Shear wave velocities of unconsolidated shallow sediments in the Gulf of Mexico
Lee, Myung W.
2013-01-01
Accurate shear-wave velocities for shallow sediments are important for a variety of seismic applications such as inver-sion and amplitude versus offset analysis. During the U.S. Department of Energy-sponsored Gas Hydrate Joint Industry Project Leg II, shear-wave velocities were measured at six wells in the Gulf of Mexico using the logging-while-drilling SonicScope acoustic tool. Because the tool measurement point was only 35 feet from the drill bit, the adverse effect of the borehole condition, which is severe for the shallow unconsolidated sediments in the Gulf of Mexico, was mini-mized and accurate shear-wave velocities of unconsolidated sediments were measured. Measured shear-wave velocities were compared with the shear-wave velocities predicted from the compressional-wave velocities using empirical formulas and the rock physics models based on the Biot-Gassmann theory, and the effectiveness of the two prediction methods was evaluated. Although the empirical equation derived from measured shear-wave data is accurate for predicting shear-wave velocities for depths greater than 500 feet in these wells, the three-phase Biot-Gassmann-theory -based theory appears to be optimum for predicting shear-wave velocities for shallow unconsolidated sediments in the Gulf of Mexico.
Seismically damaged regolith as self-organized fragile geological feature
NASA Astrophysics Data System (ADS)
Sleep, Norman H.
2011-12-01
The S-wave velocity in the shallow subsurface within seismically active regions self-organizes so that typical strong dynamic shear stresses marginally exceed the Coulomb elastic limit. The dynamic velocity from major strike-slip faults yields simple dimensional relations. The near-field velocity pulse is essentially a Love wave. The dynamic shear strain is the ratio of the measured particle velocity over the deep S-wave velocity. The shallow dynamic shear stress is this quantity times the local shear modulus. The dynamic shear traction on fault parallel vertical planes is finite at the free surface. Coulomb failure occurs on favorably oriented fractures and internally in intact rock. I obtain the equilibrium shear modulus by starting a sequence of earthquakes with intact stiff rock extending all the way to the surface. The imposed dynamic shear strain in stiff rock causes Coulomb failure at shallow depths and leaves cracks in it wake. Cracked rock is more compliant than the original intact rock. Cracked rock is also weaker in friction, but shear modulus changes have a larger effect. Each subsequent event causes additional shallow cracking until the rock becomes compliant enough that it just reaches Coulomb failure over a shallow depth range of tens to hundreds of meters. Further events maintain the material at the shear modulus as a function where it just fails. The formalism provided in the paper yields reasonable representation of the S-wave velocity in exhumed sediments near Cajon Pass and the San Fernando Valley of California. A general conclusion is that shallow rocks in seismically active areas just become nonlinear during typical shaking. This process causes transient changes in S-wave velocity, but not strong nonlinear attenuation of seismic waves. Wave amplitudes significantly larger than typical ones would strongly attenuate and strongly damage the rock.
A pitfall in shallow shear-wave refraction surveying
Xia, J.; Miller, R.D.; Park, C.B.; Wightman, E.; Nigbor, R.
2002-01-01
The shallow shear-wave refraction method works successfully in an area with a series of horizontal layers. However, complex near-surface geology may not fit into the assumption of a series of horizontal layers. That a plane SH-wave undergoes wave-type conversion along an interface in an area of nonhorizontal layers is theoretically inevitable. One real example shows that the shallow shear-wave refraction method provides velocities of a converted wave rather than an SH- wave. Moreover, it is impossible to identify the converted wave by refraction data itself. As most geophysical engineering firms have limited resources, an additional P-wave refraction survey is necessary to verify if velocities calculated from a shear-wave refraction survey are velocities of converted waves. The alternative at this time may be the surface wave method, which can provide reliable S-wave velocities, even in an area of velocity inversion (a higher velocity layer underlain by a lower velocity layer). ?? 2002 Elsevier Science B.V. All rights reserved.
Shallow near-fault material self organizes so it is just nonlinear in typical strong shaking
NASA Astrophysics Data System (ADS)
Sleep, N. H.
2011-12-01
Cracking within shallow compliant fault zones self-organizes so that strong dynamic stresses marginally exceed the elastic limit. To the first order, the compliant material experiences strain boundary conditions imposed by underlying stiffer rock. A major strike-slip fault yields simple dimensional relations. The near-field velocity pulse is essentially a Love wave. The dynamic strain is the ratio of the measured particle velocity over the deep S-wave velocity. The shallow dynamic stress is this quantity times the local shear modulus. I obtain the equilibrium shear modulus by starting a sequence of earthquakes with intact stiff rock surrounding the shallow fault zone. The imposed dynamic strain in stiff rock causes Coulomb failure and leaves cracks in it wake. Cracked rock is more compliant than the original intact rock. Each subsequent event causes more cracking until the rock becomes compliant enough that it just reaches its elastic limit. Further events maintain the material at the shear modulus where it just fails. Analogously, shallow damaged regolith forms with its shear modulus and S-wave velocity increasing with depth so it just reaches failure during typical strong shaking. The general conclusion is that shallow rocks in seismically active areas just become nonlinear during typical shaking. This process causes transient changes in S-wave velocity, but not strong nonlinear attenuation of seismic waves. Wave amplitudes significantly larger than typical ones would strongly attenuate and strongly damage the rock. The equilibrium shear modulus and S-wave velocity depend only modestly on the effective coefficient of internal friction.
NASA Astrophysics Data System (ADS)
Sollberger, David; Schmelzbach, Cedric; Robertsson, Johan O. A.; Greenhalgh, Stewart A.; Nakamura, Yosio; Khan, Amir
2016-10-01
Enigmatic lunar seismograms recorded during the Apollo 17 mission in 1972 have so far precluded the identification of shear-wave arrivals and hence the construction of a comprehensive elastic model of the shallow lunar subsurface. Here, for the first time, we extract shear-wave information from the Apollo active seismic data using a novel waveform analysis technique based on spatial seismic wavefield gradients. The star-like recording geometry of the active seismic experiment lends itself surprisingly well to compute spatial wavefield gradients and rotational ground motion as a function of time. These observables, which are new to seismic exploration in general, allowed us to identify shear waves in the complex lunar seismograms, and to derive a new model of seismic compressional and shear-wave velocities in the shallow lunar crust, critical to understand its lithology and constitution, and its impact on other geophysical investigations of the Moon's deep interior.
2008-09-01
improved resolution for shallow geologic structures . Jointly inverting these datasets with seismic body wave (S) travel times provides additional...constraints on the shallow structure and an enhanced 3D shear wave model for our study area in western China. 2008 Monitoring Research Review...for much of Eurasia, although the Arabian Shield and Arctic are less well recovered. The upper velocity gradient was tested for 10-degree cells
Hartzell, S.; Carver, D.; Williams, R.A.; Harmsen, S.; Zerva, A.
2003-01-01
Ground-motion records from a 52-element dense seismic array near San Jose, California, are analyzed to obtain site response, shallow shear-wave velocity, and plane-wave propagation characteristics. The array, located on the eastern side of the Santa Clara Valley south of the San Francisco Bay, is sited over the Evergreen basin, a 7-km-deep depression with Miocene and younger deposits. Site response values below 4 Hz are up to a factor of 2 greater when larger, regional records are included in the analysis, due to strong surface-wave development within the Santa Clara Valley. The pattern of site amplification is the same, however, with local or regional events. Site amplification increases away from the eastern edge of the Santa Clara Valley, reaching a maximum over the western edge of the Evergreen basin, where the pre-Cenozoic basement shallows rapidly. Amplification then decreases further to the west. This pattern may be caused by lower shallow shear-wave velocities and thicker Quaternary deposits further from the edge of the Santa Clara Valley and generation/trapping of surface waves above the shallowing basement of the western Evergreen basin. Shear-wave velocities from the inversion of site response spectra based on smaller, local earthquakes compare well with those obtained independently from our seismic reflection/refraction measurements. Velocities from the inversion of site spectra that include larger, regional records do not compare well with these measurements. A mix of local and regional events, however, is appropriate for determination of site response to be used in seismic hazard evaluation, since large damaging events would excite both body and surface waves with a wide range in ray parameters. Frequency-wavenumber, plane-wave analysis is used to determine the backazimuth and apparent velocity of coherent phases at the array. Conventional, high-resolution, and multiple signal characterization f-k power spectra and stacked slowness power spectra are compared. These spectra show surface waves generated/ scattered at the edges of the Santa Clara Valley and possibly within the valley at the western edge of the Evergreen basin.
Harris, J.B.
1996-01-01
Determining the extent and location of surface/near-surface structural deformation in the New Madrid seismic zone (NMSZ) is very important for evaluating earthquake hazards. A shallow shear-wave splitting experiment, located near the crest of the Lake County uplift (LCU) in the central NMSZ, shows the presence of near-surface azimuthal anisotropy believed to be associated with neotectonic deformation. A shallow fourcomponent data set, recorded using a hammer and mass source, displayed abundant shallow reflection energy on records made with orthogonal source-receiver orientations, an indicator of shear-wave splitting. Following rotation of the data matrix by 40??, the S1 and S2 sections (principal components of the data matrix) were aligned with the natural coordinate system at orientations of N35??W and N55??E, respectively. A dynamic mis-tie of 8 ms at a two-way traveltime of 375 ms produced an average azimuthal anisotropy of ???2% between the target reflector (top of Quaternary gravel at a depth of 35 m) and the surface. Based on the shear-wave polarization data, two explanations for the azimuthal anisotropy in the study area are (1) fractures/cracks aligned in response to near-surface tensional stress produced by uplift of the LCU, and (2) faults/fractures oriented parallel to the Kentucky Bend scarp, a recently identified surface deformation feature believed to be associated with contemporary seismicity in the central NMSZ. In addition to increased seismic resolution by the use of shear-wave methods in unconsolidated, water-saturated sediments, measurement of near-surface directional polarizations, produced by shear-wave splitting, may provide valuable information for identifying neotectonic deformation and evaluating associated earthquake hazards.
Shear wave splitting and crustal anisotropy at the Mid-Atlantic Ridge, 35°N
NASA Astrophysics Data System (ADS)
Barclay, Andrew H.; Toomey, Douglas R.
2003-08-01
Shear wave splitting observed in microearthquake data at the axis of the Mid-Atlantic Ridge near 35°N has a fast polarization direction that is parallel to the trend of the axial valley. The time delays between fast and slow S wave arrivals range from 35 to 180 ms, with an average of 90 ms, and show no relationship with ray path length, source-to-receiver azimuth, or receiver location. The anisotropy is attributed to a shallow distribution of vertical, fluid-filled cracks, aligned parallel to the trend of the axial valley. Joint modeling of the shear wave anisotropy and coincident P wave anisotropy results, using recent theoretical models for the elasticity of a porous medium with aligned cracks, suggests that the crack distribution that causes the observed P wave anisotropy can account for at most 10 ms of the shear wave delay. Most of the shear wave delay thus likely accrues within the shallowmost 500 m (seismic layer 2A), and the percent S wave anisotropy within this highly fissured layer is 8-30%. Isolated, fluid-filled cracks at 500 m to 3 km depth that are too thin or too shallow to be detected by the P wave experiment may also contribute to the shear wave delays. The joint analysis of P and S wave anisotropy is an important approach for constraining the crack distributions in the upper oceanic crust and is especially suited for seismically active hydrothermal systems at slow and intermediate spreading mid-ocean ridges.
NASA Astrophysics Data System (ADS)
Yoo, H. J.; Park, Y.; Lee, W. S.; Graw, J. H.; Hansen, S. E.; Kang, T. S.
2017-12-01
A shear wave velocity model of the Northern Victoria Land, Antarctica, was derived using Rayleigh-wave group velocity dispersions estimated from the cross correlation of ambient seismic noise. The continuous data, from January to November 2015, recorded on 29 broadband stations operated by Korea Polar Research Institute and Alabama University were used for retrieving the fundamental mode Rayleigh-wave Green's functions of each station pair. Rayleigh-wave group dispersions at period ranging from 3 to 23 s were determined by applying the multi-filter analysis technique. The measured group velocities were inverted to obtain 2-D group velocity maps using a fast marching method. We constructed a pseudo-3-D shear velocity model of the study region using 1-D shear velocity inversions at each node followed by a linear interpolation. The resulting shear velocity maps and cross-sections showed the significant velocity differences in the crust across the East Antarctica, Transantarctic Mountains, and the coastal region. The velocity changes are well correlated with the aeromagnetic lineaments, especially in shallow depth. The velocities in the Transantarctic Mountains are relatively high at shallow depth and lower at deeper depth, while those of the coastal region are relatively low in shallow depth and higher at deeper depth, implying thin crust over this area.
The exploration technology and application of sea surface wave
NASA Astrophysics Data System (ADS)
Wang, Y.
2016-12-01
In order to investigate the seismic velocity structure of the shallow sediments in the Bohai Sea of China, we conduct a shear-wave velocity inversion of the surface wave dispersion data from a survey of 12 ocean bottom seismometers (OBS) and 377 shots of a 9000 inch3 air gun. With OBS station spacing of 5 km and air gun shot spacing of 190 m, high-quality Rayleigh wave data were recorded by the OBSs within 0.4 5 km offset. Rayleigh wave phase velocity dispersion for the fundamental mode and first overtone in the frequency band of 0.9 3.0 Hz were retrieved with the phase-shift method and inverted for the shear-wave velocity structure of the shallow sediments with a damped iterative least-square algorithm. Pseudo 2-D shear-wave velocity profiles with depth to 400 m show coherent features of relatively weak lateral velocity variation. The uncertainty in shear-wave velocity structure was also estimated based on the pseudo 2-D profiles from 6 trial inversions with different initial models, which suggest a velocity uncertainty < 30 m/s for most parts of the 2-D profiles. The layered structure with little lateral variation may be attributable to the continuous sedimentary environment in the Cenozoic sedimentary basin of the Bohai Bay basin. The shear-wave velocity of 200 300 m/s in the top 100 m of the Bohai Sea floor may provide important information for offshore site response studies in earthquake engineering. Furthermore, the very low shear-wave velocity structure (200 700 m/s) down to 400 m depth could produce a significant travel time delay of 1 s in the S wave arrivals, which needs to be considered to avoid serious bias in S wave traveltime tomographic models.
NASA Astrophysics Data System (ADS)
Ma, Shutian; Motazedian, Dariush; Corchete, Victor
2013-04-01
Many crucial tasks in seismology, such as locating seismic events and estimating focal mechanisms, need crustal velocity models. The velocity models of shallow structures are particularly important in the simulation of ground motions. In southern Ontario, Canada, many small shallow earthquakes occur, generating high-frequency Rayleigh ( Rg) waves that are sensitive to shallow structures. In this research, the dispersion of Rg waves was used to obtain shear-wave velocities in the top few kilometers of the crust in the Georgian Bay, Sudbury, and Thunder Bay areas of southern Ontario. Several shallow velocity models were obtained based on the dispersion of recorded Rg waves. The Rg waves generated by an m N 3.0 natural earthquake on the northern shore of Georgian Bay were used to obtain velocity models for the area of an earthquake swarm in 2007. The Rg waves generated by a mining induced event in the Sudbury area in 2005 were used to retrieve velocity models between Georgian Bay and the Ottawa River. The Rg waves generated by the largest event in a natural earthquake swarm near Thunder Bay in 2008 were used to obtain a velocity model in that swarm area. The basic feature of all the investigated models is that there is a top low-velocity layer with a thickness of about 0.5 km. The seismic velocities changed mainly within the top 2 km, where small earthquakes often occur.
Zeng, C.; Xia, J.; Miller, R.D.; Tsoflias, G.P.
2011-01-01
Conventional surface wave inversion for shallow shear (S)-wave velocity relies on the generation of dispersion curves of Rayleigh waves. This constrains the method to only laterally homogeneous (or very smooth laterally heterogeneous) earth models. Waveform inversion directly fits waveforms on seismograms, hence, does not have such a limitation. Waveforms of Rayleigh waves are highly related to S-wave velocities. By inverting the waveforms of Rayleigh waves on a near-surface seismogram, shallow S-wave velocities can be estimated for earth models with strong lateral heterogeneity. We employ genetic algorithm (GA) to perform waveform inversion of Rayleigh waves for S-wave velocities. The forward problem is solved by finite-difference modeling in the time domain. The model space is updated by generating offspring models using GA. Final solutions can be found through an iterative waveform-fitting scheme. Inversions based on synthetic records show that the S-wave velocities can be recovered successfully with errors no more than 10% for several typical near-surface earth models. For layered earth models, the proposed method can generate one-dimensional S-wave velocity profiles without the knowledge of initial models. For earth models containing lateral heterogeneity in which case conventional dispersion-curve-based inversion methods are challenging, it is feasible to produce high-resolution S-wave velocity sections by GA waveform inversion with appropriate priori information. The synthetic tests indicate that the GA waveform inversion of Rayleigh waves has the great potential for shallow S-wave velocity imaging with the existence of strong lateral heterogeneity. ?? 2011 Elsevier B.V.
NASA Astrophysics Data System (ADS)
Nikkhoo, Mehdi; Walter, Thomas R.; Lundgren, Paul; Spica, Zack; Legrand, Denis
2016-04-01
The Azufre-Lastarria volcanic complex in the central Andes has been recognized as a major region of magma intrusion. Both deep and shallow inflating reservoirs inferred through InSAR time series inversions, are the main sources of a multi-scale deformation accompanied by pronounced fumarolic activity. The possible interactions between these reservoirs, as well as the path of propagating fluids and the development of their pathways, however, have not been investigated. Results from recent seismic noise tomography in the area show localized zones of shear wave velocity anomalies, with a low shear wave velocity region at 1 km depth and another one at 4 km depth beneath Lastarria. Although the inferred shallow zone is in a good agreement with the location of the shallow deformation source, the deep zone does not correspond to any deformation source in the area. Here, using the boundary element method (BEM), we have performed an in-depth continuum mechanical investigation of the available ascending and descending InSAR data. We modelled the deep source, taking into account the effect of topography and complex source geometry on the inversion. After calculating the stress field induced by this source, we apply Paul's criterion (a variation on Mohr-Coulomb failure) to recognize locations that are liable for failure. We show that the locations of tensile and shear failure almost perfectly coincide with the shallow and deep anomalies as identified by shear wave velocity, respectively. Based on the stress-change models we conjecture that the deep reservoir controls the development of shallower hydrothermal fluids; a hypothesis that can be tested and applied to other volcanoes.
NASA Astrophysics Data System (ADS)
Janiszewski, Helen; Gaherty, James; Abers, Geoffrey; Gao, Haiying
2017-04-01
The Cascadia subduction zone (CSZ) is the site of the onshore-offshore Cascadia Initiative, which deployed seismometers extending from the Juan de Fuca ridge to the subduction zone and onshore beyond the volcanic arc. This array allows the unique opportunity to seismically image the evolution and along-strike variation of the crust and mantle of the entire CSZ. We compare teleseismic receiver functions, ambient-noise Rayleigh-wave phase velocities in the 10-20 s period band, and earthquake-source Rayleigh-wave phase velocities from 20-100 s, to determine shear-velocity structure in the upper 200 km. Receiver functions from both onshore and shallow-water offshore sites provide constraints on crustal and plate interface structure. Spectral-domain fitting of ambient-noise empirical Green's functions constrains shear velocity of the crust and shallow mantle. An automated multi-channel cross-correlation analysis of teleseismic Rayleigh waves provides deeper lithosphere and asthenosphere constraints. The amphibious nature of the array means it is essential to examine the effect of noise variability on data quality. Ocean bottom seismometers (OBS) are affected by tilt and compliance noise. Removal of this noise from the vertical components of the OBS is essential for the teleseismic Rayleigh waves; this stabilizes the output phase velocity maps particularly along the coastline where observations are predominately from shallow water OBS. Our noise-corrected phase velocity maps reflect major structures and tectonic transitions including the transition from high-velocity oceanic lithosphere to low-velocity continental lithosphere, high velocities associated with the subducting slab, and low velocities beneath the ridge and arc. We interpret the resulting shear-velocity model in the context of temperature and compositional variation in the incoming plate and along the strike of the CSZ.
NASA Astrophysics Data System (ADS)
Janiszewski, H. A.; Gaherty, J. B.; Abers, G. A.; Gao, H.
2016-12-01
The Cascadia subduction zone (CSZ) is the site of the onshore-offshore Cascadia Initiative, which deployed seismometers extending from the Juan de Fuca ridge to the subduction zone and onshore beyond the volcanic arc. This array allows the unique opportunity to seismically image the evolution and along-strike variation of the crust and mantle of the entire CSZ. We compare teleseismic receiver functions, ambient-noise Rayleigh-wave phase velocities in the 10-20 s period band, and earthquake-source Rayleigh-wave phase velocities from 20-100 s, to determine shear-velocity structure in the upper 200 km. Receiver functions from both onshore and shallow-water offshore sites provide constraints on crustal and plate interface structure. Spectral-domain fitting of ambient-noise empirical Green's functions constrains shear velocity of the crust and shallow mantle. An automated multi-channel cross-correlation analysis of teleseismic Rayleigh waves provides deeper lithosphere and asthenosphere constraints. The amphibious nature of the array means it is essential to examine the effect of noise variability on data quality. Ocean bottom seismometers (OBS) are affected by tilt and compliance noise. Removal of this noise from the vertical components of the OBS is essential for the teleseismic Rayleigh waves; this stabilizes the output phase velocity maps particularly along the coastline where observations are predominately from shallow water OBS. Our noise-corrected phase velocity maps reflect major structures and tectonic transitions including the transition from high-velocity oceanic lithosphere to low-velocity continental lithosphere, high velocities associated with the subducting slab, and low velocities beneath the ridge and arc. We interpret the resulting shear-velocity model in the context of temperature and compositional variation in the incoming plate and along the strike of the CSZ.
Mantle shear-wave tomography and the fate of subducted slabs.
Grand, Steven P
2002-11-15
A new seismic model of the three-dimensional variation in shear velocity throughout the Earth's mantle is presented. The model is derived entirely from shear bodywave travel times. Multibounce shear waves, core-reflected waves and SKS and SKKS waves that travel through the core are used in the analysis. A unique aspect of the dataset used in this study is the use of bodywaves that turn at shallow depths in the mantle, some of which are triplicated. The new model is compared with other global shear models. Although competing models show significant variations, several large-scale structures are common to most of the models. The high-velocity anomalies are mostly associated with subduction zones. In some regions the anomalies only extend into the shallow lower mantle, whereas in other regions tabular high-velocity structures seem to extend to the deepest mantle. The base of the mantle shows long-wavelength high-velocity zones also associated with subduction zones. The heterogeneity seen in global tomography models is difficult to interpret in terms of mantle flow due to variations in structure from one subduction zone to another. The simplest interpretation of the seismic images is that slabs in general penetrate to the deepest mantle, although the flow is likely to be sporadic. The interruption in slab sinking is likely to be associated with the 660 km discontinuity.
NASA Astrophysics Data System (ADS)
Shirzad, Taghi; Shomali, Z. Hossein
2014-06-01
We studied the shear wave velocity structure and radial anisotropy beneath the Tehran basin by analyzing the Rayleigh wave and Love wave empirical Green's functions obtained from cross-correlation of seismic ambient noise. Approximately 199 inter-station Rayleigh and Love wave empirical Green's functions with sufficient signal-to-noise ratios extracted from 30 stations with various sensor types were used for phase velocity dispersion analysis of periods ranging from 1 to 7 s using an image transformation analysis technique. Dispersion curves extracted from the phase velocity maps were inverted based on non-linear damped least squares inversion method to obtain a quasi-3D model of crustal shear wave velocities. The data used in this study provide an unprecedented opportunity to resolve the spatial distribution of radial anisotropy within the uppermost crust beneath the Tehran basin. The quasi-3D shear wave velocity model obtained in this analysis delineates several distinct low- and high-velocity zones that are generally separated by geological boundaries. High-shear-velocity zones are located primarily around the mountain ranges and extend to depths of 2.0 km, while the low-shear-velocity zone is located near regions with sedimentary layers. In the shallow subsurface, our results indicate strong radial anisotropy with negative magnitude (VSV > VSH) primarily associated with thick sedimentary deposits, reflecting vertical alignment of cracks. With increasing depth, the magnitude of the radial anisotropy shifts from predominantly negative (less than -10%) to predominantly positive (greater than 5%). Our results show a distinct change in radial anisotropy between the uppermost sedimentary layer and the bedrock.
NASA Astrophysics Data System (ADS)
Ebrahimi, M.; Tatar, M.; Aoudia, A.; Guidarelli, M.
2018-01-01
In order to define the precise shallow velocity structure beneath the second largest dam reservoir in Iran and to understand the loading effects on the underlying crust, the shear wave velocity of the shallow structure beneath the Gotvand-e Olya (hereinafter referred to as Gotvand) reservoir is determined through the inversion of group velocities obtained from seismic ambient noise tomography, using continuous data from 10 stations of a local network, installed to monitor the induced seismicity in the region surrounding the Gotvand and Masjed Soleyman dams for potential hazard. We obtained Rayleigh waves from cross-correlation of waveforms recorded 10 months before and the same duration after impoundment of the Gotvand reservoir and calculated the group velocity from dispersion analysis in the period range 2-8 s. The group velocity dispersion curves are used to produce 2-D group velocity tomographic maps. The resulting tomographic maps at short periods are well correlated with subsurface geological features and delineate distinct low- and high-velocity zones separated mainly by geological boundaries. The 3-D shear wave velocity structure provides detailed information about the crustal features underneath the reservoir. The results are consistent with the lithology of the region, and attest that ambient noise tomography (ANT) can be used for detailed studies of the velocity structure and lithology at shallow depths using continuous data from a dense local seismic network. An increase of shear wave velocity is observed at the deep parts (4-6 km) underneath the reservoir after impoundment of the dam, which could be caused by the changes in rocks properties after impoundment. However, at shallow depths (2-4 km), a decrease of Vs velocity is observed that can be associated to the penetration of water after the impoundment.
Effect of wave-current interactions on sediment resuspension in large shallow Lake Taihu, China.
Li, Yiping; Tang, Chunyan; Wang, Jianwei; Acharya, Kumud; Du, Wei; Gao, Xiaomeng; Luo, Liancong; Li, Huiyun; Dai, Shujun; Mercy, Jepkirui; Yu, Zhongbo; Pan, Baozhu
2017-02-01
The disturbance of the water-sediment interface by wind-driven currents and waves plays a critical role in sediment resuspension and internal nutrient release in large, shallow lakes. This study analyzed the effects of the interactions between wind-induced currents an1d waves on the driving mechanism of sediment resuspension in Lake Taihu, the third largest freshwater lake in China, using acoustic and optic techniques to collect long-term, high-frequency, synchronous in situ measurements of wind, currents, waves, and suspended solid concentrations (SSCs). The results suggested that water turbidity started to increase at wind speeds of approximately 4 m/s and significantly increased when wind speeds exceeded 6 m/s. In most cases, wind-induced waves were the main energy source for changes in turbidity. Wave-generated shear stress contributed more than 95% to sediment resuspension and that only in weak wind conditions (<4 m/s) did the lake bottom shear stresses generated by currents and waves contributed equally. The relationship between SSC and bottom shear stress generated by wave was established by fitting the observed results. The processes of sediment dynamics were divided into four stages (A through D) according to three shear-stress thresholds. In stage A, SSC remained stable (about 45 mg/L) and τ w was less than 0.02 N/m 2 . In stage B, the sediment bed was starting to be activated (SSC 45∼60 mg/L) and τ w was in the range of 0.02∼0.07 N/m 2 . In stage C, a medium amount of sediment was suspended (SSC 60∼150 mg/L) and τ w ranged from 0.07 to 0.3 N/m 2 . In stage D, large amount of sediment was suspended (SSC 150∼300 mg/L) and τ w was larger than 0.3 N/m 2 . The findings of this paper reveal the driving mechanism of sediment resuspension, which may further help to evaluate internal nutrient release in large shallow Lake Taihu.
Advanced Multivariate Inversion Techniques for High Resolution 3D Geophysical Modeling (Invited)
NASA Astrophysics Data System (ADS)
Maceira, M.; Zhang, H.; Rowe, C. A.
2009-12-01
We focus on the development and application of advanced multivariate inversion techniques to generate a realistic, comprehensive, and high-resolution 3D model of the seismic structure of the crust and upper mantle that satisfies several independent geophysical datasets. Building on previous efforts of joint invesion using surface wave dispersion measurements, gravity data, and receiver functions, we have added a fourth dataset, seismic body wave P and S travel times, to the simultaneous joint inversion method. We present a 3D seismic velocity model of the crust and upper mantle of northwest China resulting from the simultaneous, joint inversion of these four data types. Surface wave dispersion measurements are primarily sensitive to seismic shear-wave velocities, but at shallow depths it is difficult to obtain high-resolution velocities and to constrain the structure due to the depth-averaging of the more easily-modeled, longer-period surface waves. Gravity inversions have the greatest resolving power at shallow depths, and they provide constraints on rock density variations. Moreover, while surface wave dispersion measurements are primarily sensitive to vertical shear-wave velocity averages, body wave receiver functions are sensitive to shear-wave velocity contrasts and vertical travel-times. Addition of the fourth dataset, consisting of seismic travel-time data, helps to constrain the shear wave velocities both vertically and horizontally in the model cells crossed by the ray paths. Incorporation of both P and S body wave travel times allows us to invert for both P and S velocity structure, capitalizing on empirical relationships between both wave types’ seismic velocities with rock densities, thus eliminating the need for ad hoc assumptions regarding the Poisson ratios. Our new tomography algorithm is a modification of the Maceira and Ammon joint inversion code, in combination with the Zhang and Thurber TomoDD (double-difference tomography) program.
A study on crustal shear wave splitting in the western part of the Banda arc-continent collision
DOE Office of Scientific and Technical Information (OSTI.GOV)
Syuhada, E-mail: hadda9@gmail.com; Research Centre for Physics - Indonesian Institute of Sciences; Hananto, Nugroho D.
2016-03-11
We analyzed shear wave splitting parameters from local shallow (< 30 km) earthquakes recorded at six seismic stations in the western part of the Banda arc-continent collision. We determined fast polarization and delay time for 195 event-stations pairs calculated from good signal-to-noise ratio waveforms. We observed that there is evidence for shear wave splitting at all stations with dominant fast polarization directions oriented about NE-SW, which are parallel to the collision direction of the Australian plate. However, minor fast polarization directions are oriented around NW-SE being perpendicular to the strike of Timor through. Furthermore, the changes in fast azimuths with themore » earthquake-station back azimuth suggest that the crustal anisotropy in the study area is not uniform. Splitting delay times are within the range of 0.05 s to 0.8 s, with a mean value of 0.29±0.18 s. Major seismic stations exhibit a weak tendency increasing of delay times with increasing hypocentral distance suggesting the main anisotropy contribution of the shallow crust. In addition, these variations in fast azimuths and delay times indicate that the crustal anisotropy in this region might not only be caused by extensive dilatancy anisotropy (EDA), but also by heterogeneity shallow structure such as the presence of foliations in the rock fabric and the fracture zones associated with active faults.« less
Nonlinear attenuation of S-waves and Love waves within ambient rock
NASA Astrophysics Data System (ADS)
Sleep, Norman H.; Erickson, Brittany A.
2014-04-01
obtain scaling relationships for nonlinear attenuation of S-waves and Love waves within sedimentary basins to assist numerical modeling. These relationships constrain the past peak ground velocity (PGV) of strong 3-4 s Love waves from San Andreas events within Greater Los Angeles, as well as the maximum PGV of future waves that can propagate without strong nonlinear attenuation. During each event, the shaking episode cracks the stiff, shallow rock. Over multiple events, this repeated damage in the upper few hundred meters leads to self-organization of the shear modulus. Dynamic strain is PGV divided by phase velocity, and dynamic stress is strain times the shear modulus. The frictional yield stress is proportional to depth times the effective coefficient of friction. At the eventual quasi-steady self-organized state, the shear modulus increases linearly with depth allowing inference of past typical PGV where rock over the damaged depth range barely reaches frictional failure. Still greater future PGV would cause frictional failure throughout the damaged zone, nonlinearly attenuating the wave. Assuming self-organization has taken place, estimated maximum past PGV within Greater Los Angeles Basins is 0.4-2.6 m s-1. The upper part of this range includes regions of accumulating sediments with low S-wave velocity that may have not yet compacted, rather than having been damaged by strong shaking. Published numerical models indicate that strong Love waves from the San Andreas Fault pass through Whittier Narrows. Within this corridor, deep drawdown of the water table from its currently shallow and preindustrial levels would nearly double PGV of Love waves reaching Downtown Los Angeles.
Analysis of Ground Motion from An Underground Chemical Explosion
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pitarka, Arben; Mellors, Robert J.; Walter, William R.
Here in this paper we investigate the excitation and propagation of far-field seismic waves from the 905 kg trinitrotoluene equivalent underground chemical explosion SPE-3 recorded during the Source Physics Experiment (SPE) at the Nevada National Security Site. The recorded far-field ground motion at short and long distances is characterized by substantial shear-wave energy, and large azimuthal variations in P-and S-wave amplitudes. The shear waves observed on the transverse component of sensors at epicentral distances <50 m suggests they were generated at or very near the source. The relative amplitude of the shear waves grows as the waves propagate away frommore » the source. We analyze and model the shear-wave excitation during the explosion in the 0.01–10 Hz frequency range, at epicentral distances of up to 1 km. We used two simulation techniques. One is based on the empirical isotropic Mueller–Murphy (MM) (Mueller and Murphy, 1971) nuclear explosion source model, and 3D anelastic wave propagation modeling. The second uses a physics-based approach that couples hydrodynamic modeling of the chemical explosion source with anelastic wave propagation modeling. Comparisons with recorded data show the MM source model overestimates the SPE-3 far-field ground motion by an average factor of 4. The observations show that shear waves with substantial high-frequency energy were generated at the source. However, to match the observations additional shear waves from scattering, including surface topography, and heterogeneous shallow structure contributed to the amplification of far-field shear motion. Comparisons between empirically based isotropic and physics-based anisotropic source models suggest that both wave-scattering effects and near-field nonlinear effects are needed to explain the amplitude and irregular radiation pattern of shear motion observed during the SPE-3 explosion.« less
Analysis of Ground Motion from An Underground Chemical Explosion
Pitarka, Arben; Mellors, Robert J.; Walter, William R.; ...
2015-09-08
Here in this paper we investigate the excitation and propagation of far-field seismic waves from the 905 kg trinitrotoluene equivalent underground chemical explosion SPE-3 recorded during the Source Physics Experiment (SPE) at the Nevada National Security Site. The recorded far-field ground motion at short and long distances is characterized by substantial shear-wave energy, and large azimuthal variations in P-and S-wave amplitudes. The shear waves observed on the transverse component of sensors at epicentral distances <50 m suggests they were generated at or very near the source. The relative amplitude of the shear waves grows as the waves propagate away frommore » the source. We analyze and model the shear-wave excitation during the explosion in the 0.01–10 Hz frequency range, at epicentral distances of up to 1 km. We used two simulation techniques. One is based on the empirical isotropic Mueller–Murphy (MM) (Mueller and Murphy, 1971) nuclear explosion source model, and 3D anelastic wave propagation modeling. The second uses a physics-based approach that couples hydrodynamic modeling of the chemical explosion source with anelastic wave propagation modeling. Comparisons with recorded data show the MM source model overestimates the SPE-3 far-field ground motion by an average factor of 4. The observations show that shear waves with substantial high-frequency energy were generated at the source. However, to match the observations additional shear waves from scattering, including surface topography, and heterogeneous shallow structure contributed to the amplification of far-field shear motion. Comparisons between empirically based isotropic and physics-based anisotropic source models suggest that both wave-scattering effects and near-field nonlinear effects are needed to explain the amplitude and irregular radiation pattern of shear motion observed during the SPE-3 explosion.« less
Imaging shallow magma chambers at Alaskan volcanoes with ambient seismic noise
NASA Astrophysics Data System (ADS)
Haney, M. M.; Prejean, S. G.
2009-05-01
Ambient noise tomography/inversion (ANT) is an emerging technique in seismology with the ability to provide 3D images of subsurface volcanic structure using relatively sparse seismic networks. The method relies on the principle that the cross-correlation of noise recordings at two different seismic stations reproduces an experiment in which one of the stations acts as an active source. Ambient seismic noise in the frequency band from 0.1 to 1 Hz is mostly composed of fundamental mode surface waves, of both Love and Rayleigh type. As a result, noise cross-correlations are sensitive to shear-wave structure and complement compressional-wave images computed from phase arrivals of local earthquakes. At Okmok volcano in the Aleutian islands, a 3D image constructed from 40 days of noise recordings in 2005 on a 12 station network clearly shows two low velocity zones (LVZs) centered about the 10-km-wide caldera: a shallow zone in the upper 1-2 km and a deeper zone between 4-4.5 km. The shallow LVZ is interpreted to be weak, poorly-consolidated material within the caldera; the deeper LVZ is indicative of the shallow magma chamber at Okmok. That the chamber is imaged as an LVZ in 2005 points to it remaining in a molten state throughout the time period between the 1997 and 2008 eruptions. The existence of a shallow chamber at Okmok is consistent with independent studies based on GPS, InSAR, and petrologic data. A 3D image has also been determined for the Katmai group of volcanoes along the Alaska peninsula from 60 days of continuous recordings in 2005 and 2006. An LVZ at Katmai Pass, previously known from local earthquake tomography (LET), is evident in the 3D shear-wave velocity model at depths down to 2 km BSL. That the LVZ exists in compressional-wave velocity models suggests it is a shallow magma storage area for Trident volcano. In contrast, low shear-wave velocity under Martin volcano is likely fluid-related, given the lack of low compressional-wave velocities in images derived from LET. Interestingly, a deep (> 5 km), subtle LVZ imaged between Trident and Mount Katmai may represent remnants of the magmatic conduit system from the cataclysmic 1912 eruption of Novarupta. A deployment of 11 temporary broadband seismometers are currently in place around Katmai Pass and should provide more constraints on the structure of the deep LVZ. The availability of many three-component seismometers within the Katmai permanent/temporary network makes it possible to additionally invert Love waves and the ratio of the horizontal-to-vertical motion of Rayleigh waves, the HV ratio, to further delineate volcanic structure from the ambient seismic field.
NASA Astrophysics Data System (ADS)
D'Alpaos, A.; Carniello, L.; Rinaldo, A.
2013-12-01
Wind-wave induced erosion processes play a critical role on the morphodynamic evolution of shallow tidal landscapes. Both in the horizontal and in the vertical planes, patterns of wind-induced bottom shear stresses contribute to control the morphological and biological features of the tidal landscape, through the erosion of tidal-flat surfaces and of salt-marsh margins, the disruption of the polymeric microphytobenthic biofilm, and the increase in suspended sediment concentration which affects the stability of intertidal ecosystems. Towards the goal of developing a synthetic theoretical framework to represent wind wave-induced resuspension events and account for their erosional effects on the long-term biomorphodynamic evolution of tidal systems, we have employed a complete, coupled finite element model accounting for the role of wind waves and tidal currents on the hydrodynamic circulation in shallow basins. Our analysis of the characteristics of combined current and wave-induced exceedances in bottom shear stress over a given threshold for erosion, suggest that wind wave-induced resuspension events can be modeled as a marked Poisson process. Moreover, the analysis of wind-wave induced resuspension events for different historical configurations of the Venice Lagoon shows that the interarrival times of erosion events have decreased through the last two centuries, whereas the intensities of erosion events have increased. This allows us to characterize the threatening erosion and degradation processes that the Venice Lagoon has been experiencing since the beginning of the last century.
Critical role of wind-wave induced erosion on the morphodynamic evolution of shallow tidal basins
NASA Astrophysics Data System (ADS)
D'Alpaos, Andrea; Carniello, Luca; Rinaldo, Andrea
2014-05-01
Wind-wave induced erosion processes are among the chief processes which govern the morphodynamic evolution of shallow tidal basins, both in the vertical and in the horizontal plane. Wind-wave induced bottom shear stresses can promote the disruption of the polymeric microphytobenthic biofilm and lead to the erosion of tidal-flat surfaces and to the increase in suspended sediment concentration which affects the stability of intertidal ecosystems. Moreover, the impact of wind-waves on salt-marsh margins can lead to the lateral erosion of marsh boundaries thus promoting the disappearance of salt-marsh ecosystems. Towards the goal of developing a synthetic theoretical framework to represent wind wave-induced resuspension events and account for their erosional effects on the long-term biomorphodynamic evolution of tidal systems, we have employed a complete, coupled finite element model accounting for the role of wind waves and tidal currents on the hydrodynamic circulation in shallow basins. Our analyses of the characteristics of combined current and wave-induced exceedances in bottom shear stress over a given threshold for erosion, suggest that wind wave-induced resuspension events can be modeled as a marked Poisson process. The interarrival time of wave-induced erosion events is, in fact, an exponentially distributed random variable, as well as the duration and intensity of overthreshold events. Moreover, the analysis of wind-wave induced resuspension events for different historical configurations of the Venice Lagoon from the 19th to the 21st century, shows that the interarrival times of erosion events have dramatically decreased through the last two centuries, whereas the intensities of erosion events have experienced a surprisingly high increase. This allows us to characterize the threatening erosion and degradation processes that the Venice Lagoon has been experiencing since the beginning of the last century.
Near Surface Seismic Hazard Characterization in the Presence of High Velocity Contrasts
NASA Astrophysics Data System (ADS)
Gribler, G.; Mikesell, D.; Liberty, L. M.
2017-12-01
We present new multicomponent surface wave processing techniques that provide accurate characterization of near-surface conditions in the presence of large lateral or vertical shear wave velocity boundaries. A common problem with vertical component Rayleigh wave analysis in the presence of high contrast subsurface conditions is Rayleigh wave propagation mode misidentification due to an overlap of frequency-phase velocity domain dispersion, leading to an overestimate of shear wave velocities. By using the vertical and horizontal inline component signals, we isolate retrograde and prograde particle motions to separate fundamental and higher mode signals, leading to more accurate and confident dispersion curve picks and shear wave velocity estimates. Shallow, high impedance scenarios, such as the case with shallow bedrock, are poorly constrained when using surface wave dispersion information alone. By using a joint inversion of dispersion and horizontal-to-vertical (H/V) curves within active source frequency ranges (down to 3 Hz), we can accurately estimate the depth to high impedance boundaries, a significant improvement compared to the estimates based on dispersion information alone. We compare our approach to body wave results that show comparable estimates of bedrock topography. For lateral velocity contrasts, we observe horizontal polarization of Rayleigh waves identified by an increase in amplitude and broadening of the horizontal spectra with little variation in the vertical component spectra. The horizontal spectra offer a means to identify and map near surface faults where there is no topographic or clear body wave expression. With these new multicomponent active source seismic data processing and inversion techniques, we better constrain a variety of near surface conditions critical to the estimation of local site response and seismic hazards.
NASA Astrophysics Data System (ADS)
Sollberger, David; Schmelzbach, Cedric; Robertsson, Johan O. A.; Greenhalgh, Stewart A.; Nakamura, Yosio; Khan, Amir
2016-04-01
We present a new seismic velocity model of the shallow lunar crust, including, for the first time, shear wave velocity information. So far, the shear wave velocity structure of the lunar near-surface was effectively unconstrained due to the complexity of lunar seismograms. Intense scattering and low attenuation in the lunar crust lead to characteristic long-duration reverberations on the seismograms. The reverberations obscure later arriving shear waves and mode conversions, rendering them impossible to identify and analyze. Additionally, only vertical component data were recorded during the Apollo active seismic experiments, which further compromises the identification of shear waves. We applied a novel processing and analysis technique to the data of the Apollo 17 lunar seismic profiling experiment (LSPE), which involved recording seismic energy generated by several explosive packages on a small areal array of four vertical component geophones. Our approach is based on the analysis of the spatial gradients of the seismic wavefield and yields key parameters such as apparent phase velocity and rotational ground motion as a function of time (depth), which cannot be obtained through conventional seismic data analysis. These new observables significantly enhance the data for interpretation of the recorded seismic wavefield and allow, for example, for the identification of S wave arrivals based on their lower apparent phase velocities and distinct higher amount of generated rotational motion relative to compressional (P-) waves. Using our methodology, we successfully identified pure-mode and mode-converted refracted shear wave arrivals in the complex LSPE data and derived a P- and S-wave velocity model of the shallow lunar crust at the Apollo 17 landing site. The extracted elastic-parameter model supports the current understanding of the lunar near-surface structure, suggesting a thin layer of low-velocity lunar regolith overlying a heavily fractured crust of basaltic material showing high (>0.4 down to 60 m) Poisson's ratios. Our new model can be used in future studies to better constrain the deep interior of the Moon. Given the rich information derived from the minimalistic recording configuration, our results demonstrate that wavefield gradient analysis should be critically considered for future space missions that aim to explore the interior structure of extraterrestrial objects by seismic methods. Additionally, we anticipate that the proposed shear wave identification methodology can also be applied to the routinely recorded vertical component data from land seismic exploration on Earth.
NASA Astrophysics Data System (ADS)
Pitarka, A.
2015-12-01
Arben Pitarka, Souheil M. Ezzedine, Oleg Y. Vorobiev, Tarabay H. Antoun, Lew A. Glenn, William R. Walter, Robert J. Mellors, and Evan Hirakawa. We have analyzed effects of wave scattering due to near-source structural complexity and sliding joint motion on generation of shear waves from SPE-4Pprime, a shallow chemical explosion conducted at the Nevada National Security Site. In addition to analyzing far-field ground motion recorded on three-component geophones, we performed high-frequency simulations of the explosion using a finite difference method and heterogeneous media with stochastic variability. The stochastic variations of seismic velocity were modeled using Gaussian correlation functions. Using simulations and recorded waveforms we demonstrate the implication of wave scattering on generation of shear motion, and show the gradual increase of shear motion energy as the waves propagate through media with variable scattering. The amplitude and duration of shear waves resulting from wave scattering are found to be dependent on the model complexity and to a lesser extent to source distance. Analysis of shear-motion generation due to joint motion were conducted using numerical simulations performed with GEODYN-L, a parallelized Lagrangian hydrocode, while a stochastic approach was used in depicting the properties of joints. Separated effects of source and wave scattering on shear motion generation will be shown through simulated motion. This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344 Release Number: LLNL-ABS-675570
NASA Astrophysics Data System (ADS)
Saikia, Chandan K.; Kafka, Alan L.; Gnewuch, Scott C.; McTigue, John W.
1990-06-01
In this study, we analyzed 0.5-2.0 s period Rayleigh waves (Rg) generated by quarry and construction blasting in southern New England (CNE). We investigated group velocity dispersion and attenuation of the observed Rg waves. The paths crossing the Hartford Rift basin (HRB) show an obvious correlation between geology and Rg dispersion. The entire region in the southeastern New England comprising a wide range of geological structures and rock types from the Bronson Hill Anticlinorium to the Avalonian Terrane can be represented as one dispersion region. Therefore the relationship between lateral changes in geologic structures mapped on the surface and Rg dispersion is not as straightforward as might be expected for a best fitting flat-layered model of the shallow crust. The shear wave velocities appear to vary between 2.55 and 3.63 km/s within the upper 2.5 km except for the central HRB where the variation is between 2.12 and 2.7 km/s. Intrinsic Q structure is considered to be the primary means for the loss of energy in the shallow crust and was analyzed by modelling the waveforms of several of the observed seismograms. For this aspect of our study, we used a modal summation of Rayleigh waves assuming a far-field radiation approximation. The observed seismograms were dominated primarily by contributions from the fundamental mode, but higher modes were also included in the synthesis of the waveform. We were unable to model the absolute amplitudes of the waveforms because of the problems with the instrument calibration. It is clear, however, that to predict correct waveforms, the shear wave Q values in the upper few tenths of a kilometer of the crust must be about an order of magnitude smaller than Q values at the depth of 1-3 km which is of order of 100-250.
Rg-Lg coupling as a Lg-wave excitation mechanism
NASA Astrophysics Data System (ADS)
Ge, Z.; Xie, X.
2003-12-01
Regional phase Lg is predominantly comprised of shear wave energy trapped in the crust. Explosion sources are expected to be less efficient for excitation of Lg phases than earthquakes to the extent that the source can be approximated as isotropic. Shallow explosions generate relatively large surface wave Rg compared to deeper earthquakes, and Rg is readily disrupted by crustal heterogeneity. Rg energy may thus scatter into trapped crustal S-waves near the source region and contribute to low-frequency Lg wave. In this study, a finite-difference modeling plus the slowness analysis are used for investigating the above mentioned Lg-wave excitation mechanism. The method allows us to investigate near source energy partitioning in multiple domains including frequency, slowness and time. The main advantage of this method is that it can be applied at close range, before Lg is actually formed, which allows us to use very fine near source velocity model to simulate the energy partitioning process. We use a layered velocity structure as the background model and add small near source random velocity patches to the model to generate the Rg to Lg coupling. Two types of simulations are conducted, (1) a fixed shallow explosion source vs. randomness at different depths and (2) a fixed shallow randomness vs. explosion sources at different depths. The results show apparent couplings between the Rg and Lg waves at lower frequencies (0.3-1.5 Hz). A shallow source combined with shallow randomness generates the maximum Lg-wave, which is consistent with the Rg energy distribution of a shallow explosion source. The Rg energy and excited Lg energy show a near linear relationship. The numerical simulation and slowness analysis suggest that the Rg to Lg coupling is an effective excitation mechanism for low frequency Lg-waves from a shallow explosion source.
NASA Astrophysics Data System (ADS)
Tommasini, Laura; Carniello, Luca; Goodwin, Guillaume; Mudd, Simon M.; Matticchio, Bruno; D'Alpaos, Andrea
2017-04-01
Wind-wave induced erosion is one of the main processes controlling the morphodynamic evolution of shallow tidal basins, because wind waves promote the erosion of subtidal platforms, tidal flats and salt marshes. Our study considered zero-, one-and two-dimensional wave models. First, we analyzed the relations between wave parameters, depth and bed shear stress with constant and variable wave period considering two zero-dimensional models based on the Young and Verhagen (1996), and Carniello et al. (2005, 2011) approaches. The first one is an empirical method that computes wave height and the variable wave period from wind velocity, fetch and water depth. The second one is based on the solution of wave action conservation equation, we use this second approach for computing the bottom shear stress and wave height, considering variable and constant (t=2s) wave period. Second, we compared the wave spectral model SWAN with a fully coupled Wind-Wave Tidal Model applied to a 1D rectangular domain. These models describe both the growth and propagation of wind waves. Finally, we applied the two-dimensional Wind Wave Tidal Model (WWTM) to six different configurations of the Venice lagoon considering the same boundary conditions and we evaluated the spatial variation of mean wave power density. The analysis with zero-dimensional models show that the effects of the different model assumptions on the wave period and on the wave height computation cannot be neglected. In particular, the relationships between bottom shear stress and water depth have different shapes. Two results emerge: first, the differences are higher for small depths, and then the maximum values reached with the Young and Verhagen (1996) approach are greater than the maximum values obtained with WWTM approach. The results obtained with two-dimensional models suggest that the wave height is different in particular for small fetch, this could be due to the different formulation of the wave period. Finally, the application of WWTM for the entire Lagoon basin underlines an increase of the mean power density in the last four centuries, in particular in the central-southern part of the lagoon between Chioggia and Malamocco inlets.
NASA Astrophysics Data System (ADS)
Zuccarello, Luciano; Paratore, Mario; La Rocca, Mario; Ferrari, Ferruccio; Messina, Alfio; Contrafatto, Danilo; Galluzzo, Danilo; Rapisarda, Salvatore
2016-04-01
In volcanic environment the propagation of seismic signals through the shallowest layers is strongly affected by lateral heterogeneity, attenuation, scattering, and interaction with the free surface. Therefore tracing a seismic ray from the recording site back to the source is a complex matter, with obvious implications for the source location. For this reason the knowledge of the shallow velocity structure may improve the location of shallow volcano-tectonic earthquakes and volcanic tremor, thus contributing to improve the monitoring of volcanic activity. This work focuses on the analysis of seismic noise and volcanic tremor recorded in 2014 by a temporary array installed around Pozzo Pitarrone, NE flank of Mt. Etna. Several methods permit a reliable estimation of the shear wave velocity in the shallowest layers through the analysis of stationary random wavefield like the seismic noise. We have applied the single station HVSR method and SPAC array method to seismic noise to investigate the local shallow structure. The inversion of dispersion curves produced a shear wave velocity model of the area reliable down to depth of about 130 m. We also applied the Beam Forming array method in the 0.5 Hz - 4 Hz frequency range to both seismic noise and volcanic tremor. The apparent velocity of coherent tremor signals fits quite well the dispersion curve estimated from the analysis of seismic noise, thus giving a further constrain on the estimated velocity model. Moreover, taking advantage of a borehole station installed at 130 m depth in the same area of the array, we obtained a direct estimate of the P-wave velocity by comparing the borehole recordings of local earthquakes with the same event recorded at surface. Further insight on the P-wave velocity in the upper 130 m layer comes from the surface reflected wave visible in some cases at the borehole station. From this analysis we obtained an average P-wave velocity of about 1.2 km/s, in good agreement with the shear wave velocity found from the analysis of seismic noise. To better constrain the inversion we used the HVSR computed at each array station, which also give a lateral extension to the final 3D velocity model. The obtained results indicate that site effects in the investigate area are quite homogeneous among the array stations.
Comb-push Ultrasound Shear Elastography (CUSE) with Various Ultrasound Push Beams
Song, Pengfei; Urban, Matthew W.; Manduca, Armando; Zhao, Heng; Greenleaf, James F.; Chen, Shigao
2013-01-01
Comb-push Ultrasound Shear Elastography (CUSE) has recently been shown to be a fast and accurate two-dimensional (2D) elasticity imaging technique that can provide a full field-of- view (FOV) shear wave speed map with only one rapid data acquisition. The initial version of CUSE was termed U-CUSE because unfocused ultrasound push beams were used. In this paper, we present two new versions of CUSE – Focused CUSE (F-CUSE) and Marching CUSE (M-CUSE), which use focused ultrasound push beams to improve acoustic radiation force penetration and produce stronger shear waves in deep tissues (e.g. kidney and liver). F-CUSE divides transducer elements into several subgroups which transmit multiple focused ultrasound beams simultaneously. M-CUSE uses more elements for each focused push beam and laterally marches the push beams. Both F-CUSE and M-CUSE can generate comb-shaped shear wave fields that have shear wave motion at each imaging pixel location so that a full FOV 2D shear wave speed map can be reconstructed with only one data acquisition. Homogeneous phantom experiments showed that U-CUSE, F-CUSE and M-CUSE can all produce smooth shear wave speed maps with accurate shear wave speed estimates. An inclusion phantom experiment showed that all CUSE methods could provide good contrast between the inclusion and background with sharp boundaries while F-CUSE and M-CUSE require shorter push durations to achieve shear wave speed maps with comparable SNR to U-CUSE. A more challenging inclusion phantom experiment with a very stiff and deep inclusion shows that better shear wave penetration could be gained by using F-CUSE and M-CUSE. Finally, a shallow inclusion experiment showed that good preservations of inclusion shapes could be achieved by both U-CUSE and F-CUSE in the near field. Safety measurements showed that all safety parameters are below FDA regulatory limits for all CUSE methods. These promising results suggest that, using various push beams, CUSE is capable of reconstructing a 2D full FOV shear elasticity map using only one push-detection data acquisition in a wide range of depths for soft tissue elasticity imaging. PMID:23591479
Comb-push ultrasound shear elastography (CUSE) with various ultrasound push beams.
Song, Pengfei; Urban, Matthew W; Manduca, Armando; Zhao, Heng; Greenleaf, James F; Chen, Shigao
2013-08-01
Comb-push ultrasound shear elastography (CUSE) has recently been shown to be a fast and accurate 2-D elasticity imaging technique that can provide a full field-of-view (FOV) shear wave speed map with only one rapid data acquisition. The initial version of CUSE was termed U-CUSE because unfocused ultrasound push beams were used. In this paper, we present two new versions of CUSE-focused CUSE (F-CUSE) and marching CUSE (M-CUSE), which use focused ultrasound push beams to improve acoustic radiation force penetration and produce stronger shear waves in deep tissues (e.g., kidney and liver). F-CUSE divides transducer elements into several subgroups which transmit multiple focused ultrasound beams simultaneously. M-CUSE uses more elements for each focused push beam and laterally marches the push beams. Both F-CUSE and M-CUSE can generate comb-shaped shear wave fields that have shear wave motion at each imaging pixel location so that a full FOV 2-D shear wave speed map can be reconstructed with only one data acquisition. Homogeneous phantom experiments showed that U-CUSE, F-CUSE, and M-CUSE can all produce smooth shear wave speed maps with accurate shear wave speed estimates. An inclusion phantom experiment showed that all CUSE methods could provide good contrast between the inclusion and background with sharp boundaries while F-CUSE and M-CUSE require shorter push durations to achieve shear wave speed maps with comparable SNR to U-CUSE. A more challenging inclusion phantom experiment with a very stiff and deep inclusion shows that better shear wave penetration could be gained by using F-CUSE and M-CUSE. Finally, a shallow inclusion experiment showed that good preservations of inclusion shapes could be achieved by both U-CUSE and F-CUSE in the near field. Safety measurements showed that all safety parameters are below FDA regulatory limits for all CUSE methods. These promising results suggest that, using various push beams, CUSE is capable of reconstructing a 2-D full FOV shear elasticity map using only one push-detection data acquisition in a wide range of depths for soft tissue elasticity imaging.
A progress report on the ARRA-funded geotechnical site characterization project
NASA Astrophysics Data System (ADS)
Martin, A. J.; Yong, A.; Stokoe, K.; Di Matteo, A.; Diehl, J.; Jack, S.
2011-12-01
For the past 18 months, the 2009 American Recovery and Reinvestment Act (ARRA) has funded geotechnical site characterizations at 189 seismographic station sites in California and the central U.S. This ongoing effort applies methods involving surface-wave techniques, which include the horizontal-to-vertical spectral ratio (HVSR) technique and one or more of the following: spectral analysis of surface wave (SASW), active and passive multi-channel analysis of surface wave (MASW) and passive array microtremor techniques. From this multi-method approach, shear-wave velocity profiles (VS) and the time-averaged shear-wave velocity of the upper 30 meters (VS30) are estimated for each site. To accommodate the variability in local conditions (e.g., rural and urban soil locales, as well as weathered and competent rock sites), conventional field procedures are often modified ad-hoc to fit the unanticipated complexity at each location. For the majority of sites (>80%), fundamental-mode Rayleigh wave dispersion-based techniques are deployed and where complex geology is encountered, multiple test locations are made. Due to the presence of high velocity layers, about five percent of the locations require multi-mode inversion of Rayleigh wave (MASW-based) data or 3-D array-based inversion of SASW dispersion data, in combination with shallow P-wave seismic refraction and/or HVSR results. Where a strong impedance contrast (i.e. soil over rock) exists at shallow depth (about 10% of sites), dominant higher modes limit the use of Rayleigh wave dispersion techniques. Here, use of the Love wave dispersion technique, along with seismic refraction and/or HVSR data, is required to model the presence of shallow bedrock. At a small percentage of the sites, surface wave techniques are found not suitable for stand-alone deployment and site characterization is limited to the use of the seismic refraction technique. A USGS Open File Report-describing the surface geology, VS profile and the calculated VS30 for each site-will be prepared after the completion of the project in November 2011.
NASA Astrophysics Data System (ADS)
Godfrey, Holly J.; Shelley, Adrian; Savage, Martha K.
2014-10-01
We investigate changes in shear wave splitting and VP/VS ratios of local earthquakes from the GeoNet catalogue during a 16 month period beginning a year before the first Te Maari eruption at Mount Tongariro on August 6, 2012, focusing on four permanent seismographs located in proximity to the volcano. We identify four time periods bounded by sharp transitions that comprise the study period, during which moving averages of the shear-wave splitting parameters, Φ (fast direction) and δt (delay time), are fairly constant. At all stations, VP/VS is steady throughout most of the study period at 1.75. Small variations occur during the earthquake swarm at the volcano, which started a month before the first eruption, and for some low magnitude events occurring after a change in earthquake location method. Analysis of data sets in which epicentre location, hypocentre depth and event magnitude are restricted illustrates that observed temporal changes in shear-wave splitting parameters are likely due to the spatial variation of paths. This in turn is governed by the spatial distribution of seismicity and measurement quality. We think the short term variation in VP/VS ratios is due to event origin time uncertainty of low magnitude earthquakes or incorrect S-phase arrival timing for events in the Tongariro swarm. These results suggest that any volcanic processes able to cause changes in shear-wave splitting or VP/VS associated with the two eruptions during our study period were too localised to Te Maari to be observed at the seismographs studied using our methods. Dominant Φ observed during the study period are oriented approximately tangential to the Tongariro/Ngauruhoe massif at all four stations. We suggest that this may result from gravitational loading of Tongariro and Ngauruhoe mountains inducing fracturing or dilatation of tangentially oriented microcracks. There may also be some effect from layered material causing horizontal propagating rays yielding faster speed SH waves than SV at station NGZ. Measurements from shallow earthquakes in immediate proximity to the seismographs indicate the potential presence of a shallow, highly anisotropic body in the volcano.
Transtensional deformation of Montserrat revealed by shear wave splitting
NASA Astrophysics Data System (ADS)
Baird, Alan F.; Kendall, J.-Michael; Sparks, R. Stephen J.; Baptie, Brian
2015-09-01
Here we investigate seismic anisotropy of the upper crust in the vicinity of Soufrière Hills volcano using shear wave splitting (SWS) analysis from volcano-tectonic (VT) events. Soufrière Hills, which is located on the island of Montserrat in the Lesser Antilles, became active in 1995 and has been erupting ever since with five major phases of extrusive activity. We use data recorded on a network of seismometers between 1996 and 2007 partially spanning three extrusive phases. Shear-wave splitting in the crust is often assumed to be controlled either by structural features, or by stress aligned cracks. In such a case the polarization of the fast shear wave (ϕ) would align parallel to the strike of the structure, or to the maximum compressive stress direction. Previous studies analyzing SWS in the region using regional earthquakes observed temporal variations in ϕ which were interpreted as being caused by stress perturbations associated with pressurization of a dyke. Our analysis, which uses much shallower sources and thus only samples the anisotropy of the upper few kilometres of the crust, shows no clear temporal variation. However, temporal effects cannot be ruled out, as large fluctuations in the rate of VT events over the course of the study period as well as changes in the seismic network configuration make it difficult to assess. Average delay times of approximately 0.2 s, similar in magnitude to those reported for much deeper slab events, suggest that the bulk of the anisotropy is in the shallow crust. We observe clear spatial variations in anisotropy which we believe are consistent with structurally controlled anisotropy resulting from a left-lateral transtensional array of faults which crosses the volcanic complex.
Zhou, Ji-Xun; Zhang, Xue-Zhen
2012-12-01
Several physics-based seabed geoacoustic models (including the Biot theory) predict that compressional wave attenuation α(2) in sandy marine sediments approximately follows quadratic frequency dependence at low frequencies, i.e., α(2)≈kf(n) (dB/m), n=2. A recent paper on broadband geoacoustic inversions from low frequency (LF) field measurements, made at 20 locations around the world, has indicated that the frequency exponent of the effective sound attenuation n≈1.80 in a frequency band of 50-1000 Hz [Zhou et al., J. Acoust. Soc. Am. 125, 2847-2866 (2009)]. Carey and Pierce hypothesize that the discrepancy is due to the inversion models' neglect of shear wave effects [J. Acoust. Soc. Am. 124, EL271-EL277 (2008)]. The broadband geoacoustic inversions assume that the seabottom is an equivalent fluid and sound waves interact with the bottom at small grazing angles. The shear wave velocity and attenuation in the upper layer of ocean bottoms are estimated from the LF field-inverted effective bottom attenuations using a near-grazing bottom reflection expression for the equivalent fluid model, derived by Zhang and Tindle [J. Acoust. Soc. Am. 98, 3391-3396 (1995)]. The resultant shear wave velocity and attenuation are consistent with the SAX99 measurement at 25 Hz and 1000 Hz. The results are helpful for the analysis of shear wave effects on long-range sound propagation in shallow water.
Response of a Circular Tunnel Through Rock to a Harmonic Rayleigh Wave
NASA Astrophysics Data System (ADS)
Kung, Chien-Lun; Wang, Tai-Tien; Chen, Cheng-Hsun; Huang, Tsan-Hwei
2018-02-01
A factor that combines tunnel depth and incident wavelength has been numerically determined to dominate the seismic responses of a tunnel in rocks that are subjected to harmonic P- and S-waves. This study applies the dynamic finite element method to investigate the seismic response of shallow overburden tunnels. Seismically induced stress increments in the lining of a circular tunnel that is subjected to an incident harmonic R-wave are examined. The determination of R-wave considers the dominant frequency of acceleration history of the 1999 Chi-Chi earthquake measured near the site with damage to two case tunnels at specifically shallow depth. An analysis reveals that the normalized seismically induced axial, shear and flexural stress increments in the lining of a tunnel reach their respective peaks at the depth h/ λ = 0.15, where the ground motion that is generated by an incident of R-wave has its maximum. The tunnel radius has a stronger effect on seismically induced stress increments than does tunnel depth. A greater tunnel radius yields higher normalized seismically induced axial stress increments and lower normalized seismically induced shear and flexural stress increments. The inertia of the thin overburden layer above the tunnel impedes the propagation of the wave and affects the motion of the ground around the tunnel. With an extremely shallow overburden, such an effect can change the envelope of the normalized seismically induced stress increments from one with a symmetric four-petal pattern into one with a non-symmetric three-petal pattern. The simulated results may partially elucidate the spatial distributions of cracks that were observed in the lining of the case tunnels.
NASA Astrophysics Data System (ADS)
Canestrelli, Alberto; Toro, Eleuterio F.
2012-10-01
Recently, the FORCE centred scheme for conservative hyperbolic multi-dimensional systems has been introduced in [34] and has been applied to Euler and relativistic MHD equations, solved on unstructured meshes. In this work we propose a modification of the FORCE scheme, named FORCE-Contact, that provides improved resolution of contact and shear waves. This paper presents the technique in full detail as applied to the two-dimensional homogeneous shallow water equations. The improvements due to the new method are particularly evident when an additional equation is solved for a tracer, since the modified scheme exactly resolves isolated and steady contact discontinuities. The improvement is considerable also for slowly moving contact discontinuities, for shear waves and for steady states in meandering channels. For these types of flow fields, the numerical results provided by the new FORCE-Contact scheme are comparable with, and sometimes better than, the results obtained from upwind schemes, such as Roes scheme for example. In a companion paper, a similar approach to restoring the missing contact wave and preserving well-balanced properties for non-conservative one- and two-layer shallow water equations is introduced. However, the procedure is general and it is in principle applicable to other multidimensional hyperbolic systems in conservative and non-conservative form, such as the Euler equations for compressible gas dynamics.
NASA Astrophysics Data System (ADS)
Lorenzo, J. M.; Goff, D.; Hayashi, K.
2015-12-01
Unconsolidated Holocene deltaic sediments comprise levee foundation soils in New Orleans, USA. Whereas geotechnical tests at point locations are indispensable for evaluating soil stability, the highly variable sedimentary facies of the Mississippi delta create difficulties to predict soil conditions between test locations. Combined electrical resistivity and seismic shear wave studies, calibrated to geotechnical data, may provide an efficient methodology to predict soil types between geotechnical sites at shallow depths (0- 10 m). The London Avenue Canal levee flank of New Orleans, which failed in the aftermath of Hurricane Katrina, 2005, presents a suitable site in which to pioneer these geophysical relationships. Preliminary cross-plots show electrically resistive, high-shear-wave velocity areas interpreted as low-permeability, resistive silt. In brackish coastal environments, low-resistivity and low-shear-wave-velocity areas may indicate both saturated, unconsolidated sands and low-rigidity clays. Via a polynomial approximation, soil sub-types of sand, silt and clay can be estimated by a cross-plot of S-wave velocity and resistivity. We confirm that existent boring log data fit reasonably well with the polynomial approximation where 2/3 of soil samples fall within their respective bounds—this approach represents a new classification system that could be used for other mid-latitude, fine-grained deltas.
Differential Group-Velocity Detection of Fluid Paths Leland Timothy Long
DOE Office of Scientific and Technical Information (OSTI.GOV)
Long, Leland Timothy
2003-06-01
The objective of differential surface-wave interpretation is to identify and locate temporal perturbations in the shear-wave velocity. Perturbations in phase velocity are created when the stress and/or fluid content of soils changes, such as in pumping to remove or flush out contaminants. Differential surface wave analysis is a potential method to track the movement of fluids during remediation programs. This proposal is to develop and test this new technology to aid in the selection and design of remediation options in shallow aquifers.
Groundwater exploration in a Quaternary sediment body by shear-wave reflection seismics
NASA Astrophysics Data System (ADS)
Pirrung, M.; Polom, U.; Krawczyk, C. M.
2008-12-01
The detailed investigation of a shallow aquifer structure is the prerequisite for choosing a proper well location for groundwater exploration drilling for human drinking water supply and subsequent managing of the aquifer system. In the case of shallow aquifers of some 10 m in depth, this task is still a challenge for high-resolution geophysical methods, especially in populated areas. In areas of paved surfaces, shallow shear-wave reflection seismics is advantageous compared to conventional P-wave seismic methods. The sediment body of the Alfbach valley within the Vulkaneifel region in Germany, partly covered by the village Gillenfeld, was estimated to have a maximum thickness of nearly 60 m. It lies on top of a complicated basement structure, constituted by an incorporated lava flow near the basement. For the positioning of new well locations, a combination of a SH-wave land streamer receiver system and a small, wheelbarrow-mounted SH-wave source was used for the seismic investigations. This equipment can be easily applied also in residential areas without notable trouble for the inhabitants. The results of the 2.5D profiling show a clear image of the sediment body down to the bedrock with high resolution. Along a 1 km seismic profile, the sediment thickness varies between 20 to more than 60 m in the centre of the valley. The reflection behaviour from the bedrock surface corroborates the hypothesis of a basement structure with distinct topography, including strong dipping events from the flanks of the valley and strong diffractions from subsurface discontinuities. The reflection seismic imaging leads to an estimation of the former shape of the valley and a reconstruction of the flow conditions at the beginning of the sedimentation process.
Vs30 mapping at selected sites within the Greater Accra Metropolitan Area
NASA Astrophysics Data System (ADS)
Nortey, Grace; Armah, Thomas K.; Amponsah, Paulina
2018-06-01
A large part of Accra is underlain by a complex distribution of shallow soft soils. Within seismically active zones, these soils hold the most potential to significantly amplify seismic waves and cause severe damage, especially to structures sited on soils lacking sufficient stiffness. This paper presents preliminary site classification for the Greater Accra Metropolitan Area of Ghana (GAMA), using experimental data from two-dimensional (2-D) Multichannel Analysis of Surface Wave (MASW) technique. The dispersive characteristics of fundamental mode Rayleigh type surface waves were utilized for imaging the shallow subsurface layers (approx. up to 30 m depth) by estimating the 1D (depth) and 2D (depth and surface location) shear wave velocities at 5 selected sites. The average shear wave velocity for 30 m depth (Vs30), which is critical in evaluating the site response of the upper 30 m, was estimated and used for the preliminary site classification of the GAM area, as per NEHRP (National Earthquake Hazards Reduction Program). Based on the Vs30 values obtained in the study, two common site types C, and D corresponding to shallow (>6 m < 30 m) weathered rock and deep (up 30 m thick) stiff soils respectively, have been identified within the study area. Lower velocity profiles are inferred for the residual soils (sandy to silty clays), derived from the Accraian Formation that lies mainly within Accra central. Stiffer soil sites lie to the north of Accra, and to the west near Nyanyano. The seismic response characteristics over the residual soils in the GAMA have become apparent using the MASW technique. An extensive site effect map and a more robust probabilistic seismic hazard analysis can now be efficiently built for the metropolis, by considering the site classes and design parameters obtained from this study.
VS Characterization of Hard-Rock DAM Sites in British Columbia
NASA Astrophysics Data System (ADS)
Addo, K. O.; Catchings, R.; Yong, A.; Goldman, M.; Chan, J. H.; Martin, A. J.
2017-12-01
We present results consisting of shear-wave velocity (VS) profiles and the time-averaged VS in the uppermost 30 m (VS30) measured with multiple noninvasive seismic methods and acquired at five hydro dam locations in British Columbia, Canada. VS30 is typically the main parameter used to account for site amplification in ground motion models (GMMs), including models for western (WNA) and central/eastern North America (CENA). As VS30 quantifies soil shear stiffness, which affects frequency content and damping within shallow sediments, it correlates with the shallow-crustal damping parameter, kappa (k), and particularly the site component of kappa (k0). The upper limit on k0-VS30-scaling is in the range of 1100 to 1500 m/s (or less) and the lack of data from stiffer sites reflects the scarcity of direct VS measurements for such site conditions in North America. Hard-rock sites (VS30 > 1500 m/s) are of great engineering interest, but the lack of such measurements increases epistemic uncertainties in the GMMs. Moreover, it is currently not possible to correlate site-to-site variations in k0 with VS30 for such conditions because most hard-rock sites are assigned a generic VS30 of 2000 m/s, due to the lack of measured VS30 values. For the British Columbia sites, our preliminary analysis of field records indicates near-surface shear-wave velocities in excess of 2500 m/s in the upper few meters. Additional analysis of body- and surface-waves will include: refraction tomography, multi-channel analysis of surface waves (MASW), reflection, extended-spatial-autocorrelation, horizontal-to-vertical spectral ratio, and multi-spectral analysis of surface waves
Stephenson, W.J.; Frankel, A.D.; Odum, J.K.; Williams, R.A.; Pratt, T.L.
2006-01-01
A shallow bedrock fold imaged by a 1.3-km long high-resolution shear-wave seismic reflection profile in west Seattle focuses seismic waves arriving from the south. This focusing may cause a pocket of amplified ground shaking and the anomalous chimney damage observed in earthquakes of 1949, 1965 and 2001. The 200-m bedrock fold at ???300-m depth is caused by deformation across an inferred fault within the Seattle fault zone. Ground motion simulations, using the imaged geologic structure and northward-propagating north-dipping plane wave sources, predict a peak horizontal acceleration pattern that matches that observed in strong motion records of the 2001 Nisqually event. Additionally, a pocket of chimney damage reported for both the 1965 and the 2001 earthquakes generally coincides with a zone of simulated amplification caused by focusing. This study further demonstrates the significant impact shallow (<1km) crustal structures can have on earthquake ground-motion variability.
NASA Astrophysics Data System (ADS)
Delph, J. R.; Beck, S. L.; Zandt, G.; Biryol, C. B.; Ward, K. M.
2013-12-01
The Anatolian Plate consists of various lithospheric terranes amalgamated during the closure of the Tethys Ocean, and is currently extruding to the west in response to a combination of the collision of the Arabian plate in the east and the roll back of the Aegean subduction zone in the west. We used Ambient Noise Tomography (ANT) at periods <= 40s to investigate the crust and uppermost mantle structure of the Anatolian Plate. We computed a total of 13,779 unique cross-correlations using one sample-per-second vertical component broadband seismic data from 215 stations from 8 different networks over a period of 7 years to compute fundamental-mode Rayleigh wave dispersion curves following the method of Benson et al. (2007). We then inverted the dispersion data to calculate phase velocity maps for 11 periods from 8 s - 40 s throughout Anatolia and the Aegean regions (Barmin et al. 2001). Using smoothed Moho values derived from Vanacore et al. (2013) in our starting models, we inverted our dispersion curves using a linear least-squares iterative inversion scheme (Herrmann & Ammon 2004) to produce a 3-D shear-wave velocity model of the crust and uppermost mantle throughout Anatolia and the Aegean. We find a good correlation between our seismic shear wave velocities and paleostructures (suture zones) and modern deformation (basin formation and fault deformation). The most prominent crustal velocity contrasts occur across intercontinental sutures zones, resulting from the juxtaposition of the compositionally different basements of the amalgamated terranes. At shallow depths, seismic velocity contrasts correspond closely with surficial features. The Thrace, Cankiri and Tuz Golu basins, and accretionary complexes related to the closure of the Neotethys are characterized by slow shear wave velocities, while the Menderes and Kirsehir Massifs, Pontides, and Istanbul Zone are characterized by fast velocities. We find that the East Anatolia Plateau has slow shear-wave velocities, as expected due to high heat flow and active volcanism. The Tuz Golu fault has a visible seismic signal down to ~15 km below sea level, and the eastern Inner-Tauride Suture corresponding to the Central Anatolian Fault Zone may extend into the mantle. The Isparta Angle separates the actively extending portion of western Anatolia from the plateau regions in the east, and the largest anomaly (slow velocities) extending into the upper mantle is observed under the western flank of the Isparta Angle, corresponding to the Fethiye-Burdur fault zone. We attribute these slow shear-wave velocities to the effects of complex deformations within the crust as a result of the interactions of the African and Anatolian Plates. In the upper mantle, slow shear-wave velocities are consistent with a slab tear along a STEP fault corresponding to the extensions of the Pliny and Strabo Transform faults, allowing asthenosphere to rise to very shallow depths. The upper mantle beneath the Taurides exhibits very slow shear-wave velocities, in agreement with possible delamination or slab-breakoff (Cosentino et al. 2012) causing rapid uplift in the last 8 million years.
NASA Astrophysics Data System (ADS)
Hamann, Madeleine M.; Alford, Matthew H.; Mickett, John B.
2018-04-01
The generation, propagation, and dissipation of nonlinear internal waves (NLIW) in sheared background currents is examined using 7 days of shipboard microstructure surveys and two moorings on the continental shelf offshore of Washington state. Surveys near the hypothesized generation region show semi-diurnal (D2) energy flux is onshore and that the ratio of energy flux to group speed times energy (F/cgE) increases sharply at the shelf break, suggesting that the incident D2 internal tide is partially reflected and partially transmitted. NLIW appear at an inshore mooring at the leading edge of the onshore phase of the baroclinic tide, consistent with nonlinear transformation of the shoaling internal tide as their generation mechanism. Of the D2 energy flux observed at the eastern extent of the generation region (133 ± 18 Wm-1), approximately 30% goes into the NLIW observed inshore (36 ± 11 Wm-1). Inshore of the moorings, 7 waves are tracked into shallow (30-40 m) water, where a vertically sheared, southward current becomes strong. As train-like waves propagate onshore, wave amplitudes of 25-30 m and energies of 5 MJ decrease to 12 m and 10 kJ, respectively. The observed direction of propagation rotates from 30° N of E to ˜30° S of E in the strongly sheared region. Linear ray tracing using the Taylor-Goldstein equation to incorporate parallel shear effects accounts for only a small portion of the observed rotation, suggesting that three-dimensionality of the wave crests and the background currents is important here.
Hartzell, S.; Carver, D.; Williams, R.A.
2001-01-01
Aftershock records of the 1989 Loma Prieta earthquake are used to calculate site response in the frequency band of 0.5-10 Hz at 24 locations in Los Gatos, California, on the edge of the Santa Clara Valley. Two different methods are used: spectral ratios relative to a reference site on rock and a source/site spectral inversion method. These two methods complement each other and give consistent results. Site amplification factors are compared with surficial geology, thickness of alluvium, shallow shear-wave velocity measurements, and ground deformation and structural damage resulting from the Loma Prieta earthquake. Higher values of site amplification are seen on Quaternary alluvium compared with older Miocene and Cretaceous units of Monterey and Franciscan Formation. However, other more detailed correlations with surficial geology are not evident. A complex pattern of alluvial sediment thickness, caused by crosscutting thrust faults, is interpreted as contributing to the variability in site response and the presence of spectral resonance peaks between 2 and 7 Hz at some sites. Within the range of our field measurements, there is a correlation between lower average shear-wave velocity of the top 30 m and 50% higher values of site amplification. An area of residential homes thrown from their foundations correlates with high site response. This damage may also have been aggravated by local ground deformation. Severe damage to commercial buildings in the business district, however, is attributed to poor masonry construction.
3D shear wave velocity structure revealed with ambient noise tomography on a DAS array
NASA Astrophysics Data System (ADS)
Zeng, X.; Thurber, C. H.; Wang, H. F.; Fratta, D.
2017-12-01
An 8700-m Distributed Acoustic Sensing (DAS) cable was deployed at Brady's Hot Springs, Nevada in March 2016 in a 1.5 by 0.5 km study area. The layout of the DAS array was designed with a zig-zag geometry to obtain relatively uniform areal and varied angular coverage, providing very dense coverage with a one-meter channel spacing. This array continuously recorded signals of a vibroseis truck, earthquakes, and traffic noise during the 15-day deployment. As shown in a previous study (Zeng et al., 2017), ambient noise tomography can be applied to DAS continuous records to image shear wave velocity structure in the near surface. To avoid effects of the vibroseis truck operation, only continuous data recorded during the nighttime was used to compute noise cross-correlation functions for channel pairs within a given linear segment. The frequency band of whitening was set at 5 to 15 Hz and the length of the cross-correlation time window was set to 60 second. The phase velocities were determined using the multichannel analysis of surface waves (MASW) methodology. The phase velocity dispersion curve was then used to invert for shear wave velocity profiles. A preliminarily velocity model at Brady's Hot Springs (Lawrence Livermore National Laboratory, 2015) was used as the starting model and the sensitivity kernels of Rayleigh wave group and phase velocities were computed with this model. As the sensitivity kernel shows, shear wave velocity in the top 200 m can be constrained with Rayleigh wave group and phase velocities in our frequency band. With the picked phase velocity data, the shear wave velocity structure can be obtained via Occam's inversion (Constable et al., 1987; Lai 1998). Shear wave velocity gradually increases with depth and it is generally faster than the Lawrence Livermore National Laboratory (2015) model. Furthermore, that model has limiting constraints at shallow depth. The strong spatial variation is interpreted to reflect the different sediments and sediment thicknesses in the near surface. Shear wave velocities in the northeast corner of the tested area is high whereas loose soil reduces shear wave velocities in the central part of the tested area. This spatial variation pattern is very similar to the results obtained with the ambient noise tomography using the 238-geophone array used the experiment.
Instability waves and low-frequency noise radiation in the subsonic chevron jet
NASA Astrophysics Data System (ADS)
Ran, Lingke; Ye, Chuangchao; Wan, Zhenhua; Yang, Haihua; Sun, Dejun
2017-11-01
Spatial instability waves associated with low-frequency noise radiation at shallow polar angles in the chevron jet are investigated and are compared to the round counterpart. The Reynolds-averaged Navier-Stokes equations are solved to obtain the mean flow fields, which serve as the baseflow for linear stability analysis. The chevron jet has more complicated instability waves than the round jet, where three types of instability modes are identified in the vicinity of the nozzle, corresponding to radial shear, azimuthal shear, and their integrated effect of the baseflow, respectively. The most unstable frequency of all chevron modes and round modes in both jets decrease as the axial location moves downstream. Besides, the azimuthal shear effect related modes are more unstable than radial shear effect related modes at low frequencies. Compared to a round jet, a chevron jet reduces the growth rate of the most unstable modes at downstream locations. Moreover, linearized Euler equations are employed to obtain the beam pattern of pressure generated by spatially evolving instability waves at a dominant low frequency St=0.3 , and the acoustic efficiencies of these linear wavepackets are evaluated for both jets. It is found that the acoustic efficiency of linear wavepacket is able to be reduced greatly in the chevron jet, compared to the round jet.
Instability waves and low-frequency noise radiation in the subsonic chevron jet
NASA Astrophysics Data System (ADS)
Ran, Lingke; Ye, Chuangchao; Wan, Zhenhua; Yang, Haihua; Sun, Dejun
2018-06-01
Spatial instability waves associated with low-frequency noise radiation at shallow polar angles in the chevron jet are investigated and are compared to the round counterpart. The Reynolds-averaged Navier-Stokes equations are solved to obtain the mean flow fields, which serve as the baseflow for linear stability analysis. The chevron jet has more complicated instability waves than the round jet, where three types of instability modes are identified in the vicinity of the nozzle, corresponding to radial shear, azimuthal shear, and their integrated effect of the baseflow, respectively. The most unstable frequency of all chevron modes and round modes in both jets decrease as the axial location moves downstream. Besides, the azimuthal shear effect related modes are more unstable than radial shear effect related modes at low frequencies. Compared to a round jet, a chevron jet reduces the growth rate of the most unstable modes at downstream locations. Moreover, linearized Euler equations are employed to obtain the beam pattern of pressure generated by spatially evolving instability waves at a dominant low frequency St=0.3, and the acoustic efficiencies of these linear wavepackets are evaluated for both jets. It is found that the acoustic efficiency of linear wavepacket is able to be reduced greatly in the chevron jet, compared to the round jet.
Stephenson, W.J.; Louie, J.N.; Pullammanappallil, S.; Williams, R.A.; Odum, J.K.
2005-01-01
Multichannel analysis of surface waves (MASW) and refraction microtremor (ReMi) are two of the most recently developed surface acquisition techniques for determining shallow shear-wave velocity. We conducted a blind comparison of MASW and ReMi results with four boreholes logged to at least 260 m for shear velocity in Santa Clara Valley, California, to determine how closely these surface methods match the downhole measurements. Average shear-wave velocity estimates to depths of 30, 50, and 100 m demonstrate that the surface methods as implemented in this study can generally match borehole results to within 15% to these depths. At two of the boreholes, the average to 100 m depth was within 3%. Spectral amplifications predicted from the respective borehole velocity profiles similarly compare to within 15 % or better from 1 to 10 Hz with both the MASW and ReMi surface-method velocity profiles. Overall, neither surface method was consistently better at matching the borehole velocity profiles or amplifications. Our results suggest MASW and ReMi surface acquisition methods can both be appropriate choices for estimating shearwave velocity and can be complementary to each other in urban settings for hazards assessment.
Miller, James H; Potty, Gopu R; Kim, Hui-Kwan
2016-01-01
We modeled the effects of pile driving on crustaceans, groundfish, and other animals near the seafloor. Three different waves were investigated, including the compressional wave, shear wave, and interface wave. A finite element (FE) technique was employed in and around the pile, whereas a parabolic equation (PE) code was used to predict propagation at long ranges from the pile. Pressure, particle displacement, and particle velocity are presented as a function of range at the seafloor for a shallow-water environment near Rhode Island. We discuss the potential effects on animals near the seafloor.
The Effects of Microstructure on Shear Properties of Shallow Marine Sediments
2007-01-01
frequency and voltage were set at 75 kHz and 5 V p - p for P -wave; 500 Hz and 10 V p - p for S-wave, respectively. Pulse generator (Model: Wavetek 178, 50...density (9/cmr) P -wave velocity (mis) 6 7 8 9 10 40 50 0 70 80 90 1.20 1.30 140 1,90 2,0 24 2,8 1420 1500 50 100 200- 250 -Water content 300 -e...8217• Poroatty . . Figure 3. Mean grain size, geotechnical properties, and p -wave velocity for core samples at station 1. The values are markedly changed the
Underwater MASW to evaluate stiffness of water-bottom sediments
Park, C.B.; Miller, R.D.; Xia, J.; Ivanov, J.; Sonnichsen, G.V.; Hunter, J.A.; Good, R.L.; Burns, R.A.; Christian, H.
2005-01-01
The multichannel analysis of surface waves (MASW) is initially intended as a land survey method to investigate the near-surface materials for their elastic properties. The acquired data are first analyzed for dispersion characteristics and, from these the shear-wave velocity is estimated using an inversion technique. Land applications show the potential of the MASW method to map 2D bedrock surface, zones of low strength, Poisson's ratio, voids, as well as to generate shear-wave profiles for various othe geotechnical problems. An overview is given of several underwater applications of the MASW method to characterize stiffness distribution of water-bottom sediments. The first application details the survey under shallow-water (1-6 m) in the Fraser River (Canada). The second application is an innovative experimental marine seismic survey in the North Atlantic Ocean near oil fields in Grand Bank offshore Newfoundland.
Sediment Dynamics in Shallow Tidal Landscapes: The Role of Wind Waves and Tidal Currents
NASA Astrophysics Data System (ADS)
Carniello, L.; D'Alpaos, A.
2014-12-01
A precise description of sediment dynamics (resuspension and re-distribution of sediments) is crucial when investigating the long term evolution of the different morphological entities characterizing tidal landscapes. It has been demonstrated that wind waves are the main responsible for sediment resuspension in shallow micro-tidal lagoons where tidal currents, which produce shear stresses large enough to carry sediments into suspension only within the main channels, are mainly responsible for sediment redistribution. A mathematical model has been developed to describe sediment entrainment, transport and deposition due to the combined effect of tidal currents and wind waves in shallow lagoons considering both cohesive and non-cohesive sediments. The model was calibrated and tested using both in situ point observations and turbidity maps obtained analyzing satellite images. Once calibrated the model can integrate the high temporal resolution of point observations with the high spatial resolution of remote sensing, overcoming the intrinsic limitation of these two types of observations. The model was applied to the specific test case of the Venice lagoon simulating an entire year (2005) which was shown to be a "representative" year for wind and tide characteristics. The time evolution of the computed total bottom shear stresses (BSS) and suspended sediment concentration (SSC) was analyzed on the basis of a "Peaks Over Threshold" method once a critical value for shear stress and turbidity were chosen. The analyses of the numerical results enabled us to demonstrate that resuspension events can be modeled as marked Poisson processes: interarrival time, intensity of peak excesses and duration being exponentially distributed random variable. The probability distributions of the interarrival time of overthreshold exceedances in both BSS and SSC as well as their intensity and duration can be used in long-term morphodynamic studies to generate synthetic series statistically equivalent to real sequences through which MonteCarlo realizations of relevant morphological evolutions can be computed.
NASA Astrophysics Data System (ADS)
Mulligan, Ryan P.; Hanson, Jeffrey L.
