and Batdorf statistical failure theories for both surface and volume flaw based reliability analysis. The program uses the two-parameter Weibull fracture strength cumulative failure probability distribution model with the principle of independent action for poly-axial stress states, and Batdorf's shear-sensitive as well as shear-insensitive statistical theories. The shear-sensitive surface crack configurations include the Griffith crack and Griffith notch geometries, using the total critical coplanar strain energy release rate criterion to predict mixed-mode fracture. Weibull material parameters based on both surface and volume flaw induced fracture can also be calculated from modulus of rupture bar tests, using the least squares method with known specimen geometry and grouped fracture data. The statistical fast fracture theories for surface flaw induced failure, along with selected input and output formats and options, are summarized. An example problem to demonstrate various features of the program is included.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Belle R. Upadhyaya; J. Wesley Hines
2004-09-27
Integrity monitoring and flaw diagnostics of flat beams and tubular structures was investigated in this research task using guided acoustic signals. A piezo-sensor suite was deployed to activate and collect Lamb wave signals that propagate along metallic specimens. The dispersion curves of Lamb waves along plate and tubular structures are generated through numerical analysis. Several advanced techniques were explored to extract representative features from acoustic time series. Among them, the Hilbert-Huang transform (HHT) is a recently developed technique for the analysis of non-linear and transient signals. A moving window method was introduced to generate the local peak characters from acousticmore » time series, and a zooming window technique was developed to localize the structural flaws. The time-frequency analysis and pattern recognition techniques were combined for classifying structural defects in brass tubes. Several types of flaws in brass tubes were tested, both in the air and in water. The techniques also proved to be effective under background/process noise. A detailed theoretical analysis of Lamb wave propagation was performed and simulations were carried out using the finite element software system ABAQUS. This analytical study confirmed the behavior of the acoustic signals acquired from the experimental studies. The report presents the background the analysis of acoustic signals acquired from piezo-electric transducers for structural defect monitoring. A comparison of the use of time-frequency techniques, including the Hilbert-Huang transform, is presented. The report presents the theoretical study of Lamb wave propagation in flat beams and tubular structures, and the need for mode separation in order to effectively perform defect diagnosis. The results of an extensive experimental study of detection, location, and isolation of structural defects in flat aluminum beams and brass tubes are presented. The results of this research show the feasibility of on-line monitoring of small structural flaws by the use of transient and nonlinear acoustic signal analysis, and its implementation by the proper design of a piezo-electric transducer suite.« less
The Hubble Space Telescope: Problems and Solutions.
ERIC Educational Resources Information Center
Villard, Ray
1990-01-01
Presented is the best understanding of the flaw discovered in the optics of the Hubble Space Telescope and the possible solutions to the problems. The spherical aberration in the telescope's mirror and its effect on the quality of the telescope's imaging ability is discussed. (CW)
Leading-Edge Research or Lost Cause?: The Search for Interscriptual Stroop Effects.
ERIC Educational Resources Information Center
Benson, Philippa Jane
1991-01-01
Reviews studies on cross-orthographic Stroop interference tests. Critiques one of the first cross-orthographic Stroop studies to describe how such studies have been used to explore cognitive mechanisms involved in reading. Reviews conceptual and methodological flaws in the research. (PRA)
An estimation methode for measurement of ultraviolet radiation during nondestructive testing
NASA Astrophysics Data System (ADS)
Hosseinipanah, M.; Movafeghi, A.; Farvadin, D.
2018-04-01
Dye penetrant testing and magnetic particle testing are among conventional NDT methods. For increased sensitivity, fluorescence dyes and particles can be used with ultraviolet (black) lights. UV flaw detection lights have different spectra. With the help of photo-filters, the output lights are transferred to UV-A and visible zones. UV-A light can be harmful to human eyes in some conditions. In this research, UV intensity and spectrum were obtained by a Radio-spectrometer for two different UV flaw detector lighting systems. According to the standards such as ASTM E709, UV intensity must be at least 10 W/m2 at a distance of 30 cm. Based on our measurements; these features not achieved in some lamps. On the other hand, intensity and effective intensity of UV lights must be below the some limits for prevention of unprotected eye damage. NDT centers are usually using some type of UV measuring devices. A method for the estimation of effective intensity of UV light has been proposed in this research.
NASA Technical Reports Server (NTRS)
Everett, R. A., Jr.; Elber, W.
2000-01-01
In this paper the significance of the "small" crack effect as defined in fracture mechanics will be discussed as it relates to life managing rotorcraft dynamic components using the conventional safe-life, the flaw tolerant safe-life, and the damage tolerance design philosophies. These topics will be introduced starting with an explanation of the small-crack theory, then showing how small-crack theory has been used to predict the total fatigue life of fatigue laboratory test coupons with and without flaws, and concluding with how small cracks can affect the crack-growth damage tolerance design philosophy. As stated in this paper the "small" crack effect is defined in fracture mechanics where it has been observed that cracks on the order of 300 microns or less in length will propagate at higher growth rates than long cracks and also will grow at AK values below the long crack AK threshold. The small-crack effect is illustrated herein as resulting from a lack of crack closure and is explained based on continuum mechanics principles using crack-closure concepts in fracture mechanics.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sullivan, Edmund J.; Anderson, Michael T.; Norris, Wallace
2012-09-17
Pressurized thermal shock (PTS) events are system transients in a pressurized water reactor (PWR) in which there is a rapid operating temperature cool-down that results in cold vessel temperatures with or without repressurization of the vessel. The rapid cooling of the inside surface of the reactor pressure vessel (RPV) causes thermal stresses that can combine with stresses caused by high pressure. The aggregate effect of these stresses is an increase in the potential for fracture if a pre-existing flaw is present in a material susceptible to brittle failure. The ferritic, low alloy steel of the reactor vessel beltline adjacent tomore » the core, where neutron radiation gradually embrittles the material over the lifetime of the plant, can be susceptible to brittle fracture. The PTS rule, described in the Code of Federal Regulations, Title 10, Section 50.61 (§50.61), “Fracture Toughness Requirements for Protection against Pressurized Thermal Shock Events,” adopted on July 23, 1985, establishes screening criteria to ensure that the potential for a reactor vessel to fail due to a PTS event is deemed to be acceptably low. The U.S. Nuclear Regulatory Commission (NRC) completed a research program that concluded that the risk of through-wall cracking due to a PTS event is much lower than previously estimated. The NRC subsequently developed a rule, §50.61a, published on January 4, 2010, entitled “Alternate Fracture Toughness Requirements for Protection Against Pressurized Thermal Shock Events” (75 FR 13). Use of the new rule by licensees is optional. The §50.61a rule differs from §50.61 in that it requires licensees who choose to follow this alternate method to analyze the results from periodic volumetric examinations required by the ASME Code, Section XI, Rules for Inservice Inspection (ISI) of Nuclear Power Plants. These analyses are intended to determine if the actual flaw density and size distribution in the licensee’s reactor vessel beltline welds are bounded by the flaw density and size distribution values used in the PTS technical basis. Under a contract with the NRC, Pacific Northwest National Laboratory (PNNL) has been working on a program to assess the ability of current inservice inspection (ISI)-ultrasonic testing (UT) techniques, as qualified through ASME Code, Appendix VIII, Supplements 4 and 6, to detect small fabrication or inservice-induced flaws located in RPV welds and adjacent base materials. As part of this effort, the investigators have pursued an evaluation, based on the available information, of the capability of UT to provide flaw density/distribution inputs for making RPV weld assessments in accordance with §50.61a. This paper presents the results of an evaluation of data from the 1993 Browns Ferry Nuclear Plant, Unit 3, Spirit of Appendix VIII reactor vessel examination, a comparison of the flaw density/distribution from this data with the distribution in §50.61a, possible reasons for differences, and plans and recommendations for further work in this area.« less
Ultrasound excited thermography: an efficient tool for the characterization of vertical cracks
NASA Astrophysics Data System (ADS)
Mendioroz, A.; Celorrio, R.; Salazar, A.
2017-11-01
Ultrasound excited thermography has gained a renewed interest in the last two decades as a nondestructive testing technique aimed at detecting and characterizing surface breaking and shallow subsurface discontinuities. It is based on measurement of the IR radiation emitted by the specimen surface to detect temperature rises produced by the heating of defects under high amplitude ultrasound excitation and is primarily addressed to flaws with contacting faces, such as kissing cracks or tight delaminations. The simplicity of application and the ability to detect small cracks in challenging media makes it an attractive emerging technology, which is still in a development stage. However, it has proven to provide an opportunity for the quantitative characterization of defects, mainly of vertical cracks. In this review, we present the principles of the technique and the different experimental implementations, we put it in context with other nondestructive tests and we summarize the work done in order to improve defect detectability and test reliability, with the final goal of determining the probability of detection. Then we review the contributions aimed at characterizing vertical cracks, i.e. retrieving the geometry and location of the crack from surface temperature data, generated by ultrasonic excitation.
Apparatus and method for detecting and/or measuring flaws in conductive material
Hockey, Ronald L.; Riechers, Douglas M.
2000-01-01
The present invention uses a magnet and sensor coil unilaterial and in relative motion to a conductive material, to measure perturbation or variation in the magnetic field in the presence of a flaw. A liftoff compensator measures a distance between the conductive material and the magnet.
The Controversy of Consequences
ERIC Educational Resources Information Center
Twing, Jon S.
2016-01-01
This special issue of "Assessment in Education" contains the type of debate needed about what Cizek (2015) calls a "… lingering flaw in the concept of validity…." Some practitioners might not agree that the current theory of validation is flawed. Specifically, the debate Jon Twing is referencing concerns the role of the…
Mentoring--Is It Failing Women?
ERIC Educational Resources Information Center
Ghosh, Rajashi
2015-01-01
Mentoring programs are gaining traction as human resource development initiatives that can support women to advance in their careers in organizations. However, some of these programs are falling short of delivering on this promise due to particular inherent flaws. This case study considers the following three potential flaws of formal mentoring…
ERIC Educational Resources Information Center
Waters, John K.
2009-01-01
In December, Microsoft announced a major security flaw affecting its Internet Explorer web browser. The flaw allowed hackers to use hidden computer code they had already injected into legitimate websites to steal the passwords of visitors to those sites. Reportedly, more than 10,000 websites were infected with the destructive code by the time…
Federal Register 2010, 2011, 2012, 2013, 2014
2012-02-29
.... 101126522-0640-02] RIN 0648-XB044 Fisheries of the Economic Exclusive Zone Off Alaska; Shallow- Water...: NMFS is prohibiting directed fishing for species that comprise the shallow-water species fishery by... shallow-water species fishery by Amendment 80 vessels in the GOA has been reached. DATES: Effective 1200...
Jorgensen, Jeffrey C; McClure, Michelle M; Sheer, Mindi B; Munn, Nancy L
2013-12-01
Significant challenges remain in the ability to estimate habitat change under the combined effects of natural variability, climate change, and human activity. We examined anticipated effects on shallow water over low-sloped beaches to these combined effects in the lower Willamette River, Oregon, an area highly altered by development. A proposal to stabilize some shoreline with large rocks (riprap) would alter shallow water areas, an important habitat for threatened Chinook salmon (Oncorhynchus tshawytscha), and would be subject to U.S. Endangered Species Act-mandated oversight. In the mainstem, subyearling Chinook salmon appear to preferentially occupy these areas, which fluctuate with river stages. We estimated effects with a geospatial model and projections of future river flows. Recent (1999-2009) median river stages during peak subyearling occupancy (April-June) maximized beach shallow water area in the lower mainstem. Upstream shallow water area was maximized at lower river stages than have occurred recently. Higher river stages in April-June, resulting from increased flows predicted for the 2080s, decreased beach shallow water area 17-32%. On the basis of projected 2080s flows, more than 15% of beach shallow water area was displaced by the riprap. Beach shallow water area lost to riprap represented up to 1.6% of the total from the mouth to 12.9 km upstream. Reductions in shallow water area could restrict salmon feeding, resting, and refuge from predators and potentially reduce opportunities for the expression of the full range of life-history strategies. Although climate change analyses provided useful information, detailed analyses are prohibitive at the project scale for the multitude of small projects reviewed annually. The benefits of our approach to resource managers include a wider geographic context for reviewing similar small projects in concert with climate change, an approach to analyze cumulative effects of similar actions, and estimation of the actions' long-term effects. Efectos Combinados del Cambio Climático y la Estabilización de Bordes de Ríos Hábitats de Aguas Poco Profundas del Salmón Chinook. Conservation Biology © 2013 Society for Conservation Biology No claim to original US government works.
HF Radar Sea-echo from Shallow Water.
Lipa, Belinda; Nyden, Bruce; Barrick, Don; Kohut, Josh
2008-08-06
HF radar systems are widely and routinely used for the measurement of ocean surface currents and waves. Analysis methods presently in use are based on the assumption of infinite water depth, and may therefore be inadequate close to shore where the radar echo is strongest. In this paper, we treat the situation when the radar echo is returned from ocean waves that interact with the ocean floor. Simulations are described which demonstrate the effect of shallow water on radar sea-echo. These are used to investigate limits on the existing theory and to define water depths at which shallow-water effects become significant. The second-order spectral energy increases relative to the first-order as the water depth decreases, resulting in spectral saturation when the waveheight exceeds a limit defined by the radar transmit frequency. This effect is particularly marked for lower radar transmit frequencies. The saturation limit on waveheight is less for shallow water. Shallow water affects second-order spectra (which gives wave information) far more than first-order (which gives information on current velocities), the latter being significantly affected only for the lowest radar transmit frequencies for extremely shallow water. We describe analysis of radar echo from shallow water measured by a Rutgers University HF radar system to give ocean wave spectral estimates. Radar-derived wave height, period and direction are compared with simultaneous shallow-water in-situ measurements.
HF Radar Sea-echo from Shallow Water
Lipa, Belinda; Nyden, Bruce; Barrick, Don; Kohut, Josh
2008-01-01
HF radar systems are widely and routinely used for the measurement of ocean surface currents and waves. Analysis methods presently in use are based on the assumption of infinite water depth, and may therefore be inadequate close to shore where the radar echo is strongest. In this paper, we treat the situation when the radar echo is returned from ocean waves that interact with the ocean floor. Simulations are described which demonstrate the effect of shallow water on radar sea-echo. These are used to investigate limits on the existing theory and to define water depths at which shallow-water effects become significant. The second-order spectral energy increases relative to the first-order as the water depth decreases, resulting in spectral saturation when the waveheight exceeds a limit defined by the radar transmit frequency. This effect is particularly marked for lower radar transmit frequencies. The saturation limit on waveheight is less for shallow water. Shallow water affects second-order spectra (which gives wave information) far more than first-order (which gives information on current velocities), the latter being significantly affected only for the lowest radar transmit frequencies for extremely shallow water. We describe analysis of radar echo from shallow water measured by a Rutgers University HF radar system to give ocean wave spectral estimates. Radar-derived wave height, period and direction are compared with simultaneous shallow-water in-situ measurements. PMID:27873776
NASA Astrophysics Data System (ADS)
Wei, Jia; Liu, Huaishan; Xing, Lei; Du, Dong
2018-02-01
The stability of submarine geological structures has a crucial influence on the construction of offshore engineering projects and the exploitation of seabed resources. Marine geologists should possess a detailed understanding of common submarine geological hazards. Current marine seismic exploration methods are based on the most effective detection technologies. Therefore, current research focuses on improving the resolution and precision of shallow stratum structure detection methods. In this article, the feasibility of shallow seismic structure imaging is assessed by building a complex model, and differences between the seismic interferometry imaging method and the traditional imaging method are discussed. The imaging effect of the model is better for shallow layers than for deep layers because coherent noise produced by this method can result in an unsatisfactory imaging effect for deep layers. The seismic interference method has certain advantages for geological structural imaging of shallow submarine strata, which indicates continuous horizontal events, a high resolution, a clear fault, and an obvious structure boundary. The effects of the actual data applied to the Shenhu area can fully illustrate the advantages of the method. Thus, this method has the potential to provide new insights for shallow submarine strata imaging in the area.
14 CFR 29.573 - Damage Tolerance and Fatigue Evaluation of Composite Rotorcraft Structures.
Code of Federal Regulations, 2012 CFR
2012-01-01
... Composite Rotorcraft Structures. 29.573 Section 29.573 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION... Structures. (a) Each applicant must evaluate the composite rotorcraft structure under the damage tolerance..., types, and sizes of damage, considering fatigue, environmental effects, intrinsic and discrete flaws...
14 CFR 27.573 - Damage Tolerance and Fatigue Evaluation of Composite Rotorcraft Structures.
Code of Federal Regulations, 2012 CFR
2012-01-01
... Composite Rotorcraft Structures. 27.573 Section 27.573 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION... Structures. (a) Each applicant must evaluate the composite rotorcraft structure under the damage tolerance..., types, and sizes of damage, considering fatigue, environmental effects, intrinsic and discrete flaws...
14 CFR 27.573 - Damage Tolerance and Fatigue Evaluation of Composite Rotorcraft Structures.
Code of Federal Regulations, 2013 CFR
2013-01-01
... Composite Rotorcraft Structures. 27.573 Section 27.573 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION... Structures. (a) Each applicant must evaluate the composite rotorcraft structure under the damage tolerance..., types, and sizes of damage, considering fatigue, environmental effects, intrinsic and discrete flaws...
14 CFR 29.573 - Damage Tolerance and Fatigue Evaluation of Composite Rotorcraft Structures.
Code of Federal Regulations, 2013 CFR
2013-01-01
... Composite Rotorcraft Structures. 29.573 Section 29.573 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION... Structures. (a) Each applicant must evaluate the composite rotorcraft structure under the damage tolerance..., types, and sizes of damage, considering fatigue, environmental effects, intrinsic and discrete flaws...
14 CFR 27.573 - Damage Tolerance and Fatigue Evaluation of Composite Rotorcraft Structures.
Code of Federal Regulations, 2014 CFR
2014-01-01
... Composite Rotorcraft Structures. 27.573 Section 27.573 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION... Structures. (a) Each applicant must evaluate the composite rotorcraft structure under the damage tolerance..., types, and sizes of damage, considering fatigue, environmental effects, intrinsic and discrete flaws...
14 CFR 29.573 - Damage Tolerance and Fatigue Evaluation of Composite Rotorcraft Structures.
Code of Federal Regulations, 2014 CFR
2014-01-01
... Composite Rotorcraft Structures. 29.573 Section 29.573 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION... Structures. (a) Each applicant must evaluate the composite rotorcraft structure under the damage tolerance..., types, and sizes of damage, considering fatigue, environmental effects, intrinsic and discrete flaws...
NASA Technical Reports Server (NTRS)
Webster, J. D.
1981-01-01
The compressive behavior of T300/5208 graphite-epoxy laminates containing circular delaminations was studied to determine the flaw criticality of two types of implanted defect, Kapton bag and Teflon film, on several laminate configurations. Defect size was varied. Results, presented in the form of residual strength curves, indicate that the Teflon film defect reduced strength more than the Kapton bad defect in 12-ply samples, but that two laminates (+ or - 45) sub 2s and (90/+ or - 45) sub s were insensitive to any implanted defect. A clear thickness effect was shown to exist for the (o/+ pr 45) sub ns laminate and was attributed to failure mode transition. The analytically predicted buckling loads show excellent agreement with experimental results and are useful in predicting failure mode transition.
Analytical flaws and practical pitfalls: Reconsidering FERC`s merchant affiliate rules
DOE Office of Scientific and Technical Information (OSTI.GOV)
Santa, D.F. Jr.
1998-11-01
The merchant affiliate rules are a detriment not just to the regulated utility affiliate and its captive ratepayers, but even to competition in the wholesale bulk power market. The rationale underlying the merchant affiliate rules, their continued relevance, and, most importantly, their practical effect on both the utilities bound by such rules and the marketplace has not been seriously re-examined in the wake of the bulk power market`s rapid evolution. This article traces the development of the Commission`s merchant affiliate rules and reconsiders the rationale supporting the rules and the pivotal question of whether, in fact, such rules benefit utilitymore » ratepayers. The article concludes that in light of the analytical flaws and practical pitfalls surrounding the merchant affiliate rules, a balanced reevaluation of the Commission`s rules is in order.« less
Use Of Infrared Thermography For The Identification Of Design And Construction Faults In Buildings
NASA Astrophysics Data System (ADS)
Seeber, Stephen A.
1984-03-01
Many design and construction details can affect building energy consumption in unex-pected ways. Further, design and construction errors can increase building energy consumption, result in discomfort to building occupants and cause structural damage to the building. Infrared inspections can easily evaluate the energy efficiency of various aspects of a building's design and identify flaws that might otherwise be detected as a result of occupants' complaints or damage to the building's mechanical or structural systems. Infrared thermography can be used by the architect to evaluate his designs and by the contractor to control the quality of construction. This paper discusses a number of issues that can help determine the effectiveness of infrared building surveys. Following this, three case stud-ies will be presented to illustrate design flaws that were detected through infrared build-ing surveys.
Development of Standards for Nondestructive Evaluation of COPVs Used in Aerospace Applications
NASA Technical Reports Server (NTRS)
Waller, Jess M.; Saulsberry, Regor L.
2012-01-01
Composite OverWrapped Pressure Vessels (COPVs) are currently accepted by NASA based on design and qualification requirements and generally not verified by NDE for the following reasons: (1) Manufactures and end users generally do not have experience and validated quantitative methods of detecting flaws and defects of concern (1-a) If detected, the flaws are not adequately quantified and it is unclear how they may contribute to degradation in mechanical response (1-b) Carbon-epoxy COPVs also extremely sensitive to impact damage and impacts may be below the visible detection threshold (2) If damage is detected, this generally results in rejection since the effect on mechanical response is generally not known (3) NDE response has not generally been fully characterized, probability of detection (POD) established, and processes validated for evaluation of vessel condition as manufactured and delivered.
[The application of operating room quality backward system in instrument place management].
Du, Hui; He, Anjie; Zeng, Leilei
2010-09-01
Improvement of the surgery instrument's clean quality, the optimized preparation way, reasonable arrangement in groups, raising the working efficiency. We use the quality backward system into the instrument clean, the pack and the preparation way's question, carry on the analysis and the optimization, and appraise the effect after trying out 6 months. After finally the way optimized, instrument clean quality distinct enhancement; The flaws in the instrument clean, the pack way and the total operating time reduce; the contradictory between nurses and the cleans arising from the unclear connection reduces, the satisfaction degree of nurse and doctor to the instrument enhances. Using of operating room quality backward system in the management of the instrument clean, the pack and the preparation way optimized, may reduce flaws in the work and the waste of human resources, raise the working efficiency.
SAFT-assisted sound beam focusing using phased arrays (PA-SAFT) for non-destructive evaluation
NASA Astrophysics Data System (ADS)
Nanekar, Paritosh; Kumar, Anish; Jayakumar, T.
2015-04-01
Focusing of sound has always been a subject of interest in ultrasonic non-destructive evaluation. An integrated approach to sound beam focusing using phased array and synthetic aperture focusing technique (PA-SAFT) has been developed in the authors' laboratory. The approach involves SAFT processing on ultrasonic B-scan image collected by a linear array transducer using a divergent sound beam. The objective is to achieve sound beam focusing using fewer elements than the ones required using conventional phased array. The effectiveness of the approach is demonstrated on aluminium blocks with artificial flaws and steel plate samples with embedded volumetric weld flaws, such as slag and clustered porosities. The results obtained by the PA-SAFT approach are found to be comparable to those obtained by conventional phased array and full matrix capture - total focusing method approaches.
