Harborne, A R
2013-09-01
Reef flats, typically a low-relief carbonate and sand habitat in shallow water leeward of the reef crest, are one of the most extensive zones on Pacific coral reefs. This shallow zone often supports an abundant and diverse fish assemblage that is exposed to more significant variations in physical factors, such as water depth and movement, temperature and ultraviolet (UV) radiation levels, than most other reef fishes. This review examines the characteristics of reef flat fish assemblages, and then investigates what is known about how they respond to their biophysical environment. Because of the challenges of living in shallow, wave-exposed water, reef flats typically support a distinct fish assemblage compared to other reef habitats. This assemblage clearly changes across tidal cycles as some larger species migrate to deeper water at low tide and other species modify their behaviour, but quantitative data are generally lacking. At least some reef flat fish species are well-adapted to high temperatures, low oxygen concentrations and high levels of UV radiation. These behavioural and physiological adaptations suggest that there may be differences in the demographic processes between reef flat assemblages and those in deeper water. Indeed, there is some evidence that reef flats may act as nurseries for some species, but more research is required. Further studies are also required to predict the effects of climate change, which is likely to have multifaceted impacts on reef flats by increasing temperature, water motion and sediment load. Sea-level rise may also affect reef flat fish assemblages and food webs by increasing the amount of time that larger species are able to forage in this zone. The lack of data on reef flats is surprising given their size and relative ease of access, and a better understanding of their functional role within tropical marine seascapes is urgently required. © 2013 The Fisheries Society of the British Isles.
Storlazzi, C.D.; Ogston, A.S.; Bothner, Michael H.; Field, M.E.; Presto, M.K.
2004-01-01
The fringing coral reef off the south coast of Molokai, Hawaii is currently being studied as part of a US Geological Survey (USGS) multi-disciplinary project that focuses on geologic and oceanographic processes that affect coral reef systems. For this investigation, four instrument packages were deployed across the fringing coral reef during the summer of 2001 to understand the processes governing fine-grained terrestrial sediment suspension on the shallow reef flat (h=1m) and its advection across the reef crest and onto the deeper fore reef. The time-series measurements suggest the following conceptual model of water and fine-grained sediment transport across the reef: Relatively cool, clear water flows up onto the reef flat during flooding tides. At high tide, more deep-water wave energy is able to propagate onto the reef flat and larger Trade wind-driven waves can develop on the reef flat, thereby increasing sediment suspension. Trade wind-driven surface currents and wave breaking at the reef crest cause setup of water on the reef flat, further increasing the water depth and enhancing the development of depth-limited waves and sediment suspension. As the tide ebbs, the water and associated suspended sediment on the reef flat drains off the reef flat and is advected offshore and to the west by Trade wind- and tidally- driven currents. Observations on the fore reef show relatively high turbidity throughout the water column during the ebb tide. It therefore appears that high suspended sediment concentrations on the deeper fore reef, where active coral growth is at a maximum, are dynamically linked to processes on the muddy, shallow reef flat.
Modeling Reef Island Morphodynamics in Profile and Plan View
NASA Astrophysics Data System (ADS)
Ashton, A. D.; Ortiz, A. C.; Lorenzo-Trueba, J.
2016-12-01
Reef islands are carbonate detrital landforms perched atop shallow reef flats of atolls and barrier reef systems. Often comprising the only subaerial, inhabitable land of many island chains and island nations, these low-lying, geomorphically active landforms face considerable hazards from climate change. While there hazards include wave overtopping and groundwater salinization, sea-level rise and wave climate change will affect sediment transport and shoreline dynamics, including the possibility for wholesale reorganization of the islands themselves. Here we present a simplified morphodynamic model that can spatially quantify the potential impacts of climate change on reef islands. Using parameterizations of sediment transport pathways and feedbacks from previously presented XBeach modeling results, we investigate how sea-level rise, change in storminess, and different carbonate production rates can affect the profile evolution of reef islands, including feedbacks with the shallow reef flat that bounds the islands offshore (and lagoonward). Model results demonstrate that during rising sea levels, the reef flat can serve as a sediment trap, starving reef islands of detrital sediment that could otherwise fortify the shore against sea-level-rise-driven erosion. On the other hand, if reef flats are currently shallow (likely due to geologic inheritance or biologic cementation processes) such that sea-level rise does not result in sediment accumulation on the flat, reef island shorelines may be more resilient to rising seas. We extend the model in plan view to examine how long-term (decadal) changes in wave approach direction could affect reef island shoreline orientation. We compare model results to historical and geologic change for different case studies on the Marshall Islands. This simplified modeling approach, focusing on boundary dynamics and mass fluxes, provides a quantitative tool to predict the response of reef island environments to climate change.
Presto, M.K.; Ogston, A.S.; Storlazzi, C.D.; Field, M.E.
2006-01-01
A multi-year study was conducted on a shallow fringing reef flat on Molokai, Hawaii to determine the temporal and spatial dispersal patterns of terrigenous suspended sediment. During this study, trade-wind conditions existed for the majority of the year on the reef flat. The trade-wind conditions produced strong currents and resuspended moderate amounts of sediment on the reef flat on a daily basis during the year of study, resulting in an overwhelming contribution to the total sediment flux. The magnitude and direction of the trade winds relative to the orientation of the coastline, the shallow-relief and broad morphology, and tidal elevation, provided the primary control of the physical processes that resuspended and transported sediment on the reef flat over the period of record. Spatial data indicate that much of the terrigenous sediment resuspended on the reef flat is transported predominantly alongshore and is confined to the inner- to mid-reef flat. Evidence for the limited across-shore mixing and transport is provided by the dominantly alongshore wind-driven currents during trade-wind conditions and the well-defined across-shore gradient in percentage calcium carbonate of the suspended sediment. Regions of slightly offshore suspended-sediment transport along the reef flat can be attributed to the circulation pattern set up by the interaction between the trade winds, coastal morphology, and anthropogenic coastal structures (i.e., fish ponds and wharf). The regions in which sediment were seen to move offshore provide the strongest link between the sediment dynamics on reef flat and fore reef, and qualitatively appears to be correlated with low coral coverage on the fore reef. ?? 2005 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Leon, J. X.; Baldock, T.; Callaghan, D. P.; Hoegh-guldberg, O.; Mumby, P.; Phinn, S. R.; Roelfsema, C. M.; Saunders, M. I.
2013-12-01
Coral reef hydrodynamics operate at several and overlapping spatial-temporal scales. Waves have the most important forcing function on shallow (< 5 m) reefs as they drive most ecological and biogeochemical processes by exerting direct physical stress, directly mixing water (temperature and nutrients) and transporting sediments, nutrients and plankton. Reef flats are very effective at dissipating wave energy and providing an important ecosystem service by protecting highly valued shorelines. The effectiveness of reef flats to dissipate wave energy is related to the extreme hydraulic roughness of the benthos and substrate composition. Hydraulic roughness is usually obtained empirically from frictional-dissipation calculations, as detailed field measurements of bottom roughness (e.g. chain-method or profile gauges) is a very labour and time-consuming task. In this study we measured the impact of coral structures on wave directional spreading. Field data was collected during October 2012 across a reef flat on Lizard Island, northern Great Barrier Reef. Wave surface levels were measured using an array of self-logging pressure sensors. A rapid in situ close-range photogrammetric method was used to create a high-resolution (0.5 cm) image mosaic and digital elevation model. Individual coral heads were extracted from these datasets using geo-morphometric and object-based image analysis techniques. Wave propagation was modelled using a modified version of the SWAN model which includes the measured coral structures in 2m by 1m cells across the reef. The approach followed a cylinder drag approach, neglecting skin friction and inertial components. Testing against field data included bed skin friction. Our results show, for the first time, how the variability of the reef benthos structures affects wave dissipation across a shallow reef flat. This has important implications globally for coral reefs, due to the large extent of their area occupied by reef flats, particularly, as global-scale degradation in coral reef health is causing a lowering of reef carbonate production that might lead to a decrease in reef structure and roughness.
Productivity and abundance of large sponge populations on Flinders Reef flats, Coral Sea
NASA Astrophysics Data System (ADS)
Wilkinson, Clive R.
1987-04-01
Large populations of flattened sponges with cyanobacterial symbionts were observed on the shallow reef-flats of the Flinders Reefs, Coral Sea. Estimates of these populations indicated as many as 60 individuals with a total wet biomass of 1.2 kg per m2 in some areas. Along a metre wide transect across 1.3 km of reef flat the population was estimated at 530 kg wet weight sponge (mean 411 g m-2). The four prominent species had instantaneous P/R ratios between 1.3 and 1.8 at optimum light such that photosynthetic productivity was calculated to provide between 61 and 80% of sponge energy requirements in summer and 48 to 64% in winter. While such sponge beds are a prominent feature of these reefs, they appear to contribute less than 10% of gross reef-flat productivity.
Hannak, Judith S.; Kompatscher, Sarah; Stachowitsch, Michael; Herler, Jürgen
2011-01-01
Shallow reefs (reef flats <1.5 m) in the northern Red Sea are impacted by growing tourism that includes swimmers, snorkellers and reef walkers but have largely been neglected in past studies. We selected a fringing reef along the lagoon of Dahab (Sinai, Egypt) as a model for a management strategy. Point-intercept line transects were used to determine substrate composition, coral community and condition, and the coral damage index (CDI) was applied. Approximately 84% of the coral colonies showed signs of damage such as breakage, partial mortality or algal overgrowth, especially affecting the most frequent coral genus Acropora. Questionnaires were used to determine the visitors’ socio-economic background and personal attitudes regarding snorkelling, SCUBA-diving and interest in visiting a prospective snorkelling trail. Experiencing nature (97%) was by far the strongest motivation, and interest in further education about reef ecology and skill training was high. Less experienced snorkellers and divers – the target group for further education and skill training – were those most prepared to financially support such a trail. We therefore recommend a guided underwater snorkelling trail and restricting recreational use to a less sensitive ‘ecotourism zone’ while protecting the shallow reef flat. Artificial structures can complete the trail and offer the opportunity to snorkel over deeper areas at unfavourable tide or wind conditions. This approach provides a strategy for the management and conservation of shallow-water reefs, which are facing increasing human impact here and elsewhere. PMID:21708420
Hannak, Judith S; Kompatscher, Sarah; Stachowitsch, Michael; Herler, Jürgen
2011-10-01
Shallow reefs (reef flats <1.5 m) in the northern Red Sea are impacted by growing tourism that includes swimmers, snorkellers and reef walkers but have largely been neglected in past studies. We selected a fringing reef along the lagoon of Dahab (Sinai, Egypt) as a model for a management strategy. Point-intercept line transects were used to determine substrate composition, coral community and condition, and the coral damage index (CDI) was applied. Approximately 84% of the coral colonies showed signs of damage such as breakage, partial mortality or algal overgrowth, especially affecting the most frequent coral genus Acropora. Questionnaires were used to determine the visitors' socio-economic background and personal attitudes regarding snorkelling, SCUBA-diving and interest in visiting a prospective snorkelling trail. Experiencing nature (97%) was by far the strongest motivation, and interest in further education about reef ecology and skill training was high. Less experienced snorkellers and divers--the target group for further education and skill training--were those most prepared to financially support such a trail. We therefore recommend a guided underwater snorkelling trail and restricting recreational use to a less sensitive 'ecotourism zone' while protecting the shallow reef flat. Artificial structures can complete the trail and offer the opportunity to snorkel over deeper areas at unfavourable tide or wind conditions. This approach provides a strategy for the management and conservation of shallow-water reefs, which are facing increasing human impact here and elsewhere. Copyright © 2011 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Shoham, Erez; Benayahu, Yehuda
2017-03-01
Mesophotic coral-reef ecosystems (MCEs), which comprise the light-dependent communities of corals and other organisms found at depths between 30 and 150 m, have received very little study to date. However, current technological advances, such as remotely operated vehicles and closed-circuit rebreather diving, now enable their thorough investigation. Following the reef-building stony corals, octocorals are the second most common benthic component on many shallow reefs and a major component on deep reefs, the Red Sea included. This study is the first to examine octocoral community features on upper MCEs based on species-level identification and to compare them with the shallower reef zones. The study was carried out at Eilat (Gulf of Aqaba, northern Red Sea), comparing octocoral communities at two mesophotic reefs (30-45 m) and two shallow reef zones (reef flat and upper fore-reef) by belt transects. A total of 30 octocoral species were identified, with higher species richness on the upper MCEs compared to the shallower reefs. Although the MCEs were found to host a higher number of species than the shallower reefs, both featured a similar diversity. Each reef zone revealed a unique octocoral species composition and distinct community structure, with only 16% of the species shared by both the MCEs and the shallower reefs. This study has revealed an almost exclusive dominance of zooxanthellate species at the studied upper MCE reefs, thus indicating an adequate light regime for photosynthesis there. The findings should encourage similar studies on other reefs, aimed at understanding the spatiotemporal features and ecological role of octocorals in reef ecosystems down to the deepest limit of the MCEs.
NASA Astrophysics Data System (ADS)
MacKellar, M.; McGowan, H. A.; Phinn, S. R.
2011-12-01
Coral reefs cover 2.8 to 6.0 x 105 km2 of the Earth's surface and are warm, shallow regions that are believed to contribute enhanced sensible and latent heat to the atmosphere, relative to the surrounding ocean. To predict the impact of climate variability on coral reefs and their weather and climate including cloud, winds, rainfall patterns and cyclone genesis, accurate parameterisation of air-sea energy exchanges over coral reefs is essential. This is also important for the parameterisation and validation of regional to global scale forecast models to improve prediction of tropical and sub-tropical marine and coastal weather. Eddy covariance measurements of air-sea fluxes over coral reefs are rare due to the complexities of installing instrumentation over shallow, tidal water. Consequently, measurements of radiation and turbulent flux data for coral reefs have been captured remotely (satellite data) or via single measurement sites downwind of coral reefs (e.g. terrestrial or shipboard instrumentation). The resolution of such measurements and those that have been made at single locations on reefs may not capture the spatial heterogeneity of surface-atmosphere energy exchanges due to the different geomorphic and biological zones on coral reefs. Accordingly, the heterogeneity of coral reefs with regard to substrate, benthic communities and hydrodynamic processes are not considered in the characterization of the surface radiation energy flux transfers across the water-atmosphere interface. In this paper we present a unique dataset of concurrent in situ eddy covariance measurements made on instrumented pontoons of the surface energy balance over different geomorphic zones of a coral reef (shallow reef flat, shallow and deep lagoons). Significant differences in radiation transfers and air-sea turbulent flux exchanges over the reef were highlighted, with higher Bowen ratios over the shallow reef flat. Increasing wind speed was shown to increase flux divergence between sites to the extent that under unstable, south-easterly Trade Winds the net flux of heat was positive and negative over different geomorphic zones. The surface drag coefficient ranged from 1 to 2.5 x 10-3, with no significant difference between sites. Results highlight the spatial variation of air-sea energetics across a lagoonal platform reef in response to local meteorology, hydrodynamics and benthic/substrate cover.
Baldock, T E; Golshani, A; Atkinson, A; Shimamoto, T; Wu, S; Callaghan, D P; Mumby, P J
2015-08-15
A one-dimensional wave model is combined with an analytical sediment transport model to investigate the likely influence of sea-level rise on net cross-shore sediment transport on fetch-limited barrier reef and lagoon island beaches. The modelling considers if changes in the nearshore wave height and wave period in the lagoon induced by different water levels over the reef flat are likely to lead to net offshore or onshore movement of sediment. The results indicate that the effects of SLR on net sediment movement are highly variable and controlled by the bathymetry of the reef and lagoon. A significant range of reef-lagoon bathymetry, and notably shallow and narrow reefs, appears to lead hydrodynamic conditions and beaches that are likely to be stable or even accrete under SLR. Loss of reef structural complexity, particularly on the reef flat, increases the chance of sediment transport away from beaches and offshore. Copyright © 2015 Elsevier Ltd. All rights reserved.
Jokiel, Paul L.; Storlazzi, Curt D.; Field, Michael E.; Lager, Claire V.; Lager, Dan
2014-01-01
A long-term (10 month exposure) experiment on effects of suspended sediment on the mortality, growth, and recruitment of the reef corals Montipora capitata and Porites compressa was conducted on the shallow reef flat off south Molokaʻi, Hawaiʻi. Corals were grown on wire platforms with attached coral recruitment tiles along a suspended solid concentration (SSC) gradient that ranged from 37 mg l−1 (inshore) to 3 mg l−1 (offshore). Natural coral reef development on the reef flat is limited to areas with SSCs less than 10 mg l−1 as previously suggested in the scientific literature. However, the experimental corals held at much higher levels of turbidity showed surprisingly good survivorship and growth. High SSCs encountered on the reef flat reduced coral recruitment by one to three orders of magnitude compared to other sites throughout Hawaiʻi. There was a significant correlation between the biomass of macroalgae attached to the wire growth platforms at the end of the experiment and percentage of the corals showing mortality. We conclude that lack of suitable hard substrate, macroalgal competition, and blockage of recruitment on available substratum are major factors accounting for the low natural coral coverage in areas of high turbidity. The direct impact of high turbidity on growth and mortality is of lesser importance. PMID:25653896
Jokiel, Paul L.; Rodgers, Ku'ulei S.; Storlazzi, Curt D.; Field, Michael E.; Lager, Claire V.; Lager, Dan
2014-01-01
A long-term (10 month exposure) experiment on effects of suspended sediment on the mortality, growth, and recruitment of the reef corals Montipora capitata and Porites compressa was conducted on the shallow reef flat off south Molokaʻi, Hawaiʻi. Corals were grown on wire platforms with attached coral recruitment tiles along a suspended solid concentration (SSC) gradient that ranged from 37 mg l−1 (inshore) to 3 mg l−1(offshore). Natural coral reef development on the reef flat is limited to areas with SSCs less than 10 mg l−1 as previously suggested in the scientific literature. However, the experimental corals held at much higher levels of turbidity showed surprisingly good survivorship and growth. High SSCs encountered on the reef flat reduced coral recruitment by one to three orders of magnitude compared to other sites throughout Hawaiʻi. There was a significant correlation between the biomass of macroalgae attached to the wire growth platforms at the end of the experiment and percentage of the corals showing mortality. We conclude that lack of suitable hard substrate, macroalgal competition, and blockage of recruitment on available substratum are major factors accounting for the low natural coral coverage in areas of high turbidity. The direct impact of high turbidity on growth and mortality is of lesser importance.
Coral mortality induced by the 2015-2016 El-Niño in Indonesia: the effect of rapid sea level fall
NASA Astrophysics Data System (ADS)
Elvan Ampou, Eghbert; Johan, Ofri; Menkes, Christophe E.; Niño, Fernando; Birol, Florence; Ouillon, Sylvain; Andréfouët, Serge
2017-02-01
The 2015-2016 El-Niño and related ocean warming has generated significant coral bleaching and mortality worldwide. In Indonesia, the first signs of bleaching were reported in April 2016. However, this El Niño has impacted Indonesian coral reefs since 2015 through a different process than temperature-induced bleaching. In September 2015, altimetry data show that sea level was at its lowest in the past 12 years, affecting corals living in the bathymetric range exposed to unusual emersion. In March 2016, Bunaken Island (North Sulawesi) displayed up to 85 % mortality on reef flats dominated by Porites, Heliopora and Goniastrea corals with differential mortality rates by coral genus. Almost all reef flats showed evidence of mortality, representing 30 % of Bunaken reefs. For reef flat communities which were living at a depth close to the pre-El Niño mean low sea level, the fall induced substantial mortality likely by higher daily aerial exposure, at least during low tide periods. Altimetry data were used to map sea level fall throughout Indonesia, suggesting that similar mortality could be widespread for shallow reef flat communities, which accounts for a vast percent of the total extent of coral reefs in Indonesia. The altimetry historical records also suggest that such an event was not unique in the past two decades, therefore rapid sea level fall could be more important in the dynamics and resilience of Indonesian reef flat communities than previously thought. The clear link between mortality and sea level fall also calls for a refinement of the hierarchy of El Niño impacts and their consequences on coral reefs.
NASA Astrophysics Data System (ADS)
Koweek, D.; Samuel, L.; Mucciarone, D. A.; Woodson, C. B.; Monismith, S. G.; Dunbar, R. B.
2012-12-01
Forecasts for coral reefs under various ocean acidification scenarios are becoming increasingly complex due to significant inter-site variability in biogeochemistry, ecology, and physical oceanography. The reef flats of Ofu, American Samoa are a potential end-member of this vulnerability spectrum due to extremely high diurnal variability in their biogeochemistry. Here we present coupled biogeochemical and physical oceanographic measurements from a shallow reef flat on Ofu in November 2011. We observed diurnal temperature ranges of up to 7°C, along with diurnal pH and dissolved oxygen ranges of 0.6 units, and 160 percent of saturation, respectively. Carbon system measurements were less extreme. Alkalinity varied between 2240-2360 μmol/kg and total dissolved inorganic carbon (TDIC) ranged between 1850-2100 μmol/kg during the diurnal cycle. These observations suggest diurnal ranges of ~240ppm CO2 and 1.5 units of ΩAr. The larger diurnal range in TDIC relative to alkalinity suggests a reef environment dominated by photosynthesis. From these observations, we explore the balance between the dominant biogeochemical processes of production and calcification on the reef flat in more detail, along with its implication for conferring resistance to ocean acidification. We use calcification rate estimates to provide insight to patterns of day and night growth and/or dissolution on the reef. Finally, we present evidence of tidal modulation of the biogeochemical signals and discuss the role of localized physical circulation in helping to determine a reef's vulnerability to ocean acidification.
Mortality of shallow reef corals in the western Arabian Gulf following aerial exposure in winter
NASA Astrophysics Data System (ADS)
Fadlallah, Y. H.; Allen, K. W.; Estudillo, R. A.
1995-05-01
Aerial exposure of patch reef corals occurred in Tarut Bay, western Arabian Gulf, (Saudi Arabia) between December 1991 and May 1992, and coincided with extreme low spring tides (below the predicted lowest astronomical tide-LAT). Colonies of Acropora and Stylophora occurring at the highest levels on the tops of patch reef platforms were most affected by the low tides. Corals fully exposed to air suffered total mortality, whereas those not fully exposed suffered tissue damage to their upper parts. Exposure occurred during winter months when air and water temperatures are at their lowest in the gulf. Coupling of extremely low spring tides with wind-induced negative surges (below LAT) are not regular events but are not infrequent. Cold temperatures and exposure may act in concert to produce disproportionate mortalities of reef flat corals in the shallow coastal areas of eastern Saudi Arabia. It is highly unlikely that the Gulf War oil spill played any role in the observed damage to reef corals in the Gulf in 1992.
Last interglacial sea levels and regional tectonics from fossil coral reefs at the Gulf of Aqaba
NASA Astrophysics Data System (ADS)
Bar, N.; Agnon, A.; Yehudai, M.; Lazar, B.; Shaked, Y.; Stein, M.
2017-12-01
Elevated fossil reef terraces along the northeast coast of the Gulf of Aqaba (GOA) illuminate the history of tectonic uplift and sea-level changes during the last interglacial period. The terraces comprise fringing reefs, some with clear reef structure that includes a reef flat and a shallow back lagoon accurately marking sea-levels. U-Th ages of precipitation of aragonitic corals and recrystallization of aragonite to calcite corals from three terraces are used to constrain the local sea-level pattern. Terrace R3 was probably formed during an earlier stage of MIS5e at 130-132 ka and recrystallized to calcite at 124±8 ka. Terrace R2, comprising a wide and developed reef flat, formed during a stable sea level of MIS5e at 129-121 ka and recrystallized to calcite at 104±6 ka. Terrace R1 formed during a short still-stand at 117 ka. All terraces formed when sea level was a few meters above the modern GOA level. The recrystallization age of Terrace R2 implies that at around 104±6 ka (MIS5c) sea level was close to its MIS5e elevation. The tectonic setting is superimposed by local faulting that caused small vertical displacements within the terraces. The elevation and ages of the reef flats indicate a slow average uplift, 0.12±0.05 m/kyr, similar to rates inferred for other reef terraces along GOA and the Red Sea. This implies an overall long-term slow tectonic uplift of the Arabian lithosphere during the late Quaternary.
Hay, Mark E
1984-11-01
Between-habitat differences in macrophyte consumption by herbivorous fishes were examined on three Caribbean and two Indian Ocean coral reefs. Transplanted sections of seagrasses were used as a bioassay to compare removal rates in reef-slope, reef-flat, sand-plain, and lagoon habitats. Herbivore susceptibility of fifty-two species of seaweeds from these habitats was also measured in the field. Seagrass consumption on shallow reef slopes was always significantly greater than on shallow reef flats, deep sand plains, or sandy lagoons. Reef-slope seaweeds were consistently resistant to herbivory while reef-flat seaweeds were consistently very susceptible to herbivory. This pattern supports the hypothesis that defenses against herbivores are costly in terms of fitness and are selected against in habitats with predictably low rates of herbivory.Sand-plain and lagoon seaweeds showed a mixed response when placed in habitats with high herbivore pressure; most fleshy red seaweeds were eaten rapidly, most fleshy green seaweeds were eaten at intermediate rates, and most calcified green seaweeds were avoided or eaten at very low rates. Differences in susceptibility between red and green seaweeds from sand-plain or lagoon habitats may result from differential competitive pressures experienced by these seaweed groups or from the differential probability of being encountered by herbivores. The susceptibility of a species to removal by herbivorous fishes was relatively consistent between reefs. Preferences of the sea urchin Diadema antillarum were also similar to those of the fish guilds.Unique secondary metabolites were characteristic of almost all of the most herbivore resistant seaweeds. However, some of the herbivore susceptible species also contain chemicals that have been proposed as defensive compounds. Genera such as Sargassum, Turbinaria, Thalassia, Halodule, and Thalassodendron, which produce polyphenolics or phenolic acids, were consumed at high to intermediate rates, suggesting that these compounds are not effective deterrents for some herbivorous fishes. Additionally, potential for the production of the compounds caulerpin, caulerpicin and caulerpenyne in various species of Caulerpa did not assure low susceptibility to herbivory.Heavily calcified seaweeds were very resistant to herbivory, but all of these species also produce toxic secondary metabolites which makes it difficult to distinguish between the effects of morphological and chemical defenses. Predictions of susceptibility to herbivory based on algal toughness and external morphology were of limited value in explaining differing resistances to herbivory.
Simulating reef response to sea-level rise at Lizard Island: A geospatial approach
NASA Astrophysics Data System (ADS)
Hamylton, S. M.; Leon, J. X.; Saunders, M. I.; Woodroffe, C. D.
2014-10-01
Sea-level rise will result in changes in water depth over coral reefs, which will influence reef platform growth as a result of carbonate production and accretion. This study simulates the pattern of reef response on the reefs around Lizard Island in the northern Great Barrier Reef. Two sea-level rise scenarios are considered to capture the range of likely projections: 0.5 m and 1.2 m above 1990 levels by 2100. Reef topography has been established through extensive bathymetric profiling, together with available data, including LiDAR, single beam bathymetry, multibeam swath bathymetry, LADS and digitised chart data. The reef benthic cover around Lizard Island has been classified using a high resolution WorldView-2 satellite image, which is calibrated and validated against a ground referencing dataset of 364 underwater video records of the reef benthic character. Accretion rates are parameterised using published hydrochemical measurements taken in-situ and rules are applied using Boolean logic to incorporate geomorphological transitions associated with different depth ranges, such as recolonisation of the reef flat when it becomes inundated as sea level rises. Simulations indicate a variable platform response to the different sea-level rise scenarios. For the 0.5 m rise, the shallower reef flats are gradually colonised by corals, enabling this active geomorphological zone to keep up with the lower rate of rise while the other sand dominated areas get progressively deeper. In the 1.2 m scenario, a similar pattern is evident for the first 30 years of rise, beyond which the whole reef platform begins to slowly drown. To provide insight on reef response to sea-level rise in other areas, simulation results of four different reef settings are discussed and compared at the southeast reef flat (barrier reef), Coconut Beach (fringing reef), Watson's Bay (leeward bay with coral patches) and Mangrove Beach (sheltered lagoonal embayment). The reef sites appear to accrete upwards at a rate commensurate with the rate of rise, thereby maintaining their original profile and position relative to the sea surface and the leeward and lagoonal sites with a low accretion rate maintain a similar profile but slowly gain depth relative to sea-level. The result of this variable response is that elevated features of the reef platform, such as reef patches and crests tend to become more pronounced.
Wave-driven Hydrodynamics for Different Reef Geometries and Roughness Scenarios
NASA Astrophysics Data System (ADS)
Franklin, G. L.; Marino-Tapia, I.; Torres-Freyermuth, A.
2013-05-01
In fringing reef systems where a shallow lagoon is present behind the reef crest, wave breaking appears to dominate circulation, controlling numerous key processes such as the transport and dispersion of larvae, nutrients and sediments. Despite their importance, there is a need for more detailed knowledge on the hydrodynamic processes that take place within the surf zone of these systems and the effects different combinations of geometries and roughness have on them. The present study focuses on the use of two-dimensional (2DV) numerical model simulations and data obtained during a field campaign in Puerto Morelos, Quintana Roo, Mexico to better understand the detailed surf zone processes that occur over a fringing reef. The model used is Cornell Breaking Wave and Structures (COBRAS), which solves Reynolds-Averaged Navier-Stokes (RANS) equations. Reef geometries implemented in the model include a reef flat and two different reef crests. The effect of roughness on wave setup, radiation stress, mean flows, and cross-shore spectral evolution for the model results was studied using different roughness coefficients (Nikuradse) and a bathymetric profile obtained in the field using the bottom track option of an Acoustic Doppler Current Profiler. Field data were also analysed for the configuration and roughness of Puerto Morelos. Model results reveal that for all profiles wave setup increased significantly (~22%) with increasing bed roughness, in agreement with previous findings for sandy beaches.For all wave heights and periods studied, increasing roughness also affected spectral wave evolution across the reef, with a significant reduction in energy, particularly at infragravity frequencies. The presence of a reef crest in the profile resulted in differences in behaviour at infragravity frequencies. For example, preliminary results suggest that there is a shift towards higher frequencies as waves progress into the lagoon when a crest is present, something that does not appear to occur over the reef flat. Time-averaged velocities exhibited a dominant onshore flow due to waves at the surface, as is generally reported for coral reefs. Model results also suggest the presence of offshore velocities, which were slightly greater over the reef flat compared to the reef crest. Maximum offshore velocities appear to be more localised in the case of the reef flat whereas they extended over a larger area in the case of the reef crest. In all cases, increased roughness resulted in reduced velocities. These results are important since they concern processes that affect the circulation within the lagoon, which has implications in terms of the lagoon's residence time and hence heat dispersion and exposure to pollutants.
Carbonate system parameters of an algal-dominated reef along west Maui
Prouty, Nancy G.; Yates, Kimberly K.; Smiley, Nathan A.; Gallagher, Christopher; Cheriton, Olivia; Storlazzi, Curt
2018-01-01
Constraining coral reef metabolism and carbon chemistry dynamics are fundamental for understanding and predicting reef vulnerability to rising coastal CO2 concentrations and decreasing seawater pH. However, few studies exist along reefs occupying densely inhabited shorelines with known input from land-based sources of pollution. The shallow coral reefs off Kahekili, West Maui, are exposed to nutrient-enriched, low-pH submarine groundwater discharge (SGD) and are particularly vulnerable to the compounding stressors from land-based sources of pollution and lower seawater pH. To constrain the carbonate chemistry system, nutrients and carbonate chemistry were measured along the Kahekili reef flat every 4 h over a 6-d sampling period in March 2016. Abiotic process – primarily SGD fluxes – controlled the carbonate chemistry adjacent to the primary SGD vent site, with nutrient-laden freshwater decreasing pH levels and favoring undersaturated aragonite saturation (Ωarag) conditions. In contrast, diurnal variability in the carbonate chemistry at other sites along the reef flat was driven by reef community metabolism. Superimposed on the diurnal signal was a transition during the second sampling period to a surplus of total alkalinity (TA) and dissolved inorganic carbon (DIC) compared to ocean end-member TA and DIC measurements. A shift from net community production and calcification to net respiration and carbonate dissolution was identified. This transition occurred during a period of increased SGD-driven nutrient loading, lower wave height, and reduced current speeds. This detailed study of carbon chemistry dynamics highlights the need to incorporate local effects of nearshore oceanographic processes into predictions of coral reef vulnerability and resilience.
NASA Astrophysics Data System (ADS)
Takesue, Renee K.; Storlazzi, Curt D.
2017-03-01
Land-based sediment and contaminant runoff is a major threat to coral reefs, and runoff reduction efforts would benefit from knowledge of specific runoff sources. Geochemical signatures of small drainage basins were determined in the fine fraction of soil and sediment, then used in the nearshore region of a coral reef-fringed urban embayment on southeast Oahu, Hawaii, to describe sources and dispersal of land-based runoff. The sedimentary rare earth element ratio (La/Yb)N showed a clear distinction between the two main rock types in the overall contributing area, tholeiitic and alkalic olivine basalt. Based on this geochemical signature it was apparent that the majority of terrigenous sediment on the reef flat originated from geologically old tholeiitic drainages. Sediment from one of five tholeiitic drainages had a distinct geochemical signature, and sediment with this signature was dispersed on the reef flat 2 km west and 150 m offshore of the contributing basin. Sediment and the anthropogenic metals Cd, Pb, and Zn were entrained in runoff from the most heavily urbanized region of the watershed. Although anthropogenic Cd and Zn had localized distributions close to shore, anthropogenic Pb was found associated with fine sediment on the westernmost part of the reef flat and 400 m offshore, illustrating how trade-wind-driven sediment transport can increase the scale of runoff impacts to nearshore communities. Our findings show that sediment geochemical signatures can provide insights about the source and dispersal of land-based runoff in shallow coastal environments. The application of such knowledge to watershed management and habitat remediation efforts can aid in the protection and restoration of runoff-impacted coastal ecosystems worldwide.
Takesue, Renee K.; Storlazzi, Curt
2017-01-01
Land-based sediment and contaminant runoff is a major threat to coral reefs, and runoff reduction efforts would benefit from knowledge of specific runoff sources. Geochemical signatures of small drainage basins were determined in the fine fraction of soil and sediment, then used in the nearshore region of a coral reef-fringed urban embayment on southeast Oahu, Hawaii, to describe sources and dispersal of land-based runoff. The sedimentary rare earth element ratio (La/Yb)N showed a clear distinction between the two main rock types in the overall contributing area, tholeiitic and alkalic olivine basalt. Based on this geochemical signature it was apparent that the majority of terrigenous sediment on the reef flat originated from geologically old tholeiitic drainages. Sediment from one of five tholeiitic drainages had a distinct geochemical signature, and sediment with this signature was dispersed on the reef flat 2 km west and 150 m offshore of the contributing basin. Sediment and the anthropogenic metals Cd, Pb, and Zn were entrained in runoff from the most heavily urbanized region of the watershed. Although anthropogenic Cd and Zn had localized distributions close to shore, anthropogenic Pb was found associated with fine sediment on the westernmost part of the reef flat and 400 m offshore, illustrating how trade-wind-driven sediment transport can increase the scale of runoff impacts to nearshore communities. Our findings show that sediment geochemical signatures can provide insights about the source and dispersal of land-based runoff in shallow coastal environments. The application of such knowledge to watershed management and habitat remediation efforts can aid in the protection and restoration of runoff-impacted coastal ecosystems worldwide.
NASA Astrophysics Data System (ADS)
DeCarlo, Thomas M.; Cohen, Anne L.; Wong, George T. F.; Shiah, Fuh-Kwo; Lentz, Steven J.; Davis, Kristen A.; Shamberger, Kathryn E. F.; Lohmann, Pat
2017-01-01
Coral reefs are built of calcium carbonate (CaCO3) produced biogenically by a diversity of calcifying plants, animals, and microbes. As the ocean warms and acidifies, there is mounting concern that declining calcification rates could shift coral reef CaCO3 budgets from net accretion to net dissolution. We quantified net ecosystem calcification (NEC) and production (NEP) on Dongsha Atoll, northern South China Sea, over a 2 week period that included a transient bleaching event. Peak daytime pH on the wide, shallow reef flat during the nonbleaching period was ˜8.5, significantly elevated above that of the surrounding open ocean (˜8.0-8.1) as a consequence of daytime NEP (up to 112 mmol C m-2 h-1). Diurnal-averaged NEC was 390 ± 90 mmol CaCO3 m-2 d-1, higher than any other coral reef studied to date despite comparable calcifier cover (25%) and relatively high fleshy algal cover (19%). Coral bleaching linked to elevated temperatures significantly reduced daytime NEP by 29 mmol C m-2 h-1. pH on the reef flat declined by 0.2 units, causing a 40% reduction in NEC in the absence of pH changes in the surrounding open ocean. Our findings highlight the interactive relationship between carbonate chemistry of coral reef ecosystems and ecosystem production and calcification rates, which are in turn impacted by ocean warming. As open-ocean waters bathing coral reefs warm and acidify over the 21st century, the health and composition of reef benthic communities will play a major role in determining on-reef conditions that will in turn dictate the ecosystem response to climate change.
Carbonate system parameters of an algal-dominated reef along West Maui
NASA Astrophysics Data System (ADS)
Prouty, Nancy G.; Yates, Kimberly K.; Smiley, Nathan; Gallagher, Chris; Cheriton, Olivia; Storlazzi, Curt D.
2018-04-01
Constraining coral reef metabolism and carbon chemistry dynamics are fundamental for understanding and predicting reef vulnerability to rising coastal CO2 concentrations and decreasing seawater pH. However, few studies exist along reefs occupying densely inhabited shorelines with known input from land-based sources of pollution. The shallow coral reefs off Kahekili, West Maui, are exposed to nutrient-enriched, low-pH submarine groundwater discharge (SGD) and are particularly vulnerable to the compounding stressors from land-based sources of pollution and lower seawater pH. To constrain the carbonate chemistry system, nutrients and carbonate chemistry were measured along the Kahekili reef flat every 4 h over a 6-day sampling period in March 2016. Abiotic process - primarily SGD fluxes - controlled the carbonate chemistry adjacent to the primary SGD vent site, with nutrient-laden freshwater decreasing pH levels and favoring undersaturated aragonite saturation (Ωarag) conditions. In contrast, diurnal variability in the carbonate chemistry at other sites along the reef flat was driven by reef community metabolism. Superimposed on the diurnal signal was a transition during the second sampling period to a surplus of total alkalinity (TA) and dissolved inorganic carbon (DIC) compared to ocean endmember TA and DIC measurements. A shift from positive net community production and positive net community calcification to negative net community production and negative net community calcification was identified. This transition occurred during a period of increased SGD-driven nutrient loading, lower wave height, and reduced current speeds. This detailed study of carbon chemistry dynamics highlights the need to incorporate local effects of nearshore oceanographic processes into predictions of coral reef vulnerability and resilience.
Mwaura, Jelvas; Umezawa, Yu; Nakamura, Takashi; Kamau, Joseph
2017-06-30
The source of anthropogenic nutrient and its spatial extent in three fringing reefs with differing human population gradients in Kenya were investigated using stable isotope approaches. Nutrient concentrations and nitrate-δ 15 N in seepage water indicated that population density and tourism contributed greatly to the extent of nutrient loading to adjacent reefs. Although water-column nutrient analyses did not show any significant difference among the reefs, higher δ 15 N and N contents in macrophytes showed terrestrial nutrients affected primary producers in onshore areas in Nyali and Bamburi reefs, but were mitigated by offshore water intrusion especially at Nyali. On the offshore reef flat, where the same species of macroalgae were not available, complementary use of δ 15 N in sedimentary organic matter suggested inputs of nutrients originated from the urban city of Mombasa. If population increases in the future, nutrient conditions in the shallower reef, Vipingo, may be dramatically degraded due to lower water exchange ratio. Copyright © 2017 Elsevier Ltd. All rights reserved.
Radar signal return from near-shore surface and shallow subsurface features, Darien Province, Panama
NASA Technical Reports Server (NTRS)
Hanson, B. C.; Dellwig, L. F.
1973-01-01
The AN/APQ-97 radar imagery over eastern Panama is analyzed. The imagery was directed toward extraction of geologic and engineering data and the establishment of operational parameters. Subsequent investigations emphasized landform identification and vegetation distribution. The parameters affecting the observed return signal strength from such features are considered. Near-shore ocean phenomena were analyzed. Tidal zone features such as mud flats and reefs were identified in the near range, but were not detectable in the far range. Surface roughness dictated the nature of reflected energy (specular or diffuse). In surf zones, changes in wave train orientation relative to look direction, the slope of the surface, and the physical character of the wave must be considered. It is concluded that the establishment of the areal extent of the tidal flats, distributary channels, and reefs is practical only in the near to intermediate range under minimal low tide conditions.
Guadayol, Òscar; Silbiger, Nyssa J.; Donahue, Megan J.; Thomas, Florence I. M.
2014-01-01
Spatial and temporal environmental variability are important drivers of ecological processes at all scales. As new tools allow the in situ exploration of individual responses to fluctuations, ecologically meaningful ways of characterizing environmental variability at organism scales are needed. We investigated the fine-scale spatial heterogeneity of high-frequency temporal variability in temperature, dissolved oxygen concentration, and pH experienced by benthic organisms in a shallow coastal coral reef. We used a spatio-temporal sampling design, consisting of 21 short-term time-series located along a reef flat-to-reef slope transect, coupled to a long-term station monitoring water column changes. Spectral analyses revealed sharp gradients in variance decomposed by frequency, as well as differences between physically-driven and biologically-reactive parameters. These results highlight the importance of environmental variance at organismal scales and present a new sampling scheme for exploring this variability in situ. PMID:24416364
NASA Astrophysics Data System (ADS)
Zhu, X.; Minnett, P. J.; Berkelmans, R.; Hendee, J.; Manfrino, C.
2014-07-01
A good understanding of diurnal warming in the upper ocean is important for the validation of satellite-derived sea surface temperature (SST) against in-situ buoy data and for merging satellite SSTs taken at different times of the same day. For shallow coastal regions, better understanding of diurnal heating could also help improve monitoring and prediction of ecosystem health, such as coral reef bleaching. Compared to its open ocean counterpart which has been studied extensively and modeled with good success, coastal diurnal warming has complicating localized characteristics, including coastline geometry, bathymetry, water types, tidal and wave mixing. Our goal is to characterize coastal diurnal warming using two extensive in-situ temperature and weather datasets from the Caribbean and Great Barrier Reef (GBR), Australia. Results showed clear daily warming patterns in most stations from both datasets. For the three Caribbean stations where solar radiation is the main cause of daily warming, the mean diurnal warming amplitudes were about 0.4 K at depths of 4-7 m and 0.6-0.7 K at shallower depths of 1-2 m; the largest warming value was 2.1 K. For coral top temperatures of the GBR, 20% of days had warming amplitudes >1 K, with the largest >4 K. The bottom warming at shallower sites has higher daily maximum temperatures and lower daily minimum temperatures than deeper sites nearby. The averaged daily warming amplitudes were shown to be closely related to daily average wind speed and maximum insolation, as found in the open ocean. Diurnal heating also depends on local features including water depth, location on different sections of the reef (reef flat vs. reef slope), the relative distance from the barrier reef chain (coast vs. lagoon stations vs. inner barrier reef sites vs. outer rim sites); and the proximity to the tidal inlets. In addition, the influence of tides on daily temperature changes and its relative importance compared to solar radiation was quantified by calculating the ratio of power spectrum densities at the principal lunar semidiurnal M2 tide versus 24-hour cycle frequency representing mainly solar radiation forcing, i.e., (PSDM2/PSD24). Despite the fact that GBR stations are generally located at regions with large tidal changes, the tidal effects were modest: 80% of stations showed value of (PSDM2/PSD24) of less than 10%.
NASA Astrophysics Data System (ADS)
Davis, K. A.; Reid, E. C.; Cohen, A. L.
2016-02-01
Internal waves propagating across the continental slope and shelf are transformed by the competing effects of nonlinear steepening and dispersive spreading, forming nonlinear internal waves (NLIWs) that can penetrate onto the shallow inner shelf, often appearing in the form of bottom-propagating nonlinear internal bores or boluses. NLIWs play a significant role in nearshore dynamics with baroclinic current amplitudes on the order of that of wind- and surface wave-driven flows and rapid temperature changes on the order of annual ranges. In June 2014 we used a Distributed Temperature Sensing (DTS) system to give a continuous cross-shelf view of nonlinear internal wave dynamics on the forereef of Dongsha Atoll, a coral reef in the northern South China Sea. A DTS system measures temperature continuously along the length of an optical fiber, resolving meter-to-kilometer spatial scales. This unique view of cross-shelf temperature structure made it possible to observe internal wave reflection, variable propagation speed across the shelf, bolus formation and dissipation. Additionally, we used the DTS data to track internal waves across the shallow fore reef and onto the reef flat and to quantify spatial patterns in temperature variability. Shoaling internal waves are an important process affecting physical variability and water properties on the reef.
Ampou, Eghbert Elvan; Ouillon, Sylvain; Iovan, Corina; Andréfouët, Serge
2018-06-01
In Bunaken Island (Indonesia), a time-series of very high resolution (2-4m) satellite imagery was used to draw the long-term dynamics of shallow reef flat habitats from 2001 to 2015. Lack of historical georeferenced ground-truth data oriented the analysis towards a scenario-approach based on the monitoring of selected unambiguously-changing habitat polygons characterized in situ in 2014 and 2015. Eight representative scenarios (coral colonization, coral loss, coral stability, and sand colonization by seagrass) were identified. All occurred simultaneously in close vicinity, precluding the identification of a single general cause of changes that could have affected the whole reef. Likely, very fine differences in reef topography, exposure to wind/wave and sea level variations were responsible for the variety of trajectories. While trajectories of reef habitats is a way to measure resilience and coral recovery, here, the 15-year time-series was too short to be able to conclude on the resilience of Bunaken reefs. Copyright © 2017 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Harris, Daniel L.; Vila-Concejo, Ana; Webster, Jody M.
2014-10-01
Back-reef sand aprons are conspicuous and dynamic sedimentary features in coral reef systems. The development of these features influences the evolution and defines the maturity of coral reefs. However, the hydrodynamic processes that drive changes on sand aprons are poorly understood with only a few studies directly assessing sediment entrainment and transport. Current and wave conditions on a back-reef sand apron were measured during this study and a digital elevation model was developed through topographic and bathymetric surveying of the sand apron, reef flats and lagoon. The current and wave processes that may entrain and transport sediment were assessed using second order small amplitude (Stokes) wave theory and Shields equations. The morphodynamic interactions between current flow and geomorphology were also examined. The results showed that sediment transport occurs under modal hydrodynamic conditions with waves the main force entraining sediment rather than average currents. A morphodynamic relationship between current flow and geomorphology was also observed with current flow primarily towards the lagoon in shallow areas of the sand apron and deeper channel-like areas directing current off the sand apron towards the lagoon or the reef crest. These results show that the short-term mutual interaction of hydrodynamics and geomorphology in coral reefs can result in morphodynamic equilibrium.
NASA Astrophysics Data System (ADS)
Scopélitis, J.; Andréfouët, S.; Phinn, S.; Done, T.; Chabanet, P.
2011-12-01
Observations made on Heron Island reef flat during the 1970s-1990s highlighted the importance of rapid change in hydrodynamics and accommodation space for coral development. Between the 1940s and the 1990s, the minimum reef-flat top water level varied by some tens of centimetres, successively down then up, in rapid response to local engineering works. Coral growth followed sea-level variations and was quantified here for several coral communities using horizontal two-dimensional above water remotely sensed observations. This required seven high spatial resolution aerial photographs and Quickbird satellite images spanning 35 years: 1972, 1979, 1990, 1992, 2002, 2006 and 2007. The coral growth dynamics followed four regimes corresponding to artificially induced changes in sea levels: 1972-1979 (lowest growth rate): no detectable coral development, due to high tidal currents and minimum mean low-tide water level; 1979-1991 (higher growth rate): horizontal coral development promoted by calmer hydrodynamic conditions; 1991-2001(lower growth rate): vertical coral development, induced by increased local sea level by ~12 cm due to construction of new bund walls; 2001-2007 (highest growth rate): horizontal coral development after that vertical growth had become limited by sea level. This unique time-series displays a succession of ecological stage comprising a `catch-up' dynamic in response to a rapid local sea-level rise in spite of the occurrences of the most severe bleaching events on record (1998, 2002) and the decreasing calcification rates reported in massive corals in the northern part of the Great Barrier Reef.
Wave Dissipation on Low- to Super-Energy Coral Reefs
NASA Astrophysics Data System (ADS)
Harris, D. L.
2016-02-01
Coral reefs are valuable, complex and bio-diverse ecosystems and are also known to be one of the most effective barriers to swell events in coastal environments. Previous research has found coral reefs to be remarkably efficient in removing most of the wave energy during the initial breaking and transformation on the reef flats. The rate of dissipation is so rapid that coral reefs have been referred to as rougher than any known coastal barrier. The dissipation of wave energy across reef flats is crucial in maintaining the relatively low-energy conditions in the back reef and lagoonal environments providing vital protection to adjacent beach or coastal regions from cyclone and storm events. A shift in the regulation of wave energy by reef flats could have catastrophic consequences ecologically, socially, and economically. This study examined the dissipation of wave energy during two swell events in Tahiti and Moorea, French Polyesia. Field sites were chosen in varying degrees of exposure and geomorphology from low-energy protected sites (Tiahura, Moorea) to super-energy sites (Teahupo'o, Tahiti). Waves were measured during two moderate to large swell events in cross reef transects using short-term high-resolution pressure transducers. Wave conditions were found to be similar in all back reef locations despite the very different wave exposure at each reef site. However, wave conditions on the reef flats were different and mirrored the variation in wave exposure with depth over the reef flat the primary regulator of reef flat wave height. These results indicate that coral reef flats evolve morphodynamically with the wave climate, which creates coral reef geomorphologies capable of dissipating wave energy that results in similar back reef wave conditions regardless of the offshore wave climate.
Andradi-Brown, Dominic A; Head, Catherine E I; Exton, Dan A; Hunt, Christina L; Hendrix, Alicia; Gress, Erika; Rogers, Alex D
2017-01-01
Mesophotic coral ecosystems (MCEs, reefs 30-150 m) are understudied, yet the limited research conducted has been biased towards large sessile taxa, such as scleractinian corals and sponges, or mobile taxa such as fishes. Here we investigate zooplankton communities on shallow reefs and MCEs around Utila on the southern Mesoamerican Barrier Reef using planktonic light traps. Zooplankton samples were sorted into broad taxonomic groups. Our results indicate similar taxonomic zooplankton richness and overall biomass between shallow reefs and MCEs. However, the abundance of larger bodied (>2 mm) zooplanktonic groups, including decapod crab zoea, mysid shrimps and peracarid crustaceans, was higher on MCEs than shallow reefs. Our findings highlight the importance of considering zooplankton when identifying broader reef community shifts across the shallow reef to MCE depth gradient.
NASA Astrophysics Data System (ADS)
Ryan, E. J.; Smithers, S. G.; Lewis, S. E.; Clark, T. R.; Zhao, J. X.
2016-09-01
The geomorphology and chronostratigraphy of the reef flat (including microatoll ages and elevations) were investigated to better understand the long-term development of the reef at Middle Island, inshore central Great Barrier Reef. Eleven cores across the fringing reef captured reef initiation, framework accretion and matrix sediments, allowing a comprehensive appreciation of reef development. Precise uranium-thorium ages obtained from coral skeletons revealed that the reef initiated ~7873 ± 17 years before present (yBP), and most of the reef was emplaced in the following 1000 yr. Average rates of vertical reef accretion ranged between 3.5 and 7.6 mm yr-1. Reef framework was dominated by branching corals ( Acropora and Montipora). An age hiatus of ~5000 yr between 6439 ± 19 and 1617 ± 10 yBP was observed in the core data and attributed to stripping of the reef structure by intense cyclones during the mid- to late-Holocene. Large shingle ridges deposited onshore and basset edges preserved on the reef flat document the influence of cyclones at Middle Island and represent potential sinks for much of the stripped material. Stripping of the upper reef structure around the outer margin of the reef flat by cyclones created accommodation space for a thin (<1.2 m) veneer of reef growth after 1617 ± 10 yBP that grew over the eroded mid-Holocene reef structure. Although limited fetch and open-water exposure might suggest the reef flat at Middle Island is quite protected, our results show that high-energy waves presumably generated by cyclones have significantly influenced both Holocene reef growth and contemporary reef flat geomorphology.
Drowned reefs and antecedent karst topography, Au'au channel, S.E. Hawaiian Islands
Grigg, R.W.; Grossman, E.E.; Earle, S.A.; Gittings, S.R.; Lott, D.; McDonough, J.
2002-01-01
During the last glacial maximum (LGM), about 21,000 years ago, the Hawaiian Islands of Maui, Lanai, and Molokai were interconnected by limestone bridges, creating a super-island known as Maui-Nui. Approximately 120 m of sea-level rise during the Holocene Transgression flooded, and then drowned, these bridges separating the islands by inter-island channels. A new multibeam high-resolution bathymetric survey of the channels between the islands, coupled with observations and video-transects utilizing DeepWorker-2000 submersibles, has revealed the existence of numerous drowned reef features including concentric solution basins, solution ridges (rims), sand and sediment plains, and conical-shaped reef pinnacles. The concentric basins contain flat lagoon-like bottoms that are rimmed by steep-sided limestone walls. Undercut notches rim the basins at several depths, marking either sea-level still stands or paleo-lake levels. All of the solution basins shallower than 120 m were subaerial at the LGM, and at one stage or another may have been shallow shoreline lakes. Today, about 70 drowned reef pinnacles are scattered across the Maui-Lanai underwater bridge and all are situated in wave-sheltered positions. Most drowned during the interval between 14,000 and 10,000 years ago when sea-level rise averaged 15 mm/year. Virtually all of the surficial topography in the Au'au Channel today is a product of karst processes accentuated by marginal reef growth during the Holocene. Both the submerged basins and the drowned reefs represent an archive of sea-level and climate history in Hawaii during the late Quaternary.
NASA Astrophysics Data System (ADS)
Slattery, Marc; Gochfeld, Deborah J.; Diaz, M. Cristina; Thacker, Robert W.; Lesser, Michael P.
2016-03-01
The transition between shallow and mesophotic coral reef communities in the tropics is characterized by a significant gradient in abiotic and biotic conditions that could result in potential trade-offs in energy allocation. The mesophotic reefs in the Bahamas and the Cayman Islands have a rich sponge fauna with significantly greater percent cover of sponges than in their respective shallow reef communities, but relatively low numbers of spongivores. Plakortis angulospiculatus, a common sponge species that spans the depth gradient from shallow to mesophotic reefs in the Caribbean, regenerates faster following predation and invests more energy in protein synthesis at mesophotic depths compared to shallow reef conspecifics. However, since P. angulospiculatus from mesophotic reefs typically contain lower concentrations of chemical feeding deterrents, they are not able to defend new tissue from predation as efficiently as conspecifics from shallow reefs. Nonetheless, following exposure to predators on shallow reefs, transplanted P. angulospiculatus from mesophotic depths developed chemical deterrence to predatory fishes. A survey of bioactive extracts indicated that a specific defensive metabolite, plakortide F, varied in concentration with depth, producing altered deterrence between shallow and mesophotic reef P. angulospiculatus. Different selective pressures in shallow and mesophotic habitats have resulted in phenotypic plasticity within this sponge species that is manifested in variable chemical defense and tissue regeneration at wound sites.
Standing crop and sediment production of reef-dwelling foraminifera on O'ahu, Hawai'i
Harney, J.N.; Hallock, P.; Fletcher, C. H.; Richmond, B.M.
1999-01-01
Most of O'ahu's nearshore and beach sands are highly calcareous and of biogenic origin. The pale-colored constituent grains are the eroded remains of carbonate shells and skeletons produced by marine organisms living atop the island's fringing reefs and in the shallow waters near shore. Previous studies have shown that the tests of symbiont-bearing benthic foraminifera compose a substantial portion (up to one-fourth) of these organically produced sands. We sampled a variety of reef flat and slope habitats to obtain standing-crop data and production estimates for several sand-producing genera of reef-dwelling foraminifera. We found that modern communities of these shelled protists occur in dense numbers islandwide, reaching densities up to 105 individuals per square meter of suitable substrate in the more productive habitats. Further research on the contribution of foraminifera to beach, nearshore, and offshore sands is planned for O'ahu and neighboring islands to describe their roles in the sediment budget more completely.
Low-canopy seagrass beds still provide important coastal protection services.
Christianen, Marjolijn J A; van Belzen, Jim; Herman, Peter M J; van Katwijk, Marieke M; Lamers, Leon P M; van Leent, Peter J M; Bouma, Tjeerd J
2013-01-01
One of the most frequently quoted ecosystem services of seagrass meadows is their value for coastal protection. Many studies emphasize the role of above-ground shoots in attenuating waves, enhancing sedimentation and preventing erosion. This raises the question if short-leaved, low density (grazed) seagrass meadows with most of their biomass in belowground tissues can also stabilize sediments. We examined this by combining manipulative field experiments and wave measurements along a typical tropical reef flat where green turtles intensively graze upon the seagrass canopy. We experimentally manipulated wave energy and grazing intensity along a transect perpendicular to the beach, and compared sediment bed level change between vegetated and experimentally created bare plots at three distances from the beach. Our experiments showed that i) even the short-leaved, low-biomass and heavily-grazed seagrass vegetation reduced wave-induced sediment erosion up to threefold, and ii) that erosion was a function of location along the vegetated reef flat. Where other studies stress the importance of the seagrass canopy for shoreline protection, our study on open, low-biomass and heavily grazed seagrass beds strongly suggests that belowground biomass also has a major effect on the immobilization of sediment. These results imply that, compared to shallow unvegetated nearshore reef flats, the presence of a short, low-biomass seagrass meadow maintains a higher bed level, attenuating waves before reaching the beach and hence lowering beach erosion rates. We propose that the sole use of aboveground biomass as a proxy for valuing coastal protection services should be reconsidered.
Holocene Core Logs and Site Statistics for Modern Patch-Reef Cores: Biscayne National Park, Florida
Reich, Christopher D.; Hickey, T. Don; DeLong, Kristine L.; Poore, Richard Z.; Brock, John C.
2009-01-01
The bedrock in Biscayne National Park (BNP), a 1,730-square kilometer (km2) region off southeast Florida, consists of Pleistocene (1.8 million years ago (Ma) to 10,000 years ago (ka)) and Holocene (10 ka to present) carbonate rocks (Enos and Perkins, 1977; Halley and others, 1997; Multer and others, 2002). Most of the surficial limestone in BNP, including the islands of the Florida Keys, was formed at ~125 ka during the highstand of marine oxygen-isotope substage 5e, when sea level was approximately 6 meters (m) higher than today (Chappell and Shackleton, 1986; Multer and others, 2002; Lidz and others, 2003; Siddall and others, 2003; Balsillie and Donoghue, 2004). During the substage-5e regression, the entire Florida Platform became exposed. Subaerial exposure lasted for approximately 115,000 years (kyr), which resulted in erosion and enhancement of karst-like features (Lidz and others, 2006). As the Holocene transgression began to flood the Florida shelf ~7 to 6 ka, the bedrock depression under Biscayne Bay began to flood, and Holocene coral and reef debris laid the foundation for the present reef system (Enos and Perkins, 1977; Lighty and others, 1982; Toscano and Macintyre, 2003; Lidz and others, 2006). More than 3,000 patch reefs exist within the BNP boundary. Most contain hermatypic corals of various species such as those belonging to Montastrea, Diploria, Siderastrea, Porites, Acropora, and Agaricia. Patch reefs within BNP have two morphologies: pinnacle and flat top. Experimental Advanced Airborne Research Lidar (EAARL) data collected along the offshore BNP coral reef tract show that these two morphologies are clearly defined both in the high-resolution bathymetry maps produced by the Lidar data and by statistical analyses of the Lidar dataset (Brock and others, 2008). Brock and others (2008) also show that the pinnacle patch reefs are deeper than the more shallow, broad, and flat patch reefs. The control for these two patch-reef morphologies is unclear; however, their shapes may be due to a slightly lowered sea level or a stillstand in the middle-Holocene around 4 ka that caused erosion of the shallower reefs and allowed the deeper reefs to remain unaffected. Lidz and others (2006) have suggested a stillstand around 4 ka that carved a 2.5-kilometer (km)-wide nearshore rock ledge into the seaward side of every island in the Florida Keys. The objectives of this study were to sample living corals to understand the more recent (<200 years) changes in climate and environmental conditions of the area and to investigate the Holocene (in this case, <8,000 years in the Florida Keys) depositional history at progressively deeper patch-reef sites. This report provides statistics for the cores and core sites and a basic lithologic description of these Holocene cores.
Sediment transport in the presence of large reef bottom roughness
Pomeroy, Andrew; Lowe, Ryan J.; Ghisalberti, Marco; Storlazzi, Curt; Symonds, Graham; Roelvink, Dano
2017-01-01
The presence of large bottom roughness, such as that formed by benthic organisms on coral reef flats, has important implications for the size, concentration, and transport of suspended sediment in coastal environments. A 3 week field study was conducted in approximately 1.5 m water depth on the reef flat at Ningaloo Reef, Western Australia, to quantify the cross-reef hydrodynamics and suspended sediment dynamics over the large bottom roughness (∼20–40 cm) at the site. A logarithmic mean current profile consistently developed above the height of the roughness; however, the flow was substantially reduced below the height of the roughness (canopy region). Shear velocities inferred from the logarithmic profile and Reynolds stresses measured at the top of the roughness, which are traditionally used in predictive sediment transport formulations, were similar but much larger than that required to suspend the relatively coarse sediment present at the bed. Importantly, these stresses did not represent the stresses imparted on the sediment measured in suspension and are therefore not relevant to the description of suspended sediment transport in systems with large bottom roughness. Estimates of the bed shear stresses that accounted for the reduced near-bed flow in the presence of large roughness vastly improved the relationship between the predicted and observed grain sizes that were in suspension. Thus, the impact of roughness, not only on the overlying flow but also on bed stresses, must be accounted for to accurately estimate suspended sediment transport in regions with large bottom roughness, a common feature of many shallow coastal ecosystems.
Papastamatiou, Yannis P; Lowe, Christopher G; Caselle, Jennifer E; Friedlander, Alan M
2009-04-01
The effects of habitat on the ecology, movements, and foraging strategies of marine apex predators are largely unknown. We used acoustic telemetry to quantify the movement patterns of blacktip reef sharks (Carcharhinus melanopterus) at Palmyra Atoll National Wildlife Refuge, in the Pacific Ocean. Sharks had relatively small home ranges over a timescale of days to weeks (0.55 +/- 0.24 km2) and showed strong site fidelity to sand-flat ledges within the west lagoon over a three-year period. Sharks showed evidence of diel and tidal movements, and they utilized certain regions of the west lagoon disproportionately. There were ontogenetic shifts in habitat selection, with smaller sharks showing greater selection for sand-flat habitats, and pups (total length 35-61 cm) utilizing very shallow waters on sand-flats, potentially as nursery areas. Adult sharks selected ledge habitats and had lower rates of movement when over sand-flats and ledges than they did over lagoon waters. Fractal analysis of movements showed that over periods of days, sharks used patches that were 3-17% of the scale of their home range. Repeat horizontal movements along ledge habitats consisted of relatively straight movements, which theoretical models consider the most efficient search strategy when forage patches may be spatially and temporally unpredictable. Although sharks moved using a direct walk while in patches, they appeared to move randomly between patches. Microhabitat quantity and quality had large effects on blacktip reef shark movements, which have consequences for the life-history characteristics of the species and potentially the spatial distribution of behaviorally mediated effects on lower trophic levels throughout the Palmyra ecosystem.
Carbonate Production by Benthic Communities on Shallow Coralgal Reefs of Abrolhos Bank, Brazil.
Reis, Vanessa Moura Dos; Karez, Cláudia Santiago; Mariath, Rodrigo; de Moraes, Fernando Coreixas; de Carvalho, Rodrigo Tomazetto; Brasileiro, Poliana Silva; Bahia, Ricardo da Gama; Lotufo, Tito Monteiro da Cruz; Ramalho, Laís Vieira; de Moura, Rodrigo Leão; Francini-Filho, Ronaldo Bastos; Pereira-Filho, Guilherme Henrique; Thompson, Fabiano Lopes; Bastos, Alex Cardoso; Salgado, Leonardo Tavares; Amado-Filho, Gilberto Menezes
2016-01-01
The abundance of reef builders, non-builders and the calcium carbonate produced by communities established in Calcification Accretion Units (CAUs) were determined in three Abrolhos Bank shallow reefs during the period from 2012 to 2014. In addition, the seawater temperature, the irradiance, and the amount and composition of the sediments were determined. The inner and outer reef arcs were compared. CAUs located on the inner reef shelf were under the influence of terrigenous sediments. On the outer reefs, the sediments were composed primarily of marine biogenic carbonates. The mean carbonate production in shallow reefs of Abrolhos was 579 ± 98 g m-2 y-1. The builder community was dominated by crustose coralline algae, while the non-builder community was dominated by turf. A marine heat wave was detected during the summer of 2013-2014, and the number of consecutive days with a temperature above or below the summer mean was positively correlated with the turf cover increase. The mean carbonate production of the shallow reefs of Abrolhos Bank was greater than the estimated carbonate production measured for artificial structures on several other shallow reefs of the world. The calcimass was higher than the non-calcareous mass, suggesting that the Abrolhos reefs are still in a positive carbonate production balance. Given that marine heat waves produce an increase of turf cover on the shallow reefs of the Abrolhos, a decrease in the cover represented by reef builders and shifting carbonate production are expected in the near future.
Carbonate Production by Benthic Communities on Shallow Coralgal Reefs of Abrolhos Bank, Brazil
dos Reis, Vanessa Moura; Karez, Cláudia Santiago; Mariath, Rodrigo; de Moraes, Fernando Coreixas; de Carvalho, Rodrigo Tomazetto; Brasileiro, Poliana Silva; Bahia, Ricardo da Gama; Lotufo, Tito Monteiro da Cruz; Ramalho, Laís Vieira; de Moura, Rodrigo Leão; Francini-Filho, Ronaldo Bastos; Pereira-Filho, Guilherme Henrique; Thompson, Fabiano Lopes; Bastos, Alex Cardoso; Salgado, Leonardo Tavares; Amado-Filho, Gilberto Menezes
2016-01-01
The abundance of reef builders, non-builders and the calcium carbonate produced by communities established in Calcification Accretion Units (CAUs) were determined in three Abrolhos Bank shallow reefs during the period from 2012 to 2014. In addition, the seawater temperature, the irradiance, and the amount and composition of the sediments were determined. The inner and outer reef arcs were compared. CAUs located on the inner reef shelf were under the influence of terrigenous sediments. On the outer reefs, the sediments were composed primarily of marine biogenic carbonates. The mean carbonate production in shallow reefs of Abrolhos was 579 ± 98 g m-2 y-1. The builder community was dominated by crustose coralline algae, while the non-builder community was dominated by turf. A marine heat wave was detected during the summer of 2013–2014, and the number of consecutive days with a temperature above or below the summer mean was positively correlated with the turf cover increase. The mean carbonate production of the shallow reefs of Abrolhos Bank was greater than the estimated carbonate production measured for artificial structures on several other shallow reefs of the world. The calcimass was higher than the non-calcareous mass, suggesting that the Abrolhos reefs are still in a positive carbonate production balance. Given that marine heat waves produce an increase of turf cover on the shallow reefs of the Abrolhos, a decrease in the cover represented by reef builders and shifting carbonate production are expected in the near future. PMID:27119151
Storlazzi, C.D.; Elias, E.; Field, M.E.; Presto, M.K.
2011-01-01
Most climate projections suggest that sea level may rise on the order of 0.5-1.0 m by 2100; it is not clear, however, how fluid flow and sediment dynamics on exposed fringing reefs might change in response to this rapid sea-level rise. Coupled hydrodynamic and sediment-transport numerical modeling is consistent with recent published results that suggest that an increase in water depth on the order of 0.5-1.0 m on a 1-2 m deep exposed fringing reef flat would result in larger significant wave heights and setup, further elevating water depths on the reef flat. Larger waves would generate higher near-bed shear stresses, which, in turn, would result in an increase in both the size and the quantity of sediment that can be resuspended from the seabed or eroded from adjacent coastal plain deposits. Greater wave- and wind-driven currents would develop with increasing water depth, increasing the alongshore and offshore flux of water and sediment from the inner reef flat to the outer reef flat and fore reef where coral growth is typically greatest. Sediment residence time on the fringing reef flat was modeled to decrease exponentially with increasing sea-level rise as the magnitude of sea-level rise approached the mean water depth over the reef flat. The model results presented here suggest that a 0.5-1.0 m rise in sea level will likely increase coastal erosion, mixing and circulation, the amount of sediment resuspended, and the duration of high turbidity on exposed reef flats, resulting in decreased light availability for photosynthesis, increased sediment-induced stress on the reef ecosystem, and potentially affecting a number of other ecological processes.
Last interglacial (MIS5e) sea-levels and uplift along the north-east Gulf of Aqaba
NASA Astrophysics Data System (ADS)
BAR (KOHN), N.; Stein, M.; Agnon, A.; Yehudai, M.; Lazar, B.; Shaked, Y.
2014-12-01
An uplifted flight of coral reef terraces, extending along the north-east margin of the Gulf of Aqaba (GOA), provides evidence for uplift rates and sea level high stands. GOA fills a narrow and deep tectonic depression lying along the southern sector of the Dead Sea Transform where it meets the Red Sea. This special configuration of the GOA and its latitude turn it into a dependable paleo-sea level monitor, sensitive only to global eustatic changes and local tectonic movements. A sequence of five uplifted coral reef terraces were mapped and characterized on basis of morphology and reef-facies, and their elevation above the present sea level was determined. The fossil reefs studied comprise fringing reefs, some with clear reef-structure that includes a reef flat and a shallow back lagoon. Most outcrops in the study area represent a transgressive sequence in which, during its highest stand, formed fringing reef terraces. We use U-Th ages of fossil corals samples found in growth position at various terraces. Corals from three uplifted reef terraces, R1, R2, and R3 were dated to the last interglacial period particularly to marine isotope stage (MIS) 5e. These ages were achieved from mainly calcitic corals (recrystallized in a freshwater phreatic environment). A few ages were derived from aragonite corals. The three terraces represent three sub-stages within MIS5e: R3 formed during a short standstill at ~130 ka BP; R2 formed during a long and steady standstill between ~128 to ~121 ka BP; and R1 represents a short standstill at ~117 ka BP. Assuming that terrace reef flats represent past sea level high stands, we calculated the coast average uplift rate and constrained the original terraces elevations. The reconstructed eustatic sea level variation during MIS 5e at GOA resembles observations from reef terraces in other locations. Combined, all indicate a significant sea-level rise from the MIS 6 low stand at ~134-130 ka and followed by a long and stable sea level high stand between ~128 to ~121 ka, representing a major reef building period. The long and stable sea level was followed by additional sea-level rise at ~118-116 ka that transgressed over the "stable reefs".
Facies dimensions within carbonate reservoirs - guidelines from satellite images of modern analogs
DOE Office of Scientific and Technical Information (OSTI.GOV)
Harris, P.M.; Kowalik, W.S.
1995-08-01
Modern analogs illustrate the distribution of carbonate facies within an overall depositional setting and can be an integral part of a subsurface geologic model in indicating the dimensions, trend, and interrelationships of facies that might be related to reservoir and non-reservoir distribution. Satellite images from several modern carbonate areas depict the geologic characteristics that can be expected in ancient shallow-water settings. Isolated carbonate platforms- the Bahamas, Caicos Platform in the British West Indies, Chinchorro Bank offshore of Yucatan, and portions of the Belize area; Ramp-style shelf-to-basin transitions - Abu Dhabi and northern Yucatan; Rimmed shelf margins - South Florida, portionsmore » of Belize, and the Great Barrier Reef of Australia; Broad, deep shelf lagoons - the Great Barrier Reef and Belize; Reef variability - South Florida, the Bahamas, Caicos, Northern Yucatan, and Abu Dhabi; Shallow lagoon/tidal flat settings - South Florida, the Bahamas, Caicos, Northern Yucatan, Shark Bay in Western Australia, Abu Dhabi; Mixed carbonate and siliciclastic depostion - South Florida, Belize, the Great Barrier Reef, Shark Bay and Abu Dhabi. The geologic framework as illustrated by these areas is important at the development scale where lateral variation of porosity and permeability, i.e. reservoir quality, is commonly tied to facies changes and facies dimensions are required as input to reservoir models. The geologic framework is essential at the exploration scale for reservoir facies prediction and stratigraphic play concepts which are related directly to depositional facies patterns.« less
Depth-dependent effects of culling—do mesophotic lionfish populations undermine current management?
Grey, Rachel; Hendrix, Alicia; Hitchner, Drew; Gress, Erika; Madej, Konrad; Parry, Rachel L.; Régnier-McKellar, Catriona; Jones, Owen P.; Arteaga, María; Izaguirre, Andrea P.; Rogers, Alex D.; Exton, Dan A.
2017-01-01
Invasive lionfish (Pterois volitans and P. miles) have spread widely across the western Atlantic and are recognized as a major threat to native marine biodiversity. Although lionfish inhabit both shallow reefs and mesophotic coral ecosystems (MCEs; reefs from 30 to 150 m depth), the primary management response implemented by many countries has been diver-led culling limited to reefs less than 30 m. However, many reef fish undergo ontogenetic migrations, with the largest and therefore most fecund individuals found at greatest depths. Here, we study lionfish density, body size, maturity and dietary patterns across the depth gradient from the surface down to 85 m on heavily culled reefs around Utila, Honduras. We found lionfish at increased densities, body size and weight on MCEs compared with shallow reefs, with MCEs also containing the greatest proportion of actively spawning females, while shallow reefs contained the greatest proportion of immature lionfish. We then compared lionfish behaviour in response to divers on shallow culled and mesophotic unculled Utilan reefs, and on shallow unculled reefs in Tela Bay, on the Honduran mainland. We found that mesophotic lionfish exhibited high alert distances, consistent with individuals previously exposed to culling despite being below the depth limits of removal. In addition, when examining stomach content, we found that fish were the major component of lionfish diets across the depth gradient. Importantly, our results suggest that despite adjacent shallow culling, MCEs retain substantial lionfish populations that may be disproportionately contributing towards continued lionfish recruitment onto the shallow reefs of Utila, potentially undermining current culling-based management. PMID:28573007
Depth-dependent effects of culling-do mesophotic lionfish populations undermine current management?
Andradi-Brown, Dominic A; Grey, Rachel; Hendrix, Alicia; Hitchner, Drew; Hunt, Christina L; Gress, Erika; Madej, Konrad; Parry, Rachel L; Régnier-McKellar, Catriona; Jones, Owen P; Arteaga, María; Izaguirre, Andrea P; Rogers, Alex D; Exton, Dan A
2017-05-01
Invasive lionfish ( Pterois volitans and P. miles ) have spread widely across the western Atlantic and are recognized as a major threat to native marine biodiversity. Although lionfish inhabit both shallow reefs and mesophotic coral ecosystems (MCEs; reefs from 30 to 150 m depth), the primary management response implemented by many countries has been diver-led culling limited to reefs less than 30 m. However, many reef fish undergo ontogenetic migrations, with the largest and therefore most fecund individuals found at greatest depths. Here, we study lionfish density, body size, maturity and dietary patterns across the depth gradient from the surface down to 85 m on heavily culled reefs around Utila, Honduras. We found lionfish at increased densities, body size and weight on MCEs compared with shallow reefs, with MCEs also containing the greatest proportion of actively spawning females, while shallow reefs contained the greatest proportion of immature lionfish. We then compared lionfish behaviour in response to divers on shallow culled and mesophotic unculled Utilan reefs, and on shallow unculled reefs in Tela Bay, on the Honduran mainland. We found that mesophotic lionfish exhibited high alert distances, consistent with individuals previously exposed to culling despite being below the depth limits of removal. In addition, when examining stomach content, we found that fish were the major component of lionfish diets across the depth gradient. Importantly, our results suggest that despite adjacent shallow culling, MCEs retain substantial lionfish populations that may be disproportionately contributing towards continued lionfish recruitment onto the shallow reefs of Utila, potentially undermining current culling-based management.
Linking Wave Forcing to Coral Cover and Structural Complexity Across Coral Reef Flats
NASA Astrophysics Data System (ADS)
Harris, D. L.; Rovere, A.; Parravicini, V.; Casella, E.
2015-12-01
The hydrodynamic regime is a significant component in the geomorphic and ecological development of coral reefs. The energy gradients and flow conditions generated by the breaking and transformation of waves across coral reef crests and flats drive changes in geomorphic structure, and coral growth form and distribution. One of the key aspects in regulating the wave energy propagating across reef flats is the rugosity or roughness of the benthic substrate. Rugosity and structural complexity of coral reefs is also a key indicator of species diversity, ecological functioning, and reef health. However, the links between reef rugosity, coral species distribution and abundance, and hydrodynamic forcing are poorly understood. In this study we examine this relationship by using high resolution measurement of waves in the surf zone and coral reef benthic structure.Pressure transducers (logging at 4 Hz) were deployed in cross reef transects at two sites (Tiahura and Ha'apiti reef systems) in Moorea, French Polynesia with wave characteristics determined on a wave by wave basis. A one dimensional hydrodynamic model (XBeach) was calibrated from this data to determine wave processes on the reef flats under average conditions. Transects of the reef benthic structure were conducted using photographic analysis and the three dimensional reef surface was constructed using structure from motion procedures. From this analysis reef rugosity, changes in coral genus and growth form, and across reef shifts in benthic community were determined. The results show clear changes in benthic assemblages along wave energy gradients with some indication of threshold values of wave induced bed shear stress above which live coral cover was reduced. Reef rugosity was shown to be significantly along the cross-reef transect which has important implications for accurate assessment of wave dissipation across coral reef flats. Links between reef rugosity and coral genus were also observed and may indicate that some coral species are crucial in maintaining the structural diversity of coral reefs.
Shen, Ping-Ping; Tan, Ye-Hui; Huang, Liang-Min; Zhang, Jian-Lin; Yin, Jian-Qiang
2010-10-01
The phytoplankton assemblage of Zhubi Reef, a closed coral reef in Nansha Islands (South China Sea, SCS) was studied in June 2007. A total of 92 species belonging to 53 genera and four phyla have been identified. The dominant taxa in the lagoon were the diatom Chaetoceros and cyanobacteria Nostoc and Microcystis, while in reef flats were cyanobacteria Trichodesmium erythraeum, dinoflagellates Gymnodinium and Prorocentrum. The species richness and diversity were consistently lower in the lagoon than in reef flats. Classification and nMDS ordination also revealed significant dissimilarity in phytoplankton community structure between the reef flat and lagoon, with statistical difference in species composition and abundance between them (ANOSIM, p=0.025). Nutrient concentrations also spatially varied, with ammonium-enrichment in the lagoon, while high Si-concentration existed in reef flat areas. Both nutrient levels and currents in SCS may play important roles in determining the composition and distribution of microalgae in Zhubi Reef and SCS. Copyright © 2010 Elsevier Ltd. All rights reserved.
Sediment resuspension and transport patterns on a fringing reef flat, Molokai, Hawaii
Ogston, A.S.; Storlazzi, C.D.; Field, M.E.; Presto, M.K.
2004-01-01
Corals are known to flourish in various turbid environments around the world. The quantitative distinction between clear and turbid water in coral habitats is not well defined nor are the amount of sediment in suspension and rates of sedimentation used to evaluate the condition of reef environments well established. This study of sediment resuspension, transport, and resulting deposition on a fringing reef flat off Molokai, Hawaii, uses a year of time-series data from a small, instrumented tripod. It shows the importance of trade winds and ocean wave heights in controlling the movement of sediment. Sediment is typically resuspended daily and the dominant controls on the magnitude of events (10-25 mg/l) are the trade-wind-generated waves and currents and tidal elevation on the reef flat. The net flux of sediment on this reef is primarily along the reef flat in the direction of the prevailing trade winds (to the west), with a secondary direction of slightly offshore, towards a zone of low coral abundance. These results have application to reef studies and reef management in other areas in several ways. First, the observed resuspension and turbidity results from fine-grained terrigenous sediment that appears to be trapped and recycled on the reef flat. Thus corals are subjected to light attenuation by the same particles repeatedly, however small the amount. Secondly, the measurements show high temporal variability (from daily to seasonal scales) of sediment resuspension, indicating that single measurements are inadequate to accurately describe conditions on a reef flat. ?? Springer-Verlag 2004.
Menza, Charles; Kendall, M.; Rogers, C.; Miller, J.
2007-01-01
The well-documented degradation of shallower reefs which are often closer to land and more vulnerable to pollution, sewage and other human-related stressors has led to the suggestion that deeper, more remote offshore reefs could possibly serve as sources of coral and fish larvae to replenish the shallower reefs. Yet, the distribution, status, and ecological roles of deep (>30 m) Caribbean reefs are not well known. In this report, an observation of a deep reef which has undergone a recent extensive loss of coral cover is presented. In stark contrast to the typical pattern of coral loss in shallow reefs, the deeper corals were most affected. This report is the first description of such a pattern of coral loss on a deep reef.
NASA Astrophysics Data System (ADS)
Fujita, K.; Osawa, Y.; Kayanne, H.; Ide, Y.; Yamano, H.
2009-03-01
The distributions and population densities of large benthic foraminifers (LBFs) were investigated on reef flats of the Majuro Atoll, Marshall Islands. Annual sediment production by foraminifers was estimated based on population density data. Predominant LBFs were Calcarina and Amphistegina, and the population densities of these foraminifers varied with location and substratum type on reef flats. Both foraminifers primarily attached to macrophytes, particularly turf-forming algae, and were most abundant on an ocean reef flat (ORF) and in an inter-island channel near windward, sparsely populated islands. Calcarina density was higher on windward compared to leeward sides of ORFs, whereas Amphistegina density was similar on both sides of ORFs. These foraminifers were more common on the ocean side relative to the lagoon side of reef flats around a windward reef island, and both were rare or absent in nearshore zones around reef islands and on an ORF near windward, densely populated islands. Foraminiferal production rates varied with the degree to which habitats were subject to water motion and human influences. Highly productive sites (>103 g CaCO3 m-2 year-1) included an ORF and an inter-island channel near windward, sparsely populated islands, and a seaward area of a reef flat with no reef islands. Low-productivity sites (<10 g CaCO3 m-2 year-1) included generally nearshore zones of lagoonal reef flats, leeward ORFs, and a windward ORF near densely populated islands. These results suggest that the distribution and production of LBFs were largely influenced by a combination of natural environmental factors, including water motion, water depth, elevation relative to the lowest tidal level at spring tide, and the distribution of suitable substratum. The presence of reef islands may limit the distribution and production of foraminifers by altering water circulation in nearshore environments. Furthermore, increased anthropogenic factors (population and activities) may adversely affect foraminiferal distribution and production.
Combined infragravity wave and sea-swell runup over fringing reefs by super typhoon Haiyan
NASA Astrophysics Data System (ADS)
Shimozono, Takenori; Tajima, Yoshimitsu; Kennedy, Andrew B.; Nobuoka, Hisamichi; Sasaki, Jun; Sato, Shinji
2015-06-01
Super typhoon Haiyan struck the Philippines on 8 November 2013, marking one of the strongest typhoons at landfall in recorded history. Extreme storm waves attacked the Pacific coast of Eastern Samar where the violent typhoon first made landfall. Our field survey confirmed that storm overwash heights of 6-14 m above mean sea level were distributed along the southeastern coast and extensive inundation occurred in some coastal villages in spite of natural protection by wide fringing reefs. A wave model based on Boussinesq-type equations is constructed to simulate wave transformation over shallow fringing reefs and validated against existing laboratory data. Wave propagation and runup on the Eastern Samar coast are then reproduced using offshore boundary conditions based on a wave hindcast. The model results suggest that extreme waves on the shore are characterized as a superposition of the infragravity wave and sea-swell components. The balance of the two components is strongly affected by the reef width and beach slope through wave breaking, frictional dissipation, reef-flat resonances, and resonant runup amplification. Therefore, flood characteristics significantly differ from site to site due to a large variation of the two topographic parameters on the hilly coast. Strong coupling of infragravity waves and sea swells produces extreme runup on steep beaches fronted by narrow reefs, whereas the infragravity waves become dominant over wide reefs and they evolve into bores on steep beaches.
NASA Astrophysics Data System (ADS)
Zuo, Xiuling; Su, Fenzhen; Zhao, Huanting; Zhang, Junjue; Wang, Qi; Wu, Di
2017-05-01
Coral reefs in the Xisha Islands (also known as the Paracel Islands in English), South China Sea, have experienced dramatic declines in coral cover. However, the current regional scale hard coral distribution of geomorphic and ecological zones, essential for reefs management in the context of global warming and ocean acidification, is not well documented. We analyzed data from field surveys, Landsat-8 and GF-1 images to map the distribution of hard coral within geomorphic zones and reef flat ecological zones. In situ surveys conducted in June 2014 on nine reefs provided a complete picture of reef status with regard to live coral diversity, evenness of coral cover and reef health (live versus dead cover) for the Xisha Islands. Mean coral cover was 12.5% in 2014 and damaged reefs seemed to show signs of recovery. Coral cover in sheltered habitats such as lagoon patch reefs and biotic dense zones of reef flats was higher, but there were large regional differences and low diversity. In contrast, the more exposed reef slopes had high coral diversity, along with high and more equal distributions of coral cover. Mean hard coral cover of other zones was <10%. The total Xisha reef system was estimated to cover 1 060 km2, and the emergent reefs covered 787 m2. Hard corals of emergent reefs were considered to cover 97 km2. The biotic dense zone of the reef flat was a very common zone on all simple atolls, especially the broader northern reef flats. The total cover of live and dead coral can reach above 70% in this zone, showing an equilibrium between live and dead coral as opposed to coral and algae. This information regarding the spatial distribution of hard coral can support and inform the management of Xisha reef ecosystems.
Preliminary numerical simulation for shallow strata stability of coral reef in South China Sea
NASA Astrophysics Data System (ADS)
Tang, Qinqin; Zhan, Wenhuan; Zhang, Jinchang
2017-04-01
Coral reefs are the geologic material and special rock and soil, which live in shallow water of the tropic ocean and are formed through biological and geological action. Since infrastructure construction is being increasingly developed on coral reefs during recent years, it is necessary to evaluate the shallow strata stability of coral reefs in the South China Sea. The paper is to study the borehole profiles for shallow strata of coral reefs in the South China Sea, especially in the hydrodynamic marine environment?, and to establish a geological model for numerical simulation with Geo-Studio software. Five drilling holes show a six-layer shallow structure of South China Sea, including filling layer, mid-coarse sand, coral sand gravel, fine sand, limestone debris and reef limestone. The shallow coral reef profile next to lagoon is similar to "layers cake", in which the right side close to the sea is analogous to "block cake". The simulation results show that coral reef stability depends on wave loads and earthquake strength, as well as the physical properties of coral reefs themselves. The safety factor of the outer reef is greater than 10.0 in the static condition, indicating that outer reefs are less affected by the wave and earthquake. However, the safety factor next to lagoon is ranging from 0.1 to 4.9. The main reason for the variations that the strata of coral reefs close to the sea are thick. For example, the thickness of reef limestone is more than 10 m and equivalent to the block. When the thickness of inside strata is less than 10 m, they show weak engineering geological characteristics. These findings can provide useful information for coral reef constructions in future. This work was funded by National Basic Research Program of China (contract: 2013CB956104) and National Natural Science Foundation of China (contract: 41376063).
Storlazzi, Curt D.; Field, Michael E.; Elias, Edwin; Presto, M. Katherine
2011-01-01
While most climate projections suggest that sea level may rise on the order of 0.5-1.0 m by 2100, it is not clear how fluid flow and sediment transport on fringing reefs might change in response to this rapid sea-level rise. Field observations and numerical modeling suggest that an increase in water depth on the order of 0.5-1.0 m on a fringing reef flat would result in larger significant wave heights and wave-driven shear stresses, which, in turn, would result in an increase in both the size and quantity of sediment that can be resuspended from the seabed or eroded from coastal plain deposits. Greater wave- and wind-driven currents would develop on the reef flat with increasing water depth, increasing the offshore flux of water and sediment from the inner reef flat to the outer reef flat and fore reef where coral growth is typically greatest.
NASA Astrophysics Data System (ADS)
Cheriton, O. M.; Storlazzi, C. D.; Rosenberger, K. J.; Quataert, E.; van Dongeren, A.
2014-12-01
The Republic of the Marshall Islands is comprised of 1156 islands on 29 low-lying atolls with a mean elevation of 2 m that are susceptible to sea-level rise and often subjected to overwash during large wave events. A 6-month deployment of wave and tide gauges across two shore-normal sections of north-facing coral reef on the Roi-Namur Island on Kwajalein Atoll was conducted during 2013-2014 to quantify wave dynamics and wave-driven water levels on the fringing coral reef. Wave heights and periods on the reef flat were strongly correlated to the water levels. On the fore reef, the majority of wave energy was concentrated in the incident band (5-25 s); due to breaking at the reef crest, however, the wave energy over the reef flat was dominated by infragravity-band (25-250 s) motions. Two large wave events with heights of 6-8 m at 15 s over the fore reef were observed. During these events, infragravity-band wave heights exceeded the incident band wave heights and approximately 1.0 m of set-up was established over the innermost reef flat. This set-up enabled the propagation of large waves across the reef flat, reaching maximum heights of nearly 2 m on the innermost reef flat adjacent to the toe of the beach. XBEACH models of the instrument transects were able to replicate the incident waves, infragravity waves, and wave-driven set-up across the reef when the hydrodynamic roughness of the reef was correctly parameterized. These events led to more than 3 m of wave-driven run-up and inundation of the island that drove substantial morphological change to the beach face.
