REVEAL: Receiver Exploiting Variability in Estimated Acoustic Levels
2013-08-07
water . Several structures have been or are being investigated. In shallow water , passive sonar context, the characteristics of received signals are...source, particularly in shallow water . Several structures have been or are being investigated. In shallow water , passive sonar context, the... dynamic and variable in time and space, a statistical approach is necessary. WORK COMPLETED In a shallow water waveguide, where the distance
Variability of phase and amplitude fronts due to horizontal refraction in shallow water.
Katsnelson, Boris G; Grigorev, Valery A; Lynch, James F
2018-01-01
The variability of the interference pattern of a narrow-band sound signal in a shallow water waveguide in the horizontal plane in the presence of horizontal stratification, in particular due to linear internal waves, is studied. It is shown that lines of constant phase (a phase front) and lines of constant amplitude/envelope (an amplitude front) for each waveguide mode may have different directions in the spatial vicinity of the point of reception. The angle between them depends on the waveguide's parameters, the mode number, and the sound frequency. Theoretical estimates and data processing methodology for obtaining these angles from experimental data recorded by a horizontal line array are proposed. The behavior of the angles, which are obtained for two episodes from the Shallow Water 2006 (SW06) experiment, show agreement with the theory presented.
Travel-time tomography in shallow water: experimental demonstration at an ultrasonic scale.
Roux, Philippe; Iturbe, Ion; Nicolas, Barbara; Virieux, Jean; Mars, Jérôme I
2011-09-01
Acoustic tomography in a shallow ultrasonic waveguide is demonstrated at the laboratory scale between two source-receiver arrays. At a 1/1,000 scale, the waveguide represents a 1.1-km-long, 52-m-deep ocean acoustic channel in the kilohertz frequency range. Two coplanar arrays record the transfer matrix in the time domain of the waveguide between each pair of source-receiver transducers. A time-domain, double-beamforming algorithm is simultaneously performed on the source and receiver arrays that projects the multi-reflected acoustic echoes into an equivalent set of eigenrays, which are characterized by their travel times and their launch and arrival angles. Travel-time differences are measured for each eigenray every 0.1 s when a thermal plume is generated at a given location in the waveguide. Travel-time tomography inversion is then performed using two forward models based either on ray theory or on the diffraction-based sensitivity kernel. The spatially resolved range and depth inversion data confirm the feasibility of acoustic tomography in shallow water. Comparisons are made between inversion results at 1 and 3 MHz with the inversion procedure using ray theory or the finite-frequency approach. The influence of surface fluctuations at the air-water interface is shown and discussed in the framework of shallow-water ocean tomography. © 2011 Acoustical Society of America
Verlinden, Christopher M A; Sarkar, J; Cornuelle, B D; Kuperman, W A
2017-02-01
The waveguide invariant (WGI) is a property that can be used to localize acoustic radiators and extract information about the environment. Here the WGI is determined using ships as sources of opportunity, tracked using the Automatic Identification System (AIS). The relationship between range, acoustic intensity, and frequency for a ship in a known position is used to determine the WGI parameter β. These β values are interpolated and a map of β is generated. The method is demonstrated using data collected in a field experiment on a single hydrophone in a shallow water environment off the coast of Southern California.
Passive estimation of the waveguide invariant per pair of modes.
Le Gall, Yann; Bonnel, Julien
2013-08-01
In many oceanic waveguides, acoustic propagation is characterized by a parameter called waveguide invariant. This property is used in many passive and active sonar applications where knowledge of the waveguide invariant value is required. The waveguide invariant is classically considered as scalar but several studies show that it is better modeled by a distribution because of its dependence on frequency and mode pairs. This paper presents a new method for estimating the waveguide invariant distribution. Using the noise radiated by a distant ship and a single hydrophone, the proposed methodology allows estimating the waveguide invariant for each pair of modes in shallow water. Performance is evaluated on simulated data.
Geoacoustic inversion with two source-receiver arrays in shallow water.
Sukhovich, Alexey; Roux, Philippe; Wathelet, Marc
2010-08-01
A geoacoustic inversion scheme based on a double beamforming algorithm in shallow water is proposed and tested. Double beamforming allows identification of multi-reverberated eigenrays propagating between two vertical transducer arrays according to their emission and reception angles and arrival times. Analysis of eigenray intensities yields the bottom reflection coefficient as a function of angle of incidence. By fitting the experimental reflection coefficient with a theoretical prediction, values of the acoustic parameters of the waveguide bottom can be extracted. The procedure was initially tested in a small-scale tank experiment for a waveguide with a Plexiglas bottom. Inversion results for the speed of shear waves in Plexiglas are in good agreement with the table values. A similar analysis was applied to data collected during an at-sea experiment in shallow coastal waters of the Mediterranean. Bottom reflection coefficient was fitted with the theory in which bottom sediments are modeled as a multi-layered system. Retrieved bottom parameters are in quantitative agreement with those determined from a prior inversion scheme performed in the same area. The present study confirms the interest in processing source-receiver array data through the double beamforming algorithm, and indicates the potential for application of eigenray intensity analysis to geoacoustic inversion problems.
2011-02-01
Acoustical Society of America, 103(6):3234–3240, 1998 . 168 [55] Kathleen M. Stafford , Christopher G. Fox, and David S. Clark. Long - range acoustic detection ...and localization of blue whale calls in the northeast pacif c ocean. The Journal of the Acoustical Society of America, 104(6):3616–3625, 1998 . [56... range to the acoustic source assuming β = 1. Thode demonstrates this experimentally for shallow water with a Blue
Marandet, Christian; Roux, Philippe; Nicolas, Barbara; Mars, Jérôme
2011-01-01
This study demonstrates experimentally at the laboratory scale the detection and localization of a wavelength-sized target in a shallow ultrasonic waveguide between two source-receiver arrays at 3 MHz. In the framework of the acoustic barrier problem, at the 1/1000 scale, the waveguide represents a 1.1-km-long, 52-m-deep ocean acoustic channel in the kilohertz frequency range. The two coplanar arrays record in the time-domain the transfer matrix of the waveguide between each pair of source-receiver transducers. Invoking the reciprocity principle, a time-domain double-beamforming algorithm is simultaneously performed on the source and receiver arrays. This array processing projects the multireverberated acoustic echoes into an equivalent set of eigenrays, which are defined by their launch and arrival angles. Comparison is made between the intensity of each eigenray without and with a target for detection in the waveguide. Localization is performed through tomography inversion of the acoustic impedance of the target, using all of the eigenrays extracted from double beamforming. The use of the diffraction-based sensitivity kernel for each eigenray provides both the localization and the signature of the target. Experimental results are shown in the presence of surface waves, and methodological issues are discussed for detection and localization.
2010-02-26
bottom waveguide. The lower contour plot demonstrates that this method, unlike other parabolic equations, can treat seismic sources. 20100308162...solitons. One illustration in Figure 8 shows depth-averaged data at the Naval Research Laboratory vertical line array (VLA) [dashed blue curves...vertical line array about 15 km from the source. The right panel [blue curves] compares corresponding simulations from a three-dimensional adiabatic mode
Philippe, Franck D; Prada, Claire; de Rosny, Julien; Clorennec, Dominique; Minonzio, Jean-Gabriel; Fink, Mathias
2008-08-01
This paper reports the results of an investigation into extracting of the backscattered frequency signature of a target in a waveguide. Retrieving the target signature is difficult because it is blurred by waveguide reflections and modal interference. It is shown that the decomposition of the time-reversal operator method provides a solution to this problem. Using a modal theory, this paper shows that the first singular value associated with a target is proportional to the backscattering form function. It is linked to the waveguide geometry through a factor that weakly depends on frequency as long as the target is far from the boundaries. Using the same approach, the second singular value is shown to be proportional to the second derivative of the angular form function which is a relevant parameter for target identification. Within this framework the coupling between two targets is considered. Small scale experimental studies are performed in the 3.5 MHz frequency range for 3 mm spheres in a 28 mm deep and 570 mm long waveguide and confirm the theoretical results.
A unified model for reverberation and submerged object scattering in a stratified ocean waveguide.
Makris, N C; Ratilal, P
2001-03-01
A unified model for reverberation and submerged target scattering in a stratified medium is developed from wave theory. The advantage of the unified approach is that it enables quantitative predictions to be made of the target-echo-to-reverberation ratio in an ocean waveguide. Analytic expressions are derived for both deterministic and stochastic scattering from the seafloor and subseafloor. Asymptotic techniques are used to derive expressions for the scattering of broadband waveforms from distant objects or surfaces. Expressions are then obtained for the scattered field after beamforming with a horizontal line array. The model is applied to problems of active detection in shallow water. Sample calculations for narrow-band signals indicate that the detection of submerged target echoes above diffuse seafloor reverberation is highly dependent upon water column and sediment stratification as well as array aperture, source, receiver, and target locations, in addition to the scattering properties of the target and seafloor. The model is also applied to determine the conditions necessary for echo returns from discrete geomorphologic features of the seafloor and subseafloor to stand prominently above diffuse seafloor reverberation. This has great relevance to the geologic clutter problem encountered by active sonar systems operating in shallow water, as well as to the remote sensing of underwater geomorphology.
Scattering from Marine Sediments in a Very Shallow Water Environment
2015-12-28
taking into account only large-scale changes of the environment. Keywords: Reciprocity , integral equations, volume and roughness scattering...for Public Release, Distribution Unlimited A. Ivakin: Scattering in range-dependent waveguides 5 II. VOLUME PERTURBATIONS: RECIPROCITY THEOREM...6], i.e. with the same υ , and therefore same Q , which, along with following discussion of reciprocity , explains the choice of this parameter
Scattering of Acoustic Waves from Ocean Boundaries
2015-09-30
of buried mines and improve SONAR performance in shallow water. OBJECTIVES 1) Determination of the correct physical model of acoustic propagation... acoustic parameters in the ocean. APPROACH 1) Finite Element Modeling for Range Dependent Waveguides: Finite element modeling is applied to a...roughness measurements for reverberation modeling . GLISTEN data provide insight into the role of biology on acoustic propagation and scattering
Low-loss silicon-on-insulator shallow-ridge TE and TM waveguides formed using thermal oxidation.
Pafchek, R; Tummidi, R; Li, J; Webster, M A; Chen, E; Koch, T L
2009-02-10
A thermal oxidation fabrication technique is employed to form low-loss high-index-contrast silicon shallow-ridge waveguides in silicon-on-insulator (SOI) with maximally tight vertical confinement. Drop-port responses from weakly coupled ring resonators demonstrate propagation losses below 0.36 dB/cm for TE modes. This technique is also combined with "magic width" designs mitigating severe lateral radiation leakage for TM modes to achieve propagation loss values of 0.94 dB/cm. We discuss the fabrication process utilized to form these low-loss waveguides and implications for sensor devices in particular.
Spatial attenuation of different sound field components in a water layer and shallow-water sediments
NASA Astrophysics Data System (ADS)
Belov, A. I.; Kuznetsov, G. N.
2017-11-01
The paper presents the results of an experimental study of spatial attenuation of low-frequency vector-scalar sound fields in shallow water. The experiments employed a towed pneumatic cannon and spatially separated four-component vector-scalar receiver modules. Narrowband analysis of received signals made it possible to estimate the attenuation coefficients of the first three modes in the frequency of range of 26-182 Hz and calculate the frequency dependences of the sound absorption coefficients in the upper part of bottom sediments. We analyze the experimental and calculated (using acoustic calibration of the waveguide) laws of the drop in sound pressure and orthogonal vector projections of the oscillation velocity. It is shown that the vertical projection of the oscillation velocity vector decreases significantly faster than the sound pressure field.
Time-domain study of acoustic pulse propagation in an ocean waveguide using a new normal mode model
NASA Astrophysics Data System (ADS)
Sidorovskaia, Natalia Anatol'evna
1997-11-01
This study is focused on issues of numerical modeling of sound propagation in diverse ocean waveguides. A new normal mode acoustical model (Shallow Water Acoustic Mode Propagation-SWAMP) has been developed. The algorithm for obtaining the vertical modal solution is based on a warping matrix transformation of the solution of an isovelocity (reference) waveguide to one of arbitrary velocity profile. An efficient mode coupling scheme with an adaptive step-size in range has been implemented for range-dependent environments. The new algorithm allows fairly arbitrary ocean layering and readily works at high frequency. An important advantage of the new procedure is that vertical modal eigenfunctions can easily be transformed to a spherical representation suitable for coupling in object scattering problems. Benchmarking results of the new code against established acoustic models based on parabolic equation and existing normal mode approaches show good agreement for range-independent and up-slope and down-slope bathymetries and a very competitive calculation speed. Broad-band pulse propagation in deep and shallow water with double (surface and bottom) ducts has been modeled using the new normal mode model for a variety of ocean waveguide parameters and different frequency bands. The surface duct generates a series of the surface-duct-trapped- modes, which form amplitude-modulated precursors in the far field pulse response. It has been found that the arrival times of the precursors could not be explained by the conventional concept of group velocity so that a more general principle based on the rate of energy transfer has been used. The Airy function solution was found to explain the amplitude modulation of the precursors. It has been learned from the numerical simulation that for a range-independent environment the time separation between precursors is fixed and any variations from this have been a result of range-dependence and mode coupling in the model. The time separation between precursors is in a good agreement with experimental data. The pulse energy distribution in space and time has been used to obtain source localization in depth and range, bottom integrated impedance and an outline of the sound speed profile in the water column. Further model development will lead to a unified approach to propagation and scattering problems in an ocean waveguide, with some aspects of immersed object identification and localization accomplished.
Low Frequency Acoustic Intensity Propagation Modeling in Shallow Water Waveguides
2016-06-01
REPORT NUMBER 11. SUPPLEMENTARY NOTES The views expressed in this thesis are those of the author and do not reflect the official policy or position of...release; distribution is unlimited 12b. DISTRIBUTION CODE A 13. ABSTRACT (maximum 200 words) Three popular numerical techniques are employed to...planar interfacial two-fluid transmission and reflection are used to benchmark the commercial software package COMSOL. Canonical Pekeris-type
Experimental detection and focusing in shallow water by decomposition of the time reversal operator.
Prada, Claire; de Rosny, Julien; Clorennec, Dominique; Minonzio, Jean-Gabriel; Aubry, Alexandre; Fink, Mathias; Berniere, Lothar; Billand, Philippe; Hibral, Sidonie; Folegot, Thomas
2007-08-01
A rigid 24-element source-receiver array in the 10-15 kHz frequency band, connected to a programmable electronic system, was deployed in the Bay of Brest during spring 2005. In this 10- to 18-m-deep environment, backscattered data from submerged targets were recorded. Successful detection and focusing experiments in very shallow water using the decomposition of the time reversal operator (DORT method) are shown. The ability of the DORT method to separate the echo of a target from reverberation as well as the echo from two different targets at 250 m is shown. An example of active focusing within the waveguide using the first invariant of the time reversal operator is presented, showing the enhanced focusing capability. Furthermore, the localization of the scatterers in the water column is obtained using a range-dependent acoustic model.
Acoustic wave propagation and intensity fluctuations in shallow water 2006 experiment
NASA Astrophysics Data System (ADS)
Luo, Jing
Fluctuations of low frequency sound propagation in the presence of nonlinear internal waves during the Shallow Water 2006 experiment are analyzed. Acoustic waves and environmental data including on-board ship radar images were collected simultaneously before, during, and after a strong internal solitary wave packet passed through a source-receiver acoustic track. Analysis of the acoustic wave signals shows temporal intensity fluctuations. These fluctuations are affected by the passing internal wave and agrees well with the theory of the horizontal refraction of acoustic wave propagation in shallow water. The intensity focusing and defocusing that occurs in a fixed source-receiver configuration while internal wave packet approaches and passes the acoustic track is addressed in this thesis. Acoustic ray-mode theory is used to explain the modal evolution of broadband acoustic waves propagating in a shallow water waveguide in the presence of internal waves. Acoustic modal behavior is obtained from the data through modal decomposition algorithms applied to data collected by a vertical line array of hydrophones. Strong interference patterns are observed in the acoustic data, whose main cause is identified as the horizontal refraction referred to as the horizontal Lloyd mirror effect. To analyze this interference pattern, combined Parabolic Equation model and Vertical-mode horizontal-ray model are utilized. A semi-analytic formula for estimating the horizontal Lloyd mirror effect is developed.
A Volunteer Computing Project for Solving Geoacoustic Inversion Problems
NASA Astrophysics Data System (ADS)
Zaikin, Oleg; Petrov, Pavel; Posypkin, Mikhail; Bulavintsev, Vadim; Kurochkin, Ilya
2017-12-01
A volunteer computing project aimed at solving computationally hard inverse problems in underwater acoustics is described. This project was used to study the possibilities of the sound speed profile reconstruction in a shallow-water waveguide using a dispersion-based geoacoustic inversion scheme. The computational capabilities provided by the project allowed us to investigate the accuracy of the inversion for different mesh sizes of the sound speed profile discretization grid. This problem suits well for volunteer computing because it can be easily decomposed into independent simpler subproblems.
2014-09-30
34Ecosystem scale acoustic sensing reveals humpback whale behavior synchronous with herring spawning processes and re-evaluation finds no effect of sonar...on humpback song occurrence in the Gulf of Maine in Fall 2006." PlosOne (accepted, in print for 2014). 2. D. Tran, W. Huang, A. Bohn, D. Wang, Z...Gong, N. Makris and P. Ratilal, "Using a coherent hydrophone array for observing sperm whale range, classification, and shallow-water dive profiles
NASA Astrophysics Data System (ADS)
Gulin, O. E.; Yaroshchuk, I. O.
2017-03-01
The paper is devoted to the analytic study and numerical simulation of mid-frequency acoustic signal propagation in a two-dimensional inhomogeneous random shallow-water medium. The study was carried out by the cross section method (local modes). We present original theoretical estimates for the behavior of the average acoustic field intensity and show that at different distances, the features of propagation loss behavior are determined by the intensity of fluctuations and their horizontal scale and depend on the initial regular parameters, such as the emission frequency and size of sound losses in the bottom. We establish analytically that for the considered waveguide and sound frequency parameters, mode coupling effect has a local character and weakly influences the statistics. We establish that the specific form of the spatial spectrum of sound velocity inhomogeneities for the statistical patterns of the field intensity is insignificant during observations in the range of shallow-water distances of practical interest.
Finite mode analysis through harmonic waveguides
Alieva; Wolf
2000-08-01
The mode analysis of signals in a multimodal shallow harmonic waveguide whose eigenfrequencies are equally spaced and finite can be performed by an optoelectronic device, of which the optical part uses the guide to sample the wave field at a number of sensors along its axis and the electronic part computes their fast Fourier transform. We illustrate this process with the Kravchuk transform.
Ranging bowhead whale calls in a shallow-water dispersive waveguide.
Abadi, Shima H; Thode, Aaron M; Blackwell, Susanna B; Dowling, David R
2014-07-01
This paper presents the performance of three methods for estimating the range of broadband (50-500 Hz) bowhead whale calls in a nominally 55-m-deep waveguide: Conventional mode filtering (CMF), synthetic time reversal (STR), and triangulation. The first two methods use a linear vertical array to exploit dispersive propagation effects in the underwater sound channel. The triangulation technique used here, while requiring no knowledge about the propagation environment, relies on a distributed array of directional autonomous seafloor acoustics recorders (DASARs) arranged in triangular grid with 7 km spacing. This study uses simulations and acoustic data collected in 2010 from coastal waters near Kaktovik, Alaska. At that time, a 12-element vertical array, spanning the bottom 63% of the water column, was deployed alongside a distributed array of seven DASARs. The estimated call location-to-array ranges determined from CMF and STR are compared with DASAR triangulation results for 19 whale calls. The vertical-array ranging results are generally within ±10% of the DASAR results with the STR results providing slightly better agreement. The results also indicate that the vertical array can range calls over larger ranges and with greater precision than the particular distributed array discussed here, whenever the call locations are beyond the distributed array boundaries.
Sarkar, Jit; Cornuelle, Bruce D; Kuperman, W A
2011-09-01
Wave-theoretic ocean acoustic propagation modeling is used to derive the sensitivity of pressure, and complex demodulated amplitude and phase, at a receiver to the sound speed of the medium using the Born-Fréchet derivative. Although the procedure can be applied for pressure as a function of frequency instead of time, the time domain has advantages in practical problems, as linearity and signal-to-noise are more easily assigned in the time domain. The linearity and information content of these sensitivity kernels is explored for an example of a 3-4 kHz broadband pulse transmission in a 1 km shallow water Pekeris waveguide. Full-wave observations (pressure as a function of time) are seen to be too nonlinear for use in most practical cases, whereas envelope and phase data have a wider range of validity and provide complementary information. These results are used in simulated inversions with a more realistic sound speed profile, comparing the performance of amplitude and phase observations. © 2011 Acoustical Society of America
Two-dimensional water acoustic waveguide based on pressure compensation method
NASA Astrophysics Data System (ADS)
Zheng, Mingye; Chen, Yi; Liu, Xiaoning; Hu, Gengkai
2018-02-01
A two-dimensional (2D) waveguide is a basic facility for experiment measurement due to a much more simplified wave field pattern than that in free space. A waveguide for airborne sound is easily achieved with almost any solid plates. However, the design of a 2D water acoustic waveguide is still challenging because of unavailable solids with a sufficient large impedance difference from water. In this work, a new method of constructing a 2D water acoustic waveguide is proposed based on pressure compensation and has been verified by numerical simulation. A prototype of the water acoustic waveguide is fabricated and complemented by an acoustic pressure scanning system; the measured scattered pressure fields by air and aluminum cylinders both agree quite well with numerical simulations. Most acoustic pressure fields within a frequency range 7 kHz-15 kHz can be measured in this waveguide when the required scanning region is smaller than the aluminum plate area (1800 mm × 800 mm).
30GHz Ge electro-absorption modulator integrated with 3 μm silicon-on-insulator waveguide.
Feng, Ning-Ning; Feng, Dazeng; Liao, Shirong; Wang, Xin; Dong, Po; Liang, Hong; Kung, Cheng-Chih; Qian, Wei; Fong, Joan; Shafiiha, Roshanak; Luo, Ying; Cunningham, Jack; Krishnamoorthy, Ashok V; Asghari, Mehdi
2011-04-11
We demonstrate a compact waveguide-based high-speed Ge electro-absorption (EA) modulator integrated with a single mode 3 µm silicon-on-isolator (SOI) waveguide. The Ge EA modulator is based on a horizontally-oriented p-i-n structure butt-coupled with a deep-etched silicon waveguide, which transitions adiabatically to a shallow-etched single mode large core SOI waveguide. The demonstrated device has a compact active region of 1.0 × 45 µm(2), a total insertion loss of 2.5-5 dB and an extinction ratio of 4-7.5 dB over a wavelength range of 1610-1640 nm with -4V(pp) bias. The estimated Δα/α value is in the range of 2-3.3. The 3 dB bandwidth measurements show that the device is capable of operating at more than 30 GHz. Clear eye-diagram openings at 12.5 Gbps demonstrates large signal modulation at high transmission rate. © 2011 Optical Society of America
Tran, Duong D; Huang, Wei; Bohn, Alexander C; Wang, Delin; Gong, Zheng; Makris, Nicholas C; Ratilal, Purnima
2014-06-01
Sperm whales in the New England continental shelf and slope were passively localized, in both range and bearing, and classified using a single low-frequency (<2500 Hz), densely sampled, towed horizontal coherent hydrophone array system. Whale bearings were estimated using time-domain beamforming that provided high coherent array gain in sperm whale click signal-to-noise ratio. Whale ranges from the receiver array center were estimated using the moving array triangulation technique from a sequence of whale bearing measurements. Multiple concurrently vocalizing sperm whales, in the far-field of the horizontal receiver array, were distinguished and classified based on their horizontal spatial locations and the inter-pulse intervals of their vocalized click signals. The dive profile was estimated for a sperm whale in the shallow waters of the Gulf of Maine with 160 m water-column depth located close to the array's near-field where depth estimation was feasible by employing time difference of arrival of the direct and multiply reflected click signals received on the horizontal array. By accounting for transmission loss modeled using an ocean waveguide-acoustic propagation model, the sperm whale detection range was found to exceed 60 km in low to moderate sea state conditions after coherent array processing.
High-rate synthetic aperture communications in shallow water.
Song, H C; Hodgkiss, W S; Kuperman, W A; Akal, T; Stevenson, M
2009-12-01
Time reversal communication exploits spatial diversity to achieve spatial and temporal focusing in complex ocean environments. Spatial diversity can be provided easily by a vertical array in a waveguide. Alternatively, spatial diversity can be obtained from a virtual horizontal array generated by two elements, a transmitter and a receiver, due to relative motion between them, referred to as a synthetic aperture. This paper presents coherent synthetic aperture communication results from at-sea experiments conducted in two different frequency bands: (1) 2-4 kHz and (2) 8-20 kHz. Case (1) employs binary-phase shift-keying modulation, while case (2) involves up to eight-phase shift keying modulation with a data rate of 30 kbits/s divided by the number of transmissions (diversity) to be accumulated. The receiver utilizes time reversal diversity combining followed by a single channel equalizer, with frequent channel updates to accommodate the time-varying channel due to coupling of space and time in the presence of motion. Two to five consecutive transmissions from a source moving at 4 kts over 3-6 km range in shallow water are combined successfully after Doppler compensation, confirming the feasibility of coherent synthetic aperture communications using time reversal.
Femtosecond laser micromachining of waveguides in silicone-based hydrogel polymers.
Ding, Li; Blackwell, Richard I; Künzler, Jay F; Knox, Wayne H
2008-06-10
By tightly focusing 27 fs laser pulses from a Ti:sapphire oscillator with 1.3 nJ pulse energy at 93 MHz repetition rate, we are able to fabricate optical waveguides inside hydrogel polymers containing approximately 36% water by weight. A tapered lensed fiber is used to couple laser light at a wavelength of 632.8 nm into these waveguides within a water environment. Strong waveguiding is observed due to large refractive index changes. A large waveguide propagation loss is found, and we show that this is caused by surface roughness which can be reduced by optimizing the waveguides.
Sound Propagation in Shallow Water with an Inhomogeneous GAS-Saturated Bottom
NASA Astrophysics Data System (ADS)
Grigor'ev, V. A.; Petnikov, V. G.; Roslyakov, A. G.; Terekhina, Ya. E.
2018-05-01
We present the methods and results of numerical experiments studying the low-frequency sound propagation in one of the areas of the Arctic shelf with a randomly inhomogeneous gas-saturated bottom. The characteristics of the upper layer of bottom sedimentary rocks (sediments) used in calculations were obtained during a 3D seismic survey and trial drilling of the seafloor. We demonstrate the possibilities of substituting in numerical simulation a real bottom with a fluid homogeneous half-space where the effective value of the sound speed is equal to the average sound speed in the bottom, with averaging along the sound propagation path to a sediment depth of 0.6 wavelength in the bottom. An original technique is proposed for estimating the sound speed propagation in an upper inhomogeneous sediment layer. The technique is based on measurements of acoustic wave attenuation in water during waveguide propagation.
Seismo-acoustic ray model benchmarking against experimental tank data.
Camargo Rodríguez, Orlando; Collis, Jon M; Simpson, Harry J; Ey, Emanuel; Schneiderwind, Joseph; Felisberto, Paulo
2012-08-01
Acoustic predictions of the recently developed traceo ray model, which accounts for bottom shear properties, are benchmarked against tank experimental data from the EPEE-1 and EPEE-2 (Elastic Parabolic Equation Experiment) experiments. Both experiments are representative of signal propagation in a Pekeris-like shallow-water waveguide over a non-flat isotropic elastic bottom, where significant interaction of the signal with the bottom can be expected. The benchmarks show, in particular, that the ray model can be as accurate as a parabolic approximation model benchmarked in similar conditions. The results of benchmarking are important, on one side, as a preliminary experimental validation of the model and, on the other side, demonstrates the reliability of the ray approach for seismo-acoustic applications.
Controlling soliton refraction in optical lattices.
Prilepsky, Jaroslaw E; Derevyanko, Stanislav A; Gredeskul, Sergey A
2011-08-19
We show in the framework of the 1D nonlinear Schrödinger equation that the value of the refraction angle of a fundamental soliton beam passing through an optical lattice can be controlled by adjusting either the shape of an individual waveguide or the relative positions of the waveguides. In the case of the shallow refractive index modulation, we develop a general approach for the calculation of the refraction angle change. The shape of a single waveguide crucially affects the refraction direction due to the appearance of a structural form factor in the expression for the density of emitted waves. For a lattice of scatterers, wave-soliton interference inside the lattice leads to the appearance of an additional geometric form factor. As a result, the soliton refraction is more pronounced for the disordered lattices than for the periodic ones. © 2011 American Physical Society
NASA Astrophysics Data System (ADS)
Knobles, David; Stotts, Steven; Sagers, Jason
2012-03-01
Why can one obtain from similar measurements a greater amount of information about cosmological parameters than seabed parameters in ocean waveguides? The cosmological measurements are in the form of a power spectrum constructed from spatial correlations of temperature fluctuations within the microwave background radiation. The seabed acoustic measurements are in the form of spatial correlations along the length of a spatial aperture. This study explores the above question from the perspective of posterior probability distributions obtained from maximizing a relative entropy functional. An answer is in part that the seabed in shallow ocean environments generally has large temporal and spatial inhomogeneities, whereas the early universe was a nearly homogeneous cosmological soup with small but important fluctuations. Acoustic propagation models used in shallow water acoustics generally do not capture spatial and temporal variability sufficiently well, which leads to model error dominating the statistical inference problem. This is not the case in cosmology. Further, the physics of the acoustic modes in cosmology is that of a standing wave with simple initial conditions, whereas for underwater acoustics it is a traveling wave in a strongly inhomogeneous bounded medium.
Stacked waveguide reactors with gradient embedded scatterers for high-capacity water cleaning
Ahsan, Syed Saad; Gumus, Abdurrahman; Erickson, David
2015-11-04
We present a compact water-cleaning reactor with stacked layers of waveguides containing gradient patterns of optical scatterers that enable uniform light distribution and augmented water-cleaning rates. Previous photocatalytic reactors using immersion, external, or distributive lamps suffer from poor light distribution that impedes scalability. Here, we use an external UV-source to direct photons into stacked waveguide reactors where we scatter the photons uniformly over the length of the waveguide to thin films of TiO 2-catalysts. In conclusion, we also show 4.5 times improvement in activity over uniform scatterer designs, demonstrate a degradation of 67% of the organic dye, and characterize themore » degradation rate constant.« less
Stacked waveguide reactors with gradient embedded scatterers for high-capacity water cleaning
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ahsan, Syed Saad; Gumus, Abdurrahman; Erickson, David
We present a compact water-cleaning reactor with stacked layers of waveguides containing gradient patterns of optical scatterers that enable uniform light distribution and augmented water-cleaning rates. Previous photocatalytic reactors using immersion, external, or distributive lamps suffer from poor light distribution that impedes scalability. Here, we use an external UV-source to direct photons into stacked waveguide reactors where we scatter the photons uniformly over the length of the waveguide to thin films of TiO 2-catalysts. In conclusion, we also show 4.5 times improvement in activity over uniform scatterer designs, demonstrate a degradation of 67% of the organic dye, and characterize themore » degradation rate constant.« less
Petrov, Pavel S; Sturm, Frédéric
2016-03-01
A problem of sound propagation in a shallow-water waveguide with a weakly sloping penetrable bottom is considered. The adiabatic mode parabolic equations are used to approximate the solution of the three-dimensional (3D) Helmholtz equation by modal decomposition of the acoustic pressure field. The mode amplitudes satisfy parabolic equations that admit analytical solutions in the special case of the 3D wedge. Using the analytical formula for modal amplitudes, an explicit and remarkably simple expression for the acoustic pressure in the wedge is obtained. The proposed solution is validated by the comparison with a solution of the 3D penetrable wedge problem obtained using a fully 3D parabolic equation that includes a leading-order cross term correction.
NASA Astrophysics Data System (ADS)
Rymanov, Vitaly; Tekin, Tolga; Stöhr, Andreas
2012-03-01
High data rate photonic wireless systems operating at millimeter wave carrier frequencies are considered as a disruptive technology e.g. for reach extension in optical access networks and for mobile backhauling. Recently, we demonstrated 60 GHz photonic wireless systems with record data rates up to 27 Gbit/s. Because of the oxygen absorption at 60 GHz, it is beneficial for fixed wireless systems with spans exceeding 1 km to operate at even higher frequencies. Here, the recently regulated 10 GHz bandwidth within the E-band (60-90 GHz) is of particular interest, covering the 71-76 GHz and 81-86 GHz allocations for multi-gigabit wireless transmission. For this purpose, wideband waveguide photodetectors with high external quantum efficiency are required. Here, we report on double mushroom 1.55 μm waveguide photodetectors for integration in an E-band wireless transmitter module. The developed photodetector consists of a partially p-doped, partly non-intentionally doped absorbing layer centered in a mushroom-type optical waveguide, overcoming the compromise between the junction capacitance and the series resistance. For efficient fiber-chip coupling, a second mushroom-type passive optical waveguide is used. In contrast to the conventional shallow ridge waveguide approach, the mushroom-type passive waveguide allows to shift the center of the optical mode further away from the top surface, thus reducing waveguide losses due to the surface roughness. Experimentally, a very flat frequency response with a deviation up to +/-1 dB in the entire E-band has been found together with an output power level of -15.7 dBm at 10 mA photocurrent and at a frequency of 73 GHz.
A waveguide-on-access-tube (WOAT) TDR sensor for deep soil water content and bulk EC
USDA-ARS?s Scientific Manuscript database
A waveguide-on-access-tube (WOAT) TDR sensor was invented and the design optimized through a combination of electromagnetic modeling and several rounds of prototyping and testing in air, water, mixtures of water and ethylene glycol, sand, and silty clay loam soils over a range of water contents and ...
NASA Astrophysics Data System (ADS)
Tran, Duong Duy
The statistics of broadband acoustic signal transmissions in a random continental shelf waveguide are characterized for the fully saturated regime. The probability distribution of broadband signal energies after saturated multi-path propagation is derived using coherence theory. The frequency components obtained from Fourier decomposition of a broadband signal are each assumed to be fully saturated, where the energy spectral density obeys the exponential distribution with 5.6 dB standard deviation and unity scintillation index. When the signal bandwidth and measurement time are respectively larger than the correlation bandwidth and correlation time of its energy spectral density components, the broadband signal energy obtained by integrating the energy spectral density across the signal bandwidth then follows the Gamma distribution with standard deviation smaller than 5.6 dB and scintillation index less than unity. The theory is verified with broadband transmissions in the Gulf of Maine shallow water waveguide in the 300-1200 Hz frequency range. The standard deviations of received broadband signal energies range from 2.7 to 4.6 dB for effective bandwidths up to 42 Hz, while the standard deviations of individual energy spectral density components are roughly 5.6 dB. The energy spectral density correlation bandwidths of the received broadband signals are found to be larger for signals with higher center frequency. Sperm whales in the New England continental shelf and slope were passively localized, in both range and bearing using a single low-frequency (< 2500 Hz), densely sampled, towed horizontal coherent hydrophone array system. Whale bearings were estimated using time-domain beamforming that provided high coherent array gain in sperm whale click signal-to-noise ratio. Whale ranges from the receiver array center were estimated using the moving array triangulation technique from a sequence of whale bearing measurements. The dive profile was estimated for a sperm whale in the shallow waters of the Gulf of Maine with 160 m water-column depth, located close to the array's near-field where depth estimation was feasible by employing time difference of arrival of the direct and multiply reflected click signals received on the array. The dependence of broadband energy on bandwidth and measurement time was verified employing recorded sperm whale clicks in the Gulf of Maine.
The impact of glacier meltwater on the underwater noise field in a glacial bay
NASA Astrophysics Data System (ADS)
Glowacki, Oskar; Moskalik, Mateusz; Deane, Grant B.
2016-12-01
Ambient noise oceanography is proving to be an efficient and effective tool for the study of ice-ocean interactions in the bays of marine-terminating glaciers. However, obtaining quantitative estimates of ice melting or calving processes from ambient noise requires an understanding of how sound propagation through the bay attenuates and filters the noise spectrum. Measurements of the vertical structure in sound speed in the vicinity of the Hans Glacier in Hornsund Fjord, Spitsbergen, made with O(130) CTD casts between May and November 2015, reveal high-gradient, upward-refracting sound speed profiles created by cold, fresh meltwater during summer months. Simultaneous recordings of underwater ambient noise made at depths of 1, 10, and 20 m in combination with propagation model calculations using the model Bellhop illustrate the dominant role these surface ducts play in shaping the underwater soundscape. The surface ducts lead to a higher intensity and greater variability of acoustic energy in the near-surface layer covered by glacially modified waters relative to deeper waters, indicating deeper zones as most appropriate for interseasonal acoustic monitoring of the glacial melt. Surface waveguides in Hornsund are relatively shallow and trap sound above O(1 kHz). Deeper waveguides observed elsewhere will also trap low-frequency sounds, such as those generated by calving events for example. Finally, the ambient noise field in Hornsund is shown to be strongly dependent on the distribution of ice throughout the bay, stressing the importance of performing complementary environmental measurements when interpreting the results of acoustic surveys.
Goos-Hänchen effect in semiconductor metamaterial waveguide and its application as a biosensor
NASA Astrophysics Data System (ADS)
Tang, Tingting; Li, Chaoyang; Luo, Li; Zhang, Yanfen; Li, Jie
2016-06-01
We investigate Goos-Hänchen (GH) effect in a prism waveguide coupling structure with semiconductor metamaterial (SMM) of ZnGaO/ZnO multilayer and explore the possibility as a biosensor. The GH effect in three different waveguides and their performances as a refractive index sensor to detect glycerol concentration in water are analyzed. The SMM brings a periodic property of GH shift peaks which is not found in other waveguides. It is also verified that setting coupling layer of the prism waveguide coupling structure as sensing area is an effective method to significantly increase the sensitivity to refractive index variation. A schematic diagram for the biosensor configuration is designed, and the sensitivity distribution for different glycerol water index is given. Calculation results show that in the proposed biosensor the maximum sensitivity reaches 3.2 × 106 μm/RIU and resolution reaches 1.6 × 10-7 (around 1.33306) with high sensitive position sensitive detector.
Modeling sound propagation in a waveguide with a gas-saturated sedimentary layer
NASA Astrophysics Data System (ADS)
Yarina, M. V.
2017-11-01
There was developed an acoustic wave propagation model in a waveguide, where the bottom is represented as a gas-saturated layer. This study uses the ray theory because the investigation of shallow reservoirs with a gas-saturated bottom requires modeling the sound field on short distances. The theory takes into account the rays passing through a gas-saturated layer. The obtained model was used in order to define the distance and the depth of the receiving array (in a horizontal position) elements. The experiment was carried out in the Klyazma reservoir in 2014. In accordance with the peculiarities of the experiment (short distance between receiving array and radiator; irregular array of the radiated signal) there was designed an algorithm agreed with the processing environment in the time domain.
Thermal comparison of buried-heterostructure and shallow-ridge lasers
NASA Astrophysics Data System (ADS)
Rustichelli, V.; Lemaître, F.; Ambrosius, H. P. M. M.; Brenot, R.; Williams, K. A.
2018-02-01
We present finite difference thermal modeling to predict temperature distribution, heat flux, and thermal resistance inside lasers with different waveguide geometries. We provide a quantitative experimental and theoretical comparison of the thermal behavior of shallow-ridge (SR) and buried-heterostructure (BH) lasers. We investigate the influence of a split heat source to describe p-layer Joule heating and nonradiative energy loss in the active layer and the heat-sinking from top as well as bottom when quantifying thermal impedance. From both measured values and numerical modeling we can quantify the thermal resistance for BH lasers and SR lasers, showing an improved thermal performance from 50K/W to 30K/W for otherwise equivalent BH laser designs.
Initial results for a 170 GHz high power ITER waveguide component test stand
NASA Astrophysics Data System (ADS)
Bigelow, Timothy; Barker, Alan; Dukes, Carl; Killough, Stephen; Kaufman, Michael; White, John; Bell, Gary; Hanson, Greg; Rasmussen, Dave
2014-10-01
A high power microwave test stand is being setup at ORNL to enable prototype testing of 170 GHz cw waveguide components being developed for the ITER ECH system. The ITER ECH system will utilize 63.5 mm diameter evacuated corrugated waveguide and will have 24 >150 m long runs. A 170 GHz 1 MW class gyrotron is being developed by Communications and Power Industries and is nearing completion. A HVDC power supply, water-cooling and control system has been partially tested in preparation for arrival of the gyrotron. The power supply and water-cooling system are being designed to operate for >3600 second pulses to simulate the operating conditions planned for the ITER ECH system. The gyrotron Gaussian beam output has a single mirror for focusing into a 63.5 mm corrugated waveguide in the vertical plane. The output beam and mirror are enclosed in an evacuated duct with absorber for stray radiation. Beam alignment with the waveguide is a critical task so a combination of mirror tilt adjustments and a bellows for offsets will be provided. Analysis of thermal patterns on thin witness plates will provide gyrotron mode purity and waveguide coupling efficiency data. Pre-prototype waveguide components and two dummy loads are available for initial operational testing of the gyrotron. ORNL is managed by UT-Battelle, LLC, for the U.S. Dept. of Energy under Contract DE-AC-05-00OR22725.
Peng, Z.; Ben-Zion, Y.; Michael, A.J.; Zhu, L.
2003-01-01
We analyse quantitatively a waveform data set of 238 earthquakes recorded by a dense seismic array across and along the rupture zone of the 1992 Landers earthquake. A grid-search method with station delay corrections is used to locate events that do not have catalogue locations. The quality of fault zone trapped waves generated by each event is determined from the ratios of seismic energy in time windows corresponding to trapped waves and direct S waves at stations close to and off the fault zone. Approximately 70 per cent of the events with S-P times of less than 2 s, including many clearly off the fault, produce considerable trapped wave energy. This distribution is in marked contrast with previous claims that trapped waves are generated only by sources close to or inside the Landers rupture zone. The time difference between the S arrival and trapped waves group does not grow systematically with increasing hypocentral distance and depth. The dispersion measured from the trapped waves is weak. These results imply that the seismic trapping structure at the Landers rupture zone is shallow and does not extend continuously along-strike by more than a few kilometres. Synthetic waveform modelling indicates that the fault zone waveguide has depth of approximately 2-4 km, a width of approximately 200 m, an S-wave velocity reduction relative to the host rock of approximately 30-40 per cent and an S-wave attenuation coefficient of approximately 20-30. The fault zone waveguide north of the array appears to be shallower and weaker than that south of the array. The waveform modelling also indicates that the seismic trapping structure below the array is centred approximately 100 m east of the surface break.
From Offshore to Onshore: Multiple Origins of Shallow-Water Corals from Deep-Sea Ancestors
Lindner, Alberto; Cairns, Stephen D.; Cunningham, Clifford W.
2008-01-01
Shallow-water tropical reefs and the deep sea represent the two most diverse marine environments. Understanding the origin and diversification of this biodiversity is a major quest in ecology and evolution. The most prominent and well-supported explanation, articulated since the first explorations of the deep sea, holds that benthic marine fauna originated in shallow, onshore environments, and diversified into deeper waters. In contrast, evidence that groups of marine organisms originated in the deep sea is limited, and the possibility that deep-water taxa have contributed to the formation of shallow-water communities remains untested with phylogenetic methods. Here we show that stylasterid corals (Cnidaria: Hydrozoa: Stylasteridae)—the second most diverse group of hard corals—originated and diversified extensively in the deep sea, and subsequently invaded shallow waters. Our phylogenetic results show that deep-water stylasterid corals have invaded the shallow-water tropics three times, with one additional invasion of the shallow-water temperate zone. Our results also show that anti-predatory innovations arose in the deep sea, but were not involved in the shallow-water invasions. These findings are the first robust evidence that an important group of tropical shallow-water marine animals evolved from deep-water ancestors. PMID:18560569
Photocatalytic oxidation of organic compounds via waveguide-supported titanium dioxide films
NASA Astrophysics Data System (ADS)
Miller, Lawrence W.
A photochemical reactor based on titanium dioxide (TiO2)-coated silica optical fibers was constructed to explore the use of waveguide-supported TiO2 films for photocatalytic oxidation of organic compounds. The reactor was used for the photocatalytic oxidation of 4-chlorophenol in water. It was confirmed that TiO2 films could be securely attached to silica optical fibers. The 4-chlorophenol (100 mumol/L in water) was successfully oxidized on the TiO2 surface when UV light (310 nm--380 nm) was propagated through the fibers to the films. Rates of 4-chlorophenol oxidation and UV light flux to the fibers were measured. The quantum efficiency of 4-chlorophenol oxidation [defined as the change in 4-chlorophenol concentration divided by the UV light absorbed by the catalyst] was determined as a function of TiO2 catalyst film thickness and internal incident angle of propagating UV light. A maximum quantum efficiency of 2.8% was measured when TiO2 film thickness was ca. 80 nm and the maximum internal incident angle of propagating light was 84°. Quantum efficiency increased with increasing internal angle of incidence of propagating light and decreased with TiO2 film thickness. UV-Visible internal reflection spectroscopy was used to determine whether UV light propagated through TiO2-coated silica waveguides in an ATR mode. Propagation of UV light in an ATR mode was confirmed by the similarities between internal reflection spectra of phenolphthalein obtained with uncoated and TiO2-coated silica crystals. Planar silica waveguides coated with TiO2 were employed in a photocatalytic reactor for the oxidation of formic acid (833 mumol/L in water). It was shown that the quantum yield of formic acid oxidation [defined as the moles of formic acid oxidized divided by the moles of UV photons absorbed by the catalyst] on the waveguide-supported TiO2 surface is enhanced when UV light propagates through the waveguides in an ATR mode. A maximum quantum yield of 3.9% was found for formic acid oxidation on silica waveguides. The waveguides were coated with 150 nm of TiO2 and activated with UV light (lambdamax = 360 nm) propagating through the waveguides at an internal incident angle of 68°.
Nonlinear ball chain waveguides for acoustic emission and ultrasound sensing of ablation
NASA Astrophysics Data System (ADS)
Pearson, Stephen H.
Harsh environment acoustic emission and ultrasonic wave sensing applications often benefit from placing the sensor in a remote and more benign physical location by using waveguides to transmit elastic waves between the structural location under test and the transducer. Waveguides are normally designed to have high fidelity over broad frequency ranges to minimize distortion -- often difficult to achieve in practice. This thesis reports on an examination of using nonlinear ball chain waveguides for the transmission of acoustic emission and ultrasonic waves for the monitoring of thermal protection systems undergoing severe heat loading, leading to ablation and similar processes. Experiments test the nonlinear propagation of solitary, harmonic and mixed harmonic elastic waves through a copper tube filled with steel and elastomer balls and various other waveguides. Triangulation of pencil lead breaks occurs on a steel plate. Data are collected concerning the usage of linear waveguides and a water-cooled linear waveguide. Data are collected from a second water-cooled waveguide monitoring Atmospheric Reentry Materials in UVM's Inductively-Coupled Plasma Torch Facility. The motion of the particles in the dimer waveguides is linearly modeled with a three ball and spring chain model and the results are compared per particle. A theoretical nonlinear model is presented which is capable of exactly modeling the motion of the dimer chains. The shape of the waveform propagating through the dimer chain is modeled in a sonic vacuum. Mechanical pulses of varying time widths and amplitudes are launched into one end of the ball chain waveguide and observed at the other end in both time and frequency domains. Similarly, harmonic and mixed harmonic mechanical loads are applied to one end of the waveguide. Balls of different materials are analyzed and discriminated into categories. A copper tube packed with six steel particles, nine steel or marble particles and a longer copper tube packed with 17 steel particles are studied with a frequency sweep. The deformation experienced by a single steel particle in the dimer chain is approximated. Steel ball waveguides and steel rods are fitted with piezoelectric sensors to monitor the force at different points inside the waveguide during testing. The corresponding frequency responses, including intermodulation products, are compared based on amplitude and preloads. A nonlinear mechanical model describes the motion of the dimer chains in a vacuum. Based on the results of these studies it is anticipated that a nonlinear waveguide will be designed, built, and tested as a possible replacement for the high-fidelity waveguides presently being used in an Inductively Coupled Plasma Torch facility for high heat flux thermal protection system testing. The design is intended to accentuate acoustic emission signals of interest, while suppressing other forms of elastic wave noise.
Federal Register 2010, 2011, 2012, 2013, 2014
2011-09-07
.... 101126522-0640-02] RIN 0648-XA680 Fisheries of the Economic Exclusive Zone Off Alaska; Shallow- Water...; closure. SUMMARY: NMFS is prohibiting directed fishing for species that comprise the shallow-water species... fourth seasonal apportionment of the Pacific halibut bycatch allowance specified for the shallow-water...
Federal Register 2010, 2011, 2012, 2013, 2014
2012-09-06
.... 111207737-2141-02] RIN 0648-XC204 Fisheries of the Economic Exclusive Zone Off Alaska; Shallow- Water...; closure. SUMMARY: NMFS is prohibiting directed fishing for species that comprise the shallow-water species... fourth seasonal apportionment of the Pacific halibut bycatch allowance specified for the shallow-water...
Federal Register 2010, 2011, 2012, 2013, 2014
2012-06-05
.... 111207737-2141-02] RIN 0648-XC056 Fisheries of the Economic Exclusive Zone Off Alaska; Shallow- Water...; closure. SUMMARY: NMFS is prohibiting directed fishing for species that comprise the shallow-water species... second seasonal apportionment of the Pacific halibut bycatch allowance specified for the shallow-water...
Federal Register 2010, 2011, 2012, 2013, 2014
2012-03-30
.... 111207737-2141-02] RIN 0648-XB122 Fisheries of the Economic Exclusive Zone Off Alaska; Shallow- Water...; closure. SUMMARY: NMFS is prohibiting directed fishing for species that comprise the shallow-water species... first seasonal apportionment of the Pacific halibut bycatch allowance specified for the shallow-water...
2015-09-30
1 DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. Shallow- Water Mud Acoustics William L. Siegmann...shallow water over mud sediments and of acoustic detection, localization, and classification of objects buried in mud. OBJECTIVES • Develop...including long-range conveyance of information; detection, localization, and classification of objects buried in mud; and improvement of shallow water
Optic nerve sheath fenestration using a Raman-shifted alexandrite laser
Kozub, John; Shen, Jin-H.; Joos, Karen M.; Prasad, Ratna; Hutson, M. Shane
2016-01-01
Background and Objective Optic nerve sheath fenestration is an established procedure for relief of potentially damaging overpressure on the optic nerve resulting from idiopathic intracranial hypertension. Prior work showed that a mid-IR free-electron laser could be delivered endoscopically and used to produce an effective fenestration. This study evaluates the efficacy of fenestration using a table-top mid-IR source based on a Raman-shifted alexandrite (RSA) laser. Study Design/Materials and Methods Porcine optic nerves were ablated using light from an RSA laser at wavelengths of 6.09, 6.27 and 6.43 μm and pulse energies up to 3 mJ using both free-space and endoscopic beam delivery through 250-μm I.D. hollow-glass waveguides. Waveguide transmission was characterized, ablation thresholds and etch rates were measured, and the efficacy of endoscopic fenestration was evaluated for ex vivo exposures using both optical coherence tomography and histological analysis. Results Using endoscopic delivery, the RSA laser can effectively fenestrate porcine optic nerves. Performance was optimized at a wavelength of 6.09 μm and delivered pulse energies of 0.5-0.8 mJ (requiring 1.5-2.5 mJ to be incident on the waveguide). Under these conditions, the ablation threshold fluence was 0.8 ± 0.2 J/cm2, the ablation rate was 1-4 μm/pulse, and the margins of ablation craters showed little evidence of thermal or mechanical damage. Nonetheless, nominally identical exposures yielded highly variable ablation rates. This led to fenestrations that ranged from too deep to too shallow – either damaging the underlying optic nerve or requiring additional exposure to cut fully through the sheath. Of 48 excised nerves subjected to fenestration at 6.09 μm, 16 ex vivo fenestrations were judged as good, 23 as too deep, and 9 as too shallow. Conclusions Mid-IR pulses from the RSA laser, propagated through a flexible hollow waveguide, are capable of cutting through porcine optic nerve sheaths in surgically relevant times with reasonable accuracy and low collateral damage. This can be accomplished at wavelengths of 6.09 or 6.27 μm, with 6.09 μm slightly preferred. The depth of ex vivo fenestrations was difficult to control, but excised nerves lack a sufficient layer of cerebrospinal fluid that would provide an additional margin of safety in actual patients. PMID:27020001
Senspex, Inc. proposes to investigate a novel diagnostic tool based upon evanescent field planar waveguide sensing and complementary nanostructured mediated molecular vibration spectroscopy methods for rapid detection and analysis of hazardous biological and chemical targets i...
Walton, J.; Ohlmacher, G.; Utz, D.; Kutianawala, M.
1999-01-01
The El Paso-Ciudad Juarez metropolitan area obtains its water from the Rio Grande and intermontane-basin aquifers. Shallow ground water in this region is in close communications with the surface water system. A major problem with both systems is salinity. Upstream usage of the water in the Rio Grande for irrigation and municipalities has led to concentration of soluble salts to the point where the surface water commonly exceeds drinking water standards. Shallow ground water is recharged by surface water (primarily irrigation canals and agricultural fields) and discharges to surface water (agricultural drains) and deeper ground water. The source of water entering the Rio Grande varies seasonally. During the irrigation season, water is released from reservoirs and mixes with the return flow from irrigation drains. During the non-irrigation season (winter), flow is from irrigation drains and river water quality is indicative of shallow ground water. The annual cycle can be ascertained from the inverse correlation between ion concentrations and discharge in the river. Water-quality data indicate that the salinity of shallow ground water increases each year during a drought. Water-management strategies in the region can affect water quality. Increasing the pumping rate of water-supply wells will cause shallow ground water to flow into the deeper aquifers and degrade the water quality. Lining the canals in the irrigation system to stop water leakage will lead to water quality degradation in shallow ground water and, eventually, deep ground water by removing a major source of high quality recharge that currently lowers the salinity of the shallow ground water.
Federal Register 2010, 2011, 2012, 2013, 2014
2012-02-29
.... 101126522-0640-02] RIN 0648-XB044 Fisheries of the Economic Exclusive Zone Off Alaska; Shallow- Water...: NMFS is prohibiting directed fishing for species that comprise the shallow-water species fishery by... shallow-water species fishery by Amendment 80 vessels in the GOA has been reached. DATES: Effective 1200...
Federal Register 2010, 2011, 2012, 2013, 2014
2010-09-07
.... 0910131362-0087-02] RIN 0648-XY78 Fisheries of the Economic Exclusive Zone Off Alaska; Shallow- Water Species...: NMFS is prohibiting directed fishing for species that comprise the shallow-water species fishery by... apportionment of the Pacific halibut bycatch allowance specified for the shallow-water species fishery in the...
Federal Register 2010, 2011, 2012, 2013, 2014
2011-07-07
.... 101126522-0640-02] RIN 0648-XA539 Fisheries of the Economic Exclusive Zone Off Alaska; Shallow- Water...; closure. SUMMARY: NMFS is prohibiting directed fishing for species that comprise the shallow-water species... species catch (PSC) sideboard limit specified for the shallow-water species fishery for catcher/processors...
Federal Register 2010, 2011, 2012, 2013, 2014
2010-07-07
.... 0910131362-0087-02] RIN 0648-XX31 Fisheries of the Economic Exclusive Zone Off Alaska; Shallow- Water Species...: NMFS is prohibiting directed fishing for species that comprise the shallow-water species fishery for... (PSC) sideboard limit specified for the shallow-water species fishery for catcher/processors subject to...
Federal Register 2010, 2011, 2012, 2013, 2014
2012-07-18
.... 111207737-2141-02] RIN 0648-0648-XC112 Fisheries of the Economic Exclusive Zone Off Alaska; Shallow- Water...; closure. SUMMARY: NMFS is prohibiting directed fishing for species that comprise the shallow-water species... third seasonal apportionment of the Pacific halibut bycatch allowance specified for the shallow-water...
Federal Register 2010, 2011, 2012, 2013, 2014
2011-09-16
.... 101126522-0640-02] RIN 0648-XA704 Fisheries of the Exclusive Economic Zone Off Alaska; Shallow- Water... closure. SUMMARY: NMFS is opening directed fishing for shallow-water species by vessels using trawl gear... apportionment of the 2011 Pacific halibut bycatch allowance specified for the trawl shallow-water species...
Federal Register 2010, 2011, 2012, 2013, 2014
2010-09-15
.... 0910131362-0087-02] RIN 0648-XZ06 Fisheries of the Exclusive Economic Zone Off Alaska; Shallow- Water Species... closure. SUMMARY: NMFS is opening directed fishing for shallow-water species by vessels using trawl gear... of the 2010 Pacific halibut bycatch allowance specified for the trawl shallow-water species fishery...
Xiong, Yan; Wang, Chengjie; Tao, Tao; Duan, Ming; Tan, Jun; Wu, Jiayi; Wang, Dong
2016-05-10
Fluoride concentration is a key aspect of water quality and essential for human health. Too much or too little fluoride intake from water supplies is harmful to public health. In this study, a capillary waveguide integrated fiber-optic sensor was fabricated for fluoride measurement in water samples. The sensor was modularly designed with three parts, i.e., a light source, capillary flow cell and detector. When light propagated from a light emitting diode (LED) to the capillary waveguide cell through an excitation fiber, it interacted with the sensing reagent, and its intensity changed with different fluoride concentrations. Then, the light propagated to the detector through a detection fiber for absorption determination of fluoride according to Beer's law. This miniaturized sensor showed advantages of fast analysis (9.2 s) and small reagent demand (200 μL) per sample, and it also had a low detection limit (8 ppb) and high selectivity for fluoride determination. The sensor was applied to fluoride determination in different water samples. The results obtained were compared with those obtained by conventional spectrophotometry and ion chromatography, showing agreement and validating the sensor's potential application.
Páscoa, Ricardo N M J; Tóth, Ildikó V; Rangel, António O S S
2011-06-15
This work exploits a multi-syringe injection analysis (MSFIA) system coupled with a long liquid waveguide capillary cell for the spectrophotometric determination of zinc and copper in waters. A liquid waveguide capillary cell (1.0m pathlength, 550 μm i.d. and 250 μL internal volume) was used to enhance the sensitivity of the detection. The determination for both ions is based on a colorimetric reaction with zincon at different pH values. The developed methodology compares favourably with other previously described procedures, as it allows to reach low detection limits for both cations (LODs of 0.1 and 2 μg L(-1), for copper and zinc, respectively), without the need for any pre-concentration step. The system also provided a linear response up to 100 μg L(-1) with a high throughput (43 h(-1)) and low reagent consumption and effluent production. The developed work was applied to natural waters and three certified reference water samples. Copyright © 2011 Elsevier B.V. All rights reserved.
Continuous analysis of phosphate in a Greenland shallow ice core
NASA Astrophysics Data System (ADS)
Kjær, Helle Astrid; Svensson, Anders; Bigler, Matthias; Vallelonga, Paul; Kettner, Ernesto; Dahl-Jensen, Dorthe
2010-05-01
Phosphate is an important and sometimes limiting nutrient for primary production in the oceans. Because of deforestation and the use of phosphate as a fertilizer changes in the phosphate cycle have occurred over the last centuries. On longer time scales, sea level changes are thought to have also caused changes in the phosphate cycle. Analyzing phosphate concentrations in ice cores may help to gain important knowledge about those processes. In the present study, we attach a phosphate detection line to an existing continuous flow analysis (CFA) setup for ice core analysis at the University of Copenhagen. The CFA system is optimized for high-resolution measurements of insoluble dust particles, electrolytic melt water conductivity, and the concentrations of ammonium and sodium. For the phosphate analysis we apply a continuous and highly sensitive absorption method that has been successfully applied to determine phosphate concentrations of sea water (Zhang and Chi, 2002). A line of melt water from the CFA melt head (1.01 ml per minute) is combined with a molybdate blue reagent and an ascorbic acid buffer. An uncompleted reaction takes place in five meters of heated mixing coils before the absorption measurement at a wavelength of 710 nanometer takes place in a 2 m long liquid waveguide cell (LWCC) with an inner volume of 0.5 ml. The method has a detection limit of around 0.1 ppb and we are currently investigating a possible interference from molybdate reacting with silicates that are present in low amounts in the ice. Preliminary analysis of early Holocene samples from the NGRIP ice core show phosphate concentration values of a few ppb. In this study, we will attempt to determine past levels of phosphate in a shallow Northern Greenland firn core with an annual layer thickness of about 20 cm ice equivalent. With a melt speed of 2.5 cm ice per minute our method should allow the resolution of any seasonal variability in phosphate concentrations.
Perry, M.C.; Deller, A.S.
1996-01-01
Long-term trends of waterfowl populations in Chesapeake Bay demonstrate the importance of shallow-water habitats for waterfowl species. Although recent increases in field feeding by geese and swans lessened the importance of shallow-water areas for these species, most duck species depend almost exclusively on shallow-water habitats. Many factors influenced the distribution and abundance of waterfowl in shallow-water habitats. Habitat degradation resulted in the decline in numbers of most duck species and a change in distribution of some species. Increased numbers of mallards (Anas platyrhynchos) in recent decades probably resulted from release programs conducted by the Maryland Department of Natural Resources and private individuals. Studies of food habits since 1885 showed a decline in submerged-aquatic vegetation in the diet of some species, such as the canvasback (Aythya valisineria ), and an increase in the proportions of invertebrates in the diet. Diversity of food organisms for many waterfowl species has declined. Surveys of vegetation and invertebrates in the Chesapeake Bay generally reflect a degradation of shallow-water habitat. Human population increases in the Chesapeake Bay watershed directly and indirectly affected waterfowl distribution and abundance. The increase of exotic plant and invertebrate species in the bay, in most cases, benefited waterfowl populations. Increased contaminants have reduced the quality and quantity of habitat, although serious attempts to reverse this trend are underway. The use of shallow-water habitats by humans for fishing, hunting, boating, and other recreational and commercial uses reduced the use of shallow-water habitats by waterfowl. Humans can lessen the adverse influences on the valuable shallow-water habitats by restricting human population growth near these habitats and improving the water quality of the bay tributaries. Other affirmative actions that will improve these areas for waterfowl include greater restrictions on boat traffic in shallow-water habitats and establishing more sanctuaries in shallow-water areas that have complete protection from human disturbance.
Becker, Carol J.
2006-01-01
The aquifer units of the Central Oklahoma aquifer underlie about 2,890 square miles of central Oklahoma and are used extensively to supply water for municipal, domestic, industrial, and agricultural needs. The Central Oklahoma aquifer also is commonly referred to as the Garber-Wellington aquifer because the Garber Sandstone and Wellington Formation yield the greatest quantities of usable water for domestic and high-capacity wells. The major water-quality concerns for the Central Oklahoma aquifer described by the U.S. Geological Survey National Water Quality Assessment Program (1987 to 1992) were elevated concentrations of nitrate nitrogen in shallow water and the occurrence of arsenic, chromium, and selenium in parts of the aquifer. The quality of water from deep public-water supply wells in the Central Oklahoma aquifer is monitored by the State of Oklahoma. The chemical quality of water from shallow domestic wells is not monitored, and, therefore, there is a concern that well owners may be unknowingly ingesting water with nitrate nitrogen, arsenic, chromium, selenium, and other chemical constituents at concentrations that are considered harmful. As a result of this concern, the Oklahoma Department of Environmental Quality and the U.S. Geological Survey collaborated on a study to sample water during June 2003 through August 2005 from 23 shallow wells (less than 200 feet in depth) and 28 deep wells (200 feet or greater in depth) completed in the bedrock aquifer units of the Central Oklahoma aquifer. The objectives of the study were to describe the chemical quality of water from shallow and deep wells and to determine if the differences in constituent concentrations are statistically significant. Water from shallow wells had significantly higher concentrations of calcium, magnesium, bicarbonate, sulfate, chloride, and nitrate nitrogen than water from deep wells. There were no significant differences between concentrations of dissolved solids, sodium, and fluoride in water from shallow and deep wells. Water from 9 shallow wells had nitrate nitrogen concentrations greater than 2 milligrams per liter, suggesting nitrogen sources at land surface have had an effect on water from these wells. Water from three shallow wells (13 percent) exceeded the nitrate nitrogen maximum contaminant level of 10 milligrams per liter in drinking water. Water from shallow wells had significantly lower concentrations of arsenic, chromium, iron, and selenium than water from deep wells, whereas, concentrations of barium, copper, manganese, and zinc were similar. Water-quality data indicate that arsenic frequently occurs in shallow ground water from the Central Oklahoma aquifer, but at low concentrations (<10 micrograms per liter). The occurrence of chromium and selenium in water from shallow wells was infrequent and at low concentrations in this study. It does not appear that the quality of water from a shallow well can be predicted based on the quality of water from a nearby deep well. The results show that in general terms, shallow ground water has significantly higher concentrations of most major ions and significantly lower concentrations of arsenic, chromium, and selenium than water from deep wells.
NASA Astrophysics Data System (ADS)
Msilimba, Golden; Wanda, Elijah M. M.
In Malawi, shallow wells constitute the most important water sources for domestic purposes. However, increasing human population coupled with poor sanitation and infrastructure is undermining the quality of shallow well water. An assessment of microbial and geochemical quality of shallow well water in high-density areas of Zolozolo, Ching’ambo and Chiputula in Mzuzu City, Northern Malawi, has been carried out. The study aimed at characterising domestic water sources, identifying possible sources of water contamination and determining levels of microbial and chemical contamination. Arc-view GIS was used to map the water sources. A questionnaire survey was carried out to elicit information on characteristics of drinking water sources. Water samples were collected from quasi-randomly selected shallow wells and analysed for microbial and chemical parameters using standard methods. HCA, performed using R-programme, was used to group sampled sites according to their bio-physicochemical characteristics. Compliance of the water with MBS/WHO water quality guidelines was determined. The WQI was computed to turn multifaceted data obtained from laboratory analyses into simple information that is comprehensible and useable by the public to assess overall quality of water at a specific water points. The GW-chart was used to show hydrogeochemical water types from each sampled site. Microbial analysis revealed that water from 96.3% of shallow wells recorded faecal coliforms ranging from 129 to 920 cfu per 100 ml which were significantly higher than the Malawi Standards and WHO thresholds. In general, shallow well water is of low mineralisation (EC range 80-500 μS cm-1), with hydrogeochemical facies dominated by Ca-HCO3, which evolves to Ca-Cl water type. The shallow well water registered a WQI range of 50.16-66.04%, with a medium WQ rating. This suggested that the water obtained from the shallow wells is unsuitable for direct human consumption. It was observed that 100% of the shallow wells were at risk of pollution from onsite sanitation because of their proximity to sanitary facilities. It was strongly recommended that onsite treatment interventions have to be mobilised and initiated to protect the households from further possible consequences of using the water.
HF Radar Sea-echo from Shallow Water.
Lipa, Belinda; Nyden, Bruce; Barrick, Don; Kohut, Josh
2008-08-06
HF radar systems are widely and routinely used for the measurement of ocean surface currents and waves. Analysis methods presently in use are based on the assumption of infinite water depth, and may therefore be inadequate close to shore where the radar echo is strongest. In this paper, we treat the situation when the radar echo is returned from ocean waves that interact with the ocean floor. Simulations are described which demonstrate the effect of shallow water on radar sea-echo. These are used to investigate limits on the existing theory and to define water depths at which shallow-water effects become significant. The second-order spectral energy increases relative to the first-order as the water depth decreases, resulting in spectral saturation when the waveheight exceeds a limit defined by the radar transmit frequency. This effect is particularly marked for lower radar transmit frequencies. The saturation limit on waveheight is less for shallow water. Shallow water affects second-order spectra (which gives wave information) far more than first-order (which gives information on current velocities), the latter being significantly affected only for the lowest radar transmit frequencies for extremely shallow water. We describe analysis of radar echo from shallow water measured by a Rutgers University HF radar system to give ocean wave spectral estimates. Radar-derived wave height, period and direction are compared with simultaneous shallow-water in-situ measurements.
HF Radar Sea-echo from Shallow Water
Lipa, Belinda; Nyden, Bruce; Barrick, Don; Kohut, Josh
2008-01-01
HF radar systems are widely and routinely used for the measurement of ocean surface currents and waves. Analysis methods presently in use are based on the assumption of infinite water depth, and may therefore be inadequate close to shore where the radar echo is strongest. In this paper, we treat the situation when the radar echo is returned from ocean waves that interact with the ocean floor. Simulations are described which demonstrate the effect of shallow water on radar sea-echo. These are used to investigate limits on the existing theory and to define water depths at which shallow-water effects become significant. The second-order spectral energy increases relative to the first-order as the water depth decreases, resulting in spectral saturation when the waveheight exceeds a limit defined by the radar transmit frequency. This effect is particularly marked for lower radar transmit frequencies. The saturation limit on waveheight is less for shallow water. Shallow water affects second-order spectra (which gives wave information) far more than first-order (which gives information on current velocities), the latter being significantly affected only for the lowest radar transmit frequencies for extremely shallow water. We describe analysis of radar echo from shallow water measured by a Rutgers University HF radar system to give ocean wave spectral estimates. Radar-derived wave height, period and direction are compared with simultaneous shallow-water in-situ measurements. PMID:27873776
A SHALLOW WATER ISOBARIC BUOY.
The genesis, development, and testing of an instrument for following currents in shallow waters is described. The volume of the ’shallow water ...isobaric buoy’ (SWIB) varies in response to pressure signals derived from the depth of the water in which the instrument floats. Mechanisms for auto...indicate the feasibility of the system. The instrument can hover in a relatively restricted horizontal layer. The instrument may find application as a water stability indicator as well as a shallow water current tag. (Author)
Range-Dependent Acoustic Propagation in Shallow Water with Elastic Bottom Effects
2015-09-30
1 DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. Range-Dependent Acoustic Propagation in Shallow Water ...theory is inadequate for properly describing loss in shallow water acoustic propagation. Finally there is range dependence, which can be significant in...work will lead to a practical method to investigate seismo- acoustic propagation in shallow - water environments, and allow us to compare and contrast
2000-09-30
Shallow- Water Reverberation J. X. Zhou School of Mechanical Engineering Georgia Institute of Technology Atlanta, Georgia 30332-0405 phone: (404) 894...6793 fax: (404) 894-7790 e-mail: jixun.zhou@me.gatech.edu Award Number: N00014-97-1-0170 Thrust Category: Shallow- Water Acoustics LONG-TERM GOALS...The long-term goals of this work are: to develop a theoretical model for predicting the reverberation in shallow water , to derive both small-angle
Planar waveguide sensor of ammonia
NASA Astrophysics Data System (ADS)
Rogoziński, Roman; Tyszkiewicz, Cuma; Karasiński, Paweł; Izydorczyk, Weronika
2015-12-01
The paper presents the concept of forming ammonia sensor based on a planar waveguide structure. It is an amplitude sensor produced on the basis of the multimode waveguide. The technological base for this kind of structure is the ion exchange method and the sol-gel method. The planar multimode waveguide of channel type is produced in glass substrate (soda-lime glass of Menzel-Glaser company) by the selective Ag+↔Na+ ion exchange. On the surface of the glass substrate a porous (~40%) silica layer is produced by the sol-gel method. This layer is sensitized to the presence of ammonia in the surrounding atmosphere by impregnation with Bromocresol Purple (BCP) dye. Therefore it constitutes a sensor layer. Spectrophotometric tests carried out showed about 50% reduction of cross-transmission changes of such sensor layer for a wave λ=593 nm caused by the presence of 25% ammonia water vapor in its ambience. The radiation source used in this type of sensor structure is a light emitting diode LED. The gradient channel waveguide is designed for frontal connection (optical glue) with a standard multimode telecommunications waveguide 62.5/125μm.
44 CFR 64.3 - Flood Insurance Maps.
Code of Federal Regulations, 2010 CFR
2010-10-01
... with water surface elevations determined A0 Area of special flood hazards having shallow water depths... insurance rating purposes AH Areas of special flood hazards having shallow water depths and/or unpredictable... of special flood hazards having shallow water depths and/or unpredictable flow paths between (1) and...
Spatio-Temporal Evolution of Sound Speed Channels on the Chukchi Shelf
NASA Astrophysics Data System (ADS)
Eickmeier, J.; Badiey, M.; Wan, L.
2017-12-01
The physics of an acoustic waveguide are influenced by various boundary conditions as well as spatial and temporal fluctuations in temperature and salinity profiles the water column. The shallow water Canadian Basin Acoustic Propagation Experiment (CANAPE) experiment was designed to study the effect of oceanographic variability on the acoustic field. A pilot study was conducted in the summer of 2015, full deployment of acoustic and environmental moorings took place in 2016, and recovery will occur in late 2017. An example of strong oceanographic variability in the SW region is depicted in Figure 1. Over the course of 7 days, warm Bering Sea water arrived on the Chukchi Shelf and sank in the water column to between 25 m and 125 m depth. This warm water spread to a range of 10 km and a potential eddy of warm water formed causing an increase in sound speed between 15 km and 20 km range in Fig. 1(b). Due to the increased sound speed, a strong sound channel evolved between 100 m and 200 m for acoustic waves arriving from off the shelf, deep water sources. In Fig. 1(a), the initial formation of the acoustic channel is only evident in 50 m to 100 m of water out to a range of 5 km. Recorded environmental data will be used to study fluctuations in sound speed channel formation on the Chukchi Shelf. Data collected in 2015 and 2016 have shown sound duct evolution over 7 days and over a one-month period. Analysis is projected to show sound channel formation over a new range of spatio-temporal scales. This analysis will show a cycle of sound channels opening and closing on the shelf, where this cycle strongly influences the propagation path, range and attenuation of acoustic waves.