2016-06-01
Wave and current measurements from a cross-shore array of nearshore sensors in Duck, NC, are used to elucidate the balance of alongshore momentum under energetic wave conditions with wide surf zones, generated by passing hurricanes that are close to and far from to the coast. The observations indicate that a distant storm (Hurricane Bill, 2009) with large waves has low variability in directional wave characteristics resulting in alongshore currents that are driven mainly by the changes in wave energy. A storm close to the coast (Hurricane Earl, 2010), with strong local wind stress and combined sea and swell components in wave energy spectra, has high variability in wave direction and wave period that influence wave breaking and nearshore circulation as the storm passes. During both large wave events, the horizontal current shear is strong and radiation stress gradients, bottom stress, wind stress, horizontal mixing, and cross-shore advection contribute to alongshore momentum at different spatial locations across the nearshore region. Horizontal mixing during Hurricane Earl, estimated from rotational velocities, was particularly strong suggesting that intense eddies were generated by the high horizontal shear from opposing wind-driven and wave-driven currents. The results provide insight into the cross-shore distribution of the alongshore current and the connection between flows inside and outside the surf zone during major storms, indicating that the current shear and mixing at the interface between the surf zone and shallow inner shelf is strongly dependent on the distance from the storm center to the coast.
RoMi: Refraction Microtremor Using Rotational Seismometers
NASA Astrophysics Data System (ADS)
Clark, B.; Abbott, R. E.; Knox, H. A.; Eimer, M. O.; Hart, D. M.; Skaggs, J.; Denning, J. T.
2013-12-01
We present the results of a shallow shear-wave velocity study that utilized both traditional geophones and a newly developed rotational seismometer (Applied Technology Associates ARS-16). We used Refraction Microtremor (ReMi), a method developed by John N. Louie, during processing to determine both Rayleigh and Love wave dispersion curves using both vertical and horizontal sources. ReMi uses a distance-time (x-t) wavefield transformation technique to image the dispersion curve in slowness-frequency (p-f) space. In the course of the ReMi processing, unwanted P waves are transformed into p-f space. As rotational seismometers are insensitive to P waves, they should prove to be superior sensors for Love wave studies, as those P waves would not interfere with interpretation of the p-f wavefield. Our results show that despite having one-fifth the geophone signal-to-noise ratio in the distance-time wavefield, the ARS-16 produced superior results in the p-f wavefield. Specifically, we found increases of up to 50% in ReMi spectral ratio along the dispersion curve. This implies that as more quiet and sensitive rotational sensors are developed, deploying rotational seismometers instead of traditional sensors will yield significantly better results. This will ultimately improve shallow shear-wave velocity resolution, which is vital for calculating seismic hazard. This data was collected at Sandia National Laboratories' Facility for Analysis, Calibration, and Testing (FACT) located in Albuquerque, NM. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the US Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.
Ambient Noise Tomography and Microseism Directionalities across the Juan de Fuca Plate
NASA Astrophysics Data System (ADS)
Tian, Ye
Ambient noise tomography has been well developed over the past decade and proven to be effective in studying the crust and upper mantle structure beneath the Earth’s continents. With new seismic array deployments beginning in the oceans, the application of the tomographic methods based on ambient noise observed at ocean bottom seismometers (OBSs) has become an important topic for research. In this thesis, I investigate the application of ambient noise tomography to oceanic bottom seismic data recorded by the Cascadia Initiative experiment across the Juan de Fuca plate. With higher local noise levels recorded by OBSs, I find that traditional data processing procedures used in ambient noise tomography produce measurable Rayleigh wave Green’s functions between deep ocean stations, whereas the shallow water stations are severely contaminated by both tilt noise and compliance noise and require new methods of processing. Because the local noise level varies across the study region, four semi-independent studies are conducted to both utilize the quieter deep-water stations and to address the problem posed by noisy shallow water stations. First, I construct an age-dependent shear wave speed model of the crust and uppermost mantle with 18 deep-water stations near the Juan de Fuca Ridge. The model possess a shallow low shear velocity zone near the ridge and has its sedimentary thickness, lithospheric thickness, and mantle shear wave speeds increase systematically with age Second, I investigate the locations and mechanisms of microseism generation using ambient noise cross-correlations constructed between 61 OBSs and 42 continental stations near the western US coast and find that the primary and secondary microseisms are generated at different locations and possibly have different physical mechanisms. Third, I show that tilt and compliance noise on the vertical components of the OBSs can be reduced substantially using the horizontal components and the differential pressure gauge records. Removal of these types of noise improves the signal-to-noise ratio of ambient noise cross-correlations significantly at beyond 10 sec period. Lastly, I present a new single-station method to estimate the microseism Rayleigh wave strength and directionality based on the horizontal-to-vertical transfer function. The high spatial and temporal resolution of this method may open up the microseism Rayleigh waves for a wider range of studies.
Theoretical simulation of the multipole seismoelectric logging while drilling
NASA Astrophysics Data System (ADS)
Guan, Wei; Hu, Hengshan; Zheng, Xiaobo
2013-11-01
Acoustic logging-while-drilling (LWD) technology has been commercially used in the petroleum industry. However it remains a rather difficult task to invert formation compressional and shear velocities from acoustic LWD signals due to the unwanted strong collar wave, which covers or interferes with signals from the formation. In this paper, seismoelectric LWD is investigated for solving that problem. The seismoelectric field is calculated by solving a modified Poisson's equation, whose source term is the electric disturbance induced electrokinetically by the travelling seismic wave. The seismic wavefield itself is obtained by solving Biot's equations for poroelastic waves. From the simulated waveforms and the semblance plots for monopole, dipole and quadrupole sources, it is found that the electric field accompanies the collar wave as well as other wave groups of the acoustic pressure, despite the fact that seismoelectric conversion occurs only in porous formations. The collar wave in the electric field, however, is significantly weakened compared with that in the acoustic pressure, in terms of its amplitude relative to the other wave groups in the full waveforms. Thus less and shallower grooves are required to damp the collar wave if the seismoelectric LWD signals are recorded for extracting formation compressional and shear velocities.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tibi, Rigobert; Koper, Keith D.; Pankow, Kristine L.
Short-period fundamental-mode Rayleigh waves (Rg) are commonly observed on seismograms of anthropogenic seismic events and shallow, naturally occurring tectonic earthquakes (TEs) recorded at local distances. In the Utah region, strong Rg waves traveling with an average group velocity of about 1.8 km/s are observed at ~1 Hz on waveforms from shallow events ( depth<10 km ) recorded at distances up to about 150 km. At these distances, Sg waves, which are direct shear waves traveling in the upper crust, are generally the dominant signals for TEs. Here in this study, we leverage the well-known notion that Rg amplitude decreases dramaticallymore » with increasing event depth to propose a new depth discriminant based on Rg-to-Sg spectral amplitude ratios. The approach is successfully used to discriminate shallow events (both earthquakes and anthropogenic events) from deeper TEs in the Utah region recorded at local distances ( <150 km ) by the University of Utah Seismographic Stations (UUSS) regional seismic network. Using Mood’s median test, we obtained probabilities of nearly zero that the median Rg-to-Sg spectral amplitude ratios are the same between shallow events on the one hand (including both shallow TEs and anthropogenic events), and deeper earthquakes on the other, suggesting that there is a statistically significant difference in the estimated Rg-to-Sg ratios between the two populations. We also observed consistent disparities between the different types of shallow events (e.g., mining blasts vs. mining-induced earthquakes), implying that it may be possible to separate the subpopulations that make up this group. Lastly, this suggests that using local distance Rg-to-Sg spectral amplitude ratios one can not only discriminate shallow events from deeper events but may also be able to discriminate among different populations of shallow events.« less
NASA Astrophysics Data System (ADS)
Yao, H.; Fang, H.; Li, C.; Liu, Y.; Zhang, H.; van der Hilst, R. D.; Huang, Y. C.
2014-12-01
Ambient noise tomography has provided essential constraints on crustal and uppermost mantle shear velocity structure in global seismology. Recent studies demonstrate that high frequency (e.g., ~ 1 Hz) surface waves between receivers at short distances can be successfully retrieved from ambient noise cross-correlation and then be used for imaging near surface or shallow crustal shear velocity structures. This approach provides important information for strong ground motion prediction in seismically active area and overburden structure characterization in oil and gas fields. Here we propose a new tomographic method to invert all surface wave dispersion data for 3-D variations of shear wavespeed without the intermediate step of phase or group velocity maps.The method uses frequency-dependent propagation paths and a wavelet-based sparsity-constrained tomographic inversion. A fast marching method is used to compute, at each period, surface wave traveltimes and ray paths between sources and receivers. This avoids the assumption of great-circle propagation that is used in most surface wave tomographic studies, but which is not appropriate in complex media. The wavelet coefficients of the velocity model are estimated with an iteratively reweighted least squares (IRLS) algorithm, and upon iterations the surface wave ray paths and the data sensitivity matrix are updated from the newly obtained velocity model. We apply this new method to determine the 3-D near surface wavespeed variations in the Taipei basin of Taiwan, Hefei urban area and a shale and gas production field in China using the high-frequency interstation Rayleigh wave dispersion data extracted from ambient noisecross-correlation. The results reveal strong effects of off-great-circle propagation of high-frequency surface waves in these regions with above 30% shear wavespeed variations. The proposed approach is more efficient and robust than the traditional two-step surface wave tomography for imaging complex structures. In the future, approximate 3-D sensitivity kernels for dispersion data will be incorporated to account for finite-frequency effect of surface wave propagation. In addition, our approach provides a consistent framework for joint inversion of surface wave dispersion and body wave traveltime data for 3-D Vp and Vs structures.
NASA Astrophysics Data System (ADS)
Sawazaki, Kaoru; Snieder, Roel
2013-04-01
We detect time-lapse changes in P- and S-wave velocities (hereafter, VP and VS, respectively) and shear wave splitting parameters associated with the 2011 Tohoku earthquake, Japan, at depths between 0 and 504 m. We estimate not only medium parameters but also the 95 per cent confidence interval of the estimated velocity change by applying a new least squares inversion scheme to the deconvolution analysis of KiK-net vertical array records. Up to 6 per cent VS reduction is observed at more than half of the analysed KiK-net stations in northeastern Japan with over 95 per cent confidence in the first month after the main shock. There is a considerable correlation between the S-wave traveltime delay and the maximum horizontal dynamic strain (MDS) by the main shock motion when the strain exceeds 5 × 10- 4 on the ground surface. This correlation is not clearly observed for MDS at the borehole bottom. On the contrary, VP and shear wave splitting parameters do not show systematic changes after the Tohoku earthquake. These results indicate that the time-lapse change is concentrated near the ground surface, especially in loosely packed soil layers. We conclude that the behaviour of VP, VS and shear wave splitting parameters are explained by the generation of omnidirectional cracks near the ground surface and by the diffusion of water in the porous subsurface. Recovery of VS should be related to healing of the crack which is proportional to the logarithm of the lapse time after the main shock and/or to decompaction after shaking.
NASA Astrophysics Data System (ADS)
Takagi, R.; Okada, T.; Yoshida, K.; Townend, J.; Boese, C. M.; Baratin, L. M.; Chamberlain, C. J.; Savage, M. K.
2016-12-01
We estimate shear wave velocity anisotropy in shallow crust near the Alpine fault using seismic interferometry of borehole vertical arrays. We utilized four borehole observations: two sensors are deployed in two boreholes of the Deep Fault Drilling Project in the hanging wall side, and the other two sites are located in the footwall side. Surface sensors deployed just above each borehole are used to make vertical arrays. Crosscorrelating rotated horizontal seismograms observed by the borehole and surface sensors, we extracted polarized shear waves propagating from the bottom to the surface of each borehole. The extracted shear waves show polarization angle dependence of travel time, indicating shear wave anisotropy between the two sensors. In the hanging wall side, the estimated fast shear wave directions are parallel to the Alpine fault. Strong anisotropy of 20% is observed at the site within 100 m from the Alpine fault. The hanging wall consists of mylonite and schist characterized by fault parallel foliation. In addition, an acoustic borehole imaging reveals fractures parallel to the Alpine fault. The fault parallel anisotropy suggest structural anisotropy is predominant in the hanging wall, demonstrating consistency of geological and seismological observations. In the footwall side, on the other hand, the angle between the fast direction and the strike of the Alpine fault is 33-40 degrees. Since the footwall is composed of granitoid that may not have planar structure, stress induced anisotropy is possibly predominant. The direction of maximum horizontal stress (SHmax) estimated by focal mechanisms of regional earthquakes is 55 degrees of the Alpine fault. Possible interpretation of the difference between the fast direction and SHmax direction is depth rotation of stress field near the Alpine fault. Similar depth rotation of stress field is also observed in the SAFOD borehole at the San Andreas fault.
On the Effect of Rigid Swept Surface Waves on Turbulent Drag
NASA Technical Reports Server (NTRS)
Denison, M.; Wilkinson, S. P.; Balakumar, P.
2015-01-01
Passive turbulent drag reduction techniques are of interest as a cost effective means to improve air vehicle fuel consumption. In the past, rigid surface waves slanted at an angle from the streamwise direction were deemed ineffective to reduce skin friction drag due to the pressure drag that they generate. A recent analysis seeking similarities to the spanwise shear stress generated by spatial Stokes layers suggested that there may be a range of wavelength, amplitude, and orientation in which the wavy surface would reduce turbulent drag. The present work explores, by experiments and Direct Numerical Simulations (DNS), the effect of swept wavy surfaces on skin friction and pressure drag. Plates with shallow and deep wave patterns were rapid-prototyped and tested using a drag balance in the 7x11 inch Low-Speed Wind Tunnel at the NASA LaRC Research Center. The measured drag o set between the wavy plates and the reference at plate is found to be within the experimental repeatability limit. Oil vapor flow measurements indicate a mean spanwise flow over the deep waves. The turbulent flow in channels with at walls, swept wavy walls and spatial Stokes spanwise velocity forcing was simulated at a friction Reynolds number of two hundred. The time-averaged and dynamic turbulent flow characteristics of the three channel types are compared. The drag obtained for the channel with shallow waves is slightly larger than for the at channel, within the range of the experiments. In the case of the large waves, the simulation over predicts the drag. The shortcomings of the Stokes layer analogy model for the estimation of the spanwise shear stress and drag are discussed.
Upper Mississippi embayment shallow seismic velocities measured in situ
Liu, Huaibao P.; Hu, Y.; Dorman, J.; Chang, T.-S.; Chiu, J.-M.
1997-01-01
Vertical seismic compressional- and shear-wave (P- and S-wave) profiles were collected from three shallow boreholes in sediment of the upper Mississippi embayment. The site of the 60-m hole at Shelby Forest, Tennessee, is on bluffs forming the eastern edge of the Mississippi alluvial plain. The bluffs are composed of Pleistocene loess, Pliocene-Pleistocene alluvial clay and sand deposits, and Tertiary deltaic-marine sediment. The 36-m hole at Marked Tree, Arkansas, and the 27-m hole at Risco, Missouri, are in Holocene Mississippi river floodplain sand, silt, and gravel deposits. At each site, impulsive P- and S-waves were generated by man-made sources at the surface while a three-component geophone was locked downhole at 0.91-m intervals. Consistent with their very similar geology, the two floodplain locations have nearly identical S-wave velocity (VS) profiles. The lowest VS values are about 130 m s-1, and the highest values are about 300 m s-1 at these sites. The shear-wave velocity profile at Shelby Forest is very similar within the Pleistocene loess (12m thick); in deeper, older material, VS exceeds 400 m s-1. At Marked Tree, and at Risco, the compressional-wave velocity (VP) values above the water table are as low as about 230 m s-1, and rise to about 1.9 km s-1 below the water table. At Shelby Forest, VP values in the unsaturated loess are as low as 302 m s-1. VP values below the water table are about 1.8 km s-1. For the two floodplain sites, the VP/VS ratio increases rapidly across the water table depth. For the Shelby Forest site, the largest increase in the VP/VS ratio occurs at ???20-m depth, the boundary between the Pliocene-Pleistocene clay and sand deposits and the Eocene shallow-marine clay and silt deposits. Until recently, seismic velocity data for the embayment basin came from earthquake studies, crustal-scale seismic refraction and reflection profiles, sonic logs, and from analysis of dispersed earthquake surface waves. Since 1991, seismic data for shallow sediment obtained from reflection, refraction, crosshole and downhole techniques have been obtained for sites at the northern end of the embayment basin. The present borehole data, however, are measured from sites representative of large areas in the Mississippi embayment. Therefore, they fill a gap in information needed for modeling the response of the embayment to destructive seismic shaking.
Las Vegas Basin Seismic Response Project: Measured Shallow Soil Velocities
NASA Astrophysics Data System (ADS)
Luke, B. A.; Louie, J.; Beeston, H. E.; Skidmore, V.; Concha, A.
2002-12-01
The Las Vegas valley in Nevada is a deep (up to 5 km) alluvial basin filled with interlayered gravels, sands, and clays. The climate is arid. The water table ranges from a few meters to many tens of meters deep. Laterally extensive thin carbonate-cemented lenses are commonly found across parts of the valley. Lenses range beyond 2 m in thickness, and occur at depths exceeding 200 m. Shallow seismic datasets have been collected at approximately ten sites around the Las Vegas valley, to characterize shear and compression wave velocities in the near surface. Purposes for the surveys include modeling of ground response to dynamic loads, both natural and manmade, quantification of soil stiffness to aid structural foundation design, and non-intrusive materials identification. Borehole-based measurement techniques used include downhole and crosshole, to depths exceeding 100 m. Surface-based techniques used include refraction and three different methods involving inversion of surface-wave dispersion datasets. This latter group includes two active-source techniques, the Spectral Analysis of Surface Waves (SASW) method and the Multi-Channel Analysis of Surface Waves (MASW) method; and a new passive-source technique, the Refraction Mictrotremor (ReMi) method. Depths to halfspace for the active-source measurements ranged beyond 50 m. The passive-source method constrains shear wave velocities to 100 m depths. As expected, the stiff cemented layers profoundly affect local velocity gradients. Scale effects are evident in comparisons of (1) very local measurements typified by borehole methods, to (2) the broader coverage of the SASW and MASW measurements, to (3) the still broader and deeper resolution made possible by the ReMi measurements. The cemented layers appear as sharp spikes in the downhole datasets and are problematic in crosshole measurements due to refraction. The refraction method is useful only to locate the depth to the uppermost cemented layer. The surface-wave methods, on the other hand, can process velocity inversions. With the broader coverage of the active-source surface wave measurements, through careful inversion that takes advantage of prior information to the greatest extent possible, multiple, shallow, stiff layers can be resolved. Data from such broader-coverage methods also provide confidence regarding continuity of the cemented layers. For the ReMi measurements, which provide the broadest coverage of all methods used, the more generalized shallow profile is sometimes characterized by a strong stiffness inversion at a depth of approximately 10 m. We anticipate that this impedance contrast represents the vertical extent of the multiple layered deposits of cemented media.
Aagaard, Brad T.; Hall, J.F.; Heaton, T.H.
2004-01-01
We study how the fault dip and slip rake angles affect near-source ground velocities and displacements as faulting transitions from strike-slip motion on a vertical fault to thrust motion on a shallow-dipping fault. Ground motions are computed for five fault geometries with different combinations of fault dip and rake angles and common values for the fault area and the average slip. The nature of the shear-wave directivity is the key factor in determining the size and distribution of the peak velocities and displacements. Strong shear-wave directivity requires that (1) the observer is located in the direction of rupture propagation and (2) the rupture propagates parallel to the direction of the fault slip vector. We show that predominantly along-strike rupture of a thrust fault (geometry similar in the Chi-Chi earthquake) minimizes the area subjected to large-amplitude velocity pulses associated with rupture directivity, because the rupture propagates perpendicular to the slip vector; that is, the rupture propagates in the direction of a node in the shear-wave radiation pattern. In our simulations with a shallow hypocenter, the maximum peak-to-peak horizontal velocities exceed 1.5 m/sec over an area of only 200 km2 for the 30??-dipping fault (geometry similar to the Chi-Chi earthquake), whereas for the 60??- and 75??-dipping faults this velocity is exceeded over an area of 2700 km2 . These simulations indicate that the area subjected to large-amplitude long-period ground motions would be larger for events of the same size as Chi-Chi that have different styles of faulting or a deeper hypocenter.
Compositional layering within the large low shear-wave velocity provinces in the lower mantle
NASA Astrophysics Data System (ADS)
Ballmer, Maxim D.; Schumacher, Lina; Lekic, Vedran; Thomas, Christine; Ito, Garrett
2016-12-01
The large low shear-wave velocity provinces (LLSVP) are thermochemical anomalies in the deep Earth's mantle, thousands of km wide and ˜1800 km high. This study explores the hypothesis that the LLSVPs are compositionally subdivided into two domains: a primordial bottom domain near the core-mantle boundary and a basaltic shallow domain that extends from 1100 to 2300 km depth. This hypothesis reconciles published observations in that it predicts that the two domains have different physical properties (bulk-sound versus shear-wave speed versus density anomalies), the transition in seismic velocities separating them is abrupt, and both domains remain seismically distinct from the ambient mantle. We here report underside reflections from the top of the LLSVP shallow domain, supporting a compositional origin. By exploring a suite of two-dimensional geodynamic models, we constrain the conditions under which well-separated "double-layered" piles with realistic geometry can persist for billions of years. Results show that long-term separation requires density differences of ˜100 kg/m3 between LLSVP materials, providing a constraint for origin and composition. The models further predict short-lived "secondary" plumelets to rise from LLSVP roofs and to entrain basaltic material that has evolved in the lower mantle. Long-lived, vigorous "primary" plumes instead rise from LLSVP margins and entrain a mix of materials, including small fractions of primordial material. These predictions are consistent with the locations of hot spots relative to LLSVPs, and address the geochemical and geochronological record of (oceanic) hot spot volcanism. The study of large-scale heterogeneity within LLSVPs has important implications for our understanding of the evolution and composition of the mantle.
NASA Astrophysics Data System (ADS)
Godfrey, Holly J.; Fry, Bill; Savage, Martha K.
2017-04-01
Models of the velocity structure of volcanoes can help define possible magma pathways and contribute to calculating more accurate earthquake locations, which can help with monitoring volcanic activity. However, shear-wave velocity of volcanoes is difficult to determine from traditional seismic techniques, such as local earthquake tomography (LET) or refraction/reflection surveys. Here we use the recently developed technique of noise cross correlation of continuous seismic data to investigate the subsurface shear-wave velocity structure of the Tongariro Volcanic Centre (TgVC) of New Zealand, focusing on the active Ruapehu and Tongariro Volcanoes. We observe both the fundamental and first higher-order modes of Rayleigh and Love waves within our noise dataset, made from stacks of 15 min cross-correlation functions. We manually pick group velocity dispersion curves from over 1900 correlation functions, of which we consider 1373 to be high quality. We subsequently invert a subset of the fundamental mode Rayleigh- and Love-wave dispersion curves both independently and jointly for one dimensional shear-wave velocity (Vs) profiles at Ruapehu and Tongariro Volcanoes. Vs increases very slowly at a rate of approximately 0.2 km/s per km depth beneath Ruapehu, suggesting that progressive hydrothermal alteration mitigates the effects of compaction driven velocity increases. At Tongariro, we observe larger Vs increases with depth, which we interpret as different layers within Tongariro's volcanic system above altered basement greywacke. Slow Vs, on the order of 1-2 km/s, are compatible with P-wave velocities (using a Vp/Vs ratio of 1.7) from existing velocity profiles of areas within the TgVC, and the observations of worldwide studies of shallow volcanic systems that used ambient noise cross-correlation methods. Most of the measured group velocities of fundamental mode Love-waves across the TgVC are 0.1-0.4 km/s slower than those of fundamental mode Rayleigh-waves in the frequency range of 0.25-1 Hz. First-higher mode Love-waves are similarly slower than first-higher mode Rayleigh waves. This is incompatible with synthetic dispersion curves we calculate using isotropic, layered velocity models appropriate for Ruapehu and Tongariro, in which Love waves travel more quickly than Rayleigh waves of the same period. The Love-Rayleigh discrepancy is likely due to structures such as dykes or cracks in the vertical plane having increased influence on surface-wave propagation. However, several measurements at Ruapehu have Love-wave group velocities that are faster than Rayleigh-wave group velocities. The differences between the Love- and Rayleigh-wave dispersion curves also vary with the azimuth of the interstation path across Ruapehu and Tongariro Volcanoes. Significant azimuthal dependence of both Love and Rayleigh-wave velocities are also observed. This suggests azimuthal anisotropy within the volcanic structures, which coupled with radial anisotropy, makes the Vs structures of Ruapehu and Tongariro Volcanoes anisotropic with orthorhombic or lower order symmetry. We suggest that further work to determine three-dimensional volcanic structures should include provisions for such anisotropy.
NASA Astrophysics Data System (ADS)
Margheriti, L.; Ferulano, M. F.; Di Bona, M.
2006-11-01
Shear wave splitting is measured at 14 seismic stations in the Reggio Emilia region above local background seismicity and two sequences of seismic events. The good quality of the waveforms together with the favourable distribution of earthquake foci allows us to place strong constraints on the geometry and the depth of the anisotropic volume. It is about 60 km2 wide and located between 6 and 11 km depth, inside Mesozoic age carbonate rocks. The splitting results suggest also the presence of a shallower anisotropic layer about 1 km thick and few km wide in the Pliocene-Quaternary alluvium above the Mesozoic layer. The fast polarization directions (N30°E) are approximately parallel to the maximum horizontal stress (σ1 is SSW-NNE) in the region and also parallel to the strike of the main structural features in the Reggio Emilia area. The size of the delay times suggests about 4.5 per cent shear wave velocity anisotropy. These parameters agree with an interpretation of seismic anisotropy in terms of the extensive-dilatancy anisotropy model which considers the rock volume to be pervaded by fluid-saturated microcracks aligned by the active stress field. We cannot completely rule out the contribution of aligned macroscopic fractures as the cause of the shear wave anisotropy even if the parallel shear wave polarizations we found are diagnostic of transverse isotropy with a horizontal axis of symmetry. This symmetry is commonly explained by parallel stress-aligned microcracks.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Edwards, D.A.
1990-05-01
This study relates geophysical and geological data to the detection of fractures and their influence on the movement of fluid in the Atco Member of the Austin Chalk in central Texas. In areas of production, the Austin Chalk has very low matrix permeabilities, with hydrocarbons confined to zones of near-vertical, stress-aligned fractures. Horizontal drilling has been estimated to increase per well reserves in the Austin Chalk from 75,000 bbl and 82 mmcf to 500,000 bbl and 500 mmcf. The objective of deviated wells in the Austin Chalk is to intersect at right angles as many of the hydrocarbon-prone fracture zonesmore » as possible. Therefore, the detection and description of these fracture zones prior to drilling is critical. Fractures have been proven to influence the velocities of shear waves. To assess shear wave velocities in different directions, several shear wave refraction and three-component vertical seismic profiles have been acquired. These data provided a measure of the fracture-induced shear wave anisotropy and an indication of the dominant fracture trend. Other data, including azimuthal resistivity surveys, cores, and aerial photographs, provided additional control for evaluating the fractures. The final phase of the study compares the geophysical and geological interpretations to the result of shallow groundwater pumping tests. The pumping tests have been conducted in vertical boreholes and were designed to evaluate the influence of the fracturing on fluid movement.« less
A snapshot of internal waves and hydrodynamic instabilities in the southern Bay of Bengal
NASA Astrophysics Data System (ADS)
Lozovatsky, Iossif; Wijesekera, Hemantha; Jarosz, Ewa; Lilover, Madis-Jaak; Pirro, Annunziata; Silver, Zachariah; Centurioni, Luca; Fernando, H. J. S.
2016-08-01
Measurements conducted in the southern Bay of Bengal (BoB) as a part of the ASIRI-EBoB Program portray the characteristics of high-frequency internal waves in the upper pycnocline as well as the velocity structure with episodic events of shear instability. A 20 h time series of CTD, ADCP, and acoustic backscatter profiles down to 150 m as well as temporal CTD measurements in the pycnocline at z = 54 m were taken to the east of Sri Lanka. Internal waves of periods ˜10-40 min were recorded at all depths below a shallow (˜20-30 m) surface mixed layer in the background of an 8 m amplitude internal tide. The absolute values of vertical displacements associated with high-frequency waves followed the Nakagami distribution with a median value of 2.1 m and a 95% quintile 6.5 m. The internal wave amplitudes are normally distributed. The tails of the distribution deviate from normality due to episodic high-amplitude displacements. The sporadic appearance of internal waves with amplitudes exceeding ˜5 m usually coincided with patches of low Richardson numbers, pointing to local shear instability as a possible mechanism of internal-wave-induced turbulence. The probability of shear instability in the summer BoB pycnocline based on an exponential distribution of the inverse Richardson number, however, appears to be relatively low, not exceeding 4% for Ri < 0.25 and about 10% for Ri < 0.36 (K-H billows). The probability of the generation of asymmetric breaking internal waves and Holmboe instabilities is above ˜25%.
NASA Astrophysics Data System (ADS)
Harmon, N.; Salas, M.; Rychert, C. A.; Fischer, K. M.; Abers, G. A.
2012-12-01
The Costa Rica-Nicaragua subduction zone shows systematic along strike variation in arc chemistry, geology and seismic velocity and attenuation, presenting global extremes within a few hundred kilometres. In this study we use teleseismic and ambient noise derived surface wave tomography to produce a 3-D shear velocity model of the region. We use the 48 stations of the TUCAN array, and up to 96 events for the teleseismic Rayleigh wave inversion, and 20 months of continuous data for cross correlation to estimate Green's functions from ambient noise. In the shallow crust (0-15 km) we observe low shear velocities directly beneath the arc volcanos (< 3 km/s) with higher velocities in the back arc of Nicaragua. The anomalies are likely caused by heated crust, possibly intruded by magma. We observe > 40 km thick crust beneath the Costa Rican arc and the Nicaraguan Highlands, with thinned crust (~20 km) beneath the Nicaraguan Depression, with increasing crustal thickness in the back arc region. At mantle depths (55-120 km depth) we observe lower shear velocities (~2%) beneath the Nicaraguan arc and back arc relative to Costa Rica. This is well-correlated with a Vp/Vs anomaly beneath Nicaragua. The lower shear velocity beneath Nicaragua may indicate higher melt content in the mantle perhaps due to higher volatile flux from the slab. Finally, we observe a linear high velocity region at depths > 120 km parallel to the trench, which is consistent with the subducting slab.
McBride, J.H.; Stephenson, W.J.; Williams, R.A.; Odum, J.K.; Worley, D.M.; South, J.V.; Brinkerhoff, A.R.; Keach, R.W.; Okojie-Ayoro, A. O.
2010-01-01
Integrated vibroseis compressional and experimental hammer-source, shear-wave, seismic reflection profiles across the Provo segment of the Wasatch fault zone in Utah reveal near-surface and shallow bedrock structures caused by geologically recent deformation. Combining information from the seismic surveys, geologic mapping, terrain analysis, and previous seismic first-arrival modeling provides a well-constrained cross section of the upper ~500 m of the subsurface. Faults are mapped from the surface, through shallow, poorly consolidated deltaic sediments, and cutting through a rigid bedrock surface. The new seismic data are used to test hypotheses on changing fault orientation with depth, the number of subsidiary faults within the fault zone and the width of the fault zone, and the utility of integrating separate elastic methods to provide information on a complex structural zone. Although previous surface mapping has indicated only a few faults, the seismic section shows a wider and more complex deformation zone with both synthetic and antithetic normal faults. Our study demonstrates the usefulness of a combined shallow and deeper penetrating geophysical survey, integrated with detailed geologic mapping to constrain subsurface fault structure. Due to the complexity of the fault zone, accurate seismic velocity information is essential and was obtained from a first-break tomography model. The new constraints on fault geometry can be used to refine estimates of vertical versus lateral tectonic movements and to improve seismic hazard assessment along the Wasatch fault through an urban area. We suggest that earthquake-hazard assessments made without seismic reflection imaging may be biased by the previous mapping of too few faults. ?? 2010 Geological Society of America.
NASA Astrophysics Data System (ADS)
Harmon, Nicholas; de la Cruz, Mariela Salas; Rychert, Catherine Ann; Abers, Geoffrey; Fischer, Karen
2013-11-01
The Costa Rica-Nicaragua subduction zone shows systematic along strike variation in arc chemistry, geology, tectonics and seismic velocity and attenuation, presenting global extremes within a few hundred kilometres. In this study, we use teleseismic and ambient noise derived surface wave tomography to produce a 3-D shear velocity model of the region. We use the 48 stations of the TUCAN array, and up to 94 events for the teleseismic Rayleigh wave inversion, and 18 months of continuous data for cross correlation to estimate Green's functions from ambient noise. In the shallow crust (0-15 km) we observe low-shear velocities directly beneath the arc volcanoes (<3 km s-1) and higher velocities in the backarc of Nicaragua. The anomalies below the volcanoes are likely caused by heated crust, intruded by magma. We estimate crustal thickness by picking the depth to the 4 km s-1 velocity contour. We infer >40-km-thick crust beneath the Costa Rican arc and the Nicaraguan Highlands, thinned crust (˜20 km) beneath the Nicaraguan Depression, and increasing crustal thickness in the backarc region, consistent with receiver function studies. The region of thinned, seismically slow and likely weakened crust beneath the arc in Nicaragua is not localizing deformation associated with oblique subduction. At mantle depths (55-120 km depth) we observe lower shear velocities (up to 3 per cent) beneath the Nicaraguan arc and backarc than beneath Costa Rica. Our low-shear velocity anomaly beneath Nicaragua is in the same location as a low-shear velocity anomaly and displaced towards the backarc from the high VP/VS anomaly observed in body wave tomography. The lower shear velocity beneath Nicaragua may indicate higher melt content in the mantle perhaps due to higher volatile flux from the slab or higher temperature. Finally, we observe a linear high-velocity region at depths >120 km parallel to the trench, which is consistent with the subducting slab.
NASA Astrophysics Data System (ADS)
Xia, Jianghai
2014-04-01
This overview article gives a picture of multichannel analysis of high-frequency surface (Rayleigh and Love) waves developed mainly by research scientists at the Kansas Geological Survey, the University of Kansas and China University of Geosciences (Wuhan) during the last eighteen years by discussing dispersion imaging techniques, inversion systems, and real-world examples. Shear (S)-wave velocities of near-surface materials can be derived from inverting the dispersive phase velocities of high-frequency surface waves. Multichannel analysis of surface waves—MASW used phase information of high-frequency Rayleigh waves recorded on vertical component geophones to determine near-surface S-wave velocities. The differences between MASW results and direct borehole measurements are approximately 15% or less and random. Studies show that inversion with higher modes and the fundamental mode simultaneously can increase model resolution and an investigation depth. Multichannel analysis of Love waves—MALW used phase information of high-frequency Love waves recorded on horizontal (perpendicular to the direction of wave propagation) component geophones to determine S-wave velocities of shallow materials. Because of independence of compressional (P)-wave velocity, the MALW method has some attractive advantages, such as 1) Love-wave dispersion curves are simpler than Rayleigh wave's; 2) dispersion images of Love-wave energy have a higher signal to noise ratio and more focused than those generated from Rayleigh waves; and 3) inversion of Love-wave dispersion curves is less dependent on initial models and more stable than Rayleigh waves.
Extracting transient Rayleigh wave and its application in detecting quality of highway roadbed
Liu, J.; Xia, J.; Luo, Y.; Li, X.; Xu, S.; ,
2004-01-01
This paper first explains the tau-p mapping method of extracting Rayleigh waves (LR waves) from field shot gathers. It also explains a mathematical model of physical character parameters of quality of high-grade roads. This paper then discusses an algorithm of computing dispersion curves using adjacent channels. Shear velocity and physical character parameters are obtained by inversion of dispersion curves. The algorithm using adjacent channels to calculating dispersion curves eliminates average effects that exist by using multi-channels to obtain dispersion curves so that it improves longitudinal and transverse resolution of LR waves and precision of non-invasive detection, and also broadens its application fields. By analysis of modeling results of detached computation of the ground roll and real examples of detecting density and pressure strength of a high-grade roadbed, and by comparison of shallow seismic image method with borehole cores, we concluded that: 1 the abnormal scale and configuration obtained by LR waves are mostly the same as the result of shallow seismic image method; 2 an average relative error of density obtained from LR waves inversion is 1.6% comparing with borehole coring; 3 transient LR waves in detecting density and pressure strength of a high-grade roadbed is feasible and effective.
Fate of internal waves on a shallow shelf
NASA Astrophysics Data System (ADS)
Davis, Kristen; Arthur, Robert; Reid, Emma; Decarlo, Thomas; Cohen, Anne
2017-11-01
Internal waves strongly influence the physical and chemical environment of coastal ecosystems worldwide. We report novel observations from a distributed temperature sensing (DTS) system that tracked the transformation of internal waves from the shelf break to the surf zone over a shelf-slope region of a coral atoll in the South China Sea. The spatially-continuous view of the near-bottom temperature field provided by the DTS offers a perspective of physical processes previously available only in laboratory settings or numerical models. These processes include internal wave reflection off a natural slope, shoreward transport of dense fluid within trapped cores, internal ``tide pools'' (dense water left behind after the retreat of an internal wave), and internal run-down (near-bottom, offshore-directed jets of water preceding a breaking internal wave). Analysis shows that the fate of internal waves on this shelf - whether they are transmitted into shallow waters or reflected back offshore - is mediated by local water column density and shear structure, with important implications for nearshore distributions of energy, heat, and nutrients. We acknowledge the US Army Research Laboratory DoD Supercomputing Resource Center for computer time on Excalibur, which was used for the numerical simulations in this work. Funding for field work supported by Academia Sinica and for K.D. and E.R. from NSF.
A new impulsive seismic shear wave source for near-surface (0-30 m) seismic studies
NASA Astrophysics Data System (ADS)
Crane, J. M.; Lorenzo, J. M.
2010-12-01
Estimates of elastic moduli and fluid content in shallow (0-30 m) natural soils below artificial flood containment structures can be particularly useful in levee monitoring as well as seismic hazard studies. Shear wave moduli may be estimated from horizontally polarized, shear wave experiments. However, long profiles (>10 km) with dense receiver and shot spacings (<1m) cannot be collected efficiently using currently available shear wave sources. We develop a new, inexpensive, shear wave source for collecting fast, shot gathers over large acquisition sites. In particular, gas-charged, organic-rich sediments comprising most lower-delta sedimentary facies, greatly attenuate compressional body-waves. On the other hand, SH waves are relatively insensitive to pore-fluid moduli and can improve resolution. We develop a recoil device (Jolly, 1956) into a single-user, light-weight (<20 kg), impulsive, ground-surface-coupled SH wave generator, which is capable of working at rates of several hundred shotpoints per day. Older impulsive methods rely on hammer blows to ground-planted stationary targets. Our source is coupled to the ground with steel spikes and the powder charge can be detonated mechanically or electronically. Electrical fuses show repeatability in start times of < 50 microseconds. The barrel and shell-holder exceed required thicknesses to ensure complete safety during use. The breach confines a black-powder, 12-gauge shotgun shell, loaded with inert, environmentally safe ballast. In urban settings, produced heat and sound are confined by a detached, exterior cover. A moderate 2.5 g black-powder charge generates seismic amplitudes equivalent to three 4-kg sledge-hammer blows. We test this device to elucidate near subsurface sediment properties at former levee breach sites in New Orleans, Louisiana, USA. Our radio-telemetric seismic acquisition system uses an in-house landstreamer, consisting of 14-Hz horizontal component geophones, coupled to steel plates. Reflected, refracted and surface arrivals resulting from a single shot of this seismic source are comparable in signal, noise, and frequency composition to three stacked hammer blows to a ground-planted stationary target.
Yong, Alan; Martin, Antony; Stokoe, Kenneth; Diehl, John
2013-01-01
Funded by the 2009 American Recovery and Reinvestment Act (ARRA), we conducted geophysical site characterizations at 191 strong-motion stations: 187 in California and 4 in the Central-Eastern United States (CEUS). The geophysical methods used at each site included passive and active surface-wave and body-wave techniques. Multiple techniques were used at most sites, with the goal of robustly determining VS (shear-wave velocity) profiles and VS30 (the time-averaged shear-wave velocity in the upper 30 meters depth). These techniques included: horizontal-to-vertical spectral ratio (HVSR), two-dimensional (2-D) array microtremor (AM), refraction microtremor (ReMi™), spectral analysis of surface wave (SASW), multi-channel analysis of surface waves (Rayleigh wave: MASRW; and Love wave: MASLW), and compressional- and shear-wave refraction. Of the selected sites, 47 percent have crystalline, volcanic, or sedimentary rock at the surface or at relatively shallow depth, and 53 percent are of Quaternary sediments located in either rural or urban environments. Calculated values of VS30 span almost the full range of the National Earthquake Hazards Reduction Program (NEHRP) Site Classes, from D (stiff soils) to B (rock). The NEHRP Site Classes based on VS30 range from being consistent with the Class expected from analysis of surficial geology, to being one or two Site Classes below expected. In a few cases where differences between the observed and expected Site Class occurred, it was the consequence of inaccurate or coarse geologic mapping, as well as considerable degradation of the near-surface rock. Additionally, several sites mapped as rock have Site Class D (stiff soil) velocities, which is due to the extensive weathering of the surficial rock.
Wave attenuation in the shallows of San Francisco Bay
Lacy, Jessica R.; MacVean, Lissa J.
2016-01-01
Waves propagating over broad, gently-sloped shallows decrease in height due to frictional dissipation at the bed. We quantified wave-height evolution across 7 km of mudflat in San Pablo Bay (northern San Francisco Bay), an environment where tidal mixing prevents the formation of fluid mud. Wave height was measured along a cross shore transect (elevation range−2mto+0.45mMLLW) in winter 2011 and summer 2012. Wave height decreased more than 50% across the transect. The exponential decay coefficient λ was inversely related to depth squared (λ=6×10−4h−2). The physical roughness length scale kb, estimated from near-bed turbulence measurements, was 3.5×10−3 m in winter and 1.1×10−2 m in summer. Estimated wave friction factor fw determined from wave-height data suggests that bottom friction dominates dissipation at high Rew but not at low Rew. Predictions of near-shore wave height based on offshore wave height and a rough formulation for fw were quite accurate, with errors about half as great as those based on the smooth formulation for fw. Researchers often assume that the wave boundary layer is smooth for settings with fine-grained sediments. At this site, use of a smooth fw results in an underestimate of wave shear stress by a factor of 2 for typical waves and as much as 5 for more energetic waves. It also inadequately captures the effectiveness of the mudflats in protecting the shoreline through wave attenuation.
Chen, C.; Liu, J.; Xu, S.; Xia, J.; ,
2004-01-01
Geophysical technologies are very effective in environmental, engineering and groundwater applications. Parameters of delineating nature of near-surface materials such as compressional-wave velocity, shear-wave velocity can be obtained using shallow seismic methods. Electric methods are primary approaches for investigating groundwater and detecting leakage. Both of methods are applied to detect embankment in hope of obtaining evidences of the strength and moisture inside the body. A technological experiment has done for detecting and discovering the hidden troubles in the embankment of Yangtze River, Songzi, Hubei, China in 2003. Surface-wave and DC multi-channel array resistivity sounding techniques were used to detect hidden trouble inside and under dike like pipe-seeps. This paper discusses the exploration strategy and the effect of geological characteristics. A practical approach of combining seismic and electric resistivity measurements was applied to locate potential pipe-seeps in embankment in the experiment. The method presents a potential leak factor based on the shear-wave velocity and the resistivity of the medium to evaluate anomalies. An anomaly found in a segment of embankment detected was verified, where occurred a pipe-seep during the 98' flooding.
NASA Astrophysics Data System (ADS)
Pasquet, S.; Wang, W.; Holbrook, W. S.; Bodet, L.; Carr, B.; Flinchum, B. A.
2017-12-01
Estimating porosity and saturation in the shallow subsurface over large lateral scales is vitally important for understanding the development and evolution of the Critical Zone (CZ). Because elastic properties (P- and S-wave velocities) are particularly sensitive to porosity and saturation, seismic methods (in combination with petrophysical models) are effective tools for mapping CZ architecture and processes. While many studies employ P-wave refraction methods, fewer use the surface waves that are typically also recorded in those same surveys. Here we show the value of exploiting surface waves to extract supplementary shear-wave velocity (Vs) information in the CZ. We use a new, user-friendly, open-source MATLAB-based package (SWIP) to invert surface-wave data and estimate lateral variations of Vs in the CZ. Results from synthetics show that this approach enables the resolution of physical property variations in the upper 10-15 m below the surface with lateral scales of about 5 m - a vast improvement compared to P-wave tomography alone. A field example at a Yellowstone hydrothermal system also demonstrates the benefits of including Vs in the petrophysical models to estimate not only porosity but also saturation, thus highlighting subsurface gas pathways. In light of these results, we strongly suggest that surface-wave analysis should become a standard approach in CZ seismic surveys.
Lithospheric thinning beneath rifted regions of Southern California.
Lekic, Vedran; French, Scott W; Fischer, Karen M
2011-11-11
The stretching and break-up of tectonic plates by rifting control the evolution of continents and oceans, but the processes by which lithosphere deforms and accommodates strain during rifting remain enigmatic. Using scattering of teleseismic shear waves beneath rifted zones and adjacent areas in Southern California, we resolve the lithosphere-asthenosphere boundary and lithospheric thickness variations to directly constrain this deformation. Substantial and laterally abrupt lithospheric thinning beneath rifted regions suggests efficient strain localization. In the Salton Trough, either the mantle lithosphere has experienced more thinning than the crust, or large volumes of new lithosphere have been created. Lack of a systematic offset between surface and deep lithospheric deformation rules out simple shear along throughgoing unidirectional shallow-dipping shear zones, but is consistent with symmetric extension of the lithosphere.
The influence of seasonal climate on the morphology of the mouth-bar in the Yangtze Estuary, China
NASA Astrophysics Data System (ADS)
Zhang, Min; Townend, Ian; Cai, Huayang; He, Jiawei; Mei, Xuefei
2018-02-01
The geomorphology of the Yangtze Estuary in the Changjiang River Delta in Eastern China has been the subject of extensive research. This study extends previous work to examine the influence of wind-waves on the mouth-bar, where about half of the river-borne material settles to the bed. The site is located just outside of Changjiang River mouth, which is meso-tidal and subject to seasonally varying river flows and wind-wave conditions. Modeling was performed with a coupled wave-current hydrodynamic model using TELEMAC and TOMAWAC and validated against observed data. Bottom Shear Stress (BSS) from river, tide and waves based on the numerical model output was used to infer the respective contribution to the evolution of the subaqueous delta. Our examination did not however extend to modeling the sediment transport or the morphological bed changes. The results suggest that (i) the dominance of river discharge is limited to an area inside the mouth, while outside, the mouth-bar is tide-wave dominant; (ii) considering just the tide, the currents on the shallow shoals are flood dominant and deep channels are ebb dominant, which induces continued accretion over the shallows and erodes the deeper parts of the mouth-bar until the tidal currents become too weak to transport sediment; (iii) whereas waves are very efficient at reshaping the shallow shoals, with the effect being subtly dependent on the depth distribution over the mouth-bar; (iv) the stability of shallow shoal morphology is highly dependent on the presence of seasonal wind-waves and characterized as "summer storing and winter erosion", while deep channels perform like corridors of water and sediment, exporting sediment all year round. The nature of the mouth-bar response has important implications for coastal management, such as the ongoing deep water channel maintenance, reclamations and coastal defense measures.
Plateau subduction, intraslab seismicity and the Denali Volcanic Gap
NASA Astrophysics Data System (ADS)
Bostock, M. G.; Chuang, L. Y.; Wech, A.; Plourde, A. P.
2017-12-01
Tectonic tremors in Alaska (USA) are associated with subduction of the Yakutat plateau, but their origins are unclear due to lack of depth constraints. We have processed tremor recordings to extract low-frequency earthquakes (LFEs), and generated a set of six LFE waveform templates via iterative network matched filtering and stacking. The timing of impulsive P (compressional) wave and S (shear) wave arrivals on template waveforms places LFEs at 40-58 km depth, near the upper envelope of intraslab seismicity and immediately updip of increased levels of intraslab seismicity. S waves at near-epicentral distances display polarities consistent with shear slip on the plate boundary. We compare characteristics of LFEs, seismicity, and tectonic structures in central Alaska with those in warm subduction zones, and propose a new model for the region's unusual intraslab seismicity and the enigmatic Denali volcanic gap (i.e., an area of no volcanism where expected). We argue that fluids in the Yakutat plate are confined to its upper crust, and that shallow subduction leads to hydromechanical conditions at the slab interface in central Alaska akin to those in warm subduction zones where similar LFEs and tremor occur. These conditions lead to fluid expulsion at shallow depths, explaining strike-parallel alignment of tremor occurrence with the Denali volcanic gap. Moreover, the lack of double seismic zone and restriction of deep intraslab seismicity to a persistent low-velocity zone are simple consequences of anhydrous conditions prevailing in the lower crust and upper mantle of the Yakutat plate.
Plateau subduction, intraslab seismicity, and the Denali (Alaska) volcanic gap
Chuang, Lindsay Yuling; Bostock, Michael; Wech, Aaron; Plourde, Alexandre
2018-01-01
Tectonic tremors in Alaska (USA) are associated with subduction of the Yakutat plateau, but their origins are unclear due to lack of depth constraints. We have processed tremor recordings to extract low-frequency earthquakes (LFEs), and generated a set of six LFE waveform templates via iterative network matched filtering and stacking. The timing of impulsive P (compressional) wave and S (shear) wave arrivals on template waveforms places LFEs at 40–58 km depth, near the upper envelope of intraslab seismicity and immediately updip of increased levels of intraslab seismicity. S waves at near-epicentral distances display polarities consistent with shear slip on the plate boundary. We compare characteristics of LFEs, seismicity, and tectonic structures in central Alaska with those in warm subduction zones, and propose a new model for the region’s unusual intraslab seismicity and the enigmatic Denali volcanic gap (i.e., an area of no volcanism where expected). We argue that fluids in the Yakutat plate are confined to its upper crust, and that shallow subduction leads to hydromechanical conditions at the slab interface in central Alaska akin to those in warm subduction zones where similar LFEs and tremor occur. These conditions lead to fluid expulsion at shallow depths, explaining strike-parallel alignment of tremor occurrence with the Denali volcanic gap. Moreover, the lack of double seismic zone and restriction of deep intraslab seismicity to a persistent low-velocity zone are simple consequences of anhydrous conditions prevailing in the lower crust and upper mantle of the Yakutat plate.
Dalyander, P. Soupy; Butman, Bradford; Sherwood, Christopher R.; Signell, Richard P.; Wilkin, John L.
2013-01-01
Waves and currents create bottom shear stress, a force at the seabed that influences sediment texture distribution, micro-topography, habitat, and anthropogenic use. This paper presents a methodology for assessing the magnitude, variability, and driving mechanisms of bottom stress and resultant sediment mobility on regional scales using numerical model output. The analysis was applied to the Middle Atlantic Bight (MAB), off the U.S. East Coast, and identified a tidally-dominated shallow region with relatively high stress southeast of Massachusetts over Nantucket Shoals, where sediment mobility thresholds are exceeded over 50% of the time; a coastal band extending offshore to about 30 m water depth dominated by waves, where mobility occurs more than 20% of the time; and a quiescent low stress region southeast of Long Island, approximately coincident with an area of fine-grained sediments called the “Mud Patch”. The regional high in stress and mobility over Nantucket Shoals supports the hypothesis that fine grain sediment winnowed away in this region maintains the Mud Patch to the southwest. The analysis identified waves as the driving mechanism for stress throughout most of the MAB, excluding Nantucket Shoals and sheltered coastal bays where tides dominate; however, the relative dominance of low-frequency events varied regionally, and increased southward toward Cape Hatteras. The correlation between wave stress and local wind stress was lowest in the central MAB, indicating a relatively high contribution of swell to bottom stress in this area, rather than locally generated waves. Accurate prediction of the wave energy spectrum was critical to produce good estimates of bottom shear stress, which was sensitive to energy in the long period waves.
2D instabilities of surface gravity waves on a linear shear current
NASA Astrophysics Data System (ADS)
Francius, Marc; Kharif, Christian
2016-04-01
Periodic 2D surface water waves propagating steadily on a rotational current have been studied by many authors (see [1] and references therein). Although the recent important theoretical developments have confirmed that periodic waves can exist over flows with arbitrary vorticity, their stability and their nonlinear evolution have not been much studied extensively so far. In fact, even in the rather simple case of uniform vorticity (linear shear), few papers have been published on the effect of a vertical shear current on the side-band instability of a uniform wave train over finite depth. In most of these studies [2-5], asymptotic expansions and multiple scales method have been used to obtain envelope evolution equations, which allow eventually to formulate a condition of (linear) instability to long modulational perturbations. It is noted here that this instability is often referred in the literature as the Benjamin-Feir or modulational instability. In the present study, we consider the linear stability of finite amplitude two-dimensional, periodic water waves propagating steadily on the free surface of a fluid with constant vorticity and finite depth. First, the steadily propagating surface waves are computed with steepness up to very close to the highest, using a Fourier series expansions and a collocation method, which constitutes a simple extension of Fenton's method [6] to the cases with a linear shear current. Then, the linear stability of these permanent waves to infinitesimal 2D perturbations is developed from the fully nonlinear equations in the framework of normal modes analysis. This linear stability analysis is an extension of [7] to the case of waves in the presence of a linear shear current and permits the determination of the dominant instability as a function of depth and vorticity for a given steepness. The numerical results are used to assess the accuracy of the vor-NLS equation derived in [5] for the characteristics of modulational instabilities due to resonant four-wave interactions, as well as to study the influence of vorticity and nonlinearity on the characteristics of linear instabilities due to resonant five-wave and six-wave interactions. Depending on the dimensionless depth, superharmonic instabilities due to five-wave interactions can become dominant with increasing positive vorticiy. Acknowledgments: This work was supported by the Direction Générale de l'Armement and funded by the ANR project n°. ANR-13-ASTR-0007. References [1] A. Constantin, Two-dimensionality of gravity water flows of constant non-zero vorticity beneath a surface wave train, Eur. J. Mech. B/Fluids, 2011, 30, 12-16. [2] R. S. Johnson, On the modulation of water waves on shear flows, Proc. Royal Soc. Lond. A., 1976, 347, 537-546. [3] M. Oikawa, K. Chow, D. J. Benney, The propagation of nonlinear wave packets in a shear flow with a free surface, Stud. Appl. Math., 1987, 76, 69-92. [4] A. I Baumstein, Modulation of gravity waves with shear in water, Stud. Appl. Math., 1998, 100, 365-90. [5] R. Thomas, C. Kharif, M. Manna, A nonlinear Schrödinger equation for water waves on finite depth with constant vorticity, Phys. Fluids, 2012, 24, 127102. [6] M. M Rienecker, J. D Fenton, A Fourier approximation method for steady water waves , J. Fluid Mech., 1981, 104, 119-137 [7] M. Francius, C. Kharif, Three-dimensional instabilities of periodic gravity waves in shallow water, J. Fluid Mech., 2006, 561, 417-437
Shear Wave Structure in the Lithosphere of Texas from Ambient Noise Tomography
NASA Astrophysics Data System (ADS)
Yao, Y.; Li, A.
2014-12-01
Texas contains several distinct tectonic provinces, the Laurentia craton, the Ouachita belt, and the Gulf coastal plain. Although numerous geophysical experiments have been conducted in Texas for petroleum exploration, the lithosphere structure of Texas has not been well studied. We present here the Texas-wide shear wave structure using seismic ambient noise data recorded at 87 stations from the Transportable Array of the USArray between March 2010 and February 2011. Rayleigh wave phase velocities between pairs of stations are obtained by cross-correlating long ambient noise sequences and are used to develop phase velocity maps from 6 to 40 s. These measured phase velocities are used to construct 1-D and 3-D shear wave velocity models, which consist of four crust layers and one upper mantle layer. Shear wave velocity maps reveal a close correlation with major geological features. From the surface to 25 km depth, Positive anomalies coincide with the Laurentia craton, and negative anomalies coincide with the continental margin. The boundary of positive-negative anomaly perfectly matches the Ouachita belt. The Llano Uplift is imaged as the highest velocity through the mid-crust because the igneous rock forming the uplift has faster seismic velocity than the normal continental crust. Similarly, three small high-velocity areas exist beneath the Waco Uplift, Devils River Uplift, and Benton Uplift, even though surface geological traces are absent in these areas. The lowest velocity at the shallow crust appears in northeastern and southeastern Texas separated by the San Marcos Arch, correlating with thick sediment layers. An exceptional low velocity is imaged in southernmost Texas in the lower crust and upper mantle, probably caused by subducted wet oceanic crust before the rifting in the Gulf of Mexico. In the uppermost mantle, positive shear wave anomalies extend southeastward from the Ouachita belt to the Gulf coast, likely evidencing the subducted oceanic lithosphere during the Ouachita orogeny. This observation need be further tested using long period surface wave dispersions from earthquakes, which help to improve model resolution in the upper mantle.
NASA Astrophysics Data System (ADS)
Jechumtálová, Z.; Šílený, J.; Trifu, C.-I.
2014-06-01
The resolution of event mechanism is investigated in terms of the unconstrained moment tensor (MT) source model and the shear-tensile crack (STC) source model representing a slip along the fault with an off-plane component. Data are simulated as recorded by the actual seismic array installed at Ocnele Mari (Romania), where sensors are placed in shallow boreholes. Noise is included as superimposed on synthetic data, and the analysis explores how the results are influenced (i) by data recorded by the complete seismic array compared to that provided by the subarray of surface sensors, (ii) by using three- or one-component sensors and (iii) by inverting P- and S-wave amplitudes versus P-wave amplitudes only. The orientation of the pure shear fracture component is resolved almost always well. On the other hand, the noise increase distorts the non-double-couple components (non-DC) of the MT unless a high-quality data set is available. The STC source model yields considerably less spurious non-shear fracture components. Incorporating recordings at deeper sensors in addition to those obtained from the surface ones allows for the processing of noisier data. Performance of the network equipped with three-component sensors is only slightly better than that with uniaxial sensors. Inverting both P- and S-wave amplitudes compared to the inversion of P-wave amplitudes only markedly improves the resolution of the orientation of the source mechanism. Comparison of the inversion results for the two alternative source models permits the assessment of the reliability of non-shear components retrieved. As example, the approach is investigated on three microseismic events occurred at Ocnele Mari, where both large and small non-DC components were found. The analysis confirms a tensile fracturing for two of these events, and a shear slip for the third.
Bexfield, C.E.; McBride, J.H.; Pugin, Andre J.M.; Ravat, D.; Biswas, S.; Nelson, W.J.; Larson, T.H.; Sargent, S.L.; Fillerup, M.A.; Tingey, B.E.; Wald, L.; Northcott, M.L.; South, J.V.; Okure, M.S.; Chandler, M.R.
2006-01-01
Shallow high-resolution seismic reflection surveys have traditionally been restricted to either compressional (P) or horizontally polarized shear (SH) waves in order to produce 2-D images of subsurface structure. The northernmost Mississippi embayment and coincident New Madrid seismic zone (NMSZ) provide an ideal laboratory to study the experimental use of integrating P- and SH-wave seismic profiles, integrated, where practicable, with micro-gravity data. In this area, the relation between "deeper" deformation of Paleozoic bedrock associated with the formation of the Reelfoot rift and NMSZ seismicity and "shallower" deformation of overlying sediments has remained elusive, but could be revealed using integrated P- and SH-wave reflection. Surface expressions of deformation are almost non-existent in this region, which makes seismic reflection surveying the only means of detecting structures that are possibly pertinent to seismic hazard assessment. Since P- and SH-waves respond differently to the rock and fluid properties and travel at dissimilar speeds, the resulting seismic profiles provide complementary views of the subsurface based on different levels of resolution and imaging capability. P-wave profiles acquired in southwestern Illinois and western Kentucky (USA) detect faulting of deep, Paleozoic bedrock and Cretaceous reflectors while coincident SH-wave surveys show that this deformation propagates higher into overlying Tertiary and Quaternary strata. Forward modeling of micro-gravity data acquired along one of the seismic profiles further supports an interpretation of faulting of bedrock and Cretaceous strata. The integration of the two seismic and the micro-gravity methods therefore increases the scope for investigating the relation between the older and younger deformation in an area of critical seismic hazard. ?? 2006 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Festa, Gaetano; Scala, Antonio; Vilotte, Jean-Pierre
2017-04-01
To address the influence of the free surface interaction on rupture propagating along subduction zones, we numerically investigate dynamic interactions, involving coupling between normal and shear tractions, between in-plane rupture propagating along dipping thrust faults and a free surface for different structural and geometrical conditions. When the rupture occurs along reverse fault with a dip angle different from 90° the symmetry is broken as an effect of slip-induced normal stress perturbations and a larger ground motion is evidenced on the hanging wall. The ground motion is amplified by multiple reflections of waves trapped between the fault and the free surface. This effect is shown to occur when the rupture tip lies on the vertical below the intersection between the S-wave front and the surface that is when waves along the surface start to interact with the rupture front. This interaction is associated with a finite region where the rupture advances in a massive regime preventing the shrinking of the process zone and the emission of high-frequency radiation. The smaller the dip angle the larger co-seismic slip in the shallow part as an effect of the significant break of symmetry. Radiation from shallow part is still depleted in high frequencies due to the massive propagating regime and the interaction length dominating the rupture dynamics. Instantaneous shear response to normal traction perturbations may lead to unstable solutions as in the case of bimaterial rupture. A parametric study has been performed to analyse the effects of a regularised shear traction response to normal traction variations. Finally the case of Tohoku earthquake is considered and we present 2D along-dip numerical results. At first order the larger slip close to the trench can be ascribed to the break of symmetry and the interaction with free surface. When shear/normal coupling is properly regularised the signal from the trench is depleted in high frequencies whereas during deep propagation high-frequency radiations emerge associated to geometrical and structural complexities or to frictional strength asperities.
Joint inversion of fundamental and higher mode Rayleigh waves
Luo, Y.-H.; Xia, J.-H.; Liu, J.-P.; Liu, Q.-S.
2008-01-01
In this paper, we analyze the characteristics of the phase velocity of fundamental and higher mode Rayleigh waves in a six-layer earth model. The results show that fundamental mode is more sensitive to the shear velocities of shallow layers (< 7 m) and concentrated in a very narrow band (around 18 Hz) while higher modes are more sensitive to the parameters of relatively deeper layers and distributed over a wider frequency band. These properties provide a foundation of using a multi-mode joint inversion to define S-wave velocity. Inversion results of both synthetic data and a real-world example demonstrate that joint inversion with the damped least squares method and the SVD (Singular Value Decomposition) technique to invert Rayleigh waves of fundamental and higher modes can effectively reduce the ambiguity and improve the accuracy of inverted S-wave velocities.
NASA Astrophysics Data System (ADS)
Bonadio, Raffaele; Geissler, Wolfram H.; Ravenna, Matteo; Lebedev, Sergei; Celli, Nicolas L.; Jokat, Wilfried; Jegen, Marion; Sens-Schönfelder, Christoph; Baba, Kiyoshi
2017-04-01
Tristan da Cunha is a volcanic island located above a hotspot in the South Atlantic. The deep mantle plume origin of the hotspot volcanism at the island is supported by anomalous geochemical data (Rohde et al., 2013 [1]) and global seismological evidences (French and Romanovicz, 2015 [2]). However, until recently, due to lack of local geophysical data in the South Atlantic and especially around Tristan da Cunha, the existence of a plume has not yet been confirmed. Therefore, an Ocean Bottom Seismometer experiment was carried out in 2012 and 2013 in the vicinity of the archipelago, with the aim of obtaining geophysical data that may help to get some more detailed insights into the structure of the upper mantle, possibly confirming the existence of a plume. In this work we study the shear wave velocity structure of the lithosphere-asthenosphere system beneath the Island. Rayleigh surface wave phase velocity dispersion curves have been obtained using a recent powerful implementation of the inter-station cross-correlation method (Meier et al., 2004 [3]; Soomro et al., 2016 [4]). The measured dispersion curves are used to invert for the 1D shear wave velocity structure beneath the study area and to obtain phase velocity tomographic maps. Our results show a pronounced low shear wave velocity anomaly between 70 and 120 km depth beneath the area; the lid shows high velocity, suggesting a cold, depleted and dehydrated shallow lithosphere, while the deeper lithosphere shows a velocity structure similar to young or rejuvenated Pacific oceanic lithosphere (Laske et al., 2011 [5]; Goes et al., 2012 [6]). Below the base of the lithosphere, shear wave velocities appear to be low, suggesting thermal effects and partial melting (as confirmed by petrological data). Decreasing velocities within the lithosphere south-westward reflect probably a thermal imprint of an underlying mantle plume. References [1] J.K. Rohde, P. van den Bogaard, K. Hoernle, F. Hauff, R. Werner, Evidence for an age progression along the Tristan-Gough volcanic track from new 40Ar/ 39Ar ages on phenocryst phases, Tectonophysics, Volume 604, p. 60-71 (2013). [2] S. French and B. Romanowicz, Broad plumes rooted at the base of the Earth's mantle beneath major hotspots, Nature, 525(7567), 95-99 (2015). [3] T. Meier, K. Dietrich, B. Stockhert and H. Harjes, One-dimensional models of shear wave velocity for the eastern Mediterranean obtained from the inversion of Rayleigh wave phase velocities and tectonic implications, Earth and Planetary Science Letters, 249(3), 415-424 (2004). [4] R.A. Soomro, C. Weidle, L. Cristiano, S. Lebedev, T. Meier and PASSEQ Working Group, Phase velocities of Rayleigh and Love waves in central and northern Europe from automated, broad-band, interstation measurements, Geophys. J. Int. (2016) 204, 517-534. [5] G. Laske, A. Markee, J.A. Orcutt, C.J. Wolfe, J.A. Collins and S.C. Solomon, R.S. Detrick, D. Bercovici and E.H. Hauri, Asymmetric shallow mantle structure beneath the Hawaiian Swell-evidence from Rayleigh waves recorded by the PLUME network, Geophys. J. Int. (2011) 187, 1725-1742. [6] S. Goes, J. Armitage, N. Harmon, H. Smith and R. Huismans, Low seismic velocities below mid-ocean ridges: Attenuation versus melt retention, Journal of geophysical research, Vol. 117, B12403, (2012).
Measurement of sound speed vs. depth in South Pole ice for neutrino astronomy
NASA Astrophysics Data System (ADS)
Abbasi, R.; Abdou, Y.; Ackermann, M.; Adams, J.; Aguilar, J. A.; Ahlers, M.; Andeen, K.; Auffenberg, J.; Bai, X.; Baker, M.; Barwick, S. W.; Bay, R.; Bazo Alba, J. L.; Beattie, K.; Beatty, J. J.; Bechet, S.; Becker, J. K.; Becker, K.-H.; Benabderrahmane, M. L.; Berdermann, J.; Berghaus, P.; Berley, D.; Bernardini, E.; Bertrand, D.; Besson, D. Z.; Bissok, M.; Blaufuss, E.; Boersma, D. J.; Bohm, C.; Bolmont, J.; Böser, S.; Botner, O.; Bradley, L.; Braun, J.; Breder, D.; Castermans, T.; Chirkin, D.; Christy, B.; Clem, J.; Cohen, S.; Cowen, D. F.; D'Agostino, M. V.; Danninger, M.; Day, C. T.; De Clercq, C.; Demirörs, L.; Depaepe, O.; Descamps, F.; Desiati, P.; de Vries-Uiterweerd, G.; DeYoung, T.; Diaz-Velez, J. C.; Dreyer, J.; Dumm, J. P.; Duvoort, M. R.; Edwards, W. R.; Ehrlich, R.; Eisch, J.; Ellsworth, R. W.; Engdegård, O.; Euler, S.; Evenson, P. A.; Fadiran, O.; Fazely, A. R.; Feusels, T.; Filimonov, K.; Finley, C.; Foerster, M. M.; Fox, B. D.; Franckowiak, A.; Franke, R.; Gaisser, T. K.; Gallagher, J.; Ganugapati, R.; Gerhardt, L.; Gladstone, L.; Goldschmidt, A.; Goodman, J. A.; Gozzini, R.; Grant, D.; Griesel, T.; Groß, A.; Grullon, S.; Gunasingha, R. M.; Gurtner, M.; Ha, C.; Hallgren, A.; Halzen, F.; Han, K.; Hanson, K.; Hasegawa, Y.; Heise, J.; Helbing, K.; Herquet, P.; Hickford, S.; Hill, G. C.; Hoffman, K. D.; Hoshina, K.; Hubert, D.; Huelsnitz, W.; Hülß, J.-P.; Hulth, P. O.; Hultqvist, K.; Hussain, S.; Imlay, R. L.; Inaba, M.; Ishihara, A.; Jacobsen, J.; Japaridze, G. S.; Johansson, H.; Joseph, J. M.; Kampert, K.-H.; Kappes, A.; Karg, T.; Karle, A.; Kelley, J. L.; Kenny, P.; Kiryluk, J.; Kislat, F.; Klein, S. R.; Klepser, S.; Knops, S.; Kohnen, G.; Kolanoski, H.; Köpke, L.; Kowalski, M.; Kowarik, T.; Krasberg, M.; Kuehn, K.; Kuwabara, T.; Labare, M.; Lafebre, S.; Laihem, K.; Landsman, H.; Lauer, R.; Leich, H.; Lennarz, D.; Lucke, A.; Lundberg, J.; Lünemann, J.; Madsen, J.; Majumdar, P.; Maruyama, R.; Mase, K.; Matis, H. S.; McParland, C. P.; Meagher, K.; Merck, M.; Mészáros, P.; Middell, E.; Milke, N.; Miyamoto, H.; Mohr, A.; Montaruli, T.; Morse, R.; Movit, S. M.; Münich, K.; Nahnhauer, R.; Nam, J. W.; Nießen, P.; Nygren, D. R.; Odrowski, S.; Olivas, A.; Olivo, M.; Ono, M.; Panknin, S.; Patton, S.; Pérez de los Heros, C.; Petrovic, J.; Piegsa, A.; Pieloth, D.; Pohl, A. C.; Porrata, R.; Potthoff, N.; Price, P. B.; Prikockis, M.; Przybylski, G. T.; Rawlins, K.; Redl, P.; Resconi, E.; Rhode, W.; Ribordy, M.; Rizzo, A.; Rodrigues, J. P.; Roth, P.; Rothmaier, F.; Rott, C.; Roucelle, C.; Rutledge, D.; Ryckbosch, D.; Sander, H.-G.; Sarkar, S.; Satalecka, K.; Schlenstedt, S.; Schmidt, T.; Schneider, D.; Schukraft, A.; Schulz, O.; Schunck, M.; Seckel, D.; Semburg, B.; Seo, S. H.; Sestayo, Y.; Seunarine, S.; Silvestri, A.; Slipak, A.; Spiczak, G. M.; Spiering, C.; Stamatikos, M.; Stanev, T.; Stephens, G.; Stezelberger, T.; Stokstad, R. G.; Stoufer, M. C.; Stoyanov, S.; Strahler, E. A.; Straszheim, T.; Sulanke, K.-H.; Sullivan, G. W.; Swillens, Q.; Taboada, I.; Tarasova, O.; Tepe, A.; Ter-Antonyan, S.; Terranova, C.; Tilav, S.; Tluczykont, M.; Toale, P. A.; Tosi, D.; Turčan, D.; van Eijndhoven, N.; Vandenbroucke, J.; Van Overloop, A.; Vogt, C.; Voigt, B.; Walck, C.; Waldenmaier, T.; Walter, M.; Wendt, C.; Westerhoff, S.; Whitehorn, N.; Wiebusch, C. H.; Wiedemann, A.; Wikström, G.; Williams, D. R.; Wischnewski, R.; Wissing, H.; Woschnagg, K.; Xu, X. W.; Yodh, G.; Yoshida, S.; IceCube Collaboration
2010-06-01
We have measured the speed of both pressure waves and shear waves as a function of depth between 80 and 500 m depth in South Pole ice with better than 1% precision. The measurements were made using the South Pole Acoustic Test Setup (SPATS), an array of transmitters and sensors deployed in the ice at the South Pole in order to measure the acoustic properties relevant to acoustic detection of astrophysical neutrinos. The transmitters and sensors use piezoceramics operating at ˜5-25 kHz. Between 200 m and 500 m depth, the measured profile is consistent with zero variation of the sound speed with depth, resulting in zero refraction, for both pressure and shear waves. We also performed a complementary study featuring an explosive signal propagating vertically from 50 to 2250 m depth, from which we determined a value for the pressure wave speed consistent with that determined for shallower depths, higher frequencies, and horizontal propagation with the SPATS sensors. The sound speed profile presented here can be used to achieve good acoustic source position and emission time reconstruction in general, and neutrino direction and energy reconstruction in particular. The reconstructed quantities could also help separate neutrino signals from background.
Meyer, M.T.; Fine, J.M.
1997-01-01
As part of the U.S. Geological Survey's Resource Conservation and Recovery Act, Facilities Investigations at Fort Bragg, North Carolina, selected geophysical techniques were evaluated for their usefulness as assessment tools for determining subsurface geology, delineating the areal extent of potentially contaminated landfill sites, and locating buried objects and debris of potential environmental concern. Two shallow seismic-reflection techniques (compression and shear wave) and two electromagnetic techniques (ground-penetrating radar and terrain conductivity) were evaluated at several sites at the U.S. Army Base. The electromagnetic techniques also were tested for tolerance to cultural noise, such as nearby fences, vehicles, and power lines. For the terrain conductivity tests, two instruments were used--the EM31 and EM34, which have variable depths of exploration. The shallowest reflection event was 70 feet below land surface observed in common-depth point, stacked compression-wave data from 24- and 12-fold shallow-seismic-reflection surveys. Several reflection events consistent with clay-sand interfaces between 70 and 120 feet below land surface, along with basement-saprolite surfaces, were imaged in the 24-fold, common- depth-point stacked data. 12-fold, common-depth-point stacked data set contained considerably more noise than the 24-fold, common-depth-point data, due to reduced shot-to-receiver redundancy. Coherent stacked reflection events were not observed in the 24-fold, common-depth-point stacked shear-wave data because of the partial decoupling of the shear- wave generator from the ground. At one site, ground-penetrating radar effectively delineated a shallow, 2- to 5-foot thick sand unit bounded by thin (less than 1 foot) clay layers. The radar signal was completely attenuated where the overlying and underlying clay units thickened and the sand unit thinned. The pene- tration depth of the radar signal was less than 10 feet below land surface. A slight increase in electromagnetic conductivity across shallow sampling EM31 and EM34 profiles provided corroborative evidence of the shallow, thickening clay units. Plots of raw EM31 and EM34 data provided no direct interpretable information to delineate sand and clay units in the shallow subsurface. At two sites, the ground-penetrating radar effectively delineated the lateral continuity of surficial sand units 5 to 25 feet in thickness and the tops of their underlying clay units. The effective exploration depth of the ground-penetrating radar was limited by the proximity of clay units to the subsurface and their thickness. The ground-penetrating radar delineated the areal extent and depth of cover at a previously unrecognized extension of a trench-like landfill underlying a vehicle salvage yard. Attenuation of the radar signal beneath the landfill cover and the adjacent subsurface clays made these two mediums indistinguishable by ground-penetrating radar; however, EM31 data indicated that the electrical conductivity of the landfill was higher than the subsurface material adjacent to the landfill. The EM31 and EM34 conductivity surveys defined the areal extent of a landfill whose boundaries were inaccurately mapped, and also identified the locations of an old dumpsite and waste incinerator site at another landfill. A follow-up ground-penetrating radar survey of the abandoned dumpsite showed incongruities in some of the shallow radar reflections interpreted as buried refuse dispersed throughout the landfill. The ground-penetrating radar and EM31 effectively delineated a shallow buried fuel-oil tank. Of the three electromagnetic instruments, the ground-penetrating radar with the shielded 100-megahertz antenna was the least affected by cultural noise followed, in order, by the EM31 and EM34. The combination of terrain- conductivity and ground-penetrating radar for the site assessment of the landfill provided a powerful means to identify the areal extent of the landfill, potenti
Site response and attenuation in the Puget Lowland, Washington State
Pratt, T.L.; Brocher, T.M.
2006-01-01
Simple spectral ratio (SSR) and horizontal-to-vertical (HN) site-response estimates at 47 sites in the Puget Lowland of Washington State document significant attenuation of 1.5- to 20-Hz shear waves within sedimentary basins there. Amplitudes of the horizontal components of shear-wave arrivals from three local earthquakes were used to compute SSRs with respect to the average of two bedrock sites and H/V spectral ratios with respect to the vertical component of the shear-wave arrivals at each site. SSR site-response curves at thick basin sites show peak amplifications of 2 to 6 at frequencies of 3 to 6 Hz, and decreasing spectra amplification with increasing frequency above 6 Hz. SSRs at nonbasin sites show a variety of shapes and larger resonance peaks. We attribute the spectral decay at frequencies above the amplification peak at basin sites to attenuation within the basin strata. Computing the frequency-independent, depth-dependent attenuation factor (Qs,int) from the SSR spectral decay between 2 and 20 Hz gives values of 5 to 40 for shallow sedimentary deposits and about 250 for the deepest sedimentary strata (7 km depth). H/V site responses show less spectral decay than the SSR responses but contain many of the same resonance peaks. We hypothesize that the H/V method yields a flatter response across the frequency spectrum than SSRs because the H/V reference signal (vertical component of the shear-wave arrivals) has undergone a degree of attenuation similar to the horizontal component recordings. Correcting the SSR site responses for attenuation within the basins by removing the spectral decay improves agreement between SSR and H/V estimates.
NASA Astrophysics Data System (ADS)
Navarro, M.; Enomoto, T.; Benito, B.; Belizaire, D.; Navarro, D.; García-Jerez, A.; Dorfeuille, J.
2013-05-01
In order to evaluate ground shaking characteristics due to surface soil layers in the urban area of Port-au-Prince, short-period ambient noise observation has been performed approximately in a 500x500m grid. The HVSR method was applied to this set of 36 ambient noise measurement points to determine a distribution map of soil predominant periods. This map reveals a general increasing trend in the period values, from the Miocene conglomerates in the northern and southern parts of the town to the central and western zones formed of Pleistocene and Holocene alluvial deposits respectively, where the shallow geological materials that cover the basement increase in thickness. Shorter predominant periods (less than 0.3 s) were found in mountainous and neighbouring zones, where the thickness of sediments is smaller whereas longer periods (greater than 0.5 s) appear in Holocene alluvial fans, where the thickness of sediments is larger. The shallow shear-wave velocity structure have been estimated by means of inversion of Rayleigh wave dispersion data obtained from vertical-component array records of ambient noise. The measurements were carried out at one open space located in Holocene alluvial deposits, using 3 regular pentagonal arrays with 5, 10 and 20m respectively. Reliable dispersion curves were retrieved for frequencies between 4.0 and 14 Hz, with phase velocity values ranging from 420m/s down to 270 m/s. Finally, the average shear-wave velocity of the upper 30 m (VS30) was inverted for characterization of this geological unit.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Levander, Alan Richard; Zelt, Colin A.
2015-03-17
The work plan for this project was to develop and apply advanced seismic reflection and wide-angle processing and inversion techniques to high resolution seismic data for the shallow subsurface to seismically characterize the shallow subsurface at hazardous waste sites as an aid to containment and cleanup activities. We proposed to continue work on seismic data that we had already acquired under a previous DoE grant, as well as to acquire additional new datasets for analysis. The project successfully developed and/or implemented the use of 3D reflection seismology algorithms, waveform tomography and finite-frequency tomography using compressional and shear waves for highmore » resolution characterization of the shallow subsurface at two waste sites. These two sites have markedly different near-surface structures, groundwater flow patterns, and hazardous waste problems. This is documented in the list of refereed documents, conference proceedings, and Rice graduate theses, listed below.« less
NASA Astrophysics Data System (ADS)
Chandran, Deepu; Anbazhagan, P.
2017-10-01
Recently, site response analysis has become a mandatory step for the design of important structures. Subsurface investigation is an essential step, from where the input parameters for the site response study like density, shear wave velocity (Vs), thickness and damping characteristics, etc, are obtained. Most site response studies at shallow bedrock sites are one-dimensional (1D) and are usually carried out by using Vs from multi-channel analysis of surface waves (MASW) or a standard penetration test (SPT) for N values with assumptions that soil layers are horizontal, uniform and homogeneous. These assumptions are not completely true in shallow bedrock regions as soil deposits are heterogeneous. The objective of this study is to generate the actual subsurface profiles in two-dimensions at shallow bedrock regions using integrated subsurface investigation testing. The study area selected for this work is Bangalore, India. Three survey lines were selected in Bangalore at two different locations; one at the Indian Institute of Science (IISc) Campus and the other at Whitefield. Geophysical surveys like ground penetrating radar (GPR) and 2D MASW were carried out at these survey lines. Geophysical test results are compared and validated with a conventional geotechnical SPT. At the IISc site, the soil profile is obtained from a trench excavated for a proposed pipeline used to compare the geophysical test results. Test results show that GPR is very useful to delineate subsurface layers, especially for shallow depths at both sites (IISc Campus and Whitefield). MASW survey results show variation of Vs values and layer thickness comparatively at deeper depths for both sites. They also show higher density soil strata with high Vs value obtained at the IISc Campus site, whereas at the Whitefield site weaker soil with low shear velocity is observed. Combining these two geophysical methods helped to generate representative 2D subsurface profiles. These subsurface profiles can be further used to understand the difference between 1D and 2D site response.
Geological perspectives of shallow slow earthquakes deduced from deformation in subduction mélanges
NASA Astrophysics Data System (ADS)
Ujiie, K.; Saishu, H.; Kinoshita, T.; Nishiyama, N.; Otsubo, M.; Ohta, K.; Yamashita, Y.; Ito, Y.
2017-12-01
Shallow (< 15 km depth) slow earthquakes are important to understand, as they occur along the subduction thrust where devastating tsunamis are generated. Geophysical studies have revealed that shallow slow earthquakes are not restricted to specific temperature conditions and depths but occur in regions of high fluid pressure. In the Nankai subduction zone, the shallow slow slip appears to trigger tremor and very-low-frequency-earthquake. However, the geologic perspectives for shallow slow earthquakes remain enigmatic. The Makimine mélange in the Late Cretaceous Shimanto accretionary complex of southwest Japan was formed during the subduction of young oceanic plate. Within the mélange, the quartz-filled veins and viscous shear zones are concentrated in the zones of 10 to 60 m-thick. The veins consist of shear veins showing low-angle thrust or normal faulting mechanisms and extension veins parallel or at high angle to mélange foliation. The geometrical relationship between shear and extension veins indicates that shear slip and tensile fracturing occur by small differential stress under elevated fluid pressure. The shear and extension veins typically show crack-seal textures defined by the solid inclusions bands. The time scale of each crack-seal event, which is determined from the quartz kinetics considering inclusion band spacing and vein length, is a few years. The shear slip increments estimated from the spacing of inclusions bands at dilational jogs are 0.1 mm. The viscous shear is accommodated by pressure solution creep and consistently shows low-angle thrust shear sense. These geologic features are suggested to explain seismogenic environment for shallow slow earthquakes. The shear veins and viscous shear zones showing low-angle thrust faulting mechanism could represent episodic tremor and slip, while the shear veins showing low-angle normal faulting mechanism may represent the tremor that occurred after the passage of slow slip front.
Ben-Zion, Y.; Peng, Z.; Okaya, D.; Seeber, L.; Armbruster, J.G.; Ozer, N.; Michael, A.J.; Baris, S.; Aktar, M.
2003-01-01
We discuss the subsurface structure of the Karadere-Duzce branch of the North Anatolian Fault based on analysis of a large seismic data set recorded by a local PASSCAL network in the 6 months following the Mw = 7.4 1999 Izmit earthquake. Seismograms observed at stations located in the immediate vicinity of the rupture zone show motion amplification and long-period oscillations in both P- and S-wave trains that do not exist in nearby off-fault stations. Examination of thousands of waveforms reveals that these characteristics are commonly generated by events that are well outside the fault zone. The anomalous features in fault-zone seismograms produced by events not necessarily in the fault may be referred to generally as fault-zone-related site effects. The oscillatory shear wave trains after the direct S arrival in these seismograms are analysed as trapped waves propagating in a low-velocity fault-zone layer. The time difference between the S arrival and trapped waves group does not grow systematically with increasing source-receiver separation along the fault. These observations imply that the trapping of seismic energy in the Karadere-Duzce rupture zone is generated by a shallow fault-zone layer. Traveltime analysis and synthetic waveform modelling indicate that the depth of the trapping structure is approximately 3-4 km. The synthetic waveform modelling indicates further that the shallow trapping structure has effective waveguide properties consisting of thickness of the order of 100 m, a velocity decrease relative to the surrounding rock of approximately 50 per cent and an S-wave quality factor of 10-15. The results are supported by large 2-D and 3-D parameter space studies and are compatible with recent analyses of trapped waves in a number of other faults and rupture zones. The inferred shallow trapping structure is likely to be a common structural element of fault zones and may correspond to the top part of a flower-type structure. The motion amplification associated with fault-zone-related site effects increases the seismic shaking hazard near fault-zone structures. The effect may be significant since the volume of sources capable of generating motion amplification in shallow trapping structures is large.
Graizer, Vladimir; Kalkan, Erol
2015-01-01
A ground-motion prediction equation (GMPE) for computing medians and standard deviations of peak ground acceleration and 5-percent damped pseudo spectral acceleration response ordinates of maximum horizontal component of randomly oriented ground motions was developed by Graizer and Kalkan (2007, 2009) to be used for seismic hazard analyses and engineering applications. This GMPE was derived from the greatly expanded Next Generation of Attenuation (NGA)-West1 database. In this study, Graizer and Kalkan’s GMPE is revised to include (1) an anelastic attenuation term as a function of quality factor (Q0) in order to capture regional differences in large-distance attenuation and (2) a new frequency-dependent sedimentary-basin scaling term as a function of depth to the 1.5-km/s shear-wave velocity isosurface to improve ground-motion predictions for sites on deep sedimentary basins. The new model (GK15), developed to be simple, is applicable to the western United States and other regions with shallow continental crust in active tectonic environments and may be used for earthquakes with moment magnitudes 5.0–8.0, distances 0–250 km, average shear-wave velocities 200–1,300 m/s, and spectral periods 0.01–5 s. Directivity effects are not explicitly modeled but are included through the variability of the data. Our aleatory variability model captures inter-event variability, which decreases with magnitude and increases with distance. The mixed-effects residuals analysis shows that the GK15 reveals no trend with respect to the independent parameters. The GK15 is a significant improvement over Graizer and Kalkan (2007, 2009), and provides a demonstrable, reliable description of ground-motion amplitudes recorded from shallow crustal earthquakes in active tectonic regions over a wide range of magnitudes, distances, and site conditions.
NASA Astrophysics Data System (ADS)
Olive, Jean-Arthur; Pearce, Frederick; Rondenay, Stéphane; Behn, Mark D.
2014-04-01
Many subduction zones exhibit significant retrograde motion of their arc and trench. The observation of fast shear-wave velocities parallel to the trench in such settings has been inferred to represent trench-parallel mantle flow beneath a retreating slab. Here, we investigate this process by measuring seismic anisotropy in the shallow Aegean mantle. We carry out shear-wave splitting analysis on a dense array of seismometers across the Western Hellenic Subduction Zone, and find a pronounced zonation of anisotropy at the scale of the subduction zone. Fast SKS splitting directions subparallel to the trench-retreat direction dominate the region nearest to the trench. Fast splitting directions abruptly transition to trench-parallel above the corner of the mantle wedge, and rotate back to trench-normal over the back-arc. We argue that the trench-normal anisotropy near the trench is explained by entrainment of an asthenospheric layer beneath the shallow-dipping portion of the slab. Toward the volcanic arc this signature is overprinted by trench-parallel anisotropy in the mantle wedge, likely caused by a layer of strained serpentine immediately above the slab. Arcward steepening of the slab and horizontal divergence of mantle flow due to rollback may generate an additional component of sub-slab trench-parallel anisotropy in this region. Poloidal flow above the retreating slab is likely the dominant source of back-arc trench-normal anisotropy. We hypothesize that trench-normal anisotropy associated with significant entrainment of the asthenospheric mantle near the trench may be widespread but only observable at shallow-dipping subduction zones where stations nearest the trench do not overlie the mantle wedge.
NASA Astrophysics Data System (ADS)
Legendre, C.; Meier, T.; Lebedev, S.; Friederich, W.; Viereck-Götte, L.
2012-04-01
Broadband waveforms recorded at stations in Europe and surrounding regions were inverted for shear-wave velocity of the European upper mantle. For events between 1995 and 2007 seismograms were collected from all permanent stations for which data are available via the data centers ORFEUS, GEOFON, ReNaSs and IRIS. In addition, we incorporated data from temporary experiments, including SVEKALAPKO, TOR, Eifel Plume, EGELADOS and other projects. Automated Multimode Inversion of surface and S-wave forms was applied to extract structural information from the seismograms, in the form of linear equations with uncorrelated uncertainties. Successful waveform fits for about 70,000 seismograms yielded over 300,000 independent linear equations that were solved together for a three-dimensional tomographic model. Resolution of the imaging is particularly high in the mantle lithosphere and asthenosphere. The highest velocities in the mantle lithosphere of the East European Craton are found at about 150 km depth. There are no indications for a large scale deep cratonic root below about 330 km depth. Lateral variations within the cratonic mantle lithosphere are resolved by our model as well. The locations of diamond bearing kimberlites correlate with reduced S-wave velocities in the cratonic mantle lithosphere. This anomaly is present in regions of both Proterozoic and Archean crust, pointing to an alteration of the mantle lithosphere after the formation of the craton. Strong lateral changes in S-wave velocity are found at the western margin of the East European Craton and hint to erosion of cratonic mantle lithosphere beneath the Scandes by hot asthenosphere. The mantle lithosphere beneath Western Europe and between the Tornquist-Teyissere Zone and the Elbe Line shows moderately high velocities and is of an intermediate character, between cratonic lithosphere and the thin lithosphere of central Europe. In central Europe, Caledonian and Variscian sutures are not associated with strong lateral changes in the lithosphere-asthenosphere system. Cenozoic anorogenic intraplate volcanism in central Europe and the Circum Mediterranean is found in regions of shallow asthenosphere and close to sharp gradients in the depth of the lithosphere-asthenosphere boundary. Low-velocity anomalies extending vertically from shallow upper mantle down to the transition zone are found beneath the Massive Central, Sinai, Canary Islands and Iceland.