Crack detection using resonant ultrasound spectroscopy
Migliori, A.; Bell, T.M.; Rhodes, G.W.
1994-10-04
Method and apparatus are provided for detecting crack-like flaws in components. A plurality of exciting frequencies are generated and applied to a component in a dry condition to obtain a first ultrasonic spectrum of the component. The component is then wet with a selected liquid to penetrate any crack-like flaws in the component. The plurality of exciting frequencies are again applied to the component and a second ultrasonic spectrum of the component is obtained. The wet and dry ultrasonic spectra are then analyzed to determine the second harmonic components in each of the ultrasonic resonance spectra and the second harmonic components are compared to ascertain the presence of crack-like flaws in the component. 5 figs.
Crack detection using resonant ultrasound spectroscopy
Migliori, Albert; Bell, Thomas M.; Rhodes, George W.
1994-01-01
Method and apparatus are provided for detecting crack-like flaws in components. A plurality of exciting frequencies are generated and applied to a component in a dry condition to obtain a first ultrasonic spectrum of the component. The component is then wet with a selected liquid to penetrate any crack-like flaws in the component. The plurality of exciting frequencies are again applied to the component and a second ultrasonic spectrum of the component is obtained. The wet and dry ultrasonic spectra are then analyzed to determine the second harmonic components in each of the ultrasonic resonance spectra and the second harmonic components are compared to ascertain the presence of crack-like flaws in the component.
Crack Growth of D6 Steel in Air and High Pressure Oxygen
NASA Technical Reports Server (NTRS)
Bixler, W. D.; Engstrom, W. L.
1971-01-01
Fracture and subcritical flaw growth characteristics were experimentally determined for electroless nickel plated D6 steel in dry air and high pressure oxygen environments as applicable to the Lunar Module/Environmental Control System (LM/ECS) descent gaseous oxygen (GOX) tank. The material tested included forgings, plate, and actual LM/ECS descent GOX tank material. Parent metal and TIG (tungsten inert gas) welds were tested. Tests indicate that proof testing the tanks at 4000 pounds per square inch or higher will insure safe operation at 3060 pounds per square inch. Although significant flaw growth can occur during proofing, subsequent growth of flaws during normal tank operation is negligible.
NON-DESTRUCTIVE METHOD AND MEANS FOR FLAW DETECTION
Hochschild, R.
1959-03-10
BS>An improved method is presented for the nondestructive detection of flaws in olectrictilly conductivc articles using magnetic field. According to thc method a homogoneous mignetic field is established in the test article;it right angle" to the artyicle. A probe is aligned with its axis transverse to the translates so hat th4 probe scans the surface of the test article while the axis of the robe is transverse to the direction of translation of the article. In this manner any output current obtained in thc probe is an indication of the size and location of a flaw in the article under test, with a miiiimum of signal pick- up in the probe from the established magnetic field.
NASA DOEPOD NDE Capabilities Data Book
NASA Technical Reports Server (NTRS)
Generazio, Edward R.
2015-01-01
This data book contains the Directed Design of Experiments for Validating Probability of Detection (POD) Capability of NDE Systems (DOEPOD) analyses of the nondestructive inspection data presented in the NTIAC, Nondestructive Evaluation (NDE) Capabilities Data Book. DOEPOD is designed as a decision support system to validate inspection system, personnel, and protocol demonstrating 0.90 POD with 95% confidence at critical flaw sizes, a90/95. Although 0.90 POD with 95% confidence at critical flaw sizes is often stated as an inspection requirement in inspection documents, including NASA Standards, NASA critical aerospace applications have historically only accepted 0.978 POD or better with a 95% one-sided lower confidence bound exceeding 0.90 at critical flaw sizes, a90/95.
Self-Nulling Eddy Current Probe for Surface and Subsurface Flaw Detection
NASA Technical Reports Server (NTRS)
Wincheski, B.; Fulton, J. P.; Nath, S.; Namkung, M.; Simpson, J. W.
1994-01-01
An eddy current probe which provides a null-signal in the presence of unflawed material without the need for any balancing circuitry has been developed at NASA Langley Research Center. Such a unique capability of the probe reduces set-up time, eliminates tester configuration errors, and decreases instrumentation requirements. The probe is highly sensitive to surface breaking fatigue cracks, and shows excellent resolution for the measurement of material thickness, including material loss due to corrosion damage. The presence of flaws in the material under test causes an increase in the extremely stable and reproducible output voltage of the probe. The design of the probe and some examples illustrating its flaw detection capabilities are presented.
EGameFlow: A Scale to Measure Learners' Enjoyment of E-Learning Games
ERIC Educational Resources Information Center
Fu, Fong-Ling; Su, Rong-Chang; Yu, Sheng-Chin
2009-01-01
In an effective e-learning game, the learner's enjoyment acts as a catalyst to encourage his/her learning initiative. Therefore, the availability of a scale that effectively measures the enjoyment offered by e-learning games assist the game designer to understanding the strength and flaw of the game efficiently from the learner's points of view.…
Burning characteristics and fiber retention of graphite/resin matrix composites
NASA Technical Reports Server (NTRS)
Bowles, K. J.
1980-01-01
Graphite fiber reinforced resin matrix composites were subjected to controlled burning conditions to determine their burning characteristics and fiber retention properties. Small samples were burned with a natural gas fired torch to study the effects of fiber orientation and structural flaws such as holes and slits that were machined into the laminates. Larger laminate samples were burned in a modified heat release rate calorimeter. Unidirectional epoxy/graphite and polyimide/graphite composites and boron powder filled samples of each of the two composite systems were burn tested. The composites were exposed to a thermal radiation of 5.3 Btu/sq ft-sec in air. Samples of each of the unfilled composite were decomposed anaerobically in the calorimeter. Weight loss data were recorded for burning and decomposition times up to thirty-five minutes. The effects of fiber orientation, flaws, and boron filler additives to the resins were evaluated. A high char forming polyimide resin was no more effective in retaining graphite fibers than a low char forming epoxy resin when burned in air. Boron powder additions to both the polyimide and the epoxy resins stabilized the chars and effectively controlled the fiber release.
Crack Turning Mechanics of Composite Wing Skin Panels
NASA Technical Reports Server (NTRS)
Yuan, F. G.; Reeder, James R. (Technical Monitor)
2001-01-01
The safety of future composite wing skin integral stiffener panels requires a full understanding of failure mechanisms of these damage tolerance critical structures under both in-plane and bending loads. Of primary interest is to derive mathematical models using fracture mechanics in anisotropic cracked plate structures, to assess the crack turning mechanisms, and thereby to enhance the residual strength in the integral stiffener composite structures. The use of fracture mechanics to assess the failure behavior in a cracked structure requires the identification of critical fracture parameters which govern the severity of stress and deformation field ahead of the flaw, and which can be evaluated using information obtained from the flaw tip. In the three-year grant, the crack-tip fields under plane deformation, crack-tip fields for anisotropic plates and anisotropic shells have been obtained. In addition, methods for determining the stress intensity factors, energy release rate, and the T-stresses have been proposed and verified. The research accomplishments can be summarized as follows: (1) Under plane deformation in anisotropic solids, the asymptotic crack-tip fields have been obtained using Stroh formalism; (2) The T-stress and the coefficient of the second term for sigma(sub y), g(sub 32), have been obtained using path-independent integral, the J-integral and Betti's reciprocal theorem together with auxiliary fields; (3) With experimental data performed by NASA, analyses indicated that the mode-I critical stress intensity factor K(sub Q) provides a satisfactory characterization of fracture initiation for a given laminate thickness, provided the failure is fiber-dominated and crack extends in a self-similar manner; (4) The high constraint specimens, especially for CT specimens, due to large T-stress and large magnitude of negative g(sub 32) term may be expected to inhibit the crack extension in the same plane and promote crack turning; (5) Crack turning out of crack plane in generally anisotropic solids under plane deformation has been studied; (6) The role of T-stress and the higher-order term of sigma(sub y) on the crack turning and stability of the kinked crack has been quantified; (7) Asymptotic crack-tip fields including the effect of transverse shear deformation (Reissner plate theory) in an anisotropic plate under bending, twisting moments, and transverse shear loads has been presented; (8) The expression of the path-independent J-integral in terms of the generalized stress and strain has been derived; (9) Asymptotic crack-tip fields including the effect of transverse shear deformation (Reissner shallow shell theory) in a general anisotropic shell has been developed; (10) The Stroh formalism was used to characterize the crack tip fields in shells up to the second term and the energy release rate was expressed in a very compact form.
Statistical Tests of Reliability of NDE
NASA Technical Reports Server (NTRS)
Baaklini, George Y.; Klima, Stanley J.; Roth, Don J.; Kiser, James D.
1987-01-01
Capabilities of advanced material-testing techniques analyzed. Collection of four reports illustrates statistical method for characterizing flaw-detecting capabilities of sophisticated nondestructive evaluation (NDE). Method used to determine reliability of several state-of-the-art NDE techniques for detecting failure-causing flaws in advanced ceramic materials considered for use in automobiles, airplanes, and space vehicles.
DOT National Transportation Integrated Search
2013-04-01
This report covers the work performed under the FRA High-Speed BAA 20102011 program to demonstrate the technology of ultrasonic tomography for 3-D imaging of internal rail flaws. There is a need to develop new technologies that are able to quantif...
Flawed Implementation or Inconsistent Logics? Lessons from Higher Education Reform in Ukraine
ERIC Educational Resources Information Center
Shaw, Marta A.
2013-01-01
This article investigates two competing explanations of why reforms associated with the Bologna process brought disappointing results in Ukraine. The lack of anticipated benefits from the reforms may stem either from a flawed implementation of the Bologna process, or from more fundamental differences between the models of higher education…
Rousseau on Sex-Roles, Education and Happiness
ERIC Educational Resources Information Center
Jonas, Mark E.
2016-01-01
Over the last decade, philosophers of education have begun taking a renewed interest in Rousseau's educational thought. This is a welcome development as his ideas are rich with educational insights. His philosophy is not without its flaws, however. One significant flaw is his educational project for females, which is sexist in the highest degree.…
Clinical Application of a Behavioral Model for the Treatment of Body Dysmorphic Disorder
ERIC Educational Resources Information Center
Rabinowitz, Dena; Neziroglu, Fugen; Roberts, Marty
2007-01-01
Body dysmorphic disorder (BDD) is characterized by an obsessive concern over a perceived flaw in bodily appearance. If a minor flaw does exist, the patient displays unwarranted distress. This preoccupation typically leads to compulsive behaviors, such as mirror checking or mirror avoiding, camouflaging, and seeking reassurance from others…
The Level of Willingness to Evacuate among Older Adults
ERIC Educational Resources Information Center
Gray-Graves, Amy; Turner, Keith W.; Swan, James H.
2011-01-01
The issues of rising numbers of disasters, overwhelming increases in number of older adults, and historically flawed evacuations present real challenges. During the next two decades, the number of American baby boomers, who turn 65, will increase by 40%. As evidenced by recent disasters, the imperfections and vulnerabilities of flawed evacuations…
77 FR 27210 - Publication of the Final National Wetland Plant List
Federal Register 2010, 2011, 2012, 2013, 2014
2012-05-09
... that the process was fatally flawed. ``Voting'' online was the most efficient way to obtain technical... for this effort was fatally flawed. Input received during the public comment period was used in...-sector personnel on the regional panels would be a legal issue. Under the Federal Advisory Committee Act...
Federal Register 2010, 2011, 2012, 2013, 2014
2011-09-26
... believe that NASDAQ's ``joint products'' theory is fundamentally flawed, and cannot support the conclusion... joint products ``platform competition theory'' is flawed as a matter of economics, because order... functioning of the national market system or result in predatory prices, or threaten to injure competition...
Equality: Constitutional Update. Bar/School Partnership Programs Series.
ERIC Educational Resources Information Center
American Bar Association, Chicago, IL. Special Committee on Youth Education for Citizenship.
The second in a special four-part series of law-school partnership handbooks on constitutional themes, this document focuses on equality. "Equality--the Forgotten Word" (J. A. Hughes) discusses what has been considered the U.S. Constitution's one flaw, its failure to abolish slavery, and the remedy to that flaw, the Fourteenth Amendment.…
Federal Register 2010, 2011, 2012, 2013, 2014
2011-09-21
... DEPARTMENT OF JUSTICE Antitrust Division Notice Pursuant to The National Cooperative Research and Production Act of 1993--Cooperative Research Group on Development and Validation of FlawPRO for Assessing... Development and Validation of FlawPRO for Assessing Defect Tolerance of Welded Pipes Under Generalized High...
Scale and Time Effects in Hydraulic Fracturing.
1984-07-01
An experimental study was conducted to determine the effects of scale and time on hydraulic fracturing in compacted samples of Teton Dam silt and...occurrence of hydraulic fracturing . Finite element analyses were used to investigate the possible effects of nonlinear soil behavior. Both experimental and...theoretical studies show that hydraulic fracturing can be initiated by seepage-induced forces without the presence of a preexisting flaw in the soil. (Author)
Qualities that Exemplify Student Leadership
ERIC Educational Resources Information Center
Rice, Donna
2011-01-01
Effective leadership begins with the individual. Until a person is self-actualized, external relationships and communications are often unpredictable and potentially flawed. The paradox is that young people need exposure to situations that require them to lead, in order to develop individual skills that will enable them to be successful group and…
Autonomy, Interdependence, and Social Control: NASA and the Space Shuttle "Challenger."
ERIC Educational Resources Information Center
Vaughan, Diane
1990-01-01
Shows that the organizations responsible for regulating safety at the National Aeronautics and Space Administration (NASA) failed to identify flaws in management procedures and technical design that, if corrected, might have prevented the "Challenger" tragedy. Regulatory effectiveness was inhibited by the autonomy and interdependence of…
1979-08-28
11 EXPERIMENTAL PROGRAM .......................................*16 SHEAR TESTS ON THICK DISBONDED LAMINATES .... ....... 16 COMPRESSIVE BUCKLING OF...DISBONDED LAMINATES ...... .. 17 MECHANICAL CHARACTERIZATION FOR MOISTURE CONDITIONING EFFECTS .................................. 19 ULTRASONIC WAVE...SHEAR OF THICK LAMINATED BEAMS . . . ....... 24 PROPAGATION OF DISBOND IN FATIGUE ..... ............ .. 26 BUCKLING OF DISBONDED COMPRESSION SKIN
"The Bell Curve" and Its Critical Progeny: A Review.
ERIC Educational Resources Information Center
Davis, Alan
1997-01-01
Discusses R. Herrnstein's and C. Murray's attempt to persuade an educated white readership that they, the readers, are genetically, socially, and intellectually superior. The most effective criticisms are those that rely on scientific evidence about the manipulation of data and flawed analyses rather than the display of moral outrage. (SLD)
ERIC Educational Resources Information Center
Skiba, Russell; Casey, Ann
1985-01-01
Results of three forms of meta-analysis on 41 studies involving behavior disorders revealed powerful effects of treatment: both interventions targeting classroom behavior and those attributable to a behavioral orientation were somewhat more powerful and robust. Methodological flaws, however, are cited. Recommendations for solidifying the research…
The Pragmatic Skills of Learning Disabled Children: A Review.
ERIC Educational Resources Information Center
Dudley-Marling, Curtis
1985-01-01
Studies are reviewed in four topic areas: (1) learning disabled (LD) students' spontaneous use of language; (2) their ability to adapt language to listener characteristics; (3) effectiveness of their communications; and (4) their ability to fulfill listener responsibilities. Noted are methodological flaws which cast doubt on implications for…
The Effects of Computer Instruction on College Students' Reading Skills.
ERIC Educational Resources Information Center
Kuehner, Alison V.
1999-01-01
Reviews research concerning computer-based reading instruction for college students. Finds that most studies suggest that computers can provide motivating and efficient learning, but it is not clear whether the computer, or the instruction via computer, accounts for student gains. Notes many methodological flaws in the studies. Suggests…
Investigating the Effectiveness of Special Education: An Analysis of Methodology.
ERIC Educational Resources Information Center
Tindal, Gerald
1985-01-01
The review examines evaluations of the efficacy of special education programs for mildly disabled children. The author suggests that serious methodological flaws make our present knowledge in this area very weak and proposes a methodology to address and overcome many of the limitations of previous research. (Author)
Characterization of Reaction Sintered Silicon Nitride Radomes
1977-10-01
A. Ossin , "A Three Dtraenslonal Stress Analysis on the Effects of a Laser Induced Local Hot Spot on a Silicon Nitride Shell, " Martin Marietta...not stated by Ossin , et al, these boundary conditions are extremes and bracket the realistic case. ** In cases where only a few large flaws limit
Laser-induced damage and fracture in fused silica vacuum windows
NASA Astrophysics Data System (ADS)
Campbell, John H.; Hurst, Patricia A.; Heggins, Dwight D.; Steele, William A.; Bumpas, Stanley E.
1997-05-01
Laser induced damage, that initiates catastrophic fracture, has been observed in large, fused silica lenses that also serve as vacuum barriers in high-fluence positions on the Nova and Beamlet lasers. In nearly all cases damage occurs on the vacuum side of the lens. The damage can lead to catastrophic crack growth if the flaw size exceeds the critical flaw size for SiO2. If the elastic stored energy in the lens in high enough, the lens will fracture into many pieces resulting in an implosion. The consequences of such an implosion can be severe, particularly for large vacuum systems. Three parameters control the degree of fracture in the vacuum barrier window: (1) the elastic stored energy, (2) the ratio of the window thickness to flaw depth and (3) secondary crack propagation. Fracture experiments have ben carried our on 15-cm diameter fused silica windows that contain surface flaws caused by laser damage. The results of these experiments, combined with data from window failures on Beamlet and Nova have been sued to develop design criteria for a 'fail-safe' lens. Specifically the window must be made thick enough such that the peak tensile stress is less than 500 psi and the corresponding ratio of the thickness to critical flaw size is less than 6. Under these conditions a properly mounted window, upon failure, will break into only tow pieces and will not implode. One caveat to these design criteria is that the air leak through the window before secondary crack growth occurs. Finite element stress calculations of a window before and immediately following fracture into two pieces show that the elastic stored energy is redistributed if the fragments 'lock' in place and thereby bridge the opening. In such cases, the peak stresses at the flaw site can increase leading to further crack growth.
Range-Dependent Acoustic Propagation in Shallow Water with Elastic Bottom Effects
2015-09-30
1 DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. Range-Dependent Acoustic Propagation in Shallow Water ...theory is inadequate for properly describing loss in shallow water acoustic propagation. Finally there is range dependence, which can be significant in...work will lead to a practical method to investigate seismo- acoustic propagation in shallow - water environments, and allow us to compare and contrast
SURROGATE MODEL DEVELOPMENT AND VALIDATION FOR RELIABILITY ANALYSIS OF REACTOR PRESSURE VESSELS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hoffman, William M.; Riley, Matthew E.; Spencer, Benjamin W.
In nuclear light water reactors (LWRs), the reactor coolant, core and shroud are contained within a massive, thick walled steel vessel known as a reactor pressure vessel (RPV). Given the tremendous size of these structures, RPVs typically contain a large population of pre-existing flaws introduced in the manufacturing process. After many years of operation, irradiation-induced embrittlement makes these vessels increasingly susceptible to fracture initiation at the locations of the pre-existing flaws. Because of the uncertainty in the loading conditions, flaw characteristics and material properties, probabilistic methods are widely accepted and used in assessing RPV integrity. The Fracture Analysis of Vesselsmore » – Oak Ridge (FAVOR) computer program developed by researchers at Oak Ridge National Laboratory is widely used for this purpose. This program can be used in order to perform deterministic and probabilistic risk-informed analyses of the structural integrity of an RPV subjected to a range of thermal-hydraulic events. FAVOR uses a one-dimensional representation of the global response of the RPV, which is appropriate for the beltline region, which experiences the most embrittlement, and employs an influence coefficient technique to rapidly compute stress intensity factors for axis-aligned surface-breaking flaws. The Grizzly code is currently under development at Idaho National Laboratory (INL) to be used as a general multiphysics simulation tool to study a variety of degradation mechanisms in nuclear power plant components. The first application of Grizzly has been to study fracture in embrittled RPVs. Grizzly can be used to model the thermo-mechanical response of an RPV under transient conditions observed in a pressurized thermal shock (PTS) scenario. The global response of the vessel provides boundary conditions for local 3D models of the material in the vicinity of a flaw. Fracture domain integrals are computed to obtain stress intensity factors, which can in turn be used to assess whether a fracture would initiate at a pre-existing flaw. To use Grizzly for probabilistic analysis, it is necessary to have a way to rapidly evaluate stress intensity factors. To accomplish this goal, a reduced order model (ROM) has been developed to efficiently represent the behavior of a detailed 3D Grizzly model used to calculate fracture parameters. This approach uses the stress intensity factor influence coefficient method that has been used with great success in FAVOR. Instead of interpolating between tabulated solutions, as FAVOR does, the ROM approach uses a response surface methodology to compute fracture solutions based on a sampled set of results used to train the ROM. The main advantages of this approach are that the process of generating the training data can be fully automated, and the procedure can be readily used to consider more general flaw configurations. This paper demonstrates the procedure used to generate a ROM to rapidly compute stress intensity factors for axis-aligned flaws. The results from this procedure are in good agreement with those produced using the traditional influence coefficient interpolation procedure, which gives confidence in this method. This paves the way for applying this procedure for more general flaw configurations.« less
The ability of winter grazing to reduce wildfire size, intensity ...
A recent study by Davies et al. sought to test whether winter grazing could reduce wildfire size, fire behavior metrics, and fire-induced plant mortality in shrub-grasslands. The authors concluded that ungrazed rangelands may experience more fire-induced mortality of native perennial bunchgrasses. The authors also presented several statements regarding the benefits of winter grazing on post-fire plant community responses. However, this commentary will show that the study by Davies et al. has underlying methodological flaws, lacks data necessary to support their conclusions, and does not provide an accurate discussion on the effect of grazing on rangeland ecosystems. Importantly, Davies et al. presented no data on the post-fire mortality of the perennial bunchgrasses or on the changes in plant community composition following their experimental fires. Rather, Davies et al. inferred these conclusions based off their observed fire behavior metrics of maximum temperature and a term described as the “heat load”. However, neither metric is appropriate for elucidating the heat flux impacts on plants. This lack of post-fire data, several methodological flaws, and the use of inadequate metrics describing heat cast doubts on the authors’ ability to support their stated conclusions. This article is a commentary highlights the scientific shortcomings in a forthcoming paper by Davies et al. in the International Journal of Wildland Fire. The study has methodological flaw
DOE Office of Scientific and Technical Information (OSTI.GOV)
Braatz, Brett G.; Cumblidge, Stephen E.; Doctor, Steven R.