Prasetia, Rian; Sinniger, Frederic; Hashizume, Kaito; Harii, Saki
2017-01-01
Mesophotic coral ecosystems (MCEs, between 30 and 150 m depth) are hypothesized to contribute to the recovery of degraded shallow reefs through sexually produced larvae (referred to as Deep Reef Refuge Hypothesis). In Okinawa, Japan, the brooder coral Seriatopora hystrix was reported to be locally extinct in a shallow reef while it was found abundant at a MCE nearby. In this context, S. hystrix represents a key model to test the Deep Reef Refuge Hypothesis and to understand the potential contribution of mesophotic corals to shallow coral reef recovery. However, the reproductive biology of mesophotic S. hystrix and its potential to recolonize shallow reefs is currently unknown. This study reports for the first time, different temporal scales of reproductive periodicity and larval settlement of S. hystrix from an upper mesophotic reef (40 m depth) in Okinawa. We examined reproductive seasonality, lunar, and circadian periodicity (based on polyp dissection, histology, and ex situ planula release observations) and larval settlement rates in the laboratory. Mesophotic S. hystrix reproduced mainly in July and early August, with a small number of planulae being released at the end of May, June and August. Compared to shallow colonies in the same region, mesophotic S. hystrix has a 4-month shorter reproductive season, similar circadian periodicity, and smaller planula size. In addition, most of the planulae settled rapidly, limiting larval dispersal potential. The shorter reproductive season and smaller planula size may result from limited energy available for reproduction at deeper depths, while the similar circadian periodicity suggests that this reproductive aspect is not affected by environmental conditions differing with depth. Overall, contribution of mesophotic S. hystrix to shallow reef rapid recovery appears limited, although they may recruit to shallow reefs through a multistep process over a few generations or through random extreme mixing such as typhoons.
Prasetia, Rian; Sinniger, Frederic; Hashizume, Kaito; Harii, Saki
2017-01-01
Mesophotic coral ecosystems (MCEs, between 30 and 150 m depth) are hypothesized to contribute to the recovery of degraded shallow reefs through sexually produced larvae (referred to as Deep Reef Refuge Hypothesis). In Okinawa, Japan, the brooder coral Seriatopora hystrix was reported to be locally extinct in a shallow reef while it was found abundant at a MCE nearby. In this context, S. hystrix represents a key model to test the Deep Reef Refuge Hypothesis and to understand the potential contribution of mesophotic corals to shallow coral reef recovery. However, the reproductive biology of mesophotic S. hystrix and its potential to recolonize shallow reefs is currently unknown. This study reports for the first time, different temporal scales of reproductive periodicity and larval settlement of S. hystrix from an upper mesophotic reef (40 m depth) in Okinawa. We examined reproductive seasonality, lunar, and circadian periodicity (based on polyp dissection, histology, and ex situ planula release observations) and larval settlement rates in the laboratory. Mesophotic S. hystrix reproduced mainly in July and early August, with a small number of planulae being released at the end of May, June and August. Compared to shallow colonies in the same region, mesophotic S. hystrix has a 4-month shorter reproductive season, similar circadian periodicity, and smaller planula size. In addition, most of the planulae settled rapidly, limiting larval dispersal potential. The shorter reproductive season and smaller planula size may result from limited energy available for reproduction at deeper depths, while the similar circadian periodicity suggests that this reproductive aspect is not affected by environmental conditions differing with depth. Overall, contribution of mesophotic S. hystrix to shallow reef rapid recovery appears limited, although they may recruit to shallow reefs through a multistep process over a few generations or through random extreme mixing such as typhoons. PMID:28510601
Gress, Erika; Wright, Georgina; Exton, Dan A.; Rogers, Alex D.
2016-01-01
Mesophotic coral ecosystems (MCEs; reefs 30-150m depth) are of increased research interest because of their potential role as depth refuges from many shallow reef threats. Yet few studies have identified patterns in fish species composition and trophic group structure between MCEs and their shallow counterparts. Here we explore reef fish species and biomass distributions across shallow to upper-MCE Caribbean reef gradients (5-40m) around Utila, Honduras, using a diver-operated stereo-video system. Broadly, we found reef fish species richness, abundance and biomass declining with depth. At the trophic group level we identified declines in herbivores (both total and relative community biomass) with depth, mostly driven by declines in parrotfish (Scaridae). Piscivores increased as a proportion of the community with increased depth while, in contrast to previous studies, we found no change in relative planktivorous reef fish biomass across the depth gradient. In addition, we also found evidence of ontogenetic migrations in the blue tang (Acanthurus coeruleus), striped parrotfish (Scarus iserti), blue chromis (Chromis cyanea), creole wrasse (Clepticus parrae), bluehead wrasse (Thalassoma bifasciatum) and yellowtail snapper (Ocyurus chrysurus), with a higher proportion of larger individuals at mesophotic and near-mesophotic depths than on shallow reefs. Our results highlight the importance of using biomass measures when considering fish community changes across depth gradients, with biomass generating different results to simple abundance counts. PMID:27332811
NASA Astrophysics Data System (ADS)
Storlazzi, C. D.; Griffioen, D.; Cheriton, O. M.
2016-12-01
Coral reefs have been shown to significantly attenuate incident wave energy and thus provide protection for 100s of millions of people globally. To better constrain wave dynamics and wave-driven water levels over fringing coral reefs, a 4-month deployment of wave and tide gauges was conducted across two shore-normal transects on Roi-Namur Island and two transects on Kwajalein Island in the Republic of the Marshall Islands. At all locations, although incident wave (periods <25 s) heights were an order of magnitude greater than infragravity wave (periods > 250 s) heights on the outer reef flat just inshore of the zone of wave breaking, the infragravity wave heights generally equaled the incident wave heights by the middle of the reef flat and exceeded the incident wave heights on the inner reef flat by the shoreline. The infragravity waves generally were asymmetric, positively skewed, bore-like forms with incident-band waves riding the infragravity wave crest at the head of the bore; these wave packets have similar structure to high-frequency internal waves on an internal wave bore. Bore height was shown to scale with water depth, offshore wave height, and offshore wave period. For a given tidal elevation, with increasing offshore wave heights, such bores occurred more frequently on the middle reef flat, whereas they occurred less frequently on the inner reef flat. Skewed, asymmetric waves are known to drive large gradients in velocity and shear stress that can transport material onshore. Thus, a better understanding of these low-frequency, energetic bores on reef flats is critical to forecasting how coral reef-lined coasts may respond to sea-level rise and climate change.
NASA Astrophysics Data System (ADS)
Lubarsky, K.
2016-02-01
Submarine groundwater discharge (SGD) constitutes a large percentage of the freshwater inputs onto coastal coral reefs on high islands such as the Hawaiian Islands, although the impact of SGD on coral reef health is currently understudied. In Maunalua Bay, on Oahu, Hawaii, SGD is discharged onto shallow reef flats from discrete seeps, creating natural gradients of water chemistry across the reef flat. We used this system to investigate rates of growth of the lobe coral Porites lobata across a gradient of SGD influence at two study sites within the bay, and to characterize the variation in water chemistry gradient over space and time due to SGD. SGD input at these sites is tidally modulated, and the groundwater itself is brackish and extremely nutrient-rich (mean=190 μM NO3- at the Black Point study site, mean=40 μM NO3- at Wailupe Beach Park), with distinct carbonate signatures at both study sites. Coral nubbins were placed across the gradient for 6 months, and growth was measured using three metrics: surface area (photo analysis), buoyant weight, and linear extension. Various chemical parameters, including pH, salinity, total alkalinity, nutrients, and chlorphyll were sampled at the same locations across the gradient over 24 hour periods in the spring and fall in order to capture spatial and temporal variation in water chemistry due to the SGD plume. Spatial patterns and temporal variation in water chemistry were correlated with the observed spatial patterns in coral growth across the SGD gradient.
Doropoulos, Christopher; Ward, Selina; Roff, George; González-Rivero, Manuel; Mumby, Peter J.
2015-01-01
Tropical reefs are dynamic ecosystems that host diverse coral assemblages with different life-history strategies. Here, we quantified how juvenile (<50 mm) coral demographics influenced benthic coral structure in reef flat and reef slope habitats on the southern Great Barrier Reef, Australia. Permanent plots and settlement tiles were monitored every six months for three years in each habitat. These environments exhibited profound differences: the reef slope was characterised by 95% less macroalgal cover, and twice the amount of available settlement substrata and rates of coral settlement than the reef flat. Consequently, post-settlement coral survival in the reef slope was substantially higher than that of the reef flat, and resulted in a rapid increase in coral cover from 7 to 31% in 2.5 years. In contrast, coral cover on the reef flat remained low (~10%), whereas macroalgal cover increased from 23 to 45%. A positive stock-recruitment relationship was found in brooding corals in both habitats; however, brooding corals were not directly responsible for the observed changes in coral cover. Rather, the rapid increase on the reef slope resulted from high abundances of broadcast spawning Acropora recruits. Incorporating our results into transition matrix models demonstrated that most corals escape mortality once they exceed 50 mm, but for smaller corals mortality in brooders was double those of spawners (i.e. acroporids and massive corals). For corals on the reef flat, sensitivity analysis demonstrated that growth and mortality of larger juveniles (21–50 mm) highly influenced population dynamics; whereas the recruitment, growth and mortality of smaller corals (<20 mm) had the highest influence on reef slope population dynamics. Our results provide insight into the population dynamics and recovery trajectories in disparate reef habitats, and highlight the importance of acroporid recruitment in driving rapid increases in coral cover following large-scale perturbation in reef slope environments. PMID:26009892
Doropoulos, Christopher; Ward, Selina; Roff, George; González-Rivero, Manuel; Mumby, Peter J
2015-01-01
Tropical reefs are dynamic ecosystems that host diverse coral assemblages with different life-history strategies. Here, we quantified how juvenile (<50 mm) coral demographics influenced benthic coral structure in reef flat and reef slope habitats on the southern Great Barrier Reef, Australia. Permanent plots and settlement tiles were monitored every six months for three years in each habitat. These environments exhibited profound differences: the reef slope was characterised by 95% less macroalgal cover, and twice the amount of available settlement substrata and rates of coral settlement than the reef flat. Consequently, post-settlement coral survival in the reef slope was substantially higher than that of the reef flat, and resulted in a rapid increase in coral cover from 7 to 31% in 2.5 years. In contrast, coral cover on the reef flat remained low (~10%), whereas macroalgal cover increased from 23 to 45%. A positive stock-recruitment relationship was found in brooding corals in both habitats; however, brooding corals were not directly responsible for the observed changes in coral cover. Rather, the rapid increase on the reef slope resulted from high abundances of broadcast spawning Acropora recruits. Incorporating our results into transition matrix models demonstrated that most corals escape mortality once they exceed 50 mm, but for smaller corals mortality in brooders was double those of spawners (i.e. acroporids and massive corals). For corals on the reef flat, sensitivity analysis demonstrated that growth and mortality of larger juveniles (21-50 mm) highly influenced population dynamics; whereas the recruitment, growth and mortality of smaller corals (<20 mm) had the highest influence on reef slope population dynamics. Our results provide insight into the population dynamics and recovery trajectories in disparate reef habitats, and highlight the importance of acroporid recruitment in driving rapid increases in coral cover following large-scale perturbation in reef slope environments.
Initial colonization, erosion and accretion of coral substrate
NASA Astrophysics Data System (ADS)
Davies, Peter J.; Hutchings, Patricia A.
1983-08-01
Blocks cut from Porites lutea were laid on the fore reef slope, reef flat and a lagoonal patch reef at Lizard Island, in the Northern Great Barrier Reef, and replicates removed from each environment at intervals of three months over a period of one and a half years. Variations in bioeroders and bioaccretors were noted. Microfaunas are far more numerous than macrofaunas as block colonizers; the principal borers are polychaete worms, whereas encrusters are molluscs, bryozoans, serpulids and solitary corals. The reef slope is more readily colonised by microfauna pioneer communities than are the other areas. All the environments exhibit a change from cirratulids to either sabellids or spionids (polydorids) over the length of the experiment. Accretion occurred on all blocks during the experiment, with significant differences detectable between environments; both reef slope and reef flat blocks showed weight increases of 9 10% whereas blocks from the patch reef showed increases of 15%. Annual erosion rates produced by polychaete worms are 0.694 kg m-2 year-1 (reef front), 0.843 kg m-2 year-1 (reef flat) and 1.788 kg m-2 year-1 (patch reef).
Population Structure of Montastraea cavernosa on Shallow versus Mesophotic Reefs in Bermuda
Goodbody-Gringley, Gretchen; Marchini, Chiara; Chequer, Alex D.; Goffredo, Stefano
2015-01-01
Mesophotic coral reef ecosystems remain largely unexplored with only limited information available on taxonomic composition, abundance and distribution. Yet, mesophotic reefs may serve as potential refugia for shallow-water species and thus understanding biodiversity, ecology and connectivity of deep reef communities is integral for resource management and conservation. The Caribbean coral, Montastraea cavernosa, is considered a depth generalist and is commonly found at mesophotic depths. We surveyed abundance and size-frequency of M. cavernosa populations at six shallow (10m) and six upper mesophotic (45m) sites in Bermuda and found population structure was depth dependent. The mean surface area of colonies at mesophotic sites was significantly smaller than at shallow sites, suggesting that growth rates and maximum colony surface area are limited on mesophotic reefs. Colony density was significantly higher at mesophotic sites, however, resulting in equal contributions to overall percent cover. Size-frequency distributions between shallow and mesophotic sites were also significantly different with populations at mesophotic reefs skewed towards smaller individuals. Overall, the results of this study provide valuable baseline data on population structure, which indicate that the mesophotic reefs of Bermuda support an established population of M. cavernosa. PMID:26544963
Population Structure of Montastraea cavernosa on Shallow versus Mesophotic Reefs in Bermuda.
Goodbody-Gringley, Gretchen; Marchini, Chiara; Chequer, Alex D; Goffredo, Stefano
2015-01-01
Mesophotic coral reef ecosystems remain largely unexplored with only limited information available on taxonomic composition, abundance and distribution. Yet, mesophotic reefs may serve as potential refugia for shallow-water species and thus understanding biodiversity, ecology and connectivity of deep reef communities is integral for resource management and conservation. The Caribbean coral, Montastraea cavernosa, is considered a depth generalist and is commonly found at mesophotic depths. We surveyed abundance and size-frequency of M. cavernosa populations at six shallow (10m) and six upper mesophotic (45m) sites in Bermuda and found population structure was depth dependent. The mean surface area of colonies at mesophotic sites was significantly smaller than at shallow sites, suggesting that growth rates and maximum colony surface area are limited on mesophotic reefs. Colony density was significantly higher at mesophotic sites, however, resulting in equal contributions to overall percent cover. Size-frequency distributions between shallow and mesophotic sites were also significantly different with populations at mesophotic reefs skewed towards smaller individuals. Overall, the results of this study provide valuable baseline data on population structure, which indicate that the mesophotic reefs of Bermuda support an established population of M. cavernosa.
Net ecosystem production, calcification and CO2 fluxes on a reef flat in Northeastern Brazil
NASA Astrophysics Data System (ADS)
Longhini, Cybelle M.; Souza, Marcelo F. L.; Silva, Ananda M.
2015-12-01
The carbon cycle in coral reefs is usually dominated by the organic carbon metabolism and precipitation-dissolution of CaCO3, processes that control the CO2 partial pressure (pCO2) in seawater and the CO2 fluxes through the air-sea interface. In order to characterize these processes and the carbonate system, four sampling surveys were conducted at the reef flat of Coroa Vermelha during low tide (exposed flat). Net ecosystem production (NEP), net precipitation-dissolution of CaCO3 (G) and CO2 fluxes across the air-water interface were calculated. The reef presented net autotrophy and calcification at daytime low tide. The NEP ranged from -8.7 to 31.6 mmol C m-2 h-1 and calcification from -13.1 to 26.0 mmol C m-2 h-1. The highest calcification rates occurred in August 2007, coinciding with the greater NEP rates. The daytime CO2 fluxes varied from -9.7 to 22.6 μmol CO2 m-2 h-1, but reached up to 13,900 μmol CO2 m-2 h-1 during nighttime. Carbon dioxide influx to seawater was predominant in the reef flat during low tide. The regions adjacent to the reef showed a supersaturation of CO2, acting as a source of CO2 to the atmosphere (from -22.8 to -2.6 mol CO2 m-2 h-1) in the reef flat during ebbing tide. Nighttime gas release to the atmosphere indicates a net CO2 release from the Coroa Vermelha reef flat within 24 h, and that these fluxes can be important to carbon budget in coral reefs.
Assessing the spatial distribution of coral bleaching using small unmanned aerial systems
NASA Astrophysics Data System (ADS)
Levy, Joshua; Hunter, Cynthia; Lukacazyk, Trent; Franklin, Erik C.
2018-06-01
Small unmanned aerial systems (sUAS) are an affordable, effective complement to existing coral reef monitoring and assessment tools. sUAS provide repeatable low-altitude, high-resolution photogrammetry to address fundamental questions of spatial ecology and community dynamics for shallow coral reef ecosystems. Here, we qualitatively describe the use of sUAS to survey the spatial characteristics of coral cover and the distribution of coral bleaching across patch reefs in Kānéohe Bay, Hawaii, and address limitations and anticipated technology advancements within the field of UAS. Overlapping sub-decimeter low-altitude aerial reef imagery collected during the 2015 coral bleaching event was used to construct high-resolution reef image mosaics of coral bleaching responses on four Kānéohe Bay patch reefs, totaling 60,000 m2. Using sUAS imagery, we determined that paled, bleached and healthy corals on all four reefs were spatially clustered. Comparative analyses of data from sUAS imagery and in situ diver surveys found as much as 14% difference in coral cover values between survey methods, depending on the size of the reef and area surveyed. When comparing the abundance of unhealthy coral (paled and bleached) between sUAS and in situ diver surveys, we found differences in cover from 1 to 49%, depending on the depth of in situ surveys, the percent of reef area covered with sUAS surveys and patchiness of the bleaching response. This study demonstrates the effective use of sUAS surveys for assessing the spatial dynamics of coral bleaching at colony-scale resolutions across entire patch reefs and evaluates the complementarity of data from both sUAS and in situ diver surveys to more accurately characterize the spatial ecology of coral communities on reef flats and slopes.
NASA Astrophysics Data System (ADS)
Aguilar-Perera, Alfonso; Appeldoorn, Richard S.
2008-01-01
Despite an extensive study of the fish community off southwestern Puerto Rico, little information is available on the fish spatial distribution along an inshore-offshore, cross-shelf gradient containing a continuum of mangrove-seagrass-coral reefs. We investigated the spatial distribution of reef-associated fish species using a stratified sampling procedure. A total of 52,138 fishes were recorded, representing 102 species belonging to 32 families. Significant differences in mean fish density were evident among strata. Mean densities at shallow fore reefs and deep fore reefs (Romero key) were significantly higher compared to the rest of strata along the gradient. Mean densities of fishes in mangroves and seagrass (Montalva Bay) were comparable to those at shallow back reefs and deep fore reefs offshore (Turrumote), but lower to those inshore (Romero); the lowest fish densities were found in mangroves and seagrass (Montalva Bay) and seagrass (Romero and Corral). At least 17 species, in 7 families, were among the most common in terms of relative abundance representing 76% of the total individuals sampled. A detrended correspondence analysis (DCA) applied to more abundant fish species showed a spatial pattern in density distribution. Three major groupings were evident corresponding to mangroves and seagrass (Montalva Bay), shallow and deep reefs (Romero), and shallow and deep reefs (Corral and Turrumote). A cluster analysis on mean fish densities of the more abundant species revealed a consistent spatial distribution according to biotope by separating the ichthyofauna associated with mangroves, seagrass and that of shallow (back and fore) reefs, and deep fore reefs.
Muñoz, Roldan C; Buckel, Christine A; Whitfield, Paula E; Viehman, Shay; Clark, Randy; Taylor, J Christopher; Degan, Brian P; Hickerson, Emma L
2017-01-01
The world's coral reefs appear to be in a global decline, yet most previous research on coral reefs has taken place at depths shallower than 30 m. Mesophotic coral ecosystem (depths deeper than ~30 m) studies have revealed extensive, productive habitats and rich communities. Despite recent advances, mesophotic coral ecosystems remain understudied due to challenges with sampling at deeper depths. The few previous studies of mesophotic coral ecosystems have shown variation across locations in depth-specific species composition and assemblage shifts, potentially a response to differences in habitat or light availability/water clarity. This study utilized scuba to examine fish and benthic communities from shallow and upper mesophotic (to 45 m) zones of Flower Garden Banks National Marine Sanctuary (FGBNMS, 28°0'N; 93°50'W) from 2010-2012. Dominant planktivores were ubiquitous in shallow and upper mesophotic habitats, and comparisons with previous shallow research suggest this community distribution has persisted for over 30 years. Planktivores were abundant in shallow low-relief habitats on the periphery of the coral reef, and some of these sites that contained habitat transitioning from high to low relief supported high biomass of benthic predators. These peripheral sites at FGBNMS may be important for the trophic transfer of oceanic energy to the benthic coral reef. Distinct differences between upper mesophotic and shallow communities were also observed. These included greater overall fish (as well as apex predator) biomass in the upper mesophotic, differences in apex predator community composition between depth zones, and greater percent cover of algae, rubble, sand, and sponges in the upper mesophotic. Greater fish biomass in the upper mesophotic and similar fish community composition between depth zones provide preliminary support that upper mesophotic habitats at FGBNMS have the capacity to serve as refugia for the shallow-water reefs. Diving surveys of the upper mesophotic and shallow-water coral reef have revealed valuable information concerning the reef fish community in the northern Gulf of Mexico, with implications for the conservation of apex predators, oceanic coral reefs, and the future management of FGBNMS.
Buckel, Christine A.; Whitfield, Paula E.; Viehman, Shay; Clark, Randy; Taylor, J. Christopher; Degan, Brian P.; Hickerson, Emma L.
2017-01-01
The world’s coral reefs appear to be in a global decline, yet most previous research on coral reefs has taken place at depths shallower than 30 m. Mesophotic coral ecosystem (depths deeper than ~30 m) studies have revealed extensive, productive habitats and rich communities. Despite recent advances, mesophotic coral ecosystems remain understudied due to challenges with sampling at deeper depths. The few previous studies of mesophotic coral ecosystems have shown variation across locations in depth-specific species composition and assemblage shifts, potentially a response to differences in habitat or light availability/water clarity. This study utilized scuba to examine fish and benthic communities from shallow and upper mesophotic (to 45 m) zones of Flower Garden Banks National Marine Sanctuary (FGBNMS, 28°0ʹN; 93°50ʹW) from 2010–2012. Dominant planktivores were ubiquitous in shallow and upper mesophotic habitats, and comparisons with previous shallow research suggest this community distribution has persisted for over 30 years. Planktivores were abundant in shallow low-relief habitats on the periphery of the coral reef, and some of these sites that contained habitat transitioning from high to low relief supported high biomass of benthic predators. These peripheral sites at FGBNMS may be important for the trophic transfer of oceanic energy to the benthic coral reef. Distinct differences between upper mesophotic and shallow communities were also observed. These included greater overall fish (as well as apex predator) biomass in the upper mesophotic, differences in apex predator community composition between depth zones, and greater percent cover of algae, rubble, sand, and sponges in the upper mesophotic. Greater fish biomass in the upper mesophotic and similar fish community composition between depth zones provide preliminary support that upper mesophotic habitats at FGBNMS have the capacity to serve as refugia for the shallow-water reefs. Diving surveys of the upper mesophotic and shallow-water coral reef have revealed valuable information concerning the reef fish community in the northern Gulf of Mexico, with implications for the conservation of apex predators, oceanic coral reefs, and the future management of FGBNMS. PMID:29161314
NASA Astrophysics Data System (ADS)
Winston, M. S.; Taylor, B. M.; Franklin, E. C.
2017-06-01
Mesophotic coral ecosystems (MCEs) represent the lowest depth distribution inhabited by many coral reef-associated organisms. Research on fishes associated with MCEs is sparse, leading to a critical lack of knowledge of how reef fish found at mesophotic depths may vary from their shallow reef conspecifics. We investigated intraspecific variability in body condition and growth of three Hawaiian endemics collected from shallow, photic reefs (5-33 m deep) and MCEs (40-75 m) throughout the Hawaiian Archipelago and Johnston Atoll: the detritivorous goldring surgeonfish, Ctenochaetus strigosus, and the planktivorous threespot chromis, Chromis verater, and Hawaiian dascyllus, Dascyllus albisella. Estimates of body condition and size-at-age varied between shallow and mesophotic depths; however, these demographic differences were outweighed by the magnitude of variability found across the latitudinal gradient of locations sampled within the Central Pacific. Body condition and maximum body size were lowest in samples collected from shallow and mesophotic Johnston Atoll sites, with no difference occurring between depths. Samples from the Northwestern Hawaiian Islands tended to have the highest body condition and reached the largest body sizes, with differences between shallow and mesophotic sites highly variable among species. The findings of this study support newly emerging research demonstrating intraspecific variability in the life history of coral-reef fish species whose distributions span shallow and mesophotic reefs. This suggests not only that the conservation and fisheries management should take into consideration differences in the life histories of reef-fish populations across spatial scales, but also that information derived from studies of shallow fishes be applied with caution to conspecific populations in mesophotic coral environments.
Engels, M.S.; Fletcher, C.H.; Field, M.; Conger, C.L.; Bochicchio, C.
2008-01-01
Twelve cores from the protected reef-flat of Molokai revealed that carbonate sediment accumulation, ranging from 3 mm year-1 to less than 1 mm year-1, ended on average 2,500 years ago. Modern sediment is present as a mobile surface veneer but is not trapped within the reef framework. This finding is consistent with the arrest of deposition at the end of the mid-Holocene highstand, known locally as the "Kapapa Stand of the Sea," ???2 m above the present datum ca. 3,500 years ago in the main Hawaiian Islands. Subsequent erosion, non-deposition, and/or a lack of rigid binding were probable factors leading to the lack of reef-flat accumulation during the late Holocene sea-level fall. Given anticipated climate changes, increased sedimentation of reef-flat environments is to be expected as a consequence of higher sea level. ?? 2008 Springer-Verlag.
Novel reef fabrics from the Devonian Canning Basin, Western Australia
NASA Astrophysics Data System (ADS)
Wood, Rachel
1998-11-01
Large cement-filled cavities (0.2 to 1.5 m wide) are well developed in slope-margin sediments of the spectacular Upper Devonian (Frasnian) reefs of the Canning Basin, Western Australia, where they account for up to 50% of the primary porosity. These are here interpreted as primary reef framework cavities that formed beneath a variety of domal, tabular or laminar stromatoporoid sponges. Of particular note are those created by unusual, very thin (2 to 8 mm), laminar stromatoporoids (mainly Stachyodes australe), that formed arching, hollow domes up to 0.3 m in height and 1.5 m in diameter over the sediment surface to enclose flat-based cavities. The free undersurface of these stromatoporoids often supported a hitherto unrecognised cryptic community, dominated by pendent growth of the putative calcified cyanobacterium Renalcis, with rare intergrown lithistid sponges and spiny atrypid brachiopods. The uneven growth surface of the cryptos imparts an irregular, stromatactis-like texture to the upper surface of the remaining cavity, which is filled by early marine, finely banded, fibrous cements (mainly radiaxial calcite) interbedded with often multiple generations of geopetal sediment containing peloids and ostracod debris. This ecology yields the tabular stromatoporoid- Renalcis fabric described ubiquitously from the Canning Basin reef complex. Such unusual reef fabrics are a consequence of the ecology of shallow marine mid-Palaeozoic reefs which were quite unlike that of modern coral reefs. The frequent preservation of relatively delicate, in situ communities was due to (1) rapid and pervasive early cementation, (2) growth under non-energetic conditions, and (3) the relative insignificance of bioeroders associated with reefs at this time.
Coastal Erosion in a Coral Reef Island, Taiping Island, South China Sea
NASA Astrophysics Data System (ADS)
Su, S.; Ma, G.; Liang, M.; Chu, J.
2011-12-01
Reef flats surrounding islands are known to dissipate much offshore wave energy, and thereby protect beaches from erosion. Taiping Island, the largest coral reef islands of the Spratly Islands in the South China Sea, has been observed the shorelines erosion on the southwest coast over past decades. It is recognized that wave and current processes across coral reefs affect reef-island development and morphology. A number of studies suggest effects of climate changes, sea-level rise and storm-intensity increase, determine the magnitude of wave energy on the reef platform and will likely intensify the erosion. The topographical change in the local region, the southwest reef flat was dredged a channel for navigation, may be a significant factor in influencing current characteristics. Numerical modeling is used to describe both hydrodynamics and sediment dynamics because there are no field measurements available around the reef flat. Field observations off the island conducted in August 2004 and November 2005 provides offshore wave characteristics of the predominant wind seasons. Numerical simulations perform the spatial and temporal variation of waves and current patterns and coastal erosion potential on the reef platform.
NASA Astrophysics Data System (ADS)
Bufarale, Giada; Collins, Lindsay B.; O'Leary, Michael J.; Stevens, Alexandra; Kordi, Moataz; Solihuddin, Tubagus
2016-07-01
The inner shelf Kimberley Bioregion of Northwest Australia is characterised by a macrotidal setting where prolific coral reefs growth as developed around a complex drowned landscape and is considered a biodiversity "hotspot". High-resolution shallow seismic studies were conducted across various reef settings in the Kimberley (Buccaneer Archipelago, north of Dampier Peninsula, latitude: between 16°40‧S and 16°00‧S) to evaluate stratigraphic evolution, interaction with different substrates, morphological patterns and distribution. Reef sites were chosen to assess most of the reef types present, particularly high intertidal planar reefs and fringing reefs. Reef internal acoustic reflectors were identified according to their shape, stratigraphic position and characteristics. Two main seismic horizons were identified marking the boundaries between Holocene reef (Marine Isotope Stage 1, MIS 1, last 12 ky), commonly 10-20 m thick, and MIS 5 (Last Interglacial, LIG, ~120 ky, up to 12 m thick) and Proterozoic rock foundation over which Quaternary reef growth occurred. Within the Holocene Reef unit, at least three minor internal reflectors, generally discontinuous, subparallel to the reef flat were recognised and interpreted as either growth hiatuses or a change of the coral framework or sediment matrix. The LIG reefs represent a new northernmost occurrence along the Western Australian coast. The research presented here achieved the first regional geophysical study of the Kimberley reefs. Subbottom profiles demonstrated that the surveyed reefs are characterised by a multi-stage reef buildup, indicating that coral growth occurred in the Kimberley during previous sea level highstands. The data show also that antecedent substrate and regional subsidence have contributed, too, in determining the amount of accommodation available for reef growth and controlling the morphology of the successive reef building stages. Moreover, the study showed that in spite of macrotidal conditions, high-turbidity and frequent high-energy cyclonic events, corals have exhibited prolific reef growth during the Holocene developing significant reef accretionary structures. As a result coral reefs have generating habitat complexity and species diversity in what is a biodiversity hotspot.
NASA Astrophysics Data System (ADS)
Lantz, C. A.; Atkinson, M. J.; Winn, C. W.; Kahng, S. E.
2014-03-01
There is an interest in developing approaches to "ecosystem-based" management for coral reefs. One aspect of ecosystem performance is to monitor carbon metabolism of whole communities. In an effort to explore robust techniques to monitor the metabolism of fringing reefs, especially considering the possible effects of ocean acidification, a yearlong study of the carbonate chemistry of a nearshore fringing reef in Hawaii was conducted. Diurnal changes in seawater carbonate chemistry were measured once a week in an algal-dominated and a coral-dominated reef flat on the Waimanalo fringing reef, Hawaii, from April of 2010 until May of 2011. Calculated rates of gross primary production (GPP) and net community calcification ( G) were similar to previous estimates of community metabolism for other coral reefs (GPP 971 mmol C m-2 d-1; G 186 mmol CaCO3 m-2 d-1) and indicated that this reef was balanced in terms of organic metabolism, exhibited net calcification, and was a net source of CO2 to the atmosphere. Average slopes of total alkalinity versus dissolved inorganic carbon (TA-DIC slope) for the coral-dominated reef flat exhibited a greater calcification-to-net photosynthesis ratio than for the algal-dominated reef flat (coral slope vs. algal slope). Over the course of the time series, TA-DIC slopes remained significantly different between sites and were not correlated with diurnal averages in reef-water residence time or solar irradiance. These characteristic slopes for each reef flat reflect the relationship between carbon and carbonate community metabolism and can be used as a tool to monitor ecosystem function in response to ocean acidification.
Characterization of sediment trapped by macroalgae on a Hawaiian reef flat
Stamski, R.E.; Field, M.E.
2006-01-01
Reef researchers studying community shifts in the balance between corals and fleshy macroalgae have noted that algae are often covered with sediment. This study characterizes sediment trapping by macroalgae within a Hawaiian reef habitat and constrains the controls on this process. Sediment-laden macroalgae were sampled and macroalgal cover was assessed on a wide (???1 km) reef flat off south-central Molokai. Macroalgae trapped a mean of 1.26 (??0.91 SD) grams of sediment per gram of dry weight biomass and that sediment was dominantly terrigenous mud (59% by weight). It was determined that biomass, as a proxy for algal size, and morphology were not strict controls on the sediment trapping process. Over 300 metric tons of sediment were estimated to be retained by macroalgae across 5.75 km2 of reef flat (54 g m-2), suggesting that this process is an important component of sediment budgets. In addition, understanding the character of sediment trapped by macroalgae may help constrain suspended sediment flux and has implications for nutrient dynamics in reef flat environments. ?? 2005 Elsevier Ltd. All rights reserved.
Characterization of sediment trapped by macroalgae on a Hawaiian reef flat
NASA Astrophysics Data System (ADS)
Stamski, Rebecca E.; Field, Michael E.
2006-01-01
Reef researchers studying community shifts in the balance between corals and fleshy macroalgae have noted that algae are often covered with sediment. This study characterizes sediment trapping by macroalgae within a Hawaiian reef habitat and constrains the controls on this process. Sediment-laden macroalgae were sampled and macroalgal cover was assessed on a wide (˜1 km) reef flat off south-central Molokai. Macroalgae trapped a mean of 1.26 (±0.91 SD) grams of sediment per gram of dry weight biomass and that sediment was dominantly terrigenous mud (59% by weight). It was determined that biomass, as a proxy for algal size, and morphology were not strict controls on the sediment trapping process. Over 300 metric tons of sediment were estimated to be retained by macroalgae across 5.75 km 2 of reef flat (54 g m -2), suggesting that this process is an important component of sediment budgets. In addition, understanding the character of sediment trapped by macroalgae may help constrain suspended sediment flux and has implications for nutrient dynamics in reef flat environments.
Deep reefs are not universal refuges: Reseeding potential varies among coral species
Bongaerts, Pim; Riginos, Cynthia; Brunner, Ramona; Englebert, Norbert; Smith, Struan R.; Hoegh-Guldberg, Ove
2017-01-01
Deep coral reefs (that is, mesophotic coral ecosystems) can act as refuges against major disturbances affecting shallow reefs. It has been proposed that, through the provision of coral propagules, such deep refuges may aid in shallow reef recovery; however, this “reseeding” hypothesis remains largely untested. We conducted a genome-wide assessment of two scleractinian coral species with contrasting reproductive modes, to assess the potential for connectivity between mesophotic (40 m) and shallow (12 m) depths on an isolated reef system in the Western Atlantic (Bermuda). To overcome the pervasive issue of endosymbiont contamination associated with de novo sequencing of corals, we used a novel subtraction reference approach. We have demonstrated that strong depth-associated selection has led to genome-wide divergence in the brooding species Agaricia fragilis (with divergence by depth exceeding divergence by location). Despite introgression from shallow into deep populations, a lack of first-generation migrants indicates that effective connectivity over ecological time scales is extremely limited for this species and thus precludes reseeding of shallow reefs from deep refuges. In contrast, no genetic structuring between depths (or locations) was observed for the broadcasting species Stephanocoenia intersepta, indicating substantial potential for vertical connectivity. Our findings demonstrate that vertical connectivity within the same reef system can differ greatly between species and that the reseeding potential of deep reefs in Bermuda may apply to only a small number of scleractinian species. Overall, we argue that the “deep reef refuge hypothesis” holds for individual coral species during episodic disturbances but should not be assumed as a broader ecosystem-wide phenomenon. PMID:28246645
Mesophotic bioerosion: Variability and structural impact on U.S. Virgin Island deep reefs
NASA Astrophysics Data System (ADS)
Weinstein, David K.; Smith, Tyler B.; Klaus, James S.
2014-10-01
Mesophotic reef corals, found 30-150 m below sea level, build complex structures that provide habitats for diverse ecosystems. Whereas bioerosion is known to impact the development and persistence of shallow reef structures, little is known regarding the extent of mesophotic bioerosion or how it might affect deeper reef geomorphology and carbonate accretion. Originally pristine experimental coral substrates and collected coral rubble were both used to investigate the variation and significance of mesophotic coral reef bioerosion south of St. Thomas, U.S. Virgin Islands. Bioerosion rates were calculated from experimental coral substrates exposed as framework for 1 and 2 years at four structurally distinct mesophotic coral reef habitats (between 30 and 45 m) as well as at a mid-shelf patch reef (21 m) and a shallow fringing patch reef (9 m). The long-term effects of macroboring were assessed by examining coral rubble collected at all sites. Overall, differences in bioerosional processes were found between shallow and mesophotic reefs. Increases in bioerosion on experimental substrates (amount of weight lost) were related to both decreasing seawater depth and increasing biomass of bioeroding parrotfish. Significant differences in coral skeleton bioerosion rates were also found between the transitional mesophotic reef zone (30-35 m) and the upper mesophotic reef zone (35-50 m) after 2 years of exposure, ranging from - 19.6 to 3.7 g/year. Total coral rubble macroboring was greater at most deep sites compared to shallower sites. Bioerosional grazing was found to dominate initial substrate modification in reefs 30.7 m and shallower, but sponges are believed to act as the main time-averaged long-term substrate bioeroders in reefs between 35 and 50 m. Although initial substrate bioerosion rates of a uniform substrate were relatively homogeneous in the 35-50 m depth zone, comparison of site composition suggests that mesophotic bioerosion will vary depending on the amount, location, and type of available substrate, and the duration both coral rubble and in situ coral framework are exposed on the seafloor. These variations may exaggerate pronounced structural differences in mesophotic reef habitats that experience few other methods of erosion.
Wave setup over a Pacific Island fringing reef
NASA Astrophysics Data System (ADS)
Vetter, O.; Becker, J. M.; Merrifield, M. A.; Pequignet, A.-C.; Aucan, J.; Boc, S. J.; Pollock, C. E.
2010-12-01
Measurements obtained across a shore-attached, fringing reef on the southeast coast of the island of Guam are examined to determine the relationship between incident waves and wave-driven setup during storm and nonstorm conditions. Wave setup on the reef flat correlates well (r > 0.95) and scales near the shore as approximately 35% of the incident root mean square wave height in 8 m water depth. Waves generated by tropical storm Man-Yi result in a 1.3 m setup during the peak of the storm. Predictions based on traditional setup theory (steady state, inviscid cross-shore momentum and depth-limited wave breaking) and an idealized model of localized wave breaking at the fore reef are in agreement with the observations. The reef flat setup is used to estimate a similarity parameter at breaking that is in agreement with observations from a steeply sloping sandy beach. A weak (˜10%) increase in setup is observed across the reef flat during wave events. The inclusion of bottom stress in the cross-shore momentum balance may account for a portion of this signal, but this assessment is inconclusive as the reef flat currents in some cases are in the wrong direction to account for the increase. An independent check of fringing reef setup dynamics is carried out for measurements at the neighboring island of Saipan with good agreement.
Reef Development on Artificial Patch Reefs in Shallow Water of Panjang Island, Central Java
NASA Astrophysics Data System (ADS)
Munasik; Sugiyanto; Sugianto, Denny N.; Sabdono, Agus
2018-02-01
Reef restoration methods are generally developed by propagation of coral fragments, coral recruits and provide substrate for coral attachment using artificial reefs (ARs). ARs have been widely applied as a tool for reef restoration in degraded natural reefs. Successful of coral restoration is determined by reef development such as increasing coral biomass, natural of coral recruits and fauna associated. Artificial Patch Reefs (APRs) is designed by combined of artificial reefs and coral transplantation and constructed by modular circular structures in shape, were deployed from small boats by scuba divers, and are suitable near natural reefs for shallow water with low visibility of Panjang Island, Central Java. Branching corals of Acropora aspera, Montipora digitata and Porites cylindrica fragments were transplanted on to each module of two units of artificial patch reefs in different periods. Coral fragments of Acropora evolved high survival and high growth, Porites fragments have moderate survival and low growth, while fragment of Montipora show in low survival and moderate growth. Within 19 to 22 months of APRs deployment, scleractinian corals were recruited on the surface of artificial patch reef substrates. The most recruits abundant was Montastrea, followed by Poritids, Pocilloporids, and Acroporids. We conclude that artificial patch reefs with developed by coral fragments and natural coral recruitment is one of an alternative rehabilitation method in shallow reef with low visibility.
Storlazzi, C.D.; Logan, J.B.; Field, M.E.
2003-01-01
High-resolution Scanning Hydrographic Operational Airborne Lidar Survey (SHOALS) laser-determined bathymetric data were used to define the morphology of spur-and-groove structures on the fringing reef off the south coast of Molokai, Hawaii. These data provide a basis for mapping and analyzing morphology of the reef with a level of precision and spatial coverage never before attained. An extensive fringing coral reef stretches along the central two-thirds of Molokai's south shore (???40 km); along the east and west ends there is only a thin veneer of living coral with no developed reef complex. In total, ???4800 measurements of spur-and-groove height and the distance between adjacent spur crests (wavelength) were obtained along four isobaths. Between the 5m and 15m isobaths, the mean spur height increased from 0.7 m to 1.6 m, whereas the mean wavelength increased from 71 m to 104 m. Reef flat width was found to exponentially decrease with increasing wave energy. Overall, mean spur-and-groove height and wavelength were shown to be inversely proportional to wave energy. In high-energy environments, spur-and-groove morphology remains relatively constant across all water depths. In low-energy environments, however, spur-and-groove structures display much greater variation; they are relatively small and narrow in shallow depths and develop into much larger and broader features in deeper water. Therefore, it appears that waves exert a primary control on both the small and large-scale morphology of the reef off south Molokai.
Assessing the Diversity of Halimeda spp. on Pulley Ridge Mesophotic Reefs
NASA Astrophysics Data System (ADS)
Luzader, R. K.; Baco-Taylor, A.
2016-02-01
The Florida reef system contains an array of organisms that contribute to the development of the reef structure. These include calcifying green macroalgae of the genus Halimeda, which provides important ecosystem services by stabilizing the reefs through calcification. Halimeda is one of several groups of shallow water reef taxa with a depth range that extends into the mesophotic zone. It has been hypothesized the mesophotic reefs may serve as refugia for shallow water taxa impacted by climate change and other anthropogenic stressors. To test this hypothesis, in 2012-2015, the mesophotic reefs of Pulley Ridge and Dry Tortugas were sampled to assess genetic connectivity to the shallow water reefs of the Florida Keys. A diverse array of Halimeda species were represented on Pulley Ridge. Halimeda species are known to be difficult to identify and delineate morphologically and the taxonomy of Halimeda species has been revised several times based on molecular data. Thus, before connectivity of mesophotic Halimeda to shallow populations can be assessed, our first goal is to determine whether there is overlap of any of the Halimeda species between the mesophotic and shallow reefs, and then to determine if any of the species are present in sufficient abundance for population genetics. We sequenced portions of two chloroplast genes commonly used for algal phylogenetics and barcoding, tufA and rbcL, for at least 5 individuals of each morphotype collected on Dry Tortugas and the Pulley Ridge mesophotic reefs. Preliminary results suggest that Halimeda tuna, the species previously reported as the dominant Halimeda species on Pulley Ridge, was relatively uncommon. Morphological results and comparison of initial genetic results to sequences in GenBank suggest that H. goreaui is abundant at the Dry Tortugas site and H. fragilis, H. copiosa and H. discoidea are common on Pulley Ridge, indicating greater Halimeda diversity in the mesophotic reef system than previously documented.
NASA Astrophysics Data System (ADS)
Nagelkerken, I.; van der Velde, G.; Gorissen, M. W.; Meijer, G. J.; Van't Hof, T.; den Hartog, C.
2000-07-01
The nursery function of various biotopes for coral reef fishes was investigated on Bonaire, Netherlands Antilles. Length and abundance of 16 commercially important reef fish species were determined by means of visual censuses during the day in six different biotopes: mangrove prop-roots ( Rhizophora mangle) and seagrass beds ( Thalassia testudinum) in Lac Bay, and four depth zones on the coral reef (0 to 3 m, 3 to 5 m, 10 to 15 m and 15 to 20 m). The mangroves, seagrass beds and shallow coral reef (0 to 3 m) appeared to be the main nursery biotopes for the juveniles of the selected species. Mutual comparison between biotopes showed that the seagrass beds were the most important nursery biotope for juvenile Haemulon flavolineatum, H. sciurus, Ocyurus chrysurus, Acanthurus chirurgus and Sparisoma viride, the mangroves for juvenile Lutjanus apodus, L. griseus, Sphyraena barracuda and Chaetodon capistratus, and the shallow coral reef for juvenile H. chrysargyreum, L. mahogoni , A. bahianus and Abudefduf saxatilis. Juvenile Acanthurus coeruleus utilized all six biotopes, while juvenile H. carbonarium and Anisotremus surinamensis were not observed in any of the six biotopes. Although fishes showed a clear preference for a specific nursery biotope, most fish species utilized multiple nursery biotopes simultaneously. The almost complete absence of juveniles on the deeper reef zones indicates the high dependence of juveniles on the shallow water biotopes as a nursery. For most fish species an (partial) ontogenetic shift was observed at a particular life stage from their (shallow) nursery biotopes to the (deeper) coral reef. Cluster analyses showed that closely related species within the families Haemulidae, Lutjanidae and Acanthuridae, and the different size classes within species in most cases had a spatial separation in biotope utilization.
Adaptation to reef habitats through selection on the coral animal and its associated microbiome.
van Oppen, Madeleine J H; Bongaerts, Pim; Frade, Pedro; Peplow, Lesa M; Boyd, Sarah E; Nim, Hieu T; Bay, Line K
2018-06-13
Spatially adjacent habitats on coral reefs can represent highly distinct environments, often harbouring different coral communities. Yet, certain coral species thrive across divergent environments. It is unknown whether the forces of selection are sufficiently strong to overcome the counteracting effects of the typically high gene flow over short distances, and for local adaptation to occur. We screened the coral genome (using restriction-site-associated sequencing [RAD-seq]), and characterized both the dinoflagellate photosymbiont and tissue-associated prokaryote microbiomes (using metabarcoding) of a reef flat and slope population of the reef-building coral, Pocillopora damicornis, at two locations on Heron Island in the southern Great Barrier Reef. Reef flat and slope populations were separated by <100 m horizontally and ~5 m vertically and the two study locations were separated by ~1 km. For the coral host, genetic divergence between habitats was much greater than between locations, suggesting limited gene flow between the flat and slope populations. Consistent with environmental selection, outlier loci primarily belonged to the conserved, minimal cellular stress response, likely reflecting adaptation to the different temperature and irradiance regimes on the reef flat and slope. Similarly, the prokaryote community differed across both habitat and, to a lesser extent, location, whereas the dinoflagellate photosymbionts differed by habitat but not location. The observed intra-specific diversity associated with divergent habitats supports that environmental adaptation involves multiple members of the coral holobiont. Adaptive alleles or microbial associations present in coral populations from the environmentally-variable reef flat may provide a source of adaptive variation for assisted evolution approaches, through assisted gene flow, artificial cross-breeding or probiotic inoculations, with the aim to increase climate resilience in the slope populations. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.
Coral communities of the remote atoll reefs in the Nansha Islands, southern South China Sea.
Zhao, M X; Yu, K F; Shi, Q; Chen, T R; Zhang, H L; Chen, T G
2013-09-01
During the months of May and June in the year 2007, a survey was conducted regarding coral reef communities in the remote atolls (Zhubi Reef and Meiji Reef) of Nansha Islands, southern South China Sea. The goals of the survey were to: (1) for the first time, compile a scleractinian coral check-list; (2) estimate the total richness, coral cover, and growth forms of the community; and (3) describe preliminary patterns of community structure according to geomorphological units. Findings of this survey revealed a total of 120 species of scleractinia belonging to 40 genera, while the average coral cover was 21 %, ranging from less than 10 % to higher than 50 %. Branching and massive corals were also found to be the most important growth forms of the whole coral community, while Acropora, Montipora, and Porites were the three dominant genera in the overall region, with their contributions to total coral cover measuring 21, 22, and 23 %, respectively. Overall, coral communities of the Nansha Islands were in a relative healthy condition with high species diversity and coral cover. Spatial pattern of coral communities existed among various geomorphological units. Mean coral cover was highest in the patch reef within the lagoon, followed by the fore reef slope, reef flat, and lagoon slope. The greatest contributors to total coral cover were branching Acropora (45 %) in the lagoon slope, branching Montipora (44 %) in the reef flat, and massive Porites (51 %) in the patch reef. Coral cover in the fore reef revealed a greater range of genera than in other habitats. The leeward fore reef slope had higher coral cover (> 50 %) when compared with the windward slope (< 10 %). The coral communities of the inner reef flat were characterized by higher coral cover (27 %) and dominant branching Montipora corals, while lower coral cover (4 %) was dominated by Psammocora with massive growth forms on the outer reef flat. Destructive fishing and coral bleaching were two major threats to coral communities in the study area.
Sewage pollution in Negril, Jamaica: effects on nutrition and ecology of coral reef macroalgae
NASA Astrophysics Data System (ADS)
Lapointe, B. E.; Thacker, K.; Hanson, C.; Getten, L.
2011-07-01
Coral reefs in the Negril Marine Park (NMP), Jamaica, have been increasingly impacted by nutrient pollution and macroalgal blooms following decades of intensive development as a major tourist destination. A baseline survey of DIN and SRP concentrations, C:N:P and stable nitrogen isotope ratios (δ15N) of abundant reef macroalgae on shallow and deep reefs of the NMP in 1998 showed strong P-limitation and evidence of increasing sewage pollution. In 1999, a sewage collection and treatment project began diverting wastewater from the resort and urban areas to a pond system that discharged partially-treated effluent into the South Negril River (SNR). These sewage discharges significantly increased concentrations of NH{4/+} and SRP (N:P ˜13) in the SNR, which flows into Long Bay and around Negril's "West End". Concentrations of SRP, the primary limiting nutrient, were higher on shallow reefs of the West End in 2001 compared to 1998. Stable nitrogen isotope ratios (δ15N) of abundant reef macroalgae on both shallow and deep reefs of the West End in 2002 were significantly higher than baseline values in 1998, indicating an escalating impact of sewage nitrogen pollution over this timeframe. The increased nutrient concentrations and δ15N enrichment of reef macroalgae correlated with blooms of the chlorophyte Chaetomorpha linum in shallow waters of Long Bay and Codium isthmocladum and Caulerpa cupressoides on deep reefs of the West End. Sewage treatment systems adjacent to coral reefs must include nutrient removal to ensure that DIN and SRP concentrations, after dilution, are below the low thresholds noted for these oligotrophic ecosystems.
Upper Miocene reef complex of Mallorca, Balearic Islands, Spain
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pomar, L.
1988-02-01
The late Tortonian-Messinian coral reef platform of south Mallorca onlaps a folded middle late Miocene carbonate platform on which progradation of up to 20 km occurs. Vertical sea cliffs (up to 100 m high) superbly show the last 5 km of this progradation and complement the numerous water-well cores from the island interior. The Mallorca reef presents the most complete facies zonation of the Miocene reefs of the western Mediterranean. The reef wall framework is up to 20 m thick and shows (1) erosional reef flat with reef breccia and small corals; (2) spur-and-grove zone with large, massive corals; (3)more » deep buttresses and pinnacles with terraces of branching corals; and (4) deep reef wall with flat, laminar coral colonies, branching red algae, and Halimeda sands.« less
Mesophotic depths as refuge areas for fishery-targeted species on coral reefs
NASA Astrophysics Data System (ADS)
Lindfield, Steven J.; Harvey, Euan S.; Halford, Andrew R.; McIlwain, Jennifer L.
2016-03-01
Coral reefs are subjected to unprecedented levels of disturbance with population growth and climate change combining to reduce standing coral cover and stocks of reef fishes. Most of the damage is concentrated in shallow waters (<30 m deep) where humans can comfortably operate and where physical disturbances are most disruptive to marine organisms. Yet coral reefs can extend to depths exceeding 100 m, potentially offering refuge from the threats facing shallower reefs. We deployed baited remote underwater stereo-video systems (stereo-BRUVs) at depths of 10-90 m around the southern Mariana Islands to investigate whether fish species targeted by fishing in the shallows may be accruing benefits from being at depth. We show that biomass, abundance and species richness of fishery-targeted species increased from shallow reef areas to a depth of 60 m, whereas at greater depths, a lack of live coral habitat corresponded to lower numbers of fish. The majority of targeted species were found to have distributions that ranged from shallow depths (10 m) to depths of at least 70 m, emphasising that habitat, not depth, is the limiting factor in their vertical distribution. While the gradient of abundance and biomass versus depth was steepest for predatory species, the first species usually targeted by fishing, we also found that fishery-targeted herbivores prevailed in similar biomass and species richness to 60 m. Compared to shallow marine protected areas, there was clearly greater biomass of fishery-targeted species accrued in mesophotic depths. Particularly some species typically harvested by depth-limited fishing methods (e.g., spearfishing), such as the endangered humphead wrasse Cheilinus undulatus, were found in greater abundance on deeper reefs. We conclude that mesophotic depths provide essential fish habitat and refuge for fishery-targeted species, representing crucial zones for fishery management and research into the resilience of disturbed coral reef ecosystems.
Anatomy of a cyclically packaged Mesoproterozoic carbonate ramp in northern Canada
NASA Astrophysics Data System (ADS)
Sherman, A. G.; Narbonne, G. M.; James, N. P.
2001-03-01
Carbonates in the upper member of the Mesoproterozoic Victor Bay Formation are dominated by lime mud and packaged in cycles of 20-50 m. These thicknesses exceed those of classic shallowing-upward cycles by almost a factor of 10. Stratigraphic and sedimentological evidence suggests high-amplitude, high-frequency glacio-eustatic cyclicity, and thus a cool global climate ca. 1.2 Ga. The Victor Bay ramp is one of several late Proterozoic carbonate platforms where the proportions of lime mud, carbonate grains, and microbialites are more typical of younger Phanerozoic successions which followed the global waning of stromatolites. Facies distribution in the study area is compatible with deposition on a low-energy, microtidal, distally steepened ramp. Outer-ramp facies are hemipelagic lime mudstone, shale, carbonaceous rhythmite, and debrites. Mid-ramp facies are molar-tooth limestone tempestite with microspar-intraclast lags. In a marine environment where stromatolitic and oolitic facies were otherwise rare, large stromatolitic reefs developed at the mid-ramp, coeval with inner-ramp facies of microspar grainstone, intertidal dolomitic microbial laminite, and supratidal evaporitic red shale. Deep-subtidal, outer-ramp cycles occur in the southwestern part of the study area. Black dolomitic shale at the base is overlain by ribbon, nodular, and carbonaceous carbonate facies, all of which exhibit signs of synsedimentary disruption. Cycles in the northeast are shallow-subtidal and peritidal in character. Shallow-subtidal cycles consist of basal deep-water facies, and an upper layer of subtidal molar-tooth limestone tempestite interbedded with microspar calcarenite facies. Peritidal cycles are identical to shallow-subtidal cycles except that they contain a cap of dolomitic tidal-flat microbial laminite, and rarely of red shale sabkha facies or of sandy polymictic conglomerate. A transect along the wall of a valley extending 8.5 km perpendicular to depositional strike reveals progradation of inner-ramp tidal flats over outer- and mid-ramp facies during shoaling. The maximum basinward progradation of peritidal facies coincides with a zone of slope failure that may have promoted the development of the stromatolitic reefs. The sea-level history of the Victor Bay Formation is represented by three hectometre-scale sequences. An initial flooding event resulted in deposition of the lower Victor Bay shale member. Upper-member carbonate cycles were then deposited during highstand. Mid-ramp slumping was followed by late-highstand reef development. The second sequence began with development of an inner-ramp lowstand unconformity and a thick mid-ramp lowstand wedge. A second transgression promoted a more modest phase of reef development at the mid-ramp and shallow-water deposition continued inboard. A third and final transgressive episode eventually led to flooding of the backstepping ramp. Overall consistent cycle thickness and absence of truncated cycles, as well as the high rate and amount of creation of accommodation space, suggest that the periodicity and amplitude of sea-level fluctuation were relatively uniform, and point to a eustatic rather than tectonic mechanism of relative sea-level change. High-amplitude, high-frequency eustatic sea-level change is characteristic of icehouse worlds in which short-term, large-scale sea-level fluctuations accompany rapidly changing ice volumes affected by Milankovitch orbital forcing. Packaging of cyclic Upper Victor Bay carbonates therefore supports the hypothesis of a late Mesoproterozoic glacial period, as proposed by previous workers.
New evidence for the barrier reef model, Permian Capitan Reef complex, New Mexico
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kirkland, B.L.; Moore, C.H. Jr.
1990-05-01
Recent paleontologic and petrologic observations suggest that the Capitan Formation was deposited as an organic or ecologic reef that acted as an emergent barrier to incoming wave energy. In outcrops in the Guadalupe Mountains and within Carlsbad Caverns, massive reef boundstone contains a highly diverse assemblage of frame-building and binding organisms. In modern reefs, diversity among frame builders decreases dramatically with depth. Marine cement is abundant in reef boundstone, but limited in back-reef grainstone and packstone. This cementation pattern is similar to that observed in modern emergent barrier reef systems. Based on comparison with modern analogs, these dasycladrominated back-reef sedimentsmore » and their associated biota are indicative of shallow, hypersaline conditions. Few of these dasyclads exhibit broken or abraded segments and some thallus sections are still articulated suggesting that low-energy, hypersaline conditions occurred immediately shelfward of the reef. In addition, large-scale topographic features, such as possible spur and groove structures between Walnut Canyon and Rattlesnake Canyon, and facies geometries, such as the reef to shelf transition, resemble those found in modern shallow-water reefs. The organisms that formed the Capitan Reef appear to have lived in, and responded to, physical and chemical conditions similar to those that control the geometry of modern shallow-water reefs. Like their modern counterparts, they seem to have strongly influenced adjacent environments. In light of this evidence, consideration should be given to either modifying or abandoning the marginal mound model in favor of the originally proposed barrier reef model.« less
NASA Astrophysics Data System (ADS)
Karkarey, R.; Kelkar, N.; Lobo, A. Savio; Alcoverro, T.; Arthur, R.
2014-06-01
Benthic recovery from climate-related disturbances does not always warrant a commensurate functional recovery for reef-associated fish communities. Here, we examine the distribution of benthic groupers (family Serranidae) in coral reef communities from the Lakshadweep archipelago (Arabian Sea) in response to structural complexity and long-term habitat stability. These coral reefs that have been subject to two major El Niño Southern Oscillation-related coral bleaching events in the last decades (1998 and 2010). First, we employ a long-term (12-yr) benthic-monitoring dataset to track habitat structural stability at twelve reef sites in the archipelago. Structural stability of reefs was strongly driven by exposure to monsoon storms and depth, which made deeper and more sheltered reefs on the eastern aspect more stable than the more exposed (western) and shallower reefs. We surveyed groupers (species richness, abundance, biomass) in 60 sites across the entire archipelago, representing both exposures and depths. Sites were selected along a gradient of structural complexity from very low to high. Grouper biomass appeared to vary with habitat stability with significant differences between depth and exposure; sheltered deep reefs had a higher grouper biomass than either sheltered shallow or exposed (deep and shallow) reefs. Species richness and abundance showed similar (though not significant) trends. More interestingly, average grouper biomass increased exponentially with structural complexity, but only at the sheltered deep (high stability) sites, despite the availability of recovered structure at exposed deep and shallow sites (lower-stability sites). This trend was especially pronounced for long-lived groupers (life span >10 yrs). These results suggest that long-lived groupers may prefer temporally stable reefs, independent of the local availability of habitat structure. In reefs subject to repeated disturbances, the presence of structurally stable reefs may be critical as refuges for functionally important, long-lived species like groupers.
NASA Astrophysics Data System (ADS)
Alldredge, A. L.; King, J. M.
2009-12-01
Zooplankton were 3-8 times more abundant during the day near the surface than elsewhere in the water column over a 1-2.4 m deep back reef in Moorea, French Polynesia. Zooplankton were also significantly more abundant near the surface at night although gradients were most pronounced under moonlight. Zooplankton in a unidirectional current became concentrated near the surface within 2 m of departing a well-mixed trough immediately behind the reef crest, indicating that upward swimming behavior, rather than near-bottom depletion by reef planktivores, was the proximal cause of these gradients. Zooplankton were highly enriched near the surface before and after a full lunar eclipse but distributed evenly throughout the water column during the eclipse itself supporting light as a proximal cue for the upward swimming behavior of many taxa. This is the first investigation of the vertical distribution of zooplankton over a shallow back reef typical of island barrier reef systems common around the world. Previous studies on deeper fringing reefs found zooplankton depletion near the bottom but no enrichment aloft. In Moorea, where seawater is continuously recirculated out the lagoon and back across the reef crest onto the back reef, selection for upward swimming behavior may be especially strong, because the surface serves both as a refuge from predation and an optimum location for retention within the reef system. Planktivorous fish and corals that can forage or grow even marginally higher in the water column might have a substantial competitive advantage over those nearer the bottom on shallow reefs. Zooplankton abundance varied more over a few tens of centimeters vertical distance than it did between seasons or even between day and night indicating that great care must be taken to accurately assess the availability of zooplankton as food on shallow reefs.
Can mesophotic reefs replenish shallow reefs? Reduced coral reproductive performance casts a doubt.
Shlesinger, Tom; Grinblat, Mila; Rapuano, Hanna; Amit, Tal; Loya, Yossi
2018-02-01
Mesophotic coral ecosystems (i.e., deep coral reefs at 30-120 m depth) appear to be thriving while many shallow reefs in the world are declining. Amid efforts to understand and manage their decline, it was suggested that mesophotic reefs might serve as natural refuges and a possible source of propagules for the shallow reefs. However, our knowledge of how reproductive performance of corals alters with depth is sparse. Here, we present a comprehensive study of the reproductive phenology, fecundity, and abundance of seven reef-building conspecific corals in shallow and mesophotic habitats. Significant differences were found in the synchrony and timing of gametogenesis and spawning between shallow and mesophotic coral populations. Thus, mesophotic populations exhibited delayed or protracted spawning events, which led to spawning of the mesophotic colonies in large proportions at times where the shallow ones had long been depleted of reproductive material. All species investigated demonstrated a substantial reduction in fecundity and/or oocyte sizes at mesophotic depths (40-60 m). Two species (Seriatopora hystrix and Galaxea fascicularis) displayed a reduction in both fecundity and oocyte size at mesophotic depths. Turbinaria reniformis had only reduced fecundity and Acropora squarrosa and Acropora valida only reduced oocyte size. In Montipora verrucosa, reduced fecundity was found during one annual reproductive season while, in the following year, only reduced oocyte size was found. In contrast, reduced oocyte size in mesophotic populations of Acropora squarrosa was consistent along three studied years. One species, Acropora pharaonis, was found to be infertile at mesophotic depths along two studied years. This indicates that reproductive performance decreases with depth; and that although some species are capable of reproducing at mesophotic depths, their contribution to the replenishment of shallow reefs may be inconsequential. Reduced reproductive performance with depth, combined with the possible narrower tolerance to environmental factors, further suggests that mesophotic corals may in fact be more vulnerable than previously conceived. Furthermore, we posit that the observed temporal segregation in reproduction could lead to assortative mating, and this, in turn, may facilitate adaptive divergence across depth. © 2017 by the Ecological Society of America.
Mallet, Delphine; Wantiez, Laurent; Lemouellic, Soazig; Vigliola, Laurent; Pelletier, Dominique
2014-01-01
Estimating diversity and abundance of fish species is fundamental for understanding community structure and dynamics of coral reefs. When designing a sampling protocol, one crucial step is the choice of the most suitable sampling technique which is a compromise between the questions addressed, the available means and the precision required. The objective of this study is to compare the ability to sample reef fish communities at the same locations using two techniques based on the same stationary point count method: one using Underwater Visual Census (UVC) and the other rotating video (STAVIRO). UVC and STAVIRO observations were carried out on the exact same 26 points on the reef slope of an intermediate reef and the associated inner barrier reefs. STAVIRO systems were always deployed 30 min to 1 hour after UVC and set exactly at the same place. Our study shows that; (i) fish community observations by UVC and STAVIRO differed significantly; (ii) species richness and density of large species were not significantly different between techniques; (iii) species richness and density of small species were higher for UVC; (iv) density of fished species was higher for STAVIRO and (v) only UVC detected significant differences in fish assemblage structure across reef type at the spatial scale studied. We recommend that the two techniques should be used in a complementary way to survey a large area within a short period of time. UVC may census reef fish within complex habitats or in very shallow areas such as reef flat whereas STAVIRO would enable carrying out a large number of stations focused on large and diver-averse species, particularly in the areas not covered by UVC due to time and depth constraints. This methodology would considerably increase the spatial coverage and replication level of fish monitoring surveys. PMID:24392126
Ludt, William B.; Bernal, Moisés A.; Bowen, Brian W.; Rocha, Luiz A.
2012-01-01
Sea level fluctuations during glacial cycles affect the distribution of shallow marine biota, exposing the continental shelf on a global scale, and displacing coral reef habitat to steep slopes on oceanic islands. In these circumstances we expect that species inhabiting lagoons should show shallow genetic architecture relative to species inhabiting more stable outer reefs. Here we test this expectation on an ocean-basin scale with four wrasses (genus Halichoeres): H. claudia (N = 194, with ocean-wide distribution) and H. ornatissimus (N = 346, a Hawaiian endemic) inhabit seaward reef slopes, whereas H. trimaculatus (N = 239) and H. margaritaceus (N = 118) inhabit lagoons and shallow habitats throughout the Pacific. Two mitochondrial markers (cytochrome oxidase I and control region) were sequenced to resolve population structure and history of each species. Haplotype and nucleotide diversity were similar among all four species. The outer reef species showed significantly less population structure, consistent with longer pelagic larval durations. Mismatch distributions and significant negative Fu’s F values indicate Pleistocene population expansion for all species, and (contrary to expectations) shallower histories in the outer slope species. We conclude that lagoonal wrasses may persist through glacial habitat disruptions, but are restricted to refugia during lower sea level stands. In contrast, outer reef slope species have homogeneous and well-connected populations through their entire ranges regardless of sea level fluctuations. These findings contradict the hypothesis that shallow species are less genetically diverse as a consequence of glacial cycles. PMID:22701597
NASA Astrophysics Data System (ADS)
Feldman, Bar; Shlesinger, Tom; Loya, Yossi
2018-03-01
With more than 450 studied species, coral reproduction is a well-known research field. However, the vast majority of coral reproduction research has focused exclusively on shallow reefs. The incentive for the present study was: (1) the recent accelerated global degradation of coral reefs; (2) the growing interest in mesophotic coral ecosystems (MCEs; 30-120 m depth) and their potential to serve as a larval source for shallow reefs; and (3) the lack of information on MCE coral reproduction. Here, we compare the reproduction and ecology of the depth-generalist coral Paramontastraea peresi between shallow (5-10 m) and mesophotic (40-45 m) habitats in the Gulf of Eilat/Aqaba, Red Sea. Field surveys were conducted to assess the living cover, abundance, and size frequency distribution of P. peresi. Four to six colonies from each habitat were sampled monthly between April 2015 and January 2017, and the gametogenesis cycles, fecundity, and oocyte sizes were measured. The reproductive cycle in the MCEs was shorter than in the shallow reef. Despite having larger polyps, the mesophotic colonies contained significantly smaller and fewer oocytes per polyp. In spite of the relatively stable environmental conditions of the MCEs, which may contribute to coral survival, scarcity of sunlight is probably a major energetic impediment to investment in reproduction by P. peresi at mesophotic depths. Further intensive reproductive studies in mesophotic reefs are thus required to assess the ability of corals in this environment to reproduce and constitute a larval source for depleted shallow-water reefs.
NASA Astrophysics Data System (ADS)
Albright, R.; Langdon, C.; Anthony, K. R. N.
2013-05-01
Ocean acidification is projected to shift coral reefs from a state of net accretion to one of net dissolution this century. Presently, our ability to predict global-scale changes to coral reef calcification is limited by insufficient data relating seawater carbonate chemistry parameters to in situ rates of reef calcification. Here, we investigate natural trends in carbonate chemistry of the Davies Reef flat in the central Great Barrier Reef on diel and seasonal timescales and relate these trends to benthic carbon fluxes by quantifying net ecosystem calcification (nec) and net community production (ncp). Results show that seawater carbonate chemistry of the Davies Reef flat is highly variable over both diel and seasonal timescales. pH (total scale) ranged from 7.92 to 8.17, pCO2 ranged from 272 to 542 μatm, and aragonite saturation state (Ωarag) ranged from 2.9 to 4.1. Diel cycles in carbonate chemistry were primarily driven by ncp, and warming explained 35% and 47% of the seasonal shifts in pCO2 and pH, respectively. Daytime ncp averaged 36 ± 19 mmol C m-2 h-1 in summer and 33 ± 13 mmol C m-2 h-1 in winter; nighttime ncp averaged -22 ± 20 and -7 ± 6 mmol C m-2 h-1 in summer and winter, respectively. Daytime nec averaged 11 ± 4 mmol CaCO3 m-2 h-1 in summer and 8 ± 3 mmol CaCO3 m-2 h-1 in winter, whereas nighttime nec averaged 2 ± 4 mmol and -1 ± 3 mmol CaCO3 m-2 h-1 in summer and winter, respectively. Net ecosystem calcification was positively correlated with Ωarag for both seasons. Linear correlations of nec and Ωarag indicate that the Davies Reef flat may transition from a state of net calcification to net dissolution at Ωarag values of 3.4 in summer and 3.2 in winter. Diel trends in Ωarag indicate that the reef flat is currently below this calcification threshold 29.6% of the time in summer and 14.1% of the time in winter.
NASA Astrophysics Data System (ADS)
Cheriton, O. M.; Storlazzi, C. D.; Rosenberger, K. J.
2016-02-01
Low-lying, reef-fringed islands are susceptible to sea-level rise and often subjected to overwash and flooding during large wave events. To quantify wave dynamics and wave-driven water levels on fringing coral reefs, wave gauges and a current meter were deployed for 5 months across two shore-normal transects on Roi-Namur, an atoll island in the Republic of the Marshall Islands. These observations captured two large wave events that had maximum wave heights greater than 6 m and peak periods of 16 s over the fore reef. The larger event coincided with a peak spring tide, leading to energetic, highly-skewed infragravity (0.04-0.004 Hz) and very low frequency (0.004-0.001 Hz) waves at the shoreline, which reached heights of 1.0 and 0.7 m, respectively. Water surface elevations, combined with wave runup, exceeded 3.7 m at the innermost reef flat adjacent to the toe of the beach, resulting in flooding of inland areas. This overwash occurred during a 3-hr time window that coincided with high tide and maximum low-frequency reef flat wave heights. The relatively low-relief characteristics of this narrow reef flat may further drive shoreline amplification of low-frequency waves due to resonance modes. These results demonstrate how the coupling of high offshore water levels with low-frequency reef flat wave energetics can lead to large impacts along atoll and fringing reef-lined shorelines, such as island overwash. These observations lend support to the hypothesis that predicted higher sea levels will lead to more frequent occurrences of both extreme shoreline runup and island overwash, threatening the sustainability of these islands.
Ogston, A.S.; Field, M.E.
2010-01-01
Accelerating sea-level rise associated with global climate change will affect sedimentary processes on coral reefs and other shoreline environments by increasing energy and sediment resuspension. On reefs, sedimentation is known to increase coral stress and bleaching as particles that settle on coral surfaces interfere with photosynthesis and feeding, and turbidity induced by suspended sediment reduces incident light levels. Using relationships developed from observations of wave orbital velocity, water-surface elevation, and suspended-sediment concentration on a fringing reef flat of Molokai, Hawaii, predictions of the average daily maximum in suspended-sediment concentration increase from ~11 mg/l to ~20 mg/l with 20 cm sea-level rise. The duration of time concentrations exceeds 10 mg/l increases from 9 to 37. An evaluation of the reduction of wave energy flux through breaking and frictional dissipation across the reef flat shows an increase of ~80 relative to the present will potentially reach the shoreline as sea level increases by 20 cm. Where the shoreline exists on low, flat terrain, the increased energy could cause significant erosion of the shoreline. Considering the sediment budget, the sediment flux is predicted to increase and removal of fine-grained sediment may be expedited on some fringing reefs, and sediment in storage on the inner reef could ultimately be reduced. However, increased shoreline erosion may add sediment and offset removal from the reef flat. The shifts in sediment availability and transport that will occur as result of a modest increase in sea level have wide application to fringing coral reefs elsewhere, as well as other shoreline environments. ?? 2010 the Coastal Education & Research Foundation (CERF).
NASA Astrophysics Data System (ADS)
Cheriton, Olivia M.; Storlazzi, Curt D.; Rosenberger, Kurt J.
2016-05-01
Many low-lying tropical islands are susceptible to sea level rise and often subjected to overwash and flooding during large wave events. To quantify wave dynamics and wave-driven water levels on fringing coral reefs, a 5 month deployment of wave gauges and a current meter was conducted across two shore-normal transects on Roi-Namur Island in the Republic of the Marshall Islands. These observations captured two large wave events that had waves with maximum heights greater than 6 m with peak periods of 16 s over the fore reef. The larger event coincided with a peak spring tide, leading to energetic, highly skewed infragravity (0.04-0.004 Hz) and very low frequency (0.004-0.001 Hz) waves at the shoreline, which reached heights of 1.0 and 0.7 m, respectively. Water surface elevations, combined with wave runup, reached 3.7 m above the reef bed at the innermost reef flat adjacent to the toe of the beach, resulting in flooding of inland areas. This overwash occurred during a 3 h time window that coincided with high tide and maximum low-frequency reef flat wave heights. The relatively low-relief characteristics of this narrow reef flat may further drive shoreline amplification of low-frequency waves due to resonance modes. These results (1) demonstrate how the coupling of high offshore water levels with low-frequency reef flat wave energetics can lead to large impacts along fringing reef-lined shorelines, such as island overwash, and (2) lend support to the hypothesis that predicted higher sea levels will lead to more frequent occurrences of these extreme events, negatively impacting coastal resources and infrastructure.
Cheriton, Olivia; Storlazzi, Curt; Rosenberger, Kurt
2016-01-01
Many low-lying tropical islands are susceptible to sea level rise and often subjected to overwash and flooding during large wave events. To quantify wave dynamics and wave-driven water levels on fringing coral reefs, a 5 month deployment of wave gauges and a current meter was conducted across two shore-normal transects on Roi-Namur Island in the Republic of the Marshall Islands. These observations captured two large wave events that had waves with maximum heights greater than 6 m with peak periods of 16 s over the fore reef. The larger event coincided with a peak spring tide, leading to energetic, highly skewed infragravity (0.04–0.004 Hz) and very low frequency (0.004–0.001 Hz) waves at the shoreline, which reached heights of 1.0 and 0.7 m, respectively. Water surface elevations, combined with wave runup, reached 3.7 m above the reef bed at the innermost reef flat adjacent to the toe of the beach, resulting in flooding of inland areas. This overwash occurred during a 3 h time window that coincided with high tide and maximum low-frequency reef flat wave heights. The relatively low-relief characteristics of this narrow reef flat may further drive shoreline amplification of low-frequency waves due to resonance modes. These results (1) demonstrate how the coupling of high offshore water levels with low-frequency reef flat wave energetics can lead to large impacts along fringing reef-lined shorelines, such as island overwash, and (2) lend support to the hypothesis that predicted higher sea levels will lead to more frequent occurrences of these extreme events, negatively impacting coastal resources and infrastructure.
Ecological impacts and management implications of reef walking on a tropical reef flat community.
Williamson, Jane E; Byrnes, Evan E; Clark, Jennalee A; Connolly, David M; Schiller, Sabine E; Thompson, Jessica A; Tosetto, Louise; Martinelli, Julieta C; Raoult, Vincent
2017-01-30
Continued growth of tourism has led to concerns about direct and indirect impacts on the ecology of coral reefs and ultimate sustainability of these environments under such pressure. This research assessed impacts of reef walking by tourists on a relatively pristine reef flat community associated with an 'ecoresort' on the Great Barrier Reef, Australia. Heavily walked areas had lower abundances of live hard coral but greater amounts of dead coral and sediment. Abundances of macroalgae were not affected between sites. Coral-associated butterflyfish were less abundant and less diverse in more trampled sites. A manipulative experiment showed handling holothurians on reef walks had lasting negative impacts. This is the first study to show potential impacts of such handling on holothurians. Ecological impacts of reef walking are weighed against sociocultural benefits of a first hand experience in nature. Copyright © 2016 Elsevier Ltd. All rights reserved.
Osawa, Yoko; Fujita, Kazuhiko; Umezawa, Yu; Kayanne, Hajime; Ide, Yoichi; Nagaoka, Tatsutoshi; Miyajima, Toshihiro; Yamano, Hiroya
2010-08-01
Human impacts on sand-producing, large benthic foraminifers were investigated on ocean reef flats at the northeast Majuro Atoll, Marshall Islands, along a human population gradient. The densities of dominant foraminifers Calcarina and Amphistegina declined with distance from densely populated islands. Macrophyte composition on ocean reef flats differed between locations near sparsely or densely populated islands. Nutrient concentrations in reef-flat seawater and groundwater were high near or on densely populated islands. delta(15)N values in macroalgal tissues indicated that macroalgae in nearshore lagoons assimilate wastewater-derived nitrogen, whereas those on nearshore ocean reef flats assimilate nitrogen from other sources. These results suggest that increases in the human population result in high nutrient loading in groundwater and possibly into nearshore waters. High nutrient inputs into ambient seawater may have both direct and indirect negative effects on sand-producing foraminifers through habitat changes and/or the collapse of algal symbiosis. Copyright 2010 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Bridge, T.; Scott, A.; Steinberg, D.
2012-12-01
Anemonefishes and their host sea anemones are iconic inhabitants of coral reef ecosystems. While studies have documented their abundance in shallow-water reef habitats in parts of the Indo-Pacific, none have examined these species on mesophotic reefs. In this study, we used autonomous underwater vehicle imagery to examine the abundance and diversity of anemones and anemonefishes at Viper Reef and Hydrographers Passage in the central Great Barrier Reef at depths between 50 and 65 m. A total of 37 host sea anemones (31 Entacmaea quadricolor and 6 Heteractis crispa) and 24 anemonefishes (23 Amphiprion akindynos and 1 A. perideraion) were observed. Densities were highest at Viper Reef, with 8.48 E. quadricolor and A. akindynos per 100 m2 of reef substratum. These results support the hypothesis that mesophotic reefs have many species common to shallow-water coral reefs and that many taxa may occur at depths greater than currently recognised.
Rising sea levels will reduce extreme temperature variations in tide-dominated reef habitats.
Lowe, Ryan Joseph; Pivan, Xavier; Falter, James; Symonds, Graham; Gruber, Renee
2016-08-01
Temperatures within shallow reefs often differ substantially from those in the surrounding ocean; therefore, predicting future patterns of thermal stresses and bleaching at the scale of reefs depends on accurately predicting reef heat budgets. We present a new framework for quantifying how tidal and solar heating cycles interact with reef morphology to control diurnal temperature extremes within shallow, tidally forced reefs. Using data from northwestern Australia, we construct a heat budget model to investigate how frequency differences between the dominant lunar semidiurnal tide and diurnal solar cycle drive ~15-day modulations in diurnal temperature extremes. The model is extended to show how reefs with tidal amplitudes comparable to their depth, relative to mean sea level, tend to experience the largest temperature extremes globally. As a consequence, we reveal how even a modest sea level rise can substantially reduce temperature extremes within tide-dominated reefs, thereby partially offsetting the local effects of future ocean warming.
Stratigraphy and evolution of emerged Pleistocene reefs at the Red Sea coast of Sudan
NASA Astrophysics Data System (ADS)
Hamed, Basher; Bussert, Robert; Dominik, Wilhelm
2016-02-01
Emerged Pleistocene coral reefs constitute a prominent landform along the Red Sea coast of Sudan. They are well exposed with a thickness of up to 12 m and extend over a width of about 3 km parallel to the coastline. Four major reef units that represent different reef zones are distinguished. Unit 1 is located directly at the coastline and is assigned to the rock-reef rim, while unit 2 represents the reef-front zone. Unit 3 is attributed to the reef-flat zone and unit 4 to the back-reef zone. The stratigraphic position and age of the four units respectively the facies zones are based on field relationships and δ18O analysis. Results of δ18O analysis of coral, gastropod and bivalve samples were correlated to previous age dating of correlative reefs in Sudan and other parts of the Red Sea region. Estimation of reef ages was mainly based on δ18O values of the reef-front zone (unit 2) and the observed sedimentary succession of the reefs. δ18O values of two Porites coral samples from the reef-front zone strongly suggest equivalent ages of 120 and 122 ka that correspond to marine isotope stage MIS 5.5. Based on δ18O values and the field relationship to the reef-front zone, ages of reef-flat zone (unit 3) and back-reef zone (unit 4) could be assigned to MIS 9 and MIS 7 respectively. MIS 5.1 is suggested for the reef-rock rim (unit 1). The relationship of the reef zones to individual MIS might be explained by the predominance of a specific zone during a certain stage, while other facies were less well developed and/or later eroded by wave action. The reef unit most distal from the recent coastline formed during interglacial stage MIS 7, while former studies assign this unit to interglacial stage MIS 9. Unique flourishing, high diversity and excellent preservation of corals in the back-reef unit of MIS 7 reflect growth in troughs landward of the oldest reef-flat formed during previous interglacial stage MIS 9.
Andradi-Brown, Dominic A; Macaya-Solis, Consuelo; Exton, Dan A; Gress, Erika; Wright, Georgina; Rogers, Alex D
2016-01-01
Fish surveys form the backbone of reef monitoring and management initiatives throughout the tropics, and understanding patterns in biases between techniques is crucial if outputs are to address key objectives optimally. Often biases are not consistent across natural environmental gradients such as depth, leading to uncertainty in interpretation of results. Recently there has been much interest in mesophotic reefs (reefs from 30-150 m depth) as refuge habitats from fishing pressure, leading to many comparisons of reef fish communities over depth gradients. Here we compare fish communities using stereo-video footage recorded via baited remote underwater video (BRUV) and diver-operated video (DOV) systems on shallow and mesophotic reefs in the Mesoamerican Barrier Reef, Caribbean. We show inconsistent responses across families, species and trophic groups between methods across the depth gradient. Fish species and family richness were higher using BRUV at both depth ranges, suggesting that BRUV is more appropriate for recording all components of the fish community. Fish length distributions were not different between methods on shallow reefs, yet BRUV recorded more small fish on mesophotic reefs. However, DOV consistently recorded greater relative fish community biomass of herbivores, suggesting that studies focusing on herbivores should consider using DOV. Our results highlight the importance of considering what component of reef fish community researchers and managers are most interested in surveying when deciding which survey technique to use across natural gradients such as depth.
Macaya-Solis, Consuelo; Exton, Dan A.; Gress, Erika; Wright, Georgina; Rogers, Alex D.
2016-01-01
Fish surveys form the backbone of reef monitoring and management initiatives throughout the tropics, and understanding patterns in biases between techniques is crucial if outputs are to address key objectives optimally. Often biases are not consistent across natural environmental gradients such as depth, leading to uncertainty in interpretation of results. Recently there has been much interest in mesophotic reefs (reefs from 30–150 m depth) as refuge habitats from fishing pressure, leading to many comparisons of reef fish communities over depth gradients. Here we compare fish communities using stereo-video footage recorded via baited remote underwater video (BRUV) and diver-operated video (DOV) systems on shallow and mesophotic reefs in the Mesoamerican Barrier Reef, Caribbean. We show inconsistent responses across families, species and trophic groups between methods across the depth gradient. Fish species and family richness were higher using BRUV at both depth ranges, suggesting that BRUV is more appropriate for recording all components of the fish community. Fish length distributions were not different between methods on shallow reefs, yet BRUV recorded more small fish on mesophotic reefs. However, DOV consistently recorded greater relative fish community biomass of herbivores, suggesting that studies focusing on herbivores should consider using DOV. Our results highlight the importance of considering what component of reef fish community researchers and managers are most interested in surveying when deciding which survey technique to use across natural gradients such as depth. PMID:27959907
NASA Astrophysics Data System (ADS)
Gao, Da; Lin, Changsong; Yang, Haijun; Zuo, Fanfan; Cai, Zhenzhong; Zhang, Lijuan; Liu, Jingyan; Li, Hong
2014-04-01
The Late Ordovician Lianglitage Formation comprises 13 microfacies (Mf1-Mf13) that were deposited on a carbonate platform at the Tazhong Uplift of the Tarim Basin in Northwest China. Each type of microfacies indicates a specific depositional environment with a certain level of wave energy. Four primary groups of microfacies associations (MA1-MA4) were determined. These associations represent different depositional facies, including reef-shoal facies in the platform margin (MA1), carbonate sand shoal facies (MA2) and oncoid shoal (MA3) on open platforms, and lagoon and tidal flat facies (MA4) in the platform interior. Each microfacies association was generated in a fourth-order sedimentary sequence developing within third-order sequences (SQ1, SQ2, and SQ3, from bottom to top), showing a shallowing-upward trend. High-frequency sequences and facies correlation between wells suggests that the reef-shoal facies more successively developed in the southeastern part of the platform margin, and high-energy microfacies were more strictly confined by the top boundary of fourth-order sequences in the northwestern part of the platform. The highstand systems tract (HST) of the SQ2 is characterized by reef-shoals that developed along the platform margin and tidal flats and lagoons that developed in the platform interior, while the SQ3 is characterized by the oncoid shoal facies that generally developed on the uplift due to a regionally extensive transgression that occurred during the latter part of the Late Ordovician. The results of this study can be used for investigating the development and distribution of potential reservoirs; the reservoirs in southeastern part of the platform margin may be of premium quality because the high-energy microfacies were best preserved there.
NASA Astrophysics Data System (ADS)
Mallela, Jennie
2018-03-01
The continued health and function of tropical coral reefs is highly dependent on the ability of reef-building organisms to build large, complex, three-dimensional structures that continue to accrete and evolve over time. The recent deterioration of reef health globally, including loss of coral cover, has resulted in significant declines in architectural complexity at a large, reef-scape scale. Interestingly, the fine-scale role of micro-structure in initiating and facilitating future reef development and calcium carbonate production has largely been overlooked. In this study, experimental substrates with and without micro-ridges were deployed in the lagoon at One Tree Island for 34 months. This study assessed how the presence or absence of micro-ridges promoted recruitment by key reef-building sclerobionts (corals and encrusters) and their subsequent development at micro (mm) and macro (cm) scales. Experimental plates were examined after 11 and 34 months to assess whether long-term successional and calcification processes on different micro-topographies led to convergent or divergent communities over time. Sclerobionts were most prevalent in micro-grooves when they were available. Interestingly, in shallow lagoon reef sites characterised by shoals of small parrotfish and low urchin abundance, flat substrates were also successfully recruited to. Mean rates of carbonate production were 374 ± 154 (SD) g CaCO3 m-2 yr-1 within the lagoon. Substrates with micro-ridges were characterised by significantly greater rates of carbonate production than smooth substrates. The orientation of the substrate and period of immersion also significantly impacted rates of carbonate production, with CaCO3 on cryptic tiles increasing by 28% between 11 and 34 months. In contrast, rates on exposed tiles declined by 35% over the same time. In conclusion, even at sites characterised by small-sized parrotfish and low urchin density, micro-topography is an important settlement niche clearly favouring sclerobiont early life-history processes and subsequent carbonate production.
Identification and classification of very low frequency waves on a coral reef flat
Gawehn, Matthijs; van Dongeran, Ap; van Rooijen, Arnold; Storlazzi, Curt; Cheriton, Olivia; Reniers, Ad
2016-01-01
Very low frequency (VLF, 0.001–0.005 Hz) waves are important drivers of flooding of low-lying coral reef-islands. In particular, VLF wave resonance is known to drive large wave runup and subsequent overwash. Using a 5 month data set of water levels and waves collected along a cross-reef transect on Roi-Namur Island in the Republic of the Marshall Islands, the observed VLF motions were categorized into four different classes: (1) resonant, (2) (nonresonant) standing, (3) progressive-growing, and (4) progressive-dissipative waves. Each VLF class is set by the reef flat water depth and, in the case of resonance, the incident-band offshore wave period. Using an improved method to identify VLF wave resonance, we find that VLF wave resonance caused prolonged (∼0.5–6.0 h), large-amplitude water surface oscillations at the inner reef flat ranging in wave height from 0.14 to 0.83 m. It was induced by relatively long-period, grouped, incident-band waves, and occurred under both storm and nonstorm conditions. Moreover, observed resonant VLF waves had nonlinear, bore-like wave shapes, which likely have a larger impact on the shoreline than regular, sinusoidal waveforms. As an alternative technique to the commonly used Fast Fourier Transformation, we propose the Hilbert-Huang Transformation that is more computationally expensive but can capture the wave shape more accurately. This research demonstrates that understanding VLF waves on reef flats is important for evaluating coastal flooding hazards.