NASA Astrophysics Data System (ADS)
Pandian, S.; Desikan, S. L. N.; Niranjan, Sahoo
2018-01-01
Experiments were carried out on a shallow open cavity (L/D = 5) at a supersonic Mach number (M = 1.8) to understand its transient starting characteristics, wave propagation (inside and outside the cavity) during one vortex shedding cycle, and acoustic emission. Starting characteristics and wave propagation were visualized through time resolved schlieren images, while acoustic emissions were captured through unsteady pressure measurements. Results showed a complex shock system during the starting process which includes characteristics of the bifurcated shock system, shock train, flow separation, and shock wave boundary layer interaction. In one vortex shedding cycle, vortex convection from cavity leading edge to cavity trailing edge was observed. Flow features outside the cavity demonstrated the formation and downstream movement of a λ-shock due to the interaction of shock from the cavity leading edge and shock due to vortex and generation of waves on account of shear layer impingement at the cavity trailing edge. On the other hand, interesting wave structures and its propagation were monitored inside the cavity. In one vortex shedding cycle, two waves such as a reflected compression wave from a cavity leading edge in the previous vortex shedding cycle and a compression wave due to the reflection of Mach wave at the cavity trailing edge corner in the current vortex shedding cycle were visualized. The acoustic emission from the cavity indicated that the 2nd to 4th modes/tones are dominant, whereas the 1st mode contains broadband spectrum. In the present studies, the cavity feedback mechanism was demonstrated through a derived parameter coherence coefficient.
Experimental Modeling of Dynamic Shallow Dip-Slip Faulting
NASA Astrophysics Data System (ADS)
Uenishi, K.
2010-12-01
In our earlier study (AGU 2005, SSJ 2005, JPGU 2006), using a finite difference technique, we have conducted some numerical simulations related to the source dynamics of shallow dip-slip earthquakes, and suggested the possibility of the existence of corner waves, i.e., shear waves that carry concentrated kinematic energy and generate extremely strong particle motions on the hanging wall of a nonvertical fault. In the numerical models, a dip-slip fault is located in a two-dimensional, monolithic linear elastic half space, and the fault plane dips either vertically or 45 degrees. We have investigated the seismic wave field radiated by crack-like rupture of this straight fault. If the fault rupture, initiated at depth, arrests just below or reaches the free surface, four Rayleigh-type pulses are generated: two propagating along the free surface into the opposite directions to the far field, the other two moving back along the ruptured fault surface (interface) downwards into depth. These downward interface pulses may largely control the stopping phase of the dynamic rupture, and in the case the fault plane is inclined, on the hanging wall the interface pulse and the outward-moving Rayleigh surface pulse interact with each other and the corner wave is induced. On the footwall, the ground motion is dominated simply by the weaker Rayleigh pulse propagating along the free surface because of much smaller interaction between this Rayleigh and the interface pulse. The generation of the downward interface pulses and corner wave may play a crucial role in understanding the effects of the geometrical asymmetry on the strong motion induced by shallow dip-slip faulting, but it has not been well recognized so far, partly because those waves are not expected for a fault that is located and ruptures only at depth. However, the seismological recordings of the 1999 Chi-Chi, Taiwan, the 2004 Niigata-ken Chuetsu, Japan, earthquakes as well as a more recent one in Iwate-Miyagi Inland, Japan in 2008, for example, seem to support the need for careful mechanical consideration. In this contribution, utilizing two-dimensional dynamic photoelasticity in conjunction with high speed digital cinematography, we try to perform "fully controlled" laboratory experiments of dip-slip faulting and observe the propagation of interface pulses and corner waves mentioned above. A birefringent material containing a (model) dip-slip fault plane is prepared, and rupture is initiated in that material using an Nd:YAG laser system, and the evolution of time-dependent isochromatic fringe patterns (contours of maximum in-plane shear stress) associated with the dynamic process of shallow dip-slip faulting is recorded. Use of Nd:YAG laser pulses, instead of ignition of explosives, for rupture initiation may enhance the safety of laboratory fracture experiments and enable us to evaluate the energy entering the material (and hence the energy balance in the system) more precisely, possibly in a more controlled way.
NASA Astrophysics Data System (ADS)
Yamakoshi, Yoshiki; Yamamoto, Atsushi; Kasahara, Toshihiro; Iijima, Tomohiro; Yuminaka, Yasushi
2015-07-01
We have proposed a quantitative shear wave imaging technique for continuous shear wave excitation. Shear wave wavefront is observed directly by color flow imaging using a general-purpose ultrasonic imaging system. In this study, the proposed method is applied to experiments in vivo, and shear wave maps, namely, the shear wave phase map, which shows the shear wave propagation inside the medium, and the shear wave velocity map, are observed for the skeletal muscle in the shoulder. To excite the shear wave inside the skeletal muscle of the shoulder, a hybrid ultrasonic wave transducer, which combines a small vibrator with an ultrasonic wave probe, is adopted. The shear wave velocity of supraspinatus muscle, which is measured by the proposed method, is 4.11 ± 0.06 m/s (N = 4). This value is consistent with those obtained by the acoustic radiation force impulse method.
NASA Astrophysics Data System (ADS)
Seiberlich, C. K. A.; Ritter, J. R. R.; Wawerzinek, B.
2013-09-01
We study the crust-mantle and lithosphere-asthenosphere boundaries (Moho and LAB) in Central Europe, specifically below the Upper Rhine Graben (URG) rift, the Eifel volcanic region and their surrounding areas. Teleseismic recordings at permanent and mobile stations are analysed to search for shear (S) wave to compressional (P) wave converted phases. After a special processing these phases are identified in shear wave receiver functions (S-RFs). Conversions from the Moho at 2.9-3.3 s arrival time are the clearest signals in the S-RFs and indicate a relatively flat Moho at 27-30 km depth. A negative polarity conversion signal at 7-9 s arrival time can be explained with a low shear wave velocity zone (LVsZ) in the upper mantle. We use forward S-RF waveform modelling and Monte-Carlo techniques to determine shear wave velocity (vs)-depth (z) profiles which explain the observed S-RF and which outline variations of the lithospheric thickness in the study region. Across the URG rift and its surrounding mountain ranges (Black Forest, Odenwald etc.) the LAB is at a depth of about 60 ± 5 km. This depth is found for the rift itself as well as for the rift shoulders. Southeast and southwest of the URG, in the regions of the Swabian Alb and Vosges Mountains, the LAB dips to about 78 ± 5 km depth. In the volcanic Eifel region the LAB is at a much shallower depth of just 41 ± 5 km. There an upwelling mantle plume thermally eroded the lower lithosphere. The reduction of vs is about 2%-4% in the upper asthenosphere compared to the lower lithosphere. This vs contrast may be explained with a low portion of partial melt or hydrous minerals in the asthenosphere.
NASA Astrophysics Data System (ADS)
Pamuk, Eren; Önsen, Funda; Turan, Seçil
2014-05-01
Shear-wave velocity is so critical parameter for evaluating the dynamic behaviour of soil in the subsurface investigations. Multichannel Analysis of Surface Waves (MASW) is a popular method to utilize shear-wave velocity in shallow depth surveys. This method uses the dispersive properties of shear-waves for imaging the subsurface layers. In MASW method, firstly data are acquired multichannel field records (or shot gathers), then dispersion curves are extracted. Finally, these dispersion curves are inverted to obtain one dimension (1D) Vs depth profiles. Reliable and accurate results of evaluating shear wave velocity depends on dispersion curves. Therefore, determination of basic mode dispersion curve is very important. In this study, MASW measurements were carried out different types of spread and various offsets to obtain better results in İzmir, Turkey. The types of spread were selected as pairs geophone group of spread, increase spread and constant interval spread. The data were collected in the Campus of Tinaztepe, Dokuz Eylul University, Izmir (Buca). 24 channel Geometrix Geode seismic instruments, 4.5 Hz low frequency receiver (geophone) and sledge hammer (8kg) as an energy source were used in this study. The data were collected with forward shots. MASW measurements were applied different profiles and their lengths were 24 m. Geophone intervals were selected 1 m in the constant interval spread and offsets were selected respectively 1, 4, 8, 12, 24 m in all spreads. In the first stage of this study, the measurements, which were taken in these offsets, were compared between each other in all spreads. The results show that higher resolution dispersion curves were observed at 1 m, 2 m and 4 m offsets. In the other offsets (8, 12, 24 m), distinguishability between basic and higher modes dispersion curves became difficult. In the second stage of this study, obtained dispersion curves of different spread were compared to all spread type of MASW survey.
Novel Imaging Method of Continuous Shear Wave by Ultrasonic Color Flow Mapping
NASA Astrophysics Data System (ADS)
Yamakoshi, Yoshiki; Yamamoto, Atsushi; Yuminaka, Yasushi
Shear wave velocity measurement is a promising method in evaluation of tissue stiffness. Several methods have been developed to measure the shear wave velocity, however, it is difficult to obtain quantitative shear wave image in real-time by low cost system. In this paper, a novel shear wave imaging method for continuous shear wave is proposed. This method uses a color flow imaging which is used in ultrasonic imaging system to obtain shear wave's wavefront map. Two conditions, shear wave frequency condition and shear wave displacement amplitude condition, are required, however, these conditions are not severe restrictions in most applications. Using the proposed method, shear wave velocity of trapezius muscle is measured. The result is consistent with the velocity which is calculated from shear elastic modulus measured by ARFI method.
NASA Astrophysics Data System (ADS)
Jeppson, T.; Tobin, H. J.
2014-12-01
The 11 March 2011 Tohoku-Oki earthquake (Mw=9.0) produced large displacements of ~50 meters near the Japan Trench. In order to understand earthquake propagation and slip stabilization in this environment, quantitative values of the real elastic properties of fault zones and their surrounding wall rock material is crucial. Because elastic and mechanical properties of faults and wallrocks are controlling factors in fault strength, earthquake generation and propagation, and slip stabilization, an understanding of these properties and their depth dependence is essential to understanding and accurately modeling earthquake rupture. In particular, quantitatively measured S-wave speeds, needed for estimation of elastic properties, are scarce in the literature. We report laboratory ultrasonic velocity measurements performed at elevated pressures, as well as the calculated dynamic elastic moduli, for samples of the rock surrounding the Tohoku earthquake principal fault zone recovered by drilling during IODP Expedition 343, Japan Trench Fast Drilling Project (JFAST). We performed measurements on five samples of gray mudstone from the hanging wall and one sample of underthrust brown mudstone from the footwall. We find P- and S-wave velocities of 2.0 to 2.4 km/s and 0.7 to 1.0 km/s, respectively, at 5 MPa effective pressure. At the same effective pressure, the hanging wall samples have shear moduli ranging from 1.4 to 2.2 GPa and the footwall sample has a shear modulus of 1.0 GPa. While these values are perhaps not surprising for shallow, clay-rich subduction zone sediments, they are substantially lower than the 30 GPa commonly assumed for rigidity in earthquake rupture and propagation models [e.g., Ide et al., 1993; Liu and Rice, 2005; Loveless and Meade, 2011]. In order to better understand the elastic properties of shallow subduction zone sediments, our measurements from the Japan Trench are compared to similar shallow drill core samples from the Nankai Trough, Costa Rica, Cascadia, and Barbados ridge subduction zones. We find that shallow subduction zone sediments in general have similarly low rigidity. These data provide important ground-truth values that can be used to parameterize fault slip models addressing the problem of shallow, tsunamigenic propagation of megathrust earthquakes.
Seismic anisotropy and the state of stress in volcanic systems
NASA Astrophysics Data System (ADS)
Kendall, Michael
2017-04-01
The active magmatic and hydrothermal systems of volcanoes can lead to complicated stress patterns that can vary over short spatial and temporal scales. An attractive approach to studying the state of stress in such systems is to investigate seismic anisotropy using shear-wave splitting in upper-crustal earthquakes. Anisotropy can be caused by a range of mechanisms, including crystal preferred orientation and fine scale layering, but the dominant mechanism in volcanic systems is likely the preferred alignment of fluid-filled cracks and fractures. In general, cracks and fractures in the near surface tend to align parallel to the dominant direction of maximum horizontal stress. However, the observed patterns in volcanoes indicate more complicated stress patterns, which sometimes even change in time. A challenge is to untangle the magmatic versus hydrothermal control on stress. Here I summarise observations of seismic anisotropy across several volcanoes in different settings. Seismic anisotropy of the upper crust in the vicinity of the Soufrière Hills volcano - on the island of Montserrat in the Lesser Antilles - has been studied using shear wave splitting (SWS) analysis of shallow volcano-tectonic events. Clear spatial variations in anisotropy are observed, which are consistent with structurally controlled anisotropy resulting from a left-lateral transtensional array of faults that crosses the volcanic complex. Corbetti and Aluto are two volcanoes located roughly 100 km apart in the Main Ethiopian Rift. Their evolution is strongly controlled by pre-existing structural trends. In the case of Aluto, the anisotropy follows the Wonji fault belt in a rift parallel nearly N-S direction, but significantly oblique to the older border faults. In contrast, the shear-wave splitting at Corbetti is more complicated and supports ideas of the influence of a much-older pre-existing cross-rift structure known as the Goba-Bonga fault. Ontake volcano in Japan is another arc volcano. It exhibits a complicated stress system, as revealed by earthquake source mechanisms and patterns of shear-wave splitting. Ontake has seen two recent eruptions, a minor phreatic eruption in 2007 and a more significant eruption in 2014. The pattern of seismic anisotropy shows no temporal variation with the first eruption. However, with the second eruption there is a clear change in both the magnitude of the shear-wave splitting and the orientation of the fast shear-wave, suggesting that there is a critical stress threshold where the anisotropy changes. In summary, with a good seismic network, shear-wave splitting measurements are relatively easy to make. They capture details of changes in the stress system across a volcano, which may be a useful monitoring tool. Furthermore, they also provide a good reconnaissance tool that provides insights into structural controls on the formation of volcanoes.
Depth-Related Effects on a Meiofaunal Community Dwelling in the Periphyton of a Mesotrophic Lake
Kreuzinger-Janik, Bianca; Schroeder, Fabian; Majdi, Nabil; Traunspurger, Walter
2015-01-01
Periphyton is a complex assemblage of micro- and meiofauna embedded in the organic matrix that coats most submerged substrate in the littoral of lakes. The aim of this study was to better understand the consequences of depth-level fluctuation on a periphytic community. The effects of light and wave disturbance on the development of littoral periphyton were evaluated in Lake Erken (Sweden) using an experimental design that combined in situ shading with periphyton depth transfers. Free-living nematodes were a major contributor to the meiofaunal community. Their species composition was therefore used as a proxy to distinguish the contributions of light- and wave-related effects. The periphyton layer was much thicker at a depth of 30 cm than at 200 cm, as indicated by differences in the amounts of organic and phototrophic biomass and meiofaunal and nematode densities. A reduction of the depth-level of periphyton via a transfer from a deep to a shallow location induced rapid positive responses by its algal, meiofaunal, and nematode communities. The slower and weaker negative responses to the reverse transfer were attributed to the potentially higher resilience of periphytic communities to increases in the water level. In the shallow littoral of the lake, shading magnified the effects of phototrophic biomass erosion by waves, as the increased exposure to wave shear stress was not compensated for by an increase in photosynthesis. This finding suggests that benthic primary production will be strongly impeded in the shallow littoral zones of lakes artificially shaded by construction or embankments. However, regardless of the light constraints, an increased exposure to wave action had a generally positive short-term effect on meiofaunal density, by favoring the predominance of species able to anchor themselves to the substrate, especially the Chromadorid nematode Punctodora ratzeburgensis. PMID:26353016
NASA Astrophysics Data System (ADS)
Rastgoo, Mehdi; Rahimi, Habib; Motaghi, Khalil; Shabanian, Esmaeil; Romanelli, Fabio; Panza, Giuliano F.
2018-04-01
The Alborz Mountains represent a tectonically and seismically active convergent boundary in the Arabia - Eurasia collision zone, in western Asia. The orogenic belt has undergone a long-lasted tectono-magmatic history since the Cretaceous. The relationship between shallow and deep structures in this complex tectonic domain is not straightforward. We present a 2D velocity model constructed by the assemblage of 1D shear wave velocity (Vs) models from 26 seismic stations, mainly distributed along the southern flank of the Alborz Mountains. The shear wave velocity structure has been estimated beneath each station using joint inversion of P-waves receiver functions and Rayleigh wave dispersion curves. A substantiation of the Vs inversion results sits on the modeling of Bouguer gravity anomaly data. Our velocity and density models show low velocity/density anomalies in uppermost mantle of western and central Alborz at a depth range of ∼50-100 km. In deeper parts of the uppermost mantle (depth range of 100-150 km), a high velocity/density anomaly is located beneath most of the Mountain range. The spatial pattern of these low and high velocity/density structures in the upper mantle is interpreted as the result of post collisional delamination of lower part of the western and central Alborz lithosphere.
NASA Astrophysics Data System (ADS)
Chan, J. H.; Richardson, I. S.; Strayer, L. M.; Catchings, R.; McEvilly, A.; Goldman, M.; Criley, C.; Sickler, R. R.
2017-12-01
The Hayward Fault Zone (HFZ) includes the Hayward fault (HF), as well as several named and unnamed subparallel, subsidiary faults to the east, among them the Quaternary-active Chabot Fault (CF), the Miller Creek Fault (MCF), and a heretofore unnamed fault, the Redwood Thrust Fault (RTF). With an ≥M6.0 recurrence interval of 130 y for the HF and the last major earthquake in 1868, the HFZ is a major seismic hazard in the San Francisco Bay Area, exacerbated by the many unknown and potentially active secondary faults of the HFZ. In 2016, researchers from California State University, East Bay, working in concert with the United States Geological Survey conducted the East Bay Seismic Investigation (EBSI). We deployed 296 RefTek RT125 (Texan) seismographs along a 15-km-long linear seismic profile across the HF, extending from the bay in San Leandro to the hills in Castro Valley. Two-channel seismographs were deployed at 100 m intervals to record P- and S-waves, and additional single-channel seismographs were deployed at 20 m intervals where the seismic line crossed mapped faults. The active-source survey consisted of 16 buried explosive shots located at approximately 1-km intervals along the seismic line. We used the Multichannel Analysis of Surfaces Waves (MASW) method to develop 2-D shear-wave velocity models across the CF, MCF, and RTF. Preliminary MASW analysis show areas of anomalously low S-wave velocities , indicating zones of reduced shear modulus, coincident with these three mapped faults; additional velocity anomalies coincide with unmapped faults within the HFZ. Such compliant zones likely correspond to heavily fractured rock surrounding the faults, where the shear modulus is expected to be low compared to the undeformed host rock.
A test of a mechanical multi-impact shear-wave seismic source
Worley, David M.; Odum, Jack K.; Williams, Robert A.; Stephenson, William J.
2001-01-01
We modified two gasoline-engine-powered earth tampers, commonly used as compressional-(P) wave seismic energy sources for shallow reflection studies, for use as shear(S)-wave energy sources. This new configuration, termed ?Hacker? (horizontal Wacker?), is evaluated as an alternative to the manual sledgehammer typically used in conjunction with a large timber held down by the front wheels of a vehicle. The Hacker maximizes the use of existing equipment by a quick changeover of bolt-on accessories as opposed to the handling of a separate source, and is intended to improve the depth of penetration of S-wave data by stacking hundreds of impacts over a two to three minute period. Records were made with a variety of configurations involving up to two Hackers simultaneously then compared to a reference record made with a sledgehammer. Preliminary results indicate moderate success by the higher amplitude S-waves recorded with the Hacker as compared to the hammer method. False triggers generated by the backswing of the Hacker add unwanted noise and we are currently working to modify the device to eliminate this effect. Correlation noise caused by insufficient randomness of the Hacker impact sequence is also a significant noise problem that we hope to reduce by improving the coupling of the Hacker to the timber so that the operator has more control over the impact sequence.
Multichannel analysis of surface wave method with the autojuggie
Tian, G.; Steeples, D.W.; Xia, J.; Miller, R.D.; Spikes, K.T.; Ralston, M.D.
2003-01-01
The shear (S)-wave velocity of near-surface materials and its effect on seismic-wave propagation are of fundamental interest in many engineering, environmental, and groundwater studies. The multichannel analysis of surface wave (MASW) method provides a robust, efficient, and accurate tool to observe near-surface S-wave velocity. A recently developed device used to place large numbers of closely spaced geophones simultaneously and automatically (the 'autojuggie') is shown here to be applicable to the collection of MASW data. In order to demonstrate the use of the autojuggie in the MASW method, we compared high-frequency surface-wave data acquired from conventionally planted geophones (control line) to data collected in parallel with the automatically planted geophones attached to steel bars (test line). The results demonstrate that the autojuggie can be applied in the MASW method. Implementation of the autojuggie in very shallow MASW surveys could drastically reduce the time required and costs incurred in such surveys. ?? 2003 Elsevier Science Ltd. All rights reserved.
Research on ambient noise tomography in Fenwei Fault array
NASA Astrophysics Data System (ADS)
Xu, H.; Luo, Y.; Yin, X.
2016-12-01
From June 2014 to May 2015, 561 Empirical Green's functions (EGFs) between two station pairs are obtained by processing continuous ambient noise observed at 34 stations from Fenwei Fault array. All available vertical component series are utilized to extract the Rayleigh waves. The signal-to-noise ratio (SNR) at different periods and the azimuth distribution of the interstation pairs with high SNR are discussed. The azimuth distributions of the ambient noise source are investigated by analyzing the beamforming output. Although seasonal variations are observed from the beamforming output, the source distribution at 10-25 S is almost uniformly distributed in all directions, which allows us to perform the following detailed tomography safely. From these EGFs, surface wave travel times in the period range of 5 to 40 S are measured by Frequency-Time Analysis technique (FTAN). Then, eikonal tomography is adopted to construct Rayleigh wave phase velocity maps and estimate the phase velocity uncertainties. Finally, we invert the obtained phase velocity dispersion curves for 1D shear velocity profiles and then assemble these 1D profiles to construct a 3D shear velocity model. Major velocity features of our 3D model are correlated well with the known geological features. In the shallow, the shear velocity of the fault is low-speed which is related to sedimentary basins, and the surrounding ridges is high-speed. References Lin, F., Ritzwoller, M.H. and Snieder, R., 2009. Eikonal tomography: surface wave tomography by phase front tracking across a regional broad-band seismic array. Geophysical Journal International, 177(3): 1091-1110.
Phase Aberration and Attenuation Effects on Acoustic Radiation Force-Based Shear Wave Generation.
Carrascal, Carolina Amador; Aristizabal, Sara; Greenleaf, James F; Urban, Matthew W
2016-02-01
Elasticity is measured by shear wave elasticity imaging (SWEI) methods using acoustic radiation force to create the shear waves. Phase aberration and tissue attenuation can hamper the generation of shear waves for in vivo applications. In this study, the effects of phase aberration and attenuation in ultrasound focusing for creating shear waves were explored. This includes the effects of phase shifts and amplitude attenuation on shear wave characteristics such as shear wave amplitude, shear wave speed, shear wave center frequency, and bandwidth. Two samples of swine belly tissue were used to create phase aberration and attenuation experimentally. To explore the phase aberration and attenuation effects individually, tissue experiments were complemented with ultrasound beam simulations using fast object-oriented C++ ultrasound simulator (FOCUS) and shear wave simulations using finite-element-model (FEM) analysis. The ultrasound frequency used to generate shear waves was varied from 3.0 to 4.5 MHz. Results: The measured acoustic pressure and resulting shear wave amplitude decreased approximately 40%-90% with the introduction of the tissue samples. Acoustic intensity and shear wave displacement were correlated for both tissue samples, and the resulting Pearson's correlation coefficients were 0.99 and 0.97. Analysis of shear wave generation with tissue samples (phase aberration and attenuation case), measured phase screen, (only phase aberration case), and FOCUS/FEM model (only attenuation case) showed that tissue attenuation affected the shear wave generation more than tissue aberration. Decreasing the ultrasound frequency helped maintain a focused beam for creation of shear waves in the presence of both phase aberration and attenuation.
Seismic Structure of Perth Basin (Australia) and surroundings from Passive Seismic Deployments
NASA Astrophysics Data System (ADS)
Issa, N.; Saygin, E.; Lumley, D. E.; Hoskin, T. E.
2016-12-01
We image the subsurface structure of Perth Basin, Western Australia and surroundings by using ambient seismic noise data from 14 seismic stations recently deployed by University of Western Australia (UWA) and other available permanent stations from Geoscience Australia seismic network and the Australian Seismometers in Schools program. Each of these 14 UWA seismic stations comprises a broadband sensor and a high fidelity 3-component 10 Hz geophone, recording in tandem at 250 Hz and 1000 Hz. The other stations used in this study are equipped with short period and broadband sensors. In addition, one shallow borehole station is operated with eight 3 component geophones at depths of between 2 and 44 m. The network is deployed to characterize natural seismicity in the basin and to try and identify any microseismic activity across Darling Fault Zone (DFZ), bounding the basin to the east. The DFZ stretches to approximately 1000 km north-south in Western Australia, and is one of the longest fault zones on the earth with a limited number of detected earthquakes. We use seismic noise cross- and auto-correlation methods to map seismic velocity perturbations across the basin and the transition from DFZ to the basin. Retrieved Green's functions are stable and show clear dispersed waveforms. Travel times of the surface wave Green's functions from noise cross-correlations are inverted with a two-step probabilistic framework to map the absolute shear wave velocities as a function of depth. The single station auto-correlations from the seismic noise yields P wave reflectivity under each station, marking the major discontinuities. Resulting images show the shear velocity perturbations across the region. We also quantify the variation of ambient seismic noise at different depths in the near surface using the geophones in the shallow borehole array.
Joint inversion of high-frequency surface waves with fundamental and higher modes
Luo, Y.; Xia, J.; Liu, J.; Liu, Q.; Xu, S.
2007-01-01
Joint inversion of multimode surface waves for estimating the shear (S)-wave velocity has received much attention in recent years. In this paper, we first analyze sensitivity of phase velocities of multimodes of surface waves for a six-layer earth model, and then we invert surface-wave dispersion curves of the theoretical model and a real-world example. Sensitivity analysis shows that fundamental mode data are more sensitive to the S-wave velocities of shallow layers and are concentrated on a very narrow frequency band, while higher mode data are more sensitive to the parameters of relatively deeper layers and are distributed over a wider frequency band. These properties provide a foundation of using a multimode joint inversion to define S-wave velocities. Inversion results of both synthetic data and a real-world example demonstrate that joint inversion with the damped least-square method and the singular-value decomposition technique to invert high-frequency surface waves with fundamental and higher mode data simultaneously can effectively reduce the ambiguity and improve the accuracy of S-wave velocities. ?? 2007.
NASA Astrophysics Data System (ADS)
Anagnostopoulos, Grigorios G.; Fatichi, Simone; Burlando, Paolo
2015-09-01
Extreme rainfall events are the major driver of shallow landslide occurrences in mountainous and steep terrain regions around the world. Subsurface hydrology has a dominant role on the initiation of rainfall-induced shallow landslides, since changes in the soil water content affect significantly the soil shear strength. Rainfall infiltration produces an increase of soil water potential, which is followed by a rapid drop in apparent cohesion. Especially on steep slopes of shallow soils, this loss of shear strength can lead to failure even in unsaturated conditions before positive water pressures are developed. We present HYDROlisthisis, a process-based model, fully distributed in space with fine time resolution, in order to investigate the interactions between surface and subsurface hydrology and shallow landslides initiation. Fundamental elements of the approach are the dependence of shear strength on the three-dimensional (3-D) field of soil water potential, as well as the temporal evolution of soil water potential during the wetting and drying phases. Specifically, 3-D variably saturated flow conditions, including soil hydraulic hysteresis and preferential flow phenomena, are simulated for the subsurface flow, coupled with a surface runoff routine based on the kinematic wave approximation. The geotechnical component of the model is based on a multidimensional limit equilibrium analysis, which takes into account the basic principles of unsaturated soil mechanics. A series of numerical simulations were carried out with various boundary conditions and using different hydrological and geotechnical components. Boundary conditions in terms of distributed soil depth were generated using both empirical and process-based models. The effect of including preferential flow and soil hydraulic hysteresis was tested together with the replacement of the infinite slope assumption with the multidimensional limit equilibrium analysis. The results show that boundary conditions play a crucial role in the model performance and that the introduced hydrological (preferential flow and soil hydraulic hysteresis) and geotechnical components (multidimensional limit equilibrium analysis) significantly improve predictive capabilities in the presented case study.
Shear Wave Imaging of Breast Tissue by Color Doppler Shear Wave Elastography.
Yamakoshi, Yoshiki; Nakajima, Takahito; Kasahara, Toshihiro; Yamazaki, Mayuko; Koda, Ren; Sunaguchi, Naoki
2017-02-01
Shear wave elastography is a distinctive method to access the viscoelastic characteristic of the soft tissue that is difficult to obtain by other imaging modalities. This paper proposes a novel shear wave elastography [color Doppler shear wave imaging (CD SWI)] for breast tissue. Continuous shear wave is produced by a small lightweight actuator, which is attached to the tissue surface. Shear wave wavefront that propagates in tissue is reconstructed as a binary pattern that consists of zero and the maximum flow velocities on color flow image (CFI). Neither any modifications of the ultrasound color flow imaging instrument nor a high frame rate ultrasound imaging instrument is required to obtain the shear wave wavefront map. However, two conditions of shear wave displacement amplitude and shear wave frequency are needed to obtain the map. However, these conditions are not severe restrictions in breast imaging. This is because the minimum displacement amplitude is [Formula: see text] for an ultrasonic wave frequency of 12 MHz and the shear wave frequency is available from several frequencies suited for breast imaging. Fourier analysis along time axis suppresses clutter noise in CFI. A directional filter extracts shear wave, which propagates in the forward direction. Several maps, such as shear wave phase, velocity, and propagation maps, are reconstructed by CD SWI. The accuracy of shear wave velocity measurement is evaluated for homogeneous agar gel phantom by comparing with the acoustic radiation force impulse method. The experimental results for breast tissue are shown for a shear wave frequency of 296.6 Hz.
NASA Astrophysics Data System (ADS)
Wei, Z.; Chu, R.
2017-12-01
Teleseismic receiver function methods are widely used to study the deep structural information beneath the seismic station. However, teleseismic waveforms are difficult to extract the high-frequency receiver function, which are insufficient to constrain the shallow structure because of the inelastic attenuation effect of the earth. In this study, using the local earthquake waveforms collected from 3 broadband stations deployed on the Xishan village landslide in Li County in Sichuan Province, we used the high-frequency receiver function method to study the shallow structure beneath the landslide. We developed the Vp-k (Vp/Vs) staking method of receiver functions, and combined with the H-k stacking and waveform inversion methods of receiver functions to invert the landslide's thickness, S-wave velocity and average Vp/Vs ratio beneath these stations, and compared the thickness with the borehole results. Our results show small-scale lateral variety of velocity structure, a 78-143m/s lower S-wave velocity in the bottom layer and 2.4-3.1 Vp/Vs ratio in the landslide. The observed high Vp/Vs ratio and low S-wave velocity in the bottom layer of the landslide are consistent with low electrical resistivity and water-rich in the bottom layer, suggesting a weak shear strength and potential danger zone in landslide h1. Our study suggest that the local earthquake receiver function can obtain the shallow velocity structural information and supply some seismic constrains for the landslide catastrophe mitigation.
Seismic reflection imaging of two megathrust shear zones in the northern Cascadia subduction zone.
Calvert, Andrew J
2004-03-11
At convergent continental margins, the relative motion between the subducting oceanic plate and the overriding continent is usually accommodated by movement along a single, thin interface known as a megathrust. Great thrust earthquakes occur on the shallow part of this interface where the two plates are locked together. Earthquakes of lower magnitude occur within the underlying oceanic plate, and have been linked to geochemical dehydration reactions caused by the plate's descent. Here I present deep seismic reflection data from the northern Cascadia subduction zone that show that the inter-plate boundary is up to 16 km thick and comprises two megathrust shear zones that bound a >5-km-thick, approximately 110-km-wide region of imbricated crustal rocks. Earthquakes within the subducting plate occur predominantly in two geographic bands where the dip of the plate is inferred to increase as it is forced around the edges of the imbricated inter-plate boundary zone. This implies that seismicity in the subducting slab is controlled primarily by deformation in the upper part of the plate. Slip on the shallower megathrust shear zone, which may occur by aseismic slow slip, will transport crustal rocks into the upper mantle above the subducting oceanic plate and may, in part, provide an explanation for the unusually low seismic wave speeds that are observed there.
NASA Astrophysics Data System (ADS)
Ye, Shigong; Wu, Junru
2000-05-01
Shear wave propagation properties including phase velocity and attenuation coefficient are indispensable information in materials characterization and nondestructive evaluation. A computer controlled scanning shear-wave ultrasonic imaging system has been developed. It consists of a pair of focusing broadband pvdf transducers of central frequency of 50 MHz immersed in distilled water. Shear waves in a solid specimen are generated by mode-conversion. When ultrasonic waves generated by one of the pvdf transducers impinge upon a solid specimen from water with angle of incidence of θ that is greater than θcr, the critical angle of the longitudinal wave in the solid, only shear waves can propagate in the solid and longitudinal waves become evanescent waves. The shear waves pass through the specimen and received by the other pvdf transducer. Meanwhile, the specimen was scanned by a stepped motor of a step of 10 μm. The system was used to generated shear waves amplitude and phase velocity images of bone specimen of 1280 μm and they are compared with their longitudinal wave counterparts. The results have shown shear wave images can provide additional shear modulus and shear viscous information that longitudinal waves can't provide. The lateral resolution of 60 μm was achieved using shear wave imaging technique applied in bone sample.
Full Waveform Modelling for Subsurface Characterization with Converted-Wave Seismic Reflection
NASA Astrophysics Data System (ADS)
Triyoso, Wahyu; Oktariena, Madaniya; Sinaga, Edycakra; Syaifuddin, Firman
2017-04-01
While a large number of reservoirs have been explored using P-waves seismic data, P-wave seismic survey ceases to provide adequate result in seismically and geologically challenging areas, like gas cloud, shallow drilling hazards, strong multiples, highly fractured, anisotropy. Most of these reservoir problems can be addressed using P and PS seismic data combination. Multicomponent seismic survey records both P-wave and S-wave unlike conventional survey that only records compressional P-wave. Under certain conditions, conventional energy source can be used to record P and PS data using the fact that compressional wave energy partly converts into shear waves at the reflector. Shear component can be recorded using down going P-wave and upcoming S-wave by placing a horizontal component geophone on the ocean floor. A synthetic model is created based on real data to analyze the effect of gas cloud existence to PP and PS wave reflections which has a similar characteristic to Sub-Volcanic imaging. The challenge within the multicomponent seismic is the different travel time between P-wave and S-wave, therefore the converted-wave seismic data should be processed with different approach. This research will provide a method to determine an optimum converted point known as Common Conversion Point (CCP) that can solve the Asymmetrical Conversion Point of PS data. The value of γ (Vp/Vs) is essential to estimate the right CCP that will be used in converted-wave seismic processing. This research will also continue to the advanced processing method of converted-wave seismic by applying Joint Inversion to PP&PS seismic. Joint Inversion is a simultaneous model-based inversion that estimates the P&S-wave impedance which are consistent with the PP&PS amplitude data. The result reveals a more complex structure mirrored in PS data below the gas cloud area. Through estimated γ section resulted from Joint Inversion, we receive a better imaging improvement below gas cloud area tribute to the converted-wave seismic as additional constrain.
Lipman, Samantha L; Rouze, Ned C; Palmeri, Mark L; Nightingale, Kathryn R
2018-04-01
Shear wave elasticity imaging (SWEI) characterizes the mechanical properties of human tissues to differentiate healthy from diseased tissue. Commercial scanners tend to reconstruct shear wave speeds for a region of interest using time-of-flight methods reporting a single shear wave speed (or elastic modulus) to the end user under the assumptions that tissue is elastic and shear wave speeds are not dependent on the frequency content of the shear waves. Human tissues, however, are known to be viscoelastic, resulting in dispersion and attenuation. Shear wave spectroscopy and spectral methods have been previously reported in the literature to quantify shear wave dispersion and attenuation, commonly making an assumption that the acoustic radiation force excitation acts as a cylindrical source with a known geometric shear wave amplitude decay. This work quantifies the bias in shear dispersion and attenuation estimates associated with making this cylindrical wave assumption when applied to shear wave sources with finite depth extents, as commonly occurs with realistic focal geometries, in elastic and viscoelastic media. Bias is quantified using analytically derived shear wave data and shear wave data generated using finite-element method models. Shear wave dispersion and attenuation bias (up to 15% for dispersion and 41% for attenuation) is greater for more tightly focused acoustic radiation force sources with smaller depths of field relative to their lateral extent (height-to-width ratios <16). Dispersion and attenuation errors associated with assuming a cylindrical geometric shear wave decay in SWEI can be appreciable and should be considered when analyzing the viscoelastic properties of tissues with acoustic radiation force source distributions with limited depths of field. Copyright © 2018 World Federation for Ultrasound in Medicine and Biology. Published by Elsevier Inc. All rights reserved.
Longitudinal shear wave imaging for elasticity mapping using optical coherence elastography
NASA Astrophysics Data System (ADS)
Zhu, Jiang; Miao, Yusi; Qi, Li; Qu, Yueqiao; He, Youmin; Yang, Qiang; Chen, Zhongping
2017-05-01
Shear wave measurements for the determination of tissue elastic properties have been used in clinical diagnosis and soft tissue assessment. A shear wave propagates as a transverse wave where vibration is perpendicular to the wave propagation direction. Previous transverse shear wave measurements could detect the shear modulus in the lateral region of the force; however, they could not provide the elastic information in the axial region of the force. In this study, we report the imaging and quantification of longitudinal shear wave propagation using optical coherence tomography to measure the elastic properties along the force direction. The experimental validation and finite element simulations show that the longitudinal shear wave propagates along the vibration direction as a plane wave in the near field of a planar source. The wave velocity measurement can quantify the shear moduli in a homogeneous phantom and a side-by-side phantom. Combining the transverse shear wave and longitudinal shear wave measurements, this system has great potential to detect the directionally dependent elastic properties in tissues without a change in the force direction.
Hurricane-induced failure of low salinity wetlands
Howes, Nick C.; FitzGerald, Duncan M.; Hughes, Zoe J.; Georgiou, Ioannis Y.; Kulp, Mark A.; Miner, Michael D.; Smith, Jane M.; Barras, John A.
2010-01-01
During the 2005 hurricane season, the storm surge and wave field associated with Hurricanes Katrina and Rita eroded 527 km2 of wetlands within the Louisiana coastal plain. Low salinity wetlands were preferentially eroded, while higher salinity wetlands remained robust and largely unchanged. Here we highlight geotechnical differences between the soil profiles of high and low salinity regimes, which are controlled by vegetation and result in differential erosion. In low salinity wetlands, a weak zone (shear strength 500–1450 Pa) was observed ∼30 cm below the marsh surface, coinciding with the base of rooting. High salinity wetlands had no such zone (shear strengths > 4500 Pa) and contained deeper rooting. Storm waves during Hurricane Katrina produced shear stresses between 425–3600 Pa, sufficient to cause widespread erosion of the low salinity wetlands. Vegetation in low salinity marshes is subject to shallower rooting and is susceptible to erosion during large magnitude storms; these conditions may be exacerbated by low inorganic sediment content and high nutrient inputs. The dramatic difference in resiliency of fresh versus more saline marshes suggests that the introduction of freshwater to marshes as part of restoration efforts may therefore weaken existing wetlands rendering them vulnerable to hurricanes. PMID:20660777
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hartantyo, Eddy, E-mail: hartantyo@ugm.ac.id; Brotopuspito, Kirbani S.; Sismanto
The liquefactions phenomena have been reported after a shocking 6.5Mw earthquake hit Yogyakarta province in the morning at 27 May 2006. Several researchers have reported the damage, casualties, and soil failure due to the quake, including the mapping and analyzing the liquefaction phenomena. Most of them based on SPT test. The study try to draw the liquefaction susceptibility by means the shear velocity profiling using modified Multichannel Analysis of Surface Waves (MASW). This paper is a preliminary report by using only several measured MASW points. The study built 8-channel seismic data logger with 4.5 Hz geophones for this purpose. Several differentmore » offsets used to record the high and low frequencies of surface waves. The phase-velocity diagrams were stacked in the frequency domain rather than in time domain, for a clearer and easier dispersion curve picking. All codes are implementing in Matlab. From these procedures, shear velocity profiling was collected beneath each geophone’s spread. By mapping the minimum depth of shallow water table, calculating PGA with soil classification, using empirical formula for saturated soil weight from shear velocity profile, and calculating CRR and CSR at every depth, the liquefaction characteristic can be identify in every layer. From several acquired data, a liquefiable potential at some depth below water table was obtained.« less
NASA Astrophysics Data System (ADS)
Kohler, M. D.; Castillo, J.; Massari, A.; Clayton, R. W.
2017-12-01
Earthquake-induced motions recorded by spatially dense seismic arrays in buildings located in the northern Los Angeles basin suggest the presence of complex, amplified surface wave effects on the seismic demand of mid-rise buildings. Several moderate earthquakes produced large-amplitude, seismic energy with slow shear-wave velocities that cannot be explained or accurately modeled by any published 3D seismic velocity models or by Vs30 values. Numerical experiments are conducted to determine if sedimentary basin features are responsible for these rarely modeled and poorly documented contributions to seismic demand computations. This is accomplished through a physics-based wave propagation examination of the effects of different sedimentary basin geometries on the nonlinear response of a mid-rise structural model based on an existing, instrumented building. Using two-dimensional finite-difference predictive modeling, we show that when an earthquake focal depth is near the vertical edge of an elongated and relatively shallow sedimentary basin, dramatically amplified and complex surface waves are generated as a result of the waveguide effect introduced by this velocity structure. In addition, for certain source-receiver distances and basin geometries, body waves convert to secondary Rayleigh waves that propagate both at the free-surface interface and along the depth interface of the basin that show up as multiple large-amplitude arrivals. This study is motivated by observations from the spatially dense, high-sample-rate acceleration data recorded by the Community Seismic Network, a community-hosted strong-motion network, currently consisting of hundreds of sensors located in the southern California area. The results provide quantitative insight into the causative relationship between a sedimentary basin shape and the generation of Rayleigh waves at depth, surface waves at the free surface, scattered seismic energy, and the sensitivity of building responses to each of these.
New methods for engineering site characterization using reflection and surface wave seismic survey
NASA Astrophysics Data System (ADS)
Chaiprakaikeow, Susit
This study presents two new seismic testing methods for engineering application, a new shallow seismic reflection method and Time Filtered Analysis of Surface Waves (TFASW). Both methods are described in this dissertation. The new shallow seismic reflection was developed to measure reflection at a single point using two to four receivers, assuming homogeneous, horizontal layering. It uses one or more shakers driven by a swept sine function as a source, and the cross-correlation technique to identify wave arrivals. The phase difference between the source forcing function and the ground motion due to the dynamic response of the shaker-ground interface was corrected by using a reference geophone. Attenuated high frequency energy was also recovered using the whitening in frequency domain. The new shallow seismic reflection testing was performed at the crest of Porcupine Dam in Paradise, Utah. The testing used two horizontal Vibroseis sources and four receivers for spacings between 6 and 300 ft. Unfortunately, the results showed no clear evidence of the reflectors despite correction of the magnitude and phase of the signals. However, an improvement in the shape of the cross-correlations was noticed after the corrections. The results showed distinct primary lobes in the corrected cross-correlated signals up to 150 ft offset. More consistent maximum peaks were observed in the corrected waveforms. TFASW is a new surface (Rayleigh) wave method to determine the shear wave velocity profile at a site. It is a time domain method as opposed to the Spectral Analysis of Surface Waves (SASW) method, which is a frequency domain method. This method uses digital filtering to optimize bandwidth used to determine the dispersion curve. Results from testings at three different sites in Utah indicated good agreement with the dispersion curves measured using both TFASW and SASW methods. The advantage of TFASW method is that the dispersion curves had less scatter at long wavelengths as a result from wider bandwidth used in those tests.
NASA Astrophysics Data System (ADS)
Brodic, Bojan; Malehmir, Alireza; Maries, Georgiana; Ahokangas, Elina; Mäkinen, Joni; Pasanen, Antti
2017-04-01
Higher resolution of S-wave seismic data compared to the P-wave ones are attractive for the researches working with the seismic methods. This is particularly true for near-surface applications due to significantly lower shear-wave velocities of unconsolidated sediments. Shear-wave imaging, however, poses certain restrictions on both source and receiver selections and also processing strategies. With three component (3C) seismic receivers becoming more affordable and used, shear-wave imaging from vertical sources is attracting more attention for near-surface applications. Theoretically, a vertical impact source will always excite both P- and S-waves although the excited S-waves are radially polarized (SV). There is an exchange of seismic energy between the vertical and radial component of the seismic wavefield. Additionally, it is theoretically accepted that there is no energy conversion or exchange from vertical into the transverse (or SH) component of the seismic wavefield, and the SH-waves can only be generated using SH sources. With the objectives of imaging esker structure (glacial sediments), water table and depth to bedrock, we conducted a seismic survey in Virttaankangas, in southwestern Finland. A bobcat-mounted vertical drop hammer (500 kg) was used as the seismic source. To obtain better source coupling, a 75×75×1.5 cm steel plate was mounted at the bottom of the hammer casing and all the hits made on this plate after placing it firmly on the ground at every shot point. For the data recording, we used a state-of-the-art comprising of 100 units, 240 m-long, 3C MEMS (micro electro-mechanical system) based seismic landstreamer developed at Uppsala University. Although the focus of the study was on the vertical component data, careful inspection of the transverse (SH) component of the raw data revealed clear shear wave reflections (normal moveout velocities ranging from 280-350 m/s at 50 m depth) on several shot gathers. This indicated potential for their analysis, hence shear-wave reflection imaging was carried out. Results show an excellent correspondence between the drilled depth to bedrock and the one independently obtained using P-wave first arrivals traveltime tomography with a reflection imaged on the stacked section of the SH component data. Aside from this reflection that follows the undulating bedrock topography, additional reflections are also observed on the stacked section that might be related to the sedimentary structures at the site. The section shows much finer resolution compared to the P-wave stacked section processed independently and reported earlier this year. This study illustrates the importance of 3C data recording and shows the potential of the landstreamer in imaging shallow subsurface using both P- and SH-waves generated from a vertical impact source. Whether the strong SH-wave energy observed is generated immediately at the source-ground contact, possible sliding of the base plate on which the impacts were made, an effect of near-surface heterogeneities or other factors remains to be carefully investigated. Acknowledgments: A contribution from Trust 2.2 project (http://trust-geoinfra.se) sponsored by Formas, BeFo, SBUF, SGU, Skanska, Tyréns, FQM, and NGI. We thank Turku Water Company, GTK and University of Turku, Department of Geography and Geology for supporting the data acquisition.
NASA Astrophysics Data System (ADS)
Raef, Abdelmoneam; Gad, Sabreen; Tucker-Kulesza, Stacey
2015-10-01
Seismic site characteristics, as pertaining to earthquake hazard reduction, are a function of the subsurface elastic moduli and the geologic structures. This study explores how multiscale (surface, downhole, and laboratory) datasets can be utilized to improve "constrained" average Vs30 (shear-wave velocity to a 30-meter depth). We integrate borehole, surface and laboratory measurements for a seismic site classification based on the standards of the National Earthquake Hazard Reduction Program (NEHRP). The seismic shear-wave velocity (Vs30) was derived from a geophysical inversion workflow that utilized multichannel analysis of surface-waves (MASW) and downhole acoustic televiewer imaging (DATI). P-wave and S-wave velocities, based on laboratory measurements of arrival times of ultrasonic-frequency signals, supported the workflow by enabling us to calculate Poisson's ratio, which was incorporated in building an initial model for the geophysical inversion of MASW. Extraction of core samples from two boreholes provided lithology and thickness calibration of the amplitudes of the acoustic televiewer imaging for each layer. The MASW inversion, for calculating Vs sections, was constrained with both ultrasonic laboratory measurements (from first arrivals of Vs and Vp waveforms at simulated in situ overburden stress conditions) and the downhole acoustic televiewer (DATV) amplitude logs. The Vs30 calculations enabled categorizing the studied site as NEHRP-class "C" - very dense soil and soft rock. Unlike shallow fractured carbonates in the studied area, S-wave and P-wave velocities at ultrasonic frequency for the deeper intact shale core-samples from two boreholes were in better agreement with the corresponding velocities from both a zero-offset vertical seismic profiling (VSP) and inversion of Rayleigh-wave velocity dispersion curves.
Martin, Antony; Yong, Alan K.; Salomone, Larry A.
2014-01-01
Active-source Love waves, recorded by the multi-channel analysis of surface wave (MASLW) technique, were recently analyzed in two site characterization projects. Between 2010 and 2012, the 2009 American Recovery and Reinvestment Act (ARRA) funded GEOVision to conduct geophysical investigations at 191 seismographic stations in California and the Central Eastern U.S. (CEUS). The original project plan was to utilize active and passive Rayleigh wave-based techniques to obtain shear-wave velocity (VS) profiles to a minimum depth of 30 m and the time-averaged VS of the upper 30 meters (VS30). Early in this investigation it became clear that Rayleigh wave techniques, such as multi-channel analysis of surface waves (MASRW), were not suited for characterizing all sites. Shear-wave seismic refraction and MASLW techniques were therefore applied. In 2012, the Electric Power Research Institute funded characterization of 33 CEUS station sites. Based on experience from the ARRA investigation, both MASRW and MASLW data were acquired by GEOVision at 24 CEUS sites. At shallow rock sites, sites with steep velocity gradients, and, sites with a thin, low velocity, surficial soil layer overlying stiffer sediments, Love wave techniques generally were found to be easier to interpret, i.e., Love wave data typically yielded unambiguous fundamental mode dispersion curves and thus, reduce uncertainty in the resultant VS model. These types of velocity structure often excite dominant higher modes in Rayleigh wave data, but not in the Love wave data. It is possible to model Rayleigh wave data using multi- or effective-mode techniques; however, extraction of Rayleigh wave dispersion data was found to be difficult in many cases. These results imply that field procedures should include careful scrutiny of Rayleigh wave-based dispersion data in order to also collect Love wave data when warranted.
Shear Wave Wavefront Mapping Using Ultrasound Color Flow Imaging.
Yamakoshi, Yoshiki; Kasahara, Toshihiro; Iijima, Tomohiro; Yuminaka, Yasushi
2015-10-01
A wavefront reconstruction method for a continuous shear wave is proposed. The method uses ultrasound color flow imaging (CFI) to detect the shear wave's wavefront. When the shear wave vibration frequency satisfies the required frequency condition and the displacement amplitude satisfies the displacement amplitude condition, zero and maximum flow velocities appear at the shear wave vibration phases of zero and π rad, respectively. These specific flow velocities produce the shear wave's wavefront map in CFI. An important feature of this method is that the shear wave propagation is observed in real time without addition of extra functions to the ultrasound imaging system. The experiments are performed using a 6.5 MHz CFI system. The shear wave is excited by a multilayer piezoelectric actuator. In a phantom experiment, the shear wave velocities estimated using the proposed method and those estimated using a system based on displacement measurement show good agreement. © The Author(s) 2015.
Song, Pengfei; Manduca, Armando; Zhao, Heng; Urban, Matthew W.; Greenleaf, James F.; Chen, Shigao
2014-01-01
A fast shear compounding method was developed in this study using only one shear wave push-detect cycle, such that the shear wave imaging frame rate is preserved and motion artifacts are minimized. The proposed method is composed of the following steps: 1. applying a comb-push to produce multiple differently angled shear waves at different spatial locations simultaneously; 2. decomposing the complex shear wave field into individual shear wave fields with differently oriented shear waves using a multi-directional filter; 3. using a robust two-dimensional (2D) shear wave speed calculation to reconstruct 2D shear elasticity maps from each filter direction; 4. compounding these 2D maps from different directions into a final map. An inclusion phantom study showed that the fast shear compounding method could achieve comparable performance to conventional shear compounding without sacrificing the imaging frame rate. A multi-inclusion phantom experiment showed that the fast shear compounding method could provide a full field-of-view (FOV), 2D, and compounded shear elasticity map with three types of inclusions clearly resolved and stiffness measurements showing excellent agreement to the nominal values. PMID:24613636
Turbulent mixing within the Kuroshio in the Tokara Strait
NASA Astrophysics Data System (ADS)
Tsutsumi, Eisuke; Matsuno, Takeshi; Lien, Ren-Chieh; Nakamura, Hirohiko; Senjyu, Tomoharu; Guo, Xinyu
2017-09-01
Turbulent mixing and background current were observed using a microstructure profiler and acoustic Doppler current profilers in the Tokara Strait, where many seamounts and small islands exist within the route of the Kuroshio in the East China Sea. Vertical structure and water properties of the Kuroshio were greatly modified downstream from shallow seamounts. In the lee of a seamount crest at 200 m depth, the modification made the flow tend to shear instability, and the vertical eddy diffusivity is enhanced by nearly 100 times that of the upstream site, to Kρ ˜ O(10-3)-O(10-2) m2 s-1. A one-dimensional diffusion model using the observed eddy diffusivity reproduced the observed downstream evolution of the temperature-salinity profile. However, the estimated diffusion time-scale is at least 10 times longer than the observed advection time-scale. This suggests that the eddy diffusivity reaches to O(10-1) m2 s-1 in the vicinity of the seamount. At a site away from the abrupt topography, eddy diffusivity was also elevated to O(10-3) m2 s-1, and was associated with shear instability presumably induced by the Kuroshio shear and near-inertial internal-wave shear. Our study suggests that a better prediction of current, water-mass properties, and nutrients within the Kuroshio requires accurate understanding and parameterization of flow-topography interaction such as internal hydraulics, the associated internal-wave processes, and turbulent mixing processes.
Near-surface wave velocity structure of Faial (Azores - Portugal) Island for site effect studies
NASA Astrophysics Data System (ADS)
Borges, José; Neves, Samuel; Caldeira, Bento; Bezzeghoud, Mourad; Carvalho, João; Carvalho, Alexandra
2015-04-01
Throughout history, the life of the Azorean people has been marked by earthquakes that have had different effects depending on their proximity and magnitude. This seismic activity, which may have volcanic or tectonic origins, has affected the population of these islands by destroying infrastructure and claiming lives. The social and economic impacts of these phenomena are enormous. The last significant event affecting the Azores (Portugal) was the July 1998 Mw=6.2 earthquake causing major destruction affecting more than 5000 people, causing 8 deaths, 150 persons injured and 1500 homeless. Ground motion simulations are mainly based on source characteristics and are heavily dependent on the medium, which is still poorly understood. Subsurface soil condition can amplify the seismic waves, so, for seismic response analysis, it is necessary to know the shallow soil properties and its spatial variability. For this purpose, we applied P and S-wave refraction, Multichannel Analysis of Surface Waves (MASW) to characterize shear wave velocity at different sites in the Faial Island, in particular, in sites where already occurred amplification. Ambient vibrations can also be used to estimate physical properties of the shallower geological formations. With this goal, the obtained velocity models were confirmed by comparison between real H/V curves with synthetic ones. We concluded that the anomalous intensities observed in some sites are strongly related to thick layers of soft sediments of pyroclastic deposits produced by old volcanic eruptions occurred in the Faial Island.
Shear Elasticity and Shear Viscosity Imaging in Soft Tissue
NASA Astrophysics Data System (ADS)
Yang, Yiqun
In this thesis, a new approach is introduced that provides estimates of shear elasticity and shear viscosity using time-domain measurements of shear waves in viscoelastic media. Simulations of shear wave particle displacements induced by an acoustic radiation force are accelerated significantly by a GPU. The acoustic radiation force is first calculated using the fast near field method (FNM) and the angular spectrum approach (ASA). The shear waves induced by the acoustic radiation force are then simulated in elastic and viscoelastic media using Green's functions. A parallel algorithm is developed to perform these calculations on a GPU, where the shear wave particle displacements at different observation points are calculated in parallel. The resulting speed increase enables rapid evaluation of shear waves at discrete points, in 2D planes, and for push beams with different spatial samplings and for different values of the f-number (f/#). The results of these simulations show that push beams with smaller f/# require a higher spatial sampling rate. The significant amount of acceleration achieved by this approach suggests that shear wave simulations with the Green's function approach are ideally suited for high-performance GPUs. Shear wave elasticity imaging determines the mechanical parameters of soft tissue by analyzing measured shear waves induced by an acoustic radiation force. To estimate the shear elasticity value, the widely used time-of-flight method calculates the correlation between shear wave particle velocities at adjacent lateral observation points. Although this method provides accurate estimates of the shear elasticity in purely elastic media, our experience suggests that the time-of-flight (TOF) method consistently overestimates the shear elasticity values in viscoelastic media because the combined effects of diffraction, attenuation, and dispersion are not considered. To address this problem, we have developed an approach that directly accounts for all of these effects when estimating the shear elasticity. This new approach simulates shear wave particle velocities using a Green's function-based approach for the Voigt model, where the shear elasticity and viscosity values are estimated using an optimization-based approach that compares measured shear wave particle velocities with simulated shear wave particle velocities in the time-domain. The results are evaluated on a point-by-point basis to generate images. There is good agreement between the simulated and measured shear wave particle velocities, where the new approach yields much better images of the shear elasticity and shear viscosity than the TOF method. The new estimation approach is accelerated with an approximate viscoelastic Green's function model that is evaluated with shear wave data obtained from in vivo human livers. Instead of calculating shear waves with combinations of different shear elasticities and shear viscosities, shear waves are calculated with different shear elasticities on the GPU and then convolved with a viscous loss model, which accelerates the calculation dramatically. The shear elasticity and shear viscosity values are then estimated using an optimization-based approach by minimizing the difference between measured and simulated shear wave particle velocities. Shear elasticity and shear viscosity images are generated at every spatial point in a two-dimensional (2D) field-of-view (FOV). The new approach is applied to measured shear wave data obtained from in vivo human livers, and the results show that this new approach successfully generates shear elasticity and shear viscosity images from this data. The results also indicate that the shear elasticity values estimated with this approach are significantly smaller than the values estimated with the conventional TOF method and that the new approach demonstrates more consistent values for these estimates compared with the TOF method. This experience suggests that the new method is an effective approach for estimating the shear elasticity and the shear viscosity in liver and in other soft tissue.
NASA Astrophysics Data System (ADS)
Bell, S. W.; Ruan, Y.; Forsyth, D. W.
2015-12-01
With new Rayleigh-wave tomography results, we have detected a clear and strong asymmetry in the shear velocity structure of the Juan de Fuca ridge. Concentrated in a relatively thin layer with a depth range of ~30-60km, there lies a region of very low shear velocity, with velocities ranging from ~3.8km/s to 4.0km/s. Such low velocities provide strong evidence for the presence of partial melt. This low-velocity region is highly asymmetric, extending much further west than east of the ridge. Especially at shallow depths of ~35 km, this low-velocity region is concentrated just west of the southern portion of the ridge. Peaking near the Axial Seamount, the youngest of the Cobb-Eickelberg Seamounts, it extends south to the region around the small Vance Seamounts just north of the junction with the Blanco Fracture Zone. The Juan de Fuca plate is relatively stationary in the hotspot reference frame, and the Juan de Fuca ridge migrates westward in the hotspot reference frame. Seamounts are overwhelmingly concentrated on the western flank of the ridge, and an asymmetric upwelling driven by migration in the hotspot reference frame has been proposed to explain the seamount asymmetry (i.e. Davis and Karsten, 1986). Our velocity asymmetry, which matches the seamount asymmetry, provides evidence for this asymmetric upwelling and its connection to migration in the absolute hotspot reference frame. In the shear velocity results, the Gorda ridge displays a remarkable lack of features, with no clearly identifiable expression in the subsurface velocity. There is evidence of a broad low-velocity feature beneath Gorda beginning at a depth of ~150 km, but no clear shallow features can be tied to the ridge. At the depths we can resolve (~25-250km), the anisotropy beneath and within the Juan de Fuca plate is small, indicating a deep source of the shear wave splitting results (Bodmer et al., in press), which indicate a fast axis aligned with the Juan de Fuca plate's absolute motion. Around the Gorda ridge, we observe clear East-West fast axis orientation on both the Pacific Plate and the Gorda portion of the Juan de Fuca Plate.
NASA Astrophysics Data System (ADS)
Fu, Yuanyuan V.; Gao, Yuan; Li, Aibing; Li, Lun; Chen, Anguo
2017-06-01
Lithospheric shear wave velocity beneath the southeastern margin of the Tibetan Plateau is obtained from Rayleigh wave tomography using earthquake data recorded by the temporary ChinArray and permanent China Digital Seismic Array. Fundamental mode Rayleigh wave phase velocities at periods of 20-100 s are determined and used to construct the 3-D shear wave velocity model. Low-velocity anomalies appear along or close to the major faults in the middle crust and become a broad zone in the lower crust, suggesting block extrusion in the shallow crust and diffuse deformation in the lower crust, both of which play important roles in accommodating the collision between the Indian and Eurasian plates. A vertical low-velocity column beneath the Tengchong Volcano is observed, which could be caused by upwelling of warm mantle due to the lithosphere extension in the Thailand rift basin to the south or by fluid-induced partial melting due to the subduction of the Burma slab. The western Yangtze Craton is characterized by low velocity in the crust and uppermost mantle above the fast mantle lithosphere, indicating possible thermal erosion at the western craton edge resulted from the extrusion of the Tibetan Plateau. A low-velocity zone is imaged at the depths of 70-150 km beneath the eastern part of the Yangtze Craton, which could be caused by small-scale mantle convection associated with the subduction of the Burma microplate and/or the opening of the South China Sea.
NASA Technical Reports Server (NTRS)
Bourgeois, Joanne; Wiberg, Patricia L.
1988-01-01
Impulse-generated waves (tsunamis) may be produced, at varying scales and global recurrence intervals (RI), by several processes. Meteorite-water impacts will produce tsunamis, and asteroid-scale impacts with associated mega-tsunamis may occur. A bolide-water impact would undoubtedly produce a major tsunami, whose sedimentological effects should be recognizable. Even a bolide-land impact might trigger major submarine landslides and thus tsunamis. In all posulated scenarios for the K/T boundary event, then, tsunamis are expected, and where to look for them must be determined, and how to distinguish deposits from different tsunamis. Also, because tsunamis decrease in height as they move away from their source, the proximal effects will differ by perhaps orders of magnitude from distal effects. Data on the characteristics of tsunamis at their origin are scarce. Some observations exist for tsunamis generated by thermonuclear explosions and for seismogenic tsunamis, and experimental work was conducted on impact-generated tsunamis. All tsunamis of interest have wave-lengths of 0(100) km and thus behave as shallow-water waves in all ocean depths. Typical wave periods are 0(10 to 100) minutes. The effect of these tsunamis can be estimated in the marine and coastal realm by calculating boundary shear stresses (expressed as U*, the shear velocity). An event layer at the K/T boundary in Texas occurs in mid-shelf muds. Only a large, long-period wave with a wave height of 0(50) m, is deemed sufficient to have produced this layer. Such wave heights imply a nearby volcanic explosion on the scale of Krakatau or larger, or a nearby submarine landslide also of great size, or a bolide-water impact in the ocean.
Ouared, Abderrahmane; Montagnon, Emmanuel; Cloutier, Guy
2015-10-21
A method based on adaptive torsional shear waves (ATSW) is proposed to overcome the strong attenuation of shear waves generated by a radiation force in dynamic elastography. During the inward propagation of ATSW, the magnitude of displacements is enhanced due to the convergence of shear waves and constructive interferences. The proposed method consists in generating ATSW fields from the combination of quasi-plane shear wavefronts by considering a linear superposition of displacement maps. Adaptive torsional shear waves were experimentally generated in homogeneous and heterogeneous tissue mimicking phantoms, and compared to quasi-plane shear wave propagations. Results demonstrated that displacement magnitudes by ATSW could be up to 3 times higher than those obtained with quasi-plane shear waves, that the variability of shear wave speeds was reduced, and that the signal-to-noise ratio of displacements was improved. It was also observed that ATSW could cause mechanical inclusions to resonate in heterogeneous phantoms, which further increased the displacement contrast between the inclusion and the surrounding medium. This method opens a way for the development of new noninvasive tissue characterization strategies based on ATSW in the framework of our previously reported shear wave induced resonance elastography (SWIRE) method proposed for breast cancer diagnosis.
Song, Pengfei; Macdonald, Michael C.; Behler, Russell H.; Lanning, Justin D.; Wang, Michael H.; Urban, Matthew W.; Manduca, Armando; Zhao, Heng; Callstrom, Matthew R.; Alizad, Azra; Greenleaf, James F.; Chen, Shigao
2014-01-01
Two-dimensional (2D) shear wave elastography presents 2D quantitative shear elasticity maps of tissue, which are clinically useful for both focal lesion detection and diffuse disease diagnosis. Realization of 2D shear wave elastography on conventional ultrasound scanners, however, is challenging due to the low tracking pulse-repetition-frequency (PRF) of these systems. While some clinical and research platforms support software beamforming and plane wave imaging with high PRF, the majority of current clinical ultrasound systems do not have the software beamforming capability, which presents a critical challenge for translating the 2D shear wave elastography technique from laboratory to clinical scanners. To address this challenge, this paper presents a Time Aligned Sequential Tracking (TAST) method for shear wave tracking on conventional ultrasound scanners. TAST takes advantage of the parallel beamforming capability of conventional systems and realizes high PRF shear wave tracking by sequentially firing tracking vectors and aligning shear wave data in the temporal direction. The Comb-push Ultrasound Shear Elastography (CUSE) technique was used to simultaneously produce multiple shear wave sources within the field-of-view (FOV) to enhance shear wave signal-to-noise-ratio (SNR) and facilitate robust reconstructions of 2D elasticity maps. TAST and CUSE were realized on a conventional ultrasound scanner (the General Electric LOGIQ E9). A phantom study showed that the shear wave speed measurements from the LOGIQ E9 were in good agreement to the values measured from other 2D shear wave imaging technologies. An inclusion phantom study showed that the LOGIQ E9 had comparable performance to the Aixplorer (Supersonic Imagine) in terms of bias and precision in measuring different sized inclusions. Finally, in vivo case analysis of a breast with a malignant mass, and a liver from a healthy subject demonstrated the feasibility of using the LOGIQ E9 for in vivo 2D shear wave elastography. These promising results indicate that the proposed technique can enable the implementation of 2D shear wave elastography on conventional ultrasound scanners and potentially facilitate wider clinical applications with shear wave elastography. PMID:25643079
Song, Pengfei; Manduca, Armando; Zhao, Heng; Urban, Matthew W; Greenleaf, James F; Chen, Shigao
2014-06-01
A fast shear compounding method was developed in this study using only one shear wave push-detect cycle, such that the shear wave imaging frame rate is preserved and motion artifacts are minimized. The proposed method is composed of the following steps: 1. Applying a comb-push to produce multiple differently angled shear waves at different spatial locations simultaneously; 2. Decomposing the complex shear wave field into individual shear wave fields with differently oriented shear waves using a multi-directional filter; 3. Using a robust 2-D shear wave speed calculation to reconstruct 2-D shear elasticity maps from each filter direction; and 4. Compounding these 2-D maps from different directions into a final map. An inclusion phantom study showed that the fast shear compounding method could achieve comparable performance to conventional shear compounding without sacrificing the imaging frame rate. A multi-inclusion phantom experiment showed that the fast shear compounding method could provide a full field-of-view, 2-D and compounded shear elasticity map with three types of inclusions clearly resolved and stiffness measurements showing excellent agreement to the nominal values. Copyright © 2014 World Federation for Ultrasound in Medicine & Biology. Published by Elsevier Inc. All rights reserved.
Orbitally shaken shallow fluid layers. I. Regime classification
NASA Astrophysics Data System (ADS)
Alpresa, Paola; Sherwin, Spencer; Weinberg, Peter; van Reeuwijk, Maarten
2018-03-01
Orbital shakers are simple devices that provide mixing, aeration, and shear stress at multiple scales and high throughput. For this reason, they are extensively used in a wide range of applications from protein production to bacterial biofilms and endothelial cell experiments. This study focuses on the behaviour of orbitally shaken shallow fluid layers in cylindrical containers. In order to investigate the behaviour over a wide range of different conditions, a significant number of numerical simulations are carried out under different configuration parameters. We demonstrate that potential theory—despite the relatively low Reynolds number of the system—describes the free-surface amplitude well and the velocity field reasonably well, except when the forcing frequency is close to a natural frequency and resonance occurs. By classifying the simulations into non-breaking, breaking, and breaking with part of the bottom uncovered, it is shown that the onset of wave breaking is well described by Δh/(2R) = 0.7Γ, where Δh is the free-surface amplitude, R is the container radius, and Γ is the container aspect ratio; Δh can be well approximated using the potential theory. This result is in agreement with standard wave breaking theories although the significant inertial forcing causes wave breaking at lower amplitudes.
Modelling the impulse diffraction field of shear waves in transverse isotropic viscoelastic medium
NASA Astrophysics Data System (ADS)
Chatelin, Simon; Gennisson, Jean-Luc; Bernal, Miguel; Tanter, Mickael; Pernot, Mathieu
2015-05-01
The generation of shear waves from an ultrasound focused beam has been developed as a major concept for remote palpation using shear wave elastography (SWE). For muscular diagnostic applications, characteristics of the shear wave profile will strongly depend on characteristics of the transducer as well as the orientation of muscular fibers and the tissue viscoelastic properties. The numerical simulation of shear waves generated from a specific probe in an anisotropic viscoelastic medium is a key issue for further developments of SWE in fibrous soft tissues. In this study we propose a complete numerical tool allowing 3D simulation of a shear wave front in anisotropic viscoelastic media. From the description of an ultrasonic transducer, the shear wave source is simulated by using Field’s II software and shear wave propagation described by using the Green’s formalism. Finally, the comparison between simulations and experiments are successively performed for both shear wave velocity and dispersion profile in a transverse isotropic hydrogel phantom, in vivo forearm muscle and in vivo biceps brachii.
Wang, Yu; Jiang, Jingfeng
2018-01-01
Shear wave elastography (SWE) has been used to measure viscoelastic properties for characterization of fibrotic livers. In this technique, external mechanical vibrations or acoustic radiation forces are first transmitted to the tissue being imaged to induce shear waves. Ultrasonically measured displacement/velocity is then utilized to obtain elastographic measurements related to shear wave propagation. Using an open-source wave simulator, k-Wave, we conducted a case study of the relationship between plane shear wave measurements and the microstructure of fibrotic liver tissues. Particularly, three different virtual tissue models (i.e., a histology-based model, a statistics-based model, and a simple inclusion model) were used to represent underlying microstructures of fibrotic liver tissues. We found underlying microstructures affected the estimated mean group shear wave speed (SWS) under the plane shear wave assumption by as much as 56%. Also, the elastic shear wave scattering resulted in frequency-dependent attenuation coefficients and introduced changes in the estimated group SWS. Similarly, the slope of group SWS changes with respect to the excitation frequency differed as much as 78% among three models investigated. This new finding may motivate further studies examining how elastic scattering may contribute to frequency-dependent shear wave dispersion and attenuation in biological tissues.
Oceanic Lithosphere/Asthenosphere Boundary from surface wave dispersion data
NASA Astrophysics Data System (ADS)
Burgos, G.; Montagner, J.; Beucler, E.; Capdeville, Y.; Mocquet, A.
2013-12-01
The nature of Lithosphere-Asthenosphere boundary (LAB) is controversial according to different types of observations. Using a massive dataset of surface wave dispersions in a broad frequency range (15-300s), we have developed a 3-D tomographic model (1st order perturbation theory) of the upper-mantle at the global scale. It is used to derive maps of LAB from the resolved elastic parameters. The key effects of shallow layers and anisotropy are taken into account in the inversion process. We investigate LAB distributions primarily below oceans according to three different proxies which corresponds to the base of the lithosphere from the vertically polarized shear velocity variation at depth, the top of the radial anisotropy positive anomaly and from the changes in orientation of the fast axis of azimuthal anisotropy. The LAB depth determinations of the different proxies are basically consistent for each oceanic region. The estimations of the LAB depth based on the shear velocity proxy increase from thin (20 km) lithosphere in the ridges to thick (120--130 km) old ocean lithosphere. The radial anisotropy proxy presents a very fast increase of the LAB depth from the ridges, from 50 km to older ocean where it reaches a remarkable monotonic sub-horizontal profile (70--80 km). LAB depths inferred from azimuthal anisotropy proxy show deeper values for the increasing oceanic lithosphere (130--135 km). The results present two types of pattern of the age of oceanic lithosphere evolution with the LAB depth. The shear velocity and azimuthal anisotropy proxies show age-dependent profiles in agreement with thermal plate models while the LAB based on radial anisotropy is characterized by a shallower depth, defining a sub-horizontal interface with a very small age dependence for all three main oceans (Pacific, Atlantic and Indian). These different patterns raise questions about the nature of the LAB in the oceanic regions, and of the formation of oceanic plates.
NASA Astrophysics Data System (ADS)
Bidari, Pooya Sobhe; Alirezaie, Javad; Tavakkoli, Jahan
2017-03-01
This paper presents a method for modeling and simulation of shear wave generation from a nonlinear Acoustic Radiation Force Impulse (ARFI) that is considered as a distributed force applied at the focal region of a HIFU transducer radiating in nonlinear regime. The shear wave propagation is simulated by solving the Navier's equation from the distributed nonlinear ARFI as the source of the shear wave. Then, the Wigner-Ville Distribution (WVD) as a time-frequency analysis method is used to detect the shear wave at different local points in the region of interest. The WVD results in an estimation of the shear wave time of arrival, its mean frequency and local attenuation which can be utilized to estimate medium's shear modulus and shear viscosity using the Voigt model.
Saltiel, Seth; Selvadurai, Paul A.; Bonner, Brian P.; ...
2017-02-16
Reservoir core measurements can help guide seismic monitoring of fluid-induced pressure variations in tight fractured reservoirs including those targeted for supercritical CO 2 injection. We present the first seismic-frequency ‘room-dry’ measurements of fracture specific shear stiffness, using artificially fractured standard granite samples with different degrees of mating, a well-mated tensile fracture from a dolomite reservoir core, as well as simple roughened polymethyl methacrylate (PMMA) surfaces. We have adapted a low-frequency (0.01 to 100 Hz) shear modulus and attenuation apparatus to explore the seismic signature of fractures and understand the mechanics of asperity contacts under a range of normal stress conditions.more » Our instrument is unique in its ability to measure at low normal stresses (0.5 – 20 MPa), simulating 'open' fractures in shallow or high fluid pressure reservoirs. The accuracy of our instrument is demonstrated by calibration and comparison to ultrasonic measurements and low-frequency direct shear measurements of intact samples from the literature. Pressure sensitive film was used to measure real contact area of the fracture surfaces. The fractured shear modulus for the majority of the samples shows an exponential dependence on real contact area. A simple numerical model, with one bonded circular asperity, predicts this behavior and matches the data for the simple PMMA surfaces. The rock surfaces reach their intact moduli at lower contact area than the model predicts, likely due to more complex geometry. Lastly, we apply our results to a Linear-Slip Interface Model to estimate reflection coefficients and calculate shear wave time delays due to the lower wave velocities through the fractured zone. We find that cross-well surveys could detect even well-mated hard rock fractures assuming the availability of high repeatability acquisition systems.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Saltiel, Seth; Selvadurai, Paul A.; Bonner, Brian P.
Reservoir core measurements can help guide seismic monitoring of fluid-induced pressure variations in tight fractured reservoirs including those targeted for supercritical CO 2 injection. We present the first seismic-frequency ‘room-dry’ measurements of fracture specific shear stiffness, using artificially fractured standard granite samples with different degrees of mating, a well-mated tensile fracture from a dolomite reservoir core, as well as simple roughened polymethyl methacrylate (PMMA) surfaces. We have adapted a low-frequency (0.01 to 100 Hz) shear modulus and attenuation apparatus to explore the seismic signature of fractures and understand the mechanics of asperity contacts under a range of normal stress conditions.more » Our instrument is unique in its ability to measure at low normal stresses (0.5 – 20 MPa), simulating 'open' fractures in shallow or high fluid pressure reservoirs. The accuracy of our instrument is demonstrated by calibration and comparison to ultrasonic measurements and low-frequency direct shear measurements of intact samples from the literature. Pressure sensitive film was used to measure real contact area of the fracture surfaces. The fractured shear modulus for the majority of the samples shows an exponential dependence on real contact area. A simple numerical model, with one bonded circular asperity, predicts this behavior and matches the data for the simple PMMA surfaces. The rock surfaces reach their intact moduli at lower contact area than the model predicts, likely due to more complex geometry. Lastly, we apply our results to a Linear-Slip Interface Model to estimate reflection coefficients and calculate shear wave time delays due to the lower wave velocities through the fractured zone. We find that cross-well surveys could detect even well-mated hard rock fractures assuming the availability of high repeatability acquisition systems.« less
NASA Astrophysics Data System (ADS)
Fu, Yuanyuan V.; Li, Aibing
2015-02-01
Shear wave velocity and radial anisotropy beneath New Mexico are obtained from ambient seismic noise tomography using data from the Transportable Array. Besides the distinct seismic structure imaged across the Rio Grande rift from the Colorado Plateau to the Great Plains, both velocity and anisotropy models also reveal significant variations along the rift. The rift at Albuquerque is characterized by remarkably low velocity in the shallow crust, high velocity and strong positive anisotropy in the middle and lower crust, and low velocity in the upper mantle. These observations can be interpreted as magma accumulation in the shallow crust and significant mafic underplating in the lower crust with abundant melt supply from the hot mantle. We propose that the Albuquerque region has recently been experiencing the most vigorous extensional deformation in the rift. Positive anisotropy with Vsh > Vsv appears in the central and southern rifts with a stronger anisotropy beneath younger volcanoes, reflecting layering of magma intrusion due to past and recent rifting activities. The low velocities in the uppermost mantle are observed under high-elevation places, the Jemez Lineament, northern rift, and east rift boundary, implying that the buoyancy of hot mantle largely compensates the local high topography. Low mantle velocities appear at the boundary of the southern rift, corresponding to the large lithosphere thickness change, instead of the rift center, consistent with the prediction from the small-scale, edge-driven mantle convection model. We conclude that the edge-driven upper mantle convection is probably the dominant mechanism for the recent and current rifting and uplift in the Rio Grande rift.
Experimental study on the bed shear stress under breaking waves
NASA Astrophysics Data System (ADS)
Hao, Si-yu; Xia, Yun-feng; Xu, Hua
2017-06-01
The object of present study is to investigate the bed shear stress on a slope under regular breaking waves by a novel instrument named Micro-Electro-Mechanical System (MEMS) flexible hot-film shear stress sensor. The sensors were calibrated before application, and then a wave flume experiment was conducted to study the bed shear stress for the case of regular waves spilling and plunging on a 1:15 smooth PVC slope. The experiment shows that the sensor is feasible for the measurement of the bed shear stress under breaking waves. For regular incident waves, the bed shear stress is mainly periodic in both outside and inside the breaking point. The fluctuations of the bed shear stress increase significantly after waves breaking due to the turbulence and vortexes generated by breaking waves. For plunging breaker, the extreme value of the mean maximum bed shear stress appears after the plunging point, and the more violent the wave breaks, the more dramatic increase of the maximum bed shear stress will occur. For spilling breaker, the increase of the maximum bed shear stress along the slope is gradual compared with the plunging breaker. At last, an empirical equation about the relationship between the maximum bed shear stress and the surf similarity parameter is given, which can be used to estimate the maximum bed shear stress under breaking waves in practice.
Shear wave elastography with a new reliability indicator.
Dietrich, Christoph F; Dong, Yi
2016-09-01
Non-invasive methods for liver stiffness assessment have been introduced over recent years. Of these, two main methods for estimating liver fibrosis using ultrasound elastography have become established in clinical practice: shear wave elastography and quasi-static or strain elastography. Shear waves are waves with a motion perpendicular (lateral) to the direction of the generating force. Shear waves travel relatively slowly (between 1 and 10 m/s). The stiffness of the liver tissue can be assessed based on shear wave velocity (the stiffness increases with the speed). The European Federation of Societies for Ultrasound in Medicine and Biology has published Guidelines and Recommendations that describe these technologies and provide recommendations for their clinical use. Most of the data available to date has been published using the Fibroscan (Echosens, France), point shear wave speed measurement using an acoustic radiation force impulse (Siemens, Germany) and 2D shear wave elastography using the Aixplorer (SuperSonic Imagine, France). More recently, also other manufacturers have introduced shear wave elastography technology into the market. A comparison of data obtained using different techniques for shear wave propagation and velocity measurement is of key interest for future studies, recommendations and guidelines. Here, we present a recently introduced shear wave elastography technology from Hitachi and discuss its reproducibility and comparability to the already established technologies.
Shear wave elastography with a new reliability indicator
Dong, Yi
2016-01-01
Non-invasive methods for liver stiffness assessment have been introduced over recent years. Of these, two main methods for estimating liver fibrosis using ultrasound elastography have become established in clinical practice: shear wave elastography and quasi-static or strain elastography. Shear waves are waves with a motion perpendicular (lateral) to the direction of the generating force. Shear waves travel relatively slowly (between 1 and 10 m/s). The stiffness of the liver tissue can be assessed based on shear wave velocity (the stiffness increases with the speed). The European Federation of Societies for Ultrasound in Medicine and Biology has published Guidelines and Recommendations that describe these technologies and provide recommendations for their clinical use. Most of the data available to date has been published using the Fibroscan (Echosens, France), point shear wave speed measurement using an acoustic radiation force impulse (Siemens, Germany) and 2D shear wave elastography using the Aixplorer (SuperSonic Imagine, France). More recently, also other manufacturers have introduced shear wave elastography technology into the market. A comparison of data obtained using different techniques for shear wave propagation and velocity measurement is of key interest for future studies, recommendations and guidelines. Here, we present a recently introduced shear wave elastography technology from Hitachi and discuss its reproducibility and comparability to the already established technologies. PMID:27679731
NASA Astrophysics Data System (ADS)
Delph, Jonathan R.; Abgarmi, Bijan; Ward, Kevin M.; Beck, Susan L.; Arda Ozacar, A.; Zandt, George; Sandvol, Eric; Turkelli, Niyazi; Kalafat, Dogan
2017-04-01
The lithospheric evolution of Anatolia is largely defined by processes associated with the terminal stages of subduction along its southern margin. Central Anatolia represents the transition from the subduction of oceanic lithosphere at the Aegean trench in the west to the Arabian - Eurasian continental collision in the east. In the overriding plate, this complicated transition is contemporaneous with uplift along the southern margin of central Anatolia (2 km in 6 Myr), voluminous felsic-intermediate ignimbrite eruptions (>1000 km3), extension, and tectonic deformation reflected by abundant low-magnitude seismic activity. The addition of 72 seismic stations as part of the Continental Dynamics - Central Anatolian Tectonics project, along with development of a new approach to the joint inversion of receiver functions and dispersion data, enables us obtain a high-resolution 3D shear wave velocity model of central Anatolia down to 150 km. This new velocity model has important implications for the complex interactions between the downgoing, segmenting African lithosphere and the overriding Anatolian Plate. These results reveal that the lithosphere of central Anatolia and the northern Arabian Plate is thin (<50 to 80 km). The Central Taurus Mountains, which have experienced 2 km of uplift in the past 6 Ma, are underlain by the fastest shear velocities in the region (>4.5 km/s), indicating the presence of the Cyprean slab beneath central Anatolia. Thus, uplift of the Central Taurus Mountains may be due to slab rebound after the detachment of the oceanic portion of the Cyprean slab beneath Anatolia rather than the presence of shallow asthenospheric material. These fast velocities extend to the northern margin of the Central Taurus Mountains, giving way to a NE-SW trend of very slow upper mantle shear wave velocities (<4.2 km/s) beneath the Central Anatolian Volcanic Province. These slow velocities are interpreted to be shallow, warm asthenosphere in which melt is present. The combination of a shallow asthenosphere and lithospheric-scale weaknesses associated with relict tectonic structures formed during the assembly of Anatolia are responsible for the spatial distribution of volcanism in the Central Anatolian Volcanic Province. Finally, we present a model for the evolution of central Anatolia that brings together the volcanism, extension in the Kirsehir Block, uplift of the southern margin of central Anatolia, and our seismic images.
Modeling Mars Cyclogenesis and Frontal Waves: Seasonal Variations and Implications on Dust Activity
NASA Technical Reports Server (NTRS)
Hollingsworth, J. L.; Kahre, M. A.
2014-01-01
Between late autumn through early spring,middle and high latitudes onMars exhibit strong equator-to-polemean temperature contrasts (i.e., "baroclinicity"). Data collected during the Viking era and observations from both the Mars Global Surveyor (MGS) and Mars Reconnaissance Orbiter (MRO) indicate that such strong baroclinicity supports vigorous, large-scale eastward traveling weather systems (i.e., transient synoptic period waves) [1, 2]. For a rapidly rotating, differentially heated, shallow atmosphere such as on Earth and Mars, these large-scale, extratropical weather disturbances are critical components of the global circulation. The wave-like disturbances serve as agents in the transport of heat and momentum between low and high latitudes of the planet. Through cyclonic/anticyclonic winds, intense shear deformations, contractions-dilatations in temperature and density, and sharp perturbations amongst atmospheric tracers (i.e., dust, volatiles (e.g., water vapor) and condensates (e.g., water-ice cloud particles)), Mars' extratropical weather systems have significant sub-synoptic scale ramifications by supporting atmospheric frontal waves (Fig. 1).
NASA Astrophysics Data System (ADS)
Reuter, M.; Piller, W. E.; Harzhauser, M.; Kroh, A.
2013-09-01
Climate change has an unknown impact on tropical cyclones and the Asian monsoon. Herein we present a sequence of fossil shell beds from the shallow-marine Maniyara Fort Formation (Kachcch Basin) as a recorder of tropical cyclone activity along the NW Indian coast during the late Oligocene warming period (~ 27-24 Ma). Proxy data providing information about the atmospheric circulation dynamics over the Indian subcontinent at this time are important since it corresponds to a major climate reorganization in Asia that ends up with the establishment of the modern Asian monsoon system at the Oligocene-Miocene boundary. The vast shell concentrations are comprised of a mixture of parautochthonous and allochthonous assemblages indicating storm-generated sediment transport from deeper to shallow water during third-order sea level highstands. Three distinct skeletal assemblages were distinguished, each recording a relative storm wave base. (1) A shallow storm wave base is shown by nearshore molluscs, reef corals and Clypeaster echinoids; (2) an intermediate storm wave base depth is indicated by lepidocyclinid foraminifers, Eupatagus echinoids and corallinacean algae; and (3) a deep storm wave base is represented by an Amussiopecten bivalve-Schizaster echinoid assemblage. These wave base depth estimates were used for the reconstruction of long-term tropical storm intensity during the late Oligocene. The development and intensification of cyclones over the recent Arabian Sea is primarily limited by the atmospheric monsoon circulation and strength of the associated vertical wind shear. Therefore, since the topographic boundary conditions for the Indian monsoon already existed in the late Oligocene, the reconstructed long-term cyclone trends were interpreted to reflect monsoon variability during the initiation of the Asian monsoon system. Our results imply an active monsoon over the Eastern Tethys at ~ 26 Ma followed by a period of monsoon weakening during the peak of the late Oligocene global warming (~ 24 Ma).
Ormachea, Juvenal; Castaneda, Benjamin; Parker, Kevin J
2018-05-01
Elastography is a modality that estimates tissue stiffness and, thus, provides useful information for clinical diagnosis. Attention has focused on the measurement of shear wave propagation; however, many methods assume shear wave propagation is unidirectional and aligned with the lateral imaging direction. Any deviations from the assumed propagation result in biased estimates of shear wave speed. To address these challenges, directional filters have been applied to isolate shear waves with different propagation directions. Recently, a new method was proposed for tissue stiffness estimation involving creation of a reverberant shear wave field propagating in all directions within the medium. These reverberant conditions lead to simple solutions, facile implementation and rapid viscoelasticity estimation of local tissue. In this work, this new approach based on reverberant shear waves was evaluated and compared with another well-known elastography technique using two calibrated elastic and viscoelastic phantoms. Additionally, the clinical feasibility of this technique was analyzed by assessing shear wave speed in human liver and breast tissues, in vivo. The results indicate that it is possible to estimate the viscoelastic properties in each scanned medium. Moreover, a better approach to estimation of shear wave speed was obtained when only the phase information was taken from the reverberant waves, which is equivalent to setting all magnitudes within the bandpass equal to unity: an idealization of a perfectly isotropic reverberant shear wave field. Copyright © 2018 World Federation for Ultrasound in Medicine and Biology. Published by Elsevier Inc. All rights reserved.
Brand, Andreas; Lacy, Jessica R.; Hsu, Kevin; Hoover, Daniel; Gladding, Steve; Stacey, Mark T.
2010-01-01
We investigated the driving forces of sediment dynamics at the shoals in South San Francisco Bay. Two stations were deployed along a line perpendicular to a 14 m deep channel, 1000 and 2000 m from the middle of the channel. Station depths were 2.59 and 2.19 m below mean lower low water, respectively. We used acoustic Doppler velocimeters for the simultaneous determination of current velocities, turbulence, sediment concentration and fluxes. Maximum current shear velocities were 0.015 m s−1 at the station further from the channel (closer to the shore) and 0.02 m s−1 at the station closer to the channel. Peak wave-induced shear velocities exceeded 0.015 m s−1 at both stations. Maximum sediment concentrations were around 30 g m−3 during calm periods (root mean square wave height −3 and sediment fluxes were 5 times higher than in calm conditions (0.02 g m−2 s−1 versus >0.10 g m−2 s−1) at the station further from the channel 0.36 m above the bed. Closer to the channel, sediment concentrations and vertical fluxes due to wind wave resuspension were persistently lower (maximum concentrations around 50 g m−3 and maximum fluxes around 0.04 g m−2 s−1). Most resuspension events occurred during flood tides that followed wave events during low water. Although wave motions are able to resuspend sediment into the wave boundary layer at low tide, the observed large increases in sediment fluxes are due to the nonlinear interaction of wind waves and the tidal currents.