2012-12-31
The U.S. Nuclear Regulatory Commission has established the Program to Assess the Reliability of Emerging Nondestructive Techniques (PARENT) as a follow-on to the international cooperative Program for the Inspection of Nickel Alloy Components (PINC). The goal of PINC was to evaluate the capabilities of various nondestructive evaluation (NDE) techniques to detect and characterize surface-breaking primary water stress corrosion cracks in dissimilar-metal welds (DMW) in bottom-mounted instrumentation (BMI) penetrations and small-bore (≈400-mm diameter) piping components. A series of international blind round-robin tests were conducted by commercial and university inspection teams. Results from these tests showed that a combination of conventional andmore » phased-array ultrasound techniques provided the highest performance for flaw detection and depth sizing in dissimilar metal piping welds. The effective detection of flaws in BMIs by eddy current and ultrasound shows that it may be possible to reliably inspect these components in the field. The goal of PARENT is to continue the work begun in PINC and apply the lessons learned to a series of open and blind international round-robin tests that will be conducted on a new set of piping components including large-bore (≈900-mm diameter) DMWs, small-bore DMWs, and BMIs. Open round-robin testing will engage universities and industry worldwide to investigate the reliability of emerging NDE techniques to detect and accurately size flaws having a wide range of lengths, depths, orientations, and locations. Blind round-robin testing will invite testing organizations worldwide, whose inspectors and procedures are certified by the standards for the nuclear industry in their respective countries, to investigate the ability of established NDE techniques to detect and size flaws whose characteristics range from easy to very difficult to detect and size. This paper presents highlights of PINC and reports on the plans and progress for PARENT round-robin tests.« less
Six ways not to improve patient flow: a qualitative study.
Kreindler, Sara Adi
2017-05-01
Although well-established principles exist for improving the timeliness and efficiency of care, many organisations struggle to achieve more than small-scale, localised gains. Where care processes are complex and include segments under different groups' control, the elegant solutions promised by improvement methodologies remain elusive. This study sought to identify common design flaws that limit the impact of flow initiatives. This qualitative study was conducted within an explanatory case study of a Canadian regional health system in which multitudinous flow initiatives had yielded no overall improvement in system performance. Interviews with 62 senior, middle and departmental managers, supplemented by ∼700 documents on flow initiatives, were analysed using the constant comparative method. Findings suggested that smooth flow depends on linking a defined population to appropriate capacity by means of an efficient process ; flawed initiatives reflected failure to consider one or more of these essential elements. Many initiatives focused narrowly on process, failing to consider that the intended population was poorly defined or the needed capacity inaccessible; some introduced capacity for an intended population, but offered no process to link the two. Moreover, interveners were unable to respond effectively when a bottleneck moved to another part of the system. Errors of population, capacity and process, in different combinations, generated six 'formulae for failure'. Typically, flawed initiatives focused on too small a segment of the patient journey to properly address the impediments to flow. The proliferation of narrowly focused initiatives, in turn, reflected a decentralised system in which responsibility for flow improvement was fragmented. Thus, initiatives' specific design flaws may have their roots in a deeper problem: the lack of a coherent system-level strategy. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/.
Primary Science Assessment Item Setters' Misconceptions Concerning the State Changes of Water
ERIC Educational Resources Information Center
Boo, Hong Kwen
2006-01-01
Assessment is an integral and vital part of teaching and learning, providing feedback on progress through the assessment period to both learners and teachers. However, if test items are flawed because of misconceptions held by the questions setter, then such test items are invalid as assessment tools. Moreover, such flawed items are also likely to…
Five Flaws of Staff Development and the Future Beyond
ERIC Educational Resources Information Center
Hargreaves, Andy
2007-01-01
Student learning and development do not occur without teacher learning and development. Not any teacher development will do, though. The old flaws of weak and wayward staff development are well-known--no staff development, in which trial and error are assumed to be enough; staff development that is all ideas and no implementation, i.e. the…
Primary Science Assessment Item Setters' Misconceptions Concerning Biological Science Concepts
ERIC Educational Resources Information Center
Boo, Hong Kwen
2007-01-01
Assessment is an integral and vital part of teaching and learning, providing feedback on progress through the assessment period to both learners and teachers. However, if test items are flawed because of misconceptions held by the question setter, then such test items are invalid as assessment tools. Moreover, such flawed items are also likely to…
A Critique of Books for College Libraries, 2d ed.
ERIC Educational Resources Information Center
Pownall, David E.
The second edition of "Books for College Libraries," a six-volume work listing 38,651 titles is flawed, although it shows merit, and should be useful. Quality of selections and coverage range from good through excellent to superb. The primary flaws relate to the quality and extent of selections, particularly for such disciplines as history and…
ERIC Educational Resources Information Center
Côté, James E.
2014-01-01
This article examines the theory of emerging adulthood, introduced into the literature by Arnett (2000), in terms of its methodological and evidential basis, and finds it to be unsubstantiated on numerous grounds. Other, more convincing, formulations of variations in the transition to adulthood are examined. Most flawed academic theories are…
Study of acoustic emission during mechanical tests of large flight weight tank structure
NASA Technical Reports Server (NTRS)
Nakamura, Y.; Mccauley, B. O.; Veach, C. L.
1972-01-01
A polyphenylane oxide insulated, flight weight, subscale, aluminum tank was monitored for acoustic emissions during a proof test and during 100 cycles of environmental test simulating space flights. The use of a combination of frequency filtering and appropriate spatial filtering to reduce background noise was found to be sufficient to detect acoustic emission signals of relatively small intensity expected from subcritical crack growth in the structure. Several emission source locations were identified, including the one where a flaw was detected by post-test X-ray inspections. For most source locations, however, post-test inspections did not detect flaws; this was partially attributed to the higher sensitivity of the acoustic emission technique than any other currently available NDT method for detecting flaws.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lam, Poh-Sang; Sindelar, Robert L.
A typical multipurpose canister (MPC) is made of austenitic stainless steel and is loaded with spent nuclear fuel assemblies. Because heat treatment for stress relief is not required for the construction of the MPC, the canister is susceptible to stress corrosion cracking in the weld or heat affected zone regions under long-term storage conditions. Logic for flaw acceptance is developed should crack-like flaws be detected by Inservice Inspection. The procedure recommended by API 579-1/ASME FFS-1, Fitness-for-Service, is used to calculate the instability crack length or depth by failure assessment diagram. It is demonstrated that the welding residual stress has amore » strong influence on the results.« less
Lam, Poh-Sang; Sindelar, Robert L.
2016-04-28
A typical multipurpose canister (MPC) is made of austenitic stainless steel and is loaded with spent nuclear fuel assemblies. Because heat treatment for stress relief is not required for the construction of the MPC, the canister is susceptible to stress corrosion cracking in the weld or heat affected zone regions under long-term storage conditions. Logic for flaw acceptance is developed should crack-like flaws be detected by Inservice Inspection. The procedure recommended by API 579-1/ASME FFS-1, Fitness-for-Service, is used to calculate the instability crack length or depth by failure assessment diagram. It is demonstrated that the welding residual stress has amore » strong influence on the results.« less
ERIC Educational Resources Information Center
Rowan, Leonie; Mayer, Diane; Kline, Jodie; Kostogriz, Alex; Walker-Gibbs, Bernadette
2015-01-01
There have been more than 100 reports focusing on the effectiveness of teacher education in Australia over the last 35 years with many positioning teacher education as flawed and in need of reform. These frequent criticisms have drawn attention to the difficulty teacher educators can experience when trying to interrupt or contest this…
Multi-Scale Effects in the Strength of Ceramics
Cook, Robert F.
2016-01-01
Multiple length-scale effects are demonstrated in indentation-strength measurements of a range of ceramic materials under inert and reactive conditions. Meso-scale effects associated with flaw disruption by lateral cracking at large indentation loads are shown to increase strengths above the ideal indentation response. Micro-scale effects associated with toughening by microstructural restraints at small indentation loads are shown to decrease strengths below the ideal response. A combined meso-micro-scale analysis is developed that describes ceramic inert strength behaviors over the complete indentation flaw size range. Nano-scale effects associated with chemical equilibria and crack velocity thresholds are shown to lead to invariant minimum strengths at slow applied stressing rates under reactive conditions. A combined meso-micro-nano-scale analysis is developed that describes the full range of reactive and inert strength behaviors as a function of indentation load and applied stressing rate. Applications of the multi-scale analysis are demonstrated for materials design, materials selection, toughness determination, crack velocity determination, bond-rupture parameter determination, and prediction of reactive strengths. The measurements and analysis provide strong support for the existence of sharp crack tips in ceramics such that the nano-scale mechanisms of discrete bond rupture are separate from the larger scale crack driving force mechanics characterized by continuum-based stress-intensity factors. PMID:27563150
Combining FMEA with DEMATEL models to solve production process problems
Tsai, Sang-Bing; Zhou, Jie; Gao, Yang; Wang, Jiangtao; Li, Guodong; Zheng, Yuxiang; Ren, Peng; Xu, Wei
2017-01-01
Failure mode and effects analysis (FMEA) is an analysis tool for identifying and preventing flaws or defects in products during the design and process planning stage, preventing the repeated occurrence of problems, reducing the effects of these problems, enhancing product quality and reliability, saving costs, and improving competitiveness. However, FMEA can only analyze one influence factor according to its priority, rendering this method ineffective for systems containing multiple FMs whose effects are simultaneous or interact with one another. Accordingly, when FMEA fails to identify the influence factors and the factors being influenced, the most crucial problems may be placed in lower priority or remain unresolved. Decision-Making Trial and Evaluation Laboratory (DEMATEL) facilitates the determination of cause and effect factors; by identifying the causal factors that should be prioritized, prompt and effective solutions to core problems can be derived, thereby enhancing performance. Using the photovoltaic cell manufacturing industry in China as the research target, the present study combined FMEA with DEMATEL to amend the flaws of FMEA and enhance its effectiveness. First, FMEA was used to identify items requiring improvement. Then, DEMATEL was employed to examine the interactive effects and causal relationships of these items. Finally, the solutions to the problems were prioritized. The proposed method effectively combined the advantages of FMEA and DEMATEL to facilitate the identification of core problems and prioritization of solutions in the Chinese photovoltaic cell industry. PMID:28837663
Combining FMEA with DEMATEL models to solve production process problems.
Tsai, Sang-Bing; Zhou, Jie; Gao, Yang; Wang, Jiangtao; Li, Guodong; Zheng, Yuxiang; Ren, Peng; Xu, Wei
2017-01-01
Failure mode and effects analysis (FMEA) is an analysis tool for identifying and preventing flaws or defects in products during the design and process planning stage, preventing the repeated occurrence of problems, reducing the effects of these problems, enhancing product quality and reliability, saving costs, and improving competitiveness. However, FMEA can only analyze one influence factor according to its priority, rendering this method ineffective for systems containing multiple FMs whose effects are simultaneous or interact with one another. Accordingly, when FMEA fails to identify the influence factors and the factors being influenced, the most crucial problems may be placed in lower priority or remain unresolved. Decision-Making Trial and Evaluation Laboratory (DEMATEL) facilitates the determination of cause and effect factors; by identifying the causal factors that should be prioritized, prompt and effective solutions to core problems can be derived, thereby enhancing performance. Using the photovoltaic cell manufacturing industry in China as the research target, the present study combined FMEA with DEMATEL to amend the flaws of FMEA and enhance its effectiveness. First, FMEA was used to identify items requiring improvement. Then, DEMATEL was employed to examine the interactive effects and causal relationships of these items. Finally, the solutions to the problems were prioritized. The proposed method effectively combined the advantages of FMEA and DEMATEL to facilitate the identification of core problems and prioritization of solutions in the Chinese photovoltaic cell industry.
Plate Wave Resonance with Air-Coupled Ultrasonics
NASA Astrophysics Data System (ADS)
Bar, H. N.; Dayal, V.; Barnard, D.; Hsu, D. K.
2010-02-01
Air-coupled ultrasonic transducers can excite plate waves in metals and composites. The coincidence effect, i.e., the wave vector of plate wave coincides with projection of exciting airborne sound vector, leads to a resonance which strongly amplifies the sound transmission through the plate. The resonance depends on the angle of incidence and the frequency. In the present study, the incidence angle for maximum transmission (θmax) is measured in plates of steel, aluminum, carbon fiber reinforced composites and honeycomb sandwich panels. The variations of (θmax) with plate thickness are compared with theoretical values in steel, aluminum and quasi-isotropic carbon fiber composites. The enhanced transmission of air-coupled ultrasound at oblique incidence can substantially improve the probability of flaw detection in plates and especially in honeycomb structures. Experimental air-coupled ultrasonic scan of subtle flaws in CFRP laminates showed definite improvement of signal-to-noise ratio with oblique incidence at θmax.
The Fundamental Flaws of Immunoassays and Potential Solutions Using Tandem Mass Spectrometry
Hoofnagle, Andrew N.; Wener, Mark H.
2009-01-01
Immunoassays have made it possible to measure dozens of individual proteins and other analytes in human samples for help in establishing the diagnosis and prognosis of disease. In too many cases the results of those measurements are misleading and can lead to unnecessary treatment or missed opportunities for therapeutic interventions. These cases stem from problems inherent to immunoassays performed with human samples, which include a lack of concordance across platforms, autoantibodies, anti-reagent antibodies, and the high-dose hook effect. Tandem mass spectrometry may represent a detection method capable of alleviating many of the flaws inherent to immunoassays. We review our understanding of the problems associated with immunoassays on human specimens and describe methodologies using tandem mass spectrometry that could solve some of those problems. We also provide a critical discussion of the potential pitfalls of novel mass spectrometric approaches in the clinical laboratory. PMID:19538965
NASA Technical Reports Server (NTRS)
Hall, L. R.; Finger, R. W.
1972-01-01
Fracture and crack growth resistance characteristics of 304 stainless steel alloy weldments as relating to retesting of cryogenic vessels were examined. Welding procedures were typical of those used in full scale vessel fabrication. Fracture resistance survey tests were conducted in room temperature air, liquid nitrogen and liquid hydrogen. In air, both surface-flawed and center-cracked panels containing cracks in weld metal, fusion line, heat-affected zone, or parent metal were tested. In liquid nitrogen and liquid hydrogen, tests were conducted using center-cracked panels containing weld centerline cracks. Load-unload, sustained load, and cyclic load tests were performed in air or hydrogen gas, liquid nitrogen, and liquid hydrogen using surface-flawed specimens containing weld centerline cracks. Results were used to evaluate the effectiveness of periodic proof overloads in assuring safe and reliable operation of over-the-road cryogenic dewars.
Profitable failure: antidepressant drugs and the triumph of flawed experiments.
McGoey, Linsey
2010-01-01
Drawing on an analysis of Irving Kirsch and colleagues' controversial 2008 article in "PLoS [Public Library of Science] Magazine" on the efficacy of SSRI antidepressant drugs such as Prozac, I examine flaws within the methodologies of randomized controlled trials (RCTs) that have made it difficult for regulators, clinicians and patients to determine the therapeutic value of this class of drug. I then argue, drawing analogies to work by Pierre Bourdieu and Michael Power, that it is the very limitations of RCTs -- their inadequacies in producing reliable evidence of clinical effects -- that help to strengthen assumptions of their superiority as methodological tools. Finally, I suggest that the case of RCTs helps to explore the question of why failure is often useful in consolidating the authority of those who have presided over that failure, and why systems widely recognized to be ineffective tend to assume greater authority at the very moment when people speak of their malfunction.
Miguel, Magalhaes Amade
2015-01-01
Shallow basal root growth angle (BRGA) increases phosphorus acquisition efficiency by enhancing topsoil foraging because in most soils, phosphorus is concentrated in the topsoil. Root hair length and density (RHL/D) increase phosphorus acquisition by expanding the soil volume subject to phosphorus depletion through diffusion. We hypothesized that shallow BRGA and large RHL/D are synergetic for phosphorus acquisition, meaning that their combined effect is greater than the sum of their individual effects. To evaluate this hypothesis, phosphorus acquisition in the field in Mozambique was compared among recombinant inbred lines of common bean (Phaseolus vulgaris) having four distinct root phenotypes: long root hairs and shallow basal roots, long root hairs and deep basal roots, short root hairs and shallow basal roots, and short root hairs and deep basal roots. The results revealed substantial synergism between BRGA and RHL/D. Compared with short-haired, deep-rooted phenotypes, long root hairs increased shoot biomass under phosphorus stress by 89%, while shallow roots increased shoot biomass by 58%. Genotypes with both long root hairs and shallow roots had 298% greater biomass accumulation than short-haired, deep-rooted phenotypes. Therefore, the utility of shallow basal roots and long root hairs for phosphorus acquisition in combination is twice as large as their additive effects. We conclude that the anatomical phene of long, dense root hairs and the architectural phene of shallower basal root growth are synergetic for phosphorus acquisition. Phene synergism may be common in plant biology and can have substantial importance for plant fitness, as shown here. PMID:25699587
Detection of Fatigue Cracks at Rivets with Self-Nulling Probe
NASA Technical Reports Server (NTRS)
Wincheski, Buzz; Fulton, Jim; Nath, Shridhar; Namkung, Min
1994-01-01
A new eddy current probe developed at NASA Langley Research Center has been used to detect small cracks at rivets in aircraft lap splices [1]. The device has earlier been used to detect isolated fatigue cracks with a minimum detectable flaw size of roughly 1/2 to 1/3 the diameter of the probe [2]. The present work shows that the detectable flaw size for cracks originating at rivets can be greatly improved upon from that of isolated flaws. The use of a rotating probe method combined with spatial filtering has been used to detect 0.18 cm EDM notches, as measured from the rivet shank, with a 1.27 cm diameter probe and to detect flaws buried under the rivet head, down to a length of 0.076 cm, using a 0.32 cm diameter probe. The Self-Nulling Electromagnetic Flaw Detector induces a high density eddy current ring in the sample under test. A ferromagnetic flux focusing lens is incorporated such that in the absence of any inhomogeneities in the material under test only a minimal magnetic field will reach the interior of the probe. A magnetometer (pickup coil) located in the center of the probe therefore registers a null voltage in the absence of material defects. When a fatigue crack or other discontinuity is present in the test article the path of the eddy currents in the material is changed. The magnetic field associated with these eddy currents then enter into the interior of the probe, producing a large output voltage across the pickup coil leads. Further
DOE Office of Scientific and Technical Information (OSTI.GOV)
Anderson, Michael T.; Diaz, Aaron A.; Cinson, Anthony D.
2014-03-24
PNNL conducted a technical assessment of the NDE issues and protocols that led to missed detections of several axially oriented flaws in a steam generator primary inlet dissimilar metal weld at North Anna Power Station, Unit 1 (NAPS-1). This particular component design exhibits a significant outside-diameter (OD) taper that is not included as a blind performance demonstration mock-up within the industry’s Performance Demonstration Initiative, administered by EPRI. For this reason, the licensee engaged EPRI to assist in the development of a technical justification to support the basis for a site-specific qualification. The service-induced flaws at NAPS-1 were eventually detected asmore » a result of OD surface machining in preparation for a full structural weld overlay. The machining operation uncovered the existence of two through-wall flaws, based on the observance of primary water leaking from the dissimilar metal weld. A total of five axially oriented flaws were detected in varied locations around the weld circumference. The field volumetric examination that was conducted at NAPS-1 was a non-encoded, real-time manual ultrasonic examination. PNNL conducted both an initial assessment, and subsequently, a more rigorous technical evaluation (reported here), which has identified an array of NDE issues that may have led to the subject missed detections. These evaluations were performed through technical reviews and discussions with NRC staff, EPRI NDE Center personnel, industry and ISI vendor personnel, and ultrasonic transducer manufacturers, and laboratory tests, to better understand the underlying issues at North Anna.« less
Using Autobiographical Essays to Encourage Student Reflection on Socialization Experiences
ERIC Educational Resources Information Center
Betourne, Joshua A.; Richards, K. Andrew R.
2015-01-01
Students enter physical education teacher education (PETE) programs with preconceived notions about what it means to be a physical educator, developed in response to their own experiences in K-12 physical education. These preconceived notions may be flawed or incomplete and, in order to be effective, PETE programs must help preservice teachers…
Number of Siblings and Intellectual Development: The Resource Dilution Explanation.
ERIC Educational Resources Information Center
Downey, Douglas B.
2001-01-01
Resource dilution model suggests that as the number of children increases, parental resources for each child decline. Assesses whether resource dilution could explain the effect of siblings on intellectual development tests. Identifies flaws in recent critiques of this position, discussing it as an explanation for why children with few siblings…
Four Bad Habits of Modern Psychologists
Grice, James; Cota, Lisa; Taylor, Zachery; Garner, Samantha; Medellin, Eliwid; Vest, Adam
2017-01-01
Four data sets from studies included in the Reproducibility Project were re-analyzed to demonstrate a number of flawed research practices (i.e., “bad habits”) of modern psychology. Three of the four studies were successfully replicated, but re-analysis showed that in one study most of the participants responded in a manner inconsistent with the researchers’ theoretical model. In the second study, the replicated effect was shown to be an experimental confound, and in the third study the replicated statistical effect was shown to be entirely trivial. The fourth study was an unsuccessful replication, yet re-analysis of the data showed that questioning the common assumptions of modern psychological measurement can lead to novel techniques of data analysis and potentially interesting findings missed by traditional methods of analysis. Considered together, these new analyses show that while it is true replication is a key feature of science, causal inference, modeling, and measurement are equally important and perhaps more fundamental to obtaining truly scientific knowledge of the natural world. It would therefore be prudent for psychologists to confront the limitations and flaws in their current analytical methods and research practices. PMID:28805739
Four Bad Habits of Modern Psychologists.
Grice, James; Barrett, Paul; Cota, Lisa; Felix, Crystal; Taylor, Zachery; Garner, Samantha; Medellin, Eliwid; Vest, Adam
2017-08-14
Four data sets from studies included in the Reproducibility Project were re-analyzed to demonstrate a number of flawed research practices (i.e., "bad habits") of modern psychology. Three of the four studies were successfully replicated, but re-analysis showed that in one study most of the participants responded in a manner inconsistent with the researchers' theoretical model. In the second study, the replicated effect was shown to be an experimental confound, and in the third study the replicated statistical effect was shown to be entirely trivial. The fourth study was an unsuccessful replication, yet re-analysis of the data showed that questioning the common assumptions of modern psychological measurement can lead to novel techniques of data analysis and potentially interesting findings missed by traditional methods of analysis. Considered together, these new analyses show that while it is true replication is a key feature of science, causal inference, modeling, and measurement are equally important and perhaps more fundamental to obtaining truly scientific knowledge of the natural world. It would therefore be prudent for psychologists to confront the limitations and flaws in their current analytical methods and research practices.
A Research on E - learning Resources Construction Based on Semantic Web
NASA Astrophysics Data System (ADS)
Rui, Liu; Maode, Deng
Traditional e-learning platforms have the flaws that it's usually difficult to query or positioning, and realize the cross platform sharing and interoperability. In the paper, the semantic web and metadata standard is discussed, and a kind of e - learning system framework based on semantic web is put forward to try to solve the flaws of traditional elearning platforms.