Thin film lithium niobate electro-optic modulator with terahertz operating bandwidth.
Mercante, Andrew J; Shi, Shouyuan; Yao, Peng; Xie, Linli; Weikle, Robert M; Prather, Dennis W
2018-05-28
We present a thin film crystal ion sliced (CIS) LiNbO 3 phase modulator that demonstrates an unprecedented measured electro-optic (EO) response up to 500 GHz. Shallow rib waveguides are utilized for guiding a single transverse electric (TE) optical mode, and Au coplanar waveguides (CPWs) support the modulating radio frequency (RF) mode. Precise index matching between the co-propagating RF and optical modes is responsible for the device's broadband response, which is estimated to extend even beyond 500 GHz. Matching the velocities of these co-propagating RF and optical modes is realized by cladding the modulator's interaction region in a thin UV15 polymer layer, which increases the RF modal index. The fabricated modulator possesses a tightly confined optical mode, which lends itself to a strong interaction between the modulating RF field and the guided optical carrier; resulting in a measured DC half-wave voltage of 3.8 V·cm -1 . The design, fabrication, and characterization of our broadband modulator is presented in this work.
Single- and multi-channel underwater acoustic communication channel capacity: a computational study.
Hayward, Thomas J; Yang, T C
2007-09-01
Acoustic communication channel capacity determines the maximum data rate that can be supported by an acoustic channel for a given source power and source/receiver configuration. In this paper, broadband acoustic propagation modeling is applied to estimate the channel capacity for a time-invariant shallow-water waveguide for a single source-receiver pair and for vertical source and receiver arrays. Without bandwidth constraints, estimated single-input, single-output (SISO) capacities approach 10 megabitss at 1 km range, but beyond 2 km range they decay at a rate consistent with previous estimates by Peloquin and Leinhos (unpublished, 1997), which were based on a sonar equation calculation. Channel capacities subject to source bandwidth constraints are approximately 30-90% lower than for the unconstrained case, and exhibit a significant wind speed dependence. Channel capacity is investigated for single-input, multi-output (SIMO) and multi-input, multi-output (MIMO) systems, both for finite arrays and in the limit of a dense array spanning the entire water column. The limiting values of the SIMO and MIMO channel capacities for the modeled environment are found to be about four times higher and up to 200-400 times higher, respectively, than for the SISO case. Implications for underwater acoustic communication systems are discussed.
Zampolli, Mario; Nijhof, Marten J J; de Jong, Christ A F; Ainslie, Michael A; Jansen, Erwin H W; Quesson, Benoit A J
2013-01-01
The acoustic radiation from a pile being driven into the sediment by a sequence of hammer strikes is studied with a linear, axisymmetric, structural acoustic frequency domain finite element model. Each hammer strike results in an impulsive sound that is emitted from the pile and then propagated in the shallow water waveguide. Measurements from accelerometers mounted on the head of a test pile and from hydrophones deployed in the water are used to validate the model results. Transfer functions between the force input at the top of the anvil and field quantities, such as acceleration components in the structure or pressure in the fluid, are computed with the model. These transfer functions are validated using accelerometer or hydrophone measurements to infer the structural forcing. A modeled hammer forcing pulse is used in the successive step to produce quantitative predictions of sound exposure at the hydrophones. The comparison between the model and the measurements shows that, although several simplifying assumptions were made, useful predictions of noise levels based on linear structural acoustic models are possible. In the final part of the paper, the model is used to characterize the pile as an acoustic radiator by analyzing the flow of acoustic energy.
Federal Register 2010, 2011, 2012, 2013, 2014
2011-09-23
.... 101126522-0640-02] RIN 0648-XA722 Fisheries of the Exclusive Economic Zone Off Alaska; Shallow- Water... closure. SUMMARY: NMFS is opening directed fishing for shallow-water species by [[Page 59065
Anderholm, Scott K.
1997-01-01
This report describes the quality of shallow ground water and the relations between land use and the quality of that shallow ground water in an urban area in and adjacent to Albuquerque, New Mexico. Water samples were collected from 24 shallow wells. Samples were analyzed for selected common constituents, nutrients, trace elements, radionuclides, volatile organic compounds, and pesticides. The study area, which is in the Albuquerque Basin in central New Mexico, was limited to the Rio Grande flood plain; depth to water in this area generally is less than 25 feet. The amount and composition of recharge to the shallow ground-water system are important factors that affect shallow ground-water composition in this area. Important sources of recharge that affect shallow ground-water quality in the area include infiltration of surface water, which is used in agricultural land-use areas to irrigate crops, and infiltration of septic-system effluent in residential areas. Agricultural land use represents about 28 percent of the area, and residential land use represents about 35 percent of the total study area. In most of the study area, agricultural land use is interspersed with residential land use and neither is the dominant land use in the area. Land use in the study area historically has been changing from agricultural to urban. The composition of shallow ground water in the study area varies considerably. The dissolved solids concentration in shallow ground water in the study area ranges from 272 to 1,650 milligrams per liter, although the relative percentages of selected cations and anions do not vary substantially. Calcium generally is the dominant cation and bicarbonate generally is the dominant anion. Concentrations of nutrients generally were less than 1 milligram per liter. The concentration of many trace elements in shallow ground water was below or slightly above 1 microgram per liter and there was little variation in the concentrations. Barium, iron, manganese, molybdenum, and uranium were the only trace elements analyzed for that had median concentrations greater than 5 micrograms per liter. Volatile organic compounds were detected in 5 of 24 samples. Cis-1,2-dichloroethene and 1,1-dichloroethane were the most commonly detected volatile organic compounds (detected in two samples each). Pesticides were detected in 8 of 24 samples. Prometon was the most commonly detected pesticide (detected in 5 of 24 samples). Concentrations of volatile organic compounds and pesticides detected were much smaller than any U.S. Environmental Protection Agency standards that have been established. Infiltration of surface water and the evaporation or transpiration of this water, which partially is the result of past and present agricultural land use, seem to affect the concentrations of common constituents in shallow ground water in the study area. The small excess chloride in shallow ground water relative to surface water that has been affected by evaporation or transpiration could be due to mixing of shallow ground water with small amounts of precipitation/bulk deposition or septic-system effluent. Infiltration of septic-system effluent (residential land use) has affected the shallow ground-water composition in parts of the study area on the basis of the small dissolved oxygen concentrations, large dissolved organic carbon concentrations, and excess chloride. Despite the loading of nitrogen to the shallow ground-water system as the result of infiltration of septic-system effluent, the small nitrogen concentrations in shallow ground water probably are due to the small dissolved oxygen concentrations and relatively large dissolved organic carbon concentrations. The small concentrations and lack of variation of most trace elements indicate that land use has not substantially affected the concentration
Suzanne Peyer; John C. Hermanson; Carol Eunmi Lee
2010-01-01
The invasive zebra mussel (Dreissena polymorpha) has quickly colonized shallow-water habitats in the North American Great Lakes since the 1980s but the quagga mussel (Dreissena bugensis) is becoming dominant in both shallow and deep-water habitats. While quagga mussel shell morphology differs between shallow and deep habitats, functional causes and consequences of such...
Studies of the Vector Field in Shallow Water and in the Presence of 3-D Variability
2015-09-30
1 DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. Studies of the Vector Field in Shallow Water and in the...including noise variability in shallow water and the influence of three-dimensional environmental variability on the propagation of acoustic energy...issue, known to be a problem in SSF algorithms in shallow water . Figure 1 displays results of TL traces at a depth of 100m for a 100Hz source
NASA Astrophysics Data System (ADS)
Sinclair, Kenneth; Florjańczyk, Mirosław; Solheim, Brian; Scott, Alan; Quine, Ben; Cheben, Pavel
Concept, theory and design of a new type of waveguide device, a multiaperture Fourier-transform planar waveguide spectrometer[1], implemented as a prototype instrument is pre-sented. The spectrometer's objective is to demonstrate the ability of the new slab waveguide technology for application in remote sensing instruments[2]. The spectrometer will use a limb viewing configuration to detect the 1.36um waveband allowing concentrations of water vapor in earth's atmosphere to be measured[3]. The most challenging aspects of the design, assembly and calibration are presented. Focus will be given to the effects of packaging the spectrometer and interfacing to the detector array. Stress-induced birefringence will affect the performance of the waveguides, therefore the design of a stress-free mounting over a range of temperatures is important. Spectral retrieval algo-rithms will have to correct for expected fabrication errors in the waveguides. Data processing algorithms will also be developed to correct for non-uniformities of input brightness through the array, making use of MMI output couplers to capture both the in-phase and anti-phase interferometer outputs. A performance assessment of an existing breadboard spectrometer will demonstrate the capability of the instrument. REFERENCES 1. M. Florjáczyk, P. Cheben, S. Janz, A. Scott, B. Solheim, and D.-X. Xu, "Multiaper-n ture planar waveguide spectrometer formed by arrayed Mach-Zehnder interferometers," Opt. Expr. 15(26), 18176-18189 (2007). 2. M. Florjáczyk, P. Cheben, S. Janz, B. Lamontagne, J. n Lapointe, A. Scott, B. Solheim, and D.-X. Xu, "Slab waveguiode spatial heterodyne spectrom-eters for remote sensing from space," Optical sensors 2009. Proceedings of the SPIE, Volume 7356 (2009)., pp. 73560V-73560V-7 (2009). 3. A. Scott, M. Florjáczyk, P. Cheben, S. Janz, n B. Solheim, and D.-X. Xu, "Micro-interferometer with high throughput for remote sensing." MOEMS and Miniaturized Systems VIII. Proceedings of the SPIE, Volume 7208 (2009)., pp. 72080G-72080G-7 (2009).
Simulations of large acoustic scintillations in the straits of Florida.
Tang, Xin; Tappert, F D; Creamer, Dennis B
2006-12-01
Using a full-wave acoustic model, Monte Carlo numerical studies of intensity fluctuations in a realistic shallow water environment that simulates the Straits of Florida, including internal wave fluctuations and bottom roughness, have been performed. Results show that the sound intensity at distant receivers scintillates dramatically. The acoustic scintillation index SI increases rapidly with propagation range and is significantly greater than unity at ranges beyond about 10 km. This result supports a theoretical prediction by one of the authors. Statistical analyses show that the distribution of intensity of the random wave field saturates to the expected Rayleigh distribution with SI= 1 at short range due to multipath interference effects, and then SI continues to increase to large values. This effect, which is denoted supersaturation, is universal at long ranges in waveguides having lossy boundaries (where there is differential mode attenuation). The intensity distribution approaches a log-normal distribution to an excellent approximation; it may not be a universal distribution and comparison is also made to a K distribution. The long tails of the log-normal distribution cause "acoustic intermittency" in which very high, but rare, intensities occur.
Kissoon, La Toya T; Jacob, Donna L; Hanson, Mark A; Herwig, Brian R; Bowe, Shane E; Otte, Marinus L
2015-06-01
We measured concentrations of multiple elements, including rare earth elements, in waters and sediments of 38 shallow lakes of varying turbidity and macrophyte cover in the Prairie Parkland (PP) and Laurentian Mixed Forest (LMF) provinces of Minnesota. PP shallow lakes had higher element concentrations in waters and sediments compared to LMF sites. Redundancy analysis indicated that a combination of site- and watershed-scale features explained a large proportion of among-lake variability in element concentrations in lake water and sediments. Percent woodland cover in watersheds, turbidity, open water area, and macrophyte cover collectively explained 65.2 % of variation in element concentrations in lake waters. Sediment fraction smaller than 63 µm, percent woodland in watersheds, open water area, and sediment organic matter collectively explained 64.2 % of variation in element concentrations in lake sediments. In contrast to earlier work on shallow lakes, our results showed the extent to which multiple elements in shallow lake waters and sediments were influenced by a combination of variables including sediment characteristics, lake morphology, and percent land cover in watersheds. These results are informative because they help illustrate the extent of functional connectivity between shallow lakes and adjacent lands within these lake watersheds.
Jacob, Donna L.; Hanson, Mark A.; Herwig, Brian R.; Bowe, Shane E.; Otte, Marinus L.
2015-01-01
We measured concentrations of multiple elements, including rare earth elements, in waters and sediments of 38 shallow lakes of varying turbidity and macrophyte cover in the Prairie Parkland (PP) and Laurentian Mixed Forest (LMF) provinces of Minnesota. PP shallow lakes had higher element concentrations in waters and sediments compared to LMF sites. Redundancy analysis indicated that a combination of site- and watershed-scale features explained a large proportion of among-lake variability in element concentrations in lake water and sediments. Percent woodland cover in watersheds, turbidity, open water area, and macrophyte cover collectively explained 65.2 % of variation in element concentrations in lake waters. Sediment fraction smaller than 63 µm, percent woodland in watersheds, open water area, and sediment organic matter collectively explained 64.2 % of variation in element concentrations in lake sediments. In contrast to earlier work on shallow lakes, our results showed the extent to which multiple elements in shallow lake waters and sediments were influenced by a combination of variables including sediment characteristics, lake morphology, and percent land cover in watersheds. These results are informative because they help illustrate the extent of functional connectivity between shallow lakes and adjacent lands within these lake watersheds. PMID:26074657
Deep and shallow water effects on developing preschoolers' aquatic skills.
Costa, Aldo M; Marinho, Daniel A; Rocha, Helena; Silva, António J; Barbosa, Tiago M; Ferreira, Sandra S; Martins, Marta
2012-05-01
The aim of the study was to assess deep and shallow water teaching methods in swimming lessons for preschool children and identify variations in the basic aquatic skills acquired. The study sample included 32 swimming instructors (16 from deep water programs and 16 from shallow water programs) and 98 preschool children (50 from deep water swimming pool and 48 from shallow water swimming pool). The children were also studied regarding their previous experience in swimming (6, 12 and 18 months or practice). Chi-Square test and Fisher's exact test were used to compare the teaching methodology. A discriminant analysis was conducted with Λ wilk's method to predict under what conditions students are better or worse (aquatic competence). Results suggest that regardless of the non-significant variations found in teaching methods, the water depth can affect aquatic skill acquisition - shallow water lessons seem to impose greater water competence particularly after 6 months of practice. The discriminant function revealed a significant association between groups and all predictors for 6 months of swimming practice (p<0.001). Body position in gliding and leg displacements were the main predictors. For 12 and 18 months of practice, the discriminant function do not revealed any significant association between groups. As a conclusion, it seems that the teaching methodology of aquatic readiness based on deep and shallow water programs for preschoolers is not significantly different. However, shallow water lessons could be preferable for the development of basic aquatic skills.
Deep and Shallow Water Effects on Developing Preschoolers’ Aquatic Skills
Costa, Aldo M.; Marinho, Daniel A.; Rocha, Helena; Silva, António J.; Barbosa, Tiago M.; Ferreira, Sandra S.; Martins, Marta
2012-01-01
The aim of the study was to assess deep and shallow water teaching methods in swimming lessons for preschool children and identify variations in the basic aquatic skills acquired. The study sample included 32 swimming instructors (16 from deep water programs and 16 from shallow water programs) and 98 preschool children (50 from deep water swimming pool and 48 from shallow water swimming pool). The children were also studied regarding their previous experience in swimming (6, 12 and 18 months or practice). Chi-Square test and Fisher’s exact test were used to compare the teaching methodology. A discriminant analysis was conducted with Λ wilk’s method to predict under what conditions students are better or worse (aquatic competence). Results suggest that regardless of the non-significant variations found in teaching methods, the water depth can affect aquatic skill acquisition - shallow water lessons seem to impose greater water competence particularly after 6 months of practice. The discriminant function revealed a significant association between groups and all predictors for 6 months of swimming practice (p<0.001). Body position in gliding and leg displacements were the main predictors. For 12 and 18 months of practice, the discriminant function do not revealed any significant association between groups. As a conclusion, it seems that the teaching methodology of aquatic readiness based on deep and shallow water programs for preschoolers is not significantly different. However, shallow water lessons could be preferable for the development of basic aquatic skills. PMID:23487406
Cohen, D.A.; Shedlock, R.J.
1986-01-01
Since the settling ponds were sealed, the concentration of boron has decreased while concentrations of cadmium, arsenic, zinc, and molybdenum in shallow ground water downgradient of the ponds show no definite trends in time. Arsenic, boron and molybdenum have remained at concentrations above those of shallow ground water in areas unaffected by settling-pond seepage.
Geohydrology of the shallow aquifers in the Denver metropolitan area, Colorado
Robson, Stanley G.
1996-01-01
The Denver metropolitan area is underlain by shallow layers of water-bearing sediments (aquifers) consisting of unconsolidated gravel, sand, silt, and clay. The depth to water in these aquifers is less than 20 feet in much of the area, and the aquifers provide a ready source of water to numerous shallow, small-capacity wells. The shallow depth to water also makes the aquifers susceptible to contamination from the land surface. Water percolating downward from residential, commercial, and industrial property, spills of hazardous materials, and leaks from underground storage tanks and pipelines can cause contaminants to enter the shallow aquifers. Wet basements, unstable foundation materials, and waterlogged soils also are common in areas of very shallow ground water.Knowledge of the extent, thickness, and water-table altitude of the shallow aquifers is incomplete. This, coupled with the complexity of development in this large metropolitan area, makes effective use, management, and protection of these aquifers extremely difficult. Mapping of the geologic and hydrologic characteristics of these aquifers would provide the general public and technical users with information needed to better use, manage, and protect this water resource. A study to map the geohydrology of shallow aquifers in the Denver metropolitan area was begun in 1994. The work was undertaken by the U.S. Geological Survey in cooperation with the U.S. Army-Rocky Mountain Arsenal, U.S. Department of Energy-Rocky Flats Field Office, Colorado Department of Public Health and Environment, Colorado Department of Natural Resources-State Engineers Office, Denver Water Department, Littleton-Englewood Wastewater Treatment Plant, East Cherry Creek Valley Water and Sanitation District, Metro Wastewater Reclamation District, Willows Water District, and the cities of Aurora, Lakewood, and Thornton.This report presents the results of a systematic mapping of the extent, thickness, and water-table altitude of the shallow aquifers in a 700-square-mile part of the greater Denver metropolitan area (fig. 1). The five sheets in this report (figs. 2-7) show (1) the thickness and extent of the unconsolidated sediments that overlie bedrock formations in the area, (2) the altitude and configuration of the buried bedrock surface, (3) the altitude of the water table and direction of ground-water movement, (4) the saturated thickness of the shallow aquifers, and (5) the depth to the water table in the shallow aquifers. The maps primarily are intended to indicate the general trends in altitude and thickness of the aquifers and are not intended to define conditions at specific sites.
Finite Element Analysis of the Propagation of Acoustic Waves Along Waveguides Immersed in Water
NASA Astrophysics Data System (ADS)
Hladky-Hennion, A.-C.; Langlet, P.; de Billy, M.
1997-03-01
The finite element approach has previously been used, with the help of the ATILA code, to model the propagation of acoustic waves in waveguides [A.-C. Hladky-Hennion, Journal of Sound and Vibration, 194,119-136 (1996)]. In this paper an extension of the technique to the analysis of the propagation of acoustic waves in immersed waveguides is presented. In the proposed approach, the problem is reduced to a bidimensional problem, in which only the cross-section of the guide and the surrounding fluid domain are meshed by using finite elements. Then, wedges the top angles of which vary, are studied and the finite element results of the wedge wave speed are compared with experimental results. Finally, the conclusion indicates a way to extend this approach to waveguides of any cross-section.
Two innovative pore pressure calculation methods for shallow deep-water formations
NASA Astrophysics Data System (ADS)
Deng, Song; Fan, Honghai; Liu, Yuhan; He, Yanfeng; Zhang, Shifeng; Yang, Jing; Fu, Lipei
2017-11-01
There are many geological hazards in shallow formations associated with oil and gas exploration and development in deep-water settings. Abnormal pore pressure can lead to water flow and gas and gas hydrate accumulations, which may affect drilling safety. Therefore, it is of great importance to accurately predict pore pressure in shallow deep-water formations. Experience over previous decades has shown, however, that there are not appropriate pressure calculation methods for these shallow formations. Pore pressure change is reflected closely in log data, particularly for mudstone formations. In this paper, pore pressure calculations for shallow formations are highlighted, and two concrete methods using log data are presented. The first method is modified from an E. Philips test in which a linear-exponential overburden pressure model is used. The second method is a new pore pressure method based on P-wave velocity that accounts for the effect of shallow gas and shallow water flow. Afterwards, the two methods are validated using case studies from two wells in the Yingqiong basin. Calculated results are compared with those obtained by the Eaton method, which demonstrates that the multi-regression method is more suitable for quick prediction of geological hazards in shallow layers.
Slade, R.M.; Buszka, P.M.
1994-01-01
The chemical characteristics of the saline water in streams and shallow aquifers in the study area were compared to characteristics of water that would result from the probable processes affecting the salinity of water, such as evapotranspiration, mineral dissolution, and mixing of water from streams and shallow-aquifer water with brines from deep aquifers. Dissolution of halite or mixing with deep-aquifer water was the most common cause of increased salinity in 48.0 percent of 77 water samples from shallow aquifers, as classified using salt-norm analysis; the second most common cause was the weathering and dissolution of sulfur-bearing minerals. Mixing with water from soil-mineral dissolution was classified as the principal source of chloride in 28.4 percent of 67 water samples from shallow aquifers with nitrate determinations. Trace-species/chloride ratios indicated that mixing with water from deep aquifers in rocks of the Pennsylvanian System was the principal source of chloride in 24.4 percent of 45 shallow-aquifer samples lacking nitrate determinations.
SWIM: A Semi-Analytical Ocean Color Inversion Algorithm for Optically Shallow Waters
NASA Technical Reports Server (NTRS)
McKinna, Lachlan I. W.; Werdell, P. Jeremy; Fearns, Peter R. C. S.; Weeks, Scarla J.; Reichstetter, Martina; Franz, Bryan A.; Bailey, Sean W.; Shea, Donald M.; Feldman, Gene C.
2014-01-01
In clear shallow waters, light that is transmitted downward through the water column can reflect off the sea floor and thereby influence the water-leaving radiance signal. This effect can confound contemporary ocean color algorithms designed for deep waters where the seafloor has little or no effect on the water-leaving radiance. Thus, inappropriate use of deep water ocean color algorithms in optically shallow regions can lead to inaccurate retrievals of inherent optical properties (IOPs) and therefore have a detrimental impact on IOP-based estimates of marine parameters, including chlorophyll-a and the diffuse attenuation coefficient. In order to improve IOP retrievals in optically shallow regions, a semi-analytical inversion algorithm, the Shallow Water Inversion Model (SWIM), has been developed. Unlike established ocean color algorithms, SWIM considers both the water column depth and the benthic albedo. A radiative transfer study was conducted that demonstrated how SWIM and two contemporary ocean color algorithms, the Generalized Inherent Optical Properties algorithm (GIOP) and Quasi-Analytical Algorithm (QAA), performed in optically deep and shallow scenarios. The results showed that SWIM performed well, whilst both GIOP and QAA showed distinct positive bias in IOP retrievals in optically shallow waters. The SWIM algorithm was also applied to a test region: the Great Barrier Reef, Australia. Using a single test scene and time series data collected by NASA's MODIS-Aqua sensor (2002-2013), a comparison of IOPs retrieved by SWIM, GIOP and QAA was conducted.
Water quality in shallow alluvial aquifers, Upper Colorado River Basin, Colorado, 1997
Apodaca, L.E.; Bails, J.B.; Smith, C.M.
2002-01-01
Shallow ground water in areas of increasing urban development within the Upper Colorado River Basin was sampled for inorganic and organic constituents to characterize water-quality conditions and to identify potential anthropogenic effects resulting from development. In 1997, 25 shallow monitoring wells were installed and sampled in five areas of urban development in Eagle, Grand, Gunnison, and Summit Counties, Colorado. The results of this study indicate that the shallow ground water in the study area is suitable for most uses. Nonparametric statistical methods showed that constituents and parameters measured in the shallow wells were often significantly different between the five developing urban areas. Radon concentrations exceeded the proposed USEPA maximum contaminant level at all sites. The presence of nutrients, pesticides, and volatile organic compounds indicate anthropogenic activities are affecting the shallow ground-water quality in the study area. Nitrate as N concentrations greater than 2.0 mg/L were observed in ground water recharged between the 1980s and 1990s. Low concentrations of methylene blue active substances were detected at a few sites. Total coliform bacteria were detected at ten sites; however, E. coli was not detected. Continued monitoring is needed to assess the effects of increasing urban development on the shallow ground-water quality in the study area.
Tiffan, Kenneth F.; Connor, William P.
2012-01-01
The U.S. Army Corps of Engineers (COE) is preparing a long term management plan for sediments that affect the authorized project purposes of the Lower Granite, Little Goose, Lower Monumental, and Ice Harbor reservoirs (hereafter, the lower Snake River reservoirs), and the area from the mouth of the Snake River to Ice Harbor Dam. We conducted a study from spring 2010 through winter 2011 to describe the habitat use by juvenile Chinook salmon within a selected group of shallow water habitat complexes (< 6 m deep) in the lower Snake River reservoirs to help inform the long-term plan. Natural fry and parr were present within all four shallow water habitat complexes that we studied from early spring through early summer, and parr ( = 40,345 ± 18,800 [error bound]) were more abundant than fry ( = 24,615 ± 5,701). Water < 2 m deep was highly used for rearing by natural fall Chinook salmon subyearlings (fry and parr combined; hereafter natural subyearlings) based on duration of use and relative group abundances during spring and summer, whereas the 2–6 m depth interval was more highly used by migratory hatchery fall Chinook salmon subyearlings and spring, summer, and fall Chinook salmon yearlings. Overall mean spring-summer apparent density of natural subyearlings was 15.5 times higher within the < 2 m depth interval than within the 2–6 m depth interval. Density of natural subyearlings also decreased as the distance a given shallow water habitat complex was located from the riverine spawning areas increased. Reservoir-type juveniles (or fish likely destined to become reservoir-type juveniles) were present in the lower Snake River reservoirs from fall 2010 through winter 2011; however, use of shallow water habitat by reservoir-type juveniles was limited during our study. We only collected 38 reservoir-type juveniles in shallow water habitat sites in beach and lampara seines during the fall. Radiotelemetry data revealed that though many tagged fish passed shallow water habitat sites, relatively few fish entered them and the median time fish spent within a given site was less than 1.4 h. Fish located by mobile tracking away from study sites were pelagically oriented, and generally not found over shallow water or close to shore. The findings in this report: (1) support the selection of natural fall Chinook subyearlings as the indicator group for determining the potential benefits of using dredge spoils to create shallow water habitat, (2) provide evidence for shallow water habitat use by natural subyearlings, (3) provide evidence against large-scale use of shallow water habitat by reservoir-type juveniles, (4) suggest that the depth criterion for defining shallow water habitat (i.e., < 6 m deep) warrants reconsideration, and (5) provide guidance for when to dredge and create shallow water habitat. Future research on habitat preference, feeding ecology, the food web, and intra-specific competition would help to better inform the long-term management plan.
SWIM: A Semi-Analytical Ocean Color Inversion Algorithm for Optically Shallow Waters
NASA Technical Reports Server (NTRS)
McKinna, Lachlan I. W.; Werdell, P. Jeremy; Fearns, Peter R. C. S.; Weeks, Scarla J.; Reichstetter, Martina; Franz, Bryan A.; Shea, Donald M.; Feldman, Gene C.
2014-01-01
Ocean color remote sensing provides synoptic-scale, near-daily observations of marine inherent optical properties (IOPs). Whilst contemporary ocean color algorithms are known to perform well in deep oceanic waters, they have difficulty operating in optically clear, shallow marine environments where light reflected from the seafloor contributes to the water-leaving radiance. The effect of benthic reflectance in optically shallow waters is known to adversely affect algorithms developed for optically deep waters [1, 2]. Whilst adapted versions of optically deep ocean color algorithms have been applied to optically shallow regions with reasonable success [3], there is presently no approach that directly corrects for bottom reflectance using existing knowledge of bathymetry and benthic albedo.To address the issue of optically shallow waters, we have developed a semi-analytical ocean color inversion algorithm: the Shallow Water Inversion Model (SWIM). SWIM uses existing bathymetry and a derived benthic albedo map to correct for bottom reflectance using the semi-analytical model of Lee et al [4]. The algorithm was incorporated into the NASA Ocean Biology Processing Groups L2GEN program and tested in optically shallow waters of the Great Barrier Reef, Australia. In-lieu of readily available in situ matchup data, we present a comparison between SWIM and two contemporary ocean color algorithms, the Generalized Inherent Optical Property Algorithm (GIOP) and the Quasi-Analytical Algorithm (QAA).
Remote sensing estimation of colored dissolved organic matter (CDOM) in optically shallow waters
NASA Astrophysics Data System (ADS)
Li, Jiwei; Yu, Qian; Tian, Yong Q.; Becker, Brian L.
2017-06-01
It is not well understood how bottom reflectance of optically shallow waters affects the algorithm performance of colored dissolved organic matters (CDOM) retrieval. This study proposes a new algorithm that considers bottom reflectance in estimating CDOM absorption from optically shallow inland or coastal waters. The field sampling was conducted during four research cruises within the Saginaw River, Kawkawlin River and Saginaw Bay of Lake Huron. A stratified field sampling campaign collected water samples, determined the depth at each sampling location and measured optical properties. The sampled CDOM absorption at 440 nm broadly ranged from 0.12 to 8.46 m-1. Field sample analysis revealed that bottom reflectance does significantly change water apparent optical properties. We developed a CDOM retrieval algorithm (Shallow water Bio-Optical Properties algorithm, SBOP) that effectively reduces uncertainty by considering bottom reflectance in shallow waters. By incorporating the bottom contribution in upwelling radiances, the SBOP algorithm was able to explain 74% of the variance of CDOM values (RMSE = 0.22 and R2 = 0.74). The bottom effect index (BEI) was introduced to efficiently separate optically shallow and optically deep waters. Based on the BEI, an adaptive approach was proposed that references the amount of bottom effect in order to identify the most suitable algorithm (optically shallow water algorithm [SBOP] or optically deep water algorithm [QAA-CDOM]) to improve CDOM estimation (RMSE = 0.22 and R2 = 0.81). Our results potentially help to advance the capability of remote sensing in monitoring carbon pools at the land-water interface.
Nutrient Enrichment in Estuaries from Discharge of Shallow Ground Water, Mt. Desert Island, Maine
Culbertson, Charles W.; Huntington, Thomas G.; Caldwell, James M.
2007-01-01
Nutrient enrichment from atmospheric deposition, agricultural activities, wildlife, and domestic sources is a concern at Acadia National Park because of the potential problem of water-quality degradation and eutrophication in its estuaries. Water-quality degradation has been observed at the Park?s Bass Harbor Marsh estuary but not in Northeast Creek estuary. Previous studies at Acadia National Park have estimated nutrient inputs to estuaries from atmospheric deposition and surface-water runoff, but the importance of shallow ground water that may contain nutrients derived from domestic or other sources is unknown. Northeast Creek and Bass Harbor Marsh estuaries were studied to (1) identify shallow ground-water seeps, (2) assess the chemistry of the water discharged from selected seeps, and (3) assess the chemistry of ground water in shallow ground-water hyporheic zones. The hyporheic zone is defined here as the region beneath and lateral to a stream bed, where there is mixing of shallow ground water and surface water. This study also provides baseline chemical data for ground water in selected bedrock monitoring wells and domestic wells on Mt. Desert Island. Water samples were analyzed for concentrations of nutrients, wastewater compounds, dissolved organic carbon, pH, dissolved oxygen, temperature and specific conductance. Samples from bedrock monitoring wells also were analyzed for alkalinity, major cations and anions, and trace metals. Shallow ground-water seeps to Northeast Creek and Bass Harbor Marsh estuaries at Acadia National Park were identified and georeferenced using aerial infrared digital imagery. Monitoring included the deployment of continuously recording temperature and specific conductance sensors in the seep discharge zone to access marine or freshwater signatures related to tidal flooding, gradient-driven shallow ground-water flow, or shallow subsurface flow related to precipitation events. Many potential shallow ground-water discharge zones were identified from aerial thermal imagery during flights in May and December 2003 in both estuaries. The occurrence of ground-water seeps was confirmed using continuous and discrete measurements of temperature and specific conductance in selected seeps and in the adjacent estuaries that showed salinity anomalies reflecting the input of freshwater in these complex tidal systems. Analysis of water samples from shallow ground water in the hyporheic zone and from ground-water seeps indicated the presence of elevated concentrations of dissolved nitrogen, compared to concentrations in the adjacent estuaries and surface-water tributaries draining into the estuaries. These findings indicate that shallow ground water is a source of dissolved nitrogen to the estuaries. Orthophosphate levels were low in ground water in the hyporheic zone in Bass Harbor Marsh, but somewhat higher in one hyporheic-zone well in Northeast Creek compared with the concentrations in both estuaries that were at or below detection limits. Household wastewater-related compounds were not detected in ground water in the hyporheic zone. Analysis of water samples from domestic and bedrock monitoring wells developed in fractured bedrock indicated that concentrations of dissolved nitrogen, phosphorus, and household wastewater-related compounds were typically at or below detection, suggesting that the aquifers sampled had not been contaminated from septic sources.
Novel Waveguide Architectures for Light Sources in Silicon Photonics
NASA Astrophysics Data System (ADS)
Tummidi, Ravi Sekhar
Of the many challenges which are threatening to derail the success trend set by Moore's Law, perhaps the most prominent one is the "Interconnect Bottleneck". The metallic interconnections which carry inter-chip and intra-chip signals are increasingly proving to be inadequate to carry the enormous amount of data due to band-width limitations, cross talk and increased latency. A silicon based optical interconnect is showing enormous promise to address this issue in a cost effective manner by leveraging the extremely matured CMOS fabrication infrastructure. An optical interconnect system consists of a low loss waveguide, modulator, photo detector and a light source. Of these the only component yet to be demonstrated in silicon is a CMOS compatible electrically pumped silicon based laser. The present work is our endeavor towards the goal of a practical light source in silicon. To this end we have focused our efforts on horizontal slot waveguide which consists of a nm thin low index silica layer sandwiched between two high index silicon layers. Such a structure provides an exceptionally high confinement for the TM-like mode in the thin silica slot. The shallow ridge profile of the waveguide allows in principle for lateral electrical access to the core of the waveguide for excitation of the slot embedded gain material like erbium or nano-crystal sensitized erbium using tunneling, polarization transfer or transport. Low losses in the proposed structure are paramount due to the low gain expectation (˜1dB/cm) from CMOS compatible gain media. This dissertation details the novel techniques conceived to mitigate the severe lateral radiation leakage loss of the TM-like mode in these waveguides and resonators using "Magic Widths" and "Magic Radii" designs. New fabrication techniques are discussed which were developed to achieve ultra-smooth waveguide surfaces to substantially reduce the scattering induced losses in the Silicon-on-Insulator (SOI) high index contrast system. This enabled us to achieve resonators with Qs of 1.6x106 for the TE-like mode in non-slot configurations and 3x105 for the TM-like mode in full slot configuration, the highest yet reported for this type of structure and close to our design requirements for a laser. Erbium was incorporated into the silica slot just 8.3 nm thick and photoluminescence was observed in full waveguide configuration. A simple phenomenological model based on spontaneous emission into a waveguide mode was developed, which predicted >10x Purcell enhancement of the luminescence decay in these slot waveguides even in the absence of a resonator, a result also yielded by a rigorous quantum electrodynamic analysis. These enhanced spontaneous emission rates were experimentally verified using time resolved photoluminescence decay and luminescence power measurements. The results so far indicate that these slot structures could be the enablers for very efficient LEDs due to the highly preferential characteristic of the spontaneous emission to go into the single guided mode. The future goal will be to harness this behavior for novel silicon photonic light sources.
Drinking water quality assessment in Southern Sindh (Pakistan).
Memon, Mehrunisa; Soomro, Mohammed Saleh; Akhtar, Mohammad Saleem; Memon, Kazi Suleman
2011-06-01
The southern Sindh province of Pakistan adjoins the Arabian Sea coast where drinking water quality is deteriorating due to dumping of industrial and urban waste and use of agrochemicals and yet has limited fresh water resources. The study assessed the drinking water quality of canal, shallow pumps, dug wells, and water supply schemes from the administrative districts of Thatta, Badin, and Thar by measuring physical, chemical, and biological (total coliform) quality parameters. All four water bodies (dug wells, shallow pumps canal water, and water supply schemes) exceeded WHO MPL for turbidity (24%, 28%, 96%, 69%), coliform (96%, 77%, 92%, 81%), and electrical conductivity (100%, 99%, 44%, 63%), respectively. However, the turbidity was lower in underground water, i.e., 24% and 28% in dug wells and shallow pumps as compared to open water, i.e., 96% and 69% in canal and water supply schemes, respectively. In dug wells and shallow pumps, limits for TDS, alkalinity, hardness, and sodium exceeded, respectively, by 63% and 33%; 59% and 70%, 40% and 27%, and 78% and 26%. Sodium was major problem in dug wells and shallow pumps of district Thar and considerable percent in shallow pumps of Badin. Iron was major problem in all water bodies of district Badin ranging from 50% to 69% and to some extent in open waters of Thatta. Other parameters as pH, copper, manganese, zinc, and phosphorus were within standard permissible limits of World Health Organization. Some common diseases found in the study area were gastroenteritis, diarrhea and vomiting, kidney, and skin problems.
Geochemical evaluation of the geothermal resources in the San Marcos region, Guatemala
Fournier, R.O.; Hanshaw, B.B.
1986-01-01
The chemical and isotopic compositions of hot springs in the San Marcos region of Guatemala are internally consistent with a hydrologic model in which a deep 240??C reservoir and one or more shallow 195-200??C reservoirs are present. Variations in hot-spring water compositions results from a combination of boiling, mixing with cold, dilute water, and chemical re-equilibration with decreasing temperature. The recharge water for the deep 240??C reservoir is isotopically heavier than the local meteoric water and probably comes from many kilometers to the west or southwest. The water in the shallow reservoir is a mixture of the 240??C water with about 20 ?? 5% of cold, locally derived meteoric water. After mixing, the water in the shallow reservoir re-equilibrates with reservoir rock at 195-200??C. In some places additional mixing with cold water occurs after water leaves the shallow reservoir. ?? 1986.
Exact semi-separation of variables in waveguides with non-planar boundaries
NASA Astrophysics Data System (ADS)
Athanassoulis, G. A.; Papoutsellis, Ch. E.
2017-05-01
Series expansions of unknown fields Φ =∑φn Zn in elongated waveguides are commonly used in acoustics, optics, geophysics, water waves and other applications, in the context of coupled-mode theories (CMTs). The transverse functions Zn are determined by solving local Sturm-Liouville problems (reference waveguides). In most cases, the boundary conditions assigned to Zn cannot be compatible with the physical boundary conditions of Φ, leading to slowly convergent series, and rendering CMTs mild-slope approximations. In the present paper, the heuristic approach introduced in Athanassoulis & Belibassakis (Athanassoulis & Belibassakis 1999 J. Fluid Mech. 389, 275-301) is generalized and justified. It is proved that an appropriately enhanced series expansion becomes an exact, rapidly convergent representation of the field Φ, valid for any smooth, non-planar boundaries and any smooth enough Φ. This series expansion can be differentiated termwise everywhere in the domain, including the boundaries, implementing an exact semi-separation of variables for non-separable domains. The efficiency of the method is illustrated by solving a boundary value problem for the Laplace equation, and computing the corresponding Dirichlet-to-Neumann operator, involved in Hamiltonian equations for nonlinear water waves. The present method provides accurate results with only a few modes for quite general domains. Extensions to general waveguides are also discussed.
The "shallow-waterness" of the wave climate in European coastal regions
NASA Astrophysics Data System (ADS)
Håkon Christensen, Kai; Carrasco, Ana; Bidlot, Jean-Raymond; Breivik, Øyvind
2017-07-01
In contrast to deep water waves, shallow water waves are influenced by bottom topography, which has consequences for the propagation of wave energy as well as for the energy and momentum exchange between the waves and the mean flow. The ERA-Interim reanalysis is used to assess the fraction of wave energy associated with shallow water waves in coastal regions in Europe. We show maps of the distribution of this fraction as well as time series statistics from eight selected stations. There is a strong seasonal dependence and high values are typically associated with winter storms, indicating that shallow water wave effects can occasionally be important even in the deeper parts of the shelf seas otherwise dominated by deep water waves.
NASA Astrophysics Data System (ADS)
Xiao-Hong, Zhou; Lan-Hua, Liu; Wei-Qi, Xu; Bao-Dong, Song; Jian-Wu, Sheng; Miao, He; Han-Chang, Shi
2014-04-01
This paper proposed a compact and portable planar waveguide evanescent wave immunosensor (EWI) for highly sensitive detection of BPA. The incident light is coupled into the planar waveguide chip via a beveled angle through undergoing total internal reflection, where the evanescent wave field forms and excites the binding fluorophore-tagged antibodies on the chip surface. Typical calibration curves obtained for BPA has detection limits of 0.03 μg/L. Linear response for BPA ranged from 0.124 μg/L-9.60 μg/L with 50% inhibition concentration for BPA of 1.09 +/- 0.25 μg/L. The regeneration of the planar optical waveguide chip allows the performance of more than 300 assay cycles within an analysis time of about 20 min for each assay cycle. By application of effective pretreatment procedure, the recoveries of BPA in real water samples gave values from 88.3% +/- 8.5% to 103.7% +/- 3.5%, confirming its application potential in the measurement of BPA in reality.
The Development of Advanced Passive Acoustic Monitoring Systems Using microMARS Technology
2015-09-30
localization that will be available in a number of configurations for deep and shallow water environments alike. OBJECTIVES The project has two...through two test series, first targeting the GPS synchronized shallow water and then the self-synchronized deep water configurations. The project will...main objectives: 1. Development of all the components of a compact passive acoustic monitoring system suitable both for shallow water moored
Frequency Domain Modelling of Electromagnetic Wave Propagation in Layered Media
NASA Astrophysics Data System (ADS)
Schmidt, Felix; Lünenschloss, Peter; Mai, Juliane; Wagner, Norman; Töpfer, Hannes; Bumberger, Jan
2016-04-01
The amount of water in porous media such as soils and rocks is a key parameter when water resources are under investigation. Especially the quantitative spatial distribution and temporal evolution of water contents in soil formations are needed. In high frequency electromagnetic applications soil water content is quantitatively derived from the propagation behavior of electromagnetic waves along waveguides embedded in soil formations. The spatial distribution of the dielectric material properties along the waveguide can be estimated by numerical solving of the inverse problem based on the full wave forward model in time or frequency domain. However, current approaches mostly neglect or approximate the frequency dependence of the electromagnetic material properties of transfer function of the waveguide. As a first prove of concept a full two port broadband frequency domain forward model for propagation of transverse electromagnetic (TEM) waves in coaxial waveguide has been implemented. It is based on the propagation matrix approach for layered transmission line sections. Depending on the complexity of the material different models for the frequency dependent complex permittivity were applied. For the validation of the model a broadband frequency domain measurement with network analyzer technique was used. The measurement is based on a 20 cm long 50 Ohm 20/46 coaxial transmission line cell considering inhomogeneous material distributions. This approach allows (i) an increase of the waveguide calibration accuracy in comparison to conventional TDR based technique and (ii) the consideration of the broadband permittivity spectrum of the porous material. In order to systematic analyze the model, theoretical results were compared with measurements as well as 3D broadband finite element modeling of homogeneous and layered media in the coaxial transmission line cell. Defined standards (Teflon, dry glass beads, de-ionized water) were placed inside the line as the dielectric layers in different configurations. With a Thru Reflect Line calibration (TRL) the influences of connectors and adapters at the coaxial line sample holder were removed. The combination of the full two port calibration procedure and broadband modeling approach turns out to achieve a good accordance of modeling and experimental results. The next step is the implementation of an inversion to calculate the material parameters of every layer out of the s-parameters of the layered sample.
Frequency Domain Modelling of Electromagnetic Wave Propagation in Layered Media
NASA Astrophysics Data System (ADS)
Schmidt, Felix; Wagner, Norman; Lünenschloß, Peter; Toepfer, Hannes; Dietrich, Peter; Kaliorias, Andreas; Bumberger, Jan
2015-04-01
The amount of water in porous media such as soils and rocks is a key parameter when water resources are under investigation. Especially the quantitative spatial distribution and temporal evolution of water contents in soil formations are needed. In high frequency electromagnetic applications soil water content is quantitatively derived from the propagation behavior of electromagnetic waves along waveguides embedded in soil formations. The spatial distribution of the dielectric material properties along the waveguide can be estimated by numerical solving of the inverse problem based on the full wave forward model in time or frequency domain. However, current approaches mostly neglect or approximate the frequency dependence of the electromagnetic material properties of transfer function of the waveguide. As a first prove of concept a full two port broadband frequency domain forward model for propagation of transverse electromagnetic (TEM) waves in coaxial waveguide has been implemented. It is based on the propagation matrix approach for layered transmission line sections Depending on the complexity of the material different models for the frequency dependent complex permittivity were applied. For the validation of the model a broadband frequency domain measurement with network analyzer technique was used. The measurement is based on a 20 cm long 50 Ohm 20/46 coaxial transmission line cell considering inhomogeneous material distributions. This approach allows (i) an increase of the waveguide calibration accuracy in comparison to conventional TDR based technique and (ii) the consideration of the broadband permittivity spectrum of the porous material. In order to systematic analyze the model, theoretical results were compared with measurements as well as 3D broadband finite element modeling of homogeneous and layered media in the coaxial transmission line cell. Defined standards (Teflon, dry glass beads, de-ionized water) were placed inside the line as the dielectric layers in different configurations. With a Thru Reflect Line calibration (TRL) the influences of connectors and adapters at the coaxial line sample holder were removed. The combination of the full two port calibration procedure and broadband modeling approach turns out to achieve a good accordance of modeling and experimental results. The next step is the implementation of an inversion to calculate the material parameters of every layer out of the s-parameters of the layered sample.
30 CFR 250.415 - What must my casing and cementing programs include?
Code of Federal Regulations, 2010 CFR
2010-07-01
... included in API RP 65, Recommended Practice for Cementing Shallow Water Flow Zones in Deep Water Wells... and are in either of the following two areas: (1) An “area with an unknown shallow water flow potential” is a zone or geologic formation where neither the presence nor absence of potential for a shallow...
Resolving precipitation-induced water content profiles through inversion of dispersive GPR data
NASA Astrophysics Data System (ADS)
Mangel, A. R.; Moysey, S. M.; Van Der Kruk, J.
2015-12-01
Ground-penetrating radar (GPR) has become a popular tool for monitoring hydrologic processes. When monitoring infiltration, the thin wetted zone that occurs near the ground surface at early times may act as a dispersive waveguide. This low-velocity layer traps the GPR waves, causing specific frequencies of the signal to travel at different phase velocities, confounding standard traveltime analysis. In a previous numerical study we demonstrated the potential of dispersion analysis for estimating the depth distribution of waveguide water contents. Here, we evaluate the effectiveness of the methodology when applying it to experimental time-lapse dispersive GPR data collected during a laboratory infiltration experiment in a relatively homogenous soil. A large sand-filled tank is equipped with an automated gantry to independently control the position of 1000 MHz source and receiver antennas. The system was programmed to repeatedly collect a common mid-point (CMP) profile at the center of the tank followed by two constant offset profiles (COP) in the x and y direction. Each collection was completed in 30 s and repeated 50 times during a 28 min experiment. Two minutes after the start of measurements, the surface of the sand was irrigated at a constant flux rate of 0.006 cm/sec for 23 minutes. Time-lapse COPs show increases in traveltime to reflectors in the tank associated with increasing water content, as well as the development of a wetting front reflection. From 4-10 min, the CMPs show a distinct shingling characteristic that is indicative of waveguide dispersion. Forward models where the waveguide is conceptualized as discrete layers and a piece-wise linear function were used to invert picked dispersion curves for waveguide properties. We show the results from both inversion approaches for multiple dispersive CMPs and show how the single layer model fails to represent the gradational nature of the wetting front.
Parks, William Scott; Graham, D.D.; Lowery, J.F.
1981-01-01
Eight deep wells are being monitored in the Memphis, Tenn., area to detect any changes in the chemical character of water moving through the Memphis Sand towards major pumping centers. These wells are strategically located so as to intercept groundwater enroute through the Memphis Sand from the outcrop-recharge area. Although water quality analyses are available for many wells in the shallow water-table aquifer, no specific investigation has been made to characterize the quality of the water in this aquifer from which the Memphis Sand also receives part of its recharge. This investigation is to determine the chemical character of groundwater in the shallow water-table aquifer at selected localities in the Memphis area. Methods used to install eight shallow wells at abandoned dump sites containing chemical and/or industrial waste are described. Water samples from the eight shallow wells and two deep wells in the Memphis Sand were collected and analyzed. Results of the analysis are presented and the locations of the wells and dumps are shown on maps. (USGS)
He, W-H; Shi, G R; Twitchett, R J; Zhang, Y; Zhang, K-X; Song, H-J; Yue, M-L; Wu, S-B; Wu, H-T; Yang, T-L; Xiao, Y-F
2015-03-01
Analysis of Permian-Triassic brachiopod diversity and body size changes from different water depths spanning the continental shelf to basinal facies in South China provides insights into the process of environmental deterioration. Comparison of the temporal changes of brachiopod diversity between deepwater and shallow-water facies demonstrates that deepwater brachiopods disappeared earlier than shallow-water brachiopods. This indicates that high environmental stress commenced first in deepwater settings and later extended to shallow waters. This environmental stress is attributed to major volcanic eruptions, which first led to formation of a stratified ocean and a chemocline in the outer shelf and deeper water environments, causing the disappearance of deep marine benthos including brachiopods. The chemocline then rapidly migrated upward and extended to shallow waters, causing widespread mass extinction of shallow marine benthos. We predict that the spatial and temporal patterns of earlier onset of disappearance/extinction and ecological crisis in deeper water ecosystems will be recorded during other episodes of rapid global warming. © 2014 John Wiley & Sons Ltd.
Multi-band asymmetric acoustic transmission in a bended waveguide with multiple mechanisms
NASA Astrophysics Data System (ADS)
Huang, Yu-lei; Sun, Hong-xiang; Xia, Jian-ping; Yuan, Shou-qi; Ding, Xin-lei
2016-07-01
We report the realization of a multi-band device of the asymmetric acoustic transmission by placing a phononic crystal inside a bended waveguide immersed in water, as determined both experimentally and numerically. The asymmetric acoustic transmission exists in three frequency bands below 500 kHz induced by multiple mechanisms. Besides the band gap of the phononic crystal, we also introduce the deaf mode and interaction between the phononic crystal and waveguide. More importantly, this asymmetric transmission can be systematically controlled by mechanically rotating the square rods of the phononic crystal. The device has the advantages of multiple band, broader bandwidth, and adjustable property, showing promising applications in ultrasonic devices.
NASA Astrophysics Data System (ADS)
Fang, Jing
2014-05-01
Besides the absorption by roots from the soil substrate, it has long been known that plants exhibit alternative water-absorption strategies, particularly in drought-prone environments. For many tropical epiphytic orchids, air moisture can be absorbed directly by aerial roots. Some conifers are also found to utilize air moisture by foliar absorption during the summer fog season. However, few studies have been carried out on the atmospheric water vapor absorption by shallow-rooted desert plants. We conducted experiments in desert-oasis ecotone and investigated the effects of dew absorbed by three kinds of shallow-rooted seedlings on net photosynthesis rate, as well as on other water relations variables. Three kinds of typical shallow-rooted desert species (Bassia dasyphylla, Salsola collina and Corispermum declinatum) have been chosen and potted. Each species were subjected to contrasting watering regimes (normal and deficient) and different air moisture conditions (having dew and having no dew) for 10 weeks. Net photosynthesis rate was measured on six occasions during the study. Other water relations variables (midday shoot water potential, relative water content, stomatal conductance) were also measured. Under the dew conditions, average net photosynthesis rate, shoot water potential, leaf relative water content and stomatal conductance increased, with greater responses observed for plants subjected to a deficient watering regime than for well-watered plants. These results indicated dew occurred in arid region could be utilized through foliar absorption by some shallow-rooted plants, and for the shallow-rooted plants, the presence of dew could significantly relieve the deficit of water in water-stressed regime.
Hong, Ming; Guo, Quan-Shu; Nie, Bi-Hong; Kang, Yi; Pei, Shun-Xiang; Jin, Jiang-Qun; Wang, Xiang-Fu
2011-11-01
This paper studied the population density, morphological characteristics, and biomass and its allocation of Cynodon dactylon at different altitudinal sections of the hydro-fluctuation belt in Three Gorges Reservoir area, based on located observations. At the three altitudinal sections, the population density of C. dactylon was in the order of shallow water section (165-170 m elevation) > non-flooded section (above 172 m elevation) > deep water section (145-150 m elevation), the root diameter and root length were in the order of deep water section > shallow water section > non-flooded section, the total biomass, root biomass, stem biomass, leaf biomass, and stem biomass allocation ratio were in the order of the shallow water section > non-flooded section > deep water section, and the root biomass allocation ratio, leaf biomass allocation ratio, and underground biomass/aboveground biomass were in the order of deep water section > shallow water section > non-flooded section. The unique adaption strategies of C. dactylon to the flooding-drying habitat change in the shallow water section were the accelerated elongation growth and the increased stem biomass allocation, those in the deep water section were the increased node number of primary and secondary branches, increased number of the branches, and increased leaf biomass allocation, whereas the common strategies in the shallow and deep water sections were the accelerated root growth and the increased tillering and underground biomass allocation for preparing nutrition and energy for the rapid growth in terrestrial environment.
Vowinkel, Eric F.; Tapper, Robert J.
1995-01-01
Previously collected and new water-quality data from shallow wells (screened interval less than 30 meters below the land surface) in predominantly agricultural areas of the New Jersey Coastal Plain were used to determine the relation of nitrate concentrations in shallow ground water to various hydrogeologic and land-use factors in the study area. Information on land use, well construction, hydrogeology, and water quality were used to predict the conditions under which concentrations of nitrate as nitrogen in water from domestic wells in predominantly agricultural areas are most likely to be equal to or larger than the U.S. Environmental Protection Agency maximum contaminant level (MCL) of 10 milligrams per liter. Results of the analyses of water-quality samples collected during 1980-89 from 230 shallow wells in the outcrop areas of the Kirkwood-Cohansey and Potomac-Raritan-Magothy aquifer systems were used to evaluate the regional effects of land use on shallow-ground-water quality. Results of statistical analysis indicate that concentrations of nitrate in shallow ground water are significantly different (p= 0.001) in agricultural areas than in undeveloped areas in both aquifer systems. Concentrations of nitrate nitrogen exceeded the MCL in water from more than 33 percent of the 60 shallow wells in agricultural areas. Concentrations of hitrate in water from shallow wells in agricultural areas increased as the percentage of agricultural land within an 800-meter-radius buffer zone of the wellhead increased (r= 0.81). Concentrations ofhitrate in water from domestic wells in agricultural areas were similar (p= 0.23) to those concentrations in water from irrigation wells. These results indicate that most of the nitrate in water from domestic wells in agricultural areas results from agricultural practices rather than other sources, such as septic systems. Water-quality samples collected from 12 shallow domestic wells in agricultural areas screened in the outcrop areas of the Kirkwood-Cohansey and Potomac-Raritan-Magothy aquifer systems were used to evaluate the local effects of hydrogeologic conditions and land-use activities on shallow-ground-water quality. Concentrations of water-quality constituents in these wells were similar among four sampling events over a l-year span. The concentration of hitrate in water from 6 of the 12 wells exceeded the MCL. Concentrations of nitrate greater than the MCL are associated with: values of specific conductance greater than 200 microsiemens per centimeter at 25 degrees Celsius, a screened interval whose top is less than 20 meters below land surface, concentrations of dissolved oxygen greater than 6 milligrams per liter, presence of pesticides in the ground water, a distance of less than 250 meters between the wellhead and the surfacewater divide, and presence of livestock near the wellhead. Ratios of stable isotopes of nitrogen in the water samples indicate that the source of hitrate in the ground water was predominantly chemical fertilizers rather than livestock wastes or effluent from septic systems.
Schrameyer, Verena; York, Paul H; Chartrand, Kathryn; Ralph, Peter J; Kühl, Michael; Brodersen, Kasper Elgetti; Rasheed, Michael A
2018-05-01
Seagrass meadows increasingly face reduced light availability as a consequence of coastal development, eutrophication, and climate-driven increases in rainfall leading to turbidity plumes. We examined the impact of reduced light on above-ground seagrass biomass and sediment biogeochemistry in tropical shallow- (∼2 m) and deep-water (∼17 m) seagrass meadows (Green Island, Australia). Artificial shading (transmitting ∼10-25% of incident solar irradiance) was applied to the shallow- and deep-water sites for up to two weeks. While above-ground biomass was unchanged, higher diffusive O 2 uptake (DOU) rates, lower O 2 penetration depths, and higher volume-specific O 2 consumption (R) rates were found in seagrass-vegetated sediments as compared to adjacent bare sand (control) areas at the shallow-water sites. In contrast, deep-water sediment characteristics did not differ between bare sand and vegetated sites. At the vegetated shallow-water site, shading resulted in significantly lower hydrogen sulphide (H 2 S) levels in the sediment. No shading effects were found on sediment biogeochemistry at the deep-water site. Overall, our results show that the sediment biogeochemistry of shallow-water (Halodule uninervis, Syringodium isoetifolium, Cymodocea rotundata and C. serrulata) and deep-water (Halophila decipiens) seagrass meadows with different species differ in response to reduced light. The light-driven dynamics of the sediment biogeochemistry at the shallow-water site could suggest the presence of a microbial consortium, which might be stimulated by photosynthetically produced exudates from the seagrass, which becomes limited due to lower seagrass photosynthesis under shaded conditions. Copyright © 2018 Elsevier Ltd. All rights reserved.
Federal Register 2010, 2011, 2012, 2013, 2014
2013-08-13
... Atlantic shallow-water grouper (SASWG) are prohibited from harvest when the gag commercial ACL is met or...), round weight, to 1,253,661 lb (568,651 kg), round weight. Gag and Other South Atlantic Shallow-Water... commenter stated that to protect shallow-water grouper species, fishery managers should remove the January...
Federal Register 2010, 2011, 2012, 2013, 2014
2013-05-24
... all other South Atlantic shallow-water grouper (SASWG) when the gag commercial ACL is met or projected... rulemaking. Gag and Other South Atlantic Shallow-Water Grouper The final rule to implement Amendment 16 to... weight, to 1,253,661 lb (568,651 kg), round weight. Gag and Other South Atlantic Shallow-Water Grouper...
Zhao, Yajie; Li, Zhou; Zhang, Jing; Song, Haiyan; Liang, Qianhui; Tao, Jianping; Cornelissen, Johannes H C; Liu, Jinchun
2017-04-01
Uneven soil depth and low water availability are the key limiting factors to vegetation restoration and reconstruction in limestone soils such as in vulnerable karst regions. Belowground competition will possibly increase under limited soil resources. Here, we investigate whether low resource availability (including shallow soil, low water availability, and shallow soil and low water availability combined) stimulates the competition between grasses with different root systems in karst soil, by assessing their growth response, biomass allocation, and morphological plasticity. In a full three-way factorial blocked design of soil depth by water availability by neighbor identity, we grew Festuca arundinacea (deep-rooted) and Lolium perenne (shallow-rooted) under normal versus shallow soil depth, high versus low water availability, and in monoculture (conspecific neighbor) versus mixture (neighbor of the other species). The key results were as follows: (1) total biomass and aboveground biomass in either of the species decreased with reduction of resources but were not affected by planting patterns (monoculture or mixture) even at low resource levels. (2) For F. arundinacea, root biomass, root mass fraction, total root length, and root volume were higher in mixture than in monoculture at high resource level (consistent with resource use complementarity), but lower in mixture than in monoculture at low resource levels (consistent with interspecific competition). In contrast for L. perenne, either at high or low resource level, these root traits had mostly similar values at both planting patterns. These results suggest that deep-rooted and shallow-rooted plant species can coexist in karst regions under current climatic regimes. Declining resources, due to shallow soil, a decrease in precipitation, or combined shallow soil and karst drought, increased the root competition between plants of deep-rooted and shallow-rooted species. The root systems of deep-rooted plants may be too small to get sufficient water and nutrients from dry, shallow soil, while shallow-rooted plants will maintain a dominant position with their already adaptive strategy in respect of root biomass allocation and root growth.
Lee, Roger W.
1980-01-01
Shallow water in the coal-bearing Fort Union Formation of southeastern Montana was investigated to provide a better understanding of the geochemistry. Springs, wells less than 200 feet deep, and wells greater then 200 feet deep were observed to have different water qualities. Overall, the ground water exists as two systems: a mosaic of shallow, chemically dynamic, and localized recharge-discharge cells superimposed on a deeper, chemically static regional system. Water chemistry is highly variable in the shallow system, whereas sodium and bicarbonate waters characterize the deeper system. Within the shallow system , springs, and wells less than 200 feet deep show predominantly sodium and sulfate enrichment processes from recharge to discharge. These processes are consistent with the observed aquifer mineralogy and aqueous chemistry. However, intermittent mixing with downward moving recharge waters or upward moving deeper waters, and bacterially catalyzed sulfate reduction, may cause apparent reversals in these processes. (USGS)
Lee, Roger W.
1981-01-01
Shallow water in the coal-bearing Paleocene Fort Union Formation of southeastern Montana was investigated to provide a better understanding of its geochemistry. Springs, wells less than 200 feet deep, and wells greater than 200 feet deep were observed to have different water qualities. Overall, the ground water exists as two systems: a mosaic of shallow, chemically dynamic, and localized recharge-discharge cells superimposed on a deeper, chemically static regional system. Water chemistry is highly variable in the shallow system; whereas, waters containing sodium and bicarbonate characterize the deeper system. Within the shallow system, springs and wells less than 200 feet deep show predominantly sodium and sulfate enrichment processes from recharge to discharge. These processes are consistent with the observed aquifer mineralogy and aqueous chemistry. However, intermittent mixing with downward moving recharge waters or upward moving deeper waters, and bacterially catalyzed sulfate reduction, may cause apparent reversals in these processes.
Denitrification in the shallow ground water of a tile-drained, agricultural watershed
Mehnert, E.; Hwang, H.-H.; Johnson, T.M.; Sanford, R.A.; Beaumont, W.C.; Holm, T.R.
2007-01-01
Nonpoint-source pollution of surface water by N is considered a major cause of hypoxia. Because Corn Belt watersheds have been identified as major sources of N in the Mississippi River basin, the fate and transport of N from midwestern agricultural watersheds have received considerable interest. The fate and transport of N in the shallow ground water of these watersheds still needs additional research. Our purpose was to estimate denitrification in the shallow ground water of a tile-drained, Corn Belt watershed with fine-grained soils. Over a 3-yr period, N was monitored in the surface and ground water of an agricultural watershed in central Illinois. A significant amount of N was transported past the tile drains and into shallow ground water. The ground water nitrate was isotopically heavier than tile drain nitrate, which can be explained by denitrification in the subsurface. Denitrifying bacteria were found at depths to 10 m throughout the watershed. Laboratory and push-pull tests showed that a significant fraction of nitrate could be denitrified rapidly. We estimated that the N denitrified in shallow ground water was equivalent to 0.3 to 6.4% of the applied N or 9 to 27% of N exported via surface water. These estimates varied by water year and peaked in a year of normal precipitation after 2 yr of below average precipitation. Three years of monitoring data indicate that shallow ground water in watersheds with fine-grained soils may be a significant N sink compared with N exported via surface water. ?? ASA, CSSA, SSSA.
The Influence of Tree Species on Subsurface Stormflow at the Hillslope Scale
NASA Astrophysics Data System (ADS)
Jost, G.; Weiler, M.
2006-12-01
This study investigates the effect of Norway spruce (Picea abies (L.) Karst) and European beech (Fagus sylvatica L.), two very common tree species in Central Europe, on soil water storage and runoff response to precipitation. We postulate that on the same type of soil, spruce with its shallow rooting system leads to different soil water storage and runoff responses than the deep rooting beech. To test this hypothesis, we chose a beech and a spruce stand with comparable soil type, a stagnic cambisol with a stagnic layer in about 50 cm soil depth. In each of the two stands we sprinkled a hillslope of 6 m by 10 m with intensities of 100 mm/h and 60 mm/h for one hour each. Surface and shallow interflow as well as interflow in different soil depths was collected by inserted sheet metals and gutters in 10 cm, 30 cm and 60 cm soil depth. Soil water storage responses were measured by 48 multiplexed TDR sensors at each hillslope. TDR wave-guides (20 cm long) were installed in a 45° angle in 10 cm, 30 cm, 50 cm and 70 cm soil depth. Volumetric water content was measured in 6 minute intervals. Sprinkling experiments show that even at intensities of 100 mm/h all the applied water infiltrates, independent of the vegetation cover. The deeper soil horizons respond immediately to the applied precipitation. This vertical water flux response is larger under beech. Under spruce most of the water transport happens in the topsoil layers (upper 40 cm), whereas under beech the entire soil profile down to 80 cm soil depth reacts to sprinkling. Under spruce at intensities of 100 mm/h the whole pore space is almost filled. The larger pores in the topsoil under beech stemming from higher biogenic activity and in the subsoil from more intense rooting are still far from reaching their maximum capacity. High antecedent soil water content (around field capacity) still doesn't cause infiltration excess overland flow but the time that it takes for the soil water storage to drain to its initial value is less than one hour. The hillslope at the spruce stand produces between 23% and 28% runoff. However, the beech hillslope produces roughly twice as much. These experiments show that the interactions between tree species and soil in the vadose zone lead to different pore systems and thus different responses to subsurface stormflow. Beech with its deeper rooting systems and its higher biogenic activity (lower C/N ratio) creates a very effective preferential flow path system that leads to greater amounts of subsurface stormflow. Under high antecedent soil water storage, saturation excess overland flow is more likely to occur in soils under spruce with its smaller preferential flow system.
Rodríguez-Robles, Ulises; Arredondo, J Tulio; Huber-Sannwald, Elisabeth; Vargas, Rodrigo
2015-07-01
Trees growing on shallow rocky soils must have exceptional adaptations when underlying weathered bedrock has no deep fractures for water storage. Under semiarid conditions, hydrology of shallow soils is expected to decouple from plant hydrology, as soils dry out as a result of rapid evaporation and competition for water increases between coexisting tree species. Gas exchange and plant-water relations were monitored for 15 months for Pinus cembroides and Quercus potosina tree species in a tropical semiarid forest growing on c. 20-cm-deep soils over impermeable volcanic bedrock. Soil and leaf water potential maintained a relatively constant offset throughout the year in spite of high intra-annual fluctuations reaching up to 5 MPa. Thus, hydrology of shallow soils did not decouple from hydrology of trees even in the driest period. A combination of redistribution mechanisms of water stored in weathered bedrock and hypodermic flow accessible to oak provided the source of water supply to shallow soils, where most of the actively growing roots occurred. This study demonstrates a unique geoecohydrological mechanism that maintains a tightly coupled hydrology between shallow rocky soils and trees, as well as species coexistence in this mixed forest, where oak facilitates water access to pine. © 2015 The Authors. New Phytologist © 2015 New Phytologist Trust.
Controlled laboratory experiments and modeling of vegetative filter strips with shallow water tables
NASA Astrophysics Data System (ADS)
Fox, Garey A.; Muñoz-Carpena, Rafael; Purvis, Rebecca A.
2018-01-01
Natural or planted vegetation at the edge of fields or adjacent to streams, also known as vegetative filter strips (VFS), are commonly used as an environmental mitigation practice for runoff pollution and agrochemical spray drift. The VFS position in lowlands near water bodies often implies the presence of a seasonal shallow water table (WT). In spite of its potential importance, there is limited experimental work that systematically studies the effect of shallow WTs on VFS efficacy. Previous research recently coupled a new physically based algorithm describing infiltration into soils bounded by a water table into the VFS numerical overland flow and transport model, VFSMOD, to simulate VFS dynamics under shallow WT conditions. In this study, we tested the performance of the model against laboratory mesoscale data under controlled conditions. A laboratory soil box (1.0 m wide, 2.0 m long, and 0.7 m deep) was used to simulate a VFS and quantify the influence of shallow WTs on runoff. Experiments included planted Bermuda grass on repacked silt loam and sandy loam soils. A series of experiments were performed including a free drainage case (no WT) and a static shallow water table (0.3-0.4 m below ground surface). For each soil type, this research first calibrated VFSMOD to the observed outflow hydrograph for the free drainage experiments to parameterize the soil hydraulic and vegetation parameters, and then evaluated the model based on outflow hydrographs for the shallow WT experiments. This research used several statistical metrics and a new approach based on hypothesis testing of the Nash-Sutcliffe model efficiency coefficient (NSE) to evaluate model performance. The new VFSMOD routines successfully simulated the outflow hydrographs under both free drainage and shallow WT conditions. Statistical metrics considered the model performance valid with greater than 99.5% probability across all scenarios. This research also simulated the shallow water table experiments with both free drainage and various water table depths to quantify the effect of assuming the former boundary condition. For these two soil types, shallow WTs within 1.0-1.2 m below the soil surface influenced infiltration. Existing models will suggest a more protective vegetative filter strip than what actually exists if shallow water table conditions are not considered.
Shallow bedrock limits groundwater seepage-based headwater climate refugia
Briggs, Martin A.; Lane, John W.; Snyder, Craig D.; White, Eric A.; Johnson, Zachary; Nelms, David L.; Hitt, Nathaniel P.
2018-01-01
Groundwater/surface-water exchanges in streams are inexorably linked to adjacent aquifer dynamics. As surface-water temperatures continue to increase with climate warming, refugia created by groundwater connectivity is expected to enable cold water fish species to survive. The shallow alluvial aquifers that source groundwater seepage to headwater streams, however, may also be sensitive to seasonal and long-term air temperature dynamics. Depth to bedrock can directly influence shallow aquifer flow and thermal sensitivity, but is typically ill-defined along the stream corridor in steep mountain catchments. We employ rapid, cost-effective passive seismic measurements to evaluate the variable thickness of the shallow colluvial and alluvial aquifer sediments along a headwater stream supporting cold water-dependent brook trout (Salvelinus fontinalis) in Shenandoah National Park, VA, USA. Using a mean depth to bedrock of 2.6 m, numerical models predicted strong sensitivity of shallow aquifer temperature to the downward propagation of surface heat. The annual temperature dynamics (annual signal amplitude attenuation and phase shift) of potential seepage sourced from the shallow modeled aquifer were compared to several years of paired observed stream and air temperature records. Annual stream water temperature patterns were found to lag local air temperature by ∼8–19 d along the stream corridor, indicating that thermal exchange between the stream and shallow groundwater is spatially variable. Locations with greater annual signal phase lag were also associated with locally increased amplitude attenuation, further suggestion of year-round buffering of channel water temperature by groundwater seepage. Numerical models of shallow groundwater temperature that incorporate regional expected climate warming trends indicate that the summer cooling capacity of this groundwater seepage will be reduced over time, and lower-elevation stream sections may no longer serve as larger-scale climate refugia for cold water fish species, even with strong groundwater discharge.
Federal Register 2010, 2011, 2012, 2013, 2014
2012-07-31
... regarding the quotas and annual catch limits (ACLs) for ``other shallow-water grouper'' (Other SWG) that... the commercial shallow-water grouper (SWG) quotas and commercial SWG ACL erroneously included in the...: Authority: 16 U.S.C. 1801 et seq. 0 2. In Sec. 622.2, the definition for ``Shallow-water grouper (SWG)'' is...
2009-02-19
Virginia 22203-1995 The Windy Island Soliton Experiment (WISE): Shallow Water and Basin Experiment Configuration and Preliminary Observations...case letters) The Windy Island Soliton Experiment (WISE): Shallow water and Basin Experiment Configuration and Preliminary Observations 5. FUNDING...release; distribution is unlimited 12b. DISTRIBUTION CODE 13. ABSTRACT (maximum 200 words) The Windy Islands Soliton Experiment (WISE) was
Anderholm, Scott K.