Probe Oscillation Shear Wave Elastography: Initial In Vivo Results in Liver.
Mellema, Daniel C; Song, Pengfei; Kinnick, Randall R; Trzasko, Joshua D; Urban, Matthew W; Greenleaf, James F; Manduca, Armando; Chen, Shigao
2018-05-01
Shear wave elastography methods are able to accurately measure tissue stiffness, allowing these techniques to monitor the progression of hepatic fibrosis. While many methods rely on acoustic radiation force to generate shear waves for 2-D imaging, probe oscillation shear wave elastography (PROSE) provides an alternative approach by generating shear waves through continuous vibration of the ultrasound probe while simultaneously detecting the resulting motion. The generated shear wave field in in vivo liver is complicated, and the amplitude and quality of these shear waves can be influenced by the placement of the vibrating probe. To address these challenges, a real-time shear wave visualization tool was implemented to provide instantaneous visual feedback to optimize probe placement. Even with the real-time display, it was not possible to fully suppress residual motion with established filtering methods. To solve this problem, the shear wave signal in each frame was decoupled from motion and other sources through the use of a parameter-free empirical mode decomposition before calculating shear wave speeds. This method was evaluated in a phantom as well as in in vivo livers from five volunteers. PROSE results in the phantom as well as in vivo liver correlated well with independent measurements using the commercial General Electric Logiq E9 scanner.
Zhao, Heng; Song, Pengfei; Meixner, Duane D; Kinnick, Randall R; Callstrom, Matthew R; Sanchez, William; Urban, Matthew W; Manduca, Armando; Greenleaf, James F; Chen, Shigao
2014-11-01
Shear wave speed can be used to assess tissue elasticity, which is associated with tissue health. Ultrasound shear wave elastography techniques based on measuring the propagation speed of the shear waves induced by acoustic radiation force are becoming promising alternatives to biopsy in liver fibrosis staging. However, shear waves generated by such methods are typically very weak. Therefore, the penetration may become problematic, especially for overweight or obese patients. In this study, we developed a new method called external vibration multi-directional ultrasound shearwave elastography (EVMUSE), in which external vibration from a loudspeaker was used to generate a multi-directional shear wave field. A directional filter was then applied to separate the complex shear wave field into several shear wave fields propagating in different directions. A 2-D shear wave speed map was reconstructed from each individual shear wave field, and a final 2-D shear wave speed map was constructed by compounding these individual wave speed maps. The method was validated using two homogeneous phantoms and one multi-purpose tissue-mimicking phantom. Ten patients undergoing liver magnetic resonance elastography (MRE) were also studied with EVMUSE to compare results between the two methods. Phantom results showed EVMUSE was able to quantify tissue elasticity accurately with good penetration. In vivo EVMUSE results were well correlated with MRE results, indicating the promise of using EVMUSE for liver fibrosis staging.
Zhao, Heng; Song, Pengfei; Meixner, Duane D.; Kinnick, Randall R.; Callstrom, Matthew R.; Sanchez, William; Urban, Matthew W.; Manduca, Armando; Greenleaf, James F.
2014-01-01
Shear wave speed can be used to assess tissue elasticity, which is associated with tissue health. Ultrasound shear wave elastography techniques based on measuring the propagation speed of the shear waves induced by acoustic radiation force are becoming promising alternatives to biopsy in liver fibrosis staging. However, shear waves generated by such methods are typically very weak. Therefore, the penetration may become problematic, especially for overweight or obese patients. In this study, we developed a new method called External Vibration Multi-directional Ultrasound Shearwave Elastography (EVMUSE), in which external vibration from a loudspeaker was used to generate a multi-directional shear wave field. A directional filter was then applied to separate the complex shear wave field into several shear wave fields propagating in different directions. A two-dimensional (2D) shear wave speed map was reconstructed from each individual shear wave field, and a final 2D shear wave speed map was constructed by compounding these individual wave speed maps. The method was validated using two homogeneous phantoms and one multi-purpose tissue-mimicking phantom. Ten patients undergoing liver Magnetic Resonance Elastography (MRE) were also studied with EVMUSE to compare results between the two methods. Phantom results showed EVMUSE was able to quantify tissue elasticity accurately with good penetration. In vivo EVMUSE results were well correlated with MRE results, indicating the promise of using EVMUSE for liver fibrosis staging. PMID:25020066
Multichannel analysis of surface waves
Park, C.B.; Miller, R.D.; Xia, J.
1999-01-01
The frequency-dependent properties of Rayleigh-type surface waves can be utilized for imaging and characterizing the shallow subsurface. Most surface-wave analysis relies on the accurate calculation of phase velocities for the horizontally traveling fundamental-mode Rayleigh wave acquired by stepping out a pair of receivers at intervals based on calculated ground roll wavelengths. Interference by coherent source-generated noise inhibits the reliability of shear-wave velocities determined through inversion of the whole wave field. Among these nonplanar, nonfundamental-mode Rayleigh waves (noise) are body waves, scattered and nonsource-generated surface waves, and higher-mode surface waves. The degree to which each of these types of noise contaminates the dispersion curve and, ultimately, the inverted shear-wave velocity profile is dependent on frequency as well as distance from the source. Multichannel recording permits effective identification and isolation of noise according to distinctive trace-to-trace coherency in arrival time and amplitude. An added advantage is the speed and redundancy of the measurement process. Decomposition of a multichannel record into a time variable-frequency format, similar to an uncorrelated Vibroseis record, permits analysis and display of each frequency component in a unique and continuous format. Coherent noise contamination can then be examined and its effects appraised in both frequency and offset space. Separation of frequency components permits real-time maximization of the S/N ratio during acquisition and subsequent processing steps. Linear separation of each ground roll frequency component allows calculation of phase velocities by simply measuring the linear slope of each frequency component. Breaks in coherent surface-wave arrivals, observable on the decomposed record, can be compensated for during acquisition and processing. Multichannel recording permits single-measurement surveying of a broad depth range, high levels of redundancy with a single field configuration, and the ability to adjust the offset, effectively reducing random or nonlinear noise introduced during recording. A multichannel shot gather decomposed into a swept-frequency record allows the fast generation of an accurate dispersion curve. The accuracy of dispersion curves determined using this method is proven through field comparisons of the inverted shear-wave velocity (??(s)) profile with a downhole ??(s) profile.Multichannel recording is an efficient method of acquiring ground roll. By displaying the obtained information in a swept-frequency format, different frequency components of Rayleigh waves can be identified by distinctive and simple coherency. In turn, a seismic surface-wave method is derived that provides a useful noninvasive tool, where information about elastic properties of near-surface materials can be effectively obtained.
Detection and monitoring of shear crack growth using S-P conversion of seismic waves
NASA Astrophysics Data System (ADS)
Modiriasari, A.; Bobet, A.; Pyrak-Nolte, L. J.
2017-12-01
A diagnostic method for monitoring shear crack initiation, propagation, and coalescence in rock is key for the detection of major rupture events, such as slip along a fault. Active ultrasonic monitoring was used in this study to determine the precursory signatures to shear crack initiation in pre-cracked rock. Prismatic specimens of Indiana limestone (203x2101x638x1 mm) with two pre-existing parallel flaws were subjected to uniaxial compression. The flaws were cut through the thickness of the specimen using a scroll saw. The length of the flaws was 19.05 mm and had an inclination angle with respect to the loading direction of 30o. Shear wave transducers were placed on each side of the specimen, with polarization parallel to the loading direction. The shear waves, given the geometry of the flaws, were normally incident to the shear crack forming between the two flaws during loading. Shear crack initiation and propagation was detected on the specimen surface using digital image correlation (DIC), while initiation inside the rock was monitored by measuring full waveforms of the transmitted and reflected shear (S) waves across the specimen. Prior to the detection of a shear crack on the specimen surface using DIC, transmitted S waves were converted to compressional (P) waves. The emergence of converted S-P wave occurs because of the presence of oriented microcracks inside the rock. The microcracks coalesce and form the shear crack observed on the specimen surface. Up to crack coalescence, the amplitude of the converted waves increased with shear crack propagation. However, the amplitude of the transmitted shear waves between the two flaws did not change with shear crack initiation and propagation. This is in agreement with the conversion of elastic waves (P- to S-wave or S- to P-wave) observed by Nakagawa et al., (2000) for normal incident waves. Elastic wave conversions are attributed to the formation of an array of oriented microcracks that dilate under shear stress, which causes energy partitioning into P, S, and P-to-S or S-to-P waves. This finding provides a diagnostic method for detecting shear crack initiation and growth using seismic wave conversions. Acknowledgments: This material is based upon work supported by the National Science Foundation, Geomechanics and Geotechnical Systems Program (award No. CMMI-1162082).
Selective excitation of tropical atmospheric waves in wave-CISK: The effect of vertical wind shear
NASA Technical Reports Server (NTRS)
Zhang, Minghua; Geller, Marvin A.
1994-01-01
The growth of waves and the generation of potential energy in wave-CISK require unstable waves to tilt with height oppositely to their direction of propagation. This makes the structures and instability properties of these waves very sensitive to the presence of vertical shear in the basic flow. Equatorial Kelvin and Rossby-gravity waves have opposite phase tilt with height to what they have in the stratosphere, and their growth is selectively favored by basic flows with westward vertical shear and eastward vertical shear, respectively. Similar calculations are also made for gravity waves and Rossby waves. It is shown that eastward vertical shear of the basic flow promotes CISK for westward propagating Rossby-gravity, Rossby, and gravity waves and suppresses CISK for eastward propagating Kelvin and gravity waves, while westward shear of the basic flow has the reverse effects.
NASA Astrophysics Data System (ADS)
Agius, M. R.; Lebedev, S.
2013-12-01
Seismic deployments over the last two decades have produced dense broadband data coverage across the Tibetan Plateau. Yet, the lithospheric dynamics of Tibet is still debated, with very different end-member models advocated to this day. Uncertainties over the anomalies in seismic tomography models contribute to the uncertainty of their interpretations, ranging from the subduction of India as far as northern Tibet to subduction of Asia there and to extreme viscous thickening of the entire Tibetan lithosphere. Within the lithosphere itself, a low-viscosity layer in the mid-lower crust is evidenced by many observations. It is still unclear, however, whether this layer accommodates a large-scale channel flow (which may have uplifted northern and eastern Tibet, according to one model) or if, instead, deformation within it is similar to that observed at the surface (which implies different uplift mechanisms). Broad-band surface waves provide resolving power from the upper crust down to the asthenosphere, for both isotropic-average shear-wave speeds (proxies for composition and temperature) and the radial and azimuthal shear-wave anisotropy (indicative of the patterns of deformation and flow). We measured highly accurate Love- and Rayleigh-wave phase-velocity curves in broad period ranges (up to 5-200 s) for a few tens of pairs and groups of stations across Tibet, combining, in each case, hundreds to thousands of inter-station measurements, made with cross-correlation and waveform-inversion methods. Robust shear-velocity profiles were then determined by series of non-linear inversions, yielding depth-dependent ranges of shear speeds and radial anisotropy consistent with the data. Temperature anomalies in the upper mantle were estimated from shear-velocity ones using accurate petro-physical relationships. Azimuthal anisotropy in the crust and upper mantle was determined by surface-wave tomography and, also, by sub-array analysis targeting the anisotropy amplitude. Our results show that the prominent high-velocity anomalies in the upper mantle are most consistent with the presence of subducted Indian lithosphere beneath large portions of Tibet. Estimated thermal anomalies within the high-velocity features match those expected for subducted India. The morphology of India's subduction beneath Tibet is complex and shows pronounced west-east variations. Beneath eastern and northeastern Tibet, in particular, the subducted Indian lithosphere appears to have subducted, at a shallow angle, hundreds of km NNE-wards. Azimuthal anisotropy beneath Tibet is distributed in multiple layers with different fast-propagations directions, which accounts for the complexity of published shear-wave splitting observations. The fast directions within the mid-lower crust are parallel to the extensional components of the current strain rate field at the surface, consistent with similar deformation through the entire crust, rather than channel flow. Anisotropy within the asthenosphere beneath northeastern Tibet (sandwiched between the Tibetan lithosphere above and the subducted Indian lithosphere below) indicates SSW-NNE flow, parallel to the direction of motion of the Indian Plate, including its subducted leading edge.
Budelli, Eliana; Brum, Javier; Bernal, Miguel; Deffieux, Thomas; Tanter, Mickaël; Lema, Patricia; Negreira, Carlos; Gennisson, Jean-Luc
2017-01-07
Noninvasive evaluation of the rheological behavior of soft tissues may provide an important diagnosis tool. Nowadays, available commercial ultrasound systems only provide shear elasticity estimation by shear wave speed assessment under the hypothesis of a purely elastic model. However, to fully characterize the rheological behavior of tissues, given by its storage (G') and loss (G″) moduli, it is necessary to estimate both: shear wave speed and shear wave attenuation. Most elastography techniques use the acoustic radiation force to generate shear waves. For this type of source the shear waves are not plane and a diffraction correction is needed to properly estimate the shear wave attenuation. The use of a cylindrical wave approximation to evaluate diffraction has been proposed by other authors before. Here the validity of such approximation is numerically and experimentally revisited. Then, it is used to generate images of G' and G″ in heterogeneous viscoelastic mediums. A simulation algorithm based on the anisotropic and viscoelastic Green's function was used to establish the validity of the cylindrical approximation. Moreover, two experiments were carried out: a transient elastography experiment where plane shear waves were generated using a vibrating plate and a SSI experiment that uses the acoustic radiation force to generate shear waves. For both experiments the shear wave propagation was followed with an ultrafast ultrasound scanner. Then, the shear wave velocity and shear wave attenuation were recovered from the phase and amplitude decay versus distance respectively. In the SSI experiment the cylindrical approximation was applied to correct attenuation due to diffraction effects. The numerical and experimental results validate the use of a cylindrical correction to assess shear wave attenuation. Finally, by applying the cylindrical correction G' and G″ images were generated in heterogeneous phantoms and a preliminary in vivo feasibility study was carried out in the human liver.
NASA Astrophysics Data System (ADS)
Budelli, Eliana; Brum, Javier; Bernal, Miguel; Deffieux, Thomas; Tanter, Mickaël; Lema, Patricia; Negreira, Carlos; Gennisson, Jean-Luc
2017-01-01
Noninvasive evaluation of the rheological behavior of soft tissues may provide an important diagnosis tool. Nowadays, available commercial ultrasound systems only provide shear elasticity estimation by shear wave speed assessment under the hypothesis of a purely elastic model. However, to fully characterize the rheological behavior of tissues, given by its storage (G‧) and loss (G″) moduli, it is necessary to estimate both: shear wave speed and shear wave attenuation. Most elastography techniques use the acoustic radiation force to generate shear waves. For this type of source the shear waves are not plane and a diffraction correction is needed to properly estimate the shear wave attenuation. The use of a cylindrical wave approximation to evaluate diffraction has been proposed by other authors before. Here the validity of such approximation is numerically and experimentally revisited. Then, it is used to generate images of G‧ and G″ in heterogeneous viscoelastic mediums. A simulation algorithm based on the anisotropic and viscoelastic Green’s function was used to establish the validity of the cylindrical approximation. Moreover, two experiments were carried out: a transient elastography experiment where plane shear waves were generated using a vibrating plate and a SSI experiment that uses the acoustic radiation force to generate shear waves. For both experiments the shear wave propagation was followed with an ultrafast ultrasound scanner. Then, the shear wave velocity and shear wave attenuation were recovered from the phase and amplitude decay versus distance respectively. In the SSI experiment the cylindrical approximation was applied to correct attenuation due to diffraction effects. The numerical and experimental results validate the use of a cylindrical correction to assess shear wave attenuation. Finally, by applying the cylindrical correction G‧ and G″ images were generated in heterogeneous phantoms and a preliminary in vivo feasibility study was carried out in the human liver.
Song, Pengfei; Zhao, Heng; Urban, Matthew W.; Manduca, Armando; Pislaru, Sorin V.; Kinnick, Randall R.; Pislaru, Cristina; Greenleaf, James F.; Chen, Shigao
2013-01-01
Ultrasound tissue harmonic imaging is widely used to improve ultrasound B-mode imaging quality thanks to its effectiveness in suppressing imaging artifacts associated with ultrasound reverberation, phase aberration, and clutter noise. In ultrasound shear wave elastography (SWE), because the shear wave motion signal is extracted from the ultrasound signal, these noise sources can significantly deteriorate the shear wave motion tracking process and consequently result in noisy and biased shear wave motion detection. This situation is exacerbated in in vivo SWE applications such as heart, liver, and kidney. This paper, therefore, investigated the possibility of implementing harmonic imaging, specifically pulse-inversion harmonic imaging, in shear wave tracking, with the hypothesis that harmonic imaging can improve shear wave motion detection based on the same principles that apply to general harmonic B-mode imaging. We first designed an experiment with a gelatin phantom covered by an excised piece of pork belly and show that harmonic imaging can significantly improve shear wave motion detection by producing less underestimated shear wave motion and more consistent shear wave speed measurements than fundamental imaging. Then, a transthoracic heart experiment on a freshly sacrificed pig showed that harmonic imaging could robustly track the shear wave motion and give consistent shear wave speed measurements while fundamental imaging could not. Finally, an in vivo transthoracic study of seven healthy volunteers showed that the proposed harmonic imaging tracking sequence could provide consistent estimates of the left ventricular myocardium stiffness in end-diastole with a general success rate of 80% and a success rate of 93.3% when excluding the subject with Body Mass Index (BMI) higher than 25. These promising results indicate that pulse-inversion harmonic imaging can significantly improve shear wave motion tracking and thus potentially facilitate more robust assessment of tissue elasticity by SWE. PMID:24021638
Reverberant shear wave fields and estimation of tissue properties
NASA Astrophysics Data System (ADS)
Parker, Kevin J.; Ormachea, Juvenal; Zvietcovich, Fernando; Castaneda, Benjamin
2017-02-01
The determination of shear wave speed is an important subject in the field of elastography, since elevated shear wave speeds can be directly linked to increased stiffness of tissues. MRI and ultrasound scanners are frequently used to detect shear waves and a variety of estimators are applied to calculate the underlying shear wave speed. The estimators can be relatively simple if plane wave behavior is assumed with a known direction of propagation. However, multiple reflections from organ boundaries and internal inhomogeneities and mode conversions can create a complicated field in time and space. Thus, we explore the mathematics of multiple component shear wave fields and derive the basic properties, from which efficient estimators can be obtained. We approach this problem from the historic perspective of reverberant fields, a conceptual framework used in architectural acoustics and related fields. The framework can be recast for the alternative case of shear waves in a bounded elastic media, and the expected value of displacement patterns in shear reverberant fields are derived, along with some practical estimators of shear wave speed. These are applied to finite element models and phantoms to illustrate the characteristics of reverberant fields and provide preliminary confirmation of the overall framework.
Characterization of Viscoelastic Materials Using Group Shear Wave Speeds.
Rouze, Ned C; Deng, Yufeng; Trutna, Courtney A; Palmeri, Mark L; Nightingale, Kathryn R
2018-05-01
Recent investigations of viscoelastic properties of materials have been performed by observing shear wave propagation following localized, impulsive excitations, and Fourier decomposing the shear wave signal to parameterize the frequency-dependent phase velocity using a material model. This paper describes a new method to characterize viscoelastic materials using group shear wave speeds , , and determined from the shear wave displacement, velocity, and acceleration signals, respectively. Materials are modeled using a two-parameter linear attenuation model with phase velocity and dispersion slope at a reference frequency of 200 Hz. Analytically calculated lookup tables are used to determine the two material parameters from pairs of measured group shear wave speeds. Green's function calculations are used to validate the analytic model. Results are reported for measurements in viscoelastic and approximately elastic phantoms and demonstrate good agreement with phase velocities measured using Fourier analysis of the measured shear wave signals. The calculated lookup tables are relatively insensitive to the excitation configuration. While many commercial shear wave elasticity imaging systems report group shear wave speeds as the measures of material stiffness, this paper demonstrates that differences , , and of group speeds are first-order measures of the viscous properties of materials.
Jet crackle: skewness transport budget and a mechanistic source model
NASA Astrophysics Data System (ADS)
Buchta, David; Freund, Jonathan
2016-11-01
The sound from high-speed (supersonic) jets, such as on military aircraft, is distinctly different than that from lower-speed jets, such as on commercial airliners. Atop the already loud noise, a higher speed adds an intense, fricative, and intermittent character. The observed pressure wave patterns have strong peaks which are followed by relatively long shallows; notably, their pressure skewness is Sk >= 0 . 4 . Direct numerical simulation of free-shear-flow turbulence show that these skewed pressure waves occur immediately adjacent to the turbulence source for M >= 2 . 5 . Additionally, the near-field waves are seen to intersect and nonlinearly merge with other waves. Statistical analysis of terms in a pressure skewness transport equation show that starting just beyond δ99 the nonlinear wave mechanics that add to Sk are balanced by damping molecular effects, consistent with this aspect of the sound arising in the source region. A gas dynamics description is developed that neglects rotational turbulence dynamics and yet reproduces the key crackle features. At its core, this mechanism shows simply that nonlinear compressive effects lead directly to stronger compressions than expansions and thus Sk > 0 .
Observations of the directional distribution of the wind energy input function over swell waves
NASA Astrophysics Data System (ADS)
Shabani, Behnam; Babanin, Alex V.; Baldock, Tom E.
2016-02-01
Field measurements of wind stress over shallow water swell traveling in different directions relative to the wind are presented. The directional distribution of the measured stresses is used to confirm the previously proposed but unverified directional distribution of the wind energy input function. The observed wind energy input function is found to follow a much narrower distribution (β∝cos3.6θ) than the Plant (1982) cosine distribution. The observation of negative stress angles at large wind-wave angles, however, indicates that the onset of negative wind shearing occurs at about θ≈ 50°, and supports the use of the Snyder et al. (1981) directional distribution. Taking into account the reverse momentum transfer from swell to the wind, Snyder's proposed parameterization is found to perform exceptionally well in explaining the observed narrow directional distribution of the wind energy input function, and predicting the wind drag coefficients. The empirical coefficient (ɛ) in Snyder's parameterization is hypothesised to be a function of the wave shape parameter, with ɛ value increasing as the wave shape changes between sinusoidal, sawtooth, and sharp-crested shoaling waves.
Shear waves in inhomogeneous, compressible fluids in a gravity field.
Godin, Oleg A
2014-03-01
While elastic solids support compressional and shear waves, waves in ideal compressible fluids are usually thought of as compressional waves. Here, a class of acoustic-gravity waves is studied in which the dilatation is identically zero, and the pressure and density remain constant in each fluid particle. These shear waves are described by an exact analytic solution of linearized hydrodynamics equations in inhomogeneous, quiescent, inviscid, compressible fluids with piecewise continuous parameters in a uniform gravity field. It is demonstrated that the shear acoustic-gravity waves also can be supported by moving fluids as well as quiescent, viscous fluids with and without thermal conductivity. Excitation of a shear-wave normal mode by a point source and the normal mode distortion in realistic environmental models are considered. The shear acoustic-gravity waves are likely to play a significant role in coupling wave processes in the ocean and atmosphere.
Kim, Jeong Rye; Suh, Chong Hyun; Yoon, Hee Mang; Lee, Jin Seong; Cho, Young Ah; Jung, Ah Young
2018-03-01
To assess the diagnostic performance of shear-wave elastography for determining the severity of liver fibrosis in children and adolescents. An electronic literature search of PubMed and EMBASE was conducted. Bivariate modelling and hierarchical summary receiver-operating-characteristic modelling were performed to evaluate the diagnostic performance of shear-wave elastography. Meta-regression and subgroup analyses according to the modality of shear-wave imaging and the degree of liver fibrosis were also performed. Twelve eligible studies with 550 patients were included. Shear-wave elastography showed a summary sensitivity of 81 % (95 % CI: 71-88) and a specificity of 91 % (95 % CI: 83-96) for the prediction of significant liver fibrosis. The number of measurements of shear-wave elastography performed was a significant factor influencing study heterogeneity. Subgroup analysis revealed shear-wave elastography to have an excellent diagnostic performance according to each degree of liver fibrosis. Supersonic shear imaging (SSI) had a higher sensitivity (p<.01) and specificity (p<.01) than acoustic radiation force impulse imaging (ARFI). Shear-wave elastography is an excellent modality for the evaluation of the severity of liver fibrosis in children and adolescents. Compared with ARFI, SSI showed better diagnostic performance for prediction of significant liver fibrosis. • Shear-wave elastography is beneficial for determining liver fibrosis severity in children. • Shear-wave elastography showed summary sensitivity of 81 %, specificity of 91 %. • SSI showed better diagnostic performance than ARFI for significant liver fibrosis.
NASA Astrophysics Data System (ADS)
Zhang, Shaotong; Jia, Yonggang; Zhang, Yaqi; Liu, Xiaolei; Shan, Hongxian
2018-03-01
A specially designed benthic chamber for the field observation of sediment resuspension that is caused by the wave-induced oscillatory seepage effect (i.e., the wave pumping of sediments) is newly developed. Observational results from the first sea trial prove that the geometry design and skillful instrumentation of the chamber well realize the goal of monitoring the wave pumping of sediments (WPS) continuously. Based on this field dataset, the quantitative contribution of the WPS to the total sediment resuspension is estimated to be 20-60% merely under the continuous action of normal waves (Hs ≤ 1.5 m) in the subaqueous Yellow River Delta (YRD). Such a large contribution invalidates a commonly held opinion that sediments are purely eroded from the seabed surface by the horizontal "shearing effect" from the wave orbital or current velocities. In fact, a considerable amount of sediments could originate from the shallow subsurface of seabed driven by the vertical "pumping effect" of the wave-generated seepage flows during wavy periods. According to the new findings, an improved conceptual model for the resuspension mechanisms of silty sediments under various hydrodynamics is proposed for the first time.
Catchings, Rufus D.; Goldman, Mark R.; Trench, David; Buga, Michael; Chan, Joanne H.; Criley, Coyn J.; Strayer, Luther M.
2017-04-18
The Piedmont Thrust Fault, herein referred to as the Piedmont Reverse Fault (PRF), is a splay of the Hayward Fault that trends through a highly populated area of the City of Oakland, California (fig. 1A). Although the PRF is unlikely to generate a large-magnitude earthquake, slip on the PRF or high-amplitude seismic energy traveling along the PRF may cause considerable damage during a large earthquake on the Hayward Fault. Thus, it is important to determine the exact location, geometry (particularly dip), and lateral extent of the PRF within the densely populated Oakland area. In the near surface, the PRF juxtaposes Late Cretaceous sandstone (of the Franciscan Complex Novato Quarry terrane of Blake and others, 1984) and an older Pleistocene alluvial fan unit along much of its mapped length (fig. 1B; Graymer and others, 1995). The strata of the Novato Quarry unit vary greatly in strike (NW, NE, and E), dip direction (NE, SW, E, and NW), dip angle (15° to 85°), and lithology (shale and sandstone), and the unit has been intruded by quartz diorite in places. Thus, it is difficult to infer the structure of the fault, particularly at depth, with conventional seismic reflection imaging methods. To better determine the location and shallow-depth geometry of the PRF, we used high-resolution seismic imaging methods described by Catchings and others (2014). These methods involve the use of coincident P-wave (compressional wave) and S-wave (shear wave) refraction tomography and reflection data, from which tomographic models of P- and S-wave velocity and P-wave reflection images are developed. In addition, the coincident P-wave velocity (VP) and S-wave velocity (VS) data are used to develop tomographic models of VP/VS ratios and Poisson’s ratio, which are sensitive to shallow-depth faulting and groundwater. In this study, we also compare measurements of Swave velocities determined from surface waves with those determined from refraction tomography. We use the combination of seismic methods to infer the fault location, dip, and the National Earthquake Hazards Reduction Program (NEHRP) site classification along the seismic profile. Our seismic study is a smaller part of a larger study of the PRF by Trench and others (2016).
Shear wave speed recovery in sonoelastography using crawling wave data.
Lin, Kui; McLaughlin, Joyce; Renzi, Daniel; Thomas, Ashley
2010-07-01
The crawling wave experiment, in which two harmonic sources oscillate at different but nearby frequencies, is a development in sonoelastography that allows real-time imaging of propagating shear wave interference patterns. Previously the crawling wave speed was recovered and used as an indicator of shear stiffness; however, it is shown in this paper that the crawling wave speed image can have artifacts that do not represent a change in stiffness. In this paper, the locations and shapes of some of the artifacts are exhibited. In addition, a differential equation is established that enables imaging of the shear wave speed, which is a quantity strongly correlated with shear stiffness change. The full algorithm is as follows: (1) extract the crawling wave phase from the spectral variance data; (2) calculate the crawling wave phase wave speed; (3) solve a first-order PDE for the phase of the wave emanating from one of the sources; and (4) compute and image the shear wave speed on a grid in the image plane.
Shear wave speed recovery in sonoelastography using crawling wave data
Lin, Kui; McLaughlin, Joyce; Renzi, Daniel; Thomas, Ashley
2010-01-01
The crawling wave experiment, in which two harmonic sources oscillate at different but nearby frequencies, is a development in sonoelastography that allows real-time imaging of propagating shear wave interference patterns. Previously the crawling wave speed was recovered and used as an indicator of shear stiffness; however, it is shown in this paper that the crawling wave speed image can have artifacts that do not represent a change in stiffness. In this paper, the locations and shapes of some of the artifacts are exhibited. In addition, a differential equation is established that enables imaging of the shear wave speed, which is a quantity strongly correlated with shear stiffness change. The full algorithm is as follows: (1) extract the crawling wave phase from the spectral variance data; (2) calculate the crawling wave phase wave speed; (3) solve a first-order PDE for the phase of the wave emanating from one of the sources; and (4) compute and image the shear wave speed on a grid in the image plane. PMID:20649204
Seismic Wave Amplification in Las Vegas: Site Characterization Measurements and Response Models
NASA Astrophysics Data System (ADS)
Louie, J. N.; Anderson, J. G.; Luke, B.; Snelson, C.; Taylor, W.; Rodgers, A.; McCallen, D.; Tkalcic, H.; Wagoner, J.
2004-12-01
As part of a multidisciplinary effort to understand seismic wave amplification in Las Vegas Valley, we conducted geotechnical and seismic refraction field studies, geologic and lithologic interpretation, and geophysical model building. Frequency-dependent amplifications (site response) and peak ground motions strongly correlate with site conditions as characterized by the models. The models include basin depths and velocities, which also correlate against ground motions. Preliminary geologic models were constructed from detailed geologic and fault mapping, logs of over 500 wells penetrating greater than 200 m depth, gravity-inversion results from the USGS, and USDA soil maps. Valley-wide refraction studies we conducted in 2002 and 2003 were inverted for constraints on basin geometry, and deep basin and basement P velocities with some 3-d control to depths of 5 km. Surface-wave studies during 2002-2004 characterized more than 75 sites within the Valley for shear velocity to depths exceeding 100 m, including all the legacy sites where nuclear-blast ground motions were recorded. The SASW and refraction-microtremor surface-surveying techniques proved to provide complementary, and coordinating Rayleigh dispersion-curve data at a dozen sites. Borehole geotechnical studies at a half-dozen sites confirmed the shear-velocity profiles that we derived from surface-wave studies. We then correlated all the geotechnical data against a detailed stratigraphic model, derived from drilling logs, to create a Valley-wide model for shallow site conditions. This well-log-based model predicts site measurements better than do models based solely on geologic or soil mapping.
Mellema, Daniel C; Song, Pengfei; Kinnick, Randall R; Urban, Matthew W; Greenleaf, James F; Manduca, Armando; Chen, Shigao
2016-09-01
Ultrasound shear wave elastography (SWE) utilizes the propagation of induced shear waves to characterize the shear modulus of soft tissue. Many methods rely on an acoustic radiation force (ARF) "push beam" to generate shear waves. However, specialized hardware is required to generate the push beams, and the thermal stress that is placed upon the ultrasound system, transducer, and tissue by the push beams currently limits the frame-rate to about 1 Hz. These constraints have limited the implementation of ARF to high-end clinical systems. This paper presents Probe Oscillation Shear Elastography (PROSE) as an alternative method to measure tissue elasticity. PROSE generates shear waves using a harmonic mechanical vibration of an ultrasound transducer, while simultaneously detecting motion with the same transducer under pulse-echo mode. Motion of the transducer during detection produces a "strain-like" compression artifact that is coupled with the observed shear waves. A novel symmetric sampling scheme is proposed such that pulse-echo detection events are acquired when the ultrasound transducer returns to the same physical position, allowing the shear waves to be decoupled from the compression artifact. Full field-of-view (FOV) two-dimensional (2D) shear wave speed images were obtained by applying a local frequency estimation (LFE) technique, capable of generating a 2D map from a single frame of shear wave motion. The shear wave imaging frame rate of PROSE is comparable to the vibration frequency, which can be an order of magnitude higher than ARF based techniques. PROSE was able to produce smooth and accurate shear wave images from three homogeneous phantoms with different moduli, with an effective frame rate of 300 Hz. An inclusion phantom study showed that increased vibration frequencies improved the accuracy of inclusion imaging, and allowed targets as small as 6.5 mm to be resolved with good contrast (contrast-to-noise ratio ≥ 19 dB) between the target and background.
Mellema, Daniel C.; Song, Pengfei; Kinnick, Randall R.; Urban, Matthew W.; Greenleaf, James F.; Manduca, Armando; Chen, Shigao
2017-01-01
Ultrasound shear wave elastography (SWE) utilizes the propagation of induced shear waves to characterize the shear modulus of soft tissue. Many methods rely on an acoustic radiation force (ARF) “push beam” to generate shear waves. However, specialized hardware is required to generate the push beams, and the thermal stress that is placed upon the ultrasound system, transducer, and tissue by the push beams currently limits the frame-rate to about 1 Hz. These constraints have limited the implementation of ARF to high-end clinical systems. This paper presents Probe Oscillation Shear Elastography (PROSE) as an alternative method to measure tissue elasticity. PROSE generates shear waves using a harmonic mechanical vibration of an ultrasound transducer, while simultaneously detecting motion with the same transducer under pulse-echo mode. Motion of the transducer during detection produces a “strain-like” compression artifact that is coupled with the observed shear waves. A novel symmetric sampling scheme is proposed such that pulse-echo detection events are acquired when the ultrasound transducer returns to the same physical position, allowing the shear waves to be decoupled from the compression artifact. Full field-of-view (FOV) two-dimensional (2D) shear wave speed images were obtained by applying a local frequency estimation (LFE) technique, capable of generating a 2D map from a single frame of shear wave motion. The shear wave imaging frame rate of PROSE is comparable to the vibration frequency, which can be an order of magnitude higher than ARF based techniques. PROSE was able to produce smooth and accurate shear wave images from three homogeneous phantoms with different moduli, with an effective frame rate of 300Hz. An inclusion phantom study showed that increased vibration frequencies improved the accuracy of inclusion imaging, and allowed targets as small as 6.5 mm to be resolved with good contrast (contrast-to-noise ratio ≥19 dB) between the target and background. PMID:27076352
Photo-Ultrasonic Study of Extrinsic Photoconductivity in N-Gallium Arsenide
NASA Astrophysics Data System (ADS)
Bradshaw, Randall Grant
We have measured the velocity of piezoelectrically -active, ultrasonic shear waves between 1.5 K and 68 K for undoped and for oxygen-doped n-type GaAs, during and after illumination at 4.2 K. The results reveal photoconductivity, persistent photoconductivity, and thermally stimulated conductivity. In both samples the Fermi level in the dark is controlled by excess non-shallow donors near 0.2 eV below the conduction band. Analysis of these effects in oxygen-doped material indicates that there are mid-gap and much shallower photoionizable levels and that there is an electron trap near 20 meV below the conduction band. The undoped n-GaAs sample exhibits photoconductivity quenching with photons in the range 0.95-1.26 eV which, by analysis of the quenching rate, is attributed to the EL2 defect. In addition, levels with large hole capture coefficients have been detected.
NASA Astrophysics Data System (ADS)
Catchings, R.
2017-12-01
P- and S-wave propagation differ in varying materials in the Earth's crust. As a result, combined measurements of P- and S-wave data can be used to infer properties of the shallow crust, including bulk composition, fluid saturation, faulting and fracturing, seismic velocities, reflectivity, and general structures. Ratios of P- to S-wave velocities and Poisson's ratio, which can be derived from the P- and S-wave data, can be particularly diagnostic of subsurface materials and their physical state. In field studies, S-wave data can be obtained directly with S-wave sources or from surface waves associated with P-wave sources. P- and S-wave data can be processed using reflection, refraction, and surface-wave-analysis methods. With the combined data, unconsolidated sediments, consolidated sediments, and rocks can be differentiated on the basis of seismic velocities and their ratios, as can saturated versus unsaturated sediments. We summarize studies where we have used combined P- and S-wave measurements to reliably map the top of ground water, prospect for minerals, locate subsurface faults, locate basement interfaces, determine basin shapes, and measure shear-wave velocities (with calculated Vs30), and other features of the crust that are important for hazards, engineering, and exploration purposes. When compared directly, we find that body waves provide more accurate measures than surface waves.
NASA Astrophysics Data System (ADS)
Agostinetti, N. Piana; Chiarabba, C.
2008-12-01
The recognition and localization of magmatic fluids are pre-requisites for evaluating the volcano hazard of the highly urbanized area of Mt Vesuvius. Here we show evidence and constraints for the volumetric estimation of magmatic fluids underneath this sleeping volcano. We use Receiver Functions for teleseismic data recorded at a temporary broad-band station installed on the volcano to constrain the S-wave velocity structure in the crust. Receiver Functions are analysed and inverted using the Neighbourhood Algorithm approach. The 1-D S-velocity profile is jointly interpreted and discussed with a new Vp and Vp/Vs image obtained by applying double difference tomographic techniques to local earthquakes. Seismologic data define the geometry of an axial, cylindrical high Vp, high Vs body consisting of a shallow solidified materials, probably the remnants of the caldera, and ultramafic rocks paving the crustal magma chamber. Between these two anomalies, we find a small region where the shear wave velocity drops, revealing the presence of magma at relatively shallow depths. The volume of fluids (30 km3) is sufficient to contribute future explosive eruptions.
Coded Excitation Plane Wave Imaging for Shear Wave Motion Detection
Song, Pengfei; Urban, Matthew W.; Manduca, Armando; Greenleaf, James F.; Chen, Shigao
2015-01-01
Plane wave imaging has greatly advanced the field of shear wave elastography thanks to its ultrafast imaging frame rate and the large field-of-view (FOV). However, plane wave imaging also has decreased penetration due to lack of transmit focusing, which makes it challenging to use plane waves for shear wave detection in deep tissues and in obese patients. This study investigated the feasibility of implementing coded excitation in plane wave imaging for shear wave detection, with the hypothesis that coded ultrasound signals can provide superior detection penetration and shear wave signal-to-noise-ratio (SNR) compared to conventional ultrasound signals. Both phase encoding (Barker code) and frequency encoding (chirp code) methods were studied. A first phantom experiment showed an approximate penetration gain of 2-4 cm for the coded pulses. Two subsequent phantom studies showed that all coded pulses outperformed the conventional short imaging pulse by providing superior sensitivity to small motion and robustness to weak ultrasound signals. Finally, an in vivo liver case study on an obese subject (Body Mass Index = 40) demonstrated the feasibility of using the proposed method for in vivo applications, and showed that all coded pulses could provide higher SNR shear wave signals than the conventional short pulse. These findings indicate that by using coded excitation shear wave detection, one can benefit from the ultrafast imaging frame rate and large FOV provided by plane wave imaging while preserving good penetration and shear wave signal quality, which is essential for obtaining robust shear elasticity measurements of tissue. PMID:26168181
NASA Astrophysics Data System (ADS)
Guidarelli, Mariangela; Aoudia, Abdelkrim; Costa, Giovanni
2017-12-01
We use ambient noise tomography to investigate the crust and the uppermost mantle structure beneath the junction between the Southern Alps, the Dinarides and the Po Plain. We obtained Rayleigh wave empirical Green's functions from cross-correlation of vertical component seismic recordings for three years (2010-2012) using stations from networks in Italy, Slovenia, Austria, Croatia, Serbia and Switzerland. We measure group and phase velocity dispersion curves from the reconstructed Rayleigh waves in the period range 5-30 and 8-37 s, respectively, and we invert the surface wave velocities for tomographic images on a grid of 0.1° × 0.1°. After the tomography, the group velocities are then inverted to compute the 3-D shear wave velocity model of the crust and the upper mantle beneath the region. Our shear wave velocity model provides the 3-D image of the structure in the region between Northeastern Italy, Slovenia and Austria. The velocity variations at shallow depths correlate with known geological and tectonic domains. We find low velocities below the Po Plain, the northern tip of the Adriatic and the Pannonian Basin, whereas higher velocities characterize the Alpine chain. The vertical cross-sections reveal a clear northward increase of the crustal thickness with a sharp northward dipping of the Moho that coincides at the surface with the leading edge of the Alpine thrust front adjacent to the Friuli Plain in Northeastern Italy. This geometry of the Moho mimics fairly well the shallow north dipping geometry of the decollement inferred from permanent GPS velocity field where high interseismic coupling is reported. From the northern Adriatic domain up to the Idrija right lateral strike-slip fault system beneath Western Slovenia, the crustal thickness is more uniform. Right across Idrija fault, to the northeast, and along its strike, we report a clear change of the physical properties of the crust up to the uppermost mantle as reflected by the lateral distribution of both group and phase velocity anomalies at relevant periods. Idrija fault is therefore interpreted as a subvertical fault sampling the whole crust. Our 3-D velocity model favours crustal thickening with Adria underthrusting the Alps at a shallow angle north of the Friuli Plain where much of the convergence is absorbed and where the destructive 1976 Ms 6.5 thrust Friuli earthquake sequence took place. In Western Slovenia, the deformation is accommodated by strike-slip motion along the Idrija strike-slip fault system where the destructive 1511 Mw 6.9 right lateral strike-slip event occurred.
Yang, Yiqun; Urban, Matthew W; McGough, Robert J
2018-05-15
Shear wave calculations induced by an acoustic radiation force are very time-consuming on desktop computers, and high-performance graphics processing units (GPUs) achieve dramatic reductions in the computation time for these simulations. The acoustic radiation force is calculated using the fast near field method and the angular spectrum approach, and then the shear waves are calculated in parallel with Green's functions on a GPU. This combination enables rapid evaluation of shear waves for push beams with different spatial samplings and for apertures with different f/#. Relative to shear wave simulations that evaluate the same algorithm on an Intel i7 desktop computer, a high performance nVidia GPU reduces the time required for these calculations by a factor of 45 and 700 when applied to elastic and viscoelastic shear wave simulation models, respectively. These GPU-accelerated simulations also compared to measurements in different viscoelastic phantoms, and the results are similar. For parametric evaluations and for comparisons with measured shear wave data, shear wave simulations with the Green's function approach are ideally suited for high-performance GPUs.
NASA Astrophysics Data System (ADS)
Farrugia, Daniela; Galea, Pauline; D'Amico, Sebastiano; Paolucci, Enrico
2016-04-01
It is well known that earthquake damage at a particular site depends on the source, the path that the waves travel through and the local geology. The latter is capable of amplifying and changing the frequency content of the incoming seismic waves. In regions of sparse or no strong ground motion records, like Malta (Central Mediterranean), ground motion simulations are used to obtain parameters for purposes of seismic design and analysis. As an input to ground motion simulations, amplification functions related to the shallow subsurface are required. Shear-wave velocity profiles of several sites on the Maltese islands were obtained using the Horizontal-to-Vertical Spectral Ratio (H/V), the Extended Spatial Auto-Correlation (ESAC) technique and the Genetic Algorithm. The sites chosen were all characterised by a layer of Blue Clay, which can be up to 75 m thick, underlying the Upper Coralline Limestone, a fossiliferous coarse grained limestone. This situation gives rise to a velocity inversion. Available borehole data generally extends down till the top of the Blue Clay layer therefore the only way to check the validity of the modelled shear-wave velocity profile is through the thickness of the topmost layer. Surface wave methods are characterised by uncertainties related to the measurements and the model used for interpretation. Moreover the inversion procedure is also highly non-unique. Such uncertainties are not commonly included in site response analysis. Yet, the propagation of uncertainties from the extracted dispersion curves to inversion solutions can lead to significant differences in the simulations (Boaga et al., 2011). In this study, a series of sensitivity analyses will be presented with the aim of better identifying those stratigraphic properties which can perturb the ground motion simulation results. The stochastic one-dimensional site response analysis algorithm, Extended Source Simulation (EXSIM; Motazedian and Atkinson, 2005), was used to perform these analyses. The amplification functions were extracted using the programme SITE_AMP (Boore, 2003), which computes amplifications based on the square root of the effective seismic impedance. Sensitivity indices were obtained by changing two parameters (thickness and shear-wave velocity) of the different layers while keeping the others constant. Additional analyses were carried out by producing various profiles within specified boundaries which are able to fit the experimental data. The analyses also show the important role that the shear-wave velocity profiles play in ground motion simulations. The results obtained highlight the importance of the correct knowledge of both the properties of the Upper Coralline Limestone and the Blue Clay, especially the Blue Clay thickness.
Reference Values for Shear Wave Elastography of Neck and Shoulder Muscles in Healthy Individuals.
Ewertsen, Caroline; Carlsen, Jonathan; Perveez, Mohammed Aftab; Schytz, Henrik
2018-01-01
to establish reference values for ultrasound shear-wave elastography for pericranial muscles in healthy individuals (m. trapezius, m. splenius capitis, m. semispinalis capitis, m. sternocleidomastoideus and m. masseter). Also to evaluate day-to-day variations in the shear-wave speeds and evaluate the effect of the pennation of the muscle fibers, ie scanning parallel or perpendicularly to the fibers. 10 healthy individuals (5 males and 5 females) had their pericranial muscles examined with shear-wave elastography in two orthogonal planes on two different days for their dominant and non-dominant side. Mean shear wave speeds from 5 ROI's in each muscle, for each scan plane for the dominant and non-dominant side for the two days were calculated. The effect of the different parameters - muscle pennation, gender, dominant vs non-dominant side and day was evaluated. The effect of scan plane in relation to muscle pennation was statistically significant (p<0.0001). The mean shear-wave speed when scanning parallel to the muscle fibers was significantly higher than the mean shear-wave speed when scanning perpendicularly to the fibers. The day-to-day variation was statistically significant (p=0.0258), but not clinically relevant. Shear-wave speeds differed significantly between muscles. Mean shear wave speeds (m/s) for the muscles in the parallel plane were: for masseter 2.45 (SD:+/-0.25), semispinal 3.36 (SD:+/-0.75), splenius 3.04 (SD:+/-0.65), sternocleidomastoid 2.75 (SD:+/-0.23), trapezius 3.20 (SD:+/-0.27) and trapezius lateral 3.87 (SD:+/-3.87). The shear wave speed variation depended on the direction of scanning. Shear wave elastography may be a method to evaluate muscle stiffness in patients suffering from chronic neck pain.
Seo, Mirinae; Ahn, Hye Shin; Park, Sung Hee; Lee, Jong Beum; Choi, Byung Ihn; Sohn, Yu-Mee; Shin, So Youn
2018-01-01
To compare the diagnostic performance of strain and shear wave elastography of breast masses for quantitative assessment in differentiating benign and malignant lesions and to evaluate the diagnostic accuracy of combined strain and shear wave elastography. Between January and February 2016, 37 women with 45 breast masses underwent both strain and shear wave ultrasound (US) elastographic examinations. The American College of Radiology Breast Imaging Reporting and Data System (BI-RADS) final assessment on B-mode US imaging was assessed. We calculated strain ratios for strain elastography and the mean elasticity value and elasticity ratio of the lesion to fat for shear wave elastography. Diagnostic performances were compared by using the area under the receiver operating characteristic curve (AUC). The 37 women had a mean age of 47.4 years (range, 20-79 years). Of the 45 lesions, 20 were malignant, and 25 were benign. The AUCs for elasticity values on strain and shear wave elastography showed no significant differences (strain ratio, 0.929; mean elasticity, 0.898; and elasticity ratio, 0.868; P > .05). After selectively downgrading BI-RADS category 4a lesions based on strain and shear wave elastographic cutoffs, the AUCs for the combined sets of B-mode US and elastography were improved (B-mode + strain, 0.940; B-mode + shear wave; 0.964; and B-mode, 0.724; P < .001). Combined strain and shear wave elastography showed significantly higher diagnostic accuracy than each individual elastographic modality (P = .031). These preliminary results showed that strain and shear wave elastography had similar diagnostic performance. The addition of strain and shear wave elastography to B-mode US improved diagnostic performance. The combination of strain and shear wave elastography results in a higher diagnostic yield than each individual elastographic modality. © 2017 by the American Institute of Ultrasound in Medicine.
High speed all optical shear wave imaging optical coherence elastography (Conference Presentation)
NASA Astrophysics Data System (ADS)
Song, Shaozhen; Hsieh, Bao-Yu; Wei, Wei; Shen, Tueng; O'Donnell, Matthew; Wang, Ruikang K.
2016-03-01
Optical Coherence Elastography (OCE) is a non-invasive testing modality that maps the mechanical property of soft tissues with high sensitivity and spatial resolution using phase-sensitive optical coherence tomography (PhS-OCT). Shear wave OCE (SW-OCE) is a leading technique that relies on the speed of propagating shear waves to provide a quantitative elastography. Previous shear wave imaging OCT techniques are based on repeated M-B scans, which have several drawbacks such as long acquisition time and repeated wave stimulations. Recent developments of Fourier domain mode-locked high-speed swept-source OCT system has enabled enough speed to perform KHz B-scan rate OCT imaging. Here we propose ultra-high speed, single shot shear wave imaging to capture single-shot transient shear wave propagation to perform SW-OCE. The frame rate of shear wave imaging is 16 kHz, at A-line rate of ~1.62 MHz, which allows the detection of high-frequency shear wave of up to 8 kHz. The shear wave is generated photothermal-acoustically, by ultra-violet pulsed laser, which requires no contact to OCE subjects, while launching high frequency shear waves that carries rich localized elasticity information. The image acquisition and processing can be performed at video-rate, which enables real-time 3D elastography. SW-OCE measurements are demonstrated on tissue-mimicking phantoms and porcine ocular tissue. This approach opens up the feasibility to perform real-time 3D SW-OCE in clinical applications, to obtain high-resolution localized quantitative measurement of tissue biomechanical property.
High lateral resolution exploration using surface waves from noise records
NASA Astrophysics Data System (ADS)
Chávez-García, Francisco José Yokoi, Toshiaki
2016-04-01
Determination of the shear-wave velocity structure at shallow depths is a constant necessity in engineering or environmental projects. Given the sensitivity of Rayleigh waves to shear-wave velocity, subsoil structure exploration using surface waves is frequently used. Methods such as the spectral analysis of surface waves (SASW) or multi-channel analysis of surface waves (MASW) determine phase velocity dispersion from surface waves generated by an active source recorded on a line of geophones. Using MASW, it is important that the receiver array be as long as possible to increase the precision at low frequencies. However, this implies that possible lateral variations are discarded. Hayashi and Suzuki (2004) proposed a different way of stacking shot gathers to increase lateral resolution. They combined strategies used in MASW with the common mid-point (CMP) summation currently used in reflection seismology. In their common mid-point with cross-correlation method (CMPCC), they cross-correlate traces sharing CMP locations before determining phase velocity dispersion. Another recent approach to subsoil structure exploration is based on seismic interferometry. It has been shown that cross-correlation of a diffuse field, such as seismic noise, allows the estimation of the Green's Function between two receivers. Thus, a virtual-source seismic section may be constructed from the cross-correlation of seismic noise records obtained in a line of receivers. In this paper, we use the seismic interferometry method to process seismic noise records obtained in seismic refraction lines of 24 geophones, and analyse the results using CMPCC to increase the lateral resolution of the results. Cross-correlation of the noise records allows reconstructing seismic sections with virtual sources at each receiver location. The Rayleigh wave component of the Green's Functions is obtained with a high signal-to-noise ratio. Using CMPCC analysis of the virtual-source seismic lines, we are able to identify lateral variations of phase velocity inside the seismic line, and increase the lateral resolution compared with results of conventional analysis.
The Effect of Saturation on Shear Wave Anisotropy in a Transversely Isotropic Medium
NASA Astrophysics Data System (ADS)
Li, W.; Pyrak-Nolte, L. J.
2010-12-01
Seismic monitoring of fluid distributions in the subsurface requires an understanding of the effect of fluid saturation on the anisotropic properties of layered media. Austin Chalk is a carbonate rock composed mainly of calcite (99.9%) with fine bedding caused by a weakly-directed fabric. In this paper, we assess the shear-wave anisotropy of Austin Chalk and the effect of saturation on interpreting anisotropy based on shear wave velocity, attenuation and spectral content as a function of saturation. In the laboratory, we performed full shear-waveform measurements on several dry cubic samples of Austin Chalk with dimensions 50mm x 50mm x 50mm. Two shear-wave contact transducers (central Frequency 1 MHz) were use to send and receive signals. Data was collected for three orthogonal orientations of the sample and as a function of shear wave polarization relative to the layers in the sample. For the waves propagated parallel to the layers, both fast and slow shear waves were observed with velocities of 3444 m/s and 3193 m/s, respectively. It was noted that the minimum and maximum shear wave velocities did not occur when the shear wave polarization were perpendicular or parallel to the layering in the sample but occurred at an orientation of ~25 degrees from the normal to the layers. The sample was then vacuum saturated with water for approximately ~15 hours. The same measurements were performed on the saturated sample as those on the dry sample. Both shear wave velocities observed decreased upon water-saturation with corresponding velocities of 3155 m/s and 2939 m/s, respectively. In the dry condition the difference between the fast and slow shear wave velocities was 250 m/s. This difference decreased to 215 m/s after fluid saturation. In both the dry and saturated condition, the shear wave velocity for waves propagated perpendicularly to the layers was independent of polarization and had the same magnitude as that of the slow shear wave. A wavelet analysis was performed to determine changes in the spectral content of the signals upon saturation as well velocity dispersion. We found that (1) low frequency components exhibit a larger difference in time delay between the fast and slow shear waves for the water-saturated condition than for the dry condition; (2) that high frequency components have relatively small differences in time delay between the dry and saturated conditions; and (3) the dominant frequency shifted to lower frequencies for the fast shear wave upon saturation while no change in dominant frequency was observed for the slow shear wave upon saturation. Thus, fluid saturation affects shear velocity as well as the spectral content of the signal. Acknowledgments: The authors wish to acknowledge support of this work by the Geosciences Research Program, Office of Basic Energy Sciences US Department of Energy (DE-FG02-09ER16022), by Exxon Mobil Upstream Research Company and the GeoMathematical Imaging Group at Purdue University.
Radial anisotropy of the North American upper mantle based on adjoint tomography with USArray
NASA Astrophysics Data System (ADS)
Zhu, Hejun; Komatitsch, Dimitri; Tromp, Jeroen
2017-10-01
We use seismic data from USArray to image the upper mantle underneath the United States based on a so-called `adjoint tomography', an iterative full waveform inversion technique. The inversion uses data from 180 regional earthquakes recorded by 4516 seismographic stations, resulting in 586 185 frequency-dependent measurements. Three-component short-period body waves and long-period surface waves are combined to simultaneously constrain deep and shallow structures. The transversely isotropic model US22 is the result of 22 pre-conditioned conjugate-gradient iterations. Approximate Hessian maps and point-spread function tests demonstrate good illumination of the study region and limited trade-offs among different model parameters. We observe a distinct wave-speed contrast between the stable eastern US and the tectonically active western US. This boundary is well correlated with the Rocky Mountain Front. Stable cratonic regions are characterized by fast anomalies down to 250-300 km, reflecting the thickness of the North American lithosphere. Several fast anomalies are observed beneath the North American lithosphere, suggesting the possibility of lithospheric delamination. Slow wave-speed channels are imaged beneath the lithosphere, which might indicate weak asthenosphere. Beneath the mantle transition zone of the central US, an elongated north-south fast anomaly is observed, which might be the ancient subducted Farallon slab. The tectonically active western US is dominated by prominent slow anomalies with magnitudes greater than -6 per cent down to approximately 250 km. No continuous lower to upper mantle upwellings are observed beneath Yellowstone. In addition, our results confirm previously observed differences between oceans and continents in the anisotropic parameter ξ = (βh/βv)2. A slow wave-speed channel with ξ > 1 is imaged beneath the eastern Pacific at depths from 100 to 200 km, reflecting horizontal shear within the asthenosphere. Underneath continental areas, regions with ξ > 1 are imaged at shallower depths around 100 km. They are characterized by fast shear wave speeds, suggesting different origins of anisotropy underneath oceans and continents. The wave speed and anisotropic signatures of the western Atlantic are similar to continental areas in comparison with the eastern Pacific. Furthermore, we observe regions with ξ < 1 beneath the tectonically active western US at depths between 300 and 400 km, which might reflect vertical flows induced by subduction of the Farallon and Juan de Fuca Plates. Comparing US22 with several previous tomographic models, we observe relatively good correlations for long-wavelength features. However, there are still large discrepancies for small-scale features.
Song, Pengfei; Zhao, Heng; Manduca, Armando; Urban, Matthew W.; Greenleaf, James F.; Chen, Shigao
2012-01-01
Fast and accurate tissue elasticity imaging is essential in studying dynamic tissue mechanical properties. Various ultrasound shear elasticity imaging techniques have been developed in the last two decades. However, to reconstruct a full field-of-view 2D shear elasticity map, multiple data acquisitions are typically required. In this paper, a novel shear elasticity imaging technique, comb-push ultrasound shear elastography (CUSE), is introduced in which only one rapid data acquisition (less than 35 ms) is needed to reconstruct a full field-of-view 2D shear wave speed map (40 mm × 38 mm). Multiple unfocused ultrasound beams arranged in a comb pattern (comb-push) are used to generate shear waves. A directional filter is then applied upon the shear wave field to extract the left-to-right (LR) and right-to-left (RL) propagating shear waves. Local shear wave speed is recovered using a time-of-flight method based on both LR and RL waves. Finally a 2D shear wave speed map is reconstructed by combining the LR and RL speed maps. Smooth and accurate shear wave speed maps are reconstructed using the proposed CUSE method in two calibrated homogeneous phantoms with different moduli. Inclusion phantom experiments demonstrate that CUSE is capable of providing good contrast (contrast-to-noise-ratio ≥ 25 dB) between the inclusion and background without artifacts and is insensitive to inclusion positions. Safety measurements demonstrate that all regulated parameters of the ultrasound output level used in CUSE sequence are well below the FDA limits for diagnostic ultrasound. PMID:22736690
Anderson localization of shear waves observed by magnetic resonance imaging
NASA Astrophysics Data System (ADS)
Papazoglou, S.; Klatt, D.; Braun, J.; Sack, I.
2010-07-01
In this letter we present for the first time an experimental investigation of shear wave localization using motion-sensitive magnetic resonance imaging (MRI). Shear wave localization was studied in gel phantoms containing arrays of randomly positioned parallel glass rods. The phantoms were exposed to continuous harmonic vibrations in a frequency range from 25 to 175 Hz, yielding wavelengths on the order of the elastic mean free path, i.e. the Ioffe-Regel criterion of Anderson localization was satisfied. The experimental setup was further chosen such that purely shear horizontal waves were induced to avoid effects due to mode conversion and pressure waves. Analysis of the distribution of shear wave intensity in experiments and simulations revealed a significant deviation from Rayleigh statistics indicating that shear wave energy is localized. This observation is further supported by experiments on weakly scattering samples exhibiting Rayleigh statistics and an analysis of the multifractality of wave functions. Our results suggest that motion-sensitive MRI is a promising tool for studying Anderson localization of time-harmonic shear waves, which are increasingly used in dynamic elastography.
Carr, Joel; D'Odorico, Paul; McGlathery, Karen; Wiberg, Patricia L.
2016-01-01
In shallow coastal bays where nutrient loading and riverine inputs are low, turbidity, and the consequent light environment are controlled by resuspension of bed sediments due to wind-waves and tidal currents. High sediment resuspension and low light environments can limit benthic primary productivity; however, both currents and waves are affected by the presence of benthic plants such as seagrass. This feedback between the presence of benthic primary producers such as seagrass and the consequent light environment has been predicted to induce bistable dynamics locally. However, these vegetated areas influence a larger area than they footprint, including a barren adjacent downstream area which exhibits reduced shear stresses. Here we explore through modeling how the patchy structure of seagrass meadows on a landscape may affect sediment resuspension and the consequent light environment due to the presence of this sheltered region. Heterogeneous vegetation covers comprising a mosaic of randomly distributed patches were generated to investigate the effect of patch modified hydrodynamics. Actual cover of vegetation on the landscape was used to facilitate comparisons across landscape realizations. Hourly wave and current shear stresses on the landscape along with suspended sediment concentration and light attenuation characteristics were then calculated and spatially averaged to examine how actual cover and mean water depth affect the bulk sediment and light environment. The results indicate that an effective cover, which incorporates the sheltering area, has important controls on the distributions of shear stress, suspended sediment, light environment, and consequent seagrass habitat suitability. Interestingly, an optimal habitat occurs within a depth range where, if actual cover is reduced past some threshold, the bulk light environment would no longer favor seagrass growth.
Antarctic icequakes triggered by the 2010 Maule earthquake in Chile
NASA Astrophysics Data System (ADS)
Peng, Zhigang; Walter, Jacob I.; Aster, Richard C.; Nyblade, Andrew; Wiens, Douglas A.; Anandakrishnan, Sridhar
2014-09-01
Seismic waves from distant, large earthquakes can almost instantaneously trigger shallow micro-earthquakes and deep tectonic tremor as they pass through Earth's crust. Such remotely triggered seismic activity mostly occurs in tectonically active regions. Triggered seismicity is generally considered to reflect shear failure on critically stressed fault planes and is thought to be driven by dynamic stress perturbations from both Love and Rayleigh types of surface seismic wave. Here we analyse seismic data from Antarctica in the six hours leading up to and following the 2010 Mw 8.8 Maule earthquake in Chile. We identify many high-frequency seismic signals during the passage of the Rayleigh waves generated by the Maule earthquake, and interpret them as small icequakes triggered by the Rayleigh waves. The source locations of these triggered icequakes are difficult to determine owing to sparse seismic network coverage, but the triggered events generate surface waves, so are probably formed by near-surface sources. Our observations are consistent with tensile fracturing of near-surface ice or other brittle fracture events caused by changes in volumetric strain as the high-amplitude Rayleigh waves passed through. We conclude that cryospheric systems can be sensitive to large distant earthquakes.
Zhu, Jiang; Qu, Yueqiao; Ma, Teng; Li, Rui; Du, Yongzhao; Huang, Shenghai; Shung, K Kirk; Zhou, Qifa; Chen, Zhongping
2015-05-01
We report on a novel acoustic radiation force orthogonal excitation optical coherence elastography (ARFOE-OCE) technique for imaging shear wave and quantifying shear modulus under orthogonal acoustic radiation force (ARF) excitation using the optical coherence tomography (OCT) Doppler variance method. The ARF perpendicular to the OCT beam is produced by a remote ultrasonic transducer. A shear wave induced by ARF excitation propagates parallel to the OCT beam. The OCT Doppler variance method, which is sensitive to the transverse vibration, is used to measure the ARF-induced vibration. For analysis of the shear modulus, the Doppler variance method is utilized to visualize shear wave propagation instead of Doppler OCT method, and the propagation velocity of the shear wave is measured at different depths of one location with the M scan. In order to quantify shear modulus beyond the OCT imaging depth, we move ARF to a deeper layer at a known step and measure the time delay of the shear wave propagating to the same OCT imaging depth. We also quantitatively map the shear modulus of a cross-section in a tissue-equivalent phantom after employing the B scan.
Two-dimensional shear wave speed and crawling wave speed recoveries from in vitro prostate data
Lin, Kui; McLaughlin, Joyce R.; Thomas, Ashley; Parker, Kevin; Castaneda, Benjamin; Rubens, Deborah J.
2011-01-01
The crawling wave experiment was developed to capture a shear wave induced moving interference pattern that is created by two harmonic vibration sources oscillating at different but almost the same frequencies. Using the vibration sonoelastography technique, the spectral variance image reveals a moving interference pattern. It has been shown that the speed of the moving interference pattern, i.e., the crawling wave speed, is proportional to the shear wave speed with a nonlinear factor. This factor can generate high-speed artifacts in the crawling wave speed images that do not actually correspond to increased stiffness. In this paper, an inverse algorithm is developed to reconstruct both the crawling wave speed and the shear wave speed using the phases of the crawling wave and the shear wave. The feature for the data is the application to in vitro prostate data, while the features for the algorithm include the following: (1) A directional filter is implemented to obtain a wave moving in only one direction; and (2) an L1 minimization technique with physics inspired constraints is employed to calculate the phase of the crawling wave and to eliminate jump discontinuities from the phase of the shear wave. The algorithm is tested on in vitro prostate data measured at the Rochester Center for Biomedical Ultrasound and University of Rochester. Each aspect of the algorithm is shown to yield image improvement. The results demonstrate that the shear wave speed images can have less artifacts than the crawling wave images. Examples are presented where the shear wave speed recoveries have excellent agreement with histology results on the size, shape, and location of cancerous tissues in the glands. PMID:21786924
Oceanic Volcanism from the Low-Velocity Zone - Without Mantle Plumes (Invited)
NASA Astrophysics Data System (ADS)
Presnall, D. C.; Gudfinnsson, G. H.
2010-12-01
The existence of hot mantle plumes is addressed by using a combination of regional and global shear-wave data, major-element compositions of Hawaiian and MORB glasses (including Iceland), and phase relations for natural lherzolite and the systems CaO-MgO-Al2O3-SiO2-CO2 and CaO-MgO-Al2O3-SiO2-Na2O-FeO. At the East Pacific Rise, the depth of minimum shear wave velocity (Vsv), which we interpret to be the depth of maximum melting, occurs at ~65 km (Webb & Forsyth, 1998, Science, 280, 1229; Conder et al., 2002, JGR, 107, 2344)). This depth increases with lithospheric age and stabilizes at ~150 km (~5 GPa) for ages > ~75 my (Maggi et al., 2006, GJI, 166, 1384). Variations in shear wave anisotropy follow the same pattern (Ekström, 2000, Geophys. Mon. 121, 239) but with a slightly shallower depth of ~130 km for the maximum shear wave anisotropy of the mature Pacific. For a given volcano, the classical Hawaiian sequence of volcanism is early alkalic lavas extracted at ~3 GPa, 1350°C (Sisson et al., 2009, CMP, 158, 803), then voluminous tholeiitic lavas at ~ 4-5 GPa, 1450-1560°C (~150 km), and final alkalic lavas that contain, on Oahu, nanodiamond-bearing xenoliths (Wirth & Rocholl, 2003, EPSL, 211, 357; Frezotti & Peccerillo, 2007, EPSL, 262, 273) and require melt extraction at a pressure slightly > 6 GPa. This progressive increase in P-T conditions of the Hawaiian source matches the equilibrium magma-stratigraphy vs depth indicated by phase relations along a mature-ocean geotherm. This consistency indicates that Hawaiian volcanism occurs by progressively deeper extraction of magmas from a mature LVZ by fracturing of the overlying LID. No decompression melting or enhanced temperature is indicated. At spreading ridges, including Iceland, the absence of glass compositions that define olivine-controlled crystallization trends and the phase equilibrium constraint that all MORBs are extracted at ~1250-1280°C, 1.2-1.5 GPa (Presnall & Gudfinnsson, 2008, JPet., 49, 615) are in excellent agreement with the seismic observation of minimum shear-wave velocity and maximum shear-wave anisotropy (maximum melting) beneath ridges at ~ 65 km. Thus, all MORBs, including those at Iceland, are extracted within the thermal boundary layer along a perturbed geotherm at temperatures cooler than magma-extraction temperatures at Hawaii. This requires a steepened dT/dP slope of the conductive portion of the geotherm at ridges, which is consistent with oceanic heat-flow data vs crustal age. Mantle temperatures for the strongest plume candidate, Hawaii, are consistent with temperatures of oceanic mantle elsewhere of a corresponding age. Temperatures of magma-extraction along all oceanic ridges are far below temperatures consistent with hot mantle plumes.
Improving arrival time identification in transient elastography
NASA Astrophysics Data System (ADS)
Klein, Jens; McLaughlin, Joyce; Renzi, Daniel
2012-04-01
In this paper, we improve the first step in the arrival time algorithm used for shear wave speed recovery in transient elastography. In transient elastography, a shear wave is initiated at the boundary and the interior displacement of the propagating shear wave is imaged with an ultrasound ultra-fast imaging system. The first step in the arrival time algorithm finds the arrival times of the shear wave by cross correlating displacement time traces (the time history of the displacement at a single point) with a reference time trace located near the shear wave source. The second step finds the shear wave speed from the arrival times. In performing the first step, we observe that the wave pulse decorrelates as it travels through the medium, which leads to inaccurate estimates of the arrival times and ultimately to blurring and artifacts in the shear wave speed image. In particular, wave ‘spreading’ accounts for much of this decorrelation. Here we remove most of the decorrelation by allowing the reference wave pulse to spread during the cross correlation. This dramatically improves the images obtained from arrival time identification. We illustrate the improvement of this method on phantom and in vivo data obtained from the laboratory of Mathias Fink at ESPCI, Paris.
NASA Astrophysics Data System (ADS)
Yang, Yiqun; Urban, Matthew W.; McGough, Robert J.
2018-05-01
Shear wave calculations induced by an acoustic radiation force are very time-consuming on desktop computers, and high-performance graphics processing units (GPUs) achieve dramatic reductions in the computation time for these simulations. The acoustic radiation force is calculated using the fast near field method and the angular spectrum approach, and then the shear waves are calculated in parallel with Green’s functions on a GPU. This combination enables rapid evaluation of shear waves for push beams with different spatial samplings and for apertures with different f/#. Relative to shear wave simulations that evaluate the same algorithm on an Intel i7 desktop computer, a high performance nVidia GPU reduces the time required for these calculations by a factor of 45 and 700 when applied to elastic and viscoelastic shear wave simulation models, respectively. These GPU-accelerated simulations also compared to measurements in different viscoelastic phantoms, and the results are similar. For parametric evaluations and for comparisons with measured shear wave data, shear wave simulations with the Green’s function approach are ideally suited for high-performance GPUs.
NASA Astrophysics Data System (ADS)
Agius, Matthew R.; Lebedev, Sergei
2013-04-01
Seismic deployments over the last two decades have produced dense broadband data coverage across the Tibetan Plateau. Yet, the lithospheric dynamics of Tibet remains enigmatic, with even its basic features debated and with very different end-member models still advocated today. Most body-wave tomographic models do not resolve any high-velocity anomalies in the upper mantle beneath central and northern Tibet, which motivated the inference that the Indian lithosphere may sink into deep mantle beneath the Himalayas in the south, with parts of it possibly extruded laterally eastward. In contrast, surface-wave tomographic models all show pronounced high-velocity anomalies beneath much of Tibet at depths around 200 km. Uncertainties over the shapes and amplitudes of the anomalies, however, contribute to the uncertainty of their interpretations, ranging from the subduction of India or Asia to the extreme viscous thickening of the Tibetan lithosphere. Within the lithosphere itself, a low-viscosity layer in the mid-lower crust is evidenced by many observations. It is still unclear, however, whether this layer accommodates a large-scale channel flow (which may have uplifted eastern Tibet, according to one model) or if, instead, deformation within it is similar to that observed at the surface. Broad-band surface waves provide resolving power from the upper crust down to the asthenosphere, for both the isotropic-average shear-wave speeds (characterising the composition and thermal state of the lithosphere) and the radial and azimuthal shear-wave anisotropy (indicative, in an actively deforming region, of the current and recent flow). We measured highly accurate Love- and Rayleigh-wave phase-velocity curves in broad period ranges (up to 5-200 s) for a few tens of pairs and groups of stations across Tibet, combining, in each case, hundreds to thousands of inter-station measurements made with cross-correlation and waveform-inversion methods. Robust shear-velocity profiles were then determined by extensive series of non-linear inversions, designed to constrain the depth-dependent ranges of isotropic-average shear speeds and radial anisotropy consistent with the data. Temperature anomalies in the upper mantle were estimated from shear-velocity using pre-computed petro-physical relationships. Azimuthal anisotropy in the crust and upper mantle was determined by surface-wave tomography and, also, by sub-array analysis targeting the anisotropy amplitude. Our results show that the prominent high-velocity anomalies in the upper mantle are most consistent with the presence of subducted Indian lithosphere beneath much of Tibet. The large estimated thermal anomalies within the high-velocity features match those to be expected within subducted India. The morphology of India's subduction beneath Tibet is complex and shows pronounced west-east variations. Beneath eastern and northeastern Tibet, in particular, the subducted Indian lithosphere appears to have subducted, at a shallow angle, hundreds of km NNE-wards. Azimuthal anisotropy beneath Tibet is distributed in multiple layers with different fast-propagations directions, which accounts for the complexity of published shear-wave splitting observations. The fast directions within the mid-lower crust are parallel to the extensional components of the current strain rate field at the surface, consistent with similar deformation through the entire crust, rather than channel flow. Anisotropy within the asthenosphere beneath northeastern Tibet (sandwiched between the Tibetan lithosphere above and the subducted Indian lithosphere below) indicates SSW-NNE flow, parallel to the direction of motion of the Indian Plate, including its subducted leading edge.
Shear wave speed and dispersion measurements using crawling wave chirps.
Hah, Zaegyoo; Partin, Alexander; Parker, Kevin J
2014-10-01
This article demonstrates the measurement of shear wave speed and shear speed dispersion of biomaterials using a chirp signal that launches waves over a range of frequencies. A biomaterial is vibrated by two vibration sources that generate shear waves inside the medium, which is scanned by an ultrasound imaging system. Doppler processing of the acquired signal produces an image of the square of vibration amplitude that shows repetitive constructive and destructive interference patterns called "crawling waves." With a chirp vibration signal, successive Doppler frames are generated from different source frequencies. Collected frames generate a distinctive pattern which is used to calculate the shear speed and shear speed dispersion. A special reciprocal chirp is designed such that the equi-phase lines of a motion slice image are straight lines. Detailed analysis is provided to generate a closed-form solution for calculating the shear wave speed and the dispersion. Also several phantoms and an ex vivo human liver sample are scanned and the estimation results are presented. © The Author(s) 2014.
NASA Astrophysics Data System (ADS)
Parisi, L.; Ferreira, A. M. G.; Ritsema, J.
2015-12-01
It has been observed that vertically (SV) and horizontally (SH) polarised S waves crossing the lowermost mantle sometimes are split by a few seconds The splitting of such waves is often interpreted in terms of seismic anisotropy in the D" region. Here we investigate systematically the effects of elastic, anelastic, isotropic and anisotropic structure on shear-wave splitting, including 3-D variations in some of these physical properties. Taking advantage of accurate waveform modeling techniques such as Gemini and the Spectral Element Method we generate three-component theoretical waveforms in a wide set of 1-D and 3-D, isotropic and radially anisotropic earth models, accurate down to a wave period of T~5.6s. Our numerical simulations in isotropic earth models show that the contamination of S waves by other phases can generate an apparent splitting between SH and SV waves. In particular, in the case of very shallow sources, the sS phase can interfere with the direct S phase, resulting in split SH and SV pulses when the SH and SV (or sSH and sSV) waves have different polarity or a substantial amplitude difference. In the case of deep earthquake sources, a positive shear velocity jump at the top of the D" can cause the triplication of S waves and the ScSH and ScSV phases can have different polarity. Thus, when the triplicated S wave is combined with the ScS phase, the resulting SH-ScSH and SV-ScSV phases may seem split. On the other hand, in the absence of a sharp vertical variation in the shear wave velocity, the difference in polarity between ScSH and ScSV can make the SH pulse larger than SV and thus also lead to apparent splitting between these phases. This effect depends on the thickness of the D" and the Vs gradient within it. S waveforms simulated in radially anisotropic models reveal that a radial anisotropy of ξ=1.07 in the D" seems to be necessary to explain the 2-3s of splitting observed in waveforms recorded in Tanzania from an event in the Banda Sea. However, our analysis also shows that other factors such as sharp vertical variations at the top of D" and gradients of Vs and η within the D'' may also affect the observed waveforms. This study suggests that caution should be taken when interpreting SH-SV splitting of deep mantle body waves exclusively in terms of anisotropy in the lowermost mantle.
Shallow subsurface structures and geotechnical characteristics of Tal El-Amarna area, middle Egypt
NASA Astrophysics Data System (ADS)
Toni, Mostafa; Hosny, Ahmed; Attia, Mohsen M.; Hassoup, Awad; El-Sharkawy, Amr
2013-12-01
The shallow seismic refraction profiling was carried out at 18 sites in Tal El-Amarna, which is a flat area on the eastern bank of the Nile River, 50 km south of El Minia Governorate, middle Egypt. The collected data are used to estimate the P-wave velocity and to delineate the near-surface ground model beneath the study area. This study is supported by the National Research Institute of Astronomy and Geophysics due to the historical interest of the Tal El-Amarna area as a famous tourist place where there exist many Pharaoh temples and tombs. This area is low seismically active, but it is probably of high vulnerability due to the influence of the local geological conditions on earthquake ground motion, as well as the presence of poor constructions in the absence of various issues such as building designs, quality of building materials, etc. Another dataset at the study area is obtained by multi-channel passive source (microtremor) measurements, which have been recorded at four arrays. The frequency-wavenumber (f-k) method was used to derive the dispersion curves from the raw signals at each array. The resulted dispersion curves were inverted using the neighborhood algorithm to obtain the shear and P-wave velocity models. The concluded Vs and Vp values provide a preliminary estimation of the geotechnical parameters and site classification for the shallow soil as they are of great interest in civil engineering applications.
Characteristics of sediment resuspension in Lake Taihu, China: A wave flume study
NASA Astrophysics Data System (ADS)
Ding, Yanqing; Sun, Limin; Qin, Boqiang; Wu, Tingfeng; Shen, Xia; Wang, Yongping
2018-06-01
Lake Taihu is a typical shallow lake which frequently happens sediment resuspension induced by wind-induced waves. The experiments are carried on to simulate the wave disturbance processes in wave flume by setting a series of wave periods (1.2 s, 1.5 s, 1.8 s) and wave heights (2 cm, 10 cm). It aims to analyze the characteristics of sediment resuspension and the mechanisms of nutrients release and to evaluate the effects of sediment dredging on sediment resuspension and nutrients release in Lake Taihu. The results show that wave shear stress during 2 cm and 10 cm wave height processes ranges 0.018-0.023 N/m2 and 0.221-0.307 N/m2, respectively. Wave shear stress has no significant differences between wave periods. Wave height has much more effects on sediment resuspension. Wave height of 2 cm could induce total suspended solids (TSS) reaching up to 5.21 g/m2 and resuspension flux of sediment (M) up to 1.74 g/m2. TSS sharply increases to 30.33-52.41 g/m2 and M reached up to 48.94 g/m2 when wave height reaches to 10 cm. The disturbance depth under different sediment bulk weights ranges from 0.089 to 0.161 mm. Variation of suspended solids in 3 layers (1 cm, 5 cm, 20 cm above sediment interface) has no significant differences. Organic matter, TN and TP have positive relationship with SS. Organic matter is only accounted for 5.7%-7.3% of SS. The experiments under different sediment bulk densities (1.34 g/cm3, 1.47 g/cm3 and 1.59 g/cm3) find that TSS and M fall by 44.2% and 39.8% with sediment bulk density increasing, respectively. Total TN, DTN, TP and DTP decrease by 24.3%-33.6%. It indicates that sediment dredging could effectively reduce SS concentration and nutrient levels in water column. The researches provide a theoretical basis for sediment dredging to control the shore zone of Lake Taihu for lake management.
The "shallow-waterness" of the wave climate in European coastal regions
NASA Astrophysics Data System (ADS)
Håkon Christensen, Kai; Carrasco, Ana; Bidlot, Jean-Raymond; Breivik, Øyvind
2017-07-01
In contrast to deep water waves, shallow water waves are influenced by bottom topography, which has consequences for the propagation of wave energy as well as for the energy and momentum exchange between the waves and the mean flow. The ERA-Interim reanalysis is used to assess the fraction of wave energy associated with shallow water waves in coastal regions in Europe. We show maps of the distribution of this fraction as well as time series statistics from eight selected stations. There is a strong seasonal dependence and high values are typically associated with winter storms, indicating that shallow water wave effects can occasionally be important even in the deeper parts of the shelf seas otherwise dominated by deep water waves.
NASA Astrophysics Data System (ADS)
Peng, Z.; Ben-Zion, Y.; Michael, A. J.; Zhu, L.
2002-12-01
Waveform modeling of seismic fault zone (FZ) trapped waves has been claimed to provide a high resolution imaging of FZ structure at seismogenic depth. We analyze quantitatively a waveform data set generated by 238 Landers aftershocks recorded by a portable seismic array (Lee, 1999). The array consists of 33 three-component L-22 seismometers, 22 of which on a line crossing the surface rupture zone of the mainshock. A subset of 93 aftershocks were also recorded by the Southern California Seismic Network, while the other events were recorded only by the FZ array. We locate the latter subset of events with a "grid-search relocation method" using accurately picked P and S arrival times, a half-space velocity model, and back-azimuth adjustment to correct the effect of low velocity FZ material on phase arrivals. Next we determine the quality of FZ trapped wave generation from the ratio of trapped waves to S-wave energy for stations relatively close to and far from the FZ. Energy ratios exceeding 4, between 2 and 4, and less than 2, are assigned quality A, B, and C of trapped wave generation. We find that about 70% of nearby events with S-P time less than 2 sec, including many clearly off the fault, generate FZ trapped waves with quality A or B. This distribution is in marked contrast with previous claims that trapped waves at Landers are generated only by sources close to or inside the fault zone (Li et al., 1994, 2000). The existence of trapped waves due to sources outside the Landers rupture zone indicates that the generating structure is shallow, as demonstrated in recent 3D calculations of wave propagation in irregular FZ structures (Fohrmann et al., 2002). The time difference between the S arrivals and trapped wave group does not grow systematically with increasing source-receiver distance along the fault, in agreement with the above conclusion. The dispersion of trapped waves at Landers is rather weak, again suggesting a short propagation distance inside the low velocity FZ material. To put additional constraints on properties of the shallow trapping structure at Landers, we modeled FZ trapped waves with a genetic inversion algorithm (Michael and Ben-Zion, 2002) using the 2D analytical solution of Ben-Zion and Aki (1990) and Ben-Zion (1998) for a uniform FZ structure. The synthetic waveform modeling indicates an effective FZ waveguide with depth of about 3-5 km, width on the order of 200 m, shear velocity reduction relative to the host rock of about 40-50%, and S wave quality factor of about 30. The modeling also shows that the waveguide is not centered at the exposed fault trace (station C00), but at a distance of about 100 m east of C00. Shallow trapping structures with similar properties appear to characterize also the Karadere-Duzce branch of the north Anatolian fault (Ben-Zion et al., 2002) and the Parkfield segment of the San Andreas fault (Michael and Ben-Zion, 2002; Korneev et al., 2002).
Opportunities for shear energy scaling in bulk acoustic wave resonators.
Jose, Sumy; Hueting, Raymond J E
2014-10-01
An important energy loss contribution in bulk acoustic wave resonators is formed by so-called shear waves, which are transversal waves that propagate vertically through the devices with a horizontal motion. In this work, we report for the first time scaling of the shear-confined spots, i.e., spots containing a high concentration of shear wave displacement, controlled by the frame region width at the edge of the resonator. We also demonstrate a novel methodology to arrive at an optimum frame region width for spurious mode suppression and shear wave confinement. This methodology makes use of dispersion curves obtained from finite-element method (FEM) eigenfrequency simulations for arriving at an optimum frame region width. The frame region optimization is demonstrated for solidly mounted resonators employing several shear wave optimized reflector stacks. Finally, the FEM simulation results are compared with measurements for resonators with Ta2O5/ SiO2 stacks showing suppression of the spurious modes.
Estimating V̄s(30) (or NEHRP site classes) from shallow velocity models (depths < 30 m)
Boore, David M.
2004-01-01
The average velocity to 30 m [V??s(30)] is a widely used parameter for classifying sites to predict their potential to amplify seismic shaking. In many cases, however, models of shallow shear-wave velocities, from which V??s(30) can be computed, do not extend to 30 m. If the data for these cases are to be used, some method of extrapolating the velocities must be devised. Four methods for doing this are described here and are illustrated using data from 135 boreholes in California for which the velocity model extends to at least 30 m. Methods using correlations between shallow velocity and V??s(30) result in significantly less bias for shallow models than the simplest method of assuming that the lowermost velocity extends to 30 m. In addition, for all methods the percent of sites misclassified is generally less than 10% and falls to negligible values for velocity models extending to at least 25 m. Although the methods using correlations do a better job on average of estimating V??s(30), the simplest method will generally result in a lower value of V??s(30) and thus yield a more conservative estimate of ground motion [which generally increases as V??s(30) decreases].
NASA Astrophysics Data System (ADS)
Giammarinaro, Bruno; Espíndola, David; Coulouvrat, François; Pinton, Gianmarco
2018-01-01
Focusing is a ubiquitous way to transform waves. Recently, a new type of shock wave has been observed experimentally with high-frame-rate ultrasound: shear shock waves in soft solids. These strongly nonlinear waves are characterized by a high Mach number, because the shear wave velocity is much slower, by 3 orders of magnitude, than the longitudinal wave velocity. Furthermore, these waves have a unique cubic nonlinearity which generates only odd harmonics. Unlike longitudinal waves for which only compressional shocks are possible, shear waves exhibit cubic nonlinearities which can generate positive and negative shocks. Here we present the experimental observation of shear shock wave focusing, generated by the vertical motion of a solid cylinder section embedded in a soft gelatin-graphite phantom to induce linearly vertically polarized motion. Raw ultrasound data from high-frame-rate (7692 images per second) acquisitions in combination with algorithms that are tuned to detect small displacements (approximately 1 μ m ) are used to generate quantitative movies of gel motion. The features of shear shock wave focusing are analyzed by comparing experimental observations with numerical simulations of a retarded-time elastodynamic equation with cubic nonlinearities and empirical attenuation laws for soft solids.
Catchings, Rufus D.; Rymer, Michael J.; Goldman, Mark R.; Sickler, Robert R.; Criley, Coyn J.
2014-01-01
The determination of near‐surface (vadose zone and slightly below) fault locations and geometries is important because assessment of ground rupture, strong shaking, geologic slip rates, and rupture histories occurs at shallow depths. However, seismic imaging of fault zones at shallow depths can be difficult due to near‐surface complexities, such as weathering, groundwater saturation, massive (nonlayered) rocks, and vertically layered strata. Combined P‐ and S‐wave seismic‐refraction tomography data can overcome many of the near‐surface, fault‐zone seismic‐imaging problems because of differences in the responses of elastic (bulk and shear) moduli of P and S waves to shallow‐depth, fault‐zone properties. We show that high‐resolution refraction tomography images of P‐ to S‐wave velocity ratios (VP/VS) can reliably identify near‐surface faults. We demonstrate this method using tomography images of the San Andreas fault (SAF) surface‐rupture zone associated with the 18 April 1906 ∼M 7.9 San Francisco earthquake on the San Francisco peninsula in California. There, the SAF cuts through Franciscan mélange, which consists of an incoherent assemblage of greywacke, chert, greenstone, and serpentinite. A near‐vertical zone (∼75° northeast dip) of high P‐wave velocities (up to 3000 m/s), low S‐wave velocities (∼150–600 m/s), high VP/VS ratios (4–8.8), and high Poisson’s ratios (0.44–0.49) characterizes the main surface‐rupture zone to a depth of about 20 m and is consistent with nearby trench observations. We suggest that the combined VP/VSimaging approach can reliably identify most near‐surface fault zones in locations where many other seismic methods cannot be applied.
Near-field non-radial motion generation from underground chemical explosions in jointed granite
NASA Astrophysics Data System (ADS)
Vorobiev, Oleg; Ezzedine, Souheil; Hurley, Ryan
2018-01-01
This paper describes analysis of non-radial ground motion generated by chemical explosions in a jointed rock formation during the Source Physics Experiment (SPE). Such motion makes it difficult to discriminate between various subsurface events such as explosions, implosions (i.e. mine collapse) and earthquakes. We apply 3-D numerical simulations to understand experimental data collected during the SPEs. The joints are modelled explicitly as compliant thin inclusions embedded into the rock mass. Mechanical properties of the rock and the joints as well as the joint spacing and orientation are inferred from experimental test data, and geophysical and geological characterization of the SPE site which is dominantly Climax Stock granitic outcrop. The role of various factors characterizing the joints such as joint spacing, frictional properties, orientation and persistence in generation of non-radial motion is addressed. The joints in granite at the SPE site are oriented in nearly orthogonal directions with two vertical sets dipping at 70-80 degrees with the same strike angle, one vertical set almost orthogonal to the first two and one shallow angle joint set dipping 15 degrees. In this study we establish the relationship between the joint orientation and azimuthal variations in the polarity of the observed shear motion. The majority of the shear motion is generated due to the effects of non-elastic sliding on the joints near the source, where the wave can create significant shear stress to overcome the cohesive forces at the joints. Near the surface the joints are less confined and are subject to sliding when the pressure waves are reflected. In the far field, where the cohesive forces on the joints cannot be overcome, additional shear motion can be generated due to elastic anisotropy of the rock mass given by preferred spatial orientations of compliant joints.
Lesion contrast and detection using sonoelastographic shear velocity imaging: preliminary results
NASA Astrophysics Data System (ADS)
Hoyt, Kenneth; Parker, Kevin J.
2007-03-01
This paper assesses lesion contrast and detection using sonoelastographic shear velocity imaging. Shear wave interference patterns, termed crawling waves, for a two phase medium were simulated assuming plane wave conditions. Shear velocity estimates were computed using a spatial autocorrelation algorithm that operates in the direction of shear wave propagation for a given kernel size. Contrast was determined by analyzing shear velocity estimate transition between mediums. Experimental results were obtained using heterogeneous phantoms with spherical inclusions (5 or 10 mm in diameter) characterized by elevated shear velocities. Two vibration sources were applied to opposing phantom edges and scanned (orthogonal to shear wave propagation) with an ultrasound scanner equipped for sonoelastography. Demodulated data was saved and transferred to an external computer for processing shear velocity images. Simulation results demonstrate shear velocity transition between contrasting mediums is governed by both estimator kernel size and source vibration frequency. Experimental results from phantoms further indicates that decreasing estimator kernel size produces corresponding decrease in shear velocity estimate transition between background and inclusion material albeit with an increase in estimator noise. Overall, results demonstrate the ability to generate high contrast shear velocity images using sonoelastographic techniques and detect millimeter-sized lesions.