ERIC Educational Resources Information Center
Ferenc, Jaroslav; Cervenák, Filip; Bircák, Erik; Juríková, Katarína; Goffová, Ivana; Gorilák, Peter; Huraiová, Barbora; Plavá, Jana; Demecsová, Loriana; Duríková, Nikola; Galisová, Veronika; Gazdarica, Matej; Puškár, Marek; Nagy, Tibor; Nagyová, Sona; Mentelová, Lucia; Slaninová, Miroslava; Ševcovicová, Andrea; Tomáška, Lubomír
2018-01-01
As future scientists, university students need to learn how to avoid making errors in their own manuscripts, as well as how to identify flaws in papers published by their peers. Here we describe a novel approach on how to promote students' ability to critically evaluate scientific articles. The exercise is based on instructing teams of students to…
Leitch and Higher Education: The Impact and Relevance of the Review of Skills
ERIC Educational Resources Information Center
Birds, Rachel
2010-01-01
This article sets the Leitch Review of Skills in the context of the wider skills debate and draws attention to potential flaws, of which higher education (HE) managers need to be aware when responding to this policy pressure. It argues that there are fundamental flaws in the Leitch report arising from underlying assumptions which are unproven in…
Window flaw detection by backscatter lighting
NASA Technical Reports Server (NTRS)
Crockett, L. K.; Minton, F. R.
1978-01-01
Portable fiber-optic probe detects tiny flaws in transparent materials. Probe transmits light through surface to illuminate interior of material by backscattering off its edges. Light-sensitive contact paper records scratch pattern. Technique can be used for rapid visual checks. Flexible fiber optics are safely used in explosive or flammable areas; they present no hazard of breakage or contamination in controlled environments.
NASA Astrophysics Data System (ADS)
Trillon, Adrien
Eddy current tomography can be employed to caracterize flaws in metal plates in steam generators of nuclear power plants. Our goal is to evaluate a map of the relative conductivity that represents the flaw. This nonlinear ill-posed problem is difficult to solve and a forward model is needed. First, we studied existing forward models to chose the one that is the most adapted to our case. Finite difference and finite element methods matched very good to our application. We adapted contrast source inversion (CSI) type methods to the chosen model and a new criterion was proposed. These methods are based on the minimization of the weighted errors of the model equations, coupling and observation. They allow an error on the equations. It appeared that reconstruction quality grows with the decay of the error on the coupling equation. We resorted to augmented Lagrangian techniques to constrain coupling equation and to avoid conditioning problems. In order to overcome the ill-posed character of the problem, prior information was introduced about the shape of the flaw and the values of the relative conductivity. Efficiency of the methods are illustrated with simulated flaws in 2D case.
Marin Dos Santos, Douglas H; Atallah, Álvaro N
2015-01-01
The relationship between clinical research and the pharmaceutical industry has placed clinical trials in jeopardy. According to the medical literature, more than 70% of clinical trials are industry-funded. Many of these trials remain unpublished or have methodological flaws that distort their results. In 2007, it was signed into law the Food and Drug Administration Amendments Act (FDAAA), aiming to provide publicly access to a broad range of biomedical information to be made available on the platform ClinicalTrials (available at https://www.clinicaltrials.gov). We accessed ClinicalTrials.gov and evaluated the compliance of researchers and sponsors with the FDAAA. Our sample comprised 243 protocols of clinical trials of biological monoclonal antibodies (mAb) adalimumab, bevacizumab, infliximab, rituximab, and trastuzumab. We demonstrate that the new legislation has positively affected transparency patterns in clinical research, through a significant increase in publication and online reporting rates after the enactment of the law. Poorly designed trials, however, remain a challenge to be overcome, due to a high prevalence of methodological flaws. These flaws affect the quality of clinical information available, breaching ethical duties of sponsors and researchers, as well as the human right to health.
Atallah, Álvaro N.
2015-01-01
The relationship between clinical research and the pharmaceutical industry has placed clinical trials in jeopardy. According to the medical literature, more than 70% of clinical trials are industry-funded. Many of these trials remain unpublished or have methodological flaws that distort their results. In 2007, it was signed into law the Food and Drug Administration Amendments Act (FDAAA), aiming to provide publicly access to a broad range of biomedical information to be made available on the platform ClinicalTrials (available at https://www.clinicaltrials.gov). We accessed ClinicalTrials.gov and evaluated the compliance of researchers and sponsors with the FDAAA. Our sample comprised 243 protocols of clinical trials of biological monoclonal antibodies (mAb) adalimumab, bevacizumab, infliximab, rituximab, and trastuzumab. We demonstrate that the new legislation has positively affected transparency patterns in clinical research, through a significant increase in publication and online reporting rates after the enactment of the law. Poorly designed trials, however, remain a challenge to be overcome, due to a high prevalence of methodological flaws. These flaws affect the quality of clinical information available, breaching ethical duties of sponsors and researchers, as well as the human right to health. PMID:26131374
Effects of shell morphology on mechanics of zebra and quagga mussel locomotion
S. M. Peyer; J. C. Hermanson; C. E. Lee
2011-01-01
Although zebra mussels (Dreissena polymorpha) initially colonized shallow habitats within the North American Great Lakes, quagga mussels (Dreissena bugensis) are becoming dominant in both shallow- and deep-water habitats. Shell morphology differs among zebra, shallow quagga and deep quagga mussels but functional consequences of...
Khan, Moeen-uz-Zafar; Aljarallah, Badr Muhammad
2011-01-01
Objectives: Developing and testing the cognitive skills and abstract thinking of undergraduate medical students are the main objectives of problem based learning. Modified Essay Questions (MEQ) and Multiple Choice Questions (MCQ) may both be designed to test these skills. The objectives of this study were to assess the effectiveness of both forms of questions in testing the different levels of the cognitive skills of undergraduate medical students and to detect any item writing flaws in the questions. Methods: A total of 50 MEQs and 50 MCQs were evaluated. These questions were chosen randomly from various examinations given to different batches of undergraduate medical students taking course MED 411–412 at the Department of Medicine, Qassim University from the years 2005 to 2009. The effectiveness of the questions was determined by two assessors and was defined by the question’s ability to measure higher cognitive skills, as determined by modified Bloom’s taxonomy, and its quality as determined by the presence of item writing flaws. ‘SPSS15’ and ‘Medcalc’ programs were used to tabulate and analyze the data. Results: The percentage of questions testing the level III (problem solving) cognitive skills of the students was 40% for MEQs and 60% for the MCQs; the remaining questions merely assessed the recall and comprehension. No significant difference was found between MEQ and MCQ in relation to the type of questions (recall; comprehension or problem solving x2 = 5.3, p = 0.07).The agreement between the two assessors was quite high in case of MCQ (kappa=0.609; SE 0.093; 95%CI 0.426 – 0.792) but lower in case of MEQ (kappa=0.195; SE 0.073; 95%CI 0.052 – 0.338). 16% of the MEQs and 12% of the MCQs had item writing flaws. Conclusion: A well constructed MCQ is superior to MEQ in testing the higher cognitive skills of undergraduate medical students in a problem based learning setup. Constructing an MEQ for assessing the cognitive skills of a student is not a simple task and is more frequently associated with item writing flaws. PMID:22489228
Single crystal metal wedges for surface acoustic wave propagation
Fisher, E.S.
1980-05-09
An ultrasonic testing device has been developed to evaluate flaws and inhomogeneities in the near-surface region of a test material. A metal single crystal wedge is used to generate high frequency Rayleigh surface waves in the test material surface by conversion of a slow velocity, bulk acoustic mode in the wedge into a Rayleigh wave at the metal-wedge test material interface. Particular classes of metals have been found to provide the bulk acoustic modes necessary for production of a surface wave with extremely high frequency and angular collimation. The high frequency allows flaws and inhomogeneities to be examined with greater resolution. The high degree of angular collimation for the outgoing ultrasonic beam permits precision angular location of flaws and inhomogeneities in the test material surface.
Single crystal metal wedges for surface acoustic wave propagation
Fisher, Edward S.
1982-01-01
An ultrasonic testing device has been developed to evaluate flaws and inhomogeneities in the near-surface region of a test material. A metal single crystal wedge is used to generate high frequency Rayleigh surface waves in the test material surface by conversion of a slow velocity, bulk acoustic mode in the wedge into a Rayleigh wave at the metal-wedge test material interface. Particular classes of metals have been found to provide the bulk acoustic modes necessary for production of a surface wave with extremely high frequency and angular collimation. The high frequency allows flaws and inhomogeneities to be examined with greater resolution. The high degree of angular collimation for the outgoing ultrasonic beam permits precision angular location of flaws and inhomogeneities in the test material surface.
Method and apparatus for detecting flaws and defects in heat seals
NASA Technical Reports Server (NTRS)
Rai, Kula R. (Inventor); Lew, Thomas M. (Inventor); Sinclair, Robert B. (Inventor)
1993-01-01
Flaws and defects in heat seals formed between sheets of translucent film are identified by optically examining consecutive lateral sections of the seal along the seal length. Each lateral seal section is illuminated and an optical sensor array detects the intensity of light transmitted through the seal section for the purpose of detecting and locating edges in the heat seal. A line profile for each consecutive seal section is derived having an amplitude proportional to the change in light intensity across the seal section. Instances in the derived line profile where the amplitude is greater than a threshold level indicate the detection of a seal edge. The detected edges in each derived line profile are then compared to a preset profile edge standard to identify the existence of a flaw or defect.
Proactive Security Testing and Fuzzing
NASA Astrophysics Data System (ADS)
Takanen, Ari
Software is bound to have security critical flaws, and no testing or code auditing can ensure that software is flaw-less. But software security testing requirements have improved radically during the past years, largely due to criticism from security conscious consumers and Enterprise customers. Whereas in the past, security flaws were taken for granted (and patches were quietly and humbly installed), they now are probably one of the most common reasons why people switch vendors or software providers. The maintenance costs from security updates often add to become one of the biggest cost items to large Enterprise users. Fortunately test automation techniques have also improved. Techniques like model-based testing (MBT) enable efficient generation of security tests that reach good confidence levels in discovering zero-day mistakes in software. This technique is called fuzzing.
Detector-device-independent quantum secret sharing with source flaws.
Yang, Xiuqing; Wei, Kejin; Ma, Haiqiang; Liu, Hongwei; Yin, Zhenqiang; Cao, Zhu; Wu, Lingan
2018-04-10
Measurement-device-independent entanglement witness (MDI-EW) plays an important role for detecting entanglement with untrusted measurement device. We present a double blinding-attack on a quantum secret sharing (QSS) protocol based on GHZ state. Using the MDI-EW method, we propose a QSS protocol against all detector side-channels. We allow source flaws in practical QSS system, so that Charlie can securely distribute a key between the two agents Alice and Bob over long distances. Our protocol provides condition on the extracted key rate for the secret against both external eavesdropper and arbitrary dishonest participants. A tight bound for collective attacks can provide good bounds on the practical QSS with source flaws. Then we show through numerical simulations that using single-photon source a secure QSS over 136 km can be achieved.
Investigating reliability attributes of silicon photovoltaic cells - An overview
NASA Technical Reports Server (NTRS)
Royal, E. L.
1982-01-01
Reliability attributes are being developed on a wide variety of advanced single-crystal silicon solar cells. Two separate investigations: cell-contact integrity (metal-to-silicon adherence), and cracked cells identified with fracture-strength-reducing flaws are discussed. In the cell-contact-integrity investigation, analysis of contact pull-strength data shows that cell types made with different metallization technologies, i.e., vacuum, plated, screen-printed and soldered, have appreciably different reliability attributes. In the second investigation, fracture strength was measured using Czochralski wafers and cells taken at various stages of processing and differences were noted. Fracture strength, which is believed to be governed by flaws introduced during wafer sawing, was observed to improve (increase) after chemical polishing and other process steps that tend to remove surface and edge flaws.
Thompson, Donald O.; Wormley, Samuel J.
1989-03-28
A multi-viewing ultrasound transducer acquisition system for non-destructive evaluation, flaw detection and flaw reconstruction in materials. A multiple transducer assembly includes a central transducer surrounded by a plurality of perimeter transducers, each perimeter transducer having an axis of transmission which can be angularly oriented with respect to the axis of transmission of the central transducer to intersect the axis of transmission of the central transducer. A control apparatus automatically and remotely positions the transducer assembly with respect to the material by a positioning apparatus and adjusts the pe GRANT REFERENCE This invention was conceived and reduced to practice at least in part under a grant from the Department of Energy under Contract No. W-7407-ENG-82.
Laminar Flow in the Ocean Ekman Layer
NASA Astrophysics Data System (ADS)
Woods, J. T. H.
INTRODUCTION THE EFFECT OF A STABLE DENSITY GRADIENT THE FATAL FLAW FLOW VISUALIZATION THE DISCOVERY OF LAMINAR FLOW FINE STRUCTURE WAVE-INDUCED SHEAR INSTABILITY BILLOW TURBULENCE REVERSE TRANSITION REVISED PARADIGM ONE-DIMENSIONAL MODELLING OF THE UPPER OCEAN DIURNAL VARIATION BUOYANT CONVECTION BILLOW TURBULENCE IN THE DIURNAL THERMOCLINE CONSEQUENCES FOR THE EKMAN CURRENT PROFILE SOLAR RADIATION APPLICATIONS Slippery Seas of Acapulco Pollution Afternoon Effect in Sonar Patchiness Fisheries Climate DISCUSSION CONCLUSION REFERENCES
NASA Astrophysics Data System (ADS)
Jin, Ke; Rao, Wenbo; Tan, Hongbing; Song, Yinxian; Yong, Bin; Zheng, Fangwen; Chen, Tangqing; Han, Liangfeng
2018-04-01
The recharge mechanism of groundwater in the Badain Jaran Desert, North China has been a focus of research and still disputable in the past two decades. In this study, the chemical and hydrogen (H) and oxygen (O) isotopic characteristics of shallow groundwater, lake water and local precipitation in the Badain Jaran Desert and neighboring areas were investigated to reveal the relationships between various water bodies and the recharge source of shallow groundwater. Isotopic and hydrogeochemical results show that (1) shallow groundwater was associated with local precipitation in the Ayouqi and Yabulai regions, (2) lake water was mainly recharged by groundwater in the desert hinterland, (3) shallow groundwater of the desert hinterland, Yabulai Mountain and Gurinai Grassland had a common recharge source. Shallow groundwater of the desert hinterland had a mean recharge elevation of 1869 m a.s.l. on the basis of the isotope-altitude relationship and thus originated chiefly from lateral infiltration of precipitation in the Yabulai Mountain. It is further concluded that shallow groundwater flowed towards the Gurinai Grassland according to the groundwater table contour map. Along the flow pathway, the H-O isotopic variations were primarily caused by the evaporation effect but chemical variations of shallow groundwater were affected by multiple factors, e.g., evaporation effect, dilution effect of occasional heavy-precipitation and dissolution of aquifer evaporites. Our findings provide new insight into the groundwater cycle and benefit the management of the limited water resources in the arid desert area.
NASA Astrophysics Data System (ADS)
Zhang, X.; Connelly, D.; Takeuchi, H.; Hytha, M.; Mears, R. J.; Rubin, L. M.; Liu, T.-J. K.
2018-03-01
The effects of oxygen-inserted (OI) layers on the diffusion of boron (B), phosphorus (P), and arsenic (As) in silicon (Si) are investigated, for ultra-shallow junction formation by high-dose ion implantation followed by rapid thermal annealing. The projected range (Rp) of the implanted dopants is shallower than the depth of the OI layers. Secondary ion mass spectrometry is used to compare the dopant profiles in silicon samples that have OI layers against the dopant profiles in control samples that do not have OI layers. Diffusion is found to be substantially retarded by the OI layers for B and P, and less for As, providing shallower junction depth. The experimental results suggest that the OI layers serve to block the diffusion of Si self-interstitials and thereby effectively reduce interstitial-aided diffusion beyond the depth of the OI layers. The OI layers also help to retain more dopants within the Si, which technology computer-aided design simulations indicate to be beneficial for achieving shallower junctions with lower sheet resistance to enable further miniaturization of planar metal-oxide-semiconductor field-effect transistors for improved integrated-circuit performance and cost per function.
Emissivity corrected infrared method for imaging anomalous structural heat flows
Del Grande, Nancy K.; Durbin, Philip F.; Dolan, Kenneth W.; Perkins, Dwight E.
1995-01-01
A method for detecting flaws in structures using dual band infrared radiation. Heat is applied to the structure being evaluated. The structure is scanned for two different wavelengths and data obtained in the form of images. Images are used to remove clutter to form a corrected image. The existence and nature of a flaw is determined by investigating a variety of features.
Reaction bonded silicon nitride prepared from wet attrition-milled silicon. [fractography
NASA Technical Reports Server (NTRS)
Herball, T. P.; Glasgow, T. K.; Shaw, N. J.
1980-01-01
Silicon powder wet milled in heptane was dried, compacted into test bar shape, helium-sintered, and then reaction bonded in nitrogen-4 volume percent hydrogen. As-nitrided bend strengths averaged approximately 290 MPa at both room temperature and 1400 C. Fracture initiation appeared to be associated with subsurface flaws in high strength specimens and both subsurface and surface flaws in low strength specimens.
Anisotropic determination and correction for ultrasonic flaw detection by spectral analysis
Adler, Laszlo; Von Cook, K.; Simpson, Jr., William A.; Lewis, D. Kent
1978-01-01
The anisotropic nature of a material is determined by measuring the velocity of an ultrasonic longitudinal wave and a pair of perpendicular ultrasonic shear waves through a sample of the material each at a plurality of different angles in three planes orthogonal to each other. The determined anisotropic nature is used as a correction factor in a spectral analyzing system of flaw determination.
Reaction bonded silicon nitride prepared from wet attrition-milled silicon
NASA Technical Reports Server (NTRS)
Herbell, T. P.; Glasgow, T. K.; Shaw, N. J.
1980-01-01
Silicon powder wet milled in heptane was dried, compacted into test bar shape, helium-sintered, and then reaction bonded in nitrogen-4 vol% hydrogen. As-nitrided bend strengths averaged approximately 290 MPa at both room temperature and 1400 C. Fracture initiation appeared to be associated with subsurface flaws in high-strength specimens and both subsurface and surface flaws in low-strength specimens.
Cyclic Fatigue of Brittle Materials with an Indentation-Induced Flaw System
NASA Technical Reports Server (NTRS)
Choi, Sung R.; Salem, Jonathan A.
1996-01-01
The ratio of static to cyclic fatigue life, or 'h ratio', was obtained numerically for an indentation flaw system subjected to sinusoidal loading conditions. Emphasis was placed on developing a simple, quick lifetime prediction tool. The solution for the h ratio was compared with experimental static and cyclic fatigue data obtained from as-indented 96 wt.% alumina specimens tested in room-temperature distilled water.
ERIC Educational Resources Information Center
Young, I. Phillip; Fawcett, Paul
2013-01-01
Several teacher models exist for using high-stakes testing outcomes to make continuous employment decisions for principals. These models are reviewed, and specific flaws are noted if these models are retrofitted for principals. To address these flaws, a different methodology is proposed on the basis of actual field data. Specially addressed are…
Das, Ashok Kumar; Odelu, Vanga; Goswami, Adrijit
2015-09-01
The telecare medicine information system (TMIS) helps the patients to gain the health monitoring facility at home and access medical services over the Internet of mobile networks. Recently, Amin and Biswas presented a smart card based user authentication and key agreement security protocol usable for TMIS system using the cryptographic one-way hash function and biohashing function, and claimed that their scheme is secure against all possible attacks. Though their scheme is efficient due to usage of one-way hash function, we show that their scheme has several security pitfalls and design flaws, such as (1) it fails to protect privileged-insider attack, (2) it fails to protect strong replay attack, (3) it fails to protect strong man-in-the-middle attack, (4) it has design flaw in user registration phase, (5) it has design flaw in login phase, (6) it has design flaw in password change phase, (7) it lacks of supporting biometric update phase, and (8) it has flaws in formal security analysis. In order to withstand these security pitfalls and design flaws, we aim to propose a secure and robust user authenticated key agreement scheme for the hierarchical multi-server environment suitable in TMIS using the cryptographic one-way hash function and fuzzy extractor. Through the rigorous security analysis including the formal security analysis using the widely-accepted Burrows-Abadi-Needham (BAN) logic, the formal security analysis under the random oracle model and the informal security analysis, we show that our scheme is secure against possible known attacks. Furthermore, we simulate our scheme using the most-widely accepted and used Automated Validation of Internet Security Protocols and Applications (AVISPA) tool. The simulation results show that our scheme is also secure. Our scheme is more efficient in computation and communication as compared to Amin-Biswas's scheme and other related schemes. In addition, our scheme supports extra functionality features as compared to other related schemes. As a result, our scheme is very appropriate for practical applications in TMIS.
Wu, Jiani; Liu, Baoyan; Li, Ning; Sun, Jianhua; Wang, Lingling; Wang, Liping; Cai, Yuying; Ye, Yongming; Liu, Jun; Wang, Yang; Liu, Zhishun
2014-12-01
Aupuncture is widely used for functional constipation. Effect of acupuncture might be related to the depth of needling; however, the evidence is limited. This trial aimed to evaluate the effect and safety of deep needling and shallow needling for functional constipation, and to assess if the deep needling and shallow needling are superior to lactulose. We conducted a prospective, superiority-design, 5-center, 3-arm randomized controlled trial. A total of 475 patients with functional constipation were randomized to the deep needling group (237), shallow needling group (119), and lactulose-controlled group (119) in a ratio of 2:1:1. Sessions lasted 30 minutes each time and took place 5 times a week for 4 weeks in 2 acupuncture groups. Participants in the lactulose group took lactulose orally for 16 continuous weeks. The primary outcome was the change from baseline of mean weekly spontaneous bowel movements (SBMs) during week 1 to 4 (changes from the baselines of the weekly SBMs at week 8 and week 16 in follow-up period were also assessed simultaneously). Secondary outcomes were the weekly SBMs of each assessing week, the mean score change from the baseline of constipation-related symptoms over week 1 to 4, and the time to the first SBM. Emergency drug usage and adverse effects were monitored throughout the study.SBMs and constipation-related symptoms were all improved in the 3 groups compared with baseline at each time frame (P<0.01, all). The changes in the mean weekly SBMs over week 1 to 4 were 2 (1.75) in the deep needling group, 2 (1.75) in the shallow needling group, and 2 (2) in the lactulose group (P>0.05, both compared with the lactulose group). The changes of mean weekly SBMs at week 8 and week 16 in the follow-up period were 2 (2), 2 (2.5) in the deep needling group, 2 (3), 1.5 (2.5) in the shallow needling group, and 1 (2), 1 (2) in the lactulose group (P<0.05, all compared with the lactulose group). No significant difference was observed among the 3 groups regarding the score changes of straining, incomplete evacuation, abdominal distention during spontaneous defecating, or Cleveland Clinic Scores over week 1 to 4. However, the lactulose group got better effect than other 2 acupuncture groups in improving stool consistency (P<0.01, both) and shortening the time to the first SBM (P<0.05, both). The percentage of emergency drugs used in the 2 acupuncture groups were both lower than in the lactulose group at each time frame (P<0.01, all). No obvious adverse event was observed in the deep or shallow needling group. Deep and shallow needling at Tianshu (ST25) can improve intestinal function remarkably and safely. Therapeutic effects of deep and shallow needling are not superior to that of lactulose; however, the sustained effects of deep and shallow needling after stopping the acupuncture treatments are superior to the therapeutic effect of lactulose, which might qualify the superiority of deep and shallow needling.