Identification and classification of very low frequency waves on a coral reef flat
NASA Astrophysics Data System (ADS)
Gawehn, Matthijs; van Dongeren, Ap; van Rooijen, Arnold; Storlazzi, Curt D.; Cheriton, Olivia M.; Reniers, Ad
2016-10-01
Very low frequency (VLF, 0.001-0.005 Hz) waves are important drivers of flooding of low-lying coral reef-islands. In particular, VLF wave resonance is known to drive large wave runup and subsequent overwash. Using a 5 month data set of water levels and waves collected along a cross-reef transect on Roi-Namur Island in the Republic of the Marshall Islands, the observed VLF motions were categorized into four different classes: (1) resonant, (2) (nonresonant) standing, (3) progressive-growing, and (4) progressive-dissipative waves. Each VLF class is set by the reef flat water depth and, in the case of resonance, the incident-band offshore wave period. Using an improved method to identify VLF wave resonance, we find that VLF wave resonance caused prolonged (˜0.5-6.0 h), large-amplitude water surface oscillations at the inner reef flat ranging in wave height from 0.14 to 0.83 m. It was induced by relatively long-period, grouped, incident-band waves, and occurred under both storm and nonstorm conditions. Moreover, observed resonant VLF waves had nonlinear, bore-like wave shapes, which likely have a larger impact on the shoreline than regular, sinusoidal waveforms. As an alternative technique to the commonly used Fast Fourier Transformation, we propose the Hilbert-Huang Transformation that is more computationally expensive but can capture the wave shape more accurately. This research demonstrates that understanding VLF waves on reef flats is important for evaluating coastal flooding hazards.
Bathymetric distribution of foraminifera in Jamaican reef environments
DOE Office of Scientific and Technical Information (OSTI.GOV)
Martin, R.E.; Liddell, W.D.
1985-02-01
Recent foraminifera inhabiting Jamaican north-coast fringing reefs display variations in distributional patterns that are related to bathymetry and reef morphology. Sediment samples containing foraminifera were collected along a profile that traversed the back reef (depth 1-2 m), fore-reef terrace (3-15 m), fore-reef escarpment (15-27 m), fore-reef slope (30-55 m), and upper deep fore reef (70 m). Approximately 150 species distributed among 80 genera were identified from the samples. Preliminary analyses indicate that diversity values (S, H') are lowest on the fore-reef terrace (79, 3.0, respectively), increase similarly in back-reef and fore-reef escarpment and slope settings (93, 3.4), and are highestmore » on the deep fore reef (109, 3.7). Larger groupings (suborders) exhibit distinct bathymetric trends with miliolids occurring more commonly in back-reef (comprising 51% of the fauna) than in fore-reef (28%) zones, whereas agglutinated and planktonic species occur more commonly in deeper reef (> 15 m, 9% and 4%, respectively) than in shallower reef zones (< 15 m, 3%, and 0.5%, respectively). Among the more common species Amphistegina gibbosa (Rotolina) is much more abundant in fore-reef (3%) environments, and Sorites marginalis (Miliolina) occurs almost exclusively in the back reef, where it comprises 5.5% of the fauna. Q-mode cluster analysis, involving all species collected, enabled the delineation of back-reef, shallow fore-reef, and deeper fore-reef biofacies, also indicating the potential utility of foraminiferal distributions in detailed paleoenvironment interpretations of ancient reef settings.« less
Piniak, G.A.; Storlazzi, C.D.
2008-01-01
Terrigenous sediment in the nearshore environment can pose both acute and chronic stresses to coral reefs. The reef flat off southern Molokai, Hawaii, typically experiences daily turbidity events, in which trade winds and tides combine to resuspend terrigenous sediment and transport it alongshore. These chronic turbidity events could play a role in restricting coral distribution on the reef flat by reducing the light available for photosynthesis. This study describes the effects of these turbidity events on the Hawaiian reef coral Montipora capitata using in situ diurnal measurements of turbidity, light levels, and chlorophyll fluorescence yield via pulse-amplitude-modulated (PAM) fluorometry. Average surface irradiance was similar in the morning and the afternoon, while increased afternoon turbidity resulted in lower subsurface irradiance, higher fluorescence yield (??F/Fm???), and lower relative electron transport rates (rETR). Model calculations based on observed light extinction coeffecients suggest that in the absence of turbidity events, afternoon subsurface irradiances would be 1.43 times higher than observed, resulting in rETR for M. capitata that are 1.40 times higher.
Rising sea levels will reduce extreme temperature variations in tide-dominated reef habitats
Lowe, Ryan Joseph; Pivan, Xavier; Falter, James; Symonds, Graham; Gruber, Renee
2016-01-01
Temperatures within shallow reefs often differ substantially from those in the surrounding ocean; therefore, predicting future patterns of thermal stresses and bleaching at the scale of reefs depends on accurately predicting reef heat budgets. We present a new framework for quantifying how tidal and solar heating cycles interact with reef morphology to control diurnal temperature extremes within shallow, tidally forced reefs. Using data from northwestern Australia, we construct a heat budget model to investigate how frequency differences between the dominant lunar semidiurnal tide and diurnal solar cycle drive ~15-day modulations in diurnal temperature extremes. The model is extended to show how reefs with tidal amplitudes comparable to their depth, relative to mean sea level, tend to experience the largest temperature extremes globally. As a consequence, we reveal how even a modest sea level rise can substantially reduce temperature extremes within tide-dominated reefs, thereby partially offsetting the local effects of future ocean warming. PMID:27540589
Coral reef metabolism and carbon chemistry dynamics of a coral reef flat
NASA Astrophysics Data System (ADS)
Albright, Rebecca; Benthuysen, Jessica; Cantin, Neal; Caldeira, Ken; Anthony, Ken
2015-05-01
Global carbon emissions continue to acidify the oceans, motivating growing concern for the ability of coral reefs to maintain net positive calcification rates. Efforts to develop robust relationships between coral reef calcification and carbonate parameters such as aragonite saturation state (Ωarag) aim to facilitate meaningful predictions of how reef calcification will change in the face of ocean acidification. Here we investigate natural trends in carbonate chemistry of a coral reef flat over diel cycles and relate these trends to benthic carbon fluxes by quantifying net community calcification and net community production. We find that, despite an apparent dependence of calcification on Ωarag seen in a simple pairwise relationship, if the dependence of net calcification on net photosynthesis is accounted for, knowing Ωarag does not add substantial explanatory value. This suggests that, over short time scales, the control of Ωarag on net calcification is weak relative to factors governing net photosynthesis.
NASA Astrophysics Data System (ADS)
Rogers, J.; Cordoba, G.; Nieves, M.; Barber, P. H.; Fong, P.; Sura, S.
2016-02-01
Coral reefs provide food, recreation and economic resources for billions of people. Despite this importance, anthropogenic stressors including climate change and nutrification threaten coral reefs globally, causing phase-shifts to algal dominated ecosystems and loss of coral habitats. Throughout the tropical South Pacific, the brown macroalgae Turbinaria ornata is expanding its range and now dominates areas where corals used to thrive, especially shallow areas on fringing reefs of French Polynesia. Abiotic factors like light and nutrient availability could enhance the expansion of T. ornata by promoting its growth or by making it physically tougher, which could reduce herbivory pressure and enhance its survival in high energy zones. To understand the abiotic factors favoring growth and survival of T. ornata in Mo'orea, French Polynesia, we conducted a field experiment testing the effect of nutrients (+/- fertilizer), depth (1m within Turbinaria zone, 1.5m at border, 2m below depth distribution), and light (+/- shade) on the growth and toughness of T. ornata. Three-factor ANOVA showed that an interaction between nutrients and light favored T. ornata biomass accumulation (p=0.04). In addition, T. ornata from shallow depths were significantly tougher than intermediate depths (p=0.01). These results imply that nutrient enrichment combined with high light levels common in shallow coral reefs may promote growth and expansion of T. ornata to near-shore reef environments. Increased survival and population growth is likely further enhanced by increased toughness of T. ornata in shallow areas, which may limit herbivore grazing and improve survival in strong wave action or currents. Future research should examine whether reducing nutrient loading to coastal waters may limit the expansion of T. ornata in the South Pacific.
NASA Astrophysics Data System (ADS)
Nieves, M.; Cordoba, G.; Rogers, J.
2016-02-01
Coral reefs provide food, recreation and economic resources for billions of people. Despite this importance, anthropogenic stressors including climate change and nutrification threaten coral reefs globally, causing phase-shifts to algal dominated ecosystems and loss of coral habitats. Throughout the tropical South Pacific, the brown macroalgae Turbinaria ornata is expanding its range and now dominates areas where corals used to thrive, especially shallow areas on fringing reefs of French Polynesia. Abiotic factors like light and nutrient availability could enhance the expansion of T. ornata by promoting its growth or by making it physically tougher, which could reduce herbivory pressure and enhance its survival in high energy zones. To understand the abiotic factors favoring growth and survival of T. ornata in Mo'orea, French Polynesia, we conducted a field experiment testing the effect of nutrients (+/- fertilizer), depth (1m within Turbinaria zone, 1.5m at border, 2m below depth distribution), and light (+/- shade) on the growth and toughness of T. ornata. Three-factor ANOVA showed that an interaction between nutrients and light favored T. ornata biomass accumulation (p=0.04). In addition, T. ornata from shallow depths were significantly tougher than those at intermediate depths (p=0.01). These results imply that nutrient enrichment combined with high light levels common in shallow coral reefs may promote growth and expansion of T. ornata to near-shore reef environments. Increased survival and population growth is likely further enhanced by increased toughness of T. ornata in shallow areas, which may limit herbivore grazing and improve survival in strong wave action or currents. Future research should examine whether reducing nutrient loading to coastal waters may limit the expansion of T. ornata in the South Pacific.
NASA Astrophysics Data System (ADS)
Goldstein, E. D.; D'Alessandro, E. K.; Sponaugle, S.
2017-09-01
Environmental clines such as latitude and depth that limit species' distributions may be associated with gradients in habitat suitability that can affect the fitness of an organism. With the global loss of shallow-water photosynthetic coral reefs, mesophotic coral ecosystems ( 30-150 m) may be buffered from some environmental stressors, thereby serving as refuges for a range of organisms including mobile obligate reef dwellers. Yet habitat suitability may be diminished at the depth boundary of photosynthetic coral reefs. We assessed the suitability of coral-reef habitats across the majority of the depth distribution of a common demersal reef fish ( Stegastes partitus) ranging from shallow shelf (SS, <10 m) and deep shelf (DS, 20-30 m) habitats in the Florida Keys to mesophotic depths (MP, 60-70 m) at Pulley Ridge on the west Florida Shelf. Diet, behavior, and potential energetic trade-offs differed across study sites, but did not always have a monotonic relationship with depth, suggesting that some drivers of habitat suitability are decoupled from depth and may be linked with geographic location or the local environment. Feeding and diet composition differed among depths with the highest consumption of annelids, lowest ingestion of appendicularians, and the lowest gut fullness in DS habitats where predator densities were highest and fish exhibited risk-averse behavior that may restrict foraging. Fish in MP environments had a broader diet niche, higher trophic position, and higher muscle C:N ratios compared to shallower environments. High C:N ratios suggest increased tissue lipid content in fish in MP habitats that coincided with higher investment in reproduction based on gonado-somatic index. These results suggest that peripheral MP reefs are suitable habitats for demersal reef fish and may be important refuges for organisms common on declining shallow coral reefs.
The role of coral reef rugosity in dissipating wave energy and coastal protection
NASA Astrophysics Data System (ADS)
Harris, Daniel; Rovere, Alessio; Parravicini, Valeriano; Casella, Elisa
2016-04-01
Coral reefs are the most effective natural barrier in dissipating wave energy through breaking and bed friction. The attenuation of wave energy by coral reef flats is essential in the protection and stability of coral reef aligned coasts and reef islands. However, the effectiveness of wave energy dissipation by coral reefs may be diminished under future climate change scenarios with a potential reduction of coral reef rugosity due to increased stress environmental stress on corals. The physical roughness or rugosity of coral reefs is directly related to ecological diversity, reef health, and hydrodynamic roughness. However, the relationship between physical roughness and hydrodynamic roughness is not well understood despite the crucial role of bed friction in dissipating wave energy in coral reef aligned coasts. We examine the relationship between wave energy dissipation across a fringing reef in relation to the cross-reef ecological zonation and the benthic hydrodynamic roughness. Waves were measured by pressure transducers in a cross-reef transect on the reefs flats and post processed on a wave by wave basis to determine wave statistics such as significant wave height and wave period. Results from direct wave measurement were then used to calibrate a 1D wave dissipation model that incorporates dissipation functions due to bed friction and wave breaking. This model was used to assess the bed roughness required to produce the observed wave height dissipation during propagation from deep water and across the coral reef flats. Changes in wave dissipation was also examined under future scenarios of sea level rise and reduced bed roughness. Three dimensional models of the benthic reef structure were produced through structure-from-motion photogrammetry surveys. Reef rugosity was then determined from these surveys and related to the roughness results from the calibrated model. The results indicate that applying varying roughness coefficients as the benthic ecological assemblage changes produces the most accurate assessment of wave energy dissipation across the reef flat. However, the modelled results of bed roughness (e.g. 0.01 for the fore-reef slope) were different to the directly measured rugosity values (0.05 for the fore-reef slope) from three dimension structure-from-motion surveys. In spite of this, the modelled and directly measured values of roughness are similar considering the difficulties outlined in previous research when relating the coral reef structural complexity to a single value of hydrodynamic roughness. Bed roughness was shown to be a secondary factor behind wave breaking in dissipating wave energy. However, without bed friction waves could be an order of magnitude higher in the back-reef environment. Bed friction is also increasingly important in wave dissipation at higher sea levels as wave energy dissipation due to wave breaking is reduced at greater depths. This shows that maintaining a structurally diverse and healthy reef is crucial under future sea level rise scenarios in order to maintain the protection of coastal environments. These results also indicate that significant geomorphic change in coastal environments will occur due to reduced wave dissipation at higher sea levels unless reefs are capable of keeping up with forecasted sea level rise.
Effects of sandfish (Holothuria scabra) removal on shallow-water sediments in Fiji.
Lee, Steven; Ford, Amanda K; Mangubhai, Sangeeta; Wild, Christian; Ferse, Sebastian C A
2018-01-01
Sea cucumbers play an important role in the recycling and remineralization of organic matter (OM) in reef sands through feeding, excretion, and bioturbation processes. Growing demand from Asian markets has driven the overexploitation of these animals globally. The implications of sea cucumber fisheries for shallow coastal ecosystems and their management remain poorly understood. To address this knowledge gap, the current study manipulated densities of Holothuria scabra within enclosures on a reef flat in Fiji, between August 2015 and February 2016, to study the effects of sea cucumber removal on sedimentary function as a biocatalytic filter system. Three treatments were investigated: (i) high density (350 g m -2 wet weight; ca . 15 individuals); (ii) natural density (60 g m -2 ; ca . 3 individuals); and (iii) exclusion (0 g m -2 ). Quantity of sediment reworked through ingestion by H. scabra , grain size distribution, O 2 penetration depth, and sedimentary oxygen consumption (SOC) were quantified within each treatment. Findings revealed that the natural population of H. scabra at the study site can rework ca . 10,590 kg dry sediment 1,000 m -2 year -1 ; more than twice the turnover rate recorded for H. atra and Stichopus chloronotus . There was a shift towards finer fraction grains in the high treatment. In the exclusion treatment, the O 2 penetration depth decreased by 63% following a 6 °C increase in water temperature over the course of two months, while in the high treatment no such change was observed. SOC rates increased ca . two-fold in the exclusion treatment within the first month, and were consistently higher than in the high treatment. These results suggest that the removal of sea cucumbers can reduce the capacity of sediments to buffer OM pulses, impeding the function and productivity of shallow coastal ecosystems.
Effects of sandfish (Holothuria scabra) removal on shallow-water sediments in Fiji
Ford, Amanda K.; Mangubhai, Sangeeta; Wild, Christian; Ferse, Sebastian C.A.
2018-01-01
Sea cucumbers play an important role in the recycling and remineralization of organic matter (OM) in reef sands through feeding, excretion, and bioturbation processes. Growing demand from Asian markets has driven the overexploitation of these animals globally. The implications of sea cucumber fisheries for shallow coastal ecosystems and their management remain poorly understood. To address this knowledge gap, the current study manipulated densities of Holothuria scabra within enclosures on a reef flat in Fiji, between August 2015 and February 2016, to study the effects of sea cucumber removal on sedimentary function as a biocatalytic filter system. Three treatments were investigated: (i) high density (350 g m−2 wet weight; ca. 15 individuals); (ii) natural density (60 g m−2; ca. 3 individuals); and (iii) exclusion (0 g m−2). Quantity of sediment reworked through ingestion by H. scabra, grain size distribution, O2 penetration depth, and sedimentary oxygen consumption (SOC) were quantified within each treatment. Findings revealed that the natural population of H. scabra at the study site can rework ca. 10,590 kg dry sediment 1,000 m−2 year−1; more than twice the turnover rate recorded for H. atra and Stichopus chloronotus. There was a shift towards finer fraction grains in the high treatment. In the exclusion treatment, the O2 penetration depth decreased by 63% following a 6 °C increase in water temperature over the course of two months, while in the high treatment no such change was observed. SOC rates increased ca. two-fold in the exclusion treatment within the first month, and were consistently higher than in the high treatment. These results suggest that the removal of sea cucumbers can reduce the capacity of sediments to buffer OM pulses, impeding the function and productivity of shallow coastal ecosystems. PMID:29796344
NASA Astrophysics Data System (ADS)
Doo, Steve S.; Hamylton, Sarah; Finfer, Joshua; Byrne, Maria
2017-03-01
Large benthic foraminifera (LBFs) are a vital component of coral reef carbonate production, often overlooked due to their small size. These super-abundant calcifiers are crucial to reef calcification by generation of lagoon and beach sands. Reef-scale carbonate production by LBFs is not well understood, and seasonal fluctuations in this important process are largely unquantified. The biomass of five LBF species in their algal flat habitat was quantified in the austral winter (July 2013), spring (October 2013), and summer (February 2014) at One Tree Reef. WorldView-2 satellite images were used to characterize and create LBF habitat maps based on ground-referenced photographs of algal cover. Habitat maps and LBF biomass measurements were combined to estimate carbonate storage across the entire reef flat. Total carbonate storage of LBFs on the reef flat ranged from 270 tonnes (winter) to 380 tonnes (summer). Satellite images indicate that the habitat area used by LBFs ranged from 0.6 (winter) to 0.71 km2 (spring) of a total possible area of 0.96 km2. LBF biomass was highest in the winter when algal habitat area was lowest, but total carbonate storage was the highest in the summer, when algal habitat area was intermediate. Our data suggest that biomass measurements alone do not capture total abundance of LBF populations (carbonate storage), as the area of available habitat is variable. These results suggest LBF carbonate production studies that measure biomass in discrete locations and single time points fail to capture accurate reef-scale production by not incorporating estimates of the associated algal habitat. Reef-scale measurements in this study can be incorporated into carbonate production models to determine the role of LBFs in sedimentary landforms (lagoons, beaches, etc.). Based on previous models of entire reef metabolism, our estimates indicate that LBFs contribute approximately 3.9-5.4% of reef carbonate budgets, a previously underappreciated carbon sink.
Kline, David I; Teneva, Lida; Hauri, Claudine; Schneider, Kenneth; Miard, Thomas; Chai, Aaron; Marker, Malcolm; Dunbar, Rob; Caldeira, Ken; Lazar, Boaz; Rivlin, Tanya; Mitchell, Brian Gregory; Dove, Sophie; Hoegh-Guldberg, Ove
2015-01-01
Understanding the temporal dynamics of present thermal and pH exposure on coral reefs is crucial for elucidating reef response to future global change. Diel ranges in temperature and carbonate chemistry parameters coupled with seasonal changes in the mean conditions define periods during the year when a reef habitat is exposed to anomalous thermal and/or pH exposure. Anomalous conditions are defined as values that exceed an empirically estimated threshold for each variable. We present a 200-day time series from June through December 2010 of carbonate chemistry and environmental parameters measured on the Heron Island reef flat. These data reveal that aragonite saturation state, pH, and pCO2 were primarily modulated by biologically-driven changes in dissolved organic carbon (DIC) and total alkalinity (TA), rather than salinity and temperature. The largest diel temperature ranges occurred in austral spring, in October (1.5 - 6.6°C) and lowest diel ranges (0.9 - 3.2°C) were observed in July, at the peak of winter. We observed large diel total pH variability, with a maximum range of 7.7 - 8.5 total pH units, with minimum diel average pH values occurring during spring and maximum during fall. As with many other reefs, the nighttime pH minima on the reef flat were far lower than pH values predicted for the open ocean by 2100. DIC and TA both increased from June (end of Fall) to December (end of Spring). Using this high-resolution dataset, we developed exposure metrics of pH and temperature individually for intensity, duration, and severity of low pH and high temperature events, as well as a combined metric. Periods of anomalous temperature and pH exposure were asynchronous on the Heron Island reef flat, which underlines the importance of understanding the dynamics of co-occurrence of multiple stressors on coastal ecosystems.
Kline, David I.; Teneva, Lida; Hauri, Claudine; Schneider, Kenneth; Miard, Thomas; Chai, Aaron; Marker, Malcolm; Dunbar, Rob; Caldeira, Ken; Lazar, Boaz; Rivlin, Tanya; Mitchell, Brian Gregory; Dove, Sophie; Hoegh-Guldberg, Ove
2015-01-01
Understanding the temporal dynamics of present thermal and pH exposure on coral reefs is crucial for elucidating reef response to future global change. Diel ranges in temperature and carbonate chemistry parameters coupled with seasonal changes in the mean conditions define periods during the year when a reef habitat is exposed to anomalous thermal and/or pH exposure. Anomalous conditions are defined as values that exceed an empirically estimated threshold for each variable. We present a 200-day time series from June through December 2010 of carbonate chemistry and environmental parameters measured on the Heron Island reef flat. These data reveal that aragonite saturation state, pH, and pCO2 were primarily modulated by biologically-driven changes in dissolved organic carbon (DIC) and total alkalinity (TA), rather than salinity and temperature. The largest diel temperature ranges occurred in austral spring, in October (1.5 – 6.6°C) and lowest diel ranges (0.9 – 3.2°C) were observed in July, at the peak of winter. We observed large diel total pH variability, with a maximum range of 7.7 – 8.5 total pH units, with minimum diel average pH values occurring during spring and maximum during fall. As with many other reefs, the nighttime pH minima on the reef flat were far lower than pH values predicted for the open ocean by 2100. DIC and TA both increased from June (end of Fall) to December (end of Spring). Using this high-resolution dataset, we developed exposure metrics of pH and temperature individually for intensity, duration, and severity of low pH and high temperature events, as well as a combined metric. Periods of anomalous temperature and pH exposure were asynchronous on the Heron Island reef flat, which underlines the importance of understanding the dynamics of co-occurrence of multiple stressors on coastal ecosystems. PMID:26039687
Steinert, Georg; Taylor, Michael W.; Deines, Peter; Simister, Rachel L.; de Voogd, Nicole J.; Hoggard, Michael
2016-01-01
Sponges (phylum Porifera) are important members of almost all aquatic ecosystems, and are renowned for hosting often dense and diverse microbial communities. While the specificity of the sponge microbiota seems to be closely related to host phylogeny, the environmental factors that could shape differences within local sponge-specific communities remain less understood. On tropical coral reefs, sponge habitats can span from shallow areas to deeper, mesophotic sites. These habitats differ in terms of environmental factors such as light, temperature, and food availability, as well as anthropogenic impact. In order to study the host specificity and potential influence of varying habitats on the sponge microbiota within a local area, four tropical reef sponges, Rhabdastrella globostellata, Callyspongia sp., Rhaphoxya sp., and Acanthella cavernosa, were collected from exposed shallow reef slopes and a deep reef drop-off. Based on 16S rRNA gene pyrosequencing profiles, beta diversity analyses revealed that each sponge species possessed a specific microbiota that was significantly different to those of the other species and exhibited attributes that are characteristic of high- and/or low-microbial-abundance sponges. These findings emphasize the influence of host identity on the associated microbiota. Dominant sponge- and seawater-associated bacterial phyla were Chloroflexi, Cyanobacteria, and Proteobacteria. Comparison of individual sponge taxa and seawater samples between shallow and deep reef sites revealed no significant variation in alpha diversity estimates, while differences in microbial beta diversity (variation in community composition) were significant for Callyspongia sp. sponges and seawater samples. Overall, the sponge-associated microbiota is significantly shaped by host identity across all samples, while the effect of habitat differentiation seems to be less predominant in tropical reef sponges. PMID:27114882
NASA Astrophysics Data System (ADS)
Hallock, Pamela
2005-04-01
Human activities are impacting coral reefs physically, biologically, and chemically. Nutrification, sedimentation, chemical pollution, and overfishing are significant local threats that are occurring worldwide. Ozone depletion and global warming are triggering mass coral-bleaching events; corals under temperature stress lose the ability to synthesize protective sunscreens and become more sensitive to sunlight. Photo-oxidative stress also reduces fitness, rendering reef-building organisms more susceptible to emerging diseases. Increasing concentration of atmospheric CO 2 has already reduced CaCO 3 saturation in surface waters by more than 10%. Doubling of atmospheric CO 2 concentration over pre-industrial concentration in the 21st century may reduce carbonate production in tropical shallow marine environments by as much as 80%. As shallow-water reefs decline worldwide, opportunities abound for researchers to expand understanding of carbonate depositional systems. Coordinated studies of carbonate geochemistry with photozoan physiology and calcification, particularly in cool subtropical-transition zones between photozoan-reef and heterotrophic carbonate-ramp communities, will contribute to understanding of carbonate sedimentation under environmental change, both in the future and in the geologic record. Cyanobacteria are becoming increasingly prominent on declining reefs, as these microbes can tolerate strong solar radiation, higher temperatures, and abundant nutrients. The responses of reef-dwelling cyanobacteria to environmental parameters associated with global change are prime topics for further research, with both ecological and geological implications.
NASA Astrophysics Data System (ADS)
Koweek, David A.; Dunbar, Robert B.; Monismith, Stephen G.; Mucciarone, David A.; Woodson, C. Brock; Samuel, Lianna
2015-09-01
Shallow back reefs commonly experience greater thermal and biogeochemical variability owing to a combination of coral community metabolism, environmental forcing, flow regime, and water depth. We present results from a high-resolution (sub-hourly to sub-daily) hydrodynamic and biogeochemical study, along with a coupled long-term (several months) hydrodynamic study, conducted on the back reefs of Ofu, American Samoa. During the high-resolution study, mean temperature was 29.0 °C with maximum temperatures near 32 °C. Dissolved oxygen concentrations spanned 32-178 % saturation, and pHT spanned the range from 7.80 to 8.39 with diel ranges reaching 0.58 units. Empirical cumulative distribution functions reveal that pHT was between 8.0 and 8.2 during only 30 % of the observational period, with approximately even distribution of the remaining 70 % of the time between pHT values less than 8.0 and greater than 8.2. Thermal and biogeochemical variability in the back reefs is partially controlled by tidal modulation of wave-driven flow, which isolates the back reefs at low tide and brings offshore water into the back reefs at high tide. The ratio of net community calcification to net community production was 0.15 ± 0.01, indicating that metabolism on the back reef was dominated by primary production and respiration. Similar to other back reef systems, the back reefs of Ofu are carbon sinks during the daytime. Shallow back reefs like those in Ofu may provide insights for how coral communities respond to extreme temperatures and acidification and are deserving of continued attention.
Brown, Laura A.; Furlong, Jessica N.; Brown, Kenneth M.; LaPeyre, Megan K.
2013-01-01
In the northern Gulf of Mexico (GOM), reefs built by eastern oysters, Crassostrea virginica, provide critical habitat within shallow estuaries, and recent efforts have focused on restoring reefs to benefit nekton and benthic macroinvertebrates. We compared nekton and benthic macroinvertebrate assemblages at historic, newly created (<5years) and old (>6years) shell and rock substrate reefs. Using crab traps, gill-nets, otter trawls, cast nets, and benthic macroinvertebrate collectors, 20 shallow reefs (<5m) in the northern GOM were sampled throughout the summer of 2011. We compared nekton and benthic assemblage abundance, diversity and composition across reef types. Except for benthic macroinvertebrate abundance, which was significantly higher on old rock reefs as compared to historic reefs, all reefs were similar to historic reefs, suggesting created reefs provide similar support of nekton and benthic assemblages as historic reefs. To determine refuge value of oyster structure for benthic macroinvertebrates compared to bare bottom, we tested preferences of juvenile crabs across depth and refuge complexity in the presence and absence of adult blue crabs (Callinectes sapidus). Juveniles were more likely to use deep water with predators present only when provided oyster structure. Provision of structural material to support and sustain development of benthic and mobile reef communities may be the most important factor in determining reef value to these assemblages, with biophysical characteristics related to reef location influencing assemblage patterns in areas with structure; if so, appropriately locating created reefs is critical.
Paxton, Avery B; Pickering, Emily A; Adler, Alyssa M; Taylor, J Christopher; Peterson, Charles H
2017-01-01
Structural complexity, a form of habitat heterogeneity, influences the structure and function of ecological communities, generally supporting increased species density, richness, and diversity. Recent research, however, suggests the most complex habitats may not harbor the highest density of individuals and number of species, especially in areas with elevated human influence. Understanding nuances in relationships between habitat heterogeneity and ecological communities is warranted to guide habitat-focused conservation and management efforts. We conducted fish and structural habitat surveys of thirty warm-temperate reefs on the southeastern US continental shelf to quantify how structural complexity influences fish communities. We found that intermediate complexity maximizes fish abundance on natural and artificial reefs, as well as species richness on natural reefs, challenging the current paradigm that abundance and other fish community metrics increase with increasing complexity. Naturally occurring rocky reefs of flat and complex morphologies supported equivalent abundance, biomass, species richness, and community composition of fishes. For flat and complex morphologies of rocky reefs to receive equal consideration as essential fish habitat (EFH), special attention should be given to detecting pavement type rocky reefs because their ephemeral nature makes them difficult to detect with typical seafloor mapping methods. Artificial reefs of intermediate complexity also maximized fish abundance, but human-made structures composed of low-lying concrete and metal ships differed in community types, with less complex, concrete structures supporting lower numbers of fishes classified largely as demersal species and metal ships protruding into the water column harboring higher numbers of fishes, including more pelagic species. Results of this study are essential to the process of evaluating habitat function provided by different types and shapes of reefs on the seafloor so that all EFH across a wide range of habitat complexity may be accurately identified and properly managed.
Great Barrier Reef, Queensland, Australia
NASA Technical Reports Server (NTRS)
1991-01-01
The Great Barrier Reef of Queensland, Australia extends for roughly 2,000 km along the northeast coast of Australia and is made up of thousands of individual reefs which define the edge of the Continental shelf. Swan Reef, the southern part of the reef system, is seen in this view. Water depths around the reefs are quite shallow (less than 1 to 36 meters) but only a few kilometers offshore, water depths can reach 1,000 meters.
Lightweight Exoatmospheric Projectile (LEAP) Test Program. Environment Assessment
1991-07-01
and Man-Made Environment Kwajalein Atoll is a coral reef containing approximately 100 islands surrounding the largest lagoon in the Nlorld. The Atoll is...entirely from the remains of marine organisms such as reef corals , coralline algae, foramnifera, and others. Soils are coarse, grain size, alkaline...Kwajalein Atoll include ocean reefs , lagoon reefs , lagoon floor and sand flats, harbors, piers, quarries, and sea grass beds. Several reef species are
NASA Astrophysics Data System (ADS)
Perry, C. T.; Morgan, K. M.
2017-01-01
Sea-surface temperature (SST) warming events, which are projected to increase in frequency and intensity with climate change, represent major threats to coral reefs. How these events impact reef carbonate budgets, and thus the capacity of reefs to sustain vertical growth under rising sea levels, remains poorly quantified. Here we quantify the magnitude of changes that followed the ENSO-induced SST warming that affected the Indian Ocean region in mid-2016. Resultant coral bleaching caused an average 75% reduction in coral cover (present mean 6.2%). Most critically we report major declines in shallow fore-reef carbonate budgets, these shifting from strongly net positive (mean 5.92 G, where G = kg CaCO3 m-2 yr-1) to strongly net negative (mean -2.96 G). These changes have driven major reductions in reef growth potential, which have declined from an average 4.2 to -0.4 mm yr-1. Thus these shallow fore-reef habitats are now in a phase of net erosion. Based on past bleaching recovery trajectories, and predicted increases in bleaching frequency, we predict a prolonged period of suppressed budget and reef growth states. This will limit reef capacity to track IPCC projections of sea-level rise, thus limiting the natural breakwater capacity of these reefs and threatening reef island stability.
Perry, C T; Morgan, K M
2017-01-13
Sea-surface temperature (SST) warming events, which are projected to increase in frequency and intensity with climate change, represent major threats to coral reefs. How these events impact reef carbonate budgets, and thus the capacity of reefs to sustain vertical growth under rising sea levels, remains poorly quantified. Here we quantify the magnitude of changes that followed the ENSO-induced SST warming that affected the Indian Ocean region in mid-2016. Resultant coral bleaching caused an average 75% reduction in coral cover (present mean 6.2%). Most critically we report major declines in shallow fore-reef carbonate budgets, these shifting from strongly net positive (mean 5.92 G, where G = kg CaCO 3 m -2 yr -1 ) to strongly net negative (mean -2.96 G). These changes have driven major reductions in reef growth potential, which have declined from an average 4.2 to -0.4 mm yr -1 . Thus these shallow fore-reef habitats are now in a phase of net erosion. Based on past bleaching recovery trajectories, and predicted increases in bleaching frequency, we predict a prolonged period of suppressed budget and reef growth states. This will limit reef capacity to track IPCC projections of sea-level rise, thus limiting the natural breakwater capacity of these reefs and threatening reef island stability.
Perry, C. T.; Morgan, K. M.
2017-01-01
Sea-surface temperature (SST) warming events, which are projected to increase in frequency and intensity with climate change, represent major threats to coral reefs. How these events impact reef carbonate budgets, and thus the capacity of reefs to sustain vertical growth under rising sea levels, remains poorly quantified. Here we quantify the magnitude of changes that followed the ENSO-induced SST warming that affected the Indian Ocean region in mid-2016. Resultant coral bleaching caused an average 75% reduction in coral cover (present mean 6.2%). Most critically we report major declines in shallow fore-reef carbonate budgets, these shifting from strongly net positive (mean 5.92 G, where G = kg CaCO3 m−2 yr−1) to strongly net negative (mean −2.96 G). These changes have driven major reductions in reef growth potential, which have declined from an average 4.2 to −0.4 mm yr−1. Thus these shallow fore-reef habitats are now in a phase of net erosion. Based on past bleaching recovery trajectories, and predicted increases in bleaching frequency, we predict a prolonged period of suppressed budget and reef growth states. This will limit reef capacity to track IPCC projections of sea-level rise, thus limiting the natural breakwater capacity of these reefs and threatening reef island stability. PMID:28084450
Habitat Specialization in Tropical Continental Shelf Demersal Fish Assemblages
Fitzpatrick, Ben M.; Harvey, Euan S.; Heyward, Andrew J.; Twiggs, Emily J.; Colquhoun, Jamie
2012-01-01
The implications of shallow water impacts such as fishing and climate change on fish assemblages are generally considered in isolation from the distribution and abundance of these fish assemblages in adjacent deeper waters. We investigate the abundance and length of demersal fish assemblages across a section of tropical continental shelf at Ningaloo Reef, Western Australia, to identify fish and fish habitat relationships across steep gradients in depth and in different benthic habitat types. The assemblage composition of demersal fish were assessed from baited remote underwater stereo-video samples (n = 304) collected from 16 depth and habitat combinations. Samples were collected across a depth range poorly represented in the literature from the fringing reef lagoon (1–10 m depth), down the fore reef slope to the reef base (10–30 m depth) then across the adjacent continental shelf (30–110 m depth). Multivariate analyses showed that there were distinctive fish assemblages and different sized fish were associated with each habitat/depth category. Species richness, MaxN and diversity declined with depth, while average length and trophic level increased. The assemblage structure, diversity, size and trophic structure of demersal fishes changes from shallow inshore habitats to deeper water habitats. More habitat specialists (unique species per habitat/depth category) were associated with the reef slope and reef base than other habitats, but offshore sponge-dominated habitats and inshore coral-dominated reef also supported unique species. This suggests that marine protected areas in shallow coral-dominated reef habitats may not adequately protect those species whose depth distribution extends beyond shallow habitats, or other significant elements of demersal fish biodiversity. The ontogenetic habitat partitioning which is characteristic of many species, suggests that to maintain entire species life histories it is necessary to protect corridors of connected habitats through which fish can migrate. PMID:22761852
Caribbean mesophotic coral ecosystems are unlikely climate change refugia.
Smith, Tyler B; Gyory, Joanna; Brandt, Marilyn E; Miller, William J; Jossart, Jonathan; Nemeth, Richard S
2016-08-01
Deeper coral reefs experience reduced temperatures and light and are often shielded from localized anthropogenic stressors such as pollution and fishing. The deep reef refugia hypothesis posits that light-dependent stony coral species at deeper depths are buffered from thermal stress and will avoid bleaching-related mass mortalities caused by increasing sea surface temperatures under climate change. This hypothesis has not been tested because data collection on deeper coral reefs is difficult. Here we show that deeper (mesophotic) reefs, 30-75 m depth, in the Caribbean are not refugia because they have lower bleaching threshold temperatures than shallow reefs. Over two thermal stress events, mesophotic reef bleaching was driven by a bleaching threshold that declines 0.26 °C every +10 m depth. Thus, the main premise of the deep reef refugia hypothesis that cooler environments are protective is incorrect; any increase in temperatures above the local mean warmest conditions can lead to thermal stress and bleaching. Thus, relatively cooler temperatures can no longer be considered a de facto refugium for corals and it is likely that many deeper coral reefs are as vulnerable to climate change as shallow water reefs. © 2015 John Wiley & Sons Ltd.
Water level effects on breaking wave setup for Pacific Island fringing reefs
NASA Astrophysics Data System (ADS)
Becker, J. M.; Merrifield, M. A.; Ford, M.
2014-02-01
The effects of water level variations on breaking wave setup over fringing reefs are assessed using field measurements obtained at three study sites in the Republic of the Marshall Islands and the Mariana Islands in the western tropical Pacific Ocean. At each site, reef flat setup varies over the tidal range with weaker setup at high tide and stronger setup at low tide for a given incident wave height. The observed water level dependence is interpreted in the context of radiation stress gradients specified by an idealized point break model generalized for nonnormally incident waves. The tidally varying setup is due in part to depth-limited wave heights on the reef flat, as anticipated from previous reef studies, but also to tidally dependent breaking on the reef face. The tidal dependence of the breaking is interpreted in the context of the point break model in terms of a tidally varying wave height to water depth ratio at breaking. Implications for predictions of wave-driven setup at reef-fringed island shorelines are discussed.
Observations of infragravity motions for reef fringed islands and atolls
NASA Astrophysics Data System (ADS)
Becker, J. M.; Merrifield, M. A.; Ford, M.
2012-12-01
The frequency of flooding events that affect low lying islands and atolls in the Pacific is expected to increase under current sea level rise projections. Infragravity (IG) motions, with periods ranging from approximately 25 to 400 seconds, are an important component of wave driven flooding events for reef fringed islands and atolls. The IG variability during wave events is analyzed and interpreted dynamically from pressure and current observations at four cross-reef transects in the North Pacific Ocean that include sites in the Republic of the Marshall Islands and Guam. The IG motions are shown to depend upon the spectral properties of the incident wave forcing and reef flat characteristics that include reef flat length (ranging from 100m to 450m at the four sites) and total water level due to setup and tides. A small inundation event at one of the sites is shown to occur due to large shoreline infragravity energy.
Along-Track Reef Imaging System (ATRIS)
Brock, John; Zawada, Dave
2006-01-01
"Along-Track Reef Imaging System (ATRIS)" describes the U.S. Geological Survey's Along-Track Reef Imaging System, a boat-based sensor package for rapidly mapping shallow water benthic environments. ATRIS acquires high resolution, color digital images that are accurately geo-located in real-time.
Tornabene, Luke; Van Tassell, James L; Robertson, D Ross; Baldwin, Carole C
2016-08-01
Mesophotic and deeper reefs of the tropics are poorly known and underexplored ecosystems worldwide. Collectively referred to as the 'twilight zone', depths below ~30-50 m are home to many species of reef fishes that are absent from shallower depths, including many undescribed and endemic species. We currently lack even a basic understanding of the diversity and evolutionary origins of fishes on tropical mesophotic reefs. Recent submersible collections in the Caribbean have provided new specimens that are enabling phylogenetic reconstructions that incorporate deep-reef representatives of tropical fish genera. Here, we investigate evolutionary depth transitions in the family Gobiidae (gobies), the most diverse group of tropical marine fishes. Using divergence-time estimation coupled with stochastic character mapping to infer the timing of shallow-to-deep habitat transitions in gobies, we demonstrate at least four transitions from shallow to mesophotic depths. Habitat transitions occurred in two broad time periods (Miocene, Pliocene-Pleistocene), and may have been linked to the availability of underutilized niches, as well as the evolution of morphological/behavioural adaptations for life on deep reefs. Further, our analysis shows that at least three evolutionary lineages that invaded deep habitats subsequently underwent speciation, reflecting another unique mode of radiation within the Gobiidae. Lastly, we synthesize depth distributions for 95 species of Caribbean gobies, which reveal major bathymetric faunal breaks at the boundary between euphotic and mesophotic reefs. Ultimately, our study is the first rigorous investigation into the origin of Caribbean deep-reef fishes and provides a framework for future studies that utilize rare, deep-reef specimens. © 2016 John Wiley & Sons Ltd.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cuffey, R.J.; Pachut, J.F.
The Holocene reef-building coral Favia pallida was sampled at 4.5 m depth increments (to 40 m) from two reefs on Enewetak Atoll to examine intraspecific environmental effects. An exposed outer reef was massive and wall-like, whereas a sheltered lagoonal reef grew as a slender pinnacle. Corallite diameter and growth rate, two attributes retrievable in fossil corals, were measured with data partitioned into shallow (<20 m), intermediate (20 to 29 m), and deep-water (>29 m) subsets. Highly significant differences between depth zone populations were found for both corallite diameters and growth rates in analyses of individual and combined reef data sets.more » Canonical variates analyses (CVA) separated populations from depth zones along single, highly significant, functions. Centroids and 95% confidence intervals, calculated from CVA scores of colonies in each population, are widely separated for the lagoon reef and combined data sets. Conversely, populations from shallow and intermediate depths on the outer reef display overlapping confidence bars indicative of more gradational morphologic changes. When CV's were used to classify specimens to groups, misassignments of intermediate depth specimens to shallow or deep-water populations underscored the gradational nature of the environment. Completely intergrading populations of Favia pallida collected from different depths can be morphologically separated into statistically distinct groupings. A stratigraphic succession of such morphotypes might be interpreted as abruptly appearing separate species if sampling were not as uniform, systematic, and detailed as was possible on modern reefs. Analyses of evolutionary patterns must carefully assess potential effects of clinal variation if past evolutionary patterns are to be interpreted correctly.« less
Ferguson, Adrian M.; Harvey, Euan S.; Taylor, Matthew D.; Knott, Nathan A.
2013-01-01
Understanding movement patterns, habitat use and behaviour of fish is critical to determining how targeted species may respond to protection provided by “no-take” sanctuary zones within marine parks. We assessed the fine and broad scale movement patterns of an exploited herbivore, luderick (Girella tricuspidata), using acoustic telemetry to evaluate how this species may respond to protection within Jervis Bay (New South Wales, Australia). We surgically implanted fourteen fish with acoustic transmitters and actively and passively tracked individuals to determine fine and broad scale movement patterns respectively. Eight fish were actively tracked for 24 h d¯1 for 6 d (May 2011), and then intermittently over the following 30 d. Six fish were passively tracked from December 2011 to March 2012, using a fixed array of receivers deployed across rocky reefs around the perimeter of the bay. Luderick exhibited strong site fidelity on shallow subtidal reefs, tending to remain on or return consistently to the reef where they were caught and released. All eight fish actively tracked used core areas solely on their release reef, with the exception of one fish that used multiple core areas, and four of the six fish passively tracked spent between 75 to 96% of days on release reefs over the entire tracking period. Luderick did move frequently to adjacent reefs, and occasionally to more distant reefs, however consistently returned to their release reef. Luderick also exhibited predictable patterns in movement between spatially distinct daytime and night-time core use areas. Night-time core use areas were generally located in sheltered areas behind the edge of reefs. Overall, our data indicate luderick exhibit strong site fidelity on shallow subtidal reefs in Jervis Bay and suggests that this important herbivore may be likely to show a positive response to protection within the marine park. PMID:23741515
Ferguson, Adrian M; Harvey, Euan S; Taylor, Matthew D; Knott, Nathan A
2013-01-01
Understanding movement patterns, habitat use and behaviour of fish is critical to determining how targeted species may respond to protection provided by "no-take" sanctuary zones within marine parks. We assessed the fine and broad scale movement patterns of an exploited herbivore, luderick (Girella tricuspidata), using acoustic telemetry to evaluate how this species may respond to protection within Jervis Bay (New South Wales, Australia). We surgically implanted fourteen fish with acoustic transmitters and actively and passively tracked individuals to determine fine and broad scale movement patterns respectively. Eight fish were actively tracked for 24 h d¯(1) for 6 d (May 2011), and then intermittently over the following 30 d. Six fish were passively tracked from December 2011 to March 2012, using a fixed array of receivers deployed across rocky reefs around the perimeter of the bay. Luderick exhibited strong site fidelity on shallow subtidal reefs, tending to remain on or return consistently to the reef where they were caught and released. All eight fish actively tracked used core areas solely on their release reef, with the exception of one fish that used multiple core areas, and four of the six fish passively tracked spent between 75 to 96% of days on release reefs over the entire tracking period. Luderick did move frequently to adjacent reefs, and occasionally to more distant reefs, however consistently returned to their release reef. Luderick also exhibited predictable patterns in movement between spatially distinct daytime and night-time core use areas. Night-time core use areas were generally located in sheltered areas behind the edge of reefs. Overall, our data indicate luderick exhibit strong site fidelity on shallow subtidal reefs in Jervis Bay and suggests that this important herbivore may be likely to show a positive response to protection within the marine park.
Storlazzi, C.D.; Jaffe, B.E.
2008-01-01
High-frequency measurements of waves, currents and water column properties were made on a fringing coral reef off northwest Maui, Hawaii, for 15 months between 2001 and 2003 to aid in understanding the processes governing flow and turbidity over a range of time scales and their contributions to annual budgets. The summer months were characterized by consistent trade winds and small waves, and under these conditions high-frequency internal bores were commonly observed, there was little net flow or turbidity over the fore reef, and over the reef flat net flow was downwind and turbidity was high. When the trade winds waned or the wind direction deviated from the dominant trade wind orientation, strong alongshore flows occurred into the typically dominant wind direction and lower turbidity was observed across the reef. During the winter, when large storm waves impacted the study area, strong offshore flows and high turbidity occurred on the reef flat and over the fore reef. Over the course of a year, trade wind conditions resulted in the greatest net transport of turbid water due to relatively strong currents, moderate overall turbidity, and their frequent occurrence. Throughout the period of study, near-surface current directions over the fore reef varied on average by more than 41?? from those near the seafloor, and the orientation of the currents over the reef flat differed on average by more than 65?? from those observed over the fore reef. This shear occurred over relatively short vertical (order of meters) and horizontal (order of hundreds of meters) scales, causing material distributed throughout the water column, including the particles in suspension causing the turbidity (e.g. sediment or larvae) and/or dissolved nutrients and contaminants, to be transported in different directions under constant oceanographic and meteorologic forcing.
Serrano, X; Baums, I B; O'Reilly, K; Smith, T B; Jones, R J; Shearer, T L; Nunes, F L D; Baker, A C
2014-09-01
The deep reef refugia hypothesis proposes that deep reefs can act as local recruitment sources for shallow reefs following disturbance. To test this hypothesis, nine polymorphic DNA microsatellite loci were developed and used to assess vertical connectivity in 583 coral colonies of the Caribbean depth-generalist coral Montastraea cavernosa. Samples were collected from three depth zones (≤10, 15-20 and ≥25 m) at sites in Florida (within the Upper Keys, Lower Keys and Dry Tortugas), Bermuda, and the U.S. Virgin Islands. Migration rates were estimated to determine the probability of coral larval migration from shallow to deep and from deep to shallow. Finally, algal symbiont (Symbiodinium spp.) diversity and distribution were assessed in a subset of corals to test whether symbiont depth zonation might indicate limited vertical connectivity. Overall, analyses revealed significant genetic differentiation by depth in Florida, but not in Bermuda or the U.S. Virgin Islands, despite high levels of horizontal connectivity between these geographic locations at shallow depths. Within Florida, greater vertical connectivity was observed in the Dry Tortugas compared to the Lower or Upper Keys. However, at all sites, and regardless of the extent of vertical connectivity, migration occurred asymmetrically, with greater likelihood of migration from shallow to intermediate/deep habitats. Finally, most colonies hosted a single Symbiodinium type (C3), ruling out symbiont depth zonation of the dominant symbiont type as a structuring factor. Together, these findings suggest that the potential for shallow reefs to recover from deep-water refugia in M. cavernosa is location-specific, varying among and within geographic locations likely as a consequence of local hydrology. © 2014 John Wiley & Sons Ltd.
Reef corals of Johnston Atoll: one of the world's most isolated reefs
NASA Astrophysics Data System (ADS)
Maragos, James E.; Jokiel, Paul L.
1986-01-01
Johnston Atoll lies 800 km southwest of the nearest reefs of Hawaii and over 1,500 km from other shallow reefs to the south and west. Only 33 species and 16 genera and subgenera of shallow water stony corals have been reported from the atoll. Endemic species are absent despite Johnston's great age and favorable environment. With few exceptions, only species with broad geographic distribution are represented. Factors contributing to the low number of species are remoteness, the atoll's small size, lack of favorable currents to transport larvae from the southwest Pacific, lack of reef “stepping stones” in the region since the Cretaceous, possible defaunation during eustatic sea-level rise and fall, and possible drowning from tectonic subsidence or tilting. The species list shows strongest affinity with that of Hawaii, but some unexpected discontinuities occur. Despite low species diversity, coral coverage is extremely high in most environments.
Plate tectonics drive tropical reef biodiversity dynamics
Leprieur, Fabien; Descombes, Patrice; Gaboriau, Théo; Cowman, Peter F.; Parravicini, Valeriano; Kulbicki, Michel; Melián, Carlos J.; de Santana, Charles N.; Heine, Christian; Mouillot, David; Bellwood, David R.; Pellissier, Loïc
2016-01-01
The Cretaceous breakup of Gondwana strongly modified the global distribution of shallow tropical seas reshaping the geographic configuration of marine basins. However, the links between tropical reef availability, plate tectonic processes and marine biodiversity distribution patterns are still unknown. Here, we show that a spatial diversification model constrained by absolute plate motions for the past 140 million years predicts the emergence and movement of diversity hotspots on tropical reefs. The spatial dynamics of tropical reefs explains marine fauna diversification in the Tethyan Ocean during the Cretaceous and early Cenozoic, and identifies an eastward movement of ancestral marine lineages towards the Indo-Australian Archipelago in the Miocene. A mechanistic model based only on habitat-driven diversification and dispersal yields realistic predictions of current biodiversity patterns for both corals and fishes. As in terrestrial systems, we demonstrate that plate tectonics played a major role in driving tropical marine shallow reef biodiversity dynamics. PMID:27151103
Plate tectonics drive tropical reef biodiversity dynamics.
Leprieur, Fabien; Descombes, Patrice; Gaboriau, Théo; Cowman, Peter F; Parravicini, Valeriano; Kulbicki, Michel; Melián, Carlos J; de Santana, Charles N; Heine, Christian; Mouillot, David; Bellwood, David R; Pellissier, Loïc
2016-05-06
The Cretaceous breakup of Gondwana strongly modified the global distribution of shallow tropical seas reshaping the geographic configuration of marine basins. However, the links between tropical reef availability, plate tectonic processes and marine biodiversity distribution patterns are still unknown. Here, we show that a spatial diversification model constrained by absolute plate motions for the past 140 million years predicts the emergence and movement of diversity hotspots on tropical reefs. The spatial dynamics of tropical reefs explains marine fauna diversification in the Tethyan Ocean during the Cretaceous and early Cenozoic, and identifies an eastward movement of ancestral marine lineages towards the Indo-Australian Archipelago in the Miocene. A mechanistic model based only on habitat-driven diversification and dispersal yields realistic predictions of current biodiversity patterns for both corals and fishes. As in terrestrial systems, we demonstrate that plate tectonics played a major role in driving tropical marine shallow reef biodiversity dynamics.
Earth Observations taken by Expedition 26 crewmember
2010-11-27
ISS026-E-005121 (27 Nov. 2010) --- Tidal flats and channels on Long Island, Bahamas are featured in this image photographed by an Expedition 26 crew member on the International Space Station. The islands of the Bahamas in the Caribbean Sea are situated on large depositional platforms (the Great and Little Bahama Banks) composed mainly of carbonate sediments ringed by fringing reefs – the islands themselves are only the parts of the platform currently exposed above sea level. The sediments are formed mostly from the skeletal remains of organisms settling to the sea floor; over geologic time, these sediments will consolidate to form carbonate sedimentary rocks such as limestone. This detailed photograph provides a view of tidal flats and tidal channels near Sandy Cay on the western side of Long Island, located along the eastern margin of the Great Bahama Bank. The continually exposed parts of the island have a brown coloration in the image, a result of soil formation and vegetation growth (left). To the north of Sandy Cay an off-white tidal flat composed of carbonate sediments is visible; light blue-green regions indicate shallow water on the tidal flat. Tidal flow of seawater is concentrated through gaps in the anchored land surface, leading to formation of relatively deep tidal channels that cut into the sediments of the tidal flat. The channels, and areas to the south of the island, have a vivid blue coloration that provides a clear indication of deeper water (center).
Great Barrier Reef, Queensland, Australia
1991-09-18
STS048-151-250 (12-18 Sept. 1991) --- The Great Barrier Reef extends for roughly 2,000 kilometers along the northeast coast of Australia. The great Barrier Reef is made up of thousands of individual reefs which define the edge of the continental shelf. The southern part of the feature, called Swain Reef, is seen here. Water depths around the reefs are quite shallow (less than 1 meter to about 36 meters in depth), but only a few kilometers offshore, water depths are roughly 1,000 meters.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mazzullo, S.J.; Anderson-Underwood, K.E.; Burke, C.D.
Coral patch reefs are major components of Holocene platform carbonate facies systems in tropical and subtropical areas. The biotic composition, growth and relationship to sea level history, and diagenetic attributes of a representative Holocene patch reef ([open quotes]Elmer Reef[close quotes]) in the Mexico Rocks complex in northern Belize are described and compared to those of Holocene patch reefs in southern Belize. Elmer Reef has accumulated in shallow (2.5 m) water over the last 420 yr, under static sea level conditions. Rate of vertical construction is 0.3-0.5 m/100 yr, comparable to that of patch reefs in southern Belize. A pronounced coralmore » zonation exists across Elmer Reef, with Monastrea annularis dominating on its crest and Acropora cervicornis occurring on its windward and leeward flanks. The dominance of Montastrea on Elmer Reef is unlike that of patch reefs in southern Belize, in which this coral assumes only a subordinate role in reef growth relative to that of Acropora palmata. Elmer Reef locally is extensively biodegraded and marine, fibrous aragonite and some bladed high-magnesium calcite cements occur throughout the reef section, partially occluding corallites and interparticle pores in associated sands. Patch reefs in southern Belize have developed as catch-up and keep-up reefs in a transgressive setting. In contrast, the dominant mode of growth of Elmer Reef, and perhaps other patch reefs in Mexico Rocks, appears to be one of lateral rather than vertical accretion. This style of growth occurs in a static sea level setting where there is only limited accommodation space because of the shallowness of the water, and such reefs are referred to as [open quotes]expansion reefs[close quotes]. 39 refs., 8 figs., 2 tabs.« less
NASA Astrophysics Data System (ADS)
Martindale, R. C.; Kosir, A.; Schaller, M. F.
2015-12-01
With rising concerns regarding the persistence of coral reefs through the 21st century, there is a crucial need to understand how these ecosystems will respond to future environmental deterioration (e.g. ocean warming, acidification, and decreased oxygenation). Several ancient events have been identified as good analogues for modern ecological changes, however, most of these correspond to mass extinction events. By studying carbon cycle perturbations that caused more minor ecosystem collapse, such as the Toarcian Ocean Anoxic Event (T-OAE), the key physiological, ecological, and environmental features that correlate with species and community survival can be assessed. The Dinaric Carbonate Platform, which extends from northeastern Italy to northwestern Albania, is one of the few platforms in Europe that captures an almost continuous shallow-water record of Pliensbachian and Toarcian strata. Specifically, this comparatively poorly studied platform captures the T-OAE in shallow-water carbonates. One such outcrop on the Trnovski Gozd karst plateau in western Slovenia contains both Pleinsbachian lithiotid (bivalve) biostromes and coral bioherms (i.e. coral reefs). The occurrence of both lithiotid and coral buildups in one section is extremely rare and provides the opportunity to study the response of both communities, as well as the carbonate system as a whole, to the T-OAE. This research focuses on the lithology and chemostratigraphy from this locality, particularly identifying the T-OAE horizon more precisely. Additionally, (micro)facies analyses and paleontological analyses of the reefs themselves will be presented. These data will establish the paleoenvironmental conditions that favored reef growth in the Pliensbachian, as well as what conditions changed at the stage boundary and T-OAE to cause the collapse of the shallow-water carbonates and reef systems.
Laverick, Jack H; Andradi-Brown, Dominic A; Rogers, Alex D
2017-01-01
Shallow water zooxanthellate coral reefs grade into ecologically distinct mesophotic coral ecosystems (MCEs) deeper in the euphotic zone. MCEs are widely considered to start at an absolute depth limit of 30m deep, possibly failing to recognise that these are distinct ecological communities that may shift shallower or deeper depending on local environmental conditions. This study aimed to explore whether MCEs represent distinct biological communities, the upper boundary of which can be defined and whether the depth at which they occur may vary above or below 30m. Mixed-gas diving and closed-circuit rebreathers were used to quantitatively survey benthic communities across shallow to mesophotic reef gradients around the island of Utila, Honduras. Depths of up to 85m were sampled, covering the vertical range of the zooxanthellate corals around Utila. We investigate vertical reef zonation using a variety of ecological metrics to identify community shifts with depth, and the appropriateness of different metrics to define the upper MCE boundary. Patterns observed in scleractinian community composition varied between ordination analyses and approaches utilising biodiversity indices. Indices and richness approaches revealed vertical community transition was a gradation. Ordination approaches suggest the possibility of recognising two scleractinian assemblages. We could detect a mesophotic and shallow community while illustrating that belief in a static depth limit is biologically unjustified. The switch between these two communities occurred across bathymetric gradients as small as 10m and as large as 50m in depth. The difference between communities appears to be a loss of shallow specialists and increase in depth-generalist taxa. Therefore, it may be possible to define MCEs by a loss of shallow specialist species. To support a biological definition of mesophotic reefs, we advocate this analytical framework should be applied around the Caribbean and extended into other ocean basins where MCEs are present.
NASA Astrophysics Data System (ADS)
Groves, Sarah H.; Holstein, Daniel M.; Enochs, Ian C.; Kolodzeij, Graham; Manzello, Derek P.; Brandt, Marilyn E.; Smith, Tyler B.
2018-06-01
Mesophotic coral ecosystems (MCEs) are deep (> 30 m), light-dependent communities that are abundant in many parts of the global ocean. MCEs are potentially connected to shallow reefs via larval exchange and may act as refuges for reef organisms. However, MCE community level recovery after disturbance, and thus, community resilience, are poorly understood components of their capacity as refuges. To assess the potential for disturbance and growth to drive community structure on MCEs with differential biophysical conditions and coral communities, we collected colonies of Orbicella franksi and Porites astreoides and used computerized tomography to quantify calcification. The divergence of coral growth rates in MCEs with different environmental conditions may be species specific; habitat-forming O. franksi have slow and consistent growth rates of 0.2 cm yr-1 below 30 m, regardless of mesophotic habitat, compared to 1.0 cm yr-1 in shallow-water habitats. Slow skeletal growth rates in MCEs suggest that rates of recovery from disturbance will likely also be slow. Localized buffering of MCEs from the stressors affecting shallow reefs is therefore crucial to the long-term capacity of these sites to serve as refugia, given that skeletal extension and recovery from disturbance in MCEs will be significantly slower than on shallow reefs.
Correlation of Coral Bleaching Events and Remotely-Sensed Sea Surface Temperatures
1994-05-19
water column. Diving on the reefs, they found significant tracts of bleached corals, zoanthids , gorgonians, and sea anemones (Bunckley-Williams and... zoanthids between May and July 1988 on shallow lagoonal reefs and rim margin reefs was the first indication of any sort of bleaching event at Bermuda
A Bayesian-based system to assess wave-driven flooding hazards on coral reef-lined coasts
Pearson, S. G.; Storlazzi, Curt; van Dongeren, A. R.; Tissier, M. F. S.; Reniers, A. J. H. M.
2017-01-01
Many low-elevation, coral reef-lined, tropical coasts are vulnerable to the effects of climate change, sea level rise, and wave-induced flooding. The considerable morphological diversity of these coasts and the variability of the hydrodynamic forcing that they are exposed to make predicting wave-induced flooding a challenge. A process-based wave-resolving hydrodynamic model (XBeach Non-Hydrostatic, “XBNH”) was used to create a large synthetic database for use in a “Bayesian Estimator for Wave Attack in Reef Environments” (BEWARE), relating incident hydrodynamics and coral reef geomorphology to coastal flooding hazards on reef-lined coasts. Building on previous work, BEWARE improves system understanding of reef hydrodynamics by examining the intrinsic reef and extrinsic forcing factors controlling runup and flooding on reef-lined coasts. The Bayesian estimator has high predictive skill for the XBNH model outputs that are flooding indicators, and was validated for a number of available field cases. It was found that, in order to accurately predict flooding hazards, water depth over the reef flat, incident wave conditions, and reef flat width are the most essential factors, whereas other factors such as beach slope and bed friction due to the presence or absence of corals are less important. BEWARE is a potentially powerful tool for use in early warning systems or risk assessment studies, and can be used to make projections about how wave-induced flooding on coral reef-lined coasts may change due to climate change.
Catastrophic impact of typhoon waves on coral communities in the Ryukyu Islands under global warming
NASA Astrophysics Data System (ADS)
Hongo, Chuki; Kawamata, Hideki; Goto, Kazuhisa
2012-06-01
Typhoon-generated storm waves generally cause mechanical damage to coral communities on present-day reefs, and the magnitude and extent of damage is predicted to increase in the near future as a result of global warming. Therefore, a comprehensive understanding of potential future scenarios of reef ecosystems is of prime interest. This study assesses the current status of coral communities on Ibaruma reef, Ryukyu Islands, on the basis of field observations, engineering and fluid dynamic models, and calculations of wave motion, and predicts the potential effects of a super-extreme typhoon (incident wave height,H = 20 m; wave period, T = 20 s) on the reef. On the present-day reef, massive corals occur in shallow lagoons and tabular corals occur from the reef crest to the reef slope. The observed distribution of corals, which is frequently attacked by moderate (H = 10 m, T = 10 s) and extreme (H = 10 m, T = 15 s) typhoons, is consistent with the predictions of engineering models. Moreover, this study indicates that if a super-extreme typhoon attacks the reef in the near future, massive corals will survive in the shallow lagoons but tabular corals on the reef crest and reef slope will be severely impacted. The findings imply that super-extreme typhoons will cause a loss of species diversity, as the tabular corals are important reef builders and are critical to the maintenance of reef ecosystems. Consequently, reef restoration is a key approach to maintaining reef ecosystems in the wake of super-extreme typhoons.
NASA Astrophysics Data System (ADS)
Wilkinson, Clive R.; Evans, Elizabeth
1989-06-01
Sponge populations were surveyed at different depths in three zones of Davies Reef, a large platform reef of the central Great Barrier Reef. Depth is the major discriminatory factor as few sponges are found within the first 10 m depth and maximal populations occur between 15 m and 30 m on fore-reef, lagoon and back-reef slopes. Reef location is another major factor, with the lagoon containing a significantly different sponge population to either the fore-reef or the back-reef slopes. Physical factors are considered to be the major influences behind these patterns. Physical turbulence is strongest within the first 10 m and apparently limits sponge growth within these shallow zones. Insufficient photosynthetic radiation limits the growth of the sponge population below 30 m depth as many of the species are phototrophic with a dependence on cyanobacterial symbionts for nutrition. Sponge populations on the outer (fore- and back-) reef slopes are comparable with each other but different from those on lagoon slopes where currents are reduced and fine sediment loads are higher. The largest populations occur on the back-reef slope where currents are stronger and there are possibly higher concentrations of organic nutrients originating from the more productive shallow parts of the reef. While there are correlations between sponge populations and environmental parameters, data are insufficient to enable more definitive conclusions to be drawn. Most sponge species are distributed widely over the reef, however, some are restricted to a few habitats and, hence, may be used to characterize those habitats.
NASA Astrophysics Data System (ADS)
Ford, Murray R.
2014-06-01
Passive integrated transponder (PIT) tags are a radio-frequency identification device widely used as a machine-readable identification tool in fisheries research. PIT tags have also been employed, to a lesser extent, to track the movement of gravel-sized clasts within fluvial and coastal systems. In this study, PIT tags were inserted into detrital coral fragments and used to establish source-sink transport pathways on a fringing reef on Majuro Atoll in the Marshall Islands. Results suggest the transport of gravel-sized material on the inter-tidal reef flat is exclusively across-reef towards the lagoon. Considerable variation in the distance travelled by fragments was observed. Fragments were largely intact and visually recognisable after almost 5 months on the reef flat. However, the branches of some recovered fragments had broken off and corallite abrasion was observed in recovered fragments. This study indicates that PIT tags are an inexpensive and powerful new addition to the suite of sediment transport and taphonomic tools for researchers working within coral reef systems.
Mechanisms of wave‐driven water level variability on reef‐fringed coastlines
Buckley, Mark L.; Lowe, Ryan J.; Hansen, Jeff E; van Dongeren, Ap R.; Storlazzi, Curt
2018-01-01
Wave‐driven water level variability (and runup at the shoreline) is a significant cause of coastal flooding induced by storms. Wave runup is challenging to predict, particularly along tropical coral reef‐fringed coastlines due to the steep bathymetric profiles and large bottom roughness generated by reef organisms, which can violate assumptions in conventional models applied to open sandy coastlines. To investigate the mechanisms of wave‐driven water level variability on a reef‐fringed coastline, we performed a set of laboratory flume experiments on an along‐shore uniform bathymetric profile with and without bottom roughness. Wave setup and waves at frequencies lower than the incident sea‐swell forcing (infragravity waves) were found to be the dominant components of runup. These infragravity waves were positively correlated with offshore wave groups, signifying they were generated in the surf zone by the oscillation of the breakpoint. On the reef flat and at the shoreline, the low‐frequency waves formed a standing wave pattern with energy concentrated at the natural frequencies of the reef flat, indicating resonant amplification. Roughness elements used in the flume to mimic large reef bottom roughness reduced low frequency motions on the reef flat and reduced wave run up by 30% on average, compared to the runs over a smooth bed. These results provide insight into sea‐swell and infragravity wave transformation and wave setup dynamics on steep‐sloped coastlines, and the effect that future losses of reef bottom roughness may have on coastal flooding along reef‐fringed coasts.
[Ichthyofauna associated to a shallow reef in Morrocoy National Park, Venezuela].
López-Ordaz, A; Rodríguez-Quintal, J G
2010-10-01
Ichthyofauna associated to a shallow reef in Morrocoy National Park, Venezuela. Morrocoy National Park is one of the most studied coastal marine environments in Venezuela; however, efforts have been concentrated in south zone. In this study we select a shallow reef located in the north zone, characterized the benthic community and the structure of the fish community was studied using visual censuses. The benthic community was dominated by dead coral covered by algae (31%) and the live coral coverage was 12%. A total of 65 fish species belonging to 24 families were recorded, being Pomacentridae (43%), Scaridae (19%) and Haemulidae (15%) the most abundant families. Significant differences in the fish species abundances were found along the depth gradient, which could be related to the habitat characteristics, nevertheless herbivorous species dominance was evident at all depth strata. There seems to be a trend towards greater richness and density in the south zone reefs, and these differences may be related to the presence of extensive seagrass meadows and mangrove forests in that area or to differences in the recruitment patterns.
Mapping islands, reefs and shoals in the oceans surrounding Australia
NASA Technical Reports Server (NTRS)
Turner, L. G. (Principal Investigator)
1975-01-01
The author has identified the following significant results. Comparisons of the imagery with aerial photography of areas of reefs and island and with 1:250,000 maps of coastlines indicate that the MSS imagery depicts detail to an extent which is satisfactory for 1:250,000 mapping. As the imagery does not have some of the disadvantages of aerial photography, the former should be valuable for mapping reefs, islands, and shoals. The water discoloration problem is significant as the discolored water appears to occur near shallow depths, so that confusion could arise through the misinterpretation of discolored water, when it exists, as shallow water.
NASA Astrophysics Data System (ADS)
Semmler, Robert F.; Hoot, Whitney C.; Reaka, Marjorie L.
2017-06-01
We analyzed an extensive dataset of over 9000 benthic and suprabenthic species found throughout the Gulf of Mexico (GoMx) to assess whether mesophotic coral ecosystems represent distinct assemblages and evaluate their potential to serve as refugia for shallow reef communities. We assessed community structure of the overall benthic community from 0 to 300 m via non-metric multidimensional scaling (NMDS) of species presence across depth bands. We used the Jaccard index of similarity to calculate the proportion of shared species between adjacent depth bands, measure species turnover with depth, and assess taxonomic overlap between shallow reefs versus progressively deeper depth bands. NMDS ordinations showed that the traditionally defined mesophotic range (30-150 m) as a whole is not a distinct community. In contrast, taxonomically distinct communities, determined by hierarchical clustering, were found at 0-70, 60-120, 110-200, and 190-300 m. Clustering highlighted an important separation in the benthic community at 60 m, which was especially important for actinopterygian fishes. Species turnover between adjacent depths decreased with depth for all taxa combined and individual taxa, with peaks at 60, 90-120, and 190-200 m. Fishes showed lower turnover from shallow to upper mesophotic depths (0-50 m) than all taxa combined, a substantial peak at 60 m, followed by a precipitous and continued decline in turnover thereafter. Taxonomic overlap between shallow (0-20 m) and progressively deeper zones declined steadily with depth in all taxa and individual taxa, suggesting that mid- and lower mesophotic habitats have less (but not inconsequential) potential to serve as refugia (60-150 m, 15-25% overlap with shallow habitats) than upper mesophotic zones (30-60 m, 30-45% overlap with shallow habitats) for all taxa combined. We conclude that the traditional mesophotic zone is home to three ecological communities in the GoMx, one that is confluent with shallow reefs, a distinct mesophotic assemblage spanning 60-120 m, and a third that extends onto the outer continental shelf.
NASA Astrophysics Data System (ADS)
Albright, R.; Langdon, C.; Anthony, K. R. N.
2013-10-01
Ocean acidification is projected to shift coral reefs from a state of net accretion to one of net dissolution this century. Presently, our ability to predict global-scale changes to coral reef calcification is limited by insufficient data relating seawater carbonate chemistry parameters to in situ rates of reef calcification. Here, we investigate diel and seasonal trends in carbonate chemistry of the Davies Reef flat in the central Great Barrier Reef and relate these trends to benthic carbon fluxes by quantifying net ecosystem calcification (nec) and net community production (ncp). Results show that seawater carbonate chemistry of the Davies Reef flat is highly variable over both diel and seasonal cycles. pH (total scale) ranged from 7.92 to 8.17, pCO2 ranged from 272 to 542 μatm, and aragonite saturation state (Ωarag) ranged from 2.9 to 4.1. Diel cycles in carbonate chemistry were primarily driven by ncp, and warming explained 35% and 47% of the seasonal shifts in pCO2 and pH, respectively. Daytime ncp averaged 37 ± 19 mmol C m-2 h-1 in summer and 33 ± 13 mmol C m-2 h-1 in winter; nighttime ncp averaged -30 ± 25 and -7 ± 6 mmol C m-2 h-1 in summer and winter, respectively. Daytime nec averaged 11 ± 4 mmol CaCO3 m-2 h-1 in summer and 8 ± 3 mmol CaCO3 m-2 h-1 in winter, whereas nighttime nec averaged 2 ± 4 mmol and -1 ± 3 mmol CaCO3 m-2 h-1 in summer and winter, respectively. Net ecosystem calcification was highly sensitive to changes in Ωarag for both seasons, indicating that relatively small shifts in Ωarag may drive measurable shifts in calcification rates, and hence carbon budgets, of coral reefs throughout the year.
Pickering, Emily A.; Adler, Alyssa M.; Taylor, J. Christopher; Peterson, Charles H.
2017-01-01
Structural complexity, a form of habitat heterogeneity, influences the structure and function of ecological communities, generally supporting increased species density, richness, and diversity. Recent research, however, suggests the most complex habitats may not harbor the highest density of individuals and number of species, especially in areas with elevated human influence. Understanding nuances in relationships between habitat heterogeneity and ecological communities is warranted to guide habitat-focused conservation and management efforts. We conducted fish and structural habitat surveys of thirty warm-temperate reefs on the southeastern US continental shelf to quantify how structural complexity influences fish communities. We found that intermediate complexity maximizes fish abundance on natural and artificial reefs, as well as species richness on natural reefs, challenging the current paradigm that abundance and other fish community metrics increase with increasing complexity. Naturally occurring rocky reefs of flat and complex morphologies supported equivalent abundance, biomass, species richness, and community composition of fishes. For flat and complex morphologies of rocky reefs to receive equal consideration as essential fish habitat (EFH), special attention should be given to detecting pavement type rocky reefs because their ephemeral nature makes them difficult to detect with typical seafloor mapping methods. Artificial reefs of intermediate complexity also maximized fish abundance, but human-made structures composed of low-lying concrete and metal ships differed in community types, with less complex, concrete structures supporting lower numbers of fishes classified largely as demersal species and metal ships protruding into the water column harboring higher numbers of fishes, including more pelagic species. Results of this study are essential to the process of evaluating habitat function provided by different types and shapes of reefs on the seafloor so that all EFH across a wide range of habitat complexity may be accurately identified and properly managed. PMID:28873447
NASA Astrophysics Data System (ADS)
Matsuda, H.; Iryu, Y.; Machiyama, H.
2003-04-01
Coral reefs are tropic to subtropic coastal ecosystems comprising very diverse organisms. Their community structure and geographic and local distribution are highly controlled by various environmental factors. Thus, their ancient counterparts, reef deposits, provide important, high-resolution records of geoscientific events in tropic to subtropic shallow waters, such as vertical and lateral tectonic movements, sea-level fluctuations, paleoclimatic changes, and paleoceanographic variations. In order to clarify relationships between reef formation and geoscientific events, it is necessary to investigate the reef deposits at relatively higher latitudes within reef provinces, because such reefs were considered to be more sensitive to the environmental changes than those in proximal areas. It can be, therefore, considered that the northern or southern limit of reef formation, herein termed the 'coral-reef front', may have migrated to higher and lower latitudes, respectively, responding to Pleistocene global warming and cooling associated with rapid, cyclic changes in climate and oceanographic conditions and with glacioeustatic sea-level rises and falls. Thus, this study mainly aims (1) to depict paleoeclimatic and paleoceanographic fluctuations in tropic to subtropic shallow-waters in details by reconstructing the coral-reef front migration, (2) how and to what extent the reefs responded to rapid environmental changes, and (3) to evaluate a role of coral reefs in a global carbon cycle. To resolve the problems described above, the Ryukyu Islands are one of the best fields. In this proposal, we will insist that the multiple drilling that covers submarine (IODP) and land (ICDP) areas is the only way to complete our purposes.
NASA Astrophysics Data System (ADS)
Jimenez, H.; Dumas, P.; Ponton, D.; Ferraris, J.
2012-03-01
Invertebrates represent an essential component of coral reef ecosystems; they are ecologically important and a major resource, but their assemblages remain largely unknown, particularly on Pacific islands. Understanding their distribution and building predictive models of community composition as a function of environmental variables therefore constitutes a key issue for resource management. The goal of this study was to define and classify the main environmental factors influencing tropical invertebrate distributions in New Caledonian reef flats and to test the resulting predictive model. Invertebrate assemblages were sampled by visual counting during 2 years and 2 seasons, then coupled to different environmental conditions (habitat composition, hydrodynamics and sediment characteristics) and harvesting status (MPA vs. non-MPA and islets vs. coastal flats). Environmental conditions were described by a principal component analysis (PCA), and contributing variables were selected. Permutational analysis of variance (PERMANOVA) was used to test the effects of different factors (status, flat, year and season) on the invertebrate assemblage composition. Multivariate regression trees (MRT) were then used to hierarchically classify the effects of environmental and harvesting variables. MRT model explained at least 60% of the variation in structure of invertebrate communities. Results highlighted the influence of status (MPA vs. non-MPA) and location (islet vs. coastal flat), followed by habitat composition, organic matter content, hydrodynamics and sampling year. Predicted assemblages defined by indicator families were very different for each environment-exploitation scenario and correctly matched a calibration data matrix. Predictions from MRT including both environmental variables and harvesting pressure can be useful for management of invertebrates in coral reef environments.
An interhemispheric tropical sea level seesaw due to El Niño Taimasa
NASA Astrophysics Data System (ADS)
Widlansky, M. J.; Timmermann, A.; McGregor, S.; Stuecker, M. F.; Cai, W.
2013-12-01
During strong El Niño events, sea level drops around some tropical western Pacific islands by up to 20-30 cm. Such extreme events (referred to as ';taimasa' in Samoa) expose shallow reefs, thereby damaging associated coastal ecosystems and contributing to the formation of ';flat topped coral heads' often referred to as microatolls. We show that during the termination of strong El Niño events, a southward movement of weak trade winds and development of an anomalous anticyclone in the Philippine Sea force an interhemispheric sea level seesaw in the tropical Pacific which enhances and prolongs extreme low sea levels in the southwestern Pacific. Spectral features, in addition to wind forced linear shallow water ocean model experiments, identify an interaction between El Niño and the annual cycle as the main cause of these sea level anomalies. Given the well established seasonal prediction skill for El Niño events and their seasonally paced termination, our analysis suggests that long-duration extreme sea level drops may also be highly predictable.
NASA Astrophysics Data System (ADS)
Morgan, Kyle; Perry, Chris; Smithers, Scott; Johnson, Jamie; Daniell, James
2016-04-01
Mean coral cover on Australia's Great Barrier Reef (GBR) has reportedly declined by over 15% during the last 30 years. Climate change events and outbreaks of coral disease have been major drivers of degradation, often exacerbating the stresses caused by localised human activities (e.g. elevated sediment and nutrient inputs). Here, however, in the first assessment of nearshore reef occurrence and ecology across meaningful spatial scales (15.5 sq km), we show that areas of the GBR shelf have exhibited strong intra-regional variability in coral resilience to declining water quality. Specifically, within the highly-turbid "mesophotic" nearshore (<10 m depth) of the central GBR, where terrigenous seafloor sediments are persistently resuspended by wave processes, coral cover averages 38% (twice that reported on mid- and outer-shelf reefs). Of the mapped area, 11% of the seafloor has distinct reef or coral community cover, a density comparable to that measured across the entire GBR shelf (9%). Identified coral taxa (21 genera) exhibited clear depth-stratification corresponding closely to light attenuation and seafloor topography. Reefs have accreted relatively rapidly during the late-Holocene (1.8-3.0 mm y-1) with rates of vertical reef growth influenced by intrinsic shifts in coral assemblages associated with reef development. Indeed, these shallow-water reefs may have similar potential as refugia from large-scale disturbance as their deep-water (>30 m) "mesophotic" equivalents, and also provide a basis from which to model future trajectories of reef growth within nearshore areas.
LIDAR optical rugosity of coral reefs in Biscayne National Park, Florida
Brock, J.C.; Wright, C.W.; Clayton, T.D.; Nayegandhi, A.
2004-01-01
The NASA Experimental Advanced Airborne Research Lidar (EAARL), a temporal waveform-resolving, airborne, green wavelength LIDAR (light detection and ranging), is designed to measure the submeter-scale topography of shallow reef substrates. Topographic variability is a prime component of habitat complexity, an ecological factor that both expresses and controls the abundance and distribution of many reef organisms. Following the acquisition of EAARL coverage over both mid-platform patch reefs and shelf-margin bank reefs within Biscayne National Park in August 2002, EAARL-based optical indices of topographic variability were evaluated at 15 patch reef and bank reef sites. Several sites were selected to match reefs previously evaluated in situ along underwater video and belt transects. The analysis used large populations of submarine topographic transects derived from the examination of closely spaced laser spot reflections along LIDAR raster scans. At all 15 sites, each LIDAR transect was evaluated separately to determine optical rugosity (Rotran), and the average elevation difference between adjacent points (Av(??E ap)). Further, the whole-site mean and maximum values of Ro tran and Av(??Eap) for the entire population of transects at each analysis site, along with their standard deviations, were calculated. This study revealed that the greater habitat complexity of inshore patch reefs versus outer bank reefs results in relative differences in topographic complexity that can be discerned in the laser returns. Accordingly, LIDAR sensing of optical rugosity is proposed as a complementary new technique for the rapid assessment of shallow coral reefs. ?? Springer-Verlag 2004.
Modern coral reefs of western Atlantic: new geological perspective
DOE Office of Scientific and Technical Information (OSTI.GOV)
MacIntyre, I.G.
1988-11-01
Contrary to popular belief of the late 1960s, western Atlantic Holocene reefs have a long history and are not feeble novice nearshore veneers that barely survived postglacial temperatures. Rather, the growth of these reefs kept pace with the rising seas of the Holocene transgression and their development was, for the most part, controlled by offshore wave-energy conditions and the relationship between changing sea levels and local shelf topography. Thus, the outer shelves of the eastern Caribbean in areas of high energy have relict reefs consisting predominantly of Acropora palmata, a robust shallow-water coral. The flooding of adjacent shelves during themore » postglacial transgression introduced stress conditions that terminated the growth of these reefs. When, about 7000 yr ago, shelf-water conditions improved, scattered deeper water coral communities reestablished themselves on these stranded shelf-edge reefs, and fringing and bank-barrier reefs began to flourish in shallow coastal areas. At the same time, the fragile and rapidly growing Acropora cervicornis and other corals flourished at greater depths on the more protected shelves of the western Caribbean and the Gulf of Mexico. As a result, late Holocene buildups more than 30 m thick developed in those areas. 7 figures.« less
A Global Analysis of the Relationship between Farmed Seaweed Production and Herbivorous Fish Catch.
Hehre, E James; Meeuwig, Jessica J
2016-01-01
Globally, farmed seaweed production is expanding rapidly in shallow marine habitats. While seaweed farming provides vital income to millions of artisanal farmers, it can negatively impact shallow coral reef and seagrass habitats. However, seaweed farming may also potentially provide food subsidies for herbivorous reef fish such as the Siganidae, a valuable target family, resulting in increased catch. Comparisons of reef fish landings across the central Philippines revealed that the catch of siganids was positively correlated to farmed seaweed production whilst negatively correlated to total reef fish catch over the same period of time. We tested the generality of this pattern by analysing seaweed production, siganid catch, and reef fish catch for six major seaweed-producing countries in the tropics. We hypothesized that increased seaweed production would correspond with increased catch of siganids but not other reef fish species. Analysis of the global data showed a positive correlation between farmed seaweeds and siganids in Southeast Asia (Indonesia, Malaysia, and the Philippines) but not Africa (Tanzania and Zanzibar), or the Western Pacific (Fiji). In Southeast Asia, siganid catch increased disproportionately faster with seaweed production than did reef fish catch. Low continuity, sporadic production and smaller volumes of seaweed farming may explain the differences.
Shifting reef fish assemblages along a depth gradient in Pohnpei, Micronesia
Copus, Joshua M.; Coffey, Daniel M.; Whitton, Robert K.; Bowen, Brian W.
2018-01-01
Mesophotic coral ecosystems (MCEs) continue to be understudied, especially in island locations spread across the Indo-Pacific Ocean. Pohnpei is the largest island in the Federated States of Micronesia, with a well-developed barrier reef, and steep slopes that descend to more than 1,000 m. Here we conducted visual surveys along a depth gradient of 0 to 60 m in addition to video surveys that extend to 130 m, with 72 belt transects and 12 roving surveys using closed-circuit rebreathers, to test for changes in reef fish composition from shallow to mesophotic depths. We observed 304 fish species across 47 families with the majority confined to shallow habitat. Taxonomic and trophic positions at 30 m showed similar compositions when compared against all other depths. However, assemblages were comprised of a distinct shallow (<30 m) and deep (>30 m) group, suggesting 30 m as a transition zone between these communities. Shallow specialists had a high probability of being herbivores and deep specialists had a higher probability of being planktivores. Acanthuridae (surgeonfishes), Holocentridae (soldierfishes), and Labridae (wrasses) were associated primarily with shallow habitat, while Pomacentridae (damselfishes) and Serranidae (groupers) were associated with deep habitat. Four species may indicate Central Pacific mesophotic habitat: Chromis circumaurea, Luzonichthys seaver, Odontanthias borbonius, and an undescribed slopefish (Symphysanodon sp.). This study supports the 30 m depth profile as a transition zone between shallow and mesophotic ecosystems (consistent with accepted definitions of MCEs), with evidence of multiple transition zones below 30 m. Disturbances restricted to either region are not likely to immediately impact the other and both ecosystems should be considered separately in management of reefs near human population centers. PMID:29707432
76 FR 39858 - Western Pacific Fisheries; Approval of a Marine Conservation Plan for Guam
Federal Register 2010, 2011, 2012, 2013, 2014
2011-07-07
... assessment and monitoring of Guam coral reef flat communities. Objective 6. Domestic fisheries development... life-history data of nearshore reef fish. g. Support Guam volunteer fishery data collection project. h...
Georgiou, Lucy; Falter, James; Trotter, Julie; Kline, David I.; Holcomb, Michael; Dove, Sophie G.; Hoegh-Guldberg, Ove; McCulloch, Malcolm
2015-01-01
Geochemical analyses (δ11B and Sr/Ca) are reported for the coral Porites cylindrica grown within a free ocean carbon enrichment (FOCE) experiment, conducted on the Heron Island reef flat (Great Barrier Reef) for a 6-mo period from June to early December 2010. The FOCE experiment was designed to simulate the effects of CO2-driven acidification predicted to occur by the end of this century (scenario RCP4.5) while simultaneously maintaining the exposure of corals to natural variations in their environment under in situ conditions. Analyses of skeletal growth (measured from extension rates and skeletal density) showed no systematic differences between low-pH FOCE treatments (ΔpH = ∼−0.05 to −0.25 units below ambient) and present day controls (ΔpH = 0) for calcification rates or the pH of the calcifying fluid (pHcf); the latter was derived from boron isotopic compositions (δ11B) of the coral skeleton. Furthermore, individual nubbins exhibited near constant δ11B compositions along their primary apical growth axes (±0.02 pHcf units) regardless of the season or treatment. Thus, under the highly dynamic conditions of the Heron Island reef flat, P. cylindrica up-regulated the pH of its calcifying fluid (pHcf ∼8.4–8.6), with each nubbin having near-constant pHcf values independent of the large natural seasonal fluctuations of the reef flat waters (pH ∼7.7 to ∼8.3) or the superimposed FOCE treatments. This newly discovered phenomenon of pH homeostasis during calcification indicates that coral living in highly dynamic environments exert strong physiological controls on the carbonate chemistry of their calcifying fluid, implying a high degree of resilience to ocean acidification within the investigated ranges. PMID:26438833
Georgiou, Lucy; Falter, James; Trotter, Julie; Kline, David I; Holcomb, Michael; Dove, Sophie G; Hoegh-Guldberg, Ove; McCulloch, Malcolm
2015-10-27
Geochemical analyses (δ(11)B and Sr/Ca) are reported for the coral Porites cylindrica grown within a free ocean carbon enrichment (FOCE) experiment, conducted on the Heron Island reef flat (Great Barrier Reef) for a 6-mo period from June to early December 2010. The FOCE experiment was designed to simulate the effects of CO2-driven acidification predicted to occur by the end of this century (scenario RCP4.5) while simultaneously maintaining the exposure of corals to natural variations in their environment under in situ conditions. Analyses of skeletal growth (measured from extension rates and skeletal density) showed no systematic differences between low-pH FOCE treatments (ΔpH = ∼-0.05 to -0.25 units below ambient) and present day controls (ΔpH = 0) for calcification rates or the pH of the calcifying fluid (pHcf); the latter was derived from boron isotopic compositions (δ(11)B) of the coral skeleton. Furthermore, individual nubbins exhibited near constant δ(11)B compositions along their primary apical growth axes (±0.02 pHcf units) regardless of the season or treatment. Thus, under the highly dynamic conditions of the Heron Island reef flat, P. cylindrica up-regulated the pH of its calcifying fluid (pHcf ∼8.4-8.6), with each nubbin having near-constant pHcf values independent of the large natural seasonal fluctuations of the reef flat waters (pH ∼7.7 to ∼8.3) or the superimposed FOCE treatments. This newly discovered phenomenon of pH homeostasis during calcification indicates that coral living in highly dynamic environments exert strong physiological controls on the carbonate chemistry of their calcifying fluid, implying a high degree of resilience to ocean acidification within the investigated ranges.
NASA Technical Reports Server (NTRS)
Grotzinger, John P.