Scattering of plane transverse waves by spherical inclusions in a poroelastic medium
NASA Astrophysics Data System (ADS)
Liu, Xu; Greenhalgh, Stewart; Zhou, Bing
2009-03-01
The scattering of plane transverse waves by a spherical inclusion embedded in an infinite poroelastic medium is treated for the first time in this paper. The vector displacement wave equations of Biot's theory are solved as an infinite series of vector spherical harmonics for the case of a plane S-wave impinging from a porous medium onto a spherical inclusion which itself is assumed to be another porous medium. Based on the single spherical scattering theory and dynamic composite elastic medium theory, the non-self-consistent shear wavenumber is derived for a porous rock having numerous spherical inclusions of another medium. The frequency dependences of the shear wave velocity and the shear wave attenuation have been calculated for both the patchy saturation model (inclusions having the same solid frame as the host but with a different pore fluid from the host medium) and the double porosity model (inclusions having a different solid frame than the host but the same pore fluid as the host medium) with dilute concentrations of identical inclusions. Unlike the case of incident P-wave scattering, we show that although the fluid and the heterogeneity of the rock determine the shear wave velocity of the composite, the attenuation of the shear wave caused by scattering is actually contributed by the heterogeneity of the rock for spherical inclusions. The scattering of incident shear waves in the patchy saturation model is quite different from that of the double porosity model. For the patchy saturation model, the gas inclusions do not significantly affect the shear wave dispersion characteristic of the water-filled host medium. However, the softer inclusion with higher porosity in the double porosity model can cause significant shear wave scattering attenuation which occurs at a frequency at which the wavelength of the shear wave is approximately equal to the characteristic size of the inclusion and depends on the volume fraction. Compared with analytic formulae for the low frequency limit of the shear velocity, our scattering model yields discrepancies within 4.0 per cent. All calculated shear velocities of the composite medium with dilute inclusion concentrations approach the high frequency limit of the host material.
High temperature integrated ultrasonic shear and longitudinal wave probes
NASA Astrophysics Data System (ADS)
Ono, Y.; Jen, C.-K.; Kobayashi, M.
2007-02-01
Integrated ultrasonic shear wave probes have been designed and developed using a mode conversion theory for nondestructive testing and characterization at elevated temperatures. The probes consisted of metallic substrates and high temperature piezoelectric thick (>40μm) films through a paint-on method. Shear waves are generated due to mode conversion from longitudinal to shear waves because of reflection inside the substrate having a specific shape. A novel design scheme is proposed to reduce the machining time of substrates and thick film fabrication difficulty. A probe simultaneously generating and receiving both longitudinal and shear waves is also developed and demonstrated. In addition, a shear wave probe using a clad buffer rod consisting of an aluminum core and stainless steel cladding has been developed. All the probes were tested and successfully operated at 150°C.
Amador, Carolina; Chen, Shigao; Manduca, Armando; Greenleaf, James F.; Urban, Matthew W.
2017-01-01
Quantitative ultrasound elastography is increasingly being used in the assessment of chronic liver disease. Many studies have reported ranges of liver shear wave velocities values for healthy individuals and patients with different stages of liver fibrosis. Nonetheless, ongoing efforts exist to stabilize quantitative ultrasound elastography measurements by assessing factors that influence tissue shear wave velocity values, such as food intake, body mass index (BMI), ultrasound scanners, scanning protocols, ultrasound image quality, etc. Time-to-peak (TTP) methods have been routinely used to measure the shear wave velocity. However, there is still a need for methods that can provide robust shear wave velocity estimation in the presence of noisy motion data. The conventional TTP algorithm is limited to searching for the maximum motion in time profiles at different spatial locations. In this study, two modified shear wave speed estimation algorithms are proposed. The first method searches for the maximum motion in both space and time (spatiotemporal peak, STP); the second method applies an amplitude filter (spatiotemporal thresholding, STTH) to select points with motion amplitude higher than a threshold for shear wave group velocity estimation. The two proposed methods (STP and STTH) showed higher precision in shear wave velocity estimates compared to TTP in phantom. Moreover, in a cohort of 14 healthy subjects STP and STTH methods improved both the shear wave velocity measurement precision and the success rate of the measurement compared to conventional TTP. PMID:28092532
Amador Carrascal, Carolina; Chen, Shigao; Manduca, Armando; Greenleaf, James F; Urban, Matthew W
2017-04-01
Quantitative ultrasound elastography is increasingly being used in the assessment of chronic liver disease. Many studies have reported ranges of liver shear wave velocity values for healthy individuals and patients with different stages of liver fibrosis. Nonetheless, ongoing efforts exist to stabilize quantitative ultrasound elastography measurements by assessing factors that influence tissue shear wave velocity values, such as food intake, body mass index, ultrasound scanners, scanning protocols, and ultrasound image quality. Time-to-peak (TTP) methods have been routinely used to measure the shear wave velocity. However, there is still a need for methods that can provide robust shear wave velocity estimation in the presence of noisy motion data. The conventional TTP algorithm is limited to searching for the maximum motion in time profiles at different spatial locations. In this paper, two modified shear wave speed estimation algorithms are proposed. The first method searches for the maximum motion in both space and time [spatiotemporal peak (STP)]; the second method applies an amplitude filter [spatiotemporal thresholding (STTH)] to select points with motion amplitude higher than a threshold for shear wave group velocity estimation. The two proposed methods (STP and STTH) showed higher precision in shear wave velocity estimates compared with TTP in phantom. Moreover, in a cohort of 14 healthy subjects, STP and STTH methods improved both the shear wave velocity measurement precision and the success rate of the measurement compared with conventional TTP.
McAleavey, Stephen A
2014-05-01
Shear wave induced phase encoding (SWIPE) imaging generates ultrasound backscatter images of tissue-like elastic materials by using traveling shear waves to encode the lateral position of the scatters in the phase of the received echo. In contrast to conventional ultrasound B-scan imaging, SWIPE offers the potential advantages of image formation without beam focusing or steering from a single transducer element, lateral resolution independent of aperture size, and the potential to achieve relatively high lateral resolution with low frequency ultrasound. Here a Fourier series description of the phase modulated echo signal is developed, demonstrating that echo harmonics at multiples of the shear wave frequency reveal target k-space data at identical multiples of the shear wavenumber. Modulation transfer functions of SWIPE imaging systems are calculated for maximum shear wave acceleration and maximum shear constraints, and compared with a conventionally focused aperture. The relative signal-to-noise ratio of the SWIPE method versus a conventionally focused aperture is found through these calculations. Reconstructions of wire targets in a gelatin phantom using 1 and 3.5 MHz ultrasound and a cylindrical shear wave source are presented, generated from the fundamental and second harmonic of the shear wave modulation frequency, demonstrating weak dependence of lateral resolution with ultrasound frequency.
Analysis of Transient Shear Wave in Lossy Media.
Parker, Kevin J; Ormachea, Juvenal; Will, Scott; Hah, Zaegyoo
2018-07-01
The propagation of shear waves from impulsive forces is an important topic in elastography. Observations of shear wave propagation can be obtained with numerous clinical imaging systems. Parameter estimations of the shear wave speed in tissues, and more generally the viscoelastic parameters of tissues, are based on some underlying models of shear wave propagation. The models typically include specific choices of the spatial and temporal shape of the impulsive force and the elastic or viscoelastic properties of the medium. In this work, we extend the analytical treatment of 2-D shear wave propagation in a biomaterial. The approach applies integral theorems relevant to the solution of the generalized Helmholtz equation, and does not depend on a specific rheological model of the tissue's viscoelastic properties. Estimators of attenuation and shear wave speed are derived from the analytical solutions, and these are applied to an elastic phantom, a viscoelastic phantom and in vivo liver using a clinical ultrasound scanner. In these samples, estimated shear wave group velocities ranged from 1.7 m/s in the liver to 2.5 m/s in the viscoelastic phantom, and these are lower-bounded by independent measurements of phase velocity. Copyright © 2018 World Federation for Ultrasound in Medicine and Biology. Published by Elsevier Inc. All rights reserved.
Fluid Effects on Shear for Seismic Waves in Finely Layered Porous Media
DOE Office of Scientific and Technical Information (OSTI.GOV)
Berryman, J G
Although there are five effective shear moduli for any layered VTI medium, one and only one effective shear modulus of the layered system (namely the uniaxial shear) contains all the dependence of pore fluids on the elastic or poroelastic constants that can be observed in vertically polarized shear waves. Pore fluids can increase the magnitude the shear energy stored in this modulus by an amount that ranges from the smallest to the largest effective shear moduli of the VTI system. But, since there are five shear moduli in play, the overall increase in shear energy due to fluids is reducedmore » by a factor of about 5 in general. We can therefore give definite bounds on the maximum increase of overall shear modulus, being about 20% of the allowed range as liquid is fully substituted for gas. An attendant increase of density (depending on porosity and fluid density) by approximately 5 to 10% decreases the shear wave speed and, thereby, partially offsets the effect of this shear modulus increase. The final result is an increase of shear wave speed on the order of 5 to 10%. This increase is shown to be possible under most favorable circumstances - i.e. when the shear modulus fluctuations are large (resulting in strong anisotropy) and the medium behaves in an undrained fashion due to fluid trapping. At frequencies higher than seismic (such as sonic and ultrasonic waves for well-logging or laboratory experiments), resulting short response times also produce the requisite undrained behavior and, therefore, fluids also affect shear waves at high frequencies by increasing rigidity.« less
Delineation of a collapse feature in a noisy environment using a multichannel surface wave technique
Xia, J.; Chen, C.; Li, P.H.; Lewis, M.J.
2004-01-01
A collapse developed at Calvert Cliffs Nuclear Power Plant, Maryland, in early 2001. The location of the collapse was over a groundwater drainage system pipe buried at an elevation of +0??9 m (reference is to Chesapeake Bay level). The cause of the collapse was a subsurface drain pipe that collapsed because of saltwater corrosion of the corrugated metal pipe. The inflow/outflow of sea water and groundwater flow caused soil to be removed from the area where the pipe collapsed. To prevent damage to nearby structures, the collapse was quickly filled with uncompacted sand and gravel (???36000 kg). However, the plant had an immediate need to determine whether more underground voids existed. A high-frequency multichannel surface-wave survey technique was conducted to define the zone affected by the collapse. Although the surface-wave survey at Calvert Cliffs Nuclear Power Plant was conducted at a noise level 50-100 times higher than the normal environment for a shallow seismic survey, the shear (S)-wave velocity field calculated from surface-wave data delineated a possible zone affected by the collapse. The S-wave velocity field showed chimney-shaped low-velocity anomalies that were directly related to the collapse. Based on S-wave velocity field maps, a potential zone affected by the collapse was tentatively defined.
Real-time shear velocity imaging using sonoelastographic techniques.
Hoyt, Kenneth; Parker, Kevin J; Rubens, Deborah J
2007-07-01
In this paper, a novel sonoelastographic technique for estimating local shear velocities from propagating shear wave interference patterns (termed crawling waves) is introduced. A relationship between the local crawling wave spatial phase derivatives and local shear wave velocity is derived with phase derivatives estimated using an autocorrelation technique. Results from homogeneous phantoms demonstrate the ability of sonoelastographic shear velocity imaging to quantify the true underlying shear velocity distributions as verified using time-of-flight measurements. Heterogeneous phantom results reveal the capacity for lesion detection and shear velocity quantification as validated from mechanical measurements on phantom samples. Experimental results obtained from a prostate specimen illustrated feasibility for shear velocity imaging in tissue. More importantly, high-contrast visualization of focal carcinomas was demonstrated introducing the clinical potential of this novel sonoelastographic imaging technique.
NASA Astrophysics Data System (ADS)
Roy, Corinna; Calo, Marco; Bodin, Thomas; Romanowicz, Barbara
2016-04-01
Competing hypotheses for the formation and evolution of continents are highly under debate, including the theory of underplating by hot plumes or accretion by shallow subduction in continental or arc settings. In order to support these hypotheses, documenting structural layering in the cratonic lithosphere becomes especially important. Recent studies of seismic-wave receiver function data have detected a structural boundary under continental cratons at 100-140 km depths, which is too shallow to be consistent with the lithosphere-asthenosphere boundary, as inferred from seismic tomography and other geophysical studies. This leads to the conclusion that 1) the cratonic lithosphere may be thinner than expected, contradicting tomographic and other geophysical or geochemical inferences, or 2) that the receiver function studies detect a mid-lithospheric discontinuity rather than the LAB. On the other hand, several recent studies documented significant changes in the direction of azimuthal anisotropy with depth that suggest layering in the anisotropic structure of the stable part of the North American continent. In particular, Yuan and Romanowicz (2010) combined long period surface wave and overtone data with core refracted shear wave (SKS) splitting measurements in a joint tomographic inversion. A question that arises is whether the anisotropic layering observed coincides with that obtained from receiver function studies. To address this question, we use a trans-dimensional Markov-chain Monte Carlo (MCMC) algorithm to generate probabilistic 1D radially and azimuthal anisotropic shear wave velocity profiles for selected stations in North America. In the algorithm we jointly invert short period (Ps Receiver Functions, surface wave dispersion for Love and Rayleigh waves) and long period data (SKS waveforms). By including three different data types, which sample different volumes of the Earth and have different sensitivities to structure, we overcome the problem of incompatible interpretations of models provided by only one data set. The resulting 1D profiles include both isotropic and anisotropic discontinuities in the upper mantle (above 350 km depth). The huge advantage of our procedure is the avoidance of any intermediate processing steps such as numerical deconvolution or the calculation of splitting parameters, which can be very sensitive to noise. Additionally, the number of layers, as well as the data noise and the presence of anisotropy are treated as unknowns in the transdimensional Monte Carlo Markov chain algorithm. We recently demonstrated the power of this approach in the case of two stations located in different tectonic settings (Bodin et al., 2015, submitted). Here we extend this approach to a broader range of settings within the north American continent.
NASA Astrophysics Data System (ADS)
Che, Ailan; Luo, Xianqi; Qi, Jinghua; Wang, Deyong
Shear wave velocity (Vs) of soil is one of the key parameters used in assessment of liquefaction potential of saturated soils in the base with leveled ground surface; determination of shear module of soils used in seismic response analyses. Such parameter can be experimentally obtained from laboratory soil tests and field measurements. Statistical relation of shear wave velocity with soil properties based on the surface wave survey investigation, and resonant column triaxial tests, which are taken from more than 14 sites within the depth of 10 m under ground surface, is obtained in Tianjin (China) area. The relationship between shear wave velocity and the standard penetration test N value (SPT-N value) of silt and clay in the quaternary formation are summarized. It is an important problem to research the effect of shear wave velocity on liquefaction resistance of saturated silts (sandy loams) for evaluating liquefaction resistance. According the results of cyclic triaxial tests, a correlation between liquefaction resistance and shear wave velocity is presented. The results are useful for ground liquefaction investigation and the evaluation of liquefaction resistance.
Elastic parabolic equation solutions for underwater acoustic problems using seismic sources.
Frank, Scott D; Odom, Robert I; Collis, Jon M
2013-03-01
Several problems of current interest involve elastic bottom range-dependent ocean environments with buried or earthquake-type sources, specifically oceanic T-wave propagation studies and interface wave related analyses. Additionally, observed deep shadow-zone arrivals are not predicted by ray theoretic methods, and attempts to model them with fluid-bottom parabolic equation solutions suggest that it may be necessary to account for elastic bottom interactions. In order to study energy conversion between elastic and acoustic waves, current elastic parabolic equation solutions must be modified to allow for seismic starting fields for underwater acoustic propagation environments. Two types of elastic self-starter are presented. An explosive-type source is implemented using a compressional self-starter and the resulting acoustic field is consistent with benchmark solutions. A shear wave self-starter is implemented and shown to generate transmission loss levels consistent with the explosive source. Source fields can be combined to generate starting fields for source types such as explosions, earthquakes, or pile driving. Examples demonstrate the use of source fields for shallow sources or deep ocean-bottom earthquake sources, where down slope conversion, a known T-wave generation mechanism, is modeled. Self-starters are interpreted in the context of the seismic moment tensor.
NASA Astrophysics Data System (ADS)
Wu, Zhe; Taylor, Lawrence S.; Rubens, Deborah J.; Parker, Kevin J.
2004-03-01
The shear wave velocity is one of a few important parameters that characterize the mechanical properties of bio-materials. In this paper, two noninvasive methods are proposed to measure the shear velocity by inspecting the shear wave interference patterns. In one method, two shear wave sources are placed on the opposite two sides of a sample, driven by the identical sinusoidal signals. The shear waves from the two sources interact to create interference patterns, which are visualized by the vibration sonoelastography technique. The spacing between the pattern bands equals half of the shear wavelength. The shear velocity can be obtained by taking the product of the wavelength and the frequency. An alternative method is to drive the two vibration sources at slightly different frequencies. In this case, the interference patterns no longer remain stationary. It is proved that the apparent velocity of the moving patterns is proportional to the shear velocity in the medium. Since the apparent velocity of the patterns can be measured by analysing the video sequence, the shear velocity can be obtained thereafter. These approaches are validated by a conventional shear wave time-of-flight approach, and they are accurate within 4% on various homogeneous tissue-mimicking phantoms.
Full-wave effects on shear wave splitting
NASA Astrophysics Data System (ADS)
Lin, Yu-Pin; Zhao, Li; Hung, Shu-Huei
2014-02-01
Seismic anisotropy in the mantle plays an important role in our understanding of the Earth's internal dynamics, and shear wave splitting has always been a key observable in the investigation of seismic anisotropy. To date the interpretation of shear wave splitting in terms of anisotropy has been largely based on ray-theoretical modeling of a single vertically incident plane SKS or SKKS wave. In this study, we use sensitivity kernels of shear wave splitting to anisotropic parameters calculated by the normal-mode theory to demonstrate that the interference of SKS with other phases of similar arrival times, near-field effect, and multiple reflections in the crust lead to significant variations of SKS splitting with epicentral distance. The full-wave kernels not only widen the possibilities in the source-receiver geometry in making shear wave splitting measurements but also provide the capability for tomographic inversion to resolve vertical and lateral variations in the anisotropic structures.
NASA Astrophysics Data System (ADS)
Price, A. C.; Weeraratne, D. S.; Kohler, M. D.; Rathnayaka, S.; Escobar, L., Sr.
2015-12-01
The North American and Pacific plate boundary is a unique example of past subduction of an oceanic spreading center which has involved oceanic plate capture and inception of a continental transform boundary that juxtaposes continental and oceanic lithosphere on a single plate. The amphibious ALBACORE seismic project (Asthenospheric and Lithospheric Broadband Architecture from the California Offshore Region Experiment) deployed 34 ocean bottom seismometers (OBS) on 15-35 Ma seafloor and offers a unique opportunity to compare the LAB in continental and oceanic lithosphere in one seismic study. Rayleigh waves were recorded simultaneously by our offshore array and 82 CISN network land stations from 2010-2011. Here we predict phase velocities for a starting shear wave velocity model for each of 5 regions in our study area and compare to observed phase velocities from our array in a least-squares sense that produces the best fit 1-D shear wave velocity structure for each region. Preliminary results for the deep ocean (seafloor 25-32 Ma) indicates high velocities reaching 4.5 km/s at depths of 50 km associated with the lithosphere for seafloor 25-32 Ma. A negative velocity gradient is observed below this which reaches a minimum of 4.0 km/s at 160 km depth. The mid-ocean region (age 13-25 Ma) indicates a slightly lower magnitude and shallower LVZ. The Inner Borderland displays the highest lithospheric velocities offshore reaching 4.8 km/s at 40 km depth indicating underplating. The base of the LVZ in the Borderland increases sharply from 4.0 km/s to 4.5 km/s at 80-150 km depth indicating partial melt and compositional changes. The LVZ displays a very gradual positive velocity gradient in all other regions such as the deep seafloor and continent reaching 4.5 km/s at 300 km depth. The deep ocean, Borderlands, and continental region each have unique lithospheric velocities, LAB depths, and LVZ character that indicate stark differences in mantle structure that occur on a single plate as well as across the continental margin.
Longitudinally polarized shear wave optical coherence elastography (Conference Presentation)
NASA Astrophysics Data System (ADS)
Miao, Yusi; Zhu, Jiang; Qi, Li; Qu, Yueqiao; He, Youmin; Gao, Yiwei; Chen, Zhongping
2017-02-01
Shear wave measurement enables quantitative assessment of tissue viscoelasticity. In previous studies, a transverse shear wave was measured using optical coherence elastography (OCE), which gives poor resolution along the force direction because the shear wave propagates perpendicular to the applied force. In this study, for the first time to our knowledge, we introduce an OCE method to detect a longitudinally polarized shear wave that propagates along the force direction. The direction of vibration induced by a piezo transducer (PZT) is parallel to the direction of wave propagation, which is perpendicular to the OCT beam. A Doppler variance method is used to visualize the transverse displacement. Both homogeneous phantoms and a side-by-side two-layer phantom were measured. The elastic moduli from mechanical tests closely matched to the values measured by the OCE system. Furthermore, we developed 3D computational models using finite element analysis to confirm the shear wave propagation in the longitudinal direction. The simulation shows that a longitudinally polarized shear wave is present as a plane wave in the near field of planar source due to diffraction effects. This imaging technique provides a novel method for the assessment of elastic properties along the force direction, which can be especially useful to image a layered tissue.
Estimation of viscoelastic parameters in Prony series from shear wave propagation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jung, Jae-Wook; Hong, Jung-Wuk, E-mail: j.hong@kaist.ac.kr, E-mail: jwhong@alum.mit.edu; Lee, Hyoung-Ki
2016-06-21
When acquiring accurate ultrasonic images, we must precisely estimate the mechanical properties of the soft tissue. This study investigates and estimates the viscoelastic properties of the tissue by analyzing shear waves generated through an acoustic radiation force. The shear waves are sourced from a localized pushing force acting for a certain duration, and the generated waves travel horizontally. The wave velocities depend on the mechanical properties of the tissue such as the shear modulus and viscoelastic properties; therefore, we can inversely calculate the properties of the tissue through parametric studies.
Suh, Chong Hyun; Choi, Young Jun; Baek, Jung Hwan; Lee, Jeong Hyun
2017-01-01
To evaluate the diagnostic performance of shear wave elastography for malignant cervical lymph nodes. We searched the Ovid-MEDLINE and EMBASE databases for published studies regarding the use of shear wave elastography for diagnosing malignant cervical lymph nodes. The diagnostic performance of shear wave elastography was assessed using bivariate modelling and hierarchical summary receiver operating characteristic modelling. Meta-regression analysis and subgroup analysis according to acoustic radiation force impulse imaging (ARFI) and Supersonic shear imaging (SSI) were also performed. Eight eligible studies which included a total sample size of 481 patients with 647 cervical lymph nodes, were included. Shear wave elastography showed a summary sensitivity of 81 % (95 % CI: 72-88 %) and specificity of 85 % (95 % CI: 70-93 %). The results of meta-regression analysis revealed that the prevalence of malignant lymph nodes was a significant factor affecting study heterogeneity (p < .01). According to the subgroup analysis, the summary estimates of the sensitivity and specificity did not differ between ARFI and SSI (p = .93). Shear wave elastography is an acceptable imaging modality for diagnosing malignant cervical lymph nodes. We believe that both ARFI and SSI may have a complementary role for diagnosing malignant cervical lymph nodes. • Shear wave elastography is acceptable modality for diagnosing malignant cervical lymph nodes. • Shear wave elastography demonstrated summary sensitivity of 81 % and specificity of 85 %. • ARFI and SSI have complementary roles for diagnosing malignant cervical lymph nodes.
NASA Astrophysics Data System (ADS)
Song, Shaozhen; Le, Nhan Minh; Wang, Ruikang K.; Huang, Zhihong
2015-03-01
Shear Wave Optical Coherence Elastography (SW-OCE) uses the speed of propagating shear waves to provide a quantitative measurement of localized shear modulus, making it a valuable technique for the elasticity characterization of tissues such as skin and ocular tissue. One of the main challenges in shear wave elastography is to induce a reliable source of shear wave; most of nowadays techniques use external vibrators which have several drawbacks such as limited wave propagation range and/or difficulties in non-invasive scans requiring precisions, accuracy. Thus, we propose linear phase array ultrasound transducer as a remote wave source, combined with the high-speed, 47,000-frame-per-second Shear-wave visualization provided by phase-sensitive OCT. In this study, we observed for the first time shear waves induced by a 128 element linear array ultrasound imaging transducer, while the ultrasound and OCT images (within the OCE detection range) were triggered simultaneously. Acoustic radiation force impulses are induced by emitting 10 MHz tone-bursts of sub-millisecond durations (between 50 μm - 100 μm). Ultrasound beam steering is achieved by programming appropriate phase delay, covering a lateral range of 10 mm and full OCT axial (depth) range in the imaging sample. Tissue-mimicking phantoms with agarose concentration of 0.5% and 1% was used in the SW-OCE measurements as the only imaging samples. The results show extensive improvements over the range of SW-OCE elasticity map; such improvements can also be seen over shear wave velocities in softer and stiffer phantoms, as well as determining the boundary of multiple inclusions with different stiffness. This approach opens up the feasibility to combine medical ultrasound imaging and SW-OCE for high-resolution localized quantitative measurement of tissue biomechanical property.
Helgerud, M.B.; Waite, W.F.; Kirby, S.H.; Nur, A.
2003-01-01
We report on laboratory measurements of compressional- and shear-wave speeds in a compacted, polycrystalline ice-Ih sample. The sample was made from triply distilled water that had been frozen into single crystal ice, ground into small grains, and sieved to extract the 180250 µm diameter fraction. Porosity was eliminated from the sample by compacting the granular ice between a hydraulically driven piston and a fixed end plug, both containing shear-wave transducers. Based on simultaneous compressional- and shear-wave-speed measurements, we calculated Poisson's ratio and compressional-wave, bulk, and shear moduli from 20 to 5°C and 22 to 33 MPa.
NASA Astrophysics Data System (ADS)
Song, Shaozhen; Joy, Joyce; Wang, Ruikang K.; Huang, Zhihong
2015-03-01
A quantitative measurement of the mechanical properties of biological tissue is a useful assessment of its physiologic conditions, which may aid medical diagnosis and treatment of, e.g., scleroderma and skin cancer. Traditional elastography techniques such as magnetic resonance elastography and ultrasound elastography have limited scope of application on skin due to insufficient spatial resolution. Recently, dynamic / transient elastography are attracting more applications with the advantage of non-destructive measurements, and revealing the absolute moduli values of tissue mechanical properties. Shear wave optical coherence elastography (SW-OCE) is a novel transient elastography method, which lays emphasis on the propagation of dynamic mechanical waves. In this study, high speed shear wave imaging technique was applied to a range of soft-embalmed mouse skin, where 3 kHz shear waves were launched with a piezoelectric actuator as an external excitation. The shear wave velocity was estimated from the shear wave images, and used to recover a shear modulus map in the same OCT imaging range. Results revealed significant difference in shear modulus and structure in compliance with gender, and images on fresh mouse skin are also compared. Thiel embalming technique is also proven to present the ability to furthest preserve the mechanical property of biological tissue. The experiment results suggest that SW-OCE is an effective technique for quantitative estimation of skin tissue biomechanical status.
NASA Astrophysics Data System (ADS)
Scala, Antonio; Murphy, Shane; Romano, Fabrizio; Lorito, Stefano; Festa, Gaetano; Volpe, Manuela; Piatanesi, Alessio
2017-04-01
Recent megathrust tsunamigenic events, e.g. Maule 2010 (M8.8) and Tohoku 2011 (M9.0), generated huge tsunami waves as a consequence of high slip in the shallow part of the respective subduction zone. Other events, (e.g. the recent Mentawai 2010, M7.8, or the historical Meiji 1896, M8.2), referred to as tsunami earthquakes, produced unexpectedly large tsunami waves, probably due to large slip at shallow depth over longer rupture durations compared to deeper thrust events. Subduction zone earthquakes originate and propagate along bimaterial interfaces separating materials having different elastic properties, e.g. continental and oceanic crust, a stiffer deep mantle wedge, shallow compliant accretionary prism etc. Bimaterial interfaces have been showed, through observations (seismological and laboratory) and theoretical studies, to affect the rupture: introducing a preferred rupture direction as well as asymmetric rupture velocities and shear stress redistributions. Such features are predominantly due to the break of symmetry between the two sides of the interface in turn ascribable to the complex coupling between the frictional interfacial sliding and the slip-induced normal stress perturbations. In order to examine the influence of material contrast on a fault plane on the seismic source and tsunami waves, we modelled a Tohoku-like subduction zone to perform a large number of 2D along-dip rupture dynamics simulations in the framework of linear slip weakening both for homogeneous and bimaterial fault. In this latter model, the rupture acts as the interface between the subducting oceanic crust and the overriding layers (accretionary prism, continental crust and mantle wedge), varying the position of the shear stress asperity acting as nucleation patch. Initial results reveal that ruptures in homogeneous media produce earthquakes with large slip at depth compared to the case where bi-material interface is included. However the opposite occurs for events nucleating at intermediate depths: the compliant accretionary prism favours slip up to the free surface leading to larger events compared to the homogeneous case. These preliminary findings will be further investigated considering different material contrasts between the slab and the overriding accretionary prism to mimic the slowness of the sedimentary wedge. This will contribute to assess the influence of these contrasts in more realistic environment on the seismic source features and, in turn, on the conditional probability of exceedance for maximum tsunami wave height for a M9 event. Several source parameters, such as coseismic slip, rupture duration, rupture velocity and stress conditions, derived from the numerical simulations will be compared to those inferred from real events using existing finite fault catalogues (e.g. USGS, SRCMOD, etc.).
Pollitz, F.F.; Snoke, J. Arthur
2010-01-01
We utilize two-and-three-quarter years of vertical-component recordings made by the Transportable Array (TA) component of Earthscope to constrain three-dimensional (3-D) seismic shear wave velocity structure in the upper 200 km of the western United States. Single-taper spectral estimation is used to compile measurements of complex spectral amplitudes from 44 317 seismograms generated by 123 teleseismic events. In the first step employed to determine the Rayleigh-wave phase-velocity structure, we implement a new tomographic method, which is simpler and more robust than scattering-based methods (e.g. multi-plane surface wave tomography). The TA is effectively implemented as a large number of local arrays by defining a horizontal Gaussian smoothing distance that weights observations near a given target point. The complex spectral-amplitude measurements are interpreted with the spherical Helmholtz equation using local observations about a succession of target points, resulting in Rayleigh-wave phase-velocity maps at periods over the range of 18–125 s. The derived maps depend on the form of local fits to the Helmholtz equation, which generally involve the nonplane-wave solutions of Friederich et al. In a second step, the phase-velocity maps are used to derive 3-D shear velocity structure. The 3-D velocity images confirm details witnessed in prior body-wave and surface-wave studies and reveal new structures, including a deep (>100 km deep) high-velocity lineament, of width ∼200 km, stretching from the southern Great Valley to northern Utah that may be a relic of plate subduction or, alternatively, either a remnant of the Mojave Precambrian Province or a mantle downwelling. Mantle seismic velocity is highly correlated with heat flow, Holocene volcanism, elastic plate thickness and seismicity. This suggests that shallow mantle structure provides the heat source for associated magmatism, as well as thinning of the thermal lithosphere, leading to relatively high stress concentration. Our images also confirm the presence of high-velocity mantle at 100 km depth beneath areas of suspected mantle delamination (southern Sierra Nevada; Grande Ronde uplift), low velocity mantle underlying active rift zones, and high velocity mantle associated with the subducting Juan de Fuca plate. Structure established during the Proterozoic appears to exert a lasting influence on subsequent volcanism and tectonism up to the Present.
Shear wave in a pre-stressed poroelastic medium diffracted by a rigid strip
NASA Astrophysics Data System (ADS)
Singh, Abhishek Kumar; Yadav, Ram Prasad; Kumar, Santan; Chattopadhyay, Amares
2017-10-01
The investigated work analytically addresses the diffraction of horizontally polarised shear wave by a rigid strip in a pre-stressed transversely isotropic poroelastic infinite medium. The far field solution for the diffracted displacement of shear wave has been established in closed form. The diffraction patterns for displacement in the said medium have been computed numerically and its dependence on wave number has been depicted graphically. Further, the study also delineates the pronounced influence of various affecting parameters viz. anisotropy parameter, porosity parameter, speed of the shear wave, and incident angle on the diffracted displacement of the propagating wave. The effects of horizontal as well as vertical compressive and tensile pre-stresses on diffracted displacement of propagating wave have been examined meticulously in a comparative manner. It can be remarkably quoted that porosity prevailing in the medium disfavors the diffracted displacement of the propagating wave. In addition, some special cases have been deduced from the determined expression of the diffracted displacement of shear wave at a large distance from the strip.
Demonstration of Shear Waves, Lamb Waves, and Rayleigh Waves by Mode Conversion.
ERIC Educational Resources Information Center
Leung, W. P.
1980-01-01
Introduces an experiment that can be demonstrated in the classroom to show that shear waves, Rayleigh waves, and Lamb waves can be easily generated and observed by means of mode conversion. (Author/CS)
Surface and downhole shear wave seismic methods for thick soil site investigations
Hunter, J.A.; Benjumea, B.; Harris, J.B.; Miller, R.D.; Pullan, S.E.; Burns, R.A.; Good, R.L.
2002-01-01
Shear wave velocity-depth information is required for predicting the ground motion response to earthquakes in areas where significant soil cover exists over firm bedrock. Rather than estimating this critical parameter, it can be reliably measured using a suite of surface (non-invasive) and downhole (invasive) seismic methods. Shear wave velocities from surface measurements can be obtained using SH refraction techniques. Array lengths as large as 1000 m and depth of penetration to 250 m have been achieved in some areas. High resolution shear wave reflection techniques utilizing the common midpoint method can delineate the overburden-bedrock surface as well as reflecting boundaries within the overburden. Reflection data can also be used to obtain direct estimates of fundamental site periods from shear wave reflections without the requirement of measuring average shear wave velocity and total thickness of unconsolidated overburden above the bedrock surface. Accurate measurements of vertical shear wave velocities can be obtained using a seismic cone penetrometer in soft sediments, or with a well-locked geophone array in a borehole. Examples from thick soil sites in Canada demonstrate the type of shear wave velocity information that can be obtained with these geophysical techniques, and show how these data can be used to provide a first look at predicted ground motion response for thick soil sites. ?? 2002 Published by Elsevier Science Ltd.
Geoacoustic inversion with two source-receiver arrays in shallow water.
Sukhovich, Alexey; Roux, Philippe; Wathelet, Marc
2010-08-01
A geoacoustic inversion scheme based on a double beamforming algorithm in shallow water is proposed and tested. Double beamforming allows identification of multi-reverberated eigenrays propagating between two vertical transducer arrays according to their emission and reception angles and arrival times. Analysis of eigenray intensities yields the bottom reflection coefficient as a function of angle of incidence. By fitting the experimental reflection coefficient with a theoretical prediction, values of the acoustic parameters of the waveguide bottom can be extracted. The procedure was initially tested in a small-scale tank experiment for a waveguide with a Plexiglas bottom. Inversion results for the speed of shear waves in Plexiglas are in good agreement with the table values. A similar analysis was applied to data collected during an at-sea experiment in shallow coastal waters of the Mediterranean. Bottom reflection coefficient was fitted with the theory in which bottom sediments are modeled as a multi-layered system. Retrieved bottom parameters are in quantitative agreement with those determined from a prior inversion scheme performed in the same area. The present study confirms the interest in processing source-receiver array data through the double beamforming algorithm, and indicates the potential for application of eigenray intensity analysis to geoacoustic inversion problems.
Acoustic wave propagation in a temporal evolving shear-layer for low-Mach number perturbations
NASA Astrophysics Data System (ADS)
Hau, Jan-Niklas; Müller, Björn
2018-01-01
We study wave packets with the small perturbation/gradient Mach number interacting with a smooth shear-layer in the linear regime of small amplitude perturbations. In particular, we investigate the temporal evolution of wave packets in shear-layers with locally curved regions of variable size using non-modal linear analysis and direct numerical simulations of the two-dimensional gas-dynamical equations. Depending on the wavenumber of the initially imposed wave packet, three different types of behavior are observed: (i) The wave packet passes through the shear-layer and constantly transfers energy back to the mean flow. (ii) It is turned around (or reflected) within the sheared region and extracts energy from the base flow. (iii) It is split into two oppositely propagating packages when reaching the upper boundary of the linearly sheared region. The conducted direct numerical simulations confirm that non-modal linear stability analysis is able to predict the wave packet dynamics, even in the presence of non-linearly sheared regions. In the light of existing studies in this area, we conclude that the sheared regions are responsible for the highly directed propagation of linearly generated acoustic waves when there is a dominating source, as it is the case for jet flows.
Magnetic resonance elastography to observe deep areas: comparison of external vibration systems.
Suga, Mikio; Obata, Takayuki; Hirano, Masaya; Tanaka, Takashi; Ikehira, Hiroo
2007-01-01
MRE methods deform the sample using an external vibration system. We have been using a transverse driver, which generates shear waves at the object surface. One of the problems is that shear waves rapidly attenuate at the surface of tissue and do not propagate into the body. In this study, we compared the shear waves generated by transverse and longitudinal drivers. The longitudinal driver was found to induce shear waves deep inside a porcine liver phantom. These results suggest that the longitudinal driver will allow measurement of the shear modulus deep inside the body.
Waite, Gregory P.; Schutt, D.L.; Smith, Robert B.
2005-01-01
Teleseismic shear wave splitting measured at 56 continuous and temporary seismographs deployed in a 500 km by 600 km area around the Yellowstone hot spot indicates that fast anisotropy in the mantle is parallel to the direction of plate motion under most of the array. The average split time from all stations of 0.9 s is typical of continental stations. There is little evidence for plume-induced radial strain, suggesting that any contribution of gravitationally spreading plume material is undetectably small with respect to the plate motion velocity. Two stations within Yellowstone have splitting measurements indicating the apparent fast anisotropy direction (ϕ) is nearly perpendicular to plate motion. These stations are ∼30 km from stations with ϕ parallel to plate motion. The 70° rotation over 30 km suggests a shallow source of anisotropy; however, split times for these stations are more than 2 s. We suggest melt-filled, stress-oriented cracks in the lithosphere are responsible for the anomalous ϕ orientations within Yellowstone. Stations southeast of Yellowstone have measurements of ϕ oriented NNW to WNW at high angles to the plate motion direction. The Archean lithosphere beneath these stations may have significant anisotropy capable of producing the observed splitting.
Recent Experience Using Active Love Wave Techniques to Characterize Seismographic Station Sites
NASA Astrophysics Data System (ADS)
Martin, A. J.; Yong, A.; Salomone, L.
2014-12-01
Active-source Love waves recorded by the multi-channel analysis of surface wave (MASLW) technique were recently analyzed in two site characterization projects. Between 2010 and 2011, the 2009 American Recovery and Reinvestment Act (ARRA) funded GEOVision to conduct geophysical investigations at 189 seismographic stations—185 in California and 4 in the Central Eastern U.S. (CEUS). The original project plan was to utilize active and passive Rayleigh wave-based techniques to obtain shear-wave velocity (VS) profiles to a minimum depth of 30 m and the time-averaged VS of the upper 30 meters (VS30). Early in the investigation it became evident that Rayleigh wave techniques, such as multi-channel analysis of surface waves (MASRW), were not effective at characterizing all sites. Shear-wave seismic refraction and MASLW techniques were therefore applied. The MASLW technique was deployed at a total of 38 sites, in addition to other methods, and used as the primary technique to characterize 22 sites, 5 of which were also characterized using Rayleigh wave techniques. In 2012, the Electric Power Research Institute funded characterization of 33 CEUS station sites. Based on experience from the ARRA investigation, both MASRW and MASLW data were acquired by GEOVision at 24 CEUS sites—the remaining 9 sites and 2 overlapping sites were characterized by University of Texas, Austin. Of the 24 sites characterized by GEOVision, 16 were characterized using MASLW data, 4 using both MASLW and MASRW data and 4 using MASRW data. Love wave techniques were often found to perform better, or at least yield phase velocity data that could be more readily modeled using the fundamental mode assumption, at shallow rock sites, sites with steep velocity gradients, and, sites with a thin, low velocity, surficial soil layer overlying stiffer sediments. These types of velocity structure often excite dominant higher modes in Rayleigh wave data, but not in Love wave data. At such sites, it may be possible to model Rayleigh wave data using multi- or effective-mode techniques; however, in many cases extraction of adequate Rayleigh wave dispersion data for modeling was difficult. These results imply that field procedures should include careful scrutiny of Rayleigh wave-based dispersion data in order to collect Love wave data when warranted.
The effect of pits of different sizes on ultrasonic shear wave signals
NASA Astrophysics Data System (ADS)
Howard, Richard; Cegla, Frederic
2018-04-01
The use of 0-degree shear waves in NDE and SHM has become more commonplace as the disadvantage of coupling has been eliminated by permanent sensor installations or the use of non-contact transducers, such as EMATs. While the effect of rough surfaces and flat bottom holes on shear waves has been studied in depth, the effect of more complex geometries, such as pitting, has not. In this work, 3D finite element simulations are used to explore the reflection and scattering characteristics of shear bulk waves from pits. Specifically, three scenarios have been investigated, the effect on shear waves of: a sloped backwall; pitting directly under the transducer; and the effect of pits with variable pit position. High speed GPU finite element models enabled a wide range of pit radii and positions to be modeled. Hemispherical pits were used throughout. Key findings of the study are that the anisotropic effects that are clearly visible on sloped reflecting surfaces can also be measured on pits that are located not directly below the center of a shear wave transducer. These anisotropic effects are due to the nature of shear wave polarization. This can potentially be used for better defect characterization purposes.
Donatelli, Carmine; Ganju, Neil Kamal; Fagherazzi, Sergio; Leonardi, Nicoletta
2018-01-01
surroundings and are therefore frequently referred to as ecological engineers. The effect of seagrasses on coastal bay resilience and sediment transport dynamics is understudied. Here we use six historical maps of seagrass distribution in Barnegat Bay, USA, to investigate the role of these vegetated surfaces on the sediment storage capacity of shallow bays. Analyses are carried out by means of the Coupled-Ocean-Atmosphere-Wave-Sediment Transport (COAWST) numerical modeling framework. Results show that a decline in the extent of seagrass meadows reduces the sediment mass potentially stored within bay systems. The presence of seagrass reduces shear stress values across the entire bay, including unvegetated areas, and promotes sediment deposition on tidal flats. On the other hand, the presence of seagrasses decreases suspended sediment concentrations, which in turn reduces the delivery of sediment to marsh platforms. Results highlight the relevance of seagrasses for the long-term survival of coastal ecosystems, and the complex dynamics regulating the interaction between subtidal and intertidal landscapes.
NASA Astrophysics Data System (ADS)
Park, S.; Ishii, M.
2017-12-01
Various seismic imaging methods have been developed, such as traveltime, waveform, and noise tomography, improving our knowledge of the subsurface structure and evolution. Near-surface structure, in particular, is crucial in understanding earthquake and volcano hazards. Seismic speed is directly related to the level of ground shaking, and monitoring its temporal change is valuable in volcanic hazard assessment. Here, we introduce a novel technique to constrain seismic wave speed of the very upper crust based upon the polarization measurements of teleseismic body-wave arrivals. The technique relates the orientation of recorded body waves to the wave speed immediately beneath a seismic instrument. We develop a counter-intuitive relationship that the P-wave polarization direction is only sensitive to subsurface shear wave speed but not to compressional wave speed, while the S-wave polarization direction is sensitive to both wave speeds. This approach is applied to the High-Sensitivity Seismograph Network in Japan, where the results are benchmarked against the borehole well data available at most stations. There is a good agreement between polarization-based estimates and the well measurements at as shallow as 100 m, confirming the efficacy of the new method in resolving the shallow structure. The lateral variation of wave speeds shows that sedimentary basins and mountainous regions are characterized by low and high wave speeds, respectively. It also correlates with volcano locations and geological units of different ages. Moreover, the analysis is expanded into 3D by examining the frequency dependence, where some preliminary results using broadband data are presented. These 2D and 3D wave speed estimates can be used to identify zones of high seismic risk by comparison with population distribution. This technique requires minimal computation resources and can be applied to any single three-component seismograph. It opens a new path to a reliable, non-invasive, and inexpensive earthquake hazard assessment in any environment where a drilling or a field experiment using vibro-trucks or explosives is not a practical option for measuring the near-surface seismic wave speeds. It can also provide means of monitoring changes that occur within the very upper crust such as from volcanic or hydrological phenomena.
Seismic Anisotropy from Surface Refraction Measurements
NASA Astrophysics Data System (ADS)
Vilhelm, J.; Hrdá, J.; Klíma, K.; Lokajícek, T.; Pros, Z.
2003-04-01
The contribution deals with the methods of determining P and S wave velocities in the shallow refraction seismics. The comparison of a P-wave anisotropy from samples and field surface measurement is performed. The laboratory measurement of the P-wave velocity is realized as omni directional ultrasound measurement on oriented spherical samples (diameter 5 cm) under a hydrostatic pressure up to 400 MPa. The field measurement is based on the processing of at least one pair of reversed time-distance curves of refracted waves. Different velocity calculation techniques are involved including tomographic approach from the surface. It is shown that field seismic measurement can reflect internal rock fabric (lineation, mineral anisotropy) as well as effects connected with the fracturing and weathering. The elastic constants derived from laboratory measurements exhibit transversal isotropy. For the estimation of anisotropy influence we perform ray-tracing by the software package ANRAY (Consortium Seismic Waves in Complex 3-D Structures). The use of P and S wave anisotropy measurement to determine hard rock hydro-geological collector (water resource) is presented. In a relatively homogeneous lutaceous sedimentary medium we identified a transversally isotropic layer which exhibits increased value of permeability (transmisivity). The seismic measurement is realized by three component geophones with both vertical and shear seismic sources. VLF and resistivity profiling accompany the filed survey.
NASA Astrophysics Data System (ADS)
Tschache, Saskia; Wadas, Sonja; Polom, Ulrich; Krawczyk, Charlotte M.
2017-04-01
Sinkholes pose a serious geohazard for humans and infrastructure in populated areas. The Junior Research Group Subrosion within the Leibniz Institute for Applied Geophysics and the joint project SIMULTAN work on the multi-scale investigation of subrosion processes in the subsurface, which cause natural sinkholes. In two case studies in sinkhole areas of Thuringia in Germany, we applied 2D shear wave reflection seismics using SH-waves with the aim to detect suitable parameters for the characterisation of critical zones. This method has the potential to image near-surface collapse and faulting structures in improved resolution compared to P-wave surveys resulting from the shorter wavelength of shear waves. Additionally, the shear wave velocity field derived by NMO velocity analysis is a basis to calculate further physical parameters, as e.g. the dynamic shear modulus. In both investigation areas, vertical seismic profiles (VSP) were acquired by generating P- and SH-waves (6 component VSP) directly next to a borehole equipped with a 3C downhole sensor. They provide shear and compressional wave velocity profiles, which are used to improve the 2D shear wave velocity field from surface seismics, to perform a depth calibration of the seismic image and to calculate the Vp/Vs ratio. The signals in the VSP data are analysed with respect to changes in polarisation and attenuation with depth and/or azimuth. The VSP data reveal low shear wave velocities of 200-300 m/s in rock layers known to be heavily affected by subrosion and confirm the low velocities calculated from the surface seismic data. A discrepancy of the shear wave velocities is observed in other intervals probably due to unsymmetrical travel paths in the surface seismics. In some VSP data dominant conversion of the direct SH-wave to P-wave is observed that is assumed to be caused by an increased presence of cavities. A potential fault distorting the vertical travel paths was detected by abnormal P-wave first arrivals in the VSP dataset of a borehole located near the city of Bad Frankenhausen. In addition, a strong attenuation of the source signals may indicate areas influenced by subrosion.
4-D ultrafast shear-wave imaging.
Gennisson, Jean-Luc; Provost, Jean; Deffieux, Thomas; Papadacci, Clément; Imbault, Marion; Pernot, Mathieu; Tanter, Mickael
2015-06-01
Over the last ten years, shear wave elastography (SWE) has seen considerable development and is now routinely used in clinics to provide mechanical characterization of tissues to improve diagnosis. The most advanced technique relies on the use of an ultrafast scanner to generate and image shear waves in real time in a 2-D plane at several thousands of frames per second. We have recently introduced 3-D ultrafast ultrasound imaging to acquire with matrix probes the 3-D propagation of shear waves generated by a dedicated radiation pressure transducer in a single acquisition. In this study, we demonstrate 3-D SWE based on ultrafast volumetric imaging in a clinically applicable configuration. A 32 × 32 matrix phased array driven by a customized, programmable, 1024-channel ultrasound system was designed to perform 4-D shear-wave imaging. A matrix phased array was used to generate and control in 3-D the shear waves inside the medium using the acoustic radiation force. The same matrix array was used with 3-D coherent plane wave compounding to perform high-quality ultrafast imaging of the shear wave propagation. Volumetric ultrafast acquisitions were then beamformed in 3-D using a delay-and-sum algorithm. 3-D volumetric maps of the shear modulus were reconstructed using a time-of-flight algorithm based on local multiscale cross-correlation of shear wave profiles in the three main directions using directional filters. Results are first presented in an isotropic homogeneous and elastic breast phantom. Then, a full 3-D stiffness reconstruction of the breast was performed in vivo on healthy volunteers. This new full 3-D ultrafast ultrasound system paves the way toward real-time 3-D SWE.
Lowered pH Alters Decay but Not Speed of Tectorial Membrane Waves
NASA Astrophysics Data System (ADS)
Farrahi, Shirin; Ghaffari, Roozbeh; Freeman, Dennis M.
2011-11-01
Tectorial membrane (TM) traveling waves and mechanical shear impedances were measured in artificial endolymph baths at neutral and acidic pHs. Lowering pH from 7 to 4 significantly decreases the spatial extent of TM waves but has a relatively minor effect on wave speed. At pH 4, the imaginary component of TM shear impedance, which relates to the shear modulus, drops significantly; whereas, the real component, which relates to viscosity, is reduced less. These results suggest that shear modulus, and not viscosity, controls the extent of TM waves at lower pH.
Piezoelectric shear wave resonator and method of making same
Wang, Jin S.; Lakin, Kenneth M.; Landin, Allen R.
1988-01-01
An acoustic shear wave resonator comprising a piezoelectric film having its C-axis substantially inclined from the film normal such that the shear wave coupling coefficient significantly exceeds the longitudinal wave coupling coefficient, whereby the film is capable of shear wave resonance, and means for exciting said film to resonate. The film is prepared by deposition in a dc planar magnetron sputtering system to which a supplemental electric field is applied. The resonator structure may also include a semiconductor material having a positive temperature coefficient of resonance such that the resonator has a temperature coefficient of resonance approaching 0 ppm/.degree.C.
Method of making a piezoelectric shear wave resonator
Wang, Jin S.; Lakin, Kenneth M.; Landin, Allen R.
1987-02-03
An acoustic shear wave resonator comprising a piezoelectric film having its C-axis substantially inclined from the film normal such that the shear wave coupling coefficient significantly exceeds the longitudinal wave coupling coefficient, whereby the film is capable of shear wave resonance, and means for exciting said film to resonate. The film is prepared by deposition in a dc planar magnetron sputtering system to which a supplemental electric field is applied. The resonator structure may also include a semiconductor material having a positive temperature coefficient of resonance such that the resonator has a temperature coefficient of resonance approaching 0 ppm/.degree.C.
Variability of site response in the Los Angeles urban area
Hartzell, S.; Cranswick, E.; Frankel, A.; Carver, D.; Meremonte, M.
1997-01-01
This article addresses the variability of site response in the Los Angeles area and possible structural causes for the observations. Aftershock records from 231 sites in the San Fernando and Los Angeles basins and the surrounding mountains are used in this study. Spectral ratios, taken with respect to a low-amplitude reference site, are used to document the variation in site amplification in the frequency range 2 to 6 Hz, both spatially and with backazimuth to the source. At higher frequencies (6 to 10 Hz), spectral ratios are shown to have greater spatial variability. Interstation spectral ratios are used to measure the standard deviation among sources as a function of station separation. An increase in the variation in ground motion is shown to take place at a station separation of 1 km. Relative site-response estimates between nearby stations are used to demonstrate that preferred directions of motion can exist even in areas with no surface topographic effects. Significant variations in site response exist over short baselines (up to a factor of 2 over 200 m) that are not explained by differences in surficial geology or shallow shear-wave velocity. A variety of investigative approaches is used, including spectral ratios, arrival-time variations, 1D and 2D waveform modeling, and comparison with seismic reflection lines, to determine the most likely causes of these observations. A correlation is demonstrated between late arrival times of P and S waves and larger site amplification in Sherman Oaks and Northridge. This observation, in conjunction with waveform modeling and seismic reflection profiles, is used to infer that sedimentary structures in the upper 1 to 2 km and topography on the sediment-basement interface play an important role in determining site amplification. These structures, in the form of folds and buried basins, focus energy in spatially restricted areas at the surface. Comparison of displacement waveforms at nearby stations having disparate site amplifications, complemented by known shallow shear-wave velocities at selected sites, is used to support the argument that these structures, in some cases, can be the dominant factor in the modification of local ground motions.
NASA Astrophysics Data System (ADS)
Guha, Anirban
2017-11-01
Theoretical studies on linear shear instabilities as well as different kinds of wave interactions often use simple velocity and/or density profiles (e.g. constant, piecewise) for obtaining good qualitative and quantitative predictions of the initial disturbances. Moreover, such simple profiles provide a minimal model to obtain a mechanistic understanding of shear instabilities. Here we have extended this minimal paradigm into nonlinear domain using vortex method. Making use of unsteady Bernoulli's equation in presence of linear shear, and extending Birkhoff-Rott equation to multiple interfaces, we have numerically simulated the interaction between multiple fully nonlinear waves. This methodology is quite general, and has allowed us to simulate diverse problems that can be essentially reduced to the minimal system with interacting waves, e.g. spilling and plunging breakers, stratified shear instabilities (Holmboe, Taylor-Caulfield, stratified Rayleigh), jet flows, and even wave-topography interaction problem like Bragg resonance. We found that the minimal models capture key nonlinear features (e.g. wave breaking features like cusp formation and roll-ups) which are observed in experiments and/or extensive simulations with smooth, realistic profiles.
Evaluating simplified methods for liquefaction assessment for loss estimation
NASA Astrophysics Data System (ADS)
Kongar, Indranil; Rossetto, Tiziana; Giovinazzi, Sonia
2017-06-01
Currently, some catastrophe models used by the insurance industry account for liquefaction by applying a simple factor to shaking-induced losses. The factor is based only on local liquefaction susceptibility and this highlights the need for a more sophisticated approach to incorporating the effects of liquefaction in loss models. This study compares 11 unique models, each based on one of three principal simplified liquefaction assessment methods: liquefaction potential index (LPI) calculated from shear-wave velocity, the HAZUS software method and a method created specifically to make use of USGS remote sensing data. Data from the September 2010 Darfield and February 2011 Christchurch earthquakes in New Zealand are used to compare observed liquefaction occurrences to forecasts from these models using binary classification performance measures. The analysis shows that the best-performing model is the LPI calculated using known shear-wave velocity profiles, which correctly forecasts 78 % of sites where liquefaction occurred and 80 % of sites where liquefaction did not occur, when the threshold is set at 7. However, these data may not always be available to insurers. The next best model is also based on LPI but uses shear-wave velocity profiles simulated from the combination of USGS VS30 data and empirical functions that relate VS30 to average shear-wave velocities at shallower depths. This model correctly forecasts 58 % of sites where liquefaction occurred and 84 % of sites where liquefaction did not occur, when the threshold is set at 4. These scores increase to 78 and 86 %, respectively, when forecasts are based on liquefaction probabilities that are empirically related to the same values of LPI. This model is potentially more useful for insurance since the input data are publicly available. HAZUS models, which are commonly used in studies where no local model is available, perform poorly and incorrectly forecast 87 % of sites where liquefaction occurred, even at optimal thresholds. This paper also considers two models (HAZUS and EPOLLS) for estimation of the scale of liquefaction in terms of permanent ground deformation but finds that both models perform poorly, with correlations between observations and forecasts lower than 0.4 in all cases. Therefore these models potentially provide negligible additional value to loss estimation analysis outside of the regions for which they have been developed.
NASA Astrophysics Data System (ADS)
Tripathi, B. B.; Espíndola, D.; Pinton, G. F.
2017-11-01
The recent discovery of shear shock wave generation and propagation in the porcine brain suggests that this new shock phenomenology may be responsible for a broad range of traumatic injuries. Blast-induced head movement can indirectly lead to shear wave generation in the brain, which could be a primary mechanism for injury. Shear shock waves amplify the local acceleration deep in the brain by up to a factor of 8.5, which may tear and damage neurons. Currently, there are numerical methods that can model compressional shock waves, such as comparatively well-studied blast waves, but there are no numerical full-wave solvers that can simulate nonlinear shear shock waves in soft solids. Unlike simplified representations, e.g., retarded time, full-wave representations describe fundamental physical behavior such as reflection and heterogeneities. Here we present a piecewise parabolic method-based solver for one-dimensional linearly polarized nonlinear shear wave in a homogeneous medium and with empirical frequency-dependent attenuation. This method has the advantage of being higher order and more directly extendable to multiple dimensions and heterogeneous media. The proposed numerical scheme is validated analytically and experimentally and compared to other shock capturing methods. A Riemann step-shock problem is used to characterize the numerical dissipation. This dissipation is then tuned to be negligible with respect to the physical attenuation by choosing an appropriate grid spacing. The numerical results are compared to ultrasound-based experiments that measure planar polarized shear shock wave propagation in a tissue-mimicking gelatin phantom. Good agreement is found between numerical results and experiment across a 40 mm propagation distance. We anticipate that the proposed method will be a starting point for the development of a two- and three-dimensional full-wave code for the propagation of nonlinear shear waves in heterogeneous media.
Waveform Modeling of the Crust and Upper Mantle Using S, Sp, SsPmP, and Shear-Coupled PL Waves
2008-05-10
and excitation of shear-coupled Pl waves with distance and corresponding phase velocity ( Vph )-period (T) curve: αN and βN are the P and S wave...Pulliam and Sen, 2005) (b) Propagation characteristics and excitation of shear-coupled Pl waves with distance and corresponding phase velocity ( Vph
SHEAR WAVE DISPERSION MEASURES LIVER STEATOSIS
Barry, Christopher T.; Mills, Bradley; Hah, Zaegyoo; Mooney, Robert A.; Ryan, Charlotte K.; Rubens, Deborah J.; Parker, Kevin J.
2012-01-01
Crawling waves, which are interfering shear wave patterns, can be generated in liver tissue over a range of frequencies. Some important biomechanical properties of the liver can be determined by imaging the crawling waves using Doppler techniques and analyzing the patterns. We report that the dispersion of shear wave velocity and attenuation, that is, the frequency dependence of these parameters, are strongly correlated with the degree of steatosis in a mouse liver model, ex vivo. The results demonstrate the possibility of assessing liver steatosis using noninvasive imaging methods that are compatible with color Doppler scanners and, furthermore, suggest that liver steatosis can be separated from fibrosis by assessing the dispersion or frequency dependence of shear wave propagations. PMID:22178165
Apparatus for checking the direction of polarization of shear-wave ultrasonic transducers
Karplus, Henry H. B.
1980-01-01
An apparatus for checking the direction of polarization of shear-wave ultrasonic transducers comprises a first planar surface for mounting the shear-wave transducer, a second planar surface inclined at a predetermined angle to the first surface to generate longitudinal waves by mode conversion, and a third planar surface disposed at a second predetermined angle to the first for mounting a longitudinal-wave ultrasonic transducer. In an alternate embodiment, two second planar surfaces at the predetermined angle are placed at an angle to each other. The magnitude of the shear wave is a function of the angle between the direction of polarization of the transducer and the mode-conversion surface.
Apparatus for checking the direction of polarization of shear-wave ultrasonic transducers
Karplus, H.H.B.; Forster, G.A.
An apparatus for checking the direction of polarization of shear-wave ultrasonic transducers comprises a first planar surface for mounting the shear-wave transducer, a second planar surface inclined at a predetermined angle to the first surface to generate longitudinal waves by mode conversion, and a third planar surface disposed at a second predetermined angle to the first for mounting a longitudinal-wave ultransonic transducer. In an alternate embodiment, two second planar surfaces at the predetermined angle are placed at an angle to each other. The magnitude of the shear wave is a function of the angle between the direction of polarization of the transducer and the mode-conversion surface.
Deep Shear Wave Velocity of Southern Bangkok and Vicinity
NASA Astrophysics Data System (ADS)
Wongpanit, T.; Hayashi, K.; Pananont, P.
2017-09-01
Bangkok is located on the soft marine clay in the Lower Chao Phraya Basin which can amplify seismic wave and can affect the shaking of buildings during an earthquake. Deep shear wave velocity of the sediment in the basin are useful for study the effect of the soft sediment on the seismic wave and can be used for earthquake engineering design and ground shaking estimation, especially for a deep basin. This study aims to measure deep shear wave velocity and create 2D shear wave velocity profile down to a bedrock in the southern Bangkok by the Microtremor measurements with 2 seismographs using Spatial Autocorrelation (2-SPAC) technique. The data was collected during a day time on linear array geometry with offsets varying between 5-2,000 m. Low frequency of natural tremor (0.2-0.6 Hz) was detected at many sites, however, very deep shear wave data at many sites are ambiguous due to man-made vibration noises in the city. The results show that shear wave velocity of the sediment in the southern Bangkok is between 100-2,000 ms-1 and indicate that the bedrock depth is about 600-800 m, except at Bang Krachao where bedrock depth is unclear.
3-D FDTD simulation of shear waves for evaluation of complex modulus imaging.
Orescanin, Marko; Wang, Yue; Insana, Michael
2011-02-01
The Navier equation describing shear wave propagation in 3-D viscoelastic media is solved numerically with a finite differences time domain (FDTD) method. Solutions are formed in terms of transverse scatterer velocity waves and then verified via comparison to measured wave fields in heterogeneous hydrogel phantoms. The numerical algorithm is used as a tool to study the effects on complex shear modulus estimation from wave propagation in heterogeneous viscoelastic media. We used an algebraic Helmholtz inversion (AHI) technique to solve for the complex shear modulus from simulated and experimental velocity data acquired in 2-D and 3-D. Although 3-D velocity estimates are required in general, there are object geometries for which 2-D inversions provide accurate estimations of the material properties. Through simulations and experiments, we explored artifacts generated in elastic and dynamic-viscous shear modulus images related to the shear wavelength and average viscosity.
NASA Astrophysics Data System (ADS)
Rohrer, M.; Harris, J. B.; Cearley, C.; Teague, M.
2017-12-01
Within the past decade or so, paleoseismologic and geophysical studies at the Daytona Beach (DB) site in east-central Arkansas have reported earthquake-induced liquefaction (sand blows) along a prominent NW-trending lineament dated to approximately 5.5 ka. A recent compressional-wave (P-wave) seismic reflection survey acquired by the U. S. Geological Survey (USGS) along Highway 243 in Lee County, Arkansas, across the DB sand blow cluster, identified a previously unknown fault zone that is likely associated with the liquefaction. However, the USGS data were not able to image the Quaternary section (<60 m deep) and show a direct connection between the deeper faulting and the sand blows. In order to investigate the near-surface structure of the fault zone, we acquired an integrated geophysical data set consisting of 430-m-long shear-wave (S-wave) seismic reflection and ground penetrating radar (GPR) profiles above the deformation imaged on the USGS profile. The S-wave reflection data were collected using a 24-channel, towable landstreamer and the seismic energy was generated by a sledgehammer/I-beam source. The GPR data were collected with a cart-mounted 250-MHz system, using a 0.5-m antenna spacing and a 0.10-m step size. The processed seismic profile exhibits coherent reflection energy throughout the Quaternary section. Changes in reflection amplitude and coherency, offset reflections, and abundant diffractions suggest the presence of a complex zone of high-angle faults in the shallow subsurface coincident with the mapped lineament. Folded shallow reflections show that the deformation extends upward to within 10 m of the surface. Furthermore, the GPR profile images a distinct zone of deformation in the very near surface (<1.5 m deep) that is coincident with the upward projection of the deformation imaged on the S-wave seismic reflection profile.
Landslide stability: Role of rainfall-induced, laterally propagating, pore-pressure waves
Priest, G.R.; Schulz, W.H.; Ellis, W.L.; Allan, J.A.; Niem, A.R.; Niem, W.A.
2011-01-01
The Johnson Creek Landslide is a translational slide in seaward-dipping Miocene siltstone and sandstone (Astoria Formation) and an overlying Quaternary marine terrace deposit. The basal slide plane slopes sub-parallel to the dip of the Miocene rocks, except beneath the back-tilted toe block, where it slopes inland. Rainfall events raise pore-water pressure in the basal shear zone in the form of pulses of water pressure traveling laterally from the headwall graben down the axis of the slide at rates of 1-6 m/hr. Infiltration of meteoric water and vertical pressure transmission through the unsaturated zone has been measured at ~50 mm/hr. Infiltration and vertical pressure transmission were too slow to directly raise head at the basal shear zone prior to landslide movement. Only at the headwall graben was the saturated zone shallow enough for rainfall events to trigger lateral pulses of water pressure through the saturated zone. When pressure levels in the basal shear zone exceeded thresholds defined in this paper, the slide began slow, creeping movement as an intact block. As pressures exceeded thresholds for movement in more of the slide mass, movement accelerated, and differential displacement between internal slide blocks became more pronounced. Rainfall-induced pore-pressure waves are probably a common landslide trigger wherever effective hydraulic conductivity is high and the saturated zone is located near the surface in some part of a slide. An ancillary finding is apparently greater accuracy of grouted piezometers relative to those in sand packs for measurement of pore pressures at the installed depth.
Bedforms induced by solitary waves: laboratory studies on generation and migration rate
NASA Astrophysics Data System (ADS)
la Forgia, Giovanni; Adduce, Claudia; Falcini, Federico; Paola, Chris
2017-04-01
This study presents experiments on the formation of sandy bedforms, produced by surface solitary waves (SSWs) in shallow water conditions. The experiments were carried out in a 12.0 m long, 0.15 m wide and 0.5 m high flume, at Saint Anthony Falls Laboratory in Minneapolis. The tank is filled by fresh water and a removable gate, placed at the left hand-side of the tank, divides the flume in two regions: the lock region and the ambient fluid region. The standard lock-release method generates SSWs by producing a displacement between the free surfaces that are divided by the gate. Wave amplitude, wavelength, and celerity depend on the lock length and on the water level difference between the two regions. Natural sand particles (D50=0.64) are arranged on the bottom in order to form a horizontal flat layer with a thickness of 2 cm. A digital pressure gauge and a high-resolution acoustic velocimeter allowed us to measure, locally, both pressure and 3D water velocity induced on the bottom by each wave. Image analysis technique is then used to obtain the main wave features: amplitude, wavelength, and celerity. Dye is finally used as vertical tracer to mark the horizontal speed induced by the wave. For each experiment we generated 400 waves, having the same features and we analyzed their action on sand particles placed on the bottom. The stroke, induced by each wave, entails a shear stress on the sand particles, causing sediment transport in the direction of wave propagation. Immediately after the wave passage, a back flow occurs near the bottom. The horizontal pressure gradient and the velocity field induced by the wave cause the boundary layer separation and the consequent reverse flow. Depending on the wave features and on the water depth, the boundary shear stress induced by the reverse flow can exceed the critical value inducing the back motion of the sand particles. The experiments show that the particle back motion is localized at particular cross sections along the tank, where the wave steepening occur. For this reason, the pressure and velocity measures were collected in several cross sections along the tank. The propagation of consecutive waves with the same features induces the generation of erosion and accumulation zones, which slowly evolve in isometric bedforms.
Miyamoto, Naokazu; Hirata, Kosuke; Kanehisa, Hiroaki; Yoshitake, Yasuhide
2015-01-01
Ultrasound shear wave elastography is becoming a valuable tool for measuring mechanical properties of individual muscles. Since ultrasound shear wave elastography measures shear modulus along the principal axis of the probe (i.e., along the transverse axis of the imaging plane), the measured shear modulus most accurately represents the mechanical property of the muscle along the fascicle direction when the probe's principal axis is parallel to the fascicle direction in the plane of the ultrasound image. However, it is unclear how the measured shear modulus is affected by the probe angle relative to the fascicle direction in the same plane. The purpose of the present study was therefore to examine whether the angle between the principal axis of the probe and the fascicle direction in the same plane affects the measured shear modulus. Shear modulus in seven specially-designed tissue-mimicking phantoms, and in eleven human in-vivo biceps brachii and medial gastrocnemius were determined by using ultrasound shear wave elastography. The probe was positioned parallel or 20° obliquely to the fascicle across the B-mode images. The reproducibility of shear modulus measurements was high for both parallel and oblique conditions. Although there was a significant effect of the probe angle relative to the fascicle on the shear modulus in human experiment, the magnitude was negligibly small. These findings indicate that the ultrasound shear wave elastography is a valid tool for evaluating the mechanical property of pennate muscles along the fascicle direction.
NASA Astrophysics Data System (ADS)
Konc, Zoltán; Hidas, Károly; Garrido, Carlos J.; Tommasi, Andréa; Vauchez, Alain; Padrón Navarta, José Alberto; Marchesi, Claudio; Acosta-Vigil, Antonio; Szabó, Csaba; Varas-Reus, Maria Isabel
2016-04-01
Peridotite mantle xenoliths in Plio-Pleistocene alkali basalts of the eastern Betic Cordillera (Cartagena area, Murcia, SE Spain) provide a snapshot of the structure and composition of the lithospheric mantle at the northern limb of the Alpine Betic-Rif arched belt in the westernmost Mediterranean. The xenoliths are spinel and plagioclase lherzolite with minor harzburgite and wehrlite, displaying porphyroclastic to equigranular textures. Regardless of composition and texture, the Crystal Preferred Orientation (CPO) of olivine shows an axial-[100] pattern characterized by a strong alignment of [100]-axes near or parallel to the peridotite lineation and a girdle distribution of [010]-axes with a maximum normal to the peridotite foliation. This CPO pattern is consistent with ductile deformation accommodated by dislocation creep with dominant activation of the high temperature {0kl}[100] olivine slip system, indicative of deformation by simple shear or combinations of simple shear and pure shear with a transtensional component. Calculated seismic properties are characterized by fast propagation of P-waves and polarization of fast S-waves parallel to olivine [100]-axis, indicating the flow direction. SKS and Pn anisotropy in the eastern Betics can be explained by a lithospheric mantle peridotite with similar fabric to the one displayed by the studied mantle xenoliths. Considering the limited thickness of the mantle lithosphere in the Betics (40-80 km), the measured azimuths and delays of SKS waves in the eastern Betics are consistent with a steeply dipping mantle foliation and a subhorizontal lineation with ENE strike. This geometry of the lithospheric fabrics implies active or frozen mantle flow with a dominantly strike-slip component subparallel to the paleo-Iberian margin. Synkinematic overprinting of mineral assemblages from the garnet-spinel to the plagioclase facies demonstrates 36-40 km uplift continuously accommodated by ductile shear thinning of the lithospheric mantle. Coeval deformation of orthopyroxene in veins of composite xenoliths, formed by reactive percolation of subduction-related Si-rich melts/fluids, suggests that this deformation occurred in the late Neogene.
Bottom-boundary-layer measurements on the continental shelf off the Ebro River, Spain
Cacchione, D.A.; Drake, D.E.; Losada, M.A.; Medina, R.
1990-01-01
Measurements of currents, waves and light transmission obtained with an instrumented bottom tripod (GEOPROBE) were used in conjunction with a theoretical bottom-boundary-layer model for waves and currents to investigate sediment transport on the continental shelf south of the Ebro River Delta, Spain. The current data show that over a 48-day period during the fall of 1984, the average transport at 1 m above the seabed was alongshelf and slightly offshore toward the south-southwest at about 2 cm/s. A weak storm passed through the region during this period and caused elevated wave and current speeds near the bed. The bottom-boundary-layer model predicted correspondingly higher combined wave and current bottom shear velocities at this time, but the GEOPROBE optical data indicate that little to no resuspension occurred. This result suggests that the fine-grained bottom sediment, which has a clay component of 80%, behaves cohesively and is more difficult to resuspend than noncohesive materials of similar size. Model computations also indicate that noncohesive very fine sand in shallow water (20 m deep) was resuspended and transported mainly as bedload during this storm. Fine-grained materials in shallow water that are resuspended and transported as suspended load into deeper water probably account for the slight increase in sediment concentration at the GEOPROBE sensors during the waning stages of the storm. The bottom-boundary-layer data suggest that the belt of fine-grained bottom sediment that extends along the shelf toward the southwest is deposited during prolonged periods of low energy and southwestward bottom flow. This pattern is augmented by enhanced resuspension and transport toward the southwest during storms. ?? 1990.
Spatial correlation of shear-wave velocity in the San Francisco Bay Area sediments
Thompson, E.M.; Baise, L.G.; Kayen, R.E.
2007-01-01
Ground motions recorded within sedimentary basins are variable over short distances. One important cause of the variability is that local soil properties are variable at all scales. Regional hazard maps developed for predicting site effects are generally derived from maps of surficial geology; however, recent studies have shown that mapped geologic units do not correlate well with the average shear-wave velocity of the upper 30 m, Vs(30). We model the horizontal variability of near-surface soil shear-wave velocity in the San Francisco Bay Area to estimate values in unsampled locations in order to account for site effects in a continuous manner. Previous geostatistical studies of soil properties have shown horizontal correlations at the scale of meters to tens of meters while the vertical correlations are on the order of centimeters. In this paper we analyze shear-wave velocity data over regional distances and find that surface shear-wave velocity is correlated at horizontal distances up to 4 km based on data from seismic cone penetration tests and the spectral analysis of surface waves. We propose a method to map site effects by using geostatistical methods based on the shear-wave velocity correlation structure within a sedimentary basin. If used in conjunction with densely spaced shear-wave velocity profiles in regions of high seismic risk, geostatistical methods can produce reliable continuous maps of site effects. ?? 2006 Elsevier Ltd. All rights reserved.
Razani, Marjan; Luk, Timothy W.H.; Mariampillai, Adrian; Siegler, Peter; Kiehl, Tim-Rasmus; Kolios, Michael C.; Yang, Victor X.D.
2014-01-01
In this work, we explored the potential of measuring shear wave propagation using optical coherence elastography (OCE) in an inhomogeneous phantom and carotid artery samples based on a swept-source optical coherence tomography (OCT) system. Shear waves were generated using a piezoelectric transducer transmitting sine-wave bursts of 400 μs duration, applying acoustic radiation force (ARF) to inhomogeneous phantoms and carotid artery samples, synchronized with a swept-source OCT (SS-OCT) imaging system. The phantoms were composed of gelatin and titanium dioxide whereas the carotid artery samples were embedded in gel. Differential OCT phase maps, measured with and without the ARF, detected the microscopic displacement generated by shear wave propagation in these phantoms and samples of different stiffness. We present the technique for calculating tissue mechanical properties by propagating shear waves in inhomogeneous tissue equivalent phantoms and carotid artery samples using the ARF of an ultrasound transducer, and measuring the shear wave speed and its associated properties in the different layers with OCT phase maps. This method lays the foundation for future in-vitro and in-vivo studies of mechanical property measurements of biological tissues such as vascular tissues, where normal and pathological structures may exhibit significant contrast in the shear modulus. PMID:24688822
Nakayama, Miwa; Nishiyama, Wataru; Nozawa, Michihito
2016-01-01
Objectives Shear-wave sonoelastography is expected to facilitate low operator dependency, high reproducibility and quantitative evaluation, whereas there are few reports on available normative values of in vivo tissue in head and neck fields. The purpose of this study was to examine the reliabilities on measuring hardness using shear-wave sonoelastography and to clarify normal values of masseter muscle hardness in healthy volunteers. Methods Phantoms with known hardness ranging from 20 to 140 kPa were scanned with shear-wave sonoelastography, and inter- and intraoperator reliabilities were examined compared with strain sonoelastography. The relationships between the actual and measured hardness were analyzed. The masseter muscle hardness in 30 healthy volunteers was measured using shear-wave sonoelastography. Results: The inter- and intraoperator intraclass correlation coefficients were almost perfect. Strong correlations were seen between the actual and measured hardness. The mean hardness of the masseter muscles in healthy volunteers was 42.82 ± 5.56 kPa at rest and 53.36 ± 8.46 kPa during jaw clenching. Conclusions: The hardness measured with shear-wave sonoelastography showed high-level reliability. Shear-wave sonoelastography may be suitable for evaluation of the masseter muscles. PMID:26624000
Ariji, Yoshiko; Nakayama, Miwa; Nishiyama, Wataru; Nozawa, Michihito; Ariji, Eiichiro
2016-01-01
Objectives Shear-wave sonoelastography is expected to facilitate low operator dependency, high reproducibility and quantitative evaluation, whereas there are few reports on available normative values of in vivo tissue in head and neck fields. The purpose of this study was to examine the reliabilities on measuring hardness using shear-wave sonoelastography and to clarify normal values of masseter muscle hardness in healthy volunteers. Methods Phantoms with known hardness ranging from 20 to 140 kPa were scanned with shear-wave sonoelastography, and inter- and intraoperator reliabilities were examined compared with strain sonoelastography. The relationships between the actual and measured hardness were analyzed. The masseter muscle hardness in 30 healthy volunteers was measured using shear-wave sonoelastography. The inter- and intraoperator intraclass correlation coefficients were almost perfect. Strong correlations were seen between the actual and measured hardness. The mean hardness of the masseter muscles in healthy volunteers was 42.82 ± 5.56 kPa at rest and 53.36 ± 8.46 kPa during jaw clenching. The hardness measured with shear-wave sonoelastography showed high-level reliability. Shear-wave sonoelastography may be suitable for evaluation of the masseter muscles.
Coupling of an acoustic wave to shear motion due to viscous heating
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, Bin; Goree, J.
2016-07-15
Viscous heating due to shear motion in a plasma can result in the excitation of a longitudinal acoustic wave, if the shear motion is modulated in time. The coupling mechanism is a thermal effect: time-dependent shear motion causes viscous heating, which leads to a rarefaction that can couple into a longitudinal wave, such as an acoustic wave. This coupling mechanism is demonstrated in an electrostatic three-dimensional (3D) simulation of a dusty plasma, in which a localized shear flow is initiated as a pulse, resulting in a delayed outward propagation of a longitudinal acoustic wave. This coupling effect can be profoundmore » in plasmas that exhibit localized viscous heating, such as the dusty plasma we simulated using parameters typical of the PK-4 experiment. We expect that a similar phenomenon can occur with other kinds of plasma waves.« less
Piezoelectric shear wave resonator and method of making same
Wang, J.S.; Lakin, K.M.; Landin, A.R.
1985-05-20
An acoustic shear wave resonator comprising a piezoelectric film having its C-axis substantially inclined from the film normal such that the shear wave coupling coefficient significantly exceeds the longitudinal wave coupling coefficient, whereby the film is capable of shear wave resonance, and means for exciting said film to resonate. The film is prepared by deposition in a dc planar magnetron sputtering system to which a supplemental electric field is applied. The resonator structure may also include a semiconductor material having a positive temperature coefficient of resonance such that the resonator has a temperature coefficient of resonance approaching 0 ppM//sup 0/C.
Piezoelectric shear wave resonator and method of making same
Wang, J.S.; Lakin, K.M.; Landin, A.R.
1983-10-25
An acoustic shear wave resonator comprising a piezoelectric film having its C-axis substantially inclined from the film normal such that the shear wave coupling coefficient significantly exceeds the longitudinal wave coupling coefficient, whereby the film is capable of shear wave resonance, and means for exciting said film to resonate. The film is prepared by deposition in a dc planar magnetron sputtering system to which a supplemental electric field is applied. The resonator structure may also include a semiconductor material having a positive temperature coefficient of resonance such that the resonator has a temperature coefficient of resonance approaching 0 ppM//sup 0/C.
Observations of turbulent mixing in a shallow coral reef
NASA Astrophysics Data System (ADS)
Huang, Z. C.
2016-02-01
In situ measurements of waves, currents, and turbulence are presented to study turbulence properties within a depression that is surrounded by multiple coral-reef colonies in a fringing reef in Hobihu, Nan-Wan Bay, southern Taiwan. Turbulence was measured using a dual velocimetry technique, and wave bias contamination in the turbulence is controlled using ogive curve testing of the turbulent shear stress. The observed turbulent dissipation rate is approximately five times greater than simultaneous observations over the nearby sandy bottom site, which indicates stronger mixing within the coral reef than on sandy bottoms. Energetic downward momentum flux exists due to sweeping process; the turbulent kinetic energy is transported downward into the depression through the mechanisms of vertical turbulent transport and advection. The observed turbulent dissipation rate exceeds the shear production rate, which suggests that transport terms or other source terms might be important. The wake flow caused by the resistance force of coral colonies is examined. The form drag coefficient was estimated from the time-averaged alongshore linear momentum between two sites upstream and within the coral reef. The work done due to the form drag, which is termed the wake production, is found to strongly correlate and approximate well to the observed turbulent dissipation rate. The effects of waves and currents on the wake production are discussed. The observed TSS can be described well by classic turbulence closure model when the empirical stability function is adjusted. This study suggests that the complex canopy structure of multiple colonies and the coexistence of the wave-induced and current flows are significant factors for energetic turbulence in the coral reef, which could have positive effects to the health of the coral reefs.
Engel, Aaron J; Bashford, Gregory R
2015-08-01
Ultrasound based shear wave elastography (SWE) is a technique used for non-invasive characterization and imaging of soft tissue mechanical properties. Robust estimation of shear wave propagation speed is essential for imaging of soft tissue mechanical properties. In this study we propose to estimate shear wave speed by inversion of the first-order wave equation following directional filtering. This approach relies on estimation of first-order derivatives which allows for accurate estimations using smaller smoothing filters than when estimating second-order derivatives. The performance was compared to three current methods used to estimate shear wave propagation speed: direct inversion of the wave equation (DIWE), time-to-peak (TTP) and cross-correlation (CC). The shear wave speed of three homogeneous phantoms of different elastic moduli (gelatin by weight of 5%, 7%, and 9%) were measured with each method. The proposed method was shown to produce shear speed estimates comparable to the conventional methods (standard deviation of measurements being 0.13 m/s, 0.05 m/s, and 0.12 m/s), but with simpler processing and usually less time (by a factor of 1, 13, and 20 for DIWE, CC, and TTP respectively). The proposed method was able to produce a 2-D speed estimate from a single direction of wave propagation in about four seconds using an off-the-shelf PC, showing the feasibility of performing real-time or near real-time elasticity imaging with dedicated hardware.
NASA Astrophysics Data System (ADS)
Finocchio, Peter M.
The vertical wind shear measured between 200 and 850 hPa is commonly used to diagnose environmental interactions with a tropical cyclone (TC) and to forecast the storm's intensity and structural evolution. More often than not, stronger vertical shear within this deep layer prohibits the intensification of TCs and leads to predictable asymmetries in precipitation. But such bulk measures of vertical wind shear can occasionally mislead the forecaster. In the first part of this dissertation, we use a series of idealized numerical simulations to examine how a TC responds to changing the structure of unidirectional vertical wind shear while fixing the 200-850-hPa shear magnitude. These simulations demonstrate a significant intensity response, in which shear concentrated in shallow layers of the lower troposphere prevents vortex intensification. We attribute the arrested development of TCs in lower-level shear to the intrusion of mid-level environmental air over the surface vortex early in the simulations. Convection developing on the downshear side of the storm interacts with the intruding air so as to enhance the downward flux of low-entropy air into the boundary layer. We also construct a two-dimensional intensity response surface from a set of simulations that sparsely sample the joint shear height-depth parameter space. This surface reveals regions of the two-parameter space for which TC intensity is particularly sensitive. We interpret these parameter ranges as those which lead to reduced intensity predictability. Despite the robust response to changing the shape of a sheared wind profile in idealized simulations, we do not encounter such sensitivity within a large set of reanalyzed TCs in the Northern Hemisphere. Instead, there is remarkable consistency in the structure of reanalyzed wind profiles around TCs. This is evident in the distributions of two new parameters describing the height and depth of vertical wind shear, which highlight a clear preference for shallow layers of upper-level shear. Many of the wind profiles tested in the idealized simulations have shear height or depth values on the tails of these distributions, suggesting that the environmental wind profiles around real TCs do not exhibit enough structural variability to have the clear statistical relationship to intensity change that we expected. In the final part of this dissertation, we use the reanalyzed TC environments to initialize ensembles of idealized simulations. Using a new modeling technique that allows for time-varying environments, these simulations examine the predictability implications of exposing a TC to different structures and magnitudes of vertical wind shear during its life cycle. We find that TCs in more deeply distributed vertical wind shear environments have a more uncertain intensity evolution than TCs exposed to shallower layers of upper-level shear. This higher uncertainty arises from a more marginal boundary layer environment that the deeply distributed shear establishes, which enhances the TC sensitivity to the magnitude of deep-layer shear. Simulated radar reflectivity also appears to evolve in a more uncertain fashion in environments with deeply distributed vertical shear. However, structural predictability timescales, computed as the time it takes for errors in the amplitude or phase of azimuthal asymmetries of reflectivity to saturate, are similar for wind profiles with shallow upper-level shear and deeply distributed shear. Both ensembles demonstrate predictability timescales of two to three days for the lowest azimuthal wavenumbers of amplitude and phase. As the magnitude of vertical wind shear increases to universally destructive levels, structural and intensity errors begin to decrease. Shallow upper-level shear primes the TC for a more pronounced recovery in the predictability of the wavenumber-one precipitation structure in stronger shear. The recovered low-wavenumber predictability of TC precipitation structure and the collapse in intensity spread in strong shear suggests that vertical wind shear is most effective at reducing TC predictability when its magnitude is near the threshold between favorable and unfavorable values and when it is deeply distributed through the troposphere. By isolating the effect of the environmental flow, the simulations and analyses in this dissertation offer a unique understanding of how vertical wind shear affects TCs. In particular, the results have important implications for designing and implementing future environmental observing strategies that will be critical for improving forecasts of these destructive storms.
Shear-Wave Elastography: Basic Physics and Musculoskeletal Applications.
Taljanovic, Mihra S; Gimber, Lana H; Becker, Giles W; Latt, L Daniel; Klauser, Andrea S; Melville, David M; Gao, Liang; Witte, Russell S
2017-01-01
In the past 2 decades, sonoelastography has been progressively used as a tool to help evaluate soft-tissue elasticity and add to information obtained with conventional gray-scale and Doppler ultrasonographic techniques. Recently introduced on clinical scanners, shear-wave elastography (SWE) is considered to be more objective, quantitative, and reproducible than compression sonoelastography with increasing applications to the musculoskeletal system. SWE uses an acoustic radiation force pulse sequence to generate shear waves, which propagate perpendicular to the ultrasound beam, causing transient displacements. The distribution of shear-wave velocities at each pixel is directly related to the shear modulus, an absolute measure of the tissue's elastic properties. Shear-wave images are automatically coregistered with standard B-mode images to provide quantitative color elastograms with anatomic specificity. Shear waves propagate faster through stiffer contracted tissue, as well as along the long axis of tendon and muscle. SWE has a promising role in determining the severity of disease and treatment follow-up of various musculoskeletal tissues including tendons, muscles, nerves, and ligaments. This article describes the basic ultrasound physics of SWE and its applications in the evaluation of various traumatic and pathologic conditions of the musculoskeletal system. © RSNA, 2017.
Shear wave velocity imaging using transient electrode perturbation: phantom and ex vivo validation.
DeWall, Ryan J; Varghese, Tomy; Madsen, Ernest L
2011-03-01
This paper presents a new shear wave velocity imaging technique to monitor radio-frequency and microwave ablation procedures, coined electrode vibration elastography. A piezoelectric actuator attached to an ablation needle is transiently vibrated to generate shear waves that are tracked at high frame rates. The time-to-peak algorithm is used to reconstruct the shear wave velocity and thereby the shear modulus variations. The feasibility of electrode vibration elastography is demonstrated using finite element models and ultrasound simulations, tissue-mimicking phantoms simulating fully (phantom 1) and partially ablated (phantom 2) regions, and an ex vivo bovine liver ablation experiment. In phantom experiments, good boundary delineation was observed. Shear wave velocity estimates were within 7% of mechanical measurements in phantom 1 and within 17% in phantom 2. Good boundary delineation was also demonstrated in the ex vivo experiment. The shear wave velocity estimates inside the ablated region were higher than mechanical testing estimates, but estimates in the untreated tissue were within 20% of mechanical measurements. A comparison of electrode vibration elastography and electrode displacement elastography showed the complementary information that they can provide. Electrode vibration elastography shows promise as an imaging modality that provides ablation boundary delineation and quantitative information during ablation procedures.
Shear-Wave Elastography: Basic Physics and Musculoskeletal Applications
Gimber, Lana H.; Becker, Giles W.; Latt, L. Daniel; Klauser, Andrea S.; Melville, David M.; Gao, Liang; Witte, Russell S.