Effect and Safety of Deep Needling and Shallow Needling for Functional Constipation
Wu, Jiani; Liu, Baoyan; Li, Ning; Sun, Jianhua; Wang, Lingling; Wang, Liping; Cai, Yuying; Ye, Yongming; Liu, Jun; Wang, Yang; Liu, Zhishun
2014-01-01
Abstract Aupuncture is widely used for functional constipation. Effect of acupuncture might be related to the depth of needling; however, the evidence is limited. This trial aimed to evaluate the effect and safety of deep needling and shallow needling for functional constipation, and to assess if the deep needling and shallow needling are superior to lactulose. We conducted a prospective, superiority-design, 5-center, 3-arm randomized controlled trial. A total of 475 patients with functional constipation were randomized to the deep needling group (237), shallow needling group (119), and lactulose-controlled group (119) in a ratio of 2:1:1. Sessions lasted 30 minutes each time and took place 5 times a week for 4 weeks in 2 acupuncture groups. Participants in the lactulose group took lactulose orally for 16 continuous weeks. The primary outcome was the change from baseline of mean weekly spontaneous bowel movements (SBMs) during week 1 to 4 (changes from the baselines of the weekly SBMs at week 8 and week 16 in follow-up period were also assessed simultaneously). Secondary outcomes were the weekly SBMs of each assessing week, the mean score change from the baseline of constipation-related symptoms over week 1 to 4, and the time to the first SBM. Emergency drug usage and adverse effects were monitored throughout the study. SBMs and constipation-related symptoms were all improved in the 3 groups compared with baseline at each time frame (P < 0.01, all). The changes in the mean weekly SBMs over week 1 to 4 were 2 (1.75) in the deep needling group, 2 (1.75) in the shallow needling group, and 2 (2) in the lactulose group (P > 0.05, both compared with the lactulose group). The changes of mean weekly SBMs at week 8 and week 16 in the follow-up period were 2 (2), 2 (2.5) in the deep needling group, 2 (3), 1.5 (2.5) in the shallow needling group, and 1 (2), 1 (2) in the lactulose group (P < 0.05, all compared with the lactulose group). No significant difference was observed among the 3 groups regarding the score changes of straining, incomplete evacuation, abdominal distention during spontaneous defecating, or Cleveland Clinic Scores over week 1 to 4. However, the lactulose group got better effect than other 2 acupuncture groups in improving stool consistency (P < 0.01, both) and shortening the time to the first SBM (P < 0.05, both). The percentage of emergency drugs used in the 2 acupuncture groups were both lower than in the lactulose group at each time frame (P < 0.01, all). No obvious adverse event was observed in the deep or shallow needling group. Deep and shallow needling at Tianshu (ST25) can improve intestinal function remarkably and safely. Therapeutic effects of deep and shallow needling are not superior to that of lactulose; however, the sustained effects of deep and shallow needling after stopping the acupuncture treatments are superior to the therapeutic effect of lactulose, which might qualify the superiority of deep and shallow needling. PMID:25526462
Hoog, Philipp; Warren, Meghan; Smith, Craig A.
2016-01-01
Background Although functional tests including the single leg hop (SLH), triple hop (TH), cross over hop (COH) for distance, and the tuck jump assessment (TJA) are used for return to play (RTP) criteria for post anterior cruciate ligament (ACL) injury, sport-specific baseline measurements are limited. Purpose The purpose of this study was to examine differences in SLH, TH, and COH distance and limb symmetry index (LSI), as well as total scores, number of jumps, and individual flaws of the TJA in 97 injury-free Division I (DI) collegiate female student athletes participating in ACL injury prone vs. non ACL injury prone sports. The hypothesis was that significant mean differences and asymmetries (LSI) would exist between the two groups in SLH, TH, COH and TJA. Study Design Cross sectional. Methods Due to research suggesting inherent ACL injury risk associated with specific sport involvement, participants were grouped into high (HR, n=57) and low (LR, n=40) ACL injury risk based on participating in a sport with high or low ACL injury rates. The HR group was composed of athletes participating in soccer, basketball, and volleyball, while the LR group athletes participated in diving, cross country, and track and field. Participants performed all standard functional tests (SFT) and side-to-side differences for each participant as well as between group differences were assessed for the hop tests. The LSI, a ratio frequently used to gauge athletes’ readiness for RTP post injury, was also assessed for between group differences. The TJA was compared between the groups on individual flaws, overall scores, and number of jumps performed. Results No between group differences for hop distances were found, with medium to large effect sizes for SLH, TH, and COH. The HR group had a higher TJA score, number of jumps, and higher proportion of the flaw of ‘foot placement not shoulder width apart’. Conclusion Although most SFT's showed no significant differences between athlete groups, some differences were seen in the TJA; the HR group showed an increase in ‘foot placement not shoulder width apart’ flaw, higher overall flaw scores, and overall jumped more times compared to the LR group. These results may warrant caution in relying solely on SFT for RTP decisions, due to potential asymmetries seen in an uninjured population with baseline testing. Level of Evidence 4 PMID:27904796
Huang, Yonghui; Yang, Zhicheng; Liu, Airong; Fu, Jiyang
2018-05-28
The buckling behavior of functionally graded graphene platelet-reinforced composite (FG-GPLRC) shallow arches with elastic rotational constraints under uniform radial load is investigated in this paper. The nonlinear equilibrium equation of the FG-GPLRC shallow arch with elastic rotational constraints under uniform radial load is established using the Halpin-Tsai micromechanics model and the principle of virtual work, from which the critical buckling load of FG-GPLRC shallow arches with elastic rotational constraints can be obtained. This paper gives special attention to the effect of the GPL distribution pattern, weight fraction, geometric parameters, and the constraint stiffness on the buckling load. The numerical results show that all of the FG-GPLRC shallow arches with elastic rotational constraints have a higher buckling load-carrying capacity compared to the pure epoxy arch, and arches of the distribution pattern X have the highest buckling load among four distribution patterns. When the GPL weight fraction is constant, the thinner and larger GPL can provide the better reinforcing effect to the FG-GPLRC shallow arch. However, when the value of the aspect ratio is greater than 4, the flakiness ratio is greater than 103, and the effect of GPL's dimensions on the buckling load of the FG-GPLRC shallow arch is less significant. In addition, the buckling model of FG-GPLRC shallow arch with elastic rotational constraints is changed as the GPL distribution patterns or the constraint stiffness changes. It is expected that the method and the results that are presented in this paper will be useful as a reference for the stability design of this type of arch in the future.
Yin, Tao; Ni, Jinxia; Zhu, Wenzeng
2015-10-01
To compare the effective differences between deep needling and shallow needling at three acupoints around ear for subjective tinnitus. Fifty patients with subjective tinnitus were randomized divided into a deep needling group and a shallow needling group, 25 cases in each group. Twenty-two patients in the deep needling group and 20 patients in the shallow needling group were brought into statistic in the end. In the two groups, the three acupoints around ear and distal acupoints were both selected. The acupoints of the affected side such as Yifeng (TE 17), Tinghui (GB 2), Ermen (TE 21), Zhigou (TE 6), Zhongzhu (TE 3) and Hegu (LI 4) were adopted. Yifeng (TE 17), Tinghui (GB 2) and Ermen (TE 21) were acupunctured 30-38 mm in the deep needling group and 15-20 mm in the shallow needling group. The other acupoints were conventionally acupunctured in the two groups. The needles were retained for 30 min,once a day and five times a week for all patients. The treatment was continuously for 4 weeks in the two groups. Tinnitus handicap inventory (THI) scores, tinnitus grades and visual analogue scale (VAS) for tinnitus sound levels were observed before and after treatment, and the effects of the two groups were compared. The total effective rate in the deep needling group was 59.1% (13/22), and it was better than 20.0% (4/20) in the shallow needling group (P < 0.05). In the deep needling, group, the THI score, tinnitus grade and the VAS score were improved than those before treatment (all P < 0.05). In the shallow needling group, the three above indices before and after treatment were not different in statistical significance (all P > 0.05). After treatment, all the three indices in the deep needling group were superior to those in the shallow needling group (all P < 0.05). Acupuncture at the three acupoints around ear deeply could apparently improve tinnitus, and reduce tinnitus sound levels for subjective tinnitus. The effect is better than that by shallow needling at the three acupoints.
Monitoring culvert load with shallow filling under Geofoam areas.
DOT National Transportation Integrated Search
2008-08-01
Geofoam and the "Imperfect Ditch" method can be used effectively on embankment projects to reduce pressures on underground structures when sufficient fill height is available to create an arching effect. When the fill height is too shallow the archin...
NASA Technical Reports Server (NTRS)
DellaCorte, Christopher; Howard, S. Adam; Thomas, Fransua; Stanford, Malcolm K.
2016-01-01
Rolling element bearings made from highly-elastic intermetallic materials (HIM)s, such as 60NiTi, are under development for applications that require superior corrosion and shock resistance. Compared to steel, intermetallics have been shown to have much lower rolling contact fatigue (RCF) stress capability in simplified 3-ball on rod (ASTM STP 771) fatigue tests. In the 3-ball tests, poor material quality and microstructural flaws negatively affect fatigue life but such relationships have not been established for full-scale 60NiTi bearings. In this paper, 3-ball-on-rod fatigue behavior of two quality grades of 60NiTi are compared to the fatigue life of full-scale 50mm bore ball bearings made from the same materials. 60NiTi RCF rods with material or microstructural flaws suffered from infant mortality failures at all tested stress levels while high quality 60NiTi rods exhibited no failures at lower stress levels. Similarly, tests of full-scale bearings made from flawed materials exhibited early surface fatigue and through crack type failures while bearings made from high quality material did not fail even in long-term tests. Though the full-scale bearing test data is yet preliminary, the results suggest that the simplified RCF test is a good qualitative predictor of bearing performance. These results provide guidance for materials development and to establish minimum quality levels required for successful bearing operation and life.
NASA Technical Reports Server (NTRS)
Dellacorte, Christopher; Howard, S. Adam; Thomas, Fransua; Stanford, Malcolm K.
2017-01-01
Rolling element bearings made from highly-elastic intermetallic materials (HIM)s, such as 60NiTi, are under development for applications that require superior corrosion and shock resistance. Compared to steel, intermetallics have been shown to have much lower rolling contact fatigue (RCF) stress capability in simplified 3-ball on rod (ASTM STP 771) fatigue tests. In the 3-ball tests, poor material quality and microstructural flaws negatively affect fatigue life but such relationships have not been established for full-scale 60NiTi bearings. In this paper, 3-ball-on-rod fatigue behavior of two quality grades of 60NiTi are compared to the fatigue life of full-scale 50mm bore ball bearings made from the same materials. 60NiTi RCF rods with material or microstructural flaws suffered from infant mortality failures at all tested stress levels while high quality 60NiTi rods exhibited no failures at lower stress levels. Similarly, tests of full-scale bearings made from flawed materials exhibited early surface fatigue and through crack type failures while bearings made from high quality material did not fail even in long-term tests. Though the full-scale bearing test data is yet preliminary, the results suggest that the simplified RCF test is a good qualitative predictor of bearing performance. These results provide guidance for materials development and to establish minimum quality levels required for successful bearing operation and life.
Water quality in shallow alluvial aquifers, Upper Colorado River Basin, Colorado, 1997
Apodaca, L.E.; Bails, J.B.; Smith, C.M.
2002-01-01
Shallow ground water in areas of increasing urban development within the Upper Colorado River Basin was sampled for inorganic and organic constituents to characterize water-quality conditions and to identify potential anthropogenic effects resulting from development. In 1997, 25 shallow monitoring wells were installed and sampled in five areas of urban development in Eagle, Grand, Gunnison, and Summit Counties, Colorado. The results of this study indicate that the shallow ground water in the study area is suitable for most uses. Nonparametric statistical methods showed that constituents and parameters measured in the shallow wells were often significantly different between the five developing urban areas. Radon concentrations exceeded the proposed USEPA maximum contaminant level at all sites. The presence of nutrients, pesticides, and volatile organic compounds indicate anthropogenic activities are affecting the shallow ground-water quality in the study area. Nitrate as N concentrations greater than 2.0 mg/L were observed in ground water recharged between the 1980s and 1990s. Low concentrations of methylene blue active substances were detected at a few sites. Total coliform bacteria were detected at ten sites; however, E. coli was not detected. Continued monitoring is needed to assess the effects of increasing urban development on the shallow ground-water quality in the study area.
Population priorities: the challenge of continued rapid population growth.
Turner, Adair
2009-10-27
Rapid population growth continues in the least developed countries. The revisionist case that rapid population could be overcome by technology, that population density was advantageous, that capital shallowing is not a vital concern and that empirical investigations had not proved a correlation between high population growth and low per capita income was both empirically and theoretically flawed. In the modern world, population density does not play the role it did in nineteenth-century Europe and rates of growth in some of today's least developed nations are four times than those in nineteenth-century Europe, and without major accumulation of capital per capita, no major economy has or is likely to make the low- to middle-income transition. Though not sufficient, capital accumulation for growth is absolutely essential to economic growth. While there are good reasons for objecting to the enforced nature of the Chinese one-child policy, we should not underestimate the positive impact which that policy has almost certainly had and will have over the next several decades on Chinese economic performance. And a valid reticence about telling developing countries that they must contain fertility should not lead us to underestimate the severely adverse impact of high fertility rates on the economic performance and prospects of many countries in Africa and the Middle East.
In response to the letter to Toxicological Sciences by Vom Saal et al. (2010) that provided criticisms of our recent paper, we have prepared a categorical rebuttal. In this rebuttal we describe • That the developmental effects of the potent environment estrogen Ethinyl Estradio...
78 FR 39327 - Bio Diagnostic International; Denial of Application
Federal Register 2010, 2011, 2012, 2013, 2014
2013-07-01
... Substances or a license from the California Board of Pharmacy, as well as his legal conclusion that... that its reasoning is flawed for two reasons: (1) It relied on provisions of the CSA which are... indifferently if a judicial system is to function effectively.''' McKinnon v. Kwong Wah Restaurant, 83 F.3d 498...
Fractographic Investigation of Micromechanisms of Fracture in Alumina Ceramics
1981-11-30
mechanisms flaw linking work of fracture electron channeling crack branching environmental effects 20. A07 ACT (Continue an reverse side Of necessary and...CLASSIFICATION OF THIS PAGE(I hm Date "ftn.,a environments using multiple techniques such as SEM, TEM, selected area electron channeling , and...94 Selected area electron channeling (SAEC) .. .... ........ 99 V. CONCLUSIONS. .. ............................ 100 VI. REFERENCES
ERIC Educational Resources Information Center
Huber, Martin
2012-01-01
As any empirical method used for causal analysis, social experiments are prone to attrition which may flaw the validity of the results. This article considers the problem of partially missing outcomes in experiments. First, it systematically reveals under which forms of attrition--in terms of its relation to observable and/or unobservable…
ERIC Educational Resources Information Center
Hanish, Christine; And Others
1995-01-01
Previous attempts to rank doctoral programs in counseling psychology suffered from methodological flaws, such as the "Matthew effect." To offset such defects, this study examines citations in two data bases for 488 counseling psychology faculty. The authors list leading programs on the basis of 11 adjusted and unadjusted measures of scientific…
Study of acoustic emission during mechanical tests of large flight weight tank structure
NASA Technical Reports Server (NTRS)
Mccauley, B. O.; Nakamura, Y.; Veach, C. L.
1973-01-01
A PPO-insulated, flight-weight, subscale, aluminum tank was monitored for acoustic emissions during a proof test and during 100 cycles of environmental test simulating space flights. The use of a combination of frequency filtering and appropriate spatial filtering to reduce background noise was found to be sufficient to detect acoustic emission signals of relatively small intensity expected from subcritical crack growth in the structure. Several emission source locations were identified, including the one where a flaw was detected by post-test x-ray inspections. For most source locations, however, post-test inspections did not detect flaws; this was partially attributed to the higher sensitivity of the acoustic emission technique than any other currently available NDT method for detecting flaws. For these non-verifiable emission sources, a problem still remains in correctly interpreting observed emission signals.
Ultrahigh strength single crystalline nanowhiskers grown by physical vapor deposition.
Richter, Gunther; Hillerich, Karla; Gianola, Daniel S; Mönig, Reiner; Kraft, Oliver; Volkert, Cynthia A
2009-08-01
The strength of metal crystals is reduced below the theoretical value by the presence of dislocations or by flaws that allow easy nucleation of dislocations. A straightforward method to minimize the number of defects and flaws and to presumably increase its strength is to increase the crystal quality or to reduce the crystal size. Here, we describe the successful fabrication of high aspect ratio nanowhiskers from a variety of face-centered cubic metals using a high temperature molecular beam epitaxy method. The presence of atomically smooth, faceted surfaces and absence of dislocations is confirmed using transmission electron microscopy investigations. Tensile tests performed in situ in a focused-ion beam scanning electron microscope on Cu nanowhiskers reveal strengths close to the theoretical upper limit and confirm that the properties of nanomaterials can be engineered by controlling defect and flaw densities.
A study to improve the mechanical properties of silicon carbide ribbon fibers
NASA Technical Reports Server (NTRS)
Debolt, H. E.; Robey, R. J.
1976-01-01
Preliminary deposition studies of SiC ribbon on a carbon ribbon substrate showed that the dominant strength limiting flaws were at the substrate surface. Procedures for making the carbon ribbon substrate from polyimide film were improved, providing lengths up to 450 meters (1,500 ft.) of flat carbon ribbon substrate 1,900 microns (75 mils) wide by 25 microns (1 mil) thick. The flaws on the carbon ribbon were smaller and less frequent than on carbon ribbon used earlier. SiC ribbon made using the improved substrate, including a layer of pyrolytic graphite to reduce further the severity of substrate surface flaws, showed strength levels up to the 2,068 MPa (300 Ksi) target of the program, with average strength levels over 1,700 MPa (250 Ksi) with coefficient of variation as low as 10% for some runs.
33 CFR 164.40 - Devices to indicate speed and distance.
Code of Federal Regulations, 2013 CFR
2013-07-01
..., when the vessel is operating free from shallow water effect, and from the effects of wind, current, and...) Errors in the indicated distance run, when the vessel is operating free from shallow water effect, and... either through the water or over the ground. (b) The device must meet the following specifications: (1...
33 CFR 164.40 - Devices to indicate speed and distance.
Code of Federal Regulations, 2014 CFR
2014-07-01
..., when the vessel is operating free from shallow water effect, and from the effects of wind, current, and...) Errors in the indicated distance run, when the vessel is operating free from shallow water effect, and... either through the water or over the ground. (b) The device must meet the following specifications: (1...
33 CFR 164.40 - Devices to indicate speed and distance.
Code of Federal Regulations, 2012 CFR
2012-07-01
..., when the vessel is operating free from shallow water effect, and from the effects of wind, current, and...) Errors in the indicated distance run, when the vessel is operating free from shallow water effect, and... either through the water or over the ground. (b) The device must meet the following specifications: (1...
Effects of Coherence and Relevance on Shallow and Deep Text Processing.
ERIC Educational Resources Information Center
Lehman, Stephen; Schraw, Gregory
2002-01-01
Examines the effects of coherence and relevance on shallow and deeper text processing, testing the hypothesis that enhancing the relevance of text segments compensates for breaks in local and global coherence. Results reveal that breaks in local coherence had no effect on any outcome measures, whereas relevance enhanced deeper processing.…
Shallow Turbulence in Rivers and Estuaries
2012-09-30
objectives are to: 1. Determine spatial patterns of shallow turbulence from in-situ and remote sensing data and investigate the effects and...production through a model parameter study, and determine the optimal model configuration that statistically reproduces the shallow turbulence...more probable cause. According to Nezu et al. (1993), longitudinal vorticity streets would cause alternating upwelling (boils) and down welling
Computed Tomography Inspection and Analysis for Additive Manufacturing Components
NASA Technical Reports Server (NTRS)
Beshears, Ronald D.
2017-01-01
Computed tomography (CT) inspection was performed on test articles additively manufactured from metallic materials. Metallic AM and machined wrought alloy test articles with programmed flaws and geometric features were inspected using a 2-megavolt linear accelerator based CT system. Performance of CT inspection on identically configured wrought and AM components and programmed flaws was assessed to determine the impact of additive manufacturing on inspectability of objects with complex geometries.
Model-Based Compositional Reasoning for Complex Systems of Systems (SoS)
2016-11-01
more structured approach for finding flaws /weaknesses in the systems . As the system is updated, either in response to a found flaw or new...AFRL-RQ-WP-TR-2016-0172 MODEL-BASED COMPOSITIONAL REASONING FOR COMPLEX SYSTEMS OF SYSTEMS (SoS) M. Anthony Aiello, Benjamin D. Rodes...LABORATORY AEROSPACE SYSTEMS DIRECTORATE WRIGHT-PATTERSON AIR FORCE BASE, OH 45433-7541 AIR FORCE MATERIEL COMMAND UNITED STATES AIR FORCE NOTICE
Biological Warfare and American Strategic Risk
2000-06-01
pandemics. 43 Col Ronald F. Bellamy and Col Craig H. Llewellyn, “Preventable Casualties: Rommel’s Flaw...of Air Power. New York: Free Press, 1989. Cook- Deegan , Robert. The Gene Wars: Science, Politics, and the Human Genome. New York: W.W. Norton and Co...and Col Craig H. Llewellyn. “Preventable Casualties: Rommel’s Flaw, Slim’s Edge.” Army (May 1990): 52-56. Burrows, W. Dickinson and Sara E. Renner
Nondestructive ultrasonic testing of materials
Hildebrand, Bernard P.
1994-01-01
Reflection wave forms obtained from aged and unaged material samples can be compared in order to indicate trends toward age-related flaws. Statistical comparison of a large number of data points from such wave forms can indicate changes in the microstructure of the material due to aging. The process is useful for predicting when flaws may occur in structural elements of high risk structures such as nuclear power plants, airplanes, and bridges.
Nondestructive ultrasonic testing of materials
Hildebrand, B.P.
1994-08-02
Reflection wave forms obtained from aged and unaged material samples can be compared in order to indicate trends toward age-related flaws. Statistical comparison of a large number of data points from such wave forms can indicate changes in the microstructure of the material due to aging. The process is useful for predicting when flaws may occur in structural elements of high risk structures such as nuclear power plants, airplanes, and bridges. 4 figs.
Emissivity corrected infrared method for imaging anomalous structural heat flows
Del Grande, N.K.; Durbin, P.F.; Dolan, K.W.; Perkins, D.E.
1995-08-22
A method for detecting flaws in structures using dual band infrared radiation is disclosed. Heat is applied to the structure being evaluated. The structure is scanned for two different wavelengths and data obtained in the form of images. Images are used to remove clutter to form a corrected image. The existence and nature of a flaw is determined by investigating a variety of features. 1 fig.