2003-01-01
Work has been completed on the digital mapping of a terminal Proterozoic reef complex in Namibia. This complex formed an isolated carbonate platform developed downdip on a carbonate ramp of the Nama Group. The stratigraphic evolution of the platform was digitally reconstructed from an extensive dataset that was compiled by using digital surveying technologies. The platform comprises three accommodation cycles in which each subsequent cycle experienced progressively greater influence of a long-term accommodation increase. Aggradation and progradation during the first cycle resulted in a flat, uniform, sheet-like platform. The coarsening and shallowing-upward sequence representing the first cycle is dominated by columnar stromatolitic thrombolites and massive dolostones with interbedded mudstone-grainstone at the base of the sequence grading into cross-bedded dolostones. The second cycle features aggradation, formation of a distinct margin containing thrombolite mounds and domes, and the development of a bucket geometry. Columnar stromatolitic thrombolites dominate the platform interior. The final stage of platform development shows a deepening trend with initial aggradation and formation of well-bedded, thin deposits in the interior and mound development at the margins. While the interior drowned, the platform margin kept up with rising sea level and a complex pinnacle reef formed containing fused and coalesced thrombolite mounds flanked by bioclastic grainstones (containing Cloudina and Namacalathus fossils) and collapse breccias. A set of isolated large thrombolite mounds flanked by shales indicate the final stage of the carbonate platform. During a progressive increase in accommodation, a flat-topped isolated carbonate platform becomes aerially less extensive by either backstepping or formation of smaller pinnacles or a combination of both. The overall geometric evolution of the studied platform from flat-topped to bucket with elevated margins is recorded in many Proterozoic and Phanerozoic isolated carbonate platforms with similar dimensions. The terminal Proterozoic, microbial-dominated, isolated carbonate platform of this study clearly illustrates that the answer to accommodation changes was already familiar among carbonate platforms before the dawn of metazoan-dominated platforms.
Infragravity waves on fringing reefs in the tropical Pacific: Dynamic setup
NASA Astrophysics Data System (ADS)
Becker, J. M.; Merrifield, M. A.; Yoon, H.
2016-05-01
Cross-shore pressure and current observations from four fringing reefs of lengths ranging from 135 to 420 m reveal energetic low-frequency (˜0.001-0.05 Hz) motions. The spatial structure and temporal amplitudes of an empirical orthogonal function analysis of the pressure measurements suggest the dominant low-frequency variability is modal. Incoming and outgoing linear flux estimates also support partially standing modes on the reef flat during energetic events. A cross-covariance analysis suggests that breakpoint forcing excites these partially standing modes, similar to previous findings at other steep reefs. The dynamics of Symonds et al. (1982) with damping are applied to a step reef, with forcing obtained by extending a point break model of Vetter et al. (2010) for breaking wave setup to the low-frequency band using the shoaled envelope of the incident free surface elevation. A one parameter, linear analytical model for the reef flat free surface elevation is presented, which describes between 75% and 97% of the variance of the observed low-frequency shoreline significant wave height for all reefs considered over a range of conditions. The linear model contains a single dimensionless parameter that is the ratio of the inertial to dissipative time scales, and the observations from this study exhibit more low-frequency variability when the dissipative time scale is greater than the inertial time scale for the steep reefs considered.
Vignaud, Thomas M; Mourier, Johann; Maynard, Jeffrey A; Leblois, Raphael; Spaet, Julia; Clua, Eric; Neglia, Valentina; Planes, Serge
2014-11-01
For free-swimming marine species like sharks, only population genetics and demographic history analyses can be used to assess population health/status as baseline population numbers are usually unknown. We investigated the population genetics of blacktip reef sharks, Carcharhinus melanopterus; one of the most abundant reef-associated sharks and the apex predator of many shallow water reefs of the Indian and Pacific Oceans. Our sampling includes 4 widely separated locations in the Indo-Pacific and 11 islands in French Polynesia with different levels of coastal development. Four-teen microsatellite loci were analysed for samples from all locations and two mitochondrial DNA fragments, the control region and cytochrome b, were examined for 10 locations. For microsatellites, genetic diversity is higher for the locations in the large open systems of the Red Sea and Australia than for the fragmented habitat of the smaller islands of French Polynesia. Strong significant structure was found for distant locations with FST values as high as ~0.3, and a smaller but still significant structure is found within French Polynesia. Both mitochondrial genes show only a few mutations across the sequences with a dominant shared haplotype in French Polynesia and New Caledonia suggesting a common lineage different to that of East Australia. Demographic history analyses indicate population expansions in the Red Sea and Australia that may coincide with sea level changes after climatic events. Expansions and flat signals are indicated for French Polynesia as well as a significant recent bottleneck for Moorea, the most human-impacted lagoon of the locations in French Polynesia. © 2014 John Wiley & Sons Ltd.
NASA Astrophysics Data System (ADS)
Abesamis, Rene A.; Langlois, Tim; Birt, Matthew; Thillainath, Emma; Bucol, Abner A.; Arceo, Hazel O.; Russ, Garry R.
2018-03-01
Baseline ecological studies of mesophotic coral ecosystems are lacking in the equatorial Indo-West Pacific region where coral reefs are highly threatened by anthropogenic and climate-induced disturbances. Here, we used baited remote underwater video to describe benthic habitat and fish assemblage structure from 10 to 80 m depth at Apo Island, a well-managed marine protected area in the Philippines. We conducted surveys 2 yr after two storms (in 2011 and 2012) caused severe damage to shallow coral communities within the no-take marine reserve (NTMR) of Apo Island, which led to declines in fish populations that had built up over three decades. We found that hard coral cover was restricted to < 40 m deep in the storm-impacted NTMR and a nearby fished area not impacted by storms. Benthic cover at mesophotic depths (> 30 m) was dominated by sand/rubble and rock (dead coral) with low cover of soft corals, sponges and macroalgae. Storm damage appeared to have reached the deepest limit of the fringing reef (40 m) and reduced variability in benthic structure within the NTMR. Species richness and/or abundance of most trophic groups of fish declined with increasing depth regardless of storm damage. There were differences in taxonomic and trophic structure and degree of targeting by fisheries between shallow and mesophotic fish assemblages. Threatened shark species and a fish species previously unreported in the Philippines were recorded at mesophotic depths. Our findings provide a first glimpse of the benthic and fish assemblage structure of Philippine coral reef ecosystems across a wide depth gradient. This work also underscores how a combination of limited coral reef development at mesophotic depths close to shallow reefs and severe habitat loss caused by storms would result in minimal depth refuge for reef fish populations.
NASA Astrophysics Data System (ADS)
Duvat, Virginie K. E.; Volto, Natacha; Salmon, Camille
2017-12-01
This paper provides new insights on the impacts of a category 5 tropical cyclone on Indian Ocean atoll reef islands. Using multi-date aerial imagery and field observations, the contribution of tropical cyclone Fantala to shoreline and island change, and to sediment production and transport, was assessed on Farquhar Atoll, Seychelles Islands. Results show that the two largest islands (> 3 km2) only suffered limited land loss (- 1.19 to - 8.35%) while small islets lost 13.17 to 28.45% of their initial land area. Islands and islets exhibited contrasting responses depending on their location, topography and vegetation type. Depending on islands, the retreat of the vegetation line occurred either along all shorelines, or along ocean shoreline only. The structure (wooded vs. grassy) and origin (native vs. introduced) of the vegetation played a major role in island response. Five days after the cyclone, beach width and beach area were multiplied by 1.5 to 10, depending on the setting, and were interpreted as resulting from both sediment reworking and the supply of large amounts of fresh sediments by the reef outer slopes to the island system. Fourth months after the cyclone, extended sheets of loose sediments were still present on the reef flat and in inter-islet channels and shallow lagoon waters, indicating continuing sediment transfer to islands. As a reminder (see Section 3.1.4), beach width uncertainty equals to 6 m for all beach sections.
Pomeroy, Andrew; Lowe, Ryan J.; Ghisalberti, Marco; Winter, Gundula; Storlazzi, Curt D.; Cuttler, Michael V. W.
2018-01-01
Sediment produced on fringing coral reefs that is transported along the bed or in suspension affects ecological reef communities as well as the morphological development of the reef, lagoon, and adjacent shoreline. This study quantified the physical process contribution and relative importance of incident waves, infragravity waves, and mean currents to the spatial and temporal variability of sediment in suspension. Estimates of bed shear stresses demonstrate that incident waves are the key driver of the SSC variability spatially (reef flat, lagoon, and channels) but cannot not fully describe the SSC variability alone. The comparatively small but statistically significant contribution to the bed shear stress by infragravity waves and currents, along with the spatial availability of sediment of a suitable size and volume, is also important. Although intra‐tidal variability in SSC occurs in the different reef zones, the majority of the variability occurs over longer slowly varying (subtidal) time scales, which is related to the arrival of large incident waves at a reef location. The predominant flow pathway, which can transport suspended sediment, consists of cross‐reef flow across the reef flat that diverges in the lagoon and returns offshore through channels. This pathway is primarily due to subtidal variations in wave‐driven flows, but can also be driven alongshore by wind stresses when the incident waves are small. Higher frequency (intra‐tidal) current variability also occur due to both tidal flows, as well as variations in the water depth that influence wave transmission across the reef and wave‐driven currents.
27 years of benthic and coral community dynamics on turbid, highly urbanised reefs off Singapore.
Guest, J R; Tun, K; Low, J; Vergés, A; Marzinelli, E M; Campbell, A H; Bauman, A G; Feary, D A; Chou, L M; Steinberg, P D
2016-11-08
Coral cover on reefs is declining globally due to coastal development, overfishing and climate change. Reefs isolated from direct human influence can recover from natural acute disturbances, but little is known about long term recovery of reefs experiencing chronic human disturbances. Here we investigate responses to acute bleaching disturbances on turbid reefs off Singapore, at two depths over a period of 27 years. Coral cover declined and there were marked changes in coral and benthic community structure during the first decade of monitoring at both depths. At shallower reef crest sites (3-4 m), benthic community structure recovered towards pre-disturbance states within a decade. In contrast, there was a net decline in coral cover and continuing shifts in community structure at deeper reef slope sites (6-7 m). There was no evidence of phase shifts to macroalgal dominance but coral habitats at deeper sites were replaced by unstable substrata such as fine sediments and rubble. The persistence of coral dominance at chronically disturbed shallow sites is likely due to an abundance of coral taxa which are tolerant to environmental stress. In addition, high turbidity may interact antagonistically with other disturbances to reduce the impact of thermal stress and limit macroalgal growth rates.
27 years of benthic and coral community dynamics on turbid, highly urbanised reefs off Singapore
Guest, J. R.; Tun, K.; Low, J.; Vergés, A.; Marzinelli, E. M.; Campbell, A. H.; Bauman, A. G.; Feary, D. A.; Chou, L. M.; Steinberg, P. D.
2016-01-01
Coral cover on reefs is declining globally due to coastal development, overfishing and climate change. Reefs isolated from direct human influence can recover from natural acute disturbances, but little is known about long term recovery of reefs experiencing chronic human disturbances. Here we investigate responses to acute bleaching disturbances on turbid reefs off Singapore, at two depths over a period of 27 years. Coral cover declined and there were marked changes in coral and benthic community structure during the first decade of monitoring at both depths. At shallower reef crest sites (3–4 m), benthic community structure recovered towards pre-disturbance states within a decade. In contrast, there was a net decline in coral cover and continuing shifts in community structure at deeper reef slope sites (6–7 m). There was no evidence of phase shifts to macroalgal dominance but coral habitats at deeper sites were replaced by unstable substrata such as fine sediments and rubble. The persistence of coral dominance at chronically disturbed shallow sites is likely due to an abundance of coral taxa which are tolerant to environmental stress. In addition, high turbidity may interact antagonistically with other disturbances to reduce the impact of thermal stress and limit macroalgal growth rates. PMID:27824083
A Global Analysis of the Relationship between Farmed Seaweed Production and Herbivorous Fish Catch
2016-01-01
Globally, farmed seaweed production is expanding rapidly in shallow marine habitats. While seaweed farming provides vital income to millions of artisanal farmers, it can negatively impact shallow coral reef and seagrass habitats. However, seaweed farming may also potentially provide food subsidies for herbivorous reef fish such as the Siganidae, a valuable target family, resulting in increased catch. Comparisons of reef fish landings across the central Philippines revealed that the catch of siganids was positively correlated to farmed seaweed production whilst negatively correlated to total reef fish catch over the same period of time. We tested the generality of this pattern by analysing seaweed production, siganid catch, and reef fish catch for six major seaweed-producing countries in the tropics. We hypothesized that increased seaweed production would correspond with increased catch of siganids but not other reef fish species. Analysis of the global data showed a positive correlation between farmed seaweeds and siganids in Southeast Asia (Indonesia, Malaysia, and the Philippines) but not Africa (Tanzania and Zanzibar), or the Western Pacific (Fiji). In Southeast Asia, siganid catch increased disproportionately faster with seaweed production than did reef fish catch. Low continuity, sporadic production and smaller volumes of seaweed farming may explain the differences. PMID:26894553
Spectral Diversity and Regulation of Coral Fluorescence in a Mesophotic Reef Habitat in the Red Sea.
Eyal, Gal; Wiedenmann, Jörg; Grinblat, Mila; D'Angelo, Cecilia; Kramarsky-Winter, Esti; Treibitz, Tali; Ben-Zvi, Or; Shaked, Yonathan; Smith, Tyler B; Harii, Saki; Denis, Vianney; Noyes, Tim; Tamir, Raz; Loya, Yossi
2015-01-01
The phenomenon of coral fluorescence in mesophotic reefs, although well described for shallow waters, remains largely unstudied. We found that representatives of many scleractinian species are brightly fluorescent at depths of 50-60 m at the Interuniversity Institute for Marine Sciences (IUI) reef in Eilat, Israel. Some of these fluorescent species have distribution maxima at mesophotic depths (40-100 m). Several individuals from these depths displayed yellow or orange-red fluorescence, the latter being essentially absent in corals from the shallowest parts of this reef. We demonstrate experimentally that in some cases the production of fluorescent pigments is independent of the exposure to light; while in others, the fluorescence signature is altered or lost when the animals are kept in darkness. Furthermore, we show that green-to-red photoconversion of fluorescent pigments mediated by short-wavelength light can occur also at depths where ultraviolet wavelengths are absent from the underwater light field. Intraspecific colour polymorphisms regarding the colour of the tissue fluorescence, common among shallow water corals, were also observed for mesophotic species. Our results suggest that fluorescent pigments in mesophotic reefs fulfil a distinct biological function and offer promising application potential for coral-reef monitoring and biomedical imaging.
Postglacial Fringing-Reef to Barrier-Reef conversion on Tahiti links Darwin's reef types
NASA Astrophysics Data System (ADS)
Blanchon, Paul; Granados-Corea, Marian; Abbey, Elizabeth; Braga, Juan C.; Braithwaite, Colin; Kennedy, David M.; Spencer, Tom; Webster, Jody M.; Woodroffe, Colin D.
2014-05-01
In 1842 Charles Darwin claimed that vertical growth on a subsiding foundation caused fringing reefs to transform into barrier reefs then atolls. Yet historically no transition between reef types has been discovered and they are widely considered to develop independently from antecedent foundations during glacio-eustatic sea-level rise. Here we reconstruct reef development from cores recovered by IODP Expedition 310 to Tahiti, and show that a fringing reef retreated upslope during postglacial sea-level rise and transformed into a barrier reef when it encountered a Pleistocene reef-flat platform. The reef became stranded on the platform edge, creating a lagoon that isolated it from coastal sediment and facilitated a switch to a faster-growing coral assemblage dominated by acroporids. The switch increased the reef's accretion rate, allowing it to keep pace with rising sea level, and transform into a barrier reef. This retreat mechanism not only links Darwin's reef types, but explains the re-occupation of reefs during Pleistocene glacio-eustacy.
NASA Astrophysics Data System (ADS)
Gacutan, J.; Vila-Concejo, A.; Nothdurft, L. D.; Fellowes, T. E.; Cathey, H. E.; Opdyke, B. N.; Harris, D. L.; Hamylton, S.; Carvalho, R. C.; Byrne, M.; Webster, J. M.
2017-10-01
Sediment transport is a key driver of reef zonation and biodiversity, where an understanding of sediment dynamics gives insights into past reef processes and allows the prediction of geomorphic responses to changing environmental conditions. However, modal conditions within the back-reef seldom promote sediment transport, hence direct observation is inherently difficult. Large benthic foraminifera (LBF) have previously been employed as 'tracers' to infer sediment transport pathways on coral reefs, as their habitat is largely restricted to the algal flat and post-mortem, their calcium carbonate test is susceptible to sediment transport forces into the back-reef. Foraminiferal test abundance and post-depositional test alteration have been used as proxies for sediment transport, although the resolution of these measures becomes limited by low test abundance and the lack of variation within test alteration. Here we propose the novel use of elemental ratios as a proxy for sediment transport. Two species, Baculogypsina sphaerulata and Calcarina capricornia, were analysed using a taphonomic index within One Tree and Lady Musgrave reefs, Great Barrier Reef (Australia). Inductively coupled plasma-atomic emission spectrometry (ICP-AES) was used to determine Mg/Ca and Sr/Ca and these ratios were compared with taphonomic data. Decreases in test Mg/Ca accompany increases in Sr/Ca in specimens from algal-flat to lagoonal samples in both species, mirroring trends indicated by taphonomic values, therefore indicating a relationship with test alteration. To delineate mechanisms driving changes in elemental ratios, back-scattered electron (BSE) images, elemental mapping and in situ quantitative spot analyses by electron microprobe microanalysis (EPMA) using wavelength dispersive X-ray spectrometers (WDS) were performed on un-altered algal flat and heavily abraded tests for both species. EPMA analyses reveal heterogeneity in Mg/Ca between spines and the test wall, implying the loss of appendages results in a decrease in Mg/Ca. BSE imaging and WDS elemental mapping provided evidence for cementation, facilitated by microbial-boring as the primary cause of increasing Sr/Ca. These novel proxies hold advantages over taphonomic measures and further provide a rapid method to infer sediment transport pathways within back-reef environments.
NASA Astrophysics Data System (ADS)
Martindale, R. C.; Ettinger, N. P.; Bodin, S.; Kosir, A.; Brame, H. M. R.; Thibodeau, A. M.; Larson, T. E.; Kerans, C.
2017-12-01
Carbon cycle perturbations, such as the Toarcian Oceanic Anoxic Event (T-OAE), have a significant influence on marine communities (e.g., extinctions), as well as the nature of the sedimentary record (e.g., carbonate factory collapse and black shale deposition) and geochemical cycling. To date, there remains a gap in our knowledge about the shallow-water record of the T-OAE and the geochemical signature of this event. This research combines geochemical, sedimentological, and paleontological data from two shallow-water Early Jurassic records in Slovenia and Morocco. The Dinaric Carbonate Platform (Slovenia) records a relatively continuous record of Pliensbachian and Toarcian strata and captures the T-OAE in shallow-water carbonates. The Trnovski Gozd karst plateau (western Slovenia) contains Pleinsbachian lithiotid (bivalve) biostromes, coral bioherms, and a diverse assemblage of carbonate producing fauna. This work documents the geochemical and sedimentological signature of the T-OAE in shallow water carbonates and tests whether mercury concentrations link paleontological and sedimentological changes with the Karoo-Ferrar Large Igneous Province. Elemental data coupled with sedimentologic and stratigraphic evidence indicate a prolonged period of deoxygenation on the shelf coincident with both large igneous province activity and the OAE. The Moroccan High Atlas Mountains provide another excellent shallow-water record of the T-OAE, with a thick mixed carbonate-siliciclastic shelf-to-ramp setting with sustained deposition through the Early Jurassic interval. In Morocco there is no evidence for anoxia in this shallow-water locality; however, the carbonate factory collapses at the Pliensbachian-Toarcian stage boundary as well as the T-OAE. Reef communities, particularly the lithiotid biostromes, persist across the stage boundary and are observed through to the T-OAE. The studied localities also record the oldest corals reefs following the T-OAE; coral reefs recover relatively quickly, but lithiotid reefs never recover. These data will allow us to build a more nuanced understanding of the paleoenvironmental conditions during the T-OAE, connect the basinal and shallower-water records of the OAE, as well as document the collapse and recovery of communities during this extinction.
NASA Astrophysics Data System (ADS)
Levy, J.; Franklin, E. C.; Hunter, C. L.
2016-12-01
Coral reefs are biodiversity hotspots that are vital to the function of global economic and biological processes. Coral bleaching is a significant contributor to the global decline of reefs and can impact an expansive reef area over short timescales. In order to understand the dynamics of coral bleaching and how these stress events impact reef ecosystems, it is important to conduct rapid bleaching surveys at functionally important spatial scales. Due to the inherent heterogeneity, size, and in some cases, remoteness of coral reefs, it is difficult to routinely monitor coral bleaching dynamics before, during, and after bleaching. Additionally, current in situ survey methods only collect snippets of discrete reef data over small reef areas, which are unable to accurately represent the reef as a whole. We present a new technique using small unmanned aerial systems (sUAS) as cost effective, efficient monitoring tools that target small to intermediate-scale reef dynamics to understand the spatial distribution of bleached coral colonies during the 2015 bleaching event on patch reefs in Kaneohe Bay, Oahu. Overlapping low altitude aerial images were collected at four reefs during the bleaching period and processed using Structure-from-Motion techniques to produce georeferenced and spatially accurate orthomosaics of complete reef areas. Mosaics were analyzed using manual and heuristic neural network classification schemes to identify comprehensive populations of bleached and live coral on each patch reef. We found that bleached colonies had random and clumped distributions on patch reefs in Kaneohe Bay depending on local environmental conditions. Our work demonstrates that sUAS provide a low cost, efficient platform that can rapidly and repeatedly collect high-resolution imagery (1 cm/pixel) and map large areas of shallow reef ecosystems (5 hectares). This study proves the feasibility of utilizing sUAS as a tool to collect spatially rich reef data that will provide reef scientists a new perspective on meso-scale coral reef dynamics. We envision that similar low altitude aerial surveys will be incorporated as a standard component of shallow-water reef studies, especially on reefs too dangerous or remote for in situ surveys.
NASA Astrophysics Data System (ADS)
Salas-Saavedra, Marcos; Dechnik, Belinda; Webb, Gregory E.; Webster, Jody M.; Zhao, Jian-xin; Nothdurft, Luke D.; Clark, Tara R.; Graham, Trevor; Duce, Stephanie
2018-01-01
Many factors govern reef growth through time, but their relative contributions are commonly poorly known. A prime example is the degree to which modern reef morphology is controlled by contemporary hydrodynamic settings or antecedent topography. Fortunately, reefs record essential information for interpreting palaeoclimate and palaeoenvironment within their structure as they accrete in response to environmental change. Five new cores recovered from the margin of Heron Reef, southern Great Barrier Reef (GBR), provide new insights into Holocene reef development and relationships between Holocene reefs and Pleistocene antecedent topography, suggesting much more irregular underlying topography than expected based on the configuration of the overlying modern reef margin. Cores were recovered to depths of 30 m and 94 new 230Th ages document growth between 8408 ± 24 and 2222 ± 16 yrs. BP. One core penetrated Pleistocene basement at ∼15.3 m with Holocene reef growth initiated by ∼8.4 ka BP. However, 1.83 km west along the same smooth margin, four cores failed to penetrate Pleistocene basement at depths between 20 and 30 m, suggesting that the margin at this location overlies a karst valley, or alternatively, the antecedent platform does not extend there. A 48 m-long margin-perpendicular transect of three cores documents the filling of this topographic low, at least 30 m beneath the current reef top, with seaward lateral accretion at a rate of 34.3 m/ka. Cores indicate steady vertical and lateral accretion between 3.2 and 1.8 ka BP with no evidence of the hiatus in reef flat progradation seen in most other offshore reefs of the GBR at that time. These cores suggest that the relative protection afforded by the valley allowed for unconsolidated sediment to accumulate, enabling continuous progradation even when other areas of the reef flat appear to have 'turned off'. Additionally, the cores suggest that although reefs in the southern GBR clearly owe their location to Pleistocene antecedent topography, modern reef morphology at sea level primarily reflects the interaction of Holocene reef communities with contemporary hydrodynamics.
Smith, L.W.; Birkeland, C.
2007-01-01
Corals inhabiting shallow back reef habitats are often simultaneously exposed to elevated seawater temperatures and high irradiance levels, conditions known to cause coral bleaching. Water flow in many tropical back reef systems is tidally influenced, resulting in semi-diurnal or diurnal flow patterns. Controlled experiments were conducted to test effects of semi-diurnally intermittent water flow on photoinhibition and bleaching of the corals Porites lobata and P. cylindrica kept at elevated seawater temperatures and different irradiance levels. All coral colonies were collected from a shallow back reef pool on Ofu Island, American Samoa. In the high irradiance experiments, photoinhibition and bleaching were less for both species in the intermittent high-low flow treatment than in the constant low flow treatment. In the low irradiance experiments, there were no differences in photoinhibition or bleaching for either species between the flow treatments, despite continuously elevated seawater temperatures. These results suggest that intermittent flow associated with semi-diurnal tides, and low irradiances caused by turbidity or shading, may reduce photoinhibition and bleaching of back reef corals during warming events. ?? 2006 Elsevier B.V. All rights reserved.
Zapata, Fernando A; Rodríguez-Ramírez, Alberto; Caro-Zambrano, Carlos; Garzón-Ferreira, Jaime
2010-05-01
Colombian coral reefs, as other reefs worldwide, have deteriorated significantly during the last few decades due to both natural and anthropogenic disturbances. The National Monitoring System for Coral Reefs in Colombia (SIMAC) was established in 1998 to provide long-term data bases to assess the changes of Colombian coral reefs against perturbations and to identify the factors responsible for their decline or recovery. On the Pacific coast, data on coral and algal cover have been collected yearly during seven consecutive years (1998-2004) from 20 permanent transects in two sites at La Azufrada reef, Gorgona Island. Overall, coral cover was high (55.1%-65.7%) and algal cover low (28.8%-37.5%) and both exhibited significant changes among years, most notably on shallow areas. Differences between sites in both coral and algal cover were present since the study began and may be explained by differences in sedimentation stress derived from soil runoff. Differences between depths most likely stem from the effects of low tidal sub-aerial exposures. Particularly intense sub-aerial exposures occurred repeatedly during January-March, 2001 and accounted for a decrease in coral and an increase in algal cover on shallow depths observed later that year. Additionally, the shallow area on the Northern site seems to be negatively affected by the combined effect of sedimentation and low tidal exposure. However, a decrease in coral cover and an increase of algal cover since 2001 on deep areas at both sites remain unexplained. Comparisons with previous studies suggest that the reef at La Azufrada has been more resilient than other reefs in the Tropical Eastern Pacific (TEP), recovering pre-disturbance (1979) levels of coral cover within a 10 year period after the 1982-83 El Niño, which caused 85% mortality. Furthermore, the effects of the 1997-98 El Niño, indicated by the difference in overall live coral cover between 1998 and 1999, were minor (< 6% reduction). Despite recurrent natural disturbances, live coral cover in 2004 was as high as that existing before 1982 at La Azufrada, and one of the highest observed on healthy coral reefs in the TEP region.
NASA Astrophysics Data System (ADS)
Jorry, S.; Courgeon, S.; Camoin, G.; BouDagher-Fadel, M.; Jouet, G.; Poli, E.
2016-12-01
Although the long-term evolution of isolated shallow-water carbonate platforms leading to guyot and atoll formation has been the subject of numerous studies during the last decades, their driving processes are still the subject of active debates. The Mozambique Channel (SW Indian Ocean) is characterized by several modern carbonate platforms, ranging from 11°S to 21°S in latitudes. These platforms are characterized by reef margins mostly developed on windward sides with internal parts blanketed by sand dunes and numerous reef pinnacles, or by Darwin-type atolls with enclosed lagoons. Dredge sampling, underwater observations and geophysical acquisitions carried out during recent oceanographic cruises (PTOLEMEE and PAMELA-MOZ1) along slopes and basins adjacent to modern platforms led to the discovery of flat-top seamounts corresponding to shallow-water carbonate platforms which grew on top of submarine volcanoes. Microfacies and datings (biostratigraphy analysis coupled with Strontium isotopic stratigraphy) indicate that those carbonate platforms, characterized by fauna assemblages dominated by corals, Halimeda and red algaes, and larger benthic foraminifera, developed in tropical settings from Early Miocene to Late Miocene/Early Pliocene times. Submarine volcanism, karstification and pedogenesis evidences on top of the drowned edifices demonstrate that tectonic deformation, rejuvenated volcanic activity and subaerial exposure occurred after and potentially during the Neogene platform aggradation. Growth of modern platforms on top of submerged carbonate terraces is explained by topographic irregularities inherited from volcanism, tectonic and/or subaerial exposure conditions which could have produced favorable substratum for carbonates which grew during the Plio-Quaternary, up to reach modern sea-level. This research is co-funded by TOTAL and IFREMER as part of the PAMELA (Passive Margin Exploration Laboratories) scientific project.
Pawlik, Joseph R; Loh, Tse-Lynn; McMurray, Steven E; Finelli, Christopher M
2013-01-01
Caribbean coral reefs have been transformed in the past few decades with the demise of reef-building corals, and sponges are now the dominant habitat-forming organisms on most reefs. Competing hypotheses propose that sponge communities are controlled primarily by predatory fishes (top-down) or by the availability of picoplankton to suspension-feeding sponges (bottom-up). We tested these hypotheses on Conch Reef, off Key Largo, Florida, by placing sponges inside and outside predator-excluding cages at sites with less and more planktonic food availability (15 m vs. 30 m depth). There was no evidence of a bottom-up effect on the growth of any of 5 sponge species, and 2 of 5 species grew more when caged at the shallow site with lower food abundance. There was, however, a strong effect of predation by fishes on sponge species that lacked chemical defenses. Sponges with chemical defenses grew slower than undefended species, demonstrating a resource trade-off between growth and the production of secondary metabolites. Surveys of the benthic community on Conch Reef similarly did not support a bottom-up effect, with higher sponge cover at the shallower depth. We conclude that the structure of sponge communities on Caribbean coral reefs is primarily top-down, and predict that removal of sponge predators by overfishing will shift communities toward faster-growing, undefended species that better compete for space with threatened reef-building corals.
Pawlik, Joseph R.; Loh, Tse-Lynn; McMurray, Steven E.; Finelli, Christopher M.
2013-01-01
Caribbean coral reefs have been transformed in the past few decades with the demise of reef-building corals, and sponges are now the dominant habitat-forming organisms on most reefs. Competing hypotheses propose that sponge communities are controlled primarily by predatory fishes (top-down) or by the availability of picoplankton to suspension-feeding sponges (bottom-up). We tested these hypotheses on Conch Reef, off Key Largo, Florida, by placing sponges inside and outside predator-excluding cages at sites with less and more planktonic food availability (15 m vs. 30 m depth). There was no evidence of a bottom-up effect on the growth of any of 5 sponge species, and 2 of 5 species grew more when caged at the shallow site with lower food abundance. There was, however, a strong effect of predation by fishes on sponge species that lacked chemical defenses. Sponges with chemical defenses grew slower than undefended species, demonstrating a resource trade-off between growth and the production of secondary metabolites. Surveys of the benthic community on Conch Reef similarly did not support a bottom-up effect, with higher sponge cover at the shallower depth. We conclude that the structure of sponge communities on Caribbean coral reefs is primarily top-down, and predict that removal of sponge predators by overfishing will shift communities toward faster-growing, undefended species that better compete for space with threatened reef-building corals. PMID:23667492
Grossman, E.E.; Barnhardt, W.A.; Hart, P.; Richmond, B.M.; Field, M.E.
2006-01-01
Paired analyses of drill cores and high-resolution seismic reflection data show that development of Holocene framework reefs on the Oahu (Hawaii) shelf is limited to settings of low wave energy and to the period 8000 to 3000 yr BP. A prominent bounding surface that is mapped across much of the Oahu shelf is an erosion surface cut into Marine Isotope Stages 5 and 7 limestones that show extensive loss of primary porosity, aragonite, and MgCO3 owing to meteoric and vadose-zone diagenesis. This acoustic reflector is found exposed at the surface where wave energy is high or in the shallow subsurface below Holocene reef and sand sheet deposits where energy is low. Ship-towed video along 30 km of the shelf reveals a steady decrease in limestone accumulation from offshore of Honolulu southeast to Koko Head where the seafloor is characterized by volcanic pavement and/or thin sand deposits. This may reflect the build-up of late Pleistocene volcanics associated with the Hanauma Bay eruption (30,000-7000 yr BP) that now comprise the substrate in depths shallow enough to limit reef accretion. The absence of significant Holocene reef build-up on the south Oahu shelf is consistent with observations from north-facing coasts that lack Holocene reefs, indicating that Holocene reef formation in Hawaii is complex and patchy.
Falter, James L.; Lowe, Ryan J.; Zhang, Zhenlin; McCulloch, Malcolm
2013-01-01
We present a three-dimensional hydrodynamic-biogeochemical model of a wave-driven coral-reef lagoon system using the circulation model ROMS (Regional Ocean Modeling System) coupled with the wave transformation model SWAN (Simulating WAves Nearshore). Simulations were used to explore the sensitivity of water column carbonate chemistry across the reef system to variations in benthic reef metabolism, wave forcing, sea level, and system geomorphology. Our results show that changes in reef-water carbonate chemistry depend primarily on the ratio of benthic metabolism to the square root of the onshore wave energy flux as well as on the length and depth of the reef flat; however, they are only weakly dependent on channel geometry and the total frictional resistance of the reef system. Diurnal variations in pCO2, pH, and aragonite saturation state (Ωar) are primarily dependent on changes in net production and are relatively insensitive to changes in net calcification; however, net changes in pCO2, pH, and Ωar are more strongly influenced by net calcification when averaged over 24 hours. We also demonstrate that a relatively simple one-dimensional analytical model can provide a good description of the functional dependence of reef-water carbonate chemistry on benthic metabolism, wave forcing, sea level, reef flat morphology, and total system frictional resistance. Importantly, our results indicate that any long-term (weeks to months) net offsets in reef-water pCO2 relative to offshore values should be modest for reef systems with narrow and/or deep lagoons. Thus, the long-term evolution of water column pCO2 in many reef environments remains intimately connected to the regional-scale oceanography of offshore waters and hence directly influenced by rapid anthropogenically driven increases in pCO2. PMID:23326411
Falter, James L; Lowe, Ryan J; Zhang, Zhenlin; McCulloch, Malcolm
2013-01-01
We present a three-dimensional hydrodynamic-biogeochemical model of a wave-driven coral-reef lagoon system using the circulation model ROMS (Regional Ocean Modeling System) coupled with the wave transformation model SWAN (Simulating WAves Nearshore). Simulations were used to explore the sensitivity of water column carbonate chemistry across the reef system to variations in benthic reef metabolism, wave forcing, sea level, and system geomorphology. Our results show that changes in reef-water carbonate chemistry depend primarily on the ratio of benthic metabolism to the square root of the onshore wave energy flux as well as on the length and depth of the reef flat; however, they are only weakly dependent on channel geometry and the total frictional resistance of the reef system. Diurnal variations in pCO(2), pH, and aragonite saturation state (Ω(ar)) are primarily dependent on changes in net production and are relatively insensitive to changes in net calcification; however, net changes in pCO(2), pH, and Ω(ar) are more strongly influenced by net calcification when averaged over 24 hours. We also demonstrate that a relatively simple one-dimensional analytical model can provide a good description of the functional dependence of reef-water carbonate chemistry on benthic metabolism, wave forcing, sea level, reef flat morphology, and total system frictional resistance. Importantly, our results indicate that any long-term (weeks to months) net offsets in reef-water pCO(2) relative to offshore values should be modest for reef systems with narrow and/or deep lagoons. Thus, the long-term evolution of water column pCO(2) in many reef environments remains intimately connected to the regional-scale oceanography of offshore waters and hence directly influenced by rapid anthropogenically driven increases in pCO(2).
Observation of coral reefs on Ishigaki Island, Japan, using Landsat TM images and aerial photographs
DOE Office of Scientific and Technical Information (OSTI.GOV)
Matsunaga, Tsuneo; Kayanne, Hajime
1997-06-01
Ishigaki Island is located at the southwestern end of Japanese Islands and famous for its fringing coral reefs. More than twenty LANDSAT TM images in twelve years and aerial photographs taken on 1977 and 1994 were used to survey two shallow reefs on this island, Shiraho and Kabira. Intensive field surveys were also conducted in 1995. All satellite images of Shiraho were geometrically corrected and overlaid to construct a multi-date satellite data set. The effects of solar elevation and tide on satellite imagery were studied with this data set. The comparison of aerial and satellite images indicated that significant changesmore » occurred between 1977 and 1984 in Kabira: rapid formation in the western part and decrease in the eastern part of dark patches. The field surveys revealed that newly formed dark patches in the west contain young corals. These results suggest that remote sensing is useful for not only mapping but also monitoring of shallow coral reefs.« less
NASA Astrophysics Data System (ADS)
von Reumont, J.; Hetzinger, S.; Garbe-Schönberg, D.; Manfrino, C.; Dullo, W.-Chr.
2016-03-01
The rising temperature of the world's oceans is affecting coral reef ecosystems by increasing the frequency and severity of bleaching and mortality events. The susceptibility of corals to temperature stress varies on local and regional scales. Insights into potential controlling parameters are hampered by a lack of long term in situ data in most coral reef environments and sea surface temperature (SST) products often do not resolve reef-scale variations. Here we use 42 years (1970-2012) of coral Sr/Ca data to reconstruct seasonal- to decadal-scale SST variations in two adjacent but distinct reef environments at Little Cayman, Cayman Islands. Our results indicate that two massive Diploria strigosa corals growing in the lagoon and in the fore reef responded differently to past warming events. Coral Sr/Ca data from the shallow lagoon successfully record high summer temperatures confirmed by in situ observations (>33°C). Surprisingly, coral Sr/Ca from the deeper fore reef is strongly affected by thermal stress events, although seasonal temperature extremes and mean SSTs at this site are reduced compared to the lagoon. The shallow lagoon coral showed decadal variations in Sr/Ca, supposedly related to the modulation of lagoonal temperature through varying tidal water exchange, influenced by the 18.6 year lunar nodal cycle. Our results show that reef-scale SST variability can be much larger than suggested by satellite SST measurements. Thus, using coral SST proxy records from different reef zones combined with in situ observations will improve conservation programs that are developed to monitor and predict potential thermal stress on coral reefs.
Spectral Diversity and Regulation of Coral Fluorescence in a Mesophotic Reef Habitat in the Red Sea
Eyal, Gal; Wiedenmann, Jörg; Grinblat, Mila; D’Angelo, Cecilia; Kramarsky-Winter, Esti; Treibitz, Tali; Ben-Zvi, Or; Shaked, Yonathan; Smith, Tyler B.; Harii, Saki; Denis, Vianney; Noyes, Tim; Tamir, Raz; Loya, Yossi
2015-01-01
The phenomenon of coral fluorescence in mesophotic reefs, although well described for shallow waters, remains largely unstudied. We found that representatives of many scleractinian species are brightly fluorescent at depths of 50–60 m at the Interuniversity Institute for Marine Sciences (IUI) reef in Eilat, Israel. Some of these fluorescent species have distribution maxima at mesophotic depths (40–100 m). Several individuals from these depths displayed yellow or orange-red fluorescence, the latter being essentially absent in corals from the shallowest parts of this reef. We demonstrate experimentally that in some cases the production of fluorescent pigments is independent of the exposure to light; while in others, the fluorescence signature is altered or lost when the animals are kept in darkness. Furthermore, we show that green-to-red photoconversion of fluorescent pigments mediated by short-wavelength light can occur also at depths where ultraviolet wavelengths are absent from the underwater light field. Intraspecific colour polymorphisms regarding the colour of the tissue fluorescence, common among shallow water corals, were also observed for mesophotic species. Our results suggest that fluorescent pigments in mesophotic reefs fulfil a distinct biological function and offer promising application potential for coral-reef monitoring and biomedical imaging. PMID:26107282
The Habitat of Yellow Mouth Turban Turbo Chrysostomus, Linnaeus, 1758
NASA Astrophysics Data System (ADS)
Soekendarsi, E.
2018-03-01
In general, yellow mouth turban snail Turbo chrysostomus L. 1758 was found in intertidal and coral reef area. This animal is active at night (nocturnal) and settles the coral reef-flats area to do its activity as substrate. In doing its activity, yellow mouth turban snail can be found in the depth of 50 cm until 4 m of tidal area. The adult yellow mouth turban snails are found in great number at intertidal area’s border and at coastal area of coral reef-flats. Methodology that was used in this study is visual analysis (descriptive method), and divided into two parameters which were observed, i.e. abiotic and biotic. Abiotic components that were measured are; Oxygen (ppm), pH, Water Temperature (°C), Salinity (ppm), Ammonia (mg/L), Nitrate (mg/L), Nitrite (mg/L), and Calsium Carbonat (mg/L).Whereas, biotic components that were measured are; substrates, seaweeds, other organisms, and epilithon. The observation’s result of yellow mouth turban snail’s environmental condition showed: abiotic condition of the waters consists of oxygen 3-5 ppm, seawater pH 7-8, seawater temperature 23-26°C, and the salinity of 32-33 ppm. The Habitat of yellow mouth turban snail settled the reef-flats area that is overgrown covered by seaweed Sargassum sp. as the place to do its activity.
Longo, G. O.; Morais, R. A.; Martins, C. D. L.; Mendes, T. C.; Aued, A. W.; Cândido, D. V.; de Oliveira, J. C.; Nunes, L. T.; Fontoura, L.; Sissini, M. N.; Teschima, M. M.; Silva, M. B.; Ramlov, F.; Gouvea, L. P.; Ferreira, C. E. L.; Segal, B.; Horta, P. A.; Floeter, S. R.
2015-01-01
The Southwestern Atlantic harbors unique and relatively understudied reef systems, including the only atoll in South Atlantic: Rocas atoll. Located 230 km off the NE Brazilian coast, Rocas is formed by coralline red algae and vermetid mollusks, and is potentially one of the most “pristine” areas in Southwestern Atlantic. We provide the first comprehensive and integrative description of the fish and benthic communities inhabiting different shallow reef habitats of Rocas. We studied two contrasting tide pool habitats: open pools, which communicate with the open ocean even during low tides, thus more exposed to wave action; and closed pools, which remain isolated during low tide and are comparatively less exposed. Reef fish assemblages, benthic cover, algal turfs and fish feeding pressure on the benthos remarkably varied between open and closed pools. The planktivore Thalassoma noronhanum was the most abundant fish species in both habitats. In terms of biomass, the lemon shark Negaprion brevirostris and the omnivore Melichtys niger were dominant in open pools, while herbivorous fishes (mainly Acanthurus spp.) prevailed in closed pools. Overall benthic cover was dominated by algal turfs, composed of articulated calcareous algae in open pools and non-calcified algae in closed pools. Feeding pressure was dominated by acanthurids and was 10-fold lower in open pools than in closed pools. Besides different wave exposure conditions, such pattern could also be related to the presence of sharks in open pools, prompting herbivorous fish to feed more in closed pools. This might indirectly affect the structure of reef fish assemblages and benthic communities. The macroalgae Digenea simplex, which is uncommon in closed pools and abundant in the reef flat, was highly preferred in herbivory assays, indicating that herbivory by fishes might be shaping this distribution pattern. The variations in benthic and reef fish communities, and feeding pressure on the benthos between open and closed pools suggest that the dynamics in open pools is mostly driven by physical factors and the tolerance of organisms to harsh conditions, while in closed pools direct and indirect effects of species interactions also play an important role. Understanding the mechanisms shaping biological communities and how they scale-up to ecosystem functioning is particularly important on isolated near-pristine systems where natural processes can still be studied under limited human impact. PMID:26061735
Longo, G O; Morais, R A; Martins, C D L; Mendes, T C; Aued, A W; Cândido, D V; de Oliveira, J C; Nunes, L T; Fontoura, L; Sissini, M N; Teschima, M M; Silva, M B; Ramlov, F; Gouvea, L P; Ferreira, C E L; Segal, B; Horta, P A; Floeter, S R
2015-01-01
The Southwestern Atlantic harbors unique and relatively understudied reef systems, including the only atoll in South Atlantic: Rocas atoll. Located 230 km off the NE Brazilian coast, Rocas is formed by coralline red algae and vermetid mollusks, and is potentially one of the most "pristine" areas in Southwestern Atlantic. We provide the first comprehensive and integrative description of the fish and benthic communities inhabiting different shallow reef habitats of Rocas. We studied two contrasting tide pool habitats: open pools, which communicate with the open ocean even during low tides, thus more exposed to wave action; and closed pools, which remain isolated during low tide and are comparatively less exposed. Reef fish assemblages, benthic cover, algal turfs and fish feeding pressure on the benthos remarkably varied between open and closed pools. The planktivore Thalassoma noronhanum was the most abundant fish species in both habitats. In terms of biomass, the lemon shark Negaprion brevirostris and the omnivore Melichtys niger were dominant in open pools, while herbivorous fishes (mainly Acanthurus spp.) prevailed in closed pools. Overall benthic cover was dominated by algal turfs, composed of articulated calcareous algae in open pools and non-calcified algae in closed pools. Feeding pressure was dominated by acanthurids and was 10-fold lower in open pools than in closed pools. Besides different wave exposure conditions, such pattern could also be related to the presence of sharks in open pools, prompting herbivorous fish to feed more in closed pools. This might indirectly affect the structure of reef fish assemblages and benthic communities. The macroalgae Digenea simplex, which is uncommon in closed pools and abundant in the reef flat, was highly preferred in herbivory assays, indicating that herbivory by fishes might be shaping this distribution pattern. The variations in benthic and reef fish communities, and feeding pressure on the benthos between open and closed pools suggest that the dynamics in open pools is mostly driven by physical factors and the tolerance of organisms to harsh conditions, while in closed pools direct and indirect effects of species interactions also play an important role. Understanding the mechanisms shaping biological communities and how they scale-up to ecosystem functioning is particularly important on isolated near-pristine systems where natural processes can still be studied under limited human impact.
Chand, Prerna; Kamiya, Takahiro
2016-12-18
The genus Xestoleberis has a global distribution, and although they are predominant in shallow marine environments adapted to both sediment and algal habitats, only two species of this genus, Xestoleberis curta (Brady, 1866) and Xestoleberis variegata Brady, 1880, have previously been reported from the Fiji archipelago. Herein we report seven new species of the genus Xestoleberis from intertidal environments of fringing reef flats of the Fiji Islands: Xestoleberis becca n. sp., Xestoleberis concava n. sp., Xestoleberis gracilariaii n. sp., Xestoleberis marcula n. sp., Xestoleberis natuvuensis n. sp., Xestoleberis penna n. sp. and Xestoleberis petrosa n. sp. With the exception of X. becca n. sp., Xestoleberis species show restricted distribution within Fijian waters. The possible causes for their distribution patterns are suggested to be physical barriers imposed by the fast flowing Bligh Water currents, and islands separated by deep ocean waters.
Virus-host interactions and their roles in coral reef health and disease.
Thurber, Rebecca Vega; Payet, Jérôme P; Thurber, Andrew R; Correa, Adrienne M S
2017-04-01
Coral reefs occur in nutrient-poor shallow waters, constitute biodiversity and productivity hotspots, and are threatened by anthropogenic disturbance. This Review provides an introduction to coral reef virology and emphasizes the links between viruses, coral mortality and reef ecosystem decline. We describe the distinctive benthic-associated and water-column- associated viromes that are unique to coral reefs, which have received less attention than viruses in open-ocean systems. We hypothesize that viruses of bacteria and eukaryotes dynamically interact with their hosts in the water column and with scleractinian (stony) corals to influence microbial community dynamics, coral bleaching and disease, and reef biogeochemical cycling. Last, we outline how marine viruses are an integral part of the reef system and suggest that the influence of viruses on reef function is an essential component of these globally important environments.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Scott, R.W.; Fernandez-Mendiola, P.A.; Gili, E.
During the Early Cretaceous, coral-algal communities occupied deeper water habitats in the reef ecosystem, and rudist communities generally populated the shallow-water, carbonate-sand substrates. During the middle Cretaceous, however, coral-algal communities became less common, and Late Cretaceous reef communities consisted of both rudist-dominated and rudist-coral communities. In the Pyrenean basins and other basins in the Mediterranean, coral associations co-existed with rudists forming complex buildups at the shelf-edge. In some parts of these buildups corals were nearly as abundant as rudists; in some complex buildups large coral colonies encrusted the rudists. Behind the shelf margin cylindrical, elevator rudists dominated the lenticular thicketsmore » that were interspersed with carbonate sands. Global changes in oceanic conditions, such as marine productivity and oxygen content, may have stressed the deeper coral-algal reef communities leaving rudists as the major shallow reef biota in Caribbean reefs. However, the co-occurrence of corals with rudists in these Pyrenean complex buildups suggests that corals were able to compete with rudists for resources. The corals in the complex buildups generally belong to genera different from those in the coral-algal communities. Perhaps this ecological stress in the mid-Cretaceous resulted in the evolution of new coral taxa.« less
Storlazzi, Curt D.; Field, Michael E.; Cheriton, Olivia M.; Presto, M.K.; Logan, J.B.
2013-01-01
Hydrodynamics and water-column properties were investigated off west-central Guam from July 2007 through January 2008. Rapid fluctuations, on time scales of 10s of min, in currents, temperature, salinity, and acoustic backscatter were observed to occur on sub-diurnal frequencies along more than 2 km of the fore reef but not at the reef crest. During periods characterized by higher sea-surface temperatures (SSTs), weaker wind forcing, smaller ocean surface waves, and greater thermal stratification, rapid decreases in temperature and concurrent rapid increases in salinity and acoustic backscatter coincided with onshore-directed near-bed currents and offshore-directed near-surface currents. During the study, these cool-water events, on average, lasted 2.3 h and decreased the water temperature 0.57 °C, increased the salinity 0.25 PSU, and were two orders of magnitude more prevalent during the summer season than the winter. During the summer season when the average satellite-derived SST anomaly was +0.63 °C, these cooling events, on average, lowered the temperature 1.14 °C along the fore reef but only 0.11 °C along the reef crest. The rapid shifts appear to be the result of internal tidal bores pumping cooler, more saline, higher-backscatter oceanic water from depths >50 m over cross-shore distances of 100 s of m into the warmer, less saline waters at depths of 20 m and shallower. Such internal bores appear to have the potential to buffer shallow coral reefs from predicted increases in SSTs by bringing cool, offshore water to shallow coral environments. These cooling internal bores may also provide additional benefits to offset stress such as supplying food to thermally stressed corals, reducing stress due to ultraviolet radiation and/or low salinity, and delivering coral larvae from deeper reefs not impacted by surface thermal stress. Thus, the presence of internal bores might be an important factor locally in the resilience of select coral reefs facing increased thermal stress.
NASA Astrophysics Data System (ADS)
Storlazzi, C. D.; Field, M. E.; Cheriton, O. M.; Presto, M. K.; Logan, J. B.
2013-12-01
Hydrodynamics and water-column properties were investigated off west-central Guam from July 2007 through January 2008. Rapid fluctuations, on time scales of 10s of min, in currents, temperature, salinity, and acoustic backscatter were observed to occur on sub-diurnal frequencies along more than 2 km of the fore reef but not at the reef crest. During periods characterized by higher sea-surface temperatures (SSTs), weaker wind forcing, smaller ocean surface waves, and greater thermal stratification, rapid decreases in temperature and concurrent rapid increases in salinity and acoustic backscatter coincided with onshore-directed near-bed currents and offshore-directed near-surface currents. During the study, these cool-water events, on average, lasted 2.3 h and decreased the water temperature 0.57 °C, increased the salinity 0.25 PSU, and were two orders of magnitude more prevalent during the summer season than the winter. During the summer season when the average satellite-derived SST anomaly was +0.63 °C, these cooling events, on average, lowered the temperature 1.14 °C along the fore reef but only 0.11 °C along the reef crest. The rapid shifts appear to be the result of internal tidal bores pumping cooler, more saline, higher-backscatter oceanic water from depths >50 m over cross-shore distances of 100 s of m into the warmer, less saline waters at depths of 20 m and shallower. Such internal bores appear to have the potential to buffer shallow coral reefs from predicted increases in SSTs by bringing cool, offshore water to shallow coral environments. These cooling internal bores may also provide additional benefits to offset stress such as supplying food to thermally stressed corals, reducing stress due to ultraviolet radiation and/or low salinity, and delivering coral larvae from deeper reefs not impacted by surface thermal stress. Thus, the presence of internal bores might be an important factor locally in the resilience of select coral reefs facing increased thermal stress.
Evaluating Environmental Effects of Dredged Material Management Alternatives: A Technical Framework
1992-11-01
fluctuating flows and tamperatures would be difficult. Biological processes such as nitrification, nutrient catabolism, and photosynthesis are important...communities as tidal flats, seagrass meadows, oyster beds, clam flats, fishing reefs, and freshwater aquatic plant establishment. The bottom of many
Diverse Staghorn Coral Fauna on the Mesophotic Reefs of North-East Australia
Muir, Paul; Wallace, Carden; Bridge, Tom C. L.; Bongaerts, Pim
2015-01-01
Concern for the future of reef-building corals in conditions of rising sea temperatures combined with recent technological advances has led to a renewed interest in documenting the biodiversity of mesophotic coral ecosystems (MCEs) and their potential to provide lineage continuation for coral taxa. Here, we examine species diversity of staghorn corals (genera Acropora and Isopora) in the mesophotic zone (below 30 m depth) of the Great Barrier Reef and western Coral Sea. Using specimen-based records we found 38 staghorn species in the mesophotic zone, including three species newly recorded for Australia and five species that only occurred below 30 m. Staghorn corals became scarce at depths below 50 m but were found growing in-situ to 73 m depth. Of the 76 staghorn coral species recorded for shallow waters (depth ≤ 30 m) in north-east Australia, 21% extended to mesophotic depths with a further 22% recorded only rarely to 40 m depth. Extending into the mesophotic zone provided shallow water species no significant advantage in terms of their estimated global range-size relative to species restricted to shallow waters (means 86.2 X 106 km2 and 85.7 X 106 km2 respectively, p = 0.98). We found four staghorn coral species at mesophotic depths on the Great Barrier Reef that were previously considered rare and endangered on the basis of their limited distribution in central Indonesia and the far western Pacific. Colonies below 40 m depth showed laterally flattened branches, light and fragile skeletal structure and increased spacing between branches and corallites. The morphological changes are discussed in relation to decreased light, water movement and down-welling coarse sediments. Staghorn corals have long been regarded as typical shallow-water genera, but here we demonstrate the significant contribution of this group to the region’s mesophotic fauna and the importance of considering MCEs in reef biodiversity estimates and management. PMID:25714341
Diverse staghorn coral fauna on the mesophotic reefs of north-east Australia.
Muir, Paul; Wallace, Carden; Bridge, Tom C L; Bongaerts, Pim
2015-01-01
Concern for the future of reef-building corals in conditions of rising sea temperatures combined with recent technological advances has led to a renewed interest in documenting the biodiversity of mesophotic coral ecosystems (MCEs) and their potential to provide lineage continuation for coral taxa. Here, we examine species diversity of staghorn corals (genera Acropora and Isopora) in the mesophotic zone (below 30 m depth) of the Great Barrier Reef and western Coral Sea. Using specimen-based records we found 38 staghorn species in the mesophotic zone, including three species newly recorded for Australia and five species that only occurred below 30 m. Staghorn corals became scarce at depths below 50 m but were found growing in-situ to 73 m depth. Of the 76 staghorn coral species recorded for shallow waters (depth ≤ 30 m) in north-east Australia, 21% extended to mesophotic depths with a further 22% recorded only rarely to 40 m depth. Extending into the mesophotic zone provided shallow water species no significant advantage in terms of their estimated global range-size relative to species restricted to shallow waters (means 86.2 X 10(6) km2 and 85.7 X 10(6) km2 respectively, p = 0.98). We found four staghorn coral species at mesophotic depths on the Great Barrier Reef that were previously considered rare and endangered on the basis of their limited distribution in central Indonesia and the far western Pacific. Colonies below 40 m depth showed laterally flattened branches, light and fragile skeletal structure and increased spacing between branches and corallites. The morphological changes are discussed in relation to decreased light, water movement and down-welling coarse sediments. Staghorn corals have long been regarded as typical shallow-water genera, but here we demonstrate the significant contribution of this group to the region's mesophotic fauna and the importance of considering MCEs in reef biodiversity estimates and management.
Surface area and topographical complexity are fundamental attributes of shallow tropical coral reefs and can be used to estimate habitat for fish and invertebrates. This study presents empirical methods for estimating surface area provided by sponges and gorgonians in the Central...
INFLUENCE OF LIGHT ON BACTERIOPLANKTON PRODUCTION AND RESPIRATION IN A SUBTROPICAL CORAL REEF
The influence of sunlight on bacterioplankton production (14C-leucine (Leu) and 3H-thymidine (TdR) incorporation; changes in cell abundances) and O2 consumption was investigated in a shallow subtropical coral reef located near Key Largo, Florida. Quartz (light) and opaque (dark) ...
Edinger, Evan N; Azmy, Karem; Diegor, Wilfredo; Siregar, P Raja
2008-09-01
Shallow marine sediments and fringing coral reefs of the Buyat-Ratototok district of North Sulawesi, Indonesia, are affected by submarine disposal of tailings from industrial gold mining and by small-scale gold mining using mercury amalgamation. Between-site variation in heavy metal concentrations in shallow marine sediments was partially reflected by trace element concentrations in reef coral skeletons from adjacent reefs. Corals skeletons recorded silicon, manganese, iron, copper, chromium, cobalt, antimony, thallium, and lead in different concentrations according to proximity to sources, but arsenic concentrations in corals were not significantly different among sites. Temporal analysis found that peak concentrations of arsenic and chromium generally coincided with peak concentrations of silica and/or copper, suggesting that most trace elements in the coral skeleton were incorporated into detrital siliciclastic sediments, rather than impurities within skeletal aragonite.
Ocean Exploration and Drug Discovery in the Twilight Zone
NASA Astrophysics Data System (ADS)
Slattery, M.; Gochfeld, D.; Lesser, M.
2006-12-01
The transition between shallow coral reef communities and aphotic deep-water communities in the tropics (= 50m to 150m) is often called the "twilight zone", and it is characterized by reduced light and consequently photosynthesis. But while reef-building coral diversity decreases with increasing depth, many sponges, soft corals, and even low-light acclimatized primary producers are abundant. Thus, this is a zone of potentially incredible ecological significance, unique biodiversity, and unusual physiological adaptations where one might expect to find important natural products that might be used as pharmaceuticals or other biotechnology products. This is also one of the least studied ecosystems in the marine environment since it exceeds the limits of traditional SCUBA, but is considered too shallow to warrant costly submersible time. We have examined the Twilight Zone off the Exuma Sound Shelf, Bahamas, over the last three years using technical mixed gas diving. Biodiversity data indicate a rich sponge community consisting of 92 species and approximately 15% endemism. Sponge diversity and density increased with depth as picoplankton food abundance increased. Sponges were also larger and faster growing at depth than in shallow-water conspecific populations. This unique biodiversity represents an important biotechnological resource as well; two thirds of the sponges exhibit promising biomedical activity compared to less than one third of the shallow reef sponge species. In addition, 5 of 7 species that co-occur at shallow and deep sites exhibited greater bioactivity due to quantitative and qualitative differences in the natural products produced in each depth range.
Tenggardjaja, Kimberly A; Bowen, Brian W; Bernardi, Giacomo
2014-01-01
Understanding vertical and horizontal connectivity is a major priority in research on mesophotic coral ecosystems (30-150 m). However, horizontal connectivity has been the focus of few studies, and data on vertical connectivity are limited to sessile benthic mesophotic organisms. Here we present patterns of vertical and horizontal connectivity in the Hawaiian Islands-Johnston Atoll endemic threespot damselfish, Chromis verater, based on 319 shallow specimens and 153 deep specimens. The mtDNA markers cytochrome b and control region were sequenced to analyze genetic structure: 1) between shallow (< 30 m) and mesophotic (30-150 m) populations and 2) across the species' geographic range. Additionally, the nuclear markers rhodopsin and internal transcribed spacer 2 of ribosomal DNA were sequenced to assess connectivity between shallow and mesophotic populations. There was no significant genetic differentiation by depth, indicating high levels of vertical connectivity between shallow and deep aggregates of C. verater. Consequently, shallow and deep samples were combined by location for analyses of horizontal connectivity. We detected low but significant population structure across the Hawaiian Archipelago (overall cytochrome b: ΦST = 0.009, P = 0.020; control region: ΦST = 0.012, P = 0.009) and a larger break between the archipelago and Johnston Atoll (cytochrome b: ΦST = 0.068, P < 0.001; control region: ΦST = 0.116, P < 0.001). The population structure within the archipelago was driven by samples from the island of Hawaii at the southeast end of the chain and Lisianski in the middle of the archipelago. The lack of vertical genetic structure supports the refugia hypothesis that deep reefs may constitute a population reservoir for species depleted in shallow reef habitats. These findings represent the first connectivity study on a mobile organism that spans shallow and mesophotic depths and provide a reference point for future connectivity studies on mesophotic fishes.
Tenggardjaja, Kimberly A.; Bowen, Brian W.; Bernardi, Giacomo
2014-01-01
Understanding vertical and horizontal connectivity is a major priority in research on mesophotic coral ecosystems (30–150 m). However, horizontal connectivity has been the focus of few studies, and data on vertical connectivity are limited to sessile benthic mesophotic organisms. Here we present patterns of vertical and horizontal connectivity in the Hawaiian Islands-Johnston Atoll endemic threespot damselfish, Chromis verater, based on 319 shallow specimens and 153 deep specimens. The mtDNA markers cytochrome b and control region were sequenced to analyze genetic structure: 1) between shallow (<30 m) and mesophotic (30–150 m) populations and 2) across the species' geographic range. Additionally, the nuclear markers rhodopsin and internal transcribed spacer 2 of ribosomal DNA were sequenced to assess connectivity between shallow and mesophotic populations. There was no significant genetic differentiation by depth, indicating high levels of vertical connectivity between shallow and deep aggregates of C. verater. Consequently, shallow and deep samples were combined by location for analyses of horizontal connectivity. We detected low but significant population structure across the Hawaiian Archipelago (overall cytochrome b: ΦST = 0.009, P = 0.020; control region: ΦST = 0.012, P = 0.009) and a larger break between the archipelago and Johnston Atoll (cytochrome b: ΦST = 0.068, P<0.001; control region: ΦST = 0.116, P<0.001). The population structure within the archipelago was driven by samples from the island of Hawaii at the southeast end of the chain and Lisianski in the middle of the archipelago. The lack of vertical genetic structure supports the refugia hypothesis that deep reefs may constitute a population reservoir for species depleted in shallow reef habitats. These findings represent the first connectivity study on a mobile organism that spans shallow and mesophotic depths and provide a reference point for future connectivity studies on mesophotic fishes. PMID:25517964
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kayanne, Hajime; Suzuki, Atsushi; Saito, Hiroshi
Coral reefs are considered to be a source of atmospheric carbon dioxide because of their high calcium carbonate production and low net primary production. This was tested by direct measurement of diurnal changes in the partial pressure of carbon dioxide (P{sub CO2}) in reef waters during two 3-day periods, one in March 1993 and one in March 1994, on Shiraho reef of the Ryukyu Islands, Japan. Although the P{sub CO2} values in reef waters exhibited large diurnal changes ranging from 160 to 520 microatmospheres, they indicate that the reef flat area is a net sink for atmospheric carbon dioxide. Thismore » suggests that the net organic production rate of the reef community exceeded its calcium carbonate production rate during the observation periods. 16 refs., 2 figs., 1 tab.« less
Final Environmental Assessment for Minuteman III Modification
2004-12-30
the ocean floor. FONSI-3 At USAKA, target sites for test RVs are located in the deep ocean area east of the Kwajalein reef or in the vicinity...an RV impacts directly on Illeginni Island or in the shallow coral reefs of Kwajalein Atoll, a crater will form. Post-test debris recovery and... coral reef habitat. The USAF has projected that approximately four to five RVs will impact at Illeginni over the next 20 years. The overall effects
O2-MAVS: an Instrument for Measuring Oxygen Flux
2010-06-01
al. (2007), “ Coral reefs under rapid climate change and ocean acidification ,” Science 318:1737-1742 [20] K.R.N. Anthony, D.I. Kline, S. Dove, and...O. Hoegh-Guldberg (2008), “ Ocean acidification causes bleaching and productivity loss in coral reef builders,” Proc. Nat. Acad. of Sci. 105:doi...deployments were made on shallow, warm-water coral reefs in La Parguera, Puerto Rico. Time series of net production obtained using the boundary
NASA Astrophysics Data System (ADS)
Zuschin, M.; Hohenegger, J.; Steininger, F.
2001-09-01
Information on spatial variability and distribution patterns of organisms in coral reef environments is necessary to evaluate the increasing anthropogenic disturbance of marine environments (Richmond 1993; Wilkinson 1993; Dayton 1994). Therefore different types of subtidal, reef-associated hard substrata (reef flats, reef slopes, coral carpets, coral patches, rock grounds), each with different coral associations, were investigated to determine the distribution pattern of molluscs and their life habits (feeding strategies and substrate relations). The molluscs were strongly dominated by taxa with distinct relations to corals, and five assemblages were differentiated. The Dendropoma maxima assemblage on reef flats is a discrete entity, strongly dominated by this encrusting and suspension-feeding gastropod. All other assemblages are arranged along a substrate gradient of changing coral associations and potential molluscan habitats. The Coralliophila neritoidea- Barbatia foliata assemblage depends on the presence of Porites and shows a dominance of gastropods feeding on corals and of bivalves associated with living corals. The Chamoidea- Cerithium spp. assemblage on rock grounds is strongly dominated by encrusting bivalves. The Drupella cornus-Pteriidae assemblage occurs on Millepora- Acropora reef slopes and is strongly dominated by bivalves associated with living corals. The Barbatia setigera- Ctenoides annulata assemblage includes a broad variety of taxa, molluscan life habits and bottom types, but occurs mainly on faviid carpets and is transitional among the other three assemblages. A predicted degradation of coral coverage to rock bottoms due to increasing eutrophication and physical damage in the study area (Riegl and Piller 2000) will result in a loss of coral-associated molluscs in favor of bivalve crevice dwellers in dead coral heads and of encrusters on dead hard substrata.
Goodbody-Gringley, Gretchen; Waletich, Justin
2018-04-02
Scleractinian corals have global ecological, structural, social, and economic importance that is disproportionately large relative to their areal extent. These reef building corals form the architectural framework for shallow water tropical reef systems, supporting the most productive and biologically diverse marine ecosystems on Earth (Veron, 1995). Reef-building scleractinian species are dependent on photosynthetic products supplied by symbiotic zooxanthellae of the genus Symbiodinium, restricting their distribution to the photic zone (Stambler, 2011). This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.
UPWELLING EVENT IN THE DRY TORTUGAS DURING MAY 1998
A major macro-algae bloom was observed during a coral disease survey in May 1998 in the Dry Tortugas and New Grounds region. The significant algal growth was found only on the outer slope of reefs in depths greater than 25'; the algal bloom was not present on shallow reefs. The a...
Critical bifurcation of shallow microtidal landforms in tidal flats and salt marshes
Fagherazzi, Sergio; Carniello, Luca; D'Alpaos, Luigi; Defina, Andrea
2006-01-01
Shallow tidal basins are characterized by extensive tidal flats and salt marshes that lie within specific ranges of elevation, whereas intermediate elevations are less frequent in intertidal landscapes. Here we show that this bimodal distribution of elevations stems from the characteristics of wave-induced sediment resuspension and, in particular, from the reduction of maximum wave height caused by dissipative processes in shallow waters. The conceptual model presented herein is applied to the Venice Lagoon, Italy, and demonstrates that areas at intermediate elevations are inherently unstable and tend to become either tidal flats or salt marshes. PMID:16707583
NASA Astrophysics Data System (ADS)
Wickes, L.; Etnoyer, P. J.; Lauermann, A.; Rosen, D.
2016-02-01
Cold-water reefs are fragile, complex ecosystems that extend into the bathyal depths of the ocean, creating three dimensional structure and habitat for a diversity of deep-water invertebrates and fishes. The cold waters of the California Current support a diverse assemblage of these corals at relatively shallow depths close to shore. At these depths and locations the communities face a multitude of stressors, including low carbonate saturations, hypoxia, changing temperature, and coastal pollution. The current study employed ROV surveys (n=588, 2003-2015) to document the distribution of deep-sea corals in the Southern California Bight, including the first description of a widespread reef-building coral in the naturally acidified waters off the U.S. West Coast. We provide empirical evidence of species survival in the corrosive waters (Ωarag 0.67-1.86), but find loss of reef integrity. Recent publications have implied acclimation, resistance, and resilience of cold-water reef-building corals to ocean acidification, but results of this study indicate a cost to skeletal framework development with a subsequent loss of coral habitat. While ocean acidification and declines in oxygen are expected to further impinge on Lophelia at depth (𝑥̅=190 m), surface warming and coastal polution may affect shallower populations and mesophotic reef assemblages, resulting in a contraction of available coral habitat. Recent observations of die offs of gorgonians and antipatharians from surveys in shallow (50 m) and deep water (500 m) provide compelling evidence of ongoing ecosystem changes. Concurrent losses in habitat quality in deep and mesophotic waters suggest that corals may be "squeezed" into a more restricted depth range. New monitoring efforts aim to characterize the health and condition of deep corals with respect to gradients in carbonate chemistry, coastal pollution and changing temperatures, to assess vulnerability and both current and future habitat suitability.
2011-01-01
Background Divergent natural selection across environmental gradients has been acknowledged as a major driver of population and species divergence, however its role in the diversification of scleractinian corals remains poorly understood. Recently, it was demonstrated that the brooding coral Seriatopora hystrix and its algal endosymbionts (Symbiodinium) are genetically partitioned across reef environments (0-30 m) on the far northern Great Barrier Reef. Here, we explore the potential mechanisms underlying this differentiation and assess the stability of host-symbiont associations through a reciprocal transplantation experiment across habitats ('Back Reef', 'Upper Slope' and 'Deep Slope'), in combination with molecular (mtDNA and ITS2-DGGE) and photo-physiological analyses (respirometry and HPLC). Results The highest survival rates were observed for native transplants (measured 14 months after transplantation), indicating differential selective pressures between habitats. Host-symbiont assemblages remained stable during the experimental duration, demonstrating that the ability to "shuffle" or "switch" symbionts is restricted in S. hystrix. Photo-physiological differences were observed between transplants originating from the shallow and deep habitats, with indirect evidence of an increased heterotrophic capacity in native deep-water transplants (from the 'Deep Slope' habitat). Similar photo-acclimatisation potential was observed between transplants originating from the two shallow habitats ('Back Reef' and 'Upper Slope'), highlighting that their genetic segregation over depth may be due to other, non-photo-physiological traits under selection. Conclusions This study confirms that the observed habitat partitioning of S. hystrix (and associated Symbiodinium) is reflective of adaptive divergence along a depth gradient. Gene flow appears to be reduced due to divergent selection, highlighting the potential role of ecological mechanisms, in addition to physical dispersal barriers, in the diversification of scleractinian corals and their associated Symbiodinium. PMID:22004364
Importance of benthic prey for fishes in coral reef-associated sediments
DeFelice, R.C.; Parrish, J.D.
2003-01-01
The importance of open, sandy substrate adjacent to coral reefs as habitat and a food source for fishes has been little studied in most shallow tropical waters in the Pacific, including Hawai'i. In this study, in Hanalei Bay, Hiwai'i, we identified and quantified the major invertebrate fauna (larger than 0.5 mm) in the well-characterized sands adjoining the shallow fringing reefs. Concurrently, we identified the fish species that seemed to make substantial use of these sand habitats, estimated their density there, sampled their gut contents to examine trophic links with the sand habitat, and made other observations and collections to determine the times, locations, and types of activity there. A variety of (mostly small) polychaeres were dominant in the sediments at most sampling stations, along with many small crustaceans (e.g., amphipods, isopods, ostracods, and small shrimps) and fair numbers of mollusks (especially bivalves) and small echinoids. Fish guts examined contained ???77% of the total number of benthic taxa collected, including nearly all those just listed. However, fish consumption was selective, and the larger shrimps, crabs, and small cryptic fishes were dominant in the diets of most of the numerous predator taxa. Diets of benthic-feeding fishes showed relatively low specific overlap. The fish fauna in this area included substrate-indifferent pelagics, species with various degrees of reef relatedness, reef-restricted species, and (at the other extreme) permanent cryptic sand dwellers. Data on occurrence and movements of fishes indicated that a band of sandy substrate several tens of meters wide next to the reef was an active area for fishes, and activity was considerably different at different times of day and for fish of different ages. These results imply an important trophic role for the benthos in these near-reef habitats in support of reef-associated fishes.
DeMartini, E.E.; Zgliczynski, B.J.; Boland, R.C.; Friedlander, A.M.
2009-01-01
This paper describes the results of a field survey designed to test the prediction that the density of benthic juveniles of shallow-reef fishes is greater on wind-wave "exposed" sectors of a pair of isolated oceanic atolls (Kure, Pearl and Hermes) at the far northwestern end of the Hawaiian Islands, an archipelago in which east-northeasterly trade winds dominate onshore water flow and transport by surface currents. The densities of recruits (juveniles ???5 cm total length) were higher overall on windward versus leeward sectors of carbonate rock-rubble back reefs at both atolls, and the pattern was stronger for smaller (likely younger, more recently settled) recruits of four of the five most abundant species and the remainder pooled as an "Other" taxon. The windward-leeward disparity was four-fold greater at Pearl Hermes (the atoll with a three-fold longer perimeter) than at Kure. Resident predator biomass also was correlated with recruit densities, but habitat (benthic substratum) effects were generally weak. The distribution and abundance of recruits and juveniles of the primarily endemic reef fishes on shallow back reefs at these atolls appear partly influenced by relative rates of water flow over windward vs. leeward sectors of barrier reef and by the size, shape, and orientation of habitat parcels that filter out postlarval fishes with relatively weak swimming capabilities like labroids. Whole-reef geomorphology as well as fine-scale habitat heterogeneity and rugosity should be considered among the suite of many factors used to interpret observed spatial patterns of post-settlement juvenile fish distribution at atolls and perhaps some other tropical reefs. ?? The Author(s) 2009.
Keep up or drown: adjustment of western Pacific coral reefs to sea-level rise in the 21st century
van Woesik, R.; Golbuu, Y.; Roff, G.
2015-01-01
Since the Mid-Holocene, some 5000 years ago, coral reefs in the Pacific Ocean have been vertically constrained by sea level. Contemporary sea-level rise is releasing these constraints, providing accommodation space for vertical reef expansion. Here, we show that Porites microatolls, from reef-flat environments in Palau (western Pacific Ocean), are ‘keeping up’ with contemporary sea-level rise. Measurements of 570 reef-flat Porites microatolls at 10 locations around Palau revealed recent vertical skeletal extension (78±13 mm) over the last 6–8 years, which is consistent with the timing of the recent increase in sea level. We modelled whether microatoll growth rates will potentially ‘keep up’ with predicted sea-level rise in the near future, based upon average growth, and assuming a decline in growth for every 1°C increase in temperature. We then compared these estimated extension rates with rates of sea-level rise under four Representative Concentration Pathways (RCPs). Our model suggests that under low–mid RCP scenarios, reef-coral growth will keep up with sea-level rise, but if greenhouse gas concentrations exceed 670 ppm atmospheric CO2 levels and with +2.2°C sea-surface temperature by 2100 (RCP 6.0 W m−2), our predictions indicate that Porites microatolls will be unable to keep up with projected rates of sea-level rise in the twenty-first century. PMID:26587277
The modern deep water coral reefs off NW-Europe: the largest reef province in the world
NASA Astrophysics Data System (ADS)
Dullo, W. C.; Freiwald, A.
2003-04-01
Recently discovered deep-water coral reefs and coral mounds in the Procupine Seabight and in the Rockall Trough are part of a North Atlantic coral reef province, stretching from the Iberian Peninsula up to northern Norway within the intermediate water-mass. Current research activities underline the significance of these coral eco-systems as a centre of extreme high biodiversity and biomass indicated by numerous economically important nurtrients for humans as well as resources for marine biochemical products. This unexpected high biological activity along continental margins, which is responsible for the formation of 100 m high biogenic mounds, creating impressive geological reliefs, portrays the complex coupling between hydrosphere and geosphere. The geological importance of these recent and living carbonate structures is underlined by the fact that this "reef type" or mud mound is a very prominent carbon hydrogen reservoir throughout earth history. Such mud mound structures cannot be compared with any other present-day shallow water reef. Our present knowledge about reefs and carbonate production is limited to the areas of the shallow shelves mainly within the tropical region. Only few studies exist from high latitudes and from the continental margin of NW Europe. Further occurences of these deep-water mounds have recently been discovered off West Africa and off SE Brasilia within the frame of exploration activities. The portion of the climate-forcing greenhouse gas CO_2, stored in these mounds during glacial and interglacial times has not been introduced into model runs and prediction scenarios so far. These mounds do not depend on glacial/interglacial sea-level changes in the same way as their shallow-water counterparts do. Deep-water coral mounds react and respond to changes in the oceanographic regime and are triggered by abrupt changes within the sedimentary environment (increased erosion of shelf sediments during low stands of sea level as well as slope instabilities). These properties of modern aphotic coral mounds provide the ideal potential for the interpretation of fossil deep-water mounds in order to study their control mechanisms and their oceanographic environment.
Mallinson, David J.; Hine, Albert C.; Hallock, Pamela; Locker, Stanley D.; Shinn, Eugene; Naar, David; Donahue, Brian; Weaver, Douglas C.
2003-01-01
Geophysical and coring data from the Dry Tortugas, Tortugas Bank, and Riley’s Hump on the southwest Florida margin reveal the stratigraphic framework and growth history of these carbonate banks. The Holocene reefs of the Dry Tortugas and Tortugas Bank are approximately 14 and 10 m thick, respectively, and are situated upon Pleistocene reefal edifices. Tortugas Bank consists of the oldest Holocene corals in the Florida Keys with earliest coral recruitment occurring at ∼9.6 cal ka. Growth curves for the Tortugas Bank reveal slow growth (<1 mm/yr) until 6.2 cal ka, then a rapid increase to 3.4 mm/yr, until shallow reef demise at ∼4.2 cal ka. Coral reef development at the Dry Tortugas began at ∼6.4 cal ka. Aggradation at the Dry Tortugas was linear, and rapid (∼3.7 mm/yr) and kept pace with sea-level change. The increase in aggradation rate of Tortugas Bank at 6.2 cal ka is attributed to the growth of the Dry Tortugas reefs, which formed a barrier to inimical shelf water. Termination of shallow (<15 m below sea level) reef growth at Tortugas Bank at ∼4.2 cal ka is attributed to paleoclimate change in the North American interior that increased precipitation and fluvial discharge. Reef growth rates and characteristics are related to the rate of sea-level rise relative to the position of the reef on the shelf margin, and are additionally modified by hydrographic conditions related to climate change.
A Bayesian-Based System to Assess Wave-Driven Flooding Hazards on Coral Reef-Lined Coasts
NASA Astrophysics Data System (ADS)
Pearson, S. G.; Storlazzi, C. D.; van Dongeren, A. R.; Tissier, M. F. S.; Reniers, A. J. H. M.
2017-12-01
Many low-elevation, coral reef-lined, tropical coasts are vulnerable to the effects of climate change, sea level rise, and wave-induced flooding. The considerable morphological diversity of these coasts and the variability of the hydrodynamic forcing that they are exposed to make predicting wave-induced flooding a challenge. A process-based wave-resolving hydrodynamic model (XBeach Non-Hydrostatic, "XBNH") was used to create a large synthetic database for use in a "Bayesian Estimator for Wave Attack in Reef Environments" (BEWARE), relating incident hydrodynamics and coral reef geomorphology to coastal flooding hazards on reef-lined coasts. Building on previous work, BEWARE improves system understanding of reef hydrodynamics by examining the intrinsic reef and extrinsic forcing factors controlling runup and flooding on reef-lined coasts. The Bayesian estimator has high predictive skill for the XBNH model outputs that are flooding indicators, and was validated for a number of available field cases. It was found that, in order to accurately predict flooding hazards, water depth over the reef flat, incident wave conditions, and reef flat width are the most essential factors, whereas other factors such as beach slope and bed friction due to the presence or absence of corals are less important. BEWARE is a potentially powerful tool for use in early warning systems or risk assessment studies, and can be used to make projections about how wave-induced flooding on coral reef-lined coasts may change due to climate change.
Coral calcification and reef development under natural disturbances
NASA Astrophysics Data System (ADS)
Wall, M.; Schmidt, G. M.; Khokkiatiwong, S.; Richter, C.
2012-04-01
Corals are impressive ecosystem engineers shaping and influencing tropical shallow water environments through their complex carbonate framework. Calcification a key physiological process determining coral growth and reef development, is highly dependent on constant environmental conditions, especially temperature, aragonite saturation and pH. However, not in all reef areas such constant and stable conditons can be found. Coral reefs located in the Andaman Sea off the western Thai coast are subjected to large amplitude internal waves (LAIW), which induce strong oscillations in several physical and chemical environmental parameters and hence, offer the possibility to study the influence of fluctuating conditions on coral reefs. Characteristics of these oscillations as well as reef framework development have been studied on reefs of five islands, which are exposed to LAIW along their western sides and LAIW-sheltered on their eastern sides. LAIW reach these shallow water reef areas all year round, however, strongest fluctuations were recorded during the dry season (November to May) with temperature drops of up to 8°C and pH values ranging from 8.22-7.90. Several (up to 12) sudden changes in environmental conditions can occur during a day, which differ in intensity and duration. Salinity, pH and oxygen are well correlated with changes in temperature and thus, temperature variability calculated as degree days cooling (DDC) was used as proxy for the complex set of environmental variability. This proxy enabled us to combine frequency and intensity of disturbances in one value and allowed for ranking each study location according to the severity of LAIW disturbances. Framework height was found to be clearly reduced in areas exposed to LAIW compared to the complex three-dimensional carbonate framework in the LAIW-sheltered reefs. Moreover, it showed a strong linear correlation with DDC (Rsqr=0.732, p=0.007) indicating the negative effect of pulsed disturbances on coral reef development. LAIW are a ubiquitous phenomenon especially in tropical oceans where coral communities exposed to these internal waves may offer a unique possibility to study in situ the effect of several cumulative stressors on coral- and reef development, as well as the consequences for the whole reef community.
The Pulley Ridge deep reef is not a stable refugia through time
NASA Astrophysics Data System (ADS)
Slattery, Marc; Moore, Steve; Boye, Lauren; Whitney, Samantha; Woolsey, Allison; Woolsey, Max
2018-06-01
The deep reef refugia hypothesis (DRRH) suggests that mesophotic coral ecosystems (MCEs) represent a sanctuary for various coral reef taxa from impacts of natural and anthropogenic stressors. The Pulley Ridge FL mesophotic reef was surveyed using unmanned vehicles and technical diving in 2015 and compared to vehicle surveys in 2003, to test the DRRH. The MCE sites surveyed consisted of at least 25 species of algae ( 50% cover), 18 species of scleractinian corals (< 1% cover), 67 species of sponges (1-2% cover), in addition to 83 species of fish. The percent cover data indicate a significant decline of coral and sponges, and a significant increase in algae, relative to surveys conducted about a decade earlier. While the cause of this change is unknown, our results indicate that some mesophotic reefs may not be stable refugia for coral reef biodiversity and seed banks for resilience of damaged shallow reefs.
Federal Register 2010, 2011, 2012, 2013, 2014
2012-07-31
... regarding the quotas and annual catch limits (ACLs) for ``other shallow-water grouper'' (Other SWG) that... the commercial shallow-water grouper (SWG) quotas and commercial SWG ACL erroneously included in the...: Authority: 16 U.S.C. 1801 et seq. 0 2. In Sec. 622.2, the definition for ``Shallow-water grouper (SWG)'' is...
Federal Register 2010, 2011, 2012, 2013, 2014
2012-04-06
... inconsistencies in the regulatory text regarding the quotas and annual catch limits (ACLs) for ``other shallow... shallow-water grouper (SWG) quota; --Adjust the commercial and recreational sector's ACLs for gag and red... U.S.C. 1801 et seq. 2. In Sec. 622.2, the definition for ``Shallow-water grouper (SWG)'' is revised...
NASA Astrophysics Data System (ADS)
Chirayath, V.
2014-12-01
Fluid Lensing is a theoretical model and algorithm I present for fluid-optical interactions in turbulent flows as well as two-fluid surface boundaries that, when coupled with an unique computer vision and image-processing pipeline, may be used to significantly enhance the angular resolution of a remote sensing optical system with applicability to high-resolution 3D imaging of subaqueous regions and through turbulent fluid flows. This novel remote sensing technology has recently been implemented on a quadcopter-based UAS for imaging shallow benthic systems to create the first dataset of a biosphere with unprecedented sub-cm-level imagery in 3D over areas as large as 15 square kilometers. Perturbed two-fluid boundaries with different refractive indices, such as the surface between the ocean and air, may be exploited for use as lensing elements for imaging targets on either side of the interface with enhanced angular resolution. I present theoretical developments behind Fluid Lensing and experimental results from its recent implementation for the Reactive Reefs project to image shallow reef ecosystems at cm scales. Preliminary results from petabyte-scale aerial survey efforts using Fluid Lensing to image at-risk coral reefs in American Samoa (August, 2013) show broad applicability to large-scale automated species identification, morphology studies and reef ecosystem characterization for shallow marine environments and terrestrial biospheres, of crucial importance to understanding climate change's impact on coastal zones, global oxygen production and carbon sequestration.
NASA Astrophysics Data System (ADS)
Marshell, A.; Mills, J. S.; Rhodes, K. L.; McIlwain, J.
2011-09-01
Marine reserves are the primary management tool for Guam's reef fish fishery. While a build-up of fish biomass has occurred inside reserve boundaries, it is unknown whether reserve size matches the scale of movement of target species. Using passive acoustic telemetry, we quantified movement patterns and home range size of two heavily exploited unicornfish Naso unicornis and Naso lituratus. Fifteen fish ( N. unicornis: n = 7; N. lituratus: n = 4 male, n = 4 female) were fitted with internal acoustic tags and tracked continuously over four months within a remote acoustic receiver array located in a decade-old marine reserve. This approach provided robust estimates of unicornfish movement patterns and home range size. The mean home range of 3.2 ha for N. unicornis was almost ten times larger than that previously recorded from a three-week tracking study of the species in Hawaii. While N. lituratus were smaller in body size, their mean home range (6.8 ha) was over twice that of N. unicornis. Both species displayed strong site fidelity, particularly during nocturnal and crepuscular periods. Although there was some overlap, individual movement patterns and home range size were highly variable within species and between sexes. N. unicornis home range increased with body size, and only the three largest fish home ranges extended into the deeper outer reef slope beyond the shallow reef flat. Both Naso species favoured habitat dominated by corals. Some individuals made predictable daily crepuscular migrations between different locations or habitat types. There was no evidence of significant spillover from the marine reserve into adjacent fished areas. Strong site fidelity coupled with negligible spillover suggests that small-scale reserves, with natural habitat boundaries to emigration, are effective in protecting localized unicornfish populations.
NASA Astrophysics Data System (ADS)
Krupnik, D.; Khan, S.; Okyay, U.; Hartzell, P. J.; Biber, K.
2015-12-01
Ground based remote sensing is a novel technique for development of digital outcrop models which can be instrumental in performing detailed qualitative and quantitative sedimentological analysis for the study of depositional environment, diagenetic processes, and hydrocarbon reservoir characterization. For this investigation, ground-based hyperspectral data collection is combined with terrestrial LiDAR to study outcrops of Late Albian rudist buildups of the Edwards formation in the Lake Georgetown Spillway in Williamson County, Texas. The Edwards formation consists of shallow water deposits of reef and associated inter-reef facies, including rudist bioherms and biostromes. It is a significant aquifer and was investigated as a hydrocarbon play in south central Texas. Hyperspectral data were used to map compositional variation in the outcrop by distinguishing spectral properties unique to each material. Lithological variation was mapped in detail to investigate the structure and composition of rudist buildups. Hyperspectral imagery was registered to a 3D model produced from the LiDAR point cloud with an accuracy of up to one pixel. Flat-topped toucasid-rich bioherm facies were distinguished from overlying toucasid-rich biostrome facies containing chert nodules, overlying sucrosic dolostones, and uppermost peloid wackestones and packstones of back-reef facies. Ground truth was established by petrographic study of samples from this area and has validated classification products of remote sensing data. Several types of porosity were observed and have been associated with increased dolomitization. This ongoing research involves integration of remotely sensed datasets to analyze geometrical and compositional properties of this carbonate formation at a finer scale than traditional methods have achieved and seeks to develop a workflow for quick and efficient ground based remote sensing-assisted outcrop studies.
Lane, Diana R; Ready, Richard C; Buddemeier, Robert W; Martinich, Jeremy A; Shouse, Kate Cardamone; Wobus, Cameron W
2013-01-01
The biological and economic values of coral reefs are highly vulnerable to increasing atmospheric and ocean carbon dioxide concentrations. We applied the COMBO simulation model (COral Mortality and Bleaching Output) to three major U.S. locations for shallow water reefs: South Florida, Puerto Rico, and Hawaii. We compared estimates of future coral cover from 2000 to 2100 for a "business as usual" (BAU) greenhouse gas (GHG) emissions scenario with a GHG mitigation policy scenario involving full international participation in reducing GHG emissions. We also calculated the economic value of changes in coral cover using a benefit transfer approach based on published studies of consumers' recreational values for snorkeling and diving on coral reefs as well as existence values for coral reefs. Our results suggest that a reduced emissions scenario would provide a large benefit to shallow water reefs in Hawaii by delaying or avoiding potential future bleaching events. For Hawaii, reducing emissions is projected to result in an estimated "avoided loss" from 2000 to 2100 of approximately $10.6 billion in recreational use values compared to a BAU scenario. However, reducing emissions is projected to provide only a minor economic benefit in Puerto Rico and South Florida, where sea-surface temperatures are already close to bleaching thresholds and coral cover is projected to drop well below 5% cover under both scenarios by 2050, and below 1% cover under both scenarios by 2100.
Lane, Diana R.; Ready, Richard C.; Buddemeier, Robert W.; Martinich, Jeremy A.; Shouse, Kate Cardamone; Wobus, Cameron W.