2002-01-01
As part of the National Water-Quality Assessment Program, surface-water and ground-water samples were collected in 1994 and 1995 for analysis of common constituents, nutrients, dissolved organic carbon, trace elements, radioactivity, volatile organic compounds, and pesticides to characterize surface- water quality and shallow ground-water quality and to determine factors affecting water quality in the Rincon Valley, south-central New Mexico. Samples of surface water were collected from three sites on the Rio Grande and from sites on three agricultural drains in the Rincon Valley in January 1994 and 1995, April 1994, and October 1994. Ground-water samples were collected in late April and early May 1994 from 30 shallow wells that were installed during the investigation. Dissolved-solids concentrations in surface water ranged from 434 to 1,510 milligrams per liter (mg/L). Dissolved-solids concentrations were smallest in water from the Rio Grande below Caballo Dam and largest in the drains. Nitrite plus nitrate concentrations ranged from less than 0.05 to 3.3 mg/L as nitrogen, and ammonia concentrations ranged from less than 0.015 to 0.33 mg/L as nitrogen in surface-water samples. Trace-element concentrations in surface water were significantly smaller than the acute-fisheries standards. One or more pesticides were detected in 34 of 37 surface-water samples. DCPA (dacthal) and metolachlor were the most commonly detected pesticides. No standards have been established for the pesticides analyzed for in this study. Dissolved-solids concentrations in shallow ground water ranged from 481 to 3,630 mg/L. All but 2 of 30 samples exceeded the secondary maximum contaminant level for dissolved solids of 500 mg/L. Water from about 73 percent of the wells sampled exceeded the secondary maximum contaminant level of 250 mg/L for sulfate, and water from about 7 percent of the wells sampled exceeded the secondary maximum contaminant level of 250 mg/L for chloride. Nitrite plus nitrate concentrations ranged from less than 0.05 to 33 mg/L as nitrogen in shallow ground water. Water from about 17 percent of the well samples exceeded the maximum contaminant level of 10 mg/L as nitrogen for nitrite plus nitrate. Trace-element concentrations in shallow ground water generally were small (1 to 10 micrograms per liter). The proposed maximum contaminant level of 20 micrograms per liter for uranium was exceeded in about 13 percent of the samples. The secondary maximum contaminant level of 300 micrograms per liter for iron was exceeded in about 17 percent of the samples and of 50 micrograms per liter for manganese was exceeded in about 83 percent of the samples. Samples from about 23 percent of the wells exceeded the maximum contaminant level of 15 picocuries per liter for gross alpha activity. One or more pesticides were detected in water from 12 of 30 wells sampled. The pesticides or pesticide metabolites diazinon, metolachlor, napropamide, p,p'-DDE, and prometon were detected in one or more samples. Metolachlor and prometon were the most commonly detected pesticides. Health advisories for the pesticides detected in shallow ground water (no maximum contaminant levels have been established for the pesticides detected) are 10 to 300 times larger than the concentrations detected. Infiltration, evaporation, and transpiration of irrigation water are important factors affecting the concentrations of common constituents in shallow ground water in the Rincon Valley. Dissolution and precipitation of minerals and mixing of shallow ground water and inflow of ground water from adjacent areas also affect the composition of shallow ground water and water in the drains. Relatively large nitrite plus nitrate concentrations in several shallow ground-water samples indicate leaching of fertilizers in some areas of th
A moist Boussinesq shallow water equations set for testing atmospheric models
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zerroukat, M., E-mail: mohamed.zerroukat@metoffice.gov.uk; Allen, T.
The shallow water equations have long been used as an initial test for numerical methods applied to atmospheric models with the test suite of Williamson et al. being used extensively for validating new schemes and assessing their accuracy. However the lack of physics forcing within this simplified framework often requires numerical techniques to be reworked when applied to fully three dimensional models. In this paper a novel two-dimensional shallow water equations system that retains moist processes is derived. This system is derived from three-dimensional Boussinesq approximation of the hydrostatic Euler equations where, unlike the classical shallow water set, we allowmore » the density to vary slightly with temperature. This results in extra (or buoyancy) terms for the momentum equations, through which a two-way moist-physics dynamics feedback is achieved. The temperature and moisture variables are advected as separate tracers with sources that interact with the mean-flow through a simplified yet realistic bulk moist-thermodynamic phase-change model. This moist shallow water system provides a unique tool to assess the usually complex and highly non-linear dynamics–physics interactions in atmospheric models in a simple yet realistic way. The full non-linear shallow water equations are solved numerically on several case studies and the results suggest quite realistic interaction between the dynamics and physics and in particular the generation of cloud and rain. - Highlights: • Novel shallow water equations which retains moist processes are derived from the three-dimensional hydrostatic Boussinesq equations. • The new shallow water set can be seen as a more general one, where the classical equations are a special case of these equations. • This moist shallow water system naturally allows a feedback mechanism from the moist physics increments to the momentum via buoyancy. • Like full models, temperature and moistures are advected as tracers that interact through a simplified yet realistic phase-change model. • This model is a unique tool to test numerical methods for atmospheric models, and physics–dynamics coupling, in a very realistic and simple way.« less
Jorgensen, Jeffrey C; McClure, Michelle M; Sheer, Mindi B; Munn, Nancy L
2013-12-01
Significant challenges remain in the ability to estimate habitat change under the combined effects of natural variability, climate change, and human activity. We examined anticipated effects on shallow water over low-sloped beaches to these combined effects in the lower Willamette River, Oregon, an area highly altered by development. A proposal to stabilize some shoreline with large rocks (riprap) would alter shallow water areas, an important habitat for threatened Chinook salmon (Oncorhynchus tshawytscha), and would be subject to U.S. Endangered Species Act-mandated oversight. In the mainstem, subyearling Chinook salmon appear to preferentially occupy these areas, which fluctuate with river stages. We estimated effects with a geospatial model and projections of future river flows. Recent (1999-2009) median river stages during peak subyearling occupancy (April-June) maximized beach shallow water area in the lower mainstem. Upstream shallow water area was maximized at lower river stages than have occurred recently. Higher river stages in April-June, resulting from increased flows predicted for the 2080s, decreased beach shallow water area 17-32%. On the basis of projected 2080s flows, more than 15% of beach shallow water area was displaced by the riprap. Beach shallow water area lost to riprap represented up to 1.6% of the total from the mouth to 12.9 km upstream. Reductions in shallow water area could restrict salmon feeding, resting, and refuge from predators and potentially reduce opportunities for the expression of the full range of life-history strategies. Although climate change analyses provided useful information, detailed analyses are prohibitive at the project scale for the multitude of small projects reviewed annually. The benefits of our approach to resource managers include a wider geographic context for reviewing similar small projects in concert with climate change, an approach to analyze cumulative effects of similar actions, and estimation of the actions' long-term effects. Efectos Combinados del Cambio Climático y la Estabilización de Bordes de Ríos Hábitats de Aguas Poco Profundas del Salmón Chinook. Conservation Biology © 2013 Society for Conservation Biology No claim to original US government works.
Benedikovic, Daniel; Alonso-Ramos, Carlos; Cheben, Pavel; Schmid, Jens H; Wang, Shurui; Xu, Dan-Xia; Lapointe, Jean; Janz, Siegfried; Halir, Robert; Ortega-Moñux, Alejandro; Wangüemert-Pérez, J Gonzalo; Molina-Fernández, Iñigo; Fédéli, Jean-Marc; Vivien, Laurent; Dado, Milan
2015-09-15
We present the first experimental demonstration of a new fiber-chip grating coupler concept that exploits the blazing effect by interleaving the standard full (220 nm) and shallow etch (70 nm) trenches in a 220 nm thick silicon layer. The high directionality is obtained by controlling the separation between the deep and shallow trenches to achieve constructive interference in the upward direction and destructive interference toward the silicon substrate. Utilizing this concept, the grating directionality can be maximized independent of the bottom oxide thickness. The coupler also includes a subwavelength-engineered index-matching region, designed to reduce the reflectivity at the interface between the injection waveguide and the grating. We report a measured fiber-chip coupling efficiency of -1.3 dB, the highest coupling efficiency achieved to date for a surface grating coupler in a 220 nm silicon-on-insulator platform fabricated in a conventional dual-etch process without high-index overlays or bottom mirrors.
Schaap, Bryan D.; Zogorski, John S.
2006-01-01
This report describes the occurrence of trihalomethanes (THMs) in the Nation's ground water and drinking-water supply wells based on analysis of 5,642 samples of untreated ground water and source water collected or compiled during 1985-2002 by the U.S. Geological Survey National Water-Quality Assessment (NAWQA) Program. THMs are a group of volatile organic compounds (VOCs) with natural and anthropogenic sources that are of interest because they are associated with acute and chronic health problems in humans. THMs occur in water primarily from chlorination and are classified as disinfection by-products. In this report, the four THMs are discussed in the order of chloroform, bromodichloromethane, dibromochloromethane, and then bromoform; this sequence corresponds to largest to smallest chlorine content and smallest to largest bromine content. Four trihalomethanes were detected in less than 20 percent of samples from studies of (1) aquifers, (2) shallow ground water in agricultural areas, (3) shallow ground water in urban areas, (4) domestic wells, and (5) public wells. Detection frequencies for individual THMs in the five studies ranged from zero for shallow ground water in agricultural areas to 19.5 percent for shallow ground water in urban areas. None of the samples from aquifer studies, domestic wells, or public wells had total THM concentrations (the sum of the concentrations of chloroform, bromodichloromethane, dibromochloromethane, and bromoform) greater than or equal to the U.S. Environmental Protection Agency Maximum Contaminant Level of 80 micrograms per liter (?g/L). Comparisons of results among studies of aquifers, shallow ground water in agricultural areas, and shallow ground water in urban areas were used to describe the occurrence of the four THMs in ground water for three different land-use settings-mixed, agricultural, and urban, respectively. At the 0.2-?g/L assessment level, one or more of the four THMs were detected in 7.9 percent of the samples from aquifer studies, 2.2 percent of the samples from shallow ground water in agricultural areas, and 19.5 percent of the samples from shallow ground water in urban areas. In general, detection frequencies and concentrations of the four THMs were greater in shallow ground water in urban areas compared to aquifer studies and to shallow ground water in agricultural areas. For all three of these studies, the most common two-THM mixture at the 0.2-?g/L assessment level was chloroform-bromodichloromethane, and this was the only two-THM mixture found in samples of shallow ground water in agricultural areas. Comparisons of results between studies of domestic wells and public wells were used to describe the occurrence of the four THMs in two different supplies of ground water used for drinking water. At the 0.2-?g/L assessment level, one or more of the four THMs were detected in 5.2 percent of the domestic well samples and in 14.7 percent of the public well samples. In general, detection frequencies and THM concentrations were greater in samples from public wells than from domestic wells. At the 0.2-?g/L assessment level, the six possible two-THM mixtures occurred about six times more frequently in samples from public wells than from domestic wells. One of the most common two-THM mixtures in samples from domestic and public wells was bromodichloromethane-dibromochloromethane. Detection frequency is associated with the chlorine content of the THM compound. In general, for each of the five studies, as the chlorine content of the THM compound decreased, the detection frequency at the 0.2-?g/L assessment level also decreased. The exception was the study of public wells in which the detection frequency of the THMs decreased in the following order: chloroform, bromoform, dibromochloromethane, and bromodichloromethane. At the 0.2-?g/L assessment level, the median concentration for one or more of the four THMs ranged from 0.3 ?g/L (shallow ground water in agricultural a
NASA Astrophysics Data System (ADS)
Gao, Xiaoyu; Huo, Zailin; Qu, Zhongyi; Xu, Xu; Huang, Guanhua; Steenhuis, Tammo S.
2017-02-01
Capillary rise from shallow groundwater can decrease the need for irrigation water. However, simple techniques do not exist to quantify the contribution of capillary flux to crop water use. In this study we develop the Agricultural Water Productivity Model for Shallow Groundwater (AWPM-SG) for calculating capillary fluxes from shallow groundwater using readily available data. The model combines an analytical solution of upward flux from groundwater with the EPIC crop growth model. AWPM-SG was calibrated and validated with 2-year lysimetric experiment with maize. Predicted soil moisture, groundwater depth and leaf area index agreed with the observations. To investigate the response of model, various scenarios were run in which the irrigation amount and groundwater depth were varied. Simulations shows that at groundwater depth of 1 m capillary upward supplied 41% of the evapotranspiration. This reduced to 6% at groundwater depth of 2 m. The yield per unit water consumed (water productivity) was nearly constant for 2.3 kg/m3. The yield per unit water applied (irrigation water productivity) increased with decreasing irrigation water because capillary rise made up in part for the lack of irrigation water. Consequently, using AWPM-SG in irrigation scheduling will be beneficial to save more water in areas with shallow groundwater.
Gao, Xiaoyu; Huo, Zailin; Qu, Zhongyi; Xu, Xu; Huang, Guanhua; Steenhuis, Tammo S.
2017-01-01
Capillary rise from shallow groundwater can decrease the need for irrigation water. However, simple techniques do not exist to quantify the contribution of capillary flux to crop water use. In this study we develop the Agricultural Water Productivity Model for Shallow Groundwater (AWPM-SG) for calculating capillary fluxes from shallow groundwater using readily available data. The model combines an analytical solution of upward flux from groundwater with the EPIC crop growth model. AWPM-SG was calibrated and validated with 2-year lysimetric experiment with maize. Predicted soil moisture, groundwater depth and leaf area index agreed with the observations. To investigate the response of model, various scenarios were run in which the irrigation amount and groundwater depth were varied. Simulations shows that at groundwater depth of 1 m capillary upward supplied 41% of the evapotranspiration. This reduced to 6% at groundwater depth of 2 m. The yield per unit water consumed (water productivity) was nearly constant for 2.3 kg/m3. The yield per unit water applied (irrigation water productivity) increased with decreasing irrigation water because capillary rise made up in part for the lack of irrigation water. Consequently, using AWPM-SG in irrigation scheduling will be beneficial to save more water in areas with shallow groundwater. PMID:28220874
Gao, Xiaoyu; Huo, Zailin; Qu, Zhongyi; Xu, Xu; Huang, Guanhua; Steenhuis, Tammo S
2017-02-21
Capillary rise from shallow groundwater can decrease the need for irrigation water. However, simple techniques do not exist to quantify the contribution of capillary flux to crop water use. In this study we develop the Agricultural Water Productivity Model for Shallow Groundwater (AWPM-SG) for calculating capillary fluxes from shallow groundwater using readily available data. The model combines an analytical solution of upward flux from groundwater with the EPIC crop growth model. AWPM-SG was calibrated and validated with 2-year lysimetric experiment with maize. Predicted soil moisture, groundwater depth and leaf area index agreed with the observations. To investigate the response of model, various scenarios were run in which the irrigation amount and groundwater depth were varied. Simulations shows that at groundwater depth of 1 m capillary upward supplied 41% of the evapotranspiration. This reduced to 6% at groundwater depth of 2 m. The yield per unit water consumed (water productivity) was nearly constant for 2.3 kg/m 3 . The yield per unit water applied (irrigation water productivity) increased with decreasing irrigation water because capillary rise made up in part for the lack of irrigation water. Consequently, using AWPM-SG in irrigation scheduling will be beneficial to save more water in areas with shallow groundwater.
USGS advances in integrated, high-resolution sea-floor mapping: inner continental shelf to estuaries
Denny, J.F.; Schwab, W.C.; Twichell, D.C.; O'Brien, T.F.; Danforth, W.W.; Foster, D.S.; Bergeron, E.; Worley, C.W.; Irwin, B.J.; Butman, B.; Valentine, P.C.; Baldwin, W.E.; Morton, R.A.; Thieler, E.R.; Nichols, D.R.; Andrews, B.D.
2007-01-01
The U.S. Geological Survey (USGS) has been involved in geological mapping of the sea floor for the past thirty years. Early geophysical and acoustic mapping efforts using GLORIA (Geologic LOng Range Inclined ASDIC) a long-range sidescan-sonar system, provided broad-scale imagery of deep waters within the U.S. Exclusive Economic Zone (EEZ). In the early 1990's, research emphasis shifted from deep- to shallow-water environments to address pertinent coastal research and resource management issues. Use of shallow-water, high-resolution geophysical systems has enhanced our understanding of the processes shaping shallow marine environments. However, research within these shallow-water environments continues to present technological challenges.
Method of fabricating optical waveguides by ion implantation doping
Appleton, B.R.; Ashley, P.R.; Buchal, C.J.
1987-03-24
A method for fabricating high-quality optical waveguides in optical quality oxide crystals by ion implantation doping and controlled epitaxial recrystallization is provided. Masked LiNbO/sub 3/ crystals are implanted with high concentrations of Ti dopant at ion energies of about 360 keV while maintaining the crystal near liquid nitrogen temperature. Ion implantation doping produces an amorphous, Ti-rich nonequilibrium phase in the implanted region. Subsequent thermal annealing in a water-saturated oxygen atmosphere at up to 1000/degree/C produces solid-phase epitaxial regrowth onto the crystalline substrate. A high-quality crystalline layer results which incorporates the Ti into the crystal structure at much higher concentrations than is possible by standard diffusion techniques, and this implanted region has excellent optical waveguiding properties.
Mazzotti, M; Bartoli, I; Castellazzi, G; Marzani, A
2014-09-01
The paper aims at validating a recently proposed Semi Analytical Finite Element (SAFE) formulation coupled with a 2.5D Boundary Element Method (2.5D BEM) for the extraction of dispersion data in immersed waveguides of generic cross-section. To this end, three-dimensional vibroacoustic analyses are carried out on two waveguides of square and rectangular cross-section immersed in water using the commercial Finite Element software Abaqus/Explicit. Real wavenumber and attenuation dispersive data are extracted by means of a modified Matrix Pencil Method. It is demonstrated that the results obtained using the two techniques are in very good agreement. Copyright © 2014 Elsevier B.V. All rights reserved.
Cadarso, Victor J; Llobera, Andreu; Puyol, Mar; Schift, Helmut
2016-01-26
Photonic nanofences consisting of high aspect ratio polymeric optical subwavelength waveguides have been developed for their application into photonic sensing devices. They are up to millimeter long arrays of 250 nm wide and 6 μm high ridges produced by an advanced lithography process on a silicon substrate enabling their straightforward integration into complex photonic circuits. Both simulations and experimental results show that the overlap of the evanescent fields propagating from each photonic nanofence allows for the formation of an effective waveguide that confines the overall evanescent field within its limits. This permits a high interaction with the surrounding medium which can be larger than 90% of the total guided light intensity (approximately 20000 times larger than the evanescent field of a standard waveguide with equivalent dimensions). In this work, we not only investigate the photonic properties of these structures but also demonstrate their successful integration into a photonic sensor. An absorbance-based sensor for the determination of lead in water samples is therefore achieved by the combination of the photonic nanofences with an ion-sensitive optical membrane. The experimental results for lead detection in water show a sensitivity of 0.102 AU/decade, and a linear range between 10(-6) M and 10(-2) M Pb(II). A detection limit as low as 7.3 nM has been calculated according to IUPAC for a signal-to-noise ratio of 3.
Retrievals of water quality parameters from satellite measurements over optically shallow waters have been problematic due to bottom contamination of the signals. As a result, large errors are associated with derived water column properties. These deficiencies greatly reduce the ...
Justification of Shallow-Water Theory
NASA Astrophysics Data System (ADS)
Ostapenko, V. V.
2018-01-01
The basic conservation laws of shallow-water theory are derived from multidimensional mass and momentum integral conservation laws describing the plane-parallel flow of an ideal incompressible fluid above the horizontal bottom. This conclusion is based on the concept of hydrostatic approximation, which generalizes the concept of long-wavelength approximation and is used for justifying the applicability of the shallow-water theory in the simulation of wave flows of fluid with hydraulic bores.
Computing nonhydrostatic shallow-water flow over steep terrain
Denlinger, R.P.; O'Connell, D. R. H.
2008-01-01
Flood and dambreak hazards are not limited to moderate terrain, yet most shallow-water models assume that flow occurs over gentle slopes. Shallow-water flow over rugged or steep terrain often generates significant nonhydrostatic pressures, violating the assumption of hydrostatic pressure made in most shallow-water codes. In this paper, we adapt a previously published nonhydrostatic granular flow model to simulate shallow-water flow, and we solve conservation equations using a finite volume approach and an Harten, Lax, Van Leer, and Einfeldt approximate Riemann solver that is modified for a sloping bed and transient wetting and drying conditions. To simulate bed friction, we use the law of the wall. We test the model by comparison with an analytical solution and with results of experiments in flumes that have steep (31??) or shallow (0.3??) slopes. The law of the wall provides an accurate prediction of the effect of bed roughness on mean flow velocity over two orders of magnitude of bed roughness. Our nonhydrostatic, law-of-the-wall flow simulation accurately reproduces flume measurements of front propagation speed, flow depth, and bed-shear stress for conditions of large bed roughness. ?? 2008 ASCE.
Polymeric waveguide array with 45 degree slopes fabricated by bottom side tilted exposure
NASA Astrophysics Data System (ADS)
Lin, Xiaohui; Dou, Xinyuan; Wang, Alan X.; Chen, Ray T.
2011-01-01
This paper demonstrated a practical fabrication process of polymeric waveguide array (12 channels) with 50μm(W)×50μm(H)×23mm(L) dimension and mirror embedded 45° degree slopes for vertical coupling purpose. The entire process contained three main parts: a SU8 pre-mold with 45° slope, a PDMS mold and the final waveguide array device. The key step of fabricating the pre-mold included a bottom side tilted exposure of SU8 photo resist. By placing the sample upside down, tilting by 58.7° and immersing into DI water, the ultraviolet (UV) beam that shined vertically was directed to go through from the bottom of the glass substrate into top side SU8 resist with 45° angle to form the surface. This method was able to guarantee no-gap contact between the mask pattern and the photo resist when exposing. By comparing the process complexity and achieved structure of the top and bottom side exposure, the later was proved to be a promising method for making high quality tilted structure without any tailing effect. The reversed PDMS mold was then fabricated on the SU8 pre-mold. The PDMS mold was used to imprint the cladding layer of the waveguide array. After metal deposition, core filling and top cladding layer coating, the final polymeric waveguide array device was achieved. For performance evaluation, 850nm laser beam from VCSEL was modulated to 10Gbps signals and vertically coupled into the waveguide array. The eye diagrams revealed high Q factor when transmitting signals along these waveguide array.
New types of time domain reflectometry sensing waveguides for bridge scour monitoring
NASA Astrophysics Data System (ADS)
Lin, Chih-Ping; Wang, Kai; Chung, Chih-Chung; Weng, Yu-Wen
2017-07-01
Scour is a major threat to bridge safety, especially in harsh fluvial environments. Real-time monitoring of bridge scour is still very limited due to the lack of robust and economic scour monitoring device. Time domain reflectometry (TDR) is an emerging waveguide-based technique holding great promise to develop more durable scour monitoring devices. This study presents new types of TDR sensing waveguides in forms of either sensing rod or sensing wire, taking into account of the measurement range, durability, and ease of field installation. The sensing rod is composed of a hollow grooved steel rod paired up with a metal strip on the insulating groove, while the sensing wire consists of two steel strands with one of them coated with an insulating jacket. The measurement sensitivity is inevitably sacrificed when other properties such as the measurement range, field durability, and installation easiness are enhanced. Factors affecting the measurement sensitivity were identified and experimentally evaluated for better arranging the waveguide conductors. A data reduction method for scour-depth estimation without the need for identifying the sediment/water reflection and a two-step calibration procedure for rating propagation velocities were proposed to work with the new types of TDR sensing waveguides. Both the calibration procedure and the data reduction method were experimentally validated. The test results indicated that the new TDR sensing waveguide provides accurate scour depth measurements regardless of the sacrificed sensitivity. The insulating coating of the new TDR sensing waveguide was also demonstrated to be effective in extending the measurement range up to at least 15 m.
Environmental Assessment for Pond Target at the South Range of the Utah Test and Training Range
2004-11-01
Christenson, 1988 , Shallow Ground Water and Related Hazards in Utah) Mr. Marcus Blood, the Hill AFB Natural Resources Manager, has reported a shallow...Christenson, 1988 , Shallow Ground Water and Related Hazards in Utah) Mr. Marcus Blood, the Hill AFB Natural Resources Manager, has reported a shallow...Complex Cultural Resource Inventory, Wendover Air Force Range, Tooele County, Utah, March 1999. Cronquist , A ., Holmgren, A.H., Holmgren, N.H
Analysis of shallow-groundwater dynamic responses to water supply change in the Haihe River plain
NASA Astrophysics Data System (ADS)
Lin, Z.; Lin, W.; Pengfei, L.
2015-05-01
When the middle route of the South-to-North Water Diversion Project is completed, the water supply pattern of the Haihe River plain in North China will change significantly due to the replenishment of water sources and groundwater-exploitation control. The water-cycle-simulation model - MODCYCLE, has been used in simulating the groundwater dynamic balance for 2001-2010. Then different schemes of water supply in 2020 and 2030 were set up to quantitatively simulate the shallow-groundwater dynamic responses in the future. The results show that the total shallow-groundwater recharge is mainly raised by the increases in precipitation infiltration and surface-water irrigation infiltration. Meanwhile, the decrease of groundwater withdrawal contributes to reduce the total discharge. The recharge-discharge structure of local groundwater was still in a negative balance but improved gradually. The shallow-groundwater level in most parts was still falling before 2030, but more slowly. This study can benefit the rational exploitation of water resources in the Haihe River plain.
Lee, Kevin M; Hinojosa, Kevin T; Wochner, Mark S; Argo, Theodore F; Wilson, Preston S; Mercier, Richard S
2011-11-01
The efficacy of large tethered encapsulated gas bubbles for the mitigation of low frequency underwater noise was investigated with an acoustic resonator technique. Tethered latex balloons were used as the bubbles, which had radii of approximately 5 cm. Phase speeds were inferred from the resonances of a water and balloon-filled waveguide approximately 1.8 m in length. The Commander and Prosperetti effective-medium model [J. Acoust. Soc. Am. 85, 732-746 (1989)] quantitatively described the observed dispersion from well below to just below the individual bubble resonance frequency, and it qualitatively predicted the frequency range of high attenuation for void fractions between 2% and 5% for collections of stationary balloons within the waveguide. A finite-element model was used to investigate the sensitivity of the waveguide resonance frequencies, and hence the inferred phase speeds, to changes in individual bubble size and position. The results indicate that large tethered encapsulated bubbles could be used mitigate low frequency underwater noise and that the Commander and Prosperetti model would be useful in the design of such a system.
Xiao-hong, Zhou; Lan-hua, Liu; Wei-qi, Xu; Bao-dong, Song; Jian-wu, Sheng; Miao, He; Han-chang, Shi
2014-01-01
This paper proposed a compact and portable planar waveguide evanescent wave immunosensor (EWI) for highly sensitive detection of BPA. The incident light is coupled into the planar waveguide chip via a beveled angle through undergoing total internal reflection, where the evanescent wave field forms and excites the binding fluorophore-tagged antibodies on the chip surface. Typical calibration curves obtained for BPA has detection limits of 0.03 μg/L. Linear response for BPA ranged from 0.124 μg/L–9.60 μg/L with 50% inhibition concentration for BPA of 1.09 ± 0.25 μg/L. The regeneration of the planar optical waveguide chip allows the performance of more than 300 assay cycles within an analysis time of about 20 min for each assay cycle. By application of effective pretreatment procedure, the recoveries of BPA in real water samples gave values from 88.3% ± 8.5% to 103.7% ± 3.5%, confirming its application potential in the measurement of BPA in reality. PMID:24699239
NASA Astrophysics Data System (ADS)
Gardner, Christopher B.; Litt, Guy F.; Lyons, W. Berry; Ogden, Fred L.
2017-10-01
In humid tropical watersheds, the hydrologic flow paths taken by rain event waters and how they interact with groundwater and soil matrix water to form streamflow are poorly understood. Preferential flow paths (PFPs) confound storm infiltration processes, especially in the humid tropics where PFPs are common. This work applies germanium (Ge) and silicon (Si) as natural flow path tracers in conjunction with water stable isotopes and electrical conductivity to examine the rapid delivery of shallow soil water, the activation of PFPs, and event water partitioning in an experimental catchment in central Panama. We employed a three-component mixing model for hydrograph separation using the following end-member waters: (i) base flow (high [Si], low [Ge], and low Ge/Si ratio), (ii) dilute canopy throughfall (low [Si] and low [Ge]), and (iii) shallow (<15 cm) soil matrix water (low [Si], high [Ge], and high Ge/Si ratio). These three end-members bounded all observed Ge/Si streamflow ratios. During small rain events (<˜24 mm), base flow and dilute canopy throughfall components dominated stormflow. During larger precipitation events (>˜35 mm), we detected the third shallow soil water component with an elevated [Ge] and Ge/Si ratio. This component reached its maximum during the hydrograph's receding limb coincident with the maximum event fraction, and increased proportionally to the total storm rainfall exceeding ˜35 mm. Only shallow (<15 cm) soil matrix water exhibited elevated Ge concentrations and high Ge/Si ratios. This third component represents rapidly delivered soil matrix water combined with shallow lateral PFP activation through which event waters interact with soil minerals.
Two-step narrow ridge cascade diode lasers emitting near $$2~\\mu$$ m
Feng, Tao; Hosoda, Takashi; Shterengas, Leon; ...
2017-01-02
Nearly diffraction limited GaSb-based type-I quantum well cascade diode lasers emitting in the spectral region 1.95-2 μm were designed and fabricated. Two-step 5.5-μm-wide shallow and 14-μm-wide deep etched ridge waveguide design yielded devices generating stable single lobe beams with 250 mW of continuous wave output power at 20 °C. Quantum well radiative recombination current contributes about 13% to laser threshold as estimated from true spontaneous emission and modal gain analysis. Here, recombination at etched sidewalls of the 14-μmwide deep ridges controls about 30% of the threshold.
Florea, Lee J; McGee, Dorien K
2010-06-01
Data from a 10-month monitoring study during 2007 in the Everglades ecosystem provide insight into the variation of delta(18)O, deltaD, and ion chemistry in surface water and shallow groundwater. Surface waters are sensitive to dilution from rainfall and input from external sources. Shallow groundwater, on the other hand, remains geochemically stable during the year. Surface water input from canals derived from draining agricultural areas to the north and east of the Everglades is evident in the ion data. delta(18)O and deltaD values in shallow groundwater remain near the mean of-2.4 and-12 per thousand, respectively. (18)O and D values are enriched in surface water compared with shallow groundwater and fluctuate in sync with those measured in rainfall. The local meteoric water line (LMWL) for precipitation is in close agreement with the global meteoric water line; however, the local evaporation line (LEL) for surface water and shallow groundwater is delta D=5.6 delta(18)O+1.5, a sign that these waters have experienced evaporation. The intercept of the LMWL and LEL indicates that the primary recharge to the Everglades is tropical cyclones or fronts. delta deuterium to delta(18)O excess (D(ex) values) generally reveal two moisture sources for precipitation, a maritime source during the fall and winter (D (ex)>10 per thousand) and a continental-influenced source (D (ex)<10 per thousand) in the spring and summer.
Demonstration of a high repetition rate capillary discharge waveguide
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gonsalves, A. J., E-mail: ajgonsalves@lbl.gov; Pieronek, C.; Daniels, J.
2016-01-21
A hydrogen-filled capillary discharge waveguide operating at kHz repetition rates is presented for parameters relevant to laser plasma acceleration (LPA). The discharge current pulse was optimized for erosion mitigation with laser guiding experiments and MHD simulation. Heat flow simulations and measurements showed modest temperature rise at the capillary wall due to the average heat load at kHz repetition rates with water-cooled capillaries, which is promising for applications of LPAs such as high average power radiation sources.
Hotta, Hiroki; Miki, Yuko; Kawaguchi, Yukiko; Tsunoda, Kin-Ichi; Nakaoka, Atsuko; Ko, Sho; Kimoto, Takashi
2017-01-01
Infrared waveguide spectroscopy using a sapphire rod coated with an amorphous fluoropolymer (Cytop, Asahi Glass Co., ltd, Japan) has been developed in order to directly observe CO 2 in aqueous solutions. Since the amorphous fluoropolymer has a relatively high gas-permeability and hydrophobic feature, the aqueous CO 2 transmits into the amorphous fluoropolymer coating film, but water cannot penetrate into the film. Good linearity of calibration curves for CO 2 in the gas and the aqueous solution were obtained.
Maurer, Douglas K.; Johnson, Ann K.; Welch, Alan H.
1996-01-01
Operating Criteria and Procedures for Newlands Project irrigation and Public Law 101-618 could result in reductions in surface water used for agriculture in the Carson Desert, potentially affecting ground-water supplies from shallow, intermediate, and basalt aquifers. A near-surface zone could exist at the top of the shallow aquifer near the center and eastern parts of the basin where underlying clay beds inhibit vertical flow and could limit the effects of changes in water use. In the basalt aquifer, water levels have declined about 10 feet from pre-pumping levels, and chloride and arsenic concentrations have increased. Conceptual models of the basin suggest that changes in water use in the western part of the basin would probably affect recharge to the shallow, intermediate, and basalt aquifers. Lining canals and removing land from production could cause water-level declines greater than 10 feet in the shallow aquifer up to 2 miles from lined canals. Removing land from production could cause water levels to decline from 4 to 17 feet, depending on the distribution of specific yield in the basin and the amount of water presently applied to irrigated fields. Where wells pump from a near-surface zone of the shallow aquifer, water level declines might not greatly affect pumping wells where the thickness of the zone is greatest, but could cause wells to go dry where the zone is thin.
Design and field tests of a directly coupled waveguide-on-access-tube soil water sensor
USDA-ARS?s Scientific Manuscript database
Sensor systems capable of monitoring soil water content can provide a useful tool for irrigation control. Current systems are limited by installation depth, labor, accuracy, and cost. Time domain reflectometry (TDR) is an approach for monitoring soil water content that relates the travel time of an ...
Cowdery, Timothy K.
1997-01-01
Land-use factors that increased nitrate and herbicide concentrations were greater tilled area, chemical application, irrigation, and cropland contiguity. Hydrogeological factors that increased these concentrations were a deeper watertable (higher oxygen concentration and less organic carbon), larger grain-size and degree of sorting of aquifer material (shorter time in the soil zone and aquifer), and fewer sulfur-containing minerals (lignite and pyrite) composing the aquifer. High rainfall, just before sampling of the Sheyenne Delta aquifer, contributed to the relatively low nitrate and pesticide concentrations in the shallow ground water of this aquifer by raising the water table higher into the soil zone, increasing ponded water (increasing biodegradation), preventing some chemical application (flooded fields), and leaching and then displacing nitrate-rich water downward, beneath new recharge. The shallow ground-water quality measured beneath cropland in these land-use study areas covers a large range. The land-use, hydrogeological, and rainfall factors controlling this quality also control shallow ground-water quality in other surficial aquifers in the Red River of the North Basin. Although not used for drinking water, 43% of the shallow ground water from the Otter Tail outwash aquifer was above the U.S. Environmental Protection Agency's nitrate maximum contaminant level of 10 mg/L-N, reducing its potential uses. These high nitrate concentrations do not threaten the Otter Tail outwash aquifer's surface-water bodies with eutrophication however, because significant denitrification occurs beneath riparian wetlands before ground water discharges to surface waters.
Extreme diel dissolved oxygen and carbon cycles in shallow vegetated lakes.
Andersen, Mikkel R; Kragh, Theis; Sand-Jensen, Kaj
2017-09-13
A common perception in limnology is that shallow lakes are homogeneously mixed owing to their small water volume. However, this perception is largely gained by downscaling knowledge from large lakes to their smaller counterparts. Here we show that shallow vegetated lakes (less than 0.6 m), in fact, undergo recurring daytime stratification and nocturnal mixing accompanied by extreme chemical variations during summer. Dense submerged vegetation effectively attenuates light and turbulence generating separation between warm surface waters and much colder bottom waters. Photosynthesis in surface waters produces oxygen accumulation and CO 2 depletion, whereas respiration in dark bottom waters causes anoxia and CO 2 accumulation. High daytime pH in surface waters promotes precipitation of CaCO 3 which is re-dissolved in bottom waters. Nocturnal convective mixing re-introduces oxygen into bottom waters for aerobic respiration and regenerated inorganic carbon into surface waters, which supports intense photosynthesis. Our results reconfigure the basic understanding of local environmental gradients in shallow lakes, one of the most abundant freshwater habitats globally. © 2017 The Author(s).
Method of fabricating optical waveguides by ion implantation doping
Appleton, Bill R.; Ashley, Paul R.; Buchal, Christopher J.
1989-01-01
A method for fabricating high-quality optical waveguides in optical quality oxide crystals by ion implantation doping and controlled epitaxial recrystallization is provided. Masked LiNbO.sub.3 crystals are implanted with high concentrations of Ti dopant at ion energies of about 350 keV while maintaining the crystal near liquid nitrogen temperature. Ion implantation doping produces an amorphous, Ti-rich nonequilibrium phase in the implanted region. Subsequent thermal annealing in a water-saturated oxygen atmosphere at up to 1000.degree. C. produces solid-phase epitaxial regrowth onto the crystalline substrate. A high-quality single crystalline layer results which incorporates the Ti into the crystal structure at much higher concentrations than is possible by standard diffusion techniques, and this implanted region has excellent optical waveguides properties.
Liu, Ziliang; Shen, Fang; Zhu, Xiaomin; Li, Fengjie; Tan, Mengqi
2015-01-01
A large, shallow braided river delta sedimentary system developed in the Yanchang Formation during the Triassic in the southwest of the Ordos basin. In this braided delta system, abundant oil and gas resources have been observed, and the area is a hotspot for oil and gas resource exploration. Through extensive field work on outcrops and cores and analyses of geophysical data, it was determined that developments in the Late Triassic produced favorable geological conditions for the development of shallow water braided river deltas. Such conditions included a large basin, flat terrain, and wide and shallow water areas; wet and dry cyclical climate changes; ancient water turbulence; dramatic depth cycle changes; ancient uplift development; strong weathering of parent rock; and abundant supply. The shallow water braided river delta showed grain sediment granularity, plastic debris, and sediment with mature composition and structure that reflected the strong hydrodynamic environment of large tabular cross-bedding, wedge cross-bedding, and multiple positive rhythms superimposed to form a thick sand body layer. The branch river bifurcation developed underwater, and the thickness of the sand body increased further, indicating that the slope was slow and located in shallow water. The seismic responses of the braided river delta reflected strong shallow water performance, indicated by a progradation seismic reflection phase axis that was relatively flat; in addition, the seismic reflection amplitude was strong and continuous with a low angle and extended over considerable distances (up to 50 km). The sedimentary center was close to the provenance, the width of the river was large, and a shallow sedimentary structure and a sedimentary rhythm were developed. The development of the delta was primarily controlled by tectonic activity and changes in the lake level; as a result, the river delta sedimentary system eventually presented a "small plain, big front" character.
Liu, Ziliang; Shen, Fang; Zhu, Xiaomin; Li, Fengjie; Tan, Mengqi
2015-01-01
A large, shallow braided river delta sedimentary system developed in the Yanchang Formation during the Triassic in the southwest of the Ordos basin. In this braided delta system, abundant oil and gas resources have been observed, and the area is a hotspot for oil and gas resource exploration. Through extensive field work on outcrops and cores and analyses of geophysical data, it was determined that developments in the Late Triassic produced favorable geological conditions for the development of shallow water braided river deltas. Such conditions included a large basin, flat terrain, and wide and shallow water areas; wet and dry cyclical climate changes; ancient water turbulence; dramatic depth cycle changes; ancient uplift development; strong weathering of parent rock; and abundant supply. The shallow water braided river delta showed grain sediment granularity, plastic debris, and sediment with mature composition and structure that reflected the strong hydrodynamic environment of large tabular cross-bedding, wedge cross-bedding, and multiple positive rhythms superimposed to form a thick sand body layer. The branch river bifurcation developed underwater, and the thickness of the sand body increased further, indicating that the slope was slow and located in shallow water. The seismic responses of the braided river delta reflected strong shallow water performance, indicated by a progradation seismic reflection phase axis that was relatively flat; in addition, the seismic reflection amplitude was strong and continuous with a low angle and extended over considerable distances (up to 50 km). The sedimentary center was close to the provenance, the width of the river was large, and a shallow sedimentary structure and a sedimentary rhythm were developed. The development of the delta was primarily controlled by tectonic activity and changes in the lake level; as a result, the river delta sedimentary system eventually presented a “small plain, big front” character. PMID:26075611
Barlow, Jeannie R.; Kingsbury, James A.; Coupe, Richard H.
2012-01-01
Memphis, the largest city in the state of Tennessee, and its surrounding suburbs depend on a confined aquifer, the Memphis aquifer, for drinking water. Concern over the potential for downward movement of water from an overlying shallow aquifer to the underlying Memphis aquifer provided impetus for monitoring groundwater quality within the shallow aquifer. The occurrence of volatile organic compounds (VOCs), nitrate, and pesticides in samples from the shallow well network indicate a widespread affect on water quality from the overlying urban land use. Total pesticide concentration was generally higher in more recently recharged groundwater indicating that as the proportion of recent water increases, the occurrence of pesticides related to the current urban land use also increases. Groundwater samples with nitrate concentrations greater than 1.5 mg/l and detectable concentrations of the pesticides atrazine and simazine also had higher concentrations of chloroform, a VOC primarily associated with urban land use, than in other samples. The age of the water from these wells indicates that these concentrations are most likely not representative of past agricultural use, but of more recent urban use of these chemicals. Given that the median age of water represented by the shallow well network was 21 years, a lag time likely exists between changes in land use and the occurrence of constituents related to urbanization in shallow groundwater.
Mid-IR absorption sensing of heavy water using a silicon-on-sapphire waveguide.
Singh, Neetesh; Casas-Bedoya, Alvaro; Hudson, Darren D; Read, Andrew; Mägi, Eric; Eggleton, Benjamin J
2016-12-15
We demonstrate a compact silicon-on-sapphire (SOS) strip waveguide sensor for mid-IR absorption spectroscopy. This device can be used for gas and liquid sensing, especially to detect chemically similar molecules and precisely characterize extremely absorptive liquids that are difficult to detect by conventional infrared transmission techniques. We reliably measure concentrations up to 0.25% of heavy water (D2O) in a D2O-H2O mixture at its maximum absorption band at around 4 μm. This complementary metal-oxide-semiconductor (CMOS) compatible SOS D2O sensor is promising for applications such as measuring body fat content or detection of coolant leakage in nuclear reactors.
Diet composition of age-0 fishes in created habitats of the Lower Missouri River
Starks, Trevor A.; Long, James M.
2017-01-01
Channelization of the Missouri River has greatly reduced the availability of shallow water habitats used by many larval and juvenile fishes and contributed to imperilment of floodplain-dependent biota. Creation of small side channels, or chutes, is being used to restore shallow water habitat and reverse negative environmental effects associated with channelization. In the summer of 2012, the U.S. Army Corps of Engineers collected early life stages of fishes from constructed chutes and nearby unrestored shallow habitats at six sites on the Missouri River between Rulo, Nebraska and St. Louis, Missouri. We compared the diets of two abundant species of fishes to test the hypothesis that created shallow chutes provided better foraging habitat for early life stages than nearby unrestored shallow habitats. Graphical analysis of feeding patterns of freshwater drum indicated specialization on chironomid larvae, which were consumed in greater numbers in unrestored mainstem reaches compared to chutes. Hiodon spp. were more generalist feeders with no differences in prey use between habitat types. Significantly greater numbers of individuals with empty stomachs were observed in chute shallow-water habitats, indicating poor foraging habitat. For these two species, constructed chute shallow-water habitat does not appear to provide the hypothesized benefits of higher quality foraging habitat.
NASA Astrophysics Data System (ADS)
Alemi Ardakani, Hamid; Bridges, Thomas J.; Turner, Matthew R.
2016-06-01
A class of augmented approximate Riemann solvers due to George (2008) [12] is extended to solve the shallow-water equations in a moving vessel with variable bottom topography and variable cross-section with wetting and drying. A class of Roe-type upwind solvers for the system of balance laws is derived which respects the steady-state solutions. The numerical solutions of the new adapted augmented f-wave solvers are validated against the Roe-type solvers. The theory is extended to solve the shallow-water flows in moving vessels with arbitrary cross-section with influx-efflux boundary conditions motivated by the shallow-water sloshing in the ocean wave energy converter (WEC) proposed by Offshore Wave Energy Ltd. (OWEL) [1]. A fractional step approach is used to handle the time-dependent forcing functions. The numerical solutions are compared to an extended new Roe-type solver for the system of balance laws with a time-dependent source function. The shallow-water sloshing finite volume solver can be coupled to a Runge-Kutta integrator for the vessel motion.
Hubbard, Laura E.; Keefe, Steffanie H.; Kolpin, Dana W.; Barber, Larry B.; Duris, Joseph W.; Hutchinson, Kasey J.; Bradley, Paul M.
2016-01-01
Effluent-impacted surface water has the potential to transport not only water, but wastewater-derived contaminants to shallow groundwater systems. To better understand the effects of effluent discharge on in-stream and near-stream hydrologic conditions in wastewater-impacted systems, water-level changes were monitored in hyporheic-zone and shallow-groundwater piezometers in a reach of Fourmile Creek adjacent to and downstream of the Ankeny (Iowa, USA) wastewater treatment plant (WWTP). Water-level changes were monitored from approximately 1.5 months before to 0.5 months after WWTP closure. Diurnal patterns in WWTP discharge were closely mirrored in stream and shallow-groundwater levels immediately upstream and up to 3 km downstream of the outfall, indicating that such discharge was the primary control on water levels before shutdown. The hydrologic response to WWTP shutdown was immediately observed throughout the study reach, verifying the far-reaching hydraulic connectivity and associated contaminant transport risk. The movement of WWTP effluent into alluvial aquifers has implications for potential WWTP-derived contamination of shallow groundwater far removed from the WWTP outfall.
Hydrogeology of shallow basin-fill deposits in areas of Salt Lake Valley, Salt Lake County, Utah
Thiros, Susan A.
2003-01-01
A study of recently developed residential/commercial areas of Salt Lake Valley, Utah, was done from 1999 to 2001 in areas in which shallow ground water has the potential to move to a deeper aquifer that is used for public supply. Thirty monitoring wells were drilled and sampled in 1999 as part of the study. The ground water was either under unconfined or confined conditions, depending on depth to water and the presence or absence of fine-grained deposits. The wells were completed in the shallowest water-bearing zone capable of supplying water. Monitoring-well depths range from 23 to 154 feet. Lithologic, geophysical, hydraulic-conductivity, transmissivity, water-level, and water-temperature data were obtained for or collected from the wells.Silt and clay layers noted on lithologic logs correlate with increases in electrical conductivity and natural gamma radiation shown on many of the electromagnetic-induction and natural gamma logs. Relatively large increases in electrical conductivity, determined from the electromagnetic-induction logs, with no major changes in natural gamma radiation are likely caused by increased dissolved-solids content in the ground water. Some intervals with high electrical conductivity correspond to areas in which water was present during drilling.Unconfined conditions were present at 7 of 20 monitoring wells on the west side and at 2 of 10 wells on the east side of Salt Lake Valley. Fine-grained deposits confine the ground water. Anthropogenic compounds were detected in water sampled from most of the wells, indicating a connection with the land surface. Data were collected from 20 of the monitoring wells to estimate the hydraulic conductivity and transmissivity of the shallow ground-water system. Hydraulic-conductivity values of the shallow aquifer ranged from 30 to 540 feet per day. Transmissivity values of the shallow aquifer ranged from 3 to 1,070 feet squared per day. There is a close linear relation between transmissivity determined from slug-test analysis and transmissivity estimated from specific capacity.Water-level fluctuations were measured in the 30 monitoring wells from 1999 to July 2001. Generally, water-level changes measured in wells on the west side of the valley followed a seasonal trend and wells on the east side showed less fluctuation or a gradual decline during the 2-year period. This may indicate that a larger percentage of recharge to the shallow ground-water system on the west side is from somewhat consistent seasonal sources, such as canals and unconsumed irrigation water, as compared to sources on the east side. Water levels measured in monitoring wells completed in the shallow ground-water system near large-capacity public-supply wells varied in response to ground-water withdrawals from the deeper confined aquifer. Water temperature was monitored in 23 wells. Generally, little or no change in water temperature was measured in monitoring wells with a depth to water greater than about 40 feet. The shallower the water level in the well, the greater the water-temperature change measured during the study.Comparison of water levels measured in the monitoring wells and deeper wells in the same area indicate a downward gradient on the east side of the valley. Water levels in the shallow and deeper aquifers in the secondary recharge area on the west side of the valley were similar to those on the east side. Water levels measured in the monitoring wells and nearby wells completed in the deeper aquifer indicate that the vertical gradient can change with time and stresses on the system.
Germino, Matthew J.; Reinhardt, Keith
2013-01-01
1. Ecohydrological niches are important for understanding plant community responses to climate shifts, particularly in dry lands. According to the two-layer hypothesis, selective use of deep-soil water increases growth or persistence of woody species during warm and dry summer periods and thereby contributes to their coexistence with shallow-rooted herbs in dry ecosystems. The resource-pool hypothesis further suggests that shallow-soil water benefits growth of all plants while deep-soil water primarily enhances physiological maintenance and survival of woody species. Few studies have directly tested these by manipulating deep-soil water availability and observing the long-term outcomes. 2. We predicted that factors promoting infiltration and storage of water in deep soils, specifically greater winter precipitation and soil depth, would enhance Artemisia tridentata (big sagebrush) in cold, winter-wet/summer-dry desert. Sagebrush responses to 20 years of winter irrigation were compared to summer- or no irrigation, on plots having relatively deep or shallow soils (2 m vs. 1 m depths). 3. Winter irrigation increased sagebrush cover, and crown and canopy volumes, but not density (individuals/plot) compared to summer or no irrigation, on deep-soil plots. On shallow-soil plots, winter irrigation surprisingly decreased shrub cover and size, and summer irrigation had no effect. Furthermore, multiple regression suggested that the variations in growth were related (i) firstly to water in shallow soils (0-0.2 m) and secondly to deeper soils (> 1 m deep) and (ii) more by springtime than by midsummer soil water. Water-use efficiency increased considerably on shallow soils without irrigation and was lowest with winter irrigation. 4. Synthesis. Sagebrush was more responsive to the seasonal timing of precipitation than to total annual precipitation. Factors that enhanced deep-water storage (deeper soils plus more winter precipitation) led to increases in Artemisia tridentata that were consistent with the two-layer hypothesis, and the contribution of shallow water to growth on these plots was consistent with the resource-pool hypothesis. However, shallow-soil water also had negative effects on sagebrush, suggesting an ecohydrological trade-off not considered in these or related theories. The interaction between precipitation timing and soil depth indicates that increased winter precipitation could lead to a mosaic of increases and decreases in A. tridentata across landscapes having variable soil depth.
APTAMER CAPTURE AND OPTICAL INTERFEROMETRIC DETECTION OF CYANOBACTERIAL TOXINS
Cyanobacterial toxins have been identified as a health risk in source and finished waters passing through drinking water utilities in the United States. In this project, a rapid, sensitive and field usable sensor based on an aptamer modified planar waveguide interferometric se...
Squillace, P.J.
1995-01-01
The 1990 Clean Air Act Amendments require fuel oxygenates to be added to gasoline used in some metropolitan areas to reduce atmospheric concen- trations of carbon monoxide or ozone. Methyl tert-butyl ether (MTBE), is the most commonly used fuel oxygenate and is a relatively new gasoline additive. Nevertheless, out of 60 volatile organic chemicals analyzed, MTBE was the second most frequently detected chemical in samples of shallow ambient ground water from urban areas that were collected during 1993-94 as part of the U.S. Geological Survey's National Water-Quality Assessment program. Samples were collected from 5 drinking-water wells, 12 springs, and 193 monitoring wells in urban areas. No MTBE was detected in drinking-water wells. At a reporting level of 0.2 ug/L (micrograms per liter), MTBE was detected most frequently in shallow ground water from urban areas (27 percent of 210 wells and springs sampled in 8 areas) as compared to shallow ground water from agricultural areas (1.3 percent of 549 wells sampled in 21 areas) or deeper ground water from major aquifers (1 percent of 412 wells sampled in 9 areas). Only 3 percent of the shallow wells sampled in urban areas had concentrations of MTBE that exceed 20 ug/L, which is the estimated lower limit of the U.S. Environmental Protection Agency draft drinking-water health advisory. Because MTBE is persistent and mobile in ground water, it can move from shallow to deeper aquifers with time. In shallow urban ground water, MTBE generally was not found with benzene, toluene, ethylbenzene, or xylenes (BTEX) compounds which commonly are associated with gasoline spills. This disassociation causes uncertainty as to the source of MTBE. Possible sources of MTBE in ground water include point sources, such as leaking storage tanks, and nonpoint sources, such as recharge of precipitation and storm-water runoff.
NASA Astrophysics Data System (ADS)
Jin, Ke; Rao, Wenbo; Tan, Hongbing; Song, Yinxian; Yong, Bin; Zheng, Fangwen; Chen, Tangqing; Han, Liangfeng
2018-04-01
The recharge mechanism of groundwater in the Badain Jaran Desert, North China has been a focus of research and still disputable in the past two decades. In this study, the chemical and hydrogen (H) and oxygen (O) isotopic characteristics of shallow groundwater, lake water and local precipitation in the Badain Jaran Desert and neighboring areas were investigated to reveal the relationships between various water bodies and the recharge source of shallow groundwater. Isotopic and hydrogeochemical results show that (1) shallow groundwater was associated with local precipitation in the Ayouqi and Yabulai regions, (2) lake water was mainly recharged by groundwater in the desert hinterland, (3) shallow groundwater of the desert hinterland, Yabulai Mountain and Gurinai Grassland had a common recharge source. Shallow groundwater of the desert hinterland had a mean recharge elevation of 1869 m a.s.l. on the basis of the isotope-altitude relationship and thus originated chiefly from lateral infiltration of precipitation in the Yabulai Mountain. It is further concluded that shallow groundwater flowed towards the Gurinai Grassland according to the groundwater table contour map. Along the flow pathway, the H-O isotopic variations were primarily caused by the evaporation effect but chemical variations of shallow groundwater were affected by multiple factors, e.g., evaporation effect, dilution effect of occasional heavy-precipitation and dissolution of aquifer evaporites. Our findings provide new insight into the groundwater cycle and benefit the management of the limited water resources in the arid desert area.
,
2013-01-01
The California State Water Resources Control Board’s (SWRCB) GAMA Program is a comprehensive assessment of statewide groundwater quality in California. From 2004 to 2012, the GAMA Program’s Priority Basin Project focused on assessing groundwater resources used for public drinking-water supplies. More than 2,000 public-supply wells were sampled by U.S. Geological Survey (USGS) for this effort. Starting in 2012, the GAMA Priority Basin Project began an assessment of water resources in shallow aquifers in California. These shallow aquifers provide water for domestic and small community-supply wells, which are often drilled to shallower depths in the groundwater system than public-supply wells. Shallow aquifers are of interest because shallow groundwater may respond more quickly and be more susceptible to contamination from human activities at the land surface, than the deeper aquifers. The SWRCB’s GAMA Program was developed in response to the Groundwater Quality Monitoring Act of 2001 (Water Code sections 10780-10782.3): a public mandate to assess and monitor the quality of groundwater resources used for drinking-water supplies, and to increase the availability of information about groundwater quality to the public. The U.S. Geological Survey is the technical lead of the Priority Basin Project. Stewardship of California’s groundwater resources is a responsibility shared between well owners, communities, and the State. Participants and collaborators in the GAMA Program include Regional Water Quality Control Boards, Department of Water Resources, Department of Public Health, local and regional groundwater management entities, county and local water agencies, community groups, and private citizens. Well-owner participation in the GAMA Program is entirely voluntary.
Federal Register 2010, 2011, 2012, 2013, 2014
2013-02-26
... halibut PSC trawl limits between the trawl gear deep-water and the shallow-water species fishery... for pollock, sablefish, deep-water flatfish, rex sole, Pacific ocean perch, northern rockfish... less than the ABCs for Pacific cod, shallow-water flatfish, arrowtooth flounder, flathead sole, ``other...
Topological soliton solutions for three shallow water waves models
NASA Astrophysics Data System (ADS)
Liu, Jiangen; Zhang, Yufeng; Wang, Yan
2018-07-01
In this article, we investigate three distinct physical structures for shallow water waves models by the improved ansatz method. The method was improved and can be used to obtain more generalized form topological soliton solutions than the original method. As a result, some new exact solutions of the shallow water equations are successfully established and the obtained results are exhibited graphically. The results showed that the improved ansatz method can be applied to solve other nonlinear differential equations arising from mathematical physics.
SHALLOW GROUNDWATER USE BY ALFALFA
USDA-ARS?s Scientific Manuscript database
One proposal for drainage water disposal is to reuse drainage water for irrigation of salt tolerant crops until the volume has been reduced sufficiently to enable final disposal by evaporation. Part of this concept of serial biological concentration requires in-situ crop water reuse from shallow gr...
Modifiying shallow-water equations as a model for wave-vortex turbulence
NASA Astrophysics Data System (ADS)
Mohanan, A. V.; Augier, P.; Lindborg, E.
2017-12-01
The one-layer shallow-water equations is a simple two-dimensional model to study the complex dynamics of the oceans and the atmosphere. We carry out forced-dissipative numerical simulations, either by forcing medium-scale wave modes, or by injecting available potential energy (APE). With pure wave forcing in non-rotating cases, a statistically stationary regime is obtained for a range of forcing Froude numbers Ff = ɛ /(kf c), where ɛ is the energy dissipation rate, kf the forcing wavenumber and c the wave speed. Interestingly, the spectra scale as k-2 and third and higher order structure functions scale as r. Such statistics is a manifestation of shock turbulence or Burgulence, which dominate the flow. Rotating cases exhibit some inverse energy cascade, along with a stronger forward energy cascade, dominated by wave-wave interactions. We also propose two modifications to the classical shallow-water equations to construct a toy model. The properties of the model are explored by forcing in APE at a small and a medium wavenumber. The toy model simulations are then compared with results from shallow-water equations and a full General Circulation Model (GCM) simulation. The most distinctive feature of this model is that, unlike shallow-water equations, it avoids shocks and conserves quadratic energy. In Fig. 1, for the shallow-water equations, shocks appear as thin dark lines in the divergence (∇ .{u}) field, and as discontinuities in potential temperature (θ ) field; whereas only waves appear in the corresponding fields from toy model simulation. Forward energy cascade results in a wave field with k-5/3 spectrum, along with equipartition of KE and APE at small scales. The vortical field develops into a k-3 spectrum. With medium forcing wavenumber, at large scales, energy converted from APE to KE undergoes inverse cascade as a result of nonlinear fluxes composed of vortical modes alone. Gradually, coherent vortices emerge with a strong preference for anticyclonic motion. The model can serve as a closer representation of real geophysical turbulence than the classical shallow-water equations. Fig 1. Divergence and potential temperature fields of shallow-water (top row) and toy model (bottom row) simulations.
Shallow peatland ecohydrology - the control of peat depth on moss productivity
NASA Astrophysics Data System (ADS)
Dixon, Simon; Kettridge, Nicholas; Moore, Paul; Devito, Kevin; Tilak, Amey; Petrone, Rich; Mendoza, Carl; Waddington, Mike
2017-04-01
Northern peatlands represent an important sink in the global carbon cycle. Shallow peatlands and marginal connective wetlands can be essential components of many northern peatland landscape mosaics, playing a vital role in landscape connectivity and wider landscape hydrology. However the ecohydrological function of these shallow, marginal systems has been largely overlooked, with peatland hydrology research focused on relatively deep bog systems. In order to predict landscape scale wetland function and its vulnerability to climate change we need to understand how these shallow connective systems function. The balance between moss productivity and water loss provide a key component of these systems, as water use efficiency controls the rate of moss growth and thus controls the amount of atmospheric carbon sequestered in peat. Understanding how productivity of shallow peatland systems responds to changes in evaporative stress will aid predictions of peatland landscape hydrological function in a changing climate. To determine the factors influencing peat productivity, water balance simulations using Hydrus 1-D were conducted over annual growing seasons for different soil profile depths, compositions and antecedent moisture conditions. Our results demonstrate a bimodal distribution of peatland responses; either primarily conserving water by limiting evapotranspiration or, maximizing productivity. For sustained periods of evaporative stress, shallow marginal systems are least able to buffer periods of evaporative stress due to limited labile water storage, and will limit evaporation, conserve water and be less productive. Conversely, where present, both deep water storage and a shallow initial water table prolong the onset of high vegetative stress, thus maximizing moss productivity. However, a total depth of 0.8 m is identified as the threshold above which increasing peat depth has no further effect on changing vegetative stress response and thus landscape function. These results are important as moss productivity, along with rate of organic matter decay are the two principle factors controlling the build-up of peat, and therefore sequestration of carbon. With a predicted increase in the frequency and size of rain events in northern latitudes our results indicate the productivity of shallow wetland systems may increase, but greater moisture availability will increase the likelihood they remain as wetlands in a changing climate.
Guided Seismic Waves: Possible Diagnostics for Hot Plumes in the Mantle
NASA Astrophysics Data System (ADS)
Evans, J. R.; Julian, B. R.; Foulger, G. R.
2005-12-01
Seismic waves potentially provide by far the highest resolution view of the three-dimensional structure of the mantle, and the hope of detecting wave-speed anomalies caused by hot or compositionally buoyant mantle plumes has been a major incentive to the development of tomographic seismic techniques. Seismic tomography is limited, however, by the uneven geographical distribution of earthquakes and seismometers, which can produce artificial tomographic wave-speed anomalies that are difficult to distinguish from real structures in the mantle. An alternate approach may be possible, because hot plumes and possibly some compositional upwellings would have low seismic-wave speeds and would act as efficient waveguides over great depth ranges in the mantle. Plume-guided waves would be little affected by bends or other geometric complexities in the waveguides (analogously to French horns and fiber-optic cables), and their dispersion would make them distinctive on seismograms and would provide information on the size and structure of the waveguide. The main unanswered question is whether guided waves in plumes could be excited sufficiently to be observable. Earthquakes do not occur in the deep mantle, but at least two other possible sources of excitation can be imagined: (1) shallow earthquakes at or near plume-fed hotspots; and (2) coupling of plume-guided waves to seismic body waves near the bottom of the mantle. In the first case, downward-traveling guided waves transformed to seismic body waves at the bottom of the waveguide would have to be detected at teleseismic distances. In the second case, upward-traveling guided waves generated by teleseismic body waves would be detected on seismometers at hotspots. Qualitative reasoning based on considerations of reciprocity suggests that the signals in these two situations should be similar in size and appearance. The focusing of seismic core phases at caustics would amplify plume waves excited by either mechanism (1) or (2) at particular epicentral distances. A failure to find such guided waves experimentally could mean either that the waveguides (plumes) do not exist or that the excitation mechanisms and/or seismometer networks are inadequate. Distinguishing these two possibilities would require careful analysis. Anticipated major improvements in seismic instrumentation, such as the EarthScope initiative, make this a propitious time to undertake a search for plume-guided waves in the mantle.
Extant or Absent: Formation Water in New York State Drinking Water Wells
NASA Astrophysics Data System (ADS)
Christian, K.; Lautz, L. K.
2013-12-01
The current moratorium on hydraulic fracturing in New York State (NYS) provides an opportunity to collect baseline shallow groundwater quality data pre-hydraulic fracturing, which is essential for determining the natural variability of groundwater chemistry and to evaluate future claims of impaired groundwater quality if hydraulic fracturing occurs in the State. Concerns regarding the future environmental impact of shale gas extraction in NYS include potential shallow groundwater contamination due to migration of methane or formation water from shale gas extraction sites. Treatment, storage and disposal of saline flowback fluids after gas extraction could also be a source of water contamination. In this study, we combine southern NYS shallow groundwater chemistry data from Project Shale-Water Interaction Forensic Tools (SWIFT, n=60), the National Uranium Resource Evaluation program (NURE, n=684), and the USGS 305(b) Ambient Groundwater Quality Monitoring program (USGS, n=89) to examine evidence of formation water mixing with groundwater using the methodology of Warner et al. (2012). Groundwater characterized as low salinity (<20 mg/L Cl-) accounted for 72% of samples and 28% of samples had high salinity (>20 mg/L Cl-). A plot of bromide versus chloride shows high salinity groundwater samples with Br/Cl ratios >0.0001 fall on the mixing line between low salinity groundwater and Appalachian Basin formation water. Based on the observed linear relationship between bromide and chloride, it appears there is up to 1% formation water mixing with shallow groundwater in the region. The presence of formation water in shallow groundwater would indicate the existence of natural migratory pathways between deep formation wells and shallow groundwater aquifers. A plot of sodium versus chloride also illustrates a linear trend for Type D waters (R^2= 0.776), but the relationship is weaker than that for bromide versus chloride (R^2= 0.924). Similar linear relationships are not observed between other ions and chloride, including Mg, Ca, and Sr. If high salinity groundwater samples from NYS contain small percentages of formation water, we expect linear relationships between chloride and these other, generally conservative ions. The absence of these linear relationships suggests high salinity could be associated with contamination by landfill leachate, septic effluent, road salt, or other potential sources of elevated salt. Future work needs to determine if mixing of shallow groundwater with other potential sources of salinity, such as road deicers, can explain the observed linear relationships. Strontium isotopes from shallow groundwater samples will also be compared to those for NY formation water.
Komor, Stephen C.; Magner, Joseph A.
1996-01-01
This study evaluates processes that affect nitrate concentrations in groundwater beneath riparian zones in an agricultural watershed. Nitrate pathways in the upper 2 m of groundwater were investigated beneath wooded and grass-shrub riparian zones next to cultivated fields. Because trees can be important components of the overall nitrate pathway in wooded riparian zones, water sources used by riparian trees and possible effects of trees on nitrate concentrations in groundwater were also investigated. Average nitrate concentrations in shallow groundwater beneath the cultivated fields were 5.5 mg/L upgradient of the wooded riparian zone and 3.5 mg/L upgradient of the grass-shrub zone. Shallow groundwater beneath the fields passed through the riparian zones and discharged into streams that had average nitrate concentrations of 8.5 mg/L (as N). Lateral variations of δD values in groundwater showed that mixing among different water sources occurred beneath the riparian zones. In the wooded riparian zone, nitrate concentrations in shallow groundwater were diluted by upwelling, nitrate-poor, deep groundwater. Upwelling deep groundwater contained ammonium with a δ15N of 5‰ that upon nitrification and mixing with nitrate in shallow groundwater caused nitrate δ15N values in shallow groundwater to decrease by as much as 19.5‰. Stream water penetrated laterally beneath the wooded riparian zone as far as 19 m from the stream's edge and beneath the grass-shrub zone as far as 27 m from the stream's edge. Nitrate concentrations in shallow groundwater immediately upgradient of where it mixed with stream water averaged 0.4 mg/L in the wooded riparian zone and 0.8 mg/L near the grass-shrub riparian zone. Nitrate concentrations increased toward the streams because of mixing with nitrate-rich stream water. Because nitrate concentrations were larger in stream water than shallow groundwater, concentrated nitrate in the streams cannot have come from shallow groundwater at these sites. Water sources of riparian trees were identified by comparing δD values of sap water, soil water, groundwater, and stream water. Soil water was the main water source for trees in the outer 4 to 6 m of one part of the wooded riparian zone and outer 10 m of another part. Groundwater was a significant water source for trees closer to the streams where the water table was less than about 2.1 to 2.7 m below the surface. No evidence was found in the nitrate concentration profiles that trees close to the streams that took up groundwater through their roots also took up nitrate from groundwater. The lack of such evidence is attributed to the nitrate concentration profiles being insufficiently sensitive indicators of nitrate removal by trees.
Dissecting the variable source area concept - Flow paths and water mixing processes
NASA Astrophysics Data System (ADS)
Dahlke, H. E.; Easton, Z. M.; Lyon, S. W.; Brown, L. D.; Walter, M. T.; Steenhuis, T.
2010-12-01
Variable source areas (VSAs) are hot spots of hydrological (saturation excess runoff) and biogeochemical processes (e.g. nitrogen, phosphorus, organic carbon cycling) in the landscapes of the northeastern U.S. The prevalence of shallow, highly transmissive soils, steep topography, and impeding layers in the soil (i.e. fragipan) have long been recognized as first-order controls on VSA formation. Nevertheless, there is still understanding to be gained by studying subsurface flow processes in VSAs. Thus, we instrumented (trenched) a 0.5 ha hillslope in the southern tier of New York State, U.S.A. and measured water fluxes in the trench, upslope water table dynamics, surface and bedrock topography in conjunction with isotopic and geochemical tracers in order to four-dimensionally characterize (XYZ and Time) subsurface storm flow response within the VSA for five storm events. We used tracer-based hydrograph separation models and physically measured flow components to separate temporally (i.e. event and pre-event) and spatially shallow water from above the fragipan layer (including both surface runoff and shallow interflow) and deeper water from below the fragipan layer. Shallow water (event/pre-event) contributions were greatest during storms with wet antecedent conditions and large rainfall amounts (> 15 mm), when soils above the fragipan were saturated, prohibiting deep percolation through cracks in the fragipan. Shallow water contributions were well correlated to the saturated contributing area. During these events, the pre-event shallow water peaked on the rising and falling limb, which can be explained by flushing of pre-event water from macropores on the rising limb and subsequent drainage of pre-event water from micropores into macropores on the falling limb. During events with dry antecedent conditions, greater amounts of event water (24 - 28 %) are proportionally contributed by surface runoff in the top 10 cm of the soil through macropores than by shallow interflow from the soil-fragipan interface. Pre-event deeper water contributions to total trench discharge varied between 15 and 65% but were independent of total rainfall amounts, rainfall intensities, and water table dynamics. Our results have important implication for the protection of streams from dissolved pollutant transport and recommend that preference be given to variable-width buffers over fixed-width stream buffers.
Rajmohan, Natarajan; Patel, Neelam; Singh, Gaurav; Amarasinghe, Upali A
2017-09-01
Groundwater samples were collected from 44 wells in the Ramganga Sub-Basin (RSB), India, and analysed for major ions, nutrients and trace metals. The primary goal of this study is to evaluate the hydrochemistry and to identify the geochemical processes that govern the water chemistry in the shallow and deep tube wells in the study area using geochemical methods. The knowledge of changes in hydrochemistry of the aquifers is important for both groundwater recharge and use in the region. This study found that there are substantial differences of water chemistry between shallow and deep wells. In the shallow wells, the average concentrations of total dissolved solid (TDS), Na, K, Ca, Mg, HCO 3 , Cl, SO 4 , NO 3 , PO 4 , F, Cu, Mn, Fe and Cr are twofold higher than the deep wells. The concentrations of dissolved silica in the groundwater do not vary with the depth, which implies that the variation in the water chemistry is not due to mineral dissolution alone. Major ion ratios and saturation indices suggest that the water chemistry is predominantly controlled by dissolution of carbonate minerals, silicate weathering and ion exchange reactions. Thermodynamic evaluation (ion activity ratios and stability filed diagrams) indicates that the kaolinite and gibbsite controlled the water chemistry in the both shallow and deep wells. In addition, the groundwater chemistry in the shallow wells is affected by the vertical infiltration of contaminated water from surface contamination sources and nitrification process. In the deep wells, absence of NO 3 and low concentrations of Cl, SO 4 , PO 4 and F imply the role of regional flow and denitrification in the groundwater. Results concluded that proper management plan is necessary to protect the shallow aquifer in the RSB since shallow aquifer pumping is less expensive than the deeper one.
NASA Astrophysics Data System (ADS)
Jiang, Shibin; Honkanen, Seppo; Luo, Tao; Hwang, Bor-Chyuan; Nunzi Conti, Gualtiero; Myers, Michael J.; Rhonehouse, Daniel L.; Peyghambarian, Nasser
1998-04-01
A new Er3+ doped phosphate glass exhibiting an excellent durability in both boiling water and NaNO3 molten salt was developed. Ion-exchange process of this glass was investigated by treating glass samples in a variety of salt bathes with various exposure times. Planar waveguide with one mode at 1.54 micrometers and three modes at 632.8 nm was demonstrated. Spectral properties of Er3+ in this glass were characterized by measuring absorption and emission spectra, and fluorescence lifetimes. Emission cross section of Er3+ in this glass was calculated to be 0.76 X 10-20 cm2 using McCumber theory. Our preliminary experimental results indicate this new Er3+ doped glass is an excellent material for ion-exchanged waveguide lasers and amplifiers.
Nitrogen and organic carbon cycling processes in tidal marshes and shallow estuarine habitats
NASA Astrophysics Data System (ADS)
Bergamaschi, B. A.; Downing, B. D.; Pellerin, B. A.; Kraus, T. E. C.; Fleck, J.; Fujii, R.
2016-02-01
Tidal wetlands and shallow water habitats can be sites of high aquatic productivity, and they have the potential of exchanging this newly produced organic carbon with adjacent deeper habitats. Indeed, export of organic carbon from wetlands and shallow water habitats to pelagic food webs is one of the primary ecosystem functions targeted in tidal wetland restorations. Alternatively, wetlands and shallow water habitats can function as retention areas for nutrients due to the nutrient demand of emergent macrophytes and denitrification in anoxic zones. They can also remove phytoplankton and non-algal particles from the aquatic food webs because the shallower waters can result in higher rates of benthic grazing and higher settling due to lower water velocities. We conducted studies in wetland and channel sites in the San Francisco estuary (USA) to investigate the dynamics of nutrients and carbon production at a variety of temporal scales. We collected continuous time series of nutrients, oxygen, chlorophyll and pH in conjunction with continuous acoustic measurement of water velocity and discharge to provide mass controls and used simple biogeochemical models to assess rates. We found a high degree of temporal variability in individual systems, corresponding to, for example, changes in nutrient supply, water level, light level, wind, wind direction, and other physical factors. There was also large variability among the different systems, probably due to differences in flows and geomorphic features. We compare the aquatic productivity of theses environments and speculate as to the formative elements of each. Our findings demonstrate the complex interaction between physical, chemical, and biological factors that determine the type of production and degree of export from tidal wetlands and shallow water habitats, suggesting that a clearer picture of these processes is important for guiding future large scale restoration efforts.