Corrosion Protection for Military Construction in the Middle East
1985-09-01
parts being inspected; and (6) reference standards are needed both for calibrating the equipment and characterizing flaws and defects . The need for...reference standard for that flaw or defect , the problem may go totally undetected by even a skilled operator. 3 OD. Knofel, Corrosion of Building...This, in turn, decreases the chance of paint defects caused by too high a surface alkalinity. Epoxy Coating If required by the manufacturer, the
Flaw Tolerance In Lap Shear Brazed Joints. Part 2
NASA Technical Reports Server (NTRS)
Wang, Len; Flom, Yury
2003-01-01
This paper presents results of the second part of an on-going effort to gain better understanding of defect tolerance in braze joints. In the first part of this three-part series, we mechanically tested and modeled the strength of the lap joints as a function of the overlap distance. A failure criterion was established based on the zone damage theory, which predicts the dependence of the lap joint shear strength on the overlap distance, based on the critical size of a finite damage zone or an overloaded region in the joint. In this second part of the study, we experimentally verified the applicability of the damage zone criterion on prediction of the shear strength of the lap joint and introduced controlled flaws into the lap joints. The purpose of the study was to evaluate the lap joint strength as a function of flaw size and its location through mechanical testing and nonlinear finite element analysis (FEA) employing damage zone criterion for definition of failure. The results obtained from the second part of the investigation confirmed that the failure of the ductile lap shear brazed joints occurs when the damage zone reaches approximately 10% of the overlap width. The same failure criterion was applicable to the lap joints containing flaws.
Watbled, Ludivine; Marcilly, Romaric; Guerlinger, Sandra; Bastien, J-M Christian; Beuscart-Zéphir, Marie-Catherine; Beuscart, Régis
2018-02-01
Poor usability of health technology is thought to diminish work system performance, increase error rates and, potentially, harm patients. The present study (i) used a combination of usability evaluation methods to highlight the chain that leads from usability flaws to usage problems experienced by users and, ultimately, to negative patient outcomes, and (ii) validated this approach by studying two different discharge summary production systems. To comply with quality guidelines, the process of drafting and sending discharge summaries is increasingly being automated. However, the usability of these systems may modify their impact (or the absence thereof) in terms of production times and quality, and must therefore be evaluated. Here, we applied three successive techniques for usability evaluation (heuristic evaluation, user testing and field observation) to two discharge summary production systems (underpinned by different technologies). The systems' main usability flaws led respectively to an increase in the time need to produce a discharge summary and the risk of patient misidentification. Our results are discussed with regard to the possibility of linking the usability flaws, usage problems and the negative outcomes by successively applying three methods for evaluating usability (heuristic evaluation, user testing and in situ observations) throughout the system development life cycle. Copyright © 2018 Elsevier Inc. All rights reserved.
(High temperature flaw assessment procedure)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ruggles, M.B.
1990-06-01
The Electric Power Research Institute (EPRI), the Japanese Central Research Institute of Electric Power Industry (CRIEPI), and the British Nuclear Electric (NE) are conducting joint studies in the field of liquid metal reactor development. The traveler is currently responsible for the EPRI/CRIEPI/NE High-Temperature Flaw Assessment Procedure activities at the Oak Ridge National Laboratory (ORNL). The traveler participated, on behalf of EPRI, in the EPRI/CRIEPI/NE specialist working session, the purpose of which was to produce the interim High-Temperature Flaw Assessment guide. The traveler also led discussions on the High-Temperature Flaw Assessment Procedure Phase 2 program plan, and on the plan formore » a new joint EPRI/CRIEPI/NE study in Inelastic Behavior and Failure Criteria for Modified 9Cr--1Mo Steel. The traveler visited Profs. K. Ikegami, Y. Asada, N. Ohno, T. Inoue, and K. Kaneko at the Tokyo Institute of Technology, the University of Tokyo, Nagoya University, Kyoto University, and Science University of Tokyo, respectively to hold discussions on research advances in the areas of high-temperature fracture mechanics, inelastic material behavior, and constitutive modeling. In addition, the traveler visited Kajima Corp. and Ohbayashi Corp. Technical Research Institute to collect information on research in the area of fiber reinforced concrete.« less
Spangenberg, Eric R
2005-08-01
There is a dearth of empirically supported theoretical explanation since its introduction; Feinberg's 1986 credit card effect showed greater product valuations and donation intentions by experimental participants when asked to make such estimates in the presence of credit card stimuli. This comment on McCall, Trombetta, and Gipe (2004) notes potential flaws and adjudged over-interpretation of results in their attempt to replicate successfully and derive theoretical explanation for the credit card effect.
Irajpour, Alireza; Abbasinia, Mohammad; Hoseini, Abbas; Kashefi, Parviz
2014-07-01
Clearing the endotracheal tube through suctioning should be done to promote oxygenation. Depth of suctioning is one of the variables in this regard. In shallow suctioning method, the catheter passes to the tip of the endotracheal tube, and in deep suctioning method, it passes beyond the tip into the trachea or brunches. This study aimed to evaluate the effect of shallow and deep suctioning methods on cardiovascular indices in patients hospitalized in the intensive care units (ICUs). In this clinical trial, 74 patients were selected among those who had undergone mechanical ventilation in the ICU of Al-Zahra Hospital, Isfahan, Iran using convenience sampling method. The subjects were randomly allocated to shallow and deep suctioning groups. Heart rate (HR) and blood pressure (BP) were measured immediately before and 1, 2, and 3 min after each suctioning. Number of times of suctioning was also noted in both the groups. Data were analyzed using repeated measures analysis of variance (ANOVA), Chi-square and independent t-tests. HR and BP were significantly increased after suctioning in both the groups (P < 0.05). But these changes were not significant between the two groups (P > 0.05). The suctioning count was significantly higher in the shallow suctioning group than in the deep suctioning group. Shallow and deep suctioning were similar in their effects on HR and BP, but shallow suctioning caused further manipulation of patient's trachea than deep suctioning method. Therefore, in order to prevent complications, nurses are recommended to perform the endotracheal tube suctioning by the deep method.
Abbasinia, Mohammad; Irajpour, Alireza; Babaii, Atye; Shamali, Mehdi; Vahdatnezhad, Jahanbakhsh
2014-09-01
Endotracheal tube suctioning is essential for improve oxygenation in the patients undergoing mechanical ventilation. There are two types of shallow and deep endotracheal tube suctioning. This study aimed to evaluate the effect of shallow and deep suctioning methods on respiratory rate (RR), arterial blood oxygen saturation (SpO2) and number of suctioning in patients hospitalized in the intensive care units of Al-Zahra Hospital, Isfahan, Iran. In this randomized controlled trial, 74 patients who hospitalized in the intensive care units of Isfahan Al-Zahra Hospital were randomly allocated to the shallow and deep suctioning groups. RR and SpO2 were measured immediately before, immediately after, 1 and 3 minute after each suctioning. Number of suctioning was also noted in each groups. Data were analyzed using repeated measures analysis of variance (RMANOVA), chi-square and independent t-tests. RR was significantly increased and SpO2 was significantly decreased after each suctioning in the both groups. However, these changes were not significant between the two groups. The numbers of suctioning was significantly higher in the shallow suctioning group than in the deep suctioning group. Conclusion : Shallow and deep suctioning had a similar effect on RR and SpO2. However, shallow suctioning caused further manipulation of patient's trachea than deep suctioning method. Therefore, it seems that deep endotracheal tube suctioning method can be used to clean the airway with lesser manipulation of the trachea.
Remote sensing estimation of colored dissolved organic matter (CDOM) in optically shallow waters
NASA Astrophysics Data System (ADS)
Li, Jiwei; Yu, Qian; Tian, Yong Q.; Becker, Brian L.
2017-06-01
It is not well understood how bottom reflectance of optically shallow waters affects the algorithm performance of colored dissolved organic matters (CDOM) retrieval. This study proposes a new algorithm that considers bottom reflectance in estimating CDOM absorption from optically shallow inland or coastal waters. The field sampling was conducted during four research cruises within the Saginaw River, Kawkawlin River and Saginaw Bay of Lake Huron. A stratified field sampling campaign collected water samples, determined the depth at each sampling location and measured optical properties. The sampled CDOM absorption at 440 nm broadly ranged from 0.12 to 8.46 m-1. Field sample analysis revealed that bottom reflectance does significantly change water apparent optical properties. We developed a CDOM retrieval algorithm (Shallow water Bio-Optical Properties algorithm, SBOP) that effectively reduces uncertainty by considering bottom reflectance in shallow waters. By incorporating the bottom contribution in upwelling radiances, the SBOP algorithm was able to explain 74% of the variance of CDOM values (RMSE = 0.22 and R2 = 0.74). The bottom effect index (BEI) was introduced to efficiently separate optically shallow and optically deep waters. Based on the BEI, an adaptive approach was proposed that references the amount of bottom effect in order to identify the most suitable algorithm (optically shallow water algorithm [SBOP] or optically deep water algorithm [QAA-CDOM]) to improve CDOM estimation (RMSE = 0.22 and R2 = 0.81). Our results potentially help to advance the capability of remote sensing in monitoring carbon pools at the land-water interface.
Abbasinia, Mohammad; Irajpour, Alireza; Babaii, Atye; Shamali, Mehdi; Vahdatnezhad, Jahanbakhsh
2014-01-01
Introduction: Endotracheal tube suctioning is essential for improve oxygenation in the patients undergoing mechanical ventilation. There are two types of shallow and deep endotracheal tube suctioning. This study aimed to evaluate the effect of shallow and deep suctioning methods on respiratory rate (RR), arterial blood oxygen saturation (SpO2) and number of suctioning in patients hospitalized in the intensive care units of Al-Zahra Hospital, Isfahan, Iran. Methods: In this randomized controlled trial, 74 patients who hospitalized in the intensive care units of Isfahan Al-Zahra Hospital were randomly allocated to the shallow and deep suctioning groups. RR and SpO2 were measured immediately before, immediately after, 1 and 3 minute after each suctioning. Number of suctioning was also noted in each groups. Data were analyzed using repeated measures analysis of variance (RMANOVA), chi-square and independent t-tests. Results: RR was significantly increased and SpO2 was significantly decreased after each suctioning in the both groups. However, these changes were not significant between the two groups. The numbers of suctioning was significantly higher in the shallow suctioning group than in the deep suctioning group. Conclusion: Shallow and deep suctioning had a similar effect on RR and SpO2. However, shallow suctioning caused further manipulation of patient's trachea than deep suctioning method. Therefore, it seems that deep endotracheal tube suctioning method can be used to clean the airway with lesser manipulation of the trachea. PMID:25276759
ERIC Educational Resources Information Center
Fraser, Landon; Locatis, Craig
2001-01-01
Investigated the effects of link annotations on high school user search performance in Web hypertext environments having deep (layered) and shallow link structures. Results confirmed previous research that shallow link structures are better than deep (layered) link structures, and also showed that annotations had virtually no effect on search…
Sustainable intensive thermal use of the shallow subsurface-a critical view on the status quo.
Vienken, T; Schelenz, S; Rink, K; Dietrich, P
2015-01-01
Thermal use of the shallow subsurface for heat generation, cooling, and thermal energy storage is increasingly gaining importance in reconsideration of future energy supplies. Shallow geothermal energy use is often promoted as being of little or no costs during operation, while simultaneously being environmentally friendly. Hence, the number of installed systems has rapidly risen over the last few decades, especially among newly built houses. While the carbon dioxide reduction potential of this method remains undoubted, concerns about sustainability and potential negative effects on the soil and groundwater due to an intensified use have been raised-even as far back as 25 years ago. Nevertheless, consistent regulation and management schemes for the intensified thermal use of the shallow subsurface are still missing-mainly due to a lack of system understanding and process knowledge. In the meantime, large geothermal applications, for example, residential neighborhoods that are entirely dependent up on shallow geothermal energy use or low enthalpy aquifer heat storage, have been developed throughout Europe. Potential negative effects on the soil and groundwater due to an intensive thermal use of the shallow subsurface as well as the extent of potential system interaction still remain unknown. © 2014, National Ground Water Association.
Crack propagation and the material removal mechanism of glass-ceramics by the scratch test.
Qiu, Zhongjun; Liu, Congcong; Wang, Haorong; Yang, Xue; Fang, Fengzhou; Tang, Junjie
2016-12-01
To eliminate the negative effects of surface flaws and subsurface damage of glass-ceramics on clinical effectiveness, crack propagation and the material removal mechanism of glass-ceramics were studied by single and double scratch experiments conducted using an ultra-precision machine. A self-manufactured pyramid shaped single-grit tool with a small tip radius was used as the scratch tool. The surface and subsurface crack propagations and interactions, surface morphology and material removal mechanism were investigated. The experimental results showed that the propagation of lateral cracks to the surface and the interaction between the lateral cracks and radial cracks are the two main types of material peeling, and the increase of the scratch depth increases the propagation angle of the radial cracks and the interaction between the cracks. In the case of a double scratch, the propagation of lateral cracks and radial cracks between paired scratches results in material peeling. The interaction between adjacent scratches depends on the scratch depth and separation distance. There is a critical separation distance where the normalized material removal volume reaches its peak. These findings can help reduce surface flaws and subsurface damage induced by the grinding process and improve the clinical effectiveness of glass-ceramics used as biological substitute and repair materials. Copyright © 2016 Elsevier Ltd. All rights reserved.
An Improved Heat Budget Estimation Including Bottom Effects for General Ocean Circulation Models
NASA Technical Reports Server (NTRS)
Carder, Kendall; Warrior, Hari; Otis, Daniel; Chen, R. F.
2001-01-01
This paper studies the effects of the underwater light field on heat-budget calculations of general ocean circulation models for shallow waters. The presence of a bottom significantly alters the estimated heat budget in shallow waters, which affects the corresponding thermal stratification and hence modifies the circulation. Based on the data collected during the COBOP field experiment near the Bahamas, we have used a one-dimensional turbulence closure model to show the influence of the bottom reflection and absorption on the sea surface temperature field. The water depth has an almost one-to-one correlation with the temperature rise. Effects of varying the bottom albedo by replacing the sea grass bed with a coral sand bottom, also has an appreciable effect on the heat budget of the shallow regions. We believe that the differences in the heat budget for the shallow areas will have an influence on the local circulation processes and especially on the evaporative and long-wave heat losses for these areas. The ultimate effects on humidity and cloudiness of the region are expected to be significant as well.
Hengartner, Michael P
2017-01-01
In current psychiatric practice, antidepressants are widely and with ever-increasing frequency prescribed to patients. However, several scientific biases obfuscate estimates of antidepressants' efficacy and harm, and these are barely recognized in treatment guidelines. The aim of this mini-review is to critically evaluate the efficacy and harm of antidepressants for acute and maintenance treatment with respect to systematic biases related to industry funding and trial methodology. Narrative review based on a comprehensive search of the literature. It is shown that the pooled efficacy of antidepressants is weak and below the threshold of a minimally clinically important change once publication and reporting biases are considered. Moreover, the small mean difference in symptom reductions relative to placebo is possibly attributable to observer effects in unblinded assessors and patient expectancies. With respect to trial dropout rates, a hard outcome not subjected to observer bias, no difference was observed between antidepressants and placebo. The discontinuation trials on the efficacy of antidepressants in maintenance therapy are systematically flawed, because in these studies, spontaneous remitters are excluded, whereas half of all patients who remitted on antidepressants are abruptly switched to placebo. This can cause a severe withdrawal syndrome that is easily misdiagnosed as a relapse when assessed on subjective symptom rating scales. In accordance, the findings of naturalistic long-term studies suggest that maintenance therapy has no clear benefit, and non-drug users do not show increased recurrence rates. Moreover, a growing body of evidence from hundreds of randomized controlled trials suggests that antidepressants cause suicidality, but this risk is underestimated because data from industry-funded trials are systematically flawed. Unselected, population-wide observational studies indicate that depressive patients who use antidepressants are at an increased risk of suicide and that they have a higher rate of all-cause mortality than matched controls. The strong reliance on industry-funded research results in an uncritical approval of antidepressants. Due to several flaws such as publication and reporting bias, unblinding of outcome assessors, concealment and recoding of serious adverse events, the efficacy of antidepressants is systematically overestimated, and harm is systematically underestimated. Therefore, I conclude that antidepressants are largely ineffective and potentially harmful.
Computed Tomography Inspection and Analysis for Additive Manufacturing Components
NASA Technical Reports Server (NTRS)
Beshears, Ronald D.
2016-01-01
Computed tomography (CT) inspection was performed on test articles additively manufactured from metallic materials. Metallic AM and machined wrought alloy test articles with programmed flaws were inspected using a 2MeV linear accelerator based CT system. Performance of CT inspection on identically configured wrought and AM components and programmed flaws was assessed using standard image analysis techniques to determine the impact of additive manufacturing on inspectability of objects with complex geometries.
1992-12-14
the composite . The top and bottom surfaces of each disc were removed to eliminate any reaction layer, and the discs were machined ’ to produce bars...l.It is postulated that during grinding of the composite , compressive stresses and machining flaws are introduced into the surface. The compressive...two materials considered would react differently to the annealing step. It can be expected that machining flaws will heal in the composite samples
Towards a Delamination Fatigue Methodology for Composite Materials
NASA Technical Reports Server (NTRS)
OBrien, Thomas K.
2007-01-01
A methodology that accounts for both delaminaton onset and growth in composite structural components is proposed for improved fatigue life prediction to reduce life cycle costs and improve accept/reject criteria for manufacturing flaws. The benefits of using a Delamination Onset Threshold (DOT) approach in combination with a Modified Damage Tolerance (MDT) approach is highlighted. The use of this combined approach to establish accept/reject criteria, requiring less conservative initial manufacturing flaw sizes, is illustrated.
Weibull crack density coefficient for polydimensional stress states
NASA Technical Reports Server (NTRS)
Gross, Bernard; Gyekenyesi, John P.
1989-01-01
A structural ceramic analysis and reliability evaluation code has recently been developed encompassing volume and surface flaw induced fracture, modeled by the two-parameter Weibull probability density function. A segment of the software involves computing the Weibull polydimensional stress state crack density coefficient from uniaxial stress experimental fracture data. The relationship of the polydimensional stress coefficient to the uniaxial stress coefficient is derived for a shear-insensitive material with a random surface flaw population.
COATING COLUMBIUM FOR HIGH TEMPERATURES
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sandoz, G.
1960-04-01
An investigation was conducted to find a coating for niobium to make it oxidation resistaat. The results obtained at the U. S. Naval Research Laboratory using zinc as a coating are reported. Tests conducted on molten zinc dipped niobium with an intentional flaw after coating, revealed a moderate hardness increase near the flaw. No indication of oxygen absorption or other embrittlement after 5 hours at 2000 deg F was observed in the coated metal. (B.O.G.)
Panitz, Janda K.; Reed, Scott T.; Ashley, Carol S.; Neiser, Richard A.; Moffatt, William C.
1999-01-01
Electrophoretically active sol-gel processes to fill, seal, and/or density porous, flawed, and/or cracked coatings on electrically conductive substrates. Such coatings may be dielectrics, ceramics, or semiconductors and, by the present invention, may have deposited onto and into them sol-gel ceramic precursor compounds which are subsequently converted to sol-gel ceramics to yield composite materials with various tailored properties.
Application of guided acoustic waves to delamination detection
NASA Technical Reports Server (NTRS)
Sun, Keun J.
1992-01-01
Guided plate waves are able to interact with structural flaws such as delaminations and cracks due to their propagation properties highly sensitive to the thickness change in materials. A technique which employs an acoustic damper to probe the results of this interaction and then to locate flaws in a relatively short period of time is developed. With its technical advantages, this technique shows its potential application to large area structural integrity assessment.
NASA Technical Reports Server (NTRS)
Winfree, William P.; Howell, Patricia A.; Zalameda, Joseph N.
2014-01-01
Flaw detection and characterization with thermographic techniques in graphite polymer composites are often limited by localized variations in the thermographic response. Variations in properties such as acceptable porosity, fiber volume content and surface polymer thickness result in variations in the thermal response that in general cause significant variations in the initial thermal response. These result in a "noise" floor that increases the difficulty of detecting and characterizing deeper flaws. A method is presented for computationally removing a significant amount of the "noise" from near surface porosity by diffusing the early time response, then subtracting it from subsequent responses. Simulations of the thermal response of a composite are utilized in defining the limitations of the technique. This method for reducing the data is shown to give considerable improvement characterizing both the size and depth of damage. Examples are shown for data acquired on specimens with fabricated delaminations and impact damage.
Detection of Real Flaw using Uniform Eddy Current Multi-probe
NASA Astrophysics Data System (ADS)
Fukuoka, Katsuhiro; Hashimoto, Mitsuo
The establishment of the nondestructive inspection technology with plant structures has been stimulated by the recent occurrence of cracks in the nuclear power plant structures. In this research, a uniform eddy current multi-probe to apply to the complex structure and inspect the cracks at high-speed data acquisition was developed. Pick-up coils of the developed probe were arranged on a flexible printed circuit board. This probe was able to obtain clear signal for an EDM (electro-discharge machining) slit with 0.5 mm depth and distinguish EDM slits arranged at 2 mm intervals. It was confirmed that the SCC (stress corrosion cracking) of real flaw was able to be detected with developed uniform eddy current multi-probe by using the ferrite core for the exciting coil and considering the impedance matching of the exciting coil and the flaw detection device.
NASA Astrophysics Data System (ADS)
Winfree, William P.; Howell, Patricia A.; Zalameda, Joseph N.
2014-05-01
Flaw detection and characterization with thermographic techniques in graphite polymer composites are often limited by localized variations in the thermographic response. Variations in properties such as acceptable porosity, fiber volume content and surface polymer thickness result in variations in the thermal response that in general cause significant variations in the initial thermal response. These result in a "noise" floor that increases the difficulty of detecting and characterizing deeper flaws. A method is presented for computationally removing a significant amount of the "noise" from near surface porosity by diffusing the early time response, then subtracting it from subsequent responses. Simulations of the thermal response of a composite are utilized in defining the limitations of the technique. This method for reducing the data is shown to give considerable improvement characterizing both the size and depth of damage. Examples are shown for data acquired on specimens with fabricated delaminations and impact damage.
DRS: Derivational Reasoning System
NASA Technical Reports Server (NTRS)
Bose, Bhaskar
1995-01-01
The high reliability requirements for airborne systems requires fault-tolerant architectures to address failures in the presence of physical faults, and the elimination of design flaws during the specification and validation phase of the design cycle. Although much progress has been made in developing methods to address physical faults, design flaws remain a serious problem. Formal methods provides a mathematical basis for removing design flaws from digital systems. DRS (Derivational Reasoning System) is a formal design tool based on advanced research in mathematical modeling and formal synthesis. The system implements a basic design algebra for synthesizing digital circuit descriptions from high level functional specifications. DRS incorporates an executable specification language, a set of correctness preserving transformations, verification interface, and a logic synthesis interface, making it a powerful tool for realizing hardware from abstract specifications. DRS integrates recent advances in transformational reasoning, automated theorem proving and high-level CAD synthesis systems in order to provide enhanced reliability in designs with reduced time and cost.
Heuristic Enhancement of Magneto-Optical Images for NDE
NASA Astrophysics Data System (ADS)
Cacciola, Matteo; Megali, Giuseppe; Pellicanò, Diego; Calcagno, Salvatore; Versaci, Mario; Morabito, FrancescoCarlo
2010-12-01
The quality of measurements in nondestructive testing and evaluation plays a key role in assessing the reliability of different inspection techniques. Each different technique, like the magneto-optic imaging here treated, is affected by some special types of noise which are related to the specific device used for their acquisition. Therefore, the design of even more accurate image processing is often required by relevant applications, for instance, in implementing integrated solutions for flaw detection and characterization. The aim of this paper is to propose a preprocessing procedure based on independent component analysis (ICA) to ease the detection of rivets and/or flaws in the specimens under test. A comparison of the proposed approach with some other advanced image processing methodologies used for denoising magneto-optic images (MOIs) is carried out, in order to show advantages and weakness of ICA in improving the accuracy and performance of the rivets/flaw detection.