2013-01-01
The biological and economic values of coral reefs are highly vulnerable to increasing atmospheric and ocean carbon dioxide concentrations. We applied the COMBO simulation model (COral Mortality and Bleaching Output) to three major U.S. locations for shallow water reefs: South Florida, Puerto Rico, and Hawaii. We compared estimates of future coral cover from 2000 to 2100 for a “business as usual” (BAU) greenhouse gas (GHG) emissions scenario with a GHG mitigation policy scenario involving full international participation in reducing GHG emissions. We also calculated the economic value of changes in coral cover using a benefit transfer approach based on published studies of consumers' recreational values for snorkeling and diving on coral reefs as well as existence values for coral reefs. Our results suggest that a reduced emissions scenario would provide a large benefit to shallow water reefs in Hawaii by delaying or avoiding potential future bleaching events. For Hawaii, reducing emissions is projected to result in an estimated “avoided loss” from 2000 to 2100 of approximately $10.6 billion in recreational use values compared to a BAU scenario. However, reducing emissions is projected to provide only a minor economic benefit in Puerto Rico and South Florida, where sea-surface temperatures are already close to bleaching thresholds and coral cover is projected to drop well below 5% cover under both scenarios by 2050, and below 1% cover under both scenarios by 2100. PMID:24391717
Molluscan assemblages on coral reefs and associated hard substrata in the northern Red Sea
NASA Astrophysics Data System (ADS)
Zuschin, M.; Hohenegger, J.; Steininger, F.
2001-09-01
Information on spatial variability and distribution patterns of organisms in coral reef environments is necessary to evaluate the increasing anthropogenic disturbance of marine environments (Richmond 1993; Wilkinson 1993; Dayton 1994). Therefore different types of subtidal, reef-associated hard substrata (reef flats, reef slopes, coral carpets, coral patches, rock grounds), each with different coral associations, were investigated to determine the distribution pattern of molluscs and their life habits (feeding strategies and substrate relations). The molluscs were strongly dominated by taxa with distinct relations to corals, and five assemblages were differentiated. The Dendropoma maxima assemblage on reef flats is a discrete entity, strongly dominated by this encrusting and suspension-feeding gastropod. All other assemblages are arranged along a substrate gradient of changing coral associations and potential molluscan habitats. The Coralliophila neritoidea- Barbatia foliata assemblage depends on the presence of Porites and shows a dominance of gastropods feeding on corals and of bivalves associated with living corals. The Chamoidea- Cerithium spp. assemblage on rock grounds is strongly dominated by encrusting bivalves. The Drupella cornus-Pteriidae assemblage occurs on Millepora- Acropora reef slopes and is strongly dominated by bivalves associated with living corals. The Barbatia setigera- Ctenoides annulata assemblage includes a broad variety of taxa, molluscan life habits and bottom types, but occurs mainly on faviid carpets and is transitional among the other three assemblages. A predicted degradation of coral coverage to rock bottoms due to increasing eutrophication and physical damage in the study area (Riegl and Piller 2000) will result in a loss of coral-associated molluscs in favor of bivalve crevice dwellers in dead coral heads and of encrusters on dead hard substrata.
NASA Astrophysics Data System (ADS)
Noernberg, Mauricio Almeida; Fournier, Jérôme; Dubois, Stanislas; Populus, Jacques
2010-12-01
This study has exploited aerial photographs and LiDAR digital elevation model to quantify intertidal complex landforms volume. A first volume estimation of the main sabellariid polychaete reef complex of the Bay of Mont-Saint-Michel - France is presented. The Sabellaria alveolata is an engineering species that heavily modifies its environment. This gregarious tube-building annelid forms dense and solid reefs of bioclastic coarse sand which can reach several km 2. Since 1970 a very strong decline of reefs has been observed. The authorities have curbed fishing activities without any noticeable changes in reef health status. The S. alveolata reef volume is estimated to be 132 048 m 3 (96 301 m 3 for Sainte-Anne reef and 35 747 m 3 for Champeaux reef). Further LiDAR data surveys will be needed to be able to understand and quantify the accretion/erosion processes in play in the reef dynamic. Because of the internal variability of topographic complexity of the reef, characterized by crevices, cracks, and holes rather than whole blocks, further studies are needed to calculate more accurately the volume of the reef.
Barnhardt, W.A.; Richmond, B.M.; Grossman, E.E.; Hart, P.
2005-01-01
High-resolution, seismic-reflection data elucidate the late Quaternary development of the largest coral-reef complex in the main Hawaiian Islands. Six acoustic facies were identified from reflection characteristics and lithosome geometry. An extensive, buried platform with uniformly low relief was traced beneath fore-reef and marginal shelf environments. This highly reflective surface dips gently seaward to ???130 m depth and locally crops out on the seafloor. It probably represents a wave-cut platform or ancient reef flat. We propose alternative evolutionary models, in which sea-level changes have modulated the development of reef systems, to explain the observed stratigraphic relationships. The primary difference between the models is the origin of the underlying antecedent surface, which arguably could have formed during either regression/lowstand or subsequent transgression.
NASA Astrophysics Data System (ADS)
Perez, D.; Phinn, S. R.; Roelfsema, C. M.; Shaw, E. C.; Johnston, L.; Iguel, J.; Camacho, R.
2017-12-01
Primary production and calcification are important to measure and monitor over time, because of their fundamental roles in the carbon cycling and accretion of habitat structure for reef ecosystems. However, monitoring biogeochemical processes in coastal environments has been difficult due to complications in resolving differences in water optical properties from biological productivity and other sources (sediment, dissolved organics, etc.). This complicates application of algorithms developed for satellite image data from open ocean conditions, and requires alternative approaches. This project applied a cross-disciplinary approach, using established methods for monitoring productivity in terrestrial environments to coral reef systems. Availability of regularly acquired high spatial (< 5m pixels), multispectral satellite imagery has improved mapping and monitoring capabilities for shallow, marine environments such as seagrass and coral reefs. There is potential to further develop optical models for remote sensing applications to estimate and monitor reef system processes, such as primary productivity and calcification. This project collected field measurements of spectral absorptance and primary productivity and calcification rates for two reef systems: Heron Reef, southern Great Barrier Reef and Saipan Lagoon, Commonwealth of the Northern Mariana Islands. Field data were used to parameterize a light-use efficiency (LUE) model, estimating productivity from absorbed photosynthetically active radiation. The LUE model has been successfully applied in terrestrial environments for the past 40 years, and could potentially be used in shallow, marine environments. The model was used in combination with a map of benthic community composition produced from objective based image analysis of WorldView 2 imagery. Light-use efficiency was measured for functional groups: coral, algae, seagrass, and sediment. However, LUE was overestimated for sediment, which led to overestimation of productivity for the mapped area. This was due to differences in spatial and temporal resolution of field data used in the model. The limitations and application of the LUE model to coral reef environments will be presented.
The influence of coral reefs and climate change on wave-driven flooding of tropical coastlines
NASA Astrophysics Data System (ADS)
Quataert, Ellen; Storlazzi, Curt; Rooijen, Arnold; Cheriton, Olivia; Dongeren, Ap
2015-08-01
A numerical model, XBeach, calibrated and validated on field data collected at Roi-Namur Island on Kwajalein Atoll in the Republic of Marshall Islands, was used to examine the effects of different coral reef characteristics on potential coastal hazards caused by wave-driven flooding and how these effects may be altered by projected climate change. The results presented herein suggest that coasts fronted by relatively narrow reefs with steep fore reef slopes (~1:10 and steeper) and deeper, smoother reef flats are expected to experience the highest wave runup. Wave runup increases for higher water levels (sea level rise), higher waves, and lower bed roughness (coral degradation), which are all expected effects of climate change. Rising sea levels and climate change will therefore have a significant negative impact on the ability of coral reefs to mitigate the effects of coastal hazards in the future.
The influence of coral reefs and climate change on wave-driven flooding of tropical coastlines
Quataert, Ellen; Storlazzi, Curt; van Rooijen, Arnold; van Dongeren, Ap; Cheriton, Olivia
2015-01-01
A numerical model, XBeach, calibrated and validated on field data collected at Roi-Namur Island on Kwajalein Atoll in the Republic of Marshall Islands, was used to examine the effects of different coral reef characteristics on potential coastal hazards caused by wave-driven flooding and how these effects may be altered by projected climate change. The results presented herein suggest that coasts fronted by relatively narrow reefs with steep fore reef slopes (~1:10 and steeper) and deeper, smoother reef flats are expected to experience the highest wave runup. Wave runup increases for higher water levels (sea level rise), higher waves, and lower bed roughness (coral degradation), which are all expected effects of climate change. Rising sea levels and climate change will therefore have a significant negative impact on the ability of coral reefs to mitigate the effects of coastal hazards in the future.
Federal Register 2010, 2011, 2012, 2013, 2014
2012-10-12
... shallow-water grouper species (SWG), change the trigger for AMs, and revise the Gulf reef fish framework... change. All Personal Identifying Information (for example, name, address, etc.) voluntarily submitted by... use of a moving average has not been practicable due to the frequent changes that have occurred in the...
Structure of Mesophotic Reef Fish Assemblages in the Northwestern Hawaiian Islands
Kosaki, Randall K.; Wagner, Daniel; Kane, Corinne
2016-01-01
Mesophotic coral ecosystems (MCEs) support diverse communities of marine organisms with changes in community structure occurring along a depth gradient. In recent years, MCEs have gained attention due to their depths that provide protection from natural and anthropogenic stressors and their relative stability over evolutionary time periods, yet ecological structures of fish assemblages in MCEs remain largely un-documented. Here, we investigated composition and trophic structure of reef fish assemblages in the Northwestern Hawaiian Islands (NWHI) along a depth gradient from 1 to 67 m. The structure of reef fish assemblages as a whole showed a clear gradient from shallow to mesophotic depths. Fish assemblages at mesophotic depths had higher total densities than those in shallower waters, and were characterized by relatively high densities of planktivores and invertivores and relatively low densities of herbivores. Fishes that typified assemblages at mesophotic depths included six species that are endemic to the Hawaiian Islands. The present study showed that mesophotic reefs in the NWHI support unique assemblages of fish that are characterized by high endemism and relatively high densities of planktivores. Our findings underscore the ecological importance of these undersurveyed ecosystems and warrant further studies of MCEs. PMID:27383614
1996-01-20
STS072-727-085 (11-20 Jan. 1996) --- The northern third of the Great Barrier Reef stretches 650 kilometers (km) along the coast of Queensland from south of Cairns to past Princess Charlotte Bay at the base of the Cape York Peninsula. The predominant westerly waves of the ocean create shallower (lighter-colored) convex-eastward rims to coral atolls along the outer edge of the barrier reef. In contrast, islands within the lagoon show the effect of predominant southerly, more-or-less offshore winds. Arcuate clouds suggest that winds were offshore at the time the photograph was taken.
Lidz, Barbara H.; Hine, A.C.; Shinn, Eugene A.; Kindinger, Jack G.
1991-01-01
High-resolution seismic-reflection profiles off the lower Florida Keys reveal a multiple outlier-reef tract system ~0.5 to 1.5 km sea-ward of the bank margin. The system is characterized by a massive, outer main reef tract of high (28 m) unburied relief that parallels the margin and at least two narrower, discontinuous reef tracts of lower relief between the main tract and the shallow bank-margin reefs. The outer tract is ~0.5 to 1 km wide and extends a distance of ~57 km. A single pass divides the outer tract into two main reefs. The outlier reefs developed on antecedent, low-gradient to horizontal offbank surfaces, interpreted to be Pleistocene beaches that formed terracelike features. Radiocarbon dates of a coral core from the outer tract confirm a pre-Holocene age. These multiple outlier reefs represent a new windward-margin model that presents a significant, unique mechanism for progradation of carbonate platforms during periods of sea-level fluctuation. Infilling of the back-reef terrace basins would create new terraced promontories and would extend or "step" the platform seaward for hundreds of metres. Subsequent outlier-reef development would produce laterally accumulating sequences.
Yates, K.K.; Halley, R.B.
2006-01-01
The severity of the impact of elevated atmospheric pCO2 to coral reef ecosystems depends, in part, on how sea-water pCO2 affects the balance between calcification and dissolution of carbonate sediments. Presently, there are insufficient published data that relate concentrations of pCO 2 and CO32- to in situ rates of reef calcification in natural settings to accurately predict the impact of elevated atmospheric pCO2 on calcification and dissolution processes. Rates of net calcification and dissolution, CO32- concentrations, and pCO2 were measured, in situ, on patch reefs, bare sand, and coral rubble on the Molokai reef flat in Hawaii. Rates of calcification ranged from 0.03 to 2.30 mmol CaCO3 m-2 h-1 and dissolution ranged from -0.05 to -3.3 mmol CaCO3 m-2 h-1. Calcification and dissolution varied diurnally with net calcification primarily occurring during the day and net dissolution occurring at night. These data were used to calculate threshold values for pCO2 and CO32- at which rates of calcification and dissolution are equivalent. Results indicate that calcification and dissolution are linearly correlated with both CO32- and pCO2. Threshold pCO2 and CO32- values for individual substrate types showed considerable variation. The average pCO2 threshold value for all substrate types was 654??195 ??atm and ranged from 467 to 1003 ??atm. The average CO32- threshold value was 152??24 ??mol kg-1, ranging from 113 to 184 ??mol kg-1. Ambient seawater measurements of pCO2 and CO32- indicate that CO32- and pCO2 threshold values for all substrate types were both exceeded, simultaneously, 13% of the time at present day atmospheric pCO2 concentrations. It is predicted that atmospheric pCO2 will exceed the average pCO2 threshold value for calcification and dissolution on the Molokai reef flat by the year 2100.
Bothner, Michael H.; Reynolds, R.L.; Casso, M.A.; Storlazzi, C.D.; Field, M.E.
2006-01-01
Sediment traps were used to evaluate the frequency, cause, and relative intensity of sediment mobility/resuspension along the fringing coral reef off southern Molokai (February 2000–May 2002). Two storms with high rainfall, floods, and exceptionally high waves resulted in sediment collection rates > 1000 times higher than during non-storm periods, primarily because of sediment resuspension by waves. Based on quantity and composition of trapped sediment, floods recharged the reef flat with land-derived sediment, but had a low potential for burying coral on the fore reef when accompanied by high waves.The trapped sediments have low concentrations of anthropogenic metals. The magnetic properties of trapped sediment may provide information about the sources of land-derived sediment reaching the fore reef. The high trapping rate and low sediment cover indicate that coral surfaces on the fore reef are exposed to transient resuspended sediment, and that the traps do not measure net sediment accumulation on the reef surface.
Bothner, Michael H; Reynolds, Richard L; Casso, Michael A; Storlazzi, Curt D; Field, Michael E
2006-09-01
Sediment traps were used to evaluate the frequency, cause, and relative intensity of sediment mobility/resuspension along the fringing coral reef off southern Molokai (February 2000-May 2002). Two storms with high rainfall, floods, and exceptionally high waves resulted in sediment collection rates>1000 times higher than during non-storm periods, primarily because of sediment resuspension by waves. Based on quantity and composition of trapped sediment, floods recharged the reef flat with land-derived sediment, but had a low potential for burying coral on the fore reef when accompanied by high waves. The trapped sediments have low concentrations of anthropogenic metals. The magnetic properties of trapped sediment may provide information about the sources of land-derived sediment reaching the fore reef. The high trapping rate and low sediment cover indicate that coral surfaces on the fore reef are exposed to transient resuspended sediment, and that the traps do not measure net sediment accumulation on the reef surface.
NASA Astrophysics Data System (ADS)
Bellwood, D.; Wainwright, P.
2001-09-01
Coral reefs exhibit marked zonation patterns within single reefs and across continental shelves. For sessile organisms these zones are often related to wave exposure. We examined the extent to which wave exposure may shape the distribution patterns of fishes. We documented the distribution of 98 species of wrasses and parrotfishes at 33 sites across the Great Barrier Reef. The greatest difference between labrid assemblages was at the habitat level, with exposed reef flats and crests on mid- and outer reefs possessing a distinct faunal assemblage. These exposed sites were dominated by individuals with high pectoral fin aspect ratios, i.e. fishes believed to be capable of lift-based swimming which often achieve high speeds. Overall, there was a strong correlation between estimated swimming performance, as indicated by fin aspect ratio, and degree of water movement. We propose that swimming performance in fishes limits access to high-energy locations and may be a significant factor influencing habitat use and regional biogeography of reef fishes.
Cochran, Susan A.; Gibbs, Ann E.; D'Antonio, Nicole L.; Storlazzi, Curt D.
2016-05-18
The coral reef in Faga‘alu Bay, Tutuila, American Samoa, has suffered numerous natural and anthropogenic stresses. Areas once dominated by live coral are now mostly rubble surfaces covered with turf or macroalgae. In an effort to improve the health and resilience of the coral reef system, the U.S. Coral Reef Task Force selected Faga‘alu Bay as a priority study area. To support these efforts, the U.S. Geological Survey mapped nearly 1 km2 of seafloor to depths of about 60 m. Unconsolidated sediment (predominantly sand) constitutes slightly greater than 50 percent of the seafloor in the mapped area; reef and other hardbottom potentially available for coral recruitment constitute nearly 50 percent of the mapped area. Of this potentially available hardbottom, only slightly greater than 37 percent is covered with at least 10 percent coral, which is fairly evenly distributed between the reef flat, fore reef, and offshore bank/shelf.
Toro-Farmer, Gerardo; Muller-Karger, Frank E.; Vega-Rodriguez, Maria; Melo, Nelson; Yates, Kimberly K.; Johns, Elizabeth; Cerdeira-Estrada, Sergio; Herwitz, Stan R.
2016-01-01
Light availability is an important factor driving primary productivity in benthic ecosystems, but in situ and remote sensing measurements of light quality are limited for coral reefs and seagrass beds. We evaluated the productivity responses of a patch reef and a seagrass site in the Lower Florida Keys to ambient light availability and spectral quality. In situ optical properties were characterized utilizing moored and water column bio-optical and hydrographic measurements. Net ecosystem productivity (NEP) was also estimated for these study sites using benthic productivity chambers. Our results show higher spectral light attenuation and absorption, and lower irradiance during low tide in the patch reef, tracking the influx of materials from shallower coastal areas. In contrast, the intrusion of clearer surface Atlantic Ocean water caused lower values of spectral attenuation and absorption, and higher irradiance in the patch reef during high tide. Storms during the studied period, with winds >10 m·s−1, caused higher spectral attenuation values. A spatial gradient of NEP was observed, from high productivity in the shallow seagrass area, to lower productivity in deeper patch reefs. The highest daytime NEP was observed in the seagrass, with values of almost 0.4 g·O2·m−2·h−1. Productivity at the patch reef area was lower in May than during October 2012 (mean = 0.137 and 0.177 g·O2·m−2·h−1, respectively). Higher photosynthetic active radiation (PAR) levels measured above water and lower light attenuation in the red region of the visible spectrum (~666 to ~699 nm) had a positive correlation with NEP. Our results indicate that changes in light availability and quality by suspended or resuspended particles limit benthic productivity in the Florida Keys.
2004-09-20
ISS009-E-23808 (20 September 2004) --- A fringing coral reef in the Red Sea is featured in this image photographed by an Expedition 9 crewmember on the International Space Station (ISS). The Sudanese coast of the Red Sea is a well known destination for divers due to clear water and abundance of coral reefs (or shiaab in Arabic). According to NASA scientists studying the ISS imagery, reefs are formed primarily from precipitation of calcium carbonate by corals; massive reef structures are built over thousands of years of succeeding generations of coral. In the Red Sea, fringing reefs form on shallow shelves of less than 50 meters depth along the coastline. This photograph illustrates the intricate morphology of the reef system located along the coast between Port Sudan to the northwest and the Tokar River delta to the southeast. Close to shore, fringing reefs border the coastline. Farther offshore grows a larger, more complicated barrier reef structure. Different parts of the reef structure show up as variable shades of light blue. Deeper water channels (darker blue) define the boundaries for individual reefs within the greater barrier reef system. Such a complex pattern of reefs may translate into greater ecosystem diversity through a wide variety of local reef environments.
Impacts of Artificial Reefs on Surrounding Ecosystems
NASA Astrophysics Data System (ADS)
Manoukian, Sarine
Artificial reefs are becoming a popular biological and management component in shallow water environments characterized by soft seabed, representing both important marine habitats and tools to manage coastal fisheries and resources. An artificial reef in the marine environment acts as an open system with exchange of material and energy, altering the physical and biological characteristics of the surrounding area. Reef stability will depend on the balance of scour, settlement, and burial resulting from ocean conditions over time. Because of the unstable nature of sediments, they require a detailed and systematic investigation. Acoustic systems like high-frequency multibeam sonar are efficient tools in monitoring the environmental evolution around artificial reefs, whereas water turbidity can limit visual dive and ROV inspections. A high-frequency multibeam echo sounder offers the potential of detecting fine-scale distribution of reef units, providing an unprecedented level of resolution, coverage, and spatial definition. How do artificial reefs change over time in relation to the coastal processes? How accurately does multibeam technology map different typologies of artificial modules of known size and shape? How do artificial reefs affect fish school behavior? What are the limitations of multibeam technology for investigating fish school distribution as well as spatial and temporal changes? This study addresses the above questions and presents results of a new approach for artificial reef seafloor mapping over time, based upon an integrated analysis of multibeam swath bathymetry data and geoscientific information (backscatter data analysis, SCUBA observations, physical oceanographic data, and previous findings on the geology and sedimentation processes, integrated with unpublished data) from Senigallia artificial reef, northwestern Adriatic Sea (Italy) and St. Petersburg Beach Reef, west-central Florida continental shelf. A new approach for observation of fish aggregations associated with Senigallia reef based on the analysis of multibeam backscatter data in the water column is also explored. The settlement of the reefs and any terrain change are investigated over time providing a useful description of the local hydrodynamics and geological processes. All the artificial structures (made up by water-based concrete for Senigallia reef and mainly steel for St. Petersburg Beach reef) are identified and those showing substantial horizontal and/or vertical movements are analyzed in detail. Most artificial modules of Senigallia reef are not intact and scour signatures are well depicted around them, indicating reversals of the local current. This is due to both the wind pattern and to the quite close arrangement of the reef units that tend to deflect the bottom flow. As regards to the St. Petersburg Beach reef, all the man-made steel units are still in their upright position. Only a large barge shows a gradual collapse of its south side, and presents well-developed scouring at its east-northeast side, indicating dominant bottom flow from west-southwest to east-northeast. While an overall seafloor depth shallowing of about 0.30 m from down-current deposits was observed for Senigallia reef, an overall deepening of about 0.08 m due to scour was observed at the St. Petersburg Beach reef. Based on the backscatter data interpretation, surficial sediments are coarser in the vicinities of both artificial reefs than corresponding surrounding sediments. Scouring reveals this coarser layer underneath the prevalent mud sediment at Senigallia reef, and the predominant silt sediment at St. Petersburg Beach reef. In the ten years of Senigalia reef study, large-scale variations between clay and silt appear to be directly linked to large flood events that have occurred just prior to the change. As regards the water column investigation, acoustic backscatter from fish aggregations gives detailed information on their morphology and spatial distribution. In addition, relative fish biomass estimates can be extrapolated. Results suggest that most of the fish aggregations are generally associated with the artificial modules showing a tendency for mid- and bottom-water depth distribution than for the surface waters. This study contributes to understanding the changes in artificial reefs over time in relation to coastal processes. Moreover, the preliminary results concerning the water column backscatter data represents progress in fisheries acoustics research as a result of three-dimensional acoustics. They demonstrate the benefits of multibeam sonar as a tool to investigate and quantify size distribution and geometry of fish aggregations associated with shallow marine habitats.
Pulley reef: a deep photosynthetic coral reef on the West Florida Shelf, USA
Culter, J.K.; Ritchie, K.B.; Earle, S.A.; Guggenheim, D.E.; Halley, R.B.; Ciembronowicz, K.T.; Hine, A.C.; Jarrett, B.D.; Locker, S.D.; Jaap, W.C.
2006-01-01
Pulley Reef (24°50′N, 83°40′W) lies on a submerged late Pleistocene shoreline feature that formed during a sea-level stillstand from 13.8 to 14.5 ka (Jarrett et al. 2005). The reef is currently 60–75 m deep, exhibits 10–60% coral cover, and extends over approximately 160 km2 of the sea floor. Zooxanthellate corals are primarily Agaricia lamarcki, A. fragilis, Leptoseris cucullata, and less common Madracis formosa, M. pharensis, M. decactis, Montastraea cavernosa, Porites divaricata, Scolymia cubensis and Oculina tenella. Coralline algae are comparable in abundance to stony corals. Other macroalgae include Halimeda tuna, Dictyota divaricata, Lobophora variegata, Ventricatri ventricosa, Verdigelas pelas, and Kallymenia sp. Anadyomene menziesii is abundant. The reef provides a habitat for organisms typically observed at much shallower depths, and is the deepest known photosynthetic coral reef on the North America continental shelf (Fig. 1).
Coral reefs reduce tsunami impact in model simulations
NASA Astrophysics Data System (ADS)
Kunkel, Catherine M.; Hallberg, Robert W.; Oppenheimer, Michael
2006-12-01
Significant buffering of the impact of tsunamis by coral reefs is suggested by limited observations and some anecdotal reports, particularly following the 2004 Indian Ocean tsunami. Here we simulate tsunami run-up on idealized topographies in one and two dimensions using a nonlinear shallow water model and show that a sufficiently wide barrier reef within a meter or two of the surface reduces run-up on land on the order of 50%. We studied topographies representative of volcanic islands (islands with no continental shelf) but our conclusions may pertain to other topographies. Effectiveness depends on the amplitude and wavelength of the incident tsunami, as well as the geometry and health of the reef and the offshore distance of the reef. Reducing the threat to reefs from anthropogenic nutrients, sedimentation, fishing practices, channel-building, and global warming would help to protect some islands against tsunamis.
Exploring Mesophotic Depths Off North Philippine Sea: Coral Reefs on the Benham Bank Seamount
NASA Astrophysics Data System (ADS)
Nacorda, H. M. E.; Dizon, R. M.; Meñez, L. A. B.; Nañola, C. L., Jr.; Hernandez, H. B.; Quimpo, F. A. T. R.; De Jesus, D. O.; Nacorda, J. O. O.; Tingson, K. N.; Roa-Chio, P. B. L.; Pardo, K. C. E.; Licuanan, W. R. Y.; Aliño, P. M.
2016-02-01
We conducted observational surveys of coral reef biodiversity at <60 m on the summit of the Benham Bank Seamount off North Philippine Sea. The reefs were found with excellent cover (75 to 100%) of mostly tiered, thick, rigid and foliose plate-forming Porites rus. Over 60 species of bony and cartilaginous fish were recorded; their estimated biomass ranged from 17 to 102 mt km-2. Four species of the green algae Halimeda dominated the reef-associated macroalgae, some of which were epiphytic. The prominent coral-attached sponges had arborescent growth form but irregular forms also occurred. The coarse biogenic surface sediments harbored mostly aerobic macroinfauna. These results comprise the first account of the biodiversity of an offshore mesophotic coral reef seamount. Although its diversity appears less than the shallower fringing reefs of the Philippines' Pacific Seaboard, the dynamic environment remains important to fisheries.
Federal Register 2010, 2011, 2012, 2013, 2014
2013-01-30
...NMFS issues this final rule to implement management measures described in Amendment 38 to the Fishery Management Plan for the Reef Fish Resources of the Gulf of Mexico (FMP) prepared by the Gulf of Mexico (Gulf) Fishery Management Council (Council). This final rule modifies post-season accountability measures (AMs) that affect the recreational harvest of shallow-water grouper species (SWG), changes the trigger for recreational sector AMs for gag and red grouper, and revises the Gulf reef fish framework procedure. The intent of this final rule is to achieve optimum yield (OY) while ensuring the Gulf reef fish fishery resources are utilized efficiently.
Seafloor geomorphology and geology of the Kingman Reef-Palmyra Atoll region, Central Pacific Ocean
NASA Astrophysics Data System (ADS)
Eakins, Barry; Barth, Ginger; Scheirer, Dan; Mosher, Dave; Armstrong, Andy
2017-04-01
Kingman Reef and Palmyra Atoll are the exposed summits of two seamounts within the Line Islands Volcanic Chain in the Central Pacific Ocean. Both are U.S. Territories, and the Exclusive Economic Zone around the islands was partially surveyed in 1991 with GLORIA sidescan sonar and seismic reflection profiling. New multibeam swath sonar surveys were conducted in 2010, 2015, and 2016 around the islands, in support of U.S. Extended Continental Shelf investigations. Numerous transits through the region by research vessels have collected additional multibeam swath sonar data. We present new, detailed maps of bathymetry, sidescan sonar imagery, geology, and sediment isopachs of the seafloor surrounding the islands, and how these have informed our understanding of the islands' margins. The islands are the last subaerial remnants of a complex, horse-shoe-shaped volcanic platform spanning roughly 200 km in diameter. The elevated platform from which the seamounts arise comprises at least 10 individual volcanic centers that have heights exceeding 3000m above the nearby abyssal plains. Gravity modeling suggests that the elevated platform is compensated by thickened crust. Strong carbonate caps and voluminous sediment accumulations flanking the platform indicate that the volcanoes were once shallow-water or emergent systems. These systems produced vast quantities of carbonate sediment that were shed to a deep interior basin to the east of Palmyra Atoll, and to nearby abyssal plains. The identification of mass failures, sediment reworking and bedforms, and channel networks provide evidence for extensive sedimentary processes around these volcanic centers. Analysis of the seamounts atop the elevated platform and in the seamount province to the northwest shows that flat-topped seamounts ("guyots") are principally found at depths shallower than 1300 meters, while peaked seamounts are almost exclusively found at greater depths. This constrains the amount of regional subsidence that has occurred since guyot formation.
NASA Astrophysics Data System (ADS)
Drew, Edward A.; Abel, Kay M.
1988-03-01
Large areas of the inter-reefal seabed in the Great Barrier Reef are carpeted with vegetation composed almost entirely of the green calcareous alga Halineda. These meadows occur principally in the northern sections between 11°30' and 15°35'S at depths of 20 to 40 m, but there are also some in the central and southern sections, where they have been found at depths down to 96 m. The vegetation is dominated by the same sprawling Halimeda species that are common on coral reefs in this region. However, on reefs these species grow on solid substrata, not soft sediments like the Halimeda-rich gravels that underlie the meadows. A total of 12 Halimeda species, together with two Udotea and one Penicillus species, are characteristic components of the shallow meadows. Below 50 m depth, species composition is restricted to only two major components. One, H. copiosa, is also important shallower, but the other is an unusually large and heavily calcified form of H. fragilis, a species that is normally a minor, fragile component of the shallow meadows. The maximum biomass found in these meadows was 4637 gm2 of calcareous algae, although the thean for vegetated areas was 525 gm2. These meadows are confined to the nutrient-depleted waters of the outer continental shelf just inside the outer barrier reefs, and are usually associated with distinct shoaling of the seabed caused by accumulation of thick deposits of calcareous Halimeda segments. The meadows are probably supported by very localized upwelling of nutrients from the adjacent Coral Sea onto the shelf, where they enrich the otherwise nutrient-depleted waters.
Fishes associated with mesophotic coral ecosystems in La Parguera, Puerto Rico
NASA Astrophysics Data System (ADS)
Bejarano, I.; Appeldoorn, R. S.; Nemeth, M.
2014-06-01
Fishes associated with mesophotic coral ecosystems (MCEs) of the La Parguera shelf-edge were surveyed between 2007 and 2011 using mixed-gas rebreather diving. Fishes were identified and counted within belt transects and roving surveys at 30, 40, 50, 60 and 70 m depth. Vertical transects from 70 to 30 m depth helped determine depth distribution ranges. One hundred and three species were identified at MCEs (40-70 m), with high abundances and species richness, though both varied greatly among transects. Most species at MCEs were common inhabitants of shallow reefs, but some were restricted to mesophotic depths. An additional 15 species were added to those previously classified as indicator species of mesophotic areas in Puerto Rico. The MCE fish assemblage was distinct from shallow areas (30 m), with taxonomic composition, abundance and the proportion of trophic guilds varying with increasing depth. The dominant trophic guild within MCEs was the zooplanktivores, while herbivores dominated shallow reefs. Both herbivores and zooplanktivores responded strongly, and oppositely, to depth. The few herbivores associated with deep MCEs are small-bodied species. The largest changes within the mesophotic fish community along the depth gradient occurred at 60 m, similar to that reported for algae and corals, and seem to represent both a response to reduced light and variations in herbivory. The presence of commercially important fishes at MCEs, many considered to be threatened by fishing pressure in shallow areas, suggests that MCEs are important for the conservation of these species. This study represents the first quantitative in situ observations and descriptions of fishes inhabiting MCEs at depths of 50-70 m in Puerto Rico and highlights the role of MCEs as valuable habitats for reef fishes. The composition and distribution of the MCEs fish community should be incorporated when planning for the spatial management of coral reef resources.
NASA Astrophysics Data System (ADS)
Perry, C. T.; Morgan, K. M.
2017-12-01
Given the severity of the 2016 global bleaching event, there are major questions about how quickly reef communities will recover. Here, we explore the ecological and physical structural changes that occurred across five atoll interior reefs in the southern Maldives using data collected at 6 and 12 months post-bleaching. Following initial severe coral mortality, further minor coral mortality had occurred by 12 months post-bleaching, and coral cover is now low (<6%). In contrast, reef rugosity has continued to decline over time, and our observations suggest transitions to rubble-dominated states will occur in the near future. Juvenile coral densities in shallow fore-reef habitats are also exceptionally low (<6 individuals m-2), well below those measured 9-12 months following the 1998 bleaching event, and below recovery thresholds identified on other Indian Ocean reefs. Our findings suggest that the physical structure of these reefs will need to decline further before effective recruitment and recovery can begin.
Workshop on Biological Integrity of Coral Reefs August 21-22 ...
This report summarizes an EPA-sponsored workshop on coral reef biological integrity held at the Caribbean Coral Reef Institute in La Parguera, Puerto Rico on August 21-22, 2012. The goals of this workshop were to:• Identify key qualitative and quantitative ecological characteristics (reef attributes) that determine the condition of linear coral reefs inhabiting shallow waters (<12 m) in southwestern Puerto Rico.• Use those reef attributes to recommend categorical condition rankings for establishing a biological condition gradient.• Ascertain through expert consensus those reef attributes that characterize biological integrity (a natural, fully-functioning system of organisms and communities) for coral reefs. • Develop a conceptual, narrative model that describes how biological attributes of coral reefs change along a gradient of increasing anthropogenic stress.The workshop brought together scientists with expertise in coral reef taxonomic groups (e.g., stony corals, fishes, sponges, gorgonians, algae, seagrasses and macroinvertebrates), as well as community structure, organism condition, ecosystem function and ecosystem connectivity. The experts evaluated photos and videos from 12 stations collected during EPA Coral Reef surveys (2010 & 2011) from Puerto Rico on coral reefs exhibiting a wide range of conditions. The experts individually rated each station as to observed condition (“good”, “fair” or “poor”) and documented their rationale for
Assessment of Acropora palmata in the Mesoamerican Reef System
Rodríguez-Martínez, Rosa E.; Banaszak, Anastazia T.; McField, Melanie D.; Beltrán-Torres, Aurora U.; Álvarez-Filip, Lorenzo
2014-01-01
The once-dominant shallow reef-building coral Acropora palmata has suffered drastic geographical declines in the wider Caribbean from a disease epidemic that began in the late 1970s. At present there is a lack of quantitative data to determine whether this species is recovering over large spatial scales. Here, we use quantitative surveys conducted in 107 shallow-water reef sites between 2010 and 2012 to investigate the current distribution and abundance of A. palmata along the Mesoamerican Reef System (MRS). Using historical data we also explored how the distribution and abundance of this species has changed in the northern portion of the MRS between 1985 and 2010–2012. A. palmata was recorded in only a fifth of the surveyed reef sites in 2010–2012. In the majority of these reef sites the presence of A. palmata was patchy and rare. Only one site (Limones reef), in the northernmost portion of the MRS, presented considerably high A. palmata cover (mean: 34.7%, SD: 24.5%). At this site, the size-frequency distribution of A. palmata colonies was skewed towards small colony sizes; 84% of the colonies were healthy, however disease prevalence increased with colony size. A comparison with historical data showed that in the northern portion of the MRS, in 1985, A. palmata occurred in 74% of the 31 surveyed sites and had a mean cover of 7.7% (SD = 9.0), whereas in 2010–2012 this species was recorded in 48% of the sites with a mean cover of 2.9% (SD = 7.5). A. palmata populations along the MRS are failing to recover the distribution and abundance they had prior to the 1980s. Investigating the biological (e.g., population genetics) and environmental conditions (e.g., sources of stress) of the few standing reefs with relatively high A. palmata cover is crucial for the development of informed restoration models for this species. PMID:24763319
Federal Register 2010, 2011, 2012, 2013, 2014
2010-12-01
... commercial quota for shallow-water grouper species (SWG), prohibits recreational harvest of gag, and suspends... recreational sector. This is because recreational effort primarily occurs in shallower waters where discard... percent of their gross revenue in 2008 and 2009, respectively. Revenue from deep-water grouper (DWG...
Federal Register 2010, 2011, 2012, 2013, 2014
2012-10-19
...NMFS proposes to implement management measures described in Amendment 38 to the Fishery Management Plan for the Reef Fish Resources of the Gulf of Mexico (FMP) prepared by the Gulf of Mexico (Gulf) Fishery Management Council (Council). If implemented, this rule would modify post-season accountability measures (AMs) that affect shallow- water grouper species (SWG), change the trigger for AMs, and revise the Gulf reef fish framework procedure. The intent of this proposed rule is to achieve optimum yield (OY) while ensuring the fishery resources are utilized efficiently.
Ringang, Rory R.; Cantero, Sean Michael A.; Toonen, Robert J.
2015-01-01
We investigate the survivorship, growth and diet preferences of hatchery-raised juvenile urchins, Tripneustes gratilla, to evaluate the efficacy of their use as biocontrol agents in the efforts to reduce alien invasive algae. In flow-through tanks, we measured urchin growth rates, feeding rates and feeding preferences among diets of the most common invasive algae found in Kāneʻohe Bay, Hawaiʻi: Acanthophora spicifera, Gracilaria salicornia, Eucheuma denticulatum and Kappaphycus clade B. Post-transport survivorship of outplanted urchins was measured in paired open and closed cages in three different reef environments (lagoon, reef flat and reef slope) for a month. Survivorship in closed cages was highest on the reef flat (∼75%), and intermediate in the lagoon and reef slope (∼50%). In contrast, open cages showed similar survivorship on the reef flat and in the lagoon, but only 20% of juvenile urchins survived in open cages placed on the reef slope. Urchins grew significantly faster on diets of G. salicornia (1.58 mm/week ± 0.14 SE) and Kappaphycus clade B (1.69 ± 0.14 mm/wk) than on E. denticulatum (0.97 ± 0.14 mm/wk), with intermediate growth when fed on A. spicifera (1.23 ± 0.11 mm/wk). Interestingly, urchins display size-specific feeding preferences. In non-choice feeding trials, small urchins (17.5–22.5 mm test diameter) consumed G. salicornia fastest (6.08 g/day ± 0.19 SE), with A. spicifera (4.25 ± 0.02 g/day) and Kappaphycus clade B (3.83 ± 0.02 g/day) intermediate, and E. denticulatum was clearly the least consumed (2.32 ± 0.37 g/day). Medium-sized (29.8–43.8 mm) urchins likewise preferentially consumed G. salicornia (12.60 ± 0.08 g/day), with less clear differences among the other species in which E. denticulatum was still consumed least (9.35 ± 0.90 g/day). In contrast, large urchins (45.0–65.0 mm) showed no significant preferences among the different algae species at all (12.43–15.24 g/day). Overall consumption rates in non-choice trials were roughly equal to those in the choice trials, but differences among feeding rates on each species were not predictive of feeding preferences when urchins were presented all four species simultaneously. In the choice feeding trials, both small and medium urchins clearly preferred A. spicifera over all other algae (roughly twice as much consumed as any other species). Again, however, differences were less pronounced among adult urchins, with adults showing a significant preference for A. spicifera and Kappaphycus clade B compared to the other two algal species. These findings indicate that outplanted urchins are surviving on the reef flats and eating a variety of alien invasive algae as intended. Although juvenile urchins show stronger feeding preferences, these animals grow quickly, and adult urchins are more generalist herbivores that consume all four alien invasive algae. PMID:26401450
Elevated rates of morphological and functional diversification in reef-dwelling haemulid fishes.
Price, Samantha A; Tavera, Jose J; Near, Thomas J; Wainwright, Peter C
2013-02-01
The relationship between habitat complexity and species richness is well established but comparatively little is known about the evolution of morphological diversity in complex habitats. Reefs are structurally complex, highly productive shallow-water marine ecosystems found in tropical (coral reefs) and temperate zones (rocky reefs) that harbor exceptional levels of biodiversity. We investigated whether reef habitats promote the evolution of morphological diversity in the feeding and locomotion systems of grunts (Haemulidae), a group of predominantly nocturnal fishes that live on both temperate and tropical reefs. Using phylogenetic comparative methods and statistical analyses that take into account uncertainty in phylogeny and the evolutionary history of reef living, we demonstrate that rates of morphological evolution are faster in reef-dwelling haemulids. The magnitude of this effect depends on the type of trait; on average, traits involved in the functional systems for prey capture and processing evolve twice as fast on reefs as locomotor traits. This result, along with the observation that haemulids do not exploit unique feeding niches on reefs, suggests that fine-scale trophic niche partitioning and character displacement may be driving higher rates of morphological evolution. Whatever the cause, there is growing evidence that reef habitats stimulate morphological and functional diversification in teleost fishes. © 2012 The Author(s). Evolution© 2012 The Society for the Study of Evolution.
Establishment, management, and maintenance of the phoenix islands protected area.
Rotjan, Randi; Jamieson, Regen; Carr, Ben; Kaufman, Les; Mangubhai, Sangeeta; Obura, David; Pierce, Ray; Rimon, Betarim; Ris, Bud; Sandin, Stuart; Shelley, Peter; Sumaila, U Rashid; Taei, Sue; Tausig, Heather; Teroroko, Tukabu; Thorrold, Simon; Wikgren, Brooke; Toatu, Teuea; Stone, Greg
2014-01-01
The Republic of Kiribati's Phoenix Islands Protected Area (PIPA), located in the equatorial central Pacific, is the largest and deepest UNESCO World Heritage site on earth. Created in 2008, it was the first Marine Protected Area (MPA) of its kind (at the time of inception, the largest in the world) and includes eight low-lying islands, shallow coral reefs, submerged shallow and deep seamounts and extensive open-ocean and ocean floor habitat. Due to their isolation, the shallow reef habitats have been protected de facto from severe exploitation, though the surrounding waters have been continually fished for large pelagics and whales over many decades. PIPA was created under a partnership between the Government of Kiribati and the international non-governmental organizations-Conservation International and the New England Aquarium. PIPA has a unique conservation strategy as the first marine MPA to use a conservation contract mechanism with a corresponding Conservation Trust established to be both a sustainable financing mechanism and a check-and-balance to the oversight and maintenance of the MPA. As PIPA moves forward with its management objectives, it is well positioned to be a global model for large MPA design and implementation in similar contexts. The islands and shallow reefs have already shown benefits from protection, though the pending full closure of PIPA (and assessments thereof) will be critical for determining success of the MPA as a refuge for open-ocean pelagic and deep-sea marine life. As global ocean resources are continually being extracted to support a growing global population, PIPA's closure is both timely and of global significance.
Wave characteristics and hydrodynamics at a reef island on Dongsha Atoll in the South China Sea
NASA Astrophysics Data System (ADS)
Su, Shih-Feng; Chiang, Te-Yun; Lin, Yi-Hao; Chen, Jia-Lin
2017-04-01
An inhabited coral reef island, located at the Dongsha Atoll in the northern South China Sea, is frequently attacked by typhoon waves. Coastline has suffered severe erosion and coastal inundation during certain typhoon paths. Groins were therefore built surround the island to stabilize the shoreline. However, the engineering structures redistributed the characteristics of hydrodynamics, which resulted in the disappearance of seasonal sediment movements on the reef flat. Additionally, infragravity waves (20-200 sec) on reefs have be found to generate strong resonance during energetic wave events. To understand wave characteristics and nearshore circulations around the reef under typical waves and typhoon waves, a phase-averaged and a phase-resolving wave models validated with previous field experiments are used to simulate significant wave height, wave setup and reef circulations. The phase-resolving model is specially applied to investigate infragravity motions around the island. Model results will illustrate the spatial variations of infragravity-wave field and wave-induced nearshore circulation and can provide information for coastal management and protection.
Silurian pinnacle reefs of the Canadian Arctic
DOE Office of Scientific and Technical Information (OSTI.GOV)
De Freitas, T.A.; Dixon, O.A.; Mayr, U.
1993-04-01
Pinnacle reefs are commonly an attractive target for oil exploration because they are usually porous carbonate bodies entombed in impervious, deep-water shales that provide both the source and the seal for hydrocarbons. Silurian pinnacle reefs, the first described in the Canadian Arctic Archipelago, are exposed on Ellesmere and Devon Islands. Two main reef trends occur, one of early middle Llandovery to middle Ludlow age and a second of middle Ludlow to Late Silurian or Early Devonian age. Reefs of both phases contain lime mudstone cores: some are stromatactoid-rich and others consist predominantly of microbialite-rich lime mudstone or microbial boundstone. Faciesmore » sequences of both reef phases show evidence of upward-shallowing overall, but, in the older reefs, isochronous capping facies are dominated either by coral-mirian or by stromatoporoid boundstone and floatstone. This difference perhaps reflects variation in wave stress and apparent ability of a few corals,thickly encrusted by or associated with microbial boundstone and skeletal algae, to withstand greater wave energy than a stromatoporoid-coral-rich reef community. These reefs constitute one of the bright prospects of hydrocarbon exploration in rocks of the Franklinian succession. 43 refs., 9 figs.« less
Bertucci, Frédéric; Parmentier, Eric; Berthe, Cécile; Besson, Marc; Hawkins, Anthony D; Aubin, Thierry; Lecchini, David
2017-01-01
Acoustic recording has been recognized as a valuable tool for non-intrusive monitoring of the marine environment, complementing traditional visual surveys. Acoustic surveys conducted on coral ecosystems have so far been restricted to barrier reefs and to shallow depths (10-30 m). Since they may provide refuge for coral reef organisms, the monitoring of outer reef slopes and describing of the soundscapes of deeper environment could provide insights into the characteristics of different biotopes of coral ecosystems. In this study, the acoustic features of four different habitats, with different topographies and substrates, located at different depths from 10 to 100 m, were recorded during day-time on the outer reef slope of the north Coast of Moorea Island (French Polynesia). Barrier reefs appeared to be the noisiest habitats whereas the average sound levels at other habitats decreased with their distance from the reef and with increasing depth. However, sound levels were higher than expected by propagation models, supporting that these habitats possess their own sound sources. While reef sounds are known to attract marine larvae, sounds from deeper habitats may then also have a non-negligible attractive potential, coming into play before the reef itself.
NASA Astrophysics Data System (ADS)
Kayanne, Hajime; Aoki, Kenji; Suzuki, Takuya; Hongo, Chuki; Yamano, Hiroya; Ide, Yoichi; Iwatsuka, Yuudai; Takahashi, Kenya; Katayama, Hiroyuki; Sekimoto, Tsunehiro; Isobe, Masahiko
2016-10-01
Landform changes in Ballast Island, a small coral reef island in the Ryukyu Islands, were investigated by remote sensing analysis and a field survey. The area of the island almost doubled after a mass coral bleaching event in 1998. Coral branches generated by the mass mortality and broken by waves were delivered and stocked on a reef flat and accumulated to expand the area of the island. In 2012 high waves generated by typhoons also changed the island's topography. Overall, the island moved in the downdrift direction of the higher waves. Waves impacting both sides of the island piled up a large volume of coral gravels above the high-tide level. Eco-geomorphic processes, including a supply of calcareous materials from the corals on the same reef especially during stormy wave conditions, were key factors in maintaining the dynamic topographic features of this small coral reef island.
The characteristics and dynamics of wave-driven flow across a platform coral reef in the Red Sea
NASA Astrophysics Data System (ADS)
Lentz, S. J.; Churchill, J. H.; Davis, K. A.; Farrar, J. T.; Pineda, J.; Starczak, V.
2016-02-01
Current dynamics across a platform reef in the Red Sea near Jeddah, Saudi Arabia, are examined using 18 months of current profile, pressure, surface wave, and wind observations. The platform reef is 700 m long, 200 m across with spatial and temporal variations in water depth over the reef ranging from 0.6 to 1.6 m. Surface waves breaking at the seaward edge of the reef cause a 2-10 cm setup of sea level that drives cross-reef currents of 5-20 cm s-1. Bottom stress is a significant component of the wave setup balance in the surf zone. Over the reef flat, where waves are not breaking, the cross-reef pressure gradient associated with wave setup is balanced by bottom stress. The quadratic drag coefficient for the depth-average flow decreases with increasing water depth from Cda = 0.17 in 0.4 m of water to Cda = 0.03 in 1.2 m of water. The observed dependence of the drag coefficient on water depth is consistent with open-channel flow theory and a hydrodynamic roughness of zo = 0.06 m. A simple one-dimensional model driven by incident surface waves and wind stress accurately reproduces the observed depth-averaged cross-reef currents and a portion of the weaker along-reef currents over the focus reef and two other Red Sea platform reefs. The model indicates the cross-reef current is wave forced and the along-reef current is partially wind forced.
Reflective Light Modulation by Cephalopods and Fishes in Shallow Nearshore Habitats
2011-09-30
cephalopods ( octopus , cuttlefish and squid) because they have the most diverse and changeable camouflage patterns known in biology. Several fishes...breakdown is as follows: (1) Puerto Rico, December 2010, to film Octopus vulgaris using camouflage in various habitats, including seagrass, soft corals...patch reefs, and fully developed coral reefs with soft and hard corals; (2) Monterey, California, Hopkins Marine Station, to film Octopus rubescens, a
Relative Pigment Composition and Remote Sensing Reflectance of Caribbean Shallow-Water Corals
Torres-Pérez, Juan L.; Guild, Liane S.; Armstrong, Roy A.; Corredor, Jorge; Zuluaga-Montero, Anabella; Polanco, Ramón
2015-01-01
Reef corals typically contain a number of pigments, mostly due to their symbiotic relationship with photosynthetic dinoflagellates. These pigments usually vary in presence and concentration and influence the spectral characteristics of corals. We studied the variations in pigment composition among seven Caribbean shallow-water Scleractinian corals by means of High Performance Liquid Chromatography (HPLC) analysis to further resolve the discrimination of corals. We found a total of 27 different pigments among the coral species, including some alteration products of the main pigments. Additionally, pigments typically found in endolithic algae were also identified. A Principal Components Analysis and a Hierarchical Cluster Analysis showed the separation of coral species based on pigment composition. All the corals were collected under the same physical environmental conditions. This suggests that pigment in the coral’s symbionts might be more genetically-determined than influenced by prevailing physical conditions of the reef. We further investigated the use of remote sensing reflectance (Rrs) as a tool for estimating the total pigment concentration of reef corals. Depending on the coral species, the Rrs and the total symbiont pigment concentration per coral tissue area correlation showed 79.5–98.5% confidence levels demonstrating its use as a non-invasive robust technique to estimate pigment concentration in studies of coral reef biodiversity and health. PMID:26619210
Relative Pigment Composition and Remote Sensing Reflectance of Caribbean Shallow-Water Corals.
Torres-Pérez, Juan L; Guild, Liane S; Armstrong, Roy A; Corredor, Jorge; Zuluaga-Montero, Anabella; Polanco, Ramón
2015-01-01
Reef corals typically contain a number of pigments, mostly due to their symbiotic relationship with photosynthetic dinoflagellates. These pigments usually vary in presence and concentration and influence the spectral characteristics of corals. We studied the variations in pigment composition among seven Caribbean shallow-water Scleractinian corals by means of High Performance Liquid Chromatography (HPLC) analysis to further resolve the discrimination of corals. We found a total of 27 different pigments among the coral species, including some alteration products of the main pigments. Additionally, pigments typically found in endolithic algae were also identified. A Principal Components Analysis and a Hierarchical Cluster Analysis showed the separation of coral species based on pigment composition. All the corals were collected under the same physical environmental conditions. This suggests that pigment in the coral's symbionts might be more genetically-determined than influenced by prevailing physical conditions of the reef. We further investigated the use of remote sensing reflectance (Rrs) as a tool for estimating the total pigment concentration of reef corals. Depending on the coral species, the Rrs and the total symbiont pigment concentration per coral tissue area correlation showed 79.5-98.5% confidence levels demonstrating its use as a non-invasive robust technique to estimate pigment concentration in studies of coral reef biodiversity and health.
Quantitative species-level ecology of reef fish larvae via metabarcoding.
Kimmerling, Naama; Zuqert, Omer; Amitai, Gil; Gurevich, Tamara; Armoza-Zvuloni, Rachel; Kolesnikov, Irina; Berenshtein, Igal; Melamed, Sarah; Gilad, Shlomit; Benjamin, Sima; Rivlin, Asaph; Ohavia, Moti; Paris, Claire B; Holzman, Roi; Kiflawi, Moshe; Sorek, Rotem
2018-02-01
The larval pool of coral reef fish has a crucial role in the dynamics of adult fish populations. However, large-scale species-level monitoring of species-rich larval pools has been technically impractical. Here, we use high-throughput metabarcoding to study larval ecology in the Gulf of Aqaba, a region that is inhabited by >500 reef fish species. We analysed 9,933 larvae from 383 samples that were stratified over sites, depth and time. Metagenomic DNA extracted from pooled larvae was matched to a mitochondrial cytochrome c oxidase subunit I barcode database compiled for 77% of known fish species within this region. This yielded species-level reconstruction of the larval community, allowing robust estimation of larval spatio-temporal distributions. We found significant correlations between species abundance in the larval pool and in local adult assemblages, suggesting a major role for larval supply in determining local adult densities. We documented larval flux of species whose adults were never documented in the region, suggesting environmental filtering as the reason for the absence of these species. Larvae of several deep-sea fishes were found in shallow waters, supporting their dispersal over shallow bathymetries, potentially allowing Lessepsian migration into the Mediterranean Sea. Our method is applicable to any larval community and could assist coral reef conservation and fishery management efforts.
NASA Astrophysics Data System (ADS)
Kilbourne, B.
2016-12-01
The Chesapeake Bay Interpretive Buoy System has collected oceanographic and meteorological observations in Chesapeake Bay from 2007 to the present. The relatively long and well resolved time series of wind, current, and salinity data provided by this array creates an opportunity to better understand the many finescale circulation pathways in Chesapeake Bay. The mean vertical structure of Chesapeake Bay is approximated by a three layer system: a well-mixed surface boundary layer from 1 to 8 m depth, a stratified transition layer from 8 to 15 m depth, and a well-mixed bottom boundary layer from 15 m to the bottom (typically < 30 m). The conditions in the surface and bottom boundary layers can be strikingly different with the bottom layer being saltier, lower in pH, and lower in dissolved oxygen than the surface layer. The Gooses Reef station of this array is located on `Gooses Reef', a shallow bar just 10 m in depth, dividing the Choptank River basin from the main channel of the Chesapeake Bay. This shallow bar provides habitat for oysters, a keystone species in the Chesapeake Bay, and is both commercially and ecologically critical to the region. These shallow habitats are threatened when anoxic (< 0.5 mg l-1 O2) conditions exist in the upper 10 m of the water column. The Gooses Reef station is unique in the array due to the addition of a bottom mounted sensor package; data from August 2012 show rapid changes in the salinity (11 to 17 PSU), dissolved oxygen (6 to 0.05 mg l-1) , and pH (8.3 to 7.7) at the bottom. Investigations of wind and current data before these rapid changes show along channel wind stress oscillations near the M2 tidal frequency. Current profiles from the buoy ADCP show low-frequency along-channel baroclinic oscillations. Observed currents appear to be an internal seiche, forced by resonance between the along-channel wind and diurnal tide. At the Gooses Reef bar, this internal seiche forced the bottom boundary layer up and over the bar, causing the sudden shift in water properties. These observations highlight the strong physical controls on local water conditions in the Chesapeake Bay and similar estuaries.
Use of egg traps to investigate lake trout spawning in the Great Lakes
Schreiner, Donald R.; Bronte, Charles R.; Payne, N. Robert; Fitzsimons, John D.; Casselman, John M.
1995-01-01
Disk-shaped traps were used to examine egg deposition by lake trout (Salvelinus namaycush) at 29 sites in the Great Lakes. The main objectives were to; first, evaluate the disk trap as a device for sampling lake trout eggs in the Great Lakes, and second, summarize what has been learned about lake trout spawning through the use of disk traps. Of the 5,085 traps set, 60% were classified as functional when retrieved. Evidence of lake trout egg deposition was documented in each of the lakes studied at 14 of 29 sites. A total of 1,147 eggs were trapped. The percentage of traps functioning and catch per effort were compared among sites based on depth, timing of egg deposition, distance from shore, size of reef, and type of reef (artificial or natural). Most eggs were caught on small, shallow, protected reefs that were close to shore. Use of disk traps on large, shallow, unprotected offshore reefs or along unprotected shorelines was generally unsuccessful due to the effects of heavy wind and wave action. Making multiple lifts at short intervals, and retrieval before and re-deployment after storms are recommended for use in exposed areas. On large reefs, preliminary surveys to identify preferred lake trout spawning habitat may be required to deploy disk traps most effectively. Egg deposition by hatchery-reared fish was widespread throughout the Great Lakes, and the use of artificial structures by these fish was extensive.
NASA Astrophysics Data System (ADS)
Li, Angang; Reidenbach, Matthew A.
2014-09-01
Elevated sea surface temperature (SST) caused by global warming is one of the major threats to coral reefs. While increased SST has been shown to negatively affect the health of coral reefs by increasing rates of coral bleaching, how changes to atmospheric heating impact SST distributions, modified by local flow environments, has been less understood. This study aimed to simulate future water flow patterns and water surface heating in response to increased air temperature within a coral reef system in Bocas del Toro, Panama, located within the Caribbean Sea. Water flow and SST were modeled using the Delft3D-FLOWcomputer simulation package. Locally measured physical parameters, including bathymetry, astronomic tidal forcing, and coral habitat distribution were input into the model and water flow, and SST was simulated over a four-month period under present day, as well as projected warming scenarios in 2020s, 2050s, and 2080s. Changes in SST, and hence the thermal stress to corals, were quantified by degree heating weeks. Results showed that present-day reported bleaching sites were consistent with localized regions of continuous high SST. Regions with highest SST were located within shallow coastal sites adjacent to the mainland or within the interior of the bay, and characterized by low currents with high water retention times. Under projected increases in SSTs, shallow reef areas in low flow regions were found to be hot spots for future bleaching.
NASA Astrophysics Data System (ADS)
Cooper, Timothy F.; Ulstrup, Karin E.
2009-06-01
Spatial variation in the photophysiology of symbiotic dinoflagellates (zooxanthellae) of the scleractinian coral Pocillopora damicornis was examined along an environmental gradient in the Whitsunday Islands (Great Barrier Reef) at two depths (3 m and 6 m). Chlorophyll a fluorescence of photosystem II (PSII) and PAR-absorptivity measurements were conducted using an Imaging-PAM (pulse-amplitude-modulation) fluorometer. Most photophysiological parameters correlated with changes in environmental conditions quantified by differences in water quality along the gradient. For example, maximum quantum yield ( Fv/ Fm) increased and PAR-absorptivity decreased as water quality improved along the gradient from nearshore reefs (low irradiance, elevated nutrients and sediments) to outer islands (high irradiance, low nutrients and sediments). For apparent photosynthetic rate (PS max) and minimum saturating irradiance ( Ek), the direction of change differed depending on sampling depth, suggesting that different mechanisms of photo-acclimatisation operated between shallow and deep corals. Deep corals conformed to typical patterns of light/shade acclimatisation whereas shallow corals exhibited reduced PS max and Ek with improving water quality coinciding with greater heat dissipation (NPQ 241). Furthermore, deep corals on nearshore reefs exhibited elevated Q241 in comparison to outer islands possibly due to effects of sedimentation and/or pollutants rather than irradiance. These results highlight the importance of mesoscale sampling to obtain useful estimates of the variability of photophysiological parameters, particularly if such measures are to be used as bioindicators of the condition of coral reefs.
Recovery of coral cover in records spanning 44 yr for reefs in Kāne`ohe Bay, Oa`hu, Hawai`i
NASA Astrophysics Data System (ADS)
Stimson, John
2018-03-01
Published and unpublished long-term studies are assembled to examine trends in coral cover and the dependence of change in coral cover on the initial coral cover in Kāne`ohe Bay over the last 44 yr. Each study showed there had been periods of increase in coral cover in the bay and showed that the rate of change in cover has been inversely dependent on the initial cover at a site. When coral cover is high on upper reef slopes, the fragile structure of reefs in this sheltered bay often collapses, resulting in a decrease in coral cover. The rate of change in coral cover was also inversely dependent on cover in one of the two studies that included analysis of reef-flat corals; the cause of decrease in cover in this habitat is thought to be attributable to particularly low sea levels in Hawai`i in the late 1990s and 2009-2010. The inverse relationship between initial coral cover and change in cover, and the intersections of the regression lines of these variables with the x-axis at intermediate values of coral cover, is indicative of resilience in this ecosystem over the last 44 yr. In the 1970s, the invasive macroscopic green alga Dictyosphaeria cavernosa covered a high percentage of coral habitat and commonly displaced corals from the reef slope and outer reef flats; the change was cited as an example of a phase shift on a reef. This alga has virtually disappeared from the bay, thus increasing the space available to corals; its disappearance is coincident with the increase in coral cover. Other species of macroalgae, including alien species, have not replaced D. cavernosa as major space competitors. The increase in coral cover and virtual disappearance of D. cavernosa constitute an example of a phase-shift reversal.
Large-scale patterns of benthic marine communities in the Brazilian Province.
Aued, Anaide W; Smith, Franz; Quimbayo, Juan P; Cândido, Davi V; Longo, Guilherme O; Ferreira, Carlos E L; Witman, Jon D; Floeter, Sergio R; Segal, Bárbara
2018-01-01
As marine ecosystems are influenced by global and regional processes, standardized information on community structure has become crucial for assessing broad-scale responses to natural and anthropogenic disturbances. Extensive biogeographic provinces, such as the Brazilian Province in the southwest Atlantic, present numerous theoretical and methodological challenges for understanding community patterns on a macroecological scale. In particular, the Brazilian Province is composed of a complex system of heterogeneous reefs and a few offshore islands, with contrasting histories and geophysical-chemical environments. Despite the large extent of the Brazilian Province (almost 8,000 kilometers), most studies of shallow benthic communities are qualitative surveys and/or have been geographically restricted. We quantified community structure of shallow reef habitats from 0° to 27°S latitude using a standard photographic quadrat technique. Percent cover data indicated that benthic communities of Brazilian reefs were dominated by algal turfs and frondose macroalgae, with low percent cover of reef-building corals. Community composition differed significantly among localities, mostly because of their macroalgal abundance, despite reef type or geographic region, with no evident latitudinal pattern. Benthic diversity was lower in the tropics, contrary to the general latitudinal diversity gradient pattern. Richness peaked at mid-latitudes, between 20°S to 23°S, where it was ~3.5-fold higher than localities with the lowest richness. This study provides the first large-scale description of benthic communities along the southwestern Atlantic, providing a baseline for macroecological comparisons and evaluation of future impacts. Moreover, the new understanding of richness distribution along Brazilian reefs will contribute to conservation planning efforts, such as management strategies and the spatial prioritization for the creation of new marine protected areas.
Large-scale patterns of benthic marine communities in the Brazilian Province
Smith, Franz; Quimbayo, Juan P.; Cândido, Davi V.; Longo, Guilherme O.; Ferreira, Carlos E. L.; Witman, Jon D.; Floeter, Sergio R.; Segal, Bárbara
2018-01-01
As marine ecosystems are influenced by global and regional processes, standardized information on community structure has become crucial for assessing broad-scale responses to natural and anthropogenic disturbances. Extensive biogeographic provinces, such as the Brazilian Province in the southwest Atlantic, present numerous theoretical and methodological challenges for understanding community patterns on a macroecological scale. In particular, the Brazilian Province is composed of a complex system of heterogeneous reefs and a few offshore islands, with contrasting histories and geophysical-chemical environments. Despite the large extent of the Brazilian Province (almost 8,000 kilometers), most studies of shallow benthic communities are qualitative surveys and/or have been geographically restricted. We quantified community structure of shallow reef habitats from 0° to 27°S latitude using a standard photographic quadrat technique. Percent cover data indicated that benthic communities of Brazilian reefs were dominated by algal turfs and frondose macroalgae, with low percent cover of reef-building corals. Community composition differed significantly among localities, mostly because of their macroalgal abundance, despite reef type or geographic region, with no evident latitudinal pattern. Benthic diversity was lower in the tropics, contrary to the general latitudinal diversity gradient pattern. Richness peaked at mid-latitudes, between 20°S to 23°S, where it was ~3.5-fold higher than localities with the lowest richness. This study provides the first large-scale description of benthic communities along the southwestern Atlantic, providing a baseline for macroecological comparisons and evaluation of future impacts. Moreover, the new understanding of richness distribution along Brazilian reefs will contribute to conservation planning efforts, such as management strategies and the spatial prioritization for the creation of new marine protected areas. PMID:29883496
Coral mucus fuels the sponge loop in warm- and cold-water coral reef ecosystems
Rix, Laura; de Goeij, Jasper M.; Mueller, Christina E.; Struck, Ulrich; Middelburg, Jack J.; van Duyl, Fleur C.; Al-Horani, Fuad A.; Wild, Christian; Naumann, Malik S.; van Oevelen, Dick
2016-01-01
Shallow warm-water and deep-sea cold-water corals engineer the coral reef framework and fertilize reef communities by releasing coral mucus, a source of reef dissolved organic matter (DOM). By transforming DOM into particulate detritus, sponges play a key role in transferring the energy and nutrients in DOM to higher trophic levels on Caribbean reefs via the so-called sponge loop. Coral mucus may be a major DOM source for the sponge loop, but mucus uptake by sponges has not been demonstrated. Here we used laboratory stable isotope tracer experiments to show the transfer of coral mucus into the bulk tissue and phospholipid fatty acids of the warm-water sponge Mycale fistulifera and cold-water sponge Hymedesmia coriacea, demonstrating a direct trophic link between corals and reef sponges. Furthermore, 21–40% of the mucus carbon and 32–39% of the nitrogen assimilated by the sponges was subsequently released as detritus, confirming a sponge loop on Red Sea warm-water and north Atlantic cold-water coral reefs. The presence of a sponge loop in two vastly different reef environments suggests it is a ubiquitous feature of reef ecosystems contributing to the high biogeochemical cycling that may enable coral reefs to thrive in nutrient-limited (warm-water) and energy-limited (cold-water) environments. PMID:26740019
Coral reef fish smell leaves to find island homes.
Dixson, Danielle L; Jones, Geoffrey P; Munday, Philip L; Planes, Serge; Pratchett, Morgan S; Srinivasan, Maya; Syms, Craig; Thorrold, Simon R
2008-12-22
Recent studies have shown that some coral reef fish larvae return to natal reefs, while others disperse to distant reefs. However, the sensory mechanisms used to find settlement sites are poorly understood. One hypothesis is that larvae use olfactory cues to navigate home or find other suitable reef habitats. Here we show a strong association between the clownfish Amphiprion percula and coral reefs surrounding offshore islands in Papua New Guinea. Host anemones and A. percula are particularly abundant in shallow water beneath overhanging rainforest vegetation. A series of experiments were carried out using paired-choice flumes to evaluate the potential role of water-borne olfactory cues in finding islands. Recently settled A. percula exhibited strong preferences for: (i) water from reefs with islands over water from reefs without islands; (ii) water collected near islands over water collected offshore; and (iii) water treated with either anemones or leaves from rainforest vegetation. Laboratory reared-juveniles exhibited the same positive response to anemones and rainforest vegetation, suggesting that olfactory preferences are innate rather than learned. We hypothesize that A. percula use a suite of olfactory stimuli to locate vegetated islands, which may explain the high levels of self-recruitment on island reefs. This previously unrecognized link between coral reefs and island vegetation argues for the integrated management of these pristine tropical habitats.
Coral mucus fuels the sponge loop in warm- and cold-water coral reef ecosystems.
Rix, Laura; de Goeij, Jasper M; Mueller, Christina E; Struck, Ulrich; Middelburg, Jack J; van Duyl, Fleur C; Al-Horani, Fuad A; Wild, Christian; Naumann, Malik S; van Oevelen, Dick
2016-01-07
Shallow warm-water and deep-sea cold-water corals engineer the coral reef framework and fertilize reef communities by releasing coral mucus, a source of reef dissolved organic matter (DOM). By transforming DOM into particulate detritus, sponges play a key role in transferring the energy and nutrients in DOM to higher trophic levels on Caribbean reefs via the so-called sponge loop. Coral mucus may be a major DOM source for the sponge loop, but mucus uptake by sponges has not been demonstrated. Here we used laboratory stable isotope tracer experiments to show the transfer of coral mucus into the bulk tissue and phospholipid fatty acids of the warm-water sponge Mycale fistulifera and cold-water sponge Hymedesmia coriacea, demonstrating a direct trophic link between corals and reef sponges. Furthermore, 21-40% of the mucus carbon and 32-39% of the nitrogen assimilated by the sponges was subsequently released as detritus, confirming a sponge loop on Red Sea warm-water and north Atlantic cold-water coral reefs. The presence of a sponge loop in two vastly different reef environments suggests it is a ubiquitous feature of reef ecosystems contributing to the high biogeochemical cycling that may enable coral reefs to thrive in nutrient-limited (warm-water) and energy-limited (cold-water) environments.
Coral reef fish smell leaves to find island homes
Dixson, Danielle L; Jones, Geoffrey P; Munday, Philip L; Planes, Serge; Pratchett, Morgan S; Srinivasan, Maya; Syms, Craig; Thorrold, Simon R
2008-01-01
Recent studies have shown that some coral reef fish larvae return to natal reefs, while others disperse to distant reefs. However, the sensory mechanisms used to find settlement sites are poorly understood. One hypothesis is that larvae use olfactory cues to navigate home or find other suitable reef habitats. Here we show a strong association between the clownfish Amphiprion percula and coral reefs surrounding offshore islands in Papua New Guinea. Host anemones and A. percula are particularly abundant in shallow water beneath overhanging rainforest vegetation. A series of experiments were carried out using paired-choice flumes to evaluate the potential role of water-borne olfactory cues in finding islands. Recently settled A. percula exhibited strong preferences for: (i) water from reefs with islands over water from reefs without islands; (ii) water collected near islands over water collected offshore; and (iii) water treated with either anemones or leaves from rainforest vegetation. Laboratory reared-juveniles exhibited the same positive response to anemones and rainforest vegetation, suggesting that olfactory preferences are innate rather than learned. We hypothesize that A. percula use a suite of olfactory stimuli to locate vegetated islands, which may explain the high levels of self-recruitment on island reefs. This previously unrecognized link between coral reefs and island vegetation argues for the integrated management of these pristine tropical habitats. PMID:18755672
Use of riverine through reef habitat systems by dog snapper ( Lutjanus jocu ) in eastern Brazil
NASA Astrophysics Data System (ADS)
Moura, Rodrigo L.; Francini-Filho, Ronaldo B.; Chaves, Eduardo M.; Minte-Vera, Carolina V.; Lindeman, Kenyon C.
2011-11-01
The early life history of Western Atlantic snappers from the Southern hemisphere is largely unknown. Habitat use of different life stages (i.e. size categories) of the dog snapper ( Lutjanus jocu) was examined across the largest South Atlantic reef-estuarine complex (Abrolhos Shelf, Brazil, 16-19° S). Visual surveys were conducted in different habitats across the shelf (estuary, inner-shelf reefs and mid-shelf reefs). Lutjanus jocu showed higher densities on inner-shelf habitats, with a clear increase in fish size across the shelf. Individuals <7 cm were associated with both the estuary (mangrove and rocky habitats) and inner-shelf reefs (particularly shallow fore-reefs and tide pools). Individuals ranging 10-30 cm were broadly distributed, but consistently more abundant on inner-shelf reefs. Individuals between 30 and 40 cm were more common on mid-shelf reefs, while individuals >40 cm were recorded only on mid-shelf reefs. Literature data indicate that individuals ranging 70-80 cm are common on deep offshore reefs. This pattern suggests that the dog snapper performs ontogenetic cross-shelf migrations. Protecting portions of the different habitats used by the dog snapper during its post-settlement life cycle is highlighted as an important conservation and management measure.
NASA Astrophysics Data System (ADS)
Abecasis, D.; Bentes, L.; Lino, P. G.; Santos, M. N.; Erzini, K.
2013-02-01
Artificial reefs are used as management tools for coastal fisheries and ecosystems and the knowledge of habitat use and fish movements around them is necessary to understand their performance and improve their design and location. In this study wild specimens of Diplodus sargus were tagged with acoustic tags and their movements were tracked using passive acoustic telemetry. The monitored area enclosed a natural rocky reef, an adjacent artificial reef (AR) and shallower sandy bottoms. Most of the fish were close to full time residents in the monitored area. Results revealed that D. sargus use the natural reef areas on a more frequent basis than the AR. However, excursions to the adjacent AR and sandy bottoms were frequently detected, essentially during daytime. The use of acoustic telemetry allowed a better understanding of the use of artificial reef structures and its adjacent areas by wild D. sargus providing information that is helpful towards the improvement of AR design and location.
Dameron, Oliver J; Parke, Michael; Albins, Mark A; Brainard, Russell
2007-04-01
Large amounts of derelict fishing gear accumulate and cause damage to shallow coral reefs of the Northwestern Hawaiian Islands (NWHI). To facilitate maintenance of reefs cleaned during 1996-2005 removal efforts, we identify likely high-density debris areas by assessing reef characteristics (depth, benthic habitat type, and energy regime) that influence sub-regional debris accumulation. Previously cleaned backreef and lagoonal reefs at two NWHI locations were resurveyed for accumulated debris using two survey methods. Accumulated debris densities and weights were found to be greater in lagoonal reef areas. Sample weight-based debris densities are extrapolated to similar habitats throughout the NWHI using a spatial 'net habitat' dataset created by generalizing IKONOS satellite derivatives for depth and habitat classification. Prediction accuracy for this dataset is tested using historical debris point data. Annual NWHI debris accumulation is estimated to be 52.0 metric tonnes. For planning purposes, individual NWHI atolls/reefs are allotted a proportion of this total.
Martz, Todd R.; Brainard, Russell E.
2012-01-01
Community structure and assembly are determined in part by environmental heterogeneity. While reef-building corals respond negatively to warming (i.e. bleaching events) and ocean acidification (OA), the extent of present-day natural variability in pH on shallow reefs and ecological consequences for benthic assemblages is unknown. We documented high resolution temporal patterns in temperature and pH from three reefs in the central Pacific and examined how these data relate to community development and net accretion rates of early successional benthic organisms. These reefs experienced substantial diel fluctuations in temperature (0.78°C) and pH (>0.2) similar to the magnitude of ‘warming’ and ‘acidification’ expected over the next century. Where daily pH within the benthic boundary layer failed to exceed pelagic climatological seasonal lows, net accretion was slower and fleshy, non-calcifying benthic organisms dominated space. Thus, key aspects of coral reef ecosystem structure and function are presently related to natural diurnal variability in pH. PMID:22952785
A multiscale analysis of coral reef topographic complexity using lidar-derived bathymetry
Zawada, D.G.; Brock, J.C.
2009-01-01
Coral reefs represent one of the most irregular substrates in the marine environment. This roughness or topographic complexity is an important structural characteristic of reef habitats that affects a number of ecological and environmental attributes, including species diversity and water circulation. Little is known about the range of topographic complexity exhibited within a reef or between different reef systems. The objective of this study was to quantify topographic complexity for a 5-km x 5-km reefscape along the northern Florida Keys reef tract, over spatial scales ranging from meters to hundreds of meters. The underlying dataset was a 1-m spatial resolution, digital elevation model constructed from lidar measurements. Topographic complexity was quantified using a fractal algorithm, which provided a multi-scale characterization of reef roughness. The computed fractal dimensions (D) are a measure of substrate irregularity and are bounded between values of 2 and 3. Spatial patterns in D were positively correlated with known reef zonation in the area. Landward regions of the study site contain relatively smooth (D ??? 2.35) flat-topped patch reefs, which give way to rougher (D ??? 2.5), deep, knoll-shaped patch reefs. The seaward boundary contains a mixture of substrate features, including discontinuous shelf-edge reefs, and exhibits a corresponding range of roughness values (2.28 ??? D ??? 2.61). ?? 2009 Coastal Education and Research Foundation.
Ecological and morphological traits predict depth-generalist fishes on coral reefs
Bridge, Tom C. L.; Luiz, Osmar J.; Coleman, Richard R.; Kane, Corinne N.; Kosaki, Randall K.
2016-01-01
Ecological communities that occupy similar habitats may exhibit functional convergence despite significant geographical distances and taxonomic dissimilarity. On coral reefs, steep gradients in key environmental variables (e.g. light and wave energy) restrict some species to shallow depths. We show that depth-generalist reef fishes are correlated with two species-level traits: caudal fin aspect ratio and diet. Fishes with high aspect ratio (lunate) caudal fins produce weaker vortices in the water column while swimming, and we propose that ‘silent swimming’ reduces the likelihood of detection and provides an advantage on deeper reefs with lower light irradiance and water motion. Significant differences in depth preference among trophic guilds reflect variations in the availability of different food sources along a depth gradient. The significance of these two traits across three geographically and taxonomically distinct assemblages suggests that deep-water habitats exert a strong environmental filter on coral reef-fish assemblages. PMID:26791616
Lionfish (Pterois spp.) invade the upper-bathyal zone in the western Atlantic.
Gress, Erika; Andradi-Brown, Dominic A; Woodall, Lucy; Schofield, Pamela J; Stanley, Karl; Rogers, Alex D
2017-01-01
Non-native lionfish have been recorded throughout the western Atlantic on both shallow and mesophotic reefs, where they have been linked to declines in reef health. In this study we report the first lionfish observations from the deep sea (>200 m) in Bermuda and Roatan, Honduras, with lionfish observed to a maximum depth of 304 m off the Bermuda platform, and 250 m off West End, Roatan. Placed in the context of other deeper lionfish observations and records, our results imply that lionfish may be present in the 200-300 m depth range of the upper-bathyal zone across many locations in the western Atlantic, but currently are under-sampled compared to shallow habitats. We highlight the need for considering deep-sea lionfish populations in future invasive lionfish management.
Lionfish (Pterois spp.) invade the upper-bathyal zone in the western Atlantic
Gress, Erika; Andradi-Brown, Dominic A; Woodall, Lucy; Schofield, Pam; Stanley, Karl; Rogers, Alex D.
2017-01-01
Non-native lionfish have been recorded throughout the western Atlantic on both shallow and mesophotic reefs, where they have been linked to declines in reef health. In this study we report the first lionfish observations from the deep sea (>200 m) in Bermuda and Roatan, Honduras, with lionfish observed to a maximum depth of 304 m off the Bermuda platform, and 250 m off West End, Roatan. Placed in the context of other deeper lionfish observations and records, our results imply that lionfish may be present in the 200–300 m depth range of the upper-bathyal zone across many locations in the western Atlantic, but currently are under-sampled compared to shallow habitats. We highlight the need for considering deep-sea lionfish populations in future invasive lionfish management.
Framework of barrier reefs threatened by ocean acidification.
Comeau, Steeve; Lantz, Coulson A; Edmunds, Peter J; Carpenter, Robert C
2016-03-01
To date, studies of ocean acidification (OA) on coral reefs have focused on organisms rather than communities, and the few community effects that have been addressed have focused on shallow back reef habitats. The effects of OA on outer barrier reefs, which are the most striking of coral reef habitats and are functionally and physically different from back reefs, are unknown. Using 5-m long outdoor flumes to create treatment conditions, we constructed coral reef communities comprised of calcified algae, corals, and reef pavement that were assembled to match the community structure at 17 m depth on the outer barrier reef of Moorea, French Polynesia. Communities were maintained under ambient and 1200 μatm pCO2 for 7 weeks, and net calcification rates were measured at different flow speeds. Community net calcification was significantly affected by OA, especially at night when net calcification was depressed ~78% compared to ambient pCO2 . Flow speed (2-14 cm s(-1) ) enhanced net calcification only at night under elevated pCO2 . Reef pavement also was affected by OA, with dissolution ~86% higher under elevated pCO2 compared to ambient pCO2 . These results suggest that net accretion of outer barrier reef communities will decline under OA conditions predicted within the next 100 years, largely because of increased dissolution of reef pavement. Such extensive dissolution poses a threat to the carbonate foundation of barrier reef communities. © 2015 John Wiley & Sons Ltd.
Ocean acidification accelerates dissolution of experimental coral reef communities
NASA Astrophysics Data System (ADS)
Comeau, S.; Carpenter, R. C.; Lantz, C. A.; Edmunds, P. J.
2015-01-01
Ocean acidification (OA) poses a severe threat to tropical coral reefs, yet much of what is know about these effects comes from individual corals and algae incubated in isolation under high pCO2. Studies of similar effects on coral reef communities are scarce. To investigate the response of coral reef communities to OA, we used large outdoor flumes in which communities composed of calcified algae, corals, and sediment were combined to match the percentage cover of benthic communities in the shallow back reef of Moorea, French Polynesia. Reef communities in the flumes were exposed to ambient (~ 400 μatm) and high pCO2 (~ 1300 μatm) for 8 weeks, and calcification rates measured for the constructed communities including the sediments. Community calcification was reduced by 59% under high pCO2, with sediment dissolution explaining ~ 50% of this decrease; net calcification of corals and calcified algae remained positive but was reduced by 29% under elevated pCO2. These results show that, despite the capacity of coral reef calcifiers to maintain positive net accretion of calcium carbonate under OA conditions, reef communities might transition to net dissolution as pCO2 increases, particularly at night, due to enhanced sediment dissolution.
Ocean acidification accelerates dissolution of experimental coral reef communities
NASA Astrophysics Data System (ADS)
Comeau, S.; Carpenter, R. C.; Lantz, C. A.; Edmunds, P. J.
2014-08-01
Ocean acidification (OA) poses a severe threat to tropical coral reefs, yet much of what is know about these effects comes from individual corals and algae incubated in isolation under high pCO2. Studies of similar effects on coral reef communities are scarce. To investigate the response of coral reef communities to OA, we used large outdoor flumes in which communities composed of calcified algae, corals, and sediment were combined to match the percentage cover of benthic communities in the shallow back reef of Moorea, French Polynesia. Reef communities in the flumes were exposed to ambient (~400 μatm) and high pCO2 (~1300 μatm) for 8 weeks, and calcification rates measured for the constructed communities including the sediments. Community calcification was depressed 59% under high pCO2, with sediment dissolution explaining ~50% of this decrease; net calcification of corals and calcified algae remained positive, but was reduced 29% under elevated pCO2. These results show that despite the capacity of coral reef calcifiers to maintain positive net accretion of calcium carbonate under OA conditions, reef communities might switch to net dissolution as pCO2 increases, particularly at night, due to enhanced sediment dissolution.
Last interglacial reef growth beneath Belize barrier and isolated platform reefs
Gischler, Eberhard; Lomando, Anthony J.; Hudson, J. Harold; Holmes, Charles W.
2000-01-01
We report the first radiometric dates (thermal-ionization mass spectrometry) from late Pleistocene reef deposits from offshore Belize, the location of the largest modern reef complex in the Atlantic Ocean. The results presented here can be used to explain significant differences in bathymetry, sedimentary facies, and reef development of this major reef area, and the results are significant because they contribute to the knowledge of the regional geology of the eastern Yucatán. The previously held concept of a neotectonically stable eastern Yucatán is challenged. The dates indicate that Pleistocene reefs and shallow-water limestones, which form the basement of modern reefs in the area, accumulated ca. 125–130 ka. Significant differences in elevation of the samples relative to present sea level (>10 m) have several possible causes. Differential subsidence along a series of continental margin fault blocks in combination with variation in karstification are probably the prime causes. Differential subsidence is presumably related to initial extension and later left-lateral movements along the adjacent active boundary between the North American and Caribbean plates. Increasing dissolution toward the south during Pleistocene sea-level lowstands is probably a consequence of higher precipitation rates in mountainous southern Belize.
Remote Sensing Tropical Coral Reefs: The View from Above
NASA Astrophysics Data System (ADS)
Purkis, Sam J.
2018-01-01
Carbonate precipitation has been a common life strategy for marine organisms for 3.7 billion years, as, therefore, has their construction of reefs. As favored by modern corals, reef-forming organisms have typically adopted a niche in warm, shallow, well-lit, tropical marine waters, where they are capable of building vast carbonate edifices. Because fossil reefs form water aquifers and hydrocarbon reservoirs, considerable effort has been dedicated to understanding their anatomy and morphology. Remote sensing has a particular role to play here. Interpretation of satellite images has done much to reveal the grand spatial and temporal tapestry of tropical reefs. Comparative sedimentology, whereby modern environments are contrasted with the rock record to improve interpretation, has been particularly transformed by observations made from orbit. Satellite mapping has also become a keystone technology to quantify the coral reef crisis—it can be deployed not only directly to quantify the distribution of coral communities, but also indirectly to establish a climatology for their physical environment. This article reviews the application of remote sensing to tropical coralgal reefs in order to communicate how this fast-growing technology might be central to addressing the coral reef crisis and to look ahead at future developments in the science.
Remote Sensing Tropical Coral Reefs: The View from Above.
Purkis, Sam J
2018-01-03
Carbonate precipitation has been a common life strategy for marine organisms for 3.7 billion years, as, therefore, has their construction of reefs. As favored by modern corals, reef-forming organisms have typically adopted a niche in warm, shallow, well-lit, tropical marine waters, where they are capable of building vast carbonate edifices. Because fossil reefs form water aquifers and hydrocarbon reservoirs, considerable effort has been dedicated to understanding their anatomy and morphology. Remote sensing has a particular role to play here. Interpretation of satellite images has done much to reveal the grand spatial and temporal tapestry of tropical reefs. Comparative sedimentology, whereby modern environments are contrasted with the rock record to improve interpretation, has been particularly transformed by observations made from orbit. Satellite mapping has also become a keystone technology to quantify the coral reef crisis-it can be deployed not only directly to quantify the distribution of coral communities, but also indirectly to establish a climatology for their physical environment. This article reviews the application of remote sensing to tropical coralgal reefs in order to communicate how this fast-growing technology might be central to addressing the coral reef crisis and to look ahead at future developments in the science.
NASA Astrophysics Data System (ADS)
Pomar, Luis; Hallock, Pamela
2007-10-01
Well-documented Mediterranean examples of Miocene carbonate platforms, with complete exposures from shallow-water to basinal facies, provide evidence for temporal changes in reef-building capacity of zooxanthellate corals. In pre-late Tortonian platforms, small coralgal patches and mounds occur from platform top to the toe of slope, but they did not build to sea level. In contrast, barrier reefs with unequivocal reef-crest structures that reached sea level are documented in late Tortonian-early Messinian platforms. We suggest that a change in both calcification rates and bathymetric zonation was the result of coevolution of corals and Symbiodinium zooxanthellae, coeval to global cooling and, at least at a regional scale, a geochemical change that supported widespread aragonite precipitation through the late Miocene.
Flagging optically shallow pixels for improved analysis of ocean color data
NASA Astrophysics Data System (ADS)
McKinna, L. I. W.; Werdell, J.; Knowles, D., Jr.
2016-02-01
Ocean color remote-sensing is routinely used to derive marine geophysical parameters from sensor-observed water-leaving radiances. However, in clear geometrically shallow regions, traditional ocean color algorithms can be confounded by light reflected from the seafloor. Such regions are typically referred to as "optically shallow". When performing spatiotemporal analyses of ocean color datasets, optically shallow features such as coral reefs can lead to unexpected regional biases. Benthic contamination of the water-leaving radiance is dependent on bathymetry, water clarity and seafloor albedo. Thus, a prototype ocean color processing flag called OPTSHAL has been developed that takes all three variables into account. In the method described here, the optical depth of the water column at 547 nm, ζ(547), is predicted from known bathymetry and estimated inherent optical properties. If ζ(547) is less then the pre-defined threshold, a pixel is flagged as optically shallow. Radiative transfer modeling was used to identify the appropriate threshold value of ζ(547) for a generic benthic sand albedo. OPTSHAL has been evaluated within the NASA Ocean Biology Processing Group's L2GEN code. Using MODIS Aqua imagery, OPTSHAL was tested in two regions: (i) the Pedro Bank south-west of Jamaica, and (ii) the Great Barrier Reef, Australia. It is anticipated that OPTSHAL will benefit end-users when quality controlling derived ocean color products. Further, OPTSHAL may prove useful as a mechanism for switching between optically deep and shallow algorithms during ocean color processing.