Kröckel, Lars; Frosch, Torsten; Schmidt, Markus A
2015-05-22
In conventional absorption spectrometers, the range of accessible concentrations of analytes in aqueous solution is significantly limited by the dynamic range of the measurement system. Here we introduce the concept of multiscale spectroscopy allowing extending that range by orders of magnitude within one single device. The concept relies on using multiple light-sample interaction lengths, boosting the accessible concentration range by a particular extension factor. We experimentally implement our concept by a liquid core waveguide having multiple fiber ports side-wise attached to the waveguide, thus probing the light propagating inside the core at predefined distances from the input. This configuration provides three orders of magnitude of interaction length in one device. To verify the concept we exemplarily determine the concentrations of nitrate and of Rhodamine 6G in water, showing one hundred times improved measurement capabilities. The multiscale spectrometer uses the entire sample volume and allows the simultaneous measurement of fluorescence and attenuance. Due to its integrated design and the extended measurements capabilities, we anticipate application of our device in many application-relevant areas such as water quality analysis or environmental science. Copyright © 2015 Elsevier B.V. All rights reserved.
Federal Register 2010, 2011, 2012, 2013, 2014
2012-04-06
... inconsistencies in the regulatory text regarding the quotas and annual catch limits (ACLs) for ``other shallow... shallow-water grouper (SWG) quota; --Adjust the commercial and recreational sector's ACLs for gag and red... U.S.C. 1801 et seq. 2. In Sec. 622.2, the definition for ``Shallow-water grouper (SWG)'' is revised...
Profiling soil water content sensor
USDA-ARS?s Scientific Manuscript database
A waveguide-on-access-tube (WOAT) sensor system based on time domain reflectometry (TDR) principles was developed to sense soil water content and bulk electrical conductivity in 20-cm (8 inch) deep layers from the soil surface to depths of 3 m (10 ft) (patent No. 13/404,491 pending). A Cooperative R...
Design of access-tube TDR sensor for soil water content: Theory
USDA-ARS?s Scientific Manuscript database
The design of a cylindrical access-tube mounted waveguide was developed for in-situ soil water content sensing using time-domain reflectometry (TDR). To optimize the design with respect to sampling volume and losses, we derived the electromagnetic fields produced by a TDR sensor with cylindrical geo...
Code of Federal Regulations, 2014 CFR
2014-10-01
...) Commercial quota for red snapper—5.610 million lb (2.545 million kg), round weight. (ii) Deep-water groupers... million lb (0.464 million kg). (iii) Shallow-water groupers (SWG) have separate quotas for gag and red grouper and a combined quota for other shallow-water grouper (Other SWG) species (including black grouper...
Functional Metagenomic Investigations of Microbial Communities in a Shallow-Sea Hydrothermal System
Tang, Kai; Liu, Keshao; Jiao, Nianzhi; Zhang, Yao; Chen, Chen-Tung Arthur
2013-01-01
Little is known about the functional capability of microbial communities in shallow-sea hydrothermal systems (water depth of <200 m). This study analyzed two high-throughput pyrosequencing metagenomic datasets from the vent and the surface water in the shallow-sea hydrothermal system offshore NE Taiwan. This system exhibited distinct geochemical parameters. Metagenomic data revealed that the vent and the surface water were predominated by Epsilonproteobacteria (Nautiliales-like organisms) and Gammaproteobacteria ( Thiomicrospira -like organisms), respectively. A significant difference in microbial carbon fixation and sulfur metabolism was found between the vent and the surface water. The chemoautotrophic microorganisms in the vent and in the surface water might possess the reverse tricarboxylic acid cycle and the Calvin−Bassham−Benson cycle for carbon fixation in response to carbon dioxide highly enriched in the environment, which is possibly fueled by geochemical energy with sulfur and hydrogen. Comparative analyses of metagenomes showed that the shallow-sea metagenomes contained some genes similar to those present in other extreme environments. This study may serve as a basis for deeply understanding the genetic network and functional capability of the microbial members of shallow-sea hydrothermal systems. PMID:23940820
Cunha, Luís; Amaral, André; Medeiros, Vera; Martins, Gustavo M; Wallenstein, Francisco F M M; Couto, Ruben P; Neto, Ana I; Rodrigues, Armindo
2008-04-01
The pressure exerted by shallow water hydrothermal vents on edible gastropods and their cellular responses triggered by these stresses are almost unknown. The aims of this study were to evaluate the bioavailability of metals in the Macaronesian endemic limpet Patella candei gomesii living close to shallow water hydrothermal vents, and the structural differences in their digestive gland as well as the levels of apoptosis in that organ. Limpets were sampled in four sites, two with the presence of hydrothermalism and the other two without it. Whole body concentrations of several metals (Ca, Cd, Cs, Co, Cu, Fe, Hg, Mg, Mn, Pb, Rb, Se, Sr, and Zn) were obtained, morphometry analysis of the digestive gland and TUNEL test for apoptosis were also performed. Results revealed that the presence of shallow water hydrothermal vents is a source of chronic metal stress to limpets, imposing modifications in the morphometry and cell composition of the digestive gland of those limpets that may constitute cell and tissue adaptations to the environment they live in. This study sets up new baseline data for further research on the influence of shallow water hydrothermal vents over communities living in these habitats.
Propagation of Exploration Seismic Sources in Shallow Water
NASA Astrophysics Data System (ADS)
Diebold, J. B.; Tolstoy, M.; Barton, P. J.; Gulick, S. P.
2006-05-01
The choice of safety radii to mitigation the impact of exploration seismic sources upon marine mammals is typically based on measurement or modeling in deep water. In shallow water environments, rule-of-thumb spreading laws are often used to predict the falloff of amplitude with offset from the source, but actual measurements (or ideally, near-perfect modeling) are still needed to account for the effects of bathymetric changes and subseafloor characteristics. In addition, the question: "how shallow is 'shallow?'" needs an answer. In a cooperative effort by NSF, MMS, NRL, IAGC and L-DEO, a series of seismic source calibration studies was carried out in the Northern Gulf of Mexico during 2003. The sources used were the two-, six-, ten-, twelve-, and twenty-airgun arrays of R/V Ewing, and a 31-element, 3-string "G" gun array, deployed by M/V Kondor, an exploration industry source ship. The results of the Ewing calibrations have been published, documenting results in deep (3200m) and shallow (60m) water. Lengthy analysis of the Kondor results, presented here, suggests an approach to answering the "how shallow is shallow" question. After initially falling off steadily with source-receiver offset, the Kondor levels suddenly increased at a 4km offset. Ray-based modeling with a complex, realistic source, but with a simple homogeneous water column-over-elastic halfspace ocean shows that the observed pattern is chiefly due to geophysical effects, and not focusing within the water column. The same kind of modeling can be used to predict how the amplitudes will change with decreasing water depth, and when deep-water safety radii may need to be increased. Another set of data (see Barton, et al., this session) recorded in 20 meters of water during early 2005, however, shows that simple modeling may be insufficient when the geophysics becomes more complex. In this particular case, the fact that the seafloor was within the near field of the R/V Ewing source array seems to have given rise to seismic phases not normally seen in marine survey data acquired in deeper water. The associated partitioning of energy is likely to have caused the observed uncharacteristically rapid loss of energy with distance. It appears that in this case, the shallow-water marine mammal safety mitigation measures prescribed and followed were far more stringent than they needed to be. A new approach, wherein received levels detected by the towed 6-km multichannel hydrophone array may be used to modify safety radii has recently been proposed, based on these observations.
A Well-Balanced Central-Upwind Scheme for the 2D Shallow Water Equations on Triangular Meshes
NASA Technical Reports Server (NTRS)
Bryson, Steve; Levy, Doron
2004-01-01
We are interested in approximating solutions of the two-dimensional shallow water equations with a bottom topography on triangular meshes. We show that there is a certain flexibility in choosing the numerical fluxes in the design of semi-discrete Godunov-type central schemes. We take advantage of this fact to generate a new second-order, central-upwind method for the two-dimensional shallow water equations that is well-balanced. We demonstrate the accuracy of our method as well as its balance properties in a variety of examples.
NASA Technical Reports Server (NTRS)
Mckinna, Lachlan I. W.; Werdell, P. Jeremy; Fearns, Peter R. C.; Weeks, Scarla J.; Reichstetter, Martina; Franz, Bryan A.; Shea, Donald M.; Feldman, Gene C.
2015-01-01
A semianalytical ocean color inversion algorithm was developed for improving retrievals of inherent optical properties (IOPs) in optically shallow waters. In clear, geometrically shallow waters, light reflected off the seafloor can contribute to the water-leaving radiance signal. This can have a confounding effect on ocean color algorithms developed for optically deep waters, leading to an overestimation of IOPs. The algorithm described here, the Shallow Water Inversion Model (SWIM), uses pre-existing knowledge of bathymetry and benthic substrate brightness to account for optically shallow effects. SWIM was incorporated into the NASA Ocean Biology Processing Group's L2GEN code and tested in waters of the Great Barrier Reef, Australia, using the Moderate Resolution Imaging Spectroradiometer (MODIS) Aqua time series (2002-2013). SWIM-derived values of the total non-water absorption coefficient at 443 nm, at(443), the particulate backscattering coefficient at 443 nm, bbp(443), and the diffuse attenuation coefficient at 488 nm, Kd(488), were compared with values derived using the Generalized Inherent Optical Properties algorithm (GIOP) and the Quasi-Analytical Algorithm (QAA). The results indicated that in clear, optically shallow waters SWIM-derived values of at(443), bbp(443), and Kd(443) were realistically lower than values derived using GIOP and QAA, in agreement with radiative transfer modeling. This signified that the benthic reflectance correction was performing as expected. However, in more optically complex waters, SWIM had difficulty converging to a solution, a likely consequence of internal IOP parameterizations. Whilst a comprehensive study of the SWIM algorithm's behavior was conducted, further work is needed to validate the algorithm using in situ data.
Fendick, Robert B.; Tollett, Roland W.
2004-01-01
In 2001-02, the U.S. Geological Survey installed and sampled 28 shallow wells in urban residential and light commercial areas in Lafayette Parish, Louisiana, for a land-use study in the Acadian-Pontchartrain Study Unit of the National Water-Quality Assessment (NAWQA) Program. The wells were installed in the Chicot aquifer system, the primary source of water for irrigation and public-water supplies in southwestern Louisiana. The purpose of this report is to describe the quality of water from the 28 shallow wells and to relate that water quality to natural factors and to human activities. Ground-water samples were analyzed for general ground-water properties and about 240 water-quality contituents, including dissolved solids, major inorganic ions, trace elements, nutrients, dissolved organic carbon (DOC), radon, chlorofluorocarbons, selected stable isotopes, pesticides, pesticide degradation products, and volatile organic compounds (VOC's).
NASA Astrophysics Data System (ADS)
Martindale, R. C.; Ettinger, N. P.; Bodin, S.; Kosir, A.; Brame, H. M. R.; Thibodeau, A. M.; Larson, T. E.; Kerans, C.
2017-12-01
Carbon cycle perturbations, such as the Toarcian Oceanic Anoxic Event (T-OAE), have a significant influence on marine communities (e.g., extinctions), as well as the nature of the sedimentary record (e.g., carbonate factory collapse and black shale deposition) and geochemical cycling. To date, there remains a gap in our knowledge about the shallow-water record of the T-OAE and the geochemical signature of this event. This research combines geochemical, sedimentological, and paleontological data from two shallow-water Early Jurassic records in Slovenia and Morocco. The Dinaric Carbonate Platform (Slovenia) records a relatively continuous record of Pliensbachian and Toarcian strata and captures the T-OAE in shallow-water carbonates. The Trnovski Gozd karst plateau (western Slovenia) contains Pleinsbachian lithiotid (bivalve) biostromes, coral bioherms, and a diverse assemblage of carbonate producing fauna. This work documents the geochemical and sedimentological signature of the T-OAE in shallow water carbonates and tests whether mercury concentrations link paleontological and sedimentological changes with the Karoo-Ferrar Large Igneous Province. Elemental data coupled with sedimentologic and stratigraphic evidence indicate a prolonged period of deoxygenation on the shelf coincident with both large igneous province activity and the OAE. The Moroccan High Atlas Mountains provide another excellent shallow-water record of the T-OAE, with a thick mixed carbonate-siliciclastic shelf-to-ramp setting with sustained deposition through the Early Jurassic interval. In Morocco there is no evidence for anoxia in this shallow-water locality; however, the carbonate factory collapses at the Pliensbachian-Toarcian stage boundary as well as the T-OAE. Reef communities, particularly the lithiotid biostromes, persist across the stage boundary and are observed through to the T-OAE. The studied localities also record the oldest corals reefs following the T-OAE; coral reefs recover relatively quickly, but lithiotid reefs never recover. These data will allow us to build a more nuanced understanding of the paleoenvironmental conditions during the T-OAE, connect the basinal and shallower-water records of the OAE, as well as document the collapse and recovery of communities during this extinction.
Federal Register 2010, 2011, 2012, 2013, 2014
2011-07-06
... crab vessels may not deploy parlor traps/pots in water depths greater than 400 meters (219 fathoms... water deeper than 400 m; prohibit a limited access red crab vessel from harvesting red crab in water shallower than 400 m; and prohibit parlor traps from being deployed at water shallower than 400 m. This...
Federal Register 2010, 2011, 2012, 2013, 2014
2011-12-22
.... Apportionment of trawl PSC limits between the deep-water and shallow-water fisheries, limits for non-exempt... limit from the third season deep-water species fishery allowance for the GOA trawl fisheries to Rockfish... specifications. The draft 2011 SAFE reports indicate that the biomass trend for shallow-water flatfish, deep...
Floodplains within reservoirs promote earlier spawning of white crappies Pomoxis annularis
Miranda, Leandro E.; Dagel, Jonah D.; Kaczka, Levi J.; Mower, Ethan; Wigen, S. L.
2015-01-01
Reservoirs impounded over floodplain rivers are unique because they may include within their upper reaches extensive shallow water stored over preexistent floodplains. Because of their relatively flat topography and riverine origin, floodplains in the upper reaches of reservoirs provide broad expanses of vegetation within a narrow range of reservoir water levels. Elsewhere in the reservoir, topography creates a band of shallow water along the contour of the reservoir where vegetation often does not grow. Thus, as water levels rise, floodplains may be the first vegetated habitats inundated within the reservoir. We hypothesized that shallow water in reservoir floodplains would attract spawning white crappies Pomoxis annularis earlier than reservoir embayments. Crappie relative abundance over five years in floodplains and embayments of four reservoirs increased as spawning season approached, peaked, and decreased as fish exited shallow water. Relative abundance peaked earlier in floodplains than embayments, and the difference was magnified with higher water levels. Early access to suitable spawning habitat promotes earlier spawning and may increase population fitness. Recognition of the importance of reservoir floodplains, an understanding of how reservoir water levels can be managed to provide timely connectivity to floodplains, and conservation of reservoir floodplains may be focal points of environmental management in reservoirs.
Stelzer, R.S.; Bartsch, L.A.; Richardson, W.B.; Strauss, E.A.
2011-01-01
1.Although it is well known that sediments can be hot spots for nitrogen transformation in streams, many previous studies have confined measurements of denitrification and nitrate retention to shallow sediments (<5cm deep). We determined the extent of nitrate processing in deeper sediments of a sand plains stream (Emmons Creek) by measuring denitrification in core sections to a depth of 25cm and by assessing vertical nitrate profiles, with peepers and piezometers, to a depth of 70cm. 2.Denitrification rates of sediment slurries based on acetylene block were higher in shallower core sections. However, core sections deeper than 5cm accounted for 68% of the mean depth-integrated denitrification rate. 3.Vertical hydraulic gradient and vertical profiles of pore water chloride concentration suggested that deep ground water upwelled through shallow sediments before discharging to the stream channel. The results of a two-source mixing model based on chloride concentrations suggested that the hyporheic zone was very shallow (<5cm) in Emmons Creek. 4.Vertical profiles showed that nitrate concentration in shallow ground water was about 10-60% of the nitrate concentration of deep ground water. The mean nitrate concentrations of deep and shallow ground water were 2.17 and 0.73mgNO3-NL-1, respectively. 5.Deep ground water tended to be oxic (6.9mgO2L-1) but approached anoxia (0.8mgO2L-1) after passing through shallow, organic carbon-rich sediments, which suggests that the decline in the nitrate concentrations of upwelling ground water was because of denitrification. 6.Collectively, our results suggest that there is substantial nitrate removal occurring in deep sediments, below the hyporheic zone, in Emmons Creek. Our findings suggest that not accounting for nitrate removal in deep sediments could lead to underestimates of nitrogen processing in streams and catchments. ?? 2011 Blackwell Publishing Ltd.
Shallow water benthic imaging and substrate characterization using recreational-grade sidescan-sonar
Buscombe, Daniel D.
2017-01-01
In recent years, lightweight, inexpensive, vessel-mounted ‘recreational grade’ sonar systems have rapidly grown in popularity among aquatic scientists, for swath imaging of benthic substrates. To promote an ongoing ‘democratization’ of acoustical imaging of shallow water environments, methods to carry out geometric and radiometric correction and georectification of sonar echograms are presented, based on simplified models for sonar-target geometry and acoustic backscattering and attenuation in shallow water. Procedures are described for automated removal of the acoustic shadows, identification of bed-water interface for situations when the water is too turbid or turbulent for reliable depth echosounding, and for automated bed substrate classification based on singlebeam full-waveform analysis. These methods are encoded in an open-source and freely-available software package, which should further facilitate use of recreational-grade sidescan sonar, in a fully automated and objective manner. The sequential correction, mapping, and analysis steps are demonstrated using a data set from a shallow freshwater environment.
77 FR 58526 - Gulf of Mexico Fishery Management Council; Public Hearings
Federal Register 2010, 2011, 2012, 2013, 2014
2012-09-21
... the February 1 through March 31 recreational closed season on shallow-water grouper. DATES: The public..., and to modify the February through March shallow- water grouper closed season contains alternatives for [[Page 58527
Indicators: Shallow Water Habitat/In-stream Fish Habitat
Shallow water habitat, also referred to as in-stream fish habitat, refers to areas that fish and other aquatic organisms need for concealment, breeding and feeding. This includes large woody snags, boulders, rock ledges, and undercut banks.
Geophysical Inversion with Adaptive Array Processing of Ambient Noise
NASA Astrophysics Data System (ADS)
Traer, James
2011-12-01
Land-based seismic observations of microseisms generated during Tropical Storms Ernesto and Florence are dominated by signals in the 0.15--0.5Hz band. Data from seafloor hydrophones in shallow water (70m depth, 130 km off the New Jersey coast) show dominant signals in the gravity-wave frequency band, 0.02--0.18Hz and low amplitudes from 0.18--0.3Hz, suggesting significant opposing wave components necessary for DF microseism generation were negligible at the site. Both storms produced similar spectra, despite differing sizes, suggesting near-coastal shallow water as the dominant region for observed microseism generation. A mathematical explanation for a sign-inversion induced to the passive fathometer response by minimum variance distortionless response (MVDR) beamforming is presented. This shows that, in the region containing the bottom reflection, the MVDR fathometer response is identical to that obtained with conventional processing multiplied by a negative factor. A model is presented for the complete passive fathometer response to ocean surface noise, interfering discrete noise sources, and locally uncorrelated noise in an ideal waveguide. The leading order term of the ocean surface noise produces the cross-correlation of vertical multipaths and yields the depth of sub-bottom reflectors. Discrete noise incident on the array via multipaths give multiple peaks in the fathometer response. These peaks may obscure the sub-bottom reflections but can be attenuated with use of Minimum Variance Distortionless Response (MVDR) steering vectors. A theory is presented for the Signal-to-Noise-Ratio (SNR) for the seabed reflection peak in the passive fathometer response as a function of seabed depth, seabed reflection coefficient, averaging time, bandwidth and spatial directivity of the noise field. The passive fathometer algorithm was applied to data from two drifting array experiments in the Mediterranean, Boundary 2003 and 2004, with 0.34s of averaging time. In the 2004 experiment, the response showed the array depth varied periodically with an amplitude of 1 m and a period of 7 s consistent with wave driven motion of the array. This introduced a destructive interference which prevents the SNR growing with averaging time, unless the motion is removed by use of a peak tracker.
Zhou, Li-Jun; Zhang, Bei-Bei; Zhao, Yong-Gang; Wu, Qinglong L
2016-07-01
Steroids have been frequently detected in surface waters, and might pose adverse effects on aquatic organisms. However, little information is available regarding the occurrence and spatiotemporal distribution of steroids in lake environments. In addition to pollution sources, the occurrence and spatiotemporal distribution of steroids in lake environments might be related to lake types (shallow or deep), lake hydrodynamics, and sorption-desorption processes in the water-sediment systems. In this study, the occurrence, spatiotemporal distribution, and ecological risks of 36 steroids in a large shallow lake were evaluated by investigating surface water and sediment samples at 32 sites in Lake Taihu over two seasons. Twelve and 15 analytes were detected in aqueous and sedimentary phases, respectively, with total concentrations ranging from 0.86 to 116ng/L (water) and from 0.82 to 16.2ng/g (sediment, dry weight). Temporal variations of steroid concentrations in the water and sediments were statistically significant, with higher concentrations in winter. High concentrations of steroids were found in the seriously polluted bays rather than in the pelagic zone of the lake. Strong lake currents might mix pelagic waters, resulting in similar concentrations of steroids in the pelagic zone. Mass balance analysis showed that sediments in shallow lakes are in general an important sink for steroids. Steroids in the surface water and sediments of Lake Taihu might pose potential risks to aquatic organisms. Overall, our study indicated that the concentrations and spatiotemporal distribution of steroids in the large shallow lake are influenced simultaneously by pollution sources and lake hydrodynamics. Steroids in the large shallow Lake Taihu showed clear temporal and spatial variations and lake sediments may be a potential sink of steroids. Copyright © 2016 Elsevier B.V. All rights reserved.
Warner, Nathaniel R.; Jackson, Robert B.; Darrah, Thomas H.; Osborn, Stephen G.; Down, Adrian; Zhao, Kaiguang; White, Alissa; Vengosh, Avner
2012-01-01
The debate surrounding the safety of shale gas development in the Appalachian Basin has generated increased awareness of drinking water quality in rural communities. Concerns include the potential for migration of stray gas, metal-rich formation brines, and hydraulic fracturing and/or flowback fluids to drinking water aquifers. A critical question common to these environmental risks is the hydraulic connectivity between the shale gas formations and the overlying shallow drinking water aquifers. We present geochemical evidence from northeastern Pennsylvania showing that pathways, unrelated to recent drilling activities, exist in some locations between deep underlying formations and shallow drinking water aquifers. Integration of chemical data (Br, Cl, Na, Ba, Sr, and Li) and isotopic ratios (87Sr/86Sr, 2H/H, 18O/16O, and 228Ra/226Ra) from this and previous studies in 426 shallow groundwater samples and 83 northern Appalachian brine samples suggest that mixing relationships between shallow ground water and a deep formation brine causes groundwater salinization in some locations. The strong geochemical fingerprint in the salinized (Cl > 20 mg/L) groundwater sampled from the Alluvium, Catskill, and Lock Haven aquifers suggests possible migration of Marcellus brine through naturally occurring pathways. The occurrences of saline water do not correlate with the location of shale-gas wells and are consistent with reported data before rapid shale-gas development in the region; however, the presence of these fluids suggests conductive pathways and specific geostructural and/or hydrodynamic regimes in northeastern Pennsylvania that are at increased risk for contamination of shallow drinking water resources, particularly by fugitive gases, because of natural hydraulic connections to deeper formations. PMID:22778445
Warner, Nathaniel R; Jackson, Robert B; Darrah, Thomas H; Osborn, Stephen G; Down, Adrian; Zhao, Kaiguang; White, Alissa; Vengosh, Avner
2012-07-24
The debate surrounding the safety of shale gas development in the Appalachian Basin has generated increased awareness of drinking water quality in rural communities. Concerns include the potential for migration of stray gas, metal-rich formation brines, and hydraulic fracturing and/or flowback fluids to drinking water aquifers. A critical question common to these environmental risks is the hydraulic connectivity between the shale gas formations and the overlying shallow drinking water aquifers. We present geochemical evidence from northeastern Pennsylvania showing that pathways, unrelated to recent drilling activities, exist in some locations between deep underlying formations and shallow drinking water aquifers. Integration of chemical data (Br, Cl, Na, Ba, Sr, and Li) and isotopic ratios ((87)Sr/(86)Sr, (2)H/H, (18)O/(16)O, and (228)Ra/(226)Ra) from this and previous studies in 426 shallow groundwater samples and 83 northern Appalachian brine samples suggest that mixing relationships between shallow ground water and a deep formation brine causes groundwater salinization in some locations. The strong geochemical fingerprint in the salinized (Cl > 20 mg/L) groundwater sampled from the Alluvium, Catskill, and Lock Haven aquifers suggests possible migration of Marcellus brine through naturally occurring pathways. The occurrences of saline water do not correlate with the location of shale-gas wells and are consistent with reported data before rapid shale-gas development in the region; however, the presence of these fluids suggests conductive pathways and specific geostructural and/or hydrodynamic regimes in northeastern Pennsylvania that are at increased risk for contamination of shallow drinking water resources, particularly by fugitive gases, because of natural hydraulic connections to deeper formations.
Evaluation of 2D shallow-water model for spillway flow with a complex geometry
USDA-ARS?s Scientific Manuscript database
Although the two-dimensional (2D) shallow water model is formulated based on several assumptions such as hydrostatic pressure distribution and vertical velocity is negligible, as a simple alternative to the complex 3D model, it has been used to compute water flows in which these assumptions may be ...
Federal Register 2010, 2011, 2012, 2013, 2014
2011-12-01
... place selected snapper-grouper species into the complexes for: Deep-water species (yellowedge grouper... snapper); shallow-water groupers (red hind, rock hind, yellowmouth grouper, yellowfin grouper, coney, and... ``South Atlantic shallow- water grouper (SASWG)'' is revised to read as follows: Sec. 622.2 Definitions...
Federal Register 2010, 2011, 2012, 2013, 2014
2013-12-10
... trend for pollock, Pacific cod, deep-water flatfish, Pacific ocean perch, northern rockfish, shortraker..., shallow-water flatfish, rex sole, arrowtooth flounder, flathead sole, rougheye rockfish, demersal shelf... include the TACs for shallow-water flatfish in the West Yakutat and Southeast Outside Districts of the GOA...
33 CFR 164.40 - Devices to indicate speed and distance.
Code of Federal Regulations, 2013 CFR
2013-07-01
..., when the vessel is operating free from shallow water effect, and from the effects of wind, current, and...) Errors in the indicated distance run, when the vessel is operating free from shallow water effect, and... either through the water or over the ground. (b) The device must meet the following specifications: (1...
33 CFR 164.40 - Devices to indicate speed and distance.
Code of Federal Regulations, 2014 CFR
2014-07-01
..., when the vessel is operating free from shallow water effect, and from the effects of wind, current, and...) Errors in the indicated distance run, when the vessel is operating free from shallow water effect, and... either through the water or over the ground. (b) The device must meet the following specifications: (1...
33 CFR 164.40 - Devices to indicate speed and distance.
Code of Federal Regulations, 2012 CFR
2012-07-01
..., when the vessel is operating free from shallow water effect, and from the effects of wind, current, and...) Errors in the indicated distance run, when the vessel is operating free from shallow water effect, and... either through the water or over the ground. (b) The device must meet the following specifications: (1...
Researchers examined gas and water transport between a deep tight shale gas reservoir and a shallow overlying aquifer in the two years following hydraulic fracturing, assuming a pre-existing connecting pathway.
Hajigholizadeh, Mohammad; Melesse, Assefa M; Fuentes, Hector R
2018-03-14
The erosion and sediment transport processes in shallow waters, which are discussed in this paper, begin when water droplets hit the soil surface. The transport mechanism caused by the consequent rainfall-runoff process determines the amount of generated sediment that can be transferred downslope. Many significant studies and models are performed to investigate these processes, which differ in terms of their effecting factors, approaches, inputs and outputs, model structure and the manner that these processes represent. This paper attempts to review the related literature concerning sediment transport modelling in shallow waters. A classification based on the representational processes of the soil erosion and sediment transport models (empirical, conceptual, physical and hybrid) is adopted, and the commonly-used models and their characteristics are listed. This review is expected to be of interest to researchers and soil and water conservation managers who are working on erosion and sediment transport phenomena in shallow waters. The paper format should be helpful for practitioners to identify and generally characterize the types of available models, their strengths and their basic scope of applicability.
Fuentes, Hector R.
2018-01-01
The erosion and sediment transport processes in shallow waters, which are discussed in this paper, begin when water droplets hit the soil surface. The transport mechanism caused by the consequent rainfall-runoff process determines the amount of generated sediment that can be transferred downslope. Many significant studies and models are performed to investigate these processes, which differ in terms of their effecting factors, approaches, inputs and outputs, model structure and the manner that these processes represent. This paper attempts to review the related literature concerning sediment transport modelling in shallow waters. A classification based on the representational processes of the soil erosion and sediment transport models (empirical, conceptual, physical and hybrid) is adopted, and the commonly-used models and their characteristics are listed. This review is expected to be of interest to researchers and soil and water conservation managers who are working on erosion and sediment transport phenomena in shallow waters. The paper format should be helpful for practitioners to identify and generally characterize the types of available models, their strengths and their basic scope of applicability. PMID:29538335
Albert, A; Mobley, C
2003-11-03
Subsurface remote sensing signals, represented by the irradiance re fl ectance and the remote sensing re fl ectance, were investigated. The present study is based on simulations with the radiative transfer program Hydrolight using optical properties of Lake Constance (German: Bodensee) based on in-situ measurements of the water constituents and the bottom characteristics. Analytical equations are derived for the irradiance re fl ectance and remote sensing re fl ectance for deep and shallow water applications. The input of the parameterization are the inherent optical properties of the water - absorption a(lambda) and backscattering bb(lambda). Additionally, the solar zenith angle thetas, the viewing angle thetav , and the surface wind speed u are considered. For shallow water applications the bottom albedo RB and the bottom depth zB are included into the parameterizations. The result is a complete set of analytical equations for the remote sensing signals R and Rrs in deep and shallow waters with an accuracy better than 4%. In addition, parameterizations of apparent optical properties were derived for the upward and downward diffuse attenuation coefficients Ku and Kd.
Earth observations taken from shuttle orbiter Columbia
1995-10-27
STS073-702-051 (27 October 1995) --- Photographed by the crew aboard the Space Shuttle Columbia, this detailed scene of East Caicos Island highlights the shallow tropical waters typical of the Bahamas region. The contrast between the light blue shallow water and dark blue deep water marks a sharp difference (hundreds of meters) in water depth. The shallow marine regions include sandbars and tidal channels (just right of center). The coastline of the island is low and swampy, and is also greatly influenced by the tides. Further offshore, the darker regions in the slightly deeper watermark sea grass and algae beds. This sensitive submarine environment can be mapped from space because the waters are so clear. Chains of clouds forming off islands and headlands, mark the downwind direction.
Starks, Trevor A.; Long, James M.; Dzialowski, Andrew R.
2016-01-01
Anthropogenic alterations to aquatic ecosystems have greatly reduced and homogenized riverine habitat, especially those used by larval and juvenile fishes. Creation of shallow-water habitats is used as a restoration technique in response to altered conditions in several studies globally, but only recently in the USA. In the summer of 2012, the U.S. Army Corps of Engineers sampled larval and juvenile fishes at six paired sites (mainstem and constructed chute shallow-water habitats) along a section of the Missouri River between Rulo, NE and St. Louis, MO, USA. From those samples, we enumerated and identified a total of 7622 fishes representing 12 families. Community responses of fishes to created shallow-water habitats were assessed by comparisons of species richness and diversity measures between paired sites and among sampling events. Shannon entropy measures were transformed, and gamma diversity (total diversity) was partitioned into two components, alpha (within community) and beta (between community) diversity using a multiplicative decomposition method. Mantel test results suggest site location, time of sampling event and habitat type were drivers of larval and juvenile community structure. Paired t-test results indicated little to no differences in beta diversity between habitat types; however, chute habitats had significantly higher alpha and gamma diversity as well as increased abundances of Asian carp larvae when compared with mainstem shallow-water habitat. Our results not only show the importance of created shallow-water habitat in promoting stream fish diversity but also highlight the role space and time may play in future restoration and management efforts.
Stratigraphic controls on fluid and solute fluxes across the sediment-water interface of an estuary
Sawyer, Audrey H.; Lazareva, Olesya; Kroeger, Kevin D.; Crespo, Kyle; Chan, Clara S.; Stieglitz, Thomas; Michael, Holly A.
2014-01-01
Shallow stratigraphic features, such as infilled paleovalleys, modify fresh groundwater discharge to coastal waters and fluxes of saltwater and nutrients across the sediment–water interface. We quantify the spatial distribution of shallow surface water–groundwater exchange and nitrogen fluxes near a paleovalley in Indian River Bay, Delaware, using a hand resistivity probe, conventional seepage meters, and pore-water samples. In the interfluve (region outside the paleovalley) most nitrate-rich fresh groundwater discharges rapidly near the coast with little mixing of saline pore water, and nitrogen transport is largely conservative. In the peat-filled paleovalley, fresh groundwater discharge is negligible, and saltwater exchange is deep (∼1 m). Long pore-water residence times and abundant sulfate and organic matter promote sulfate reduction and ammonium production in shallow sediment. Reducing, iron-rich fresh groundwater beneath paleovalley peat discharges diffusely around paleovalley margins offshore. In this zone of diffuse fresh groundwater discharge, saltwater exchange and dispersion are enhanced, ammonium is produced in shallow sediments, and fluxes of ammonium to surface water are large. By modifying patterns of groundwater discharge and the nature of saltwater exchange in shallow sediments, paleovalleys and other stratigraphic features influence the geochemistry of discharging groundwater. Redox reactions near the sediment–water interface affect rates and patterns of geochemical fluxes to coastal surface waters. For example, at this site, more than 99% of the groundwater-borne nitrate flux to the Delaware Inland Bays occurs within the interfluve portion of the coastline, and more than 50% of the ammonium flux occurs at the paleovalley margin.
Connector well experiment to recharge the Floridan Aquifer, East Orange County, Florida
Bush, P.W.
1979-01-01
An experimental connector well, screened in the shallow sand aquifer, finished with open hole in the Floridan aquifer, and cased through the confining layer between the two aquifers, was drilled in east Orange County, Florida, to obtain information on the nature and function of the shallow aquifer as related to connector well operation. The potentiometric surface of the shallow aquifer is about 45 feet higher than the potentiometric surface of the Floridan aquifer; hence water flows by gravity from the shallow aquifer to the Floridan aquifer through the well ' connecting ' the two aquifers. Continuous flow measurement over 10 months shows the well discharge varies seasonally and averages slightly more than 50 gallons per minute. Observation wells show that, except for seasonal variation water levels within the area of influence have reached steady state within measurable limits. Vertical anisotrophy in the shallow aquifer is apparently caused by the shape and (or) arrangement of the sand grains that comprise the shallow aquifer , rather than distinct confining layers of different lithology. Transmissivity of the shallow aquifer at the site is about 600 square feet per day. Extensive dewatering of wetlands in east Orange County by connector wells alone is probably not feasible. Nevertheless, large amounts of water could be channeled to the Floridan aquifer by connector wells. The results of the connector well experiment imply that water is being captured from evapotranspiration and runoff in the vicinity of the connector well. (Woodard-USGS)
NASA Astrophysics Data System (ADS)
Pivato, M.; Carniello, L.; Gardner, J.; Silvestri, S.; Marani, M.
2018-03-01
In the present study, we investigate the energy flux at the sediment-water interface and the relevance of the heat exchanged between water and sediment for the water temperature dynamics in shallow coastal environments. Water and sediment temperature data collected in the Venice lagoon show that, in shallow, temperate lagoons, temperature is uniform within the water column, and enabled us to estimate the net heat flux at the sediment-water interface. We modeled this flux as the sum of a conductive component and of the solar radiation reaching the bottom, finding the latter being negligible. We developed a "point" model to describe the temperature dynamics of the sediment-water continuum driven by vertical energy transfer. We applied the model considering conditions characterized by negligible advection, obtaining satisfactory results. We found that the heat exchange between water and sediment is crucial for describing sediment temperature but plays a minor role on the water temperature.
Design and testing of access-tube TDR soil water sensor
USDA-ARS?s Scientific Manuscript database
We developed the design of a waveguide on the exterior of an access tube for use in time-domain reflectometry (TDR) for in-situ soil water content sensing. In order to optimize the design with respect to sampling volume and losses, we derived the electromagnetic (EM) fields produced by a TDR sensor...
Dealing With Shallow-Water Flow in the Deepwater Gulf of Mexico
NASA Astrophysics Data System (ADS)
Ostermeier, R.
2006-05-01
Some of the Shell experience in dealing with the shallow-water flow problem in the Deepwater Gulf of Mexico (GOM) will be presented. The nature of the problem, including areal extent and over-pressuring mechanisms, will be discussed. Methods for sand prediction and shallow sediment and flow characterization will be reviewed. These include seismic techniques, the use of geo-technical wells, regional trends, and various MWD methods. Some examples of flow incidents with pertinent drilling issues, including well failures and abandonment, will be described. To address the shallow-water flow problem, Shell created a multi-disciplinary team of specialists in geology, geophysics, petrophysics, drilling, and civil engineering. The team developed several methodologies to deal with various aspects of the problem. These include regional trends and data bases, shallow seismic interpretation and sand prediction, well site and casing point selection, geo-technical well design and data interpretation, logging program design and interpretation, cementing design and fluids formulation, methods for remediation and mitigation of lost circulation, and so on. Shell's extensive Deepwater GOM drilling experience has lead to new understanding of the problem. Examples include delineation of trends in shallow water flow occurrence and severity, trends and departures in PP/FG, rock properties pertaining to seismic identification of sands, and so on. New knowledge has also been acquired through the use of geo-technical wells. One example is the observed rapid onset and growth of over-pressures below the mudline. Total trouble costs due to shallow water flow for all GOM operators almost certainly runs into the several hundred million dollars. Though the problem remains a concern, advances in our knowledge and understanding make it a problem that is manageable and not the "show stopper" once feared.
Pesticides in shallow groundwater in the Delmarva Peninsula
Koterba, M.T.; Banks, W.S.L.; Shedlock, R.J.
1993-01-01
A regional study of the areal and depth distribution of pesticides in shallow groundwater in the Delmarva Peninsula of Delaware, Maryland, and Virginia was done to (i) relate the pesticides detected to landscape and shallow subsurface features, and (ii) evaluate aquifer vulnerability and the potential contamination of drinking-water supplies. Water samples collected at 100 wells from 1988 to 1990 were analyzed for concentrations of 36 pesticides, four metabolites, and other constituents. The most commonly detected residues were atrazine, cyanazine, simazine, alachlor, metolachlor, and dicamba. Concentrations were low; few exceeded 3 ??g L-1. Most detections correlate with the intensive use of these herbicides in three widely distributed and commonly rotated crops-corn (Zea mays L.), soybean [Glycine max (L.) Merr.], and small grain-particularly if grown in well- drained soils. Most detections occurred in samples collected from shallow wells screened within 10 m of the overlying water table. The shallow depth distribution of most residues is consistent with their suspected history of use (ca. 20 yr), and patterns in shallow groundwater flow in the surficial aquifer in the study area. The areal and depth distributions of detectable residues in groundwater did not correlate with a vulnerability index, nor any of the component scores developed to estimate that index using the DRASTIC method. The shallow depth of most detections also indicates why few samples from water-supply wells in this study had measurable concentrations of pesticides; most supply wells are deeper than 10 m below the water table. The low number of contaminated samples from supply wells implies that deep groundwater currently (1992) used for drinking generally does not contain detectable pesticide residues.
NASA Technical Reports Server (NTRS)
Li, Rong-Rong; Kaufman, Yoram J.
2002-01-01
We have developed an algorithm to detect suspended sediments and shallow coastal waters using imaging data acquired with the Moderate Resolution Imaging SpectroRadiometer (MODIS). The MODIS instruments on board the NASA Terra and Aqua Spacecrafts are equipped with one set of narrow channels located in a wide 0.4 - 2.5 micron spectral range. These channels were designed primarily for remote sensing of the land surface and atmosphere. We have found that the set of land and cloud channels are also quite useful for remote sensing of the bright coastal waters. We have developed an empirical algorithm, which uses the narrow MODIS channels in this wide spectral range, for identifying areas with suspended sediments in turbid waters and shallow waters with bottom reflections. In our algorithm, we take advantage of the strong water absorption at wavelengths longer than 1 micron that does not allow illumination of sediments in the water or a shallow ocean floor. MODIS data acquired over the east coast of China, west coast of Africa, Arabian Sea, Mississippi Delta, and west coast of Florida are used in this study.
NASA Astrophysics Data System (ADS)
Li, R.; Kaufman, Y.
2002-12-01
ABSTRACT We have developed an algorithm to detect suspended sediments and shallow coastal waters using imaging data acquired with the Moderate Resolution Imaging SpectroRadiometer (MODIS). The MODIS instruments on board the NASA Terra and Aqua Spacecrafts are equipped with one set of narrow channels located in a wide 0.4 - 2.5 micron spectral range. These channels were designed primarily for remote sensing of the land surface and atmosphere. We have found that the set of land and cloud channels are also quite useful for remote sensing of the bright coastal waters. We have developed an empirical algorithm, which uses the narrow MODIS channels in this wide spectral range, for identifying areas with suspended sediments in turbid waters and shallow waters with bottom reflections. In our algorithm, we take advantage of the strong water absorption at wavelengths longer than 1 æm that does not allow illumination of sediments in the water or a shallow ocean floor. MODIS data acquired over the east coast of China, west coast of Africa, Arabian Sea, Mississippi Delta, and west coast of Florida are used in this study.
Water monitoring by optofluidic Raman spectroscopy for in situ applications.
Persichetti, Gianluca; Bernini, Romeo
2016-08-01
The feasibility of water monitoring by Raman spectroscopy with a portable optofluidic system for in-situ applications has been successfully demonstrated. In the proposed approach, the sample under analysis is injected into a capillary nozzle in order to produce a liquid jet that acts as an optical waveguide. This jet waveguide provides an effective strategy to excite and collect the Raman signals arising from water contaminants due to the high refractive index difference between air and water. The proposed approach avoids any necessity of liquid container or flow cell and removes any background signal coming from the sample container commonly affects Raman measurements. Furthermore, this absence is a significant advantage for in situ measurements where fouling problems can be relevant and cleaning procedures are troublesome. The extreme simplicity and efficiency of the optical scheme adopted in our approach result in highly sensitive and rapid measurements that have been performed on different representative water pollutants. The experimental results demonstrate the high potentiality of our device in water quality monitoring and analysis. In particular, nitrate and sulfate are detected below the maximum contamination level allowed for drinking water, whereas a limit of detection of 40mg/l has been found for benzene. Copyright © 2016 Elsevier B.V. All rights reserved.
Bowhead whale localization using time-difference-of-arrival data from asynchronous recorders.
Warner, Graham A; Dosso, Stan E; Hannay, David E
2017-03-01
This paper estimates bowhead whale locations and uncertainties using nonlinear Bayesian inversion of the time-difference-of-arrival (TDOA) of low-frequency whale calls recorded on onmi-directional asynchronous recorders in the shallow waters of the northeastern Chukchi Sea, Alaska. A Y-shaped cluster of seven autonomous ocean-bottom hydrophones, separated by 0.5-9.2 km, was deployed for several months over which time their clocks drifted out of synchronization. Hundreds of recorded whale calls are manually associated between recorders. The TDOA between hydrophone pairs are calculated from filtered waveform cross correlations and depend on the whale locations, hydrophone locations, relative recorder clock offsets, and effective waveguide sound speed. A nonlinear Bayesian inversion estimates all of these parameters and their uncertainties as well as data error statistics. The problem is highly nonlinear and a linearized inversion did not produce physically realistic results. Whale location uncertainties from nonlinear inversion can be low enough to allow accurate tracking of migrating whales that vocalize repeatedly over several minutes. Estimates of clock drift rates are obtained from inversions of TDOA data over two weeks and agree with corresponding estimates obtained from long-time averaged ambient noise cross correlations. The inversion is suitable for application to large data sets of manually or automatically detected whale calls.
Light Meets Water in Nonlocal Media: Surface Tension Analogue in Optics
NASA Astrophysics Data System (ADS)
Horikis, Theodoros P.; Frantzeskakis, Dimitrios J.
2017-06-01
Shallow water wave phenomena find their analogue in optics through a nonlocal nonlinear Schrödinger (NLS) model in 2 +1 dimensions. We identify an analogue of surface tension in optics, namely, a single parameter depending on the degree of nonlocality, which changes the sign of dispersion, much like surface tension does in the shallow water wave problem. Using multiscale expansions, we reduce the NLS model to a Kadomtsev-Petviashvili (KP) equation, which is of the KPII (KPI) type, for strong (weak) nonlocality. We demonstrate the emergence of robust optical antidark solitons forming Y -, X -, and H -shaped wave patterns, which are approximated by colliding KPII line solitons, similar to those observed in shallow waters.
Light Meets Water in Nonlocal Media: Surface Tension Analogue in Optics.
Horikis, Theodoros P; Frantzeskakis, Dimitrios J
2017-06-16
Shallow water wave phenomena find their analogue in optics through a nonlocal nonlinear Schrödinger (NLS) model in 2+1 dimensions. We identify an analogue of surface tension in optics, namely, a single parameter depending on the degree of nonlocality, which changes the sign of dispersion, much like surface tension does in the shallow water wave problem. Using multiscale expansions, we reduce the NLS model to a Kadomtsev-Petviashvili (KP) equation, which is of the KPII (KPI) type, for strong (weak) nonlocality. We demonstrate the emergence of robust optical antidark solitons forming Y-, X-, and H-shaped wave patterns, which are approximated by colliding KPII line solitons, similar to those observed in shallow waters.
46 CFR 117.200 - Survival craft-general.
Code of Federal Regulations, 2010 CFR
2010-10-01
... for seasonal or ferry type operations on the Great Lakes—§ 117.206(b) 8 Shallow water exception—§ 117..., and participation in VTS—§ 117.207(f) and § 117.208(e). 10 Shallow water exception—§ 117.208(d) [CGD...
Li, Zhiyong; Wang, Yuezhu; Li, Jinlong; Liu, Fang; He, Liming; He, Ying; Wang, Shenyue
2016-12-01
Sponges host complex symbiotic communities, but to date, the whole picture of the metabolic potential of sponge microbiota remains unclear, particularly the difference between the shallow-water and deep-sea sponge holobionts. In this study, two completely different sponges, shallow-water sponge Theonella swinhoei from the South China Sea and deep-sea sponge Neamphius huxleyi from the Indian Ocean, were selected to compare their whole symbiotic communities and metabolic potential, particularly in element transformation. Phylogenetically diverse bacteria, archaea, fungi, and algae were detected in both shallow-water sponge T. swinhoei and deep-sea sponge N. huxleyi, and different microbial community structures were indicated between these two sponges. Metagenome-based gene abundance analysis indicated that, though the two sponge microbiota have similar core functions, they showed different potential strategies in detailed metabolic processes, e.g., in the transformation and utilization of carbon, nitrogen, phosphorus, and sulfur by corresponding microbial symbionts. This study provides insight into the putative metabolic potentials of the microbiota associated with the shallow-water and deep-sea sponges at the whole community level, extending our knowledge of the sponge microbiota's functions, the association of sponge- microbes, as well as the adaption of sponge microbiota to the marine environment.
Wang, Li; Cheung, Man Kit; Liu, Rulong; Wong, Chong Kim; Kwan, Hoi Shan; Hwang, Jiang-Shiou
2017-04-01
Shallow-water hydrothermal vents (HTVs) are an ecologically important habitat with a geographic origin similar to that of deep-sea HTVs. Studies on shallow-water HTVs have not only facilitated understanding of the influences of vents on local ecosystems but also helped to extend the knowledge on deep-sea vents. In this study, the diversity of bacterial communities in the sediments of shallow-water HTVs off Kueishan Island, Taiwan, was investigated by examining the 16S ribosomal RNA gene as well as key functional genes involved in chemoautotrophic carbon fixation (aclB, cbbL and cbbM). In the vent area, Sulfurovum and Sulfurimonas of Epsilonproteobacteria appeared to dominate the benthic bacterial community. Results of aclB gene analysis also suggested involvement of these bacteria in carbon fixation using the reductive tricarboxylic acid (rTCA) cycle. Analysis of the cbbM gene showed that Alphaproteobacterial members such as the purple non-sulfur bacteria were the major chemoautotrophic bacteria involving in carbon fixation via the Calvin-Benson-Bassham (CBB) cycle. However, they only accounted for <2% of the total bacterial community in the vent area. These findings suggest that the rTCA cycle is the major chemoautotrophic carbon fixation pathway in sediments of the shallow-water HTVs off Kueishan Island.
The solution of the dam-break problem in the Porous Shallow water Equations
NASA Astrophysics Data System (ADS)
Cozzolino, Luca; Pepe, Veronica; Cimorelli, Luigi; D'Aniello, Andrea; Della Morte, Renata; Pianese, Domenico
2018-04-01
The Porous Shallow water Equations are commonly used to evaluate the propagation of flooding waves in the urban environment. These equations may exhibit not only classic shocks, rarefactions, and contact discontinuities, as in the ordinary two-dimensional Shallow water Equations, but also special discontinuities at abrupt porosity jumps. In this paper, an appropriate parameterization of the stationary weak solutions of one-dimensional Porous Shallow water Equations supplies the inner structure of the porosity jumps. The exact solution of the corresponding dam-break problem is presented, and six different wave configurations are individuated, proving that the solution exists and it is unique for given initial conditions and geometric characteristics. These results can be used as a benchmark in order to validate one- and two-dimensional numerical models for the solution of the Porous Shallow water Equations. In addition, it is presented a novel Finite Volume scheme where the porosity jumps are taken into account by means of a variables reconstruction approach. The dam-break results supplied by this numerical scheme are compared with the exact dam-break results, showing the promising capabilities of this numerical approach. Finally, the advantages of the novel porosity jump definition are shown by comparison with other definitions available in the literature, demonstrating its advantages, and the issues raising in real world applications are discussed.
Acoustic MIMO communications in a very shallow water channel
NASA Astrophysics Data System (ADS)
Zhou, Yuehai; Cao, Xiuling; Tong, Feng
2015-12-01
Underwater acoustic channels pose significant difficulty for the development of high speed communication due to highly limited band-width as well as hostile multipath interference. Enlightened by rapid progress of multiple input multiple output (MIMO) technologies in wireless communication scenarios, MIMO systems offer a potential solution by enabling multiple spatially parallel communication channels to improve communication performance as well as capacity. For MIMO acoustic communications, deep sea channels offer substantial spatial diversity among multiple channels that can be exploited to address simultaneous multipath and co-channel interference. At the same time, there are increasing requirements for high speed underwater communication in very shallow water area (for example, a depth less than 10 m). In this paper, a space-time multichannel adaptive receiver consisting of multiple decision feedback equalizers (DFE) is adopted as the receiver for a very shallow water MIMO acoustic communication system. The performance of multichannel DFE receivers with relatively small number of receiving elements are analyzed and compared with that of the multichannel time reversal receiver to evaluate the impact of limited spatial diversity on multi-channel equalization and time reversal processing. The results of sea trials in a very shallow water channel are presented to demonstrate the feasibility of very shallow water MIMO acoustic communication.
Mud cracks and dedolomitization in the Wittenoom Dolomite, Hamersley Group, Western Australia
Kargel, J.S.; Schreiber, J.F.; Sonett, C.P.
1996-01-01
Several impure dolomitic limestone beds in an outcrop of the latest Archean Wittenoom Dolomite (Hamersley Group, Western Australia) are polygonally cracked. The cracks appear to be sub-aerial desiccation features, suggesting that the known area of shallow water and locally emergent conditions extended from the far eastern part of the basin (the Carawine Dolomite) over 270 km farther west. This finding places shallow- water or emergent conditions either (1) near the middle of what Trendall (1983) defined as the probable original limits of the Hamersley Basin (Trendall's 'Pilbara Egg') or (2) near the southern edge of what Morris (1993) thought to be a broad carbonate platform which fed a deeper water sequence to the south. In any case, the Hamersley Basin in the area of Bee Gorge and eastward to the Carawine Dolomite may have been a carbonate mudflat in part with restricted circulation of sea water. The Carawine Dolomite and the Wittenoom Dolomite near Bee Gorge may have been affected by carbonate buildups along a shelf edge. Regardless of whether shallow water was widespread or local in the Hamersley basin, shallow water verging on emergence is supported by evidence of diagenetic dedolomitization under conditions of low atmospheric and hydrospheric P(O2) and precipitation of strontianite in the mud-cracked sample. Evidence of shallow water at Bee Gorge is consistent with Trendall's broad evaporite-basin model and with Morris' barred-platform model for the origin of Hamersley carbonates and banded iron-formations.
An investigation of shallow ground-water quality near East Fork Poplar Creek, Oak Ridge, Tennessee
Carmichael, J.K.
1989-01-01
Alluvial soils of the flood plain of East Fork Poplar Creek in Oak Ridge, Tennessee, are contaminated with mercury and other metals, organic compounds, and radio-nuclides originating from the Y-12 Plant, a nuclear-processing facility located within the U.S. Department of Energy 's Oak Ridge Reservation. Observation wells were installed in the shallow aquifer of the flood plain, and water quality samples were collected to determine if contaminants are present in the shallow groundwater. Groundwater in the shallow aquifer occurs under water-table conditions. Recharge is primarily from precipitation and discharge is to East Fork Poplar Creek. Groundwater levels fluctuate seasonally in response to variations in recharge and evapotranspiration. During extremely dry periods, the water table drops below the base of the shallow aquifer in some flood-plain areas. Contaminants found in water samples from several of the wells in concentrations which equaled or exceeded drinking-water standards established by the U.S. Environmental Protection Agency are antimony, chromium, lead, mercury, selenium, phenols, and strontium-90. Total and dissolved uranium concentrations exceeded the analytical detection limit in nearly 70% of the wells in the flood plain. The results of water quality determinations demonstrate that elevated concentrations of most trace metals (and possibly organic compounds and radionuclides) were caused by contaminated sediments in the samples. The presence of contaminated sediment in samples is suspected to be the result of borehole contamination during well installation. (USGS)
Waveguide arrangements based on adiabatic elimination
Suchowski, Haim; Mrejen, Michael; Wu, Chihhui; Zhang, Xiang
2016-09-13
This disclosure provides systems, methods, and apparatus related to nanophotonics. In one aspect, an arrangement of waveguides includes a substrate and three waveguides. Each of the three waveguides may be a linear waveguide. A second waveguide is positioned between a first waveguide and a third waveguide. The dimensions and positions of the first, the second, and the third waveguides are specified to substantially eliminate coupling between the first waveguide and the third waveguide over a distance of about 1 millimeter to 2 millimeters along lengths of the first waveguide, the second waveguide, and the third waveguide.
Bradner, Anne; McPherson, Benjamin F.; Miller, Ronald L.; Kish, George; Bernard, Bruce
2005-01-01
The high permeability of the sand and limestone sediments and shallow water table of the Biscayne aquifer make ground water vulnerable to contamination by human activities. To assess potential contamination in the aquifer, untreated ground water was sampled from 30 public-supply wells (40-165 feet deep) in Broward, Miami-Dade, and Palm Beach Counties, 32 shallow wells (10-50 feet deep) in a recently urbanized (residential and light commercial) part of Broward County, and 3 shallow reference wells in Broward County. Results from sample analyses indicate that major ions, pH, dissolved oxygen, nutrients, and trace element concentrations were generally within the range indicative of background concentrations, except for: (1) substantially higher bromide concentrations in water from public-supply wells in southern Miami-Dade County; (2) a few relatively high (greater than 2 milligrams per liter) concentrations of nitrate in water from public-supply wells near agricultural lands in Miami-Dade and southern Broward Counties; and (3) a few relatively high concentrations of arsenic (greater than 10 micrograms per liter) in water from some shallow urban wells near golf courses. Pesticides were detected in every public-supply well, in most of the shallow, urban monitoring wells (78 percent), and in one reference well; however, no pesticide concentration exceeded any drinking-water standard. Fifteen different pesticides or their degradation products were detected. The most frequently detected pesticides were atrazine and tebuthiuron; less frequently detected were the herbicides diuron, fenuron, prometon, metolachlor, simazine, and 2,6-diethylaniline. Volatile organic compounds (VOCs) were detected in most of the public-supply wells (77 percent) and shallow, urban wells (91 percent) and in two of the three reference wells. Thirty-two different VOCs were detected in ground water in the Biscayne aquifer, with cis-1,2-dichloroethene the most frequently detected VOC in the public-supply wells, followed by methyl tert-butyl ether (MTBE), 1,4-dichlorobenzene, and chloroform. Toluene, p-isopropyltoluene, and 1,2,4-trimethylbenzene were the most frequently detected VOCs in the shallow, urban wells. Concentrations of all VOCs were less than the maximum contaminant level (MCL) for public drinking water, except in two samples from public-supply wells near industrialized areas that had vinyl chloride concentrations (3 and 5 micrograms per liter) above the MCL of 1 microgram per liter.
Cannon, M.R.
1984-01-01
The Circle West coal tracts in McCone County, Montana, contain about 460 million tons of recoverable coal reserves. Estimates of coal reserves for the tract are based predominantly on the S coal bed, which averages about 16 ft in thickness. About 175 million tons, or 38%, of the recoverable coal is Federally owned and has been identified for potential lease sale. A hydrologic study has been conducted in the potential lease area to describe existing hydrologic systems and to assess potential effects of surface coal mining on local water resources. Geohydrologic data collected from wells and drill holes indicate that shallow aquifers exist in sandstone and coal beds of the Tongue River Member of the Fort Union Formation (Paleocene age). These shallow aquifers generally have small values of hydraulic conductivity (0.1 to 380 ft/day) and typically yield from 2 to 20 gal/min to stock and domestic wells. Where coal is extremely fractured or the thickness of saturated sandstone is large, some wells can yield in excess of 70 gal/min. Chemical analyses indicate that most shallow aquifers contain a sodium sulfate bicarbonate type water. Surface water resources of the area consist of intermittent streamflow in parts of the Nelson and Timber Creek basins plus a large network of reservoirs. The reservoirs provide a large part of the water supply for area livestock and irrigation. Water quality data for Nelson and Timber Creeks indicate that the water generally is a sodium sulfate type and has a large concentration (181 to 6,960 mg/L) of dissolved solids. Mining of the S coal bed in the Circle West coal tracts would permanently remove shallow coal and sandstone aquifers, resulting in the loss of shallow stock wells. Mining would destroy livestock reservoirs, alter runoff characteristics of Nelson Creek, and temporarily lower water levels in shallow aquifers near the mine. Leaching of soluble constituents from mine spoils may cause a long-term degradation of the quality of water in shallow aquifers in and near the coal tracts. Some of the effects on local water supplies could be mitigated by development of alternative water resources in deeper aquifers such as the Tullock aquifer of Paleocene age and the Fox Hills-lower Hell Creek aquifer of Late Cretaceous age. (Author 's abstract)
Federal Register 2010, 2011, 2012, 2013, 2014
2010-12-01
... commercial quota for shallow-water grouper species (SWG), prohibits recreational harvest of gag, and suspends... recreational sector. This is because recreational effort primarily occurs in shallower waters where discard... percent of their gross revenue in 2008 and 2009, respectively. Revenue from deep-water grouper (DWG...
Federal Register 2010, 2011, 2012, 2013, 2014
2010-12-08
... for 2011 and 2012 that are equal to proposed ABCs for pollock, deep-water flatfish, rex sole... certain species: Pacific cod, flathead sole, shallow-water flatfish, arrowtooth flounder, and other... that the ABC is not exceeded. The flathead sole, shallow-water flatfish, and arrowtooth flounder TACs...
Federal Register 2010, 2011, 2012, 2013, 2014
2012-03-14
..., sablefish, deep-water flatfish, rex sole, Pacific ocean perch, northern rockfish, shortraker rockfish... cod, shallow-water flatfish, arrowtooth flounder, flathead sole, ``other rockfish'' in the Eastern GOA...) guideline harvest levels (GHLs) for Pacific cod so that the ABC is not exceeded. The shallow-water flatfish...
Bathymetric mapping of shallow water surrounding Dongsha Island using QuickBird image
NASA Astrophysics Data System (ADS)
Li, Dongling; Zhang, Huaguo; Lou, Xiulin
2018-03-01
This article presents an experiment of water depth inversion using the band ratio method in Dongsha Island shallow water. The remote sensing data is from QuickBird satellite on April 19, 2004. The bathymetry result shows an extensive agreement with the charted depths. 129 points from the chart depth data were chosen to evaluate the accuracy of the inversion depth. The results show that when the water depth is less than 20m, the inversion depth is accord with the chart, while the water depth is more than 20m, the inversion depth is still among 15- 25m. Therefore, the remote sensing methods can only be effective with the inversion of 20m in Dongsha Island shallow water, rather than in deep water area. The total of 109 depth points less than 20m were used to evaluate the accuracy, the root mean square error is 2.2m.
NASA Astrophysics Data System (ADS)
Novak, Joseph
Optical biological sensors are widely used in the fields of medical testing, water treatment and safety, gene identification, and many others due to advances in nanofabrication technology. This work focuses on the design of fiber-coupled Mach-Zehnder Interferometer (MZI) based biosensors fabricated on silicon-on-insulator (SOI) wafer. Silicon waveguide sensors are designed with multimode and single-mode dimensions. Input coupling efficiency is investigated by design of various taper structures. Integration processing and packaging is performed for fiber attachment and enhancement of input coupling efficiency. Optical guided-wave sensors rely on single-mode operation to extract an induced phase-shift from the output signal. A silicon waveguide MZI sensor designed and fabricated for both multimode and single-mode dimensions. Sensitivity of the sensors is analyzed for waveguide dimensions and materials. An s-bend structure is designed for the multimode waveguide to eliminate higher-order mode power as an alternative to single-mode confinement. Single-mode confinement is experimentally demonstrated through near field imaging of waveguide output. Y-junctions are designed for 3dB power splitting to the MZI arms and for power recombination after sensing to utilize the interferometric function of the MZI. Ultra-short 10microm taper structures with curved geometries are designed to improve insertion loss from fiber-to-chip without significantly increasing device area and show potential for applications requiring misalignment tolerance. An novel v-groove process is developed for self-aligned integration of fiber grooves for attachment to sensor chips. Thermal oxidation at temperatures from 1050-1150°C during groove processing creates an SiO2 layer on the waveguide end facet to protect the waveguide facet during integration etch processing without additional e-beam lithography processing. Experimental results show improvement of insertion loss compared to dicing preparation and Focused Ion Beam methods using the thermal oxidation process.
Polymer planar waveguide Bragg gratings: fabrication, characterization, and sensing applications
NASA Astrophysics Data System (ADS)
Rosenberger, M.; Hessler, S.; Pauer, H.; Girschikofsky, M.; Roth, G. L.; Adelmann, B.; Woern, H.; Schmauss, B.; Hellmann, R.
2017-02-01
In this contribution, we give a comprehensive overview of the fabrication, characterization, and application of integrated planar waveguide Bragg gratings (PPBGs) in cyclo-olefin copolymers (COC). Starting with the measurement of the refractive index depth profile of integrated UV-written structures in COC by phase shifting Mach-Zehnder- Interferometry, we analyze the light propagation using numerical simulations. Furthermore, we show the rapid fabrication of humidity insensitive polymer waveguide Bragg gratings in cyclo-olefin copolymers and discuss the influence of the UV-dosage onto the spectral characteristics and the transmission behavior of the waveguide. Based on these measurements we exemplify that our Bragg gratings exhibit a reflectivity of over 99 % and are highly suitable for sensing applications. With regard to a negligible affinity to absorb water and in conjunction with high temperature stability these polymer devices are ideal for mechanical deformation sensing. Since planar structures are not limited to tensile but can also be applied for measuring compressive strain, we manufacture different functional devices and corroborate their applicability as optical sensors. Exemplarily, we highlight a temperature referenced PPBG sensor written into a femtosecond-laser cut tensile test geometry for tensile and compressive strain sensing. Furthermore, a flexible polymer planar shape sensor is presented.
Stottlemyer, R.; Troendle, C.A.
1999-01-01
Research on the effects of vegetation manipulation on snowpack, soil water, and streamwater chemistry and flux has been underway at the Fraser Experimental Forest (FEF), CO, since 1982. Greater than 95% of FEF snowmelt passes through watersheds as subsurface flow where soil processes significantly alter meltwater chemistry. To better understand the mechanisms accounting for annual variation in watershed streamwater ion concentration and flux with snowmelt, we studied subsurface water flow, its ion concentration, and flux in conterminous forested and clear cut plots. Repetitive patterns in subsurface flow and chemistry were apparent. Control plot subsurface flow chemistry had the highest ion concentrations in late winter and fall. When shallow subsurface flow occurred, its Ca2+, SO42-, and HCO3- concentrations were lower and K+ higher than deep flow. The percentage of Ca2+, NO3-, SO42-, and HCO3- flux in shallow depths was less and K+ slightly greater than the percentage of total flow. Canopy removal increased precipitation reaching the forest floor by about 40%, increased peak snowpack water equivalent (SWE) > 35%, increased the average snowpack Ca2+, NO3-, and NH4+ content, reduced the snowpack K+ content, and increased the runoff four-fold. Clear cutting doubled the percentage of subsurface flow at shallow depths, and increased K+ concentration in shallow subsurface flow and NO3- concentrations in both shallow and deep flow. The percentage change in total Ca2+, SO42-, and HCO3- flux in shallow depths was less than the change in water flux, while that of K+ and NO3- flux was greater. Relative to the control, in the clear cut the percentage of total Ca2+ flux at shallow depths increased from 5 to 12%, SO42- 5.4 to 12%, HCO3- from 5.6 to 8.7%, K+ from 6 to 35%, and NO3- from 2.7 to 17%. The increases in Ca2+ and SO42- flux were proportional to the increase in water flux, the flux of HCO3- increased proportionally less than water flux, and NO3- and K+ were proportionally greater than water flux. Increased subsurface flow accounted for most of the increase in non-limiting nutrient loss. For limiting nutrients, loss of plant uptake and increased shallow subsurface flow accounted for the greater loss. Seasonal ion concentration patterns in streamwater and subsurface flow were similar.Research on the effects of vegetation manipulation on snowpack, soil water, and streamwater chemistry and flux has been underway at the Fraser Experimental Forest (FEF), CO, since 1982. Greater than 95% of FEF snowmelt passes through watersheds as subsurface flow where soil processes significantly alter meltwater chemistry. To better understand the mechanisms accounting for annual variation in watershed streamwater ion concentration and flux with snowmelt, we studied subsurface water flow, its ion concentration, and flux in conterminous forested and clear cut plots. Repetitive patterns in subsurface flow and chemistry were apparent. Control plot subsurface flow chemistry had the highest ion concentrations in late winter and fall. When shallow subsurface flow occurred, its Ca2+, SO42-, and HCO3- concentrations were lower and K+ higher than deep flow. The percentage of Ca2+, NO3-, SO42-, and HCO3- flux in shallow depths was less and K+ slightly greater than the percentage of total flow. Canopy removal increased precipitation reaching the forest floor by about 40%, increased peak snowpack water equivalent (SWE) > 35%, increased the average snowpack Ca2+, NO3-, and NH4+ content, reduced the snowpack K+ content, and increased the runoff four-fold. Clear cutting doubled the percentage of subsurface flow at shallow depths, and increased K+ concentration in shallow subsurface flow and NO3- concentrations in both shallow and deep flow. The percentage change in total Ca2+, SO42-, and HCO3- flux in shallow depths was less than the change in water flux, while that of K+ and NO3- flux was greater. Relative to the control, in the clear cut the percentage of total Ca
NASA Astrophysics Data System (ADS)
Denny, J. F.; O'Brien, T. F.; Bergeron, E.; Twichell, D.; Worley, C. R.; Danforth, W. W.; Andrews, B. A.; Irwin, B.
2006-12-01
The U.S. Geological Survey (USGS) has been heavily involved in geological mapping of the seafloor since the 1970s. Early mapping efforts such as GLORIA provided broad-scale imagery of deep waters (depths > 400 meters) within the Exclusive Economic Zone (EEZ). In the early 1990's, the USGS research emphasis shifted from deep- to shallow-water environments (inner continental shelf, nearshore, estuaries) to address pertinent coastal issues such as erosion, sediment availability, sediment transport, vulnerability of coastal areas to natural and anthropogenic hazards, and resource management. Geologic framework mapping in these shallow- water environments has provided valuable data used to 1) define modern sediment distribution and thickness, 2) determine underlying stratigraphic and structural controls on shoreline behavior, and 3) enable onshore-to- offshore geologic mapping within the coastal zone when coupled with subaerial techniques such as GPR and topographic LIDAR. Research in nearshore areas presents technological challenges due to the dynamics of the environment, high volume of data collected, and the geophysical limitations of operating in very shallow water. In 2004, the USGS, in collaboration with NOAA's Coastal Services Center, began a multi-year seafloor mapping effort to better define oyster habitats within Apalachicola Bay, Florida, a shallow water estuary along the northern Gulf of Mexico. The bay poses a technological challenge due to its shallow depths (< 4-m) and high turbidity that prohibits the use of bathymetric LIDAR. To address this extreme shallow water setting, the USGS incorporated an Autonomous Surface Vessel (ASV) into seafloor mapping operations, in June 2006. The ASV is configured with a chirp sub-bottom profiler (4 24 kHz), dual-frequency chirp sidescan-sonar (100/500 kHz), single-beam echosounder (235 kHz), and forward-looking digital camera, and will be used to delineate the distribution and thickness of surficial sediment, presence of oyster beds, and sea bed morphology in water depths less than 5-m. The ASV is a catamaran-based platform, 10 feet in length, 4 feet in width, and approximately 260 lbs in weight. The vehicle is operated remotely through a wireless modem network enabling real-time monitoring of data acquisition. The ASV is navigated using RTK, and heave, pitch and roll are recorded with onboard motion sensors. Additional sensors, such as ADCPs, can also be housed within the vehicle. The ASV is able to operate in previously inaccessible areas, and will not only augment existing shallow-water research capabilities, but will also improve our understanding of the geologic controls to modern beach behavior and coastal evolution.
Hermannsen, Line; Tougaard, Jakob; Beedholm, Kristian; Nabe-Nielsen, Jacob; Madsen, Peter Teglberg
2015-01-01
Airguns used in seismic surveys are among the most prevalent and powerful anthropogenic noise sources in marine habitats. They are designed to produce most energy below 100 Hz, but the pulses have also been reported to contain medium-to-high frequency components with the potential to affect small marine mammals, which have their best hearing sensitivity at higher frequencies. In shallow water environments, inhabited by many of such species, the impact of airgun noise may be particularly challenging to assess due to complex propagation conditions. To alleviate the current lack of knowledge on the characteristics and propagation of airgun pulses in shallow water with implications for effects on small marine mammals, we recorded pulses from a single airgun with three operating volumes (10 in3, 25 in3 and 40 in3) at six ranges (6, 120, 200, 400, 800 and 1300 m) in a uniform shallow water habitat using two calibrated Reson 4014 hydrophones and four DSG-Ocean acoustic data recorders. We show that airgun pulses in this shallow habitat propagated out to 1300 meters in a way that can be approximated by a 18log(r) geometric transmission loss model, but with a high pass filter effect from the shallow water depth. Source levels were back-calculated to 192 dB re µPa2s (sound exposure level) and 200 dB re 1 µPa dB Leq-fast (rms over 125 ms duration), and the pulses contained substantial energy up to 10 kHz, even at the furthest recording station at 1300 meters. We conclude that the risk of causing hearing damage when using single airguns in shallow waters is small for both pinnipeds and porpoises. However, there is substantial potential for significant behavioral responses out to several km from the airgun, well beyond the commonly used shut-down zone of 500 meters.