2017-01-01
In the past 2 decades, sonoelastography has been progressively used as a tool to help evaluate soft-tissue elasticity and add to information obtained with conventional gray-scale and Doppler ultrasonographic techniques. Recently introduced on clinical scanners, shear-wave elastography (SWE) is considered to be more objective, quantitative, and reproducible than compression sonoelastography with increasing applications to the musculoskeletal system. SWE uses an acoustic radiation force pulse sequence to generate shear waves, which propagate perpendicular to the ultrasound beam, causing transient displacements. The distribution of shear-wave velocities at each pixel is directly related to the shear modulus, an absolute measure of the tissue’s elastic properties. Shear-wave images are automatically coregistered with standard B-mode images to provide quantitative color elastograms with anatomic specificity. Shear waves propagate faster through stiffer contracted tissue, as well as along the long axis of tendon and muscle. SWE has a promising role in determining the severity of disease and treatment follow-up of various musculoskeletal tissues including tendons, muscles, nerves, and ligaments. This article describes the basic ultrasound physics of SWE and its applications in the evaluation of various traumatic and pathologic conditions of the musculoskeletal system. ©RSNA, 2017 PMID:28493799
NASA Astrophysics Data System (ADS)
Yamanaka, Hiroaki; Özmen, Ögur Tuna; Chimoto, Kosuke; Alkan, Mehmet Akif; Tün, Muammer; Pekkan, Emrah; Özel, Oguz; Polat, Derya; Nurlu, Murat
2018-05-01
We have explored 1D S-wave velocity profiles of shallow and deep soil layers over a basement at strong motion stations in Eskisehir Province, Turkey. Microtremor array explorations were conducted at eight strong motion stations in the area to know shallow 1D S-wave velocity models. Rayleigh wave phase velocity at a frequency range from 3 to 30 Hz was estimated with the spatial autocorrelation analysis of array records of vertical microtremors at each station. Individual phase velocity was inverted to a shallow S-wave velocity profile. Low-velocity layers were identified at the stations in the basin. Site amplification factors from S-wave parts of earthquake records that had been estimated at the strong motion stations by Yamanaka et al. (2017) were inverted to the S-wave velocities and Q-values of the sedimentary layers. The depths to the basement with an S-wave velocity of 2.2 km/s are about 1 km in the central part of the basin, while the basement becomes shallow as 0.3 km in the marginal part of the basin. We finally discussed the effects of the shallow and deep sedimentary layers on the 1D S-wave amplification characteristics using the revealed profiles. It is found that the shallow soil layers have no significant effects in the amplification at a frequency range lower than 3 Hz in the area.
Water-waves on linear shear currents. A comparison of experimental and numerical results.
NASA Astrophysics Data System (ADS)
Simon, Bruno; Seez, William; Touboul, Julien; Rey, Vincent; Abid, Malek; Kharif, Christian
2016-04-01
Propagation of water waves can be described for uniformly sheared current conditions. Indeed, some mathematical simplifications remain applicable in the study of waves whether there is no current or a linearly sheared current. However, the widespread use of mathematical wave theories including shear has rarely been backed by experimental studies of such flows. New experimental and numerical methods were both recently developed to study wave current interactions for constant vorticity. On one hand, the numerical code can simulate, in two dimensions, arbitrary non-linear waves. On the other hand, the experimental methods can be used to generate waves with various shear conditions. Taking advantage of the simplicity of the experimental protocol and versatility of the numerical code, comparisons between experimental and numerical data are discussed and compared with linear theory for validation of the methods. ACKNOWLEDGEMENTS The DGA (Direction Générale de l'Armement, France) is acknowledged for its financial support through the ANR grant N° ANR-13-ASTR-0007.
Giammarinaro, B.; Coulouvrat, F.; Pinton, G.
2016-01-01
Shear waves that propagate in soft solids, such as the brain, are strongly nonlinear and can develop into shock waves in less than one wavelength. We hypothesize that these shear shock waves could be responsible for certain types of traumatic brain injuries (TBI) and that the spherical geometry of the skull bone could focus shear waves deep in the brain, generating diffuse axonal injuries. Theoretical models and numerical methods that describe nonlinear polarized shear waves in soft solids such as the brain are presented. They include the cubic nonlinearities that are characteristic of soft solids and the specific types of nonclassical attenuation and dispersion observed in soft tissues and the brain. The numerical methods are validated with analytical solutions, where possible, and with self-similar scaling laws where no known solutions exist. Initial conditions based on a human head X-ray microtomography (CT) were used to simulate focused shear shock waves in the brain. Three regimes are investigated with shock wave formation distances of 2.54 m, 0.018 m, and 0.0064 m. We demonstrate that under realistic loading scenarios, with nonlinear properties consistent with measurements in the brain, and when the shock wave propagation distance and focal distance coincide, nonlinear propagation can easily overcome attenuation to generate shear shocks deep inside the brain. Due to these effects, the accelerations in the focal are larger by a factor of 15 compared to acceleration at the skull surface. These results suggest that shock wave focusing could be responsible for diffuse axonal injuries. PMID:26833489
Shear wave elasticity imaging based on acoustic radiation force and optical detection.
Cheng, Yi; Li, Rui; Li, Sinan; Dunsby, Christopher; Eckersley, Robert J; Elson, Daniel S; Tang, Meng-Xing
2012-09-01
Tissue elasticity is closely related to the velocity of shear waves within biologic tissue. Shear waves can be generated by an acoustic radiation force and tracked by, e.g., ultrasound or magnetic resonance imaging (MRI) measurements. This has been shown to be able to noninvasively map tissue elasticity in depth and has great potential in a wide range of clinical applications including cancer and cardiovascular diseases. In this study, a highly sensitive optical measurement technique is proposed as an alternative way to track shear waves generated by the acoustic radiation force. A charge coupled device (CCD) camera was used to capture diffuse photons from tissue mimicking phantoms illuminated by a laser source at 532 nm. CCD images were recorded at different delays after the transmission of an ultrasound burst and were processed to obtain the time of flight for the shear wave. A differential measurement scheme involving generation of shear waves at two different positions was used to improve the accuracy and spatial resolution of the system. The results from measurements on both homogeneous and heterogeneous phantoms were compared with measurements from other instruments and demonstrate the feasibility and accuracy of the technique for imaging and quantifying elasticity. The relative error in estimation of shear wave velocity can be as low as 3.3% with a spatial resolution of 2 mm, and increases to 8.8% with a spatial resolution of 1 mm for the medium stiffness phantom. The system is shown to be highly sensitive and is able to track shear waves propagating over several centimetres given the ultrasound excitation amplitude and the phantom material used in this study. It was also found that the reflection of shear waves from boundaries between regions with different elastic properties can cause significant bias in the estimation of elasticity, which also applies to other shear wave tracking techniques. This bias can be reduced at the expense of reduced spatial resolution. Copyright © 2012 World Federation for Ultrasound in Medicine & Biology. Published by Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Pitarka, Arben; Mellors, Robert; Rodgers, Arthur; Vorobiev, Oleg; Ezzedine, Souheil; Matzel, Eric; Ford, Sean; Walter, Bill; Antoun, Tarabay; Wagoner, Jeffery; Pasyanos, Mike; Petersson, Anders; Sjogreen, Bjorn
2014-05-01
We investigate the excitation and propagation of far-field (epicentral distance larger than 20 m) seismic waves by analyzing and modeling ground motion from an underground chemical explosion recorded during the Source Physics Experiment (SPE), Nevada. The far-field recorded ground motion is characterized by complex features, such as large azimuthal variations in P- and S-wave amplitudes, as well as substantial energy on the tangential component of motion. Shear wave energy is also observed on the tangential component of the near-field motion (epicentral distance smaller than 20 m) suggesting that shear waves were generated at or very near the source. These features become more pronounced as the waves propagate away from the source. We address the shear wave generation during the explosion by modeling ground motion waveforms recorded in the frequency range 0.01-20 Hz, at distances of up to 1 km. We used a physics based approach that combines hydrodynamic modeling of the source with anelastic modeling of wave propagation in order to separate the contributions from the source and near-source wave scattering on shear motion generation. We found that wave propagation scattering caused by the near-source geological environment, including surface topography, contributes to enhancement of shear waves generated from the explosion source. This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-06NA25946/ NST11-NCNS-TM-EXP-PD15.
NASA Astrophysics Data System (ADS)
Nguyen, Thu-Mai; Arnal, Bastien; Song, Shaozhen; Huang, Zhihong; Wang, Ruikang K.; O'Donnell, Matthew
2015-01-01
Investigating the elasticity of ocular tissue (cornea and intraocular lens) could help the understanding and management of pathologies related to biomechanical deficiency. In previous studies, we introduced a setup based on optical coherence tomography for shear wave elastography (SWE) with high resolution and high sensitivity. SWE determines tissue stiffness from the propagation speed of shear waves launched within tissue. We proposed acoustic radiation force to remotely induce shear waves by focusing an ultrasound (US) beam in tissue, similar to several elastography techniques. Minimizing the maximum US pressure is essential in ophthalmology for safety reasons. For this purpose, we propose a pulse compression approach. It utilizes coded US emissions to generate shear waves where the energy is spread over a long emission, and then numerically compressed into a short, localized, and high-energy pulse. We used a 7.5-MHz single-element focused transducer driven by coded excitations where the amplitude is modulated by a linear frequency-swept square wave (1 to 7 kHz). An inverse filter approach was used for compression. We demonstrate the feasibility of performing shear wave elastography measurements in tissue-mimicking phantoms at low US pressures (mechanical index <0.6).
Nguyen, Thu-Mai; Arnal, Bastien; Song, Shaozhen; Huang, Zhihong; Wang, Ruikang K.; O’Donnell, Matthew
2015-01-01
Abstract. Investigating the elasticity of ocular tissue (cornea and intraocular lens) could help the understanding and management of pathologies related to biomechanical deficiency. In previous studies, we introduced a setup based on optical coherence tomography for shear wave elastography (SWE) with high resolution and high sensitivity. SWE determines tissue stiffness from the propagation speed of shear waves launched within tissue. We proposed acoustic radiation force to remotely induce shear waves by focusing an ultrasound (US) beam in tissue, similar to several elastography techniques. Minimizing the maximum US pressure is essential in ophthalmology for safety reasons. For this purpose, we propose a pulse compression approach. It utilizes coded US emissions to generate shear waves where the energy is spread over a long emission, and then numerically compressed into a short, localized, and high-energy pulse. We used a 7.5-MHz single-element focused transducer driven by coded excitations where the amplitude is modulated by a linear frequency-swept square wave (1 to 7 kHz). An inverse filter approach was used for compression. We demonstrate the feasibility of performing shear wave elastography measurements in tissue-mimicking phantoms at low US pressures (mechanical index <0.6). PMID:25554970
Measurement of in vivo local shear modulus using MR elastography multiple-phase patchwork offsets.
Suga, Mikio; Matsuda, Tetsuya; Minato, Kotaro; Oshiro, Osamu; Chihara, Kunihiro; Okamoto, Jun; Takizawa, Osamu; Komori, Masaru; Takahashi, Takashi
2003-07-01
Magnetic resonance elastography (MRE) is a method that can visualize the propagating and standing shear waves in an object being measured. The quantitative value of a shear modulus can be calculated by estimating the local shear wavelength. Low-frequency mechanical motion must be used for soft, tissue-like objects because a propagating shear wave rapidly attenuates at a higher frequency. Moreover, a propagating shear wave is distorted by reflections from the boundaries of objects. However, the distortions are minimal around the wave front of the propagating shear wave. Therefore, we can avoid the effect of reflection on a region of interest (ROI) by adjusting the duration of mechanical vibrations. Thus, the ROI is often shorter than the propagating shear wavelength. In the MRE sequence, a motion-sensitizing gradient (MSG) is synchronized with mechanical cyclic motion. MRE images with multiple initial phase offsets can be generated with increasing delays between the MSG and mechanical vibrations. This paper proposes a method for measuring the local shear wavelength using MRE multiple initial phase patchwork offsets that can be used when the size of the object being measured is shorter than the local wavelength. To confirm the reliability of the proposed method, computer simulations, a simulated tissue study and in vitro and in vivo studies were performed.
Predicting S-wave velocities for unconsolidated sediments at low effective pressure
Lee, Myung W.
2010-01-01
Accurate S-wave velocities for shallow sediments are important in performing a reliable elastic inversion for gas hydrate-bearing sediments and in evaluating velocity models for predicting S-wave velocities, but few S-wave velocities are measured at low effective pressure. Predicting S-wave velocities by using conventional methods based on the Biot-Gassmann theory appears to be inaccurate for laboratory-measured velocities at effective pressures less than about 4-5 megapascals (MPa). Measured laboratory and well log velocities show two distinct trends for S-wave velocities with respect to P-wave velocity: one for the S-wave velocity less than about 0.6 kilometer per second (km/s) which approximately corresponds to effective pressure of about 4-5 MPa, and the other for S-wave velocities greater than 0.6 km/s. To accurately predict S-wave velocities at low effective pressure less than about 4-5 MPa, a pressure-dependent parameter that relates the consolidation parameter to shear modulus of the sediments at low effective pressure is proposed. The proposed method in predicting S-wave velocity at low effective pressure worked well for velocities of water-saturated sands measured in the laboratory. However, this method underestimates the well-log S-wave velocities measured in the Gulf of Mexico, whereas the conventional method performs well for the well log velocities. The P-wave velocity dispersion due to fluid in the pore spaces, which is more pronounced at high frequency with low effective pressures less than about 4 MPa, is probably a cause for this discrepancy.
NASA Astrophysics Data System (ADS)
Li, Peng; Thurber, Clifford
2018-06-01
We derive new Rayleigh wave group velocity models and a 3-D shear wave velocity model of the upper crust in the San Francisco Bay region using an adaptive grid ambient noise tomography algorithm and 6 months of continuous seismic data from 174 seismic stations from multiple networks. The resolution of the group velocity models is 0.1°-0.2° for short periods (˜3 s) and 0.3°-0.4° for long periods (˜10 s). The new shear wave velocity model of the upper crust reveals a number of important structures. We find distinct velocity contrasts at the Golden Gate segment of the San Andreas Fault, the West Napa Fault, central part of the Hayward Fault and southern part of the Calaveras Fault. Low shear wave velocities are mainly located in Tertiary and Quaternary basins, for instance, La Honda Basin, Livermore Valley and the western and eastern edges of Santa Clara Valley. Low shear wave velocities are also observed at the Sonoma volcanic field. Areas of high shear wave velocity include the Santa Lucia Range, the Gabilan Range and Ben Lomond Plutons, and the Diablo Range, where Franciscan Complex or Silinian rocks are exposed.
Storlazzi, C.D.; McManus, M.A.; Logan, J.B.; McLaughlin, B.E.
2006-01-01
A multi-day hydrographic survey cruise was conducted to acquire spatially extensive, but temporally limited, high-resolution, three-dimensional measurements of currents, temperature, salinity and turbidity off West Maui in the summer of 2003 to better understand coastal dynamics along a complex island shoreline with coral reefs. These data complement long-term, high-resolution tide, wave, current, temperature, salinity and turbidity measurements made at a number of fixed locations in the study area starting in 2001. Analyses of these hydrographic data, in conjunction with numerous field observations, evoke the following conceptual model of water and turbidity flux along West Maui. Wave- and wind-driven flows appear to be the primary control on flow over shallower portions of the reefs while tidal and subtidal currents dominate flow over the outer portions of the reefs and insular shelf. When the direction of these flows counter one another, which is quite common, they cause a zone of cross-shore horizontal shear and often form a front, with turbid, lower-salinity water inshore of the front and clear, higher-salinity water offshore of the front. It is not clear whether these zones of high shear and fronts are the cause or the result of the location of the fore reef, but they appear to be correlated alongshore over relatively large horizontal distances (orders of kilometers). When two flows converge or when a single flow is bathymetrically steered, eddies can be generated that, in the absence of large ocean surface waves, tend to accumulate material. Areas of higher turbidity and lower salinity tend to correlate with regions of poor coral health or the absence of well-developed reefs, suggesting that the oceanographic processes that concentrate and/or transport nutrients, contaminants, low-salinity water or suspended sediment might strongly influence coral reef ecosystem health and sustainability.
Amador Carrascal, Carolina; Chen, Shigao; Urban, Matthew W; Greenleaf, James F
2018-01-01
Ultrasound shear wave elastography is a promising noninvasive, low cost, and clinically viable tool for liver fibrosis staging. Current shear wave imaging technologies on clinical ultrasound scanners ignore shear wave dispersion and use a single group velocity measured over the shear wave bandwidth to estimate tissue elasticity. The center frequency and bandwidth of shear waves induced by acoustic radiation force depend on the ultrasound push beam (push duration, -number, etc.) and the viscoelasticity of the medium, and therefore are different across scanners from different vendors. As a result, scanners from different vendors may give different tissue elasticity measurements within the same patient. Various methods have been proposed to evaluate shear wave dispersion to better estimate tissue viscoelasticity. A rheological model such as the Kelvin-Voigt model is typically fitted to the shear wave dispersion to solve for the elasticity and viscosity of tissue. However, these rheological models impose strong assumptions about frequency dependence of elasticity and viscosity. Here, we propose a new method called Acoustic Radiation Force Induced Creep-Recovery (ARFICR) capable of quantifying rheological model-independent measurements of elasticity and viscosity for more robust tissue health assessment. In ARFICR, the creep-recovery time signal at the focus of the push beam is used to calculate the relative elasticity and viscosity (scaled by an unknown constant) over a wide frequency range. Shear waves generated during the ARFICR measurement are also detected and used to calculate the shear wave velocity at its center frequency, which is then used to calibrate the relative elasticity and viscosity to absolute elasticity and viscosity. In this paper, finite-element method simulations and experiments in tissue mimicking phantoms are used to validate and characterize the extent of viscoelastic quantification of ARFICR. The results suggest that ARFICR can measure tissue viscoelasticity reliably. Moreover, the results showed the strong frequency dependence of viscoelastic parameters in tissue mimicking phantoms and healthy liver.
Shear horizontal guided wave modes to infer the shear stiffness of adhesive bond layers.
Le Crom, Bénédicte; Castaings, Michel
2010-04-01
This paper presents a non-destructive, ultrasonic technique to evaluate the quality of bonds between substrates. Shear-horizontally polarized (SH) wave modes are investigated to infer the shear stiffness of bonds, which is necessarily linked to the shear resistance that is a critical parameter for bonded structures. Numerical simulations are run for selecting the most appropriate SH wave modes, i.e., with higher sensitivity to the bond than to other components, and experiments are made for generating-detecting pre-selected SH wave modes and for measuring their phase velocities. An inverse problem is finally solved, consisting of the evaluation of the shear stiffness modulus of a bond layer at different curing times between a metallic plate and a composite patch, such assembly being investigated in the context of repair of aeronautical structures.
The Main Ethiopian Rift: a Narrow Rift in a Hot Craton?
NASA Astrophysics Data System (ADS)
Gashawbeza, E.; Keranen, K.; Klemperer, S.; Lawrence, J.
2008-12-01
The Main Ethiopian Rift (MER) is a classic example of a narrow rift, but a synthesis of our results from the EAGLE (Ethiopia-Afar Geoscientific Lithospheric Experiment Phase I broadband experiment) and from the EBSE experiment (Ethiopia Broadband Seismic Experiment) suggests the MER formed in thin, hot, weak continental lithosphere, in strong contrast with predictions of the Buck model of modes of continental lithospheric extension. Our joint inversion of receiver functions and Rayleigh-wave group velocities yields shear-wave velocities of the lowermost crust and uppermost mantle across the MER and the Ethiopian Plateau that are significantly lower than the equivalent velocities in the Eastern and Western branches of the East African Rift System. The very low shear-wave velocities, high electrical conductivity in the lower-crust, and high shear-wave splitting delay times beneath a very broad region of the MER and the Ethiopian Plateau indicate that the lower-crust is hot and likely contains partial melt. Our S-receiver function data demonstrate shallowing of the lithosphere-asthenosphere boundary from 90 km beneath the northwestern Ethiopian Plateau to 60 km beneath the MER. Although we lack good spatial resolution on the lithosphere-asthenosphere boundary, the region of thinned lithosphere may be intermediate in width between the narrow surface rift (< 100 km) and the broader zone of strain in the lower crust (~ 300 km). The MER developed as a narrow rift at the surface, localized along the Neoproterozoic suture that joined East and West Gondwana. However, a far broader of lower crust and uppermost mantle remains thermally weakened since the Oligocene formation of the flood basalts by the Afar plume head. If the lithosphere- asthenosphere boundary is indeed a strain marker then lithospheric mantle deformation is localized beneath the surface rift. The development of both the Eastern/Western branches of the East African Rift System to the south and of the MER in the north as narrow rifts, despite vastly different lithospheric strength profiles, indicates that inherited structure, rather than rheological stratification, is the primary control on the mode of extension in these continental rifts.
NASA Astrophysics Data System (ADS)
Grasland-Mongrain, Pol; Miller-Jolicoeur, Erika; Tang, An; Catheline, Stefan; Cloutier, Guy
2016-03-01
This study presents the first observation of shear waves induced remotely within soft tissues. It was performed through the combination of a transcranial magnetic stimulation device and a permanent magnet. A physical model based on Maxwell and Navier equations was developed. Experiments were performed on a cryogel phantom and a chicken breast sample. Using an ultrafast ultrasound scanner, shear waves of respective amplitudes of 5 and 0.5 μm were observed. Experimental and numerical results were in good agreement. This study constitutes the framework of an alternative shear wave elastography method.
DeWall, Ryan J.; Varghese, Tomy
2013-01-01
Thermal ablation procedures are commonly used to treat hepatic cancers and accurate ablation representation on shear wave velocity images is crucial to ensure complete treatment of the malignant target. Electrode vibration elastography is a shear wave imaging technique recently developed to monitor thermal ablation extent during treatment procedures. Previous work has shown good lateral boundary delineation of ablated volumes, but axial delineation was more ambiguous, which may have resulted from the assumption of lateral shear wave propagation. In this work, we assume both lateral and axial wave propagation and compare wave velocity images to those assuming only lateral shear wave propagation in finite element simulations, tissue-mimicking phantoms, and bovine liver tissue. Our results show that assuming bidirectional wave propagation minimizes artifacts above and below ablated volumes, yielding a more accurate representation of the ablated region on shear wave velocity images. Area overestimation was reduced from 13.4% to 3.6% in a stiff-inclusion tissue-mimicking phantom and from 9.1% to 0.8% in a radio-frequency ablation in bovine liver tissue. More accurate ablation representation during ablation procedures increases the likelihood of complete treatment of the malignant target, decreasing tumor recurrence. PMID:22293748
DeWall, Ryan J; Varghese, Tomy
2012-01-01
Thermal ablation procedures are commonly used to treat hepatic cancers and accurate ablation representation on shear wave velocity images is crucial to ensure complete treatment of the malignant target. Electrode vibration elastography is a shear wave imaging technique recently developed to monitor thermal ablation extent during treatment procedures. Previous work has shown good lateral boundary delineation of ablated volumes, but axial delineation was more ambiguous, which may have resulted from the assumption of lateral shear wave propagation. In this work, we assume both lateral and axial wave propagation and compare wave velocity images to those assuming only lateral shear wave propagation in finite element simulations, tissue-mimicking phantoms, and bovine liver tissue. Our results show that assuming bidirectional wave propagation minimizes artifacts above and below ablated volumes, yielding a more accurate representation of the ablated region on shear wave velocity images. Area overestimation was reduced from 13.4% to 3.6% in a stiff-inclusion tissue-mimicking phantom and from 9.1% to 0.8% in a radio-frequency ablation in bovine liver tissue. More accurate ablation representation during ablation procedures increases the likelihood of complete treatment of the malignant target, decreasing tumor recurrence. © 2012 IEEE
Nonlinear interaction of strong S-waves with the rupture front in the shallow subsurface
NASA Astrophysics Data System (ADS)
Sleep, N. H.
2017-12-01
Shallow deformation in moderate to large earthquakes is sometimes distributed rather than being concentrated on a single fault plane. Strong high-frequency S-waves interact with the rupture front to produce this effect. For strike-slip faults, the rupture propagation velocity is a fraction of the S-wave velocity. The rupture propagation vector refracts essentially vertically in the low (S-wave) velocity shallow subsurface. So does the propagation direction of S-waves. The shallow rupture front is essentially mode 3 near the surface. Strong S-waves arrive before the rupture front. They continue to arrive for several seconds in a large event. There are simple scaling relationships. The dynamic Coulomb stress ratio of horizontal stress on horizontal planes from S-waves is the normalized acceleration in g's. For fractured rock and gravel, frictional failure occurs when the normalized acceleration exceeds the effective coefficient of friction. Acceleration tends to saturate at that level as the anelastic strain rate increases rapidly with stress. For muddy materials, failure begins at a low normalized acceleration but increases slowly with dynamic stress. Dynamic accelerations sometimes exceed 1 g. In both cases, the rupture tip finds the shallow subsurface already in nonlinear failure down to a few to tens of meters depth. The material does not distinguish between S-wave and rupture tip stresses. Both stresses add to the stress invariant and hence to the anelastic strain rate tensor. Surface anelastic strain from fault slip is thus distributed laterally over a distance scaling to the depth of nonlinearity from S-waves. The environs of the fault anelastically accommodate the fault slip at depth. This process differs from blind faults where the shallow coseismic strain is mostly elastic and interseismic anelastic processes accommodate the long-term shallow deformation.
Palmeri, Mark L.; Qiang, Bo; Chen, Shigao; Urban, Matthew W.
2017-01-01
Ultrasound shear wave elastography is emerging as an important imaging modality for evaluating tissue material properties. In its practice, some systematic biases have been associated with ultrasound frequencies, focal depths and configuration, transducer types (linear versus curvilinear), along with displacement estimation and shear wave speed estimation algorithms. Added to that, soft tissues are not purely elastic, so shear waves will travel at different speeds depending on their spectral content, which can be modulated by the acoustic radiation force excitation focusing, duration and the frequency-dependent stiffness of the tissue. To understand how these different acquisition and material property parameters may affect measurements of shear wave velocity, simulations of the propagation of shear waves generated by acoustic radiation force excitations in viscoelastic media are a very important tool. This article serves to provide an in-depth description of how these simulations are performed. The general scheme is broken into three components: (1) simulation of the three-dimensional acoustic radiation force push beam, (2) applying that force distribution to a finite element model, and (3) extraction of the motion data for post-processing. All three components will be described in detail and combined to create a simulation platform that is powerful for developing and testing algorithms for academic and industrial researchers involved in making quantitative shear wave-based measurements of tissue material properties. PMID:28026760
Evans, A; Whelehan, P; Thomson, K; Brauer, K; Jordan, L; Purdie, C; McLean, D; Baker, L; Vinnicombe, S; Thompson, A
2012-07-10
The aim of this study was to assess the performance of shear wave elastography combined with BI-RADS classification of greyscale ultrasound images for benign/malignant differentiation in a large group of patients. One hundred and seventy-five consecutive patients with solid breast masses on routine ultrasonography undergoing percutaneous biopsy had the greyscale findings classified according to the American College of Radiology BI-RADS. The mean elasticity values from four shear wave images were obtained. For mean elasticity vs greyscale BI-RADS, the performance results against histology were sensitivity: 95% vs 95%, specificity: 77% vs 69%, Positive Predictive Value (PPV): 88% vs 84%, Negative Predictive Value (NPV): 90% vs 91%, and accuracy: 89% vs 86% (all P>0.05). The results for the combination (positive result from either modality counted as malignant) were sensitivity 100%, specificity 61%, PPV 82%, NPV 100%, and accuracy 86%. The combination of BI-RADS greyscale and shear wave elastography yielded superior sensitivity to BI-RADS alone (P=0.03) or shear wave alone (P=0.03). The NPV was superior in combination compared with either alone (BI-RADS P=0.01 and shear wave P=0.02). Together, BI-RADS assessment of greyscale ultrasound images and shear wave ultrasound elastography are extremely sensitive for detection of malignancy.
Evans, A; Whelehan, P; Thomson, K; Brauer, K; Jordan, L; Purdie, C; McLean, D; Baker, L; Vinnicombe, S; Thompson, A
2012-01-01
Background: The aim of this study was to assess the performance of shear wave elastography combined with BI-RADS classification of greyscale ultrasound images for benign/malignant differentiation in a large group of patients. Methods: One hundred and seventy-five consecutive patients with solid breast masses on routine ultrasonography undergoing percutaneous biopsy had the greyscale findings classified according to the American College of Radiology BI-RADS. The mean elasticity values from four shear wave images were obtained. Results: For mean elasticity vs greyscale BI-RADS, the performance results against histology were sensitivity: 95% vs 95%, specificity: 77% vs 69%, Positive Predictive Value (PPV): 88% vs 84%, Negative Predictive Value (NPV): 90% vs 91%, and accuracy: 89% vs 86% (all P>0.05). The results for the combination (positive result from either modality counted as malignant) were sensitivity 100%, specificity 61%, PPV 82%, NPV 100%, and accuracy 86%. The combination of BI-RADS greyscale and shear wave elastography yielded superior sensitivity to BI-RADS alone (P=0.03) or shear wave alone (P=0.03). The NPV was superior in combination compared with either alone (BI-RADS P=0.01 and shear wave P=0.02). Conclusion: Together, BI-RADS assessment of greyscale ultrasound images and shear wave ultrasound elastography are extremely sensitive for detection of malignancy. PMID:22691969
Chino, Kentaro; Kawakami, Yasuo; Takahashi, Hideyuki
2017-07-01
The aim of the present study was to measure in vivo skeletal muscle elasticity in the transverse and longitudinal planes using shear wave elastography and then to compare the image stability, measurement values and measurement repeatability between these imaging planes. Thirty-one healthy males participated in this study. Tissue elasticity (shear wave velocity) of the medial gastrocnemius, rectus femoris, biceps brachii and rectus abdominis was measured in both the transverse and longitudinal planes using shear wave elastography. Image stability was evaluated by the standard deviation of the colour distribution in the shear wave elastography image. Measurement repeatability was assessed by the coefficient of variance obtained from three measurement values. Image stability of all tested muscles was significantly higher in the longitudinal plane (P<0·001), but measurement repeatability did not differ significantly between the imaging planes (P>0·05), except in the biceps brachii (P = 0·001). Measurement values of the medial gastrocnemius, rectus femoris and biceps brachii were significantly different between the imaging planes (P<0·001). Image stability and measurement values of shear wave elastography images varied with imaging plane, which indicates that imaging plane should be considered when measuring skeletal muscle tissue elasticity by shear wave elastography. © 2015 Scandinavian Society of Clinical Physiology and Nuclear Medicine. Published by John Wiley & Sons Ltd.
Levesque, Daniel; Moreau, Andre; Dubois, Marc; Monchalin, Jean-Pierre; Bussiere, Jean; Lord, Martin; Padioleau, Christian
2000-01-01
Apparatus and method for detecting shear resonances includes structure and steps for applying a radiation pulse from a pulsed source of radiation to an object to generate elastic waves therein, optically detecting the elastic waves generated in the object, and analyzing the elastic waves optically detected in the object. These shear resonances, alone or in combination with other information, may be used in the present invention to improve thickness measurement accuracy and to determine geometrical, microstructural, and physical properties of the object. At least one shear resonance in the object is detected with the elastic waves optically detected in the object. Preferably, laser-ultrasound spectroscopy is utilized to detect the shear resonances.
Shear Wave Velocity Imaging Using Transient Electrode Perturbation: Phantom and ex vivo Validation
Varghese, Tomy; Madsen, Ernest L.
2011-01-01
This paper presents a new shear wave velocity imaging technique to monitor radio-frequency and microwave ablation procedures, coined electrode vibration elastography. A piezoelectric actuator attached to an ablation needle is transiently vibrated to generate shear waves that are tracked at high frame rates. The time-to-peak algorithm is used to reconstruct the shear wave velocity and thereby the shear modulus variations. The feasibility of electrode vibration elastography is demonstrated using finite element models and ultrasound simulations, tissue-mimicking phantoms simulating fully (phantom 1) and partially ablated (phantom 2) regions, and an ex vivo bovine liver ablation experiment. In phantom experiments, good boundary delineation was observed. Shear wave velocity estimates were within 7% of mechanical measurements in phantom 1 and within 17% in phantom 2. Good boundary delineation was also demonstrated in the ex vivo experiment. The shear wave velocity estimates inside the ablated region were higher than mechanical testing estimates, but estimates in the untreated tissue were within 20% of mechanical measurements. A comparison of electrode vibration elastography and electrode displacement elastography showed the complementary information that they can provide. Electrode vibration elastography shows promise as an imaging modality that provides ablation boundary delineation and quantitative information during ablation procedures. PMID:21075719
Evaluation of site effects in Loja basin (southern Ecuador)
NASA Astrophysics Data System (ADS)
Guartán, J.; Navarro, M.; Soto, J.
2013-05-01
Site effect assessment based on subsurface ground conditions is often crucial for estimating the urban seismic hazard. In order to evaluate the site effects in the intra-mountain basin of Loja (southern Ecuador), geological and geomorphological survey and ambient noise measurements were carried out. A classification of shallow geologic materials was performed through a geological cartography and the use of geotechnical data and geophysical surveys. Seven lithological formations have been analyzed, both in composition and thickness of existing materials. The shear-wave velocity structure in the center of the basin, composed by alluvial materials, was evaluated by means of inversion of Rayleigh wave dispersion data obtained from vertical-component array records of ambient noise. VS30 structure was estimated and an average value of 346 m s-1 was obtained. This value agrees with the results obtained from SPT N-value (306-368 m s-1). Short-period ambient noise observations were performed in 72 sites on a 500m × 500m dimension grid. The horizontal-to-vertical spectral ratio (HVSR) method was applied in order to determine a ground predominant period distribution map. This map reveals an irregular distribution of predominant period values, ranged from 0.1 to 1.0 s, according with the heterogeneity of the basin. Lower values of the period are found in the harder formation (Quillollaco formation), while higher values are predominantly obtained in alluvial formation. These results will be used in the evaluation of ground dynamic properties and will be included in seismic microzoning of Loja basin. Keywords: Landform classification, Ambient noise, SPAC method, Rayleigh waves, Shear velocity profile, Ground predominant period. ;
NASA Astrophysics Data System (ADS)
Caenen, Annette; Pernot, Mathieu; Peirlinck, Mathias; Mertens, Luc; Swillens, Abigail; Segers, Patrick
2018-04-01
Shear wave elastography (SWE) is a potential tool to non-invasively assess cardiac muscle stiffness. This study focused on the effect of the orthotropic material properties and mechanical loading on the performance of cardiac SWE, as it is known that these factors contribute to complex 3D anisotropic shear wave propagation. To investigate the specific impact of these complexities, we constructed a finite element model with an orthotropic material law subjected to different uniaxial stretches to simulate SWE in the stressed cardiac wall. Group and phase speed were analyzed in function of tissue thickness and virtual probe rotation angle. Tissue stretching increased the group and phase speed of the simulated shear wave, especially in the direction of the muscle fiber. As the model provided access to the true fiber orientation and material properties, we assessed the accuracy of two fiber orientation extraction methods based on SWE. We found a higher accuracy (but lower robustness) when extracting fiber orientations based on the location of maximal shear wave speed instead of the angle of the major axis of the ellipsoidal group speed surface. Both methods had a comparable performance for the center region of the cardiac wall, and performed less well towards the edges. Lastly, we also assessed the (theoretical) impact of pathology on shear wave physics and characterization in the model. It was found that SWE was able to detect changes in fiber orientation and material characteristics, potentially associated with cardiac pathologies such as myocardial fibrosis. Furthermore, the model showed clearly altered shear wave patterns for the fibrotic myocardium compared to the healthy myocardium, which forms an initial but promising outcome of this modeling study.
Monitoring of thermal therapy based on shear modulus changes: I. shear wave thermometry.
Arnal, Bastien; Pernot, Mathieu; Tanter, Mickael
2011-02-01
The clinical applicability of high-intensity focused ultrasound (HIFU) for noninvasive therapy is today hampered by the lack of robust and real-time monitoring of tissue damage during treatment. The goal of this study is to show that the estimation of local tissue elasticity from shear wave imaging (SWI) can lead to the 2-D mapping of temperature changes during HIFU treatments. This new concept of shear wave thermometry is experimentally implemented here using conventional ultrasonic imaging probes. HIFU treatment and monitoring were, respectively, performed using a confocal setup consisting of a 2.5-MHz single-element transducer focused at 30 mm on ex vivo samples and an 8-MHz ultrasound diagnostic probe. Thermocouple measurements and ultrasound-based thermometry were used as a gold standard technique and were combined with SWI on the same device. The SWI sequences consisted of 2 successive shear waves induced at different lateral positions. Each wave was created using 100-μs pushing beams at 3 depths. The shear wave propagation was acquired at 17,000 frames/s, from which the elasticity map was recovered. HIFU sonications were interleaved with fast imaging acquisitions, allowing a duty cycle of more than 90%. Elasticity and temperature mapping was achieved every 3 s, leading to realtime monitoring of the treatment. Tissue stiffness was found to decrease in the focal zone for temperatures up to 43°C. Ultrasound-based temperature estimation was highly correlated to stiffness variation maps (r² = 0.91 to 0.97). A reversible calibration phase of the changes of elasticity with temperature can be made locally using sighting shots. This calibration process allows for the derivation of temperature maps from shear wave imaging. Compared with conventional ultrasound-based approaches, shear wave thermometry is found to be much more robust to motion artifacts.
Novel Method for Vessel Cross-Sectional Shear Wave Imaging.
He, Qiong; Li, Guo-Yang; Lee, Fu-Feng; Zhang, Qihao; Cao, Yanping; Luo, Jianwen
2017-07-01
Many studies have investigated the applications of shear wave imaging (SWI) to vascular elastography, mainly on the longitudinal section of vessels. It is important to investigate SWI in the arterial cross section when evaluating anisotropy of the vessel wall or complete plaque composition. Here, we proposed a novel method based on the coordinate transformation and directional filter in the polar coordinate system to achieve vessel cross-sectional shear wave imaging. In particular, ultrasound radiofrequency data were transformed from the Cartesian to the polar coordinate system; the radial displacements were then estimated directly. Directional filtering was performed along the circumferential direction to filter out the reflected waves. The feasibility of the proposed vessel cross-sectional shear wave imaging method was investigated through phantom experiments and ex vivo and in vivo studies. Our results indicated that the dispersion relation of the shear wave (i.e., the guided circumferential wave) within the vessel can be measured via the present method, and the elastic modulus of the vessel can be determined. Copyright © 2017 World Federation for Ultrasound in Medicine & Biology. Published by Elsevier Inc. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Richard D. Miller; Abdelmoneam E. Raef; Alan P. Byrnes
2007-06-30
The objective of this research project was to acquire, process, and interpret multiple high-resolution 3-D compressional wave and 2-D, 2-C shear wave seismic data in the hopes of observing changes in fluid characteristics in an oil field before, during, and after the miscible carbon dioxide (CO{sub 2}) flood that began around December 1, 2003, as part of the DOE-sponsored Class Revisit Project (DOE No.DE-AC26-00BC15124). Unique and key to this imaging activity is the high-resolution nature of the seismic data, minimal deployment design, and the temporal sampling throughout the flood. The 900-m-deep test reservoir is located in central Kansas oomoldic limestonesmore » of the Lansing-Kansas City Group, deposited on a shallow marine shelf in Pennsylvanian time. After 30 months of seismic monitoring, one baseline and eight monitor surveys clearly detected changes that appear consistent with movement of CO{sub 2} as modeled with fluid simulators and observed in production data. Attribute analysis was a very useful tool in enhancing changes in seismic character present, but difficult to interpret on time amplitude slices. Lessons learned from and tools/techniques developed during this project will allow high-resolution seismic imaging to be routinely applied to many CO{sub 2} injection programs in a large percentage of shallow carbonate oil fields in the midcontinent.« less
Mechanisms of muddy clinothem progradation on the Southwest Louisiana Chenier Plain inner shelf
NASA Astrophysics Data System (ADS)
Denommee, Kathryn C.; Bentley, Samuel J.; Harazim, Dario
2018-06-01
In both modern and ancient shelf settings, mud-dominated successions commonly contain complex stratigraphic geometries in which low-gradient clinothems feature prominently. Despite their ubiquity, the full range of mechanisms responsible for sediment dispersal and clinothem progradation in such settings is not well understood. Using sediment core data (210PbXS, 137Cs, grain size, porosity, X-radiography) and shallow seismic observations, this study examines the mechanisms of across-shelf sediment transport and clinothem progradation on the muddy Southwest Louisiana Atchafalaya Chenier Plain inner shelf. Observations indicate that rapid transfer of organic matter-rich sediment to the outer topsets and clinothem rollover occurs mainly via hydrodynamic fluid-mud processes during times of high wave-current bed shear stress (e.g., during the passage of storms). Rapid sedimentation, wave perturbation, and the development of biogenic methane within the shallow seabed result in the generation of large internal pore water pressures such that the clinothem rollover and foreset sediments are inherently in a condition of incipient failure. Subsequent basinward sediment transfer to the foresets occurs largely in association with low-gradient (<0.02°) mass-failure events, evidenced by widespread scarping and mudflows on the seabed. These represent an important and as yet unattributed mechanism for clinothem progradation in the study area and are likely to drive basinward sediment transport in other muddy shelf clinothem systems, both modern and ancient.
Large-Amplitude Long-Wave Instability of a Supersonic Shear Layer
NASA Technical Reports Server (NTRS)
Messiter, A. F.
1995-01-01
For sufficiently high Mach numbers, small disturbances on a supersonic vortex sheet are known to grow in amplitude because of slow nonlinear wave steepening. Under the same external conditions, linear theory predicts slow growth of long-wave disturbances to a thin supersonic shear layer. An asymptotic formulation is given here which adds nonzero shear-layer thickness to the weakly nonlinear formulation for a vortex sheet. Spatial evolution is considered, for a spatially periodic disturbance having amplitude of the same order, in Reynolds number, as the shear-layer thickness. A quasi-equilibrium inviscid nonlinear critical layer is found, with effects of diffusion and slow growth appearing through nonsecularity condition. Other limiting cases are also considered, in an attempt to determine a relationship between the vortex-sheet limit and the long-wave limit for a thin shear layer; there appear to be three special limits, corresponding to disturbances of different amplitudes at different locations along the shear layer.
Murphy, S.; Scala, A.; Herrero, A.; Lorito, S.; Festa, G.; Trasatti, E.; Tonini, R.; Romano, F.; Molinari, I.; Nielsen, S.
2016-01-01
The 2011 Tohoku earthquake produced an unexpected large amount of shallow slip greatly contributing to the ensuing tsunami. How frequent are such events? How can they be efficiently modelled for tsunami hazard? Stochastic slip models, which can be computed rapidly, are used to explore the natural slip variability; however, they generally do not deal specifically with shallow slip features. We study the systematic depth-dependence of slip along a thrust fault with a number of 2D dynamic simulations using stochastic shear stress distributions and a geometry based on the cross section of the Tohoku fault. We obtain a probability density for the slip distribution, which varies both with depth, earthquake size and whether the rupture breaks the surface. We propose a method to modify stochastic slip distributions according to this dynamically-derived probability distribution. This method may be efficiently applied to produce large numbers of heterogeneous slip distributions for probabilistic tsunami hazard analysis. Using numerous M9 earthquake scenarios, we demonstrate that incorporating the dynamically-derived probability distribution does enhance the conditional probability of exceedance of maximum estimated tsunami wave heights along the Japanese coast. This technique for integrating dynamic features in stochastic models can be extended to any subduction zone and faulting style. PMID:27725733
NASA Astrophysics Data System (ADS)
Pu, X.; Delph, J. R.; Shimizu, K.; Rasmussen, D. J.; Ratschbacher, B. C.
2017-12-01
Deep zones of mixing, assimilation, storage, and homogenization (MASH) are thought to be one of the primary locations where primitive arc magmas stall, interact with crustal material, and differentiate. Support for deep crustal MASH zones is found in exposed crustal sections, where mafic-ultramafic lithologies occur in the lower crust. However, geophysical observations of active deep MASH zones are rare, and their ubiquity is difficult to assess solely based on geochemistry. Using a multidisciplinary approach, we investigate the role of deep crustal processing by investigating two contrasting arcs: the Central Volcanic Zone (CVZ) of the Andes, characterized by thick crust ( 60 km) and large volume silicic eruptions that extend into the back arc, and the Cascadia arc, characterized by thinner crust ( 40 km) and less evolved eruptions. In the southern Puna region of the CVZ, shear-wave velocities in the uppermost mantle are slow ( 3.9 km/s) compared to the minimum expected shear velocity for melt-free mantle lithosphere ( 4.2 km/s). This is consistent with the presence of a melt-bearing MASH zone near the crust-mantle transition. Sr isotopes indicate the magmas interacted with continental crust, and elevated Dy/Yb ratios suggest this process occurred in the garnet stability field (> 1 GPa). Major element signatures (e.g., ASI vs. SiO2) also suggest contribution from partial melting of the lower crust. The signature of lower crustal differentiation (high Dy/Yb) is also observed in the nearby ignimbrites from Cerro Galan, despite the presence of a large slow velocity body at depths too shallow for garnet stability, suggesting that the geochemical signatures of deep MASH zones may be retained regardless of whether magmas stall at shallower depths. Similarly elevated Dy/Yb ratios and slow shear-wave velocities in the upper mantle are common in the CVZ, implying deep MASH zones are pervasive there. A similar approach is applied to Cascadia, where seismic and geochemical signatures of lower crustal processing are weaker than those in the CVZ. The strongest evidence for a deep MASH zone is found at Rainier, where upper mantle velocities are slow and slightly elevated Dy/Yb ratios in evolved melts indicate differentiation in the presence of garnet. Our results suggest deep MASH zones are more common in the CVZ than Cascadia.
Near-field non-radial motion generation from underground chemical explosions in jointed granite
Vorobiev, Oleg; Ezzedine, Souheil; Hurley, Ryan
2017-09-22
Here, this paper describes analysis of non-radial ground motion generated by chemical explosions in a jointed rock formation during the Source Physics Experiment (SPE). Such motion makes it difficult to discriminate between various subsurface events such as explosions, implosions (i.e. mine collapse) and earthquakes. We apply 3-D numerical simulations to understand experimental data collected during the SPEs. The joints are modelled explicitly as compliant thin inclusions embedded into the rock mass. Mechanical properties of the rock and the joints as well as the joint spacing and orientation are inferred from experimental test data, and geophysical and geological characterization of themore » SPE site which is dominantly Climax Stock granitic outcrop. The role of various factors characterizing the joints such as joint spacing, frictional properties, orientation and persistence in generation of non-radial motion is addressed. The joints in granite at the SPE site are oriented in nearly orthogonal directions with two vertical sets dipping at 70–80 degrees with the same strike angle, one vertical set almost orthogonal to the first two and one shallow angle joint set dipping 15 degrees. In this study we establish the relationship between the joint orientation and azimuthal variations in the polarity of the observed shear motion. The majority of the shear motion is generated due to the effects of non-elastic sliding on the joints near the source, where the wave can create significant shear stress to overcome the cohesive forces at the joints. Near the surface the joints are less confined and are subject to sliding when the pressure waves are reflected. In the far field, where the cohesive forces on the joints cannot be overcome, additional shear motion can be generated due to elastic anisotropy of the rock mass given by preferred spatial orientations of compliant joints.« less
Near-field non-radial motion generation from underground chemical explosions in jointed granite
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vorobiev, Oleg; Ezzedine, Souheil; Hurley, Ryan
Here, this paper describes analysis of non-radial ground motion generated by chemical explosions in a jointed rock formation during the Source Physics Experiment (SPE). Such motion makes it difficult to discriminate between various subsurface events such as explosions, implosions (i.e. mine collapse) and earthquakes. We apply 3-D numerical simulations to understand experimental data collected during the SPEs. The joints are modelled explicitly as compliant thin inclusions embedded into the rock mass. Mechanical properties of the rock and the joints as well as the joint spacing and orientation are inferred from experimental test data, and geophysical and geological characterization of themore » SPE site which is dominantly Climax Stock granitic outcrop. The role of various factors characterizing the joints such as joint spacing, frictional properties, orientation and persistence in generation of non-radial motion is addressed. The joints in granite at the SPE site are oriented in nearly orthogonal directions with two vertical sets dipping at 70–80 degrees with the same strike angle, one vertical set almost orthogonal to the first two and one shallow angle joint set dipping 15 degrees. In this study we establish the relationship between the joint orientation and azimuthal variations in the polarity of the observed shear motion. The majority of the shear motion is generated due to the effects of non-elastic sliding on the joints near the source, where the wave can create significant shear stress to overcome the cohesive forces at the joints. Near the surface the joints are less confined and are subject to sliding when the pressure waves are reflected. In the far field, where the cohesive forces on the joints cannot be overcome, additional shear motion can be generated due to elastic anisotropy of the rock mass given by preferred spatial orientations of compliant joints.« less
Cubic nonlinearity in shear wave beams with different polarizations
Wochner, Mark S.; Hamilton, Mark F.; Ilinskii, Yurii A.; Zabolotskaya, Evgenia A.
2008-01-01
A coupled pair of nonlinear parabolic equations is derived for the two components of the particle motion perpendicular to the axis of a shear wave beam in an isotropic elastic medium. The equations account for both quadratic and cubic nonlinearity. The present paper investigates, analytically and numerically, effects of cubic nonlinearity in shear wave beams for several polarizations: linear, elliptical, circular, and azimuthal. Comparisons are made with effects of quadratic nonlinearity in compressional wave beams. PMID:18529167
NASA Technical Reports Server (NTRS)
Bechert, D. W.
1982-01-01
The generation of instability waves in free shear layers is investigated. The model assumes an infinitesimally thin shear layer shed from a semi-infinite plate which is exposed to sound excitation. The acoustical shear layer excitation by a source further away from the plate edge in the downstream direction is very weak while upstream from the plate edge the excitation is relatively efficient. A special solution is given for the source at the plate edge. The theory is then extended to two streams on both sides of the shear layer having different velocities and densities. Furthermore, the excitation of a shear layer in a channel is calculated. A reference quantity is found for the magnitude of the excited instability waves. For a comparison with measurements, numerical computations of the velocity field outside the shear layer were carried out.
NASA Astrophysics Data System (ADS)
Di Giulio, Giuseppe; Gaudiosi, Iolanda; Cara, Fabrizio; Milana, Giuliano; Tallini, Marco
2014-08-01
Downtown L'Aquila suffered severe damage (VIII-IX EMS98 intensity) during the 2009 April 6 Mw 6.3 earthquake. The city is settled on a top flat hill, with a shear-wave velocity profile characterized by a reversal of velocity at a depth of the order of 50-100 m, corresponding to the contact between calcareous breccia and lacustrine deposits. In the southern sector of downtown, a thin unit of superficial red soils causes a further shallow impedance contrast that may have influenced the damage distribution during the 2009 earthquake. In this paper, the main features of ambient seismic vibrations have been studied in the entire city centre by using array measurements. We deployed six 2-D arrays of seismic stations and 1-D array of vertical geophones. The 2-D arrays recorded ambient noise, whereas the 1-D array recorded signals produced by active sources. Surface-wave dispersion curves have been measured by array methods and have been inverted through a neighbourhood algorithm, jointly with the H/V ambient noise spectral ratios related to Rayleigh waves ellipticity. We obtained shear-wave velocity (Vs) profiles representative of the southern and northern sectors of downtown L'Aquila. The theoretical 1-D transfer functions for the estimated Vs profiles have been compared to the available empirical transfer functions computed from aftershock data analysis, revealing a general good agreement. Then, the Vs profiles have been used as input for a deconvolution analysis aimed at deriving the ground motion at bedrock level. The deconvolution has been performed by means of EERA and STRATA codes, two tools commonly employed in the geotechnical engineering community to perform equivalent-linear site response studies. The waveform at the bedrock level has been obtained deconvolving the 2009 main shock recorded at a strong motion station installed in downtown. Finally, this deconvolved waveform has been used as seismic input for evaluating synthetic time-histories in a strong-motion target site located in the middle Aterno river valley. As a target site, we selected the strong-motion station of AQV 5 km away from downtown L'Aquila. For this site, the record of the 2009 L'Aquila main shock is available and its surface stratigraphy is adequately known making possible to propagate the deconvolved bedrock motion back to the surface, and to compare recorded and synthetic waveforms.
Helfenstein-Didier, C; Andrade, R J; Brum, J; Hug, F; Tanter, M; Nordez, A; Gennisson, J-L
2016-03-21
The shear wave velocity dispersion was analyzed in the Achilles tendon (AT) during passive dorsiflexion using a phase velocity method in order to obtain the tendon shear modulus (C 55). Based on this analysis, the aims of the present study were (i) to assess the reproducibility of the shear modulus for different ankle angles, (ii) to assess the effect of the probe locations, and (iii) to compare results with elasticity values obtained with the supersonic shear imaging (SSI) technique. The AT shear modulus (C 55) consistently increased with the ankle dorsiflexion (N = 10, p < 0.05). Furthermore, the technique showed a very good reproducibility (all standard error of the mean values <10.7 kPa and all coefficient of variation (CV) values ⩽ 0.05%). In addition, independently from the ankle dorsiflexion, the shear modulus was significantly higher in the proximal location compared to the more distal one. The shear modulus provided by SSI was always lower than C55 and the difference increased with the ankle dorsiflexion. However, shear modulus values provided by both methods were highly correlated (R = 0.84), indicating that the conventional shear wave elastography technique (SSI technique) can be used to compare tendon mechanical properties across populations. Future studies should determine the clinical relevance of the shear wave dispersion analysis, for instance in the case of tendinopathy or tendon tear.
NASA Technical Reports Server (NTRS)
Barut, A.; Madenci, Erdogan; Tessler, A.
1997-01-01
This study presents a transient nonlinear finite element analysis within the realm of a multi-body dynamics formulation for determining the dynamic response of a moderately thick laminated shell undergoing a rapid and large rotational motion and nonlinear elastic deformations. Nonlinear strain measure and rotation, as well as 'the transverse shear deformation, are explicitly included in the formulation in order to capture the proper motion-induced stiffness of the laminate. The equations of motion are derived from the virtual work principle. The analysis utilizes a shear deformable shallow shell element along with the co-rotational form of the updated Lagrangian formulation. The shallow shell element formulation is based on the Reissner-Mindlin and Marguerre theory.
HF Radar Sea-echo from Shallow Water.
Lipa, Belinda; Nyden, Bruce; Barrick, Don; Kohut, Josh
2008-08-06
HF radar systems are widely and routinely used for the measurement of ocean surface currents and waves. Analysis methods presently in use are based on the assumption of infinite water depth, and may therefore be inadequate close to shore where the radar echo is strongest. In this paper, we treat the situation when the radar echo is returned from ocean waves that interact with the ocean floor. Simulations are described which demonstrate the effect of shallow water on radar sea-echo. These are used to investigate limits on the existing theory and to define water depths at which shallow-water effects become significant. The second-order spectral energy increases relative to the first-order as the water depth decreases, resulting in spectral saturation when the waveheight exceeds a limit defined by the radar transmit frequency. This effect is particularly marked for lower radar transmit frequencies. The saturation limit on waveheight is less for shallow water. Shallow water affects second-order spectra (which gives wave information) far more than first-order (which gives information on current velocities), the latter being significantly affected only for the lowest radar transmit frequencies for extremely shallow water. We describe analysis of radar echo from shallow water measured by a Rutgers University HF radar system to give ocean wave spectral estimates. Radar-derived wave height, period and direction are compared with simultaneous shallow-water in-situ measurements.
HF Radar Sea-echo from Shallow Water
Lipa, Belinda; Nyden, Bruce; Barrick, Don; Kohut, Josh
2008-01-01
HF radar systems are widely and routinely used for the measurement of ocean surface currents and waves. Analysis methods presently in use are based on the assumption of infinite water depth, and may therefore be inadequate close to shore where the radar echo is strongest. In this paper, we treat the situation when the radar echo is returned from ocean waves that interact with the ocean floor. Simulations are described which demonstrate the effect of shallow water on radar sea-echo. These are used to investigate limits on the existing theory and to define water depths at which shallow-water effects become significant. The second-order spectral energy increases relative to the first-order as the water depth decreases, resulting in spectral saturation when the waveheight exceeds a limit defined by the radar transmit frequency. This effect is particularly marked for lower radar transmit frequencies. The saturation limit on waveheight is less for shallow water. Shallow water affects second-order spectra (which gives wave information) far more than first-order (which gives information on current velocities), the latter being significantly affected only for the lowest radar transmit frequencies for extremely shallow water. We describe analysis of radar echo from shallow water measured by a Rutgers University HF radar system to give ocean wave spectral estimates. Radar-derived wave height, period and direction are compared with simultaneous shallow-water in-situ measurements. PMID:27873776
Hammond, W.C.; Toomey, D.R.
2003-01-01
We use teleseismic P and S delay times and shear wave splitting measurements to constrain isotropic and anisotropic heterogeneity in the mantle beneath the southern East Pacific Rise (SEPR). The data comprise 462 P and S delay times and 18 shear wave splitting observations recorded during the Mantle Electromagnetic and Tomography (MELT) Experiment. We estimate the mantle melt content (F) and temperature (T) variation from the isotropic velocity variation. Our results indicate that the maximum variation in F beneath our array is between zero and ???1.2%, and maximum variation in T is between zero and ???100 K. We favor an explanation having partial contributions from both T and F. We approximate the seismic anisotropy of the upper mantle with hexagonal symmetry, consistent with the assumption of two dimensionality of mantle flow. Our new tomographic technique uses a nonlinear inversion of P and slow S polarization delay times to simultaneously solve for coupled VP and VS heterogeneity throughout the model and for the magnitude of anisotropy within discrete domains. The domain dimensions and the dip of the anisotropy are fixed for each inversion but are varied in a grid search, obtaining the misfit of the models to the body wave delay data and to split times of vertically propagating S waves. The data misfit and the isotropic heterogeneity are sensitive to domain dimensions and dip of anisotropy. In a region centered beneath the SEPR the best average dip of the hexagonal symmetry axis is horizontal or dipping shallowly (<30??) west. Given the resolution of our data, a subaxial region characterized by vertically aligned symmetry axes may exist but is limited to be <80 km deep. We infer that the mantle flow beneath the SEPR is consistent with shallow asthenospheric return flow from the direction of the South Pacific superswell.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Park, Y; Nyblade, A; Rodgers, A
2007-11-09
The shear velocity structure of the shallow upper mantle beneath the Arabian Shield has been modeled by inverting new Rayleigh wave phase velocity measurements between 45 and 140 s together with previously published Rayleigh wave group velocity measurement between 10 and 45 s. For measuring phase velocities, we applied a modified array method that minimizes the distortion of raypaths by lateral heterogeneity. The new shear velocity model shows a broad low velocity region in the lithospheric mantle across the Shield and a low velocity region at depths {ge} 150 km localized along the Red Sea coast and Makkah-Madinah-Nafud (MMN) volcanicmore » line. The velocity reduction in the upper mantle corresponds to a temperature anomaly of {approx}250-330 K. These finding, in particular the region of continuous low velocities along the Red Sea and MMN volcanic line, do not support interpretations for the origin of the Cenozoic plateau uplift and volcanism on the Shield invoking two separate plumes. When combined with images of the 410 and 660 km discontinuities beneath the southern part of the Arabian Shield, body wave tomographic models, a S-wave polarization analysis, and SKS splitting results, our new model supports an interpretation invoking a thermal upwelling of warm mantle rock originating in the lower mantle under Africa that crosses through the transition zone beneath Ethiopia and moves to the north and northwest under the eastern margin of the Red Sea and the Arabian Shield. In this interpretation, the difference in mean elevation between the Platform and Shield can be attributed to isostatic uplift caused by heating of the lithospheric mantle under the Shield, with significantly higher region along the Red Sea possibly resulting from a combination of lithosphere thinning and dynamic uplift.« less
Spatial correlation of shear-wave velocity within San Francisco Bay Sediments
Thompson, E.M.; Baise, L.G.; Kayen, R.E.
2006-01-01
Sediment properties are spatially variable at all scales, and this variability at smaller scales influences high frequency ground motions. We show that surface shear-wave velocity is highly correlated within San Francisco Bay Area sediments using shear-wave velocity measurements from 210 seismic cone penetration tests. We use this correlation to estimate the surface sediment velocity structure using geostatistics. We find that the variance of the estimated shear-wave velocity is reduced using ordinary kriging, and that including this velocity structure in 2D ground motion simulations of a moderate sized earthquake improves the accuracy of the synthetics. Copyright ASCE 2006.
Mercado, Karla P; Langdon, Jonathan; Helguera, María; McAleavey, Stephen A; Hocking, Denise C; Dalecki, Diane
2015-08-01
The physical environment of engineered tissues can influence cellular functions that are important for tissue regeneration. Thus, there is a critical need for noninvasive technologies capable of monitoring mechanical properties of engineered tissues during fabrication and development. This work investigates the feasibility of using single tracking location shear wave elasticity imaging (STL-SWEI) for quantifying the shear moduli of tissue-mimicking phantoms and engineered tissues in tissue engineering environments. Scholte surface waves were observed when STL-SWEI was performed through a fluid standoff, and confounded shear moduli estimates leading to an underestimation of moduli in regions near the fluid-tissue interface.
Shear waves in vegetal tissues at ultrasonic frequencies
NASA Astrophysics Data System (ADS)
Fariñas, M. D.; Sancho-Knapik, D.; Peguero-Pina, J. J.; Gil-Pelegrín, E.; Gómez Álvarez-Arenas, T. E.
2013-03-01
Shear waves are investigated in leaves of two plant species using air-coupled ultrasound. Magnitude and phase spectra of the transmission coefficient around the first two orders of the thickness resonances (normal and oblique incidence) have been measured. A bilayer acoustic model for plant leaves (comprising the palisade parenchyma and the spongy mesophyll) is proposed to extract, from measured spectra, properties of these tissues like: velocity and attenuation of longitudinal and shear waves and hence Young modulus, rigidity modulus, and Poisson's ratio. Elastic moduli values are typical of cellular solids and both, shear and longitudinal waves exhibit classical viscoelastic losses. Influence of leaf water content is also analyzed.
Tozaki, Mitsuhiro; Saito, Masahiro; Benson, John; Fan, Liexiang; Isobe, Sachiko
2013-12-01
This study compared the diagnostic performance of two shear wave speed measurement techniques in 81 patients with 83 solid breast lesions. Virtual Touch Quantification, which provides single-point shear wave speed measurement capability (SP-SWS), was compared with Virtual Touch IQ, a new 2-D shear wave imaging technique with multi-point shear wave speed measurement capability (2D-SWS). With SP-SWS, shear wave velocity was measured within the lesion ("internal" value) and the marginal areas ("marginal" value). With 2D-SWS, the highest velocity was measured. The marginal values obtained with the SP-SWS and 2D-SWS methods were significantly higher for malignant lesions and benign lesions, respectively (p < 0.0001). Sensitivity, specificity and accuracy were 86% (36/42), 90% (37/41) and 88% (73/83), respectively, for SP-SWS, and 88% (37/42), 93% (38/41) and 90% (75/83), respectively, for 2D-SWS. It is concluded that 2D-SWS is a useful diagnostic tool for differentiating malignant from benign solid breast masses. Copyright © 2013 World Federation for Ultrasound in Medicine & Biology. Published by Elsevier Inc. All rights reserved.
Measurement of Shear Elastic Moduli in Quasi-Incompressible Soft Solids
NASA Astrophysics Data System (ADS)
Rénier, Mathieu; Gennisson, Jean-Luc; Barrière, Christophe; Catheline, Stefan; Tanter, Mickaël; Royer, Daniel; Fink, Mathias
2008-06-01
Recently a nonlinear equation describing the plane shear wave propagation in isotropic quasi-incompressible media has been developed using a new expression of the strain energy density, as a function of the second, third and fourth order shear elastic constants (respectively μ, A, D) [1]. In such a case, the shear nonlinearity parameter βs depends only from these last coefficients. To date, no measurement of the parameter D have been carried out in soft solids. Using a set of two experiments, acoustoelasticity and finite amplitude shear waves, the shear elastic moduli up to the fourth order of soft solids are measured. Firstly, this theoretical background is applied to the acoustoelasticity theory, giving the variations of the shear wave speed as a function of the stress applied to the medium. From such variations, both linear (μ) and third order shear modulus (A) are deduced in agar-gelatin phantoms. Experimentally the radiation force induced by a focused ultrasound beam is used to generate quasi-plane linear shear waves within the medium. Then the shear wave propagation is imaged with an ultrafast ultrasound scanner. Secondly, in order to give rise to finite amplitude plane shear waves, the radiation force generation technique is replaced by a vibrating plate applied at the surface of the phantoms. The propagation is also imaged using the same ultrafast scanner. From the assessment of the third harmonic amplitude, the nonlinearity parameter βS is deduced. Finally, combining these results with the acoustoelasticity experiment, the fourth order modulus (D) is deduced. This set of experiments provides the characterization, up to the fourth order, of the nonlinear shear elastic moduli in quasi-incompressible soft media. Measurements of the A moduli reveal that while the behaviors of both soft solids are close from a linear point of view, the corresponding nonlinear moduli A are quite different. In a 5% agar-gelatin phantom, the fourth order elastic constant D is found to be 30±10 kPa.
Simulation of Shear Alfvén Waves in LAPD using the BOUT++ code
NASA Astrophysics Data System (ADS)
Wei, Di; Friedman, B.; Carter, T. A.; Umansky, M. V.
2011-10-01
The linear and nonlinear physics of shear Alfvén waves is investigated using the 3D Braginskii fluid code BOUT++. The code has been verified against analytical calculations for the dispersion of kinetic and inertial Alfvén waves. Various mechanisms for forcing Alfvén waves in the code are explored, including introducing localized current sources similar to physical antennas used in experiments. Using this foundation, the code is used to model nonlinear interactions among shear Alfvén waves in a cylindrical magnetized plasma, such as that found in the Large Plasma Device (LAPD) at UCLA. In the future this investigation will allow for examination of the nonlinear interactions between shear Alfvén waves in both laboratory and space plasmas in order to compare to predictions of MHD turbulence.
NASA Technical Reports Server (NTRS)
Shirer, H. N. (Editor); Dutton, J. A. (Editor)
1985-01-01
A two layer spectral quasi-geostrophic model is used to simulate the effects of topography on the equilibria, the stability, and the long term evaluation of incipient unstable waves. The flow is forced by latitudinally dependent radiational heating. The nature of the form drag instability of high index equilibria is investigated. The proximity of the equilibrium shear to a resonant value is essential for the instability, provided the equilibrium occurs at a slightly stronger shear than resonance. The properties of the steady Hadley and Rossby required for a thermally forced rotating fluid on a sphere are further explained. An objective parameterization technique is developed for general nonlinear hydrodynamical systems. The typical structure is one in which the rates of change of the dependent variables depend on homogeneous quadratic and linear forms, as well as on inhomogeneous forcing terms. Also documented is a steady, axisymmetric model of the general circulation developed as a basis for climate stability studies. The model includes the effects of heating, rotation, and internal friction, but neglects topography. Included is further research on cloud street phenomena. Orientation angles and horizontal wavelengths of boundary layer rolls and cloud streets are determined from an analysis of a truncated spectral model of three dimensional shallow moist Boussinesq convection in a shearing environment is further explained. Relatively broadly spaced roll clouds have orientations for which the Fourier component of the roll perpendicular shear is nearly zero, but the second corresponds to narrowly spaced rolls having orientations for which the Fourier coefficients of both the perpendicular and the parallel components of the shear are nearly equal.
Bharat, Shyam; Varghese, Tomy
2010-10-01
Quasi-static electrode displacement elastography, used for in-vivo imaging of radiofrequency ablation-induced lesions in abdominal organs such as the liver and kidney, is extended in this paper to dynamic vibrational perturbations of the ablation electrode. Propagation of the resulting shear waves into adjoining regions of tissue can be tracked and the shear wave velocity used to quantify the shear (and thereby Young's) modulus of tissue. The algorithm used utilizes the time-to-peak displacement data (obtained from finite element analyses) to calculate the speed of shear wave propagation in the material. The simulation results presented illustrate the feasibility of estimating the Young's modulus of tissue and is promising for characterizing the stiffness of radiofrequency-ablated thermal lesions and surrounding normal tissue.
Northern Mozambique: Crustal structure across a sheared margin
NASA Astrophysics Data System (ADS)
Bätzel, Maren; Franke, Dieter; Heyde, Ingo; Schreckenberger, Bernd; Jokat, Wilfried
2015-04-01
The rifting of Gondwana started some 180 million years ago. The continental drift created some of the oldest ocean basins along Eastern Africa, the Somali and the Mozambique basins. As a consequence of the relative movements between Africa and Antarctica-India-Madagascar a shear margin developed along the present day coastline of northern Mozambique and Tanzania. In addition, the N-S oriented offshore Davie Ridge is believed to have formed during the shear movements between both parts of Gondwana. However, whether the Davie Ridge is of continental origin or has been formed by magmatic processes during the continental drift is unknown, since any crustal information is missing so far. Previous studies in this area are rare and only few seismic reflection data sets from the 1970s and 1980s are available. In 2014 four seismic refraction data along east-west-orientated profiles as well as gravity and magnetic field data across the Davie Ridge with RV Sonne were collected to determine its crustal composition as well as the position of the continent-ocean-transition. Here, we present a first P-wave velocity model across the Mozambican sheared margin at 13° S. The profile is situated in a region where the ridge topography vanishes. In total, 20 OBS/OBH systems were used on profile 20140130 over the Davie Ridge. Most of the instruments recorded data with a very good quality. In the best records, P-wave phases can be observed at a source-receiver offset of 110 km. The total thickness of the sediments is about 5 km in the Comores Basin and about 3 km offshore Mozambique. The sediments show at 3.5 and 5 km depth unusual high seismic velocities of 4.0-4.6 km/s. Our results indicate a shallow Moho close to the shelf break. Here, the crust thins to 4 km. This area is assumed to be the western part of the Davie-Ridge and might represent a sharp transition (50 km) from continental to oceanic crust, which is typical for a sheared margin. East of the Davie Ridge the data indicate a crustal thickness of 6 km, which is most likely of oceanic origin.
Shear-wave seismic reflection imaging and impedance inversion for a near-surface point-bar
NASA Astrophysics Data System (ADS)
Benton, N. W.; Morrison, M.; Lorenzo, J. M.; Odom, B.; Clift, P. D.; Olson, E.; Gostic, A.
2017-12-01
Imaging and inversion of SH-waves are useful to detect, map, and quantitatively characterize near-surface point-bar strata. We conduct a horizontally-polarized (SH) reflection survey across and along a near-surface (9 - 40 m) downstream point-bar. We invert for shear-impedance profiles and correlate our interpretation to electrical conductivity (EC) logs in adjacent wells to study the internal architecture and lithology of point-bars. We acquire two common-midpoint (CMP) SH-wave seismic reflection lines at False River (Point Coupee Parish, Louisiana). A 104 m long seismic line (L1) is oriented orthogonal (NW - SE) to point-bar strike. A second line (L2) is 48 m long and set parallel to point-bar strike (NE - SW). Two EC wells lie 33 m apart. Both wells are parallel with respect to the L1 survey and offset from it by 15 m. EC log measurements range from 1 - 25 m depth. Interference of Love-waves prevents seismic imaging at depths less than 9 m. The L1 and L2 data sets are inverted for shear-impedance using a model-based band-limited impedance (BLIMP) algorithm that incorporates a low-frequency velocity model. This model is also used for the depthing processing. The L1 cross-section shows coherent dipping reflection events ( 4 - 7º) from 0.15 - 0.35 s (10 - 40 m). The corresponding shear-impedance profile also reveals coherent and dipping impedance contrasts that grow in magnitude with increasing depth. The L2 cross-section shows comparatively less dip ( 1º) as well as sharper and shallower continuity of reflection events (0.1 - 0.28 s TWT or 9 - 25 m). Depth-converted (TVD) seismic amplitudes and impedance values correlate to near-surface point-bar geology via superposition of log data. The first well (W5) shows distinct EC local maxima (+50 - 70 mS/m) at 14.5 and 15.5 m depth that correlate well with the seismic amplitudes and impedance values from both L1 and L2 data sets. The second well (W7) shows comparatively lower local maxima (+40 - 60 mS/m) but at greater depths (15.5 and 16.5 m). W5 correlates better with the seismic cross-section and impedance profile from L2 at 10, 12.5, 14.5, 15.5, and 19 m depth. EC maxima align with distinct shear-impedance values for L1 and L2 profiles. Our results provide a new and useful perspective of remotely analyzing the architecture and lithological properties of near-surface point-bars.
Liquefaction Potential for Soil Deposits in Muscat, Oman
NASA Astrophysics Data System (ADS)
El Hussain, I. W.; Deif, A.; Girgis, M.; Al-Rawas, G.; Mohamed, A.; Al-Jabri, K.; Al-Habsi, Z.
2015-12-01
Muscat is located in the northeastern part of Oman on a narrow strip between Oman coast and Oman Mountains, which is the place for at least four earthquakes of order of 5.2 magnitude in the last 1300 years. The near surface geology of Muscat varies from hard rocks in the eastern, southern and western parts to dense and lose sediments in the middle and northern parts. Liquefaction occurs in saturated cohesionless soils when its shear strength decreased to zero due to the increase of pore pressure. More than 500 boreholes in Muscat area were examined for their liquefaction susceptibility based on the soil characteristics data. Only soils susceptible to liquefaction are further considered for liquefaction hazard assessment. Liquefaction occurs if the cyclic stress ratio (CSR) caused by the earthquake is higher than the cyclic resistance ratio (CRR) of the soil. CSR values were evaluated using PGA values at the surface obtained from previously conducted seismic hazard and microzonation studies. CRR for Muscat region is conducted using N values of SPT tests from numerous borehole data and the shear wave velocity results from 99 MASW surveys over the entire region. All the required corrections are conducted to get standardized (N1) 60 values, to correct shear-wave velocity, and scale the results for Mw 6.0 instead of the proposed 7.5 (magnitude scaling factor). Liquefaction hazard maps are generated using the minimum factor of safety (FS) at each site as a representative of the FS against liquefaction at that location. Results indicate that under the current level of seismic hazard, liquefaction potential is possible at few sites along the northern coast where alluvial soils and shallow ground water table are present. The expected soft soil settlement is also evaluated at each liquefiable site.
NASA Astrophysics Data System (ADS)
Miller, Meghan S.; Becker, Thorsten
2014-05-01
Northwest Africa is affected by late stage convergence of Africa with Eurasia, the Canary Island hotspot, and bounded by the Proterozoic-age West African craton. We present seismological evidence from receiver functions and shear-wave splitting along with geodynamic modeling to show how the interactions of these tectonic features resulted in dramatic deformation of the lithosphere. We interpret seismic discontinuities from the receiver functions and find evidence for localized, near vertical-offset deformation of both crust-mantle and lithosphere-asthenosphere interfaces at the flanks of the High Atlas. These offsets coincide with the locations of Jurassic-aged normal faults that have been reactivated during the Cenozoic, further suggesting that inherited, lithospheric-scale zones of weakness were involved in the formation of the Atlas. Another significant step in lithospheric thickness is inferred within the Middle Atlas. Its location corresponds to the source of regional Quaternary alkali volcanism, where the influx of melt induced by the shallow asthenosphere appears restricted to a lithospheric-scale fault on the northern side of the mountain belt. Inferred stretching axes from shear-wave splitting are aligned with the topographic grain in the High Atlas, suggesting along-strike asthenospheric shearing in a mantle channel guided by the lithospheric topography. Isostatic modeling based on our improved lithospheric constraints indicates that lithospheric thinning alone does not explain the anomalous Atlas topography. Instead, an mantle upwelling induced by a hot asthenospheric anomaly appears required, likely guided by the West African craton and perhaps sucked northward by subducted lithosphere beneath the Alboran. This dynamic support scenario for the Atlas also suggests that the timing of uplift is contemporaneous with the recent volcanismin the Middle Atlas.
Attention in western Nevada: Preliminary results from earthquake and explosion sources
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hough, S.E.; Anderson, J.G.; Patton, H.J.
1989-02-01
We present preliminary results from a study of the attenuation of regional seismic waves at frequencies between 1 and 15 Hz and distances up to 250 km in Western Nevada. Following the methods of Anderson and Hough (1984) and Hough et al. (1988), we parameterize the asymptote of the high frequency acceleration spectrum by the two-parameter model. We relate the model parameters to a two-layer model for Q/sub i/ and Q/sub d/, the freuqency-independent and the frequency dependent components of the quality factor. We compare our results to previously published Q studies in the Basin and Range and find thatmore » our estimate of total Q, Q/sub t/, in the shallow crust is consistent with shear wave Q at close distances with previous estimates of coda Q (Singh and Hermann, 1983) and LgQ (Chavez and Priestley, 1986), suggesting that both coda Q and LgQ are insensitive to near-surface contributions to attenuation.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Richard D. Miller; Abdelmoneam E. Raef; Alan P. Byrnes
2005-09-01
The objective of this research project is to acquire, process, and interpret multiple high-resolution 3-D compressional wave and 2-D, 2-C shear wave seismic data to observe changes in fluid characteristics in an oil field before, during, and after the miscible carbon dioxide (CO{sub 2}) flood that began around December 1, 2003, as part of the DOE-sponsored Class Revisit Project (DOE DE-AC26-00BC15124). Unique and key to this imaging activity is the high-resolution nature of the seismic data, minimal deployment design, and the temporal sampling throughout the flood. The 900-m-deep test reservoir is located in central Kansas oomoldic limestones of the Lansing-Kansasmore » City Group, deposited on a shallow marine shelf in Pennsylvanian time. After 18 months of seismic monitoring, one baseline and six monitor surveys clearly imaged changes that appear consistent with movement of CO{sub 2} as modeled with fluid simulators.« less
NASA Technical Reports Server (NTRS)
Hollingsworth, J. L.; Kahre, Melinda A.
2012-01-01
Between late autumn and early spring, middle and high latitudes on Mars exhibit strong equatortopole mean temperature contrasts (i.e., "baroclinicity"). Data collected during the Viking era and observations from both the Mars Global Surveyor (MGS) and Mars Reconnaissance Orbiter (MRO) indicate that this strong baroclinicity supports vigorous, large-scale eastward traveling weather systems (i.e., transient synoptic periodwaves) [1,2]. For a rapidly rotating, differentially heated, shallow atmosphere such as on Earth and Mars, these large-scale, extratropical weather disturbances are critical components of the global circulation. The wavelike disturbances act as agents in the transport of heat and momentum between low and high latitudes of the planet. Through cyclonic/anticyclonic winds, intense shear deformations, contractions-dilatations in temperature and density, and sharp perturbations amongst atmospheric tracers (i.e., dust, volatiles (e.g., water vapor) and condensates (e.g., water-ice cloud particles)), Mars extratropical weather systems have significant subsynoptic scale ramifications by supporting atmospheric frontal waves (Fig. 1).
Vertical coherence in mantle heterogeneity from global seismic data
NASA Astrophysics Data System (ADS)
Boschi, L.; Becker, T. W.
2011-10-01
The vertical coherence of mantle structure is of importance for a range of dynamic issues including convective mass transport and the geochemical evolution of Earth. Here, we use seismic data to infer the most likely depth ranges of strong, global changes in the horizontal pattern of mantle heterogeneity. We apply our algorithm to a comprehensive set of measurements, including various shear- and compressional-wave delay times and Love- and Rayleigh-wave fundamental mode and overtone dispersion, so that tomography resolution is as high as possible at all mantle depths. We find that vertical coherence is minimum at ∼100 km and ∼800 km depths, corresponding to the base of the lithosphere and the transition between upper and lower mantle, respectively. The D″ layer is visible, but not as prominent as the shallower features. The rest of the lower mantle is, essentially, vertically coherent. These findings are consistent with slab stagnation at depths around, and perhaps below, the 660-km phase transition, and inconsistent with global, chemically distinct, mid-mantle layering.
A numerical investigation of head waves and leaky modes in fluid- filled boreholes.
Paillet, Frederick L.; Cheng, C.H.
1986-01-01
Although synthetic borehole seismograms can be computed for a wide range of borehole conditions, the physical nature of shear and compressional head waves in fluid-filled boreholes is poorly understood. Presents a series of numerical experiments designed to explain the physical mechanisms controlling head-wave propagation in boreholes. These calculations demonstrate the existence of compressional normal modes equivalent to shear normal modes, or pseudo-Rayleigh waves, with sequential cutoff frequencies spaced between the cutoff frequencies for the shear normal modes.-from Authors
NASA Astrophysics Data System (ADS)
Wawerzinek, Britta; Buness, Hermann; Lüschen, Ewald; Thomas, Rüdiger
2017-04-01
To establish a dense area-wide network of geothermal facilities, the Stadtwerke München initiated the joint research project GRAME together with the Leibniz Institute for Applied Geophysics (GeoParaMoL*). As a database for the project, a 3D seismic survey was acquired from November 1015 to March 2016 and covers 170 km2 of the southern part of Munich. 3D seismic exploration is a well-established method to explore geothermal reservoirs, and its value for reservoir characterization of the Malm has been proven by several projects. A particular challenge often is the determination of geophysical parameters for facies interpretation without any borehole information, which is needed for calibration. A new approach to facilitate a reliable interpretation is to include shear waves in the interpretation workflow, which helps to tie down the range of lithological and petrophysical parameters. Shear wave measurements were conducted during the regular 3D seismic survey in Munich. In a passive experiment, the survey was additionally recorded on 467 single, 3-component (3C), digital receivers that were deployed along one main line (15 km length) and two crosslines (4 km length). In this way another 3D P-wave as well as a 3D shear wave dataset were acquired. In the active shear wave experiment the SHOVER technique (Edelmann, 1981) was applied to directly excite shear waves using standard vertical vibrators. The 3C recordings of both datasets show, in addition to the P-wave reflections on the vertical component, clear shear-wave signals on the horizontal components. The structural image of the P-waves recorded on the vertical component of the 3C receivers displays clear reflectors within the Molasse Basin down to the Malm and correlates well with the structural image of the regular survey. Taking into account a travel time ratio of 1.6 the reflection patterns of horizontal and vertical components approximately coincide. This indicates that Molasse sediments and the Malm can also be imaged by shear waves. Further processing steps will derive geophysical parameters (e.g. vp/vs) and clarify the amount of converted waves. GeoParaMoL (FKZ 0325787B) is funded by the Federal Ministry for Economic Affairs and Energy (BMWi). Edelmann, H.A.K. (1981): SHOVER shear-wave generation by vibration orthogonal to the polarization. Geophysical Prospecting 29, 541-549. * http://www.liag-hannover.de/en/fsp/ge/geoparamol.html
Wind Wave Behavior in Fetch and Depth Limited Estuaries
NASA Astrophysics Data System (ADS)
Karimpour, Arash; Chen, Qin; Twilley, Robert R.
2017-01-01
Wetland dominated estuaries serve as one of the most productive natural ecosystems through their ecological, economic and cultural services, such as nursery grounds for fisheries, nutrient sequestration, and ecotourism. The ongoing deterioration of wetland ecosystems in many shallow estuaries raises concerns about the contributing erosive processes and their roles in restraining coastal restoration efforts. Given the combination of wetlands and shallow bays as landscape components that determine the function of estuaries, successful restoration strategies require knowledge of wind wave behavior in fetch and depth limited water as a critical design feature. We experimentally evaluate physics of wind wave growth in fetch and depth limited estuaries. We demonstrate that wave growth rate in shallow estuaries is a function of wind fetch to water depth ratio, which helps to develop a new set of parametric wave growth equations. We find that the final stage of wave growth in shallow estuaries can be presented by a product of water depth and wave number, whereby their product approaches 1.363 as either depth or wave energy increases. Suggested wave growth equations and their asymptotic constraints establish the magnitude of wave forces acting on wetland erosion that must be included in ecosystem restoration design.
Wind Wave Behavior in Fetch and Depth Limited Estuaries
Karimpour, Arash; Chen, Qin; Twilley, Robert R.
2017-01-01
Wetland dominated estuaries serve as one of the most productive natural ecosystems through their ecological, economic and cultural services, such as nursery grounds for fisheries, nutrient sequestration, and ecotourism. The ongoing deterioration of wetland ecosystems in many shallow estuaries raises concerns about the contributing erosive processes and their roles in restraining coastal restoration efforts. Given the combination of wetlands and shallow bays as landscape components that determine the function of estuaries, successful restoration strategies require knowledge of wind wave behavior in fetch and depth limited water as a critical design feature. We experimentally evaluate physics of wind wave growth in fetch and depth limited estuaries. We demonstrate that wave growth rate in shallow estuaries is a function of wind fetch to water depth ratio, which helps to develop a new set of parametric wave growth equations. We find that the final stage of wave growth in shallow estuaries can be presented by a product of water depth and wave number, whereby their product approaches 1.363 as either depth or wave energy increases. Suggested wave growth equations and their asymptotic constraints establish the magnitude of wave forces acting on wetland erosion that must be included in ecosystem restoration design. PMID:28098236
Wind Wave Behavior in Fetch and Depth Limited Estuaries.
Karimpour, Arash; Chen, Qin; Twilley, Robert R
2017-01-18
Wetland dominated estuaries serve as one of the most productive natural ecosystems through their ecological, economic and cultural services, such as nursery grounds for fisheries, nutrient sequestration, and ecotourism. The ongoing deterioration of wetland ecosystems in many shallow estuaries raises concerns about the contributing erosive processes and their roles in restraining coastal restoration efforts. Given the combination of wetlands and shallow bays as landscape components that determine the function of estuaries, successful restoration strategies require knowledge of wind wave behavior in fetch and depth limited water as a critical design feature. We experimentally evaluate physics of wind wave growth in fetch and depth limited estuaries. We demonstrate that wave growth rate in shallow estuaries is a function of wind fetch to water depth ratio, which helps to develop a new set of parametric wave growth equations. We find that the final stage of wave growth in shallow estuaries can be presented by a product of water depth and wave number, whereby their product approaches 1.363 as either depth or wave energy increases. Suggested wave growth equations and their asymptotic constraints establish the magnitude of wave forces acting on wetland erosion that must be included in ecosystem restoration design.
Dao, Tien Tuan; Pouletaut, Philippe; Charleux, Fabrice; Tho, Marie-Christine Ho Ba; Bensamoun, Sabine
2014-01-01
The purpose of this study was to develop a subject specific finite element model derived from MRI images to numerically analyze the MRE (magnetic resonance elastography) shear wave propagation within skeletal thigh muscles. A sagittal T2 CUBE MRI sequence was performed on the 20-cm thigh segment of a healthy male subject. Skin, adipose tissue, femoral bone and 11 muscles were manually segmented in order to have 3D smoothed solid and meshed models. These tissues were modeled with different constitutive laws. A transient modal dynamics analysis was applied to simulate the shear wave propagation within the thigh tissues. The effects of MRE experimental parameters (frequency, force) and the muscle material properties (shear modulus: C10) were analyzed through the simulated shear wave displacement within the vastus medialis muscle. The results showed a plausible range of frequencies (from 90Hz to 120 Hz), which could be used for MRE muscle protocol. The wave amplitude increased with the level of the force, revealing the importance of the boundary condition. Moreover, different shear displacement patterns were obtained as a function of the muscle mechanical properties. The present study is the first to analyze the shear wave propagation in skeletal muscles using a 3D subject specific finite element model. This study could be of great value to assist the experimenters in the set-up of MRE protocols.
Imaging mechanical properties of hepatic tissue by magnetic resonance elastography
NASA Astrophysics Data System (ADS)
Yin, Meng; Rouviere, Olivier; Burgart, Lawrence J.; Fidler, Jeff L.; Manduca, Armando; Ehman, Richard L.
2006-03-01
PURPOSE: To assess the feasibility of a modified phase-contrast MRI technique (MR Elastography) for quantitatively assessing the mechanical properties of hepatic tissues by imaging propagating acoustic shear waves. MATERIALS AND METHODS: Both phantom and human studies were performed to develop and optimize a practical imaging protocol by visualizing and investigating the diffraction field of shear waves generated from pneumatic longitudinal drivers. The effects of interposed ribs in a transcostal approach were also investigated. A gradient echo MRE pulse sequence was adapted for shear wave imaging in the liver during suspended respiration, and then tested to measure hepatic shear stiffness in 13 healthy volunteers and 1 patient with chronic liver disease to determine the potential of non-invasively detecting liver fibrosis. RESULTS: Phantom studies demonstrate that longitudinal waves generated by the driver are mode-converted to shear waves in a distribution governed by diffraction principles. The transcostal approach was determined to be the most effective method for generating shear waves in human studies. Hepatic stiffness measurements in the 13 normal volunteers demonstrated a mean value of 2.0+/-0.2kPa. The shear stiffness measurement in the patient was much higher at 8.5kPa. CONCLUSION: MR Elastography of the liver shows promise as a method to non-invasively detect and characterize diffuse liver disease, potentially reducing the need for biopsy to diagnose hepatic fibrosis.
NASA Astrophysics Data System (ADS)
Giarola, Diana; Capuani, Domenico; Bigoni, Davide
2018-03-01
A shear band of finite length, formed inside a ductile material at a certain stage of a continued homogeneous strain, provides a dynamic perturbation to an incident wave field, which strongly influences the dynamics of the material and affects its path to failure. The investigation of this perturbation is presented for a ductile metal, with reference to the incremental mechanics of a material obeying the J2-deformation theory of plasticity (a special form of prestressed, elastic, anisotropic, and incompressible solid). The treatment originates from the derivation of integral representations relating the incremental mechanical fields at every point of the medium to the incremental displacement jump across the shear band faces, generated by an impinging wave. The boundary integral equations (under the plane strain assumption) are numerically approached through a collocation technique, which keeps into account the singularity at the shear band tips and permits the analysis of an incident wave impinging a shear band. It is shown that the presence of the shear band induces a resonance, visible in the incremental displacement field and in the stress intensity factor at the shear band tips, which promotes shear band growth. Moreover, the waves scattered by the shear band are shown to generate a fine texture of vibrations, parallel to the shear band line and propagating at a long distance from it, but leaving a sort of conical shadow zone, which emanates from the tips of the shear band.
NASA Astrophysics Data System (ADS)
Donatelli, Carmine; Ganju, Neil Kamal; Fagherazzi, Sergio; Leonardi, Nicoletta
2018-05-01
Seagrasses are marine flowering plants that strongly impact their physical and biological surroundings and are therefore frequently referred to as ecological engineers. The effect of seagrasses on coastal bay resilience and sediment transport dynamics is understudied. Here we use six historical maps of seagrass distribution in Barnegat Bay, USA, to investigate the role of these vegetated surfaces on the sediment storage capacity of shallow bays. Analyses are carried out by means of the Coupled-Ocean-Atmosphere-Wave-Sediment Transport (COAWST) numerical modeling framework. Results show that a decline in the extent of seagrass meadows reduces the sediment mass potentially stored within bay systems. The presence of seagrass reduces shear stress values across the entire bay, including unvegetated areas, and promotes sediment deposition on tidal flats. On the other hand, the presence of seagrasses decreases suspended sediment concentrations, which in turn reduces the delivery of sediment to marsh platforms. Results highlight the relevance of seagrasses for the long-term survival of coastal ecosystems, and the complex dynamics regulating the interaction between subtidal and intertidal landscapes.