Parmentier, Eric; Berthe, Cécile; Besson, Marc; Hawkins, Anthony D.; Aubin, Thierry; Lecchini, David
2017-01-01
Acoustic recording has been recognized as a valuable tool for non-intrusive monitoring of the marine environment, complementing traditional visual surveys. Acoustic surveys conducted on coral ecosystems have so far been restricted to barrier reefs and to shallow depths (10–30 m). Since they may provide refuge for coral reef organisms, the monitoring of outer reef slopes and describing of the soundscapes of deeper environment could provide insights into the characteristics of different biotopes of coral ecosystems. In this study, the acoustic features of four different habitats, with different topographies and substrates, located at different depths from 10 to 100 m, were recorded during day-time on the outer reef slope of the north Coast of Moorea Island (French Polynesia). Barrier reefs appeared to be the noisiest habitats whereas the average sound levels at other habitats decreased with their distance from the reef and with increasing depth. However, sound levels were higher than expected by propagation models, supporting that these habitats possess their own sound sources. While reef sounds are known to attract marine larvae, sounds from deeper habitats may then also have a non-negligible attractive potential, coming into play before the reef itself. PMID:29158970
Sediment Transport at Density Fronts in Shallow Water
2014-07-16
June 2009 on the Skagit Tidal flats in Puget Sound, coordinated with other researchers in the Tidal Flats DRI. Focused observations of the shallow...on wind correlation length scales and implications for coastal ocean modeling (Raubenheimer et al., 2013). We also worked on applying to the model...From the Skagit model results, we found that the rate of change of stratification, quantified as the integrated potential energy anomaly O (Simpson
Mapping coral reefs using consumer-grade drones and structure from motion photogrammetry techniques
NASA Astrophysics Data System (ADS)
Casella, Elisa; Collin, Antoine; Harris, Daniel; Ferse, Sebastian; Bejarano, Sonia; Parravicini, Valeriano; Hench, James L.; Rovere, Alessio
2017-03-01
We propose a novel technique to measure the small-scale three-dimensional features of a shallow-water coral reef using a small drone equipped with a consumer-grade camera, a handheld GPS and structure from motion (SfM) algorithms. We used a GoPro HERO4 with a modified lens mounted on a DJI Phantom 2 drone (maximum total take-off weight <2 kg) to perform a 10 min flight and collect 306 aerial images with an overlap equal or greater than 90%. We mapped an area of 8380 m2, obtaining as output an ortho-rectified aerial photomosaic and a bathymetric digital elevation model (DEM) with a resolution of 0.78 and 1.56 cm pixel-1, respectively. Through comparison with airborne LiDAR data for the same area, we verified that the location of the ortho-rectified aerial photomosaic is accurate within 1.4 m. The bathymetric difference between our DEM and the LiDAR dataset is -0.016 ± 0.45 m (1σ). Our results show that it is possible, in conditions of calm waters, low winds and minimal sun glint, to deploy consumer-grade drones as a relatively low-cost and rapid survey technique to produce multispectral and bathymetric data on shallow-water coral reefs. We discuss the utility of such data to monitor temporal changes in topographic complexity of reefs and associated biological processes.
NASA Technical Reports Server (NTRS)
Couch, L. M.
1975-01-01
An investigation was conducted at Mach 1.80 in the Langley 4-foot supersonic pressure tunnel to determine the effects of variation in reefing ratio and geometric porosity on the drag and stability characteristics of four basic canopy types deployed in the wake of a cone-cylinder forebody. The basic designs included cross, hemisflo, disk-gap-band, and extended-skirt canopies; however, modular cross and standard flat canopies and a ballute were also investigated. An empirical correlation was determined which provides a fair estimation of the drag coefficients in transonic and supersonic flow for parachutes of specified geometric porosity and reefing ratio.
On the role of subducting oceanic plateaus in the development of shallow flat subduction
NASA Astrophysics Data System (ADS)
van Hunen, Jeroen; van den Berg, Arie P.; Vlaar, Nico J.
2002-08-01
Oceanic plateaus, aseismic ridges or seamount chains all have a thickened crust and their subduction has been proposed as a possible mechanism to explain the occurrence of flat subduction and related absence of arc magmatism below Peru, Central Chile and at the Nankai Trough (Japan). Their extra compositional buoyancy could prohibit the slab from sinking into the mantle. With a numerical thermochemical convection model, we simulated the subduction of an oceanic lithosphere that contains an oceanic crustal plateau of 18-km thickness. With a systematic variation, we examined the required physical parameters to obtain shallow flat subduction. Metastability of the basaltic crust in the eclogite stability field is of crucial importance for the slab to remain buoyant throughout the subduction process. In a 44-Ma-old subducting plate, basalt must be able to survive a temperature of 600-700 °C to keep the plate buoyant sufficiently long to cause a flat-slab segment. We found that the maximum yield stress in the slab must be limited to about 600 MPa to allow for the necessary bending to the horizontal. Young slabs show flat subduction for larger parameter ranges than old slabs, since they are less gravitationally unstable and show less resistance against bending. Hydrous weakening of the mantle wedge area and lowermost continent are required to allow for the necessary deformation of a change in subduction style from steep to flat. The maximum flat slab extent is about 300 km, which is sufficient to explain the observed shallow flat subduction near the Nankai Trough (Japan). However, additional mechanisms, such as active overthrusting by an overriding continental plate, need to be invoked to explain the flat-slab segments up to 500 km long below Peru and Central Chile.
Experimental studies of rapid bioerosion of coral reefs in the Galápagos Islands
NASA Astrophysics Data System (ADS)
Reaka-Kudla, M. L.; Feingold, J. S.; Glynn, W.
1996-06-01
Experimental carbonate blocks of coral skeleton, Porites lobata (PL), and cathedral limestone (LS) were deployed for 14.8 months at shallow (5 6 m) and deep (11 13m) depths on a severely bioeroded coral reef, Champion Island, Galápagos Islands, Ecuador. Sea urchins ( Eucidaris thouarsii) were significantly more abundant at shallow versus deep sites. Porites lobata blocks lost an average of 25.4 kg m-2yr-1 (23.71 m-2yr-1 or 60.5% decrease yr-1). Losses did not vary significantly at depths tested. Internal bioeroders excavated an average of 2.6 kg m-2 yr-1 (2.41 m-2 yr-1 or 0.6% decrease yr-1), while external bioeroders removed an average of 22.8 kg m-2 yr-1). (21.31 m-2 yr-1). or 59.9% decrease yr-1). few encrusting organisms were observed on the PL blocks. Cathedral limestone blocks lost an average of 4.1 kg m-2 yr-1). (1.81 m-2 yr-1). or 4.6% decrease yr-'), also with no relation to depth. Internal bioeroders excavated an average of 0.6 kg m-2 yr-1). (0.31 m-2 yr-1). or 0.7% decrease yr-1). and external bioeroders removed an average of 3.5 kg m-2 yr-1). (1.51 m-2 yr-1). or 3.9% decrease yr-1). from the LS blocks. Most (57.6%) encrustation occurred on the bottom of LS blocks, and there was more accretion on block bottoms in deep (61.4 mg cm-2 yr-1). versus shallow (35.0 mg cm-2 yr-1) sites. External bioerosion reduced the average height of the reef framework by 0.2 cm yr-1). for hard substrata (represented by LS) and 2.3 cm yr-1). for soft substrata (represented by PL). The results of this study suggest that coral reef frameworks in the Galápagos Islands are in serious jeopardy. If rates of coral recruitment do not increase, and if rates of bioerosion do not decline, coral reefs in the Galápagos Islands could be eliminated entirely.
Carbon dioxide addition to coral reef waters suppresses net community calcification.
Albright, Rebecca; Takeshita, Yuichiro; Koweek, David A; Ninokawa, Aaron; Wolfe, Kennedy; Rivlin, Tanya; Nebuchina, Yana; Young, Jordan; Caldeira, Ken
2018-03-22
Coral reefs feed millions of people worldwide, provide coastal protection and generate billions of dollars annually in tourism revenue. The underlying architecture of a reef is a biogenic carbonate structure that accretes over many years of active biomineralization by calcifying organisms, including corals and algae. Ocean acidification poses a chronic threat to coral reefs by reducing the saturation state of the aragonite mineral of which coral skeletons are primarily composed, and lowering the concentration of carbonate ions required to maintain the carbonate reef. Reduced calcification, coupled with increased bioerosion and dissolution, may drive reefs into a state of net loss this century. Our ability to predict changes in ecosystem function and associated services ultimately hinges on our understanding of community- and ecosystem-scale responses. Past research has primarily focused on the responses of individual species rather than evaluating more complex, community-level responses. Here we use an in situ carbon dioxide enrichment experiment to quantify the net calcification response of a coral reef flat to acidification. We present an estimate of community-scale calcification sensitivity to ocean acidification that is, to our knowledge, the first to be based on a controlled experiment in the natural environment. This estimate provides evidence that near-future reductions in the aragonite saturation state will compromise the ecosystem function of coral reefs.
Carbon dioxide addition to coral reef waters suppresses net community calcification
NASA Astrophysics Data System (ADS)
Albright, Rebecca; Takeshita, Yuichiro; Koweek, David A.; Ninokawa, Aaron; Wolfe, Kennedy; Rivlin, Tanya; Nebuchina, Yana; Young, Jordan; Caldeira, Ken
2018-03-01
Coral reefs feed millions of people worldwide, provide coastal protection and generate billions of dollars annually in tourism revenue. The underlying architecture of a reef is a biogenic carbonate structure that accretes over many years of active biomineralization by calcifying organisms, including corals and algae. Ocean acidification poses a chronic threat to coral reefs by reducing the saturation state of the aragonite mineral of which coral skeletons are primarily composed, and lowering the concentration of carbonate ions required to maintain the carbonate reef. Reduced calcification, coupled with increased bioerosion and dissolution, may drive reefs into a state of net loss this century. Our ability to predict changes in ecosystem function and associated services ultimately hinges on our understanding of community- and ecosystem-scale responses. Past research has primarily focused on the responses of individual species rather than evaluating more complex, community-level responses. Here we use an in situ carbon dioxide enrichment experiment to quantify the net calcification response of a coral reef flat to acidification. We present an estimate of community-scale calcification sensitivity to ocean acidification that is, to our knowledge, the first to be based on a controlled experiment in the natural environment. This estimate provides evidence that near-future reductions in the aragonite saturation state will compromise the ecosystem function of coral reefs.
Lionfish (Pterois spp.) invade the upper-bathyal zone in the western Atlantic
Woodall, Lucy; Schofield, Pamela J.; Stanley, Karl; Rogers, Alex D.
2017-01-01
Non-native lionfish have been recorded throughout the western Atlantic on both shallow and mesophotic reefs, where they have been linked to declines in reef health. In this study we report the first lionfish observations from the deep sea (>200 m) in Bermuda and Roatan, Honduras, with lionfish observed to a maximum depth of 304 m off the Bermuda platform, and 250 m off West End, Roatan. Placed in the context of other deeper lionfish observations and records, our results imply that lionfish may be present in the 200–300 m depth range of the upper-bathyal zone across many locations in the western Atlantic, but currently are under-sampled compared to shallow habitats. We highlight the need for considering deep-sea lionfish populations in future invasive lionfish management. PMID:28828275
Differential Response of Fish Assemblages to Coral Reef-Based Seaweed Farming
Hehre, E. James; Meeuwig, J. J.
2015-01-01
As the global demand for seaweed-derived products drives the expansion of seaweed farming onto shallow coral ecosystems, the effects of farms on fish assemblages remain largely unexplored. Shallow coral reefs provide food and shelter for highly diverse fish assemblages but are increasingly modified by anthropogenic activities. We hypothesized that the introduction of seaweed farms into degraded shallow coral reefs had potential to generate ecological benefits for fish by adding structural complexity and a possible food source. We conducted 210 transects at 14 locations, with sampling stratified across seaweed farms and sites adjacent to and distant from farms. At a seascape scale, locations were classified by their level of exposure to human disturbance. We compared sites where (1) marine protected areas (MPAs) were established, (2) neither MPAs nor blast fishing was present (hence “unprotected”), and (3) blast fishing occurred. We observed 80,186 fish representing 148 species from 38 families. The negative effects of seaweed farms on fish assemblages appeared stronger in the absence of blast fishing and were strongest when MPAs were present, likely reflecting the positive influence of the MPAs on fish within them. Species differentiating fish assemblages with respect to seaweed farming and disturbance were typically small but also included two key target species. The propensity for seaweed farms to increase fish diversity, abundance, and biomass is limited and may reduce MPA benefits. We suggest that careful consideration be given to the placement of seaweed farms relative to MPAs. PMID:25822342
Differential response of fish assemblages to coral reef-based seaweed farming.
Hehre, E James; Meeuwig, J J
2015-01-01
As the global demand for seaweed-derived products drives the expansion of seaweed farming onto shallow coral ecosystems, the effects of farms on fish assemblages remain largely unexplored. Shallow coral reefs provide food and shelter for highly diverse fish assemblages but are increasingly modified by anthropogenic activities. We hypothesized that the introduction of seaweed farms into degraded shallow coral reefs had potential to generate ecological benefits for fish by adding structural complexity and a possible food source. We conducted 210 transects at 14 locations, with sampling stratified across seaweed farms and sites adjacent to and distant from farms. At a seascape scale, locations were classified by their level of exposure to human disturbance. We compared sites where (1) marine protected areas (MPAs) were established, (2) neither MPAs nor blast fishing was present (hence "unprotected"), and (3) blast fishing occurred. We observed 80,186 fish representing 148 species from 38 families. The negative effects of seaweed farms on fish assemblages appeared stronger in the absence of blast fishing and were strongest when MPAs were present, likely reflecting the positive influence of the MPAs on fish within them. Species differentiating fish assemblages with respect to seaweed farming and disturbance were typically small but also included two key target species. The propensity for seaweed farms to increase fish diversity, abundance, and biomass is limited and may reduce MPA benefits. We suggest that careful consideration be given to the placement of seaweed farms relative to MPAs.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kauffman, E.G.
Throughout the Mesozoic, shallow-water carbonate ramps and platforms of the circumequatorial Tethyan Ocean were characterized by extensive development of reef ecosystems, especially during times of eustatic highstand, expansion of the Tropics, and warm equable global climates. The greatest reef development was north of the paleoequator in the Caribbean and Indo-Mediterranean provinces. These reefs and associated debris facies comprise major petroleum reservoirs, in some cases with remarkable porosity and permeability normally attributed to a combination of sedimentologic, tectonic, and diagenetic factors. The biological evolution of Mesozoic reefs also has had an important, and in some cases dominant, role in determining reservoirmore » quality. Three major biological factors are critical to mesozoic reef-associated reservoir development: (1) the replacement/competitive displacement of coral-algal dominated, highly integrated reef ecosystems by loosely packed rudistid bivalve-dominated reef ecosystems in the Barremian-Albian; (2) the evolution of dominantly aragonitic, highly porous shells among framework-building rudistids in the middle and Late Cretaceous; and (3) competitive strategies among rudistids that effectively prevented widespread biological binding of Cretaceous reefs, leading to the production of large marginal fans that comprise major carbonate reservoirs. Detailed studies of these evolutionary trends in reef/framework development and of the distribution of different groups of bioconstructors on reefs lead to predictive modeling for primary and secondary porosity development in mesozoic carbonate reservoirs. The competitive displacement of coral-algal communities by rudistids on Cretaceous reefs was so effective that, even after Maastrichtian mass extinction of rudistids and other important groups comprising Mesozoic reef/carbonate platform ecosystems, coral-algal reef-building communities did not evolve again until the late Eocene.« less
The global diversity of sea pens (Cnidaria: Octocorallia: Pennatulacea).
Williams, Gary C
2011-01-01
Recent advances in deep-sea exploration technology coupled with an increase in worldwide biotic surveys, biological research, and underwater photography in shallow water marine regions such as coral reefs, has allowed for a relatively rapid expansion of our knowledge in the global diversity of many groups of marine organisms. This paper is part of the PLoS ONE review collection of WoRMS (the Worldwide Register of Marine Species), on the global diversity of marine species, and treats the pennatulacean octocorals, a group of cnidarians commonly referred to as sea pens or sea feathers. This also includes sea pansies, some sea whips, and various vermiform taxa. Pennatulaceans are a morphologically diverse group with an estimated 200 or more valid species, displaying worldwide geographic and bathymetric distributions from polar seas to the equatorial tropics and from intertidal flats to over 6100 m in depth. The paper treats new discoveries and taxa new to science, and provides greater resolution in geographic and bathymetric distributions data than was previously known, as well as descriptions of life appearances in life and in situ observations at diverse depth.
Nishi, Eijiroh; Matsuo, Kanako; Capa, Maria; Tomioka, Shinri; Kajihara, Hiroshi; Kupriyanova, Elena K; Polgar, Gianluca
2015-12-07
A new species of the genus Sabellaria Lamarck, 1818 (Annelida: Polychaeta: Sabellariidae) is described from the intertidal zone of Jeram, Selangor, Malaysia. Sabellaria jeramae n. sp. is a gregarious species that constructs large reefs several hundreds of meters long and 50-200 m wide. The new species is distinguished from other congeners by the character combination of the presence of a single kind of middle paleae with conspicuous morphology, and outer paleae with long frayed teeth. Morphological features of the species are described and compared to those of all congeneric species. We also compare the reef structure and geographical distribution of the new species to those of the members of the family Sabellariidae around the world, demonstrating the ecological traits of the reefs.
Multiscale approach reveals that Cloudina aggregates are detritus and not in situ reef constructions
NASA Astrophysics Data System (ADS)
Mehra, Akshay; Maloof, Adam
2018-03-01
The earliest metazoans capable of biomineralization appeared during the late Ediacaran Period (635–541 Ma) in strata associated with shallow water microbial reefs. It has been suggested that some Ediacaran microbial reefs were dominated (and possibly built) by an abundant and globally distributed tubular organism known as Cloudina. If true, this interpretation implies that metazoan framework reef building—a complex behavior that is responsible for some of the largest bioconstructions and most diverse environments in modern oceans—emerged much earlier than previously thought. Here, we present 3D reconstructions of Cloudina populations, produced using an automated serial grinding and imaging system coupled with a recently developed neural network image classifier. Our reconstructions show that Cloudina aggregates are composed of transported remains while detailed field observations demonstrate that the studied reef outcrops contain only detrital Cloudina buildups, suggesting that Cloudina played a minor role in Ediacaran reef systems. These techniques have wide applicability to problems that require 3D reconstructions where physical separation is impossible and a lack of density contrast precludes tomographic imaging techniques.
Fifty million years of herbivory on coral reefs: fossils, fish and functional innovations
Bellwood, D. R.; Goatley, C. H. R.; Brandl, S. J.; Bellwood, O.
2014-01-01
The evolution of ecological processes on coral reefs was examined based on Eocene fossil fishes from Monte Bolca, Italy and extant species from the Great Barrier Reef, Australia. Using ecologically relevant morphological metrics, we investigated the evolution of herbivory in surgeonfishes (Acanthuridae) and rabbitfishes (Siganidae). Eocene and Recent surgeonfishes showed remarkable similarities, with grazers, browsers and even specialized, long-snouted forms having Eocene analogues. These long-snouted Eocene species were probably pair-forming, crevice-feeding forms like their Recent counterparts. Although Eocene surgeonfishes likely played a critical role as herbivores during the origins of modern coral reefs, they lacked the novel morphologies seen in modern Acanthurus and Siganus (including eyes positioned high above their low-set mouths). Today, these forms dominate coral reefs in both abundance and species richness and are associated with feeding on shallow, exposed algal turfs. The radiation of these new forms, and their expansion into new habitats in the Oligocene–Miocene, reflects the second phase in the development of fish herbivory on coral reefs that is closely associated with the exploitation of highly productive short algal turfs. PMID:24573852
Fifty million years of herbivory on coral reefs: fossils, fish and functional innovations.
Bellwood, D R; Goatley, C H R; Brandl, S J; Bellwood, O
2014-04-22
The evolution of ecological processes on coral reefs was examined based on Eocene fossil fishes from Monte Bolca, Italy and extant species from the Great Barrier Reef, Australia. Using ecologically relevant morphological metrics, we investigated the evolution of herbivory in surgeonfishes (Acanthuridae) and rabbitfishes (Siganidae). Eocene and Recent surgeonfishes showed remarkable similarities, with grazers, browsers and even specialized, long-snouted forms having Eocene analogues. These long-snouted Eocene species were probably pair-forming, crevice-feeding forms like their Recent counterparts. Although Eocene surgeonfishes likely played a critical role as herbivores during the origins of modern coral reefs, they lacked the novel morphologies seen in modern Acanthurus and Siganus (including eyes positioned high above their low-set mouths). Today, these forms dominate coral reefs in both abundance and species richness and are associated with feeding on shallow, exposed algal turfs. The radiation of these new forms, and their expansion into new habitats in the Oligocene-Miocene, reflects the second phase in the development of fish herbivory on coral reefs that is closely associated with the exploitation of highly productive short algal turfs.
Flattening of Caribbean coral reefs: region-wide declines in architectural complexity
Alvarez-Filip, Lorenzo; Dulvy, Nicholas K.; Gill, Jennifer A.; Côté, Isabelle M.; Watkinson, Andrew R.
2009-01-01
Coral reefs are rich in biodiversity, in large part because their highly complex architecture provides shelter and resources for a wide range of organisms. Recent rapid declines in hard coral cover have occurred across the Caribbean region, but the concomitant consequences for reef architecture have not been quantified on a large scale to date. We provide, to our knowledge, the first region-wide analysis of changes in reef architectural complexity, using nearly 500 surveys across 200 reefs, between 1969 and 2008. The architectural complexity of Caribbean reefs has declined nonlinearly with the near disappearance of the most complex reefs over the last 40 years. The flattening of Caribbean reefs was apparent by the early 1980s, followed by a period of stasis between 1985 and 1998 and then a resumption of the decline in complexity to the present. Rates of loss are similar on shallow (<6 m), mid-water (6–20 m) and deep (>20 m) reefs and are consistent across all five subregions. The temporal pattern of declining architecture coincides with key events in recent Caribbean ecological history: the loss of structurally complex Acropora corals, the mass mortality of the grazing urchin Diadema antillarum and the 1998 El Nino Southern Oscillation-induced worldwide coral bleaching event. The consistently low estimates of current architectural complexity suggest regional-scale degradation and homogenization of reef structure. The widespread loss of architectural complexity is likely to have serious consequences for reef biodiversity, ecosystem functioning and associated environmental services. PMID:19515663
NASA Astrophysics Data System (ADS)
Grigg, R. W.
1995-11-01
The effects of natural and anthropogenic stress need to be separated before coral reef ecosystems can be effectively managed. In this paper, a 25 year case history of coral reefs in an urban embayment (Mamala Bay) off Honolulu, Hawaii is described and differences between natural and man-induced stress are distinguished. Mamala Bay is a 30 km long shallow coastal bay bordering the southern (leeward) shore of Oahu and the city of Honolulu in the Hawaiian Islands. During the last 25 years, this area has been hit by two magnitude 5 hurricane events (winds > 240 km/h) generating waves in excess of 7.5 m. Also during this period, two large sewer outfalls have discharged up to 90 million gallons per day (mgd) or (360 × 106 L/day) of point source pollution into the bay. Initially the discharge was raw sewage, but since 1977 it has received advanced primary treatment. Non-point source run-off from the Honolulu watershed also enters the bay on a daily basis. The results of the study show that discharge of raw sewage had a serious but highly localized impact on shallow (˜10 m) reef corals in the bay prior to 1977. After 1977, when treatment was upgraded to the advanced primary level and outfalls were extended to deep water (> 65 m), impacts to reef corals were no longer significant. No measurable effects of either point or non-point source pollution on coral calcification, growth, species composition, diversity or community structure related to pollution can now be detected. Conversely the effects of hurricane waves in 1982 and 1992 together caused major physical destruction to the reefs. In 1982, average coral cover of well-developed offshore reefs dropped from 60-75% to 5-15%. Only massive species in high relief areas survived. Today, recovery is occurring, and notwithstanding major future disturbance events, long-term biological processes should eventually return the coral ecosystems to a more mature successional stage. This case history illustrates the complex nature of the cumulative effects of natural and anthropogenic stress on coral reefs and the need for a long-term data base before the status of a coral reef can be properly interpreted.
Reefs as cradles of evolution and sources of biodiversity in the Phanerozoic.
Kiessling, Wolfgang; Simpson, Carl; Foote, Michael
2010-01-08
Large-scale biodiversity gradients among environments and habitats are usually attributed to a complex array of ecological and evolutionary factors. We tested the evolutionary component of such gradients by compiling the environments of the geologically oldest occurrences of marine genera and using sampling standardization to assess if originations tended to be clustered in particular environments. Shallow, tropical environments and carbonate substrates all tend to have harbored high origination rates. Diversity within these environments tended to be preferentially generated in reefs, probably because of their habitat complexity. Reefs were also prolific at exporting diversity to other environments, which might be a consequence of low-diversity habitats being more susceptible to invasions.
Prickly business: abundance of sea urchins on breakwaters and coral reefs in Dubai.
Bauman, Andrew G; Dunshea, Glenn; Feary, David A; Hoey, Andrew S
2016-04-30
Echinometra mathaei is a common echinoid on tropical reefs and where abundant plays an important role in the control of algal communities. Despite high prevalence of E. mathaei on southern Persian/Arabian Gulf reefs, their abundance and distribution is poorly known. Spatial and temporal patterns in population abundance were examined at 12 sites between breakwater and natural reef habitats in Dubai (UAE) every 3 months from 2008 to 2010. Within the breakwater habitat, densities were greatest at shallow wave-exposed sites, and reduced with both decreasing wave-exposure and increasing depth. Interestingly, E. mathaei were significantly more abundant on exposed breakwaters than natural reef sites, presumably due to differences in habitat structure and benthic cover. Population abundances differed seasonally, with peak abundances during summer (July-September) and lower abundances in winter (December-February). Seasonal fluctuations are likely the result of peak annual recruitment pulses coupled with increased fish predation from summer to winter. Copyright © 2015 Elsevier Ltd. All rights reserved.
Kuffner, Ilsa B.; Brock, John C.; Grober-Dunsmore, Rikki; Bonito, Victor E.; Hickey, T. Donald; Wright, C. Wayne
2007-01-01
The realization that coral reef ecosystem management must occur across multiple spatial scales and habitat types has led scientists and resource managers to seek variables that are easily measured over large areas and correlate well with reef resources. Here we investigate the utility of new technology in airborne laser surveying (NASA Experimental Advanced Airborne Research Lidar (EAARL)) in assessing topographical complexity (rugosity) to predict reef fish community structure on shallow (n = 10–13 per reef). Rugosity at each station was assessed in situ by divers using the traditional chain-transect method (10-m scale), and remotely using the EAARL submarine topography data at multiple spatial scales (2, 5, and 10 m). The rugosity and biological datasets were analyzed together to elucidate the predictive power of EAARL rugosity in describing the variance in reef fish community variables and to assess the correlation between chain-transect and EAARL rugosity. EAARL rugosity was not well correlated with chain-transect rugosity, or with species richness of fishes (although statistically significant, the amount of variance explained by the model was very low). Variance in reef fish community attributes was better explained in reef-by-reef variability than by physical variables. However, once the reef-by-reef variability was taken into account in a two-way analysis of variance, the importance of rugosity could be seen on individual reefs. Fish species richness and abundance were statistically higher at high rugosity stations compared to medium and low rugosity stations, as predicted by prior ecological research. The EAARL shows promise as an important mapping tool for reef resource managers as they strive to inventory and protect coral reef resources.
Erftemeijer, Paul L A; Herman, Peter M J
1994-09-01
Seasonal dynamics were studied by monthly monitoring of biological and environmental variables in permanent quadrats in two contrasting intertidal seagrass beds in South Sulawesi, Indonesia, from February 1991 to January 1992. Datasets were analysed with canonical correlation analysis for correlations between environmental and biological variables. Considerable variation in biomass, production and plant tissue nutrient contents in a monospecific seagrass bed of Enhalus acoroides, growing on a coastal terrigenous mudbank (Gusung Tallang), was assumed to be related to riverine influences of the nearby Tallo River. The variation in seagrass variables at this site could, however, not be significantly correlated to seasonal patterns in rainfall, salinity, tides, nutrient availability, water motion or turbidity. A seasonal cycle in biomass, production and nutrient contents in a mixed seagrass bed of Thalassia hemprichii and E. acoroides, growing on carbonate sand on the reef flat of an offshore coral island (Barang Lompo), was found to be largely determined by tidal exposure and water motion. Exposure of the intertidal seagrass bed during hours of low water during spring tides showed a gradual shift from exposure during the night (January-June) to exposure during daylight (July-December). Daylight exposure resulted in a significant loss of above-ground plant biomass through desiccation and 'burning' of leaves. The observed seasonal dynamics of the seagrass bed on reef sediment contrast with reports from the Caribbean, where the effect of tidal exposure on comparable shallow-water seagrass communities is relatively insignificant due to a small tidal amplitude.
Alvarez, Fernando
2017-01-01
Background and Aims Cryptic peracarids are an important component of the coral reef fauna in terms of diversity and abundance, yet they have been poorly studied. The aim of this study was to evaluate the taxonomic richness and abundance of cryptic peracarids in coral rubble in the Puerto Morelos Reef National Park, Mexico (PMRNP), and their relationship with depth. Methods Three reef sites were selected: (1) Bonanza, (2) Bocana, and (3) Jardines. At each site six kilograms of coral rubble were collected over four sampling periods at three depths: 3 m (back-reef), 6–8 m (fore-reef), and 10–12 m (fore-reef). Results A total of 8,887 peracarid crustaceans belonging to 200 taxa distributed over five orders and 63 families was obtained; 70% of the taxa were identified to species and 25% to genus level. Fifty species of those collected represent new records for the Mexican Caribbean Sea. Isopoda was the most speciose order while Tanaidacea was the most abundant. Discussion Cryptic peracarid taxonomic richness and abundance were related to depth with higher values of both parameters being found in the shallow (3 m) back-reef, possibly due to a higher reef development and a greater accumulation of coral rubble produced during hurricanes. Peracarid data obtained in the present study can be used as a baseline for future monitoring programs in the PMRNP. PMID:28630800
Morgan, Kyle M.; Perry, Chris T.; Smithers, Scott G.; Johnson, Jamie A.; Daniell, James J.
2016-01-01
Mean coral cover has reportedly declined by over 15% during the last 30 years across the central Great Barrier Reef (GBR). Here, we present new data that documents widespread reef development within the more poorly studied turbid nearshore areas (<10 m depth), and show that coral cover on these reefs averages 38% (twice that reported on mid- and outer-shelf reefs). Of the surveyed seafloor area, 11% had distinct reef or coral community cover. Although the survey area represents a small subset of the nearshore zone (15.5 km2), this reef density is comparable to that measured across the wider GBR shelf (9%). We also show that cross-shelf coral cover declines with distance from the coast (R2 = 0.596). Identified coral taxa (21 genera) exhibited clear depth-stratification, corresponding closely to light attenuation and seafloor topography, with reefal development restricted to submarine antecedent bedforms. Data from this first assessment of nearshore reef occurrence and ecology measured across meaningful spatial scales suggests that these coral communities may exhibit an unexpected capacity to tolerate documented declines in water quality. Indeed, these shallow-water nearshore reefs may share many characteristics with their deep-water (>30 m) mesophotic equivalents and may have similar potential as refugia from large-scale disturbances. PMID:27432782
Morgan, Kyle M; Perry, Chris T; Smithers, Scott G; Johnson, Jamie A; Daniell, James J
2016-07-19
Mean coral cover has reportedly declined by over 15% during the last 30 years across the central Great Barrier Reef (GBR). Here, we present new data that documents widespread reef development within the more poorly studied turbid nearshore areas (<10 m depth), and show that coral cover on these reefs averages 38% (twice that reported on mid- and outer-shelf reefs). Of the surveyed seafloor area, 11% had distinct reef or coral community cover. Although the survey area represents a small subset of the nearshore zone (15.5 km(2)), this reef density is comparable to that measured across the wider GBR shelf (9%). We also show that cross-shelf coral cover declines with distance from the coast (R(2) = 0.596). Identified coral taxa (21 genera) exhibited clear depth-stratification, corresponding closely to light attenuation and seafloor topography, with reefal development restricted to submarine antecedent bedforms. Data from this first assessment of nearshore reef occurrence and ecology measured across meaningful spatial scales suggests that these coral communities may exhibit an unexpected capacity to tolerate documented declines in water quality. Indeed, these shallow-water nearshore reefs may share many characteristics with their deep-water (>30 m) mesophotic equivalents and may have similar potential as refugia from large-scale disturbances.
Sediment Transport at Density Fronts in Shallow Water: A Continuation of N00014-08-1-0846
2013-09-30
flats in Puget Sound, coordinated with other researchers in the Tidal Flats DRI. Focused observations of the shallow density front and its evolution...an evaluation of effects of complex topography on wind correlation length scales and implications for coastal ocean modeling (Raubenheimer et al...as the integrated potential energy anomaly Φ (Simpson et al. 1990), varied with the Simpson number, , where g is gravity, ∂ρ/∂x is the horizontal
NASA Astrophysics Data System (ADS)
Yao, Yantao; Zhan, Wenhuan; Sun, Jie
2017-04-01
Most previous research on sea level indicators (including beachrock, abrasion platforms, notches and coral reefs) from coast of northern South China Sea suggested a higher sea level in the mid-Holocene. Microatolls, considered to be one of the most reliable indicators, led to an estimation of 2 to 3 m or even more higher sea levels in the mid-Holocene at southwest Leizhou Peninsula. Volcanic activities, however, occurred at several stages during the Quaternary at southern Leizhou Peninsula and northern Hainan Island, indicating a tectonically unstable local crust. Comprehensive comparison of microatolls between the volcanic and the non-volcanic coasts implied obvious uplift of the volcanic coast, where elevation of microatolls was higher than those on the non-volcanic coast. In addition, microatolls from the non-volcanic coast universally demonstrated a mid-Holocene higher sea level of less than 1 m. Similar studies to date at some tectonically stable locations, distant from the major glaciation centers (the far-field), provided evidence that the mid-Holocene sea level was not as high as that estimated before. On the longest and also the widest fringing reef of Hainan Island, 10 cores were drilled in a transect approximately perpendicular to coastline. Upper and lower unconformities for the layer of Holocene marine sediments witnessed the Holocene transgression and regression, respectively. U-series and AMS14C ages of in-situ surface corals and deposits from the unconformities, compiled with sedimentary characteristics, announced a highest sea level of 1.18 m in 5.30 cal ka BP. The rapid sea level rise mainly occurred in 6.25 5.75 cal ka BP at a rate up to 11.4 mm/a. From 5.30 cal ka BP to 4.50 cal ka BP, it can be regarded as a relative sea level stand, for most surface fossil microatolls on reef flat lived in this period. Since then there might be a sudden and fast sea level fall in 4.50 4.14 cal ka BP, resulting in fast exposure of the initial reef flat and then fast covering of sand dunes or beachrocks. As a result, fossil microtalls on the initial reef flat were well preserved, which were very important to indicating the mid-Holocene higher sea level. Acknowledgement: This research was supported by the National Program on Key Basic Research Project of China (2013CB956104)、National Natural Science Foundation of China (41376063) and the Chinese-Polish collaborated project ERES.
Ningaloo Reef: Shallow Marine Habitats Mapped Using a Hyperspectral Sensor
Kobryn, Halina T.; Wouters, Kristin; Beckley, Lynnath E.; Heege, Thomas
2013-01-01
Research, monitoring and management of large marine protected areas require detailed and up-to-date habitat maps. Ningaloo Marine Park (including the Muiron Islands) in north-western Australia (stretching across three degrees of latitude) was mapped to 20 m depth using HyMap airborne hyperspectral imagery (125 bands) at 3.5 m resolution across the 762 km2 of reef environment between the shoreline and reef slope. The imagery was corrected for atmospheric, air-water interface and water column influences to retrieve bottom reflectance and bathymetry using the physics-based Modular Inversion and Processing System. Using field-validated, image-derived spectra from a representative range of cover types, the classification combined a semi-automated, pixel-based approach with fuzzy logic and derivative techniques. Five thematic classification levels for benthic cover (with probability maps) were generated with varying degrees of detail, ranging from a basic one with three classes (biotic, abiotic and mixed) to the most detailed with 46 classes. The latter consisted of all abiotic and biotic seabed components and hard coral growth forms in dominant or mixed states. The overall accuracy of mapping for the most detailed maps was 70% for the highest classification level. Macro-algal communities formed most of the benthic cover, while hard and soft corals represented only about 7% of the mapped area (58.6 km2). Dense tabulate coral was the largest coral mosaic type (37% of all corals) and the rest of the corals were a mix of tabulate, digitate, massive and soft corals. Our results show that for this shallow, fringing reef environment situated in the arid tropics, hyperspectral remote sensing techniques can offer an efficient and cost-effective approach to mapping and monitoring reef habitats over large, remote and inaccessible areas. PMID:23922921
Submerged beachrock preservation in the context of wave ravinement
NASA Astrophysics Data System (ADS)
Pretorius, Lauren; Green, Andrew N.; Andrew Cooper, J.
2018-02-01
This study examines a Holocene-aged submerged shoreline, Limestone Reef, located in the shallow subtidal zone of South Africa's east coast. It comprises an elongate, coast-oblique, slab-like outcrop of beachrock situated above the contemporary fair-weather wave base. It is currently undergoing mechanical disintegration. Its unique and rare preservation in a high-energy setting affords an opportunity to examine the mechanical processes occurring during wave ravinement associated with rising sea level. The submerged shoreline and the adjacent shoreface were examined using high-resolution seismic reflection, side-scan sonar and shallow-water multibeam echosounding techniques. Limestone Reef rests on top of unconsolidated Holocene deposits. The structure's surface is characterised by reef-perpendicular gullies with rubble derived from the slab fringing its seaward edge. Limestone Reef slopes gently seawards and has a steep landward-facing edge where gullies are most prominently developed. Teardrop-shaped rippled scour depressions, marked by high backscatter, are located seawards of the submerged shoreline. These elongate in a seaward direction and are filled with bioclastic gravels and residual rubble from Limestone Reef. The gullies in the upstanding structure are indicative of wave plucking and abrasion of the shoreline. The material exposed by the rippled scour depressions is identical to that comprising the postglacial ravinement surface identified in the offshore stratigraphy. These deposits are considered to represent the contemporary, actively forming wave ravinement surface. The results suggest that wave ravinement of submerged shorelines is a discontinuous process dominated by the seaward entrainment of material from its landward edge controlled by high-energy drawback during storm surges. The ravinement process appears to operate at the seasonal scale and averages out over the long-term millennial scale for the continuous surface.
Lagoons and Reefs of New Caledonia
2011-04-20
NASA image acquired May 10, 2001 In July 2008, the United Nations Educational, Scientific, and Cultural Organization (UNESCO) added 27 new areas to its list of World Heritage sites. One of those areas included the lagoons of New Caledonia. Some 1,200 kilometers (750 miles) east of Australia, this French-governed archipelago contains the world’s third-largest coral reef structure. The coral reefs enclose the waters near the islands in shallow lagoons of impressive biodiversity. On May 10, 2001, the Enhanced Thematic Mapper Plus on NASA’s Landsat 7 satellite captured this image of Île Balabio, off the northern tip of Grande Terra, New Caledonia’s main island. In this natural-color image, the islands appear in shades of green and brown—mixtures of vegetation and bare ground. The surrounding waters range in color from pale aquamarine to deep blue, and the color differences result from varying depths. Over coral reef ridges and sand bars, the water is shallowest and palest in color. Darker shades of blue characterize deeper waters. Reef-enclosed, shallow waters surround Île Balabio, and a larger, semi-enclosed lagoon appears immediately east of that island. Immediately north of Grande Terra, unenclosed, deeper waters predominate. The coral reefs around New Caledonia support an unusual diversity of species, including large numbers of predators and big fish, turtles, and the world’s third-largest dugong population. NASA image created by Jesse Allen, using Landsat data provided by the United States Geological Survey. Caption by Michon Scott. Instrument: Landsat 7 - ETM+ Credit: NASA/GSFC/Landsat NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Join us on Facebook
A comprehensive investigation of mesophotic coral ecosystems in the Hawaiian Archipelago
Boland, Raymond; Bolick, Holly; Bowen, Brian W.; Bradley, Christina J.; Kane, Corinne; Kosaki, Randall K.; Langston, Ross; Longenecker, Ken; Montgomery, Anthony; Parrish, Frank A.; Popp, Brian N.; Smith, Celia M.; Wagner, Daniel; Spalding, Heather L.
2016-01-01
Although the existence of coral-reef habitats at depths to 165 m in tropical regions has been known for decades, the richness, diversity, and ecological importance of mesophotic coral ecosystems (MCEs) has only recently become widely acknowledged. During an interdisciplinary effort spanning more than two decades, we characterized the most expansive MCEs ever recorded, with vast macroalgal communities and areas of 100% coral cover between depths of 50–90 m extending for tens of km2 in the Hawaiian Archipelago. We used a variety of sensors and techniques to establish geophysical characteristics. Biodiversity patterns were established from visual and video observations and collected specimens obtained from submersible, remotely operated vehicles and mixed-gas SCUBA and rebreather dives. Population dynamics based on age, growth and fecundity estimates of selected fish species were obtained from laser-videogrammetry, specimens, and otolith preparations. Trophic dynamics were determined using carbon and nitrogen stable isotopic analyses on more than 750 reef fishes. MCEs are associated with clear water and suitable substrate. In comparison to shallow reefs in the Hawaiian Archipelago, inhabitants of MCEs have lower total diversity, harbor new and unique species, and have higher rates of endemism in fishes. Fish species present in shallow and mesophotic depths have similar population and trophic (except benthic invertivores) structures and high genetic connectivity with lower fecundity at mesophotic depths. MCEs in Hawai‘i are widespread but associated with specific geophysical characteristics. High genetic, ecological and trophic connectivity establish the potential for MCEs to serve as refugia for some species, but our results question the premise that MCEs are more resilient than shallow reefs. We found that endemism within MCEs increases with depth, and our results do not support suggestions of a global faunal break at 60 m. Our findings enhance the scientific foundations for conservation and management of MCEs, and provide a template for future interdisciplinary research on MCEs worldwide. PMID:27761310
NASA Astrophysics Data System (ADS)
Briguglio, Antonino; Goeting, Sulia; Kusli, Rosnani; Roslim, Amajida; Polgar, Gianluca; Kocsis, Laszlo
2016-04-01
For this study, 11 samples have been collected by scuba diving from 5 to 35 meters water depth off shore Brunei Darussalam. The locations sampled are known as: Pelong Rock (5 samples, shallow reef with soft and stony corals and larger foraminifera, 5 to 8 meters water depth), Abana Rock (1 sample, shallow reef with mainly soft corals and larger foraminifera, 13 to 18 meters water depth), Oil Rig wreck (1 sample, very sandy bottom with larger foraminifera, 18 meters water depth), Dolphin wreck (1 sample, muddy sand with many small rotaliids, 24 meters water depth), US wreck, (1 sample, sand with small clay fraction, 28 meters water depth), Australian wreck (1 sample, mainly medium to coarse sand with larger foraminifera, 34 meters water depth) and Blue water wreck (1 sample, mainly coarse sand, coral rubble and larger foraminifera, 35 meters water depth). Those samples closer to the river inputs are normally richer in clay, while the most distant samples are purely sandy. Some additional samples have been collected next to reef environments which, even if very shallow, are mainly sandy with almost no clay fraction. The deepest sample, which is 30 km offshore, contains some planktonic foraminifera and is characterized by a large range of preservations concerning foraminifera, thus testifying the presence or relict sediments at the sea bottom. The presence of relict sediments was already pointed out by older oil-related field studies offshore Brunei Darussalam, and now it is possible to draw the depth limit of these deposits. The diversity of the benthic foraminiferal fauna is relatively high but not as higher as neighboring regions as some studies have highlighted. The species collected and identified are more than 50: in reef environment the most abundant are Calcarina defrancii, Neorotalia calcar and the amphisteginidae; deeper in the muddy sediments the most abundant is Pararotalia schroeteriana and in the deepest sandy sample the most abundant are Calcarina hispida, followed by Operculina ammonoides.
2013-01-01
Background Scleractinian corals and their algal endosymbionts (genus Symbiodinium) exhibit distinct bathymetric distributions on coral reefs. Yet, few studies have assessed the evolutionary context of these ecological distributions by exploring the genetic diversity of closely related coral species and their associated Symbiodinium over large depth ranges. Here we assess the distribution and genetic diversity of five agariciid coral species (Agaricia humilis, A. agaricites, A. lamarcki, A. grahamae, and Helioseris cucullata) and their algal endosymbionts (Symbiodinium) across a large depth gradient (2-60 m) covering shallow to mesophotic depths on a Caribbean reef. Results The five agariciid species exhibited distinct depth distributions, and dominant Symbiodinium associations were found to be species-specific, with each of the agariciid species harbouring a distinct ITS2-DGGE profile (except for a shared profile between A. lamarcki and A. grahamae). Only A. lamarcki harboured different Symbiodinium types across its depth distribution (i.e. exhibited symbiont zonation). Phylogenetic analysis (atp6) of the coral hosts demonstrated a division of the Agaricia genus into two major lineages that correspond to their bathymetric distribution (“shallow”: A. humilis / A. agaricites and “deep”: A. lamarcki / A. grahamae), highlighting the role of depth-related factors in the diversification of these congeneric agariciid species. The divergence between “shallow” and “deep” host species was reflected in the relatedness of the associated Symbiodinium (with A. lamarcki and A. grahamae sharing an identical Symbiodinium profile, and A. humilis and A. agaricites harbouring a related ITS2 sequence in their Symbiodinium profiles), corroborating the notion that brooding corals and their Symbiodinium are engaged in coevolutionary processes. Conclusions Our findings support the hypothesis that the depth-related environmental gradient on reefs has played an important role in the diversification of the genus Agaricia and their associated Symbiodinium, resulting in a genetic segregation between coral host-symbiont communities at shallow and mesophotic depths. PMID:24059868
Waheed, Zarinah; van Mil, Harald G. J.; Syed Hussein, Muhammad Ali; Jumin, Robecca; Golam Ahad, Bobita; Hoeksema, Bert W.
2015-01-01
The coral reefs at the northernmost tip of Sabah, Borneo will be established under a marine protected area: the Tun Mustapha Park (TMP) by the end of 2015. This area is a passage where the Sulu Sea meets the South China Sea and it is situated at the border of the area of maximum marine biodiversity, the Coral Triangle. The TMP includes fringing and patch reefs established on a relatively shallow sea floor. Surveys were carried out to examine features of the coral reefs in terms of scleractinian species richness, and benthic reef assemblages following the Reef Check substrate categories, with emphasis on hard coral cover. Variation in scleractinian diversity was based on the species composition of coral families Fungiidae (n = 39), Agariciidae (n = 30) and Euphylliidae (n = 15). The number of coral species was highest at reefs with a larger depth gradient i.e. at the periphery of the study area and in the deep South Banggi Channel. Average live hard coral cover across the sites was 49%. Only 7% of the examined reefs had > 75% hard coral cover, while the majority of the reef sites were rated fair (51%) and good (38%). Sites with low coral cover and high rubble fragments are evidence of blast fishing, although the observed damage appeared old. Depth was a dominant factor in influencing the coral species composition and benthic reef communities in the TMP. Besides filling in the information gaps regarding species richness and benthic cover for reef areas that were previously without any data, the results of this study together with information that is already available on the coral reefs of TMP will be used to make informed decisions on zoning plans for conservation priorities in the proposed park. PMID:26719987
Waheed, Zarinah; van Mil, Harald G J; Syed Hussein, Muhammad Ali; Jumin, Robecca; Golam Ahad, Bobita; Hoeksema, Bert W
2015-01-01
The coral reefs at the northernmost tip of Sabah, Borneo will be established under a marine protected area: the Tun Mustapha Park (TMP) by the end of 2015. This area is a passage where the Sulu Sea meets the South China Sea and it is situated at the border of the area of maximum marine biodiversity, the Coral Triangle. The TMP includes fringing and patch reefs established on a relatively shallow sea floor. Surveys were carried out to examine features of the coral reefs in terms of scleractinian species richness, and benthic reef assemblages following the Reef Check substrate categories, with emphasis on hard coral cover. Variation in scleractinian diversity was based on the species composition of coral families Fungiidae (n = 39), Agariciidae (n = 30) and Euphylliidae (n = 15). The number of coral species was highest at reefs with a larger depth gradient i.e. at the periphery of the study area and in the deep South Banggi Channel. Average live hard coral cover across the sites was 49%. Only 7% of the examined reefs had > 75% hard coral cover, while the majority of the reef sites were rated fair (51%) and good (38%). Sites with low coral cover and high rubble fragments are evidence of blast fishing, although the observed damage appeared old. Depth was a dominant factor in influencing the coral species composition and benthic reef communities in the TMP. Besides filling in the information gaps regarding species richness and benthic cover for reef areas that were previously without any data, the results of this study together with information that is already available on the coral reefs of TMP will be used to make informed decisions on zoning plans for conservation priorities in the proposed park.
Graham, Nicholas A. J.; Chong-Seng, Karen M.; Huchery, Cindy; Januchowski-Hartley, Fraser A.; Nash, Kirsty L.
2014-01-01
Much research on coral reefs has documented differential declines in coral and associated organisms. In order to contextualise this general degradation, research on community composition is necessary in the context of varied disturbance histories and the biological processes and physical features thought to retard or promote recovery. We conducted a spatial assessment of coral reef communities across five reefs of the central Great Barrier Reef, Australia, with known disturbance histories, and assessed patterns of coral cover and community composition related to a range of other variables thought to be important for reef dynamics. Two of the reefs had not been extensively disturbed for at least 15 years prior to the surveys. Three of the reefs had been severely impacted by crown-of-thorns starfish outbreaks and coral bleaching approximately a decade before the surveys, from which only one of them was showing signs of recovery based on independent surveys. We incorporated wave exposure (sheltered and exposed) and reef zone (slope, crest and flat) into our design, providing a comprehensive assessment of the spatial patterns in community composition on these reefs. Categorising corals into life history groupings, we document major coral community differences in the unrecovered reefs, compared to the composition and covers found on the undisturbed reefs. The recovered reef, despite having similar coral cover, had a different community composition from the undisturbed reefs, which may indicate slow successional processes, or a different natural community dominance pattern due to hydrology and other oceanographic factors. The variables that best correlated with patterns in the coral community among sites included the density of juvenile corals, herbivore fish biomass, fish species richness and the cover of macroalgae. Given increasing impacts to the Great Barrier Reef, efforts to mitigate local stressors will be imperative to encouraging coral communities to persist into the future. PMID:24983747
Bridge, Tom; Beaman, Robin; Done, Terry; Webster, Jody
2012-01-01
Aim Coral reef communities occurring in deeper waters have received little research effort compared to their shallow-water counterparts, and even such basic information as their location and extent are currently unknown throughout most of the world. Using the Great Barrier Reef as a case study, habitat suitability modelling is used to predict the distribution of deep-water coral reef communities on the Great Barrier Reef, Australia. We test the effectiveness of a range of geophysical and environmental variables for predicting the location of deep-water coral reef communities on the Great Barrier Reef. Location Great Barrier Reef, Australia. Methods Maximum entropy modelling is used to identify the spatial extent of two broad communities of habitat-forming megabenthos phototrophs and heterotrophs. Models were generated using combinations of geophysical substrate properties derived from multibeam bathymetry and environmental data derived from Bio-ORACLE, combined with georeferenced occurrence records of mesophotic coral communities from autonomous underwater vehicle, remotely operated vehicle and SCUBA surveys. Model results are used to estimate the total amount of mesophotic coral reef habitat on the GBR. Results Our models predict extensive but previously undocumented coral communities occurring both along the continental shelf-edge of the Great Barrier Reef and also on submerged reefs inside the lagoon. Habitat suitability for phototrophs is highest on submerged reefs along the outer-shelf and the deeper flanks of emergent reefs inside the GBR lagoon, while suitability for heterotrophs is highest in the deep waters along the shelf-edge. Models using only geophysical variables consistently outperformed models incorporating environmental data for both phototrophs and heterotrophs. Main Conclusion Extensive submerged coral reef communities that are currently undocumented are likely to occur throughout the Great Barrier Reef. High-quality bathymetry data can be used to identify these reefs, which may play an important role in resilience of the GBR ecosystem to climate change. PMID:23118952
Persistence of coral assemblages at East and West Flower Garden Banks, Gulf of Mexico
NASA Astrophysics Data System (ADS)
Johnston, Michelle A.; Embesi, John A.; Eckert, Ryan J.; Nuttall, Marissa F.; Hickerson, Emma L.; Schmahl, George P.
2016-09-01
Since 1989 a federally supported long-term coral reef monitoring program has focused on two study sites atop East and West Flower Garden Banks in the northwestern Gulf of Mexico. We examined 25 yr of benthic cover data to provide a multi-decadal baseline and trend analysis of the community structure for this coral reef system. Despite global coral reef decline in recent decades, mean coral cover at East and West Flower Garden Banks was above 50% for the combined 25 yr of continuous monitoring, and represented a stable coral community. However, mean macroalgal cover increased significantly between 1998 and 1999, rising from approximately 3 to 20%, and reaching a maximum above 30% in 2012. In contrast to many other shallow water reefs in the Caribbean region, increases in mean macroalgal cover have not been concomitant with coral cover decline at the Flower Garden Banks.
Global Analysis of the Shallow Geology of Large-Scale Ocean Slopes.
1983-05-01
nannoplankton. Ben- thonic forams are common in lesser amounts and pteropods may occur in warm climates at depths less than 3000 m. Siliceous...Foraminifera and nannoplankton dominate. In warm waters, carbo- nate reefs may grow in shallow depths on the tops of subsiding volcanoes (Menard...Paleozoic E Eocene A A Horizon O Oligocene Where two labels ore hyphenated (ie. M-E), the time boundary dates between the two ages. - Acoustic Basement
Gondim, A I; Dias, T L P; Christoffersen, M L
2013-05-01
The genus Diadema presently consists of seven species, two of which are known from the Brazilian coast: D. antillarum and D. ascensionis. The first is usually known for shallow coastal areas, while the second was apparently restricted to oceanic islands. In February 2011, a dense population of D. ascensionis was observed on the coastal reefs of Praia do Francês (Alagoas State, northeastern Brazil). Five specimens were collected and transported to the laboratory where morphological studies of the test and pedicellariae were conducted. Subsequently, visits were made to scientific collections in order to compare and confirm species identifications. Our observations confirm the presence of tridentate pedicellariae with narrow and strongly curved valves. The axial cavity in the tips of the spines is filled with dense nonreticular tissue. This taxonomic data confirms the occurrence of D. ascensionis in coastal areas. On the coastal reefs of Praia do Francês, animals were observed from the beach to the reef formations about 200 m offshore in areas with a sandy substrate and in reef cavities, usually in clear and well illuminated waters. Solitary individuals or groups of up to 15 individuals formed dense populations in the area. We stress the importance of pedicellariae for the specific identification of the Diadematidae, considering that they are quite constant and reliable at this taxonomic level. Our results demonstrate that D. ascensionis is not restricted to insular environments and that this species may be common in shallow coastal habitats.
Late Holocene Coral Growth Records from the Southeast Florida Continental Reef Tract, USA
NASA Astrophysics Data System (ADS)
Modys, A.; Oleinik, A. E.; Manzello, D.; Enochs, I.; Kolodziej, G.; Carroll, R. J.
2017-12-01
The southeast Florida continental reef tract provides a unique opportunity to examine the past and present response of marginal coral reefs to environmental and climatic change. Here we compare growth records of radiometrically dated late Holocene (3.1 to 1.9 ka) and modern corals using cores extracted from the common reef-building coral species Pseudodiploria strigosa. In 2015 and 2016, a total of 4 modern and 5 subfossil cores were collected from two shallow-water sites (3.0 and 4.5 m depths) on the nearshore ridge complex (NRC) offshore northern Broward County, Florida. Using 3-D computerized tomography, skeletal extension rates were estimated from the thickness of high- and low-density growth bands and combined with density measurements to yield calcification rates. Our results indicate that mean linear extension, density, and calcification were significantly lower in the late Holocene corals (0.52±0.01 cm yr-1; 1.05±0.02 g cm-3; 0.55±0.01 g cm-2 yr-1) compared to today (0.64±0.02 cm yr-1; 1.20±0.02 g cm-3; 0.78±0.04 g cm-2 yr-1), despite shallower local water depths in the late Holocene. Based on the radiometric ages and presence of distinct burial notches on the subfossil corals, we suggest that late Holocene P. strigosa growth at this site was potentially suppressed by reduced sea surface temperatures (SSTs) and/or increased burial compared to present conditions.
Do the shuffle: Changes in Symbiodinium consortia throughout juvenile coral development
Reich, Hannah G.; Robertson, Deborah L.; Goodbody-Gringley, Gretchen
2017-01-01
Previous studies of symbiotic associations between scleractinians corals and Symbiodinium have demonstrated that the consortium of symbionts can change in response to environmental conditions. However, less is known about symbiont shuffling during early coral development, particularly in brooding species. This study examined whether Symbiodinium consortia (1) varied in Porites astreoides on shallow (10m) and upper mesophotic (30m) reefs, (2) changed during coral development, and (3) influenced growth of juveniles in different environments. Symbiodinium ITS2 sequences were amplified using universal primers and analyzed using phylotype-specific primers designed for phylotypes A, B, and C. Adults from both depths were found to host only phylotype A, phylotypes A and B, or phylotypes A, B, and C and the frequency of the phylotype composition did not vary with depth. However, phylotype A was the dominant symbiont that was vertically transmitted to the planulae. The presence of phylotypes B and C was detected in the majority of juveniles when transplanted onto the shallow and upper mesophotic reefs whereas only phylotype A was detected in the majority of juveniles reared in outdoor aquaria. In addition, growth of juvenile P. astreoides harboring different combinations of Symbiodinium phylotypes did not vary when transplanted to different reef zones. However, juveniles reared in in situ reef environments grew faster than those reared in ex situ outdoor aquaria. These results show that Symbiodinium consortia change during development of P. astreoides and are influenced by environmental conditions. PMID:28182684
A Synthesis and Comparison of Approaches for Quantifying Coral Reef Structure
NASA Astrophysics Data System (ADS)
Duvall, M. S.; Hench, J. L.
2016-02-01
The complex physical structures of coral reefs provide substrate for benthic organisms, surface area for material fluxes, and have been used as a predictor of reef-fish biomass and biodiversity. Coral reef topography has a first order effect on reef hydrodynamics by imposing drag forces and increasing momentum and scalar dispersion. Despite its importance, quantifying reef topography remains a challenge, as it is patchy and discontinuous while also varying over orders of magnitude in spatial scale. Previous studies have quantified reef structure using a range of 1D and 2D metrics that estimate vertical roughness, which is the departure from a flat geometric profile or surface. However, there is no general mathematical or conceptual framework by which to apply or compare these roughness metrics. While the specific calculations of different metrics vary, we propose that they can be classified into four categories based on: 1) vertical relief relative to a reference height; 2) gradients in vertical relief; 3) surface contour distance; or 4) variations in roughness with scale. We apply metrics from these four classes to idealized reef topography as well as natural reef topography data from Moorea, French Polynesia. Through the use of idealized profiles, we demonstrate the potential for reefs with different morphologies to possess the same value for some scale-dependent metrics (i.e. classes 1-3). Due to the superposition of variable-scale roughness elements in reef topography, we find that multi-scale metrics (i.e. class 4) can better characterize structural complexity by capturing surface roughness across a range of spatial scales. In particular, we provide evidence of the ability of 1D continuous wavelet transforms to detect changes in dominant roughness scales on idealized topography as well as within real reef systems.
Measuring coral reef community metabolism using new benthic chamber technology
Yates, K.K.; Halley, R.B.
2003-01-01
Accurate measurement of coral reef community metabolism is a necessity for process monitoring and in situ experimentation on coral reef health. Traditional methodologies used for these measurements are effective but limited by location and scale constraints. We present field trial results for a new benthic chamber system called the Submersible Habitat for Analyzing Reef Quality (SHARQ). This large, portable incubation system enables in situ measurement and experimentation on community- scale metabolism. Rates of photosynthesis, respiration, and calcification were measured using the SHARQ for a variety of coral reef substrate types on the reef flat of South Molokai, Hawaii, and in Biscayne National Park, Florida. Values for daily gross production, 24-h respiration, and net calcification ranged from 0.26 to 6.45 g O2 m-2 day-1, 1.96 to 8.10 g O2 m-2 24 h-1, and 0.02 to 2.0 g CaCO3 m -2 day-1, respectively, for all substrate types. Field trials indicate that the SHARQ incubation chamber is an effective tool for in situ isolation of a water mass over a variety of benthic substrate types for process monitoring, experimentation, and other applications.
Edgecliff reefs - Devonian temperate water carbonate deposition
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wolosz, T.H.
1991-03-01
The Middle Devonian Edgecliff Member of the Onondaga Formation in New York and Ontario, Canada, is a coral-rich, reefy,' crinoidal grainstone/packstone. The reefs contain only rare stromatoporoids and are devoid of algae, having been constructed by a fauna of mound and thicket-forming branching colonial rugosans, and large sheet favositids that populated grainstone/packstone flank beds and banks. Despite the restricted fauna, the reefs display a variety of growth patterns. Rugosan mounds range in size from 2-3 m diameter by 1 m thick, up to 230 m diameter by 15 m thick. Composite structures consist of interbedded rugosan buildups and packstone/grainstone flanks,more » ranging from shield-shaped reefs (240 m diameter by 6 m thick) in which the rugosans occur only as thickets, to pinnacle reefs (up to 3 km diameter by 60 m thick) in which rugosan mounds are interbedded with crinoidal flanks. Geographic distribution of these reef types and analysis of surrounding facies suggests that reef growth pattern was controlled by water depth and local rate of subsidence. Despite superfacial resemblance to modern deep water ahermatypic coral mounds and thickets, abundant coral breakage and overturning, and erosion of at least one reef core during an intermediate stage of reef growth supports a shallow water origin of these reefs. It is suggested that the Edgecliff and its reefs represent an example of Devonian cool water carbonate deposition, a hypothesis supported by a trend of increasing stromatoporoid abundance westwards across New York (in the direction of the paleo-equator).« less
Multibeam mapping of the West Florida Shelf, Gulf of Mexico
Gardner, James V.; Dartnell, Peter; Sulak, Kenneth J.
2002-01-01
A zone of deep-water reefs is thought to extend from the mid and outer shelf south of Mississippi and Alabama to at least the northwestern Florida shelf off Panama City, Florida (Figure 1). The reefs off Mississippi and Alabama are found in water depths of 60 to 120 m (Ludwick and Walton, 1957; Gardner et al., 2001, in press) and were the focus of a multibeam echosounder (MBES) mapping survey by the U.S. Geological Survey (USGS) in 2000 (Gardner et al., 2000, Gardner et al., 2001, in press). If this deep-water-reef trend does exist along the northwestern Florida shelf, then it is critical to determine the accurate geomorphology and reef type that occur because of their importance as benthic habitats for fisheries. Georeferenced high-resolution mapping of bathymetry is a fundamental first step in the study of areas suspected to be critical habitats. Morphology is thought to be critical to defining the distribution of dominant demersal plankton/planktivores communities. Fish faunas of shallow hermatypic reefs have been well studied, but those of deep ahermatypic reefs have been relatively ignored. The ecology of deep-water ahermatypic reefs is fundamentally different from hermatypic reefs because autochthonous intracellular symbiotic zooxanthellae (the carbon source for hermatypic corals) do not form the base of the trophic web in ahermatypic reefs. Instead, exogenous plankton, transported to the reef by currents, serves as the primary carbon source. Thus, one of the principle uses of the morphology data will be to identify whether any reefs found are hermatypic or ahermatypic in origin.
Atwater, Brian F.; ten Brink, Uri S.; Cescon, Anna Lisa; Feuillet, Nathalie; Fuentes, Zamara; Halley, Robert B.; Nuñez, Carlos; Reinhardt, Eduard G.; Roger, Jean; Sawai, Yuki; Spiske, Michaela; Tuttle, Martitia P.; Wei, Yong; Weil-Accardo, Jennifer
2017-01-01
Extraordinary marine inundation scattered clasts southward on the island of Anegada, 120 km south of the Puerto Rico Trench, sometime between 1200 and 1480 calibrated years (cal yr) CE. Many of these clasts were likely derived from a fringing reef and from the sandy flat that separates the reef from the island’s north shore. The scattered clasts include no fewer than 200 coral boulders, mapped herein for the first time and mainly found hundreds of meters inland. Many of these are complete colonies of the brain coral Diploria strigosa. Other coral species represented include Orbicella (formerly Montastraea) annularis, Porites astreoides, and Acropora palmata. Associated bioclastic carbonate sand locally contains articulated cobble-size valves of the lucine Codakia orbicularis and entire conch shells of Strombus gigas, mollusks that still inhabit the sandy shallows between the island’s north shore and a fringing reef beyond. Imbricated limestone slabs are clustered near some of the coral boulders. In addition, fields of scattered limestone boulders and cobbles near sea level extend mainly southward from limestone sources as much as 1 km inland. Radiocarbon ages have been obtained from 27 coral clasts, 8 lucine valves, and 3 conch shells. All these additional ages predate 1500 cal yr CE, all but 2 are in the range 1000–1500 cal yr CE, and 16 of 22 brain coral ages cluster in the range 1200–1480 cal yr CE. The event marked by these coral and mollusk clasts likely occurred in the last centuries before Columbus (before 1492 CE).The pre-Columbian deposits surpass Anegada’s previously reported evidence for extreme waves in post-Columbian time. The coarsest of the modern storm deposits consist of coral rubble that lines the north shore and sandy fans on the south shore; neither of these storm deposits extends more than 50 m inland. More extensive overwash, perhaps by the 1755 Lisbon tsunami, is marked primarily by a sheet of sand and shells found mainly below sea level beneath the floors of modern salt ponds. This sheet extends more than 1 km southward from the north shore and dates to the interval 1650–1800 cal yr CE. Unlike the pre-Columbian deposits, it lacks coarse clasts from the reef or reef flat; its shell assemblage is instead dominated by cerithid gastropods that were merely stirred up from a marine pond in the island’s interior.In their inland extent and clustered pre-Columbian ages, the coral clasts and associated deposits suggest extreme waves unrivaled in recent millennia at Anegada. Bioclastic sand coats limestone 4 m above sea level in areas 0.7 and 1.3 km from the north shore. A coral boulder of nearly 1 m3 is 3 km from the north shore by way of an unvegetated path near sea level. As currently understood, the extreme flooding evidenced by these and other clasts represents either an extraordinary storm or a tsunami of nearby origin. The storm would need to have produced tsunami-like bores similar to those of 2013 Typhoon Haiyan in the Philippines. Normal faults and a thrust fault provide nearby tsunami sources along the eastern Puerto Rico Trench.
Community metabolism in shallow coral reef and seagrass ecosystems, lower Florida Keys
Turk, Daniela; Yates, Kimberly K.; Vega-Rodriguez, Maria; Toro-Farmer, Gerardo; L'Esperance, Chris; Melo, Nelson; Ramsewak, Deanesch; Estrada, S. Cerdeira; Muller-Karger, Frank E.; Herwitz, Stan R.; McGillis, Wade
2016-01-01
Diurnal variation of net community production (NEP) and net community calcification (NEC) were measured in coral reef and seagrass biomes during October 2012 in the lower Florida Keys using a mesocosm enclosure and the oxygen gradient flux technique. Seagrass and coral reef sites showed diurnal variations of NEP and NEC, with positive values at near-seafloor light levels >100–300 µEinstein m-2 s-1. During daylight hours, we detected an average NEP of 12.3 and 8.6 mmol O2 m-2 h-1 at the seagrass and coral reef site, respectively. At night, NEP at the seagrass site was relatively constant, while on the coral reef, net respiration was highest immediately after dusk and decreased during the rest of the night. At the seagrass site, NEC values ranged from 0.20 g CaCO3 m-2 h-1 during daylight to -0.15 g CaCO3 m-2 h-1 at night, and from 0.17 to -0.10 g CaCO3 m-2 h-1 at the coral reef site. There were no significant differences in pH and aragonite saturation states (Ωar) between the seagrass and coral reef sites. Decrease in light levels during thunderstorms significantly decreased NEP, transforming the system from net autotrophic to net heterotrophic.
Pattrick, P; Strydom, N A
2017-03-01
Presettlement and settlement-stage fishes were studied in a large, log-spiral bay in temperate South Africa. The aim was to describe the assemblage composition, density and distribution associated with four types of habitats common to the bay: high profile reef, low profile reef, reef-associated sand and open sand spatially separated from reef. Samples were collected with both a plankton ring net and a light trap at each habitat type as part of a mixed-method approach. A total of 4084 presettlement and settlement-stage fishes belonging to 31 teleost families and 84 species were captured. Reef-associated sand and open sand habitats yielded higher species richness and diversity than the high and low-profile reef habitats. Engraulidae, Gobiidae, Clupeidae and Cynoglossidae were the dominant fish families captured with the ring net, while Engraulidae, Clupeidae, Carangidae and Clinidae were captured with the light trap. A temporal difference in the abundance of presettlement fishes occurred between the sampling periods with highest values recorded during the summer settlement period. Habitat type together with associated physico-chemical variables played a pivotal role in determining presettlement fish species composition, density and distribution across habitat types. © 2016 The Fisheries Society of the British Isles.
NASA Astrophysics Data System (ADS)
Shaw, Emily C.; Hamylton, Sarah M.; Phinn, Stuart R.
2016-06-01
The existence of coral reefs is dependent on the production and maintenance of calcium carbonate (CaCO3) framework that is produced through calcification. The net production of CaCO3 will likely decline in the future, from both declining net calcification rates (decreasing calcification and increasing dissolution) and shifts in benthic community composition from calcifying organisms to non-calcifying organisms. Here, we present a framework for hydrochemical studies that allows both declining net calcification rates and changes in benthic community composition to be incorporated into projections of coral reef CaCO3 production. The framework involves upscaling net calcification rates for each benthic community type using mapped proportional cover of the benthic communities. This upscaling process was applied to the reef flats at One Tree and Lady Elliot reefs (Great Barrier Reef) and Shiraho Reef (Okinawa), and compared to existing data. Future CaCO3 budgets were projected for Lady Elliot Reef, predicting a decline of 53 % from the present value by end-century (800 ppm CO2) without any changes to benthic community composition. A further 5.7 % decline in net CaCO3 production is expected for each 10 % decline in calcifier cover, and net dissolution is predicted by end-century if calcifier cover drops below 18 % of the present extent. These results show the combined negative effect of both declining net calcification rates and changing benthic community composition on reefs and the importance of considering both processes for determining future reef CaCO3 production.
Early Pleistocene origin of reefs around Lanai, Hawaii
Webster, Jody M.; Clague, David A.; Faichney, Iain D.E.; Fullagar, Paul D.; Hein, James R.; Moore, James G.; Paull, Charles K.
2010-01-01
A sequence of submerged terraces (L1–L12) offshore Lanai was previously interpreted as reefal, and correlated with a similar series of reef terraces offshore Hawaii island, whose ages are known to be <500 ka. We present bathymetric, observational, lithologic and 51 87Sr/86Sr isotopic measurements for the submerged Lanai terraces ranging from −300 to −1000 m (L3–L12) that indicate that these terraces are drowned reef systems that grew in shallow coral reef to intermediate and deeper fore-reef slope settings since the early Pleistocene. Age estimates based on 87Sr/86Sr isotopic measurements on corals, coralline algae, echinoids, and bulk sediments, although lacking the precision (∼±0.23 Ma) to distinguish the age–depth relationship and drowning times of individual reefs, indicate that the L12–L3 reefs range in age from ∼1.3–0.5 Ma and are therefore about 0.5–0.8 Ma older than the corresponding reefs around the flanks of Hawaii. These new age data, despite their lack of precision and the influence of later-stage submarine diagenesis on some analyzed corals, clearly revise the previous correlations between the reefs off Lanai and Hawaii. Soon after the end of major shield building (∼1.3–1.2 Ma), the Lanai reefs initiated growth and went through a period of rapid subsidence and reef drowning associated with glacial/interglacial cycles similar to that experienced by the Hawaii reefs. However, their early Pleistocene initiation means they experienced a longer, more complex growth history than their Hawaii counterparts.
Kayal, Mohsen; Vercelloni, Julie; Lison de Loma, Thierry; Bosserelle, Pauline; Chancerelle, Yannick; Geoffroy, Sylvie; Stievenart, Céline; Michonneau, François; Penin, Lucie; Planes, Serge; Adjeroud, Mehdi
2012-01-01
Outbreaks of the coral-killing seastar Acanthaster planci are intense disturbances that can decimate coral reefs. These events consist of the emergence of large swarms of the predatory seastar that feed on reef-building corals, often leading to widespread devastation of coral populations. While cyclic occurrences of such outbreaks are reported from many tropical reefs throughout the Indo-Pacific, their causes are hotly debated, and the spatio-temporal dynamics of the outbreaks and impacts to reef communities remain unclear. Based on observations of a recent event around the island of Moorea, French Polynesia, we show that Acanthaster outbreaks are methodic, slow-paced, and diffusive biological disturbances. Acanthaster outbreaks on insular reef systems like Moorea's appear to originate from restricted areas confined to the ocean-exposed base of reefs. Elevated Acanthaster densities then progressively spread to adjacent and shallower locations by migrations of seastars in aggregative waves that eventually affect the entire reef system. The directional migration across reefs appears to be a search for prey as reef portions affected by dense seastar aggregations are rapidly depleted of living corals and subsequently left behind. Coral decline on impacted reefs occurs by the sequential consumption of species in the order of Acanthaster feeding preferences. Acanthaster outbreaks thus result in predictable alteration of the coral community structure. The outbreak we report here is among the most intense and devastating ever reported. Using a hierarchical, multi-scale approach, we also show how sessile benthic communities and resident coral-feeding fish assemblages were subsequently affected by the decline of corals. By elucidating the processes involved in an Acanthaster outbreak, our study contributes to comprehending this widespread disturbance and should thus benefit targeted management actions for coral reef ecosystems.
Muir, Paul R; Marshall, Paul A; Abdulla, Ameer; Aguirre, J David
2017-10-11
Mass bleaching associated with unusually high sea temperatures represents one of the greatest threats to corals and coral reef ecosystems. Deeper reef areas are hypothesized as potential refugia, but the susceptibility of Scleractinian species over depth has not been quantified. During the most severe bleaching event on record, we found up to 83% of coral cover severely affected on Maldivian reefs at a depth of 3-5 m, but significantly reduced effects at 24-30 m. Analysis of 153 species' responses showed depth, shading and species identity had strong, significant effects on susceptibility. Overall, 73.3% of the shallow-reef assemblage had individuals at a depth of 24-30 m with reduced effects, potentially mitigating local extinction and providing a source of recruits for population recovery. Although susceptibility was phylogenetically constrained, species-level effects caused most lineages to contain some partially resistant species. Many genera showed wide variation between species, including Acropora, previously considered highly susceptible. Extinction risk estimates showed species and lineages of concern and those likely to dominate following repeated events. Our results show that deeper reef areas provide refuge for a large proportion of Scleractinian species during severe bleaching events and that the deepest occurring individuals of each population have the greatest potential to survive and drive reef recovery. © 2017 The Author(s).
Development of Miocene-Pliocene reef trend, St. Croix, U. S. Virgin Islands
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gill, I.; Eby, D.E.; Hubbard, D.K.
1988-01-01
The Miocene-Pliocene reef trend on St. Croix, U.S. Virgin Islands, rims the present southern western coasts of the island and includes accompanying lagoonal and forereef facies. The reef trend was established on a foram-algal bank facies that represents basinal shallowing from the deep-water pelagic and hemipelagic facies of the Miocene Kingshill Limestone. Information on facies distribution and thickness is derived from rock exposures and 22 test wells drilled to a maximum depth of 91 m. The greatest thickness of the reef facies exists in a subsidiary graben on the south coast of St. Croix. The thickness of the reef sectionmore » in this locality is due to preservation of the section in a downdropped block. Reef faunas include extant corals, as well as several extinct genera. Extant corals (e.g. Montastrea annularis, Diploria sp., and Porites porites) and extinct corals (e.g., Stylophora affinis, Antillea bilobata, and Thysanus sp.) are the main reef frame-builders. Coralline algea and large benthic foraminifera are significant contributors to the sediments both prior to and during scleractinian reef growth. Dolomitization and calcite cementation occur prominantly in an area corresponding to a Holocene lagoon. The spatial distribution of the dolomite suggests that the lagoon is a Tertiary feature directly related to the dolomitization process. Stable isotopic values suggest dolomitization of fluids of elevated salinity.« less
Ugalde, Diana; Gómez, Patricia; Simões, Nuno
2015-01-19
Marine sponges usually constitute the most diverse group of the benthic community in coral reefs. Although they are reasonably well studied at the northern Gulf of Mexico (GMx), the southern GMx is poorly known and lacks records from many major reef systems that lie off the Mexican coast. The present taxonomic study is the first sponge account from Alacranes reef, the largest coral reef system in the GMx, and from the shallow reef banks of Sisal, both in the northwest Yucatan Peninsula. The 19 species herein described represent the first sponge fauna records from these reefs. Among these, seven species represent new record for GMx: Erylus formosus, Cliona flavifodina, Spirastrella aff. mollis, Strongylacidon bermuda, Topsentia bahamensis, Agelas tubulata and Chelonaplysilla aff. erecta. Twelve species are new records for the Southern GMx: Erylus trisphaerus, Cliona amplicavata, Chondrilla caribensis, Halichondria lutea, Hymeniacidon caerulea, Axinella corrugata, Dragmacidon reticulatum, Chalinula molitba, Amphimedon caribica, A. complanata, Hyatella cavernosa and Dysidea variabilis. Additionally, a redescription of Erylus trisphaerus is presented which had not been reviewed since its original description in 1953 off Western Florida, except that it was listed for north La Habana, Cuba.
Acehnese reefs in the wake of the Asian tsunami.
Baird, Andrew H; Campbell, Stuart J; Anggoro, Aji W; Ardiwijaya, Rizya L; Fadli, Nur; Herdiana, Yudi; Kartawijaya, Tasrif; Mahyiddin, Dodent; Mukminin, Ahmad; Pardede, Shinta T; Pratchett, Morgan S; Rudi, Edi; Siregar, Achis M
2005-11-08
The Sumatra-Andanaman tsunami was one of the greatest natural disasters in recorded human history. Here, we show that on the northwest coast of Aceh, Indonesia, where the tsunami was most ferocious, the damage to corals, although occasionally spectacular, was surprisingly limited. We detected no change in shallow coral assemblages between March 2003 and March 2005, with the exception of one site smothered by sediment. Direct tsunami damage was dependent on habitat and largely restricted to corals growing in unconsolidated substrata, a feature unique to tsunami disturbance. Reef condition, however, varied widely within the region and was clearly correlated with human impacts prior to the tsunami. Where fishing has been controlled, coral cover was high. In contrast, reefs exposed to destructive fishing had low coral cover and high algal cover, a phase shift the tsunami may exacerbate with an influx of sediments and nutrients. Healthy reefs did not mitigate the damage on land. Inundation distance was largely determined by wave height and coastal topography. We conclude that although chronic human misuse has been much more destructive to reefs in Aceh than this rare natural disturbance, human modification of the reef did not contribute to the magnitude of damage on land.
NASA Astrophysics Data System (ADS)
Pastier, Anne-Morwenn; Husson, Laurent; Bezos, Antoine; Pedoja, Kevin; Elliot, Mary; Hafidz, Abdul; Imran, Muhammad; Lacroix, Pascal; Robert, Xavier
2016-04-01
During the Late Neogene, sea level oscillations have profoundly shaped the morphology of the coastlines of intertropical zones, wherein relative sea level simultaneously controlled reef expansion and erosion of earlier reef bodies. In uplifted domains like SE Sulawesi, the sequences of fossil reefs display a variety of fossil morphologies. Similarly, the morphologies of the modern reefs are highly variable, including cliff notches, narrow fringing reefs, wide flat terraces, and barriers reefs. In this region, where uplift rates vary rapidly laterally, the entire set of morphologies is displayed within short distances. We developed a numerical model that predicts the architecture of fossil reefs sequences and apply it to observations from SE Sulawesi, accounting -amongst other parameters- for reef growth, coastal erosion, and uplift rates. The observations that we use to calibrate our models are mostly the morphology of both the onshore (dGPS and high-resolution Pleiades DEM) and offshore (sonar) coast, as well as U-Th radiometrically dated coral samples. Our method allows unravelling the spatial and temporal evolution of large domains on map view. Our analysis indicates that the architecture and morphology of uplifting coastlines is almost systematically polyphased (as attested by samples of different ages within a unique terrace), which assigns a primordial role to erosion, comparable to reef growth. Our models also reproduce the variety of modern morphologies, which are chiefly dictated by the uplift rates of the pre-existing morphology of the substratum, itself responding to the joint effects of reef building and subsequent erosion. In turn, we find that fossil and modern morphologies can be returned to uplift rates rather precisely, as the parametric window of each specific morphology is often narrow.
Chaotic deposition by a giant wave, Molokai, Hawaii
Moore, J.G.; Bryan, W.B.; Ludwig, K. R.
1994-01-01
A coral-basalt breccia-conglomerate is exposed >60m above present sea level and nearly 2km inland from the present shoreline on the southwest side of East Molokai Volcano. This deposits was apparently laid down by a giant wave that broke over an outer reef, similar to the present fringing reef, and advanced as a turbulent bore over the back-reef flat, picking up a slurry of carbonate-rich debris and depositing it on the slopes inland as the wave advanced. U-series dating of coral fragments indicates that the age of this deposit is 240-200 ka. This giant wave was most likley caused by one of the many large submarine landslides that have been identified on the lower slopes of the major Hawaiian Islands. -from Authors
Biological community structure on patch reefs in Biscayne National Park, FL, USA
Kuffner, Ilsa B.; Grober-Dunsmore, Rikki; Brock, John C.; Hickey, T. Don
2010-01-01
Coral reef ecosystem management benefits from continual quantitative assessment of the resources being managed, plus assessment of factors that affect distribution patterns of organisms in the ecosystem. In this study, we investigate the relationships among physical, benthic, and fish variables in an effort to help explain the distribution patterns of organisms on patch reefs within Biscayne National Park, FL, USA. We visited a total of 196 randomly selected sampling stations on 12 shallow (<10 m) patch reefs and measured physical variables (e.g., substratum rugosity, substratum type) and benthic and fish community variables. We also incorporated data on substratum rugosity collected remotely via airborne laser surveying (Experimental Advanced Airborne Research Lidar—EAARL). Across all stations, only weak relationships were found between physical, benthic cover, and fish assemblage variables. Much of the variance was attributable to a “reef effect,” meaning that community structure and organism abundances were more variable at stations among reefs than within reefs. However, when the reef effect was accounted for and removed statistically, patterns were detected. Within reefs, juvenile scarids were most abundant at stations with high coverage of the fleshy macroalgae Dictyota spp., and the calcified alga Halimeda tuna was most abundant at stations with low EAARL rugosity. Explanations for the overwhelming importance of “reef” in explaining variance in our dataset could include the stochastic arrangement of organisms on patch reefs related to variable larval recruitment in space and time and/or strong historical effects due to patchy disturbances (e.g., hurricanes, fishing), as well as legacy effects of prior residents (“priority” effects).
NASA Astrophysics Data System (ADS)
Debiasse, M. B.; Richards, V. P.; Shivji, M. S.
2010-03-01
The genetic population structure of the common branching vase sponge, Callyspongia vaginalis, was determined along the entire length (465 km) of the Florida reef system from Palm Beach to the Dry Tortugas based on sequences of the mitochondrial cytochrome c oxidase subunit 1 (COI) gene. Populations of C. vaginalis were highly structured (overall ΦST = 0.33), in some cases over distances as small as tens of kilometers. However, nonsignificant pairwise ΦST values were also found between a few relatively distant sampling sites suggesting that some long distance larval dispersal may occur via ocean currents or transport in sponge fragments along continuous, shallow coastlines. Indeed, sufficient gene flow appears to occur along the Florida reef tract to obscure a signal of isolation by distance, but not to homogenize COI haplotype frequencies. The strong genetic differentiation among most of the sampling locations suggests that recruitment in this species is largely local source-driven, pointing to the importance of further elucidating general connectivity patterns along the Florida reef tract to guide the spatial scale of management efforts.
Federal Register 2010, 2011, 2012, 2013, 2014
2011-10-27
...) and accountability measures (AMs) for gag, red grouper, and shallow-water grouper (SWG); revise... grouper, a 2009 SEDAR assessment update indicated that although the stock continues to be neither...
Mapping the Rainforest of the Sea: Global Coral Reef Maps for Global Conservation
NASA Technical Reports Server (NTRS)
Robinson, Julie A.
2006-01-01
Coral reefs are the center of marine biodiversity, yet are under threat with an estimated 60% of coral reef habitats considered at risk by the World Resources Institute. The location and extent of coral reefs in the world are the basic information required for resource management and as a baseline for monitoring change. A NASA sponsored partnership between remote sensing scientists, international agencies and NGOs, has developed a new generation of global reef maps based on data collected by satellites. The effort, dubbed the Millennium Coral Reef Map aims to develop new methods for wide distribution of voluminous satellite data of use to the conservation and management communities. We discuss the tradeoffs between remote sensing data sources, mapping objectives, and the needs for conservation and resource management. SeaWiFS data were used to produce a composite global shallow bathymetry map at 1 km resolution. Landsat 7/ETM+ data acquisition plans were modified to collect global reefs and new operational methods were designed to generate the firstever global coral reef geomorphology map. We discuss the challenges encountered to build these databases and in implementing the geospatial data distribution strategies. Conservation applications include a new assessment of the distribution of the world s marine protected areas (UNEPWCMC), improved spatial resolution in the Reefs at Risk analysis for the Caribbean (WRI), and a global basemap for the Census of Marine Life's OBIS database. The Millennium Coral Reef map and digital image archive will pay significant dividends for local and regional conservation projects around the globe. Complete details of the project are available at http://eol.jsc.nasa.gov/reefs.
Evaluation of coral reef carbonate production models at a global scale
NASA Astrophysics Data System (ADS)
Jones, N. S.; Ridgwell, A.; Hendy, E. J.
2014-09-01
Calcification by coral reef communities is estimated to account for half of all carbonate produced in shallow water environments and more than 25% of the total carbonate buried in marine sediments globally. Production of calcium carbonate by coral reefs is therefore an important component of the global carbon cycle. It is also threatened by future global warming and other global change pressures. Numerical models of reefal carbonate production are essential for understanding how carbonate deposition responds to environmental conditions including future atmospheric CO2 concentrations, but these models must first be evaluated in terms of their skill in recreating present day calcification rates. Here we evaluate four published model descriptions of reef carbonate production in terms of their predictive power, at both local and global scales, by comparing carbonate budget outputs with independent estimates. We also compile available global data on reef calcification to produce an observation-based dataset for the model evaluation. The four calcification models are based on functions sensitive to combinations of light availability, aragonite saturation (Ωa) and temperature and were implemented within a specifically-developed global framework, the Global Reef Accretion Model (GRAM). None of the four models correlated with independent rate estimates of whole reef calcification. The temperature-only based approach was the only model output to significantly correlate with coral-calcification rate observations. The absence of any predictive power for whole reef systems, even when consistent at the scale of individual corals, points to the overriding importance of coral cover estimates in the calculations. Our work highlights the need for an ecosystem modeling approach, accounting for population dynamics in terms of mortality and recruitment and hence coral cover, in estimating global reef carbonate budgets. In addition, validation of reef carbonate budgets is severely hampered by limited and inconsistent methodology in reef-scale observations.
Cambrian Series 3 carbonate platform of Korea dominated by microbial-sponge reefs
NASA Astrophysics Data System (ADS)
Hong, Jongsun; Lee, Jeong-Hyun; Choh, Suk-Joo; Lee, Dong-Jin
2016-07-01
Metazoans have been considered as negligible components of Cambrian Series 3 and Furongian microbial-dominated reefs, in contrast to their presence in earlier Terreneuvian-Cambrian Series 2 microbial-archaeocyath reefs. However, recent discoveries of sponges in Cambrian Series 3-Furongian reefs of Australia, China, Iran, USA, and Korea have raised question regarding their contribution in terms of carbonate platform development, which have never been assessed. This study examines Cambrian Series 3 deposits of the Daegi Formation, Korea to elucidate this question. The 100-m-thick middle part of the Daegi Formation is dominated by boundstone facies, which occupies 45% of the study interval, as well as bioclastic wackestone to packstone, bioclastic grainstone, and ooid packstone to grainstone facies. The Daegi reefs are primarily thrombolitic in composition, with 90% (n = 26/29) of the reefs containing an average of 9% sponges in aerial percentage calculated from thin sections. Lithistid sponges composed of peloidal fabrics, some desma spicules, and spicule networks commonly occupy the interstitial space in microbial clusters, are encrusted by mesoclots and Epiphyton, and are surrounded by micrite. Subordinate non-lithistid demosponges occur within clusters of microbial elements. The middle Daegi Formation can be largely subdivided into shoal environment dominated by grainstone to packstone facies and shallow subtidal platform interior environment located behind shoal with wackestone to packstone facies. The microbial-sponge reefs mainly developed around platform interior as patch reefs. The current study indicates that metazoans in the form of lithistid and non-lithistid demosponges are nearly ubiquitously incorporated in Daegi reefs and contributed greatly to the formation of microbial-sponge reefs as well as carbonate platform during the time. Study of these microbial-sponge reefs and their distribution within the carbonate platform may help us to understand how carbonate sedimentary environments responded to the extinction of archaeocyaths.
Coral reef complexes at an atypical windward platform margin: Late Quaternary, southeast Florida
Lidz, B.H.
2004-01-01
Major coral reef complexes rim many modern and ancient carbonate platforms. Their role in margin evolution is not fully understood, particularly when they border a margin atypical of the classic model. Classic windward margins are steeply inclined. The windward margin of southeast Florida is distinct with a very low-gradient slope and a shelf edge ringed with 30-m-high Quaternary outlier reefs on a shallow upper-slope terrace. A newly developed synthesis of temporally well-constrained geologic events is used with surface and subsurface seismic-reflection contours to construct morphogenetic models of four discontinuous reef-complex sequences. The models show uneven subsurface topography, upward and landward buildups, and a previously unreported, rapid, Holocene progradation. The terms backstepped reef-complex margin, backfilled prograded margin, and coalesced reef-complex margin are proposed for sections exhibiting suitable signatures in the stratigraphic record. The models have significant implications for interpretation of ancient analogues. The Florida record chronicles four kinds of geologic events. (1) Thirteen transgressions high enough for marine deposition occurred between ca. 325 ka and the present. Six gave rise to stratigraphically successive coral reef complexes between ca. 185 and ca. 77.8 ka. The seventh reef ecosystem is Holocene. (2) Two primary coral reef architectures built the outer shelf and margin, producing respective ridge-and-swale and reef-and-trough geometries of very different scales. (3) Massive outlier reefs developed on an upper-slope terrace between ca. 106.5 and ca. 80 ka and are inferred to contain corals that would date to highstands at ca. 140 and 125 ka. (4) Sea level remained below elevation of the shelf between ca. 77.8 and ca. 9.6 ka. ?? 2004 Geological Society of America.