Thermal shallow water models of geostrophic turbulence in Jovian atmospheres
DOE Office of Scientific and Technical Information (OSTI.GOV)
Warneford, Emma S., E-mail: emma.warneford@maths.ox.ac.uk; Dellar, Paul J., E-mail: dellar@maths.ox.ac.uk
2014-01-15
Conventional shallow water theory successfully reproduces many key features of the Jovian atmosphere: a mixture of coherent vortices and stable, large-scale, zonal jets whose amplitude decreases with distance from the equator. However, both freely decaying and forced-dissipative simulations of the shallow water equations in Jovian parameter regimes invariably yield retrograde equatorial jets, while Jupiter itself has a strong prograde equatorial jet. Simulations by Scott and Polvani [“Equatorial superrotation in shallow atmospheres,” Geophys. Res. Lett. 35, L24202 (2008)] have produced prograde equatorial jets through the addition of a model for radiative relaxation in the shallow water height equation. However, their modelmore » does not conserve mass or momentum in the active layer, and produces mid-latitude jets much weaker than the equatorial jet. We present the thermal shallow water equations as an alternative model for Jovian atmospheres. These equations permit horizontal variations in the thermodynamic properties of the fluid within the active layer. We incorporate a radiative relaxation term in the separate temperature equation, leaving the mass and momentum conservation equations untouched. Simulations of this model in the Jovian regime yield a strong prograde equatorial jet, and larger amplitude mid-latitude jets than the Scott and Polvani model. For both models, the slope of the non-zonal energy spectra is consistent with the classic Kolmogorov scaling, and the slope of the zonal energy spectra is consistent with the much steeper spectrum observed for Jupiter. We also perform simulations of the thermal shallow water equations for Neptunian parameter values, with a radiative relaxation time scale calculated for the same 25 mbar pressure level we used for Jupiter. These Neptunian simulations reproduce the broad, retrograde equatorial jet and prograde mid-latitude jets seen in observations. The much longer radiative time scale for the colder planet Neptune explains the transition from a prograde to a retrograde equatorial jet, while the broader jets are due to the deformation radius being a larger fraction of the planetary radius.« less
Hermannsen, Line; Tougaard, Jakob; Beedholm, Kristian; Nabe-Nielsen, Jacob; Madsen, Peter Teglberg
2015-01-01
Airguns used in seismic surveys are among the most prevalent and powerful anthropogenic noise sources in marine habitats. They are designed to produce most energy below 100 Hz, but the pulses have also been reported to contain medium-to-high frequency components with the potential to affect small marine mammals, which have their best hearing sensitivity at higher frequencies. In shallow water environments, inhabited by many of such species, the impact of airgun noise may be particularly challenging to assess due to complex propagation conditions. To alleviate the current lack of knowledge on the characteristics and propagation of airgun pulses in shallow water with implications for effects on small marine mammals, we recorded pulses from a single airgun with three operating volumes (10 in3, 25 in3 and 40 in3) at six ranges (6, 120, 200, 400, 800 and 1300 m) in a uniform shallow water habitat using two calibrated Reson 4014 hydrophones and four DSG-Ocean acoustic data recorders. We show that airgun pulses in this shallow habitat propagated out to 1300 meters in a way that can be approximated by a 18log(r) geometric transmission loss model, but with a high pass filter effect from the shallow water depth. Source levels were back-calculated to 192 dB re µPa2s (sound exposure level) and 200 dB re 1 µPa dB Leq-fast (rms over 125 ms duration), and the pulses contained substantial energy up to 10 kHz, even at the furthest recording station at 1300 meters. We conclude that the risk of causing hearing damage when using single airguns in shallow waters is small for both pinnipeds and porpoises. However, there is substantial potential for significant behavioral responses out to several km from the airgun, well beyond the commonly used shut-down zone of 500 meters. PMID:26214849
Status of shallow-aquifer mapping in the Northern Front Range Area, Colorado
Robson, Stanley G.
2001-01-01
Mapping of shallow aquifers in the northern Front Range area of Colorado has been completed as part of the U.S. Geological Survey Front Range Infrastructure Resources Project. The aquifer mapping was undertaken as part of a comprehensive effort to better define the mineral, energy, cartographic, biological, and water resources that are critical to the support and development of the area's infrastructure, such as streets. highways, airports, and buildings. The aquifer mapping was undertaken in cooperation with the Colorado Division of Water Resources and the Colorado Water Conservation Board. The shallow aquifers have been mapped in a 2,450-square-mile area extending as an approximately 30-mile-wide band from north of Fort Collins to the Arapahoe-Douglas County line south of Denver (fig. I). The shallow aquifer mapping in the Denver metropolitan area was published in 1996 as Hydrologic Investigations Atlas HA-736 (Robson. 1996). Shallow aquifer mapping in the Greeley-Nunn area was published as HA-746A (Robson, Arnold, and Heiny, 2000a); mapping in the Fort Collins-Loveland area was published as HA-746B (Robson, Arnold, and Heiny, 2000b); mapping in the Fort Lupton-Gilcrest area was published as HA-746C (Robson, Heiny, and Arnold, 2000c); and mapping in the Boulder-Longmont area was published as HA-746D (Robson, Heiny, and Arnold, 2000d). Each of the five atlases contains five map sheets at 1:50,000 scale showing: 1. The thickness and extent of the unconsolidated sediments (loose gravel. sand. silt, and clay) that overlie the bedrock formations in the area (fig. 2). 2. The altitude and configuration of the bedrock surface. 3. The altitude of the water table and direction of ground-water movement. 4. The saturated thickness of the shallow aquifers. 5. The depth to the water table in the shallow aquifers.
Development of a wavelength tunable filter using MEMS technology
NASA Astrophysics Data System (ADS)
Liu, Junting
Microelectromechanical systems (MEMS) for optical applications have received intensive attention in recent years because of their potential applications in optical telecommunication. Traditional wavelength division multiplexing (WDM) offers high capacity but requires the fabrication of selective add-drop filters. MEMS technology offers an effective way to fabricate these components at low cost. This thesis presents the development of a device that tunes the Bragg wavelength by coupling into the evanescent field of the grating. A Bragg grating is a periodic perturbation of the refractive index along a fiber or a periodic perturbation of the structure of a planar waveguide. The Bragg wavelength can be tuned by changing the degree to which a dielectric slab couples into the evanescent field. The result is a change in the effective index of the grating, and thus a change in the wavelength that which it reflects. In this thesis Bragg gratings were successfully written into an optical fiber using phase mask technique. Mechanical polishing was used to side-polish the fiber and remove cladding to expose the core. Grating structures were also fabricated in planar waveguide using E-beam writing and dry etching. In order to achieve the smoothest possible morphology of the waveguide, plasma dry etching of transparent substrates was studied in great detail. It is found that the pre-etch cleaning procedure greatly influences the ability to obtain a smooth etched surface. Upper limits of evanescent field tuning were investigated by applying different index liquids such as D. I. water and index matching oils or by positioning different dielectric materials such as glass and silicon close to the grating. Planar waveguides were found to be more sensitive to effective index change. Two kinds of computer simulation were carried out to understand the mode profile and to estimate the value of effective index of planar waveguide under "dry" and "wet" conditions. The first one used an average depth of grating approximation. The second explicitly considered the corrugated structure of the waveguide. Results of both simulations were compared with the experimental results in order to find the proper simulation approach. The fiber or planar waveguide gratings were "device" integrated and their pro and cons were compared. Devices using an optical fiber employed a microactuator driven by electrothermal vibromotor to change the degree of coupling between fiber and "tuning block". Device using planar waveguides used an electrostatic force actuated membrane, flip-chip mounted atop the waveguide. All devices were fabricated using polysilicon surface micromachining processes. I concluded that devices driven by electrostatic force were easier to actuate and their integration with waveguide less challenging.
NASA Astrophysics Data System (ADS)
Castillo-López, Elena; Dominguez, Jose Antonio; Pereda, Raúl; de Luis, Julio Manuel; Pérez, Ruben; Piña, Felipe
2017-10-01
Accurate determination of water depth is indispensable in multiple aspects of civil engineering (dock construction, dikes, submarines outfalls, trench control, etc.). To determine the type of atmospheric correction most appropriate for the depth estimation, different accuracies are required. Accuracy in bathymetric information is highly dependent on the atmospheric correction made to the imagery. The reduction of effects such as glint and cross-track illumination in homogeneous shallow-water areas improves the results of the depth estimations. The aim of this work is to assess the best atmospheric correction method for the estimation of depth in shallow waters, considering that reflectance values cannot be greater than 1.5 % because otherwise the background would not be seen. This paper addresses the use of hyperspectral imagery to quantitative bathymetric mapping and explores one of the most common problems when attempting to extract depth information in conditions of variable water types and bottom reflectances. The current work assesses the accuracy of some classical bathymetric algorithms (Polcyn-Lyzenga, Philpot, Benny-Dawson, Hamilton, principal component analysis) when four different atmospheric correction methods are applied and water depth is derived. No atmospheric correction is valid for all type of coastal waters, but in heterogeneous shallow water the model of atmospheric correction 6S offers good results.
NASA Astrophysics Data System (ADS)
Haramoto, E.
2018-03-01
In this study, the prevalence of various waterborne pathogens in water samples collected in the Kathmandu Valley, Nepal, and the applicability of Escherichia coli as an indicator of pathogen contamination in groundwater were assessed. Fifty-three water samples, including shallow groundwater and river water, were analyzed to examine the presence of protozoan (oo)cysts via fluorescence microscopy and that of viral and bacterial genomes via quantitative PCR. At least one of the seven types of pathogens tested (i.e., Cryptosporidium, Giardia, human adenoviruses, noroviruses of genogroups I and II, group A rotaviruses, and Vibrio cholerae) was detected in 68% (15/22) of the shallow dug well water samples; groundwater in the shallow dug wells was more contaminated compared with that in shallow tube wells (8/15, 53%). River water and sewage samples were contaminated with extremely high concentrations of multiple pathogens, whereas a tap water sample supplied by a water tanker tested positive for human adenoviruses and V. cholerae. The detection of host-specific Bacteroidales genetic markers revealed the effects of human and animal feces on groundwater contamination. The tested pathogens were sometimes detected even in E. coli-negative groundwater samples, indicative of the limitations of using E. coli as an indicator for waterborne pathogens in groundwater.
Guide for fabricating and installing shallow ground water observation wells
Carolyn C. Bohn
2001-01-01
The fabrication and use of three tools to assist in the manual installation of shallow ground water observation wells are described. These tools are easily fabricated at a local machine shop. A method for calibrating pressure transducers is also described.
Reaction of Hardwood Timber to Shallow-Water Impoundments
W. M. Broadfoot
1958-01-01
In recent years farmers and sportsmen have built many temporary shallow-water impoundments in southern hardwood forests. While the main purpose has been to attract waterfowl, a recent study shows that these forest lakes, if properly managed, can also benefit the timber.
Assessment of satellite derived diffuse attenuation coefficients ...
Optical data collected in coastal waters off South Florida and in the Caribbean Sea between January 2009 and December 2010 were used to evaluate products derived with three bio-optical inversion algorithms applied to MOIDS/Aqua, MODIS/Terra, and SeaWiFS satellite observations. The products included the diffuse attenuation coefficient at 490 nm (Kd_490) and for the visible range (Kd_PAR), and euphotic depth (Zeu, corresponding to 1% of the surface incident photosynthetically available radiation or PAR). Above-water hyperspectral reflectance data collected over optically shallow waters of the Florida Keys between June 1997 and August 2011 were used to help understand algorithm performance over optically shallow waters. The in situ data covered a variety of water types in South Florida and the Caribbean Sea, ranging from deep clear waters, turbid coastal waters, and optically shallow waters (Kd_490 range of ~0.03 – 1.29m-1). An algorithm based on Inherent Optical Properties (IOPs) showed the best performance (RMSD < 13% and R2 ~1.0 for MODIS/Aqua and SeaWiFS). Two algorithms based on empirical regressions performed well for offshore clear waters, but underestimated Kd_490 and Kd_PAR in coastal waters due to high turbidity or shallow bottom contamination. Similar results were obtained when only in situ data were used to evaluate algorithm performance. The excellent agreement between satellite-derived remote sensing reflectance (Rrs) and in situ Rrs suggested that
NASA Astrophysics Data System (ADS)
Aulenbach, B. T.; Peters, N. E.
2016-12-01
Southeastern U.S. experiences recurring droughts, which can reduce water availability and can result in water-limiting conditions. Monthly water budgets were estimated at Panola Mountain Research Watershed, a small 41-hectare forested watershed near Atlanta, Georgia, from 1985 through 2015, to quantify the effects of climatic variability on groundwater (GW) storage. A relation between stream base flow and watershed GW storage was developed. The relation indicated that both shallow and deep GW storage contribute to base-flow runoff, except for the bottom third (78 mm) of the range in observed shallow soil moisture. The base flow-storage relation was then used to estimate monthly evapotranspiration (ET) using a closed water budget approach. Growing season droughts were almost always preceded by low GW storage at the onset of the growing season. The low base flow and GW storage conditions were caused by low precipitation (P) during the dormant season, and to a lesser extent, carryover of low GW storage conditions from the previous growing season. Growing season P had little impact on drought, as most P ultimately resulted in ET instead of deeper GW recharge. Water-limited growing season conditions were indicated when potential ET (PET) >> ET, and occurred during months having a large "P-deficit", PET - P, and when shallow storage was already near its observed minimum—such that the P-deficits exceeded the extractable water in shallow storage. These observations can be used to hypothesize how projected future increases in temperature, and how resulting increases in PET affect water budgets in Southeastern U.S. The dormant season will become shorter and ET will increase, causing decreased GW recharge during the dormant season, and will result in more frequent and severe growing season droughts. Higher growing season PET would increase the frequency and duration of water limiting conditions due to higher P-deficits and more frequent occurrences of low shallow storage.
NASA Astrophysics Data System (ADS)
Zhao, L.; Wang, L.; Xiao, H.; Cheng, G.; Ruan, Y.; Zhou, M.; Wang, F.
2014-04-01
Deuterium excess (d-excess) of air moisture is traditionally considered as a conservative tracer of oceanic evaporation conditions. Recent studies challenge this view and emphasize the importance of vegetation activity in controlling the dynamics of air moisture d-excess. However direct field observations supporting the role of vegetation in d-excess variations is not well documented. In this study, we quantified d-excess of air moisture, leaf and xylem water of multiple dominant species as well as shallow soil water (5 and 10 cm) at hourly interval during three extensive field campaigns at two climatically different locations within the Heihe River Basin. The results showed that with the increase of temperature (T) and decrease of relative humidity (RH), the δD-δ18O plots of leaf water, xylem water and shallow soil water deviated gradually from their corresponding local meteoric water line. There were significant differences in d-excess values among different water pools at all the study sites. The most positive d-excess values were found in air moisture (9.3‰) and the most negative d-excess values (-85.6‰) were found in leaf water. The d-excess values of air moisture (dmoisture) and leaf water (dleaf) during the sunny days, and shallow soil water (dsoil) during the first sunny day after rain event showed strong diurnal patterns. There were significantly positive relationships between dleaf and RH and negative relationships between dmoisture and RH. The correlations of dleaf and dmoisture with T were opposite to their relationships with RH. In addition, we found the opposite diurnal variations for dleaf and dmoisture during the sunny day, and for dleaf during the sunny days, and shallow soil water dsoil and dmoisture during the first sunny day after rain event. Significant negative relationships were found between dleaf and dmoisture in all the sites during the sunny day. Our results provide direct evidence that dmoisture of the surface air at continental locations can be significantly altered by local processes, especially plant transpiration during the sunny days. The role of shallow soil water on dmoisture is generally much smaller but could be large at the sunny day right after rainfall events.
Flow through a very porous obstacle in a shallow channel.
Creed, M J; Draper, S; Nishino, T; Borthwick, A G L
2017-04-01
A theoretical model, informed by numerical simulations based on the shallow water equations, is developed to predict the flow passing through and around a uniform porous obstacle in a shallow channel, where background friction is important. This problem is relevant to a number of practical situations, including flow through aquatic vegetation, the performance of arrays of turbines in tidal channels and hydrodynamic forces on offshore structures. To demonstrate this relevance, the theoretical model is used to (i) reinterpret core flow velocities in existing laboratory-based data for an array of emergent cylinders in shallow water emulating aquatic vegetation and (ii) reassess the optimum arrangement of tidal turbines to generate power in a tidal channel. Comparison with laboratory-based data indicates a maximum obstacle resistance (or minimum porosity) for which the present theoretical model is valid. When the obstacle resistance is above this threshold the shallow water equations do not provide an adequate representation of the flow, and the theoretical model over-predicts the core flow passing through the obstacle. The second application of the model confirms that natural bed resistance increases the power extraction potential for a partial tidal fence in a shallow channel and alters the optimum arrangement of turbines within the fence.
Environmental assessment model for shallow land disposal of low-level radioactive wastes
NASA Astrophysics Data System (ADS)
Little, C. A.; Fields, D. E.; Emerson, C. J.; Hiromoto, G.
1981-09-01
The PRESTO (Prediction of Radiation Effects from Shallow Trench Operations) computer code developed to evaluate health effects from shallow land burial trenches is described. This generic model assesses radionuclide transport, ensuing exposure, and health impact to a static local population for a 1000 y period following the end of burial operations. Human exposure scenarios considered include normal releases (including leaching and operational spillage), human intrusion, and site farming or reclamation. Pathways and processes of transit from the trench to an individual or population includes ground water transport overland flow, erosion, surface water dilution, resuspension, atmospheric transport, deposition, inhalation, and ingestion of contaminated beef, milk, crops, and water. Both population doses and individual doses are calculated as well as doses to the intruder and farmer. Cumulative health effects in terms of deaths from cancer are calculated for the population over the 1000 y period using a life table approach. Data bases for three shallow land burial sites (Barnwell, South Carolina, Beatty, Nevada, and West Valley, New York) are under development. The interim model, includes coding for environmental transport through air, surface water, and ground water.
Wang, Xihua; Zhang, Guangxin; Xu, Y Jun; Sun, Guangzhi
2015-11-01
Assessment on the interaction between groundwater and surface water (GW-SW) can generate information that is critical to regional water resource management, especially for regions that are highly dependent on groundwater resources for irrigation. This study investigated such interaction on China's Sanjiang Plain (10.9 × 10(4) km(2)) and produced results to assist sustainable regional water management for intensive agricultural activities. Methods of hierarchical cluster analysis (HCA), principal component analysis (PCA), and statistical analysis were used in this study. One hundred two water samplings (60 from shallow groundwater, 7 from deep groundwater, and 35 from surface water) were collected and grouped into three clusters and seven sub-clusters during the analyses. The PCA analysis identified four principal components of the interaction, which explained 85.9% variance of total database, attributed to the dissolution and evolution of gypsum, feldspar, and other natural minerals in the region that was affected by anthropic and geological (sedimentary rock mineral) activities. The analyses showed that surface water in the upper region of the Sanjiang Plain gained water from local shallow groundwater, indicating that the surface water in the upper region was relatively more resilient to withdrawal for usage, whereas in the middle region, there was only a weak interaction between shallow groundwater and surface water. In the lower region of the Sanjiang Plain, surface water lost water to shallow groundwater, indicating that the groundwater was vulnerable to pollution by pesticides and fertilizers from terrestrial sources.
46 CFR 180.200 - Survival craft-general.
Code of Federal Regulations, 2010 CFR
2010-10-01
... on the Great Lakes—§ 180.206(b). 6 Shallow water exception—§ 180.207(e). 7 OCMI may reduce survival...) and § 180.208(e) 8 Shallow water exception—§ 180.208(e)C. [CGD 85-080, 61 FR 975, Jan. 10, 1996, as...
NEKTON HABITAT QUALITY AT SHALLOW-WATER SITES IN TWO RHODE ISLAND COASTAL SYSTEMS
We evaluated nekton habitat quality at five shallow-water sites in two Rhode Island systems by comparing nekton densities and biomass, number of species, prey availability and feeding, and abundance of winter flounder Pseudopleuronectes americanus. Nekton density and biomass wer...
NASA Astrophysics Data System (ADS)
Miller, R.
2015-12-01
Following the success of the implicit particle filter in twin experiments with a shallow water model of the nearshore environment, the planned next step is application to the intensive Sandy Duck data set, gathered at Duck, NC. Adaptation of the present system to the Sandy Duck data set will require construction and evaluation of error models for both the model and the data, as well as significant modification of the system to allow for the properties of the data set. Successful implementation of the particle filter promises to shed light on the details of the capabilities and limitations of shallow water models of the nearshore ocean relative to more detailed models. Since the shallow water model admits distinct dynamical regimes, reliable parameter estimation will be important. Previous work by other groups give cause for optimism. In this talk I will describe my progress toward implementation of the new system, including problems solved, pitfalls remaining and preliminary results
Diversity and Distribution of Prokaryotes within a Shallow-Water Pockmark Field.
Giovannelli, Donato; d'Errico, Giuseppe; Fiorentino, Federica; Fattorini, Daniele; Regoli, Francesco; Angeletti, Lorenzo; Bakran-Petricioli, Tatjana; Vetriani, Costantino; Yücel, Mustafa; Taviani, Marco; Manini, Elena
2016-01-01
Pockmarks are crater-like depression on the seafloor associated with hydrocarbon ascent through muddy sediments in continental shelves around the world. In this study, we examine the diversity and distribution of benthic microbial communities at shallow-water pockmarks adjacent to the Middle Adriatic Ridge. We integrate microbial diversity data with characterization of local hydrocarbons concentrations and sediment geochemistry. Our results suggest these pockmarks are enriched in sedimentary hydrocarbons, and host a microbial community dominated by Bacteria, even in deeper sediment layers. Pockmark sediments showed higher prokaryotic abundance and biomass than surrounding sediments, potentially due to the increased availability of organic matter and higher concentrations of hydrocarbons linked to pockmark activity. Prokaryotic diversity analyses showed that the microbial communities of these shallow-water pockmarks are unique, and comprised phylotypes associated with the cycling of sulfur and nitrate compounds, as well as numerous know hydrocarbon degraders. Altogether, this study suggests that shallow-water pockmark habitats enhance the diversity of the benthic prokaryotic biosphere by providing specialized environmental niches.
USDA-ARS?s Scientific Manuscript database
This paper presents a depth-averaged two-dimensional shallow water model for simulating long waves in vegetated water bodies under breaking and non-breaking conditions. The effects of rigid vegetation are modelled in the form of drag and inertia forces as sink terms in the momentum equations. The dr...
Lapointe, N.W.R.; Thorson, J.T.; Angermeier, P.L.
2010-01-01
The northern snakehead (Channa argus) is a large piscivorous fish that is invasive in eastern Europe and has recently been introduced in North America. We examined the seasonal habitat selection at meso- and microhabitat scales using radio-telemetry to increase understanding of the ecology of this species, which will help to inform management decisions. After the spawning season (postspawn season, September–November), northern snakeheads preferred offshore Eurasian water-milfoil (Myriophyllum spicatum) beds with shallow water (∼115 cm) and soft substrate. In the winter (November–April), these fish moved to deeper water (∼135 cm) with warmer temperatures, but habitat selection was weak at both scales. Northern snakeheads returned to shallower water (∼95 cm) in the prespawn season (April–June) and used milfoil and other cover. Habitat selection was the strongest at both meso- and microhabitat scales during the spawning season (June–September), when fish preferred macrophytes and cover in shallow water (∼88 cm). Our results help to identify habitats at the risk of invasion by northern snakeheads. We suggest that control efforts and future research focus on shallow waters, and take into consideration the seasonal habitat preferences.
Lapointe, N.W.R.; Thorson, J.T.; Angermeier, P.L.
2010-01-01
The northern snakehead (Channa argus) is a large piscivorous fish that is invasive in eastern Europe and has recently been introduced in North America. We examined the seasonal habitat selection at meso- and microhabitat scales using radio-telemetry to increase understanding of the ecology of this species, which will help to inform management decisions. After the spawning season (postspawn season, September-November), northern snakeheads preferred offshore Eurasian water-milfoil (Myriophyllum spicatum) beds with shallow water (115 cm) and soft substrate. In the winter (November-April), these fish moved to deeper water (135 cm) with warmer temperatures, but habitat selection was weak at both scales. Northern snakeheads returned to shallower water (95 cm) in the prespawn season (April-June) and used milfoil and other cover. Habitat selection was the strongest at both meso- and microhabitat scales during the spawning season (June-September), when fish preferred macrophytes and cover in shallow water (88 cm). Our results help to identify habitats at the risk of invasion by northern snakeheads. We suggest that control efforts and future research focus on shallow waters, and take into consideration the seasonal habitat preferences. ?? 2010 John Wiley & Sons A/S.
Design of hydrotherapy exercise pools.
Edlich, R F; Abidin, M R; Becker, D G; Pavlovich, L J; Dang, M T
1988-01-01
Several hydrotherapy pools have been designed specifically for a variety of aquatic exercise. Aqua-Ark positions the exerciser in the center of the pool for deep-water exercise. Aqua-Trex is a shallow underwater treadmill system for water walking or jogging. Swim-Ex generates an adjustable laminar flow that permits swimming without turning. Musculoskeletal conditioning can be accomplished in the above-ground Arjo shallow-water exercise pool. A hydrotherapy pool also can be custom designed for musculoskeletal conditioning in its shallow part and cardiovascular conditioning in a deeper portion of the pool. Regardless of the type of exercise, there is general agreement that the specific exercise conducted in water requires significantly more energy expenditure than when the same exercise is performed on land.
Shallow-water seismoacoustic noise generated by tropical storms Ernesto and Florence.
Traer, James; Gerstoft, Peter; Bromirski, Peter D; Hodgkiss, William S; Brooks, Laura A
2008-09-01
Land-based seismic observations of double frequency (DF) microseisms generated during tropical storms Ernesto and Florence are dominated by signals in the 0.15-0.5 Hz band. In contrast, data from sea floor hydrophones in shallow water (70 m depth, 130 km off the New Jersey coast) show dominant signals in the ocean gravity-wave frequency band, 0.02-0.18 Hz, and low amplitudes from 0.18 to 0.3 Hz, suggesting significant opposing wave components necessary for DF microseism generation were negligible at the site. Florence produced large waves over deep water while Ernesto only generated waves in coastal regions, yet both storms produced similar spectra. This suggests near-coastal shallow water as the dominant region for observed microseism generation.
Gu, Xiaomin; Xiao, Yong; Yin, Shiyang; Pan, Xingyao; Niu, Yong; Shao, Jingli; Cui, Yali; Zhang, Qiulan; Hao, Qichen
2017-09-22
In this study, the hydrochemical characteristics of shallow groundwater were analyzed to get insight into the factors affecting groundwater quality in a typical agricultural dominated area of the North China Plain. Forty-four shallow groundwater samples were collected for chemical analysis. The water type changes from Ca·Na-HCO 3 type in grass land to Ca·Na-Cl (+NO 3 ) type and Na (Ca)-Cl (+NO 3 +SO 4 ) type in construction and facility agricultural land, indicating the influence of human activities. The factor analysis and geostatistical analysis revealed that the two major factors contributing to the groundwater hydrochemical compositions were the water-rock interaction and contamination from sewage discharge and agricultural fertilizers. The major ions (F, HCO 3 ) and trace element (As) in the shallow groundwater represented the natural origin, while the nitrate and sulfate concentrations were related to the application of fertilizer and sewage discharge in the facility agricultural area, which was mainly affected by the human activities. The values of pH, total dissolved solids, electric conductivity, and conventional component (K, Ca, Na, Mg, Cl) in shallow groundwater increased from grass land and cultivated land, to construction land and to facility agriculture which were originated from the combination sources of natural processes (e.g., water-rock interaction) and human activities (e.g., domestic effluents). The study indicated that both natural processes and human activities had influences on the groundwater hydrochemical compositions in shallow groundwater, while anthropogenic processes had more contribution, especially in the reclaimed water irrigation area.
Shallow Groundwater Movement in the Skagit River Delta Area, Skagit County, Washington
Savoca, Mark E.; Johnson, Kenneth H.; Fasser, Elisabeth T.
2009-01-01
Shallow groundwater movement in an area between the lower Skagit River and Puget Sound was characterized by the U.S. Geological Survey to assist Skagit County and the Washington State Department of Ecology with the identification of areas where water withdrawals from existing and new wells could adversely affect streamflow in the Skagit River. The shallow groundwater system consists of alluvial, lahar runout, and recessional outwash deposits composed of sand, gravel, and cobbles, with minor lenses of silt and clay. Upland areas are underlain by glacial till and outwash deposits that show evidence of terrestrial and shallow marine depositional environments. Bedrock exposures are limited to a few upland outcrops in the southwestern part of the study area, and consist of metamorphic, sedimentary, and igneous rocks. Water levels were measured in 47 wells on a quarterly basis (August 2007, November 2007, February 2008, and May 2008). Measurements from 34 wells completed in the shallow groundwater system were used to construct groundwater-level and flow-direction maps and perform a linear-regression analysis to estimate the overall, time averaged shallow groundwater-flow direction and gradient. Groundwater flow in the shallow groundwater system generally moves in a southwestward direction away from the Skagit River and toward the Swinomish Channel and Skagit Bay. Local groundwater flow towards the river was inferred during February 2008 in areas west and southwest of Mount Vernon. Water-level altitudes varied seasonally, however, and generally ranged from less than 3 feet (August 2007) in the west to about 15 feet (May 2008) in the east. The time-averaged, shallow groundwater-flow direction derived from regression analysis, 8.5 deg south of west, was similar to flow directions depicted on the quarterly water-level maps. Seasonal changes in groundwater levels in most wells in the Skagit River Delta follow a typical pattern for shallow wells in western Washington. Water levels rise from October through March, when precipitation is high, and decline from April through September, when precipitation is lower. Groundwater levels in wells along the eastern margin of the study area also are likely influenced by stage on the Skagit River. Water levels in these wells remained elevated through April, and did not seem to begin to decline until the end of May in response to declining river stage. Groundwater levels in a well equipped with a continuous water-level recorder exhibited periodic fluctuations that are characteristic of ocean tides. This well is less than 1 mile east of the tidally influenced Swinomish Channel, and exhibited water-level fluctuations that correspond closely to predicted tidal extremes obtained from a tide gage near La Conner, Washington.
Xue, Jingyuan; Huo, Zailin; Wang, Fengxin; Kang, Shaozhong; Huang, Guanhua
2018-04-01
Water scarcity and salt stress are two main limitations for agricultural production. Groundwater evapotranspiration (ET g ) with upward salt movement plays an important role in crop water use and water productivity in arid regions, and it can compensate the impact of deficit irrigation on crop production. Thus, comprehensive impacts of shallow groundwater and deficit irrigation on crop water use results in an improvement of irrigation water productivity (IWP). However, it is difficult to quantify the effects of groundwater and deficit irrigation on IWP. In this study, we built an IWP evaluation model coupled with a water and salt balance model and a crop yield estimation model. As a valuable tool of IWP simulation, the calibrated model was used to investigate the coupling response of sunflower IWP to irrigation water depths (IWDs), groundwater table depth (GTDs) and groundwater salinities (GSs). A total of 210 scenarios were run in which five irrigation water depths (IWDs) and seven groundwater table depths (GTDs) and six groundwater salinities (GSs) were used. Results indicate that increasing GS clearly increases the negative effect on a crop's actual evapotranspiration (ET a ) as salt accumulation in root zone. When GS is low (0.5-1g/L), increasing GTD produces more positive effect than negative effect. In regard to relatively high GS (2-5g/L), the negative effect of shallow-saline groundwater reaches a maximum at 2m GTD. Additionally, the salt concentration in the root zone maximizes its value at 2.0m GTD. In most cases, increasing GTD and GS reduces the benefits of irrigation water and IWP. The IWP increases with decreasing irrigation water. Overall, in arid regions, capillary rise of shallow groundwater can compensate for the lack of irrigation water and improve IWP. By improving irrigation schedules and taking advantages of shallow saline groundwater, we can obtain higher IWP. Copyright © 2017 Elsevier B.V. All rights reserved.
Ground-water levels, flow, and quality in northwestern Elkhart County, Indiana, 1980-89
Duwelius, R.F.; Silcox, C.A.
1991-01-01
The time of peak dissolved-bromide concentrations in water from shallow wells downgradient from the landfill was used to estimate a rate of horizontal flow of water in the unconfined aquifer. The average rate of flow between shallow wells downgradient from the landfill was estimated to be 1.2 feet per day. This rate is within the range of values for ground-water flow calculated according to Darcy's law.
Applications of isotopes to tracing sources of solutes and water in shallow systems
Kendall, Carol; Krabbenhoft, David P.
1995-01-01
New awareness of the potential danger to water supplies posed by the use of agricultural chemicals has focused attention on the nature of groundwater recharge and the mobility of various solutes, especially nitrate and pesticides, in shallow systems. A better understanding of hydrologic flowpaths and solute sources is required to determine the potential impact of sources of contamination on water supplies, to develop management practices for preserving water quality, and to develop remediation plans for sites that are already contaminated. In many cases, environmental isotopes can be employed as 'surgical tools' for answering very specific questions about water and solute sources. Isotopic data can often provide more accurate information about the system than hydrologic measurements or complicated hydrologic models. This note focuses on practical and cost-effective examples of how naturally-occurring isotopes can be used to track water and solutes as they move through shallow systems.
Garn, H.S.
1988-01-01
The Pecos River near Hagerman in Chaves County, New Mexico, historically has been a gaining stream. In 1938, the slope of the water table in the shallow alluvial aquifer near Hagerman was toward the Pecos River. By 1950, a large water-table depression had formed in the alluvial aquifer southwest of Hagerman. Continued enlargement of this depression could reverse the direction of groundwater flow to the Pecos River. Water levels were measured during 1981-85 in wells along a section extending from the Pecos River to a point within the depression. Although the water-table depression has not caused a perennial change in direction of groundwater flow, it has caused a seasonal reversal in the slope of the water table between the river and the depression during the growing season when pumpage from the shallow aquifer is the greatest. (USGS)
NASA Astrophysics Data System (ADS)
Yoon, Jeong-Yeol; Heinze, Brian C.; Gamboa, Jessica; You, David J.
2009-05-01
Virus antigens of avian influenza subtype H3N2 were detected on two different microfluidic platforms: microchannel and droplet. Latex immunoagglutination assays were performed using 920-nm highly carboxylated polystyrene beads that are conjugated with antibody to avian influenza virus. The bead suspension was merged with the solutions of avian influenza virus antigens in a Y-junction of a microchannel made by polydimethylsiloxane soft lithography. The resulting latex immunoagglutinations were measured with two optical fibers in proximity setup to detect 45° forward light scattering. Alternatively, 10 μL droplets of a bead suspension and an antigen solution were merged on a superhydrophobic surface (water contact angle = 155°), whose movement was guided by a metal wire, and 180° back light scattering is measured with a backscattering optical probe. Detection limits were 0.1 pg mL-1 for both microchannel with proximity fibers and droplet microfluidics, thanks to the use of micro-positioning stages to help generate reproducible optical signals. Additionally, optical waveguide was tested by constructing optical waveguide channels (filled with mineral oil) within a microfluidic device to detect the same light scattering. Detection limit was 0.1 ng mL-1 for an optical waveguide device, with a strong potential of improvement in the near future. The use of optical waveguide enabled smaller device setup, easier operation, smaller standard deviations and broader linear range of assay than proximity fiber microchannel and droplet microfluidics. Total assay time was less than 10 min.
McCorquodale, Peter; Ullrich, Paul; Johansen, Hans; ...
2015-09-04
We present a high-order finite-volume approach for solving the shallow-water equations on the sphere, using multiblock grids on the cubed-sphere. This approach combines a Runge--Kutta time discretization with a fourth-order accurate spatial discretization, and includes adaptive mesh refinement and refinement in time. Results of tests show fourth-order convergence for the shallow-water equations as well as for advection in a highly deformational flow. Hierarchical adaptive mesh refinement allows solution error to be achieved that is comparable to that obtained with uniform resolution of the most refined level of the hierarchy, but with many fewer operations.
Gillette, D.P.; Tiemann, J.S.; Edds, D.R.; Wildhaber, M.L.
2006-01-01
The hypothesis that temperate stream fishes alter habitat use in response to changing water temperature and stream discharge was evaluated over a 1 year period in the Neosho River, Kansas, U.S.A. at two spatial scales. Winter patterns differed from those of all other seasons, with shallower water used less frequently, and low-flow habitat more frequently, than at other times. Non-random habitat use was more frequent at the point scale (4.5 m2) than at the larger reach scale (20-40 m), although patterns at both scales were similar. Relative to available habitats, assemblages used shallower, swifter-flowing water as temperature increased, and shallower, slower-flowing water as river discharge increased. River discharge had a stronger effect on assemblage habitat use than water temperature. Proportion of juveniles in the assemblage did not have a significant effect. This study suggests that many riverine fishes shift habitats in response to changing environmental conditions, and supports, at the assemblage level, the paradigm of lotic fishes switching from shallower, high-velocity habitats in summer to deeper, low-velocity habitats in winter, and of using shallower, low-velocity habitats during periods of high discharge. Results also indicate that different species within temperate river fish assemblages show similar habitat use patterns at multiple scales in response to environmental gradients, but that non-random use of available habitats is more frequent at small scales. ?? 2006 The Fisheries Society of the British Isles.
NASA Astrophysics Data System (ADS)
Gallardi, Daria; Mills, Terry; Donnet, Sebastien; Parrish, Christopher C.; Murray, Harry M.
2017-08-01
The growth and health of cultured blue mussels (Mytilus edulis) are affected by environmental conditions. Typically, culture sites are situated in sheltered areas near shore (i.e., < 1 km distance from land, < 20 m depth); however, land runoff, user conflicts and environmental impact in coastal areas are concerns and interest in developing deep water (> 20 m depth) mussel culture has been growing. This study evaluated the effect of culture depth on blue mussels in a cold water coastal environment (Newfoundland, Canada). Culture depth was examined over two years from September 2012 to September 2014; mussels from three shallow water (5 m) and three deep water (15 m) sites were compared for growth and biochemical composition; culture depths were compared for temperature and chlorophyll a. Differences between the two years examined were noted, possibly due to harsh winter conditions in the second year of the experiment. In both years shallow and deep water mussels presented similar condition; in year 2 deep water mussels had a significantly better biochemical profile. Lipid and glycogen analyses showed seasonal variations, but no significant differences between shallow and deep water were noted. Fatty acid profiles showed a significantly higher content of omega-3 s (20:5ω3; EPA) and lower content of bacterial fatty acids in deep water sites in year 2. Everything considered, deep water appeared to provide a more favorable environment for mussel growth than shallow water under harsher weather conditions.
Arsenic, vanadium, iron, and manganese biogeochemistry in a deltaic wetland, southern Louisiana, USA
Telfeyan, Katherine; Breaux, Alexander; Kim, Jihyuk; ...
2017-04-05
Geochemical cycling of the redox-sensitive trace elements arsenic (As) and vanadium (V) was examined in shallow pore waters from a marsh in an interdistributary embayment of the lower Mississippi River Delta. In particular, we explore how redox changes with depth and distance from the Mississippi River affect As and V cycling in the marsh pore waters. Previous geophysical surveys and radon mass balance calculations suggested that Myrtle Grove Canal and bordering marsh receive fresh groundwater, derived in large part from seepage of the Mississippi River, which subsequently mixes with brackish waters of Barataria Bay. In addition, the redox geochemistry ofmore » pore waters in the wetlands is affected by Fe and S cycling in the shallow subsurface (0-20 cm). Sediments with high organic matter content undergo SO 4 2- reduction, a process ubiquitous in the shallow subsurface but largely absent at greater depths (~3 m). Instead, at depth, in the absence of organic-rich sediments, Fe concentrations are elevated, suggesting that reduction of Fe(III) oxides/oxyhydroxides buffers redox conditions. Arsenic and V cycling in the shallow subsurface are decoupled from their behavior at depth, where both V and As appear to be removed from solution by either diffusion or adsorption onto, or co-precipitation with, authigenic minerals within the deeper aquifer sediments. Pore water As concentrations are greatest in the shallow subsurface (e.g., up to 315 nmol kg -1 in the top ~20 cm of the sediment) but decrease with depth, reaching values <30 nmol kg -1 at depths between 3 and 4 m. Vanadium concentrations appear to be tightly coupled to Fe cycling in the shallow subsurface, but at depth, V may be adsorbed to clay or sedimentary organic matter (SOM). Diffusive fluxes are calculated to examine the export of trace elements from the shallow marsh pore waters to the overlying canal water that floods the marsh. The computed fluxes suggest that the shallow sediment serves as a source of Fe, Mn, and As to the surface waters, whereas the sediments act as a sink for V. Iron and Mn fluxes are substantial, ranging from 50 to 30,000 and 770 to 4,300 nmol cm -2 day -1, respectively, whereas As fluxes are much less, ranging from 2.1 to 17 nmol cm -2 day -1. Vanadium fluxes range from 3.0 nmol cm -2 day -1 directed into the sediment to 1.7 nmol cm -2 day -1 directed out of the sediment« less
Arsenic, vanadium, iron, and manganese biogeochemistry in a deltaic wetland, southern Louisiana, USA
DOE Office of Scientific and Technical Information (OSTI.GOV)
Telfeyan, Katherine; Breaux, Alexander; Kim, Jihyuk
Geochemical cycling of the redox-sensitive trace elements arsenic (As) and vanadium (V) was examined in shallow pore waters from a marsh in an interdistributary embayment of the lower Mississippi River Delta. In particular, we explore how redox changes with depth and distance from the Mississippi River affect As and V cycling in the marsh pore waters. Previous geophysical surveys and radon mass balance calculations suggested that Myrtle Grove Canal and bordering marsh receive fresh groundwater, derived in large part from seepage of the Mississippi River, which subsequently mixes with brackish waters of Barataria Bay. In addition, the redox geochemistry ofmore » pore waters in the wetlands is affected by Fe and S cycling in the shallow subsurface (0-20 cm). Sediments with high organic matter content undergo SO 4 2- reduction, a process ubiquitous in the shallow subsurface but largely absent at greater depths (~3 m). Instead, at depth, in the absence of organic-rich sediments, Fe concentrations are elevated, suggesting that reduction of Fe(III) oxides/oxyhydroxides buffers redox conditions. Arsenic and V cycling in the shallow subsurface are decoupled from their behavior at depth, where both V and As appear to be removed from solution by either diffusion or adsorption onto, or co-precipitation with, authigenic minerals within the deeper aquifer sediments. Pore water As concentrations are greatest in the shallow subsurface (e.g., up to 315 nmol kg -1 in the top ~20 cm of the sediment) but decrease with depth, reaching values <30 nmol kg -1 at depths between 3 and 4 m. Vanadium concentrations appear to be tightly coupled to Fe cycling in the shallow subsurface, but at depth, V may be adsorbed to clay or sedimentary organic matter (SOM). Diffusive fluxes are calculated to examine the export of trace elements from the shallow marsh pore waters to the overlying canal water that floods the marsh. The computed fluxes suggest that the shallow sediment serves as a source of Fe, Mn, and As to the surface waters, whereas the sediments act as a sink for V. Iron and Mn fluxes are substantial, ranging from 50 to 30,000 and 770 to 4,300 nmol cm -2 day -1, respectively, whereas As fluxes are much less, ranging from 2.1 to 17 nmol cm -2 day -1. Vanadium fluxes range from 3.0 nmol cm -2 day -1 directed into the sediment to 1.7 nmol cm -2 day -1 directed out of the sediment« less
NASA Astrophysics Data System (ADS)
Dyakonova, Tatyana; Khoperskov, Alexander
2018-03-01
The correct description of the surface water dynamics in the model of shallow water requires accounting for friction. To simulate a channel flow in the Chezy model the constant Manning roughness coefficient is frequently used. The Manning coefficient nM is an integral parameter which accounts for a large number of physical factors determining the flow braking. We used computational simulations in a shallow water model to determine the relationship between the Manning coefficient and the parameters of small-scale perturbations of a bottom in a long channel. Comparing the transverse water velocity profiles in the channel obtained in the models with a perturbed bottom without bottom friction and with bottom friction on a smooth bottom, we constructed the dependence of nM on the amplitude and spatial scale of perturbation of the bottom relief.
Hydrochemical facies and ground-water flow patterns in northern part of Atlantic Coastal Plain
Back, William
1966-01-01
Flow patterns of fresh ground water shown on maps and in cross sections have been deduced from available water-level data. These patterns are controlled by the distribution of the higher landmasses and by the depth to either bedrock or to the salt-water interface. The mapping of hydrochemical facies shows that at shallow depths within the Coastal Plain (less than about 200 ft) the calcium-magnesium cation facies generally predominates. The bicarbonate anion facies occurs within more of the shallow Coastal Plain sediments than does the sulfate or the chloride facies. In deeper formations, the sodium chloride character predominates. The lower dissolved-solids content of the ground water in New Jersey indicates less upward vertical leakage than in Maryland and Virginia, where the shallow formations contain solutions of higher concentration.
Sediment dynamics in a large shallow lake characterized by seasonal flood pulse in Southeast Asia.
Siev, Sokly; Yang, Heejun; Sok, Ty; Uk, Sovannara; Song, Layheang; Kodikara, Dilini; Oeurng, Chantha; Hul, Seingheng; Yoshimura, Chihiro
2018-08-01
Most of studies on sediment dynamics in stable shallow lakes focused on the resuspension process as it is the dominant process. However, understanding of sediment dynamics in a shallow lake influenced by flood pulse is unclear. We tested a hypothesis that floodplain vegetation plays as a significant role in lessening the intensity of resuspension process in a shallow lake characterized by the flood pulse system. Therefore, this study aimed to investigate sediment dynamics in this type of shallow lake. The target was Tonle Sap Lake (TSL), which is a large shallow lake influenced by a flood pulse system of Mekong River located in Southeast Asia. An extensive and seasonal sampling survey was conducted to measure total suspended solid (TSS) concentrations, sedimentation and resuspension rates in TSL and its 4 floodplain areas. The study revealed that sedimentation process was dominant (TSS ranged: 3-126mgL -1 ) in the high water period (September-December) while resuspension process was dominant (TSS ranged: 4-652mgL -1 ) only in the low water period (March-June). In addition, floodplain vegetation reduced the resuspension of sediment (up to 26.3%) in water. The implication of the study showed that resuspension is a seasonally dominant process in shallow lake influenced by the flood pulse system at least for the case of TSL. Copyright © 2018 Elsevier B.V. All rights reserved.
Observations of Nonlinear Internal Wave Runup into the Surfzone
NASA Astrophysics Data System (ADS)
Sinnett, G.; Feddersen, F.; Pawlak, G. R.; Lucas, A.; Terrill, E. J.
2016-12-01
Nonlinear internal waves (NLIW) have been observed in the shallow innershelf environment, sometimes transporting cold nutrient rich water upslope. Inner-shelf water properties have been linked to the internal wave field, but the eventual fate and potential impact of NLIWs in water shallower than 15 m has rarely been observed. Here, we detail some of the first shallow water observations of NLIW events made using an array of 75 thermistors and 5 ADCPs, spanning water from 18 m depth all the way to the coast. A total of 31 significant NLIW events (defined as a temperature decrease of at least 1 oC at a rate greater than 0.07 oC/min in 7 m depth) were observed between October 7th and November 19th, 2014. The dense thermistor array tracked the arrival of surges of cold water associated with NLIW events. These events propagated onshore through a variety of background conditions at a range of phase speeds (0.008 to 0.1 m/s) and angles (63O to 33O ), sometimes extending all the way to the surfzone. Occasionally, a NLIW event left a residual signature in the surfzone and shallow innershelf, changing the mean temperature by as much as 1 oC in 1 m water depth. Enhanced NLIW activity was observed over multiday periods, consisting of temperature oscillations on semidiurnal, 6-hour and 10-minute time scales. Here, we analyze the phase speed, propagation angle and runup extent under a variety of different background conditions. We report on the evolution and characteristics of these coupled innershelf / surfzone NLIW events as they propagate upslope into very shallow waters, and potential impacts to the sensitive nearshore region.
NASA Astrophysics Data System (ADS)
Hale, C. A.; Carling, G. T.; Fernandez, D. P.; Nelson, S.; Aanderud, Z.; Tingey, D. G.; Dastrup, D.
2017-12-01
Water chemistry in mountain streams is variable during spring snowmelt as shallow groundwater flow paths are activated in the watershed, introducing solutes derived from soil water. Sr isotopes and other tracers can be used to differentiate waters that have interacted with soils and dust (shallow groundwater) and bedrock (deep groundwater). To investigate processes controlling water chemistry during snowmelt, we analyzed 87Sr/86Sr ratios, Sr and other trace element concentrations in bulk snowpack, dust, soil, soil water, ephemeral channels, and river water during snowmelt runoff in the upper Provo River watershed in northern Utah, USA, over four years (2014-2017). Strontium concentrations in the river averaged 20 ppb during base flow and decreased to 10 ppb during snowmelt runoff. 87Sr/86Sr ratios were around 0.717 during base flow and decreased to 0.715 in 2014 and 0.713 in 2015 and 2016 during snowmelt, trending towards less radiogenic values of mineral dust inputs in the Uinta Mountain soils. Ephemeral channels, representing shallow flow paths with soil water inputs, had Sr concentrations between 7-20 ppb and 87Sr/86Sr ratios between 0.713-0.716. Snowpack Sr concentrations were generally <2 ppb with 87Sr/86Sr ratios between 0.710-711, similar to atmospheric dust inputs. The less radiogenic 87Sr/86Sr ratios and lower Sr concentrations in the river during snowmelt are likely a result of activating shallow groundwater flow paths, which allows melt water to interact with shallow soils that contain accumulated dust deposits with a less radiogenic 87Sr/86Sr ratio. These results suggest that flow paths and atmospheric dust are important to consider when investigating variable solute loads in mountain streams.
NASA Astrophysics Data System (ADS)
Warner, N. R.; Darrah, T. H.; Jackson, R. B.; Osborn, S.; Down, A.; Vengosh, A.
2012-12-01
The acceleration in production of natural gas from shale formations through horizontal drilling and hydraulic fracturing has altered the landscape of domestic energy production in the USA. Yet shale gas exploration has generated an increased awareness of risks to drinking water quality amid concerns for the possible migration of stray gas or hydraulic fracturing fluid and/or flowback brine to shallow drinking water aquifers. The degree to which shallow drinking water is at risk from hydraulic fracturing could depend upon the hydraulic connectivity between the shale gas formations and the surface. In this study, we analyzed the geochemistry of over 400 water samples located across six counties of northeastern Pennsylvania in the three principle aquifers, two Upper Devonian Age bedrock aquifers (Catskill and Lock Haven) and one Quaternary Age (Alluvium) that overlie the Marcellus Formation. Based on a detailed analysis of major (Br, Cl, Na, Mg, Ba, and Sr) and trace (Li) element geochemistry, coupled with utilization of a specific spectrum of isotopic tracers (87Sr/86Sr, 228Ra/ 226Ra, 2H/H, 18O/16O), we identify a salinized (Cl> 20 mg/L) shallow groundwater type which suggests conservative mixing relationships between fresh shallow groundwater and an underlying brine. Identification of the brine source is complicated as many of the brines in the northern Appalachian Basin likely share a common origin as the expelled remnants of the formation of the Silurian Salina evaporate deposits. To determine the ultimate source of the diluted brine we compared the observed geochemistry to over 80 brines produced from northern Appalachian Basin formations. The shallow salinized groundwater most closely resembles diluted produced water from the Middle Devonian Marcellus Formation. The 18O/16O and 2H/H of the salinized groundwater indicate that the brine is likely diluted with post-glacial (<10,000 ybp) meteoric water. Combined, these data indicate that hydraulic connections allowed cross formational migration of brine from deeper formations (1-2 kilometers below ground surface) and subsequent dilution. The occurrence of the saline water does not appear to be correlated with the location of shale-gas wells. Also, salinized groundwater with similar major element chemistry was reported prior to the most recent shale-gas development in the region. The source of the salinized water is likely not the recent drilling and hydraulic fracturing; instead brine migrated into the shallow aquifers and was recently diluted through natural pathways and processes. However, the presence of natural hydraulic connections to deeper formations suggests specific structural and hydrodynamic regimes in northeastern Pennsylvania where shallow drinking water resources are at greater risk of contamination, particularly with fugitive gases, during drilling and hydraulic fracturing of shale gas. The severity of the risk could depend upon the presence of pathways that allow the migration of fluids into the shallow aquifers on human time scales.
NASA Astrophysics Data System (ADS)
Vrecica, Teodor; Toledo, Yaron
2015-04-01
One-dimensional deterministic and stochastic evolution equations are derived for the dispersive nonlinear waves while taking dissipation of energy into account. The deterministic nonlinear evolution equations are formulated using operational calculus by following the approach of Bredmose et al. (2005). Their formulation is extended to include the linear and nonlinear effects of wave dissipation due to friction and breaking. The resulting equation set describes the linear evolution of the velocity potential for each wave harmonic coupled by quadratic nonlinear terms. These terms describe the nonlinear interactions between triads of waves, which represent the leading-order nonlinear effects in the near-shore region. The equations are translated to the amplitudes of the surface elevation by using the approach of Agnon and Sheremet (1997) with the correction of Eldeberky and Madsen (1999). The only current possibility for calculating the surface gravity wave field over large domains is by using stochastic wave evolution models. Hence, the above deterministic model is formulated as a stochastic one using the method of Agnon and Sheremet (1997) with two types of stochastic closure relations (Benney and Saffman's, 1966, and Hollway's, 1980). These formulations cannot be applied to the common wave forecasting models without further manipulation, as they include a non-local wave shoaling coefficients (i.e., ones that require integration along the wave rays). Therefore, a localization method was applied (see Stiassnie and Drimer, 2006, and Toledo and Agnon, 2012). This process essentially extracts the local terms that constitute the mean nonlinear energy transfer while discarding the remaining oscillatory terms, which transfer energy back and forth. One of the main findings of this work is the understanding that the approximated non-local coefficients behave in two essentially different manners. In intermediate water depths these coefficients indeed consist of rapidly oscillating terms, but as the water depth becomes shallow they change to an exponential growth (or decay) behavior. Hence, the formerly used localization technique cannot be justified for the shallow water region. A new formulation is devised for the localization in shallow water, it approximates the nonlinear non-local shoaling coefficient in shallow water and matches it to the one fitting to the intermediate water region. This allows the model behavior to be consistent from deep water to intermediate depths and up to the shallow water regime. Various simulations of the model were performed for the cases of intermediate, and shallow water, overall the model was found to give good results in both shallow and intermediate water depths. The essential difference between the shallow and intermediate nonlinear shoaling physics is explained via the dominating class III Bragg resonances phenomenon. By inspecting the resonance conditions and the nature of the dispersion relation, it is shown that unlike in the intermediate water regime, in shallow water depths the formation of resonant interactions is possible without taking into account bottom components. References Agnon, Y. & Sheremet, A. 1997 Stochastic nonlinear shoaling of directional spectra. J. Fluid Mech. 345, 79-99. Benney, D. J. & Saffman, P. G. 1966 Nonlinear interactions of random waves. Proc. R. Soc. Lond. A 289, 301-321. Bredmose, H., Agnon, Y., Madsen, P.A. & Schaffer, H.A. 2005 Wave transformation models with exact second-order transfer. European J. of Mech. - B/Fluids 24 (6), 659-682. Eldeberky, Y. & Madsen, P. A. 1999 Deterministic and stochastic evolution equations for fully dispersive and weakly nonlinear waves. Coastal Engineering 38, 1-24. Kaihatu, J. M. & Kirby, J. T. 1995 Nonlinear transformation of waves in infinite water depth. Phys. Fluids 8, 175-188. Holloway, G. 1980 Oceanic internal waves are not weak waves. J. Phys. Oceanogr. 10, 906-914. Stiassnie, M. & Drimer, N. 2006 Prediction of long forcing waves for harbor agitation studies. J. of waterways, port, coastal and ocean engineering 132(3), 166-171. Toledo, Y. & Agnon, Y. 2012 Stochastic evolution equations with localized nonlinear shoaling coefficients. European J. of Mech. - B/Fluids 34, 13-18.
Compact waveguide circular polarizer
Tantawi, Sami G.
2016-08-16
A multi-port waveguide is provided having a rectangular waveguide that includes a Y-shape structure with first top arm having a first rectangular waveguide port, a second top arm with second rectangular waveguide port, and a base arm with a third rectangular waveguide port for supporting a TE.sub.10 mode and a TE.sub.20 mode, where the end of the third rectangular waveguide port includes rounded edges that are parallel to a z-axis of the waveguide, a circular waveguide having a circular waveguide port for supporting a left hand and a right hand circular polarization TE.sub.11 mode and is coupled to a base arm broad wall, and a matching feature disposed on the base arm broad wall opposite of the circular waveguide for terminating the third rectangular waveguide port, where the first rectangular waveguide port, the second rectangular waveguide port and the circular waveguide port are capable of supporting 4-modes of operation.
NASA Technical Reports Server (NTRS)
Decrossas, Emmanuel (Inventor); Chattopadhyay, Goutam (Inventor); Chahat, Nacer (Inventor); Tang, Adrian J. (Inventor)
2016-01-01
A lens for interconnecting a metallic waveguide with a dielectric waveguide is provided. The lens may be coupled a metallic waveguide and a dielectric waveguide, and minimize a signal loss between the metallic waveguide and the dielectric waveguide.
Tantawi, Sami G.; Dolgashev, Valery A.; Yeremian, Anahid D.
2016-03-15
A high-power microwave RF window is provided that includes a cylindrical waveguide, where the cylindrical waveguide includes a ceramic disk concentrically housed in a central region of the cylindrical waveguide, a first rectangular waveguide, where the first rectangular waveguide is connected by a first elliptical joint to a proximal end of the cylindrical waveguide, and a second rectangular waveguide, where the second rectangular waveguide is connected by a second elliptical joint to a distal end of the cylindrical waveguide.
77 FR 46732 - Gulf of Mexico Fishery Management Council (Council); Public Meetings
Federal Register 2010, 2011, 2012, 2013, 2014
2012-08-06
...--Sector Allocations; discuss an Options Papers for a Framework Action on Vermilion Snapper Annual Catch... Post-Season Recreational Accountability Measures for Shallow-Water Grouper and Revision to the Generic..., & Elimination of February-March Shallow-Water Group Closure; discuss concerns about Amendment 35--the Rebuilding...
Metabolic and Cardiovascular Response to Shallow Water Exercise in Young and Older Women.
ERIC Educational Resources Information Center
Campbell, Jennifer A.; D'Acquisto, Leo J.; D'Acquisto, Debra M.; Cline, Michael G.
2003-01-01
Compared the metabolic and cardiovascular responses of young and older women while performing shallow water exercise (SWE). Overall, SWE elicited metabolic and cardiovascular responses that met American College of Sports Medicine's guidelines for establishing health benefits. Older females self-selected a greater relative exercise intensity during…
Report on the 1999 ONR Shallow-Water Reverberation Focus Workshop
1999-12-31
Pseudo Spectral models. • Develop reverberation and scattering benchmarks accepted by the scientific community. (The ASA penetrable wedge problem has...Paul C. Hines, W. Cary Risley , and Martin P. O’Connor, "A Wide-Band Sonar for underwater acoustics measurements in shallow water," in Oceans
2013-04-30
resulting impact on residents and transportation infrastructure. The three-dimensional coastal ocean model FVCOM coupled with a two-dimensional...shallow water model is used to simulate hydrodynamic flooding from coastal ocean water with fine-resolution meshes, and a topography-based hydrologic... ocean model FVCOM coupled with a two-dimensional shallow water model is used to simulate hydrodynamic flooding from coastal ocean water with fine
Federal Register 2010, 2011, 2012, 2013, 2014
2012-07-13
...NMFS is prohibiting directed fishing for arrowtooth flounder, flathead sole, rex sole, deep-water flatfish, and shallow-water flatfish in the Western Regulatory Area of the Gulf of Alaska (GOA). This action is necessary to limit incidental catch of Pacific ocean perch by vessels fishing for arrowtooth flounder, flathead sole, rex sole, deep-water flatfish, and shallow-water flatfish in the Western Regulatory Area of the GOA.
1987-09-04
quite variable from year to year. Because the area Is a closed basin with a hardpan near the surface, water reaching the playa accumulates in shallow...Bacteriolostical Characteristics. Using the presence/absence of coliform test, the water in the wells and the water in Grand island Creek were determined...gravels, silts, and clays form a level flood plain. Because the sediments are relatively impervious to water, large shallow ponds form on the playa
Barlow, P.M.; Wagner, B.J.; Belitz, K.
1996-01-01
The simulation-optimization approach is used to identify ground-water pumping strategies for control of the shallow water table in the western San Joaquin Valley, California, where shallow ground water threatens continued agricultural productivity. The approach combines the use of ground-water flow simulation with optimization techniques to build on and refine pumping strategies identified in previous research that used flow simulation alone. Use of the combined simulation-optimization model resulted in a 20 percent reduction in the area subject to a shallow water table over that identified by use of the simulation model alone. The simulation-optimization model identifies increasingly more effective pumping strategies for control of the water table as the complexity of the problem increases; that is, as the number of subareas in which pumping is to be managed increases, the simulation-optimization model is better able to discriminate areally among subareas to determine optimal pumping locations. The simulation-optimization approach provides an improved understanding of controls on the ground-water flow system and management alternatives that can be implemented in the valley. In particular, results of the simulation-optimization model indicate that optimal pumping strategies are constrained by the existing distribution of wells between the semiconfined and confined zones of the aquifer, by the distribution of sediment types (and associated hydraulic conductivities) in the western valley, and by the historical distribution of pumping throughout the western valley.
Flagging optically shallow pixels for improved analysis of ocean color data
NASA Astrophysics Data System (ADS)
McKinna, L. I. W.; Werdell, J.; Knowles, D., Jr.
2016-02-01
Ocean color remote-sensing is routinely used to derive marine geophysical parameters from sensor-observed water-leaving radiances. However, in clear geometrically shallow regions, traditional ocean color algorithms can be confounded by light reflected from the seafloor. Such regions are typically referred to as "optically shallow". When performing spatiotemporal analyses of ocean color datasets, optically shallow features such as coral reefs can lead to unexpected regional biases. Benthic contamination of the water-leaving radiance is dependent on bathymetry, water clarity and seafloor albedo. Thus, a prototype ocean color processing flag called OPTSHAL has been developed that takes all three variables into account. In the method described here, the optical depth of the water column at 547 nm, ζ(547), is predicted from known bathymetry and estimated inherent optical properties. If ζ(547) is less then the pre-defined threshold, a pixel is flagged as optically shallow. Radiative transfer modeling was used to identify the appropriate threshold value of ζ(547) for a generic benthic sand albedo. OPTSHAL has been evaluated within the NASA Ocean Biology Processing Group's L2GEN code. Using MODIS Aqua imagery, OPTSHAL was tested in two regions: (i) the Pedro Bank south-west of Jamaica, and (ii) the Great Barrier Reef, Australia. It is anticipated that OPTSHAL will benefit end-users when quality controlling derived ocean color products. Further, OPTSHAL may prove useful as a mechanism for switching between optically deep and shallow algorithms during ocean color processing.
NASA Astrophysics Data System (ADS)
Rochaddi, Baskoro; Adhi Suryono, Chrisna; Atmodjo, Warsito; Satriadi, Alfi
2018-02-01
The present study was conducted to assess the level of pesticide and heavy metal contamination in shallow aquifer of Semarang coastal areas. Results indicated that Heptachlor and Arsenic were detected in the water samples in the range 0.023-0.055 μg L-1 and 0,03-1,63 μg L-1, respectively. Compared to the standard limits of the organochlorine contents in the water sample by World Health Organization (WHO) limits and Indonesian Drinking and Domestic Water Quality Standard for Ground Water (IWQS), groundwater of Semarang Coastal Areas was contaminated with pesticide and heavy metal. This study has proven the presence of organochlorine and heavy metal contamination of some shallow aquifer supplies in the coastal areas of Semarang.
Hainly, Robert A.; Zimmerman, Tammy M.; Loper, Connie A.; Lindsey, Bruce D.
2001-01-01
This report presents the detection frequency of 83 analyzed pesticides, describes the concentrations of those pesticides measured in water from streams and shallow wells, and presents conceptual models of the major factors affecting seasonal and areal patterns of pesticide concentrations in water from streams and shallow wells in the Lower Susquehanna River Basin. Seasonal and areal patterns of pesticide concentrations were observed in 577 samples and nearly 40,000 pesticide analyses collected from 155 stream sites and 169 shallow wells from 1993 to 1995. For this study, shallow wells were defined as those generally less than 200 feet deep.The most commonly detected pesticides were agricultural herbicides?atrazine, metolachlor, simazine, prometon, alachlor, and cyanazine. Atrazine and metolachlor are the two most-used agricultural pesticides in the Lower Susquehanna River Basin. Atrazine was detected in 92 percent of all the samples and in 98 percent of the stream samples. Metolachlor was detected in 83 percent of all the samples and in 95 percent of the stream samples. Nearly half of all the analyzed pesticides were not detected in any sample. Of the 45 pesticides that were detected at least once, the median concentrations of 39 of the pesticides were less than the detection limit for the individual compounds, indicating that for at least 50 percent of the samples collected, those pesticides were not detected. Only 10 (less than 0.025 percent) of the measured concentrations exceeded any established drinking-water standards; 25 concentrations exceeded 2 mg/L (micrograms per liter) and 55 concentrations exceeded 1 mg/L. None of the elevated concentrations were measured in samples collected from streams that are used for public drinking-water supplies, and 8 of the 10 were measured in storm-affected samples.The timing and rate of agricultural pesticide applications affect the seasonal and areal concentration patterns of atrazine, simazine, chlorpyrifos, and diazinon observed in water from wells and streams in the Lower Susquehanna River Basin. Average annual pesticide use for agricultural purposes and nonagricultural pesticide use indicators were used to explain seasonal and areal patterns. Elevated concentrations of some pesticides in streams during base-flow and storm-affected conditions were related to the seasonality of agricultural-use applications and local climate conditions. Agricultural-use patterns affected areal concentration patterns for the high-use pesticides, but indicators of nonagricultural use were needed to explain concentration patterns of pesticides with smaller amounts used for agricultural purposes.Bedrock type influences the movement and discharge of ground water, which in turn affects concentration patterns of pesticides. The ratio of atrazine concentrations in stream base flow to concentrations in shallow wells varied among the different general rock types found in the Lower Susquehanna River Basin. Median concentrations of atrazine in well water and stream base flow tended to be similar in individual areas underlain by carbonate bedrock, indicating the connectivity of water in streams and shallow wells in these areas. In areas underlain by noncarbonate bedrock, median concentrations of atrazine tended to be significantly higher in stream base flow than in well water. This suggests a deep ground-water system that delivers water to shallow wells and a near-surficial system that supplies base-flow water to streams. In addition to the presence or absence of carbonate bedrock, pesticide leaching potential and persistence, soil infiltration capacity, and agricultural land use affected areal patterns in detection frequency and concentration differences between samples collected from streams during base-flow conditions and shallow wells.
USDA-ARS?s Scientific Manuscript database
Septic systems may contribute micropollutants to shallow groundwater and surface water. We constructed two in situ conventional drainfields (drip dispersal and gravel trench) and an advanced drainfield of septic systems to investigate the fate and transport of micropollutants to shallow groundwater....
Flow through a very porous obstacle in a shallow channel
Draper, S.; Nishino, T.; Borthwick, A. G. L.
2017-01-01
A theoretical model, informed by numerical simulations based on the shallow water equations, is developed to predict the flow passing through and around a uniform porous obstacle in a shallow channel, where background friction is important. This problem is relevant to a number of practical situations, including flow through aquatic vegetation, the performance of arrays of turbines in tidal channels and hydrodynamic forces on offshore structures. To demonstrate this relevance, the theoretical model is used to (i) reinterpret core flow velocities in existing laboratory-based data for an array of emergent cylinders in shallow water emulating aquatic vegetation and (ii) reassess the optimum arrangement of tidal turbines to generate power in a tidal channel. Comparison with laboratory-based data indicates a maximum obstacle resistance (or minimum porosity) for which the present theoretical model is valid. When the obstacle resistance is above this threshold the shallow water equations do not provide an adequate representation of the flow, and the theoretical model over-predicts the core flow passing through the obstacle. The second application of the model confirms that natural bed resistance increases the power extraction potential for a partial tidal fence in a shallow channel and alters the optimum arrangement of turbines within the fence. PMID:28484321
Medvedev, Kirill E; Alemasov, Nikolay A; Vorobjev, Yuri N; Boldyreva, Elena V; Kolchanov, Nikolay A; Afonnikov, Dmitry A
2014-10-15
The identification of the mechanisms of adaptation of protein structures to extreme environmental conditions is a challenging task of structural biology. We performed molecular dynamics (MD) simulations of the Nip7 protein involved in RNA processing from the shallow-water (P. furiosus) and the deep-water (P. abyssi) marine hyperthermophylic archaea at different temperatures (300 and 373 K) and pressures (0.1, 50 and 100 MPa). The aim was to disclose similarities and differences between the deep- and shallow-sea protein models at different temperatures and pressures. The current results demonstrate that the 3D models of the two proteins at all the examined values of pressures and temperatures are compact, stable and similar to the known crystal structure of the P. abyssi Nip7. The structural deviations and fluctuations in the polypeptide chain during the MD simulations were the most pronounced in the loop regions, their magnitude being larger for the C-terminal domain in both proteins. A number of highly mobile segments the protein globule presumably involved in protein-protein interactions were identified. Regions of the polypeptide chain with significant difference in conformational dynamics between the deep- and shallow-water proteins were identified. The results of our analysis demonstrated that in the examined ranges of temperatures and pressures, increase in temperature has a stronger effect on change in the dynamic properties of the protein globule than the increase in pressure. The conformational changes of both the deep- and shallow-sea protein models under increasing temperature and pressure are non-uniform. Our current results indicate that amino acid substitutions between shallow- and deep-water proteins only slightly affect overall stability of two proteins. Rather, they may affect the interactions of the Nip7 protein with its protein or RNA partners.
NASA Astrophysics Data System (ADS)
Seadawy, Aly R.
2017-01-01
The propagation of three-dimensional nonlinear irrotational flow of an inviscid and incompressible fluid of the long waves in dispersive shallow-water approximation is analyzed. The problem formulation of the long waves in dispersive shallow-water approximation lead to fifth-order Kadomtsev-Petviashvili (KP) dynamical equation by applying the reductive perturbation theory. By using an extended auxiliary equation method, the solitary travelling-wave solutions of the two-dimensional nonlinear fifth-order KP dynamical equation are derived. An analytical as well as a numerical solution of the two-dimensional nonlinear KP equation are obtained and analyzed with the effects of external pressure flow.
NASA Technical Reports Server (NTRS)
Takacs, Lawrence L.
1988-01-01
The nature and effect of using a posteriori adjustments to nonconservative finite-difference schemes to enforce integral invariants of the corresponding analytic system are examined. The method of a posteriori integral constraint restoration is analyzed for the case of linear advection, and the harmonic response associated with the a posteriori adjustments is examined in detail. The conservative properties of the shallow water system are reviewed, and the constraint restoration algorithm applied to the shallow water equations are described. A comparison is made between forecasts obtained using implicit and a posteriori methods for the conservation of mass, energy, and potential enstrophy in the complete nonlinear shallow-water system.
Nonlinear and linear bottom interaction effects in shallow water
NASA Technical Reports Server (NTRS)
Shemdin, O.; Hsiao, S. V.; Hasselmann, K.; Herterich, K.
1978-01-01
The paper examines wave-energy dissipation rates in shallow water calculated from measured wave spectra at different distances from the shore. Different linear and nonlinear transfer and dissipation mechanisms are discussed. The various data sets are interpreted in terms of prevailing mechanisms at the respective sites. The incorporation of different processes in a predictive shallow-water model is outlined. The analysis suggests that bottom motion is primarily responsible for wave-energy dissipation in the Delta Region of the Gulf of Mexico, that friction is mainly responsible for wave-energy dissipation in Marineland, Panama City and Melkbosstrand, and that percolation is probably the dominant mechanism in the JONSWAP area of the North Sea.
Tao, Shiquan; Winstead, Christopher B.
2005-04-12
A monitor is provided for use in measuring the concentration of hexavalent chromium in a liquid, such as water. The monitor includes a sample cell, a light source, and a photodetector. The sample cell is in the form of a liquid-core waveguide, the sample cell defining an interior core and acting as a receiver for the liquid to be analyzed, the interior surface of the sample cell having a refractive index of less than 1.33. The light source is in communication with a first end of the sample cell for emitting radiation having a wavelength of about and between 350 to 390 nm into the interior core of the waveguide. The photodetector is in communication with a second end of the waveguide for measuring the absorption of the radiation emitted by the light source by the liquid in the sample cell. The monitor may also include a processor electronically coupled to the photodetector for receipt of an absorption signal to determine the concentration of hexavalent chromium in the liquid.
Bottom depth and type for shallow waters: Hyperspectral observations from a blimp
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lee, ZhongPing; Carder, K.; Steward, R.
1997-08-01
In a study of a blimp transect over Tampa Bay (Florida), hyperspectral upwelling radiance over the sand and seagrass bottoms was measured. These measurements were converted to hyperspectral remote-sensing reflectances. Using a shallow-water remote-sensing-reflectance model, in-water optical properties, bottom depths and bottom albedos were derived analytically and simultaneously by an optimization procedure. In the process, curvatures of sand and seagrass albedos were used. Also used was a model of absorption spectrum of phytoplankton pigments. The derived bottom depths were compared with bathymetry charts and found to agree well. This study suggests that a low-flying blimp is a useful platform formore » the study and mapping of coastal water environments. The optical model as well as the data-reduction procedure used are practical for the retrieval of shallow water optical properties.« less
Hydrologic data and description of a hydrologic monitoring plan for the Borax Lake area, Oregon
Schneider, Tiffany Rae; McFarland, William D.