Advanced wave field sensing using computational shear interferometry
NASA Astrophysics Data System (ADS)
Falldorf, Claas; Agour, Mostafa; Bergmann, Ralf B.
2014-07-01
In this publication we give a brief introduction into the field of Computational Shear Interferometry (CoSI), which allows for determining arbitrary wave fields from a set of shear interferograms. We discuss limitations of the method with respect to the coherence of the underlying wave field and present various numerical methods to recover it from its sheared representations. Finally, we show experimental results on Digital Holography of objects with rough surface using a fiber coupled light emitting diode and quantitative phase contrast imaging as well as numerical refocusing in Differential Interference Contrast (DIC) microscopy.
Measurement of shear-wave velocity by ultrasound critical-angle reflectometry (UCR).
Mehta, S; Antich, P
1997-01-01
There exists a growing body of research that relates the measurement of pressure-wave velocity in bone to different physiological conditions and treatment modalities. The shear-wave velocity has been less studied, although it is necessary for a more complete understanding of the mechanical properties of bone. Ultrasound critical-angle reflectometry (UCR) is a noninvasive and nondestructive technique previously used to measure pressure-wave velocities both in vitro and in vivo. This note describes its application to the measurement of shear-wave velocity in bone, whether directly accessible or covered by soft tissue.
Measurement of shear-wave velocity by ultrasound critical-angle reflectometry (UCR)
NASA Technical Reports Server (NTRS)
Mehta, S.; Antich, P.; Blomqvist, C. G. (Principal Investigator)
1997-01-01
There exists a growing body of research that relates the measurement of pressure-wave velocity in bone to different physiological conditions and treatment modalities. The shear-wave velocity has been less studied, although it is necessary for a more complete understanding of the mechanical properties of bone. Ultrasound critical-angle reflectometry (UCR) is a noninvasive and nondestructive technique previously used to measure pressure-wave velocities both in vitro and in vivo. This note describes its application to the measurement of shear-wave velocity in bone, whether directly accessible or covered by soft tissue.
NASA Astrophysics Data System (ADS)
Ashraf, M. A. M.; Kumar, N. S.; Yusoh, R.; Hazreek, Z. A. M.; Aziman, M.
2018-04-01
Site classification utilizing average shear wave velocity (Vs(30) up to 30 meters depth is a typical parameter. Numerous geophysical methods have been proposed for estimation of shear wave velocity by utilizing assortment of testing configuration, processing method, and inversion algorithm. Multichannel Analysis of Surface Wave (MASW) method is been rehearsed by numerous specialist and professional to geotechnical engineering for local site characterization and classification. This study aims to determine the site classification on soft and hard ground using MASW method. The subsurface classification was made utilizing National Earthquake Hazards Reduction Program (NERHP) and international Building Code (IBC) classification. Two sites are chosen to acquire the shear wave velocity which is in the state of Pulau Pinang for soft soil and Perlis for hard rock. Results recommend that MASW technique can be utilized to spatially calculate the distribution of shear wave velocity (Vs(30)) in soil and rock to characterize areas.
Kinematic stratification in the hinterland of the central Scandinavian Caledonides
Gilotti, J.A.; Hull, J.M.
1993-01-01
A transect through west-central Norway illustrates the changing geometry and kinematics of collision in the hinterland of the central Scandinavian Caledonides. A depth section through the crust is exposed on Fosen Peninsula, comprising three tectonic units separated by two shear zones. The lowest unit, exposed in the Roan window, is a modestly deformed, Caledonian granulite complex framed by a subhorizontal de??collement, with NW-SE oriented lineations and kinematic indicators showing top-to-the-northwest transport. The middle unit, the Vestranden gneiss complex, contains relict granulites, but was penetratively deformed at amphibolite facies to produce an orogen-parallel family of structures during translation on the de??collement. Shallow plunging lineations on steep schistosities are subparallel to fold axes of the dominant, upright, non-cylindrical folds. A small component of sinistral strike slip is also recorded. In contrast, southernmost Fosen Peninsula contains an abundance of cover rocks infolded with Proterozoic basement in a fold nappe, with shallow, E-dipping schistosities, down-dip lineations, and orogen-oblique, top-to-the-west shear sense indicators. A NE-striking, sinistral shear zone separates the gneisses from southern Fosen. Deformation in the Scandian hinterland was partitioned both in space and time, with orogen-parallel extension and shear at middle structural levels and orogen-oblique transport at shallower levels. ?? 1993.
High-frequency Rayleigh-wave method
Xia, J.; Miller, R.D.; Xu, Y.; Luo, Y.; Chen, C.; Liu, J.; Ivanov, J.; Zeng, C.
2009-01-01
High-frequency (???2 Hz) Rayleigh-wave data acquired with a multichannel recording system have been utilized to determine shear (S)-wave velocities in near-surface geophysics since the early 1980s. This overview article discusses the main research results of high-frequency surface-wave techniques achieved by research groups at the Kansas Geological Survey and China University of Geosciences in the last 15 years. The multichannel analysis of surface wave (MASW) method is a non-invasive acoustic approach to estimate near-surface S-wave velocity. The differences between MASW results and direct borehole measurements are approximately 15% or less and random. Studies show that simultaneous inversion with higher modes and the fundamental mode can increase model resolution and an investigation depth. The other important seismic property, quality factor (Q), can also be estimated with the MASW method by inverting attenuation coefficients of Rayleigh waves. An inverted model (S-wave velocity or Q) obtained using a damped least-squares method can be assessed by an optimal damping vector in a vicinity of the inverted model determined by an objective function, which is the trace of a weighted sum of model-resolution and model-covariance matrices. Current developments include modeling high-frequency Rayleigh-waves in near-surface media, which builds a foundation for shallow seismic or Rayleigh-wave inversion in the time-offset domain; imaging dispersive energy with high resolution in the frequency-velocity domain and possibly with data in an arbitrary acquisition geometry, which opens a door for 3D surface-wave techniques; and successfully separating surface-wave modes, which provides a valuable tool to perform S-wave velocity profiling with high-horizontal resolution. ?? China University of Geosciences (Wuhan) and Springer-Verlag GmbH 2009.
Azimuthal anisotropy layering and plate motion in the Pacific Ocean
NASA Astrophysics Data System (ADS)
Yuan, H.; Romanowicz, B. A.
2012-12-01
We recently developed a three dimensional radially and azimuthally anisotropic model of the upper mantle in north America, using a combination of long-period 3-component surface and overtone waveforms, and SKS splitting measurements (Yuan and Romanowicz, 2010, Yuan et al., 2011). We showed that azimuthal anisotropy is a powerful tool to detect layering in the upper mantle, revealing two domains in the cratonic lithosphere, separated by a sharp laterally varying boundary in the depth range 100-150 km, which seems to coincide with the mid-lithospheric boundary (MLD) found in receiver function studies. Contrary to receiver functions, azimuthal anisotropy also detects the lithosphere-asthenosphere boundary (LAB) as manifested by a change in the fast axis direction, which becomes quasi-parallel to the absolute plate motion below ~250 km depth. A zone of stronger azimuthal anisotropy is found below the LAB both in the western US (peaking at depths of 100-150km) and in the craton (peaking at a depth of about 300 km). Here we show preliminary attempts at expanding our approach to the global scale, with a specific goal of determining whether such an anisotropic LAB can also be observed in the Pacific ocean. We started with our most recent global upper mantle radially anisotropic shear velocity model, determined using the Spectral Element Method (SEMum2; French et al., this meeting). We augment the corresponding global surface wave and overtone dataset (period range 60 to 400 s) with deep events and shorter period body waves, in order to ensure optimal deeper depth (>250km) anisotropy recovery due to the paucity of shear wave splitting measurements in the oceans. Our preliminary results, which do not yet incorporate SKS splitting measurements, look promising as they confirm the layering found previously in North America, using a different, global dataset and starting model. In the Pacific, our study confirms earlier azimuthal anisotropy results in the region (e.g. Smith et al. 2004; Maggi et al. 2006) that the shallow upper mantle beneath the ocean basin is strongly stratified. Our results further illustrate that 1) a shallow anisotropy domain (~100 km) is present, which is high in velocity and has in general a northward anisotropy direction where the plate is old (>80 Ma); and 2) there is a deeper domain (100-200 km) with stronger anisotropy, which correlates spatially with the low velocity zone and has a fast axis direction in good agreement with the absolute plate motion direction (HS3 NUVEL-1A). The boundary between the anisotropy domains clearly follows the age progressive deepening of the fast velocity in the shallow domain, suggesting an oceanic LAB that separates the Pacific lithosphere and the underlying asthenosphere.
Characteristics of acoustic emissions from shearing of granular media
NASA Astrophysics Data System (ADS)
Michlmayr, Gernot; Cohen, Denis; Or, Dani
2010-05-01
Deformation and abrupt formation of small failure cracks on hillslopes often precede sudden release of shallow landslides. The associated frictional sliding, breakage of cementing agents and rupture of embedded biological fibers or liquid bonds between grain contacts are associated with measurable acoustic emissions (AE). The aim of this study was to characterize small scale shear induced failure events (as models of precursors prior to a landslide) by capturing elastic body waves emitted from such events. We conducted a series of experiments with a specially-designed shear frame to measure and characterize high frequency (kHz range) acoustic emissions under different conditions using piezoelectric sensors. Tests were performed at different shear rates ranging from 0.01mm/sec to 2mm/sec with different dry and wet granular materials. In addition to acoustic emissions the setup allows to measure forces and deformations in both horizontal and vertical directions. Results provide means to define characteristic AE signature for different failure events. We observed an increase in AE activity during dilation of granular samples. In wet material AE signals were attributed to the snap-off of liquid bridges between single gains. Acoustic emissions clearly provide an experimental tool for exploring micro-mechanical processes in dry and wet material. Moreover, high sampling rates found in most AE systems coupled with waveguides to overcome signal attenuation offer a promise for field applications as an early warning method for observing the progressive development of slip planes prior to the onset of a landslide.
NASA Astrophysics Data System (ADS)
Nguyen, Thu-Mai; Song, Shaozhen; Arnal, Bastien; Wong, Emily Y.; Shen, Tueng T.; Wang, Ruikang K.; O'Donnell, Matthew
2015-03-01
Tissue stiffness can be measured from the propagation speed of shear waves. Acoustic radiation force (ARF) can generate shear waves by focusing ultrasound in tissue for ~100 μs. Safety considerations and electronics abilities limit ultrasound pressures. We previously presented shear wave elastography combining ARF and phase-sensitive optical coherence tomography (PhS-OCT) [1]. Here, we use amplitude-modulated ARF to enhance shear wave signal-to-noise ratio (SNR) at low pressures. Experiments were performed on tissue-mimicking phantoms. ARF was applied using a single-element transducer, driven by a 7.5 MHz, 3-ms, sine wave modulated in amplitude by a linear-swept frequency (1 to 7 kHz). Pressures between 1 to 3 MPa were tested. Displacements were tracked using PhS-OCT and numerically compressed using pulse compression methods detailed in previous work [2]. SNR was compared to that of 200-μs bursts. Stiffness maps were reconstructed using time-of-flight computations. 200-μs bursts give barely detectable displacements at 1 MPa (3.7 dB SNR). Pulse compression gives 36.2 dB at 1.5 MPa. In all cases with detectable displacements, shear wave speeds were determined in 5%-gelatin and 10%-gelatin phantoms and compared to literature values. Applicability to ocular tissues (cornea, intraocular lens) is under investigation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Medina, Socorro; Houze, Robert A.
2016-02-19
Kelvin–Helmholtz billows with horizontal scales of 3–4 km have been observed in midlatitude cyclones moving over the Italian Alps and the Oregon Cascades when the atmosphere was mostly statically stable with high amounts of shear and Ri < 0.25. In one case, data from a mobile radar located within a windward facing valley documented a layer in which the shear between down-valley flow below 1.2 km and strong upslope cross-barrier flow above was large. Several episodes of Kelvin–Helmholtz waves were observed within the shear layer. The occurrence of the waves appears to be related to the strength of the shear:more » when the shear attained large values, an episode of billows occurred, followed by a sharp decrease in the shear. The occurrence of large values of shear and Kelvin–Helmholtz billows over two different mountain ranges suggests that they may be important features occurring when extratropical cyclones with statically stable flow pass over mountain ranges.« less
NASA Astrophysics Data System (ADS)
McLaughlin, Joyce; Renzi, Daniel
2006-04-01
Transient elastography and supersonic imaging are promising new techniques for characterizing the elasticity of soft tissues. Using this method, an 'ultrafast imaging' system (up to 10 000 frames s-1) follows in real time the propagation of a low-frequency shear wave. The displacement of the propagating shear wave is measured as a function of time and space. Here we develop a fast level set based algorithm for finding the shear wave speed from the interior positions of the propagating front. We compare the performance of level curve methods developed here and our previously developed (McLaughlin J and Renzi D 2006 Shear wave speed recovery in transient elastography and supersonic imaging using propagating fronts Inverse Problems 22 681-706) distance methods. We give reconstruction examples from synthetic data and from data obtained from a phantom experiment accomplished by Mathias Fink's group (the Laboratoire Ondes et Acoustique, ESPCI, Université Paris VII).
Improvement of Shear Wave Motion Detection Using Harmonic Imaging in Healthy Human Liver.
Amador, Carolina; Song, Pengfei; Meixner, Duane D; Chen, Shigao; Urban, Matthew W
2016-05-01
Quantification of liver elasticity is a major application of shear wave elasticity imaging (SWEI) to non-invasive assessment of liver fibrosis stages. SWEI measurements can be highly affected by ultrasound image quality. Ultrasound harmonic imaging has exhibited a significant improvement in ultrasound image quality as well as for SWEI measurements. This was previously illustrated in cardiac SWEI. The purpose of this study was to evaluate liver shear wave particle displacement detection and shear wave velocity (SWV) measurements with fundamental and filter-based harmonic ultrasound imaging. In a cohort of 17 patients with no history of liver disease, a 2.9-fold increase in maximum shear wave displacement, a 0.11 m/s decrease in the overall interquartile range and median SWV and a 17.6% increase in the success rate of SWV measurements were obtained when filter-based harmonic imaging was used instead of fundamental imaging. Copyright © 2016 World Federation for Ultrasound in Medicine & Biology. Published by Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Nguyen, Thu-Mai; Song, Shaozhen; Arnal, Bastien; Wong, Emily Y.; Huang, Zhihong; Wang, Ruikang K.; O'Donnell, Matthew
2014-01-01
Assessing the biomechanical properties of soft tissue provides clinically valuable information to supplement conventional structural imaging. In the previous studies, we introduced a dynamic elastography technique based on phase-sensitive optical coherence tomography (PhS-OCT) to characterize submillimetric structures such as skin layers or ocular tissues. Here, we propose to implement a pulse compression technique for shear wave elastography. We performed shear wave pulse compression in tissue-mimicking phantoms. Using a mechanical actuator to generate broadband frequency-modulated vibrations (1 to 5 kHz), induced displacements were detected at an equivalent frame rate of 47 kHz using a PhS-OCT. The recorded signal was digitally compressed to a broadband pulse. Stiffness maps were then reconstructed from spatially localized estimates of the local shear wave speed. We demonstrate that a simple pulse compression scheme can increase shear wave detection signal-to-noise ratio (>12 dB gain) and reduce artifacts in reconstructing stiffness maps of heterogeneous media.
Laboratory Studies of the Nonlinear Interactions of Kink-Unstable Flux Ropes and Shear Alfvén Waves
NASA Astrophysics Data System (ADS)
Vincena, S. T.; Tripathi, S.; Gekelman, W. N.; DeHaas, T.; Pribyl, P.
2017-12-01
Magnetic flux ropes and shear Alfvén waves occur simultaneously in plasmas ranging from solar prominences, to the solar wind, to planetary magnetospheres. If the flux ropes evolve to become unstable to the kink mode, interactions between the kink oscillations and the shear waves can arise, and may even lead to nonlinear phenomena. Experiments aimed at elucidating such interactions are performed in the upgraded Large Plasma Device at UCLA. Flux ropes are generated using a 20 cm x 20 cm LaB6 cathode-anode discharge (with L = 18 m and β ˜ 0.1.) The ropes are embedded in a larger, otherwise current-free, cylindrical (r = 30cm) ambient plasma produced by a second cathode. Shear Alfvén waves are launched using externally fed antennas having three separate polarizations (azimuthal mode numbers.) The counter-propagating, kink-unstable oscillations and driven shear waves are observed to nonlinearly generate sidebands about the higher, shear wave frequency (evident in power spectra) via three-wave coupling. This is demonstrated though bi-coherence calculations and k-matching. With a fixed kink-mode polarization, a total of six daughter wave patterns are presented. Energy flow is shown to proceed from larger to smaller perpendicular wavelengths. Future work will focus on increasing the plasma beta and wave amplitudes in the quest to observe an evolution to a turbulent state. Work is performed at the US Basic Plasma Science Facility, which is supported by the US Department of Energy and the National Science Foundation.
Song, Shaozhen; Le, Nhan Minh; Huang, Zhihong; Shen, Tueng; Wang, Ruikang K
2015-11-01
The purpose of this study is to implement a beam-steering ultrasound as the wave source for shear-wave optical coherence elastography (SW-OCE) to achieve an extended range of elastic imaging of the tissue sample. We introduce a linear phased array ultrasound transducer (LPAUT) as the remote and programmable wave source and a phase-sensitive optical coherence tomography (OCT) as the sensitive shear-wave detector. The LPAUT is programmed to launch acoustic radiation force impulses (ARFI) focused at desired locations within the range of OCT imaging, upon which the elasticity map of the entire OCT B-scan cross section is recovered by spatial compounding of the elastic maps derived from each launch of AFRIs. We also propose a directional filter to separate the shear-wave propagation at different directions in order to reduce the effect of tissue heterogeneity on the shear-wave propagation within tissue. The feasibility of this proposed approach is then demonstrated by determining the stiffness of tissue-mimicking phantoms with agarose concentrations of 0.5% and 1% and also by imaging the Young's modulus of retinal and choroidal tissues within a porcine eye ball ex vivo. The approach opens up opportunities to combine medical ultrasound imaging and SW-OCE for high-resolution localized quantitative assessment of tissue biomechanical property.
NASA Astrophysics Data System (ADS)
Vorotnikov, K.; Starosvetsky, Y.
2018-01-01
The present study concerns two-dimensional nonlinear mechanisms of bidirectional and unidirectional channeling of longitudinal and shear waves emerging in the locally resonant acoustic structure. The system under consideration comprises an oscillatory chain of the axially coupled masses. Each mass of the chain is subject to the local linear potential along the lateral direction and incorporates the lightweight internal rotator. In the present work, we demonstrate the emergence of special resonant regimes of complete bi- and unidirectional transitions between the longitudinal and the shear waves of the locally resonant chain. These regimes are manifested by the two-dimensional energy channeling between the longitudinal and the shear traveling waves in the recurrent as well as the irreversible fashion. We show that the spatial control of the two dimensional energy flow between the longitudinal and the shear waves is solely governed by the motion of the internal rotators. Nonlinear analysis of the regimes of a bidirectional wave channeling unveils their global bifurcation structure and predicts the zones of their spontaneous transitions from a complete bi-directional wave channeling to the one-directional entrapment. An additional regime of a complete irreversible resonant transformation of the longitudinal wave into a shear wave is analyzed in the study. The intrinsic mechanism governing the unidirectional wave reorientation is described analytically. The results of the analysis of both mechanisms are substantiated by the numerical simulations of the full model and are found to be in a good agreement.
Thermal effects on shearing resistance of fractures in Tak granite
NASA Astrophysics Data System (ADS)
Khamrat, S.; Thongprapha, T.; Fuenkajorn, K.
2018-06-01
Triaxial shear tests have been performed on tension-induced fractures and smooth saw-cut surfaces in Tak granite under temperatures up to 773 K. The objective is to gain an understanding of the movement of shallow faults that cause seismic activities in the Tak batholith in the north of Thailand. The results indicate that the peak and residual shear strengths and fracture dilations notably decrease as the temperatures increase. The thermal effect is enhanced under higher confining pressures. The areas of the sheared-off asperities increase with temperature and confining pressure. A power equation can describe the increase of shear strengths with normal stress where the normal stress exponent is a linear function of the temperature. The strain energy principle is applied to incorporate the principal stresses and strains into a strength criterion. A linear relation between the distortional strain energy (Wd) and the mean strain energy (Wm) of the fractures is obtained. The Wd-Wm slope depends on the fracture roughness and strength of the asperities, which can be defined as a function of shear and mean strains and dilation of the fractures. This may allow predicting the peak strength of the shallow faults in the Tak batholith.
From supersonic shear wave imaging to full-field optical coherence shear wave elastography
NASA Astrophysics Data System (ADS)
Nahas, Amir; Tanter, Mickaël; Nguyen, Thu-Mai; Chassot, Jean-Marie; Fink, Mathias; Claude Boccara, A.
2013-12-01
Elasticity maps of tissue have proved to be particularly useful in providing complementary contrast to ultrasonic imaging, e.g., for cancer diagnosis at the millimeter scale. Optical coherence tomography (OCT) offers an endogenous contrast based on singly backscattered optical waves. Adding complementary contrast to OCT images by recording elasticity maps could also be valuable in improving OCT-based diagnosis at the microscopic scale. Static elastography has been successfully coupled with full-field OCT (FF-OCT) in order to realize both micrometer-scale sectioning and elasticity maps. Nevertheless, static elastography presents a number of drawbacks, mainly when stiffness quantification is required. Here, we describe the combination of two methods: transient elastography, based on speed measurements of shear waves induced by ultrasonic radiation forces, and FF-OCT, an en face OCT approach using an incoherent light source. The use of an ultrafast ultrasonic scanner and an ultrafast camera working at 10,000 to 30,000 images/s made it possible to follow shear wave propagation with both modalities. As expected, FF-OCT is found to be much more sensitive than ultrafast ultrasound to tiny shear vibrations (a few nanometers and micrometers, respectively). Stiffness assessed in gel phantoms and an ex vivo rat brain by FF-OCT is found to be in good agreement with ultrasound shear wave elastography.
Acoustic transducer for acoustic microscopy
Khuri-Yakub, Butrus T.; Chou, Ching H.
1990-01-01
A shear acoustic transducer-lens system in which a shear polarized piezoelectric material excites shear polarized waves at one end of a buffer rod having a lens at the other end which excites longitudinal waves in a coupling medium by mode conversion at selected locations on the lens.
Determination of Shear Wave Velocity in Offshore Terengganu for Ground Response Analysis
NASA Astrophysics Data System (ADS)
Mazlina, M.; Liew, M. S.; Adnan, A.; Harahap, I. S. H.; Hamid, N. A.
2018-04-01
Amount of vibration received in any location can be analysed by conducting ground response analysis. Even though there are three different methods available in this analysis, One Dimensional ground response analysis method has been widely used. Shear wave velocity is one of the key parameters in this analysis. A lot of correlations have been formulated to determine shear wave velocity with cone penetration test. In this study, correlations developed for Quaternary geological age have been selected. Six equations have been adopted comprise of all soil and soil type dependent correlations. Two platforms sites consist of clay and combination of clay and sand have been analysed. Shear velocity to be used in ground response analysis has been obtained. Results have been illustrated in graphs where shear velocity for each case has been plotted. In avoiding under or over predicting of shear wave velocity, the average of all soil and soil type dependent results will be used as final Vs value.
Imaging shear wave propagation for elastic measurement using OCT Doppler variance method
NASA Astrophysics Data System (ADS)
Zhu, Jiang; Miao, Yusi; Qu, Yueqiao; Ma, Teng; Li, Rui; Du, Yongzhao; Huang, Shenghai; Shung, K. Kirk; Zhou, Qifa; Chen, Zhongping
2016-03-01
In this study, we have developed an acoustic radiation force orthogonal excitation optical coherence elastography (ARFOE-OCE) method for the visualization of the shear wave and the calculation of the shear modulus based on the OCT Doppler variance method. The vibration perpendicular to the OCT detection direction is induced by the remote acoustic radiation force (ARF) and the shear wave propagating along the OCT beam is visualized by the OCT M-scan. The homogeneous agar phantom and two-layer agar phantom are measured using the ARFOE-OCE system. The results show that the ARFOE-OCE system has the ability to measure the shear modulus beyond the OCT imaging depth. The OCT Doppler variance method, instead of the OCT Doppler phase method, is used for vibration detection without the need of high phase stability and phase wrapping correction. An M-scan instead of the B-scan for the visualization of the shear wave also simplifies the data processing.
A previously unreported type of seismic source in the firn layer of the East Antarctic Ice Sheet
NASA Astrophysics Data System (ADS)
Lough, Amanda C.; Barcheck, C. Grace; Wiens, Douglas A.; Nyblade, Andrew; Anandakrishnan, Sridhar
2015-11-01
We identify a unique type of seismic source in the uppermost part of the East Antarctic Ice Sheet recorded by temporary broadband seismic arrays in East Antarctica. These sources, termed "firnquakes," are characterized by dispersed surface wave trains with frequencies of 1-10 Hz detectable at distances up to 1000 km. Events show strong dispersed Rayleigh wave trains and an absence of observable body wave arrivals; most events also show weaker Love waves. Initial events were discovered by standard detection schemes; additional events were then detected with a correlation scanner using the initial arrivals as templates. We locate sources by determining the L2 misfit for a grid of potential source locations using Rayleigh wave arrival times and polarization directions. We then perform a multiple-filter analysis to calculate the Rayleigh wave group velocity dispersion and invert the group velocity for shear velocity structure. The resulting velocity structure is used as an input model to calculate synthetic seismograms. Inverting the dispersion curves yields ice velocity structures consistent with a low-velocity firn layer ~100 m thick and show that velocity structure is laterally variable. The absence of observable body wave phases and the relative amplitudes of Rayleigh waves and noise constrain the source depth to be less than 20 m. The presence of Love waves for most events suggests the source is not isotropic. We propose the events are linked to the formation of small crevasses in the firn, and several events correlate with shallow crevasse fields mapped in satellite imagery.
Measurement and imaging of infragravity waves in sea ice using InSAR
NASA Astrophysics Data System (ADS)
Mahoney, Andrew R.; Dammann, Dyre O.; Johnson, Mark A.; Eicken, Hajo; Meyer, Franz J.
2016-06-01
Using short-temporal baseline interferometric synthetic aperture radar, we capture instantaneous images of a persistent field of infragravity waves propagating through sea ice near Barrow, Alaska, during January 2015. We estimate wave amplitudes to be between 1.2 and 1.8 mm. Curvature of wavefronts is consistent with refraction of waves entering shallow water from a source region north of Barrow. A shallow water wave model indicates that the geometry of the wavefronts is relatively insensitive to the source location, but other evidence suggests the waves may have originated in the North Atlantic, making this perhaps the longest observed propagation path for waves through ice. We also note that steepening of the waves entering shallow water can increase the peak strain by an order of magnitude, suggesting that infragravity waves may play a role in determining the location of the landfast ice edge with respect to water depth.
Arnal, Bastien; Pernot, Mathieu; Tanter, Mickael
2011-08-01
The clinical applicability of high-intensity focused ultrasound (HIFU) for noninvasive therapy is currently hampered by the lack of robust and real-time monitoring of tissue damage during treatment. The goal of this study is to show that the estimation of local tissue elasticity from shear wave imaging (SWI) can lead to a precise mapping of the lesion. HIFU treatment and monitoring were respectively performed using a confocal setup consisting of a 2.5-MHz single element transducer focused at 34 mm on ex vivo samples and an 8-MHz ultrasound diagnostic probe. Ultrasound-based strain imaging was combined with shear wave imaging on the same device. The SWI sequences consisted of 2 successive shear waves induced at different lateral positions. Each wave was created with pushing beams of 100 μs at 3 depths. The shear wave propagation was acquired at 17,000 frames/s, from which the elasticity map was recovered. HIFU sonications were interleaved with fast imaging acquisitions, allowing a duty cycle of more than 90%. Thus, elasticity and strain mapping was achieved every 3 s, leading to real-time monitoring of the treatment. When thermal damage occurs, tissue stiffness was found to increase up to 4-fold and strain imaging showed strong shrinkages that blur the temperature information. We show that strain imaging elastograms are not easy to interpret for accurate lesion characterization, but SWI provides a quantitative mapping of the thermal lesion. Moreover, the concept of shear wave thermometry (SWT) developed in the companion paper allows mapping temperature with the same method. Combined SWT and shear wave imaging can map the lesion stiffening and temperature outside the lesion, which could be used to predict the eventual lesion growth by thermal dose calculation. Finally, SWI is shown to be robust to motion and reliable in vivo on sheep muscle.
Yada, Norihisa; Tamaki, Nobuhura; Koizumi, Yohei; Hirooka, Masashi; Nakashima, Osamu; Hiasa, Yoichi; Izumi, Namiki; Kudo, Masatoshi
2017-01-01
Performing shear wave imaging is simple, but can be difficult when inflammation, jaundice, and congestion are present. Therefore, the correct diagnosis of liver fibrosis using shear wave imaging alone might be difficult in mild-to-moderate fibrosis cases. Strain imaging can diagnose liver fibrosis without the influence of inflammation. Therefore, the combined use of strain and shear wave imaging (combinational elastography) for cases without jaundice and congestion might be useful for evaluating fibrosis and inflammation. We enrolled consecutive patients with liver disease, without jaundice or liver congestion. Strain and shear wave imaging, blood tests, and liver biopsy were performed on the same day. The liver fibrosis index (LF index) was calculated by strain imaging; real-time tissue elastography, and the shear wave velocity (Vs) was calculated by shear wave imaging. Fibrosis index (F index) and activity index (A index) were calculated as a multiple regression equation for determining hepatic fibrosis and inflammation using histopathological diagnosis as the gold standard. The diagnostic ability of F index for fibrosis and A index for inflammation were compared using LF index and Vs. The total number of enrolled cases was 388. The area under the receiver operating characteristic (AUROC) was 0.87, 0.80, 0.83, and 0.80, at diagnosis of fibrosis stage with an F index of F1 or higher, F2 or higher, F3 or higher, and F4, respectively. The AUROC was 0.94, 0.74, and 0.76 at diagnosis of activity grade with an A index of A1 or higher, A2 or higher, and A3, respectively. The diagnostic ability of F index for liver fibrosis and A index for inflammation was higher than for other conventional diagnostic values. The combined use of strain and shear wave imaging (combinational elastography) might increase the positive diagnosis of liver fibrosis and inflammation. © 2017 S. Karger AG, Basel.
Orbitally shaken shallow fluid layers. II. An improved wall shear stress model
NASA Astrophysics Data System (ADS)
Alpresa, Paola; Sherwin, Spencer; Weinberg, Peter; van Reeuwijk, Maarten
2018-03-01
A new model for the analytical prediction of wall shear stress distributions at the base of orbitally shaken shallow fluid layers is developed. This model is a generalisation of the classical extended Stokes solution and will be referred to as the potential theory-Stokes model. The model is validated using a large set of numerical simulations covering a wide range of flow regimes representative of those used in laboratory experiments. It is demonstrated that the model is in much better agreement with the simulation data than the classical Stokes solution, improving the prediction in 63% of the studied cases. The central assumption of the model—which is to link the wall shear stress with the surface velocity—is shown to hold remarkably well over all regimes covered.
Relationship between the upper mantle high velocity seismic lid and the continental lithosphere
NASA Astrophysics Data System (ADS)
Priestley, Keith; Tilmann, Frederik
2009-04-01
The lithosphere-asthenosphere boundary corresponds to the base of the "rigid" plates - the depth at which heat transport changes from advection in the convecting deeper upper mantle to conduction in the shallow upper mantle. Although this boundary is a fundamental feature of the Earth, mapping it has been difficult because it does not correspond to a sharp change in temperature or composition. Various definitions of the lithosphere and asthenosphere are based on the analysis of different types of geophysical and geological observations. The depth to the lithosphere-asthenosphere boundary determined from these different observations often shows little agreement when they are applied to the same region because the geophysical and geological observations (i.e., seismic velocity, strain rate, electrical resistivity, chemical depletion, etc.) are proxies for the change in rheological properties rather than a direct measure of the rheological properties. In this paper, we focus on the seismic mapping of the upper mantle high velocity lid and low velocity zone and its relationship to the lithosphere and asthenosphere. We have two goals: (a) to examine the differences in how teleseismic body-wave travel-time tomography and surface-wave tomography image upper mantle seismic structure; and (b) to summarise how upper mantle seismic velocity structure can be related to the structure of the lithosphere and asthenosphere. Surface-wave tomography provides reasonably good depth resolution, especially when higher modes are included in the analysis, but lateral resolution is limited by the horizontal wavelength of the long-period surface waves used to constrain upper mantle velocity structure. Teleseismic body-wave tomography has poor depth resolution in the upper mantle, particularly when no strong lateral contrasts are present. If station terms are used, features with large lateral extent and gradual boundaries are attenuated in the tomographic image. Body-wave models are not useful in mapping the thickness of the high velocity upper mantle lid because this type of analysis often determines wave speed perturbations from an unknown horizontal average and not absolute velocities. Thus, any feature which extends laterally across the whole region beneath a seismic network becomes invisible in the teleseismic body-wave tomographic image. We compare surface-wave and body-wave tomographic results using southern Africa as an example. Surface-wave tomographic images for southern Africa show a strong, high velocity upper mantle lid confined to depths shallower than ~ 200 km, whereas body-wave tomographic images show weak high velocity in the upper mantle extending to depths of ~ 300 km or more. However, synthetic tests show that these results are not contradictory. The absolute seismic velocity structure of the upper mantle provided by surface wave analysis can be used to map the thermal lithosphere. Priestley and McKenzie (Priestley, K., McKenzie, D., 2006. The thermal structure of the lithosphere from shear wave velocities. Earth and Planetary Science Letters 244, 285-301.) derive an empirical relationship between shear wave velocity and temperature. This relationship is used to obtain temperature profiles from the surface-wave tomographic models of the continental mantle. The base of the lithosphere is shown by a change in the gradient of the temperature profiles indicative of the depth where the mode of heat transport changes from conduction to advection. Comparisons of the geotherms determined from the conversion of surface-wave wave speeds to temperatures with upper mantle nodule-derived geotherms demonstrate that estimates of lithospheric thickness from Vs and from the nodule mineralogy agree to within about 25 km. The lithospheric thickness map for Africa derived from the surface-wave tomographic results shows that thick lithosphere underlies most of the Archean crust in Africa. The distribution of diamondiferous kimberlites provides an independent estimate of where thick lithosphere exists. Diamondiferous kimberlites generally occur where the lower part of the thermal lithosphere as indicated by seismology is in the diamond stability field.
Au, Frederick Wing-Fai; Ghai, Sandeep; Moshonov, Hadas; Kahn, Harriette; Brennan, Cressida; Dua, Hemi; Crystal, Pavel
2014-09-01
The purpose of this article is to assess the diagnostic performance of quantitative shear wave elastography in the evaluation of solid breast masses and to determine the most discriminatory parameter. B-mode ultrasound and shear wave elastography were performed before core biopsy of 123 masses in 112 women. The diagnostic performance of ultrasound and quantitative shear wave elastography parameters (mean elasticity, maximum elasticity, and elasticity ratio) were compared. The added effect of shear wave elastography on the performance of ultrasound was determined. The mean elasticity, maximum elasticity, and elasticity ratio were 24.8 kPa, 30.3 kPa, and 1.90, respectively, for 79 benign masses and 130.7 kPa, 154.9 kPa, and 11.52, respectively, for 44 malignant masses (p < 0.001). The optimal cutoff value for each parameter was determined to be 42.5 kPa, 46.7 kPa, and 3.56, respectively. The AUC of each shear wave elastography parameter was higher than that of ultrasound (p < 0.001); the AUC value for the elasticity ratio (0.943) was the highest. By adding shear wave elastography parameters to the evaluation of BI-RADS category 4a masses, about 90% of masses could be downgraded to BI-RADS category 3. The numbers of downgraded masses were 40 of 44 (91%) for mean elasticity, 39 of 44 (89%) for maximum elasticity, and 42 of 44 (95%) for elasticity ratio. The numbers of correctly downgraded masses were 39 of 40 (98%) for mean elasticity, 38 of 39 (97%) for maximum elasticity, and 41 of 42 (98%) for elasticity ratio. There was improvement in the diagnostic performance of ultrasound of mass assessment with shear wave elastography parameters added to BI-RADS category 4a masses compared with ultrasound alone. Combined ultrasound and elasticity ratio had the highest improvement, from 35.44% to 87.34% for specificity, from 45.74% to 80.77% for positive predictive value, and from 57.72% to 90.24% for accuracy (p < 0.0001). The AUC of combined ultrasound and elasticity ratio (0.914) was the highest compared with the other combined parameters. There was a statistically significant difference in the values of the quantitative shear wave elastography parameters of benign and malignant solid breast masses. By adding shear wave elastography parameters to BI-RADS category 4a masses, we found that about 90% of them could be correctly downgraded to BI-RADS category 3, thereby avoiding biopsy. Elasticity ratio (cutoff, 3.56) appeared to be the most discriminatory parameter.
Surface waves in an incompressible fluid - Resonant instability due to velocity shear
NASA Technical Reports Server (NTRS)
Hollweg, Joseph V.; Yang, G.; Cadez, V. M.; Gakovic, B.
1990-01-01
The effects of velocity shear on the resonance absorption of incompressible MHD surface waves are studied. It is found that there are generally values of the velocity shear for which the surface wave decay rate becomes zero. In some cases, the resonance absorption goes to zero even for very small velocity shears. It is also found that the resonance absorption can be strongly enhanced at other values of the velocity shear, so the presence of flows may be generally important for determining the effects of resonance absorption, such as might occur in the interaction of p-modes with sunspots. Resonances leading to instability of the global surface mode can exist, and instability can occur for velocity shears significantly below the Kelvin-Helmholtz threshold. These instabilities may play a role in the development or turbulence in regions of strong velocity shear in the solar wind or the earth's magnetosphere.
Shear Alfvén Wave with Quantum Exchange-Correlation Effects in Plasmas
NASA Astrophysics Data System (ADS)
Mir, Zahid; Jamil, M.; Rasheed, A.; Asif, M.
2017-09-01
The dust shear Alfvén wave is studied in three species dusty quantum plasmas. The quantum effects are incorporated through the Fermi degenerate pressure, tunneling potential, and in particular the exchange-correlation potential. The significance of exchange-correlation potential is pointed out by a graphical description of the dispersion relation, which shows that the exchange potential magnifies the phase speed. The low-frequency shear Alfvén wave is studied while considering many variables. The shear Alfvén wave gains higher phase speed at the range of small angles for the upper end of the wave vector spectrum. The increasing dust charge and the external magnetic field reflect the increasing tendency of phase speed. This study may explain many natural mechanisms associated with long wavelength radiations given in the summary.
Miao, Hongchen; Huan, Qiang; Li, Faxin; Kang, Guozheng
2018-04-24
Focusing the incident wave beam along a given direction is very useful in guided wave based structural health monitoring (SHM), as it will not only save input power but also simplify the interpretation of signals. Although the fundamental shear horizontal (SH 0 ) wave is of practical importance in SHM due to its non-dispersive characteristics so far there have been very limited transducers which can control the radiation patterns of SH 0 wave. In this work, a variable-frequency bidirectional SH 0 wave piezoelectric transducer (BSH-PT) is proposed, which consists of two rectangular face-shear (d 24 ) PZT wafers. The opposite face-shear deformation of the two PZT wafers under applied electric fields makes the BSH-PT capable of exciting SH 0 wave along two opposite directions (0° and 180°). Both finite element simulations and experimental testings are conducted to examine the performance of the proposed BSH-PT. Results show that pure SH 0 wave can be generated by this BSH-PT and its wave beam can be focused bi-directionally. Moreover, the bidirectional characteristics of the BSH-PT can be kept over a wide frequency range from 150 kHz to 250 kHz. As the circumferential SH 0 (CSH 0 ) wave in a thin hollow cylindrical structure is essentially equivalent to the SH 0 wave in a plate, the proposed BSH-PT may also be very useful to develop a CSH 0 -wave-based SHM system for hollow cylindrical structures. Copyright © 2018 Elsevier B.V. All rights reserved.
Three-dimensional shear wave velocity structure in the Atlantic upper mantle
NASA Astrophysics Data System (ADS)
James, Esther Kezia Candace
Oceanic lithosphere constitutes the upper boundary layer of the Earth's convecting mantle. Its structure and evolution provide a vital window on the dynamics of the mantle and important clues to how the motions of Earth's surface plates are coupled to convection in the mantle below. The three-dimensional shear-velocity structure of the upper mantle beneath the Atlantic Ocean is investigated to gain insight into processes that drive formation of oceanic lithosphere. Travel times are measured for approximately 10,000 fundamental-mode Rayleigh waves, in the period range 30-130 seconds, traversing the Atlantic basin. Paths with >30% of their length through continental upper mantle are excluded to maximize sensitivity to the oceanic upper mantle. The lateral distribution of Rayleigh wave phase velocity in the Atlantic upper mantle is explored with two approaches. One, phase velocity is allowed to vary only as a function of seafloor age. Two, a general two-dimensional parameterization is utilized in order to capture perturbations to age-dependent structure. Phase velocity shows a strong dependence on seafloor age, and removing age-dependent velocity from the 2-D maps highlights areas of anomalously low velocity, almost all of which are proximal to locations of hotspot volcanism. Depth-dependent variations in vertically-polarized shear velocity (Vsv) are determined with two sets of 3-D models: a layered model that requires constant VSV in each depth layer, and a splined model that allows VSV to vary continuously with depth. At shallow depths (˜75 km) the seismic structure shows the expected dependence on seafloor age. At greater depths (˜200 km) high-velocity lithosphere is found only beneath the oldest seafloor; velocity variations beneath younger seafloor may result from temperature or compositional variations within the asthenosphere. The age-dependent phase velocities are used to constrain temperature in the mantle and show that, in contrast to previous results for the Pacific, phase velocities for the Atlantic are not consistent with a half-space cooling model but are best explained by a plate-cooling model with thickness of 75 km and mantle temperature of 1400°C. Comparison with data such as basalt chemistry and seafloor elevation helps to separate thermal and compositional effects on shear velocity.
NASA Astrophysics Data System (ADS)
Ritsema, J.; Chaves, C. A. M.
2016-12-01
Regional waveforms of deep-focus Tonga-Fiji earthquakes indicate anomalous traveltime differences (ScS2-ScS) and amplitude ratios (ScS2/ScS) of the phases ScS and ScS2. The correlation between the ScS2-ScS delay time and the ScS2/ScS amplitude ratio suggests that shear-wave apparent Q in the mantle below the Tonga-Fiji region is highest when shear-wave velocities are lowest. This observation is unexpected if temperature variations were responsible for the seismic anomalies. Using spectral-element-method waveform simulations for four tomographic models we demonstrate that focusing and scattering of shear waves by long-wavelength 3D heterogeneity in the mantle may overwhelm the signal from intrinsic attenuation in long-period ScS2/ScS amplitude ratios. The tomographic models reproduce the variability in recorded ScS2-ScS difference times and ScS2/ScS amplitude ratios. Variations in shear-wave attenuation (i.e., the quality factor Q) are not necessary to explain the data. An explanation for slow shear wave propagation without intrinsic attenuation does not require a creative solution from mineral physics.
NASA Astrophysics Data System (ADS)
Seadawy, Aly R.
2017-01-01
The propagation of three-dimensional nonlinear irrotational flow of an inviscid and incompressible fluid of the long waves in dispersive shallow-water approximation is analyzed. The problem formulation of the long waves in dispersive shallow-water approximation lead to fifth-order Kadomtsev-Petviashvili (KP) dynamical equation by applying the reductive perturbation theory. By using an extended auxiliary equation method, the solitary travelling-wave solutions of the two-dimensional nonlinear fifth-order KP dynamical equation are derived. An analytical as well as a numerical solution of the two-dimensional nonlinear KP equation are obtained and analyzed with the effects of external pressure flow.
Effects of Internal Waves on Sound Propagation in the Shallow Waters of the Continental Shelves
2016-09-01
experiment area were largely generated by tidal forcing. Compared to simulations without internal waves , simulations accounting for the effects of...internal waves in the experiment area were largely generated by tidal forcing. Compared to simulations without internal waves , simulations accounting for...IN THE SHALLOW WATERS OF THE CONTINENTAL SHELVES ..................................4 1. Internal Tides—Internal Waves Generated by Tidal Forcing
NASA Astrophysics Data System (ADS)
Mainprice, David; Le Page, Yvon; Rodgers, John; Jouanna, Paul
2008-10-01
Talc is a hydrous magnesium rich layered silicate that is widely disseminated in the Earth from the seafloor to over 100 km depth, in ultra-high pressure metamorphism of oceanic crust. In this paper we determine the single crystal elastic constants at pressures from 0 to 12 GPa of talc triclinic ( C 1¯) and monoclinic (C2/ c) polytypes using ab initio methods. We find that talc has an extraordinarily high elastic anisotropy at zero pressure that reduces with increasing pressure. The exceptional anisotropy is complemented by a negative Poisson's ratio for many directions in crystal space. Calculations show that talc is not only one of very few common minerals to exhibit auxetic behaviour, but the magnitude of this effect may be the largest reported so far for a mineral. The compression (Vp) and shear (Vs) wave velocity anisotropy is 80% and 85% for the triclinic polytype. At pressures where talc is known be stable in the Earth (up to 5 GPa) the Vp and Vs anisotropy is reduced to about 40% for both velocities, which is still a very high value. Vp is slow parallel to the c-axis and fast perpendicular to it. This remains unchanged with increasing pressure and is observed in both polytypes. The shear wave splitting (difference between fast and slow S-wave velocities) at low pressure has high values in the plane normal to the c-axis, with a maximum near the a*-axis in the triclinic and the b-axis in the monoclinic polytype. The c-axis is the direction of minimum splitting. The pattern of shear wave splitting does not change significantly with pressure. The volume fraction of talc varies between 11 and 41% for hydrated mantle rocks, but the lack of data on the crystallographic preferred orientation (CPO) precludes a detailed analysis of the impact of talc on seismic anisotropy in subduction zones. However, it is highly likely that CPO can easily develop in zones of deformation due to the platy habit of talc crystals. For random aggregates of talc, the isotropic Vp, Vs and Vp/Vs ratio have significantly lower values than those of antigorite and may explain low-velocity regions in the mantle wedge. Vp/Vs ratios are more complex in anisotropic media because there are fast and slow S-waves, resulting in Vp/Vs1 and Vp/Vs2 ratios for every propagation direction, making interpretation difficult in deformed polycrystalline talc with a CPO. Talc on the subduction plate boundary can strongly influence guided wave velocity as CPO would develop in this region of intense shearing. The very low coefficient of friction (< 0.1) of talc above 100 °C could also explain silent earthquakes at shallow depths ( ca 30 km) along the subduction plate boundaries, frequently responsible for tsunami.
Deng, Yufeng; Rouze, Ned C.; Palmeri, Mark L.; Nightingale, Kathryn R.
2017-01-01
Ultrasound elasticity imaging has been developed over the last decade to estimate tissue stiffness. Shear wave elasticity imaging (SWEI) quantifies tissue stiffness by measuring the speed of propagating shear waves following acoustic radiation force excitation. This work presents the sequencing and data processing protocols of SWEI using a Verasonics system. The selection of the sequence parameters in a Verasonics programming script is discussed in detail. The data processing pipeline to calculate group shear wave speed (SWS), including tissue motion estimation, data filtering, and SWS estimation is demonstrated. In addition, the procedures for calibration of beam position, scanner timing, and transducer face heating are provided to avoid SWS measurement bias and transducer damage. PMID:28092508
Lower-mantle plume beneath the Yellowstone hotspot revealed by core waves
NASA Astrophysics Data System (ADS)
Nelson, Peter L.; Grand, Stephen P.
2018-04-01
The Yellowstone hotspot, located in North America, is an intraplate source of magmatism the cause of which is hotly debated. Some argue that a deep mantle plume sourced at the base of the mantle supplies the heat beneath Yellowstone, whereas others claim shallower subduction or lithospheric-related processes can explain the anomalous magmatism. Here we present a shear wave tomography model for the deep mantle beneath the western United States that was made using the travel times of core waves recorded by the dense USArray seismic network. The model reveals a single narrow, cylindrically shaped slow anomaly, approximately 350 km in diameter that we interpret as a whole-mantle plume. The anomaly is tilted to the northeast and extends from the core-mantle boundary to the surficial position of the Yellowstone hotspot. The structure gradually decreases in strength from the deepest mantle towards the surface and if it is purely a thermal anomaly this implies an initial excess temperature of 650 to 850 °C. Our results strongly support a deep origin for the Yellowstone hotspot, and also provide evidence for the existence of thin thermal mantle plumes that are currently beyond the resolution of global tomography models.
Acoustic transducer for acoustic microscopy
Khuri-Yakub, B.T.; Chou, C.H.
1990-03-20
A shear acoustic transducer-lens system is described in which a shear polarized piezoelectric material excites shear polarized waves at one end of a buffer rod having a lens at the other end which excites longitudinal waves in a coupling medium by mode conversion at selected locations on the lens. 9 figs.
Periodically sheared 2D Yukawa systems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kovács, Anikó Zsuzsa; Hartmann, Peter; Center for Astrophysics, Space Physics and Engineering Research
2015-10-15
We present non-equilibrium molecular dynamics simulation studies on the dynamic (complex) shear viscosity of a 2D Yukawa system. We have identified a non-monotonic frequency dependence of the viscosity at high frequencies and shear rates, an energy absorption maximum (local resonance) at the Einstein frequency of the system at medium shear rates, an enhanced collective wave activity, when the excitation is near the plateau frequency of the longitudinal wave dispersion, and the emergence of significant configurational anisotropy at small frequencies and high shear rates.
Global shear speed structure of the upper mantle and transition zone
NASA Astrophysics Data System (ADS)
Schaeffer, A. J.; Lebedev, S.
2013-07-01
The rapid expansion of broad-band seismic networks over the last decade has paved the way for a new generation of global tomographic models. Significantly improved resolution of global upper-mantle and crustal structure can now be achieved, provided that structural information is extracted effectively from both surface and body waves and that the effects of errors in the data are controlled and minimized. Here, we present a new global, vertically polarized shear speed model that yields considerable improvements in resolution, compared to previous ones, for a variety of features in the upper mantle and crust. The model, SL2013sv, is constrained by an unprecedentedly large set of waveform fits (˜3/4 of a million broad-band seismograms), computed in seismogram-dependent frequency bands, up to a maximum period range of 11-450 s. Automated multimode inversion of surface and S-wave forms was used to extract a set of linear equations with uncorrelated uncertainties from each seismogram. The equations described perturbations in elastic structure within approximate sensitivity volumes between sources and receivers. Going beyond ray theory, we calculated the phase of every mode at every frequency and its derivative with respect to S- and P-velocity perturbations by integration over a sensitivity area in a 3-D reference model; the (normally small) perturbations of the 3-D model required to fit the waveforms were then linearized using these accurate derivatives. The equations yielded by the waveform inversion of all the seismograms were simultaneously inverted for a 3-D model of shear and compressional speeds and azimuthal anisotropy within the crust and upper mantle. Elaborate outlier analysis was used to control the propagation of errors in the data (source parameters, timing at the stations, etc.). The selection of only the most mutually consistent equations exploited the data redundancy provided by our data set and strongly reduced the effect of the errors, increasing the resolution of the imaging. Our new shear speed model is parametrized on a triangular grid with a ˜280 km spacing. In well-sampled continental domains, lateral resolution approaches or exceeds that of regional-scale studies. The close match of known surface expressions of deep structure with the distribution of anomalies in the model provides a useful benchmark. In oceanic regions, spreading ridges are very well resolved, with narrow anomalies in the shallow mantle closely confined near the ridge axis, and those deeper, down to 100-120 km, showing variability in their width and location with respect to the ridge. Major subduction zones worldwide are well captured, extending from shallow depths down to the transition zone. The large size of our waveform fit data set also provides a strong statistical foundation to re-examine the validity field of the JWKB approximation and surface wave ray theory. Our analysis shows that the approximations are likely to be valid within certain time-frequency portions of most seismograms with high signal-to-noise ratios, and these portions can be identified using a set of consistent criteria that we apply in the course of waveform fitting.
NASA Astrophysics Data System (ADS)
Cakir, R.; Walsh, T. J.; Norman, D. K.
2017-12-01
We, Washington Geological Survey (WGS), have been performing multi-method near surface geophysical surveys to help assess potential earthquake damage at public schools in Washington. We have been conducting active and passive seismic surveys, and estimating Shear-wave velocity (Vs) profiles, then determining the NEHRP soil classifications based on Vs30m values at school sites in Washington. The survey methods we have used: 1D and 2D MASW and MAM, P- and S-wave refraction, horizontal-to-vertical spectral ratio (H/V), and 2ST-SPAC to measure Vs and Vp at shallow (0-70m) and greater depths at the sites. We have also run Ground Penetrating Radar (GPR) surveys at the sites to check possible horizontal subsurface variations along and between the seismic survey lines and the actual locations of the school buildings. The seismic survey results were then used to calculate Vs30m for determining the NEHRP soil classifications at school sites, thus soil amplification effects on the ground motions. Resulting shear-wave velocity profiles generated from these studies can also be used for site response and liquefaction potential studies, as well as for improvement efforts of the national Vs30m database, essential information for ShakeMap and ground motion modeling efforts in Washington and Pacific Northwest. To estimate casualties, nonstructural, and structural losses caused by the potential earthquakes in the region, we used these seismic site characterization results associated with structural engineering evaluations based on ASCE41 or FEMA 154 (Rapid Visual Screening) as inputs in FEMA Hazus-Advanced Engineering Building Module (AEBM) analysis. Compelling example surveys will be presented for the school sites in western and eastern Washington.
Explicit wave action conservation for water waves on vertically sheared flows
NASA Astrophysics Data System (ADS)
Quinn, Brenda; Toledo, Yaron; Shrira, Victor
2016-04-01
Water waves almost always propagate on currents with a vertical structure such as currents directed towards the beach accompanied by an under-current directed back toward the deep sea or wind-induced currents which change magnitude with depth due to viscosity effects. On larger scales they also change their direction due to the Coriolis force as described by the Ekman spiral. This implies that the existing wave models, which assume vertically-averaged currents, is an approximation which is far from realistic. In recent years, ocean circulation models have significantly improved with the capability to model vertically-sheared current profiles in contrast with the earlier vertically-averaged current profiles. Further advancements have coupled wave action models to circulation models to relate the mutual effects between the two types of motion. Restricting wave models to vertically-averaged non-turbulent current profiles is obviously problematic in these cases and the primary goal of this work is to derive and examine a general wave action equation which accounts for these shortcoming. The formulation of the wave action conservation equation is made explicit by following the work of Voronovich (1976) and using known asymptotic solutions of the boundary value problem which exploit the smallness of the current magnitude compared to the wave phase velocity and/or its vertical shear and curvature. The adopted approximations are shown to be sufficient for most of the conceivable applications. This provides correction terms to the group velocity and wave action definition accounting for the shear effects, which are fitting for application to operational wave models. In the limit of vanishing current shear, the new formulation reduces to the commonly used Bretherton & Garrett (1968) no-shear wave action equation where the invariant is calculated with the current magnitude taken at the free surface. It is shown that in realistic oceanic conditions, the neglect of the vertical structure of the currents in wave modelling which is currently universal, might lead to significant errors in wave amplitude and the predicted wave ray paths. An extension of the work toward the more complex case of turbulent currents will also be discussed.
The effect of convection and shear on the damping and propagation of pressure waves
NASA Astrophysics Data System (ADS)
Kiel, Barry Vincent
Combustion instability is the positive feedback between heat release and pressure in a combustion system. Combustion instability occurs in the both air breathing and rocket propulsion devices, frequently resulting in high amplitude spinning waves. If unchecked, the resultant pressure fluctuations can cause significant damage. Models for the prediction of combustion instability typically include models for the heat release, the wave propagation and damping. Many wave propagation models for propulsion systems assume negligible flow, resulting in the wave equation. In this research the effect of flow on wave propagation was studied both numerically and experimentally. Two experiential rigs were constructed, one with axial flow to study the longitudinal waves, the other with swirling flow to study circumferential waves. The rigs were excited with speakers and the resultant pressure was measured simultaneously at many locations. Models of the rig were also developed. Equations for wave propagation were derived from the Euler Equations. The resultant resembled the wave equation with three additional terms, two for the effect of the convection and a one for the effect of shear of the mean flow on wave propagation. From the experimental and numerical data several conclusions were made. First, convection and shear both act as damping on the wave propagation, reducing the magnitude of the Frequency Response Function and the resonant frequency of the modes. Second, the energy extracted from the mean flow as a result of turbulent shear for a given condition is frequency dependent, decreasing with increasing frequency. The damping of the modes, measured for the same shear flow, also decreased with frequency. Finally, the two convective terms cause the anti-nodes of the modes to no longer be stationary. For both the longitudinal and circumferential waves, the anti-nodes move through the domain even for mean flow Mach numbers less than 0.10. It was concluded that convection causes the spinning waves documented in inlets and exhausts of gas turbine engines, rocket combustion chambers, and afterburner chambers. As a result, the effects of shear must be included when modeling wave propagation, even for mean flows less than < Mach 0.10.
Gravity Waves in the Presence of Shear during DEEPWAVE
NASA Astrophysics Data System (ADS)
Doyle, J. D.; Jiang, Q.; Reinecke, P. A.; Reynolds, C. A.; Eckermann, S. D.; Fritts, D. C.; Smith, R. B.; Taylor, M. J.; Dörnbrack, A.
2016-12-01
The DEEP propagating gravity WAVE program (DEEPWAVE) is a comprehensive, airborne and ground-based measurement and modeling program centered on New Zealand and focused on providing a new understanding of gravity wave dynamics and impacts from the troposphere through the mesosphere and lower thermosphere. This program employed the NSF/NCAR GV (NGV) research aircraft from a base in New Zealand in a 6-week field measurement campaign in June-July 2014. During the field phase, the NGV was equipped with new Rayleigh and sodium resonance lidars and an advanced mesospheric temperature mapper (AMTM), a microwave temperature profiler (MTP), as well as dropwindsondes and flight level instruments providing measurements spanning altitudes from immediately above the NGV flight altitude ( 13 km) to 100 km. In this study, we utilize the DEEPWAVE observations and the nonhydrostatic COAMPS configured at high resolution (2 km) with a deep domain (60-80 km) to explore the effects of horizontal wind shear on gravity wave propagation and wave characteristics. Real-data simulations have been conducted for several DEEPWAVE cases. The results suggest that horizontal shear associated with the stratospheric polar night jet refracts the gravity waves and leads to propagation of waves significantly downwind of the South Island. These waves have been referred to as "trailing gravity waves", since they are found predominantly downwind of the orography of the South Island and the wave crests rotate nearly normal to the mountain crest. Observations from the G-V, remote sensing instruments, and the AIRS satellite confirm the presence of gravity waves downwind of the orography in numerous events. The horizontal propagation in the stratosphere can be explained by group velocity arguments for gravity waves in which the wave energy is advected downwind by the component of the flow normal to the horizontal wavevector. We explore the impact of the shear on gravity wave propagation in COAMPS configured in an idealized mode initialized with a zonally balanced stratospheric jet. The idealized results confirm the importance of horizontal wind shear for the refraction of the waves. The zonal momentum flux minimum is shown to bend or refract into the jet in the stratosphere as a consequence of the wind shear.
NASA Astrophysics Data System (ADS)
Gadenne, Leslie; Raimbourg, Hugues; Champallier, Rémi; Yamamoto, Yuzuru
2014-12-01
To better constrain the mechanical behavior of sediments accreted to accretionary prism, we conducted triaxial mechanical tests on natural samples from the Miura-Boso paleo-accretionary prism (Japan) in drained conditions with confining pressures up to 200 MPa as well as postexperiments P-wave velocity (Vp) measurements. During experiments, deformation is principally noncoaxial and accommodated by two successive modes of deformation, both associated with strain-hardening and velocity-strengthening behavior: (1) compaction-assisted shearing, distributed in a several mm-wide shear zone and (2) faulting, localized within a few tens of μm-wide, dilatant fault zone. Deformation is also associated with (1) a decrease in Young's modulus all over the tests, (2) anomalously low Vp in the deformed samples compared to their porosity and (3) an increase in sensitivity of Vp to effective pressure. We interpret this evolution of the poroelastic properties of the material as reflecting the progressive breakage of intergrain cement and the formation of microcracks along with macroscopic deformation. When applied to natural conditions, these results suggest that the deformation style (localized versus distributed) of shallow (z < a few km) sediments is mainly controlled by the variations in stress/strain rate during the seismic cycle and is therefore independent of the porosity of sediments. Finally, we show that the effect of strain, through cement breakage and microcracks formation, may lower Vp for effective pressure up to 40 MPa. As a consequence, the low Vp anomalies observed in Nankai accretionary prisms by seismic imaging between 2 and 4 km depth could reflect sediment deformation rather than porosity anomalies.
Modifiying shallow-water equations as a model for wave-vortex turbulence
NASA Astrophysics Data System (ADS)
Mohanan, A. V.; Augier, P.; Lindborg, E.
2017-12-01
The one-layer shallow-water equations is a simple two-dimensional model to study the complex dynamics of the oceans and the atmosphere. We carry out forced-dissipative numerical simulations, either by forcing medium-scale wave modes, or by injecting available potential energy (APE). With pure wave forcing in non-rotating cases, a statistically stationary regime is obtained for a range of forcing Froude numbers Ff = ɛ /(kf c), where ɛ is the energy dissipation rate, kf the forcing wavenumber and c the wave speed. Interestingly, the spectra scale as k-2 and third and higher order structure functions scale as r. Such statistics is a manifestation of shock turbulence or Burgulence, which dominate the flow. Rotating cases exhibit some inverse energy cascade, along with a stronger forward energy cascade, dominated by wave-wave interactions. We also propose two modifications to the classical shallow-water equations to construct a toy model. The properties of the model are explored by forcing in APE at a small and a medium wavenumber. The toy model simulations are then compared with results from shallow-water equations and a full General Circulation Model (GCM) simulation. The most distinctive feature of this model is that, unlike shallow-water equations, it avoids shocks and conserves quadratic energy. In Fig. 1, for the shallow-water equations, shocks appear as thin dark lines in the divergence (∇ .{u}) field, and as discontinuities in potential temperature (θ ) field; whereas only waves appear in the corresponding fields from toy model simulation. Forward energy cascade results in a wave field with k-5/3 spectrum, along with equipartition of KE and APE at small scales. The vortical field develops into a k-3 spectrum. With medium forcing wavenumber, at large scales, energy converted from APE to KE undergoes inverse cascade as a result of nonlinear fluxes composed of vortical modes alone. Gradually, coherent vortices emerge with a strong preference for anticyclonic motion. The model can serve as a closer representation of real geophysical turbulence than the classical shallow-water equations. Fig 1. Divergence and potential temperature fields of shallow-water (top row) and toy model (bottom row) simulations.
Ding, Xu; Wu, Xinjun; Wang, Yugang
2014-03-01
A method is proposed to measure the stress on a tightened bolt using an electromagnetic acoustic transducer (EMAT). A shear wave is generated by the EMAT, and a longitudinal wave is obtained from the reflection of the shear wave due to the mode conversion. The ray paths of the longitudinal and the shear wave are analyzed, and the relationship between the bolt axial stress and the ratio of time of flight between two mode waves is then formulated. Based on the above outcomes, an EMAT is developed to measure the bolt axial stress without loosening the bolt, which is required in the conventional EMAT test method. The experimental results from the measurement of the bolt tension show that the shear and the mode-converted longitudinal waves can be received successfully, and the ratio of the times of flight of the shear and the mode-converted longitudinal waves is linearly proportional to the bolt axial tension. The non-contact characteristic of EMAT eliminates the effect of the couplant and also makes the measurement more convenient than the measurement performed using the piezoelectric transducer. This method provides a promising way to measure the stress on tightened bolts. Copyright © 2013 Elsevier B.V. All rights reserved.
Shear wave speed recovery in transient elastography and supersonic imaging using propagating fronts
NASA Astrophysics Data System (ADS)
McLaughlin, Joyce; Renzi, Daniel
2006-04-01
Transient elastography and supersonic imaging are promising new techniques for characterizing the elasticity of soft tissues. Using this method, an 'ultrafast imaging' system (up to 10 000 frames s-1) follows in real time the propagation of a low frequency shear wave. The displacement of the propagating shear wave is measured as a function of time and space. The objective of this paper is to develop and test algorithms whose ultimate product is images of the shear wave speed of tissue mimicking phantoms. The data used in the algorithms are the front of the propagating shear wave. Here, we first develop techniques to find the arrival time surface given the displacement data from a transient elastography experiment. The arrival time surface satisfies the Eikonal equation. We then propose a family of methods, called distance methods, to solve the inverse Eikonal equation: given the arrival times of a propagating wave, find the wave speed. Lastly, we explain why simple inversion schemes for the inverse Eikonal equation lead to large outliers in the wave speed and numerically demonstrate that the new scheme presented here does not have any large outliers. We exhibit two recoveries using these methods: one is with synthetic data; the other is with laboratory data obtained by Mathias Fink's group (the Laboratoire Ondes et Acoustique, ESPCI, Université Paris VII).
Le, Nhan; Song, ShaoZhen; Nabi, Ghulam; Wang, Ruikang; Huang, Zhihong
2016-09-01
Phase-sensitive optical coherence tomography (PhS-OCT) is proposed, as a new high intensity focused ultrasound (HIFU) imaging guidance to detect and track HIFU focus inside 1% agar samples in this work. The experiments studied the effect of varying HIFU power on the induction of shear wave, which can be implemented as a new technique to monitor focused ultrasound surgery (FUS). A miniature HIFU transducer (1.02 MHz, 20 mm aperture diameter, 15 mm radius of curvature) was produced in-house, pressure-field mapped, and calibrated. The transducer was then embedded inside a 1% agar phantom, which was placed under PhS-OCT for observation, under various HIFU power settings (acoustic power, and number of cycles per pulse). Shear wave was induced on the sample surface by HIFU and was captured in full under PhS-OCT. The lowest HIFU acoustic power output for the detection of shear wave was found to be 0.36 W (1.02 MHz, 100 cycles/pulse), or with the number of cycles/pulse as low as 20 (1.02 MHz, 0.98 W acoustic power output). A linear relationship between acoustic power output and the maximum shear wave displacement was found in the first study. The second study explores a non-linear correlation between the (HIFU) numbers of cycles per pulse, and the maximum shear wave displacement. PhS-OCT demonstrates excellent tracking and detection of HIFU-induced shear wave. The results could benefit other imaging techniques in tracking and guiding HIFU focus. Further studies will explore the relationship between the physical transducer characteristics and the HIFU-induced shear wave.
A technique for generating shear waves in cylindrical shells under radial impact
NASA Technical Reports Server (NTRS)
Blum, A.; Mortimer, R. W.; Rose, J. L.
1974-01-01
Experimental techniques are developed to study and measure the shear-wave velocity in an aluminum cylindrical shell subjected to a radial impact. The radial impact is obtained by exploding an electrical detonator inserted in plastic plugs mounted on the end of the shell. Strain gages, mounted on the outside surface of the shell at various axial locations, are used to obtain oscilloscope traces from which the shear-wave velocity can be calculated.
Zhou, Bang-Guo; Wang, Dan; Ren, Wei-Wei; Li, Xiao-Long; He, Ya-Ping; Liu, Bo-Ji; Wang, Qiao; Chen, Shi-Gao; Alizad, Azra; Xu, Hui-Xiong
2017-08-01
To evaluate the diagnostic performance of shear wave arrival time contour (SWATC) display for the diagnosis of breast lesions and to identify factors associated with the quality of shear wave propagation (QSWP) in breast lesions. This study included 277 pathologically confirmed breast lesions. Conventional B-mode ultrasound characteristics and shear wave elastography parameters were computed. Using the SWATC display, the QSWP of each lesion was assigned to a two-point scale: score 1 (low quality) and score 2 (high quality). Binary logistic regression analysis was performed to identify factors associated with QSWP. The area under the receiver operating characteristic curve (AUROC) for QSWP to differentiate benign from malignant lesions was 0.913, with a sensitivity of 91.9%, a specificity of 90.7%, a positive predictive value (PPV) of 74.0%, and a negative predictive value (NPV) of 97.5%. Compared with using the standard deviation of shear wave speed (SWS SD ) alone, SWS SD combined with QSWP increased the sensitivity from 75.8% to 93.5%, but decreased the specificity from 95.8% to 89.3% (P < 0.05). SWS SD was identified to be the strongest factor associated with the QSWP, followed by tumor malignancy and the depth of the lesion. In conclusion, SWATC display may be useful for characterization of breast lesions.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Squire, J.; Bhattacharjee, A.
2014-12-10
We study magnetorotational instability (MRI) using nonmodal stability techniques. Despite the spectral instability of many forms of MRI, this proves to be a natural method of analysis that is well-suited to deal with the non-self-adjoint nature of the linear MRI equations. We find that the fastest growing linear MRI structures on both local and global domains can look very different from the eigenmodes, invariably resembling waves shearing with the background flow (shear waves). In addition, such structures can grow many times faster than the least stable eigenmode over long time periods, and be localized in a completely different region ofmore » space. These ideas lead—for both axisymmetric and non-axisymmetric modes—to a natural connection between the global MRI and the local shearing box approximation. By illustrating that the fastest growing global structure is well described by the ordinary differential equations (ODEs) governing a single shear wave, we find that the shearing box is a very sensible approximation for the linear MRI, contrary to many previous claims. Since the shear wave ODEs are most naturally understood using nonmodal analysis techniques, we conclude by analyzing local MRI growth over finite timescales using these methods. The strong growth over a wide range of wave-numbers suggests that nonmodal linear physics could be of fundamental importance in MRI turbulence.« less
NASA Astrophysics Data System (ADS)
Orszaghova, Jana; Borthwick, Alistair G. L.; Taylor, Paul H.
2012-01-01
This article describes a one-dimensional numerical model of a shallow-water flume with an in-built piston paddle moving boundary wavemaker. The model is based on a set of enhanced Boussinesq equations and the nonlinear shallow water equations. Wave breaking is described approximately, by locally switching to the nonlinear shallow water equations when a critical wave steepness is reached. The moving shoreline is calculated as part of the solution. The piston paddle wavemaker operates on a movable grid, which is Lagrangian on the paddle face and Eulerian away from the paddle. The governing equations are, however, evolved on a fixed mapped grid, and the newly calculated solution is transformed back onto the moving grid via a domain mapping technique. Validation test results are compared against analytical solutions, confirming correct discretisation of the governing equations, wave generation via the numerical paddle, and movement of the wet/dry front. Simulations are presented that reproduce laboratory experiments of wave runup on a plane beach and wave overtopping of a laboratory seawall, involving solitary waves and compact wave groups. In practice, the numerical model is suitable for simulating the propagation of weakly dispersive waves and can additionally model any associated inundation, overtopping or inland flooding within the same simulation.
C-plane Reconstructions from Sheaf Acquisition for Ultrasound Electrode Vibration Elastography.
Ingle, Atul; Varghese, Tomy
2014-09-03
This paper presents a novel algorithm for reconstructing and visualizing ablated volumes using radiofrequency ultrasound echo data acquired with the electrode vibration elastography approach. The ablation needle is vibrated using an actuator to generate shear wave pulses that are tracked in the ultrasound image plane at different locations away from the needle. This data is used for reconstructing shear wave velocity maps for each imaging plane. A C-plane reconstruction algorithm is proposed which estimates shear wave velocity values on a collection of transverse planes that are perpendicular to the imaging planes. The algorithm utilizes shear wave velocity maps from different imaging planes that share a common axis of intersection. These C-planes can be used to generate a 3D visualization of the ablated region. Experimental validation of this approach was carried out using data from a tissue mimicking phantom. The shear wave velocity estimates were within 20% of those obtained from a clinical scanner, and a contrast of over 4 dB was obtained between the stiff and soft regions of the phantom.
Correlation between classical rheometry and supersonic shear wave imaging in blood clots.
Bernal, Miguel; Gennisson, Jean-Luc; Flaud, Patrice; Tanter, Mickael
2013-11-01
The assessment of coagulating blood elasticity has gained importance as a result of several studies that have correlated it to cardiovascular pathologic conditions. In this study we use supersonic shear wave imaging (SSI) to measure viscoelastic properties of blood clots. At the same time, classical rheometry experiments were carried out on the same blood samples taken within the first few seconds of coagulation. Using SSI, phase velocities of the shear wave indicated increasing dispersion with time. In all cases, the frequency bandwidth of propagating shear waves changed from 20-50 Hz at the first few min of coagulation to around 300 Hz toward the end of experiments. Using the values of G' and G″ from the rheometry studies, the theoretical shear wave velocities were calculated and correlated with SSI measurements. Results of the two techniques were in very good agreement, confirming that SSI provides accurate measurements of viscoelastic properties as corroborated by conventional rheometric measurements. Copyright © 2013 World Federation for Ultrasound in Medicine & Biology. Published by Elsevier Inc. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pasyanos, M
We study the lithospheric structure of Africa, Arabia and adjacent oceanic regions with fundamental-mode surface waves over a wide period range. Including short period group velocities allows us to examine shallower features than previous studies of the whole continent. In the process, we have developed a crustal thickness map of Africa. Main features include crustal thickness increases under the West African, Congo, and Kalahari cratons. We find crustal thinning under Mesozoic and Cenozoic rifts, including the Benue Trough, Red Sea, and East, Central, and West African rift systems. Crustal shear wave velocities are generally faster in oceanic regions and cratons,more » and slower in more recent crust and in active and formerly active orogenic regions. Deeper structure, related to the thickness of cratons and modern rifting, is generally consistent with previous work. Under cratons we find thick lithosphere and fast upper mantle velocities, while under rifts we find thinned lithosphere and slower upper mantle velocities. There are no consistent effects in areas classified as hotspots, indicating that there seem to be numerous origins for these features. Finally, it appears that the African Superswell has had a significantly different impact in the north and the south, indicating specifics of the feature (temperature, time of influence, etc.) to be dissimilar between the two regions. Factoring in other information, it is likely that the southern portion has been active in the past, but that shallow activity is currently limited to the northern portion of the superswell.« less
Linear Instability of a Uni-Directional Transversely Sheared Mean Flow
NASA Technical Reports Server (NTRS)
Wundrow, David W.
1996-01-01
The effect of spanwise-periodic mean-flow distortions (i.e. streamwise-vortex structures) on the evolution of small-amplitude, single-frequency instability waves in an otherwise two-dimensional shear flow is investigated. The streamwise-vortex structures are taken to be just weak enough so that the spatially growing instability waves behave (locally) like linear perturbations about a uni-directional transversely sheared mean flow. Numerical solutions are computed and discussed for both the mean flow and the instability waves. The influence of the streamwise-vortex wavelength on the properties of the most rapidly growing instability wave is also discussed.
Shear wave induced resonance elastography of spherical masses with polarized torsional waves
NASA Astrophysics Data System (ADS)
Hadj Henni, Anis; Schmitt, Cédric; Trop, Isabelle; Cloutier, Guy
2012-03-01
Shear wave induced resonance (SWIR) is a technique for dynamic ultrasound elastography of confined mechanical inclusions. It was developed for breast tumor imaging and tissue characterization. This method relies on the polarization of torsional shear waves modeled with the Helmholtz equation in spherical coordinates. To validate modeling, an invitro set-up was used to measure and image the first three eigenfrequencies and eigenmodes of a soft sphere. A preliminary invivo SWIR measurement on a breast fibroadenoma is also reported. Results revealed the potential of SWIR elastography to detect and mechanically characterize breast lesions for early cancer detection.
Shear wave induced resonance elastography of spherical masses with polarized torsional waves.
Henni, Anis Hadj; Schmitt, Cédric; Trop, Isabelle; Cloutier, Guy
2012-03-26
Shear Wave Induced Resonance (SWIR) is a technique for dynamic ultrasound elastography of confined mechanical inclusions. It was developed for breast tumor imaging and tissue characterization. This method relies on the polarization of torsional shear waves modeled with the Helmholtz equation in spherical coordinates. To validate modeling, an in vitro set-up was used to measure and image the first three eigenfrequencies and eigenmodes of a soft sphere. A preliminary in vivo SWIR measurement on a breast fibroadenoma is also reported. Results revealed the potential of SWIR elastography to detect and mechanically characterize breast lesions for early cancer detection.
Full-waveform inversion of surface waves in exploration geophysics
NASA Astrophysics Data System (ADS)
Borisov, D.; Gao, F.; Williamson, P.; Tromp, J.
2017-12-01
Full-waveform inversion (FWI) is a data fitting approach to estimate high-resolution properties of the Earth from seismic data by minimizing the misfit between observed and calculated seismograms. In land seismics, the source on the ground generates high-amplitude surface waves, which generally represent most of the energy recorded by ground sensors. Although surface waves are widely used in global seismology and engineering studies, they are typically treated as noise within the seismic exploration community since they mask deeper reflections from the intervals of exploration interest. This is mainly due to the fact that surface waves decay exponentially with depth and for a typical frequency range (≈[5-50] Hz) sample only the very shallow part of the subsurface, but also because they are much more sensitive to S-wave than P-wave velocities. In this study, we invert surface waves in the hope of using them as additional information for updating the near surface. In a heterogeneous medium, the main challenge of surface wave inversion is associated with their dispersive character, which makes it difficult to define a starting model for conventional FWI which can avoid cycle-skipping. The standard approach to dealing with this is by inverting the dispersion curves in the Fourier (f-k) domain to generate locally 1-D models, typically for the shear wavespeeds only. However this requires that the near-surface zone be more or less horizontally invariant over a sufficient distance for the spatial Fourier transform to be applicable. In regions with significant topography, such as foothills, this is not the case, so we revert to the time-space domain, but aim to minimize the differences of envelopes in the early stages of the inversion to resolve the cycle-skipping issue. Once the model is good enough, we revert to the classic waveform-difference inversion. We first present a few synthetic examples. We show that classical FWI might be trapped in a local minimum even for relatively simple scenario, while FWI with envelopes is stable and can converge using an inaccurate starting model. We also perform resolution analysis using a checkerboard test. We then present a field example. The final shear wavespeed model is compared to the results from the inversion of dispersion curves.
Nearshore circulation on a sea breeze dominated beach during intense wind events
NASA Astrophysics Data System (ADS)
Torres-Freyermuth, Alec; Puleo, Jack A.; DiCosmo, Nick; Allende-Arandía, Ma. Eugenia; Chardón-Maldonado, Patricia; López, José; Figueroa-Espinoza, Bernardo; de Alegria-Arzaburu, Amaia Ruiz; Figlus, Jens; Roberts Briggs, Tiffany M.; de la Roza, Jacobo; Candela, Julio
2017-12-01
A field experiment was conducted on the northern Yucatan coast from April 1 to April 12, 2014 to investigate the role of intense wind events on coastal circulation from the inner shelf to the swash zone. The study area is characterized by a micro-tidal environment, low-energy wave conditions, and a wide and shallow continental shelf. Furthermore, easterly trade winds, local breezes, and synoptic-scale events, associated with the passage of cold-fronts known as Nortes, are ubiquitous in this region. Currents were measured concurrently at different cross-shore locations during both local and synoptic-scale intense wind events to investigate the influence of different forcing mechanisms (i.e., large-scale currents, winds, tides, and waves) on the nearshore circulation. Field observations revealed that nearshore circulation across the shelf is predominantly alongshore-directed (westward) during intense winds. However, the mechanisms responsible for driving instantaneous spatial and temporal current variability depend on the weather conditions and the across-shelf location. During local strong sea breeze events (W > 10 m s-1 from the NE) occurring during spring tide, westward circulation is controlled by the tides, wind, and waves at the inner-shelf, shallow waters, and inside the surf/swash zone, respectively. The nearshore circulation is relaxed during intense land breeze events (W ≈ 9 m s-1 from the SE) associated with the low atmospheric pressure system that preceded a Norte event. During the Norte event (Wmax≈ 15 m s-1 from the NNW), westward circulation dominated outside the surf zone and was correlated to the Yucatan Current, whereas wave breaking forces eastward currents inside the surf/swash zone. The latter finding implies the existence of large alongshore velocity shear at the offshore edge of the surf zone during the Norte event, which enhances mixing between the surf zone and the inner shelf. These findings suggest that both sea breezes and Nortes play an important role in sediment and pollutant transport along/across the nearshore of the Yucatan shelf.
The influence of seagrass on shell layers and Florida Bay mudbanks
Prager, E.J.; Halley, R.B.
1999-01-01
Aerial photography indicates that sometime since the early 1970's, an emergent ridge of shell debris developed on a mudbank north of Calusa Key in Florida Bay. Coarse shell deposits on and within the Bay's shallow mudbanks are believed to be the product of transport during major storm events and subsequent winnowing. However, shell material from the ridge contains nuclear bomb 14C, supporting formation within the past 30 years and the last major hurricanes to influence Florida Bay were Donna and Betsy (1960 and 1965). Results from this study suggest that the Calusa ridge and other coarse shell deposits in Florida Bay can result from, 1) periodic seagrass mortality and wave-induced transport during frequent winter cold fronts and/or 2) mollusc blooms and subsequent burial. A survey of bottom types indicates that dense to intermediate beds of seagrass, mainly Thalassia testudinum (turtle grass), occur within the shallow basins of western Florida Bay and along the margins of Bay mudbanks. Wave measurements and modeling indicate that Thalassia along mudbank margins can reduce incoming wave-energy by over 80%. Seagrass beds also host particularly dense populations of molluscs from periodic 'blooms' and are believed to be the major source of coarse sediments in the Bay. Thus, if bank-edge seagrass dies, sediments, including shell debris, become exposed and subject to greatly increased wave energy. Modeling indicates that winds typical of winter cold fronts in South Florida can produce near-bottom velocities and shear stress at a grass-free bank edge which are sufficient to transport coarse carbonate grains. Shell layers found at depth in mudbank cores can also be explained by previous episodes of sediment accretion over mollusc-rich seagrass beds or grass bed mortality at the edge of a mudbank and shell transport during cold front passage. The latter implies that mortality of marginal seagrass beds has occurred throughout the history of Florida Bay and that the historical influence of hurricanes on sedimentation in the Bay may have been overestimated.
Multi-Channel Optical Coherence Elastography Using Relative and Absolute Shear-Wave Time of Flight
Elyas, Eli; Grimwood, Alex; Erler, Janine T.; Robinson, Simon P.; Cox, Thomas R.; Woods, Daniel; Clowes, Peter; De Luca, Ramona; Marinozzi, Franco; Fromageau, Jérémie; Bamber, Jeffrey C.
2017-01-01
Elastography, the imaging of elastic properties of soft tissues, is well developed for macroscopic clinical imaging of soft tissues and can provide useful information about various pathological processes which is complementary to that provided by the original modality. Scaling down of this technique should ply the field of cellular biology with valuable information with regard to elastic properties of cells and their environment. This paper evaluates the potential to develop such a tool by modifying a commercial optical coherence tomography (OCT) device to measure the speed of shear waves propagating in a three-dimensional (3D) medium. A needle, embedded in the gel, was excited to vibrate along its long axis and the displacement as a function of time and distance from the needle associated with the resulting shear waves was detected using four M-mode images acquired simultaneously using a commercial four-channel swept-source OCT system. Shear-wave time of arrival (TOA) was detected by tracking the axial OCT-speckle motion using cross-correlation methods. Shear-wave speed was then calculated from inter-channel differences of TOA for a single burst (the relative TOA method) and compared with the shear-wave speed determined from positional differences of TOA for a single channel over multiple bursts (the absolute TOA method). For homogeneous gels the relative method provided shear-wave speed with acceptable precision and accuracy when judged against the expected linear dependence of shear modulus on gelatine concentration (R2 = 0.95) and ultimate resolution capabilities limited by 184μm inter-channel distance. This overall approach shows promise for its eventual provision as a research tool in cancer cell biology. Further work is required to optimize parameters such as vibration frequency, burst length and amplitude, and to assess the lateral and axial resolutions of this type of device as well as to create 3D elastograms. PMID:28107368
McCulloch, David S.
1966-01-01
The March 27, 1964, earthquake dislodged slides from nine deltas in Kenai Lake, south-central Alaska. Sliding removed protruding parts of deltas-often the youngest parts-and steepened delta fronts, increasing the chances of further sliding. Fathograms show that debris from large slides spread widely over the lake floor, some reaching the toe of the opposite shore; at one place debris traveled 5,000 feet over the horizontal lake floor. Slides generated two kinds of local waves: a backfill and far-shore wave. Backfill waves were formed by water that rushed toward the delta to fill the void left by the sinking slide mass, overtopped the slide scrap, and came ashore over the delta. Some backfill waves had runup heights of 30 feet and ran inland more than 300 feet, uprooting and breaking off large trees. Far-shore waves hit the shore opposite the slides. They were formed by slide debris that crossed the lake floor and forced water ahead of it, which then ran up the opposite slope, burst above the lake surface, and struck the shore. One far-shore wave had a runup height of 72 feet. Kenai Lake was tilted and seiched; a power spectrum analysis of a limnogram shows a wave having the period of the calculated uninodal seiche (36 minutes) and several shorter period waves. In constricted and shallow reaches, waves caused by seiching had 20- and 30-foot runup heights. Deep lateral spreading of sediments toward delta margins displaced deeply driven railroad-bridge piles, and set up stress fields in the surface sediments which resulted in the formation of many shear and some tension fractures on the surface of two deltas.
Non-perturbational surface-wave inversion: A Dix-type relation for surface waves
Haney, Matt; Tsai, Victor C.
2015-01-01
We extend the approach underlying the well-known Dix equation in reflection seismology to surface waves. Within the context of surface wave inversion, the Dix-type relation we derive for surface waves allows accurate depth profiles of shear-wave velocity to be constructed directly from phase velocity data, in contrast to perturbational methods. The depth profiles can subsequently be used as an initial model for nonlinear inversion. We provide examples of the Dix-type relation for under-parameterized and over-parameterized cases. In the under-parameterized case, we use the theory to estimate crustal thickness, crustal shear-wave velocity, and mantle shear-wave velocity across the Western U.S. from phase velocity maps measured at 8-, 20-, and 40-s periods. By adopting a thin-layer formalism and an over-parameterized model, we show how a regularized inversion based on the Dix-type relation yields smooth depth profiles of shear-wave velocity. In the process, we quantitatively demonstrate the depth sensitivity of surface-wave phase velocity as a function of frequency and the accuracy of the Dix-type relation. We apply the over-parameterized approach to a near-surface data set within the frequency band from 5 to 40 Hz and find overall agreement between the inverted model and the result of full nonlinear inversion.
Shear elastic modulus estimation from indentation and SDUV on gelatin phantoms
Amador, Carolina; Urban, Matthew W.; Chen, Shigao; Chen, Qingshan; An, Kai-Nan; Greenleaf, James F.
2011-01-01
Tissue mechanical properties such as elasticity are linked to tissue pathology state. Several groups have proposed shear wave propagation speed to quantify tissue mechanical properties. It is well known that biological tissues are viscoelastic materials; therefore velocity dispersion resulting from material viscoelasticity is expected. A method called Shearwave Dispersion Ultrasound Vibrometry (SDUV) can be used to quantify tissue viscoelasticity by measuring dispersion of shear wave propagation speed. However, there is not a gold standard method for validation. In this study we present an independent validation method of shear elastic modulus estimation by SDUV in 3 gelatin phantoms of differing stiffness. In addition, the indentation measurements are compared to estimates of elasticity derived from shear wave group velocities. The shear elastic moduli from indentation were 1.16, 3.40 and 5.6 kPa for a 7, 10 and 15% gelatin phantom respectively. SDUV measurements were 1.61, 3.57 and 5.37 kPa for the gelatin phantoms respectively. Shear elastic moduli derived from shear wave group velocities were 1.78, 5.2 and 7.18 kPa for the gelatin phantoms respectively. The shear elastic modulus estimated from the SDUV, matched the elastic modulus measured by indentation. On the other hand, shear elastic modulus estimated by group velocity did not agree with indentation test estimations. These results suggest that shear elastic modulus estimation by group velocity will be bias when the medium being investigated is dispersive. Therefore a rheological model should be used in order to estimate mechanical properties of viscoelastic materials. PMID:21317078
High Resolution Shear-Wave Velocity Structure of Greenland from Surface Wave Analysis
NASA Astrophysics Data System (ADS)
Pourpoint, M.; Anandakrishnan, S.; Ammon, C. J.
2016-12-01
We present a high resolution seismic tomography model of Greenland's lithosphere from the analysis of fundamental mode Rayleigh-wave group velocity dispersion measurements. Regional and teleseismic events recorded by the GLISN, GSN and CN seismic networks over the last 20 years were used. In order to better constrain the crustal structure of Greenland, we also collected and processed several years of ambient noise data. We developed a new group velocity correction method that helps to alleviate the limitations of the sparse Greenland station network and the relatively few local events. The global dispersion model GDM52 from Ekström [2011] was used to calculate group delays from the earthquake to the boundaries of our study area. An iterative reweighted generalized least-square approach was used to invert for the group velocity maps between periods of 5 s and 180 s. A Markov chain Monte Carlo technique was then applied to invert for a 3-D shear wave velocity model of Greenland up to a depth of 200 km and estimate the uncertainties in the model. Our method results in relatively uniform azimuthal coverage and high resolution length ( 200 to 400 km) in west and east Greenland. We detect a deep high velocity zone extending from northwestern to southwestern Greenland and a low velocity zone (LVZ) between central-eastern and northeastern Greenland. The location of the LVZ correlates well with a previously measured high geothermal heat flux and could provide valuable information about its source. We expect the results of the ambient noise tomography to cross-validate the earthquake tomography results and give us a better estimate of the spatial extent and amplitude of the LVZ at shallow depths. A refined regional model of Greenland's lithospheric structure should eventually help better understand how underlying geological and geophysical processes may impact the dynamics of the ice sheet and influence its potential contribution to future sea level changes.