Evidence for coral island formation during rising sea level in the central Pacific Ocean
NASA Astrophysics Data System (ADS)
Kench, Paul S.; Owen, Susan D.; Ford, Murray R.
2014-02-01
The timing and evolution of Jabat Island, Marshall Islands, was investigated using morphostratigraphic analysis and radiometric dating. Results show the first evidence of island building in the Pacific during latter stages of Holocene sea level rise. A three-phase model of development of Jabat is presented. Initially, rapid accumulation of coarse sediments on Jabat occurred 4800-4000 years B.P. across a reef flat higher than present level, as sea level continued to rise. During the highstand, island margins and particularly the western margin accreted vertically to 2.5-3.0 m above contemporary ridge elevations. This accumulation phase was dominated by sand-size sediments. Phase three involved deposition of gravel ridges on the northern reef, as sea level fell to present position. Jabat has remained geomorphically stable for the past 2000 years. Findings suggest reef platforms may accommodate the oldest reef islands in atoll systems, which may have profound implications for questions of prehistoric migration through Pacific archipelagos.
Multi-site evaluation of IKONOS data for classification of tropical coral reef environments
Andrefouet, S.; Kramer, Philip; Torres-Pulliza, D.; Joyce, K.E.; Hochberg, E.J.; Garza-Perez, R.; Mumby, P.J.; Riegl, Bernhard; Yamano, H.; White, W.H.; Zubia, M.; Brock, J.C.; Phinn, S.R.; Naseer, A.; Hatcher, B.G.; Muller-Karger, F. E.
2003-01-01
Ten IKONOS images of different coral reef sites distributed around the world were processed to assess the potential of 4-m resolution multispectral data for coral reef habitat mapping. Complexity of reef environments, established by field observation, ranged from 3 to 15 classes of benthic habitats containing various combinations of sediments, carbonate pavement, seagrass, algae, and corals in different geomorphologic zones (forereef, lagoon, patch reef, reef flats). Processing included corrections for sea surface roughness and bathymetry, unsupervised or supervised classification, and accuracy assessment based on ground-truth data. IKONOS classification results were compared with classified Landsat 7 imagery for simple to moderate complexity of reef habitats (5-11 classes). For both sensors, overall accuracies of the classifications show a general linear trend of decreasing accuracy with increasing habitat complexity. The IKONOS sensor performed better, with a 15-20% improvement in accuracy compared to Landsat. For IKONOS, overall accuracy was 77% for 4-5 classes, 71% for 7-8 classes, 65% in 9-11 classes, and 53% for more than 13 classes. The Landsat classification accuracy was systematically lower, with an average of 56% for 5-10 classes. Within this general trend, inter-site comparisons and specificities demonstrate the benefits of different approaches. Pre-segmentation of the different geomorphologic zones and depth correction provided different advantages in different environments. Our results help guide scientists and managers in applying IKONOS-class data for coral reef mapping applications. ?? 2003 Elsevier Inc. All rights reserved.
Micro-topography mediates interactions between corals, algae, and herbivorous fishes on coral reefs
NASA Astrophysics Data System (ADS)
Brandl, S. J.; Hoey, A. S.; Bellwood, D. R.
2014-06-01
Processes occurring during the early life stages of corals are important for the replenishment of coral assemblages and the resilience of coral reefs. However, the factors influencing early life stages of corals are not well understood, and the role of micro-topographic complexity for habitat associations of juvenile corals is largely unexplored. This study investigated the microhabitat distribution patterns of early life stages of corals and a potential macroalgal competitor ( Turbinaria ornata) across two reef zones (reef crest and outer reef flat) on Lizard Island, Great Barrier Reef. In both reef zones, both corals and T. ornata were significantly more abundant in concealed microhabitats than in semi-concealed or open microhabitats (GLMM: P < 0.001). The prevalence of juvenile corals and T. ornata within concealed environments suggests that they might be effective refuges from grazing by herbivorous fishes. The density of juvenile corals was positively related, and density of T. ornata negatively related to the abundance of two groups of herbivorous fishes, pairing rabbitfishes, and surgeonfishes in the genus Zebrasoma (BEST ENV-BIO: r s = 0.72, P < 0.01), which feed in concealed microhabitats. This correlative evidence suggests that crevices may be important for early life stages of both coral and macroalgae, and that a specific suite of crevice-feeding fishes may influence benthic community dynamics in these microhabitats.
NASA Astrophysics Data System (ADS)
Lorenzo-Trueba, J.
2016-02-01
Coral reef islands are accumulations of carbonate sediment deposited subaerially atop coral reef platforms. We hypothesize that the long-term evolution of reef islands is primarily controlled by the interplay between sea-level rise, sediment supply, and sediment overwash. Reef islands are supplied with sediment from offshore, in the form of reworked coral skeletons that originate at the reef edge and are carried onto the reef platform by waves, as well as in situ production on the reef flat itself. However, the primary mechanism that allows reef islands to keep pace with sea level is storm overwash, which enables the vertical transport of sediment from the periphery to the top of the island. Given the current lack of understanding on how production and overwash processes interact, we have constructed a morphodynamic model to elucidate and quantify how reef islands may respond to sea-level rise and changes in sediment production. Model results demonstrate that even if reef islands can remain subaerial over the coming century, this will require significant deposition of sediment atop the island and, in many cases, the island is expected to roll considerably over itself; both of these morphologic changes will negatively affect homes and infrastructure atop these islands. The model also suggests that as reef islands approach the lagoon edge of the reef platform, shoreline erosion and island drowning can be enhanced as sediment overwashes into the lagoon. Interestingly, this situation can only be avoided if either a high offshore sediment supply bulwarks the island in place or the system undergoes similar rates of overwash sedimentation from both the ocean and the lagoon sides. The model also allows us to explore the potential for increased overwash with increased storminess, increases in sediment supply due to bleaching or disturbance, or reduction of sediment supply as a result of reduced calcification rates due to ocean acidification.
Reconnaissance geologic map of the Muwassam Quadrangle, sheet 16/42 D, Kingdom of Saudi Arabia
Blank, H. Richard
1985-01-01
All of the mapped area is occupied by coastal plain bordering the Red Sea. The flat coastal plain is covered by Quaternary surficial deposits overlying a sequence of Tertiary rocks as much as 5 km thick. The coastal plain is separated from the Red Sea by zone of supratidal sabkha deposits, offshore bars, islands, tidal md flats, and shallow lagoons. The sea is shallow, less than 200 m deep, and forms part of the shelf marginal to the main axial trough of the Red Sea.
The structure and composition of Holocene coral reefs in the Middle Florida Keys
Toth, Lauren T.; Stathakopoulos, Anastasios; Kuffner, Ilsa B.
2016-07-21
The Florida Keys reef tract (FKRT) is the largest coral-reef ecosystem in the continental United States. The modern FKRT extends for 362 kilometers along the coast of South Florida from Dry Tortugas National Park in the southwest, through the Florida Keys National Marine Sanctuary (FKNMS), to Fowey Rocks reef in Biscayne National Park in the northeast. Most reefs along the FKRT are sheltered by the exposed islands of the Florida Keys; however, large channels are located between the islands of the Middle Keys. These openings allow for tidal transport of water from Florida Bay onto reefs in the area. The characteristics of the water masses coming from Florida Bay, which can experience broad swings in temperature, salinity, nutrients, and turbidity over short periods of time, are generally unfavorable or “inimical” to coral growth and reef development.Although reef habitats are ubiquitous throughout most of the Upper and Lower Keys, relatively few modern reefs exist in the Middle Keys most likely because of the impacts of inimical waters from Florida Bay. The reefs that are present in the Middle Keys generally are poorly developed compared with reefs elsewhere in the region. For example, Acropora palmata has been the dominant coral on shallow-water reefs in the Caribbean over the last 1.5 million years until populations of the coral declined throughout the region in recent decades. Although A. palmata was historically abundant in the Florida Keys, it was conspicuously absent from reefs in the Middle Keys. Instead, contemporary reefs in the Middle Keys have been dominated by occasional massive (that is, boulder or head) corals and, more often, small, non-reef-building corals.Holocene reef cores have been collected from many locations along the FKRT; however, despite the potential importance of the history of reefs in the Middle Florida Keys to our understanding of the environmental controls on reef development throughout the FKRT, there are currently no published records of the Holocene history of reefs in the region. The objectives of the present study were to (1) provide general descriptions of unpublished core records from Alligator Reef and (2) collect and describe new Holocene reef cores from two additional locations in the Middle Keys: Sombrero and Tennessee Reefs.
Estimating Sustainable Live-Coral Harvest at Kamiali Wildlife Management Area, Papua New Guinea.
Longenecker, Ken; Bolick, Holly; Langston, Ross
2015-01-01
Live coral is harvested throughout the Indo-West Pacific to make lime, used in the consumption of the world's fourth-most consumed drug, betel nut. Coral harvesting is an environmental concern; however, because lime-making is one of the few sources of income in some areas of Papua New Guinea (PNG), the practice is unlikely to stop. To better manage coral harvest, we used standard fishery-yield methods to generate sustainable-harvest guidelines for corymbose Acropora species found on the reef flat and crest at Lababia, PNG. We constructed a yield curve (weight-specific net annual-dry-weight production) by: 1) describing the allometric relationship between colony size and dry weight, and using that relationship to estimate the dry weight of Acropora colonies in situ; 2) estimating annual growth of Acropora colonies by estimating in situ, and describing the relationship between, colony dry weight at the beginning and end of one year; and 3) conducting belt-transect surveys to describe weight-frequencies and ultimately to predict annual weight change per square meter for each weight class. Reef habitat covers a total 2,467,550 m2 at Lababia and produces an estimated 248,397 kg/y (dry weight) of corymbose Acropora, of which 203,897 kg is produced on the reef flat/crest. We conservatively estimate that 30,706.6 kg of whole, dry, corymbose, Acropora can be sustainably harvested from the reef flat/crest habitat each year provided each culled colony weighs at least 1805 g when dry (or is at least 46 cm along its major axis). Artisanal lime-makers convert 24.8% of whole-colony weight into marketable lime, thus we estimate 7615.2 g of lime can be sustainably produced annually from corymbose Acropora. This value incorporates several safety margins, and should lead to proper management of live coral harvest. Importantly, the guideline recognizes village rights to exploit its marine resources, is consistent with village needs for income, and balances an equally strong village desire to conserve its marine resources for future generations.
Federal Register 2010, 2011, 2012, 2013, 2014
2011-04-21
... shallow-water grouper species (SWG), and establish a 2-month recreational season for gag. This rule would..., respectively. Revenue from deep- water grouper (DWG) landings decreased only slightly, from approximately $36...
Kuffner, I.B.
2005-01-01
As we seek to understand the physiological mechanisms of coral bleaching, it is important to understand the background temporal variation in photosynthetic pigments and photoprotective compounds that corals exhibit. In this study, reef flat populations of two hermatypic coral species, Montipora capitata (Dana, 1846) and Porites compressa Dana, 1846, were sampled monthly in Kane'ohe Bay, Hawai'i, from January 1998 to March 1999. Surface ultraviolet radiation (UVR) was measured continually during this time period at the same location. High-performance liquid chromatography (HPLC) analysis of photosynthetic pigments and mycosporine-like amino acids (MAAs) revealed temporal changes in concentrations and proportions of these compounds in tissues of both species of coral. Chlorophyll a (chl a), chlorophyll c2 (chl c2), peridinin, and diadinoxanthin concentrations changed on a skeletal weight (M. capitata) or surface area (P. compressa) basis, significantly correlating with seasonal changes in solar input (number of days from the winter solstice). In P. compressa, diadinoxanthin increased in proportion to the total pigment pool during summer months, suggesting an up-regulation of a xanthophyll cycle. In M. capitata, the ratio of chl a: chl c2 decreased during winter months, suggesting photoacclimation to lower light levels. It is surprising that there was not a clear seasonal pattern in total MAA concentration for either species, with the exception of shinorine in P. compressa. The relative stability of MAA concentrations over the course of the year despite a pronounced seasonal trend in UVR suggests either that MAAs are not performing a photoprotective role in these species or that concentrations are kept at a threshold level in the presence of a dynamic light environment. ?? 2005 by University of Hawai'i Press All rights reserved.
Preliminary geochemical results of corals from the Puerto Morelos Reef, Southeastern Mexico
NASA Astrophysics Data System (ADS)
Marquez, N.; Kasper, J.
2012-04-01
A microprobe (MB), major, trace and rare earth elements (REE) analyses were carried out in three coral species Acropora palmata, Acropora cervicornis and Gorgonia ventalina at Puerto Morelos, Reef, Southeastern Mexico. This was done to assess the degree in which the corals developed under the different chemical-physical natural and artificial conditions. The corals were cut at the top and middle and based upon the observations by using the MB analysis, results showed the highest concentrations of Ag, Cu, Cr, Ni, S, Sr, Zn y Zr in Gorgonia Ventalina suggesting an impact coming from the industrial discharges and/or rusting of boats in the area. The results of X-ray fluorescence analysis for major and trace elements showed that the Fe , Sr and Zr increase their content in the skeletons of Acropora palmata y Gorgonia ventalina also asociated with the presence of human activity since the area is composed mainly by carbonate source sediments. The rare earth elements (REE) analysis showed that the negative anomaly of Ce suggests a well oxygenated, highly oxidative modern shallow waters, and high nutrients related to suspended matter for Acropora Palmata, Acropora cervicornis y Gorgonia ventalina, The Positive Eu anomaly in the corals are due to the development of the reef linked to the concentration of waters enriched in La. The Nd/Yb ratio indicates a shallow water development for the corals. This is also supported by the Ce/Ce* vs. Pr/Pr* ratios that indicate shallow marine waters in the development of the three corals studied (Ce*= 0.5La+0.5Pr and Pr*= 0.5Ce+0.5Nd). Enrichment of heavy rare earth elements (Gd-Lu) in the corals may be associated with high pH values and CO, OH- ions in the sea water.
Crane, Nicole L; Nelson, Peter; Abelson, Avigdor; Precoda, Kristin; Rulmal, John; Bernardi, Giacomo; Paddack, Michelle
2017-01-01
The dynamic relationship between reefs and the people who utilize them at a subsistence level is poorly understood. This paper characterizes atoll-scale patterns in shallow coral reef habitat and fish community structure, and correlates these with environmental characteristics and anthropogenic factors, critical to conservation efforts for the reefs and the people who depend on them. Hierarchical clustering analyses by site for benthic composition and fish community resulted in the same 3 major clusters: cluster 1-oceanic (close proximity to deep water) and uninhabited (low human impact); cluster 2-oceanic and inhabited (high human impact); and cluster 3-lagoonal (facing the inside of the lagoon) and inhabited (highest human impact). Distance from village, reef exposure to deep water and human population size had the greatest effect in predicting the fish and benthic community structure. Our study demonstrates a strong association between benthic and fish community structure and human use across the Ulithi Atoll (Yap State, Federated States of Micronesia) and confirms a pattern observed by local people that an 'opportunistic' scleractinian coral (Montipora sp.) is associated with more highly impacted reefs. Our findings suggest that small human populations (subsistence fishing) can nevertheless have considerable ecological impacts on reefs due, in part, to changes in fishing practices rather than overfishing per se, as well as larger global trends. Findings from this work can assist in building local capacity to manage reef resources across an atoll-wide scale, and illustrates the importance of anthropogenic impact even in small communities.
Hydrodynamic response of a fringing coral reef to a rise in mean sea level
NASA Astrophysics Data System (ADS)
Taebi, Soheila; Pattiaratchi, Charitha
2014-07-01
Ningaloo Reef, located along the northwest coast of Australia, is one of the longest fringing coral reefs in the world extending ~300 km. Similar to other fringing reefs, it consists of a barrier reef ~1-6 km offshore with occasional gaps, backed by a shallow lagoon. Wave breaking on the reef generates radiation stress gradients that produces wave setup across the reef and lagoon and mean currents across the reef. A section of Ningaloo Reef at Sandy Bay was chosen as the focus of an intense 6-week field experiment and numerical simulation using the wave model SWAN coupled to the three-dimensional circulation model ROMS. The physics of nearshore processes such as wave breaking, wave setup and mean flow across the reef was investigated in detail by examining the various momentum balances established in the system. The magnitude of the terms and the distance of their peaks from reef edge in the momentum balance were sensitive to the changes in mean sea level, e.g. the wave forces decreased as the mean water depth increased (and hence, wave breaking dissipation was reduced). This led to an increase in the wave power at the shoreline, a slight shift of the surf zone to the lee side of the reef and changes in the intensity of the circulation. The predicted hydrodynamic fields were input into a Lagrangian particle tracking model to estimate the transport time scale of the reef-lagoon system. Flushing time of the lagoon with the open ocean was computed using two definitions in renewal of semi-enclosed water basins and revealed the sensitivity of such a transport time scale to methods. An increase in the lagoon exchange rate at smaller mean sea-level rise and the decrease at higher mean sea-level rise was predicted through flushing time computed using both methods.
NASA Astrophysics Data System (ADS)
Eggertsen, L.; Ferreira, C. E. L.; Fontoura, L.; Kautsky, N.; Gullström, M.; Berkström, C.
2017-09-01
Seascape connectivity is regarded essential for healthy reef fish communities in tropical shallow systems. A number of reef fish species use separate adult and nursery habitats, and hence contribute to nutrient and energy transfer between habitats. Seagrass beds and mangroves often constitute important nursery habitats, with high structural complexity and protection from predation. Here, we investigated if reef fish assemblages in the tropical south-western Atlantic demonstrate ontogenetic habitat connectivity and identify possible nurseries on three reef systems along the eastern Brazilian coast. Fish were surveyed in fore reef, back reef, Halodule wrightii seagrass beds and seaweed beds. Seagrass beds contained lower abundances and species richness of fish than expected, while Sargassum-dominated seaweed beds contained significantly more juveniles than all other habitats (average juvenile fish densities: 32.6 per 40 m2 in Sargassum beds, 11.2 per 40 m2 in back reef, 10.1 per 40 m2 in fore reef, and 5.04 per 40 m2 in seagrass beds), including several species that are found in the reef habitats as adults. Species that in other regions worldwide (e.g. the Caribbean) utilise seagrass beds as nursery habitats were here instead observed in Sargassum beds or back reef habitats. Coral cover was not correlated to adult fish distribution patterns; instead, type of turf was an important variable. Connectivity, and thus pathways of nutrient transfer, seems to function differently in east Brazil compared to many tropical regions. Sargassum-dominated beds might be more important as nurseries for a larger number of fish species than seagrass beds. Due to the low abundance of structurally complex seagrass beds we suggest that seaweed beds might influence adult reef fish abundances, being essential for several keystone species of reef fish in the tropical south-western Atlantic.
NASA Astrophysics Data System (ADS)
Goodbody-Gringley, Gretchen; Wong, Kevin H.; Becker, Danielle M.; Glennon, Keegan; de Putron, Samantha J.
2018-06-01
Early life history traits of brooding corals are often affected by the environmental conditions experienced by parental colonies. Such parental effects can impact offspring survival, which influences the overall success of a population as well as resilience to environmental challenges. This study examines the reproductive ecology and early life history traits of the brooding coral Porites astreoides across a depth gradient in Bermuda. Fecundity, larval size, larval Symbiodinium density, and settlement success, as well as post-metamorphic juvenile survival, growth, and Symbiodinium density were compared across three reef sites representing an inshore patch reef (2-5 m), an offshore rim reef (8-10 m), and an upper-mesophotic reef (30-33 m). Although fecundity did not differ across sites, larvae produced by colonies on the patch reef site were smaller, had lower Symbiodinium densities, and had lower rates of settlement and juvenile survival compared to larvae from colonies on the rim and upper-mesophotic reef sites. Larvae produced by colonies from the rim and upper-mesophotic sites did not differ in size or Symbiodinium densities; however, rates of settlement, growth, and survival were higher for larvae from the upper-mesophotic site compared to those from the rim reef site. These results indicate that offspring quality and success vary among sites with differing environmental conditions and may imply higher recruitment potential and resilience for upper-mesophotic corals.
Tropical coral reef habitat in a geoengineered, high-CO2 world
NASA Astrophysics Data System (ADS)
Couce, E.; Irvine, P. J.; Gregorie, L. J.; Ridgwell, A.; Hendy, E. J.
2013-05-01
Continued anthropogenic CO2 emissions are expected to impact tropical coral reefs by further raising sea surface temperatures (SST) and intensifying ocean acidification (OA). Although geoengineering by means of solar radiation management (SRM) may mitigate temperature increases, OA will persist, raising important questions regarding the impact of different stressor combinations. We apply statistical Bioclimatic Envelope Models to project changes in shallow water tropical coral reef habitat as a single niche (without resolving biodiversity or community composition) under various representative concentration pathway and SRM scenarios, until 2070. We predict substantial reductions in habitat suitability centered on the Indo-Pacific Warm Pool under net anthropogenic radiative forcing of ≥3.0 W/m2. The near-term dominant risk to coral reefs is increasing SSTs; below 3 W/m2 reasonably favorable conditions are maintained, even when achieved by SRM with persisting OA. "Optimal" mitigation occurs at 1.5 W/m2 because tropical SSTs overcool in a fully geoengineered (i.e., preindustrial global mean temperature) world.
Carbon isotopic evidence for photosynthesis in Early Cambrian oceans
NASA Astrophysics Data System (ADS)
Surge, Donna M.; Savarese, Michael; Dodd, J. Robert; Lohmann, Kyger C.
1997-06-01
Were the first metazoan reefs ecologically similar to modern tropical reefs, enabling them to persist under oligotrophic conditions? We tested the hypothesis of ecological similarity by employing a geochemical approach. Petrography, cathodoluminescence, trace elements, and stable isotope analyses of primary precipitates of the Lower Cambrian Ajax Limestone, South Australia, indicate preservation of original C isotopic composition. All primary carbonate components exhibit C isotopic values similar to the composition of inorganically precipitated fibrous marine cements, suggesting that archaeocyaths and the calcimicrobe Epiphyton precipitated skeletal carbonate in equilibrium with ambient seawater in the absence of vital effects. Such data do not support the contention that archaeocyaths possessed photosymbionts. However, a +0.55‰ shift in δ13C occurs in reefs developed under shallower-water conditions relative to deeper reefs. This shift suggests the stratification of primary production in Early Cambrian oceans. The pattern is similar to that seen in the modern ocean, whereby significant photosynthesis modulates the C isotopic composition of the photic zone.
Petrescu, Iorgu; Chatterjee, Tapas; Schizas, Nikolaos V
2016-11-25
The cumacean fauna of the Caribbean mesophotic reefs is remarkably rich but understudied. Herein, we present the description of 22 new species of the family Nannastacidae, including one from shallow reefs, 20 of them belonging to Cumella (Cumella) and two new species belonging to the subgenus Cumewingia. We have also included range extensions and new locations for ten previously known species of Cumella, two species in the genus Vaunthompsonia (family Bodotriidae) and one species in the genus Cubanocuma (family Nannastacidae). Taxonomic keys are provided for the western tropical Atlantic species of Cumella (Cumella) and Cumella (Cumewingia), separately for the adult males and females. Large sampling efforts and careful systematic studies, even in relatively well-characterized regions such as the Caribbean, can yield a surprising number of new discoveries. Our current findings emphasize our previous assertion that the mesophotic reefs are treasure troves of undiscovered benthic fauna and might be qualified as biodiversity hotspots.
Temporal changes in hamlet communities (Hypoplectrus spp., Serranidae) over 17 years.
Hench, K; Mcmillan, W O; Betancur-R, R; Puebla, O
2017-11-01
Transect surveys of hamlet communities (Hypoplectrus spp., Serranidae) covering 14 000 m 2 across 16 reefs off La Parguera, Puerto Rico, are presented and compared with a previous survey conducted in the year 2000. The hamlet community has noticeably changed over 17 years, with a > 30% increase in relative abundance of the yellowtail hamlet Hypoplectrus chlorurus on the inner reefs at the expense of the other hamlet species. The data also suggest that the density of H. chlorurus has declined and that its distribution has shifted towards shallower depths. Considering that H. chlorurus has been previously identified as one of the few fish showing a positive association with seawater turbidity on the inner reefs of La Parguera and that sedimentation of terrestrial origin has increased over recent decades on these reefs, it is proposed that turbidity may constitute an important but so far overlooked ecological driver of hamlet communities. © 2017 The Fisheries Society of the British Isles.
Effects of solar ultraviolet radiation on coral reef organisms.
Banaszak, Anastazia T; Lesser, Michael P
2009-09-01
Organisms living in shallow-water tropical coral reef environments are exposed to high UVR irradiances due to the low solar zenith angles (the angle of the sun from the vertical), the natural thinness of the ozone layer over tropical latitudes, and the high transparency of the water column. The hypothesis that solar ultraviolet radiation (UVR, 290-400 nm) is an important factor that affects the biology and ecology of coral reef organisms dates only to about 1980. It has been previously suggested that increased levels of biologically effective ultraviolet B radiation (UVB, 290-320 nm), which is the waveband primarily affected by ozone depletion, would have relatively small effects on corals and coral reefs and that these effects might be observed as changes in the minimum depths of occurrence of important reef taxa such as corals. This conclusion was based on predictions of increases in UVR as well as its attenuation with depth using the available data on UVR irradiances, ozone levels, and optical properties of the water overlying coral reefs. Here, we review the experimental evidence demonstrating the direct and indirect effects of UVR, both UVB and ultraviolet A (UVA, 320-400 nm) on corals and other reef associated biota, with emphasis on those studies conducted since 1996. Additionally, we re-examine the predictions made in 1996 for the increase in UVB on reefs with currently available data, assess whether those predictions were reasonable, and look at what changes might occur on coral reefs in the future as the multiple effects (i.e. increased temperature, hypercapnia, and ocean acidification) of global climate change continue.
Origin of Silurian reefs in the Alexander Terrane of southeastern Alaska
DOE Office of Scientific and Technical Information (OSTI.GOV)
Soja, C.M.
1991-04-01
Lower to Upper Silurian (upper Llandovery-Ludlow) limestones belonging to the Heceta Formation record several episodes of reef growth in the Alexander terrane of southeastern Alaska. As the oldest carbonates of wide-spread distribution in the region, the Heceta limestones represent the earliest development of a shallow-marine platform within the Alexander arc and the oldest foundation for reef evolution. These deposits provide important insights into the dynamic processes, styles, and bathymetry associated with reef growth in tectonically active oceanic islands. Massive stromatoporoids, corals, and red algae are preserved in fragmental rudstones and represent a fringing reef that formed at the seaward edgemore » of the incipient marine shelf. Accessory constituents in this reef include crinoids and the cyanobacterium Girvanella. Small biostromes were constructed by ramose corals and stromatoporoids on oncolitic substrates in backreef or lagoonal environments. These buildups were associated with low-diversity assemblages of brachiopods and with gastropods, amphiporids, calcareous algae and cyanobacteria. Microbial boundstones reflect the widespread encrustation of cyanobacteria and calcified microproblematica on shelly debris as stromatolitic mats that resulted in the development of a stromatactoid-bearing mud mound and a barrier reef complex. Epiphytaceans, other microbes, and aphrosalpingid sponges were the primary frame-builders of the barrier reefs. These buildups attained significant relief at the shelf margin and shed detritus as slumped blocks and debris flows into deep-water sites along the slope. The similarity of these stromatolitic-aphrosalpingid reefs to those from Siluro-Devonian strata of autochthonous southwestern Alaska suggests paleobiogeographic ties of the Alexander terrane to cratonal North America during the Silurian.« less
Volcanic ash supports a diverse bacterial community in a marine mesocosm
Verena Witt,; Paul M Ayris,; Damby, David; Corrado Cimarelli,; Ulrich Kueppers,; Donald B Dingwell,; Gert Wörheide,
2017-01-01
Shallow-water coral reef ecosystems, particularly those already impaired by anthropogenic pressures, may be highly sensitive to disturbances from natural catastrophic events, such as volcanic eruptions. Explosive volcanic eruptions expel large quantities of silicate ash particles into the atmosphere, which can disperse across millions of square kilometres and deposit into coral reef ecosystems. Following heavy ash deposition, mass mortality of reef biota is expected, but little is known about the recovery of post-burial reef ecosystems. Reef regeneration depends partly upon the capacity of the ash deposit to be colonised by waterborne bacterial communities and may be influenced to an unknown extent by the physiochemical properties of the ash substrate itself. To determine the potential for volcanic ash to support pioneer bacterial colonisation, we exposed five well-characterised volcanic and coral reef substrates to a marine aquarium under low light conditions for 3 months: volcanic ash, synthetic volcanic glass, carbonate reef sand, calcite sand and quartz sand. Multivariate statistical analysis of Automated Ribosomal Intergenic Spacer Analysis (ARISA) fingerprinting data demonstrates clear segregation of volcanic substrates from the quartz and coral reef substrates over 3 months of bacterial colonisation. Overall bacterial diversity showed shared and substrate-specific bacterial communities; however, the volcanic ash substrate supported the most diverse bacterial community. These data suggest a significant influence of substrate properties (composition, granulometry and colour) on bacterial settlement. Our findings provide first insights into physicochemical controls on pioneer bacterial colonisation of volcanic ash and highlight the potential for volcanic ash deposits to support bacterial diversity in the aftermath of reef burial, on timescales that could permit cascading effects on larval settlement.
NASA Astrophysics Data System (ADS)
Bentley, Samuel J.; Swales, Andrew; Pyenson, Benjamin; Dawe, Justin
2014-03-01
A study of muddy tidal-flat sedimentation and bioturbation was undertaken in the Waitetuna Arm of Raglan Harbor, New Zealand, to evaluate the physical and biological processes that control cycling of sediment between the intertidal seabed and sediment-water interface, and also the formation of tidal flat sedimentary fabric and fine-scale stratigraphy. Cores were collected along an intertidal transect, and analyzed for sedimentary fabric, 210Pb and 7Be radiochemical distributions, and grain size. At the same locations, a new approach for time-series core-X-radiography study was undertaken (spanning 191 days), using magnetite-rich sand as a tracer for sedimentation and bioturbation processes in shallow tidal flat sediments. Sedimentary fabric consists of a shallow stratified layer overlying a deeper zone of intensely bioturbated shelly mud. Bioadvection mixes the deeper zone and contributes fine sediment to the surface stratified layer, via biodeposition. Physical resuspension and deposition of surface muds by wave and tidal flow are also likely contributors to formation of the surficial stratified layer, but physical stratification is not observed below this depth. The deliberate tracer study allowed calculation of bioadvection rates that control strata formation, and can be used to model diagenetic processes. Results suggest that the upper ˜15 cm of seabed can be fully mixed over timescales <1.75 y. Such mixing will erase pre-existing sedimentary fabric and transport buried sediment and chemical compounds back to the tidal-flat surface. Shallow biodiffusion also exists, but produces much slower and shallower mass transport. Best fits for 210Pb profiles using a diagenetic bioadvection/sedimentation model and independently measured tiered bioadvection rates suggest that sediment accumulation rates (SARs) on the tidal flat are ˜0.25 cm/y, near the low end of contemporary New Zealand muddy intertidal SARs. Frequent deposition and erosion of the surface layer demonstrates that long-term sediment accumulation captures only a small fraction of sediment deposited at any one time. Model results also suggest that our magnetite tracer method may slightly underestimate short-term shallow mixing rates (demonstrated by 7Be profiles), and slightly overestimate longer-term, deeper bioturbation rates (demonstrated by 210Pb profiles).
Kimoto, Hideshi; Nozaki, Ken; Kudo, Setsuko; Kato, Ken; Negishi, Akira; Kayanne, Hajime
2002-03-01
A fully automated, continuous-flow-through type analyzer was developed to observe rapid changes in the concentration of total inorganic carbon (CT) in coastal zones. Seawater and an H3PO4 solution were fed into the analyzer's mixing coil by two high-precision valveless piston pumps. The CO2 was stripped from the seawater and moved into a carrier gas, using a newly developed continuous-flow-through CO2 extractor. A mass flow controller was used to assure a precise flow rate of the carrier gas. The CO2 concentration was then determined with a nondispersive infrared gas analyzer. This analyzer achieved a time-resolution of as good as 1 min. In field experiments on a shallow reef flat of Shiraho (Ishigaki Island, Southwest Japan), the analyzer detected short-term, yet extreme, variations in CT which manual sampling missed. Analytical values obtained by the analyzer on the boat were compared with those determined by potentiometric titration with a closed cell in a laboratory: CT(flow-through) = 0.980 x CT(titration) + 38.8 with r2 = 0.995 (n = 34; September 1998).
Abnormally high phytoplankton biomass near the lagoon mouth in the Huangyan Atoll, South China Sea.
Ke, Zhixin; Liu, Huajian; Wang, Junxing; Liu, Jiaxing; Tan, Yehui
2016-11-15
Nutrient concentration and phytoplankton biomass were investigated in Huangyan Atoll in May 2015. The concentrations of nutrients were very low, and dissolved inorganic nitrogen was composed mainly of ammonia. Nitrogen likely was the primary limiting factor for phytoplankton growth. The spatial variation of phytoplankton biomass was significant among the lagoon, reef flats, and outer reef slopes. Extremely high chlorophyll a concentration and micro-phytoplankton abundance were found in the region near the lagoon mouth. This high phytoplankton biomass might be due to nutrient input from fishing vessels and phytoplankton aggregation driven by the southwestern wind. Our results indicate that phytoplankton biomass could be a reliable indicator of habitat differences in this coral reef ecosystem, and micro-phytoplankton seems to be more sensitive to nutrient input than pico-phytoplankton. Copyright © 2016. Published by Elsevier Ltd.
Monroe, Alison A; Ziegler, Maren; Roik, Anna; Röthig, Till; Hardenstine, Royale S; Emms, Madeleine A; Jensen, Thor; Voolstra, Christian R; Berumen, Michael L
2018-01-01
Coral bleaching continues to be one of the most devastating and immediate impacts of climate change on coral reef ecosystems worldwide. In 2015, a major bleaching event was declared as the "3rd global coral bleaching event" by the United States National Oceanic and Atmospheric Administration, impacting a large number of reefs in every major ocean. The Red Sea was no exception, and we present herein in situ observations of the status of coral reefs in the central Saudi Arabian Red Sea from September 2015, following extended periods of high temperatures reaching upwards of 32.5°C in our study area. We examined eleven reefs using line-intercept transects at three different depths, including all reefs that were surveyed during a previous bleaching event in 2010. Bleaching was most prevalent on inshore reefs (55.6% ± 14.6% of live coral cover exhibited bleaching) and on shallower transects (41% ± 10.2% of live corals surveyed at 5m depth) within reefs. Similar taxonomic groups (e.g., Agariciidae) were affected in 2015 and in 2010. Most interestingly, Acropora and Porites had similar bleaching rates (~30% each) and similar relative coral cover (~7% each) across all reefs in 2015. Coral genera with the highest levels of bleaching (>60%) were also among the rarest (<1% of coral cover) in 2015. While this bodes well for the relative retention of coral cover, it may ultimately lead to decreased species richness, often considered an important component of a healthy coral reef. The resultant long-term changes in these coral reef communities remain to be seen.
Additive diversity partitioning of fish in a Caribbean coral reef undergoing shift transition.
Acosta-González, Gilberto; Rodríguez-Zaragoza, Fabián A; Hernández-Landa, Roberto C; Arias-González, Jesús E
2013-01-01
Shift transitions in dominance on coral reefs from hard coral cover to fleshy macroalgae are having negative effects on Caribbean coral reef communities. Data on spatiotemporal changes in biodiversity during these modifications are important for decision support for coral reef biodiversity protection. The main objective of this study is to detect the spatiotemporal patterns of coral reef fish diversity during this transition using additive diversity-partitioning analysis. We examined α, β and γ fish diversity from 2000 to 2010, during which time a shift transition occurred at Mahahual Reef, located in Quintana Roo, Mexico. Data on coral reef fish and benthic communities were obtained from 12 transects per geomorphological unit (GU) in two GUs (reef slope and terrace) over six years (2000, 2005, 2006, 2007, 2008, 2010). Spatial analysis within and between the GUs indicated that the γ-diversity was primarily related to higher β-diversity. Throughout the six study years, there were losses of α, β and γ-diversity associated spatially with the shallow (reef slope) and deeper (reef terrace) GUs and temporally with the transition in cover from mound corals to fleshy macroalgae and boulder corals. Despite a drastic reduction in the number of species over time, β-diversity continues to be the highest component of γ-diversity. The shift transition had a negative effect on α, β and γ-diversity, primarily by impacting rare species, leading a group of small and less vulnerable fish species to become common and an important group of rare species to become locally extinct. The maintenance of fish heterogeneity (β-diversity) over time may imply the abetment of vulnerability in the face of local and global changes.
Ziegler, Maren; Roik, Anna; Röthig, Till; Hardenstine, Royale S.; Emms, Madeleine A.; Jensen, Thor; Voolstra, Christian R.; Berumen, Michael L.
2018-01-01
Coral bleaching continues to be one of the most devastating and immediate impacts of climate change on coral reef ecosystems worldwide. In 2015, a major bleaching event was declared as the “3rd global coral bleaching event” by the United States National Oceanic and Atmospheric Administration, impacting a large number of reefs in every major ocean. The Red Sea was no exception, and we present herein in situ observations of the status of coral reefs in the central Saudi Arabian Red Sea from September 2015, following extended periods of high temperatures reaching upwards of 32.5°C in our study area. We examined eleven reefs using line-intercept transects at three different depths, including all reefs that were surveyed during a previous bleaching event in 2010. Bleaching was most prevalent on inshore reefs (55.6% ± 14.6% of live coral cover exhibited bleaching) and on shallower transects (41% ± 10.2% of live corals surveyed at 5m depth) within reefs. Similar taxonomic groups (e.g., Agariciidae) were affected in 2015 and in 2010. Most interestingly, Acropora and Porites had similar bleaching rates (~30% each) and similar relative coral cover (~7% each) across all reefs in 2015. Coral genera with the highest levels of bleaching (>60%) were also among the rarest (<1% of coral cover) in 2015. While this bodes well for the relative retention of coral cover, it may ultimately lead to decreased species richness, often considered an important component of a healthy coral reef. The resultant long-term changes in these coral reef communities remain to be seen. PMID:29672556
Contrasting Fish Behavior in Artificial Seascapes with Implications for Resources Conservation
Koeck, Barbara; Alós, Josep; Caro, Anthony; Neveu, Reda; Crec'hriou, Romain; Saragoni, Gilles; Lenfant, Philippe
2013-01-01
Artificial reefs are used by many fisheries managers as a tool to mitigate the impact of fisheries on coastal fish communities by providing new habitat for many exploited fish species. However, the comparison between the behavior of wild fish inhabiting either natural or artificial habitats has received less attention. Thus the spatio-temporal patterns of fish that establish their home range in one habitat or the other and their consequences of intra-population differentiation on life-history remain largely unexplored. We hypothesize that individuals with a preferred habitat (i.e. natural vs. artificial) can behave differently in terms of habitat use, with important consequences on population dynamics (e.g. life-history, mortality, and reproductive success). Therefore, using biotelemetry, 98 white seabream (Diplodus sargus) inhabiting either artificial or natural habitats were tagged and their behavior was monitored for up to eight months. Most white seabreams were highly resident either on natural or artificial reefs, with a preference for the shallow artificial reef subsets. Connectivity between artificial and natural reefs was limited for resident individuals due to great inter-habitat distances. The temporal behavioral patterns of white seabreams differed between artificial and natural reefs. Artificial-reef resident fish had a predominantly nocturnal diel pattern, whereas natural-reef resident fish showed a diurnal diel pattern. Differences in diel behavioral patterns of white seabream inhabiting artificial and natural reefs could be the expression of realized individual specialization resulting from differences in habitat configuration and resource availability between these two habitats. Artificial reefs have the potential to modify not only seascape connectivity but also the individual behavioral patterns of fishes. Future management plans of coastal areas and fisheries resources, including artificial reef implementation, should therefore consider the potential effect of habitat modification on fish behavior, which could have key implications on fish dynamics. PMID:23935978
Contrasting fish behavior in artificial seascapes with implications for resources conservation.
Koeck, Barbara; Alós, Josep; Caro, Anthony; Neveu, Reda; Crec'hriou, Romain; Saragoni, Gilles; Lenfant, Philippe
2013-01-01
Artificial reefs are used by many fisheries managers as a tool to mitigate the impact of fisheries on coastal fish communities by providing new habitat for many exploited fish species. However, the comparison between the behavior of wild fish inhabiting either natural or artificial habitats has received less attention. Thus the spatio-temporal patterns of fish that establish their home range in one habitat or the other and their consequences of intra-population differentiation on life-history remain largely unexplored. We hypothesize that individuals with a preferred habitat (i.e. natural vs. artificial) can behave differently in terms of habitat use, with important consequences on population dynamics (e.g. life-history, mortality, and reproductive success). Therefore, using biotelemetry, 98 white seabream (Diplodus sargus) inhabiting either artificial or natural habitats were tagged and their behavior was monitored for up to eight months. Most white seabreams were highly resident either on natural or artificial reefs, with a preference for the shallow artificial reef subsets. Connectivity between artificial and natural reefs was limited for resident individuals due to great inter-habitat distances. The temporal behavioral patterns of white seabreams differed between artificial and natural reefs. Artificial-reef resident fish had a predominantly nocturnal diel pattern, whereas natural-reef resident fish showed a diurnal diel pattern. Differences in diel behavioral patterns of white seabream inhabiting artificial and natural reefs could be the expression of realized individual specialization resulting from differences in habitat configuration and resource availability between these two habitats. Artificial reefs have the potential to modify not only seascape connectivity but also the individual behavioral patterns of fishes. Future management plans of coastal areas and fisheries resources, including artificial reef implementation, should therefore consider the potential effect of habitat modification on fish behavior, which could have key implications on fish dynamics.
Sangil, Carlos; Martín-García, Laura; Clemente, Sabrina
2013-11-15
In this paper we develop a tool to assess the impact of fishing on ecosystem functioning in shallow rocky reefs. The relationships between biological parameters (fishes, sea urchins, seaweeds), and fishing activities (fish traps, boats, land-based fishing, spearfishing) were tested in La Palma island (Canary Islands). Data from fishing activities and biological parameters were analyzed using principal component analyses. We produced two models using the first component of these analyses. This component was interpreted as a new variable that described the fishing pressure and the conservation status at each studied site. Subsequently the scores on the first axis were mapped using universal kriging methods and the models obtained were extrapolated across the whole island to display the expected fishing pressure and conservation status more widely. The fishing pressure and conservation status models were spatially related; zones where fishing pressure was high coincided with zones in the unhealthiest ecological state. Copyright © 2013 Elsevier Ltd. All rights reserved.
Deep and shallow forms of the sulcus for extensor carpi ulnaris.
Nakashima, T; Hojo, T; Furukawa, H
1993-12-01
Anatomical variations in the sulcus for the tendon of extensor carpi ulnaris were studied in 240 upper limbs. The sulcus lies between the head and the styloid process on the dorsal surface of the distal end of the ulna. This groove has deep and shallow forms and, rarely, a flat form. The sulcus was classified into 4 grades according to its depth. Grade I, a deep sulcus, was found in 51.3%. Grades II and III are shallow, but the styloid process in grade II is more prominent than in grade III. The former was found in 28.8%, the latter in 14.2%. Grade IV is a flat form. This was rare and found only in 1.3%. This variation was not age-related, but was a congenital feature.
Nutrient inputs from the watershed and coastal eutrophication in the Florida Keys
DOE Office of Scientific and Technical Information (OSTI.GOV)
LaPointe, B.E.; Clark, M.W.
1992-12-01
Widespread use of septic tanks in the Florida Keys increase the nutrient concentrations of limestone ground waters that discharge into shallow nearshore waters, resulting in coastal eutrophication. This study characterizes watershed nutrient inputs, transformations, and effects along a land-sea gradient stratified into four ecosystems that occur with increasing distance from land: manmade canal systems, seagrass meadows, patch reefs, and offshore bank reefs. Soluble reactive phosphorus (SRP), the primary limiting nutrient, was significantly elevated in canal systems, while dissolved inorganic nitrogen (DIN; NH[sub 4][sup =] and NO[sub 3][sup [minus
Burdigalian turbid water patch reef environment revealed by larger benthic foraminifera
NASA Astrophysics Data System (ADS)
Novak, V.; Renema, W.; Throughflow-project
2012-04-01
Ancient isolated patch reefs outcropping from siliciclastic sediments are a trademark for the Miocene carbonate deposits occurring in East Kalimantan, Indonesia. They develop in transitional shelf sediments deposited between deltaic and deep marine deposits (Allen and Chambers, 1998). The Batu Putih Limestone (Wilson, 2005) and similar outcrops in adjacent areas have been characterized as shallow water carbonates influenced by high siliciclastic input, showing low relief patch reefs in turbid waters. Larger benthic foraminifera (LBF) are excellent markers for biochronology and paleoenvironmental reconstruction. This study aims to reveal age and paleoenvironment of a shallow water carbonate patch reef developed in mixed depositional system by using LBF and microfacies analysis. The studied section is located near Bontang, East Kalimantan, and is approximately 80 m long and 12 m high. It is placed within Miocene sediments in the central part of the Kutai Basin. Patch reef and capping sediments were logged through eight transects along section and divided into nine different lithological units from which samples were collected. Thin sections and isolated specimens of larger benthic foraminifera were analyzed and recognized to species level (where possible) providing age and environmental information. Microfacies analysis of thin sections included carbonate classification (textural scheme of Dunham, 1962) and assemblage composition of LBF, algae and corals relative abundance. Three environmentally indicative groups of LBF were separated based on test morphology, habitat or living relatives (Hallock and Glenn, 1986). Analysed foraminifera assemblage suggests Burdigalian age (Tf1). With use of microfacies analysis nine successive lithological units were grouped into five facies types. Paleoenvironmental reconstruction of LBF fossil assemblage indicate two cycles of possible deepening recorded in the section. Based on high muddy matrix ratio in analyzed thin-sections we still cannot conclude whether they were deeper water assemblage, or that they occurred in shallower water and influenced by turbid conditions as the result of terrigenous input. According to preliminary analysis and siliciclastic content in the sediments the later one should be more likely. Further work will include additional fossil groups analysis (corals, algae and bryozoans), detailed petrographical analysis and Strontium isotope stratigraphy. Allen, G.P., and Chambers, J.L.C. (1998): Sedimentation in the Modern and Miocene Mahakam Delta. Indonesian Petroleum Association, Jakarta, Indonesia, 236 p. Dunham, R.J. (1962): Classification of carbonate rocks according to their depositional texture. In: Ham, W.E., ed., Classification of Carbonate Rocks: American Association of Petroleum Geologists Memoir, v. 1, p. 108-121. Hallock, P. and Glenn, C.E. (1986): Larger Foraminifera: A tool for paleoenvironmental analysis of Cenozoic carbonate depositional facies. Palaios 1, 55-64. Wilson, M.E.J. (2005): Development of equatorial delta-front patch reefs during the Neogene, Borneo. - Journal of Sedimentary Research, 75(1): 114-133.
Lidz, B.H.; Brock, J.C.; Nagle, D.B.
2008-01-01
A recently developed remote-sensing instrument acquires high-quality digital photographs in shallow-marine settings within water depths of 15 m. The technology, known as the Along-Track Reef-Imaging System, provides remarkably clear, georeferenced imagery that allows visual interpretation of benthic class (substrates, organisms) for mapping coral reef habitats, as intended. Unforeseen, however, are functions new to the initial technologic purpose: interpr??table evidence for real-time biogeologic processes and for perception of scaled-up skeletal self-similarity of scleractinian microstructure. Florida reef sea trials lacked the grid structure required to map contiguous habitat and submarine topography. Thus, only general observations could be made relative to times and sites of imagery. Degradation of corals was nearly universal; absence of reef fish was profound. However, ???1% of more than 23,600 sea-trial images examined provided visual evidence for local environs and processes. Clarity in many images was so exceptional that small tracks left by organisms traversing fine-grained carbonate sand were visible. Other images revealed a compelling sense, not yet fully understood, of the microscopic wall structure characteristic of scleractinian corals. Conclusions drawn from classifiable images are that demersal marine animals, where imaged, are oblivious to the equipment and that the technology has strong capabilities beyond mapping habitat. Imagery acquired along predetermined transects that cross a variety of geomorphic features within depth limits will ( 1) facilitate construction of accurate contour maps of habitat and bathymetry without need for ground-truthing, (2) contain a strong geologic component of interpreted real-time processes as they relate to imaged topography and regional geomorphology, and (3) allow cost-effective monitoring of regional- and local-scale changes in an ecosystem by use of existing-image global-positioning system coordinates to re-image areas. Details revealed in the modern setting have taphonomic implications for what is often found in the geologic record.
Euphyllia paradivisa, a successful mesophotic coral in the northern Gulf of Eilat/Aqaba, Red Sea
NASA Astrophysics Data System (ADS)
Eyal, Gal; Eyal-Shaham, Lee; Cohen, Itay; Tamir, Raz; Ben-Zvi, Or; Sinniger, Frederic; Loya, Yossi
2016-03-01
Mesophotic coral ecosystems (MCEs) host a thriving community of biota that has remained virtually unexplored. Here we report for the first time on a large population of the endangered coral species Euphyllia paradivisa from the MCEs of the Gulf of Eilat/Aqaba (GOE/A), Red Sea. The mesophotic zone in some parts of the study site harbors a specialized coral community predominantly comprising E. paradivisa (73 % of the total coral cover), distributed from 36 to 72 m depth. Here we sought to elucidate the strict distribution but high abundance of E. paradivisa in the MCEs at the GOE/A. We present 4 yr of observations and experiments that provide insight into the physiological plasticity of E. paradivisa: its low mortality rates at high light intensities, high competitive abilities, successful symbiont adaptation to the shallow-water environment, and tolerance to bleaching conditions or survival during prolonged bleaching. Despite its ability to survive under high irradiance in shallow water, E. paradivisa is not found in the shallow reef of the GOE/A. We suggest several factors that may explain the high abundance and exclusivity of E. paradivisa in the MCE: its heterotrophic capabilities; its high competition abilities; the possibility of it finding a deep-reef refuge there from fish predation; and its concomitant adaptation to this environment.
Visitor perceptions and the shifting social carrying capacity of South Sinai's coral reefs.
Leujak, Wera; Ormond, Rupert F G
2007-04-01
To investigate how the perceptions and behaviour of visitors to coral reefs are influenced by their prior experience and knowledge of marine life, a questionnaire-based study was undertaken at sites in the Ras Mohammed National Park and at Sharm El Sheikh, South Sinai, Egypt. It was evident that over the 10-20 years during which these reefs have deteriorated (mainly due to reef-flat trampling), there have been interrelated shifts in the nature of visitors making use of them. First, there has been a shift from experienced divers and snorkellers to inexperienced snorkellers and non-snorkellers with a poorer knowledge of reef biology. Second, there has been a shift in the predominant nationalities of visitors, from German and British, through Italian, to Russian. More recent user groups both stated and showed that they had less experience of snorkelling; they also showed less knowledge of marine life and less interest in learning about it. Visitor perceptions of both the state of the marine life on the reefs and the acceptability of current visitor numbers also varied between groups. More recent visitor groups and visitors with less knowledge were more satisfied with reef health. In general, however, visitor perceptions of reef health did not correlate well with actual reef conditions, probably because more experienced visitors preferred less impacted sites with which they were nevertheless less satisfied than inexperienced visitors at heavily impacted sites. More recent visitor groups were also less bothered by crowding on the shore or in the water. Consequently, the apparent "social carrying capacity" of sites seems to be increasing to a level well above the likely "ecological carrying capacity".
Visitor Perceptions and the Shifting Social Carrying Capacity of South Sinai's Coral Reefs
NASA Astrophysics Data System (ADS)
Leujak, Wera; Ormond, Rupert F. G.
2007-04-01
To investigate how the perceptions and behaviour of visitors to coral reefs are influenced by their prior experience and knowledge of marine life, a questionnaire-based study was undertaken at sites in the Ras Mohammed National Park and at Sharm El Sheikh, South Sinai, Egypt. It was evident that over the 10-20 years during which these reefs have deteriorated (mainly due to reef-flat trampling), there have been interrelated shifts in the nature of visitors making use of them. First, there has been a shift from experienced divers and snorkellers to inexperienced snorkellers and non-snorkellers with a poorer knowledge of reef biology. Second, there has been a shift in the predominant nationalities of visitors, from German and British, through Italian, to Russian. More recent user groups both stated and showed that they had less experience of snorkelling; they also showed less knowledge of marine life and less interest in learning about it. Visitor perceptions of both the state of the marine life on the reefs and the acceptability of current visitor numbers also varied between groups. More recent visitor groups and visitors with less knowledge were more satisfied with reef health. In general, however, visitor perceptions of reef health did not correlate well with actual reef conditions, probably because more experienced visitors preferred less impacted sites with which they were nevertheless less satisfied than inexperienced visitors at heavily impacted sites. More recent visitor groups were also less bothered by crowding on the shore or in the water. Consequently, the apparent “social carrying capacity” of sites seems to be increasing to a level well above the likely “ecological carrying capacity”.
Assessing the effects of non-point source pollution on American Samoa's coral reef communities.
Houk, Peter; Didonato, Guy; Iguel, John; Van Woesik, Robert
2005-08-01
Surveys were completed on Tutuila Island, American Samoa, to characterize reef development and assess the impacts of non-point source pollution on adjacent coral reefs at six sites. Multivariate analyses of benthic and coral community data found similar modern reef development at three locations; Aoa, Alofau, and Leone. These sites are situated in isolated bays with gentle sloping foundations. Aoa reefs had the highest estimates of crustose coralline algae cover and coral species richness, while Leone and Alofau showed high abundances of macroalgae and Porites corals. Aoa has the largest reef flat between watershed discharge and the reef slope, and the lowest human population density. Masefau and Fagaalu have a different geomorphology consisting of cemented staghorn coral fragments and steep slopes, however, benthic and coral communities were not similar. Benthic data suggest Fagaalu is heavily impacted compared with all other sites. Reef communities were assessed as bio-criteria indicators for waterbody health, using the EPA aquatic life use support designations of (1) fully supportive, (2) partially supportive, and (3) non-supportive for aquatic life. All sites resulted in a partially supportive ranking except Fagaalu, which was non-supportive. The results of this rapid assessment based upon relative benthic community measures are less desirable than long-term dataset analyses from monitoring programs, however it fills an important role for regulatory agencies required to report annual waterbody assessments. Future monitoring sites should be established to increase the number of replicates within each geological and physical setting to allow for meaningful comparisons along a gradient of hypothesized pollution levels.
NASA Astrophysics Data System (ADS)
Hongo, Chuki
2012-03-01
The geological record of key coral species that contribute to reef formation and maintenance of reef ecosystems is important for understanding the ecosystem response to global-scale climate change and anthropogenic stresses in the near future. Future responses can be predicted from accumulated data on Holocene reef species identified in drillcore and from data on raised reef terraces. The present study analyzes a dataset based on 27 drillcores, raised reef terraces, and 134 radiocarbon and U-Th ages from reefs of the Northwest Pacific, with the aim of examining the role of key coral species in reef growth and maintenance for reef ecosystem during Holocene sea-level change. The results indicate a latitudinal change in key coral species: arborescent Acropora (Acropora intermedia and Acropora muricata) was the dominant reef builder at reef crests in the tropics, whereas Porites (Porites australiensis, Porites lutea, and Porites lobata) was the dominant contributor to reef growth in the subtropics between 10,000 and 7000 cal. years BP (when the rate of sea-level rise was 10 m/ka). Acropora digitifera, Acropora hyacinthus, Acropora robusta/A. abrotanoides, Isopora palifera, Favia stelligera, and Goniastrea retiformis from the corymbose and tabular Acropora facies were the main key coral species at reef crests between 7000 and 5000 cal. years BP (when the rate of sea-level rise was 5 m/ka) and during the following period of stable sea-level. Massive Porites (P. australiensis, P. lutea, and P. lobata) contributed to reef growth in shallow lagoons during the period of stable sea level. Key coral species from the corymbose and tabular Acropora facies have the potential to build reefs and maintain ecosystems in the near future under a global sea-level rise of 2-6 m/ka, as do key coral species from the arborescent Acropora facies and massive Porites facies, which show vigorous growth and are tolerant to relatively deep-water, low-energy environments. However, these species are likely to experience severe mortality in upcoming decades due to natural and anthropogenic stresses. Consequently, this damage will lead to a collapse in reef formation and the maintenance of reef ecosystems in the near future. This study emphasizes the need for research into the conservation of key coral species.
Franseen, E.K.; Goldstein, R.H.; Farr, M.R.
1997-01-01
Sequence stratigraphy, pinning-point relative sea-level curves, and magnetostratigraphy provide the quantitative data necessary to understand how rates of sea-level change and different substrate paleoslopes are dominant controls on accumulation rate, carbonate depositional sequence location, and internal architecture. Five third-order (1-10 my) and fourth-order (0.1-1.0 my) upper Miocene carbonate depositional sequences (DS1A, DS1B, DS2, DS3, TCC) formed with superimposed higher-frequency sea-level cycles in an archipelago setting in SE Spain. Overall, our study indicates when areas of high substrate slope (> 15??) are in shallow water, independent of climate, the location and internal architecture of carbonate deposits are not directly linked to sea-level position but, instead, are controlled by location of gently sloping substrates and processes of bypass. In contrast, if carbonate sediments are generated where substrates of low slope ( 15.6 cm/ky to ??? 2 cm/ky and overall relative sea level rose at rates of 17-21.4 cm/ky. Higher frequency sea-level rates were about 111 to more than 260 cm/ky, producing onlapping, fining- (deepening-) upward cycles. Decreasing accumulation rates resulted from decreasing surface area for shallow-water sediment production, drowning of shallow-water substrates, and complex sediment dispersal related to the archipelago setting. Typical systems tract and parasequence development should not be expected in "bypass ramp" settings; facies of onlapping strata do not track base level and are likely to be significantly different compared to onlapping strata associated with coastal onlap. Basal and upper DS2 reef megabreccias (indicating the transition from cool to warmer climatic conditions) were eroded from steep upslope positions and redeposited downslope onto areas of gentle substrate during rapid sea-level falls (> 22.7 cm/ky) of short duration. Such rapid sea-level falls and presence of steep slopes are not conducive to formation of forced regressive systems tracts composed of down-stepping reef clinoforms. The DS3 reefal platform formed where shallow water coincided with gently sloping substrates created by earlier deposition. Slow progradation (0.39-1.45 km/my) is best explained by the lack of an extensive bank top, progressively falling sea level, and low productivity resulting from siliciclastic debris and excess nutrients shed from nearby volcanic islands. Although DS3 strata were deposited during a third-order relative sea-level cycle, a typical transgressive systems tract is not recognizable, indicating that the initial relative rise in sea level was too rapid (??? 19 cm/ky). Downstepping reefs, forming a forced regressive systems tract, were deposited during the relative sea-level fall at the end of DS3, indicating that relatively slow rates of fall (10 cm/ky or less) over favorable paleoslope conditions are conducive to generation of forced regressive systems tracts consisting of downstepping reef clinoforms. The TCC sequence consists of four shallow-water sedimentary cycles that were deposited during a 400 ky to 100 ky time span. Such shallow-water cycles, typical of many platforms, form only where shallow water intersects gently sloping substrates. The relative thicknesses of cycles (< 2 m to 15 m thick), magnitudes of relative sea-level fluctuations associated with each cycle (25-30 m), high rates of relative sea-level fluctuations (minimum of 25-120 cm/ky), and the widespread distribution of similar TCC cycles in the Mediterranean and elsewhere are supportive of a glacio-eustatic
Franseen, E.K.; Goldstein, R.H.; Farr, M.R.
1998-01-01
Sequence stratigraphy, pinning-point relative sea-level curves, and magnetostratigraphy provide the quantitative data necessary to understand how rates of sea-level change and different substrate paleoslopes are dominant controls on accumulation rate, carbonate depositional sequence location, and internal architecture. Five third-order (1-10 my) and fourth-order (0.1-1.0 my) upper Miocene carbonate depositional sequences (DS1A, DS1B, DS2, DS3, TCC) formed with superimposed higher-frequency sea-level cycles in an archipelago setting in SE Spain. Overall, our study indicates when areas of high substrate slope (> 15??) are in shallow water, independent of climate, the location and internal architecture of carbonate deposits are not directly linked to sea-level position but, instead, are controlled by location of gently sloping substrates and processes of bypass. In contrast, if carbonate sediments are generated where substrates of low slope ( 15.6 cm/ky to ??? 2 cm/ky and overall relative sea level rose at rates of 17-21.4 cm/ky. Higher frequency sea-level rates were about 111 to more than 260 cm/ky, producing onlapping, fining- (deepening-) upward cycles. Decreasing accumulation rates resulted from decreasing surface area for shallow-water sediment production, drowning of shallow-water substrates, and complex sediment dispersal related to the archipelago setting. Typical systems tract and parasequence development should not be expected in "bypass ramp" settings; facies of onlapping strata do not track base level and are likely to be significantly different compared to onlapping strata associated with coastal onlap. Basal and upper DS2 reef megabreccias (indicating the transition from cool to warmer climatic conditions) were eroded from steep upslope positions and redeposited downslope onto areas of gentle substrate during rapid sea-level falls (> 22.7 cm/ky) of short duration. Such rapid sea-level falls and presence of steep slopes are not conducive to formation of forced regressive systems tracts composed of downstepping reef clinoforms. The DS3 reefal platform formed where shallow water coincided with gently sloping substrates created by earlier deposition. Slow progradation (0.39-1.45 km/my) is best explained by the lack of an extensive bank top, progressively falling sea level, and low productivity resulting from siliciclastic debris and excess nutrients shed from nearby volcanic islands. Although DS3 strata were deposited during a third-order relative sea-level cycle, a typical transgresse??e systems tract is not recognizable, indicating that the initial relative rise in sea level was too rapid (??? 19 cm/ky). Downstepping reefs, forming a forced regressive systems tract, were deposited during the relative sea-level fall at the end of DS3, indicating that relatively slow rates of fall (10 cm/ky or less) over favorable paleoslope conditions are conducive to generation of forced regressive systems tracts consisting of downstepping reef clinoforms. The TCC sequence consists of four shallow -water sedimentary cycles that were deposited during a 400 ky to 100 ky time span. Such shallow-water cycles, typical of many platforms, form only where shallow water intersects gently sloping substrates. The relative thicknesses of cycles (< 2 m to 15 m thick), magnitudes of relative sea-level fluctuations associated with each cycle (25-30 m), high rates of relative sea-level fluctuations (minimum of 25-120 cm/ky), and the widespread distribution of similar TCC cycles in the Mediterranean and elsewhere are supportive of a glacio-eustati
A multi-decade time series of kelp forest community structure at San Nicolas Island, California
Lafferty, Kevin D.; Kenner, Michael C.; Estes, James A.; Tinker, M. Tim; Bodkin, James L.; Cowen, Robert K.; Harrold, Christopher; Novak, Mark; Rassweiler, Andrew; Reed, Daniel C.
2013-01-01
San Nicolas Island is surrounded by broad areas of shallow subtidal habitat, characterized by dynamic kelp forest communities that undergo dramatic and abrupt shifts in community composition. Although these reefs are fished, the physical isolation of the island means that they receive less impact from human activities than most reefs in Southern California, making San Nicolas an ideal place to evaluate alternative theories about the dynamics of these communities. Here we present monitoring data from seven sampling stations surrounding the island, including data on fish, invertebrate, and algal abundance. These data are unusual among subtidal monitoring data sets in that they combine relatively frequent sampling (twice per year) with an exceptionally long time series (since 1980). Other outstanding qualities of the data set are the high taxonomic resolution captured and the monitoring of permanent quadrats and swaths where the history of the community structure at specific locations has been recorded through time. Finally, the data span a period that includes two of the strongest ENSO events on record, a major shift in the Pacific decadal oscillation, and the reintroduction of sea otters to the island in 1987 after at least 150 years of absence. These events provide opportunities to evaluate the effects of bottom-up forcing, top-down control, and physical disturbance on shallow rocky reef communities.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Porter, J.W.
1987-08-01
Four species of reef-building corals are considered: elkhorn coral, staghorn coral, common star coral, and large star coral. All four species spawn annually in the fall during hurricane season. Juvenile recruitment is low in all four species. Rapid growth rates of species in the genus Acropora (10 to 20 cm/yr) contrast with slower growth rates of species in the genus Montastraea (1.0 to 2.0 cm/yr), but both species of Montastraea are also important in reef development due to their form and great longevity. Shallow-water colonies of Montastraea survive hurricanes; shallow colonies of Acropora do not. Because of their dependence onmore » photosynthesis for all of their carbon acquisition, the Acropora species reviewed here have a more restricted depth distribution (0 to 30 m) than do the Montastraea species considered (0 to 70 m). All four species are subject to intense predation by the snail predator, Coralliophila. Species of Montastraea are susceptible to infection from blue-green algae, which produce ''black band disease;'' species of Acropora are susceptible to a different, as yet unidentified pathogen, that produces ''white-band'' disease. Increased water turbidity and sedimentation cause reduced growth rates and partial or whole mortality in all four species.« less
A linked land-sea modeling framework to inform ridge-to-reef management in high oceanic islands.
Delevaux, Jade M S; Whittier, Robert; Stamoulis, Kostantinos A; Bremer, Leah L; Jupiter, Stacy; Friedlander, Alan M; Poti, Matthew; Guannel, Greg; Kurashima, Natalie; Winter, Kawika B; Toonen, Robert; Conklin, Eric; Wiggins, Chad; Knudby, Anders; Goodell, Whitney; Burnett, Kimberly; Yee, Susan; Htun, Hla; Oleson, Kirsten L L; Wiegner, Tracy; Ticktin, Tamara
2018-01-01
Declining natural resources have led to a cultural renaissance across the Pacific that seeks to revive customary ridge-to-reef management approaches to protect freshwater and restore abundant coral reef fisheries. Effective ridge-to-reef management requires improved understanding of land-sea linkages and decision-support tools to simultaneously evaluate the effects of terrestrial and marine drivers on coral reefs, mediated by anthropogenic activities. Although a few applications have linked the effects of land cover to coral reefs, these are too coarse in resolution to inform watershed-scale management for Pacific Islands. To address this gap, we developed a novel linked land-sea modeling framework based on local data, which coupled groundwater and coral reef models at fine spatial resolution, to determine the effects of terrestrial drivers (groundwater and nutrients), mediated by human activities (land cover/use), and marine drivers (waves, geography, and habitat) on coral reefs. We applied this framework in two 'ridge-to-reef' systems (Hā'ena and Ka'ūpūlehu) subject to different natural disturbance regimes, located in the Hawaiian Archipelago. Our results indicated that coral reefs in Ka'ūpūlehu are coral-dominated with many grazers and scrapers due to low rainfall and wave power. While coral reefs in Hā'ena are dominated by crustose coralline algae with many grazers and less scrapers due to high rainfall and wave power. In general, Ka'ūpūlehu is more vulnerable to land-based nutrients and coral bleaching than Hā'ena due to high coral cover and limited dilution and mixing from low rainfall and wave power. However, the shallow and wave sheltered back-reef areas of Hā'ena, which support high coral cover and act as nursery habitat for fishes, are also vulnerable to land-based nutrients and coral bleaching. Anthropogenic sources of nutrients located upstream from these vulnerable areas are relevant locations for nutrient mitigation, such as cesspool upgrades. In this study, we located coral reefs vulnerable to land-based nutrients and linked them to priority areas to manage sources of human-derived nutrients, thereby demonstrating how this framework can inform place-based ridge-to-reef management.
Volcanic ash supports a diverse bacterial community in a marine mesocosm.
Witt, V; Ayris, P M; Damby, D E; Cimarelli, C; Kueppers, U; Dingwell, D B; Wörheide, G
2017-05-01
Shallow-water coral reef ecosystems, particularly those already impaired by anthropogenic pressures, may be highly sensitive to disturbances from natural catastrophic events, such as volcanic eruptions. Explosive volcanic eruptions expel large quantities of silicate ash particles into the atmosphere, which can disperse across millions of square kilometres and deposit into coral reef ecosystems. Following heavy ash deposition, mass mortality of reef biota is expected, but little is known about the recovery of post-burial reef ecosystems. Reef regeneration depends partly upon the capacity of the ash deposit to be colonised by waterborne bacterial communities and may be influenced to an unknown extent by the physiochemical properties of the ash substrate itself. To determine the potential for volcanic ash to support pioneer bacterial colonisation, we exposed five well-characterised volcanic and coral reef substrates to a marine aquarium under low light conditions for 3 months: volcanic ash, synthetic volcanic glass, carbonate reef sand, calcite sand and quartz sand. Multivariate statistical analysis of Automated Ribosomal Intergenic Spacer Analysis (ARISA) fingerprinting data demonstrates clear segregation of volcanic substrates from the quartz and coral reef substrates over 3 months of bacterial colonisation. Overall bacterial diversity showed shared and substrate-specific bacterial communities; however, the volcanic ash substrate supported the most diverse bacterial community. These data suggest a significant influence of substrate properties (composition, granulometry and colour) on bacterial settlement. Our findings provide first insights into physicochemical controls on pioneer bacterial colonisation of volcanic ash and highlight the potential for volcanic ash deposits to support bacterial diversity in the aftermath of reef burial, on timescales that could permit cascading effects on larval settlement. © 2017 The Authors. Geobiology Published by John Wiley & Sons Ltd.
Kelmo, Francisco; Bell, James J.; Attrill, Martin J.
2013-01-01
Coral reefs across the world are under threat from a range of stressors, and while there has been considerable focus on the impacts of these stressors on corals, far less is known about their effect on other reef organisms. The 1997–8 El-Niño Southern Oscillation (ENSO) had notable and severe impacts on coral reefs worldwide, but not all reef organisms were negatively impacted by this large-scale event. Here we describe how the sponge fauna at Bahia, Brazil was influenced by the 1997–8 ENSO event. Sponge assemblages from three contrasting reef habitats (reef tops, walls and shallow banks) at four sites were assessed annually from 1995 to 2011. The within-habitat sponge diversity did not vary significantly across the study period; however, there was a significant increase in density in all habitats. Multivariate analyses revealed no significant difference in sponge assemblage composition (ANOSIM) between pre- and post-ENSO years for any of the habitats, suggesting that neither the 1997–8 nor any subsequent smaller ENSO events have had any measurable impact on the reef sponge assemblage. Importantly, this is in marked contrast to the results previously reported for a suite of other taxa (including corals, echinoderms, bryozoans, and ascidians), which all suffered mass mortalities as a result of the ENSO event. Our results suggest that of all reef taxa, sponges have the potential to be resilient to large-scale thermal stress events and we hypothesize that sponges might be less affected by projected increases in sea surface temperature compared to other major groups of reef organisms. PMID:24116109
NASA Astrophysics Data System (ADS)
Kourafalou, V. H.; Androulidakis, Y. S.; Kang, H.; Smith, R. H.; Valle-Levinson, A.
2018-07-01
The Pulley Ridge and Dry Tortugas coral reefs are among the most pristine, but also fragile, marine ecosystems of the continental United States. Understanding connectivity processes between them and with surrounding shelf and deep areas is fundamental for their management. This study focuses on the physical processes related to the connectivity of these reefs. Unprecedented in situ time series were used at these specific reef locations, together with satellite observations and numerical simulations, to investigate the dynamics controlling local circulation on the Southwestern Florida Shelf (SWFS) under oceanic influence. The approach of the Loop Current and Florida Current (LC/FC) system to the SWFS slope can induce 0.5 to 1 m/s offshore flows impacting the Pulley Ridge and Dry Tortugas reefs. On the other hand, when the LC/FC system retreats from the slope, onshore flows can carry open-sea waters over the coral reefs. Local formation of cyclonic eddies is possible near the Dry Tortugas reefs in the LC approach case and passage of upstream LC Frontal Eddies is possible in the LC retreat case. Offshore currents ∼1 m/s over the SWFS slope were also found during periods of anticyclonic LC Eddy separation. A novel finding is the shedding and northward propagation of mesoscale anticyclonic eddies from the core of the LC along the West Florida Shelf. Eddy shedding may have a broader effect on the dynamics of the shelf around the study reef areas. Long periods of LC/FC domination over these coral reefs (reaching several weeks to months) are characterized by strong (∼1 m/s) along-shelf currents and continuous upwelling processes, which may weaken the slope stratification and bring colder, deeper waters over the shelf-break and toward the shallower shelf region.
Atoll-scale patterns in coral reef community structure: Human signatures on Ulithi Atoll, Micronesia
Nelson, Peter; Abelson, Avigdor; Precoda, Kristin; Rulmal, John; Bernardi, Giacomo; Paddack, Michelle
2017-01-01
The dynamic relationship between reefs and the people who utilize them at a subsistence level is poorly understood. This paper characterizes atoll-scale patterns in shallow coral reef habitat and fish community structure, and correlates these with environmental characteristics and anthropogenic factors, critical to conservation efforts for the reefs and the people who depend on them. Hierarchical clustering analyses by site for benthic composition and fish community resulted in the same 3 major clusters: cluster 1–oceanic (close proximity to deep water) and uninhabited (low human impact); cluster 2–oceanic and inhabited (high human impact); and cluster 3–lagoonal (facing the inside of the lagoon) and inhabited (highest human impact). Distance from village, reef exposure to deep water and human population size had the greatest effect in predicting the fish and benthic community structure. Our study demonstrates a strong association between benthic and fish community structure and human use across the Ulithi Atoll (Yap State, Federated States of Micronesia) and confirms a pattern observed by local people that an ‘opportunistic’ scleractinian coral (Montipora sp.) is associated with more highly impacted reefs. Our findings suggest that small human populations (subsistence fishing) can nevertheless have considerable ecological impacts on reefs due, in part, to changes in fishing practices rather than overfishing per se, as well as larger global trends. Findings from this work can assist in building local capacity to manage reef resources across an atoll-wide scale, and illustrates the importance of anthropogenic impact even in small communities. PMID:28489903
Toth, Lauren T.; Kuffner, Ilsa B.; Cheng, Hai; Edwards, R. Lawrence
2015-01-01
Pocilloporid corals dominated shallow-water environments in the Caribbean during much of the Cenozoic; however, the regional diversity of this family declined over the last 15 My, culminating with the extinction of its final member, Pocillopora palmata, during the latest Pleistocene. Here we present a new record of P. palmata from Dry Tortugas National Park in the Florida Keys and infer its likely age. Although most existing records of P. palmata are from the sub-aerial reef deposits of MIS5e (∼ 125 ka), the presently submerged reef in the Dry Tortugas was too deep (> 18 m) during this period to support significant reef growth. In contrast, the maximum water depth during MIS5a (∼ 82 ka) was only ∼ 5.6 m, which would have been ideal for P. palmata. Diagenetic alteration prevented direct dating of the samples; however, the similarity between the depths of the Pleistocene bedrock in the Dry Tortugas and other reefs in the Florida Keys, which have been previously dated to MIS5a, support the conclusion that P. palmata likely grew in the Dry Tortugas during this period. Our study provides important new information on the history of P. palmata, but it also highlights the vital need for more comprehensive studies of the Quaternary history of Caribbean reef development. With modern reef degradation already driving yet another restructuring of Caribbean coral assemblages, insights from past extinctions may prove critical in determining the prognosis of Caribbean reefs in the future.
NASA Astrophysics Data System (ADS)
Paul, Valerie J.; van Alstyne, Kathryn L.
1988-03-01
Over a dozen species of the genus Halimeda have been chemically investigated and found to produce the diterpenoid metabolites halimedatrial (1) and halimedatetraacetate (2) in varying concentrations. These meabolites have been proposed to play a role in chemical defense against herbivores based on their chemical structures and their demonstrated biological activities in laboratory and aquarium assays. We examined and compared the feeding deterrent effects of these two compounds tovard herbivorous fishes in field experiments on Guam reefs. Halimedatrial is a more effective feeding deterrent than halimedatetraacetate. It is the major secondary metabolite in young Halimeda macroloba and in the newly produced segments of growing plants. The organic extracts from young plants and new segments were significantly more deterrent than extracts from mature plant tissue. Some populations of Halimeda growing in reef-slope habitats, where herbivory is intense, also have high concentrations of halimedatrial. We compared extracts between reef slope and reef flat collections of Halimeda opuntia on Guam and Pohnpei (= Ponape), and H. discoidea and H. macroloba on Guam. We found that halimedtrial was the major metabolite in reef-slope collections of H. opuntia from Pohnpei and Pago Bay, Guam, and that halimedatetraacetate was the major metabolite a non-reef slope populations. In the cases examined, chemical defenses were greatest in (1) plant parts and (2) populations that were at greatest risk to herbivores.
Observations and estimates of wave-driven water level extremes at the Marshall Islands
NASA Astrophysics Data System (ADS)
Merrifield, M. A.; Becker, J. M.; Ford, M.; Yao, Y.
2014-10-01
Wave-driven extreme water levels are examined for coastlines protected by fringing reefs using field observations obtained in the Republic of the Marshall Islands. The 2% exceedence water level near the shoreline due to waves is estimated empirically for the study sites from breaking wave height at the outer reef and by combining separate contributions from setup, sea and swell, and infragravity waves, which are estimated based on breaking wave height and water level over the reef flat. Although each component exhibits a tidal dependence, they sum to yield a 2% exceedence level that does not. A hindcast based on the breaking wave height parameterization is used to assess factors leading to flooding at Roi-Namur caused by an energetic swell event during December 2008. Extreme water levels similar to December 2008 are projected to increase significantly with rising sea level as more wave and tide events combine to exceed inundation threshold levels.
NASA Astrophysics Data System (ADS)
Cyronak, T.; Santos, I. R.; Erler, D. V.; Eyre, B. D.
2013-04-01
To better predict how ocean acidification will affect coral reefs, it is important to understand how biogeochemical cycles on reefs alter carbonate chemistry over various temporal and spatial scales. This study quantifies the contribution of shallow porewater exchange (as quantified from advective chamber incubations) and fresh groundwater discharge (as traced by 222Rn) to total alkalinity (TA) dynamics on a fringing coral reef lagoon along the southern Pacific island of Rarotonga over a tidal and diel cycle. Benthic alkalinity fluxes were affected by the advective circulation of water through permeable sediments, with net daily flux rates of carbonate alkalinity ranging from -1.55 to 7.76 mmol m-2 d-1, depending on the advection rate. Submarine groundwater discharge (SGD) was a source of TA to the lagoon, with the highest flux rates measured at low tide, and an average daily TA flux of 1080 mmol m-2 d-1 at the sampling site. Both sources of TA were important on a reef-wide basis, although SGD acted solely as a delivery mechanism of TA to the lagoon, while porewater advection was either a sink or source of TA dependent on the time of day. This study describes overlooked sources of TA to coral reef ecosystems that can potentially alter water column carbonate chemistry. We suggest that porewater and groundwater fluxes of TA should be taken into account in ocean acidification models in order to properly address changing carbonate chemistry within coral reef ecosystems.
2008-05-02
ISS016-E-019394 (30 Dec. 2007) --- Al Wadj Bank, Saudi Arabia is featured in this image photographed by an Expedition 16 crewmember on the International Space Station. Saudi Arabia boasts the most coral reefs of any Middle Eastern country, as it includes coastline along both the Red Sea and Gulf of Arabia. This high resolution image depicts a portion of the Al Wadj Bank, located along the northern Red Sea coast. Despite the relatively high salinity of Red Sea water (compared to other oceans), approximately 260 species of coral are found here, according to scientists. Large tracts of the Saudi Arabian coastline are undeveloped, and reefs in these areas are in generally good ecological health. However, reefs located near large urban centers like Jeddeh have suffered degradation due to land reclamation, pollution, and increased terrigeneous sediment input. The Al Wadj Bank includes a healthy and diverse reef system, extensive seagrass beds, and perhaps the largest population of dugong -- a marine mammal similar to the North American manatee -- in the eastern Red Sea. The portion of the Bank in this image illustrates the complex form and topography of the reef system. Several emergent islands (tan) - surrounded primarily by dark green seagrass - are visible, the largest located at top left. Only the islands are above the waterline -- over the reef structures the water color ranges from light teal (shallow) to turquoise (increasing depth). The southern edge of the reef is well indicated by the deep, dark blue water of the Red Sea at image top.
NASA Astrophysics Data System (ADS)
Wyatt, A. S. J.; Miyajima, T.; Leichter, J.; Naruse, T.; Kuwae, T.; Yamamoto, S.; Satoh, N.; Nagata, T.
2016-02-01
Mesophotic coral ecosystems (MCE) occur in the `twilight zone' of decreasing light between 30 - 150 m water depth where they may be protected or damped from disturbances impacting shallower reefs. However insufficient information is available on the environmental conditions that support MCE to allow us to understand and conserve these `deep water refugia'. For instance, nutrient inputs and recycling have rarely been quantified over MCE, but deeper reefs may differ fundamentally to that of shallow counterparts due to the reduction in light and increasing use of oceanic nutrients at the base of the food web, leading to increased reliance on heterotrophy over autotrophy at species and ecosystem levels and stronger links to oceanic processes. For instance, due to their depth relative to typical water column density stratification, MCE are particularly likely to experience internal wave forcing, the significance of which should vary spatially depending on aspect and exposure. In this study we are focusing on MCE occurring along a continuum of oceanic-exposure along Funauki Bay on the west coast of Iriomote, Japan. Here our preliminary observations indicate that ocean-exposed MCE are subject to semi-diurnal temperature oscillations of up to 4 C during summer (range 23 - 29 deg C), while inner bay MCE occur at shallower depths in more turbid but stable environments. This continuum of oceanic exposure is ideal for testing a range of approaches for quantifying the relative ecological and biogeochemical influence of internal waves. Stable isotope analyses (SIA) are a particularly useful tool for understanding functional links between oceanic processes, local-scale nutrient cycling, and trophic ecology, with results from shallow reefs showing they likely function along a continuum of reliance on external inputs versus internal recycling depending on the degree of oceanic exposure. Although challenging to implement in deep water habitats, the combination of SIA with compound-specific isotope analyses of amino acids (CSIA-AA), depth-specific radioisotope markers such as radiocarbon and iodine ratios (129I/127I), and eddy covariance experiments offers a promising path towards elucidating the functional importance of internal waves in the development and persistence of MCE at local to regional scales.
Mass coral mortality under local amplification of 2 °C ocean warming
NASA Astrophysics Data System (ADS)
Decarlo, Thomas M.; Cohen, Anne L.; Wong, George T. F.; Davis, Kristen A.; Lohmann, Pat; Soong, Keryea
2017-03-01
A 2 °C increase in global temperature above pre-industrial levels is considered a reasonable target for avoiding the most devastating impacts of anthropogenic climate change. In June 2015, sea surface temperature (SST) of the South China Sea (SCS) increased by 2 °C in response to the developing Pacific El Niño. On its own, this moderate, short-lived warming was unlikely to cause widespread damage to coral reefs in the region, and the coral reef “Bleaching Alert” alarm was not raised. However, on Dongsha Atoll, in the northern SCS, unusually weak winds created low-flow conditions that amplified the 2 °C basin-scale anomaly. Water temperatures on the reef flat, normally indistinguishable from open-ocean SST, exceeded 6 °C above normal summertime levels. Mass coral bleaching quickly ensued, killing 40% of the resident coral community in an event unprecedented in at least the past 40 years. Our findings highlight the risks of 2 °C ocean warming to coral reef ecosystems when global and local processes align to drive intense heating, with devastating consequences.
Life and death of a sewage treatment plant recorded in a coral skeleton δ15N record.
Duprey, Nicolas N; Wang, Xingchen T; Thompson, Philip D; Pleadwell, Jeffrey E; Raymundo, Laurie J; Kim, Kiho; Sigman, Daniel M; Baker, David M
2017-07-15
We investigated the potential of coral skeleton δ 15 N (CS-δ 15 N) records for tracking anthropogenic-N sources in coral reef ecosystems. We produced a 56yr-long CS-δ 15 N record (1958-2014) from a reef flat in Guam that has been exposed to varying 1) levels of sewage treatment 2) population density, and 3) land use. Increasing population density (from <30 to 300ind·km -2 ) and land use changes in the watershed resulted in a ~1‰ enrichment of the CS-δ 15 N record until a sewage treatment plant (STP) started operation in 1975. Then, CS-δ 15 N stabilized, despite continued population density and land use changes. Based on population and other considerations, a continued increase in the sewage footprint might have been expected over this time. The stability of CS-δ 15 N, either contradicts this expectation, or indicates that the impacts on the outer reef at the coring site were buffered by the mixing of reef water with the open ocean. Copyright © 2017 Elsevier Ltd. All rights reserved.
Evaluation of coral reef carbonate production models at a global scale
NASA Astrophysics Data System (ADS)
Jones, N. S.; Ridgwell, A.; Hendy, E. J.
2015-03-01
Calcification by coral reef communities is estimated to account for half of all carbonate produced in shallow water environments and more than 25% of the total carbonate buried in marine sediments globally. Production of calcium carbonate by coral reefs is therefore an important component of the global carbon cycle; it is also threatened by future global warming and other global change pressures. Numerical models of reefal carbonate production are needed for understanding how carbonate deposition responds to environmental conditions including atmospheric CO2 concentrations in the past and into the future. However, before any projections can be made, the basic test is to establish model skill in recreating present-day calcification rates. Here we evaluate four published model descriptions of reef carbonate production in terms of their predictive power, at both local and global scales. We also compile available global data on reef calcification to produce an independent observation-based data set for the model evaluation of carbonate budget outputs. The four calcification models are based on functions sensitive to combinations of light availability, aragonite saturation (Ωa) and temperature and were implemented within a specifically developed global framework, the Global Reef Accretion Model (GRAM). No model was able to reproduce independent rate estimates of whole-reef calcification, and the output from the temperature-only based approach was the only model to significantly correlate with coral-calcification rate observations. The absence of any predictive power for whole reef systems, even when consistent at the scale of individual corals, points to the overriding importance of coral cover estimates in the calculations. Our work highlights the need for an ecosystem modelling approach, accounting for population dynamics in terms of mortality and recruitment and hence calcifier abundance, in estimating global reef carbonate budgets. In addition, validation of reef carbonate budgets is severely hampered by limited and inconsistent methodology in reef-scale observations.
Keeping up with sea-level rise: Carbonate production rates in Palau and Yap, western Pacific Ocean.
van Woesik, Robert; Cacciapaglia, Christopher William
2018-01-01
Coral reefs protect islands from tropical storm waves and provide goods and services for millions of islanders worldwide. Yet it is unknown how coral reefs in general, and carbonate production in particular, will respond to sea-level rise and thermal stress associated with climate change. This study compared the reef-building capacity of different shallow-water habitats at twenty-four sites on each of two islands, Palau and Yap, in the western Pacific Ocean. We were particularly interested in estimating the inverse problem of calculating the value of live coral cover at which net carbonate production becomes negative, and whether that value varied across habitats. Net carbonate production varied among habitats, averaging 10.2 kg CaCO3 m-2 y-1 for outer reefs, 12.7 kg CaCO3 m-2 y-1 for patch reefs, and 7.2 kg CaCO3 m-2 y-1 for inner reefs. The value of live coral cover at which net carbonate production became negative varied across habitats, with highest values on inner reefs. These results suggest that some inner reefs tend to produce less carbonate, and therefore need higher coral cover to produce enough carbonate to keep up with sea-level rise than outer and patch reefs. These results also suggest that inner reefs are more vulnerable to sea-level rise than other habitats, which stresses the need for effective land-use practices as the climate continues to change. Averaging across all reef habitats, the rate of carbonate production was 9.7 kg CaCO3 m-2 y-1, or approximately 7.9 mm y-1 of potential vertical accretion. Such rates of vertical accretion are higher than projected averages of sea-level rise for the representative concentration pathway (RCP) climate-change scenarios 2.6, 4.5, and 6, but lower than for the RCP scenario 8.5.
Hydrology and surface morphology of the Bonneville Salt Flats and Pilot Valley Playa, Utah
Lines, Gregory C.
1979-01-01
The Bonneville Salt Flats and Pilot Valley are in the western part of the Great Salt Lake Desert in northwest Utah. The areas are separate, though similar, hydrologic basins, and both contain a salt crust. The Bonneville salt crust covered about 40 square miles in the fall of 1976, and the salt crust in Pilot Valley covered 7 square miles. Both areas lack any noticeable surface relief (in 1976, 1.3 feet on the Bonneville salt crust and 0.3 foot on the Pilot Valley salt crust).The salt crust on the Salt Flats has been used for many years for automobile racing, and brines from shallow lacustrine deposits have been used for the production of potash. In recent years, there has been an apparent conflict between these two major uses of the area as the salt crust has diminished in both thickness and extent. Much of the Bonneville Racetrack has become rougher, and there has also been an increase in the amount of sediment on the south end of the racetrack. The Pilot Valley salt crust and surrounding playa have been largely unused.Evaporite minerals on the Salt Flats and the Pilot Valley playa are concentrated in three zones: (1) a carbonate zone composed mainly of authigenic clay-size carbonate minerals, (2) a sulfate zone composed mainly of authigenic gypsum, and (3) a chloride zone composed of crystalline halite (the salt crust). Five major types of salt crust were recognized on the Salt Flats, but only one type was observed in Pilot Valley. Geomorphic differences in the salt crust are caused by differences in their hydrologic environments. The salt crusts are dynamic features that are subject to change because of climatic factors and man's activities.Ground water occurs in three distinct aquifers in much of the western Great Salt Lake Desert: (1) the basin-fill aquifer, which yields water from conglomerate in the lower part of the basin fill, (2) the alluvial-fan aquifer, which yields water from sand and gravel along the western margins of both playas, and (3) the shallow-brine aquifer, which yields water from near-surface carbonate muds and crystalline halite and gypsum. The shallow-brine aquifer is the main source of brine used for the production of potash on the Salt Flats.Recharge to that part of the shallow-brine aquifer north of Interstate Highway 80 on the Salt Flats is mainly by infiltration of precipitation and wind-driven floods of surface brine. Discharge was mainly by evaporation at the playa surface and withdrawals from brine-collection ditches. Some water was transpired by phreatophytes, and some leaked into the alluvial fan along the western edge of the playa.Salt-scraping studies indicate that the amount of halite on the Salt Flats is directly related to the amount of recharge through the surface (which causes re-solution of halite) and the amount of evaporation at the surface (which causes crystallization of halite). Evaporation rates through sediment-covered salt crust and the gypsum surface were estimated at between 3x10-4 and 4x10-3 inches per day during the summer and fall of 1976. Evaporation rates through the surface of thick perennial salt crust were much higher.The concentration of dissolved solids in brine in the shallow-brine aquifer varies, but it generally increases from the edges of the playas toward areas of salt crust. Dissolved-solids concentration in the shallow brine ranges from less than 100,000 to more than 300,000 milligrams per liter on both playas. The increase in salinity toward areas of salt crust reflects the natural direction of brine movement through the aquifer toward the natural discharge area.On the Salt Flats, the percentages of dissolved potassium chloride and magnesium chloride in the shallow-brine aquifer generally increase from the edge of the playa to- ward the salt crust. The relative enrichment in potassium and magnesium reflects the many years of subsurface drainage toward the main discharge area (the salt crust) prior to man's withdrawal of brine. By artificially extracting brines from the carbonate muds, the percentages of potassium and magnesium have decreased while brine salinity has been maintained by re-solution of the salt crust.The configuration of the density-corrected potentiometric surface in the fall of 1976 indicates that brine in the shallow-brine aquifer under the Bonneville Racetrack was draining toward brine-collection ditches or a well field to the west. Ground-water divides have no effect on the movement of dissolved salt across the surface in wind-driven floods, and salt in surface brine was carried from the racetrack into the area of influence of the ditches by such surface movement. During 1976 on the Salt Flats, some brine was moving through the shallow-brine aquifer across lease and property boundaries.An evaluation of suggested remedial measures indicates that none will completely eliminate the conflict between uses or transform the Bonneville Salt Flats to its original state prior to man's activities in the area.