Measurement of Flaw Size From Thermographic Data
NASA Technical Reports Server (NTRS)
Winfree, William P.; Zalameda, Joseph N.; Howell, Patricia A.
2015-01-01
Simple methods for reducing the pulsed thermographic responses of delaminations tend to overestimate the size of the delamination, since the heat diffuses in the plane parallel to the surface. The result is a temperature profile over the delamination which is larger than the delamination size. A variational approach is presented for reducing the thermographic data to produce an estimated size for a flaw that is much closer to the true size of the delamination. The method is based on an estimate for the thermal response that is a convolution of a Gaussian kernel with the shape of the flaw. The size is determined from both the temporal and spatial thermal response of the exterior surface above the delamination and constraints on the length of the contour surrounding the delamination. Examples of the application of the technique to simulation and experimental data are presented to investigate the limitations of the technique.
Catenary-induced geometric nonlinearity effects on cable linear vibrations
NASA Astrophysics Data System (ADS)
Mansour, Achref; Mekki, Othman Ben; Montassar, Sami; Rega, Giuseppe
2018-01-01
This paper investigates the free undamped vibrations of cables of arbitrary sag and inclination according to the catenary theory. The proposed approach accounts for the catenary effect on the static profile around which the cable motion is defined. Considering first order geometric nonlinearities, exact expression of the curvature is obtained along with the ensuing correction of the well known Irvine parameter. Taking into account the new characterization, different regions of shallow and non-shallow profiles are identified for various inclinations. In view of such classification, the analysis carried out on cable linear modal properties shows the emergence of new dynamic features such as additional hybrid modes and internal resonances. Analytical and numerical results reduce to those obtained by classic formulations in the cases of both horizontal and inclined shallow/non-shallow cables.
Recent modelling advances for ultrasonic TOFD inspections
DOE Office of Scientific and Technical Information (OSTI.GOV)
Darmon, Michel; Ferrand, Adrien; Dorval, Vincent
The ultrasonic TOFD (Time of Flight Diffraction) Technique is commonly used to detect and characterize disoriented cracks using their edge diffraction echoes. An overview of the models integrated in the CIVA software platform and devoted to TOFD simulation is presented. CIVA allows to predict diffraction echoes from complex 3D flaws using a PTD (Physical Theory of Diffraction) based model. Other dedicated developments have been added to simulate lateral waves in 3D on planar entry surfaces and in 2D on irregular surfaces by a ray approach. Calibration echoes from Side Drilled Holes (SDHs), specimen echoes and shadowing effects from flaws canmore » also been modelled. Some examples of theoretical validation of the models are presented. In addition, experimental validations have been performed both on planar blocks containing calibration holes and various notches and also on a specimen with an irregular entry surface and allow to draw conclusions on the validity of all the developed models.« less
NASA Astrophysics Data System (ADS)
Ali, Mohammad
This study involved investigating the feasibility of using Electrochemical Impedance Spectroscopy to assess the performance of coatings used to protect aluminum in beverage containers, and developing an accelerated testing procedure. In the preliminary investigation, tests were performed to ensure that the EIS systems at hand are capable, functional and consistent. This was followed by EIS testing of kitchen-aluminum foil and high-impedance epoxy polymer as a baseline for chemically-active and chemically-inert systems. The ability of EIS to differentiate between intact and flawed coatings was tested by investigating deliberately damaged coatings. The effects of varying the pH and oxygen content on the performance of the coated aluminum samples were also tested. From this investigation, it has been concluded that EIS can be used to differentiate between intact and flawed coatings and detect corrosion before it is visually observable. Signatures of corrosion have been recorded and a preliminary testing procedure has been drawn.
Growth of surface and corner cracks in beta-processed and mill-annealed Ti-6Al-4V
NASA Technical Reports Server (NTRS)
Bell, P. D.
1975-01-01
Empirical stress-intensity expressions were developed to relate the growth of cracks from corner flaws to the growth of cracks from surface flaws. An experimental program using beta-processed Ti-6Al-4V verified these expressions for stress ratios, R greater than or equal to 0. An empirical crack growth-rate expression which included stress-ratio and stress-level effects was also developed. Cracks grew approximately 10 percent faster in transverse-grain material than in longitudinal-grain material and at approximately the same rate in longitudinal-grain mill-annealed Ti-6Al-4V. Specimens having surface and corner cracks and made of longitudinal-grain, beta-processed material were tested with block loads, and increasing the stresses in a block did not significantly change the crack growth rates. Truncation of the basic ascending stress sequence within a block caused more rapid crack growth, whereas both the descending and low-to-high stress sequences slowed crack growth.
Design of Friction Stir Welding Tool for Avoiding Root Flaws
Ji, Shude; Xing, Jingwei; Yue, Yumei; Ma, Yinan; Zhang, Liguo; Gao, Shuangsheng
2013-01-01
In order to improve material flow behavior during friction stir welding and avoid root flaws of weld, a tool with a half-screw pin and a tool with a tapered-flute pin are suggested. The effect of flute geometry in tool pins on material flow velocity is investigated by the software ANSYS FLUENT. Numerical simulation results show that high material flow velocity appears near the rotational tool and material flow velocity rapidly decreases with the increase of distance away from the axis of the tool. Maximum material flow velocity by the tool with the tapered-flute pin appears at the beginning position of flute and the velocity decreases with the increase of flow length in flute. From the view of increasing the flow velocity of material near the bottom of the workpiece or in the middle of workpiece, the tool with the half-screw pin and the tool with the tapered-flute pin are both better than the conventional tool. PMID:28788426
Design of Friction Stir Welding Tool for Avoiding Root Flaws.
Ji, Shude; Xing, Jingwei; Yue, Yumei; Ma, Yinan; Zhang, Liguo; Gao, Shuangsheng
2013-12-12
In order to improve material flow behavior during friction stir welding and avoid root flaws of weld, a tool with a half-screw pin and a tool with a tapered-flute pin are suggested. The effect of flute geometry in tool pins on material flow velocity is investigated by the software ANSYS FLUENT. Numerical simulation results show that high material flow velocity appears near the rotational tool and material flow velocity rapidly decreases with the increase of distance away from the axis of the tool. Maximum material flow velocity by the tool with the tapered-flute pin appears at the beginning position of flute and the velocity decreases with the increase of flow length in flute. From the view of increasing the flow velocity of material near the bottom of the workpiece or in the middle of workpiece, the tool with the half-screw pin and the tool with the tapered-flute pin are both better than the conventional tool.
PLATE WAVE RESONANCE WITH AIR-COUPLED ULTRASONICS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bar, H. N.; Dayal, V.; Barnard, D.
2010-02-22
Air-coupled ultrasonic transducers can excite plate waves in metals and composites. The coincidence effect, i.e., the wave vector of plate wave coincides with projection of exciting airborne sound vector, leads to a resonance which strongly amplifies the sound transmission through the plate. The resonance depends on the angle of incidence and the frequency. In the present study, the incidence angle for maximum transmission (theta{sub max}) is measured in plates of steel, aluminum, carbon fiber reinforced composites and honeycomb sandwich panels. The variations of (theta{sub max}) with plate thickness are compared with theoretical values in steel, aluminum and quasi-isotropic carbon fibermore » composites. The enhanced transmission of air-coupled ultrasound at oblique incidence can substantially improve the probability of flaw detection in plates and especially in honeycomb structures. Experimental air-coupled ultrasonic scan of subtle flaws in CFRP laminates showed definite improvement of signal-to-noise ratio with oblique incidence at theta{sub max}.« less
Invariance algorithms for processing NDE signals
NASA Astrophysics Data System (ADS)
Mandayam, Shreekanth; Udpa, Lalita; Udpa, Satish S.; Lord, William
1996-11-01
Signals that are obtained in a variety of nondestructive evaluation (NDE) processes capture information not only about the characteristics of the flaw, but also reflect variations in the specimen's material properties. Such signal changes may be viewed as anomalies that could obscure defect related information. An example of this situation occurs during in-line inspection of gas transmission pipelines. The magnetic flux leakage (MFL) method is used to conduct noninvasive measurements of the integrity of the pipe-wall. The MFL signals contain information both about the permeability of the pipe-wall and the dimensions of the flaw. Similar operational effects can be found in other NDE processes. This paper presents algorithms to render NDE signals invariant to selected test parameters, while retaining defect related information. Wavelet transform based neural network techniques are employed to develop the invariance algorithms. The invariance transformation is shown to be a necessary pre-processing step for subsequent defect characterization and visualization schemes. Results demonstrating the successful application of the method are presented.
Brucet, Sandra; Boix, Dani; Nathansen, Louise W.; Quintana, Xavier D.; Jensen, Elisabeth; Balayla, David; Meerhoff, Mariana; Jeppesen, Erik
2012-01-01
Climate warming may lead to changes in the trophic structure and diversity of shallow lakes as a combined effect of increased temperature and salinity and likely increased strength of trophic interactions. We investigated the potential effects of temperature, salinity and fish on the plant-associated macroinvertebrate community by introducing artificial plants in eight comparable shallow brackish lakes located in two climatic regions of contrasting temperature: cold-temperate and Mediterranean. In both regions, lakes covered a salinity gradient from freshwater to oligohaline waters. We undertook day and night-time sampling of macroinvertebrates associated with the artificial plants and fish and free-swimming macroinvertebrate predators within artificial plants and in pelagic areas. Our results showed marked differences in the trophic structure between cold and warm shallow lakes. Plant-associated macroinvertebrates and free-swimming macroinvertebrate predators were more abundant and the communities richer in species in the cold compared to the warm climate, most probably as a result of differences in fish predation pressure. Submerged plants in warm brackish lakes did not seem to counteract the effect of fish predation on macroinvertebrates to the same extent as in temperate freshwater lakes, since small fish were abundant and tended to aggregate within the macrophytes. The richness and abundance of most plant-associated macroinvertebrate taxa decreased with salinity. Despite the lower densities of plant-associated macroinvertebrates in the Mediterranean lakes, periphyton biomass was lower than in cold temperate systems, a fact that was mainly attributed to grazing and disturbance by fish. Our results suggest that, if the current process of warming entails higher chances of shallow lakes becoming warmer and more saline, climatic change may result in a decrease in macroinvertebrate species richness and abundance in shallow lakes. PMID:22393354
ERIC Educational Resources Information Center
Gersten, Russell
1991-01-01
The observational study of effective instructional processes in kindergarten by DeVries and others is critiqued. It is maintained that (1) the study takes a narrow approach to constructivism that does not reflect current thinking; (2) there are flaws in the coding system used; and (3) the understanding of instructional issues involving minority…
Commander’s Emergency Response Program: A Flawed Metric
2012-12-06
the U.S. Department of State created the Office of the Coordinator for Reconstruction and Stabilization ( S /CRS). The mission for this office...effectiveness for reconstruction and stability projects and operations. The Department of Defense Directive 3000.5 was issued on November 2005. It...average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
ERIC Educational Resources Information Center
Schwartz, Judah L.
Educational assessment tools are used for accountability; selection and licensure, and to measure the effects of instruction for student diagnosis and treatment. Psychometric instruments currently in use are flawed in two ways: they attempt to rank people on fundamentally multidimensional traits, and the problem of the validity of these…
Much Ado about Something: The Weight of Evidence for PCB Effects on Neuropsychological Function
ERIC Educational Resources Information Center
Schantz, Susan L.; Gardiner, Joseph C.; Gasior, Donna M.; McCaffrey, Robert J.; Sweeney, Anne M.; Humphrey, Harold E. B.
2004-01-01
D.V. Cicchetti, A.S. Kaufman, and S.S. Sparrow (this issue) use six criteria to evaluate the published findings from seven different studies of PCB exposure and neuropsychological function. They point out a number of weaknesses or flaws in each study and conclude that these weaknesses make the overall conclusion that PCB exposure negatively…
ERIC Educational Resources Information Center
Onosko, Joe
2011-01-01
President Barack Obama's Race to the Top (RTT) is a profoundly flawed educational reform plan that increases standardization, centralization, and test-based accountability in our nation's schools. Following a brief summary of the interest groups supporting the plan, who is currently participating in this race, why so many states voluntarily…
Exogenous Variables and Value-Added Assessments: A Fatal Flaw
ERIC Educational Resources Information Center
Berliner, David C.
2014-01-01
Background: There has been rapid growth in value-added assessment of teachers to meet the widely supported policy goal of identifying the most effective and the most ineffective teachers in a school system. The former group is to be rewarded while the latter group is to be helped or fired for their poor performance. But, value-added approaches to…
Eagly, Alice H
2015-01-01
Duarte et al.'s arguments for increasing political diversity in social psychology are based on mischaracterizations of social psychology as fundamentally flawed in understanding stereotype accuracy and the effects of attitudes on information processing. I correct their misunderstandings while agreeing with their view that political diversity, along with other forms of diversity, stands to benefit social psychology.
USDA-ARS?s Scientific Manuscript database
The possibility of observing shallow groundwater depth and areal extent using satellite measurements can support groundwater models and vast irrigation systems management. Besides, these measurements help to integrate groundwater effects on surface energy balance within land surface models and clima...
MOEs for Drug Interdiction: Simple Tests Expose Critical Flaws
1991-09-01
operations against illegal !rugs flowing into the U.S. Six candidate measures of effective (MOEs) are subjected to a structured assessment prcess that tests...supports spanning the decision space with a minimum number of MOEs. A small suite of MOEs reflecting relatively pure effects is preferred to long and...responds to changing consumer fashion--this year’s drug of choice may be overtaken by a new fad. Patterns of preference can vary widely by location as
Cognitive dissonance resolution is related to episodic memory.
Salti, Moti; El Karoui, Imen; Maillet, Mathurin; Naccache, Lionel
2014-01-01
The notion that our past choices affect our future behavior is certainly one of the most influential concepts of social psychology since its first experimental report in the 50 s, and its initial theorization by Festinger within the "cognitive dissonance" framework. Using the free choice paradigm (FCP), it was shown that choosing between two similarly rated items made subjects reevaluate the chosen items as more attractive and the rejected items as less attractive. However, in 2010 a major work by Chen and Risen revealed a severe statistical flaw casting doubt on most previous studies. Izuma and colleagues (2010) supplemented the traditional FCP with original control conditions and concluded that the effect observed could not be solely attributed to this methodological flaw. In the present work we aimed at establishing the existence of genuine choice-induced preference change and characterizing this effect. To do so, we replicated Izuma et al.' study and added a new important control condition which was absent from the original study. Moreover, we added a memory test in order to measure the possible relation between episodic memory of choices and observed behavioral effects. In two experiments we provide experimental evidence supporting genuine choice-induced preference change obtained with FCP. We also contribute to the understanding of the phenomenon by showing that choice-induced preference change effects are strongly correlated with episodic memory.
Cognitive Dissonance Resolution Is Related to Episodic Memory
Maillet, Mathurin; Naccache, Lionel
2014-01-01
The notion that our past choices affect our future behavior is certainly one of the most influential concepts of social psychology since its first experimental report in the 50 s, and its initial theorization by Festinger within the “cognitive dissonance” framework. Using the free choice paradigm (FCP), it was shown that choosing between two similarly rated items made subjects reevaluate the chosen items as more attractive and the rejected items as less attractive. However, in 2010 a major work by Chen and Risen revealed a severe statistical flaw casting doubt on most previous studies. Izuma and colleagues (2010) supplemented the traditional FCP with original control conditions and concluded that the effect observed could not be solely attributed to this methodological flaw. In the present work we aimed at establishing the existence of genuine choice-induced preference change and characterizing this effect. To do so, we replicated Izuma et al.’ study and added a new important control condition which was absent from the original study. Moreover, we added a memory test in order to measure the possible relation between episodic memory of choices and observed behavioral effects. In two experiments we provide experimental evidence supporting genuine choice-induced preference change obtained with FCP. We also contribute to the understanding of the phenomenon by showing that choice-induced preference change effects are strongly correlated with episodic memory. PMID:25264950
Funane, Tsukasa; Atsumori, Hirokazu; Katura, Takusige; Obata, Akiko N; Sato, Hiroki; Tanikawa, Yukari; Okada, Eiji; Kiguchi, Masashi
2014-01-15
To quantify the effect of absorption changes in the deep tissue (cerebral) and shallow tissue (scalp, skin) layers on functional near-infrared spectroscopy (fNIRS) signals, a method using multi-distance (MD) optodes and independent component analysis (ICA), referred to as the MD-ICA method, is proposed. In previous studies, when the signal from the shallow tissue layer (shallow signal) needs to be eliminated, it was often assumed that the shallow signal had no correlation with the signal from the deep tissue layer (deep signal). In this study, no relationship between the waveforms of deep and shallow signals is assumed, and instead, it is assumed that both signals are linear combinations of multiple signal sources, which allows the inclusion of a "shared component" (such as systemic signals) that is contained in both layers. The method also assumes that the partial optical path length of the shallow layer does not change, whereas that of the deep layer linearly increases along with the increase of the source-detector (S-D) distance. Deep- and shallow-layer contribution ratios of each independent component (IC) are calculated using the dependence of the weight of each IC on the S-D distance. Reconstruction of deep- and shallow-layer signals are performed by the sum of ICs weighted by the deep and shallow contribution ratio. Experimental validation of the principle of this technique was conducted using a dynamic phantom with two absorbing layers. Results showed that our method is effective for evaluating deep-layer contributions even if there are high correlations between deep and shallow signals. Next, we applied the method to fNIRS signals obtained on a human head with 5-, 15-, and 30-mm S-D distances during a verbal fluency task, a verbal working memory task (prefrontal area), a finger tapping task (motor area), and a tetrametric visual checker-board task (occipital area) and then estimated the deep-layer contribution ratio. To evaluate the signal separation performance of our method, we used the correlation coefficients of a laser-Doppler flowmetry (LDF) signal and a nearest 5-mm S-D distance channel signal with the shallow signal. We demonstrated that the shallow signals have a higher temporal correlation with the LDF signals and with the 5-mm S-D distance channel than the deep signals. These results show the MD-ICA method can discriminate between deep and shallow signals. Copyright © 2013 Elsevier Inc. All rights reserved.
Landscape evolution by subglacial quarrying
NASA Astrophysics Data System (ADS)
Ugelvig, Sofie V.; Egholm, David L.; Iverson, Neal R.
2014-05-01
In glacial landscape evolution models, subglacial erosion rates are often related to basal sliding or ice discharge by a power-law. This relation can be justified for bedrock abrasion because rock debris transported in the basal ice drives the erosion. However, a simple relation between rates of sliding and erosion is not well supported when considering models for quarrying of rock blocks from the bed. Iverson (2012) introduced a new subglacial quarrying model that operates from the theory of adhesive wear. The model is based on the fact that cavities, with a high level of bedrock differential stress, form along the lee side of bed obstacles when the sliding velocity is to high to allow for the ice to creep around the obstacles. The erosion rate is quantified by considering the likelihood of rock fracturing on topographic bumps. The model includes a statistical treatment of the bedrock weakness: larger rock bodies have lower strengths since they have greater possibility of containing a large flaw [Jaeger and Cook, 1979]. Inclusion of this effect strongly influences the erosion rates and questions the dominant role of sliding rate in standard models for subglacial erosion. Effective pressure, average bedslope, and bedrock fracture density are primary factors that, in addition to sliding rate, influence the erosion rate of this new quarrying model [Iverson, 2012]. We have implemented the quarrying model in a depth-integrated higher-order ice-sheet model [Egholm et al. 2011], coupled to a model for glacial hydrology. In order to also include the effects of cavitation on the subglacial sliding rate, we use a sliding law proposed by Schoof (2005), which includes an upper limit for the stress that can be supported at the bed. Computational experiments show that the combined influence of pressure, sliding rate and bed slope leads to realistically looking landforms such as U-shaped valleys, cirques, hanging valleys and overdeepenings. Compared to model results using a standard erosion rule, where erosion rate scales with basal sliding, the quarrying model produces valleys that are wider and have more flattened valley floors with several shallow overdeepenings. The overdeepenings are stabilized by hydrology because of the strong influence of effective pressure on quarrying rate. For melt water to escape the overdeepening, the average water pressure must rise as the overdeepening grows, and this keeps the effective pressure low and prevents the overdeepening from growing infinitely. In addition, the strong influence of effective pressure indicates that erosion rate depends strongly on ice thickness. This could associate to sudden jumps in erosion rate and fjord formation along margins that experienced periodic ice sheet configurations in the Quaternary. Egholm, D. L. et al. Modeling the flow of glaciers in steep terrains: The integrated second-order shallow ice approximation (iSOSIA). Journal of Geophysical Research, 116, F02012 (2011). Iverson, N. R. A theory of glacial quarrying for landscape evolution models. Geology, v. 40, no. 8, 679-682 (2012). Schoof, C. The effect of cavitation on glacier sliding. Proc. R. Soc. A , 461, 609-627 (2005). Jaeger, J.C., and Cook, N.G.W. Fundamentals of rock mechanics: New York, Chapman and Hall, 593 p. (1979)
Detection and monitoring of shear crack growth using S-P conversion of seismic waves
NASA Astrophysics Data System (ADS)
Modiriasari, A.; Bobet, A.; Pyrak-Nolte, L. J.
2017-12-01
A diagnostic method for monitoring shear crack initiation, propagation, and coalescence in rock is key for the detection of major rupture events, such as slip along a fault. Active ultrasonic monitoring was used in this study to determine the precursory signatures to shear crack initiation in pre-cracked rock. Prismatic specimens of Indiana limestone (203x2101x638x1 mm) with two pre-existing parallel flaws were subjected to uniaxial compression. The flaws were cut through the thickness of the specimen using a scroll saw. The length of the flaws was 19.05 mm and had an inclination angle with respect to the loading direction of 30o. Shear wave transducers were placed on each side of the specimen, with polarization parallel to the loading direction. The shear waves, given the geometry of the flaws, were normally incident to the shear crack forming between the two flaws during loading. Shear crack initiation and propagation was detected on the specimen surface using digital image correlation (DIC), while initiation inside the rock was monitored by measuring full waveforms of the transmitted and reflected shear (S) waves across the specimen. Prior to the detection of a shear crack on the specimen surface using DIC, transmitted S waves were converted to compressional (P) waves. The emergence of converted S-P wave occurs because of the presence of oriented microcracks inside the rock. The microcracks coalesce and form the shear crack observed on the specimen surface. Up to crack coalescence, the amplitude of the converted waves increased with shear crack propagation. However, the amplitude of the transmitted shear waves between the two flaws did not change with shear crack initiation and propagation. This is in agreement with the conversion of elastic waves (P- to S-wave or S- to P-wave) observed by Nakagawa et al., (2000) for normal incident waves. Elastic wave conversions are attributed to the formation of an array of oriented microcracks that dilate under shear stress, which causes energy partitioning into P, S, and P-to-S or S-to-P waves. This finding provides a diagnostic method for detecting shear crack initiation and growth using seismic wave conversions. Acknowledgments: This material is based upon work supported by the National Science Foundation, Geomechanics and Geotechnical Systems Program (award No. CMMI-1162082).