1995-01-01
Information from field visits was used to develop a monitoring plan. The plan would include monitoring Borax Lake by measuring discharge, stage, evaporation, temperature, and specific conductance; water-quality sampling and analysis; and monitoring shallow ground-water levels near Borax Lake using shallow piezometers. Minimally, one hot spring in North Borax Lake Spring Group 1 would be monitored for temperature and specific conductance and sampled for water-quality analysis. In addition, two flowing wells would be monitored for water levels, temperature, specific conductance, and discharge and sampled for water-quality analysis. The construction characteristics of these wells must be verified before long-term data collection begins. In the future, it may be helpful to monitor shallow and (or) deep observation wells drilled into the thermal aquifer to understand the possible effects of geothermal development on Borax Lake and nearby springs.
Wilson, P.A.; Roberts, Harry H.
1993-01-01
Existing theories of off-bank sediment transport cannot account for rapid rates of sedimentation observed in Bahama bank and Florida shelf periplatform environments. Analysis of the physical processes operating during winter cold fronts suggests that accelerated off-bank transport of shallow-water mud may be achieved by sinking off-bank flows of sediment-charged hyperpycnal (super-dense) platform waters.
The SACLANTCEN Shallow-Water Transmission-Loss Data-Filing System.
1980-10-01
HASTRUP , T AKAL, A PARISOTTO JNCLASSIFIED SACLANTCEN-SM-141 NL SEMEN SACLANTCEN Memorandum U RESEARCH CENTRE- MEMORANDUM THE SACLANTCEN SHALLOW-WATER...TRAN SMISSION-LOSS DATA-FILING SYSTEM by OLE F. HASTRUP , TUNCAY AKAL, ARTURO PARISOTTO I OCTOBER 1980 . ATLANTIC TREATY LA SPEZIA, ITALY ORGANIZATION...WATER TRANSMISSION-LOSS DATA-FILING SYSTEM, Ol1e F./ Hastrup Y/Akal Arturo/Parisotto/ This memorandum has been prepared within the SACLANTCEN
NASA Astrophysics Data System (ADS)
Shi, Kun; Zhang, Yunlin; Zhu, Guangwei; Qin, Boqiang; Pan, Delu
2018-06-01
Water clarity (Secchi disk depth: SDD), as a proxy of water transparency, provides important information on the light availability to the water or lake ecosystem. Shallow lakes have been experienced dramatic environmental and climatic change. This study demonstrated using combination of long-term MODIS and in-situ measurements to track the dynamics of SDD with these environmental and climate changes in shallow water environments. We selected a typical turbid shallow Lake Taihu as our case study. Based on MODIS-Aqua data, an empirical model for estimating SDD was developed and validated. Subsequently, we employed the proposed model to derive the spatial and temporal SDD distribution patterns of Lake Taihu from 2003 to 2015. Combining MODIS-derived SDD time series of 2003-2015 and long-term in-situ SDD observations dated back to 1993, we elucidated SDD long-term variation trends and driving mechanism. Deteriorating water clarity from the long-term SDD observations indicated that Lake Taihu became more and more turbid and water quality was decreasing. Increasing in cyanobacterial bloom area, as a result of decreasing in wind speed and eutrophication, may partially be responsible for the decreasing trend. A predicted future decrease in the wind speed in Lake Taihu region could enhance the formation of cyanobacterial blooms and consequently lead to a further decrease in water clarity. This study suggested that coupling remote sensing monitoring and long-term in-situ observations could provide robust evidence and new insights to elucidate long-term dynamics in aquatic ecosystem evolution.
Paul, Angela P.; Seiler, Ralph L.; Rowe, Timothy G.; Rosen, Michael R.
2007-01-01
Within the Western United States, agricultural and rural lands are being developed into commercial and residential areas. With changes in land use and increasing population, greater demands are placed on water resources for agricultural, industrial, and domestic supplies. Many areas in the Western United States rely exclusively on ground water as their source of drinking water. Areas that use surface-water resources often need to supplement this supply with ground water.Generally, shallow ground water is susceptible to fluctuating water quality within relatively short time scales and therefore can be used as an indicator of land-use stresses that may, in time, affect deep aquifer systems. This regional study examines data on shallow ground-water quality collected from 1993 to 2004 from 273 agricultural and 181 urban wells from 7 U.S. Geological Survey National Water-Quality Assessment study units in Arizona, California, Nevada, New Mexico, south-central Colorado, and Utah. This report determines important influences that land-use practices may have on the quality of recently recharged ground water, which may ultimately affect deep water supplies within the region.
Ozuna, G.B.; Small, T.A.
1993-01-01
Major pathways of potential contaminant migration off the bases include the local streams of Medio and Leon Creeks, and to a lesser extent, the shallow ground water beneath the bases. Although the Uvalde Gravel is not a source of shallow ground water at Medina Base, it drains water quickly, and wastes that might be buried in the gravel could be a potential source of contamination during brief ground-water recharge periods resulting from major precipitation.
Geophysical techniques for low enthalpy geothermal exploration in New Zealand
NASA Astrophysics Data System (ADS)
Soengkono, Supri; Bromley, Chris; Reeves, Robert; Bennie, Stewart; Graham, Duncan
2013-05-01
Shallow warm water resources associated with low enthalpy geothermal systems are often difficult to explore using geophysical techniques, mainly because the warm water creates an insufficient physical change from the host rocks to be easily detectable. In addition, often the system also has a limited or narrow size. However, appropriate use of geophysical techniques can still help the exploration and further investigation of low enthalpy geothermal resources. We present case studies on the use of geophysical techniques for shallow warm water explorations over a variety of settings in New Zealand (mostly in the North Island) with variable degrees of success. A simple and direct method for the exploration of warm water systems is shallow temperature measurements. In some New Zealand examples, measurements of near surface temperatures helped to trace the extent of deeper thermal water. The gravity method was utilised as a structural technique for the exploration of some warm water systems in New Zealand. Our case studies show the technique can be useful in identifying basement depths and tracing fault systems associated with the occurrence of hot springs. Direct current (DC) ground resistivity measurements using a variety of electrode arrays have been the most common method for the exploration of low enthalpy geothermal resources in New Zealand. The technique can be used to detect the extent of shallow warm waters that are more electrically conductive than the surrounding cold groundwater. Ground resistivity investigations using the electromagnetic (EM) techniques of audio magnetotellurics (AMT or shallow MT), controlled source audio magnetotellurics (CSAMT) and transient electromagnetic (TEM) methods have also been used. Highly conductive clays of thermal or sedimentary origin often limit the penetration depth of the resistivity techniques and can create some interpretation difficulties. Interpretation of resistivity anomalies needs to be treated in a site specific manner.
NASA Astrophysics Data System (ADS)
Roy-Leveillee, Pascale; Burn, Christopher R.
2017-05-01
It is generally assumed that permafrost is preserved beneath shallow lakes and ponds in the Western North American Arctic where water depth is less than about two thirds of the late-winter lake ice thickness. Here we present field observations of talik development beneath water as shallow as 0.2 m despite a lake ice thickness of 1.5 m, in Old Crow Flats (OCF), YT. Conditions leading to the initiation and development of taliks beneath shallow water were investigated with field measurements of shore erosion rates, bathymetry, ice thickness, snow accumulation, and lake bottom temperature near the shores of two expanding lakes in OCF. The sensitivity of talik development to variations in lake bottom thermal regime was then investigated numerically. Where ice reached the lake bottom, talik development was controlled by the ratio of freezing degree days to thawing degree days at the lake bottom (FDDlb/TDDlb). In some cases, spatial variations in on-ice snow depth had a minimal effect on annual mean lake bottom temperature (Tlb) but caused sufficient variations in FDDlb/TDDlb to influence talik development. Where Tlb was close to but greater than 0°C simulations indicated that the thermal offset allowed permafrost aggradation to occur under certain conditions, resulting in irregular near-shore talik geometries. The results highlight the sensitivity of permafrost to small changes in lake bottom thermal conditions where the water column freezes through in early winter and indicate the occurrence of permafrost degradation beneath very shallow water in the near-shore zone of Arctic ponds and lakes.
Anderholm, S.K.
1996-01-01
This report describes the quality of shallow ground water in an agricultural area in the San Luis Valley, Colorado, and discusses how natural and human factors affect the quality of shallow ground water. Thirty-five wells were installed, and water samples were collected from these wells and analyzed for selected dissolved common constituents, nutrients, trace elements, radionuclides, and synthetic organic compounds. The San Luis Valley is a high intermontane valley that is partially drained by the Rio Grande. The San Luis Valley land-use study area was limited to a part of the valley where the depth to water is generally less than 25 feet. The area where the 35 monitor wells were installed was further limited to the part of the study area where center-pivot overhead sprinklers are used to irrigate crops. Precipitation, runoff from adjacent mountainous areas, and ground-water inflow from the adjacent mountainous areas are the main sources of water to the aquifers in the San Luis Valley. Discharge of water from the shallow, unconfined aquifer in the valley is mainly from evapotranspiration. The dominant land use in the San Luis Valley is agriculture, although nonirrigated land and residential land are interspersed with agricultural land. Alfalfa, native hay, barley, wheat, potatoes, and other vegetables are the main crops. Dissolved-solids concentrations in shallow ground water sampled ranged from 75 to 1,960 milligrams per liter. The largest median concentration of cations was for calcium, and the largest median concentration of anions was for bicarbonate in shallow ground water in the San Luis Valley. Calcium concentrations ranged from 7.5 to 300 milligrams per liter, and bicarbonate concentrations ranged from 28 to 451 milligrams per liter. Nitrite plus nitrate concentrations ranged from less than 0.1 to 58 milligrams per liter as N; water from 11 wells had nitrite plus nitrate concentrations greater than 10 milligrams per liter as N. With the exception of the following trace elements--aluminum, barium, iron, manganese, molybdenum, and uranium--the concentrations of trace elements were less than 10 micrograms per liter in 90 percent of the samples. All trace-element concentrations measured were below the maximum contaminant levels set by the U.S. Environmental Protection Agency. Five samples exceeded the proposed maximum contaminant level of 0.02 milligram per liter for uranium. All samples collected exceeded the proposed maximum contaminant level for radon-222. The volatile organic compound methyltertbutylether was detected in one sample at a concentration of 0.6 microgram per liter. Of the pesticides analyzed for, one or more were detected in water from 5 of the 35 wells sampled. Metribuzin was the most commonly detected pesticide and was detected in water from three wells at concentrations ranging from an estimated 0.005 to 0.017 microgram per liter. Metolachlor (detected in one sample at a concentration of 0.072 microgram per liter), prometon (detected in one sample at a concentration of 0.01 microgram per liter), and p,p'-DDE (detected in one sample at an estimated concentration of 0.002 microgram per liter) were the other pesticides detected. The U.S. Environmental Protection Agency lifetime health advisory for metolachlor, metribuzin, and prometon is 100 micrograms per liter, which is much larger than the concentrations measured in the shallow ground water sampled for this study. The elevated nitrite plus nitrate concentrations in shallow ground water are indicative of leaching of fertilizers from the land surface. This conclusion is consistent with conclusions made in other investigations of the San Luis Valley. On the basis of areal distribution and range of trace-element concentrations, human activities have not caused widespread trace-element contamination in the shallow grou
Vesicles, water, and sulfur in Reykjanes Ridge basalts
Moore, J.G.; Schilling, J.-G.
1973-01-01
Dredge hauls of fresh submarine basalt collected from the axis of the Reykjanes Ridge (Mid-Atlantic Ridge) south of Iceland were taken aboard R/ V TRIDENT in 1967 and 1971. The samples show systematic changes as the water depth of collection (and eruption) decreases: radially elongate vesicles and concentric zones of vesicles appear at about 700 m depth and are conspicuous to shallow water; the smoothed volume percent of vesicles increases from 5% at 1000 m, 10% at 700 m, to 16% at 500 m, and the scatter in degree of vesicularity increases in shallower water; specific gravity decreases from 2.7??0.1 at 1000 m to 2.3??0.3 at 100 m. Bulk sulfur content for the outer 2 cm averages 843 ppm up to a depth of 200 m, then drops off rapidly in shallower water owing to degassing. Sulfur content below 200 m is independent of depth (or geographic position), and the melt is apparently saturated with sulfur, but the excess cannot escape the lava unless another vehicle carries it out. Only shallower than 200 m, where intense vesiculation of other gases occurs can excess sulfur be lost from the lava erupting on the sea floor. H2O+110?? averages about 0.35 percent and H2O+150?? about 0.25 percent, and both apparently decrease in water shallower than 200 m as a result of degassing. H2O+ (below 200 m) decreases with distance from Iceland or increasing depth, presumably as a result of either adsorption of water on the surface of shallower, more vesicular rocks; or more likely due to the presence of the Iceland hot mantle plume supplying undifferentiated primordial material, relative to lavas of the Reykjanes Ridge supplied from the low velocity layer already depleted in volatiles and large lithophile elements. The H2O+110??/S ratio of lava erupting below 200 m water depth ranges from 3 to 5 which is comparable to reliable gas analyses from oceanic basaltic volcanoes. ?? 1973 Springer-Verlag.
Preliminary Evidence for the Amplification of Global Warming in Shallow, Intertidal Estuarine Waters
Over the past 50 years, mean annual water temperature in northeastern U.S. estuaries has increased by approximately 1.2°C, with most of the warming recorded in the winter and early spring. We hypothesize that this warming may be amplified in the shallow (<2m), nearshore portions ...
NASA Technical Reports Server (NTRS)
Walker, J. C.; Opdyke, B. C.
1995-01-01
Short-term imbalances in the global cycle of shallow water calcium carbonate deposition and dissolution may be responsible for much of the observed Pleistocene change in atmospheric carbon dioxide content. However, any proposed changes in the alkalinity balance of the ocean must be reconciled with the sedimentary record of deep-sea carbonates. The possible magnitude of the effect of shallow water carbonate deposition on the dissolution of pelagic carbonate can be tested using numerical simulations of the global carbon cycle. Boundary conditions can be defined by using extant shallow water carbonate accumulation data and pelagic carbonate deposition/dissolution data. On timescales of thousands of years carbonate deposition versus dissolution is rarely out of equilibrium by more than 1.5 x 10(13) mole yr-1. Results indicate that the carbonate chemistry of the ocean is rarely at equilibrium on timescales less than 10 ka. This disequilibrium is probably due to sea level-induced changes in shallow water calcium carbonate deposition/dissolution, an interpretation that does not conflict with pelagic sedimentary data from the central Pacific.
NASA Astrophysics Data System (ADS)
Zhang, Xueliang; Ren, Li; Kong, Xiangbin
2016-10-01
Quantitatively estimating the spatiotemporal variability and sustainability of shallow groundwater with a distributed hydrological model could provide an important basis for proper groundwater management, especially in well-irrigated areas. In this study, the Soil and Water Assessment Tool (SWAT) model was modified and applied to a well-irrigated plain of the Haihe River basin. First, appropriate initial values of the parameters in the groundwater module were determined based on abundant hydrogeological investigations and assessment. Then, the model was satisfactorily calibrated and validated using shallow groundwater table data from 16 national wells monitored monthly from 1993 to 2010 and 148 wells investigated yearly from 2006 to 2012. To further demonstrate the model's rationality, the multi-objective validation was conducted by comparing the simulated groundwater balance components, actual evapotranspiration, and crop yields to multiple sources data. Finally, the established SWAT was used to estimate both shallow groundwater table fluctuation and shallow aquifer water storage change in time and space. Results showed that the average shallow groundwater table declined at a rate of 0.69-1.56 m a-1, which depleted almost 350 × 108 m3 of shallow aquifer water storage in the cropland during the period of 1993-2012. Because of the heterogeneity of the underlying surface and precipitation, these variations were spatiotemporally different. Generally, the shallow groundwater table declined 1.43-1.88 m during the winter wheat (Triticum aestivum L.) growing season, while it recovered 0.28-0.57 m during the summer maize (Zea mays L.) growing season except when precipitation was exceptionally scarce. According to the simulated depletion rate, the shallow aquifer in the study area may face a depletion crisis within the next 80 years. This study identified the regions where prohibitions or restrictions on shallow groundwater exploitation should be urgently carried out.
NASA Astrophysics Data System (ADS)
Pan, X.; Yu, Q.; You, Y.
2014-12-01
Understanding hydrological and thermal regimes of thermokarst lakes is of great importance for predicting their responses to climate change. However, mechanism of water-level dynamics and associated thermal effects on thermoerosion of thermokarst lakes are still not well understood on the Qinghai-Tibet Plateau (QTP). In this study, we investigate two typical shallow thermokarst ponds (namely small lakes) in a warm permafrost region with thick active layer on the northeastern QTP through quantifying water budget. Results demonstrate that, rainfall induced subsurface lateral flow dominates pond water-level regime. Annual variation of pond water-level relies on areal water budget of surrounding active layer, particularly the high variable of precipitation. Besides, it is worth noting the extraordinary warming during the late ice-cover period, because marked air gap between upper ice-cover and underlying water, led by the upward thawing of thick ice-cover, might result in greenhouse-like condition due to the unique weather that strong solar radiation and little snowpack. This hydrological mechanism also exerts evident impacts on thermal regime and thermoerosion of the shallow thermokarst ponds, and they are closely related to retreat of thermokarst pondshore and underlying permafrost degradation. These findings imply a localized model addressing the unique hydrological and thermal regimes of thermokarst lakes would be essential to study the evolution of these shallow rainwater dominated thermokarst ponds on the QTP.
NASA Astrophysics Data System (ADS)
Cottingham, Alan; Hall, Norman G.; Hesp, S. Alex; Potter, Ian C.
2018-03-01
This study determined how productivity measures for a fish species in different water depths of an estuary changed in response to the increase in hypoxia in deep waters, which had previously been shown to occur between 1993-95 and 2007-11. Annual data on length and age compositions, body mass, growth, abundance, biomass, production and production to biomass ratio (P/B) were thus determined for the estuarine-resident Acanthopagrus butcheri in nearshore shallow (<2 m) and offshore deep waters (2-6 m) of the upper Swan River Estuary in those two periods. Length and age compositions imply that the increase in hypoxia was accompanied by the distribution of the majority of the older and larger A. butcheri changing from deep to shallow waters, where the small fish typically reside. Annual densities, biomass and production in shallow waters of <0.02 fish m-2, 2-4 g m-2 and ∼2 g m-2 y-1 in the earlier period were far lower than the 0.1-0.2 fish m-2, 8-15 g m-2 and 5-10 g m-2 y-1 in the later period, whereas the reverse trend occurred in deep waters, with values of 6-9 fish net-1, 2000-3900 g net-1, 900-1700 g net-1 y-1 in the earlier period vs < 1.5 fish net-1, ∼110 g net-1 and 27-45 g net-1 y-1 in the later period. Within the later period, and in contrast to the trends with annual abundance and biomass, the production in shallow waters was least during 2008/09, rather than greatest, reflecting the slow growth in that particularly cool year. The presence of substantial aggregations of both small and large fish in shallow waters accounts for the abundance, biomass and production in those waters increasing between those periods and thus, through a density-dependent effect, provide a basis for the overall reduction in growth. In marked contrast to the trends with the other three production measures, annual production to biomass ratios (P/B) in shallow waters in the two years in the earlier period, and in three of the four years of the later period, fell within the same range, i.e. 0.6-0.9 y-1, but was only 0.2 y-1 in 2008/09, reflecting the poor growth in that year. This emphasises the need to obtain data on P/B for a number of years when considering the implications of the typical P/B for a species in an estuary, in which environmental conditions and the growth of a species can fluctuate markedly between years.
Shallow ground-water quality beneath a major urban center: Denver, Colorado, USA
Bruce, B.W.; McMahon, P.B.
1996-01-01
A survey of the chemical quality of ground water in the unconsolidated alluvial aquifer beneath a major urban center (Denver, Colorado, USA) was performed in 1993 with the objective of characterizing the quality of shallow ground-water in the urban area and relating water quality to land use. Thirty randomly selected alluvial wells were each sampled once for a broad range of dissolved constituents. The urban land use at each well site was sub- classified into one of three land-use settings: residential, commercial, and industrial. Shallow ground-water quality was highly variable in the urban area and the variability could be related to these land-use setting classifications. Sulfate (SO4) was the predominant anion in most samples from the residential and commercial land-use settings, whereas bicarbonate (HCO3) was the predominant anion in samples from the industrial land-use setting, indicating a possible shift in redox conditions associated with land use. Only three of 30 samples had nitrate concentrations that exceeded the US national drinking-water standard of 10 mg l-1 as nitrogen, indicating that nitrate contamination of shallow ground water may not be a serious problem in this urban area. However, the highest median nitrate concentration (4.2 mg l-1) was in samples from the residential setting, where fertilizer application is assumed to be most intense. Twenty-seven of 30 samples had detectable pesticides and nine of 82 analyzed pesticide compounds were detected at low concentrations, indicating that pesticides are widely distributed in shallow ground water in this urban area. Although the highest median total pesticide concentration (0.17 ??g l-1) was in the commercial setting, the herbicides prometon and atrazine were found in each land-use setting. Similarly, 25 of 29 samples analyzed had detectable volatile organic compounds (VOCs) indicating these compounds are also widely distributed in this urban area. The total VOC concentrations in sampled wells ranged from nondetectable to 23 442 ??g l-1. Widespread detections and occasionally high concentrations point to VOCs as the major anthropogenic ground-water impact in this urban environment. Generally, the highest VOC concentrations occurred in samples from the industrial setting. The most frequently detected VOC was the gasoline additive methyl tertbutyl ether (MTBE, in 23 of 29 wells). Results from this study indicate that the quality of shallow ground water in major urban areas can be related to land-use settings. Moreover, some VOCs and pesticides may be widely distributed at low concentrations in shallow ground water throughout major urban areas. As a result, the differentiation between point and non-point sources for these compounds in urban areas may be difficult.
A V-band wafer probe using ridge-trough waveguide
NASA Astrophysics Data System (ADS)
Godshalk, Edward M.
1991-12-01
A V-band (50-75 GHz) wafer probe is presented. The probe features a type of waveguide developed to allow transition from rectangular waveguide to coplanar waveguide. The waveguide consists of a ridge extending from the upper waveguide wall into a trough in the lower waveguide wall, and is known as the ridge-trough waveguide. A mathematical model is presented that allows important properties of the ridge-trough waveguide, such as the cutoff frequency and characteristic impedance, to be calculated.
Remote Sensing of Suspended Sediments and Shallow Coastal Waters
NASA Technical Reports Server (NTRS)
Li, Rong-Rong; Kaufman, Yoram J.; Gao, Bo-Cai; Davis, Curtiss O.
2002-01-01
Ocean color sensors were designed mainly for remote sensing of chlorophyll concentrations over the clear open oceanic areas (case 1 water) using channels between 0.4 and 0.86 micrometers. The Moderate Resolution Imaging Spectroradiometer (MODIS) launched on the NASA Terra and Aqua Spacecrafts is equipped with narrow channels located within a wider wavelength range between 0.4 and 2.5 micrometers for a variety of remote sensing applications. The wide spectral range can provide improved capabilities for remote sensing of the more complex and turbid coastal waters (case 2 water) and for improved atmospheric corrections for Ocean scenes. In this article, we describe an empirical algorithm that uses this wide spectral range to identifying areas with suspended sediments in turbid waters and shallow waters with bottom reflections. The algorithm takes advantage of the strong water absorption at wavelengths longer than 1 micrometer that does not allow illumination of sediments in the water or a shallow ocean floor. MODIS data acquired over the east coast of China, west coast of Africa, Arabian Sea, Mississippi Delta, and west coast of Florida are used in this study.
Liquid Water in the Extremely Shallow Martian Subsurface
NASA Technical Reports Server (NTRS)
Pavlov, A.; Shivak, J. N.
2012-01-01
Availability of liquid water is one of the major constraints for the potential Martian biosphere. Although liquid water is unstable on the surface of Mars due to low atmospheric pressures, it has been suggested that liquid films of water could be present in the Martian soil. Here we explored a possibility of the liquid water formation in the extremely shallow (1-3 cm) subsurface layer under low atmospheric pressures (0.1-10 mbar) and low ("Martian") surface temperatures (approx.-50 C-0 C). We used a new Goddard Martian simulation chamber to demonstrate that even in the clean frozen soil with temperatures as low as -25C the amount of mobile water can reach several percents. We also showed that during brief periods of simulated daylight warming the shallow subsurface ice sublimates, the water vapor diffuses through porous surface layer of soil temporarily producing supersaturated conditions in the soil, which leads to the formation of additional liquid water. Our results suggest that despite cold temperatures and low atmospheric pressures, Martian soil just several cm below the surface can be habitable.
Silicon Mach-Zehnder interferometer racetrack microring for sensing
NASA Astrophysics Data System (ADS)
Xiong, Yule; Ye, Winnie N.
2014-03-01
SOI-based microring resonators (MRRs) have attracted extensive attentions as ultra-compact sensors. Recently, a new structure design combining a ring and a Mach-Zehnder interferometer (MZI) was proposed as sensors for biomedical applications, and as modulators for communications applications. In this design, the MZI uses two identical couplers, where one arm is formed by connecting the access waveguide of the couplers, while the other arm is part of the microring. Such a device may have only one major resonance with a high extinction ratio in a very broad wavelength span (quasi-free spectral range, quasi-FSR), which offers a very large measurement range for sensing applications. 2×2 multimode interference (MMI) couplers are used to couple the microring and the bus waveguides as MMI couplers have broader wavelength responses. We present the first experimental demonstration of the MMI-coupled MZI racetrack microrings for sensing applications. Two types of MMI-coupled MZI racetrack microrings are discussed: one with wire waveguides, and the other using slotted waveguides. For the MZI racetrack microring using wire waveguides, we achieve a quasi-FSR of 34.3 nm near the wavelength of 1520 nm. The corresponding major resonance of the MZI racetrack microring demonstrates a high extinction ratio of ~22.4 dB with a full-width-half-maximum (FWHM) of 1.94 nm, and a quality factor Q of ~800. On the other hand, the quasi-FSR of the MZI racetrack microring with slot waveguides is 23.2 nm near the wavelength of 1540 nm; and the extinction ratio of the major resonance is ~24.5 dB with λFWHM=0.82 nm and Q=~1,900. To demonstrate the uses for sensing applications, we measure the resonance shifts corresponding to the concentration change of the ambient aqueous solutions of sucrose. DI water is used as the reference for calibration to avoid any other variations, e.g. temperature change. Experiments show that the sensitivities of the MZI racetrack microring sensors with wire and slot waveguides are 101.7 nm/RIU and 166.7 nm/RIU, respectively.
Du, Yao; Ma, Teng; Deng, Yamin; Shen, Shuai; Lu, Zongjie
2017-02-22
High levels of ammonium from anthropogenic sources threaten the quality of surface waters and groundwaters in some areas worldwide, but elevated ammonium levels of natural sources also have been identified. High levels of ammonium have been detected in both surface water and shallow groundwater of the Jianghan Plain, an alluvial plain of the Yangtze River. This study used N isotopes coupled with ancillary chemistry to identify ammonium in this region. Ammonium in the Tongshun River (up to 10.25 mg L -1 ) showed a sharp accumulation in the upstream and gradual attenuation in the downstream. The δ 15 N values of ammonium in the TSR were high and ranged narrowly from +12.5 to +15.4‰, suggesting an anthropogenic source that was septic effluent from industrial waste discharge. Sorption and nitrification were likely to respectively serve as the principal processes contributing to ammonium attenuation in different reaches of the downstream TSR. In shallow groundwater, high levels of ammonium (up to 14.10 mg L -1 ) occurred in a reducing environment. The narrow δ 15 N variation with low values (+2.3 to +4.5‰) in the lower aquifer suggested a natural source that was organic N mineralization. The δ 15 N values in the shallow aquitard exhibited a wide range from -1.8 to +9.4‰, owing to various sources. Two types of water in the shallow aquitard could be identified: (1) type-1 water with relatively longer residence time was similar to those in the aquifer where ammonium was mainly sourced from organic N mineralization; (2) type-2 water with shorter residence time was jointly affected by surface input, chemical attenuation and mineralization of organic N. The aquitard prevents prompt ammonium exchange between the surface and aquifer, and the shallower part of the aquitard provides a sufficient reaction time and an active reaction rate for ammonium removal.
Effects of shell morphology on mechanics of zebra and quagga mussel locomotion
S. M. Peyer; J. C. Hermanson; C. E. Lee
2011-01-01
Although zebra mussels (Dreissena polymorpha) initially colonized shallow habitats within the North American Great Lakes, quagga mussels (Dreissena bugensis) are becoming dominant in both shallow- and deep-water habitats. Shell morphology differs among zebra, shallow quagga and deep quagga mussels but functional consequences of...
Maurer, Douglas K.; Johnson, Ann K.; Welch, Alan H.
1994-01-01
Operating Criteria and Procedures established in 1988 for delivery of water for irrigation in the Newlands Project area include regulations and methods to increase Project efficiency. Public Law 101-618 of 1990 includes a target of 75-percent Project efficiency and a program of water-rights acquisition for wetlands maintenance. The directives could result in large reductions in water used for irrigation in the Carson Desert, potentially affecting ground-water supplies. Previous studies of the area have been evaluated to determine the current understanding of how aquifers are recharged, what controls the flow and quality of ground water, potential effects of changes in water use, and what additional information would be needed to quantify further changes in water use.Inflow of surface water to the basin from Lahontan Reservoir averaged about 370,000 acre-ft/yr (acre-feet per year) from 1975 to 1992, supplying water for irrigation of more than 50,000 acres. More than half of the water released from the reservoir is lost to seepage, operational spills, and evaporation before delivery of about 170,000 acre-ft/yr to farm headgates. The volume of water delivered to farms that does not contribute to crop consumptive use (on-farm loss) is poorly known but could be as much as 60,000 acre-ft/yr. Consumptive use on irrigated land may be about 180,000 acre-ft/yr, of which 50,000 acre-ft/yr may be derived from the shallow aquifer. Outflow from irrigated land is a mixture of operational spill, runoff from irrigated fields, and ground-water seepage to drains. Total outflow averages about 170,000 to 190,000 acre-ft/yr. This water flows to wetlands at Carson Lake, Stillwater Wildlife Management Area, and Carson Sink. Three sedimentary aquifers were previously defined in the basin: a shallow aquifer having highly variable lithology and water quality, an intermediate aquifer containing principally fresh water, and a deep aquifer having water of poor quality. The deep aquifer could possibly be divided into sedimentary and volcanic zones. In addition, a near-surface zone may exist near the top of the shallow aquifer where vertical flow is inhibited by underlying clay beds. A basalt aquifer near the center of the basin is the source of public supply and is recharged by the shallow, intermediate, and deep aquifers. Water levels in the basalt aquifer have declined about 10 feet from pre-pumping levels, and chloride and arsenic concentrations in the water have increased. The average depth to ground water has decreased beneath large areas of the Carson Desert since 1904 as a result of recharge of surface water used for irrigation. Ground water generally flows from west to east, and dissolvedsolids concentrations increase greatly near areas of ground-water discharge, where State of Nevada drinking-water standards commonly are exceeded. Uncertainties in the rates of recharge to and discharge from the basin cause an imbalance in the calculated water budget. Estimates for total recharge range from 400,000 to 420,000 acreft/yr, whereas estimates for discharge range from 630,000 to 680,000 acre-ft/yr. Estimates of inflow to and outflow from aquifers of the study area are as follows: shallow aquifer, more than 120,000 acre-ft/yr; intermediate aquifer, possibly more than 25,000 acre-ft/yr; deep aquifer, unknown; and basalt aquifer, about 4,000 acre-ft/yr. Estimates for flow volumes to and from the shallow and intermediate aquifers are based on assumed aquifer properties and could be in error by an order of magnitude or more. Conceptual models of the basin show that ground-water flow is downward from the shallow aquifer to the intermediate aquifer in the western part and near the center of the basin, and is upward in the eastern part of the basin. Little is known about flow in the deep aquifer. Nearsurface clay beds inhibit vertical flow near the center and eastern part of the basin except where breached by relict sand-filled channels of the Carson River. Conceptual models of the basin show that changes in water use in the western part of the basin probably would affect recharge to the sedimentary and basalt aquifers. Near the center of the basin, water-use changes could affect the shallow and basalt aquifers but might have less effect on the intermediate aquifer. In the eastern part of the basin, changes could affect the shallow aquifer, but would probably not affect the intermediate or basalt aquifers. If seepage is decreased by lining canals, and land is removed from production, water-level declines in the shallow aquifer could be greater than 10 feet as far as 2 miles from the lined canals. Depending upon the distribution of specific yield, decreasing recharge by 25,000 to 50,000 acre-ft/yr beneath 30,000 acres could cause water levels to decline from 4 to 17 feet. Where ground water supplements crop consumptive use, water levels could temporarily rise when land is removed from production. Where water is pumped from a near-surface zone of the shallow aquifer, water-level declines might not greatly affect pumped wells where the nearsurface zone is thickest, but could cause wells to go dry where the zone is thin. The understanding of surface-water and ground-water relations, recharge and discharge of ground water, ground-water movement, and the potential effects of changes in water use in the Carson Desert can be refined by studying (1) the extent of potable water in the intermediate and basalt aquifers, (2) lithology and specific yield of aquifer materials, (3) data on ground-water levels and quality, and (4) data on surface-water flow and quality, as well as monitoring the effects of changes in water use as they take place.
Hong, Wei-Li; Torres, Marta E.; Carroll, JoLynn; Crémière, Antoine; Panieri, Giuliana; Yao, Haoyi; Serov, Pavel
2017-01-01
Arctic gas hydrate reservoirs located in shallow water and proximal to the sediment-water interface are thought to be sensitive to bottom water warming that may trigger gas hydrate dissociation and the release of methane. Here, we evaluate bottom water temperature as a potential driver for hydrate dissociation and methane release from a recently discovered, gas-hydrate-bearing system south of Spitsbergen (Storfjordrenna, ∼380 m water depth). Modelling of the non-steady-state porewater profiles and observations of distinct layers of methane-derived authigenic carbonate nodules in the sediments indicate centurial to millennial methane emissions in the region. Results of temperature modelling suggest limited impact of short-term warming on gas hydrates deeper than a few metres in the sediments. We conclude that the ongoing and past methane emission episodes at the investigated sites are likely due to the episodic ventilation of deep reservoirs rather than warming-induced gas hydrate dissociation in this shallow water seep site. PMID:28589962
Hong, Wei-Li; Torres, Marta E.; Carroll, JoLynn; ...
2017-06-07
Arctic gas hydrate reservoirs located in shallow water and proximal to the sediment-water interface are thought to be sensitive to bottom water warming that may trigger gas hydrate dissociation and the release of methane. Here, we evaluate bottom water temperature as a potential driver for hydrate dissociation and methane release from a recently discovered, gas-hydrate-bearing system south of Spitsbergen (Storfjordrenna, ~380m water depth). Modelling of the non-steady-state porewater profiles and observations of distinct layers of methane-derived authigenic carbonate nodules in the sediments indicate centurial to millennial methane emissions in the region. The results of temperature modelling suggest limited impact ofmore » short-term warming on gas hydrates deeper than a few metres in the sediments. We conclude that the ongoing and past methane emission episodes at the investigated sites are likely due to the episodic ventilation of deep reservoirs rather than warming-induced gas hydrate dissociation in this shallow water seep site.« less
Hong, Wei-Li; Torres, Marta E; Carroll, JoLynn; Crémière, Antoine; Panieri, Giuliana; Yao, Haoyi; Serov, Pavel
2017-06-07
Arctic gas hydrate reservoirs located in shallow water and proximal to the sediment-water interface are thought to be sensitive to bottom water warming that may trigger gas hydrate dissociation and the release of methane. Here, we evaluate bottom water temperature as a potential driver for hydrate dissociation and methane release from a recently discovered, gas-hydrate-bearing system south of Spitsbergen (Storfjordrenna, ∼380 m water depth). Modelling of the non-steady-state porewater profiles and observations of distinct layers of methane-derived authigenic carbonate nodules in the sediments indicate centurial to millennial methane emissions in the region. Results of temperature modelling suggest limited impact of short-term warming on gas hydrates deeper than a few metres in the sediments. We conclude that the ongoing and past methane emission episodes at the investigated sites are likely due to the episodic ventilation of deep reservoirs rather than warming-induced gas hydrate dissociation in this shallow water seep site.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hong, Wei-Li; Torres, Marta E.; Carroll, JoLynn
Arctic gas hydrate reservoirs located in shallow water and proximal to the sediment-water interface are thought to be sensitive to bottom water warming that may trigger gas hydrate dissociation and the release of methane. Here, we evaluate bottom water temperature as a potential driver for hydrate dissociation and methane release from a recently discovered, gas-hydrate-bearing system south of Spitsbergen (Storfjordrenna, ~380m water depth). Modelling of the non-steady-state porewater profiles and observations of distinct layers of methane-derived authigenic carbonate nodules in the sediments indicate centurial to millennial methane emissions in the region. The results of temperature modelling suggest limited impact ofmore » short-term warming on gas hydrates deeper than a few metres in the sediments. We conclude that the ongoing and past methane emission episodes at the investigated sites are likely due to the episodic ventilation of deep reservoirs rather than warming-induced gas hydrate dissociation in this shallow water seep site.« less
The role of depth in regulating water quality and fish assemblages in oxbow lakes
Goetz, Daniel B.; Miranda, Leandro E.; Kroger, Robert; Andrews, Caroline S.
2015-01-01
We evaluated water quality and fish assemblages in deep (> 3.0 m; N = 7) and shallow (< 1.5 m; N = 6) floodplain lakes in the intensively cultivated Yazoo River Basin (Mississippi, USA) using indirect gradient multivariate procedures. Shallow lakes displayed wide diel oxygen fluctuations, some reaching hypoxic/anoxic conditions for extended periods of time, high suspended solids, and extreme water temperatures. Conversely, deeper lakes were represented by higher visibility, stable oxygen levels, and cooler water temperatures. Fish assemblages in shallow lakes were dominated by tolerant, small-bodied fishes and those able to breathe atmospheric oxygen. Deeper lakes had a greater representation of predators and other large-bodied fishes. Our evaluation suggests fish assemblages are reflective of oxbow lakes water quality, which is shaped by depth. Understanding the interactions between depth, water quality, and fish assemblages may facilitate development of effective management plans for improving conditions necessary to sustain diverse fish assemblages in agriculturally dominated basins.
Landmeyer, J.E.
1994-01-01
Ground-water samples were collected from four shallow water-table aquifer observation wells beneath the Small-Arms Firing Range study area at Shaw Air Force Base. Water-chemistry analyses indicated that total lead concentrations in shallow ground water beneath the study area do not exceed the U.S. Environmental Protection Agency maximum contaminant level established for lead in drinking water (0.05 milligrams per liter). All other trace element total concentrations in ground water beneath the study area were at or below the detection limit of the analytical methodology.
Vengosh, Avner; Jackson, Robert B; Warner, Nathaniel; Darrah, Thomas H; Kondash, Andrew
2014-01-01
The rapid rise of shale gas development through horizontal drilling and high volume hydraulic fracturing has expanded the extraction of hydrocarbon resources in the U.S. The rise of shale gas development has triggered an intense public debate regarding the potential environmental and human health effects from hydraulic fracturing. This paper provides a critical review of the potential risks that shale gas operations pose to water resources, with an emphasis on case studies mostly from the U.S. Four potential risks for water resources are identified: (1) the contamination of shallow aquifers with fugitive hydrocarbon gases (i.e., stray gas contamination), which can also potentially lead to the salinization of shallow groundwater through leaking natural gas wells and subsurface flow; (2) the contamination of surface water and shallow groundwater from spills, leaks, and/or the disposal of inadequately treated shale gas wastewater; (3) the accumulation of toxic and radioactive elements in soil or stream sediments near disposal or spill sites; and (4) the overextraction of water resources for high-volume hydraulic fracturing that could induce water shortages or conflicts with other water users, particularly in water-scarce areas. Analysis of published data (through January 2014) reveals evidence for stray gas contamination, surface water impacts in areas of intensive shale gas development, and the accumulation of radium isotopes in some disposal and spill sites. The direct contamination of shallow groundwater from hydraulic fracturing fluids and deep formation waters by hydraulic fracturing itself, however, remains controversial.
Wind wave prediction in shallow water: Theory and applications
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cavaleri, L.; Rizzoli, P.M.
1981-11-20
A wind wave forecasting model is described, based upon the ray technique, which is specifically designed for shallow water areas. The model explicitly includes wave generation, refraction, and shoaling, while nonlinear dissipative processes (breaking and bottom fricton) are introduced through a suitable parametrization. The forecast is provided at a specified time and target position, in terms of a directional spectrum, from which the one-dimensional spectrum and the significant wave height are derived. The model has been used to hindcast storms both in shallow water (Northern Adriatic Sea) and in deep water conditions (Tyrrhenian Sea). The results have been compared withmore » local measurements, and the rms error for the significant wave height is between 10 and 20%. A major problems has been found in the correct evaluation of the wind field.« less
CO2/Brine transport into shallow aquifers along fault zones.
Keating, Elizabeth H; Newell, Dennis L; Viswanathan, Hari; Carey, J W; Zyvoloski, G; Pawar, Rajesh
2013-01-02
Unintended release of CO(2) from carbon sequestration reservoirs poses a well-recognized risk to groundwater quality. Research has largely focused on in situ CO(2)-induced pH depression and subsequent trace metal mobilization. In this paper we focus on a second mechanism: upward intrusion of displaced brine or brackish-water into a shallow aquifer as a result of CO(2) injection. Studies of two natural analog sites provide insights into physical and chemical mechanisms controlling both brackish water and CO(2) intrusion into shallow aquifers along fault zones. At the Chimayó, New Mexico site, shallow groundwater near the fault is enriched in CO(2) and, in some places, salinity is significantly elevated. In contrast, at the Springerville, Arizona site CO(2) is leaking upward through brine aquifers but does not appear to be increasing salinity in the shallow aquifer. Using multiphase transport simulations we show conditions under which significant CO(2) can be transported through deep brine aquifers into shallow layers. Only a subset of these conditions favor entrainment of salinity into the shallow aquifer: high aspect-ratio leakage pathways and viscous coupling between the fluid phases. Recognition of the conditions under which salinity is favored to be cotransported with CO(2) into shallow aquifers will be important in environmental risk assessments.
Nakamura, Koichiro; Akiyama, Tadashi
2015-08-05
A new species of pycnogonid recorded from the shallow waters of Ogasawara (Bonin) Island, Japan, Cheilopallene ogasawarensis n. sp. is described, illustrated and compared with similar species. Cheilopallene ogasawarensis is only the third pycnogonid species recorded from these islands. Morphological characters clearly distinguish the new species from its geographically closest congener C. nodulosa Hong and Kim, 1987, also recorded from Japanese waters.
Wave Propagation and Inversion in Shallow Water and Poro-elastic Sediment
1997-09-30
water and high freq. acoustics LONG-TERM GOALS To create codes accurately model wave propagation and scattering in shallow water, and to quantify...is undergoing testing for the acoustic stratified Green’s function. We have adapted code generated by J. Schuster in Geophysics for the FDTD model ...inversions and modelling , and have repercussions in environmental imaging [5], acoustic imaging [1,4,5,6,7] and early breast cancer diagnosis
Potential of using plant extracts for purification of shallow well water in Malawi
NASA Astrophysics Data System (ADS)
Pritchard, M.; Mkandawire, T.; Edmondson, A.; O'Neill, J. G.; Kululanga, G.
There has been very little scientific research work into the use of plant extracts to purify groundwater. Research studies on the purification of groundwater have mainly been carried out in developed countries and have focused on water purification systems using aluminium sulphate (a coagulant) and chlorine (a disinfectant). Such systems are expensive and not viable for rural communities due to abject poverty. Shallow well water, which is commonly available throughout Africa, is often grossly contaminated and usually consumed untreated. As a result, water-related diseases kill more than 5 million people every year worldwide. This research was aimed at examining natural plant extracts in order to develop inexpensive ways for rural communities to purify their groundwater. The study involved creating an inventory of plant extracts that have been used for water and wastewater purification. A prioritisation system was derived to select the most suitable extracts, which took into account criteria such as availability, purification potential, yield and cost of extraction. Laboratory trials were undertaken on the most promising plant extracts, namely: Moringa oleifera, Jatropha curcas and Guar gum. The extracts were added to water samples obtained from five shallow wells in Malawi. The trials consisted of jar tests to assess the coagulation potential and the resulting effect on physico-chemical and microbiological parameters such as temperature, pH, turbidity and coliforms. The results showed that the addition of M. oleifera, J. curcas and Guar gum can considerably improve the quality of shallow well water. Turbidity reduction was higher for more turbid water. A reduction efficiency exceeding 90% was achieved by all three extracts on shallow well water that had a turbidity of 49 NTU. A reduction in coliforms was about 80% for all extracts. The pH of the water samples increased with dosage, but remained within acceptable levels for drinking water for all the extracts. Overall, M. oleifera powder produced superior results, followed by Guar gum and lastly J. curcas. There is a need to carry out further more detailed tests, which include toxicity to guarantee the safety of using plant extracts as a coagulant in the purification of drinking water for human consumption.
Chemistry of spring and well waters on Kilauea Volcano, Hawaii, and vicinity
DOE Office of Scientific and Technical Information (OSTI.GOV)
Janik, C.J.; Nathenson, M.; Scholl, M.A.
1994-12-31
Published and new data for chemical and isotopic samples from wells and springs on Kilauea Volcano and vicinity are presented. These data are used to understand processes that determine the chemistry of dilute meteoric water, mixtures with sea water, and thermal water. Data for well and spring samples of non-thermal water indicate that mixing with sea water and dissolution of rock from weathering are the major processes that determine the composition of dissolved constituents in water. Data from coastal springs demonstrate that there is a large thermal system south of the lower east rift of Kilauea. Samples of thermal watermore » from shallow wells in the lower east rift and vicinity have rather variable chemistry indicating that a number of processes operate in the near surface. Water sampled from the available deep wells is different in composition from the shallow thermal water, indicating that generally there is not a significant component of deep water in the shallow wells. Data for samples from available deep wells show significant gradients in chemistry and steam content of the reservoir fluid. These gradients are interpreted to indicate that the reservoir tapped by the existing wells is an evolving vapor-dominated system.« less
Increase in diarrheal disease associated with arsenic mitigation in Bangladesh.
Wu, Jianyong; van Geen, Alexander; Ahmed, Kazi Matin; Alam, Yasuyuki Akita Jahangir; Culligan, Patricia J; Escamilla, Veronica; Feighery, John; Ferguson, Andrew S; Knappett, Peter; Mailloux, Brian J; McKay, Larry D; Serre, Marc L; Streatfield, P Kim; Yunus, Mohammad; Emch, Michael
2011-01-01
Millions of households throughout Bangladesh have been exposed to high levels of arsenic (As) causing various deadly diseases by drinking groundwater from shallow tubewells for the past 30 years. Well testing has been the most effective form of mitigation because it has induced massive switching from tubewells that are high (>50 µg/L) in As to neighboring wells that are low in As. A recent study has shown, however, that shallow low-As wells are more likely to be contaminated with the fecal indicator E. coli than shallow high-As wells, suggesting that well switching might lead to an increase in diarrheal disease. Approximately 60,000 episodes of childhood diarrhea were collected monthly by community health workers between 2000 and 2006 in 142 villages of Matlab, Bangladesh. In this cross-sectional study, associations between childhood diarrhea and As levels in tubewell water were evaluated using logistic regression models. Adjusting for wealth, population density, and flood control by multivariate logistic regression, the model indicates an 11% (95% confidence intervals (CIs) of 4-19%) increase in the likelihood of diarrhea in children drinking from shallow wells with 10-50 µg/L As compared to shallow wells with >50 µg/L As. The same model indicates a 26% (95%CI: 9-42%) increase in diarrhea for children drinking from shallow wells with ≤10 µg/L As compared to shallow wells with >50 µg/L As. Children drinking water from shallow low As wells had a higher prevalence of diarrhea than children drinking water from high As wells. This suggests that the health benefits of reducing As exposure may to some extent be countered by an increase in childhood diarrhea. © 2011 Wu et al.
Effect of nitrogen narcosis on free recall and recognition memory in open water.
Hobbs, M; Kneller, W
2009-01-01
Previous research has demonstrated that nitrogen narcosis causes decrements in memory performance but the precise aspect of memory impaired is not clear in the literature. The present research investigated the effect of narcosis on free recall and recognition memory by appling signal detection theory (SDT) to the analysis of the recognition data. Using a repeated measures design, the free recall and recognition memory of 20 divers was tested in four learning-recall conditions: shallow-shallow (SS), deep-deep (DD), shallow-deep (SD) and deep-shallow (DS). The data was collected in the ocean offDahab, Egypt with shallow water representing a depth of 0-10m (33ft) and deep water 37-40m (121-131ft). The presence of narcosis was independently indexed with subjective ratings. In comparison to the SS condition there was a clear impairment of free recall in the DD and DS conditions, but not the SD condition. Recognition memory remained unaffected by narcosis. It was concluded narcosis-induced memory decrements cannot be explained as simply an impairment of input into long term memory or of self-guided search and it is suggested instead that narcosis acts to reduce the level of processing/encoding of information.
2015-09-30
into acoustic fluctuation calculations. In the Philippine Sea, models of eddies, internal tides, internal waves, and fine structure ( spice ) are...needed, while in the shallow water case a models of the random linear internal waves and spice are lacking. APPROACH The approach to this research is to
Environmental Fluctuations and Acoustic Data Communications
2015-09-30
July 2011 along with subsequent analysis of the experiment data. KAM11 Experiment (2011) A shallow water acoustic communications experiment...packet and packet-to-packet variability. Algorithm Design and Experiment Data Analysis Communication receiver algorithm design for shallow water is...exhibited substantial daily oceanographic variability. Analysis of the KAM11 experiment data this past year has focused on fixed source transmissions
Federal Register 2010, 2011, 2012, 2013, 2014
2012-10-15
... Commercial Accountability Measure and Closure for South Atlantic Gag and South Atlantic Shallow-Water Grouper... gag, as estimated by the Science Research Director, are projected to reach the commercial annual catch... South Atlantic Shallow-Water Grouper (SASWG) on October 20, 2012 for the remainder of the 2012 fishing...
Foley, Nora K.; Bethke, Philip M.; Rye, Robert O.
1989-01-01
The unusually high contrast between the salinities of the ore-depositing fluids and the ground water overlying the ore zone allowed recognition of this phenomenon at Creede. It is likely, however, that Creede is not unique. Similar phenomena may be common in shallow ore zones where rapid fluctuation of an interface between a deep, high-temperature thermal plume and an overlying, cooler ground water may be expected to occur. Careful study of the origins of fluid inclusions, particularly in quartz, is essential to characterize the primary ore fluids and to assess the role of ground water in the hydrology of shallow ore deposits.
Laich, Federico; Vaca, Inmaculada; Chávez, Renato
2013-10-01
During the characterization of the mycobiota associated with shallow-water marine environments from Antarctic sea, a novel pink yeast species was isolated. Sequence analysis of the D1/D2 domain of the LSU rDNA gene and 5.8S-ITS regions revealed that the isolated yeast was closely related to Rhodotorula pallida CBS 320(T) and Rhodotorula benthica CBS 9124(T). On the basis of morphological, biochemical and physiological characterization and phylogenetic analyses, a novel basidiomycetous yeast species, Rhodotorula portillonensis sp. nov., is proposed. The type strain is Pi2(T) ( = CBS 12733(T) = CECT 13081(T)) which was isolated from shallow-water marine sediment in Fildes Bay, King George Island, Antarctica.
Reconnaissance of water quality at four swine farms in Jackson County, Florida, 1993
Collins, J.J.
1996-01-01
The quality of ground water on four typical swine farms in Jackson County, Florida, was studied by analyzing water samples from wastewater lagoons, monitoring wells, and supply wells. Water samples were collected quarterly for 1 year and analyzed for the following dissolved species: nitrate, nitrite, ammonium nitrogen, phosphorus, potassium, sulfate, chloride, calcium, magnesium, fluoride, total ammonium plus organic nitrogen, total phosphorus, alkalinity, carbonate, and bicarbonate. Additionally, the following field constituents were determined in the water samples: temperature, specific conductance, pH, dissolved oxygen, and fecal streptococcus and fecal coliform bacteria. Chemical changes in swine waste as it leaches and migrates through the saturated zone were examined by comparing median values and ranges of water- quality data from farm wastewater in lagoons, shallow pond, shallow monitoring wells, and deeper farm supply wells. The effects of hydrogeologic settings and swine farmland uses on shallow ground-water quality were examined by comparing the shallow ground-water-quality data set with the results of the chemical analyses of water from the Upper Floridan aquifer, and to land uses adjacent to the monitoring wells. Substantial differences occur between the quality of diluted swine waste in the wastewater lagoons, and that of the water quality found in the shallow pond, and the ground water frm all but two of the monitoring wells of the four swine farms. The liquid from the wastewater lagoons and ground water from two wells adjacent to and down the regional gradient from a lagoon on one site, have relatively high values for the following properties and constituents: specific conductance, dissolved ammonia nitrogen, dissolved potassium, and dissolved chloride. Ground water from all other monitoring wells and farm supply wells and the surface water pond, have relatively much lower values for the same properties and constituents. To determine the relation between land uses and ground-water quality on the four swine farms, ground-water-quality data were divided according to the following land uses: confined operations in which swine are kept in houses and not allowed to roam freely, and unconfined operations in which swine are allowed to roam freely in determined areas. Confined operations had lagoons to receive the diluted swine wastes washed from the houses.
Pandith, Madhnure; Malpe, D B; Rao, A D; Rao, P N
2016-02-01
Seasonal variations in groundwater reveal lesser concentrations of major ions except NO3(-) during post-monsoon seasons in shallow aquifers as compared to deeper aquifers. The F(-) concentration from deeper aquifers is high in both seasons and shows a moderate positive relationship with weathering depth and is >5 mg/L in compound lava flow. Groundwater is mainly a Ca-HCO3 type in shallow aquifers and mixed type in deeper aquifers. Fluoride shows a positive correlation with pH, Na(+), HCO3(-) in shallow aquifers and an inverse correlation with Ca(2+) and HCO3(-) from deeper aquifers in both seasons. Approximately 45% of the samples are not suitable for drinking from both aquifers but suitable for irrigation purposes. Rock-water interaction, moderate alkalinity, sluggish movement, and higher residence time are the main causes for high F(-) in deeper aquifers as compared to shallow aquifers. As recommendations, drinking water requirement may be met from shallow aquifers/surface water and fluoride rich groundwater for other purposes. Most effective defluoridation techniques like ion exchange and reverse osmosis may be adopted along with integrated fluorosis mitigation measures and rooftop rainwater harvesting. Supplementary calcium and phosphorous rich food should be provided to children and creating awareness about safe drinking water habits, side effects of high F(-), and NO3(-) rich groundwater, improving oral hygiene conditions are other measures.
Crone, Timothy J; Tolstoy, Maya; Gibson, James C; Mountain, Gregory
2017-01-01
Shallow water marine seismic surveys are necessary to understand a range of Earth processes in coastal environments, including those that represent major hazards to society such as earthquakes, tsunamis, and sea-level rise. Predicting the acoustic radiation of seismic sources in shallow water, which is required for compliance with regulations designed to limit impacts on protected marine species, is a significant challenge in this environment because of variable reflectivity due to local geology, and the susceptibility of relatively small bathymetric features to focus or shadow acoustic energy. We use data from the R/V Marcus G. Langseth's towed hydrophone streamer to estimate the acoustic radiation of the ship's seismic source during a large survey of the shallow shelf off the coast of New Jersey. We use the results to estimate the distances from the source to acoustic levels of regulatory significance, and use bathymetric data from the ship's multibeam system to explore the relationships between seafloor depth and slope and the measured acoustic radiation patterns. We demonstrate that existing models significantly overestimate mitigation radii, but that the variability of received levels in shallow water suggest that in situ real-time measurements would help improve these estimates, and that post-cruise revisions of received levels are valuable in accurately determining the potential acoustic impact of a seismic survey.
Computed narrow-band azimuthal time-reversing array retrofocusing in shallow water.
Dungan, M R; Dowling, D R
2001-10-01
The process of acoustic time reversal sends sound waves back to their point of origin in reciprocal acoustic environments even when the acoustic environment is unknown. The properties of the time-reversed field commonly depend on the frequency of the original signal, the characteristics of the acoustic environment, and the configuration of the time-reversing transducer array (TRA). In particular, vertical TRAs are predicted to produce horizontally confined foci in environments containing random volume refraction. This article validates and extends this prediction to shallow water environments via monochromatic Monte Carlo propagation simulations (based on parabolic equation computations using RAM). The computational results determine the azimuthal extent of a TRA's retrofocus in shallow-water sound channels either having random bottom roughness or containing random internal-wave-induced sound speed fluctuations. In both cases, randomness in the environment may reduce the predicted azimuthal angular width of the vertical TRA retrofocus to as little as several degrees (compared to 360 degrees for uniform environments) for source-array ranges from 5 to 20 km at frequencies from 500 Hz to 2 kHz. For both types of randomness, power law scalings are found to collapse the calculated azimuthal retrofocus widths for shallow sources over a variety of acoustic frequencies, source-array ranges, water column depths, and random fluctuation amplitudes and correlation scales. Comparisons are made between retrofocusing on shallow and deep sources, and in strongly and mildly absorbing environments.
Mine-hunting dolphins of the Navy
NASA Astrophysics Data System (ADS)
Moore, Patrick W.
1997-07-01
Current counter-mine and obstacle avoidance technology is inadequate, and limits the Navy's capability to conduct shallow water (SW) and very shallow water (VSW) MCM in support of beach assaults by Marine Corps forces. Without information as to the location or density of mined beach areas, it must be assumed that if mines are present in one area then they are present in all areas. Marine mammal systems (MMS) are an unusual, effective and unique solution to current problems of mine and obstacle hunting. In the US Navy Mine Warfare Plan for 1994-1995 Marine Mammal Systems are explicitly identified as the Navy's only means of countering buried mines and the best means for dealing with close-tethered mines. The dolphins in these systems possess a biological sonar specifically adapted for their shallow and very shallow water habitat. Research has demonstrated that the dolphin biosonar outperforms any current hardware system available for SW and VSW applications. This presentation will cover current Fleet MCM systems and future technology application to the littoral region.
Late Archean rise of aerobic microbial ecosystems
Eigenbrode, Jennifer L.; Freeman, Katherine H.
2006-01-01
We report the 13C content of preserved organic carbon for a 150 million-year section of late Archean shallow and deepwater sediments of the Hamersley Province in Western Australia. We find a 13C enrichment of ≈10‰ in organic carbon of post-2.7-billion-year-old shallow-water carbonate rocks relative to deepwater sediments. The shallow-water organic-carbon 13C content has a 29‰ range in values (−57 to −28‰), and it contrasts with the less variable but strongly 13C-depleted (−40 to −45‰) organic carbon in deepwater sediments. The 13C enrichment likely represents microbial habitats not as strongly influenced by assimilation of methane or other 13C-depleted substrates. We propose that continued oxidation of shallow settings favored the expansion of aerobic ecosystems and respiring organisms, and, as a result, isotopic signatures of preserved organic carbon in shallow settings approached that of photosynthetic biomass. Facies analysis of published carbon-isotopic records indicates that the Hamersley shallow-water signal may be representative of a late Archean global signature and that it preceded a similar, but delayed, 13C enrichment of deepwater deposits. The data suggest that a global-scale expansion of oxygenated habitats accompanied the progression away from anaerobic ecosystems toward respiring microbial communities fueled by oxygenic photosynthesis before the oxygenation of the atmosphere after 2.45 billion years ago. PMID:17043234
NASA Astrophysics Data System (ADS)
Lauvernet, C.; Munoz-Carpena, R.; Carluer, N.
2012-04-01
Natural or introduced areas of vegetation, also known as vegetative filter strips (VFS), are a common environmental control practice to protect surface water bodies from human influence. In Europe, VFS are placed along the water network to protect from agrochemical drift during applications, in addition to runoff control. Their bottomland placement next to the streams often implies the presence of a seasonal shallow water table which can have a profound impact on the efficiency of the buffer zone (Lacas et al. 2005). A physically-based algorithm describing ponded infiltration into soils bounded by a water table, proposed by Salvucci and Enthekabi (1995), was further developed to simulate VFS dynamics by making it explicit in time, account for unsteady rainfall conditions, and by coupling to a numerical overland flow and transport model (VFSMOD) (Munoz-Carpena et al., submitted). In this study, we evaluate the importance of the presence of a shallow water table on filter efficiency (reductions in runoff, sediment and pesticide mass), in the context of all other input factors used to describe the system. Global sensitivity analysis (GSA) was used to rank the important input factors and the presence of interactions, as well as the contribution of the important factors to the output variance. GSA of VSFMOD modified for shallow water table was implemented on 2 sites selected in France because they represent different agro-pedo-climatic conditions for which we can compare the role of the factors influencing the performance of grassed buffer strips for surface runoff, sediment and pesticide removal. The first site at Morcille watershed in the Beaujolais wineyard (Rhône-Alpes) contains a very permeable sandy-clay with water table depth varying with the season (very deep in summer and shallow in winter), with a high slope (20 to 30%), and subject to strong seasonal storms (semi-continental, Mediterranean climate). The second site at La Jailliere (Loire-Atlantique, ARVALIS-Institut du Végétal, mainly wheat and maize) is a poorly permeable medium loamy over clay soil, with possible local shallow water tables, slopes around 3% and mild and rainy winter while summer is cool and wet (temperate, oceanic climate). GSA allowed us to interpret the results from the multivariate Monte-Carlo uncertainty analysis and gain insights on the management and placement of the buffer systems.
NASA Astrophysics Data System (ADS)
Fussi, Fabio; Di Leo, Margherita; Bonomi, Tullia; Di Mauro, Biagio; Fava, Francesco; Fumagalli, Letizia; Hamidou Kane, Cheikh; Faye, Gayane; Niang, Magatte; Wade, Souleye; Hamidou, Barry; Colombo, Roberto
2015-04-01
Water represents a vital resource for everyone on this Planet, but, for some populations, the access to potable water is not given for granted. Recently, the interest in low cost technical solutions to improve access to ground water in developing countries, especially for people located in remote areas, has increased. Manual drilling (techniques to drill boreholes for water using human or animal power) is well known and practiced for centuries in many countries and represents a valid alternative to increase water access. Lately, this practice has raised the attention of national governments and international organizations. This technique is applicable only where hydrogeological conditions are suitable, namely in presence of thick layers of unconsolidated sediments and a shallow water table Aim of this study is exploring the potential of morphometric analysis to improve the methodology to identify areas with suitable hydrogeological conditions for manual drilling, supporting the implementation of water supply programs that can have great impact on living condition of the population. The characteristics of shallow geological layers are strongly dependent from geomorphological processes and are usually reflected in the morphological characteristics of landforms. Under these hypotheses, we have been investigating the geo-statistical correlation between several morphometric variables and a set of hydrogeological variables used in the estimation of suitability for manual drilling: thickness of unconsolidated sediments, texture, hydraulic conductivity of shallow aquifer, depth of water table. The morphology of two study areas with different landscape characteristics in Guinea and Senegal has been investigated coupling the Free and Open Source Software GRASS GIS and R. Several morphometric parameters have been extracted from ASTER GDEM digital elevation model, and have been compared with a set of hydrogeological characteristics obtained from semi-automatic analysis of stratigraphic logs from water boreholes. We observed the relationships between the spatial distribution of hydrogeological features and the morphology, applying multivariate statistical analysis. The ultimate goal of this study is to infer hydrogeological information of shallow aquifers, exploiting morphometric parameters (together with other layers of information from existing thematic maps and remote sensing) and to reconstruct the geometry and the characteristic of shallow porous aquifer. This research is part of a larger project financed by NERC (National Environment Research Council, UK) in the framework of the program UPGRO (Unlocking the Potential of Groundwater for the Poors), with the collaboration of different partners from Italy, Senegal and Guinea
Hydrology of the shallow aquifer and uppermost semiconfined aquifer near El Paso, Texas
White, D.E.; Baker, E.T.; Sperka, Roger
1997-01-01
The reversal from upward to downward in vertical hydraulic gradient between the Rio Grande alluvium and the underlying Hueco bolson aquifer has induced shallow water in the alluvium to move downward into the deeper aquifer. The introduction of water from the alluvium probably has led to a gradual water-quality deterioration of ground water in the Hueco bolson aquifer. The extent of any deterioration is a major concern because the dissolved solids concentration in water from some wells is approaching 1,000 milligrams per liter and already has exceeded this limit in other wells.
NASA Astrophysics Data System (ADS)
Encinas Fernández, Jorge; Peeters, Frank; Hofmann, Hilmar
2016-10-01
Estimates of global methane (CH4) emissions from lakes and the contributions of different pathways are currently under debate. In situ methanogenesis linked to algae growth was recently suggested to be the major source of CH4 fluxes from aquatic systems. However, based on our very large data set on CH4 distributions within lakes, we demonstrate here that methane-enriched water from shallow water zones is the most likely source of the basin-wide mean CH4 concentrations in the surface water of lakes. Consistently, the mean surface CH4 concentrations are significantly correlated with the ratio between the surface area of the shallow water zone and the entire lake, fA,s/t, but not with the total surface area. The categorization of CH4 fluxes according to fA,s/t may therefore improve global estimates of CH4 emissions from lakes. Furthermore, CH4 concentrations increase substantially with water temperature, indicating that seasonally resolved data are required to accurately estimate annual CH4 emissions.
Bartos, Timothy T.; Quinn, Thomas L.; Hallberg, Laura L.; Eddy-Miller, Cheryl A.
2008-01-01
The quality of shallow ground water underlying unsewered low-density development outside of Sheridan and Lander, Wyo., and Red Lodge, Mont., was evaluated. In 2001, 29 wells (10 each in Sheridan and Lander and 9 in Red Lodge) were installed at or near the water table and sampled for a wide variety of constituents to identify potential effects of human activities on shallow ground-water quality resulting from development on the land surface. All wells were completed in unconfined aquifers in unconsolidated deposits of Quaternary age with shallow water tables (less than 50 feet below land surface). Land use and land cover was mapped in detail within a 500-meter radius surrounding each well, and potential contaminant sources were inventoried within the radii to identify human activities that may affect shallow ground-water quality. This U.S. Geological Survey National Water-Quality Assessment ground-water study was conducted to examine the effects of unsewered low-density development that often surrounds cities and towns of many different sizes in the western United States?a type of development that often is informally referred to as ?exurban? or ?rural ranchette? development. This type of development has both urban and rural characteristics. Residents in these developments typically rely on a private ground-water well for domestic water supply and a private septic system for sanitary waste disposal. Although the quality of shallow ground water generally was suitable for domestic or other uses without treatment, some inorganic constituents were detected infrequently in ground water in the three study areas at concentrations larger than U.S. Environmental Protection Agency drinking-water standards or proposed standards. Natural factors such as geology, aquifer properties, and ground-water recharge rates likely influence most concentrations of these constituents. These inorganic constituents generally occur naturally in the study areas and were more likely to limit suitability of water for drinking or other intended uses rather than any constituents suspected of being introduced as a result of human activities. Effects of human activities associated with low-density development, such as septic systems; fertilizer and pesticide use on pastures, lawns and gardens; manure from horses, cattle, and pets; and increases in road construction and vehicular traffic, were minimal at the time of sampling (2001) but were apparent in the presence of a few types of constituents in shallow ground water. Concentrations of nitrate generally were less than a national background level (1.1 milligrams per liter) assumed to indicate effects from human activities. Total coliform bacteria were detected infrequently (in samples from three wells), and Escherichia coli were not detected in samples from a subset of wells. Trace concentrations of methylene blue active substances (ingredients in laundry detergents) were detected at concentrations slightly greater than laboratory reporting levels in samples from 11 wells, but it is unclear if the detections are indicative of natural sources or possible aquifer contamination from septic-tank effluent. Pesticides were detected in both the Sheridan and Lander, Wyo., study areas. Volatile organic compounds were detected very infrequently in all three study areas. Most pesticides and volatile organic compounds were found in water from a few wells in each study area, and commonly as mixtures. The primary exception to this generalization was the relatively widespread detection of the pesticide prometon at trace levels in the Sheridan and Lander study areas. Concentrations of pesticides and volatile organic compounds generally were small and always were smaller than applicable drinking-water standards. Detections of all constituents indicating possible human effects on shallow ground-water quality were consistent with overlying land use mapped during the study, and potential sources of contamination inventoried du
NASA Astrophysics Data System (ADS)
Carpena, Emmanuel; Jiménez, Luis O.; Arzuaga, Emmanuel; Fonseca, Sujeily; Reyes, Ernesto; Figueroa, Juan
2017-05-01
Improved benthic habitat mapping is needed to monitor coral reefs around the world and to assist coastal zones management programs. A fundamental challenge to remotely sensed mapping of coastal shallow waters is due to the significant disparity in the optical properties of the water column caused by the interaction between the coast and the sea. The objects to be classified have weak signals that interact with turbid waters that include sediments. In real scenarios, the absorption and backscattering coefficients are unknown with different sources of variability (river discharges and coastal interactions). Under normal circumstances, another unknown variable is the depth of shallow waters. This paper presents the development of algorithms for retrieving information and its application to the classification and mapping of objects under coastal shallow waters with different unknown concentrations of sediments. A mathematical model that simplifies the radiative transfer equation was used to quantify the interaction between the object of interest, the medium and the sensor. The retrieval of information requires the development of mathematical models and processing tools in the area of inversion, image reconstruction and classification of hyperspectral data. The algorithms developed were applied to one set of real hyperspectral imagery taken in a tank filled with water and TiO2 that emulates turbid coastal shallow waters. Tikhonov method of regularization was used in the inversion process to estimate the bottom albedo of the water tank using a priori information in the form of stored spectral signatures, previously measured, of objects of interest.
Erwin, R.M.
1996-01-01
Waterbirds (waterfowl, colonially nesting wading and seabirds, ospreys [Pandion haliaetus], and bald eagles [Haliaeetus leucocephalus]) and shorebirds (sandpipers, plovers, and relatives) may constitute a large fraction of the top level carnivore trophic component in many shallow-water areas of the mid-Atlantic region. The large biomass of many species (>1 kg body mass for the two raptors and some waterfowl) and enormous populations (e.g., >1 million shorebirds in late May in parts of Delaware Bay) reveal the importance of waterbirds as consumers and as linkages in nutrient flux in many shallow-water habitats. Salt and brackish marsh shallow-water habitats, including marsh pannes and tidal pools and creeks as well as constructed impoundments, are used intensively during most months of the year; in fall and winter, mostly by dabbling ducks, in spring and summer by migrant shorebirds and breeding colonial wading birds and seabirds. In adjacent estuaries, the intertidal flats and littoral zones of shallow embayments are heavily used by shorebirds, raptors, and colonial waterbirds in the May to September periods, with use by duck and geese heaviest from October to March. With the regional degradation of estuarine habitats and population declines of many species of waterbirds in the past 20 yr, some management recommendations relevant to shallow waters include: better protection, enhancement, and creation of small bay islands (small and isolated to preclude most mammalian predators) for nesting and brooding birds, especially colonial species; establishment of sanctuaries from human disturbance (e.g., boating, hunting) both in open water (waterfowl) and on land, better allocation of sandy dredged materials to augment islands or stabilize eroding islands; improvement in water management of existing impoundments to ensure good feeding, resting, and nesting opportunities for all the waterbirds, support for policies to preclude point and nonpoint source runoff of chemicals and nutrients to enable submerged aquatic vegetation to recover in many coastal bays; and improvement in environmental education concerning disturbance to wildlife for boaters and recreationists using the coastal zone.
Effects of depth and crayfish size on predation risk and foraging profitability of a lotic crayfish
Flinders, C.A.; Magoulick, D.D.
2007-01-01
We conducted field surveys and experiments to determine whether observed distributions of crayfish among habitats were influenced by differential resource availability, foraging profitability, and predation rates and whether these factors differed with crayfish size and habitat depth. We sampled available food resources (detritus and invertebrates) and shelter as rock substrate in deep (>50 cm) and shallow (<30 cm) habitats. We used an enclosure-exclosure experiment to examine the effects of water depth and crayfish size on crayfish biomass and survival, and to determine whether these factors affected silt accrual, algal abundance (chlorophyll a [chl a]), and detritus and invertebrate biomass (g ash-free dry mass) differently from enclosures without crayfish. We conducted tethering experiments to assess predation on small (13-17 mm carapace length [CL]) and large (23-30 mm CL) Orconectes marchandi and to determine whether predation rates differed with water depth. Invertebrate biomass was significantly greater in shallow water than in deep water, whereas detritus biomass did not differ significantly between depths. Cobble was significantly more abundant in shallow than in deep water. Depth and crayfish size had a significant interactive effect on change in size of enclosed crayfish when CL was used as a measure of size but not when biomass was used as a measure of size. CL of small crayfish increased significantly more in enclosures in shallow than in deep water, but CL of large crayfish changed very little at either depth. Silt, chl a, and detritus biomass were significantly lower on tiles in large- than in small- and no-crayfish enclosures, and invertebrate biomass was significantly lower in large- than in no-crayfish enclosures. Significantly more crayfish were consumed in deep than in shallow water regardless of crayfish size. Our results suggest that predation and resource availability might influence the depth distribution of small and large crayfish. Small crayfish grew faster in shallow habitats where they might have had a fitness advantage caused by high prey availability and reduced predation risk. Size-dependent reduction of silt by crayfish might influence benthic habitats where large crayfish are abundant. ?? 2007 by The North American Benthological Society.