NASA Astrophysics Data System (ADS)
Valette-Silver, N. J.; Pomponi, S.; Smith, J. R.; Potter, J.
2012-12-01
Over the past decades, the NOAA Office of Ocean Exploration and Research (OER), through its programs (Ocean Exploration Program and National Undersea Research Program), and in collaboration with its federal and academic partners, has contributed to the discovery of new ocean features, species, ecosystems, habitats and processes. These new discoveries have led to the development of new policies and management actions. Exploration, research and technology advancement have contributed to the characterization and the designation of marine sanctuaries, reserves, restricted fishing areas, and monuments in US waters. For example, the collaborative efforts of OER and partners from the Cooperative Institute for Ocean Exploration, Research and Technology (CIOERT) have resulted in the discovery of new species of deep sea corals on the outer continental shelf and upper slope of the South Atlantic Bight. The species of coral found in these deep sea reefs are growing very slowly and provide habitat for many commercially valuable species of fish and other living resources. It is not yet completely clear how these habitats connect with the shallower reefs and habitats and if they could be playing a role of refugia for shallower species. Unfortunately, signs of fishing destruction on these unique and fragile habitats are obvious (e.g., abandoned nets, completely decimated habitats by trawling). OER funded research on mesophotic and deep-sea Lophelia coral reefs off the southeastern US was instrumental in the designation of the deep-water Coral Habitat Area of Particular Concern (CHAPC) that is now protecting these fragile reefs. Other examples of OER's contribution to discoveries leading to the designation of protected areas include the characterization and boundary determination of new designated Marine National Monuments and Marine Sanctuaries in the Pacific Ocean. After designation of a protected area, it is imperative to monitor the resource, improve understanding of its functioning, and thus be in a position to better protect it. While most of the reef fish surveys are conducted in shallow areas (0-20 m), it is recognized that many commercially exploited fish stocks also utilize deeper habitats (50-400m). However, traditional methods (e.g., hook-and-line) for sampling these bottom fish species cannot be used in many areas of the Northwestern Hawaiian Islands Coral Reef Ecosystem Reserve [now a Monument] and other restricted fishing areas. Our ability to assess and monitor ocean living marine resources is important for ecosystem management as well as for determining the effectiveness of Marine Protected Areas (MPAs). The development and deployment of non-extractive sampling methods such as autonomous camera systems to collect information about the spatial distribution and relative abundance of bottom fish species is one of the preferred methods. In addition, OER and the Hawaii Undersea Research Lab (HURL) were two of the first groups to conduct scientific research in the Northwestern Hawaiian Islands Coral Reef Ecosystem Reserve after it was established in 2000. Submersible dives (down to 2000 m) or ROV dives into the depths surrounding the remote islands, banks, and atolls have led to dozens of discoveries of new and yet to be identified species.
Microphthalmus mahensis sp.n. (Annelida, Phyllodocida) together with an annotated key of the genus
NASA Astrophysics Data System (ADS)
Westheide, Wilfried
2013-09-01
An interstitial polychaete, Microphthalmus mahensis, new species (Phyllodocida), is described from sand sediments of a coral reef flat of the Seychelles island Mahé. A comprehensive discussion includes a complete list of all 38 valid Microphthalmus species, and a key together with critical remarks on problematic species and subspecies.
NASA Astrophysics Data System (ADS)
Matson, Ernest A.
1989-01-01
Stable C isotope ratios (δ13C-PDB), percentages of organic matter, and HCl insoluble ash and soluble carbonates, extractable Fe, Al, Si and P were used to determine the distribution and accumulation of terrestrial material in reef-flat moats and lagoons of two high islands (Guam and Saipan) in the western tropical Pacific. Carbonate sediments of a reef-flat moat infiltrated by seepage of aquifer waters (but without surface runoff) were depleted in both P (by 38%) and 13C (by 41%) and enriched in Si (by 100%) relative to offshore lagoon sediments. Iron and ash accumulated in depositional regimes regardless of the occurrence of runoff but was depleted from coarse-grained carbonates in turbulent regimes. Aluminum (>ca. 10 to 20 μmol g-1), Fe (>ca. 1 to 3 μmol g-1) and ash (>0.5%) indicated terrigenous influence which was corroborated by depletions in both 13C and P. Low-salinity geochemical segregation, natural biochemical accumulation, as well as long-shore currents and eddies help sequester these materials nearshore.
Ingestion of Microplastics and Their Impact on Calcification in Reef-Building Corals
NASA Astrophysics Data System (ADS)
Zink, C. P.; Smith, R. T.
2016-02-01
Since the early 1970's, researchers began identifying plastics and other sources of litter as harmful to ecosystems. In recent years, there's been a growing concern about microscopic plastic debris (microplastics) and its impact on marine organisms. Likewise, microplastics are currently and continuously being documented from environmental samples on a global scale. The ecosystems most likely affected by their presence are shallow marine habitats, such as near-shore coral reefs. One concern is that microplastics may be ingested by reef-building corals and negatively impact their physiology. In this study, two species of Caribbean reef-building corals, Orbicella faveolata and Porites porites were investigated for rates of ingesting microplastics. Coral samples were incubated with 100μm micro-beads manufactured with a fluorescent label to aid in recovery and quantification from the coral tissue. Following the consumption of plastic, we measured instantaneous rates of calcification as a proxy for physiological performance compared to controls. Our results indicate that corals ingest microplastic particles and maintain them internally for at least 24 hours. Our initial findings suggest that the ingestion of ≥ 3 microplastic particles cm-2 may negatively impact rates of coral calcification. In light of these preliminary findings, further investigations should examine the long-term effect of environmentally relevant concentrations of microplastics on reef corals and its potential detriment to reef building capacity.
New interventions are needed to save coral reefs
Anthony, Ken; Bay, Line K.; Costanza, Robert; Firn, Jennifer; Gunn, John; Harrison, Peter; Heyward, Andrew; Lundgren, Petra; Mead, David; Moore, Tom; Mumby, Peter J.; van Oppen, Madeleine J. H.; Robertson, John; Runge, Michael C.; Suggett, David J.; Schaffelke, Britta; Wachenfeld, David; Walshe, Terry
2017-01-01
Since 2014, coral reefs worldwide have been subjected to the most extensive, prolonged and damaging heat wave in recorded history1. Large sections of Australia’s Great Barrier Reef (GBR) bleached in response to heat stress in 2016 and 2017 — the first back-to-back event on record. Such severe coral bleaching results in widespread loss of reef habitat and biodiversity. Globally, we are facing catastrophic decline of these ecosystems, which sustain services valued at around $US 10 trillion per year2, are home to over a million species3, and feed and support the livelihoods of hundreds of millions of people4. Model predictions indicate that mass coral bleaching could become the new norm by 2050 (ref. 5). Critically, even if global warming can be kept within 1.5⁰C above preindustrial levels, shallow tropical seas would warm at least 0.4°C in coming decades, triggering frequent bleaching of the most sensitive habitat-forming coral species6. This outlook poses a time-critical decision challenge for management and conservation. Existing conservation approaches, despite innovative governance arrangements7, could simply become insufficient to protect coral reefs under any expected climate future. Thus, for coral reefs to remain resilient and their services sustained, we argue that new and potentially riskier interventions must be implemented alongside conventional management efforts and strong action to curb global warming. We build the case for this strategy below.
Community structure and biogeography of shore fishes in the Gulf of Aqaba, Red Sea
NASA Astrophysics Data System (ADS)
Khalaf, Maroof A.; Kochzius, Marc
2002-02-01
Shore fish community structure off the Jordanian Red Sea coast was determined on fringing coral reefs and in a seagrass-dominated bay at 6 m and 12 m depths. A total of 198 fish species belonging to 121 genera and 43 families was recorded. Labridae and Pomacentridae dominated the ichthyofauna in terms of species richness and Pomacentridae were most abundant. Neither diversity nor species richness was correlated to depth. The abundance of fishes was higher at the deep reef slope, due to schooling planktivorous fishes. At 12 m depth abundance of fishes at the seagrass-dominated site was higher than on the coral reefs. Multivariate analysis demonstrated a strong influence on the fish assemblages by depth and benthic habitat. Fish species richness was positively correlated with hard substrate cover and habitat diversity. Abundance of corallivores was positively linked with live hard coral cover. The assemblages of fishes were different on the shallow reef slope, deep reef slope and seagrass meadows. An analysis of the fish fauna showed that the Gulf of Aqaba harbours a higher species richness than previously reported. The comparison with fish communities on other reefs around the Arabian Peninsula and Indian Ocean supported the recognition of an Arabian subprovince within the Indian Ocean. The affinity of the Arabian Gulf ichthyofauna to the Red Sea is not clear.
Sewage in ground water in the Florida Keys
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shinn, E.A.
1995-12-31
More than 24,000 septic tanks, 5,000 cesspools, and greater than 600 shallow disposal wells introduce sewage effluents into porous and permeable limestone underlying the Florida Keys. To porous and permeable limestone underlying the Florida Keys. To assess the fate of sewage nutrients, 21 2- to 20-m-deep wells were core drilled and completed as water-monitoring wells. The wells were sampled quarterly and analyzed for 17 parameters. including nutrients and bacteria. Nutrients (mainly NH4, - which is 30 to 40 times higher than in surface sea water) were detected in ground water beneath the Keys and offshore coral reefs. Highest levels weremore » beneath reefs 5 to 8 km offshore. Ground waters were generally hypersaline and fecal bacteria (fecal coliform and streptococci) were detected in ground water beneath living coral reefs. Higher sea level on the Florida Bay side of the Keys is proposed as the mechanism for forcing ground water toward offshore coral reefs. Tidal pumping, which is more pronounced near the Keys, causes leakage of ground water where the sediment is thin. Areas lacking sediment cover consist of bare limestone bedrock or permeable coral reefs. These are the areas where coral diseases and algal growth have increased in recent years. Pollutants entering the ground water beneath the Florida Keys are likely to be transported seaward beneath impermeable Holocene sediments and may be upwelling through coral reefs and other hardbottom communities.« less
Restoration of oyster reefs in an estuarine lake: population dynamics and shell accretion
Casas, Sandra M.; La Peyre, Jerome F.; La Peyre, Megan K.
2015-01-01
Restoration activities inherently depend on understanding the spatial and temporal variation in basic demographic rates of the species of interest. For species that modify and maintain their own habitat such as the eastern oyster Crassostrea virginica, understanding demographic rates and their impacts on population and habitat success are crucial to ensuring restoration success. We measured oyster recruitment, density, size distribution, biomass, mortality and Perkinsus marinus infection intensity quarterly for 3 yr on shallow intertidal reefs created with shell cultch in March 2009. All reefs were located within Sister Lake, LA. Reefs were placed in pairs at 3 different locations within the lake; pairs were placed in low and medium energy sites within each location. Restored reefs placed within close proximity (<8 km) experienced very different development trajectories; there was high inter-site and inter-annual variation in recruitment and mortality of oysters, with only slight variation in growth curves. Despite this high variation in population dynamics, all reefs supported dense oyster populations (728 ± 102 ind. m-2) and high live oyster biomass (>14.6 kg m-2) at the end of 3 yr. Shell accretion, on average, exceeded estimated rates required to keep pace with local subsidence and shell loss. Variation in recruitment, growth and survival drives local site-specific population success, which highlights the need to understand local water quality, hydrodynamics, and metapopulation dynamics when planning restoration.
NASA Astrophysics Data System (ADS)
Fabricius, K. E.
1997-07-01
The distribution and abundance of soft coral genera on reefs of the central Great Barrier Reef was investigated in relation to reef position, recent history of disturbance, wave exposure, substratum slope and depth. Eighty-five 25 m long transects were surveyed at 10 m depth on windward sides of 14 mid- and outer-shelf reefs. A further 75 transects in different zones on one mid-shelf reef (Davies Reef) between 5 and 30 m depth were investigated. The crown-of-thorns starfish Acanthaster planci had caused large-scale mortality of scleractinians on eight of these reefs five to ten years prior to the study, and as a result, scleractinian cover was only 35-55% of that on the six unimpacted reefs. On the impacted reefs, stony corals with massive and encrusting growths form had smaller average colony diameters but similar or slightly lower numerical abundance. In contrast, mean colony size, cover and abundance of branching stony corals showed no difference between impacted and unimpacted reefs. Twenty-four genera of soft corals (in eight families) were recorded, and none showed different abundance or cover in areas of former A. planci impact, compared to unaffected sites. Similarly, no difference was detected among locations in the numbers or area cover of sponges, tunicates, zoanthids, Halimeda or other macro-algae. Mean soft coral cover was 2 to 5% at 10 m on sheltered mid-shelf reefs, and 12 to 17% on more current-exposed reefs. Highest cover and abundances generally occurred on platforms of outer-shelf reefs exposed to relatively strong currents but low wave energy. On Davies Reef, cover and colony numbers of the families Nephtheidae and Xeniidae were low within the zone of wave impact, in flow-protected bays and lagoons, on shaded steep slopes, and at depths above 10 and below 25 m. In contrast, distributions of genera of the family Alcyoniidae were not related to these physical parameters. The physical conditions of a large proportion of habitats appear "sub-optimal" for the fastest growing taxa, possibly preventing an invasion of the cleared space. Thus, in the absence of additional stress these shallow-water fore-reef zones appear sufficiently resilient to return to their pre-outbreak state of scleractinian dominance.
Bathymetry and selected perspective views of 6 reef and coastal areas in Northern Lake Michigan
Barnes, Peter; Fleisher, Guy; Gardner, James V.; Lee, Kristen
2003-01-01
We apply state of the art laser technology and derivative imagery to map the detailed morphology and of principal lake trout spawning sites on reefs in Northern Lake Michigan and to provide a geologic interpretation. We sought to identify the presence of ideal spawning substrate: shallow, "clean" gravel/cobble substrate, adjacent to deeper water. This study is a pilot collaborative effort with the US Army Corps of Engineers SHOALS (Scanning Hydrographic Operational Airborne Lidar Survey) program. The high-definition maps are integrated with known and developing data on fisheries, as well as limited substrate sedimentologic information and underlying Paleozoic carbonate rocks.
Mapping Mesophotic Reefs Along the Brazilian Continental Margin
NASA Astrophysics Data System (ADS)
Bastos, A.; Moura, R.; Amado Filho, G.; Ferreira, L.; Boni, G.; Vedoato, F.; D'Agostini, D.; Lavagnino, A. C.; Leite, M. D.; Quaresma, V.
2017-12-01
Submerged or drowned reefs constitute an important geological record of sea level variations, forming the substrate for the colonization of modern benthic mesophotic communities. Although mapping mesophotic reefs has increased in the last years, their spatial distribution is poorly known and the worldwide occurrence of this reef habitat maybe underestimated. The importance in recognizing the distribution of mesophotic reefs is that they can act as a refuge for corals during unsuitable environmental conditions and a repository for shallow water corals. Here we present the result of several acoustic surveys that mapped and discovered new mesophotic reefs along the Eastern and Equatorial Brazilian Continental Margin. Seabed mapping was carried out using multibeam and side scan sonars. Ground truthing was obtained using drop camera or scuba diving. Mesophotic reefs were mapped in water depths varying from 30 to 100m and under distinct oceanographic conditions, especially in terms of river load input and shelf width. Reefs showed distinct morphologies, from low relief banks and paleovalleys to shelf edge ridges. Extensive occurrence of low relief banks were mapped along the most important coralline complex province in the South Atlantic, the Abrolhos Shelf. These 30 to 40m deep banks, have no more than 3 meters in height and may represent fringing reefs formed during sea level stabilization. Paleovalleys mapped along the eastern margin showed the occurrence of coralgal ledges along the channel margins. Paleovalleys are usually deeper than 45m and are associated with outer shelf rhodolith beds. Shelf edge ridges (80 to 120m deep) were mapped along both margins and are related to red algal encrusting irregular surfaces that have more than 3m in height, forming a rigid substrate for coral growth. Along the Equatorial Margin, off the Amazon mouth, shelf edge patch reefs and rhodolith beds forming encrusting surfaces and shelf edge ridges were mapped in water depths greater than 100m. Thus, the occurrence of mesophotic reefs along the Brazilian Margin is influenced by transgressive morphological features, which could be used as a surrogate for mesophotic reef distribution. The extensive occurrence of rhodolith beds on the outer shelf characterizes most of these reefs.
Effects of fringing reefs on tsunami inundation: American Samoa
Gelfenbaum, G.; Apotsos, A.; Stevens, A.W.; Jaffe, B.
2011-01-01
A numerical model of tsunami inundation, Delft3D, which has been validated for the 29 September 2009 tsunami in Tutuila, American Samoa, is used to better understand the impact of fringing coral reefs and embayments on tsunami wave heights, inundation distances, and velocities. The inundation model is used to explore the general conditions under which fringing reefs act as coastal buffers against incoming tsunamis. Of particular interest is the response of tsunamis to reefs of varying widths, depths, and roughness, as well as the effects of channels incised in the reef and the focusing effect of embayments. Model simulations for conditions similar to Tutuila, yet simplified to be uniform in the alongshore, suggest that for narrow reefs, less than about 200 m wide, the shoaling owing to shallow water depths over the fringing reef dominates, inducing greater wave heights onshore under some conditions and farther inundation inland. As the reef width increases, wave dissipation through bottom friction begins to dominate and the reef causes the tsunami wave heights to decrease and the tsunami to inundate less far inland. A sensitivity analysis suggests that coral reef roughness is important in determining the manner in which a fringing reef affects tsunami inundation. Smooth reefs are more likely to increase the onshore velocity within the tsunami compared to rough reefs. A larger velocity will likely result in an increased impact of the tsunami on structures and buildings. Simulations developed to explore 2D coastal morphology show that incised channels similar to those found around Tutuila, as well as coastal embayments, also affect tsunami inundation, allowing larger waves to penetrate farther inland. The largest effect is found for channels located within embayments, and for embayments that narrow landward. These simulations suggest that embayments that narrow landward, such as Fagafue Bay on the north side of Tutuila, and that have an incised deep channel, can cause a significant increase in tsunami wave heights, inundation distances, and velocities. Wide embayments, similar in size to Massacre Bay, induce some tsunami amplification, but not as much as for the narrowing embayment.
NASA Astrophysics Data System (ADS)
van Hunen, Jeroen; van den Berg, Arie P.; Vlaar, Nico J.
2004-08-01
Shallow flat subduction is a relatively common feature at present-day subduction zones. Several mechanisms to explain this feature have been proposed, and can be subdivided into three groups: overthrusting of the subducting plate, subduction of a plume-generated oceanic plateau, and slab suction forces. We developed a numerical model to investigate these mechanisms and tested it through a comparison of the model results with the observations of the Peru flat slab where all three mechanisms seem to be contributing. The ratio of contributions of overthrusting continent to plateau subduction is in the range of 1:1 to 1:2, and the role of plate suction forces is likely to be significant. By applying the overthrusting continent and plateau subduction mechanisms separately, we were able to determine the most important model parameters for each of the mechanisms. Overthrusting easily results in flat subduction, and the flat slab length is primarily a function of slab age, overriding plate motion and mantle viscosity. An oceanic plateau is much less likely to cause flat subduction, and favorable conditions for flat subduction include a young slab age, long-lived plateau buoyancy after subduction, a strong mantle, and addition of slab suction forces that are large enough to further reduce the subduction dip angle, once the plateau initiates this flattening. Furthermore, we found that even though today flat subduction can be explained with the dominant model parameters within a reasonable range, for a slightly hotter, younger Earth, these flat subduction conditions are much less favorable, and so this style of subduction was probably not present in the past. This contradicts earlier predictions that flat subduction was a more wide-spread phenomenon in the early stages of plate tectonics in a younger earth.
NASA Astrophysics Data System (ADS)
Ayata, Sakina-Dorothée; Ellien, Céline; Dumas, Franck; Dubois, Stanislas; Thiébaut, Éric
2009-06-01
The honeycomb worm Sabellaria alveolata forms biogenic reefs which constitute diversity hotspots on tidal flats. The largest known reefs in Europe, located in the Bay of Mont-Saint-Michel (English Channel), are suffering increasing anthropogenic disturbances which raise the question of their sustainability. As the ability to recover depends partly on the recolonization of damaged reefs by larval supply, evaluating larval dispersal and the connectivity between distant reefs is a major challenge for their conservation. In the present study, we used a 3D biophysical model to simulate larval dispersal under realistic hydroclimatic conditions and estimate larval retention and exchanges among the two reefs of different sizes within the bay. The model takes into account fine-scale hydrodynamic circulation (800×800 m 2), advection-diffusion larval transport, and gregarious settlement behaviour. According to the field data, larval dispersal was simulated for a minimal planktonic larval duration ranging from 4 to 8 weeks and the larval mortality was set to 0.09 d -1. The results highlighted the role played by a coastal eddy on larval retention within the bay, as suggested by previous in situ observations. Very different dispersal patterns were revealed depending on the spawning reef location, although the two reefs were located only 15 km apart. The settlement success of the larvae released from the smallest reef was mainly related to tidal conditions at spawning, with the highest settlement success for releases at neap tide. The settlement success of the larvae from the biggest reef was more dependent on meteorological conditions: favourable W and SW winds may promote a ten-fold increase in settlement success. Strong year-to-year variability was observed in settlers' numbers, with favourable environmental windows not always coinciding with the main reproductive periods of Sabellaria. Settlement kinetics indicated that the ability to delay metamorphosis could significantly improve the settlement success. Although bidirectional exchanges occurred between the two reefs, the highest settlers' numbers originated from the biggest reef because of its stronger reproductive output. Because of the recent decline of this reef due to increasing anthropogenic disturbances larval supply in the bay may not be sufficient enough to ensure the sustainability of the remarkable habitat formed by Sabellaria alveolata reefs.
NASA Astrophysics Data System (ADS)
Dehbozorgi, M.; Yazdi, M.; Torabi, H.
2009-04-01
Late Miocene Corals assemblage from Zagros Iran are investigated with respect to their palaeoecology and palaeobiogeography implications. This Corals are compared with fauna from Mediterranean Tethys and the Indopacific. Small foraminifers are used for biogeography and to support paleoecology interpretation. The studied section situated in the Zagros Mishan F.m is last depositions sea. A distinct horizon characterized by Porites- Antiguastrea assemblage associated Milliolid and Rotalia is interpreted a shallow bioclastic shoal. Patch reef with a porites and faviidae assemblage are a common feature of Oligocene and Miocene coral occurrence and indicate water depth of less than 20m. The diversity of corals in this area are low and all corals are hematypic. Miocene Corals from Mishan F.m Comprise 7 genera and occur in the single horizon or patch reef. This Corals and patch reefs are compared with corals and patch reefs in Qom F.m Central Iran. This corals report from this section: Antiguastrea sp., Monastrea sp., Favites sp., Porites sp., Dichocoenia sp., Asterohelia sp., Leptoria sp. Keywords: Miocene- Iran- Mishan-Zagros- Formation- Tethys seaway- Corals- Palaeoecology- palaeobiogeography.
Hyperspectral remote sensing of wild oyster reefs
NASA Astrophysics Data System (ADS)
Le Bris, Anthony; Rosa, Philippe; Lerouxel, Astrid; Cognie, Bruno; Gernez, Pierre; Launeau, Patrick; Robin, Marc; Barillé, Laurent
2016-04-01
The invasion of the wild oyster Crassostrea gigas along the western European Atlantic coast has generated changes in the structure and functioning of intertidal ecosystems. Considered as an invasive species and a trophic competitor of the cultivated conspecific oyster, it is now seen as a resource by oyster farmers following recurrent mass summer mortalities of oyster spat since 2008. Spatial distribution maps of wild oyster reefs are required by local authorities to help define management strategies. In this work, visible-near infrared (VNIR) hyperspectral and multispectral remote sensing was investigated to map two contrasted intertidal reef structures: clusters of vertical oysters building three-dimensional dense reefs in muddy areas and oysters growing horizontally creating large flat reefs in rocky areas. A spectral library, collected in situ for various conditions with an ASD spectroradiometer, was used to run Spectral Angle Mapper classifications on airborne data obtained with an HySpex sensor (160 spectral bands) and SPOT satellite HRG multispectral data (3 spectral bands). With HySpex spectral/spatial resolution, horizontal oysters in the rocky area were correctly classified but the detection was less efficient for vertical oysters in muddy areas. Poor results were obtained with the multispectral image and from spatially or spectrally degraded HySpex data, it was clear that the spectral resolution was more important than the spatial resolution. In fact, there was a systematic mud deposition on shells of vertical oyster reefs explaining the misclassification of 30% of pixels recognized as mud or microphytobenthos. Spatial distribution maps of oyster reefs were coupled with in situ biomass measurements to illustrate the interest of a remote sensing product to provide stock estimations of wild oyster reefs to be exploited by oyster producers. This work highlights the interest of developing remote sensing techniques for aquaculture applications in coastal areas.
The coral reef crisis: the critical importance of<350 ppm CO2.
Veron, J E N; Hoegh-Guldberg, O; Lenton, T M; Lough, J M; Obura, D O; Pearce-Kelly, P; Sheppard, C R C; Spalding, M; Stafford-Smith, M G; Rogers, A D
2009-10-01
Temperature-induced mass coral bleaching causing mortality on a wide geographic scale started when atmospheric CO(2) levels exceeded approximately 320 ppm. When CO(2) levels reached approximately 340 ppm, sporadic but highly destructive mass bleaching occurred in most reefs world-wide, often associated with El Niño events. Recovery was dependent on the vulnerability of individual reef areas and on the reef's previous history and resilience. At today's level of approximately 387 ppm, allowing a lag-time of 10 years for sea temperatures to respond, most reefs world-wide are committed to an irreversible decline. Mass bleaching will in future become annual, departing from the 4 to 7 years return-time of El Niño events. Bleaching will be exacerbated by the effects of degraded water-quality and increased severe weather events. In addition, the progressive onset of ocean acidification will cause reduction of coral growth and retardation of the growth of high magnesium calcite-secreting coralline algae. If CO(2) levels are allowed to reach 450 ppm (due to occur by 2030-2040 at the current rates), reefs will be in rapid and terminal decline world-wide from multiple synergies arising from mass bleaching, ocean acidification, and other environmental impacts. Damage to shallow reef communities will become extensive with consequent reduction of biodiversity followed by extinctions. Reefs will cease to be large-scale nursery grounds for fish and will cease to have most of their current value to humanity. There will be knock-on effects to ecosystems associated with reefs, and to other pelagic and benthic ecosystems. Should CO(2) levels reach 600 ppm reefs will be eroding geological structures with populations of surviving biota restricted to refuges. Domino effects will follow, affecting many other marine ecosystems. This is likely to have been the path of great mass extinctions of the past, adding to the case that anthropogenic CO(2) emissions could trigger the Earth's sixth mass extinction.
Walker, Brian K.; Gilliam, David S.
2013-01-01
Climate change has recently been implicated in poleward shifts of many tropical species including corals; thus attention focused on higher-latitude coral communities is warranted to investigate possible range expansions and ecosystem shifts due to global warming. As the northern extension of the Florida Reef Tract (FRT), the third-largest barrier reef ecosystem in the world, southeast Florida (25–27° N latitude) is a prime region to study such effects. Most of the shallow-water FRT benthic habitats have been mapped, however minimal data and limited knowledge exist about the coral reef communities of its northernmost reaches off Martin County. First benthic habitat mapping was conducted using newly acquired high resolution LIDAR bathymetry and aerial photography where possible to map the spatial extent of coral reef habitats. Quantitative data were collected to characterize benthic cover and stony coral demographics and a comprehensive accuracy assessment was performed. The data were then analyzed in a habitat biogeography context to determine if a new coral reef ecosystem region designation was warranted. Of the 374 km2 seafloor mapped, 95.2% was Sand, 4.1% was Coral Reef and Colonized Pavement, and 0.7% was Other Delineations. Map accuracy assessment yielded an overall accuracy of 94.9% once adjusted for known map marginal proportions. Cluster analysis of cross-shelf habitat type and widths indicated that the benthic habitats were different than those further south and warranted designation of a new coral reef ecosystem region. Unlike the FRT further south, coral communities were dominated by cold-water tolerant species and LIDAR morphology indicated no evidence of historic reef growth during warmer climates. Present-day hydrographic conditions may be inhibiting poleward expansion of coral communities along Florida. This study provides new information on the benthic community composition of the northern FRT, serving as a baseline for future community shift and range expansion investigations. PMID:24282542
Coral reef habitat response to climate change scenarios.
Freeman, Lauren A; Kleypas, Joan A; Miller, Arthur J
2013-01-01
Coral reef ecosystems are threatened by both climate change and direct anthropogenic stress. Climate change will alter the physico-chemical environment that reefs currently occupy, leaving only limited regions that are conducive to reef habitation. Identifying these regions early may aid conservation efforts and inform decisions to transplant particular coral species or groups. Here a species distribution model (Maxent) is used to describe habitat suitable for coral reef growth. Two climate change scenarios (RCP4.5, RCP8.5) from the National Center for Atmospheric Research's Community Earth System Model were used with Maxent to determine environmental suitability for corals (order Scleractinia). Environmental input variables best at representing the limits of suitable reef growth regions were isolated using a principal component analysis. Climate-driven changes in suitable habitat depend strongly on the unique region of reefs used to train Maxent. Increased global habitat loss was predicted in both climate projections through the 21(st) century. A maximum habitat loss of 43% by 2100 was predicted in RCP4.5 and 82% in RCP8.5. When the model is trained solely with environmental data from the Caribbean/Atlantic, 83% of global habitat was lost by 2100 for RCP4.5 and 88% was lost for RCP8.5. Similarly, global runs trained only with Pacific Ocean reefs estimated that 60% of suitable habitat would be lost by 2100 in RCP4.5 and 90% in RCP8.5. When Maxent was trained solely with Indian Ocean reefs, suitable habitat worldwide increased by 38% in RCP4.5 by 2100 and 28% in RCP8.5 by 2050. Global habitat loss by 2100 was just 10% for RCP8.5. This projection suggests that shallow tropical sites in the Indian Ocean basin experience conditions today that are most similar to future projections of worldwide conditions. Indian Ocean reefs may thus be ideal candidate regions from which to select the best strands of coral for potential re-seeding efforts.
Mangroves Enhance Reef Fish Abundance at the Caribbean Regional Scale.
Serafy, Joseph E; Shideler, Geoffrey S; Araújo, Rafael J; Nagelkerken, Ivan
2015-01-01
Several studies conducted at the scale of islands, or small sections of continental coastlines, have suggested that mangrove habitats serve to enhance fish abundances on coral reefs, mainly by providing nursery grounds for several ontogenetically-migrating species. However, evidence of such enhancement at a regional scale has not been reported, and recently, some researchers have questioned the mangrove-reef subsidy effect. In the present study, using two different regression approaches, we pursued two questions related to mangrove-reef connectivity at the Caribbean regional scale: (1) Are reef fish abundances limited by mangrove forest area?; and (2) Are mean reef fish abundances proportional to mangrove forest area after taking human population density and latitude into account? Specifically, we tested for Caribbean-wide mangrove forest area effects on the abundances of 12 reef fishes that have been previously characterized as "mangrove-dependent". Analyzed were data from an ongoing, long-term (20-year) citizen-scientist fish monitoring program; coastal human population censuses; and several wetland forest information sources. Quantile regression results supported the notion that mangrove forest area limits the abundance of eight of the 12 fishes examined. Linear mixed-effects regression results, which considered potential human (fishing and habitat degradation) and latitudinal influences, suggested that average reef fish densities of at least six of the 12 focal fishes were directly proportional to mangrove forest area. Recent work questioning the mangrove-reef fish subsidy effect likely reflects a failure to: (1) focus analyses on species that use mangroves as nurseries, (2) consider more than the mean fish abundance response to mangrove forest extent; and/or (3) quantitatively account for potentially confounding human impacts, such as fishing pressure and habitat degradation. Our study is the first to demonstrate at a large regional scale (i.e., the Wider Caribbean) that greater mangrove forest size generally functions to increase the densities on neighboring reefs of those fishes that use these shallow, vegetated habitats as nurseries.
Biological Communities and Geomorphology of Patch Reefs in Biscayne National Park, Florida, U.S.A.
Kuffner, Ilsa B.; Brock, John C.; Grober-Dunsmore, Rikki; Hickey, T. Don; Bonito, Victor; Bracone, Jeremy E.; Wright, C. Wayne
2008-01-01
Coral reef ecosystem management benefits from continual, quantitative assessment of the resources being managed, plus assessment of factors that affect distribution patterns of organisms in the ecosystem. In this study, we investigated the relationships among physical, benthic, and fish variables in effort to help explain the distribution patterns of ecologically and economically important species on twelve patch reefs within Biscayne National Park (BNP), Florida, U.S.A. We visited 196 randomly-located sampling stations across twelve shallow (< 10m) patch reefs, using SCUBA to conduct our surveys. We measured physical variables (e.g., substratum type), estimated the percent cover of benthic community members (e.g., coral, algae), and counted and estimated mean size for each fish species observed. We also used high-density bathymetric data collected remotely via airborne laser surveying (Experimental Advanced Airborne Research Lidar (EAARL)) to calculate rugosity (bumpiness) of the reef habitat. Here we present our findings visually by graphing our quantitative community and physical structure data simultaneously in a GIS map format. You will see that biological organisms arrange themselves on each patch reef in a non-random manner. For example, many species of fish prefer to locate themselves in areas of the reef where the rugosity index is high. Rugose parts of the reef provide them with good hiding places from predators. These maps (and the data used to create them) are permanent records of the status of reef resources found on these twelve patch reefs in BNP as of September, 2003. The survey data found in the shapefile located on this CD product includes benthic percent cover data for algae, coral, encrusting invertebrates, and substratum type, in addition to gorgonian abundance and volume, total fish abundance and species richness, and specific counts for Acanthurids (surgeonfish), Scarids (parrotfish), Lutjanids (snappers), Haemulids (grunts), Serranids (groupers), and Pomacentrids (damselfish).
Mangroves Enhance Reef Fish Abundance at the Caribbean Regional Scale
Serafy, Joseph E.; Shideler, Geoffrey S.; Araújo, Rafael J.; Nagelkerken, Ivan
2015-01-01
Several studies conducted at the scale of islands, or small sections of continental coastlines, have suggested that mangrove habitats serve to enhance fish abundances on coral reefs, mainly by providing nursery grounds for several ontogenetically-migrating species. However, evidence of such enhancement at a regional scale has not been reported, and recently, some researchers have questioned the mangrove-reef subsidy effect. In the present study, using two different regression approaches, we pursued two questions related to mangrove-reef connectivity at the Caribbean regional scale: (1) Are reef fish abundances limited by mangrove forest area?; and (2) Are mean reef fish abundances proportional to mangrove forest area after taking human population density and latitude into account? Specifically, we tested for Caribbean-wide mangrove forest area effects on the abundances of 12 reef fishes that have been previously characterized as “mangrove-dependent”. Analyzed were data from an ongoing, long-term (20-year) citizen-scientist fish monitoring program; coastal human population censuses; and several wetland forest information sources. Quantile regression results supported the notion that mangrove forest area limits the abundance of eight of the 12 fishes examined. Linear mixed-effects regression results, which considered potential human (fishing and habitat degradation) and latitudinal influences, suggested that average reef fish densities of at least six of the 12 focal fishes were directly proportional to mangrove forest area. Recent work questioning the mangrove-reef fish subsidy effect likely reflects a failure to: (1) focus analyses on species that use mangroves as nurseries, (2) consider more than the mean fish abundance response to mangrove forest extent; and/or (3) quantitatively account for potentially confounding human impacts, such as fishing pressure and habitat degradation. Our study is the first to demonstrate at a large regional scale (i.e., the Wider Caribbean) that greater mangrove forest size generally functions to increase the densities on neighboring reefs of those fishes that use these shallow, vegetated habitats as nurseries. PMID:26536478
Walker, Brian K; Gilliam, David S
2013-01-01
Climate change has recently been implicated in poleward shifts of many tropical species including corals; thus attention focused on higher-latitude coral communities is warranted to investigate possible range expansions and ecosystem shifts due to global warming. As the northern extension of the Florida Reef Tract (FRT), the third-largest barrier reef ecosystem in the world, southeast Florida (25-27° N latitude) is a prime region to study such effects. Most of the shallow-water FRT benthic habitats have been mapped, however minimal data and limited knowledge exist about the coral reef communities of its northernmost reaches off Martin County. First benthic habitat mapping was conducted using newly acquired high resolution LIDAR bathymetry and aerial photography where possible to map the spatial extent of coral reef habitats. Quantitative data were collected to characterize benthic cover and stony coral demographics and a comprehensive accuracy assessment was performed. The data were then analyzed in a habitat biogeography context to determine if a new coral reef ecosystem region designation was warranted. Of the 374 km(2) seafloor mapped, 95.2% was Sand, 4.1% was Coral Reef and Colonized Pavement, and 0.7% was Other Delineations. Map accuracy assessment yielded an overall accuracy of 94.9% once adjusted for known map marginal proportions. Cluster analysis of cross-shelf habitat type and widths indicated that the benthic habitats were different than those further south and warranted designation of a new coral reef ecosystem region. Unlike the FRT further south, coral communities were dominated by cold-water tolerant species and LIDAR morphology indicated no evidence of historic reef growth during warmer climates. Present-day hydrographic conditions may be inhibiting poleward expansion of coral communities along Florida. This study provides new information on the benthic community composition of the northern FRT, serving as a baseline for future community shift and range expansion investigations.
NASA Astrophysics Data System (ADS)
do Nascimento Silva, Luzia Liniane; Gomes, Moab Praxedes; Vital, Helenice
2018-05-01
Submerged reefs, referred to as the Açu Reefs, have been newly observed on both sides of the Açu Incised Valley on the northeastern equatorial Brazilian outer shelf. This study aims to understand the roles of shelf physiography, its antecedent morphologies, and its inter reef sedimentation on the different development stages of the biogenic reef during last deglacial sea-level rise. The data sets consist of side-scan sonar imagery, one sparker seismic profile, 76 sediment samples, and underwater photography. Seven backscatter patterns (P1 to P7) were identified and associated with eleven sedimentary carbonate and siliciclastic facies. The inherited relief, the mouth of the paleo incised valley, and the interreef sediment distribution play major controls on the deglacial reef evolution. The reefs occur in a depth-limited 25-55 m water depth range and in a 6 km wide narrow zone of the outer shelf. The reefs crop out in a surface area over 100 km2 and occur as a series of NW-SE preferentially orientated ridges composed of three parallel ridge sets at 45, 35, and 25 m of water depth. The reefs form a series of individual, roughly linear ridges, tens of km in length, acting as barriers in addition to scattered reef mounds or knolls, averaging 4 m in height and grouped in small patches and aggregates. The reefs, currently limited at the transition between the photic and mesophotic zones, are thinly covered by red algae and scattered coral heads and sponges. Taking into account the established sea-level curves from the equatorial Brazilian northeastern shelf / Rochas Atoll and Barbados, the shelf physiography, and the shallow bedrock, the optimal conditions for reef development had to occur during a time interval (11-9 kyr BP) characterized by a slowdown of the outer shelf flooding, immediately following Meltwater Pulse-1B. This 2 kyr short interval provided unique conditions for remarkable reef backstepping into distinct parallel ridge sets. Furthermore, the Açu Reefs have trapped relict siliciclastic sediments within the three sets of reefs, west of the Açu Incised Valley and adjacent coasts. Lines evidence of easterly nearshore currents carried sediments from the old Açu Incised Valley and adjacent coasts. These incipiently drowned reefs influence the water circulation patterns of the modern shelf system, its carbonate sedimentation, and sediment transport. This study provides a new example of reef occurrence which might be more commonly observed on similar equatorial continental shelves.
Exact Riemann solutions of the Ripa model for flat and non-flat bottom topographies
NASA Astrophysics Data System (ADS)
Rehman, Asad; Ali, Ishtiaq; Qamar, Shamsul
2018-03-01
This article is concerned with the derivation of exact Riemann solutions for Ripa model considering flat and non-flat bottom topographies. The Ripa model is a system of shallow water equations accounting for horizontal temperature gradients. In the case of non-flat bottom topography, the mass, momentum and energy conservation principles are utilized to relate the left and right states across the step-type bottom topography. The resulting system of algebraic equations is solved iteratively. Different numerical case studies of physical interest are considered. The solutions obtained from developed exact Riemann solvers are compared with the approximate solutions of central upwind scheme.
Shapiro, A C; Rohmann, S O
2005-05-01
Continuous summit-to-sea maps showing both land features and shallow-water coral reefs have been completed in Puerto Rico and the U.S. Virgin Islands, using circa 2000 Landsat 7 Enhanced Thematic Mapper (ETM+) Imagery. Continuous land/sea terrain was mapped by merging Digital Elevation Models (DEM) with satellite-derived bathymetry. Benthic habitat characterizations were created by unsupervised classifications of Landsat imagery clustered using field data, and produced maps with an estimated overall accuracy of>75% (Tau coefficient >0.65). These were merged with Geocover-LC (land use/land cover) data to create continuous land/ sea cover maps. Image pairs from different dates were analyzed using Principle Components Analysis (PCA) in order to detect areas of change in the marine environment over two different time intervals: 2000 to 2001, and 1991 to 2003. This activity demonstrates the capabilities of Landsat imagery to produce continuous summit-to-sea maps, as well as detect certain changes in the shallow-water marine environment, providing a valuable tool for efficient coastal zone monitoring and effective management and conservation.
NASA Astrophysics Data System (ADS)
Field, S. N.; Glassom, D.; Bythell, J.
2007-06-01
The choice of substrata and the methods of deployment in analyses of settlement in benthic communities are often driven by the cost of materials and their local availability, and comparisons are often made between studies using different methodologies. The effects of varying artificial substratum, size of replicates and method of deployment were determined on a shallow reef in Eilat, Israel, while the effect of size of replicates was also investigated on a shallow reef in Sharm El Sheikh, Egypt. When statistical power was high enough, that is, when sufficient numbers of settlers were recorded, significant differences were found between materials used, tile size and methods of deployment. Significant differences were detected in total coral settlement rates and for the two dominant taxonomic groups, acroporids and pocilloporids. Standardisation of tile materials, dimensions, and method of deployment is needed for comparison between coral and other epibiont settlement studies. However, a greater understanding of the effects of these experimental variables on settlement processes may enable retrospective comparisons between studies utilising a range of materials and methods.
Flood impacts in Keppel Bay, southern great barrier reef in the aftermath of cyclonic rainfall.
Jones, Alison M; Berkelmans, Ray
2014-01-01
In December 2010, the highest recorded Queensland rainfall associated with Tropical Cyclone 'Tasha' caused flooding of the Fitzroy River in Queensland, Australia. A massive flood plume inundated coral reefs lying 12 km offshore of the Central Queensland coast near Yeppoon and caused 40-100% mortality to coral fringing many of the islands of Keppel Bay down to a depth of ∼8 m. The severity of coral mortality was influenced by the level of exposure to low salinity seawater as a result of the reef's distance from the flood plume and to a lesser extent, water depth and whether or not the reef faced the plume source. There was no evidence in this study of mortality resulting from pollutants derived from the nearby Fitzroy Catchment, at least in the short term, suggesting that during a major flood, the impact of low salinity on corals outweighs that of pollutants. Recovery of the reefs in Keppel Bay from the 2010/2011 Fitzroy River flood is likely to take 10-15 years based on historical recovery periods from a similar event in 1991; potentially impacting visitor numbers for tourism and recreational usage. In the meantime, activities like snorkeling, diving and coral viewing will be focused on the few shallow reefs that survived the flood, placing even further pressure on their recovery. Reef regeneration, restoration and rehabilitation are measures that may be needed to support tourism in the short term. However, predictions of a warming climate, lower rainfall and higher intensity summer rain events in the Central and Coastal regions of Australia over the next decade, combined with the current anthropogenic influences on water quality, are likely to slow regeneration with consequent impact on long-term reef resilience.
Flood Impacts in Keppel Bay, Southern Great Barrier Reef in the Aftermath of Cyclonic Rainfall
Jones, Alison M.; Berkelmans, Ray
2014-01-01
In December 2010, the highest recorded Queensland rainfall associated with Tropical Cyclone ‘Tasha’ caused flooding of the Fitzroy River in Queensland, Australia. A massive flood plume inundated coral reefs lying 12 km offshore of the Central Queensland coast near Yeppoon and caused 40–100% mortality to coral fringing many of the islands of Keppel Bay down to a depth of ∼8 m. The severity of coral mortality was influenced by the level of exposure to low salinity seawater as a result of the reef's distance from the flood plume and to a lesser extent, water depth and whether or not the reef faced the plume source. There was no evidence in this study of mortality resulting from pollutants derived from the nearby Fitzroy Catchment, at least in the short term, suggesting that during a major flood, the impact of low salinity on corals outweighs that of pollutants. Recovery of the reefs in Keppel Bay from the 2010/2011 Fitzroy River flood is likely to take 10–15 years based on historical recovery periods from a similar event in 1991; potentially impacting visitor numbers for tourism and recreational usage. In the meantime, activities like snorkeling, diving and coral viewing will be focused on the few shallow reefs that survived the flood, placing even further pressure on their recovery. Reef regeneration, restoration and rehabilitation are measures that may be needed to support tourism in the short term. However, predictions of a warming climate, lower rainfall and higher intensity summer rain events in the Central and Coastal regions of Australia over the next decade, combined with the current anthropogenic influences on water quality, are likely to slow regeneration with consequent impact on long-term reef resilience. PMID:24427294
NASA Astrophysics Data System (ADS)
Hill, Nicole A.; Lucieer, Vanessa; Barrett, Neville S.; Anderson, Tara J.; Williams, Stefan B.
2014-06-01
Management of the marine environment is often hampered by a lack of comprehensive spatial information on the distribution of diversity and the bio-physical processes structuring regional ecosystems. This is particularly true in temperate reef systems beyond depths easily accessible to divers. Yet these systems harbor a diversity of sessile life that provide essential ecosystem services, sustain fisheries and, as with shallower ecosystems, are also increasingly vulnerable to anthropogenic impacts and environmental change. Here we use cutting-edge tools (Autonomous Underwater Vehicles and ship-borne acoustics) and analytical approaches (predictive modelling) to quantify and map these highly productive ecosystems. We find the occurrence of key temperate-reef biota can be explained and predicted using standard (depth) and novel (texture) surrogates derived from multibeam acoustic data, and geographic surrogates. This suggests that combinations of fine-scale processes, such as light limitation and habitat complexity, and broad-scale processes, such as regional currents and exposure regimes, are important in structuring these diverse deep-reef communities. While some dominant habitat forming biota, including canopy algae, were widely distributed, others, including gorgonians and sea whips, exhibited patchy and restricted distributions across the reef system. In addition to providing the first quantitative and full coverage maps of reef diversity for this area, our modelling revealed that offshore reefs represented a regional diversity hotspot that is of high ecological and conservation value. Regional reef systems should not, therefore, be considered homogenous units in conservation planning and management. Full-coverage maps of the predicted distribution of biota (and associated uncertainty) are likely to be increasingly valuable, not only for conservation planning, but in the ongoing management and monitoring of these less-accessible ecosystems.
The Earth isn't flat: The (large) influence of topography on geodetic fault slip imaging.
NASA Astrophysics Data System (ADS)
Thompson, T. B.; Meade, B. J.
2017-12-01
While earthquakes both occur near and generate steep topography, most geodetic slip inversions assume that the Earth's surface is flat. We have developed a new boundary element tool, Tectosaur, with the capability to study fault and earthquake problems including complex fault system geometries, topography, material property contrasts, and millions of elements. Using Tectosaur, we study the model error induced by neglecting topography in both idealized synthetic fault models and for the cases of the MW=7.3 Landers and MW=8.0 Wenchuan earthquakes. Near the steepest topography, we find the use of flat Earth dislocation models may induce errors of more than 100% in the inferred slip magnitude and rake. In particular, neglecting topographic effects leads to an inferred shallow slip deficit. Thus, we propose that the shallow slip deficit observed in several earthquakes may be an artefact resulting from the systematic use of elastic dislocation models assuming a flat Earth. Finally, using this study as an example, we emphasize the dangerous potential for forward model errors to be amplified by an order of magnitude in inverse problems.
Caribbean Shallow-water Black Corals (Cnidaria: Anthozoa: Antipatharia)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Opresko, Dennis M; Sanchez, Juan Armando
2005-01-01
Our aim is to provide a complete key and guide to the species of black corals from the Caribbean reefs at depths shallower than about 100 m. The key to the species is mostly based on colonial features that are recognized in the field, although some closely related species can only be differentiated by microscopic skeletal features. Each species is illustrated with one or more photos showing the size and shape of the colony; many photos were taken in the natural environment to facilitate underwater identification. Additionally, a short description is provided of each species and their microscopic diagnostic charactersmore » are illustrated with the aid of the Scanning Electron Microscope (SEM). Fifteen black coral species are found in relatively shallow-water in the Caribbean, Gulf of Mexico, and other parts of the tropical western Atlantic; these belong to the families Myriopathidae [Tanacetipathes hirta (Gray), T. tanacetum (Pourtales), T. barbadensis (Brook), T. thamnea (Warner), and Plumapathes pennacea (Pallas)]; Antipathidae [Antipathes lenta Pourtales, A. rubusifonnis Warner and Opresko, A. furcata Gray, A. umbratica Opresko, A. atlantica Gray, A. gracilis Gray, A. caribbeana Opresko, Stichopathes lutkeni Brook, and S. accidentalis (Gray)]; and Aphanipathidae [Rhipidipathes colombiana (Opresko and Sinchez)]. We hope that this guide will facilitate research on black corals on Caribbean reefs, where population surveys are urgently needed to evaluate or modify conservation policies.« less
NASA Astrophysics Data System (ADS)
Diaz-Pulido, Guillermo; Cornwall, Christopher; Gartrell, Patrick; Hurd, Catriona; Tran, Dien V.
2016-12-01
Macroalgae are generally used as indicators of coral reef status; thus, understanding the drivers and mechanisms leading to increased macroalgal abundance are of critical importance. Ocean acidification (OA) due to elevated carbon dioxide (CO2) concentrations has been suggested to stimulate macroalgal growth and abundance on reefs. However, little is known about the physiological mechanisms by which reef macroalgae use CO2 from the bulk seawater for photosynthesis [i.e., (1) direct uptake of bicarbonate (HCO3 -) and/or CO2 by means of carbon concentrating mechanisms (CCM) and (2) the diffusive uptake of CO2], which species could benefit from increased CO2 or which habitats may be more susceptible to acidification-induced algal proliferations. Here, we provide the first quantitative examination of CO2-use strategies in coral reef macroalgae and provide information on how the proportion of species and the proportional abundance of species utilising each of the carbon acquisition strategies varies across a gradient of terrestrial influence (from inshore to offshore reefs) in the Great Barrier Reef (GBR). Four macroalgal groups were identified based on their carbon uptake strategies: (1) CCM-only (HCO3 - only users); (2) CCM-HCO3 -/CO2 (active uptake HCO3 - and/or CO2 use); (3) Non-CCM species (those relying on diffusive CO2 uptake); and (4) Calcifiers. δ13C values of macroalgae, confirmed by pH drift assays, show that diffusive CO2 use is more prevalent in deeper waters, possibly due to low light availability that limits activity of CCMs. Inshore shallow reefs had a higher proportion of CCM-only species, while reefs further away from terrestrial influence and exposed to better water quality had a higher number of non-CCM species than inshore and mid-shelf reefs. As non-CCM macroalgae are more responsive to increased seawater CO2 and OA, reef slopes of the outer reefs are probably the habitats most vulnerable to the impacts of OA. Our results suggest a potentially important role of carbon physiology in structuring macroalgal communities in the GBR.
NASA Astrophysics Data System (ADS)
Wei, Y.; Ten Brink, U. S.; Atwater, B. F.; Tuttle, M. P.; Robert, H.; Feuillet, N.; Jennifer, W.; Fuentes, Z.
2012-12-01
In a comparison among numerical models of storms and tsunamis, only tsunami waves of nearby origin manage to wash over an area where coral heads of medieval age are scattered hundreds of meters inland from the north shore of Anegada, British Virgin Islands. This low-lying island faces the Puerto Rico Trench 120 km to the north. The island's north shore, fringed by a coral reef 100-1200 m offshore, displays geological evidence for two levels of overwash. The medieval overwash, dated to AD 1200-1450, was the higher one. It is evidenced by scores of coral boulders scattered hundreds of meters inland. Some of them crossed the area of the modern storm berm at Soldier Wash, continued across a broad limestone rise 3-4 m above sea level, and came to rest on lower ground farther inland. Coral heads in four other areas, also medieval or older, came to rest hundreds of meters inland from beach ridges now 2-4 m above sea level. The later, lower-elevation overwash, dated to AD 1650-1800, laid down a sheet of sand and shell that extends as much as 1.5 km inland. The hypothetical causes for each event, tested by numerical modeling, include (1) category IV and V hurricanes that differ in surge and wave heights; (2) the 1755 Lisbon earthquake or hypothetical medieval predecessor, at M 8.7 and M 9.0; (3) M 8.4 thrust earthquake along the Puerto Rico Trench between Hispaniola and Anegada; (4) M 8.7 thrust along the Puerto Rico Trench between Tortola and Antigua; (5) M 8.0 earthquake from normal faulting on the outer rise north of Anegada. The model output includes extent of onshore flooding, depth and velocity of overland flow, and energy lost by tsunami and hurricane waves as they cross the reef and continue across a shallow subtidal flat to Anegada's north shore. For the medieval overwash, the modeling is most conclusive in testing various explanations for the coral boulders inland of Soldier Wash. The simulated hurricane waves do not wash inland of the storm berm; the height of storm surge level is limited by deep water offshore, and the waves lose energy by breaking on the reef. As for the hypothesized tsunami sources, the Soldier Wash evidence is explained only by the M 8.7 interplate-thrust source along the eastern Puerto Rico Trench (4) or the outer-rise source north of Anegada (5). The M 8.7 interplate-thrust source may be inconsistent with recent GPS measurements [1], in which case the likely source is normal faulting on the outer rise (L = 132 km, W = 45 km, depth = 7.5 km, dip = 60°, strike = 110°, rake = -90°, slip = 7.1 m). The 1755 Lisbon tsunami may explain the sand-and-shell sheet from 1650-1800, with two caveats: (1) the sheet extends farther inland than does the modeled inundation from a Lisbon source smaller than M 9.0; and (2) neither of the Lisbon sources tested corresponds to mapped faults offshore Iberia (the modeled Lisbon sources strike NNW-SSE to account for flooding and damage elsewhere in the Caribbean [2]). In the hurricane models, the reef and the subtidal flats behind it dissipate too much wave energy from the storms to explain even the low-elevation overwash of 1650-1800. COMPANION ABSTRACTS: Geological evidence overview (Atwater), coral-boulder ages (Weil Accardo). REFERENCES: [1] GRL 39 (2012), L10304. [2] Marine Geology (2009), 264, 109-122.
NASA Astrophysics Data System (ADS)
Cyronak, T.; Santos, I. R.; Erler, D. V.; Eyre, B. D.
2012-11-01
To better predict how ocean acidification will affect coral reefs, it is important to understand how biogeochemical cycles on reefs alter carbonate chemistry over various temporal and spatial scales. This study quantifies the contribution of fresh groundwater discharge (as traced by radon) and shallow porewater exchange (as quantified from advective chamber incubations) to total alkalinity (TA) dynamics on a fringing coral reef lagoon along the southern Pacific island of Rarotonga over a tidal and diel cycle. Benthic alkalinity fluxes were affected by the advective circulation of water through permeable sediments, with net daily flux rates of carbonate alkalinity ranging from -1.55 to 7.76 mmol m-2 d-1, depending on the advection rate. Submarine groundwater discharge (SGD) was a source of TA to the lagoon, with the highest flux rates measured at low tide, and an average daily TA flux of 1080 mmol m-2 d-1. Both sources of TA were important on a reef wide basis, although SGD acted solely as a delivery mechanism of TA to the lagoon, while porewater advection was either a sink or source of TA dependant on the time of day. On a daily basis, groundwater can contribute approximately 70% to 80% of the TA taken up by corals within the lagoon. This study describes overlooked sources of TA to coral reef ecosystems that can potentially alter water-column carbonate chemistry. We suggest that porewater and groundwater fluxes of TA should be taken into account in ocean acidification models in order to properly address changing carbonate chemistry within coral reef ecosystems.
Into the depth of population genetics: pattern of structuring in mesophotic red coral populations
NASA Astrophysics Data System (ADS)
Costantini, Federica; Abbiati, Marco
2016-03-01
Deep-sea reef-building corals are among the most conspicuous invertebrates inhabiting the hard-bottom habitats worldwide and are particularly susceptible to human threats. The precious red coral ( Corallium rubrum, L. 1758) has a wide bathymetric distribution, from shallow up to 800 m depth, and represents a key species in the Mediterranean mesophotic reefs. Several studies have investigated genetic variability in shallow-water red coral populations, while geographic patterns in mesophotic habitats are largely unknown. This study investigated genetic variability of C. rubrum populations dwelling between 55 and 120 m depth, from the Ligurian to the Ionian Sea along about 1500 km of coastline. A total of 18 deep rocky banks were sampled. Colonies were analyzed by means of a set of microsatellite loci and the putative control region of the mitochondrial DNA. Collected data were compared with previous studies. Both types of molecular markers showed high genetic similarity between populations within the northern (Ligurian Sea and Tuscan Archipelago) and the southern (Tyrrhenian and Ionian seas) study areas. Variability in habitat features between the sampling sites did not affect the genetic variability of the populations. Conversely, the patchy distribution of suitable habitats affected populations' connectivity within and among deep coral banks. Based on these results and due to the emphasis on red coral protection in the Mediterranean Sea by international institutions, red coral could be promoted as a `focal species' to develop management plans for the conservation of deep coralligenous reefs, a reservoir of marine biodiversity.
Isolation by distance across the Hawaiian Archipelago in the reef-building coral Porites lobata.
Polato, Nicholas R; Concepcion, Gregory T; Toonen, Robert J; Baums, Iliana B
2010-11-01
There is an ongoing debate on the scale of pelagic larval dispersal in promoting connectivity among populations of shallow, benthic marine organisms. The linearly arranged Hawaiian Islands are uniquely suited to study scales of population connectivity and have been used extensively as a natural laboratory in terrestrial systems. Here, we focus on Hawaiian populations of the lobe coral Porites lobata, an ecosystem engineer of shallow reefs throughout the Pacific. Patterns of recent gene flow and population structure in P. lobata samples (n = 318) from two regions, the Hawaiian Islands (n = 10 sites) and from their nearest neighbour Johnston Atoll, were analysed with nine microsatellite loci. Despite its massive growth form, ∼ 6% of the samples from both regions were the product of asexual reproduction via fragmentation. Cluster analysis and measures of genetic differentiation indicated that P. lobata from the Hawaiian Islands are strongly isolated from those on Johnston Atoll (F(ST) = 0.311; P < 0.001), with the descendants of recent migrants (n = 6) being clearly identifiable. Within the Hawaiian Islands, P. lobata conforms to a pattern of isolation by distance. Here, over 37% (P = 0.001) of the variation in genetic distance was explained by geographical distance. This pattern indicates that while the majority of ongoing gene flow in Hawaiian P. lobata occurs among geographically proximate reefs, inter-island distances are insufficient to generate strong population structure across the archipelago. © 2010 Blackwell Publishing Ltd.
NASA Astrophysics Data System (ADS)
Ginsburg, R. N.
2012-12-01
The Mesophotic Coral Ecosystem is the deeper-water extension of the much-studied, shallow reef community. It occurs on steep slopes and shelf areas, in the TNA off Belize, the Bahamas, the US Virgin Islands, and the Flower Garden Banks. Framework-building corals at these depths are primarily platy montastraeids and agariciids, with lesser amounts of massive encrusting species. The closely-spaced, platy colonies, expanding up to nearly two meters in diameter have up to 50% live coral cover. The colonies are elevated above the substrate. Their growth creates a thicket-like structure with large, open spaces for mobile species (fish and crustaceans) and extensive habitat for attached and grazing invertebrates. The MCE includes genera or species of zooxanthellate corals, invertebrates and fish, some of which are the same as those in shallow water. Given, the widespread, recent declines of TNA coral communities at depth less than 20 m, it is essential to know the total regional extent of the MCE. To determine the likely depth locations of these deeper coral communities we used methods pioneered by REEFS AT RISK,1998 that incorporates data from the Danish Hydrological Institute (DHI), "MIKE C-MAP" depth points and data on coastline location *NASA, "Sea WiFS" and NIMA, "VMAP," 1997. The results for the larger areas of reef development and for shelf areas are below:Potential MCE shelf habitats.t; Potential MCE platform margin habitats.t;
Brazeau, Daniel A; Lesser, Michael P; Slattery, Marc
2013-01-01
Mesophotic coral reefs (30-150 m) have recently received increased attention as a potential source of larvae (e.g., the refugia hypothesis) to repopulate a select subset of the shallow water (<30 m) coral fauna. To test the refugia hypothesis we used highly polymorphic Amplified Fragment Length Polymorphism (AFLP) markers as a means to assess small-scale genetic heterogeneity between geographic locations and across depth clines in the Caribbean coral, Montastraea cavernosa. Zooxanthellae-free DNA extracts of coral samples (N = 105) were analyzed from four depths, shallow (3-10 m), medium (15-25 m), deep (30-50 m) and very deep (60-90 m) from Little Cayman Island (LCI), Lee Stocking Island (LSI), Bahamas and San Salvador (SS), Bahamas which range in distance from 170 to 1,600 km apart. Using AMOVA analysis there were significant differences in ΦST values in pair wise comparisons between LCI and LSI. Among depths at LCI, there was significant genetic differentiation between shallow and medium versus deep and very deep depths in contrast there were no significant differences in ΦST values among depths at LSI. The assignment program AFLPOP, however, correctly assigned 95.7% of the LCI and LSI samples to the depths from which they were collected, differentiating among populations as little as 10 to 20 m in depth from one another. Discriminant function analysis of the data showed significant differentiation among samples when categorized by collection site as well as collection depth. FST outlier analyses identified 2 loci under positive selection and 3 under balancing selection at LCI. At LSI 2 loci were identified, both showing balancing selection. This data shows that adult populations of M. cavernosa separated by depths of tens of meters exhibits significant genetic structure, indicative of low population connectivity among and within sites and are not supplying successful recruits to adjacent coral reefs less than 30 m in depth.
NASA Astrophysics Data System (ADS)
Abdul Wahab, Muhammad Azmi; Radford, Ben; Cappo, Mike; Colquhoun, Jamie; Stowar, Marcus; Depczynski, Martial; Miller, Karen; Heyward, Andrew
2018-06-01
Submerged reef ecosystems can be very diverse and may serve as important refugia for shallow-water conspecifics. This study quantified the benthic and fish communities of two proximate, predominantly mesophotic coral ecosystems (MCEs), Glomar Shoal and Rankin Bank, which are geographically isolated from other similar features in the region. Glomar Shoal is identified as a key ecological feature (KEF) in the North West Marine Region of Australia. Multibeam surveys were performed to characterise the seafloor and to derive secondary environmental variables, used to explain patterns in benthic and fish communities. Towed video surveys quantified benthic cover, and stereo baited remote underwater stations were used to survey fish abundance and diversity. Surveys were completed in depths of 20-115 m. The two MCEs exhibited distinct communities; Rankin Bank consistently had higher cover (up to 30×) of benthic taxa across depths, and fish communities that were twice as abundant and 1.5× more diverse than Glomar Shoal. The location of the MCEs, depth and rugosity were most influential in structuring benthic communities. Phototrophic taxa, specifically macroalgae and hard corals, had up to 22 × higher cover at Rankin Bank than at Glomar Shoal and were dominant to 80 m (compared to 60 m at Glomar Shoal), presumably due to greater light penetration (lower turbidity) and lower sand cover at greater depths. The 20% coral cover at Rankin Bank was comparable to that reported for shallow reefs. The cover of sand, hard corals and sponges influenced fish communities, with higher abundance and diversity of fish associated with shallow hard coral habitats. This study demonstrated that the two MCEs were unique within the local context, and when coupled with their geographical isolation and biodiversity, presents compelling support for the additional recognition of Rankin Bank as a KEF.
NASA Astrophysics Data System (ADS)
Perry, Chris
2016-04-01
Global-scale deteriorations in coral reef health have caused major shifts in species composition and are likely to be exacerbated by climate change. It has been suggested that one effect of these ecological changes will be to lower reef carbonate production rates, which will impair reef growth potential and, ultimately, may lead to states of net reef erosion. However, quantitative data to support such assertions are limited, and linkages between the ecological state of coral reefs and their past and present geomorphic performance (in other words their growth potential) are poorly resolved. Using recently collected data from sites in the Caribbean and Indian Ocean, and which have undergone very different post-disturbance ecological trajectories over the last ~20-30 years, the differential impacts of disturbance on contemporary carbonate production regimes and on reef growth potential can be explored. In the Caribbean, a region which has been severely impacted ecological over the last 30+ years, our datasets show that average carbonate production rates on reefs are now less than 50% of pre-disturbance rates, and that calculated accretion rates (mm yr-1) are an about order of magnitude lower within shallow water habitats compared to Holocene averages. Collectively, these data suggest that recent ecological declines are now propagating through the system to impact on the geomorphic performance of Caribbean reefs and will impair their future growth potential. In contrast, the carbonate budgets of most reefs across the Chagos archipelago (central Indian Ocean), which is geographically remote and largely isolated from direct human disturbances, have recovered rapidly from major past disturbances (specifically the 1998 coral bleaching event). The carbonate budgets on these remote reefs now average +3.7 G (G = kg CaCO3 m-2 yr-1). Most significantly the production rates on Acropora-dominated reefs, which were most severely impacted by the 1998 bleaching event, average +8.4 G, comparable with estimates under pre-human disturbance conditions, and are reflected in high reef growth rates (4.2 mm yr-1). These reefs thus retain the capacity to grow at rates exceeding measured regional mid-late Holocene and 20th century sea-level rise, and close to IPCC sea-level rise projections through to 2100. However, their positive growth potential is strongly tied to the persistence of several key coral species, and thus the frequency and magnitude of future disturbance events will be key determinants of near-future reef growth.
A relic coral fauna threatened by global changes and human activities, Eastern Brazil.
Leão, Zelinda M A N; Kikuchi, Ruy K P
2005-01-01
Coral species composition of drilled cores from emergent bank reefs, and coral cover of the surface of old and living reefs located along the coast of the state of Bahia, Eastern Brazil, revealed that there is a marked change in the occurrence of the major building coral species in different time intervals of the reef structure, as well as in the living surface of reefs located in two different geographical sites. Holocene core sections from two reef areas (12 degrees 40'S-38 degrees 00'W and 18 degrees 00'S-39 degrees 00'W) have as major reef builders, on its topmost core interval (3 to 4 ky old), the endemic coral Mussismilia braziliensis Verrill, 1868, which also dominate on the 2.5-3.5 ky old surfaces of truncated reef tops. At the base of the cores (the 2m lower interval, older than 4 ky BP), another endemic coral Mussismilia harttii Verrill, 1868 is the dominant reef component. The relative abundance of M. braziliensis on the living surfaces of shallow reefs from both areas, shows that in the southern area, it is up to 98% on reefs located 60 km off the coast, in depths between 3 and 4m, but do not exceed 1.3% on the surface of the northern reefs located 1-2 km off the coast in depths 4-5m. The Holocene falling sea level that occurred along the coast of Brazil since 5.1 ky BP, causes an increasing runoff into the area of coastal reefs. This phenomenon may have affected the nearshore reef building fauna, replacing a more susceptive coral fauna with one better adapted to low light levels and higher sediment influx. The high turbidity associated with early Holocene shelf flooding, should also be responsible for the absence of M. braziliensis during the initial stages of reef buildup in Brazil. At the present time, the rapidly increasing human pressure, due to changes in land uses of the coastal zone (increasing sedimentation rate, nutrification of coastal waters, industrial pollution) and underwater practices, such as overfishing and an intense tourism, is aggravating the recovery capacity of this already naturally threatened coral community. If this situation coupled with increasing sea surface temperature persists, modern coral reef growth, in Brazil cannot be maintained and the major reef building coral species of the reefs in Bahia, a remnant endemic coral fauna will very soon appear in the list of endangered species.
NASA Astrophysics Data System (ADS)
Caird, R. A.; Pufahl, P. K.; Hiatt, E. E.; Abram, M. B.; Rocha, A. J. D.; Kyser, T. K.
2017-04-01
The Ediacaran Nova America and Gabriel members of the Salitre Formation are composed of limestone and economic phosphorite that accumulated on an unrimmed epeiric ramp along the margins of the Irecê Basin, Brazil. Deposition occurred during a marine transgression punctuated by higher-order fluctuations in relative sea-level that produced m-scale, shallowing-upward peritidal cycles. Cycles consist of six lithofacies rich in microbial sedimentary structures including subtidal, cross-stratified grainstones and hemispheroidal columnar stromatolite reefs overlain by intertidal flat sediments indicative of decreasing accommodation. Phosphorite is restricted to the paleocoast where digitate stromatolite biostromes colonized tidal flats. Phosphorite accumulation is interpreted to have been associated with biostromes because photosynthetic oxygen production created a redox gradient beneath the seafloor that phosphogenic chemosynthetic bacteria exploited. The concentration of francolite or sedimentary apatite in microbial laminae suggests these bacteria actively stored, released, and concentrated phosphate to promote in situ precipitation. The sealing effect of interbedded, fine-grained tidal deposits was also critical for maintaining the high levels of pore water phosphate required. The absence of francolite in subtidal columnar stromatolite reefs implies phosphogenesis was prevented in deeper, more energetic environments because wave pumping of oxygenated seawater through reefs surrounded by constantly moving grainy sediment promoted the recycling of P directly back to the water column. The Salitre Formation has a complex paragenesis, including hydrothermal alteration that produced Mississippi Valley-type Pb-Zn mineralization. δ18O values of Nova America member dolomites range from - 10.2‰ to - 0.5‰ (mean = - 3.9‰) and δ13C ranges from - 9.2‰ to + 10.0‰ (mean = + 2.8‰). Samples contain varying proportions of low-Mg calcite and saddle dolomite. δ18O values of hydrothermal veins range from - 4.7‰ to - 3.0‰ (mean = - 4.2‰) reflecting equilibration with temperatures > 80 °C. δ13C values are between - 7.0‰ and + 5.6‰ (mean = - 1.8‰,). Late lateritic weathering produced calcretes with δ18O values between - 3.3‰ and - 1.3‰, and δ13C values from - 9.2‰ to - 8.0‰ (mean values are - 1.8‰ and - 8.7‰, respectively). Petrographic analysis, generally low δ18O, and high δ13C values suggest hydrothermal dolomitization and remobilization of P led to secondary phosphate mineralization of intertidal stromatolite biostromes to produce economic phosphorite. Collectively, these results suggest that the benthic P-cycle in the Neoproterozoic was more complex than previously surmised and emphasize the multifaceted significance of microbial, paleoenvironmental, and diagenetic processes that allowed phosphorite to accumulate on the São Franciscan craton. Such information further elucidates attributes of the onset of Earth's second major phosphogenic episode, which is roughly coincident with the Neoproterozoic Oxygenation Event (NOE) and the evolution of multicellular animals.
Reef-scale modeling of coral calcification responses to ocean acidification and sea-level rise
NASA Astrophysics Data System (ADS)
Nakamura, Takashi; Nadaoka, Kazuo; Watanabe, Atsushi; Yamamoto, Takahiro; Miyajima, Toshihiro; Blanco, Ariel C.
2018-03-01
To predict coral responses to future environmental changes at the reef scale, the coral polyp model (Nakamura et al. in Coral Reefs 32:779-794, 2013), which reconstructs coral responses to ocean acidification, flow conditions and other factors, was incorporated into a reef-scale three-dimensional hydrodynamic-biogeochemical model. This coupled reef-scale model was compared to observations from the Shiraho fringing reef, Ishigaki Island, Japan, where the model accurately reconstructed spatiotemporal variation in reef hydrodynamic and geochemical parameters. The simulated coral calcification rate exhibited high spatial variation, with lower calcification rates in the nearshore and stagnant water areas due to isolation of the inner reef at low tide, and higher rates on the offshore side of the inner reef flat. When water is stagnant, bottom shear stress is low at night and thus oxygen diffusion rate from ambient water to the inside of the coral polyp limits respiration rate. Thus, calcification decreases because of the link between respiration and calcification. A scenario analysis was conducted using the reef-scale model with several pCO2 and sea-level conditions based on IPCC (Climate change 2013: the physical science basis. Contribution of working group I to the fifth assessment report of the intergovernmental panel on climate change, Cambridge University Press, Cambridge, 2013) scenarios. The simulation indicated that the coral calcification rate decreases with increasing pCO2. On the other hand, sea-level rise increases the calcification rate, particularly in the nearshore and the areas where water is stagnant at low tide under present conditions, as mass exchange, especially oxygen exchange at night, is enhanced between the corals and their ambient seawater due to the reduced stagnant period. When both pCO2 increase and sea-level rise occur concurrently, the calcification rate generally decreases due to the effects of ocean acidification. However, the calcification rate in some inner-reef areas will increase because the positive effects of sea-level rise offset the negative effects of ocean acidification, and total calcification rate will be positive only under the best-case scenario (RCP 2.6).
From Offshore to Onshore: Multiple Origins of Shallow-Water Corals from Deep-Sea Ancestors
Lindner, Alberto; Cairns, Stephen D.; Cunningham, Clifford W.
2008-01-01
Shallow-water tropical reefs and the deep sea represent the two most diverse marine environments. Understanding the origin and diversification of this biodiversity is a major quest in ecology and evolution. The most prominent and well-supported explanation, articulated since the first explorations of the deep sea, holds that benthic marine fauna originated in shallow, onshore environments, and diversified into deeper waters. In contrast, evidence that groups of marine organisms originated in the deep sea is limited, and the possibility that deep-water taxa have contributed to the formation of shallow-water communities remains untested with phylogenetic methods. Here we show that stylasterid corals (Cnidaria: Hydrozoa: Stylasteridae)—the second most diverse group of hard corals—originated and diversified extensively in the deep sea, and subsequently invaded shallow waters. Our phylogenetic results show that deep-water stylasterid corals have invaded the shallow-water tropics three times, with one additional invasion of the shallow-water temperate zone. Our results also show that anti-predatory innovations arose in the deep sea, but were not involved in the shallow-water invasions. These findings are the first robust evidence that an important group of tropical shallow-water marine animals evolved from deep-water ancestors. PMID:18560569
NASA Astrophysics Data System (ADS)
Ishiyama, T.; Sato, H.; Van Horne, A.
2015-12-01
We present detailed geologic evidence linking changes over time in Philippine Sea plate (PHS) motion and intracontinental deformation in central and southwest (SW) Japan during the Pliocene and after. In the early Pliocene, subduction of the PHS plate under SW Japan restarted in a northerly direction after period of deceleration or cessation. Later, motion changed to a more westerly direction. Corresponding geological changes found in the overriding plate include unconformities in the forearc basins, changes in slip sense on faults, depocenter migration, re-organization of drainage systems and volcanism. Quaternary intraplate deformation is prominent north of the Median Tectonic Line (MTL) inactive segment, above a shallow flat slab. In contrast, less Quaternary tectonic activity is found north of the MTL active segment which lies over a steadily-slipping portion of the subducting slab that behaves as a less-deformed rigid block. Depocenters and active thrusting have migrated north/northwestward over the past 5 My above the shallow flat slab segment of the PHS. We reconstructed the Plio-Pleistocene migration history using Neogene stratigraphy and shallow seismic reflection profiles. We see shallow PHS slab contact with the lower continental crust in our deep seismic reflection profiles, which may explain its enhanced downward drag of the overriding plate and synchronous strong compression in the crust. We find evidence of more westerly PHS plate subduction since the middle Pleistocene in (1) unconformities in the Kumano forearc basin deposits in SW Japan, (2) drastic stream captures in Shikoku, and (3) concordant changes in fault slip sense from thrust to dextral slip along the MTL. Oblique subduction could have induced stronger horizontal stress in the overriding plate above the shallow flat slab which could account for the increasing geologic slip rate observed on active structures. During four repetitions of megathrust earthquake sequences since the 17th century, ca. 65 % of all intraplate M>6.5 earthquakes have been concentrated in the area above the PHS flat slab. This also suggests that mechanical interaction between the slab and the overriding plate plays an important role in intraplate seismicity over shorter timescales as well.
Neogene Proto-Caribbean porcupinefishes (Diodontidae)
Aguilera, Orangel; Lopes, Ricardo Tadeu; Machado, Alessandra Silveira; dos Santos, Thaís Maria; Marques, Gabriela; Bertucci, Thayse; Aguiar, Thayanne; Carrillo-Briceño, Jorge; Rodriguez, Felix; Jaramillo, Carlos
2017-01-01
Fossil Diodontidae in Tropical America consist mostly of isolated and fused beak-like jawbones, and tooth plate batteries. These durophagous fishes are powerful shell-crushing predators on shallow water invertebrate faunas from Neogene tropical carbonate bottom, rocky reefs and surrounding flats. We use an ontogenetic series of high-resolution micro CT of fossil and extant species to recognize external and internal morphologic characters of jaws and tooth plate batteries. We compare similar sizes of jaws and/or tooth-plates from both extant and extinct species. Here, we describe three new fossil species including †Chilomycterus exspectatus n. sp. and †Chilomycterus tyleri n. sp. from the late Miocene Gatun Formation in Panama, and †Diodon serratus n. sp. from the middle Miocene Socorro Formation in Venezuela. Fossil Diodontidae review included specimens from the Neogene Basins of the Proto-Caribbean (Brazil: Pirabas Formation; Colombia: Jimol Formation, Panama: Gatun and Tuira formations; Venezuela: Socorro and Cantaure formations). Diodon is present in both the Atlantic and Pacific oceans, whereas the distribution of Chilomycterus is highly asymmetrical with only one species in the Pacific. It seems that Diodon was as abundant in the Caribbean/Western Atlantic during the Miocene as it is there today. We analyze the paleogeographic distribution of the porcupinefishes group in Tropical America, after the complete exhumation of the Panamanian isthmus during the Pliocene. PMID:28746370
Numerical studies of the KP line-solitons
NASA Astrophysics Data System (ADS)
Chakravarty, S.; McDowell, T.; Osborne, M.
2017-03-01
The Kadomtsev-Petviashvili (KP) equation admits a class of solitary wave solutions localized along distinct rays in the xy-plane, called the line-solitons, which describe the interaction of shallow water waves on a flat surface. These wave interactions have been observed on long, flat beaches, as well as have been recreated in laboratory experiments. In this paper, the line-solitons are investigated via direct numerical simulations of the KP equation, and the interactions of the evolved solitary wave patterns are studied. The objective is to obtain greater insight into solitary wave interactions in shallow water and to determine the extent the KP equation is a good model in describing these nonlinear interactions.
NASA Astrophysics Data System (ADS)
Rainville, E. J.; Walter, R. K.; Leary, P.; Woodson, C. B.; Monismith, S. G.; Nickols, K. J.
2017-12-01
Kelp forests are one of the most vibrant and productive ecosystems in the California coastal ocean and the health of these ecosystems is heavily influenced by the local hydrodynamics. In southern Monterey Bay, the nearshore environment is characterized by large areas of rocky reef and giant kelp (Macrocystis pyrifera) forests. The physical environment at this location is dominated by nearshore internal bores, which produce transient stratification and mixing events associated with the delivery of subthermocline waters to shallow regions. During the spring of 2013, a large array of oceanographic moorings measuring temperature and velocity at an extremely high spatiotemporal resolution was deployed to investigate the role of rocky reefs and giant kelp forests on the cross-shelf propagation of shoaling internal waves and bores. We take advantage of a unique site location where a rocky reef with giant kelp was located adjacent to a large sandy channel to compare temperature dynamics and flow both inside and outside the kelp forest. Preliminary analysis suggests that the rocky reef and kelp forest act to limit the cross-shelf extent of the internal bore features and dampen temperature variance at higher frequencies when compared to the adjacent sand channel. Moreover, by defining an internal bore strength index, we will explore temperature and velocity dynamics with and without internal bore forcing along the two cross-shelf transects (i.e., rocky reef and sandy channel transects).
Early-mid-Cretaceous evolution in Tethyan reef communities and sea level
DOE Office of Scientific and Technical Information (OSTI.GOV)
Scott, R.W.
1988-01-01
The replacement of corals by rudists in Early Cretaceous reefal communities spanned a 30-m.y. period when sea level rose and drowned continental shelves. During this time corals formed communities in the deeper parts of reefs and rudists occupied the shallow, high-energy habitats. By Aptian time rudists dominated reefs that fringed interior shelf basins and corals formed reefs with rudists on the outer shelf margins. By late Albian coral communities had virtually disappeared, presumably because of complex environmental changes and cycles of organic productivity. Two important events of eustatic sea level rise are represented by unconformities separating carbonate depositional sequences onmore » the Arabian platform that correlate with sequence boundaries on the Gulf Coast platform. Graphic correlation techniques test the synchroneity of these events. A composite standard time scale dates these sea level rises at 115.8 Ma and 94.6 Ma; a third, intra-Albian event at 104.3 Ma is present in many places and may also be eustatic. Associated with these sea level rises were apparent changes in ocean water chemistry as evidenced by changes in isotopes and trace elements, where diagenetic effects can be discounted. During this time the climate became more humid and atmospheric CO/sub 2/ increased. The concomitant environmental changes in the oceanic conditions presumably stressed the deeper coral communities on reefs. The emergence of rudists as reef contributors had a profound effect on Late Cretaceous depositional conditions and the development of hydrocarbon reservoirs.« less
Early-mid-Cretaceous evolution in Tethyan reef communities and sea level
DOE Office of Scientific and Technical Information (OSTI.GOV)
Scott, R.W.
1988-02-01
The replacement of corals by rudists in Early Cretaceous reefal communities spanned a 30-m.y. period when sea level rose and drowned continental shelves. During this time corals formed communities in the deeper parts of reefs and rudists occupied the shallow, high-energy habitats. By Aptian time rudists dominated reefs that fringed interior shelf basins and corals formed reefs with rudists on the outer shelf margins. By late Albian coral communities had virtually disappeared, presumably because of complex environmental changes and cycles of organic productivity. Two important events of eustatic sea level rise are represented by unconformities separating carbonate depositional sequences onmore » the Arabian platform that correlate with sequence boundaries on the Gulf Coast platform. Graphic correlation techniques test the synchroneity of these events. A composite standard time scale dates these sea level rises at 115.8 Ma and 94.6 Ma; a third, intra-Albian event at 104.3 Ma is present in many places and may also be eustatic. Associated with these sea level rises were apparent changes in ocean water chemistry as evidenced by changes in isotopes and trace elements, where diagenetic effects can be discounted. During this time the climate became more humid and atmospheric CO/sub 2/ increased. The concomitant environmental changes in the oceanic conditions presumably stressed the deeper coral communities on reefs. The emergence of rudists as reef contributors had a profound effect on Late Cretaceous depositional conditions and the development of hydrocarbon reservoirs.« less
NASA Astrophysics Data System (ADS)
Hamylton, S.
2011-12-01
This paper demonstrates a practical step-wise method for modelling wave energy at the landscape scale using GIS and remote sensing techniques at Alphonse Atoll, Seychelles. Inputs are a map of the benthic surface (seabed) cover, a detailed bathymetric model derived from remotely sensed Compact Airborne Spectrographic Imager (CASI) data and information on regional wave heights. Incident energy at the reef crest around the atoll perimeter is calculated as a function of its deepwater value with wave parameters (significant wave height and period) hindcast in the offshore zone using the WaveWatch III application developed by the National Oceanographic and Atmospheric Administration. Energy modifications are calculated at constant intervals as waves transform over the forereef platform along a series of reef profile transects running into the atoll centre. Factors for shoaling, refraction and frictional attenuation are calculated at each interval for given changes in bathymetry and benthic coverage type and a nominal reduction in absolute energy is incorporated at the reef crest to account for wave breaking. Overall energy estimates are derived for a period of 5 years and related to spatial patterning of reef flat surface cover (sand and seagrass patches).
Hydrodynamic influences on acoustical and optical backscatter in a fringing reef environment
NASA Astrophysics Data System (ADS)
Pawlak, Geno; Moline, Mark A.; Terrill, Eric J.; Colin, Patrick L.
2017-01-01
Observations of hydrodynamics along with optical and acoustical water characteristics in a tropical fringing reef environment reveal a distinct signature associated with flow characteristics and tidal conditions. Flow conditions are dominated by tidal forcing with an offshore component from the reef flat during ebb. Measurements span variable wave conditions enabling identification of wave effects on optical and acoustical water properties. High-frequency acoustic backscatter (6 MHz) is strongly correlated with tidal forcing increasing with offshore directed flow and modulated by wave height, indicating dominant hydrodynamic influence. Backscatter at 300 and 1200 kHz is predominantly diurnal suggesting a biological component. Optical backscatter is closely correlated with high-frequency acoustic backscatter across the range of study conditions. Acoustic backscatter frequency dependence is used along with changes in optical properties to interpret particle-size variations. Changes across wave heights suggest shifts in particle-size distributions with increases in relative concentrations of smaller particles for larger wave conditions. Establishing a connection between the physical processes of a fringing tropical reef and the resulting acoustical and optical signals allows for interpretation and forecasting of the remote sensing response of these phenomena over larger scales.
Model of a coral reef ecosystem
NASA Astrophysics Data System (ADS)
Atkinson, Marlin J.; Grigg, Richard W.
1984-08-01
The ECOPATH model for French Frigate Shoals estimates the benthic plant production (net primary production in kg wet weight) required to support the atoll food chain. In this section we estimate the benthic net primary production and net community production of the atoll based on metabolism studies of reef flat, knolls, and lagoon communities at French Frigate Shoals Hawaii. Community metabolism was measured during winter and summer. The reef communities at French Frigate Shoals exhibited patterns and rates of organic carbon production and calcification similar to other reefs in the world. The estimate of net primary production is 6.1·106 kg wet weight km-2 year-1±50%, a value remarkably close to the estimate by the ECOPATH model of 4.3·106 kg wet weight km-2 year-1. Our estimate of net community production or the amount of carbon not consumed by the benthos was high; approximately 15% of the net primary production. Model results indicate that about 5% of net primary production is passed up the food chain to mobile predators. This suggests about 10% of net primary production (˜6% of gross primary production) may be permanently lost to the system via sediment burial or export offshore.
NASA Astrophysics Data System (ADS)
Gong, Shou-Yeh; Wu, Tso-Ren; Liu, Sze-Chieh; Shen, Chuan-Chou; Siringan, Fernando; Lin, Han-Wei
2017-04-01
Meter-sized coral boulders occurred on Holocene reef flat at Pasuquin, Ilocos Norte and Cabugao, Ilocos Sur, Philippines. Boulders larger than 3 meters were located and measured by field survey and UAV photogrammetry. Boulders now distributed 45-140 m away from edge of Holocene reef flat, and above highest high tide. The lithology of those boulders is the same as the underlying Holocene coral reef at the sites, hence believed to be broken from reef edge locally. Fossil corals in those boulders mostly appeal not in upward-growing attitude but overturned or tilted. Several tens of photos were taken around selected boulders from different angles, and 3D models were established from the photos. Dimension and volumes were calculated from 3D models. Boulder volumes can be estimated much more accurately this way than simply multiple X, Y, and Z as many previous studies did. The volumes of boulders larger than 3 m in length vary from 10-52.6 m3. Assuming 2.1 g/cm3 for wet density, weights of boulders are estimated to range from 21-110 metric tons. Boulders of such size and weight obviously can't be moved by normal waves, and likely dislodged by Extreme Wave Event (EWE). Small and well-preserved corals were found in depressions on boulder surface and interpreted to represent timing of final displacement. Corals found on seven boulders at Pasuquin were 230Th dated to be 1782, 1904, 1946, 1957, 1978 and 2003 AD respectively. No tsunami was reported in historical records in northern Luzon for those years, but several documented typhoons could be responsible for displacement of each of those boulders. Another Porites boulder at Cabugao was dated to be tilted five times from 673-838 AD, averaging one EWE every 33 years. Such frequent occurrence of EWE is unlikely resulted from tsunami. Therefore, those coral boulders at Pasuquin and Cabugao are interpreted to be displaced by severe typhoons.