Detection of Cracks at Welds in Steel Tubing Using Flux Focusing Electromagnetic Probe
NASA Technical Reports Server (NTRS)
Wincheski, Buzz; Fulton, Jim; Nath, Shridhar; Simpson, John; Namkung, Min
1994-01-01
The inspection of weldments in critical pressure vessel joints is a major concern in the nuclear power industry. Corrosive environments can speed the fatigue process and access to the critical area is often limited. Eddy current techniques have begun to be used to help overcome these obstacles [1]. As direct contact and couplants are not required, remote areas can be inspected by simply snaking an eddy current coil into the intake tube of the vessel. The drawback of the eddy current method has been the high sensitivity to small changes in the conductivity and permeability of the test piece which are known to vary at weldments [1]. The flaw detection mechanism of the flux focusing electromagnetic probe can help alleviate these difficulties and provide a unique capability for detecting longitudinal fatigue cracks in critical tube structures. The Flux Focusing Electromagnetic Flaw Detector, originally invented for the detection of fatigue and corrosion damage in aluminum plates [2-3], has been adapted for use in testing steel tubing for longitudinal fatigue cracks. The modified design allows for the probe to be placed axisymmetrically into the tubing, inducing eddy currents in the tube wall. The pickup coil of the probe is fixed slightly below the primary windings and is rotated 90 so that its axis is normal to the tube wall. The magnetic flux of the primary coil is focused through the use of ferromagnetic material so that in the absence of fatigue damage there will be no flux linkage with the pickup coil. The presence of a longitudinal fatigue crack will cause the eddy currents induced in the tube wall to flow around the flaw and directly under the pickup coil. The magnetic field associated with these currents will then link the pickup coil and an unambiguous increase in the output voltage of the probe will be measured. The use of the flux focusing electromagnetic probe is especially suited for the detection of flaws originating at or near tube welds. The probe is shown to discriminate against signals due solely to the weld joint so that flaw signals are not hidden in the background in these locations. Experimental and finite element modeling results are presented for the flaw detection capabilities of the probe in stainless steel tubes.
Thermographic Detection of Buried Debonds,
1988-03-01
fabricated. Each specimen was made of 0.32 in. of 4340 steel bonded to p a 0.2 in. of silica-filled nitrile butyl rubber ( NBR ) insulation that was bonded...in. of steel and 0.25 in. of rubber insulation. Thermographic resolution from heat application was determined experimentally. In addition, a computer...video imaging for detecting adhesive bonding flaws. The flaws, buried beneath 0.3 in. of steel and 0.2 in. of rubber in these motors, have been
How to Prevent Type-Flaw Guessing Attacks on Password Protocols
2003-01-01
How to prevent type-flaw guessing attacks on password protocols∗ Sreekanth Malladi , Jim Alves-Foss Center for Secure and Dependable Systems...respectively. R Retagging 〈−(t, f),+(t′, f)〉. The retagging strand captures the concept of receiving a message of one type and sending it, with a claim of a...referrees for insightful comments. Thanks are also due to Ricardo Corin for many helpful technical discus- sions. References [AN94] M. Abadi and R
Progress in defect quantification in multi-layered structures using ultrasonic inspection
NASA Astrophysics Data System (ADS)
Dierken, Josiah; Aldrin, John C.; Holec, Robert; LaCivita, Michael; Shearer, Joshua; Lindgren, Eric
2013-01-01
This study investigates the ability to resolve flaws in aluminum panel stackups representative of aircraft structural components. Using immersion ultrasound techniques, the specimens were examined for known fatigue cracks and electric discharge machined (EDM) notches at various fastener sites. Initial assessments suggested a possible trend between measured ultrasound parameters of flaw intensity and size, and known physical defect length. To improve analytical reliability and efficiency, development of automated data analysis (ADA) algorithms has been initiated.
Panitz, J.K.; Reed, S.T.; Ashley, C.S.; Neiser, R.A.; Moffatt, W.C.
1999-07-20
Electrophoretically active sol-gel processes to fill, seal, and/or density porous, flawed, and/or cracked coatings on electrically conductive substrates. Such coatings may be dielectrics, ceramics, or semiconductors and, by the present invention, may have deposited onto and into them sol-gel ceramic precursor compounds which are subsequently converted to sol-gel ceramics to yield composite materials with various tailored properties. 6 figs.
2015-04-01
to successfully operate after being exposed to the harsh launch vibration environment. 2. Uncover workmanship flaws such as loose fasteners or weak...uncover any workmanship errors in spite of exposing the PPUs to vibration levels in excess of what is expected for flight on any of the launchers ...successfully operate after being exposed to the harsh launch vibration environment. 2. Uncover workmanship flaws such as loose fasteners or weak
NASA Astrophysics Data System (ADS)
DelGrande, Nancy; Dolan, Kenneth W.; Durbin, Philip F.; Gorvad, Michael R.; Kornblum, B. T.; Perkins, Dwight E.; Schneberk, Daniel J.; Shapiro, Arthur B.
1993-11-01
We discuss three-dimensional dynamic thermal imaging of structural flaws using dual-band infrared (DBIR) computed tomography. Conventional (single-band) thermal imaging is difficult to interpret. It yields imprecise or qualitative information (e.g., when subsurface flaws produce weak heat flow anomalies masked by surface clutter). We use the DBIR imaging technique to clarify interpretation. We capture the time history of surface temperature difference patterns at the epoxy-glue disbond site of a flash-heated lap joint. This type of flawed structure played a significant role in causing damage to the Aloha Aircraft fuselage on the aged Boeing 737 jetliner. The magnitude of surface-temperature differences versus time for 0.1 mm air layer compared to 0.1 mm glue layer, varies from 0.2 to 1.6 degree(s)C, for simultaneously scanned front and back surfaces. The scans are taken every 42 ms from 0 to 8 s after the heat flash. By ratioing 3 - 5 micrometers and 8 - 12 micrometers DBIR images, we located surface temperature patterns from weak heat flow anomalies at the disbond site and remove the emissivity mask from surface paint of roughness variations. Measurements compare well with calculations based on TOPAX3D, a three-dimensional, finite element computer model. We combine infrared, ultrasound and x-ray imaging methods to study heat transfer, bond quality and material differences associated with the lap joint disbond site.
Flaw-induced plastic-flow dynamics in bulk metallic glasses under tension
Chen, S. H.; Yue, T. M.; Tsui, C. P.; Chan, K. C.
2016-01-01
Inheriting amorphous atomic structures without crystalline lattices, bulk metallic glasses (BMGs) are known to have superior mechanical properties, such as high strength approaching the ideal value, but are susceptible to catastrophic failures. Understanding the plastic-flow dynamics of BMGs is important for achieving stable plastic flow in order to avoid catastrophic failures, especially under tension, where almost all BMGs demonstrate limited plastic flow with catastrophic failure. Previous findings have shown that the plastic flow of BMGs displays critical dynamics under compression tests, however, the plastic-flow dynamics under tension are still unknown. Here we report that power-law critical dynamics can also be achieved in the plastic flow of tensile BMGs by introducing flaws. Differing from the plastic flow under compression, the flaw-induced plastic flow under tension shows an upward trend in the amplitudes of the load drops with time, resulting in a stable plastic-flow stage with a power-law distribution of the load drop. We found that the flaw-induced plastic flow resulted from the stress gradients around the notch roots, and the stable plastic-flow stage increased with the increase of the stress concentration factor ahead of the notch root. The findings are potentially useful for predicting and avoiding the catastrophic failures in tensile BMGs by tailoring the complex stress fields in practical structural-applications. PMID:27779221
Stress analysis and damage evaluation of flawed composite laminates by hybrid-numerical methods
NASA Technical Reports Server (NTRS)
Yang, Yii-Ching
1992-01-01
Structural components in flight vehicles is often inherited flaws, such as microcracks, voids, holes, and delamination. These defects will degrade structures the same as that due to damages in service, such as impact, corrosion, and erosion. It is very important to know how a structural component can be useful and survive after these flaws and damages. To understand the behavior and limitation of these structural components researchers usually do experimental tests or theoretical analyses on structures with simulated flaws. However, neither approach has been completely successful. As Durelli states that 'Seldom does one method give a complete solution, with the most efficiency'. Examples of this principle is seen in photomechanics which additional strain-gage testing can only average stresses at locations of high concentration. On the other hand, theoretical analyses including numerical analyses are implemented with simplified assumptions which may not reflect actual boundary conditions. Hybrid-Numerical methods which combine photomechanics and numerical analysis have been used to correct this inefficiency since 1950's. But its application is limited until 1970's when modern computer codes became available. In recent years, researchers have enhanced the data obtained from photoelasticity, laser speckle, holography and moire' interferometry for input of finite element analysis on metals. Nevertheless, there is only few of literature being done on composite laminates. Therefore, this research is dedicated to this highly anisotropic material.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Upadhyaya, Belle R.; Hines, J. Wesley; Lu, Baofu
2005-06-03
The overall purpose of this Nuclear Engineering Education Research (NEER) project was to integrate new, innovative, and existing technologies to develop a fault diagnostics and characterization system for nuclear plant steam generators (SG) and heat exchangers (HX). Issues related to system level degradation of SG and HX tubing, including tube fouling, performance under reduced heat transfer area, and the damage caused by stress corrosion cracking, are the important factors that influence overall plant operation, maintenance, and economic viability of nuclear power systems. The research at The University of Tennessee focused on the development of techniques for monitoring process and structuralmore » integrity of steam generators and heat exchangers. The objectives of the project were accomplished by the completion of the following tasks. All the objectives were accomplished during the project period. This report summarizes the research and development activities, results, and accomplishments during June 2001 September 2004. Development and testing of a high-fidelity nodal model of a U-tube steam generator (UTSG) to simulate the effects of fouling and to generate a database representing normal and degraded process conditions. Application of the group method of data handling (GMDH) method for process variable prediction. Development of a laboratory test module to simulate particulate fouling of HX tubes and its effect on overall thermal resistance. Application of the GMDH technique to predict HX fluid temperatures, and to compare with the calculated thermal resistance.Development of a hybrid modeling technique for process diagnosis and its evaluation using laboratory heat exchanger test data. Development and testing of a sensor suite using piezo-electric devices for monitoring structural integrity of both flat plates (beams) and tubing. Experiments were performed in air, and in water with and without bubbly flow. Development of advanced signal processing methods using wavelet transforms and image processing techniques for isolating flaw types. Development and implementation of a new nonlinear and non-stationary signal processing method, called the Hilbert-Huang transform (HHT), for flaw detection and location. This is a more robust and adaptive approach compared to the wavelet transform.Implementation of a moving-window technique in the time domain for detecting and quantifying flaw types in tubular structures. A window zooming technique was also developed for flaw location in tubes. Theoretical study of elastic wave propagation (longitudinal and shear waves) in metallic flat plates and tubing with and without flaws. Simulation of the Lamb wave propagation using the finite-element code ABAQUS. This enabled the verification of the experimental results. The research tasks included both analytical research and experimental studies. The experimental results helped to enhance the robustness of fault monitoring methods and to provide a systematic verification of the analytical results. The results of this research were disseminated in scientific meetings. The journal manuscript titled, "Structural Integrity Monitoring of Steam generator Tubing Using Transient Acoustic Signal Analysis," was published in IEEE Trasactions on Nuclear Science, Vol. 52, No. 1, February 2005. The new findings of this research have potential applications in aerospace and civil structures. The report contains a complete bibliography that was developed during the course of the project.« less
Effect of deep vs. shallow tillage on onion stunting and onion bulb yield, 2012
USDA-ARS?s Scientific Manuscript database
A field experiment was conducted at a site inoculated with R. solani AG 8 at the Oregon State University Hermiston Agricultural Research and Extension Center in Hermiston, OR to determine the effect of plowing (deep tillage) vs. rototilling (shallow tillage) on onion stunting caused by R. solani AG ...
Two innovative pore pressure calculation methods for shallow deep-water formations
NASA Astrophysics Data System (ADS)
Deng, Song; Fan, Honghai; Liu, Yuhan; He, Yanfeng; Zhang, Shifeng; Yang, Jing; Fu, Lipei
2017-11-01
There are many geological hazards in shallow formations associated with oil and gas exploration and development in deep-water settings. Abnormal pore pressure can lead to water flow and gas and gas hydrate accumulations, which may affect drilling safety. Therefore, it is of great importance to accurately predict pore pressure in shallow deep-water formations. Experience over previous decades has shown, however, that there are not appropriate pressure calculation methods for these shallow formations. Pore pressure change is reflected closely in log data, particularly for mudstone formations. In this paper, pore pressure calculations for shallow formations are highlighted, and two concrete methods using log data are presented. The first method is modified from an E. Philips test in which a linear-exponential overburden pressure model is used. The second method is a new pore pressure method based on P-wave velocity that accounts for the effect of shallow gas and shallow water flow. Afterwards, the two methods are validated using case studies from two wells in the Yingqiong basin. Calculated results are compared with those obtained by the Eaton method, which demonstrates that the multi-regression method is more suitable for quick prediction of geological hazards in shallow layers.
NASA Astrophysics Data System (ADS)
Obayashi, Masayuki; Ishihara, Yasushi; Suetsugu, Daisuke
2017-03-01
We conducted synthetic experiments to evaluate the effects of shallow-layer reverberation in oceanic regions on P-wave travel times measured by waveform cross-correlation. Time shift due to waveform distortion by the reverberation was estimated as a function of period. Reverberations in the crystalline crust advance the P-waves by a frequency-independent time shift of about 0.3 s in oceans. Sediment does not affect the time shifts in the mid-ocean regions, but effects as large as -0.8 s or more occur where sediment thickness is greater than 600 m for periods longer than 15 s. The water layer causes time delays (+0.3 s) in the relatively shallow (<3500 m) water region for periods longer than 20 s. The time shift may influence mantle images obtained if the reverberation effects are not accounted for in seismic tomography. We propose a simple method to correct relative P-wave travel times at two sites for shallow-layer reverberation by the cross-convolution of the crustal responses at the two sites. [Figure not available: see fulltext. Caption: .
Twenty years of meta-analyses in orthopaedic surgery: has quality kept up with quantity?
Dijkman, Bernadette G; Abouali, Jihad A K; Kooistra, Bauke W; Conter, Henry J; Poolman, Rudolf W; Kulkarni, Abhaya V; Tornetta, Paul; Bhandari, Mohit
2010-01-01
As the number of studies in the literature is increasing, orthopaedic surgeons highly depend on meta-analyses as their primary source of scientific evidence. The objectives of this review were to assess the scientific quality and number of published meta-analyses on orthopaedics-related topics over time. We conducted, in duplicate and independently, a systematic review of published meta-analyses in orthopaedics in the years 2005 and 2008 and compared them with a previous systematic review of meta-analyses from 1969 to 1999. A search of electronic databases (MEDLINE, EMBASE, and the Cochrane Database of Systematic Reviews) was performed to identify meta-analyses published in 2005 and 2008. We searched bibliographies and contacted content experts to identify additional relevant studies. Two investigators independently assessed the quality of the studies, using the Oxman and Guyatt index, and abstracted relevant data. We included forty-five and forty-four meta-analyses from 2005 and 2008, respectively. While the number of meta-analyses increased fivefold from 1999 to 2008, the mean quality score did not change significantly over time (p = 0.067). In the later years, a significantly lower proportion of meta-analyses had methodological flaws (56% in 2005 and 68% in 2008) compared with meta-analyses published prior to 2000 (88%) (p = 0.006). In 2005 and 2008, respectively, 18% and 30% of the meta-analyses had major to extensive flaws in their methodology. Studies from 2008 with positive conclusions used and described appropriate criteria for the validity assessment less often than did those with negative results. The use of random-effects and fixed-effects models as pooling methods became more popular toward 2008. Although the methodological quality of orthopaedic meta-analyses has increased in the past twenty years, a substantial proportion continues to show major to extensive flaws. As the number of published meta-analyses is increasing, a routine checklist for scientific quality should be used in the peer-review process to ensure methodological standards for publication.
Moment tensor analysis of very shallow sources
Chiang, Andrea; Dreger, Douglas S.; Ford, Sean R.; ...
2016-10-11
An issue for moment tensor (MT) inversion of shallow seismic sources is that some components of the Green’s functions have vanishing amplitudes at the free surface, which can result in bias in the MT solution. The effects of the free surface on the stability of the MT method become important as we continue to investigate and improve the capabilities of regional full MT inversion for source–type identification and discrimination. It is important to understand free–surface effects on discriminating shallow explosive sources for nuclear monitoring purposes. It may also be important in natural systems that have very shallow seismicity, such asmore » volcanic and geothermal systems. We examine the effects of the free surface on the MT via synthetic testing and apply the MT–based discrimination method to three quarry blasts from the HUMMING ALBATROSS experiment. These shallow chemical explosions at ~10 m depth and recorded up to several kilometers distance represent rather severe source–station geometry in terms of free–surface effects. We show that the method is capable of recovering a predominantly explosive source mechanism, and the combined waveform and first–motion method enables the unique discrimination of these events. Furthermore, recovering the design yield using seismic moment estimates from MT inversion remains challenging, but we can begin to put error bounds on our moment estimates using the network sensitivity solution technique.« less
NASA Astrophysics Data System (ADS)
McClanahan, James Patrick
Eddy Current Testing (ECT) is a Non-Destructive Examination (NDE) technique that is widely used in power generating plants (both nuclear and fossil) to test the integrity of heat exchanger (HX) and steam generator (SG) tubing. Specifically for this research, laboratory-generated, flawed tubing data were examined. The purpose of this dissertation is to develop and implement an automated method for the classification and an advanced characterization of defects in HX and SG tubing. These two improvements enhanced the robustness of characterization as compared to traditional bobbin-coil ECT data analysis methods. A more robust classification and characterization of the tube flaw in-situ (while the SG is on-line but not when the plant is operating), should provide valuable information to the power industry. The following are the conclusions reached from this research. A feature extraction program acquiring relevant information from both the mixed, absolute and differential data was successfully implemented. The CWT was utilized to extract more information from the mixed, complex differential data. Image Processing techniques used to extract the information contained in the generated CWT, classified the data with a high success rate. The data were accurately classified, utilizing the compressed feature vector and using a Bayes classification system. An estimation of the upper bound for the probability of error, using the Bhattacharyya distance, was successfully applied to the Bayesian classification. The classified data were separated according to flaw-type (classification) to enhance characterization. The characterization routine used dedicated, flaw-type specific ANNs that made the characterization of the tube flaw more robust. The inclusion of outliers may help complete the feature space so that classification accuracy is increased. Given that the eddy current test signals appear very similar, there may not be sufficient information to make an extremely accurate (>95%) classification or an advanced characterization using this system. It is necessary to have a larger database fore more accurate system learning.
SWIM: A Semi-Analytical Ocean Color Inversion Algorithm for Optically Shallow Waters
NASA Technical Reports Server (NTRS)
McKinna, Lachlan I. W.; Werdell, P. Jeremy; Fearns, Peter R. C. S.; Weeks, Scarla J.; Reichstetter, Martina; Franz, Bryan A.; Bailey, Sean W.; Shea, Donald M.; Feldman, Gene C.
2014-01-01
In clear shallow waters, light that is transmitted downward through the water column can reflect off the sea floor and thereby influence the water-leaving radiance signal. This effect can confound contemporary ocean color algorithms designed for deep waters where the seafloor has little or no effect on the water-leaving radiance. Thus, inappropriate use of deep water ocean color algorithms in optically shallow regions can lead to inaccurate retrievals of inherent optical properties (IOPs) and therefore have a detrimental impact on IOP-based estimates of marine parameters, including chlorophyll-a and the diffuse attenuation coefficient. In order to improve IOP retrievals in optically shallow regions, a semi-analytical inversion algorithm, the Shallow Water Inversion Model (SWIM), has been developed. Unlike established ocean color algorithms, SWIM considers both the water column depth and the benthic albedo. A radiative transfer study was conducted that demonstrated how SWIM and two contemporary ocean color algorithms, the Generalized Inherent Optical Properties algorithm (GIOP) and Quasi-Analytical Algorithm (QAA), performed in optically deep and shallow scenarios. The results showed that SWIM performed well, whilst both GIOP and QAA showed distinct positive bias in IOP retrievals in optically shallow waters. The SWIM algorithm was also applied to a test region: the Great Barrier Reef, Australia. Using a single test scene and time series data collected by NASA's MODIS-Aqua sensor (2002-2013), a comparison of IOPs retrieved by SWIM, GIOP and QAA was conducted.
1979-11-01
microplastic nucleation or growth of cracks. However, recent fractographic information shows that this is commonly not the case, that flaws, commonly...evolu- tion of the Greenland-Norwegian Sea and Eurasia Basin began 57 to 58 m.y.b.p. during the reversed interval prior to anomaly 24. Svalbard and...The major differences between the components is their spectral and radiance distributions. Atmospheric water vapor and sea surface roughness effects
The folly of using RCCs and RVUs for intermediate product costing.
Young, David W
2007-04-01
Two measures for computing the cost of intermediate projects--a ratio of cost to charges and relative value units--are highly flawed and can have serious financial implications for the hospitals that use them. Full-cost accounting, using the principles of activity-based costing, enables hospitals to measure their costs more accurately, both for competitive bidding purposes and to manage them more effectively.
ERIC Educational Resources Information Center
Rice, Deborah C.
2004-01-01
This invited response to the paper by D.V. Cicchetti, A.S. Kaufman, and S.S. Sparrow (CKS), and the responses by the investigative teams of the studies criticized by them, addresses specific errors of logic and interpretation by CKS, and integrates comments made by the study investigators. CKS provide a flawed analysis of the literature on the…
Process for strengthening silicon based ceramics
Kim, Hyoun-Ee; Moorhead, A. J.
1993-01-01
A process for strengthening silicon based ceramic monolithic materials and omposite materials that contain silicon based ceramic reinforcing phases that requires that the ceramic be exposed to a wet hydrogen atmosphere at about 1400.degree. C. The process results in a dense, tightly adherent silicon containing oxide layer that heals, blunts , or otherwise negates the detrimental effect of strength limiting flaws on the surface of the ceramic body.
Process for strengthening silicon based ceramics
Kim, Hyoun-Ee; Moorhead, A. J.
1993-04-06
A process for strengthening silicon based ceramic monolithic materials and omposite materials that contain silicon based ceramic reinforcing phases that requires that the ceramic be exposed to a wet hydrogen atmosphere at about 1400.degree. C. The process results in a dense, tightly adherent silicon containing oxide layer that heals, blunts , or otherwise negates the detrimental effect of strength limiting flaws on the surface of the ceramic body.
Limits on use of health economic assessments for rare diseases.
Hyry, H I; Stern, A D; Cox, T M; Roos, J C P
2014-03-01
Funding of expensive treatments for rare (orphan) diseases is contentious. These agents fare poorly on 'efficiency' or health economic measures, such as the quality-adjusted life years, because of high cost and frequently poor gains in quality of life and survival. We show that cost-effectiveness assessments are flawed, and have only a limited role to play in reimbursement decisions for orphan drugs and beyond.