Hansen, Cristi V.; Lanning-Rush, Jennifer L.; Ziegler, Andrew C.
2013-01-01
Beginning in the 1940s, the Wichita well field was developed in the Equus Beds aquifer in southwestern Harvey County and northwestern Sedgwick County to supply water to the city of Wichita. The decline of water levels in the aquifer was noted soon after the development of the Wichita well field began. Development of irrigation wells began in the 1960s. City and agricultural withdrawals led to substantial water-level declines. Water-level declines enhanced movement of brines from past oil and gas activities near Burrton, Kansas and enhanced movement of natural saline water from the Arkansas River into the well field area. Large chloride concentrations may limit use or require the treatment of water from the well field for irrigation or public supply. In 1993, the city of Wichita adopted the Integrated Local Water Supply Program (ILWSP) to ensure an adequate water supply for the city through 2050 and as part of its effort to effectively manage the part of the Equus Beds aquifer it uses. ILWSP uses several strategies to do this including the Equus Beds Aquifer Storage and Recovery (ASR) project. The purpose of the ASR project is to store water in the aquifer for later recovery and to help protect the aquifer from encroachment of a known oilfield brine plume near Burrton and saline water from the Arkansas River. As part of Wichita’s ASR permits, Wichita is prohibited from artificially recharging water into the aquifer in a Basin Storage area (BSA) grid cell if water levels in that cell are above the January 1940 water levels or are less than 10 feet below land surface. The map previously used for this purpose did not provide an accurate representation of the shallow water table. The revised predevelopment water-level altitude map of the shallow part of the aquifer is presented in this report. The city of Wichita’s ASR permits specify that the January 1993 water-level altitudes will be used as a lower baseline for regulating the withdrawal of artificial rechage credits from the Equus Beds aquifer by the city of Wichita. The 1993 water levels correspond to the lowest recorded levels and largest storage declines since 1940. Revised and new water-level maps of shallow and deep layers were developed to better represent the general condition of the aquifer. Only static water levels were used to better represent the general condition of the aquifer and comply with Wichita’s ASR permits. To ensure adequate data density, the January 1993 period was expanded to October 1992 through February 1993. Static 1993 water levels from the deep aquifer layer of the Equus Beds aquifer possibly could be used as the lower baseline for regulatory purposes. Previously, maps of water-level changes used to estimate the storage-volume changes included a combination of static (unaffected by pumping or nearby pumping) and stressed (affected by pumping or nearby pumping) water levels from wells. Some of these wells were open to the shallow aquifer layer and some were open to the deep aquifer layer of the Equus Beds aquifer. In this report, only static water levels in the shallow aquifer layer were used to determine storage-volume changes. The effects on average water-level and storage-volume change from the use of mixed, stressed water levels and a specific yield of 0.20 were compared to the use of static water levels in the shallow aquifer and a specific yield of 0.15. This comparison indicates that the change in specific yield causes storage-volume changes to decrease about 25 percent, whereas the use of static water levels in the shallow aquifer layer causes an increase of less than 4 percent. Use of a specific yield of 0.15 will result in substantial decreases in the amount of storage-volume change compared to those reported previously that were calculated using a specific yield of 0.20. Based on these revised water-level maps and computations, the overall decline and change in storage from predevelopment to 1993 represented a loss in storage of about 6 percent (-202,000 acre-feet) of the overall storage volume within the newly defined study area.
Nitrate in ground water and spring water near four dairy farms in North Florida, 1990-93
Andrews, W.J.
1994-01-01
Concentrations of nitrate and other selected water- quality characteristics were analyzed periodically for two years in water from 51 monitoring wells installed at four farms and in water discharging from three nearby springs along the Suwannee River in Lafayette and Suwannee Counties to examine the quality of ground water at these farms and the transport of nutrients in ground water to the nearby spring-fed Suwannee River: Ground water from shallow wells, which were completed in the top ten feet of the saturated zone in a surficial sandy aquifer and in the karstic Upper Floridan aquifer generally had the highest concentrations of nitrate, ranging from <.02 to 130 mg/L as nitrogen. Nitrate concentrations commonly exceeded the primary drinking water standard of 10 mg/L for nitrate as nitrogen in water from shallow wells, which tapped the top ten feet of the uppermost aquifers near waste-disposal areas such as wastewater lagoons and defoliated, intensive-use areas near milking barns. Upgradient from waste-disposal areas, concentrations of nitrate in ground water were commonly less than 1 mg/L as nitrogen. Water samples from deep wells (screened 20 feet deeper than shallow wells in these aquifers) generally had lower concentrations of nitrate (ranging from <0.02 to 84 mg/L) than water from shallow wells. Water samples from the three monitored springs (Blue, Telford, and Convict Springs) had nitrate concentrations ranging from 1.5 to 6.5 mg/L as nitrogen, which were higher than those typically occurring in water from upgradient wells at the monitored dairy farms or from back- ground wells sampled in the region. Analyses of nitrogen isotope ratios in nitrate indicated that leachate from animal wastes was the principal source of nitrate in ground water adjacent to waste-disposal areas at the monitored and unmonitored dairy farms. Leachate from a combi- nation of fertilizers, soils, and animal wastes appeared to be the source of nitrate in ground- water downgradient from pastures and wastewater spray fields at dairy farms and in water discharging from three nearby springs. Although denitrifying bacteria were present in counts sometimes exceeding 240,000 colonies/100mL in water from dairy-farm monitoring wells, ground water in the uppermost aquifers in Lafayette and Suwannee Counties generally contained too much oxygen for denitrification to remove nitrate from shallow ground water. Denitrification was more likely to occur in deeper ground water, which typically has lower dissolved oxygen concentrations.
Silicon chip integrated photonic sensors for biological and chemical sensing
NASA Astrophysics Data System (ADS)
Chakravarty, Swapnajit; Zou, Yi; Yan, Hai; Tang, Naimei; Chen, Ray T.
2016-03-01
We experimentally demonstrate applications of photonic crystal waveguide based devices for on-chip optical absorption spectroscopy for the detection of chemical warfare simulant, triethylphosphate as well as applications with photonic crystal microcavity devices in the detection of biomarkers for pancreatic cancer in patient serum and cadmium metal ions in heavy metal pollution sensing. At mid-infrared wavelengths, we experimentally demonstrate the higher sensitivity of photonic crystal based structures compared to other nanophotonic devices such as strip and slot waveguides with detection down to 10ppm triethylphosphate. We also detected 5ppb (parts per billion) of cadmium metal ions in water at near-infrared wavelengths using established techniques for the detection of specific probe-target biomarker conjugation chemistries.
New Er3+-doped phosphate glass for ion-exchanged waveguide amplifiers
NASA Astrophysics Data System (ADS)
Jiang, Shibin; Luo, Tao; Hwang, Bor-Chyuan; Nunzi Conti, Gualtiero; Myers, Michael J.; Rhonehouse, Daniel L.; Honkanen, Seppo; Peyghambarian, Nasser
1998-12-01
A new Er(superscript 3+)-doped phosphate glass exhibiting an excellent durability in both boiling water and NaNO(subscript 3) molten salt is developed. The ion-exchange process of this glass is investigated by treating glass samples in a variety of salt baths with various exposure times. A planar waveguide with one mode at 1.54 micrometers and three modes at 632.8 nm is demonstrated. The spectral properties of Er(superscript 3+) in this glass are characterized by measuring absorption and emission spectra and fluorescence lifetimes. The emission cross section of Er(superscript 3+) in this glass is calculated to be 0.76 X 10(superscript 20) cm(superscript 2) using McCumber theory.
A redox-stratified ocean 3.2 billion years ago
NASA Astrophysics Data System (ADS)
Satkoski, Aaron M.; Beukes, Nicolas J.; Li, Weiqiang; Beard, Brian L.; Johnson, Clark M.
2015-11-01
Before the Great Oxidation Event (GOE) 2.4-2.2 billion years ago it has been traditionally thought that oceanic water columns were uniformly anoxic due to a lack of oxygen-producing microorganisms. Recently, however, it has been proposed that transient oxygenation of shallow seawater occurred between 2.8 and 3.0 billion years ago. Here, we present a novel combination of stable Fe and radiogenic U-Th-Pb isotope data that demonstrate significant oxygen contents in the shallow oceans at 3.2 Ga, based on analysis of the Manzimnyama Banded Iron Formation (BIF), Fig Tree Group, South Africa. This unit is exceptional in that proximal, shallow-water and distal, deep-water facies are preserved. When compared to the distal, deep-water facies, the proximal samples show elevated U concentrations and moderately positive δ56Fe values, indicating vertical stratification in dissolved oxygen contents. Confirmation of oxidizing conditions using U abundances is robustly constrained using samples that have been closed to U and Pb mobility using U-Th-Pb geochronology. Although redox-sensitive elements have been commonly used in ancient rocks to infer redox conditions, post-depositional element mobility has been rarely tested, and U-Th-Pb geochronology can constrain open- or closed-system behavior. The U abundances and δ56Fe values of the Manzimnyama BIF suggest the proximal, shallow-water samples record precipitation under stronger oxidizing conditions compared to the distal deeper-water facies, which in turn indicates the existence of a discrete redox boundary between deep and shallow ocean waters at this time; this work, therefore, documents the oldest known preserved marine redox gradient in the rock record. The relative enrichment of O2 in the upper water column is likely due to the existence of oxygen-producing microorganisms such as cyanobacteria. These results provide a new approach for identifying free oxygen in Earth's ancient oceans, including confirming the age of redox proxies, and indicate that cyanobacteria evolved prior to 3.2 Ga.
Local feedback mechanisms of the shallow water region around the Maritime Continent
NASA Astrophysics Data System (ADS)
Xue, Pengfei; Eltahir, Elfatih A. B.; Malanotte-Rizzoli, Paola; Wei, Jun
2014-10-01
The focus of this study is the local-scale air-sea feedback mechanisms over the shallow shelf water region (water depth <200 m) of the Maritime Continent (MC). MC was selected as a pilot study site for its extensive shallow water coverage, geographic complexity, and importance in the global climate system. To identify the local-scale air-sea feedback processes, we ran numerical experiments with perturbed surface layer water temperature using a coupled ocean-atmosphere model and an uncoupled ocean model. By examining the responses of the coupled and uncoupled models to the water temperature perturbation, we identify that, at a local-scale, a negative feedback process through the coupled dynamics that tends to restore the SST from its perturbation could dominate the shallow water region of the MC at a short time scale of several days. The energy budget shows that 38% of initial perturbation-induced heat energy was adjusted through the air-sea feedback mechanisms within 2 weeks, of which 58% is directly transferred into the atmosphere by the adjustment of latent heat flux due to the evaporative cooling mechanism. The increased inputs of heat and moisture into the lower atmosphere then modifies its thermal structure and increases the formation of low-level clouds, which act as a shield preventing incoming solar radiation from reaching the sea surface, accounts for 38% of the total adjustment of surface heat fluxes, serving as the second mechanism for the negative feedback process. The adjustment of sensible heat flux and net longwave radiation play a secondary role. The response of the coupled system to the SST perturbation suggests a response time scale of the coupled feedback process of about 3-5 days. The two-way air-sea feedback tightly links the surface heat fluxes, clouds and SST, and can play an important role in regulating the short-term variability of the SST over the shallow shelf water regions.
Earthshots: Satellite images of environmental change – Lake Urmia, Iran
Adamson, Thomas
2015-01-01
The lake’s southern basin is shallower than its northern basin, so recent images show the water disappearing from the southern basin first. These Landsat images use the shortwave-infrared, near-infrared, and green wavelengths of light. Because water absorbs infrared light, water (dark blue to black) contrasts with the surrounding land areas. As the water becomes shallower, light is reflected off of the lakebed in shades of light blue. Lighter blue and bright areas immediately surrounding the lake are where the receding shoreline has exposed the lake bottom.
Underwater Sound Propagation from Marine Pile Driving.
Reyff, James A
2016-01-01
Pile driving occurs in a variety of nearshore environments that typically have very shallow-water depths. The propagation of pile-driving sound in water is complex, where sound is directly radiated from the pile as well as through the ground substrate. Piles driven in the ground near water bodies can produce considerable underwater sound energy. This paper presents examples of sound propagation through shallow-water environments. Some of these examples illustrate the substantial variation in sound amplitude over time that can be critical to understand when computing an acoustic-based safety zone for aquatic species.
Duwelius, R.F.; Greeman, T.K.
1989-01-01
Concentrations of dissolved inorganic substances in ground-water samples indicate that leachate from both landfills is reaching the shallow aquifers. The effect on deeper aquifers is small because of the predominance of horizontal ground-water flow and discharge to the streams. Increases in almost all dissolved constituents were observed in shallow wells that are screened beneath and downgradient from the landfills. Several analyses, especially those for bromide, dissolved solids, and ammonia, were useful in delineating the plume of leachate at both landfills.
Wu, Huawu; Li, Jing; Li, Xiao-Yan; He, Bin; Liu, Jinzhao; Jiang, Zhiyun; Zhang, Cicheng
2018-01-01
Understanding species-specific changes in water-use patterns under recent climate scenarios is necessary to predict accurately the responses of seasonally dry ecosystems to future climate. In this study, we conducted a precipitation manipulation experiment to investigate the changes in water-use patterns of two coexisting species (Achnatherum splendens and Allium tanguticum) to alterations in soil water content (SWC) resulting from increased and decreased rainfall treatments. The results showed that the leaf water potential (Ψ) of A. splendens and A. tanguticum responded to changes in shallow and middle SWC at both the control and treatment plots. However, A. splendens proportionally extracted water from the shallow soil layer (0-10cm) when it was available but shifted to absorbing deep soil water (30-60 cm) during drought. By contrast, the A. tanguticum did not differ significantly in uptake depth between treatment and control plots but entirely depended on water from shallow soil layers. The flexible water-use patterns of A.splendens may be a key factor facilitating its dominance and it better acclimates the recent climate change in the alpine grassland community around Qinghai Lake.
Li, Xiao-Yan; He, Bin; Liu, Jinzhao; Jiang, Zhiyun; Zhang, Cicheng
2018-01-01
Understanding species-specific changes in water-use patterns under recent climate scenarios is necessary to predict accurately the responses of seasonally dry ecosystems to future climate. In this study, we conducted a precipitation manipulation experiment to investigate the changes in water-use patterns of two coexisting species (Achnatherum splendens and Allium tanguticum) to alterations in soil water content (SWC) resulting from increased and decreased rainfall treatments. The results showed that the leaf water potential (Ψ) of A. splendens and A. tanguticum responded to changes in shallow and middle SWC at both the control and treatment plots. However, A. splendens proportionally extracted water from the shallow soil layer (0–10cm) when it was available but shifted to absorbing deep soil water (30–60 cm) during drought. By contrast, the A. tanguticum did not differ significantly in uptake depth between treatment and control plots but entirely depended on water from shallow soil layers. The flexible water-use patterns of A.splendens may be a key factor facilitating its dominance and it better acclimates the recent climate change in the alpine grassland community around Qinghai Lake. PMID:29677195
Bottom Backscattering Strengths Measured in Shallow and Deep Water
2017-01-18
basically the same experimental set up (Fig. 2-1) as the BBS experiments that form the basis of the shallow-water portion of this report1. Their dates...6 experiments in 5 distinct environments from 1993 to 2005. This report presents the BBS results from these experiments , as well as empirical fits...Test Operations…………………………………………………………..50 B Measured Bottom Backscattering Strengths…………………...……..50 7 CROSS- EXPERIMENT EPL-FIT VALUES (SHALLOW
2007-09-30
combined with measured sediment properties, to test the validity of sediment acoustic models , and in particular the poroelastic (Biot) model . Addressing...TERM GOALS 1. Development of accurate models for acoustic scattering from, penetration into, and propagation within shallow water ocean sediments...2. Development of reliable methods for modeling acoustic detection of buried objects at subcritical grazing angles. 3. Improving our
A faster numerical scheme for a coupled system modeling soil erosion and sediment transport
NASA Astrophysics Data System (ADS)
Le, M.-H.; Cordier, S.; Lucas, C.; Cerdan, O.
2015-02-01
Overland flow and soil erosion play an essential role in water quality and soil degradation. Such processes, involving the interactions between water flow and the bed sediment, are classically described by a well-established system coupling the shallow water equations and the Hairsine-Rose model. Numerical approximation of this coupled system requires advanced methods to preserve some important physical and mathematical properties; in particular, the steady states and the positivity of both water depth and sediment concentration. Recently, finite volume schemes based on Roe's solver have been proposed by Heng et al. (2009) and Kim et al. (2013) for one and two-dimensional problems. In their approach, an additional and artificial restriction on the time step is required to guarantee the positivity of sediment concentration. This artificial condition can lead the computation to be costly when dealing with very shallow flow and wet/dry fronts. The main result of this paper is to propose a new and faster scheme for which only the CFL condition of the shallow water equations is sufficient to preserve the positivity of sediment concentration. In addition, the numerical procedure of the erosion part can be used with any well-balanced and positivity preserving scheme of the shallow water equations. The proposed method is tested on classical benchmarks and also on a realistic configuration.
Removing sun glint from optical remote sensing images of shallow rivers
Overstreet, Brandon T.; Legleiter, Carl
2017-01-01
Sun glint is the specular reflection of light from the water surface, which often causes unusually bright pixel values that can dominate fluvial remote sensing imagery and obscure the water-leaving radiance signal of interest for mapping bathymetry, bottom type, or water column optical characteristics. Although sun glint is ubiquitous in fluvial remote sensing imagery, river-specific methods for removing sun glint are not yet available. We show that existing sun glint-removal methods developed for multispectral images of marine shallow water environments over-correct shallow portions of fluvial remote sensing imagery resulting in regions of unreliable data along channel margins. We build on existing marine glint-removal methods to develop a river-specific technique that removes sun glint from shallow areas of the channel without overcorrection by accounting for non-negligible water-leaving near-infrared radiance. This new sun glint-removal method can improve the accuracy of spectrally-based depth retrieval in cases where sun glint dominates the at-sensor radiance. For an example image of the gravel-bed Snake River, Wyoming, USA, observed-vs.-predicted R2 values for depth retrieval improved from 0.66 to 0.76 following sun glint removal. The methodology presented here is straightforward to implement and could be incorporated into image processing workflows for multispectral images that include a near-infrared band.
Wu, Huawu; Li, Xiao-Yan; Jiang, Zhiyun; Chen, Huiying; Zhang, Cicheng; Xiao, Xiong
2016-01-15
Plant water use patterns reflect the complex interactions between different functional types and environmental conditions in water-limited ecosystems. However, the mechanisms underlying the water use patterns of plants in the alpine desert of the Qinghai-Tibet Plateau remain poorly understood. This study investigated seasonal variations in the water sources of herbs (Carex moorcroftii, Astragalus adsurgens) and shrubs (Artemisia oxycephala, Hippophae rhamnoides) using stable oxygen-18 isotope methods. The results indicated that the native herbs (C. moorcroftii, A. adsurgens) and one of the shrubs (A. oxycephala) mainly relied on water from the shallow layer (0-30 cm) throughout the growing season, while the introduced shrub (H. rhamnoides) showed plasticity in switching between water from shallow and deep soil layers depending on soil water availability. All studied plants primarily depended on water from shallow soil layers early in the season. The differences of water use patterns between the introduced and native plants are closely linked with the range of active root zones when competing for water. Our findings will facilitate the mechanistic understanding of plant-soil-water relations in alpine desert ecosystems and provide information for screening introduced species for sand fixation. Copyright © 2015 Elsevier B.V. All rights reserved.
Microminiature optical waveguide structure and method for fabrication
Strand, O.T.; Deri, R.J.; Pocha, M.D.
1998-12-08
A method for manufacturing low-cost, nearly circular cross section waveguides comprises starting with a substrate material that a molten waveguide material can not wet or coat. A thin layer is deposited of an opposite material that the molten waveguide material will wet and is patterned to describe the desired surface-contact path pedestals for a waveguide. A waveguide material, e.g., polymer or doped silica, is deposited. A resist material is deposited and unwanted excess is removed to form pattern masks. The waveguide material is etched away to form waveguide precursors and the masks are removed. Heat is applied to reflow the waveguide precursors into near-circular cross-section waveguides that sit atop the pedestals. The waveguide material naturally forms nearly circular cross sections due to the surface tension effects. After cooling, the waveguides will maintain the round shape. If the width and length are the same, then spherical ball lenses are formed. Alternatively, the pedestals can be patterned to taper along their lengths on the surface of the substrate. This will cause the waveguides to assume a conical taper after reflowing by heat. 32 figs.
Microminiature optical waveguide structure and method for fabrication
Strand, Oliver T.; Deri, Robert J.; Pocha, Michael D.
1998-01-01
A method for manufacturing low-cost, nearly circular cross section waveguides comprises starting with a substrate material that a molten waveguide material can not wet or coat. A thin layer is deposited of an opposite material that the molten waveguide material will wet and is patterned to describe the desired surface-contact path pedestals for a waveguide. A waveguide material, e.g., polymer or doped silica, is deposited. A resist material is deposited and unwanted excess is removed to form pattern masks. The waveguide material is etched away to form waveguide precursors and the masks are removed. Heat is applied to reflow the waveguide precursors into near-circular cross-section waveguides that sit atop the pedestals. The waveguide material naturally forms nearly circular cross sections due to the surface tension effects. After cooling, the waveguides will maintain the round shape. If the width and length are the same, then spherical ball lenses are formed. Alternatively, the pedestals can be patterned to taper along their lengths on the surface of the substrate. This will cause the waveguides to assume a conical taper after reflowing by heat.
NASA Technical Reports Server (NTRS)
Miller, Richard L.; Belz, Mathias; DelCastillo, Carlos; Trzaska, Rick
2000-01-01
We evaluated the accuracy, sensitivity and precision of a multiple pathlength, liquid core waveguide (MPLCW) system for measuring colored dissolved organic matter (CDOM) absorption in the UV-visible spectral range (370-700 nm). The MPLCW has four optical paths (2.0, 9.8, 49.3, and 204 cm) coupled to a single Teflon AF sample cell. Water samples were obtained from inland, coastal and ocean waters ranging in salinity from 0 to 36 PSU. Reference solutions for the MPLCW were made having a refractive index of the sample. CDOM absorption coefficients, a(sub CDOM), and the slope of the log-linearized absorption spectra, S, were compared with values obtained using a dual-beam spectrophotometer. Absorption of phenol red secondary standards measured by the MPLCW at 558 nm were highly correlated with spectrophotometer values (r > 0.99) and showed a linear response across all four pathlengths. Values of a(sub CDOM) measured using the MPLCW were virtually identical to spectrophotometer values over a wide range of concentrations. The dynamic range of a(sub CDOM) for MPLCW measurements was 0.002 - 231.5/m. At low CDOM concentrations (a(sub 370) < 0.1/m) spectrophotometric a(sub CDOM) were slightly greater than MPLCW values and showed larger fluctuations at longer wavelengths due to limitations in instrument precision. In contrast, MPLCW spectra followed an exponential to 600 nm for all samples. The maximum deviation in replicate MPLCW spectra was less than 0.001 absorbance units. The portability, sampling, and optical characteristics of a MPLCW system provide significant enhancements for routine CDOM absorption measurements in a broad range of natural waters.
Method and apparatus for preventing cyclotron breakdown in partially evacuated waveguide
Moeller, Charles P.
1987-01-01
Cyclotron breakdown is prevented in a partially evacuated waveguide by providing a section of waveguide having an axial cut therein in order to apply a potential across the two halves of the waveguide. This section is positioned in the waveguide crossing the area of electron cyclotron resonance. The potential applied across the waveguide halves is used to deflect seed electrons into the wall of the waveguide in order to prevent ionization of gas molecules and creation of more electron ion pairs which would result in cyclotron breakdown. Support means is also disclosed for electrically isolating the waveguide halves and transition means is provided between the section of the waveguide with the axial cut and the solid waveguide at either end thereof.
Modelling Water Uptake Provides a New Perspective on Grass and Tree Coexistence
2015-01-01
Root biomass distributions have long been used to infer patterns of resource uptake. These patterns are used to understand plant growth, plant coexistence and water budgets. Root biomass, however, may be a poor indicator of resource uptake because large roots typically do not absorb water, fine roots do not absorb water from dry soils and roots of different species can be difficult to differentiate. In a sub-tropical savanna, Kruger Park, South Africa, we used a hydrologic tracer experiment to describe the abundance of active grass and tree roots across the soil profile. We then used this tracer data to parameterize a water movement model (Hydrus 1D). The model accounted for water availability and estimated grass and tree water uptake by depth over a growing season. Most root biomass was found in shallow soils (0–20 cm) and tracer data revealed that, within these shallow depths, half of active grass roots were in the top 12 cm while half of active tree roots were in the top 21 cm. However, because shallow soils provided roots with less water than deep soils (20–90 cm), the water movement model indicated that grass and tree water uptake was twice as deep as would be predicted from root biomass or tracer data alone: half of grass and tree water uptake occurred in the top 23 and 43 cm, respectively. Niche partitioning was also greater when estimated from water uptake rather than tracer uptake. Contrary to long-standing assumptions, shallow grass root distributions absorbed 32% less water than slightly deeper tree root distributions when grasses and trees were assumed to have equal water demands. Quantifying water uptake revealed deeper soil water uptake, greater niche partitioning and greater benefits of deep roots than would be estimated from root biomass or tracer uptake data alone. PMID:26633177
Kong, Deqing; Tsubokawa, Makoto
2015-07-27
We numerically analyzed the power-coupling characteristics between a high-index-contrast dielectric slot waveguide and a metal-insulator-metal (MIM) plasmonic slot waveguide as functions of structural parameters. Couplings due mainly to the transfer of evanescent components in two waveguides generated high transmission efficiencies of 62% when the slot widths of the two waveguides were the same and 73% when the waveguides were optimized by slightly different widths. The maximum transmission efficiency in the slot-to-slot coupling was about 10% higher than that in the coupling between a normal slab waveguide and an MIM waveguide. Large alignment tolerance of the slot-to-slot coupling was also proved. Moreover, a small gap inserted into the interface between two waveguides effectively enhances the transmission efficiency, as in the case of couplings between a normal slab waveguide and an MIM waveguide. In addition, couplings with very wideband transmissions over a wavelength region of a few hundred nanometers were validated.
NASA Astrophysics Data System (ADS)
Askri, Brahim; Ahmed, Abdelkader T.; Abichou, Tarek; Bouhlila, Rachida
2014-05-01
In southern Tunisia oases, waterlogging, salinity, and water shortage represent serious threats to the sustainability of irrigated agriculture. Understanding the interaction between these problems and their effects on root water uptake is fundamental for suggesting possible options of improving land and water productivity. In this study, HYDRUS-1D model was used in a plot of farmland located in the Fatnassa oasis to investigate the effects of waterlogging, salinity, and water shortage on the date palm water use. The model was calibrated and validated using experimental data of sap flow density of a date palm, soil hydraulic properties, water table depth, and amount of irrigation water. The comparison between predicted and observed data for date palm transpiration rates was acceptable indicating that the model could well estimate water consumption of this tree crop. Scenario simulations were performed with different water table depths, and salinities and frequencies of irrigation water. The results show that the impacts of water table depth and irrigation frequency vary according to the season. In summer, high irrigation frequency and shallow groundwater are needed to maintain high water content and low salinity of the root-zone and therefore to increase the date palm transpiration rates. However, these factors have no significant effect in winter. The results also reveal that irrigation water salinity has no significant effect under shallow saline groundwater.
Leal-Acosta, María Luisa; Shumilin, Evgueni; Mirlean, Nicolai; Delgadillo-Hinojosa, Francisco; Sánchez-Rodríguez, Ignacio
2013-02-01
The influence of hydrothermal venting activity on arsenic (As) and mercury (Hg) accumulation was investigated in the shallow-water marine ecosystem of Concepcion Bay in the western Gulf of California. Geochemical data indicate that the marine shallow-water hydrothermal system of the Mapachitos site is a source of As and Hg for the water, sediment and algae collected along a transect moving across the western region of the bay. Although a small proportion of As and Hg precipitates close to the hydrothermal vent, both elements remain largely in the dissolved fraction, spreading a long distance from the source. The brown seaweed Sargassum sinicola thriving near the area of hydrothermal venting accumulates large quantities of As (above 600 mg kg (-1)), surpassing its typical concentration in the genus Sargassum by an order of magnitude. In contrast to As, the seaweed does not significantly accumulate Hg.
Measurement and imaging of infragravity waves in sea ice using InSAR
NASA Astrophysics Data System (ADS)
Mahoney, Andrew R.; Dammann, Dyre O.; Johnson, Mark A.; Eicken, Hajo; Meyer, Franz J.
2016-06-01
Using short-temporal baseline interferometric synthetic aperture radar, we capture instantaneous images of a persistent field of infragravity waves propagating through sea ice near Barrow, Alaska, during January 2015. We estimate wave amplitudes to be between 1.2 and 1.8 mm. Curvature of wavefronts is consistent with refraction of waves entering shallow water from a source region north of Barrow. A shallow water wave model indicates that the geometry of the wavefronts is relatively insensitive to the source location, but other evidence suggests the waves may have originated in the North Atlantic, making this perhaps the longest observed propagation path for waves through ice. We also note that steepening of the waves entering shallow water can increase the peak strain by an order of magnitude, suggesting that infragravity waves may play a role in determining the location of the landfast ice edge with respect to water depth.
NASA Astrophysics Data System (ADS)
Siregar, V. P.; Agus, S. B.; Subarno, T.; Prabowo, N. W.
2018-05-01
The availability of satellite imagery with a variety of spatial resolution, both free access and commercial become as an option in utilizing the remote sensing technology. Variability of the water column is one of the factors affecting the interpretation results when mapping marine shallow waters. This study aimed to evaluate the influence of water column correction (depth-invariant index) on the accuracy of shallow water habitat classification results using OBIA. This study was conducted in North of Kepulauan Seribu, precisely in Harapan Island and its surrounding areas. Habitat class schemes were based on field observations, which were then used to build habitat classes on satellite imagery. The water column correction was applied to the three pairs of SPOT-7 multispectral bands, which were subsequently used in object-based classification. Satellite image classification was performed with four different approaches, namely (i) using DII transformed bands with single pair band input (B1B2), (ii) multi pairs bands (B1B2, B1B3, and B2B3), (iii) combination of multi pairs band and initial bands, and (iv) only using initial bands. The accuracy test results of the four inputs show the values of Overall Accuracy and Kappa Statistics, respectively 55.84 and 0.48; 68.53 and 0.64; 78.68 and 0.76; 77.66 and 0.74. It shows that the best results when using DII and initial band combination for shallow water benthic classification in this study site.
Pop Ristova, Petra; Pichler, Thomas; Friedrich, Michael W; Bühring, Solveig I
2017-01-01
Shallow-water hydrothermal systems represent extreme environments with unique biogeochemistry and high biological productivity, at which autotrophic microorganisms use both light and chemical energy for the production of biomass. Microbial communities of these ecosystems are metabolically diverse and possess the capacity to transform a large range of chemical compounds. Yet, little is known about their diversity or factors shaping their structure or how they compare to coastal sediments not impacted by hydrothermalism. To this end, we have used automated ribosomal intergenic spacer analysis (ARISA) and high-throughput Illumina sequencing combined with porewater geochemical analysis to investigate microbial communities along geochemical gradients in two shallow-water hydrothermal systems off the island of Dominica (Lesser Antilles). At both sites, venting of hydrothermal fluids substantially altered the porewater geochemistry by enriching it with silica, iron and dissolved inorganic carbon, resulting in island-like habitats with distinct biogeochemistry. The magnitude of fluid flow and difference in sediment grain size, which impedes mixing of the fluids with seawater, were correlated with the observed differences in the porewater geochemistry between the two sites. Concomitantly, individual sites harbored microbial communities with a significantly different community structure. These differences could be statistically linked to variations in the porewater geochemistry and the hydrothermal fluids. The two shallow-water hydrothermal systems of Dominica harbored bacterial communities with high taxonomical and metabolic diversity, predominated by heterotrophic microorganisms associated with the Gammaproteobacterial genera Pseudomonas and Pseudoalteromonas , indicating the importance of heterotrophic processes. Overall, this study shows that shallow-water hydrothermal systems contribute substantially to the biogeochemical heterogeneity and bacterial diversity of coastal sediments.
NASA Astrophysics Data System (ADS)
Blakely, Christopher D.
This dissertation thesis has three main goals: (1) To explore the anatomy of meshless collocation approximation methods that have recently gained attention in the numerical analysis community; (2) Numerically demonstrate why the meshless collocation method should clearly become an attractive alternative to standard finite-element methods due to the simplicity of its implementation and its high-order convergence properties; (3) Propose a meshless collocation method for large scale computational geophysical fluid dynamics models. We provide numerical verification and validation of the meshless collocation scheme applied to the rotational shallow-water equations on the sphere and demonstrate computationally that the proposed model can compete with existing high performance methods for approximating the shallow-water equations such as the SEAM (spectral-element atmospheric model) developed at NCAR. A detailed analysis of the parallel implementation of the model, along with the introduction of parallel algorithmic routines for the high-performance simulation of the model will be given. We analyze the programming and computational aspects of the model using Fortran 90 and the message passing interface (mpi) library along with software and hardware specifications and performance tests. Details from many aspects of the implementation in regards to performance, optimization, and stabilization will be given. In order to verify the mathematical correctness of the algorithms presented and to validate the performance of the meshless collocation shallow-water model, we conclude the thesis with numerical experiments on some standardized test cases for the shallow-water equations on the sphere using the proposed method.
Pop Ristova, Petra; Pichler, Thomas; Friedrich, Michael W.; Bühring, Solveig I.
2017-01-01
Shallow-water hydrothermal systems represent extreme environments with unique biogeochemistry and high biological productivity, at which autotrophic microorganisms use both light and chemical energy for the production of biomass. Microbial communities of these ecosystems are metabolically diverse and possess the capacity to transform a large range of chemical compounds. Yet, little is known about their diversity or factors shaping their structure or how they compare to coastal sediments not impacted by hydrothermalism. To this end, we have used automated ribosomal intergenic spacer analysis (ARISA) and high-throughput Illumina sequencing combined with porewater geochemical analysis to investigate microbial communities along geochemical gradients in two shallow-water hydrothermal systems off the island of Dominica (Lesser Antilles). At both sites, venting of hydrothermal fluids substantially altered the porewater geochemistry by enriching it with silica, iron and dissolved inorganic carbon, resulting in island-like habitats with distinct biogeochemistry. The magnitude of fluid flow and difference in sediment grain size, which impedes mixing of the fluids with seawater, were correlated with the observed differences in the porewater geochemistry between the two sites. Concomitantly, individual sites harbored microbial communities with a significantly different community structure. These differences could be statistically linked to variations in the porewater geochemistry and the hydrothermal fluids. The two shallow-water hydrothermal systems of Dominica harbored bacterial communities with high taxonomical and metabolic diversity, predominated by heterotrophic microorganisms associated with the Gammaproteobacterial genera Pseudomonas and Pseudoalteromonas, indicating the importance of heterotrophic processes. Overall, this study shows that shallow-water hydrothermal systems contribute substantially to the biogeochemical heterogeneity and bacterial diversity of coastal sediments. PMID:29255454
The Fish Assemblage of a Newfoundland Estuary: Diel, Monthly and Annual Variation
NASA Astrophysics Data System (ADS)
Methven, D. A.; Haedrich, R. L.; Rose, G. A.
2001-06-01
Twice monthly sampling over two 16 month periods at a shallow site on Newfoundland's east coast showed the fish assemblage to be dominated by four taxa ( Gasterosteus aculeatus, G. wheatlandi, Osmerus mordax, Gadus spp.) that accounted for 96% of the individuals collected. Of the 16 479 fish measured, 65% were adults based on the estimated size of first spawning. The fish assemblage was dominated (86%) by species with demersal eggs, several of which spawn at the same shallow sites used by juveniles as nursery sites. Coastal spawning and demersal eggs maintain offspring in coastal nursery areas where survival is thought to be increased. Number of species and number of fish were both correlated with water temperature being highest from mid-summer to early autumn and lowest in winter. Temperature, time of spawning, and movements of juveniles and adults facilitated grouping species into five assemblages based on seasonal abundance: seasonal periodic species (summer and winter), regular species, regular species collected in all seasons except winter, and occasional (rare) species. At the diel scale, two consistent species groupings were observed: species that showed no significant difference between day and night and species caught primarily at night. Number of night species exceeded day species by a factor of two. No seine-caught species in shallow water exhibited significantly higher catches during the day. Observations by SCUBA divers indicated some species were more abundant during day time at slightly deeper depths. This observation in conjunction with day and night seining in shallower water, suggests these species aggregate in deeper water during day and move to shallow waters at night.
Slotted Polyimide-Aerogel-Filled-Waveguide Arrays
NASA Technical Reports Server (NTRS)
Rodriguez-Solis, Rafael A.; Pacheco, Hector L.; Miranda, Felix A.; Meador, Mary Ann B.
2013-01-01
Polyimide aerogels were considered to serve as a filling for millimeter-wave waveguides. While these waveguides present a slightly higher loss than hollow waveguides, they have less losses than Duroid substrate integrated waveguides (less than 0.15 dB at Ka-band, in a 20 mm section), and exhibit an order of magnitude of mass reduction when compared to commercial waveguides. A Ka-band slotted aerogel-filled-waveguide array was designed, which provided the same gain (9 dBi) as its standard waveguide counterpart, and a slotted aerogel-filled-waveguide array using folded-slots was designed for comparison, obtaining a gain of 9 dB and a bandwidth of 590 MHz.
Competition and evolution of dielectric waveguide mode and plasmonic waveguide mode
NASA Astrophysics Data System (ADS)
Yuan, Sheng-Nan; Fang, Yun-Tuan
2017-10-01
In order to study the coupling and evolution law of the waveguide mode and two plasmonic surface modes, we construct a line defect waveguide based on hexagonal honeycomb plasmonic photonic crystal. Through adjusting the radius of the edge dielectric rods, the competition and evolution behaviors occur between dielectric waveguide mode and plasmonic waveguide mode. There are three status: only plasmonic waveguide modes occur for rA < 0.09a; only dielectric waveguide modes occur for rA > 0.25a; two kinds of modes coexist for 0.09a < rA < 0.25a. The plasmonic waveguide mode has advantages in achieving slow light.
46 CFR 199.630 - Alternatives for passenger vessels in a specified service.
Code of Federal Regulations, 2010 CFR
2010-10-01
... applies if the vessel operates in shallow water not more than 3 miles from shore where the vessel cannot sink deep enough to submerge the topmost deck. 5 Alternative applies if the vessel operates on... requirements for survival craft in § 199.201(b) if the vessel operates— (1) On a route that is in shallow water...
Bottom-Interating Ocean Acoustics. Proceedings of a Conference held at SACLANTCEN on 9-13 June 1980.
1980-07-15
scattering by John H. Hanrahan (M) 11 Some bottom-reflection loss anomalies near grazing and their effect on propagation in shallow water by Ole F. Hastrup (Q...SACLANTCEN CP-27 11 SOME BOTTOM-REFLECTION LOSS ANOMALIES NEAR GRAZING AND THEIR EFFECT ON PROPAGATION IN SHALLOW WATER by Ole F. Hastrup SACLANT ASW
NASA Astrophysics Data System (ADS)
Taylor, James S., Jr.; Davis, P. S.; Wolff, Lawrence B.
2003-09-01
Research has shown that naturally occurring light outdoors and underwater is partially linearly polarized. The polarized components can be combined to form an image that describes the polarization of the light in the scene. This image is known as the degree of linear polarization (DOLP) image or partial polarization image. These naturally occurring polarization signatures can provide a diver or an unmanned underwater vehicle (UUV) with more information to detect, classify, and identify threats such as obstacles and/or mines in the shallow water environment. The SHallow water Real-time IMaging Polarimeter (SHRIMP), recently developed under sponsorship of Dr. Tom Swean at the Office of Naval Research (Code 321OE), can measure underwater partial polarization imagery. This sensor is a passive, three-channel device that simultaneously measures the three components of the Stokes vector needed to determine the partial linear polarization of the scene. The testing of this sensor has been completed and the data has been analyzed. This paper presents performance results from the field-testing and quantifies the gain provided by the partial polarization signature of targets in the Very Shallow Water (VSW) and Surf Zone (SZ) regions.
Ground-water flow and quality in Wisconsin's shallow aquifer system
Kammerer, P.A.
1995-01-01
In terms of chemical quality, the water is suitable for potable supply and most other uses, but objectionable hardness in large areas and concen- trations of iron and manganese that exceed State drinking-water standards cause aesthetic problems that may require treatment of the water for some uses. Concentrations of major dissolved constitu- ents (calcium, magnesium, and bicarbonate), hard- ness, alkalinity, and dissolved solids are highest where the bedrock component of the aquifer is dolo- mite and lowest where the shallow aquifer is almost entirely sand and gravel. Concentrations of other minor constituents (sodium, potassium, sulfate, chloride, and fluoride) are less closely related to common minerals that compose the aquifer system. Sulfate and fluoride concentrations exceed State drinking-water standards locally. Extreme variability in concentrations of iron and manganese are common locally. Iron and manganese concentra- tions exceed State drinking-water standards in water from one-third and one-quarter of the wells, respectively. Likely causes of nitrate-nitrogen con- centrations that exceed State drinking-water stan- dards include local contamination from plant fertilizers, animal wastes, waste water disposed of on land, and septic systems. Water quality in the shallow aquifer system has been affected by saline water from underlying aquifers, primarily along the eastern and western boundaries of the State where the thickness of Paleozoic rocks is greatest.
Ockerman, Darwin J.
2002-01-01
Five streamflow gain-loss measurement surveys were made along lower San Pedro Creek and the San Antonio River from Mitchell Street to South Loop 410 east of Kelly Air Force Base in San Antonio, Texas, during May–October 1999. All of the measurements were made during dry periods, when stormwater runoff was not occurring and effects of possible bank storage were minimized. San Pedro Creek and the San Antonio River were divided into six subreaches, and streamflow measurements were made simultaneously at the boundaries of these subreaches so that streamflow gains or losses and estimates of inflow from or outflow to shallow ground water could be quantified for each subreach. There are two possible sources of ground-water inflow to lower San Pedro Creek and the San Antonio River east of Kelly Air Force Base. One source is direct inflow of shallow ground water into the streams. The other source is ground water that enters tributaries that flow into the San Antonio River. The estimated mean direct inflow of ground water to the combined San Pedro Creek and San Antonio River study reach was 3.0 cubic feet per second or 1.9 million gallons per day. The mean tributary inflow of ground water was estimated to be 1.9 cubic feet per second or 1.2 million gallons per day. The total estimated inflow of shallow ground water was 4.9 cubic feet per second or 3.2 million gallons per day. The amount of inflow from springs and seeps (estimated by observation) is much less than the amount of direct ground-water inflow estimated from the gain-loss measurements. Therefore, the presence of springs and seeps might not be a reliable indicator of the source of shallow ground water entering the river. Most of the shallow ground water that enters the San Antonio River from tributary inflow enters from the west side, through Concepcion Creek, inflows near Riverside Golf Course, and Six-Mile Creek.
Cahoon, D.R.; Marin, P.E.; Black, B.K.; Lynch, J.C.
2000-01-01
High-resolution measures of vertical accretion, elevation, and compaction of shallow-water sediments are fundamental to understanding the processes that control elevation change and the mechanisms of progradation (e.g., development of mudflats and intertidal wetlands) in coastal systems. Yet, measurements of elevation by traditional survey methods often are of low accuracy because of the compressible nature of the substrates. Nor do they provide measures of vertical accretion or sediment compaction. This paper evaluates the use in shallow-water systems of an approach designed to measure these variables in vegetated wetlands. The approach employs simultaneous measures of elevation from temporary benchmarks using a sedimentation-erosion table (SET) and vertical accretion from marker horizons with sediment cores collected with a cryogenic coring apparatus. The measures are made with a level of resolution sufficient to distinguish between the influence of surface and subsurface processes on elevation, thus providing quantitative estimates of shallow subsidence. The SET-marker horizon approach was evaluated on a developing splay created by an artificial crevasse of a distributary in the Mississippi River delta. The approach provided high-resolution measures of vertical accretion (48.3 ' 2.0 cm.) and elevation (36.7 ' 1.6 cm) over a 4-year period, with the difference between the two indicating the amount of shallow subsidence. In addition, by laying new marker horizons in later years, the approach provided rates not only of shallow subsidence (3.9 ' 0.5 cm y-1) but also compaction of newly deposited seiments (2.1 ' 0.6 cm y-1) and compaction of underlying sediments (1.8 ' 2.0 cm y-1 ) over a two-year period. Hence, the SET-marker horizon approach has widespread applicability in both emergent wetland and shallow water environments for providing high resolution measures of the processes controlling elevation change.
Székács, Inna; Kaszás, Nóra; Gróf, Pál; Erdélyi, Katalin; Szendrő, István; Mihalik, Balázs; Pataki, Ágnes; Antoni, Ferenc A.; Madarász, Emilia
2013-01-01
Optical waveguide lightmode spectroscopic (OWLS) techniques were probed for monitoring ion permeation through channels incorporated into artificial lipid environment. A novel sensor set-up was developed by depositing liposomes or cell-derived membrane fragments onto hydrophilic polytetrafluoroethylene (PTFE) membrane. The fibrous material of PTFE membrane could entrap lipoid vesicles and the water-filled pores provided environment for the hydrophilic domains of lipid-embedded proteins. The sensor surface was kept clean from the lipid holder PTFE membrane by a water- and ion-permeable polyethylene terephthalate (PET) mesh. The sensor set-up was tested with egg yolk lecithin liposomes containing gramicidin ion channels and with cell-derived membrane fragments enriched in GABA-gated anion channels. The method allowed monitoring the move of Na+ and organic cations through gramicidin channels and detecting the Cl–-channel functions of the (α5β2γ2) GABAA receptor in the presence or absence of GABA and the competitive GABA-blocker bicuculline. PMID:24339925
Squillace, P.J.; Zogorski, J.S.; Wilber, W.G.; Price, C.V.
1996-01-01
The 1990 Clean Air Act Amendments require fuel oxygenates to be added to gasoline used in some metropolitan areas to reduce atmospheric concentrations of carbon monoxide or ozone. Methyl tert-butyl ether (MTBE) is the most commonly used fuel oxygenate and is a relatively new gasoline additive. Nevertheless, out of 60 volatile organic chemicals analyzed, MTBE was the second most frequently detected chemical in samples of shallow ambient groundwater from urban areas that were collected during 1993-1994 aspart of the U.S. Geological Survey's National Water-Quality Assessment program. Samples were collected from five drinking water wells, 12 springs, and 193 monitoring wells in urban areas. No MTBE was detected in drinking water wells. At a reporting level of 0.2 ??g/L, MTBE was detected most frequently in shallow groundwater from urban areas (27% of 210 wells and springs sampled in eight areas) as compared to shallow groundwater from agricultural areas (1.3% of 549 wells sampled in 21 areas) or deeper groundwater from major aquifers (1.0% of 412 wells sampled in nine areas). Only 3% of the shallow wells sampled in urban areas had concentrations of MTBE that exceed 20 ??g/L, which is the estimated lower limit of the United States Environmental Protection Agency draft drinking water health advisory. Because MTBE is persistent and mobile in groundwater, it can move from shallow to deeper aquifers with time. In shallow urban groundwater, MTBE generally was not found with benzene, toluene, ethylbenzene, or xylene (BTEX) compounds, which commonly are associated with gasoline spills. This disassociation causes uncertainty as to the source of MTBE. Possible sources of MTBE in groundwater include point sources, such as leaking storage tanks, and non-point sources, such as recharge of precipitation and stormwater runoff.
Using a conformal water bolus to adjust heating patterns of microwave waveguide applicators
NASA Astrophysics Data System (ADS)
Stauffer, Paul R.; Rodrigues, Dario B.; Sinahon, Randolf; Sbarro, Lyndsey; Beckhoff, Valeria; Hurwitz, Mark D.
2017-02-01
Background: Hyperthermia, i.e., raising tissue temperature to 40-45°C for 60 min, has been demonstrated to increase the effectiveness of radiation and chemotherapy for cancer. Although multi-element conformal heat applicators are under development to provide more adjustable heating of contoured anatomy, to date the most often used applicator to heat superficial disease is the simple microwave waveguide. With only a single power input, the operator must be resourceful to adjust heat treatment to accommodate variable size and shape tumors spreading across contoured anatomy. Methods: We used multiphysics simulation software that couples electromagnetic, thermal and fluid dynamics physics to simulate heating patterns in superficial tumors from commercially available microwave waveguide applicators. Temperature distributions were calculated inside homogenous muscle and layered skin-fat-muscle-tumor-bone tissue loads for a typical range of applicator coupling configurations and size of waterbolus. Variable thickness waterbolus was simulated as necessary to accommodate contoured anatomy. Physical models of several treatment configurations were constructed for comparison of simulation results with experimental specific absorption rate (SAR) measurements in homogenous muscle phantom. Results: Accuracy of the simulation model was confirmed with experimental SAR measurements of three unique applicator setups. Simulations demonstrated the ability to generate a wide range of power deposition patterns with commercially available waveguide antennas by controllably varying size and thickness of the waterbolus layer. Conclusion: Heating characteristics of 915 MHz waveguide antennas can be varied over a wide range by controlled adjustment of microwave power, coupling configuration, and waterbolus lateral size and thickness. The uniformity of thermal dose delivered to superficial tumors can be improved by cyclic switching of waterbolus thickness during treatment to proactively shift heat peaks and nulls around under the aperture, thereby reducing patient pain while increasing minimum thermal dose by end of treatment.
Goetz, Daniel B.; Kroger, Robert; Miranda, Leandro E.
2014-01-01
The smallmouth buffalo Ictiobus bubalus is a native benthivore to floodplain lakes in the Yazoo River Basin, USA. Based on evidence from other benthivorous fish studies we hypothesized high biomasses of I. bubalus contribute to poor water quality conditions. We tested this hypothesis in shallow (< 1.5 m) 0.05 ha earthen ponds at three stocking biomasses over a 10-week period during the summer of 2012. The most notable results from the permutational multivariate analysis of variance suggest I. bubalus at high and moderate biomasses significantly (p < 0.05) enhanced turbidity and suspended solid levels while decreasing Secchi depth. Our results suggest that effects of I. bubalus on water clarity may have considerable ecological implications in natural habitats such as shallow floodplain lakes.
Effects of wind waves on horizontal array performance in shallow-water conditions
NASA Astrophysics Data System (ADS)
Zavol'skii, N. A.; Malekhanov, A. I.; Raevskii, M. A.; Smirnov, A. V.
2017-09-01
We analyze the influence of statistical effects of the propagation of an acoustic signal excited by a tone source in a shallow-water channel with a rough sea surface on the efficiency of a horizontal phased array. As the array characteristics, we consider the angular function of the array response for a given direction to the source and the coefficient of amplification of the signal-to-noise ratio (array gain). Numerical simulation was conducted in to the winter hydrological conditions of the Barents Sea in a wide range of parameters determining the spatial signal coherence. The results show the main physical effects of the influence of wind waves on the array characteristics and make it possible to quantitatively predict the efficiency of a large horizontal array in realistic shallow-water channels.
Threshold sensitivity of shallow Arctic lakes and sublake permafrost to changing winter climate
Arp, Christopher D.; Jones, Benjamin M.; Grosse, Guido; Bondurant, Allen C.; Romanovksy, Vladimir E.; Hinkel, Kenneth M.; Parsekian, Andrew D.
2016-01-01
Interactions and feedbacks between abundant surface waters and permafrost fundamentally shape lowland Arctic landscapes. Sublake permafrost is maintained when the maximum ice thickness (MIT) exceeds lake depth and mean annual bed temperatures (MABTs) remain below freezing. However, declining MIT since the 1970s is likely causing talik development below shallow lakes. Here we show high-temperature sensitivity to winter ice growth at the water-sediment interface of shallow lakes based on year-round lake sensor data. Empirical model experiments suggest that shallow (1 m depth) lakes have warmed substantially over the last 30 years (2.4°C), with MABT above freezing 5 of the last 7 years. This is in comparison to slower rates of warming in deeper (3 m) lakes (0.9°C), with already well-developed taliks. Our findings indicate that permafrost below shallow lakes has already begun crossing a critical thawing threshold approximately 70 years prior to predicted terrestrial permafrost thaw in northern Alaska.
2014-01-01
Background The identification of the mechanisms of adaptation of protein structures to extreme environmental conditions is a challenging task of structural biology. We performed molecular dynamics (MD) simulations of the Nip7 protein involved in RNA processing from the shallow-water (P. furiosus) and the deep-water (P. abyssi) marine hyperthermophylic archaea at different temperatures (300 and 373 K) and pressures (0.1, 50 and 100 MPa). The aim was to disclose similarities and differences between the deep- and shallow-sea protein models at different temperatures and pressures. Results The current results demonstrate that the 3D models of the two proteins at all the examined values of pressures and temperatures are compact, stable and similar to the known crystal structure of the P. abyssi Nip7. The structural deviations and fluctuations in the polypeptide chain during the MD simulations were the most pronounced in the loop regions, their magnitude being larger for the C-terminal domain in both proteins. A number of highly mobile segments the protein globule presumably involved in protein-protein interactions were identified. Regions of the polypeptide chain with significant difference in conformational dynamics between the deep- and shallow-water proteins were identified. Conclusions The results of our analysis demonstrated that in the examined ranges of temperatures and pressures, increase in temperature has a stronger effect on change in the dynamic properties of the protein globule than the increase in pressure. The conformational changes of both the deep- and shallow-sea protein models under increasing temperature and pressure are non-uniform. Our current results indicate that amino acid substitutions between shallow- and deep-water proteins only slightly affect overall stability of two proteins. Rather, they may affect the interactions of the Nip7 protein with its protein or RNA partners. PMID:25315147
On the transition towards slow manifold in shallow-water and 3D Euler equations in a rotating frame
NASA Technical Reports Server (NTRS)
Mahalov, A.
1994-01-01
The long-time, asymptotic state of rotating homogeneous shallow-water equations is investigated. Our analysis is based on long-time averaged rotating shallow-water equations describing interactions of large-scale, horizontal, two-dimensional motions with surface inertial-gravity waves field for a shallow, uniformly rotating fluid layer. These equations are obtained in two steps: first by introducing a Poincare/Kelvin linear propagator directly into classical shallow-water equations, then by averaging. The averaged equations describe interaction of wave fields with large-scale motions on time scales long compared to the time scale 1/f(sub o) introduced by rotation (f(sub o)/2-angular velocity of background rotation). The present analysis is similar to the one presented by Waleffe (1991) for 3D Euler equations in a rotating frame. However, since three-wave interactions in rotating shallow-water equations are forbidden, the final equations describing the asymptotic state are simplified considerably. Special emphasis is given to a new conservation law found in the asymptotic state and decoupling of the dynamics of the divergence free part of the velocity field. The possible rising of a decoupled dynamics in the asymptotic state is also investigated for homogeneous turbulence subjected to a background rotation. In our analysis we use long-time expansion, where the velocity field is decomposed into the 'slow manifold' part (the manifold which is unaffected by the linear 'rapid' effects of rotation or the inertial waves) and a formal 3D disturbance. We derive the physical space version of the long-time averaged equations and consider an invariant, basis-free derivation. This formulation can be used to generalize Waleffe's (1991) helical decomposition to viscous inhomogeneous flows (e.g. problems in cylindrical geometry with no-slip boundary conditions on the cylinder surface and homogeneous in the vertical direction).
Squillace, P.T.; Zogorski, J.S.; Wilber, W.G.; Price, C.V.
1997-01-01
The 1990 Clean Air Act Amendments require fuel oxygenates to be added to gasoline used in some metropolitan areas to reduce atmospheric concentrations of carbon monoxide or ozone. Methyl tert-butyl ether (MTBE), is the most commonly used fuel oxygenate and is a relatively new gasoline additive. Nevertheless, out of 60 volatile organic chemicals analyzed, MTBE was the second most frequently detected chemical in samples of shallow ambient groundwater from urban areas that were collected during 1993-94 as part of the U.S. Geological Survey's National Water-Quality Assessment Program. Samples were collected from 5 drinking-water wells, 12 springs, and 1g3 monitoring wells in urban areas. No MTBE was detected in drinking-water wells. At a reporting level of 0.2 ??g/L, MTBE was detected most frequently in shallow groundwater from urban areas (27% of 210 wells and springs sampled in 8 areas) as compared to shallow groundwater from agricultural areas (1.3% of 549 wells sampled in 21 areas) or deeper groundwater from major aquifers (1.0% of 412 wells sampled in 9 areas). Only 3% of the shallow wells sampled in urban areas had concentrations of MTBE that exceed 20 ??g/L, which is the estimated lower limit of the United States Environmental Protection Agency draft lifetime drinking water health advisory. Because MTBE is persistent and mobile in groundwater) it can move from shallow to deeper aquifers with time. In shallow urban groundwater, MTBE generally was not found with benzene, toluene, ethylbenzene, or xylenes (BTEX) compounds which commonly are associated with gasoline spills. This disassociation causes uncertainty as to the source of MTBE. Possible sources of MTBE in groundwater include point sources, such as leaking storage tanks, and nonpoint sources, such as recharge of precipitation and storm-water runoff.
Goldrath, Dara A.; Kulongoski, Justin T.; Davis, Tracy A.
2016-09-01
Groundwater quality in the 3,016-square-mile Monterey–Salinas Shallow Aquifer study unit was investigated by the U.S. Geological Survey (USGS) from October 2012 to May 2013 as part of the California State Water Resources Control Board Groundwater Ambient Monitoring and Assessment (GAMA) Program’s Priority Basin Project. The GAMA Monterey–Salinas Shallow Aquifer study was designed to provide a spatially unbiased assessment of untreated-groundwater quality in the shallow-aquifer systems in parts of Monterey and San Luis Obispo Counties and to facilitate statistically consistent comparisons of untreated-groundwater quality throughout California. The shallow-aquifer system in the Monterey–Salinas Shallow Aquifer study unit was defined as those parts of the aquifer system shallower than the perforated depth intervals of public-supply wells, which generally corresponds to the part of the aquifer system used by domestic wells. Groundwater quality in the shallow aquifers can differ from the quality in the deeper water-bearing zones; shallow groundwater can be more vulnerable to surficial contamination.Samples were collected from 170 sites that were selected by using a spatially distributed, randomized grid-based method. The study unit was divided into 4 study areas, each study area was divided into grid cells, and 1 well was sampled in each of the 100 grid cells (grid wells). The grid wells were domestic wells or wells with screen depths similar to those in nearby domestic wells. A greater spatial density of data was achieved in 2 of the study areas by dividing grid cells in those study areas into subcells, and in 70 subcells, samples were collected from exterior faucets at sites where there were domestic wells or wells with screen depths similar to those in nearby domestic wells (shallow-well tap sites).Field water-quality indicators (dissolved oxygen, water temperature, pH, and specific conductance) were measured, and samples for analysis of inorganic constituents (trace elements, nutrients, major and minor ions, silica, total dissolved solids, and alkalinity) were collected at all 170 sites. In addition to these constituents, the samples from grid wells were analyzed for organic constituents (volatile organic compounds, pesticides and pesticide degradates), constituents of special interest (perchlorate and N-nitrosodimethylamine, or NDMA), radioactive constituents (radon-222 and gross-alpha and gross-beta radioactivity), and geochemical and age-dating tracers (stable isotopes of carbon in dissolved inorganic carbon, carbon-14 abundances, stable isotopes of hydrogen and oxygen in water, and tritium activities).Three types of quality-control samples (blanks, replicates, and matrix spikes) were collected at up to 11 percent of the wells in the Monterey–Salinas Shallow Aquifer study unit, and the results for these samples were used to evaluate the quality of the data from the groundwater samples. With the exception of trace elements, blanks rarely contained detectable concentrations of any constituent, indicating that contamination from sample-collection procedures was not a significant source of bias in the data for the groundwater samples. Low concentrations of some trace elements were detected in blanks; therefore, the data were re-censored at higher reporting levels. Replicate samples generally were within the limits of acceptable analytical reproducibility. The median values of matrix-spike recoveries were within the acceptable range (70 to 130 percent) for the volatile organic compounds (VOCs) and N-nitrosodimethylamine (NDMA), but were only approximately 64 percent for pesticides and pesticide degradates.The sample-collection protocols used in this study were designed to obtain representative samples of groundwater. The quality of groundwater can differ from the quality of drinking water because water chemistry can change as a result of contact with plumbing systems or the atmosphere; because of treatment, disinfection, or blending with water from other sources; or some combination of these. Water quality in domestic wells is not regulated in California, however, to provide context for the water-quality data presented in this report, results were compared to benchmarks established for drinking-water quality. The primary comparison benchmarks were maximum contaminant levels established by the U.S. Environmental Protection Agency and the State of California (MCL-US and MCL-CA, respectively). Non-regulatory benchmarks were used for constituents without maximum contaminant levels (MCLs), including Health Based Screening Levels (HBSLs) developed by the USGS and State of California secondary maximum contaminant levels (SMCL-CA) and notification levels. Most constituents detected in samples from the Monterey–Salinas Shallow Aquifer study unit had concentrations less than their respective benchmarks.Of the 148 organic constituents analyzed in the 100 grid-well samples, 38 were detected, and all concentrations were less than the benchmarks. Volatile organic compounds were detected in 26 of the grid wells, and pesticides and pesticide degradates were detected in 28 grid wells. The special-interest constituent NDMA was detected above the HBSL in three samples, one of which also had a perchlorate concentration greater than the MCL-CA.Of the inorganic constituents, 6 were detected at concentrations above their respective MCL benchmarks in grid-well samples: arsenic (5 grid wells above the MCL of 10 micrograms per liter, μg/L), selenium (3 grid wells, MCL of 50 μg/L), uranium (4 grid wells, MCL of 30 μg/L), nitrate (16 grid wells, MCL of 10 milligrams per liter, mg/L), adjusted gross alpha particle activity (10 grid wells, MCL of 15 picocuries per liter, pCi/L), and gross beta particle activity (1 grid well, MCL of 50 pCi/L). An additional 4 inorganic constituents were detected at concentrations above their respective HBSL benchmarks in grid-well samples: boron (1 grid well above the HBSL of 6,000 μg/L), manganese (8 grid wells, HBSL of 300 μg/L), molybdenum (6 grid wells, HBSL of 40 μg/L), and strontium (6 grid wells, HBSL of 4,000 μg/L). Of the inorganic constituents, 4 were detected at concentrations above their non-health based SMCL benchmarks in grid-well samples: iron (9 grid wells above the SMCL of 300 μg/L), chloride (7 grid wells, SMCL of 500 mg/L), sulfate (14 grid wells, SMCL of 500 mg/L), and total dissolved solids (27 grid wells, SMCL of 1,000 mg/L).Of the inorganic constituents analyzed in the 70 shallow-well tap sites, 10 were detected at concentrations above the benchmarks. Of the inorganic constituents, 3 were detected at concentrations above their respective MCL benchmarks in shallow-well tap sites: arsenic (2 shallow-well tap sites above the MCL of 10 μg/L), uranium (2 shallow-well tap sites, MCL of 30 μg/L), and nitrate (24 shallow-well tap sites, MCL of 10 mg/L). An additional 3 inorganic constituents were detected above their respective HBSL benchmarks in shallow-well tap sites: manganese (4 shallow-well tap sites above the HBSL of 300 μg/L), molybdenum (4 shallow-well tap sites, HBSL of 40 μg/L), and zinc (2 shallow-well tap sites, HBSL of 2,000 μg/L). Of the inorganic constituents, 4 were detected at concentrations above their non-health based SMCL benchmarks in shallow-well tap sites: iron (6 shallow-well tap sites above the SMCL of 300 μg/L), chloride (1 shallow-well tap site, SMCL of 500 mg/L), sulfate (9 shallow-well tap sites, SMCL of 500 mg/L), and total dissolved solids (15 shallow-well tap sites, SMCL of 1,000 mg/L).
Moreland, Joe A.; Wood, Wayne A.
1982-01-01
Water-level and water-quality data were collected from monitoring wells at wastewater-treatment facilities in Glacier National Park. Five additional shallow observation wells were installed at the Glacier Park Headquarters facility to monitor water quality in the shallow ground-water system.Water-level, water-quality, and geologic information indicate that some of the initial monitoring wells are not ideally located to sample ground water most likely to be affected by waste disposal at the sites. Small differences in chemical characteristics between samples from monitor wells indicate that effluent may be affecting ground-water quality but that impacts are not significant.Future monitoring of ground-water quality could be limited to selected wells most likely to be impacted by percolating effluent. Laboratory analyses for common ions could detect future impacts.
Linear shoaling of free-surface waves in multi-layer non-hydrostatic models
NASA Astrophysics Data System (ADS)
Bai, Yefei; Cheung, Kwok Fai
2018-01-01
The capability to describe shoaling over sloping bottom is fundamental to modeling of coastal wave transformation. The linear shoaling gradient provides a metric to measure this property in non-hydrostatic models with layer-integrated formulations. The governing equations in Boussinesq form facilitate derivation of the linear shoaling gradient, which is in the form of a [ 2 P + 2 , 2 P ] expansion of the water depth parameter kd with P equal to 1 for a one-layer model and (4 N - 4) for an N-layer model. The expansion reproduces the analytical solution from Airy wave theory at the shallow water limit and maintains a reasonable approximation up to kd = 1.2 and 2 for the one and two-layer models. Additional layers provide rapid and monotonic convergence of the shoaling gradient into deep water. Numerical experiments of wave propagation over a plane slope illustrate manifestation of the shoaling errors through the transformation processes from deep to shallow water. Even though outside the zone of active wave transformation, shoaling errors from deep to intermediate water are cumulative to produce appreciable impact to the wave amplitude in shallow water.
Multicore runup simulation by under water avalanche using two-layer 1D shallow water equations
NASA Astrophysics Data System (ADS)
Bagustara, B. A. R. H.; Simanjuntak, C. A.; Gunawan, P. H.
2018-03-01
The increasing of layers in shallow water equations (SWE) produces more dynamic model than the one-layer SWE model. The two-layer 1D SWE model has different density for each layer. This model becomes more dynamic and natural, for instance in the ocean, the density of water will decreasing from the bottom to the surface. Here, the source-centered hydro-static reconstruction (SCHR) numerical scheme will be used to approximate the solution of two-layer 1D SWE model, since this scheme is proved to satisfy the mathematical properties for shallow water equation. Additionally in this paper, the algorithm of SCHR is adapted to the multicore architecture. The simulation of runup by under water avalanche is elaborated here. The results show that the runup is depend on the ratio of density of each layers. Moreover by using grid sizes Nx = 8000, the speedup and efficiency by 2 threads are obtained 1.74779 times and 87.3896 % respectively. Nevertheless, by 4 threads the speedup and efficiency are obtained 2.93132 times and 73.2830 % respectively by similar number of grid sizes Nx = 8000.
Experiments in water spreading at Newark, Delaware
Boggess, Durward Haye; Rima, Donald Robert
1962-01-01
Two experiments in water spreading were made at Newark, Del., to evaluate the prospects of using excess storm runoff to recharge the shallow water-table aquifer which serves the community. Water was diverted from 1 of the city's 3 production wells and released into an infiltration ditch near the municipal well field. Although slightly more than 65,000 cubic feet of water (nearly 500,000 gallons ) was spread in the infiltration ditch and allowed to seep into the subsurface, there was no indication that any appreciable amount of water reached the producing aquifer. Instead, a perched zone of saturation was created by the presence of an impermeable or slightly permeable bed above the water table. So effective is this barrier to the downward movement of water that within a period of less than 1 day, the apex of the perched zone rose about 10 feet to the level of the bottom of the infiltration ditch. As more water was added, the mound of saturation spread laterally. On the basis of these experiments, it appears that the principal aquifer at Newark, Del., would not be benefited by spreading water in shallow infiltration ditches or basins. However, the absorptive capacity of the unsaturated materials which occur at a shallow depth, is sufficient to permit the disposal of large volumes of storm runoff.
Li, Jintao; Khodahemmati, Sara; Wang, Minglian; Wang, Yangjunqi; Zhao, Lijiao; Jia, Runqing; Chen, Su
2018-01-01
Objective The incidence of the upper gastrointestinal tumor has increased rapidly during recent decades. The relationship between local water pollution and the tumor is still not much clear, so this study was conducted to further investigate the local water pollution and its influence on the malignant cell transformation. Prevalence of human papillomavirus (HPV) in local esophageal cancer (EC) patients was also analyzed in Shenqiu County for the first time. Methods Two-step cell transformation was used to study different sources of water in the malignant cell transformation, and the existence of 3-methylcholanthrene (3-MC) in water was analyzed from the river and shallow and deep wells. HPV DNA in tissue samples of EC patients was detected by polymerase chain reaction (PCR) and HPV diagnostic kit. Results The river water has higher cytotoxicity than the shallow well water and induced significant cell malignant transformation, while deep well water has not shown the malignant cell transformation. In Huaihe River water, the 3-MC concentration was found higher than shallow and deep wells. An HPV infection rate was found high in patients with esophageal cancer. Conclusion Long-term consumption of polluted water can induce malignant cell transformation, and the presence of HPV may be an important cause of cancer. PMID:29853858
Waveguide-mode polarization gaps in square spiral photonic crystals
NASA Astrophysics Data System (ADS)
Liu, Rong-Juan; John, Sajeev; Li, Zhi-Yuan
2015-09-01
We designed waveguide channels in two types of square spiral photonic crystals. Wide polarization gaps, in which only one circular polarization wave is allowed while the other counter-direction circular polarization wave is forbidden, can be opened up on the waveguide modes within the fundamental photonic band gap according to the calculation of band structures and transmission spectra. This phenomenon is ascribed to the chirality of the waveguide and is independent of the chirality of the background photonic crystal. Moreover, the transmission spectra show a good one-way property of the waveguide channels. The chiral quality factor demonstrates the handedness of the allowed and impeded chiral waveguide modes, and further proved the property of the waveguide-mode polarization gap. Such waveguides with waveguide-mode polarization gap are a good candidate for one-way waveguides with robust backscattering-immune transport.
NASA Technical Reports Server (NTRS)
Simons, Rainee N. (Inventor); Wintucky, Edwin G. (Inventor)
2016-01-01
A multimode directional coupler is provided. In some embodiments, the multimode directional coupler is configured to receive a primary signal and a secondary signal at a first port of a primary waveguide. The primary signal is configured to propagate through the primary waveguide and be outputted at a second port of the primary waveguide. The multimode directional coupler also includes a secondary waveguide configured to couple the secondary signal from the primary waveguide with no coupling of the primary signal into the secondary waveguide. The secondary signal is configured to propagate through the secondary waveguide and be outputted from a port of the secondary waveguide.
Soldatova, Evgeniya; Sun, Zhanxue; Maier, Sofya; Drebot, Valeriia; Gao, Bai
2018-03-24
Owing to their accessibility, shallow groundwater is an essential source of drinking water in rural areas while usually being used without control by authorities. At the same time, this type of water resource is one of the most vulnerable to pollution, especially in regions with extensive agricultural activity. These factors increase the probability of adverse health effects in the population as a result of the consumption of shallow groundwater. In the present research, shallow groundwater quality in the agricultural areas of Poyang Lake basin was assessed according to world and national standards for drinking water quality. To evaluate non-cancer health risk from drinking groundwater, the hazard quotient from exposure to individual chemicals and hazard index from exposure to multiple chemicals were applied. It was found that, in shallow groundwater, the concentrations of 11 components (NO 3 - , NH 4 + , Fe, Mn, As, Al, rare NO 2 - , Se, Hg, Tl and Pb) exceed the limits referenced in the standards for drinking water. According to the health risk assessment, only five components (NO 3 - , Fe, As, rare NO 2 - and Mn) likely provoke non-cancer effects. The attempt to evaluate the spatial distribution of human health risk from exposure to multiple chemicals shows that the most vulnerable area is associated with territory characterised by low altitude where reducing or near-neutral conditions are formed (lower reaches of Xiushui and Ganjiang Rivers). The largest health risk is associated with the immune system and adverse dermal effects.