Dynamic controls on shallow clinoform geometry: Mekong Delta, Vietnam
NASA Astrophysics Data System (ADS)
Eidam, E. F.; Nittrouer, C. A.; Ogston, A. S.; DeMaster, D. J.; Liu, J. P.; Nguyen, T. T.; Nguyen, T. N.
2017-09-01
Compound deltas, composed of a subaerial delta plain and subaqueous clinoform, are common termini of large rivers. The transition between clinoform topset and foreset, or subaqueous rollover point, is located at 25-40-m water depth for many large tide-dominated deltas; this depth is controlled by removal of sediment from the topset by waves, currents, and gravity flows. However, the Mekong Delta, which has been classified as a mixed-energy system, has a relatively shallow subaqueous rollover at 4-6-m depth. This study evaluates dynamical measurements and seabed cores collected in Sep 2014 and Mar 2015 to understand processes of sediment transfer across the subaqueous delta, and evaluate possible linkages to geometry. During the southwest rainy monsoon (Sep 2014), high river discharge, landward return flow under the river plume, and regional circulation patterns facilitated limited sediment flux to the topset and foreset, and promoted alongshore flux to the northeast. Net observed sediment fluxes in Sep 2014 were landward, however, consistent with hypotheses about seasonal storage on the topset. During the northeast rainy monsoon, low river discharge and wind-driven currents facilitated intense landward and southwestward fluxes of sediment. In both seasons, bed shear velocities frequently exceeded the 0.01-0.02 m/s threshold of motion for sand, even in the absence of strong wave energy. Most sediment transport occurred at water depths <14 m, as expected from observed cross-shelf gradients of sedimentation. Sediment accumulation rates were highest on the upper and lower foreset beds (>4 cm/yr at <10 m depth, and 3-8 cm/yr at 10-20 m depth) and lowest on the bottomset beds. Physically laminated sediments transitioned into mottled sediments between the upper foreset and bottomset regions. Application of a simple wave-stress model to the Mekong and several other clinoforms illustrates that shallow systems are not necessarily energy-limited, and thus rollover depths cannot be predicted solely by bed-stress distributions. In systems like the subaqueous Mekong Delta, direction of transport may have a key impact on morphology.
Modeling elastic wave propagation in kidney stones with application to shock wave lithotripsy.
Cleveland, Robin O; Sapozhnikov, Oleg A
2005-10-01
A time-domain finite-difference solution to the equations of linear elasticity was used to model the propagation of lithotripsy waves in kidney stones. The model was used to determine the loading on the stone (principal stresses and strains and maximum shear stresses and strains) due to the impact of lithotripsy shock waves. The simulations show that the peak loading induced in kidney stones is generated by constructive interference from shear waves launched from the outer edge of the stone with other waves in the stone. Notably the shear wave induced loads were significantly larger than the loads generated by the classic Hopkinson or spall effect. For simulations where the diameter of the focal spot of the lithotripter was smaller than that of the stone the loading decreased by more than 50%. The constructive interference was also sensitive to shock rise time and it was found that the peak tensile stress reduced by 30% as rise time increased from 25 to 150 ns. These results demonstrate that shear waves likely play a critical role in stone comminution and that lithotripters with large focal widths and short rise times should be effective at generating high stresses inside kidney stones.
Acoustic wave propagation and intensity fluctuations in shallow water 2006 experiment
NASA Astrophysics Data System (ADS)
Luo, Jing
Fluctuations of low frequency sound propagation in the presence of nonlinear internal waves during the Shallow Water 2006 experiment are analyzed. Acoustic waves and environmental data including on-board ship radar images were collected simultaneously before, during, and after a strong internal solitary wave packet passed through a source-receiver acoustic track. Analysis of the acoustic wave signals shows temporal intensity fluctuations. These fluctuations are affected by the passing internal wave and agrees well with the theory of the horizontal refraction of acoustic wave propagation in shallow water. The intensity focusing and defocusing that occurs in a fixed source-receiver configuration while internal wave packet approaches and passes the acoustic track is addressed in this thesis. Acoustic ray-mode theory is used to explain the modal evolution of broadband acoustic waves propagating in a shallow water waveguide in the presence of internal waves. Acoustic modal behavior is obtained from the data through modal decomposition algorithms applied to data collected by a vertical line array of hydrophones. Strong interference patterns are observed in the acoustic data, whose main cause is identified as the horizontal refraction referred to as the horizontal Lloyd mirror effect. To analyze this interference pattern, combined Parabolic Equation model and Vertical-mode horizontal-ray model are utilized. A semi-analytic formula for estimating the horizontal Lloyd mirror effect is developed.
Explicit use of the Biot coefficient in predicting shear-wave velocity of water-saturated sediments
Lee, M.W.
2006-01-01
Predicting the shear-wave (S-wave) velocity is important in seismic modelling, amplitude analysis with offset, and other exploration and engineering applications. Under the low-frequency approximation, the classical Biot-Gassmann theory relates the Biot coefficient to the bulk modulus of water-saturated sediments. If the Biot coefficient under in situ conditions can be estimated, the shear modulus or the S-wave velocity can be calculated. The Biot coefficient derived from the compressional-wave (P-wave) velocity of water-saturated sediments often differs from and is less than that estimated from the S-wave velocity, owing to the interactions between the pore fluid and the grain contacts. By correcting the Biot coefficients derived from P-wave velocities of water-saturated sediments measured at various differential pressures, an accurate method of predicting S-wave velocities is proposed. Numerical results indicate that the predicted S-wave velocities for consolidated and unconsolidated sediments agreewell with measured velocities. ?? 2006 European Association of Geoscientists & Engineers.
Reproducibility of shear wave elastography (SWE) in patients with chronic liver disease
Salomone Megna, Angelo; Ragucci, Monica; De Luca, Massimo; Marino Marsilia, Giuseppina; Nardone, Gerardo; Coccoli, Pietro; Prinster, Anna; Mannelli, Lorenzo; Vergara, Emilia; Monti, Serena; Liuzzi, Raffaele; Incoronato, Mariarosaria
2017-01-01
The presence of significant fibrosis is an indicator for liver disease staging and prognosis. The aim of the study was to determine reproducibility of real-time shear wave elastography using a hepatic biopsy as the reference standard to identify patients with chronic liver disease. Forty patients with chronic liver disease and 12 normal subjects received shear wave elastography performed by skilled operators. Interoperator reproducibility was studied in 29 patients. Fibrosis was evaluated using the Metavir score. The median and range shear wave elastography values in chronic liver disease subjects were 6.15 kPa and 3.14–16.7 kPa and were 4.49 kPa and 2.92–7.32 kPa in normal subjects, respectively. With respect to fibrosis detected by liver biopsy, shear wave elastography did not change significantly between F0 and F1 (p = 0.334), F1 and F2 (p = 0.611), or F3 and F4 (0.327); a significant difference was observed between the F0-F2 and F3-F4 groups (p = 0.002). SWE also correlated with inflammatory activity (Rs = 0.443, p = 0.0023) and ALT levels (Rs = 0.287, p = 0.0804). Age, sex and body mass index did not affect shear wave elastography measurements. Using receiver operator characteristic curves, two threshold values for shear wave elastography were identified: 5.62 kPa for patients with fibrosis (≥F2; sensitivity 80%, specificity 69.4%, and accuracy 77%) and 7.04 kPa for patients with severe fibrosis (≥F3; sensitivity 88.9%, specificity 81%, and accuracy 89%). Overall interobserver agreement was excellent and was analysed using an interclass correlation coefficient (0.94; CI 0.87–0.97).This study shows that shear wave elastography executed by skilled operators can be performed on almost all chronic liver disease patients with high reproducibility. It is not influenced by age, sex or body mass index, identifies severely fibrotic patients and is also related to inflammatory activity. PMID:29023554
Shear wave propagation in anisotropic soft tissues and gels
Namani, Ravi; Bayly, Philip V.
2013-01-01
The propagation of shear waves in soft tissue can be visualized by magnetic resonance elastography (MRE) [1] to characterize tissue mechanical properties. Dynamic deformation of brain tissue arising from shear wave propagation may underlie the pathology of blast-induced traumatic brain injury. White matter in the brain, like other biological materials, exhibits a transversely isotropic structure, due to the arrangement of parallel fibers. Appropriate mathematical models and well-characterized experimental systems are needed to understand wave propagation in these structures. In this paper we review the theory behind waves in anisotropic, soft materials, including small-amplitude waves superimposed on finite deformation of a nonlinear hyperelastic material. Some predictions of this theory are confirmed in experimental studies of a soft material with controlled anisotropy: magnetically-aligned fibrin gel. PMID:19963987
NASA Astrophysics Data System (ADS)
Papazoglou, S.; Hamhaber, U.; Braun, J.; Sack, I.
2007-02-01
A method based on magnetic resonance elastography is presented that allows measuring the weldedness of interfaces between soft tissue layers. The technique exploits the dependence of shear wave scattering at elastic interfaces on the frequency of vibration. Experiments were performed on gel phantoms including differently welded interfaces. Plane wave excitation parallel to the planar interface with corresponding motion sensitization enabled the observation of only shear-horizontal (SH) wave scattering. Spatio-temporal filtering was applied to calculate scattering coefficients from the amplitudes of the incident, transmitted and reflected SH-waves in the vicinity of the interface. The results illustrate that acoustic wave scattering in soft tissues is largely dependent on the connectivity of interfaces, which is potentially interesting for imaging tissue mechanics in medicine and biology.
Slab anisotropy from subduction zone guided waves in Taiwan
NASA Astrophysics Data System (ADS)
Chen, K. H.; Tseng, Y. L.; Hu, J. C.
2014-12-01
Frozen-in anisotropic structure in the oceanic lithosphere and faulting/hydration in the upper layer of the slab are expected to play an important role in anisotropic signature of the subducted slab. Over the past several decades, despite the advances in characterizing anisotropy using shear wave splitting method and its developments, the character of slab anisotropy remains poorly understood. In this study we investigate the slab anisotropy using subduction zone guided waves characterized by long path length in the slab. In the southernmost Ryukyu subduction zone, seismic waves from events deeper than 100 km offshore northern Taiwan reveal wave guide behavior: (1) a low-frequency (< 1 Hz) first arrival recognized on vertical and radial components but not transverse component (2) large, sustained high-frequency (3-10 Hz) signal in P and S wave trains. The depth dependent high-frequency content (3-10Hz) confirms the association with a waveguide effect in the subducting slab rather than localized site amplification effects. Using the selected subduction zone guided wave events, we further analyzed the shear wave splitting for intermediate-depth earthquakes in different frequency bands, to provide the statistically meaningful shear wave splitting parameters. We determine shear wave splitting parameters from the 34 PSP guided events that are deeper than 100 km with ray path traveling along the subducted slab. From shear wave splitting analysis, the slab and crust effects reveal consistent polarization pattern of fast directions of EN-WS and delay time of 0.13 - 0.27 sec. This implies that slab anisotropy is stronger than the crust effect (<0.1 s) but weaker than the mantle wedge and sub-slab mantle effect (0.3-1.3 s) in Taiwan.
Kayen, Robert E.; Carkin, Bradley A.; Allen, Trevor; Collins, Clive; McPherson, Andrew; Minasian, Diane L.
2015-01-01
One-dimensional shear-wave velocity (VS ) profiles are presented at 50 strong motion sites in New South Wales and Victoria, Australia. The VS profiles are estimated with the spectral analysis of surface waves (SASW) method. The SASW method is a noninvasive method that indirectly estimates the VS at depth from variations in the Rayleigh wave phase velocity at the surface.
NASA Astrophysics Data System (ADS)
Vrecica, Teodor; Toledo, Yaron
2015-04-01
One-dimensional deterministic and stochastic evolution equations are derived for the dispersive nonlinear waves while taking dissipation of energy into account. The deterministic nonlinear evolution equations are formulated using operational calculus by following the approach of Bredmose et al. (2005). Their formulation is extended to include the linear and nonlinear effects of wave dissipation due to friction and breaking. The resulting equation set describes the linear evolution of the velocity potential for each wave harmonic coupled by quadratic nonlinear terms. These terms describe the nonlinear interactions between triads of waves, which represent the leading-order nonlinear effects in the near-shore region. The equations are translated to the amplitudes of the surface elevation by using the approach of Agnon and Sheremet (1997) with the correction of Eldeberky and Madsen (1999). The only current possibility for calculating the surface gravity wave field over large domains is by using stochastic wave evolution models. Hence, the above deterministic model is formulated as a stochastic one using the method of Agnon and Sheremet (1997) with two types of stochastic closure relations (Benney and Saffman's, 1966, and Hollway's, 1980). These formulations cannot be applied to the common wave forecasting models without further manipulation, as they include a non-local wave shoaling coefficients (i.e., ones that require integration along the wave rays). Therefore, a localization method was applied (see Stiassnie and Drimer, 2006, and Toledo and Agnon, 2012). This process essentially extracts the local terms that constitute the mean nonlinear energy transfer while discarding the remaining oscillatory terms, which transfer energy back and forth. One of the main findings of this work is the understanding that the approximated non-local coefficients behave in two essentially different manners. In intermediate water depths these coefficients indeed consist of rapidly oscillating terms, but as the water depth becomes shallow they change to an exponential growth (or decay) behavior. Hence, the formerly used localization technique cannot be justified for the shallow water region. A new formulation is devised for the localization in shallow water, it approximates the nonlinear non-local shoaling coefficient in shallow water and matches it to the one fitting to the intermediate water region. This allows the model behavior to be consistent from deep water to intermediate depths and up to the shallow water regime. Various simulations of the model were performed for the cases of intermediate, and shallow water, overall the model was found to give good results in both shallow and intermediate water depths. The essential difference between the shallow and intermediate nonlinear shoaling physics is explained via the dominating class III Bragg resonances phenomenon. By inspecting the resonance conditions and the nature of the dispersion relation, it is shown that unlike in the intermediate water regime, in shallow water depths the formation of resonant interactions is possible without taking into account bottom components. References Agnon, Y. & Sheremet, A. 1997 Stochastic nonlinear shoaling of directional spectra. J. Fluid Mech. 345, 79-99. Benney, D. J. & Saffman, P. G. 1966 Nonlinear interactions of random waves. Proc. R. Soc. Lond. A 289, 301-321. Bredmose, H., Agnon, Y., Madsen, P.A. & Schaffer, H.A. 2005 Wave transformation models with exact second-order transfer. European J. of Mech. - B/Fluids 24 (6), 659-682. Eldeberky, Y. & Madsen, P. A. 1999 Deterministic and stochastic evolution equations for fully dispersive and weakly nonlinear waves. Coastal Engineering 38, 1-24. Kaihatu, J. M. & Kirby, J. T. 1995 Nonlinear transformation of waves in infinite water depth. Phys. Fluids 8, 175-188. Holloway, G. 1980 Oceanic internal waves are not weak waves. J. Phys. Oceanogr. 10, 906-914. Stiassnie, M. & Drimer, N. 2006 Prediction of long forcing waves for harbor agitation studies. J. of waterways, port, coastal and ocean engineering 132(3), 166-171. Toledo, Y. & Agnon, Y. 2012 Stochastic evolution equations with localized nonlinear shoaling coefficients. European J. of Mech. - B/Fluids 34, 13-18.
Tropical Waves and the Quasi-Biennial Oscillation in a 7-km Global Climate Simulation
NASA Technical Reports Server (NTRS)
Holt, Laura A.; Alexander, M. Joan; Coy, Lawrence; Molod, Andrea; Putman, William; Pawson, Steven
2016-01-01
This study investigates tropical waves and their role in driving a quasi-biennial oscillation (QBO)-like signal in stratospheric winds in a global 7-km-horizontal-resolution atmospheric general circulation model. The Nature Run (NR) is a 2-year global mesoscale simulation of the Goddard Earth Observing System Model, version 5 (GEOS-5). In the tropics, there is evidence that the NR supports a broad range of convectively generated waves. The NR precipitation spectrum resembles the observed spectrum in many aspects, including the preference for westward-propagating waves. However, even with very high horizontal resolution and a healthy population of resolved waves, the zonal force provided by the resolved waves is still too low in the QBO region and parameterized gravity wave drag is the main driver of the NR QBO-like oscillation (NRQBO). The authors suggest that causes include coarse vertical resolution and excessive dissipation. Nevertheless, the very-high-resolution NR provides an opportunity to analyze the resolved wave forcing of the NR-QBO. In agreement with previous studies, large-scale Kelvin and small-scale waves contribute to the NRQBO driving in eastward shear zones and small-scale waves dominate the NR-QBO driving in westward shear zones. Waves with zonal wavelength,1000 km account for up to half of the small-scale (,3300 km) resolved wave forcing in eastward shear zones and up to 70% of the small-scale resolved wave forcing in westward shear zones of the NR-QBO.
Measurement of mechanical properties of homogeneous tissue with ultrasonically induced shear waves
NASA Astrophysics Data System (ADS)
Greenleaf, James F.; Chen, Shigao
2007-03-01
Fundamental mechanical properties of tissue are altered by many diseases. Regional and systemic diseases can cause changes in tissue properties. Liver stiffness is caused by cirrhosis and fibrosis. Vascular wall stiffness and tone are altered by smoking, diabetes and other diseases. Measurement of tissue mechanical properties has historically been done with palpation. However palpation is subjective, relative, and not quantitative or reproducible. Elastography in which strain is measured due to stress application gives a qualitative estimate of Young's modulus at low frequency. We have developed a method that takes advantage of the fact that the wave equation is local and shear wave propagation depends only on storage and loss moduli in addition to density, which does not vary much in soft tissues. Our method is called shearwave dispersion ultrasonic velocity measurement (SDUV). The method uses ultrasonic radiation force to produce repeated motion in tissue that induces shear waves to propagate. The shear wave propagation speed is measured with pulse echo ultrasound as a function of frequency of the shear wave. The resulting velocity dispersion curve is fit with a Voight model to determine the elastic and viscous moduli of the tissue. Results indicate accurate and precise measurements are possible using this "noninvasive biopsy" method. Measurements in beef along and across the fibers are consistent with the literature values.
Publications - GMC 192 | Alaska Division of Geological & Geophysical
DGGS GMC 192 Publication Details Title: Compressive and shear wave velocity measurements as brine , Compressive and shear wave velocity measurements as brine-saturated measurements (volume 1) and as soltrol
Liquefaction Resistance Based on Shear Wave Velocity
DOT National Transportation Integrated Search
1999-01-01
This report reviews the current simplified procedures for evaluating the liquefaction resistance of granular soil deposits using small-strain shear wave velocity. These procedures were developed from analytical studies, laboratory studies, or very li...
Near-surface velocities and attenuation at two boreholes near Anza, California, from logging data
Fletcher, Joe B.; Fumal, T.; Hsi-Ping, Liu; Carroll, L.C.
1990-01-01
To investigate near-surface site effects in granite rock, we drilled 300-m deep boreholes at two sites which are collocated with stations from the digital array at Anza, California. Significant motion perpendicular to the polarizations of the first shear-wave arrival was recorded within a few meters of the surface. Apparently, the rock structure is sufficiently complicated that body waves are being converted (SH to SV at oblique incidence) very close to the surface. The presence of these elliptical particle motions within a mere few m of the pure shear-wave source suggests that the detection of polarizations perpendicular to the main shear arrival at a single location at the surface is not, by itself, a good method for detecting shear-wave splitting within the upper few tens of kilometers of the earth's crust. -from Authors
NASA Astrophysics Data System (ADS)
Qiang, Bo; Brigham, John C.; Aristizabal, Sara; Greenleaf, James F.; Zhang, Xiaoming; Urban, Matthew W.
2015-02-01
In this paper, we propose a method to model the shear wave propagation in transversely isotropic, viscoelastic and incompressible media. The targeted application is ultrasound-based shear wave elastography for viscoelasticity measurements in anisotropic tissues such as the kidney and skeletal muscles. The proposed model predicts that if the viscoelastic parameters both across and along fiber directions can be characterized as a Voigt material, then the spatial phase velocity at any angle is also governed by a Voigt material model. Further, with the aid of Taylor expansions, it is shown that the spatial group velocity at any angle is close to a Voigt type for weakly attenuative materials within a certain bandwidth. The model is implemented in a finite element code by a time domain explicit integration scheme and shear wave simulations are conducted. The results of the simulations are analyzed to extract the shear wave elasticity and viscosity for both the spatial phase and group velocities. The estimated values match well with theoretical predictions. The proposed theory is further verified by an ex vivo tissue experiment measured in a porcine skeletal muscle by an ultrasound shear wave elastography method. The applicability of the Taylor expansion to analyze the spatial velocities is also discussed. We demonstrate that the approximations from the Taylor expansions are subject to errors when the viscosities across or along the fiber directions are large or the maximum frequency considered is beyond the bandwidth defined by radii of convergence of the Taylor expansions.
DOE Office of Scientific and Technical Information (OSTI.GOV)
J Squire, A Bhattacharjee
We study the magnetorotational instability (MRI) (Balbus & Hawley 1998) using non-modal stability techniques.Despite the spectral instability of many forms of the MRI, this proves to be a natural method of analysis that is well-suited to deal with the non-self-adjoint nature of the linear MRI equations. We find that the fastest growing linear MRI structures on both local and global domains can look very diff erent to the eigenmodes, invariably resembling waves shearing with the background flow (shear waves). In addition, such structures can grow many times faster than the least stable eigenmode over long time periods, and be localizedmore » in a completely di fferent region of space. These ideas lead – for both axisymmetric and non-axisymmetric modes – to a natural connection between the global MRI and the local shearing box approximation. By illustrating that the fastest growing global structure is well described by the ordinary diff erential equations (ODEs) governing a single shear wave, we find that the shearing box is a very sensible approximation for the linear MRI, contrary to many previous claims. Since the shear wave ODEs are most naturally understood using non-modal analysis techniques, we conclude by analyzing local MRI growth over finite time-scales using these methods. The strong growth over a wide range of wave-numbers suggests that non-modal linear physics could be of fundamental importance in MRI turbulence (Squire & Bhattacharjee 2014).« less
Estimation of pseudo-2D shear-velocity section by inversion of high frequency surface waves
Luo, Y.; Liu, J.; Xia, J.; Xu, Y.; Liu, Q.
2006-01-01
A scheme to generate pseudo-2D shear-velocity sections with high horizontal resolution and low field cost by inversion of high frequency surface waves is presented. It contains six steps. The key step is the joint method of crossed correlation and phase shift scanning. This joint method chooses only two traces to generate image of dispersion curve. For Rayleigh-wave dispersion is most important for estimation of near-surface shear-wave velocity, it can effectively obtain reliable images of dispersion curves with a couple of traces. The result of a synthetic example shows the feasibility of this scheme. ?? 2005 Society of Exploration Geophysicists.
NASA Astrophysics Data System (ADS)
Palomeras, Imma; Villasenor, Antonio; Thurner, Sally; Levander, Alan; Gallart, Josep; Harnafi, Mimoun
2016-04-01
The Iberian Peninsula and Morocco, separated by the Alboran Sea and the Algerian Basin, constitute the westernmost Mediterranean. From north to south this region consists of the Pyrenees, the result of interaction between the Iberian and Eurasian plates; the Iberian Massif, a region that has been undeformed since the end of the Paleozoic; the Central System and Iberian Chain, regions with intracontinental Oligocene-Miocene deformation; the Gibraltar Arc (Betics, Rif and Alboran terranes) and the Atlas Mountains, resulting from post-Oligocene subduction roll-back and Eurasian-Nubian plate convergence. In this study we analyze data from recent broad-band array deployments and permanent stations on the Iberian Peninsula and in Morocco (Spanish IberArray and Siberia arrays, the US PICASSO array, the University of Munster array, and the Spanish, Portuguese, and Moroccan National Networks) to characterize its lithospheric structure. The combined array of 350 stations has an average interstation spacing of ~60 km, comparable to USArray. We have calculated the Rayleigh waves phase velocities from ambient noise for short periods (4 s to 40 s) and teleseismic events for longer periods (20 s to 167 s). We inverted the phase velocities to obtain a shear velocity model for the lithosphere to ~200 km depth. The model shows differences in the crust for the different areas, where the highest shear velocities are mapped in the Iberian Massif crust. The crustal thickness is highly variable ranging from ~25 km beneath the eastern Betics to ~55km beneath the Gibraltar Strait, Internal Betics and Internal Rif. Beneath this region a unique arc shaped anomaly with high upper mantle velocities (>4.6 km/s) at shallow depths (<65 km) is observed. We interpret this body as the subducting Alboran slab that is depressing the crust of the western Gibraltar arc to ~55 km depth. Low upper mantle velocities (<4.2 km/s) are observed beneath the Atlas, the northeastern end of the Betic Mountains and the Late Cenozoic volcanic fields in Iberia and Morocco, indicative of high temperatures at relatively shallow depths, and suggesting that the lithosphere has been removed beneath these areas
Nonlinear and linear bottom interaction effects in shallow water
NASA Technical Reports Server (NTRS)
Shemdin, O.; Hsiao, S. V.; Hasselmann, K.; Herterich, K.
1978-01-01
The paper examines wave-energy dissipation rates in shallow water calculated from measured wave spectra at different distances from the shore. Different linear and nonlinear transfer and dissipation mechanisms are discussed. The various data sets are interpreted in terms of prevailing mechanisms at the respective sites. The incorporation of different processes in a predictive shallow-water model is outlined. The analysis suggests that bottom motion is primarily responsible for wave-energy dissipation in the Delta Region of the Gulf of Mexico, that friction is mainly responsible for wave-energy dissipation in Marineland, Panama City and Melkbosstrand, and that percolation is probably the dominant mechanism in the JONSWAP area of the North Sea.
Method and apparatus for measurement of orientation in an anisotropic medium
Gilmore, Robert Snee; Kline, Ronald Alan; Deaton, Jr., John Broddus
1999-01-01
A method and apparatus are provided for simultaneously measuring the anisotropic orientation and the thickness of an article. The apparatus comprises a transducer assembly which propagates longitudinal and transverse waves through the article and which receives reflections of the waves. A processor is provided to measure respective transit times of the longitudinal and shear waves propagated through the article and to calculate respective predicted transit times of the longitudinal and shear waves based on an estimated thickness, an estimated anisotropic orientation, and an elasticity of the article. The processor adjusts the estimated thickness and the estimated anisotropic orientation to reduce the difference between the measured transit times and the respective predicted transit times of the longitudinal and shear waves.
Origin of the Low Rigidity of the Earth's Inner Core
NASA Astrophysics Data System (ADS)
Belonoshko, A. B.; Skorodumova, N. V.; Davis, S.; Osiptsov, A. N.; Rosengren, A.; Johansson, B.
2007-12-01
The solid iron Earth's inner core has a low rigidity which manifests itself in the anomalously low velocities of shear waves as compared to those in iron alloys. Normally, when estimating elastic properties of a polycrystal one calculates an average over different orientations of a single crystal. This approach does not take into account the grain boundaries and defects likely to be abundant at high temperatures relevant for the inner core conditions. We show, by molecular dynamics simulations that if defects are considered, the calculated shear modulus and shear wave velocity decrease dramatically compared to the averaged single crystal values. Thus, the low shear wave velocity in the inner core receives its explanation (Science 316, 1603 (2007)).
Acoustic Waves in Medical Imaging and Diagnostics
Sarvazyan, Armen P.; Urban, Matthew W.; Greenleaf, James F.
2013-01-01
Up until about two decades ago acoustic imaging and ultrasound imaging were synonymous. The term “ultrasonography,” or its abbreviated version “sonography” meant an imaging modality based on the use of ultrasonic compressional bulk waves. Since the 1990s numerous acoustic imaging modalities started to emerge based on the use of a different mode of acoustic wave: shear waves. It was demonstrated that imaging with these waves can provide very useful and very different information about the biological tissue being examined. We will discuss physical basis for the differences between these two basic modes of acoustic waves used in medical imaging and analyze the advantages associated with shear acoustic imaging. A comprehensive analysis of the range of acoustic wavelengths, velocities, and frequencies that have been used in different imaging applications will be presented. We will discuss the potential for future shear wave imaging applications. PMID:23643056
Mantle plumes and hotspot geochemistry
NASA Astrophysics Data System (ADS)
Jackson, M. G.; Becker, T. W.; Konter, J.
2017-12-01
Ever improving global seismic models, together with expanding databases of mantle derived hotspot lavas, herald advances that relate the geochemistry of hotspots with low seismic shear-wave velocity conduits (plumes) in the mantle. Early efforts linked hotspot geochemistry with deep mantle large low velocity provinces (LLVPs) [1]. More recently, Konter and Becker (2012) [2] observed that the proportion of the C mantle component (inferred from Sr-Nd-Pb isotopes) in hotspot lavas shows an inverse relationship with seismic S-wave velocity anomalies in the shallow mantle (200 km) beneath each hotspot. They proposed that these correlations should also be made based on 3He/4He. Thus, we compare 3He/4He versus seismic S-wave velocity anomalies at 200 km depth. We find that plume-fed hotspots with the highest maximum 3He/4He (i.e., which host more of the C component) have higher hotspot buoyancy fluxes and overlie regions of lower seismic S-wave velocity (interpreted to relate to hotter mantle temperatures) at 200 km depth than hotspots that have only low 3He/4He [3]. This result complements recent work that shows an inverse relationship between maximum 3He/4He and seismic S-wave velocity anomalies in the mantle beneath the western USA [4]. The relationship between 3He/4He, shallow mantle seismic S-wave velocity anomalies, and buoyancy flux is most easily explained by a model where hotter plumes are more buoyant and entrain more of a deep, dense high 3He/4He reservoir than cooler plumes that underlie low 3He/4He hotspots. If the high 3He/4He domain is denser than other mantle components, it will be entrained only by the hottest, most buoyant plumes [3]. Such a deep, dense reservoir is ideally suited to preserving early-formed Hadean domains sampled in modern plume-fed hotspots. An important question is whether, like 3He/4He, seismic S-wave velocity anomalies in the mantle are associated with distinct heavy radiogenic isotopic compositions. C signatures are related to hot mantle upwellings, but are geochemically enriched (EM) and HIMU mantle signatures observed in oceanic hotspots associated with such upwellings? We will present new constraints on this and similar problems. [1] Castillo (1988) Nature 336. [2] Konter and Becker (2012) G-cubed 13. [3] Jackson et al. (2017), Nature 542. [4] Crossey et al. (2016), EPSL 435.
Second-harmonic generation in shear wave beams with different polarizations
NASA Astrophysics Data System (ADS)
Spratt, Kyle S.; Ilinskii, Yurii A.; Zabolotskaya, Evgenia A.; Hamilton, Mark F.
2015-10-01
A coupled pair of nonlinear parabolic equations was derived by Zabolotskaya [1] that model the transverse components of the particle motion in a collimated shear wave beam propagating in an isotropic elastic solid. Like the KZK equation, the parabolic equation for shear wave beams accounts consistently for the leading order effects of diffraction, viscosity and nonlinearity. The nonlinearity includes a cubic nonlinear term that is equivalent to that present in plane shear waves, as well as a quadratic nonlinear term that is unique to diffracting beams. The work by Wochner et al. [2] considered shear wave beams with translational polarizations (linear, circular and elliptical), wherein second-order nonlinear effects vanish and the leading order nonlinear effect is third-harmonic generation by the cubic nonlinearity. The purpose of the current work is to investigate the quadratic nonlinear term present in the parabolic equation for shear wave beams by considering second-harmonic generation in Gaussian beams as a second-order nonlinear effect using standard perturbation theory. In order for second-order nonlinear effects to be present, a broader class of source polarizations must be considered that includes not only the familiar translational polarizations, but also polarizations accounting for stretching, shearing and rotation of the source plane. It is found that the polarization of the second harmonic generated by the quadratic nonlinearity is not necessarily the same as the polarization of the source-frequency beam, and we are able to derive a general analytic solution for second-harmonic generation from a Gaussian source condition that gives explicitly the relationship between the polarization of the source-frequency beam and the polarization of the second harmonic.
Shear-wave splitting and moonquakes
NASA Astrophysics Data System (ADS)
Dimech, J. L.; Weber, R. C.; Savage, M. K.
2017-12-01
Shear-wave splitting is a powerful tool for measuring anisotropy in the Earth's crust and mantle, and is sensitive to geological features such as fluid filled cracks, thin alternating layers of rock with different elastic properties, and preferred mineral orientations caused by strain. Since a shear wave splitting measurement requires only a single 3-component seismic station, it has potential applications for future single-station planetary seismic missions, such as the InSight geophysical mission to Mars, as well as possible future missions to Europa and the Moon. Here we present a preliminary shear-wave splitting analysis of moonquakes detected by the Apollo Passive Seismic Experiment. Lunar seismic data suffers from several drawbacks compared to modern terrestrial data, including severe seismic scattering, low intrinsic attenuation, 10-bit data resolution, thermal spikes, and timing errors. Despite these drawbacks, we show that it is in principle possible to make a shear wave splitting measurement using the S-phase arrival of a relatively high-quality moonquake, as determined by several agreeing measurement criteria. Encouraged by this finding, we further extend our analysis to clusters of "deep moonquake" events by stacking multiple events from the same cluster together to further enhance the quality of the S-phase arrivals that the measurement is based on.
Cenozoic extension, volcanism and plateau uplift in eastern Africa and the African Superplume
NASA Astrophysics Data System (ADS)
Nyblade, A.; O'Donnell, J.; Mulibo, G. D.; Adams, A. N.
2013-12-01
Recent body and surface wave studies combine to image mantle velocity structure to a depth of 1200 km beneath eastern Africa using teleseismic earthquake data recorded by the AfricaArray East African Seismic Experiment in conjunction with permanent stations and previously deployed temporary stations. The combined network spans Kenya, Uganda, Tanzania, Zambia and Malawi. The 3-D shear wave velocity structure of the uppermost mantle was imaged using fundamental-mode Rayleigh wave phase velocities measured at periods ranging from 20 to 182 s, subsequently inverted for shear velocity structure. When considered in conjunction with mapped seismicity, the shear velocity model supports a secondary western rift branch striking southwestwards from Lake Tanganyika, likely exploiting the relatively weak lithosphere of the southern Kibaran Belt between the Bangweulu Block and the Congo Craton. In eastern Tanzania a low-velocity region suggests that the eastern rift branch trends southeastwards offshore eastern Tanzania coincident with the purported location of the northern margin of the proposed Ruvuma microplate. The results suggest that existing lithospheric structures exert a significant governing influence on rift development. Sub-lithospheric mantle wave speed variations extending to a depth of 1200 km were tomographically imaged from the inversion of P and S wave relative arrival time residuals. The images shows a low wave speed anomaly (LWA) well developed at shallow depths (100-200 km) beneath the Eastern and Western branches of the rift system and northwestern Zambia, and a fast wave speed anomaly at depths greater than 350 km beneath the central and northern parts of the East African Plateau and the eastern and central parts of Zambia. At depths below 350 km the LWA is most prominent under the central and southern parts of the East African Plateau and dips to the southwest beneath northern Zambia, extending to a depth of at least 900 km. The amplitude of the LWA is consistent with a 150-300 K thermal perturbation, and its depth extent indicates that the African superplume, originally identified as a lower mantle anomaly, is likely a whole mantle structure. A mantle transition zone about 30-40 km thinner than the global average in a region 200-400 km wide extending in a SW-NE direction from central Zambia, across Tanzania and into Kenya was inferred from P to S conversions from the 410 and 660 km discontinuities observed in receiver function stacks. The thinning of the transition zone indicates a 190-300 K thermal anomaly in the same location where the P and S wave tomography models suggest that the lower mantle African superplume structure connects to thermally perturbed upper mantle beneath eastern Africa. These findings provide compelling evidence for the existence of a continuous thermal structure extending from the core-mantle boundary to the surface associated with the African superplume, implying an origin for the Cenozoic extension, volcanism and plateau uplift in eastern Africa rooted in the dynamics of the lower mantle.
Calculating wave-generated bottom orbital velocities from surface-wave parameters
Wiberg, P.L.; Sherwood, C.R.
2008-01-01
Near-bed wave orbital velocities and shear stresses are important parameters in many sediment-transport and hydrodynamic models of the coastal ocean, estuaries, and lakes. Simple methods for estimating bottom orbital velocities from surface-wave statistics such as significant wave height and peak period often are inaccurate except in very shallow water. This paper briefly reviews approaches for estimating wave-generated bottom orbital velocities from near-bed velocity data, surface-wave spectra, and surface-wave parameters; MATLAB code for each approach is provided. Aspects of this problem have been discussed elsewhere. We add to this work by providing a method for using a general form of the parametric surface-wave spectrum to estimate bottom orbital velocity from significant wave height and peak period, investigating effects of spectral shape on bottom orbital velocity, comparing methods for calculating bottom orbital velocity against values determined from near-bed velocity measurements at two sites on the US east and west coasts, and considering the optimal representation of bottom orbital velocity for calculations of near-bed processes. Bottom orbital velocities calculated using near-bed velocity data, measured wave spectra, and parametric spectra for a site on the northern California shelf and one in the mid-Atlantic Bight compare quite well and are relatively insensitive to spectral shape except when bimodal waves are present with maximum energy at the higher-frequency peak. These conditions, which are most likely to occur at times when bottom orbital velocities are small, can be identified with our method as cases where the measured wave statistics are inconsistent with Donelan's modified form of the Joint North Sea Wave Project (JONSWAP) spectrum. We define the 'effective' forcing for wave-driven, near-bed processes as the product of the magnitude of forcing times its probability of occurrence, and conclude that different bottom orbital velocity statistics may be appropriate for different problems. ?? 2008 Elsevier Ltd.
Helgerud, M.B.; Waite, W.F.; Kirby, S.H.; Nur, A.
2009-01-01
We used ultrasonic pulse transmission to measure compressional, P, and shear, S, wave speeds in laboratory-formed polycrystalline ice Ih, si methane hydrate, and sll methane-ethane hydrate. From the wave speed's linear dependence on temperature and pressure and from the sample's calculated density, we derived expressions for bulk, shear, and compressional wave moduli and Poisson's ratio from -20 to 15??C and 22.4 to 32.8 MPa for ice Ih, -20 to 15??C and 30.5 to 97.7 MPa for si methane hydrate, and -20 to 10??C and 30.5 to 91.6 MPa for sll methane-ethane hydrate. All three materials had comparable P and S wave speeds and decreasing shear wave speeds with increasing applied pressure. Each material also showed evidence of rapid intergranular bonding, with a corresponding increase in wave speed, in response to pauses in sample deformation. There were also key differences. Resistance to uniaxial compaction, indicated by the pressure required to compact initially porous samples, was significantly lower for ice Ih than for either hydrate. The ice Ih shear modulus decreased with increasing pressure, in contrast to the increase measured in both hydrates ?? 2009.
NASA Astrophysics Data System (ADS)
Soomere, T.
2010-07-01
Most of the processes resulting in the formation of unexpectedly high surface waves in deep water (such as dispersive and geometrical focusing, interactions with currents and internal waves, reflection from caustic areas, etc.) are active also in shallow areas. Only the mechanism of modulational instability is not active in finite depth conditions. Instead, wave amplification along certain coastal profiles and the drastic dependence of the run-up height on the incident wave shape may substantially contribute to the formation of rogue waves in the nearshore. A unique source of long-living rogue waves (that has no analogues in the deep ocean) is the nonlinear interaction of obliquely propagating solitary shallow-water waves and an equivalent mechanism of Mach reflection of waves from the coast. The characteristic features of these processes are (i) extreme amplification of the steepness of the wave fronts, (ii) change in the orientation of the largest wave crests compared with that of the counterparts and (iii) rapid displacement of the location of the extreme wave humps along the crests of the interacting waves. The presence of coasts raises a number of related questions such as the possibility of conversion of rogue waves into sneaker waves with extremely high run-up. Also, the reaction of bottom sediments and the entire coastal zone to the rogue waves may be drastic.
How pattern is selected in drift wave turbulence: Role of parallel flow shear
NASA Astrophysics Data System (ADS)
Kosuga, Y.
2017-12-01
The role of parallel shear flow in the pattern selection problem in drift wave turbulence is discussed. Patterns of interest here are E × B convective cells, which include poloidally symmetric zonal flows and radially elongated streamers. The competition between zonal flow formation and streamer formation is analyzed in the context of modulational instability analysis, with the parallel flow shear as a parameter. For drift wave turbulence with k⊥ρs ≲ O (1 ) and without parallel flow coupling, zonal flows are preferred structures. While increasing the magnitude of parallel flow shear, streamer growth overcomes zonal flow growth. This is because the self-focusing effect of the modulational instability becomes more effective for streamers through density and parallel velocity modulation. As a consequence, the bursty release of free energy may result as the parallel flow shear increases.
NASA Astrophysics Data System (ADS)
Rhie, J.; Kim, S.; Tkalcic, H.; Baag, S. Y.
2017-12-01
Heterogeneous features of magmatic structures beneath intraplate volcanoes are attributed to interactions between the ascending magma and lithospheric structures. Here, we investigate the evolution of crustal magmatic stuructures beneath Mount Baekdu volcano (MBV), which is one of the largest continental intraplate volcanoes in northeast Asia. The result of our seismic imaging shows that the deeper Moho depth ( 40 km) and relatively higher shear wave velocities (>3.8 km/s) at middle-to-lower crustal depths beneath the volcano. In addition, the pattern at the bottom of our model shows that the lithosphere beneath the MBV is shallower (< 100 km) compared to surrounding regions. Togather with previous P-wave velocity models, we interpret the observations as a compositional double layering of mafic underplating and a overlying cooled felsic structure due to fractional crystallization of asthenosphere origin magma. To achieve enhanced vertical and horizontal model coverage, we apply two approaches in this work, including (1) a grid-search based phase velocity measurement using real-coherency of ambient noise data and (2) a transdimensional Bayesian joint inversion using multiple ambient noise dispersion data.
Permeability evolution governed by shear: An example during spine extrusion at Unzen volcano, Japan
NASA Astrophysics Data System (ADS)
Ashworth, James; Lavallée, Yan; Wallace, Paul; Kendrick, Jackie; Coats, Rebecca; Miwa, Takahiro; Hess, Kai-Uwe
2017-04-01
A volcano's eruptive style is strongly controlled by the permeability of the magma and the surrounding edifice rock - explosive activity is more likely if exsolved gases cannot escape the system. In this study, we investigate how shear strain causes variations in permeability within a volcanic conduit, and discuss how spatio-temporal variation in shear regimes may develop. The eruption of Unzen volcano, Japan, which occurred between 1990 - 1995, culminated in the extrusion of a 60 metre-high dacitic spine. The spine, left exposed at the lava dome surface, displays the petrographic architecture of the magma in the shallow conduit. Observations and measurements made in the field are combined with laboratory experiments to understand the distribution of permeability in the shallow conduit. Examination of the lava dome led to the selection of two sites for detailed investigation. First, we examined a section of extruded spine 6 metres in width, which displays a transition from apparently unsheared rock in the conduit core to rocks exhibiting increasing shear towards the conduit margin, bounded by a fault gouge zone. Laboratory characterisation (mineralogy, porosity, permeability, X-ray tomography) was undertaken on these samples. In contrast, a second section of spine (extruded later during the eruption) exhibited a large tensile fracture, and this area was investigated using non-destructive in-situ permeability measurements. Our lab measurements show that in the first outcrop, permeability decreases across the shear zone from core to gouge by approximately one order of magnitude perpendicular to shear; a similar decrease is observed parallel to shear, but is less severe. The lowest permeability is observed in the most highly sheared block; here, permeability is 2.5 x10-14 m2 in the plane of shear and 9 x10-15 m2 perpendicular to shear. Our measurements clearly demonstrate the influence of shear on conduit permeability, with significant anisotropy in the shear zone. The sheared rocks are strongly micro-fractured, resulting in a porosity decrease of up to 4% and permeability decrease of over one order of magnitude with increasing effective pressure (effective pressure = confining pressure - pore pressure) between 5 - 100 MPa, representative of increasing lithostatic pressure from 200 m to 4 km depth in the crust. In contrast, our field study of the second spine section, which features a 2 cm wide by 3 metre-long tensile fracture flanked by a 40-cm wide shear damage zone, reveals that dilational shear can result in an increase in permeability of approximately three orders of magnitude. The contrasting shear zone characteristics can be attributed to different shear regimes, which likely occur at different depths in the conduit. At greater depth in the system, where lithostatic pressures largely exceed pore pressure, compactional shear appears to dominate, reducing the permeable porous network as magma strains along the conduit margin, whereas at shallower levels, where the effective pressure is low, dilational shear becomes dominant, resulting in the creation of permeable pathways. We conclude that contrasting shearing regimes may simultaneously affect magma ascent dynamics in volcanic conduits, causing a range of dynamic permeability variations (positive and negative), which dictate eruptive behaviour.
Kelvin Wave Influence on the Shallow-to-Deep Transition Over the Amazon
NASA Astrophysics Data System (ADS)
Rowe, A.; Serra, Y. L.
2017-12-01
The suite of observations from GOAmazon and CHUVA offers a unique opportunity to examine land-based convective processes in the tropics, including the poorly represented shallow-to-deep transition. This study uses these data to investigate impacts of Kelvin waves on the the shallow-to-deep transition over the Central Amazon. The Kelvin waves that propagate over the region often originate over the tropical central and east Pacific, with local generation over the Andes also observed. The observed 15 m s-1 phase speed and 4500 km wave length during the two-year campaign are in agreement with previously published studies of these waves across the tropics. Also in agreement with previous studies, we find the waves are most active during the wet season (November-May) for this region. Using four separate convective event classes (clear-sky, nonprecipitating cumulus congestus, afternoon deep convection, and mesoscale convective systems), we examine how the convection preferentially develops for different phases of the Kelvin waves seen during GOAmazon. We additionally examine surface meteorological variables, the vertical thermodynamic and dynamic structure of the troposphere, vertical moist static stability, integrated column water vapor and liquid water, and surface energy fluxes within the context of these convective classes to identify the important environmental factors contributing to observed periods of enhanced deep convection related to the waves. Results suggest that the waves significantly modify the local environment, such as creating a deep layer of moisture throughout the troposphere, favoring more organized convection in the active than in the suppressed phase of the wave. The significance of wave-related environmental modifications are assessed by comparing local rainfall accumulations during Kelvin wave activity to that when the waves are not present. Future work will further explore the shallow-to-deep transition and its modulation by Kelvin wave activity over the Central Amazon in both global and regional model simulations with differing resolution and choice of convective parameterization. This work will test the hypothesis that when the environment is strongly modified by a Kelvin wave, model shallow-to-deep transition will be better simulated than when this forcing is not present.
East African upper mantle shear wave velocity structure derived from Rayleigh wave tomography
NASA Astrophysics Data System (ADS)
O'Donnell, J.; Nyblade, A.; Adams, A. N.; Mulibo, G.; Tugume, F.
2011-12-01
An expanded model of the three-dimensional shear wave velocity structure of the upper mantle beneath East Africa is being developed using data from the latest phases of the AfricaArray East African Seismic Experiment in conjunction with data from preceding studies. The combined dataset encompasses seismic stations which span Tanzania, Uganda and Zambia. From the new data, fundamental mode Rayleigh wave phase velocities are being measured at periods ranging from 20 to 180 seconds using the two-plane-wave method. These measurements will be combined with similarly processed measurements from previous studies and inverted for an upper mantle three-dimensional shear wave velocity model. In particular, the model will further constrain the morphology of the low velocity anomaly which underlies the East African Plateau extending to the southwest beneath Zambia.
Influence of the confining pressure on precursory and rupture processes of Westerly granite.
NASA Astrophysics Data System (ADS)
Passelegue, Francois; Nicolas, Aurelien; Madonna, Claudio; Schubnel, Alexandre
2016-04-01
In the shallow crust, brittle deformation mechanisms lead to damage and rupture of rocks. These mechanisms are generally described by non-linear stress relations and decrease of the elastic moduli due to microcrak opening and sliding. However, failure mode depends on confining pressure and ranges from axial splitting to shear localization. Here we report experiments on Westerly granite samples deformed under controlled upper crustal stress conditions in the laboratory. Experiments were conducted under triaxial loading (σ1>σ2=σ3) at confining pressures (σ3) ranging from 2 to 50 MPa (similar to upper crustal stress conditions) and at constant axial strain rate 10-5/s. Usual a dual gain system, a high frequency acoustic monitoring array recorded particles acceleration during macroscopic rupture of the intact specimen and premonitory background microseismicity. Secondly, acoustic sensors were used in an active way to measure the evolution of elastic wave velocities. In addition, we used an amplified strain gage to record the dynamic stress change during the dynamic rupture. Our preliminary results show that increasing confining pressure leads to the transition between axial cracks opening to shear localization. This result is supported by the moment tensor solutions of acoustic emissions and CT scan imaging of the post mortem sample. In addition, we systematically observe an exponential increase of the premonitory activity up to the shear failure of the sample. While the intensity of this precursory activity increase with the confining pressure in term of energy, the crack density leading to the failure of the sample is independent of the confinement. We show that the dynamic rupture occurs in only few microseconds, suggesting a rupture speed close to the shear wave velocity. In addition, the ratio between the stress drop and the peak of stress increases with the confinement. This result suggest that the weakening of faulting increases with the confinement. Finally, using both dynamic stress drop and axial displacement measurement, we show that the fracture energy increases with both confining pressure and seismic slip.
Quantitative sonoelastography for the in vivo assessment of skeletal muscle viscoelasticity
NASA Astrophysics Data System (ADS)
Hoyt, Kenneth; Kneezel, Timothy; Castaneda, Benjamin; Parker, Kevin J.
2008-08-01
A novel quantitative sonoelastography technique for assessing the viscoelastic properties of skeletal muscle tissue was developed. Slowly propagating shear wave interference patterns (termed crawling waves) were generated using a two-source configuration vibrating normal to the surface. Theoretical models predict crawling wave displacement fields, which were validated through phantom studies. In experiments, a viscoelastic model was fit to dispersive shear wave speed sonoelastographic data using nonlinear least-squares techniques to determine frequency-independent shear modulus and viscosity estimates. Shear modulus estimates derived using the viscoelastic model were in agreement with that obtained by mechanical testing on phantom samples. Preliminary sonoelastographic data acquired in healthy human skeletal muscles confirm that high-quality quantitative elasticity data can be acquired in vivo. Studies on relaxed muscle indicate discernible differences in both shear modulus and viscosity estimates between different skeletal muscle groups. Investigations into the dynamic viscoelastic properties of (healthy) human skeletal muscles revealed that voluntarily contracted muscles exhibit considerable increases in both shear modulus and viscosity estimates as compared to the relaxed state. Overall, preliminary results are encouraging and quantitative sonoelastography may prove clinically feasible for in vivo characterization of the dynamic viscoelastic properties of human skeletal muscle.
Stratospheric mountain wave attenuation in positive and negative ambient wind shear
NASA Astrophysics Data System (ADS)
Kruse, C. G.; Smith, R. B.
2016-12-01
Recently, much has been learned about the vertical propagation and attenuation of mountain waves launched by the Southern Alps of New Zealand (NZ) from the Deep Propagating Gravity Wave Experiment (DEEPWAVE) field campaign. Over NZ, approximately half of mountain wave events are strongly attenuated in a lower-stratospheric "valve layer," defined as a layer of reduced wind with no critical levels. Within a valve layer, negative wind shear causes mountain waves steepen and attenuate, with the amount of transmitted momentum flux controlled by the minimum wind speed within the layer. The other half of wave events are deep (propagating to 35+ km), usually with positive wind shear. Within these deep events, increasing amplitude with decreasing density causes mountain waves to attenuate gradually (after spatial/temporal averaging). Global reanalyses indicate that this valve layer is a climatological feature in the wintertime mid-latitudes above the subtropical jet, while deep events and gradual attenuation occur over higher latitudes below the polar stratospheric jet. The local physics of mountain wave attenuation in positive and negative ambient wind shear are investigated using realistic winter-long (JJA) 6-km resolution Weather Research and Forecasting (WRF) model simulations over the Andes. Attention is given to the spatiotemporal variability of wave attenuation and the various factors driving this variability (e.g. variability in wave generation, ambient conditions at attenuation level, inherent wave-induced instabilities). Mesoscale potential vorticity generation is used as an indicator of wave attenuation. Additionally, regionally integrated wave momentum flux and gravity wave drag (GWD) within WRF are quantified and compared with parameterized quantities in the MERRA1 and 2 reanalyses.
Ultrasonic shear wave couplant
Kupperman, David S.; Lanham, Ronald N.
1985-01-01
Ultrasonically testing of an article at high temperatures is accomplished by the use of a compact layer of a dry ceramic powder as a couplant in a method which involves providing an ultrasonic transducer as a probe capable of transmitting shear waves, coupling the probe to the article through a thin compact layer of a dry ceramic powder, propagating a shear wave from the probe through the ceramic powder and into the article to develop echo signals, and analyzing the echo signals to determine at least one physical characteristic of the article.
Novel Optical Processor for Phased Array Antenna.
1992-10-20
parallel glass slide into the signal beam optical loop. The parallel glass acts like a variable phase shifter to the signal beam simulating phase drift...A list of possible designs are given as follows , _ _ Velocity fa (100dB/cm) Lumit Wavelength I M2I1 TeO2 Longi 4.2 /m/ns about 3 GHz 1.4 4m 34 Fast...subject to achievable acoustic frequency, the preferred materials are the slow shear wave in TeO2 , the fast shear wave in TeO2 or the shear waves in
Ultrasonic shear wave couplant
Kupperman, D.S.; Lanham, R.N.
1984-04-11
Ultrasonically testing of an article at high temperatures is accomplished by the use of a compact layer of a dry ceramic powder as a couplant in a method which involves providing an ultrasonic transducer as a probe capable of transmitting shear waves, coupling the probe to the article through a thin compact layer of a dry ceramic powder, propagating a shear wave from the probe through the ceramic powder and into the article to develop echo signals, and analyzing the echo signals to determine at least one physical characteristic of the article.
Enhanced sensing and conversion of ultrasonic Rayleigh waves by elastic metasurfaces.
Colombi, Andrea; Ageeva, Victoria; Smith, Richard J; Clare, Adam; Patel, Rikesh; Clark, Matt; Colquitt, Daniel; Roux, Philippe; Guenneau, Sebastien; Craster, Richard V
2017-07-28
Recent years have heralded the introduction of metasurfaces that advantageously combine the vision of sub-wavelength wave manipulation, with the design, fabrication and size advantages associated with surface excitation. An important topic within metasurfaces is the tailored rainbow trapping and selective spatial frequency separation of electromagnetic and acoustic waves using graded metasurfaces. This frequency dependent trapping and spatial frequency segregation has implications for energy concentrators and associated energy harvesting, sensing and wave filtering techniques. Different demonstrations of acoustic and electromagnetic rainbow devices have been performed, however not for deep elastic substrates that support both shear and compressional waves, together with surface Rayleigh waves; these allow not only for Rayleigh wave rainbow effects to exist but also for mode conversion from surface into shear waves. Here we demonstrate experimentally not only elastic Rayleigh wave rainbow trapping, by taking advantage of a stop-band for surface waves, but also selective mode conversion of surface Rayleigh waves to shear waves. These experiments performed at ultrasonic frequencies, in the range of 400-600 kHz, are complemented by time domain numerical simulations. The metasurfaces we design are not limited to guided ultrasonic waves and are a general phenomenon in elastic waves that can be translated across scales.
Wang, Tzu-Yin; Hall, Timothy L; Xu, Zhen; Fowlkes, J Brian; Cain, Charles A
2014-07-01
Our previous study indicated that shear waves decay and propagate at a lower speed as they propagate into a tissue volume mechanically fractionated by histotripsy. In this paper, we hypothesize that the change in the shear dynamics is related to the degree of tissue fractionation, and can be used to predict histotripsy treatment outcomes. To test this hypothesis, lesions with different degrees of tissue fractionation were created in agar-graphite tissue phantoms and ex vivo kidneys with increasing numbers of therapy pulses, from 0 to 2000 pulses per treatment location. The therapy pulses were 3-cycle 750-kHz focused ultrasound delivered at a peak negative/positive pressure of 17/108 MPa and a repetition rate of 50 Hz. The shear waves were excited by acoustic radiation force impulse (ARFI) focused at the center of the lesion. The spatial and temporal behavior of the propagating shear waves was measured with ultrasound plane wave imaging. The temporal displacement profile at a lateral location 10 mm offset to the shear excitation region was detected with M-mode imaging. The decay and delay of the shear waves were quantitatively characterized on the temporal displacement profile. Results showed significant changes in two characteristics on the temporal displacement profile: the peak-to-peak displacement decayed exponentially with increasing numbers of therapy pulses; the relative time-to-peak displacement increased with increasing numbers of therapy pulses, and appeared to saturate at higher numbers of pulses. Correspondingly, the degree of tissues fractionation, as indicated by the percentage of structurally intact cell nuclei, decreased exponentially with increasing numbers of therapy pulses. Strong linear correlations were found between the two characteristics and the degree of tissue fractionation. These results suggest that the characteristics of the shear temporal displacement profile may provide useful feedback information regarding the treatment outcomes.
Ianculescu, Victor; Ciolovan, Laura Maria; Dunant, Ariane; Vielh, Philippe; Mazouni, Chafika; Delaloge, Suzette; Dromain, Clarisse; Blidaru, Alexandru; Balleyguier, Corinne
2014-05-01
To determine the diagnostic performance of Acoustic Radiation Force Impulse (ARFI) Virtual Touch IQ shear wave elastography in the discrimination of benign and malignant breast lesions. Conventional B-mode and elasticity imaging were used to evaluate 110 breast lesions. Elastographic assessment of breast tissue abnormalities was done using a shear wave based technique, Virtual Touch IQ (VTIQ), implemented on a Siemens Acuson S3000 ultrasound machine. Tissue mechanical properties were interpreted as two-dimensional qualitative and quantitative colour maps displaying relative shear wave velocity. Wave speed measurements in m/s were possible at operator defined regions of interest. The pathologic diagnosis was established on samples obtained by ultrasound guided core biopsy or fine needle aspiration. BIRADS based B-mode evaluation of the 48 benign and 62 malignant lesions achieved 92% sensitivity and 62.5% specificity. Subsequently performed VTIQ elastography relying on visual interpretation of the colour overlay displaying relative shear wave velocities managed similar standalone diagnostic performance with 92% sensitivity and 64.6% specificity. Lesion and surrounding tissue shear wave speed values were calculated and a significant difference was found between the benign and malignant populations (Mann-Whitney U test, p<0.0001). By selecting a lesion cut-off value of 3.31m/s we achieved 80.4% sensitivity and 73% specificity. Applying this threshold only to BIRADS 4a masses, we reached overall levels of 92% sensitivity and 72.9% specificity. VTIQ qualitative and quantitative elastography has the potential to further characterise B-mode detected breast lesions, increasing specificity and reducing the number of unnecessary biopsies. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Liu, Yu; Liu, Jingfei; Fite, Brett Z.; Foiret, Josquin; Ilovitsh, Asaf; Leach, J. Kent; Dumont, Erik; Caskey, Charles F.; Ferrara, Katherine W.
2017-05-01
Non-invasive, quantitative methods to assess the properties of biological tissues are needed for many therapeutic and tissue engineering applications. Magnetic resonance elastography (MRE) has historically relied on external vibration to generate periodic shear waves. In order to focally assess a biomaterial or to monitor the response to ablative therapy, the interrogation of a specific region of interest by a focused beam is desirable and transient MRE (t-MRE) techniques have previously been developed to accomplish this goal. Also, strategies employing a series of discrete ultrasound pulses directed to increasing depths along a single line-of-sight have been designed to generate a quasi-planar shear wave. Such ‘supersonic’ excitations have been applied for ultrasound elasticity measurements. The resulting shear wave is higher in amplitude than that generated from a single excitation and the properties of the media are simply visualized and quantified due to the quasi-planar wave geometry and the opportunity to generate the wave at the site of interest. Here for the first time, we extend the application of supersonic methods by developing a protocol for supersonic transient magnetic resonance elastography (sst-MRE) using an MR-guided focused ultrasound system capable of therapeutic ablation. We apply the new protocol to quantify tissue elasticity in vitro using biologically-relevant inclusions and tissue-mimicking phantoms, compare the results with elasticity maps acquired with ultrasound shear wave elasticity imaging (US-SWEI), and validate both methods with mechanical testing. We found that a modified time-of-flight (TOF) method efficiently quantified shear modulus from sst-MRE data, and both the TOF and local inversion methods result in similar maps based on US-SWEI. With a three-pulse excitation, the proposed sst-MRE protocol was capable of visualizing quasi-planar shear waves propagating away from the excitation location and detecting differences in shear modulus of 1 kPa. The techniques demonstrated here have potential application in real-time in vivo lesion detection and monitoring, with particular significance for image-guided interventions.
Liu, Yu; Liu, Jingfei; Fite, Brett Z; Foiret, Josquin; Ilovitsh, Asaf; Leach, J Kent; Dumont, Erik; Caskey, Charles F; Ferrara, Katherine W
2017-05-21
Non-invasive, quantitative methods to assess the properties of biological tissues are needed for many therapeutic and tissue engineering applications. Magnetic resonance elastography (MRE) has historically relied on external vibration to generate periodic shear waves. In order to focally assess a biomaterial or to monitor the response to ablative therapy, the interrogation of a specific region of interest by a focused beam is desirable and transient MRE (t-MRE) techniques have previously been developed to accomplish this goal. Also, strategies employing a series of discrete ultrasound pulses directed to increasing depths along a single line-of-sight have been designed to generate a quasi-planar shear wave. Such 'supersonic' excitations have been applied for ultrasound elasticity measurements. The resulting shear wave is higher in amplitude than that generated from a single excitation and the properties of the media are simply visualized and quantified due to the quasi-planar wave geometry and the opportunity to generate the wave at the site of interest. Here for the first time, we extend the application of supersonic methods by developing a protocol for supersonic transient magnetic resonance elastography (sst-MRE) using an MR-guided focused ultrasound system capable of therapeutic ablation. We apply the new protocol to quantify tissue elasticity in vitro using biologically-relevant inclusions and tissue-mimicking phantoms, compare the results with elasticity maps acquired with ultrasound shear wave elasticity imaging (US-SWEI), and validate both methods with mechanical testing. We found that a modified time-of-flight (TOF) method efficiently quantified shear modulus from sst-MRE data, and both the TOF and local inversion methods result in similar maps based on US-SWEI. With a three-pulse excitation, the proposed sst-MRE protocol was capable of visualizing quasi-planar shear waves propagating away from the excitation location and detecting differences in shear modulus of 1 kPa. The techniques demonstrated here have potential application in real-time in vivo lesion detection and monitoring, with particular significance for image-guided interventions.
Shear Wave Velocity for Evaluation of State of Cohesionless Soils with Fines
NASA Astrophysics Data System (ADS)
Lipiński, Mirosław J.; Wdowska, Małgorzata K.; Jaroń, Łukasz
2017-10-01
The paper concerns evaluation of cohesionless soils containing fines. In clean sands, state of soil is usually quantified by relative density DR with use of field techniques like static or dynamic probes. However, in cohesionless soils containing considerable amount of fines, relative density alone, which is based solely on void ratio values, is not representative. This results from the fact that in case of cohesionless soil there is no unique intrinsic compressibility line, like it is in case of cohesive soils. Thus state of soil depends not only on void ratio but also state of stress. For this reason it is necessary to look for an alternative means to quantify state of soils with fines. The paper concerns possibility of evaluation of state of soil containing various amount of fines on the basis of shear wave velocity measurement. The idea rests on the fact that void ratio and state of stress are the major factors which contribute to a state of soil and shear wave velocity as well. When measured shear wave velocities are normalised with respect to stresses the resulting values might be strictly correlated to void ratio. To validate this approach, an experimental test programme (based on series of sophisticated triaxial tests) was carried out on four kinds of sandy material containing various amount of fines up to 60%. The experimental data made possible to establish basic correlation between soil states and shear wave velocity for each kind of soil. Normalized shear wave velocity was compared with void ratio and state parameter as well. The obtained results revealed that determination of void ratio on the basis of shear wave velocity in a certain range of fines can be much more adequate than for clean sands. However, if the fines content exceeds certain value, the obtained correlation is no longer as good.
Liu, Yu; Liu, Jingfei; Fite, Brett Z; Foiret, Josquin; Ilovitsh, Asaf; Leach, J Kent; Dumont, Erik; Caskey, Charles F; Ferrara, Katherine W
2017-01-01
Non-invasive, quantitative methods to assess the properties of biological tissues are needed for many therapeutic and tissue engineering applications. Magnetic resonance elastography (MRE) has historically relied on external vibration to generate periodic shear waves. In order to focally assess a biomaterial or to monitor the response to ablative therapy, the interrogation of a specific region of interest by a focused beam is desirable and transient MRE (t-MRE) techniques have previously been developed to accomplish this goal. Also, strategies employing a series of discrete ultrasound pulses directed to increasing depths along a single line-of-sight have been designed to generate a quasi-planar shear wave. Such ‘supersonic’ excitations have been applied for ultrasound elasticity measurements. The resulting shear wave is higher in amplitude than that generated from a single excitation and the properties of the media are simply visualized and quantified due to the quasiplanar wave geometry and the opportunity to generate the wave at the site of interest. Here for the first time, we extend the application of supersonic methods by developing a protocol for supersonic transient magnetic resonance elastography (sst-MRE) using an MR-guided focused ultrasound system capable of therapeutic ablation. We apply the new protocol to quantify tissue elasticity in vitro using biologically-relevant inclusions and tissue-mimicking phantoms, compare the results with elasticity maps acquired with ultrasound shear wave elasticity imaging (US-SWEI), and validate both methods with mechanical testing. We found that a modified time-of-flight (TOF) method efficiently quantified shear modulus from sst-MRE data, and both the TOF and local inversion methods result in similar maps based on US-SWEI. With a three-pulse excitation, the proposed sst-MRE protocol was capable of visualizing quasi-planar shear waves propagating away from the excitation location and detecting differences in shear modulus of 1 kPa. The techniques demonstrated here have potential application in real-time in vivo lesion detection and monitoring, with particular significance for image-guided interventions. PMID:28426437
Dubois, Guillaume; Kheireddine, Walid; Vergari, Claudio; Bonneau, Dominique; Thoreux, Patricia; Rouch, Philippe; Tanter, Mickael; Gennisson, Jean-Luc; Skalli, Wafa
2015-09-01
Development of shear wave elastography gave access to non-invasive muscle stiffness assessment in vivo. The aim of the present study was to define a measurement protocol to be used in clinical routine for quantifying the shear modulus of lower limb muscles. Four positions were defined to evaluate shear modulus in 10 healthy subjects: parallel to the fibers, in the anterior and posterior aspects of the lower limb, at rest and during passive stretching. Reliability was first evaluated on two muscles by three operators; these measurements were repeated six times. Then, measurement reliability was compared in 11 muscles by two operators; these measurements were repeated three times. Reproducibility of shear modulus was 0.48 kPa and repeatability was 0.41 kPa, with all muscles pooled. Position did not significantly influence reliability. Shear wave elastography appeared to be an appropriate and reliable tool to evaluate the shear modulus of lower limb muscles with the proposed protocol. Copyright © 2015 World Federation for Ultrasound in Medicine & Biology. Published by Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Sherwood, C. R.; Lacy, J. R.; Ruggiero, P.; Kerr, L. A.; Gelfenbaum, G.; Wilson, D. J.
2001-12-01
We conducted field studies on the ebb-tidal delta near the entrance to Grays Harbor, Washington in Autumn, 1999 and Spring 2001, with the objectives of 1) providing directional wave data to validate a shoaling and refraction model for the ebb-tidal delta, and 2) measuring forcing (wave- and current-induced near-bottom velocities, accelerations, and shear stresses) and responses (bedforms, suspended-sediment profiles, and sediment fluxes) associated with intervals of beach erosion and accretion. In the Autumn experiment (October - December), tripods were deployed at shallow ( ~14-m) and deep ( ~24-m) sites on the northern, middle, and southern flanks of the ebb tidal. In the Spring experiment (May - mid-July), tripods were redeployed at four sites and a new inshore site ( ~9-m depth), and pressures, current velocities, and suspended-sediment concentrations were measured with 5-MHz acoustic Doppler velocimeters (ADVs), optical backscatterance sensors, upward-looking acoustic Doppler current profilers (ADCPs), a downward-looking pulse-coherent acoustic Doppler profiler (PCADP), and an acoustic backscatterance sensor (ABS). We also measured bedforms with profiling and imaging sonars and estimated Reynolds stresses with a pair of 10-MHz ADVs at the inshore site. Incident waves, nearshore circulation patterns, statistics of near-bottom wave- and current-induced velocities, and sediment fluxes were distinctly different in the two experiments. During the Autumn measurements, the general direction of wave approach shifted from WNW to WSW as the North Pacific weather pattern shifted from summer to winter, and we observed a large storm (offshore significant wave heights Hs of ~8 m) and a sequence of about 8 smaller events with ~4 to 5-m waves. Sediment transport was dominated by storm-induced, downwelling-favorable circulation that transported suspended sediments northward and offshore. Inferred bedload fluxes were directed shoreward, but were much smaller. In contrast, Spring wave conditions were much milder (maximum Hs of ~4 m), and waves approached mostly from the WNW. There were long periods of upwelling-favorable circulation interrupted by intervals of storm-induced northward flow. Net suspended-sediment transport was directed northward at the deeper sites and southward at the inshore sites. Near-bottom transport remained offshore at the deeper sites, but was lower, with negligible net cross-shore component at the shallow sites. The relative contribution of shoreward bedload transport was much larger. These changes in sediment transport outside the breaker zone are consistent with measured changes in beach and bar morphology.
NASA Astrophysics Data System (ADS)
Zvietcovich, Fernando; Yao, Jianing; Chu, Ying-Ju; Meemon, Panomsak; Rolland, Jannick P.; Parker, Kevin J.
2016-03-01
Optical Coherence Elastography (OCE) is a widely investigated noninvasive technique for estimating the mechanical properties of tissue. In particular, vibrational OCE methods aim to estimate the shear wave velocity generated by an external stimulus in order to calculate the elastic modulus of tissue. In this study, we compare the performance of five acquisition and processing techniques for estimating the shear wave speed in simulations and experiments using tissue-mimicking phantoms. Accuracy, contrast-to-noise ratio, and resolution are measured for all cases. The first two techniques make the use of one piezoelectric actuator for generating a continuous shear wave propagation (SWP) and a tone-burst propagation (TBP) of 400 Hz over the gelatin phantom. The other techniques make use of one additional actuator located on the opposite side of the region of interest in order to create an interference pattern. When both actuators have the same frequency, a standing wave (SW) pattern is generated. Otherwise, when there is a frequency difference df between both actuators, a crawling wave (CrW) pattern is generated and propagates with less speed than a shear wave, which makes it suitable for being detected by the 2D cross-sectional OCE imaging. If df is not small compared to the operational frequency, the CrW travels faster and a sampled version of it (SCrW) is acquired by the system. Preliminary results suggest that TBP (error < 4.1%) and SWP (error < 6%) techniques are more accurate when compared to mechanical measurement test results.
Wind wave prediction in shallow water: Theory and applications
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cavaleri, L.; Rizzoli, P.M.
1981-11-20
A wind wave forecasting model is described, based upon the ray technique, which is specifically designed for shallow water areas. The model explicitly includes wave generation, refraction, and shoaling, while nonlinear dissipative processes (breaking and bottom fricton) are introduced through a suitable parametrization. The forecast is provided at a specified time and target position, in terms of a directional spectrum, from which the one-dimensional spectrum and the significant wave height are derived. The model has been used to hindcast storms both in shallow water (Northern Adriatic Sea) and in deep water conditions (Tyrrhenian Sea). The results have been compared withmore » local measurements, and the rms error for the significant wave height is between 10 and 20%. A major problems has been found in the correct evaluation of the wind field.« less
Kramers-Kronig based quality factor for shear wave propagation in soft tissue
Urban, M W; Greenleaf, J F
2009-01-01
Shear wave propagation techniques have been introduced for measuring the viscoelastic material properties of tissue, but assessing the accuracy of these measurements is difficult for in vivo measurements in tissue. We propose using the Kramers-Kronig relationships to assess the consistency and quality of the measurements of shear wave attenuation and phase velocity. In ex vivo skeletal muscle we measured the wave attenuation at different frequencies, and then applied finite bandwidth Kramers-Kronig equations to predict the phase velocities. We compared these predictions with the measured phase velocities and assessed the mean square error (MSE) as a quality factor. An algorithm was derived for computing a quality factor using the Kramers-Kronig relationships. PMID:19759409
Method for measuring liquid viscosity and ultrasonic viscometer
Sheen, Shuh-Haw; Lawrence, William P.; Chien, Hual-Te; Raptis, Apostolos C.
1994-01-01
An ultrasonic viscometer and method for measuring fluid viscosity are provided. Ultrasonic shear and longitudinal waves are generated and coupled to the fluid. Reflections from the generated ultrasonic shear and longitudinal waves are detected. Phase velocity of the fluid is determined responsive to the detected ultrasonic longitudinal waves reflections. Viscosity of the fluid is determined responsive to the detected ultrasonic shear waves reflections. Unique features of the ultrasonic viscometer include the use of a two-interface fluid and air transducer wedge to measure relative signal change and to enable self calibration and the use of a ratio of reflection coefficients for two different frequencies to compensate for environmental changes, such as temperature.
NASA Astrophysics Data System (ADS)
Cawood, T. K.; Platt, J. P.
2017-12-01
A widely-accepted model for the rheology of crustal-scale shear zones states that they comprise distributed strain at depth, in wide, high-temperature shear zones, which narrow to more localized, high-strain zones at lower temperature and shallower crustal levels. We test and quantify this model by investigating how the width, stress, temperature and deformation mechanisms change with depth in the Simplon Shear Zone (SSZ). The SSZ marks a major tectonic boundary in the central Alps, where normal-sense motion and rapid exhumation of the footwall have preserved evidence of older, deeper deformation in rocks progressively further into the currently-exposed footwall. As such, microstructures further from the brittle fault (which represents the most localized, most recently-active part of the SSZ) represent earlier, higher- temperature deformation from deeper crustal levels, while rocks closer to the fault have been overprinted by successively later, cooler deformation at shallower depths. This study uses field mapping and microstructural studies to identify zones representing deformation at various crustal levels, and characterize each in terms of zone width (representing width of the shear zone at that time and depth) and dominant deformation mechanism. In addition, quartz- (by Electron Backscatter Diffraction, EBSD) and feldspar grain size (measured optically) piezometry are used to calculate the flow stress for each zone, while the Ti-in-quartz thermometer (TitaniQ) is used to calculate the corresponding temperature of deformation. We document the presence of a broad zone in which quartz is recrystallized by the Grain Boundary Migration (GBM) mechanism and feldspar by Subgrain Rotation (SGR), which represents the broad, deep zone of deformation occurring at relatively high temperatures and low stresses. In map view, this transitions to successively narrower zones, respectively characterized by quartz SGR and feldspar Bulge Nucleation (BLG); quartz BLG and brittle deformation of feldspar; and finally, a zone of generally brittle deformation. These zones represent deformation in progressively narrower regions at shallower depths, under lower temperatures and higher stresses.
Shallow-water seismoacoustic noise generated by tropical storms Ernesto and Florence.
Traer, James; Gerstoft, Peter; Bromirski, Peter D; Hodgkiss, William S; Brooks, Laura A
2008-09-01
Land-based seismic observations of double frequency (DF) microseisms generated during tropical storms Ernesto and Florence are dominated by signals in the 0.15-0.5 Hz band. In contrast, data from sea floor hydrophones in shallow water (70 m depth, 130 km off the New Jersey coast) show dominant signals in the ocean gravity-wave frequency band, 0.02-0.18 Hz, and low amplitudes from 0.18 to 0.3 Hz, suggesting significant opposing wave components necessary for DF microseism generation were negligible at the site. Florence produced large waves over deep water while Ernesto only generated waves in coastal regions, yet both storms produced similar spectra. This suggests near-coastal shallow water as the dominant region for observed microseism generation.
NASA Astrophysics Data System (ADS)
Villani, Fabio; D'Amico, Sebastiano; Panzera, Francesco; Vassallo, Maurizio; Bozionelos, George; Farrugia, Daniela; Galea, Pauline
2018-01-01
The Victoria Lines Fault (island of Malta) is a >15 km-long and N260°-striking segmented normal fault-system, which is probably inactive since the late Pliocene. In the westernmost part, the Fomm Ir-Rih segment displays comparable geologic throw and escarpment height ( 150-170 m), moreover its hangingwall hosts thin patches of Middle Pleistocene clastic continental deposits (red beds), which are poorly preserved elsewhere. We acquired two seismic transects, by collecting ambient vibration recordings, processed by using horizontal-to-vertical spectral ratios, complemented by one high-resolution 2-D refraction tomography survey crossing this fault where it is locally covered by red beds and recent colluvial deposits. We found a resonance peak at 1.0 Hz in the hangingwall block, whereas clear peaks in the range 5.0-10.0 Hz appear when approaching the subsurface fault, and we relate them to the fractured bedrock within the fault zone. The best-fit tomographic model shows a relatively high-Vp shallow body (Vp 2200-2400 m/s) that we relate to the weathered top of the Miocene Upper Coralline Limestone Fm., bounded on both sides by low-Vp regions (<1400 m/s). The latter are the smeared images of steep fault zones. Tomography further reveals a thick ( 15-20 m) low-Vp (<1000 m/s) zone, which could be a syn-tectonic wedge of colluvial deposits developed in the downthrown block. Surface waves analysis indicates lateral changes of the average shallow shear wave velocity, with Vs 130 m/s within the inferred fault zone, and Vs >230 m/s above the weathered top-bedrock. Our results depict a clear seismic signature of the Victoria Lines Fault, characterized by low seismic velocity and high amplification of ground motion. We hypothesize that, during the Middle Pleistocene, faulting may have affected the basal part of the red beds, so that this part of the investigated complex fault-system may be considered inactive since 0.6 Myr ago.
An ultrasonic technique for measuring stress in fasteners
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stevens, K. J.; Day, P.; Byron, D.
1999-12-02
High temperature bolting alloys are extensively used in the thermal power generation industry as for example, reheat ESV and Governor valve studs. Remnant life assessment methodologies and plant maintenance procedures require the monitoring of the operational stress levels in these fasteners. Some conventional ultrasonic techniques require longitudinal wave measurements to be undertaken when the nut on the bolt is loosened and then re-tightened. Other techniques use a combination of shear waves and longitudinal waves. In this paper, the problems and pitfalls associated with various ultrasonic techniques for measuring stress in bolts, is discussed. An ultrasonic technique developed for measuring themore » stress in Durehete 1055 bolts is presented. Material from a textured rolled bar has been used as a test bed in the development work. The technique uses shear wave birefringence and compression waves at several frequencies to measure texture, fastener length and the average stress. The technique was developed by making ultrasonic measurements on bolts tensioned in universal testing machines and a hydraulic nut. The ultrasonic measurements of residual stress have been checked against strain gauge measurements. The Durehete bolts have a hollow cylinder geometry of restricted dimensions, which significantly alters compression and shear wave velocities from bulk values and introduces hoop stresses which can be measured by rotating the polarization of the shear wave probe. Modelling of the experimental results has been undertaken using theories for the elastic wave propagation through waveguides. The dispersion equations allow the velocity and length of the fastener to be measured ultrasonically in some situations where the length of the fastener can not be measured directly with a vernier caliper or micrometer and/or where it is undesirable to loosen nuts to take calibration readings of the shear and compression wave velocities.« less
Coronal Jet Collimation by Nonlinear Induced Flows
NASA Astrophysics Data System (ADS)
Vasheghani Farahani, S.; Hejazi, S. M.
2017-08-01
Our objective is to study the collimation of solar jets by nonlinear forces corresponding to torsional Alfvén waves together with external forces. We consider a straight, initially non-rotating, untwisted magnetic cylinder embedded in a plasma with a straight magnetic field, where a shear between the internal and external flows exists. By implementing magnetohydrodynamic theory and taking into account the second-order thin flux tube approximation, the balance between the internal nonlinear forces is visualized. The nonlinear differential equation containing the ponderomotive, magnetic tension, and centrifugal forces in the presence of the shear flow is obtained. The solution presents the scale of influence of the propagating torsional Alfvén wave on compressive perturbations. Explicit expressions for the compressive perturbations caused by the forces connected to the torsional Alfvén wave show that, in the presence of a shear flow, the magnetic tension and centrifugal forces do not cancel each other’s effects as they did in its absence. This shear flow plays in favor of the magnetic tension force, resulting in a more efficient collimation. Regarding the ponderomotive force, the shear flow has no effect. The phase relations highlight the interplay of the shear flow and the plasma-β. As the shear flow and plasma-β increase, compressive perturbation amplitudes emerge. We conclude that the jet collimation due to the torsional Alfvén wave highly depends on the location of the jet. The shear flow tightens the collimation as the jet elevates up to the solar corona.
GDP: A new source for shallow high-resolution seismic exploration
NASA Astrophysics Data System (ADS)
Rashed, Mohamed A.
2009-06-01
Gas-Driven Piston (GDP) is a new source for shallow seismic exploration. This source works by igniting a small amount of gas inside a closed chamber connected to a vertical steel cylinder. The gas explosion drives a steel piston, mounted inside the cylinder, downward so that the piston's thick head hits a steel base at the end of the cylinder generating a strong shock wave into the ground. Experimental field tests conducted near Ismailia, Egypt, prove that the portable, inexpensive and environmentally benign GDP generates stronger seismic waves than the sledgehammer that is commonly used in shallow seismic exploration. Tests also show that GDP is a highly repeatable and controllable and that its seismic waves contain a good amount of high frequencies which makes the GDP an excellent source for shallow seismic exploration.
NASA Astrophysics Data System (ADS)
Manickam, Kavitha; Machireddy, Ramasubba Reddy; Raghavan, Bagyam
2016-04-01
It has been observed that many pathological process increase the elastic modulus of soft tissue compared to normal. In order to image tissue stiffness using ultrasound, a mechanical compression is applied to tissues of interest and local tissue deformation is measured. Based on the mechanical excitation, ultrasound stiffness imaging methods are classified as compression or strain imaging which is based on external compression and Acoustic Radiation Force Impulse (ARFI) imaging which is based on force generated by focused ultrasound. When ultrasound is focused on tissue, shear wave is generated in lateral direction and shear wave velocity is proportional to stiffness of tissues. The work presented in this paper investigates strain elastography and ARFI imaging in clinical cancer diagnostics using real time patient data. Ultrasound B-mode imaging, strain imaging, ARFI displacement and ARFI shear wave velocity imaging were conducted on 50 patients (31 Benign and 23 malignant categories) using Siemens S2000 machine. True modulus contrast values were calculated from the measured shear wave velocities. For ultrasound B-mode, ARFI displacement imaging and strain imaging, observed image contrast and Contrast to Noise Ratio were calculated for benign and malignant cancers. Observed contrast values were compared based on the true modulus contrast values calculated from shear wave velocity imaging. In addition to that, student unpaired t-test was conducted for all the four techniques and box plots are presented. Results show that, strain imaging is better for malignant cancers whereas ARFI imaging is superior than strain imaging and B-mode for benign lesions representations.
Lithospheric Structure and Seismotectonics of Central East Antarctica
NASA Astrophysics Data System (ADS)
Reading, A. M.
2006-12-01
The lithosphere of central East Antarctica, the sector of the continent between 30°E - 120°E, is investigated using seismic methods including receiver function and shear-wave splitting analysis. Data from the broadband stations of the temporary SSCUA deployment (in the continental interior) are used together with records from the permanent GSN stations (on the coast) to carry out the first studies of crustal depth and structure, and patterns of seismic anisotropy across this region. The depth of the Moho is found to be 42 km (+/- 2 km) beneath Mawson station with similar structures extending southward across the Rayner province as far south as Beaver Lake. The Fisher Terrane is characterised by a crustal shear wavespeed profile showing few discontinuties with the Moho at a similar depth to the Rayner. South of Fisher, the crust becomes much shallower, with the Moho at 32 km depth. This shallow crust extends across the Lambert glacier to the Prydz coast and the Lambert Terrane. The characteristic crustal wavespeed profiles provide baseline structure for mapping the extent of the terrance beneath the Antarctic Ice Sheet in future deployments. Observations of seismic anisotropy are less well- defined but, at a reconnaissance level, show fast directions parallel to the present day coastline. This may be controlled by rift-related influences on the lithosphere associated with the breakup of East Gondwana. The seismicity is confirmed to be extremely low. The only seismogenic forces on the Antarctic plate in this region are acting at the boundary between the continental and oceanic lithosphere west of 50°E and east of 100°E and represent a superposition of tectonic and glaciogenic controls. The Lambert Glacier region shows little or no seismotectonic activity in the continental interior or on the oceanic margin.
High Contrast Ultrafast Imaging of the Human Heart
Papadacci, Clement; Pernot, Mathieu; Couade, Mathieu; Fink, Mathias; Tanter, Mickael
2014-01-01
Non-invasive ultrafast imaging for human cardiac applications is a big challenge to image intrinsic waves such as electromechanical waves or remotely induced shear waves in elastography imaging techniques. In this paper we propose to perform ultrafast imaging of the heart with adapted sector size by using diverging waves emitted from a classical transthoracic cardiac phased array probe. As in ultrafast imaging with plane wave coherent compounding, diverging waves can be summed coherently to obtain high-quality images of the entire heart at high frame rate in a full field-of-view. To image shear waves propagation at high SNR, the field-of-view can be adapted by changing the angular aperture of the transmitted wave. Backscattered echoes from successive circular wave acquisitions are coherently summed at every location in the image to improve the image quality while maintaining very high frame rates. The transmitted diverging waves, angular apertures and subapertures size are tested in simulation and ultrafast coherent compounding is implemented on a commercial scanner. The improvement of the imaging quality is quantified in phantom and in vivo on human heart. Imaging shear wave propagation at 2500 frame/s using 5 diverging waves provides a strong increase of the Signal to noise ratio of the tissue velocity estimates while maintaining a high frame rate. Finally, ultrafast imaging with a 1 to 5 diverging waves is used to image the human heart at a frame rate of 900 frames/s over an entire cardiac cycle. Thanks to spatial coherent compounding, a strong improvement of imaging quality is obtained with a small number of transmitted diverging waves and a high frame rate, which allows imaging the propagation of electromechanical and shear waves with good image quality. PMID:24474135
NASA Astrophysics Data System (ADS)
Nenadic, Ivan Z.; Qiang, Bo; Urban, Matthew W.; Zhao, Heng; Sanchez, William; Greenleaf, James F.; Chen, Shigao
2017-01-01
Ultrasound and magnetic resonance elastography techniques are used to assess mechanical properties of soft tissues. Tissue stiffness is related to various pathologies such as fibrosis, loss of compliance, and cancer. One way to perform elastography is measuring shear wave velocity of propagating waves in tissue induced by intrinsic motion or an external source of vibration, and relating the shear wave velocity to tissue elasticity. All tissues are inherently viscoelastic and ignoring viscosity biases the velocity-based estimates of elasticity and ignores a potentially important parameter of tissue health. We present attenuation measuring ultrasound shearwave elastography (AMUSE), a technique that independently measures both shear wave velocity and attenuation in tissue and therefore allows characterization of viscoelasticity without using a rheological model. The theoretical basis for AMUSE is first derived and validated in finite element simulations. AMUSE is validated against the traditional methods for assessing shear wave velocity (phase gradient) and attenuation (amplitude decay) in tissue mimicking phantoms and excised tissue. The results agreed within one standard deviation. AMUSE was used to measure shear wave velocity and attenuation in 15 transplanted livers in patients with potential acute rejection, and the results were compared with the biopsy findings in a preliminary study. The comparison showed excellent agreement and suggests that AMUSE can be used to separate transplanted livers with acute rejection from livers with no rejection.
NASA Astrophysics Data System (ADS)
Xie, Jun; Chu, Risheng; Yang, Yingjie
2018-05-01
Ambient noise seismic tomography has been widely used to study crustal and upper-mantle shear velocity structures. Most studies, however, concentrate on short period (< 50 s) surface wave from ambient noise, while studies using long period surface wave from ambient noise are limited. In this paper, we demonstrate the feasibility of using long-period surface wave from ambient noise to study the lithospheric structure on a continental scale. We use broadband Rayleigh wave phase velocities to obtain a 3-D V S structures beneath the contiguous United States at period band of 10-150 s. During the inversion, 1-D shear wave velocity profile is parameterized using B-spline at each grid point and is inverted with nonlinear Markov Chain Monte Carlo method. Then, a 3-D shear velocity model is constructed by assembling all the 1-D shear velocity profiles. Our model is overall consistent with existing models which are based on multiple datasets or data from earthquakes. Our model along with the other post-USArray models reveal lithosphere structures in the upper mantle, which are consistent with the geological tectonic background (e.g., the craton root and regional upwelling provinces). The model has comparable resolution on lithosphere structures compared with many published results and can be used for future detailed regional or continental studies and analysis.
Prediction of shear wave velocity using empirical correlations and artificial intelligence methods
NASA Astrophysics Data System (ADS)
Maleki, Shahoo; Moradzadeh, Ali; Riabi, Reza Ghavami; Gholami, Raoof; Sadeghzadeh, Farhad
2014-06-01
Good understanding of mechanical properties of rock formations is essential during the development and production phases of a hydrocarbon reservoir. Conventionally, these properties are estimated from the petrophysical logs with compression and shear sonic data being the main input to the correlations. This is while in many cases the shear sonic data are not acquired during well logging, which may be for cost saving purposes. In this case, shear wave velocity is estimated using available empirical correlations or artificial intelligent methods proposed during the last few decades. In this paper, petrophysical logs corresponding to a well drilled in southern part of Iran were used to estimate the shear wave velocity using empirical correlations as well as two robust artificial intelligence methods knows as Support Vector Regression (SVR) and Back-Propagation Neural Network (BPNN). Although the results obtained by SVR seem to be reliable, the estimated values are not very precise and considering the importance of shear sonic data as the input into different models, this study suggests acquiring shear sonic data during well logging. It is important to note that the benefits of having reliable shear sonic data for estimation of rock formation mechanical properties will compensate the possible additional costs for acquiring a shear log.