Tolstoy, Maya; Gibson, James C.; Mountain, Gregory
2017-01-01
Shallow water marine seismic surveys are necessary to understand a range of Earth processes in coastal environments, including those that represent major hazards to society such as earthquakes, tsunamis, and sea-level rise. Predicting the acoustic radiation of seismic sources in shallow water, which is required for compliance with regulations designed to limit impacts on protected marine species, is a significant challenge in this environment because of variable reflectivity due to local geology, and the susceptibility of relatively small bathymetric features to focus or shadow acoustic energy. We use data from the R/V Marcus G. Langseth’s towed hydrophone streamer to estimate the acoustic radiation of the ship’s seismic source during a large survey of the shallow shelf off the coast of New Jersey. We use the results to estimate the distances from the source to acoustic levels of regulatory significance, and use bathymetric data from the ship’s multibeam system to explore the relationships between seafloor depth and slope and the measured acoustic radiation patterns. We demonstrate that existing models significantly overestimate mitigation radii, but that the variability of received levels in shallow water suggest that in situ real-time measurements would help improve these estimates, and that post-cruise revisions of received levels are valuable in accurately determining the potential acoustic impact of a seismic survey. PMID:28800634
Microfluidic Extraction of Biomarkers using Water as Solvent
NASA Technical Reports Server (NTRS)
Amashukeli, Xenia; Manohara, Harish; Chattopadhyay, Goutam; Mehdi, Imran
2009-01-01
A proposed device, denoted a miniature microfluidic biomarker extractor (mu-EX), would extract trace amounts of chemicals of interest from samples, such as soils and rocks. Traditionally, such extractions are performed on a large scale with hazardous organic solvents; each solvent capable of dissolving only those molecules lying within narrow ranges of specific chemical and physical characteristics that notably include volatility, electric charge, and polarity. In contrast, in the mu-EX, extractions could be performed by use of small amounts (typically between 0.1 and 100 L) of water as a universal solvent. As a rule of thumb, in order to enable solvation and extraction of molecules, it is necessary to use solvents that have polarity sufficiently close to the polarity of the target molecules. The mu-EX would make selection of specific organic solvents unnecessary, because mu-EX would exploit a unique property of liquid water: the possibility of tuning its polarity to match the polarity of organic solvents appropriate for extraction of molecules of interest. The change of the permittivity of water would be achieved by exploiting interactions between the translational states of water molecules and an imposed electromagnetic field in the frequency range of 300 to 600 GHz. On a molecular level, these interactions would result in disruption of the three-dimensional hydrogen-bonding network among liquid-water molecules and subsequent solvation and hydrolysis of target molecules. The mu-EX is expected to be an efficient means of hydrolyzing chemical bonds in complex macromolecules as well and, thus, enabling analysis of the building blocks of these complex chemical systems. The mu-EX device would include a microfluidic channel, part of which would lie within a waveguide coupled to an electronically tuned source of broad-band electromagnetic radiation in the frequency range from 300 to 600 GHz (see figure). The part of the microfluidic channel lying in the waveguide would constitute an interaction volume. The dimensions of the interaction volume would be chosen in accordance with the anticipated amount of solid sample material needed to ensure extraction of sufficient amount of target molecules for detection and analysis. By means that were not specified at the time of reporting the information for this article, the solid sample material would be placed in the interaction volume. Then the electromagnetic field would be imposed within the waveguide and water would be pumped through the interaction volume to effect the extraction.
Photonic Waveguide Choke Joint with Absorptive Loading
NASA Technical Reports Server (NTRS)
Wollack, Edward J. (Inventor); U-Yen, Kongpop (Inventor); Chuss, David T. (Inventor)
2016-01-01
A photonic waveguide choke includes a first waveguide flange member having periodic metal tiling pillars, a dissipative dielectric material positioned within an area between the periodic metal tiling pillars and a second waveguide flange member disposed to be coupled with the first waveguide flange member and in spaced-apart relationship separated by a gap. The first waveguide flange member has a substantially smooth surface, and the second waveguide flange member has an array of two-dimensional pillar structures formed therein.
Revisiting the anisotropy of metamaterials for water waves
NASA Astrophysics Data System (ADS)
Maurel, A.; Marigo, J.-J.; Cobelli, P.; Petitjeans, P.; Pagneux, V.
2017-10-01
We establish, both theoretically and experimentally, that metamaterials for water waves reach a much higher degree of anisotropy than the one predicted using the analogy between water waves and their electromagnetic or acoustic counterparts. This is due to the fact that this analogy, based on the two-dimensional shallow water approximation, is unable to account for the three-dimensional near field effects in the water depth. To properly capture these effects, we homogenize the fully three-dimensional problem and show that a subwavelength layered structuration of the bathymetry produces significant anisotropic parameters in the shallow water regime. Furthermore, we extend the validity of the homogenized prediction by proposing an empirical anisotropic version of the dispersion relation.
Major determinants of the biogeographic pattern of the shallow-sea fauna
NASA Technical Reports Server (NTRS)
Valentine, J. W.; Jablonski, D.
1982-01-01
The benthic shallow-sea is defined as the region of sea floor lying between the supralittoral zone at the shoreline and the impingement of the thermocline separating a warm shallow and variable portion of the water column from rather homogeneous and constant cooler waters beneath. Three types of shallow-sea provinces can be recognized: (1) one-dimensional, linear shelves; (2) two-dimensional shelves; and (3) scattered islands in two-dimensional arrays. Dispersal powers of marine invertebrates vary with developmental mode, and patterns of dispersal, endemism and speciation vary among the different provincial types. Invertebrate developmental modes vary systematically with geography, and presumably are adaptive to environmental conditions. Clades with only a single mode of development tend to be restricted to regions appropriate to that mode, significantly affecting their biogeographic patterns. The consequences of geographic and other environmental changes are reviewed.
Gerling, Alexandra B; Browne, Richard G; Gantzer, Paul A; Mobley, Mark H; Little, John C; Carey, Cayelan C
2014-12-15
Controlling hypolimnetic hypoxia is a key goal of water quality management. Hypoxic conditions can trigger the release of reduced metals and nutrients from lake sediments, resulting in taste and odor problems as well as nuisance algal blooms. In deep lakes and reservoirs, hypolimnetic oxygenation has emerged as a viable solution for combating hypoxia. In shallow lakes, however, it is difficult to add oxygen into the hypolimnion efficiently, and a poorly designed hypolimnetic oxygenation system could potentially result in higher turbidity, weakened thermal stratification, and warming of the sediments. As a result, little is known about the viability of hypolimnetic oxygenation in shallow bodies of water. Here, we present the results from recent successful tests of side stream supersaturation (SSS), a type of hypolimnetic oxygenation system, in a shallow reservoir and compare it to previous side stream deployments. We investigated the sensitivity of Falling Creek Reservoir, a shallow (Zmax = 9.3 m) drinking water reservoir located in Vinton, Virginia, USA, to SSS operation. We found that the SSS system increased hypolimnetic dissolved oxygen concentrations at a rate of ∼1 mg/L/week without weakening stratification or warming the sediments. Moreover, the SSS system suppressed the release of reduced iron and manganese, and likely phosphorus, from the sediments. In summary, SSS systems hold great promise for controlling hypolimnetic oxygen conditions in shallow lakes and reservoirs. Copyright © 2014 Elsevier Ltd. All rights reserved.
Acoustic one-way mode conversion and transmission by sonic crystal waveguides
NASA Astrophysics Data System (ADS)
Ouyang, Shiliang; He, Hailong; He, Zhaojian; Deng, Ke; Zhao, Heping
2016-09-01
We proposed a scheme to achieve one-way acoustic propagation and even-odd mode switching in two mutually perpendicular sonic crystal waveguides connected by a resonant cavity. The even mode in the entrance waveguide is able to switch to the odd mode in the exit waveguide through a symmetry match between the cavity resonant modes and the waveguide modes. Conversely, the odd mode in the exit waveguide is unable to be converted into the even mode in the entrance waveguide as incident waves and eigenmodes are mismatched in their symmetries at the waveguide exit. This one-way mechanism can be applied to design an acoustic diode for acoustic integration devices and can be used as a convertor of the acoustic waveguide modes.
GIS analysis of available data to identify regions in the U.S. where shallow ground water supplies are particularly vulnerable to contamination by releases of biofuels from underground storage tanks. In this slide presentation, GIS was used to perform a simple numerical and ...
Sound Speed and Attenuation in Multiphase Media
2007-09-30
Number: N00014-04-1-0164 LONG-TERM GOALS One research goal developed from conducted shallow water (SW) acoustic transmission experiments in...code 1 only 14. ABSTRACT One research goal developed from conducted shallow water (SW) acoustic transmission experiments in sandy-silty areas [1...propagation code, such as Kraken [11], or with a poroelastic -parabolic-equation code, Ram, [ 12,13 ] with a depth dependent profiles and frequency
1982-10-01
AKAL, T. , FIORI, S. , HASTRUP , O.F. transmission loss data for some SACLANTCEN SR-33, NATO CONFIDENTIAL. Research Centre, 1979. [AC C 950 788...different shallow-water areas with theoretical results provided by a three-fluid normal-mode propagation model. In: HASTRUP , O.F. and OLESEN, O.V. eds
NASA Astrophysics Data System (ADS)
Marras, Simone; Suckale, Jenny; Giraldo, Francis X.; Constantinescu, Emil
2016-04-01
We present the solution of the viscous shallow water equations where viscosity is built as a residual-based subgrid scale model originally designed for large eddy simulation of compressible [1] and stratified flows [2]. The necessity of viscosity for a shallow water model not only finds motivation from mathematical analysis [3], but is supported by physical reasoning as can be seen by an analysis of the energetics of the solution. We simulated the flow of an idealized wave as it hits a set of obstacles. The kinetic energy spectrum of this flow shows that, although the inviscid Galerkin solutions -by spectral elements and discontinuous Galerkin [4]- preserve numerical stability in spite of the spurious oscillations in the proximity of the wave fronts, the slope of the energy cascade deviates from the theoretically expected values. We show that only a sufficiently small amount of dynamically adaptive viscosity removes the unwanted high-frequency modes while preserving the overall sharpness of the solution. In addition, it yields a physically plausible energy decay. This work is motivated by a larger interest in the application of a shallow water model to the solution of tsunami triggered coastal flows. In particular, coastal flows in regions around the world where coastal parks made of mitigation hills of different sizes and configurations are considered as a means to deviate the power of the incoming wave. References [1] M. Nazarov and J. Hoffman (2013) "Residual-based artificial viscosity for simulation of turbulent compressible flow using adaptive finite element methods" Int. J. Numer. Methods Fluids, 71:339-357 [2] S. Marras, M. Nazarov, F. X. Giraldo (2015) "Stabilized high-order Galerkin methods based on a parameter-free dynamic SGS model for LES" J. Comput. Phys. 301:77-101 [3] J. F. Gerbeau and B. Perthame (2001) "Derivation of the viscous Saint-Venant system for laminar shallow water; numerical validation" Discrete Contin. Dyn. Syst. Ser. B, 1:89?102 [4] F. X. Giraldo and M. Restelli (2010) "High-order semi-implicit time-integrators for a triangular discontinuous Galerkin oceanic shallow water model. Int. J. Numer. Methods Fluids, 63:1077-1102
Radon in the fluvial aquifers of the White River Basin, Indiana, 1995
Fenelon, Joseph M.; Moore, Rhett C.
1996-01-01
Water samples collected in 1995 from 57 monitoring wells (48 shallow and 9 deep) in the fluvial aquifers of the White River Basin were analyzed for radon. Radon concentrations in the shallow wells ranged from 140 to 1,600 pCi/L (picocuries per liter); the median concentration was 420 pCi/L. In comparison, analyses of the samples from the nine deep wells indicate that radon concentrations decrease with depth within the fluvial aquifers; the median concentration was 210 pCi/L. No areal trends in radon concentrations are evident in the water of the shallow fluvial aquifers of the basin
Ring Resonator for Detection of Melting Brine Under Shallow Subsurface of Mars
NASA Technical Reports Server (NTRS)
Ponchak, George E.; Jordan, Jennifer L.; Scardelletti, Maximillian C.
2016-01-01
Laboratory experimental evidence using Raman spectroscopy has shown that liquid brine may form below the shallow subsurface of Mars. A simpler experimental method to verify the presence of liquid brine or liquid water below Mars surface is needed. In this paper, a ring resonator is used to detect the phase change between frozen water and liquid water below a sandy soil that simulates the Mars surface. Experimental data shows that the ring resonator can detect the melting of thin layers of frozen brine or water up to 15 mm below the surface.
1999-01-08
KENNEDY SPACE CENTER, FLA. -- A black skimmer proves its name as it flies low over the water in the Merritt Island National Wildlife Refuge, which shares a boundary with Kennedy Space Center. They skim the surface of the water for fish, with the tip of their lower mandible cutting through the water. They also wade in shallow water, jabbing with their blade-like bills at the fish scattering before them. Skimmers breed chiefly on sandbars and beaches, feeding in shallow bays, inlets and estuaries, such as the Wildlife Refuge. They range from Massachusetts and Long Island to Florida and Texas, and from Mexico to southern South America
Optical waveguide device with an adiabatically-varying width
Watts,; Michael R. , Nielson; Gregory, N [Albuquerque, NM
2011-05-10
Optical waveguide devices are disclosed which utilize an optical waveguide having a waveguide bend therein with a width that varies adiabatically between a minimum value and a maximum value of the width. One or more connecting members can be attached to the waveguide bend near the maximum value of the width thereof to support the waveguide bend or to supply electrical power to an impurity-doped region located within the waveguide bend near the maximum value of the width. The impurity-doped region can form an electrical heater or a semiconductor junction which can be activated with a voltage to provide a variable optical path length in the optical waveguide. The optical waveguide devices can be used to form a tunable interferometer (e.g. a Mach-Zehnder interferometer) which can be used for optical modulation or switching. The optical waveguide devices can also be used to form an optical delay line.
Notable increases in nutrient concentrations in a shallow lake during seasonal ice growth.
Fang, Yang; Changyou, Li; Leppäranta, Matti; Xiaonghong, Shi; Shengnan, Zhao; Chengfu, Zhang
2016-12-01
Nutrients may be eliminated from ice when liquid water is freezing, resulting in enhanced concentrations in the unfrozen water. The nutrients diluted from the ice may contribute to accumulated concentrations in sediment during winter and an increased risk of algae blooms during the following spring and summer. The objective of this study was to evaluate the influence of ice cover on nitrogen (N) and phosphorus (P) concentrations in the water and sediment of a shallow lake, through an examination of Ulansuhai Lake, northern China, from the period of open water to ice season in 2011-2013. The N and P concentrations were between two and five times higher, and between two and eight times higher, than in unfrozen lakes, respectively. As the ice thickness grew, contents of total N and total P showed C-shaped profiles in the ice, and were lower in the middle layer and higher in the bottom and surface layers. Most of the nutrients were released from the ice to liquid water. The results confirm that ice can cause the nutrient concentrations in water and sediment during winter to increase dramatically, thereby significantly impacting on processes in the water environment of shallow lakes.
NASA Astrophysics Data System (ADS)
Xin, Pei; Wang, Shen S. J.; Shen, Chengji; Zhang, Zeyu; Lu, Chunhui; Li, Ling
2018-03-01
Shallow groundwater interacts strongly with surface water across a quarter of global land area, affecting significantly the terrestrial eco-hydrology and biogeochemistry. We examined groundwater behavior subjected to unimodal impulse and irregular surface water fluctuations, combining physical experiments, numerical simulations, and functional data analysis. Both the experiments and numerical simulations demonstrated a damped and delayed response of groundwater table to surface water fluctuations. To quantify this hysteretic shallow groundwater behavior, we developed a regression model with the Gamma distribution functions adopted to account for the dependence of groundwater behavior on antecedent surface water conditions. The regression model fits and predicts well the groundwater table oscillations resulting from propagation of irregular surface water fluctuations in both laboratory and large-scale aquifers. The coefficients of the Gamma distribution function vary spatially, reflecting the hysteresis effect associated with increased amplitude damping and delay as the fluctuation propagates. The regression model, in a relatively simple functional form, has demonstrated its capacity of reproducing high-order nonlinear effects that underpin the surface water and groundwater interactions. The finding has important implications for understanding and predicting shallow groundwater behavior and associated biogeochemical processes, and will contribute broadly to studies of groundwater-dependent ecology and biogeochemistry.
NASA Astrophysics Data System (ADS)
Burckel, David Bruce
One of the anticipated advantages of photonic crystal waveguides is the ability to tune waveguide dispersion and propagation characteristics to achieve desired properties. The majority of research into photonic crystal waveguides centers around high index contrast photonic crystal waveguides with complete in-plane bandgaps in the photonic crystal cladding. This work focuses on linear photonic crystal waveguides in moderate index materials, with insufficient index contrast to guarantee a complete in-plane bandgap. Using a technique called Interferometric Lithography (IL) as well as standard semiconductor processing steps, a process flow for creating large area (˜cm 2), linear photonic crystal waveguides in a spin-deposited photocurable polymer is outlined. The study of such low index contrast photonic crystal waveguides offers a unique opportunity to explore the mechanisms governing waveguide confinement and photonic crystal behavior in general. Results from two optical characterization experiments are provided. In the first set of experiments, rhodamine 590 organic laser dye was incorporated into the polymer prior to fabrication of the photonic crystal slab. Emission spectra from waveguide core modes exhibit no obvious spectral selectivity owing to variation in the periodicity or geometry of the photonic crystal. In addition, grating coupled waveguides were fabricated, and a single frequency diode laser was coupled into the waveguide in order to study the transverse mode structure. To this author's knowledge, the optical mode profile images are the first taken of photonic crystal slab waveguides, exhibiting both simple low order mode structure as well as complex high order mode structure inconsistent with effective index theory. However, no obvious correlation between the mode structure and photonic crystal period or geometry was evident. Furthermore, in both the laser dye-doped and grating coupled waveguides, low loss waveguiding was observed regardless of wavelength to period ratio. These optical results indicated a need for a deeper understanding of the confinement/guiding mechanisms in such waveguide structures. A simplification of the full 2-D problem to a more tractable "tilted 1-D" geometry led to the proposal of a new waveguide geometry, Generalized Transverse Bragg Waveguides (GTBW), as well as a new propagation mode characterized by spatial variation in both the transverse direction as well as the direction of propagation. GTBW demonstrate many of the same dispersion tunability traits exhibited in complete bandgap photonic crystal waveguides, under more modest fabrication demands, and moreover provide much insight into photonic crystal waveguide modes of all types. Generalized Transverse Bragg Waveguides are presented in terms of the standard physical properties associated with waveguides, including the dispersion relation, expressions for the spatial field profile, and the concepts of phase and group velocity. In addition, the proposal of at least one obvious application, semiconductor optical amplifiers, is offered.
Delaire, Caroline; Das, Abhijit; Amrose, Susan; Gadgil, Ashok; Roy, Joyashree; Ray, Isha
2017-10-01
Shallow groundwater containing toxic concentrations of arsenic is the primary source of drinking water for millions of households in rural West Bengal, India. Often, this water also contains unpleasant levels of iron and non-negligible fecal contamination. Alternatives to shallow groundwater are increasingly available, including government-built deep tubewells, water purchased from independent providers, municipal piped water, and household filters. We conducted a survey of 501 households in Murshidabad district in 2014 to explore what influenced the use of available alternatives. Socioeconomic status and the perceived likelihood of gastrointestinal (GI) illness (which was associated with dissatisfaction with iron in groundwater) were the primary determinants of the use of alternatives. Arsenic knowledge was limited. The choice amongst alternatives was influenced by economic, social, and aesthetic factors, but not by health risk perceptions. The use of purchased water was rarely exclusive and was strongly associated with socioeconomic status, suggesting that this form of market-based water provision does not ensure universal access. Demand for purchased water appeared to decrease significantly shortly after free piped water became available at public taps. Our results suggest that arsenic mitigation interventions that also address co-occurring water problems (iron, GI illness) could be more effective than a focus on arsenic alone.
Kogelbauer, Ilse; Heine, Erwin; D'Amboise, Christopher; Müllebner, Christoph; Sokol, Wolfgang; Loiskandl, Willibald
2013-01-01
For many water management issues of shallow lakes with non-consolidated sediments hydrographic surveys of the open water area and reed belt areas are required. In the frame of water management strategy for the steppe lake Neusiedler See, located between Austria and Hungary, a hydrographic survey was conducted. In the open water area (water depth ≥1 m) a sediment echosounder was used. To validate these measurements and to distinguish between water, mud, and sediment layers in the shallow lake and reed belt area additional measurements were needed. As no common standard methods are available yet, we developed a measurement system based on two commonly applied soil physical measurement techniques providing reproducible physical values: a capacitive sensor and a cone penetrometer combined with GNSS-positioning enable dynamic measurements of georeferenced vertical water-mud-bedsediments profiles. The system bases on site-specific calibrated sensors and allows instantaneous, in situ measurements. The measurements manifest a sharp water-mud interface by a sudden decline to smaller water content which is a function of the dielectric permittivity. A second decline indicates the transition to compacted mud. That is concurrently the density where the penetrometer starts registering significant penetration resistance. The penetrometer detects shallow lakebed-sediment layers. Within the lake survey this measurement system was successfully tested. PMID:24351626
Vawter, G Allen [Corrales, NM
2008-02-26
A self-electrooptic effect device ("SEED") is integrated with waveguide interconnects through the use of vertical directional couplers. Light initially propagating in the interconnect waveguide is vertically coupled to the active waveguide layer of the SEED and, if the SEED is in the transparent state, the light is coupled back to the interconnect waveguide.
NASA Astrophysics Data System (ADS)
Baumgartner-Mora, Claudia; Baumgartner, Peter O.; Barat, Flore
2013-04-01
Basements of Southern Central America are oceanic in origin, including the southern half of the classical "Chortis Block" formed by subduction/accretion mélanges named Mesquito Composite Oceanic Terrane (MCOT). The rise of these oceanic basements into the photic zone and eventual emergence was controlled by convergent, collision tectonics, and/or arc development. In this context, shallow carbonate palaeo-environments were short-lived and formed not only on uplifted basements and arcs, but also on (now accreted) volcanic edifices of Pacific oceanic seamounts. From Northern Nicaragua (NW) to Eastern Panama (SE) we observe a systematic younging of the first shallow water carbonate facies encroaching on basements and/or older deep-water formations: In the Siuna area (NE-Nicaragua) Aptian-Albian shallow water limestones dated by rudists and Orbitolina texana rest unconformably on the Jurassic/Early Cretaceous Siuna Serpentinite Mélange, part of the MCOT. In N-Costa Rica, the assembly of several terranes (Santa Elena Ultramafic Unit, Nicoya Complex s. s., Matambu and Manzanillo Terranes) is overlapped by Late Campanian-Maastrichtian shallow water facies dated by rudists and Larger Foraminifera, such as Pseudorbitoides rutteni, Pseudorbitoides israelski, Sulcoperculina sp. and Sulcoperculina globosa. Reworked Campanian-Maastrichtian shallow water material including Larger Foraminifera was found in the Herradura Promontory (central Pacific coast of Costa Rica). It could be derived from an accreted seamount. No shallow carbonates are known so far from the early Palaeocene. The Tempisque Basin (N-Costa Rica) hosts the Barra Honda carbonate Platform (originally >900 km2) dated as late Palaeocene (Thanetian) by planktonic Foraminifera, 87Sr / 86Sr ratios and Ranikothalia spp. Other late Palaeocene shallow carbonates documented in S-Costa Rica/W-Panama (Quepos, Burica) are interpreted as insular carbonate shoals (atolls?) on now accreted seamounts. To the SE of the S-Nicoya fault line (Central Costa Rica) Late Cretaceous oceanic plateaus may represent actual outcrops of the trailing edge of the Caribbean Large Igneous Province (CLIP). These include the SE corner of the Herradura Promontory (Costa Rica) and the Azuero Plateau cropping out in Coiba, Sona and Azuero (Panama). CLIP formation triggered a new, E-dipping subduction zone and Campanian-Maastrichtian arc initiation on the CLIP edge. By middle to late Eocene times this Middle American Arc and forearc areas reached the photic zone leading to widespread formation of carbonate banks/ramps. They are dated by many Larger Foraminifera of the genera Amphistegina, Asterocyclina, Discocyclina, Euconoloides, Eofabiania, Fabiania, Gypsina, Helicolepidina, Heterostegina, , Lepidocyclina, Linderina, Neodiscocyclina, Nummulites, Operculina, Orthophragmina, Polylepidina, Proporocyclina, and Sphareogypsina. The first shallow carbonates that encroach on arc/forearc basements in Panama are dated as Late Eocene in Azuero and the Canal Basin and as Oligocene, dated by Lepidocyclina miraflorensis, L. giraudi, L. canellei around the Chucunaque Basin of Eastern Panama. Progressive shallowing of the trailing edge of the Caribbean plate from NW (middle/Late Cretaceous) to SE (Late Eocene-Oligocene) implies a growing restriction of the Atlantic - Caribbean - Pacific seaway that must have affected global circulation patterns, to be considered in palaeo-oceanographic/palaeo-climatic models of the Late Cretaceous -Tertiary.
An Improved Heat Budget Estimation Including Bottom Effects for General Ocean Circulation Models
NASA Technical Reports Server (NTRS)
Carder, Kendall; Warrior, Hari; Otis, Daniel; Chen, R. F.
2001-01-01
This paper studies the effects of the underwater light field on heat-budget calculations of general ocean circulation models for shallow waters. The presence of a bottom significantly alters the estimated heat budget in shallow waters, which affects the corresponding thermal stratification and hence modifies the circulation. Based on the data collected during the COBOP field experiment near the Bahamas, we have used a one-dimensional turbulence closure model to show the influence of the bottom reflection and absorption on the sea surface temperature field. The water depth has an almost one-to-one correlation with the temperature rise. Effects of varying the bottom albedo by replacing the sea grass bed with a coral sand bottom, also has an appreciable effect on the heat budget of the shallow regions. We believe that the differences in the heat budget for the shallow areas will have an influence on the local circulation processes and especially on the evaporative and long-wave heat losses for these areas. The ultimate effects on humidity and cloudiness of the region are expected to be significant as well.
Pohlman, John W; Greinert, Jens; Ruppel, Carolyn; Silyakova, Anna; Vielstädte, Lisa; Casso, Michael; Mienert, Jürgen; Bünz, Stefan
2017-05-23
Continued warming of the Arctic Ocean in coming decades is projected to trigger the release of teragrams (1 Tg = 10 6 tons) of methane from thawing subsea permafrost on shallow continental shelves and dissociation of methane hydrate on upper continental slopes. On the shallow shelves (<100 m water depth), methane released from the seafloor may reach the atmosphere and potentially amplify global warming. On the other hand, biological uptake of carbon dioxide (CO 2 ) has the potential to offset the positive warming potential of emitted methane, a process that has not received detailed consideration for these settings. Continuous sea-air gas flux data collected over a shallow ebullitive methane seep field on the Svalbard margin reveal atmospheric CO 2 uptake rates (-33,300 ± 7,900 μmol m -2 ⋅d -1 ) twice that of surrounding waters and ∼1,900 times greater than the diffusive sea-air methane efflux (17.3 ± 4.8 μmol m -2 ⋅d -1 ). The negative radiative forcing expected from this CO 2 uptake is up to 231 times greater than the positive radiative forcing from the methane emissions. Surface water characteristics (e.g., high dissolved oxygen, high pH, and enrichment of 13 C in CO 2 ) indicate that upwelling of cold, nutrient-rich water from near the seafloor accompanies methane emissions and stimulates CO 2 consumption by photosynthesizing phytoplankton. These findings challenge the widely held perception that areas characterized by shallow-water methane seeps and/or strongly elevated sea-air methane flux always increase the global atmospheric greenhouse gas burden.
Numerical Study of the Role of Shallow Convection in Moisture Transport and Climate
NASA Technical Reports Server (NTRS)
Seaman, Nelson L.; Stauffer, David R.; Munoz, Ricardo C.
2001-01-01
The objective of this investigation was to study the role of shallow convection on the regional water cycle of the Mississippi and Little Washita Basins of the Southern Great Plains (SGP) using a 3-D mesoscale model, the PSU/NCAR MM5. The underlying premise of the project was that current modeling of regional-scale climate and moisture cycles over the continents is deficient without adequate treatment of shallow convection. At the beginning of the study, it was hypothesized that an improved treatment of the regional water cycle can be achieved by using a 3-D mesoscale numerical model having high-quality parameterizations for the key physical processes controlling the water cycle. These included a detailed land-surface parameterization (the Parameterization for Land-Atmosphere-Cloud Exchange (PLACE) sub-model of Wetzel and Boone), an advanced boundary-layer parameterization (the 1.5-order turbulent kinetic energy (TKE) predictive scheme of Shafran et al.), and a more complete shallow convection parameterization (the hybrid-closure scheme of Deng et al.) than are available in most current models. PLACE is a product of researchers working at NASA's Goddard Space Flight Center in Greenbelt, MD. The TKE and shallow-convection schemes are the result of model development at Penn State. The long-range goal is to develop an integrated suite of physical sub-models that can be used for regional and perhaps global climate studies of the water budget. Therefore, the work plan focused on integrating, improving, and testing these parameterizations in the MM5 and applying them to study water-cycle processes over the SGP. These schemes have been tested extensively through the course of this study and the latter two have been improved significantly as a consequence.
Study on low intensity aeration oxygenation model and optimization for shallow water
NASA Astrophysics Data System (ADS)
Chen, Xiao; Ding, Zhibin; Ding, Jian; Wang, Yi
2018-02-01
Aeration/oxygenation is an effective measure to improve self-purification capacity in shallow water treatment while high energy consumption, high noise and expensive management refrain the development and the application of this process. Based on two-film theory, the theoretical model of the three-dimensional partial differential equation of aeration in shallow water is established. In order to simplify the equation, the basic assumptions of gas-liquid mass transfer in vertical direction and concentration diffusion in horizontal direction are proposed based on engineering practice and are tested by the simulation results of gas holdup which are obtained by simulating the gas-liquid two-phase flow in aeration tank under low-intensity condition. Based on the basic assumptions and the theory of shallow permeability, the model of three-dimensional partial differential equations is simplified and the calculation model of low-intensity aeration oxygenation is obtained. The model is verified through comparing the aeration experiment. Conclusions as follows: (1)The calculation model of gas-liquid mass transfer in vertical direction and concentration diffusion in horizontal direction can reflect the process of aeration well; (2) Under low-intensity conditions, the long-term aeration and oxygenation is theoretically feasible to enhance the self-purification capacity of water bodies; (3) In the case of the same total aeration intensity, the effect of multipoint distributed aeration on the diffusion of oxygen concentration in the horizontal direction is obvious; (4) In the shallow water treatment, reducing the volume of aeration equipment with the methods of miniaturization, array, low-intensity, mobilization to overcome the high energy consumption, large size, noise and other problems can provide a good reference.
Shallow water equations: viscous solutions and inviscid limit
NASA Astrophysics Data System (ADS)
Chen, Gui-Qiang; Perepelitsa, Mikhail
2012-12-01
We establish the inviscid limit of the viscous shallow water equations to the Saint-Venant system. For the viscous equations, the viscosity terms are more degenerate when the shallow water is close to the bottom, in comparison with the classical Navier-Stokes equations for barotropic gases; thus, the analysis in our earlier work for the classical Navier-Stokes equations does not apply directly, which require new estimates to deal with the additional degeneracy. We first introduce a notion of entropy solutions to the viscous shallow water equations and develop an approach to establish the global existence of such solutions and their uniform energy-type estimates with respect to the viscosity coefficient. These uniform estimates yield the existence of measure-valued solutions to the Saint-Venant system generated by the viscous solutions. Based on the uniform energy-type estimates and the features of the Saint-Venant system, we further establish that the entropy dissipation measures of the viscous solutions for weak entropy-entropy flux pairs, generated by compactly supported C 2 test-functions, are confined in a compact set in H -1, which yields that the measure-valued solutions are confined by the Tartar-Murat commutator relation. Then, the reduction theorem established in Chen and Perepelitsa [5] for the measure-valued solutions with unbounded support leads to the convergence of the viscous solutions to a finite-energy entropy solution of the Saint-Venant system with finite-energy initial data, which is relative with respect to the different end-states of the bottom topography of the shallow water at infinity. The analysis also applies to the inviscid limit problem for the Saint-Venant system in the presence of friction.
Greinert, Jens; Silyakova, Anna; Vielstädte, Lisa; Casso, Michael; Mienert, Jürgen; Bünz, Stefan
2017-01-01
Continued warming of the Arctic Ocean in coming decades is projected to trigger the release of teragrams (1 Tg = 106 tons) of methane from thawing subsea permafrost on shallow continental shelves and dissociation of methane hydrate on upper continental slopes. On the shallow shelves (<100 m water depth), methane released from the seafloor may reach the atmosphere and potentially amplify global warming. On the other hand, biological uptake of carbon dioxide (CO2) has the potential to offset the positive warming potential of emitted methane, a process that has not received detailed consideration for these settings. Continuous sea−air gas flux data collected over a shallow ebullitive methane seep field on the Svalbard margin reveal atmospheric CO2 uptake rates (−33,300 ± 7,900 μmol m−2⋅d−1) twice that of surrounding waters and ∼1,900 times greater than the diffusive sea−air methane efflux (17.3 ± 4.8 μmol m−2⋅d−1). The negative radiative forcing expected from this CO2 uptake is up to 231 times greater than the positive radiative forcing from the methane emissions. Surface water characteristics (e.g., high dissolved oxygen, high pH, and enrichment of 13C in CO2) indicate that upwelling of cold, nutrient-rich water from near the seafloor accompanies methane emissions and stimulates CO2 consumption by photosynthesizing phytoplankton. These findings challenge the widely held perception that areas characterized by shallow-water methane seeps and/or strongly elevated sea−air methane flux always increase the global atmospheric greenhouse gas burden. PMID:28484018
Shallow aquifer storage and recovery (SASR): Initial findings from the Willamette Basin, Oregon
NASA Astrophysics Data System (ADS)
Neumann, P.; Haggerty, R.
2012-12-01
A novel mode of shallow aquifer management could increase the volumetric potential and distribution of groundwater storage. We refer to this mode as shallow aquifer storage and recovery (SASR) and gauge its potential as a freshwater storage tool. By this mode, water is stored in hydraulically connected aquifers with minimal impact to surface water resources. Basin-scale numerical modeling provides a linkage between storage efficiency and hydrogeological parameters, which in turn guides rulemaking for how and where water can be stored. Increased understanding of regional groundwater-surface water interactions is vital to effective SASR implementation. In this study we (1) use a calibrated model of the central Willamette Basin (CWB), Oregon to quantify SASR storage efficiency at 30 locations; (2) estimate SASR volumetric storage potential throughout the CWB based on these results and pertinent hydrogeological parameters; and (3) introduce a methodology for management of SASR by such parameters. Of 3 shallow, sedimentary aquifers in the CWB, we find the moderately conductive, semi-confined, middle sedimentary unit (MSU) to be most efficient for SASR. We estimate that users overlying 80% of the area in this aquifer could store injected water with greater than 80% efficiency, and find efficiencies of up to 95%. As a function of local production well yields, we estimate a maximum annual volumetric storage potential of 30 million m3 using SASR in the MSU. This volume constitutes roughly 9% of the current estimated summer pumpage in the Willamette basin at large. The dimensionless quantity lag #—calculated using modeled specific capacity, distance to nearest in-layer stream boundary, and injection duration—exhibits relatively high correlation to SASR storage efficiency at potential locations in the CWB. This correlation suggests that basic field measurements could guide SASR as an efficient shallow aquifer storage tool.
Green, Jena M.; Thodal, Carl E.; Welborn, Toby L.
2008-01-01
Clarity of Lake Tahoe, California and Nevada has been decreasing due to inflows of sediment and nutrients associated with stormwater runoff. Detention basins are considered effective best management practices for mitigation of suspended sediment and nutrients associated with runoff, but effects of infiltrated stormwater on shallow ground water are not known. This report documents 2005-07 hydrogeologic conditions in a shallow aquifer and associated interactions between a stormwater-control system with nearby Lake Tahoe. Selected chemical qualities of stormwater, bottom sediment from a stormwater detention basin, ground water, and nearshore lake and interstitial water are characterized and coupled with results of a three-dimensional, finite-difference, mathematical model to evaluate responses of ground-water flow to stormwater-runoff accumulation in the stormwater-control system. The results of the ground-water flow model indicate mean ground-water discharge of 256 acre feet per year, contributing 27 pounds of phosphorus and 765 pounds of nitrogen to Lake Tahoe within the modeled area. Only 0.24 percent of this volume and nutrient load is attributed to stormwater infiltration from the detention basin. Settling of suspended nutrients and sediment, biological assimilation of dissolved nutrients, and sorption and detention of chemicals of potential concern in bottom sediment are the primary stormwater treatments achieved by the detention basins. Mean concentrations of unfiltered nitrogen and phosphorus in inflow stormwater samples compared to outflow samples show that 55 percent of nitrogen and 47 percent of phosphorus are trapped by the detention basin. Organic carbon, cadmium, copper, lead, mercury, nickel, phosphorus, and zinc in the uppermost 0.2 foot of bottom sediment from the detention basin were all at least twice as concentrated compared to sediment collected from 1.5 feet deeper. Similarly, concentrations of 28 polycyclic aromatic hydrocarbon compounds were all less than laboratory reporting limits in the deeper sediment sample, but 15 compounds were detected in the uppermost 0.2 foot of sediment. Published concentrations determined to affect benthic aquatic life also were exceeded for copper, zinc, benz[a]anthracene, phenanthrene, and pyrene in the shallow sediment sample. Isotopic composition of water (oxygen 18/16 and hydrogen 2/1 ratios) for samples of shallow ground water, lakewater, and interstitial water from Lake Tahoe indicate the lake was well mixed with a slight ground-water signature in samples collected near the lakebed. One interstitial sample from 0.8 foot beneath the lakebed was nearly all ground water and concentrations of nitrogen and phosphorus were comparable to concentrations in shallow ground-water samples. However, ammonium represented 65 percent of filtered nitrogen in this interstitial sample, but only 10 percent of the average nitrogen in ground-water samples. Nitrate was less than reporting limits in interstitial water, compared with mean nitrate concentration of 750 micrograms per liter in ground-water samples, indicating either active dissimilative nitrate reduction to ammonium by micro-organisms or hydrolysis of organic nitrogen to ammonium with concomitant nitrate reduction. The other interstitial sample falls along a mixing line between ground water and lake water and most of the nitrogen was organic nitrogen.
NASA Astrophysics Data System (ADS)
Li, Xue; Ye, Si-Yuan; Wei, Ai-Hua; Zhou, Peng-Peng; Wang, Li-Heng
2017-09-01
A three-dimensional groundwater flow model was implemented to quantify the temporal variation of shallow groundwater levels in response to combined climate and water-diversion scenarios over the next 40 years (2011-2050) in Beijing-Tianjin-Hebei (Jing-Jin-Ji) Plain, China. Groundwater plays a key role in the water supply, but the Jing-Jin-Ji Plain is facing a water crisis. Groundwater levels have declined continuously over the last five decades (1961-2010) due to extensive pumping and climate change, which has resulted in decreased recharge. The implementation of the South-to-North Water Diversion Project (SNWDP) will provide an opportunity to restore the groundwater resources. The response of groundwater levels to combined climate and water-diversion scenarios has been quantified using a groundwater flow model. The impacts of climate change were based on the World Climate Research Programme's (WCRP's) Coupled Model Intercomparison Project phase 3 (CMIP3) multi-model dataset for future high (A2), medium (A1B), and low (B1) greenhouse gas scenarios; precipitation data from CMIP3 were applied in the model. The results show that climate change will slow the rate of decrease of the shallow groundwater levels under three climate-change scenarios over the next 40 years compared to the baseline scenario; however, the shallow groundwater levels will rise significantly (maximum of 6.71 m) when considering scenarios that combine climate change and restrictions on groundwater exploitation. Restrictions on groundwater exploitation for water resource management are imperative to control the decline of levels in the Jing-Jin-Ji area.
NASA Astrophysics Data System (ADS)
Bordoni, Massimiliano; Meisina, Claudia; Zizioli, Davide; Valentino, Roberto; Bittelli, Marco; Chersich, Silvia
2014-05-01
Shallow landslides can be defined as slope movements affecting superficial deposits of small thicknesses which are usually triggered due to extreme rainfall events, also very concentrated in time. Shallow landslides are hazardous phenomena: in particular, if they happen close to urbanized areas they could cause significant damages to cultivations, structures, infrastructures and, sometimes, human losses. The triggering mechanism of rainfall-induced shallow landslides is strictly linked with the hydrological and mechanical responses of usually unsaturated soils to rainfall events. For this reason, it is fundamental knowing the intrinsic hydro-mechanical properties of the soils in order to assess both susceptibility and hazard of shallow landslide and to develop early-warning systems at large scale. The hydrological data collected by a 20 months monitoring on a slope susceptible to shallow landslides in an area of the North -Eastern Oltrepo Pavese (Northern Apennines, Italy) were used to identify the hydrological behaviors of the investigated soils towards rainfall events. Field conditions under different rainfall trends have also been modeled by using both hydrological and physically-based stability models for the evaluation of the slope safety factor . The main objectives of this research are: (a) to compare the field measured pore water pressures at different depths with results of hydrological models, in order to evaluate the efficiency of the tested models and to determine how precipitations affect pore pressure development; (b) to compare the time trends of the safety factor that have been obtained by applying different stability models; (c) to evaluate, through a sensitivity analysis, the effects of soil hydrological properties on modeling pore water pressure and safety factor. The test site slope where field measurements were acquired is representative of other sites in Northern Apennines affected by shallow landslides and is characterized by medium-high topographic gradient (ranging from 22 to 35°). The bedrock is made up of gravel, sand and poorly cemented conglomerates; superficial soils, derived by the weathered bedrock, are prevalently clayey-sandy silts and clayey-silty sands with different amounts of pebbles and carbonate concretions. A geotechnical, mechanical, pedological and mineralogical characterization of superficial deposits was performed. Laboratory reconstruction of hysteretic soil water characteristic curves was also carried out to determine the main soil hydrological properties. The experimental station consists in a pluviometer, a thermo-hygrometer, a barometer, an anemometer and a net radiometer. Six TDR probes equipped with a multiplexer are installed at 0.2, 0.4, 0.6, 1, 1.2, 1.4 m from ground level to measure volumetric water content; to measure pore water pressure, three tensiometers and three heat dissipation sensors are installed at 0.2, 0.6, 1.2 m from ground level. The data are collected by a CR1000 datalogger (Campbell Sci. Inc.) each 10 minutes. In this work the results of the comparison between monitored and modeled pore water pressures and the safety factor in different conditions are analyzed in order to understand the hydro-mechanical properties that could predispose the triggering mechanism of shallow instabilities and the processes that have to be taken into account in the evaluation of shallow landslides susceptibility.
Simplified flangeless unisex waveguide coupler assembly
Michelangelo, Dimartino; Moeller, Charles P.
1993-01-01
A unisex coupler assembly is disclosed capable of providing a leak tight coupling for waveguides with axial alignment of the waveguides and rotational capability. The sealing means of the coupler assembly are not exposed to RF energy, and the coupler assembly does not require the provision of external flanges on the waveguides. In a preferred embodiment, O ring seals are not used and the coupler assembly is, therefore, bakeable at a temperature up to about 150.degree. C. The coupler assembly comprises a split collar which clamps around the waveguides and a second collar which fastens to the split collar. The split collar contains an inner annular groove. Each of the waveguides is provided with an external annular groove which receives a retaining ring. The split collar is clamped around one of the waveguides with the inner annular groove of the split collar engaging the retaining ring carried in the external annular groove in the waveguide. The second collar is then slipped over the second waveguide behind the annular groove and retaining ring therein and the second collar is coaxially secured by fastening means to the split collar to draw the respective waveguides together by coaxial force exerted by the second collar against the retaining ring on the second waveguide. A sealing ring is placed against an external sealing surface at a reduced external diameter end formed on one waveguide to sealingly engage a corresponding sealing surface on the other waveguide as the waveguides are urged toward each other.
Simplified flangeless unisex waveguide coupler assembly
Michelangelo, D.; Moeller, C.P.
1993-05-04
A unisex coupler assembly is disclosed capable of providing a leak tight coupling for waveguides with axial alignment of the waveguides and rotational capability. The sealing means of the coupler assembly are not exposed to RF energy, and the coupler assembly does not require the provision of external flanges on the waveguides. In a preferred embodiment, O ring seals are not used and the coupler assembly is, therefore, bakeable at a temperature up to about 150 C. The coupler assembly comprises a split collar which clamps around the waveguides and a second collar which fastens to the split collar. The split collar contains an inner annular groove. Each of the waveguides is provided with an external annular groove which receives a retaining ring. The split collar is clamped around one of the waveguides with the inner annular groove of the split collar engaging the retaining ring carried in the external annular groove in the waveguide. The second collar is then slipped over the second waveguide behind the annular groove and retaining ring therein and the second collar is coaxially secured by fastening means to the split collar to draw the respective waveguides together by coaxial force exerted by the second collar against the retaining ring on the second waveguide. A sealing ring is placed against an external sealing surface at a reduced external diameter end formed on one waveguide to sealingly engage a corresponding sealing surface on the other waveguide as the waveguides are urged toward each other.
Simplified flangeless unisex waveguide coupler assembly
DOE Office of Scientific and Technical Information (OSTI.GOV)
Michelangelo, D.; Moeller, C.P.
1993-05-04
A unisex coupler assembly is disclosed capable of providing a leak tight coupling for waveguides with axial alignment of the waveguides and rotational capability. The sealing means of the coupler assembly are not exposed to RF energy, and the coupler assembly does not require the provision of external flanges on the waveguides. In a preferred embodiment, O ring seals are not used and the coupler assembly is, therefore, bakeable at a temperature up to about 150 C. The coupler assembly comprises a split collar which clamps around the waveguides and a second collar which fastens to the split collar. Themore » split collar contains an inner annular groove. Each of the waveguides is provided with an external annular groove which receives a retaining ring. The split collar is clamped around one of the waveguides with the inner annular groove of the split collar engaging the retaining ring carried in the external annular groove in the waveguide. The second collar is then slipped over the second waveguide behind the annular groove and retaining ring therein and the second collar is coaxially secured by fastening means to the split collar to draw the respective waveguides together by coaxial force exerted by the second collar against the retaining ring on the second waveguide. A sealing ring is placed against an external sealing surface at a reduced external diameter end formed on one waveguide to sealingly engage a corresponding sealing surface on the other waveguide as the waveguides are urged toward each other.« less
OpenMP performance for benchmark 2D shallow water equations using LBM
NASA Astrophysics Data System (ADS)
Sabri, Khairul; Rabbani, Hasbi; Gunawan, Putu Harry
2018-03-01
Shallow water equations or commonly referred as Saint-Venant equations are used to model fluid phenomena. These equations can be solved numerically using several methods, like Lattice Boltzmann method (LBM), SIMPLE-like Method, Finite Difference Method, Godunov-type Method, and Finite Volume Method. In this paper, the shallow water equation will be approximated using LBM or known as LABSWE and will be simulated in performance of parallel programming using OpenMP. To evaluate the performance between 2 and 4 threads parallel algorithm, ten various number of grids Lx and Ly are elaborated. The results show that using OpenMP platform, the computational time for solving LABSWE can be decreased. For instance using grid sizes 1000 × 500, the speedup of 2 and 4 threads is observed 93.54 s and 333.243 s respectively.
A shallow water model for the propagation of tsunami via Lattice Boltzmann method
NASA Astrophysics Data System (ADS)
Zergani, Sara; Aziz, Z. A.; Viswanathan, K. K.
2015-01-01
An efficient implementation of the lattice Boltzmann method (LBM) for the numerical simulation of the propagation of long ocean waves (e.g. tsunami), based on the nonlinear shallow water (NSW) wave equation is presented. The LBM is an alternative numerical procedure for the description of incompressible hydrodynamics and has the potential to serve as an efficient solver for incompressible flows in complex geometries. This work proposes the NSW equations for the irrotational surface waves in the case of complex bottom elevation. In recent time, equation involving shallow water is the current norm in modelling tsunami operations which include the propagation zone estimation. Several test-cases are presented to verify our model. Some implications to tsunami wave modelling are also discussed. Numerical results are found to be in excellent agreement with theory.
Goetz, D; Kröger, R; Miranda, L E
2014-05-01
The smallmouth buffalo Ictiobus bubalus is a native benthivore to floodplain lakes in the Yazoo River Basin, USA. Based on evidence from other benthivorous fish studies we hypothesized high biomasses of I. bubalus contribute to poor water quality conditions. We tested this hypothesis in shallow (<1.5 m) 0.05 ha earthen ponds at three stocking biomasses over a 10-week period during the summer of 2012. The most notable results from the permutational multivariate analysis of variance suggest I. bubalus at high and moderate biomasses significantly (p < 0.05) enhanced turbidity and suspended solid levels while decreasing Secchi depth. Our results suggest that effects of I. bubalus on water clarity may have considerable ecological implications in natural habitats such as shallow floodplain lakes.
Species dominance and equitability: patterns in Cenozoic foraminifera of eastern North America
Gibson, T.G.; Hill, E.E.
1992-01-01
Species dominance in benthonic foraminifera, represented by percent of the assemblage composed of the single most abundant species, shows little change in observed range of values from shallow into deep-marine waters in 1005 samples from the Gulf of Mexico, Atlantic, and Arctic margins of North America. This finding contrasts with the model that species dominance is highest in shallow-marine environments and decreases offshore into deeper marine waters. Equitability, the relation of all species abundances within an assemblage, also shows little change between the values found in shallow-marine assemblages and those found in assemblages from deeper water environments. Equitability and dominance values found in 421 assemblages from Palaeocene, Eocene, Miocene, and Pleistocene strata of the Atlantic and E Gulf of Mexico coastal plains are similar to the modern values. -from Authors
Evanescent fields of laser written waveguides
NASA Astrophysics Data System (ADS)
Jukić, Dario; Pohl, Thomas; Götte, Jörg B.
2015-03-01
We investigate the evanescent field at the surface of laser written waveguides. The waveguides are written by a direct femtosecond laser writing process into fused silica, which is then sanded down to expose the guiding layer. These waveguides support eigenmodes which have an evanescent field reaching into the vacuum above the waveguide. We study the governing wave equations and present solution for the fundamental eigenmodes of the modified waveguides.
Exchange across the sediment-water interface quantified from porewater radon profiles
NASA Astrophysics Data System (ADS)
Cook, Peter G.; Rodellas, Valentí; Andrisoa, Aladin; Stieglitz, Thomas C.
2018-04-01
Water recirculation through permeable sediments induced by wave action, tidal pumping and currents enhances the exchange of solutes and fine particles between sediments and overlying waters, and can be an important hydro-biogeochemical process. In shallow water, most of the recirculation is likely to be driven by the interaction of wave-driven oscillatory flows with bottom topography which can induce pressure fluctuations at the sediment-water interface on very short timescales. Tracer-based methods provide the most reliable means for characterizing this short-timescale exchange. However, the commonly applied approaches only provide a direct measure of the tracer flux. Estimating water fluxes requires characterizing the tracer concentration in discharging porewater; this implies collecting porewater samples at shallow depths (usually a few mm, depending on the hydrodynamic dispersivity), which is very difficult with commonly used techniques. In this study, we simulate observed vertical profiles of radon concentration beneath shallow coastal lagoons using a simple water recirculation model that allows us to estimate water exchange fluxes as a function of depth below the sediment-water interface. Estimated water fluxes at the sediment water interface at our site were 0.18-0.25 m/day, with fluxes decreasing exponentially with depth. Uncertainty in dispersivity is the greatest source of error in exchange flux, and results in an uncertainty of approximately a factor-of-five.
Warming combined with more extreme precipitation regimes modifies the water sources used by trees.
Grossiord, Charlotte; Sevanto, Sanna; Dawson, Todd E; Adams, Henry D; Collins, Adam D; Dickman, Lee T; Newman, Brent D; Stockton, Elizabeth A; McDowell, Nate G
2017-01-01
The persistence of vegetation under climate change will depend on a plant's capacity to exploit water resources. We analyzed water source dynamics in piñon pine and juniper trees subjected to precipitation reduction, atmospheric warming, and to both simultaneously. Piñon and juniper exhibited different and opposite shifts in water uptake depth in response to experimental stress and background climate over 3 yr. During a dry summer, juniper responded to warming with a shift to shallow water sources, whereas piñon pine responded to precipitation reduction with a shift to deeper sources in autumn. In normal and wet summers, both species responded to precipitation reduction, but juniper increased deep water uptake and piñon increased shallow water uptake. Shifts in the utilization of water sources were associated with reduced stomatal conductance and photosynthesis, suggesting that belowground compensation in response to warming and water reduction did not alleviate stress impacts for gas exchange. We have demonstrated that predicted climate change could modify water sources of trees. Warming impairs juniper uptake of deep sources during extended dry periods. Precipitation reduction alters the uptake of shallow sources following extended droughts for piñon. Shifts in water sources may not compensate for climate change impacts on tree physiology. © 2016 The Authors. New Phytologist © 2016 New Phytologist Trust.
NASA Astrophysics Data System (ADS)
Hays, J. D.
2009-12-01
Shallow (0-200m) and deep (200 to1000m) living radiolarian flux is used to measure past production from within discrete intervals of the ocean’s water column. Deep-living faunas can also be used as proxies for export production, for they remineralize it and respond geographically and temporally to varying export. Few members of the mesopelagic community leave a fossil record, but of those that do, radiolarians are the most abundant and diverse group. In northwest Pacific late Pleistocene (glacial) sediments, deep-living radiolarian flux dominates over shallow-living flux, but the reverse is true in Holocene sediments, with the dramatic dominance change occurring across the Pleistocene-Holocene boundary. Changing primary productivity can’t cause these flux changes, for shallow-living faunas have access to the same carbon flux as do deep-living faunas, but rather they signal a major reorganization of the radiolarian fauna within the water column and suggest greater glacial than Holocene carbon export. In the Holocene world-ocean, the only region where deep-living radiolarian flux dominates over shallow-living flux is in the Sea of Okhotsk, suggesting environmental similarities between this sea and the northwest Pacific. In winter, cold Siberian air chills the upper hundred meters of the Sea of Okhotsk, promoting the spread of vast sea ice fields. High productivity in a thin (10-15m) summer mixed layer depletes nutrients Between 15 and about 150m exists a layer of cold (-1 to 0 degrees C.) intermediate water, within which radiolarian concentrations are low, but these concentrations increase between 200 and 500m in warmer intermediate water (Nimmergut and Abelmann, 2002). This radiolarian stratification results in greater deep- than shallow-living radiolarian flux to the sea floor. A similar water structure in the glacial northwest Pacific is the probable cause of similar flux patterns between the glacial northwest Pacific and Holocene Sea of Okhotsk. If so then cold glacial northwest Pacific intermediate water promoted the southward spread of sea ice. This inference is supported by the near coincidence of the southern limit of deep-living species dominated glacial sediments and extensive ice rafting. It also explains nutrient depleted glacial northwest Pacific surface waters inferred from isotopic data.
On the assimilation of SWOT type data into 2D shallow-water models
NASA Astrophysics Data System (ADS)
Frédéric, Couderc; Denis, Dartus; Pierre-André, Garambois; Ronan, Madec; Jérôme, Monnier; Jean-Paul, Villa
2013-04-01
In river hydraulics, assimilation of water level measurements at gauging stations is well controlled, while assimilation of images is still delicate. In the present talk, we address the richness of satellite mapped information to constrain a 2D shallow-water model, but also related difficulties. 2D shallow models may be necessary for small scale modelling in particular for low-water and flood plain flows. Since in both cases, the dynamics of the wet-dry front is essential, one has to elaborate robust and accurate solvers. In this contribution we introduce robust second order, stable finite volume scheme [CoMaMoViDaLa]. Comparisons of real like tests cases with more classical solvers highlight the importance of an accurate flood plain modelling. A preliminary inverse study is presented in a flood plain flow case, [LaMo] [HoLaMoPu]. As a first step, a 0th order data processing model improves observation operator and produces more reliable water level derived from rough measurements [PuRa]. Then, both model and flow behaviours can be better understood thanks to variational sensitivities based on a gradient computation and adjoint equations. It can reveal several difficulties that a model designer has to tackle. Next, a 4D-Var data assimilation algorithm used with spatialized data leads to improved model calibration and potentially leads to identify river discharges. All the algorithms are implemented into DassFlow software (Fortran, MPI, adjoint) [Da]. All these results and experiments (accurate wet-dry front dynamics, sensitivities analysis, identification of discharges and calibration of model) are currently performed in view to use data from the future SWOT mission. [CoMaMoViDaLa] F. Couderc, R. Madec, J. Monnier, J.-P. Vila, D. Dartus, K. Larnier. "Sensitivity analysis and variational data assimilation for geophysical shallow water flows". Submitted. [Da] DassFlow - Data Assimilation for Free Surface Flows. Computational software http://www-gmm.insa-toulouse.fr/~monnier/DassFlow/ [HoLaMoPu] R. Hostache, X. Lai, J. Monnier, C. Puech. "Assimilation of spatial distributed water levels into a shallow-water flood model. Part II: using a remote sensing image of Mosel river". J. Hydrology (2010). [LaMo] X. Lai, J. Monnier. "Assimilation of spatial distributed water levels into a shallow-water flood model. Part I: mathematical method and test case". J. Hydrology (2009). [PuRa] C. Puech, D. Raclot. "Using geographic information systems and aerial photographs to determine water levels during floods". Hydrol. Process., 16, 1593 - 1602, (2002). [RoDa] H. Roux, D. Dartus. "Use of Parameter Optimization to Estimate a Flood Wave: Potential Applications to Remote Sensing of Rivers". J. Hydrology (2006).
NASA Astrophysics Data System (ADS)
Huo, Z.; Liu, Z.; Wang, X.; Qu, Z.
2016-12-01
Groundwater from the shallow aquifers can supply substantial water for evapotranspiration of crops. However, it is difficult to quantify to the contribution of groundwater on crop's water consumption. In present study, regional scale evapotranspiration and the groundwater contribution to evapotranspiration were estimated by the soil water balance equation in Hetao irrigation distric with shallow aquifers, China. Estimates used an 8-year (2006-2013) hydrological dataset including soil moisture, the depth to water table, irrigation amounts, rainfall data, and drainage water flow. The 8-year mean evapotranspiration was estimated to be 664 mm. The mean groundwater supported evapotranspiration (ETg) was estimated to be 228 mm, with variation from 145 mm to 412 mm during the crop growth period. Analysis of the positive correlation between evapotranspiration and the sum of irrigation and rainfall, and the analysis of the negative correlation between ETg/ET and the sum of irrigation and rainfall, reflect the need of groundwater to meet the evapotranspiration demand. Approximately 20% to 40% of the evapotranspiration is from the shallow aquifers in the study area. Furthermore, a new method estimating daily ETg during the crop growing season was developed. The effects of crop growth stage, climate condition, groundwater depth and soil moisture are considered in the model. The method was tested with controlled lysimeter experiments of winter wheat including five controlled water table depths and four soil profiles of different textures. The simulated ETg is a good agreement with the measured data for four soil profiles and different depths to groundwater table. These results could be useful for the government to understand the significant role of the groundwater and make reasonable water use policy in the semiarid agricultural regions.
Evaluation of Water Quality Renovation by Advanced Soil-Based Wastewater Treatment Systems
NASA Astrophysics Data System (ADS)
Cooper, J.; Loomis, G.; Kalen, D.; Boving, T.; Morales, I.; DeLuca, J.; Amador, J.
2013-12-01
25% of US households utilize onsite wastewater treatment systems (OWTS) for wastewater management. Advanced technologies were designed to overcome the inadequate wastewater treatment by conventional OWTS in critical shallow water table areas, such as coastal zones, in order to protect ground water quality. In addition to the septic tank and soil drainfield that comprise a conventional OWTS, advanced systems claim improved water renovation with the addition of sand filtration, timed dosing controls, and shallow placement of the infiltrative zone. We determined water quality renovation functions under current water table and temperature conditions, in anticipation of an experiment to measure OWTS response to a climate change scenario of 30-cm increase in water table elevation and 4C temperature increase. Replicate (n=3) intact soil mesocosms were used to evaluate the effectiveness of drainfields with a conventional wastewater delivery (pipe-and-stone) compared to two types of pressurized, shallow narrow drainfield. Results under steady state conditions indicate complete removal of fecal coliform bacteria, phosphorus and BOD by all soil-based systems. By contrast, removal of total nitrogen inputs was 16% in conventional and 11% for both advanced drainfields. Effluent waters maintained a steady state pH between 3.2 - 3.7 for all technologies. Average DO readings were 2.9mg/L for conventional drainfield effluent and 4.6mg/L for advanced, showing the expected oxygen uptake with shallow placement of the infiltrative zone. The conventional OWTS is outperforming the advanced with respect to nitrogen removal, but renovating wastewater equivalently for all other contaminants of concern. The results of this study are expected to facilitate development of future OWTS regulation and planning guidelines, particularly in coastal zones and in the face of a changing climate.
Monitoring terrestrial dissolved organic carbon export at land-water interfaces using remote sensing
NASA Astrophysics Data System (ADS)
Yu, Q.; Li, J.; Tian, Y. Q.
2017-12-01
Carbon flux from land to oceans and lakes is a crucial component of carbon cycling. However, this lateral carbon flow at land-water interface is often neglected in the terrestrial carbon cycle budget, mainly because observations of the carbon dynamics are very limited. Monitoring CDOM/DOC dynamics using remote sensing and assessing DOC export from land to water remains a challenge. Current CDOM retrieval algorithms in the field of ocean color are not simply applicable to inland aquatic ecosystems since they were developed for coarse resolution ocean-viewing imagery and less complex water types in open-sea. We developed a new semi-analytical algorithm, called SBOP (Shallow water Bio-Optical Properties algorithm) to adapt to shallow inland waters. SBOP was first developed and calibrated based on in situ hyperspectral radiometer data. Then we applied it to the Landsat-8 OLI images and evaluated the effectiveness of the multispectral images on inversion of CDOM absorption based on our field sampling at the Saginaw Bay in the Lake Huron. The algorithm performances (RMSE = 0.17 and R2 = 0.87 in the Saginaw Bay; R2 = 0.80 in the northeastern US lakes) is promising and we conclude the CDOM absorption can be derived from Landsat-8 OLI image in both optically deep and optically shallow waters with high accuracy. Our method addressed challenges on employing appropriate atmospheric correction, determining bottom reflectance influence for shallow waters, and improving for bio-optical properties retrieval, as well as adapting to both hyperspectral and the multispectral remote sensing imagery. Over 100 Landsat-8 images in Lake Huron, northeastern US lakes, and the Arctic major rivers were processed to understand the CDOM spatio-temporal dynamics and its associated driving factors.
ERIC Educational Resources Information Center
Vollmer, Michael
2004-01-01
This is the first of two articles about the physics of microwave ovens. This article deals with the generation of microwaves in the oven and includes the operation of the magnetrons, waveguides and standing waves in resonant cavities. It then considers the absorption of microwaves by foods, discussing the dielectric relaxation of water,…
Ultra-sensitive detection using integrated waveguide technologies
USDA-ARS?s Scientific Manuscript database
There is a pressing need to detect analytes at very low concentrations, such as food- and water-borne pathogens (e.g. E. coli O157:H7) and biothreat agents (e.g., anthrax, toxins). Common fluorescence detection methods, such as 96 well plate readers, are not sufficiently sensitive for low concentra...
NASA Astrophysics Data System (ADS)
Tut, Turgut; Dan, Yaping; Duane, Peter; Yu, Young; Wober, Munib; Crozier, Kenneth B.
2012-01-01
We describe the experimental realization of vertical silicon nitride waveguides integrated with silicon photodetectors. The waveguides are embedded in a silicon dioxide layer. Scanning photocurrent microscopy is performed on a device containing a waveguide, and on a device containing the silicon dioxide layer, but without the waveguide. The results confirm the waveguide's ability to guide light onto the photodetector with high efficiency. We anticipate that the use of these structures in image sensors, with one waveguide per pixel, would greatly improve efficiency and significantly reduce inter-pixel crosstalk.
An improved water-filled impedance tube.
Wilson, Preston S; Roy, Ronald A; Carey, William M
2003-06-01
A water-filled impedance tube capable of improved measurement accuracy and precision is reported. The measurement instrument employs a variation of the standardized two-sensor transfer function technique. Performance improvements were achieved through minimization of elastic waveguide effects and through the use of sound-hard wall-mounted acoustic pressure sensors. Acoustic propagation inside the water-filled impedance tube was found to be well described by a plane wave model, which is a necessary condition for the technique. Measurements of the impedance of a pressure-release terminated transmission line, and the reflection coefficient from a water/air interface, were used to verify the system.
Microoptoelectromechanical system (MOEMS) based laser
Hutchinson, Donald P.
2003-11-04
A method for forming a folded laser and associated laser device includes providing a waveguide substrate, micromachining the waveguide substrate to form a folded waveguide structure including a plurality of intersecting folded waveguide paths, forming a single fold mirror having a plurality of facets which bound all ends of said waveguide paths except those reserved for resonator mirrors, and disposing a pair of resonator mirrors on opposite sides of the waveguide to form a lasing cavity. A lasing material is provided in the lasing cavity. The laser can be sealed by disposing a top on the waveguide substrate. The laser can include a re-entrant cavity, where the waveguide substrate is disposed therein, the re-entrant cavity including the single fold mirror.
Femtosecond laser inscribed cladding waveguide lasers in Nd:LiYF4 crystals
NASA Astrophysics Data System (ADS)
Li, Shi-Ling; Huang, Ze-Ping; Ye, Yong-Kai; Wang, Hai-Long
2018-06-01
Depressed circular cladding, buried waveguides were fabricated in Nd:LiYF4 crystals with an ultrafast Yb-doped fiber master-oscillator power amplifier laser. Waveguides were optimized by varying the laser writing conditions, such as pulse energy, focus depth, femtosecond laser polarization and scanning velocity. Under optical pump at 799 nm, cladding waveguides showed continuous-wave laser oscillation at 1047 nm. Single- and multi-transverse modes waveguide laser were realized by varying the waveguide diameter. The maximum output power in the 40 μm waveguide is ∼195 mW with a slope efficiency of 34.3%. The waveguide lasers with hexagonal and cubic cladding geometry were also realized.
Electrically Tunable Nd:YAG waveguide laser based on Graphene
Ma, Linan; Tan, Yang; Akhmadaliev, Shavkat; Zhou, Shengqiang; Chen, Feng
2016-01-01
We demonstrate a tunable hybrid Graphene-Nd:YAG cladding waveguide laser exploiting the electro-optic and the Joule heating effects of Graphene. A cladding Nd:YAG waveguide was fabricated by the ion irradiation. The multi-layer graphene were transferred onto the waveguide surface as the saturable absorber to get the Q-switched pulsed laser oscillation in the waveguide. Composing with appropriate electrodes, graphene based capacitance and heater were formed on the surface of the Nd:YAG waveguide. Through electrical control of graphene, the state of the hybrid waveguide laser was turned on or off. And the laser operation of the hybrid waveguide was electrically tuned between the continuous wave laser and the nanosecond pulsed laser. PMID:27833114
Deep circulations under simple classes of stratification
NASA Technical Reports Server (NTRS)
Salby, Murry L.
1989-01-01
Deep circulations where the motion field is vertically aligned over one or more scale heights are studied under barotropic and equivalent barotropic stratifications. The study uses two-dimensional equations reduced from the three-dimensional primitive equations in spherical geometry. A mapping is established between the full primitive equations and general shallow water behavior and the correspondence between variables describing deep atmospheric motion and those of shallow water behavior is established.
Effects of Internal Waves on Sound Propagation in the Shallow Waters of the Continental Shelves
2016-09-01
experiment area were largely generated by tidal forcing. Compared to simulations without internal waves , simulations accounting for the effects of...internal waves in the experiment area were largely generated by tidal forcing. Compared to simulations without internal waves , simulations accounting for...IN THE SHALLOW WATERS OF THE CONTINENTAL SHELVES ..................................4 1. Internal Tides—Internal Waves Generated by Tidal Forcing
Shallow Water UXO Technology Demonstration Site, Scoring Record No. 4 (CTC, FEREX DLG-GPS), MAG)
2008-04-01
Detection and Discrimination Demonstration of a Fluxgate Vertical Gradient Magnetometer at the Aberdeen Shallow Water Test Site. Submitted in...TECHNOLOGY TYPE/PLATFORM: FEREX DLG-GPS MAGNETOMETER SYSTEM PREPARED BY: U.S. ARMY ABERDEEN TEST CENTER ABERDEEN PROVING GROUND, MD 21005...efforts of Concurrent Technologies Corporation (CTC) to detect and discriminate inert unexploded ordnance (UXO) using a FEREX DLG- magnetometer with a
NASA Astrophysics Data System (ADS)
Orszaghova, Jana; Borthwick, Alistair G. L.; Taylor, Paul H.
2012-01-01
This article describes a one-dimensional numerical model of a shallow-water flume with an in-built piston paddle moving boundary wavemaker. The model is based on a set of enhanced Boussinesq equations and the nonlinear shallow water equations. Wave breaking is described approximately, by locally switching to the nonlinear shallow water equations when a critical wave steepness is reached. The moving shoreline is calculated as part of the solution. The piston paddle wavemaker operates on a movable grid, which is Lagrangian on the paddle face and Eulerian away from the paddle. The governing equations are, however, evolved on a fixed mapped grid, and the newly calculated solution is transformed back onto the moving grid via a domain mapping technique. Validation test results are compared against analytical solutions, confirming correct discretisation of the governing equations, wave generation via the numerical paddle, and movement of the wet/dry front. Simulations are presented that reproduce laboratory experiments of wave runup on a plane beach and wave overtopping of a laboratory seawall, involving solitary waves and compact wave groups. In practice, the numerical model is suitable for simulating the propagation of weakly dispersive waves and can additionally model any associated inundation, overtopping or inland flooding within the same simulation.
Low-loss curved subwavelength grating waveguide based on index engineering
NASA Astrophysics Data System (ADS)
Wang, Zheng; Xu, Xiaochuan; Fan, D. L.; Wang, Yaoguo; Chen, Ray T.
2016-03-01
Subwavelength grating (SWG) waveguide is an intriguing alternative to conventional optical waveguides due to its freedom to tune a few important waveguide properties such as dispersion and refractive index. Devices based on SWG waveguide have demonstrated impressive performances compared to those of conventional waveguides. However, the large loss of SWG waveguide bends jeopardizes their applications in integrated photonics circuits. In this work, we propose that a predistorted refractive index distribution in SWG waveguide bends can effectively decrease the mode mismatch noise and radiation loss simultaneously, and thus significantly reduce the bend loss. Here, we achieved the pre-distortion refractive index distribution by using trapezoidal silicon pillars. This geometry tuning approach is numerically optimized and experimentally demonstrated. The average insertion loss of a 5 μm SWG waveguide bend can be reduced drastically from 5.58 dB to 1.37 dB per 90° bend for quasi-TE polarization. In the future, the proposed approach can be readily adopted to enhance performance of an array of SWG waveguide-based photonics devices.
Fio, John L.; Leighton, David A.
1994-01-01
Chemical and geohydrologic data were used to assess the effects of regional ground-water flow on the quality of on-farm drainflows in a part of the western San Joaquin Valley, California. Shallow ground water beneath farm fields has been enriched in stable isotopes and salts by partial evaporation from the shallow water table and is being displaced by irrigation, drainage, and regional ground-water flow. Ground-water flow is primarily downward in the study area but can flow upward in some down- slope areas. Transitional areas exist between the downward and upward flow zones, where ground water can move substantial horizontal distances (0.3 to 3.6 kilometers) and can require 10 to 90 years to reach the downslope drainage systems. Simulation of ground-water flow to drainage systems indicates that regional ground water contributes to about 11 percent of annual drainflow. Selenium concentrations in ground water and drainwater are affected by geologic source materials, partial evaporation from a shallow water table, drainage-system, and regional ground-water flow. Temporal variability in drainflow quality is affected in part by the distribution of chemical constituents in ground water and the flow paths to the drainage systems. The mass flux of selenium in drainflows, or load, generally is proportional to flow, and reductions in drainflow quantity should reduce selenium loads over the short-term. Uncertain changes in the distribution of ground-water quality make future changes in drainflow quality difficult to quantify.
Conceptual hydrogeologic framework of the shallow aquifer system at Virginia Beach, Virginia
Smith, Barry S.; Harlow, George E.
2002-01-01
The hydrogeologic framework of the shallow aquifer system at Virginia Beach was revised to provide a better understanding of the distribution of fresh ground water, its potential use, and its susceptibility to contamination. The revised conceptual framework is based primarily on analyses of continuous cores and downhole geophysical logs collected at 7 sites to depths of approximately 200 ft.The shallow aquifer system at Virginia Beach is composed of the Columbia aquifer, the Yorktown confining unit, and the Yorktown-East-over aquifer. The shallow aquifer system is separated from deeper units by the continuous St. Marys confining unit.The Columbia aquifer is defined as the predominantly sandy surficial deposits above the Yorktown confining unit. The Yorktown confining unit is composed of a series of very fine sandy to silty clay units of various colors at or near the top of the Yorktown Formation. The Yorktown confining unit varies in thickness and in composition, but on a regional scale is a leaky confining unit. The Yorktown-Eastover aquifer is defined as the predominantly sandy deposits of the Yorktown Formation and the upper part of the Eastover Formation above the confining clays of the St. Marys Formation. The limited areal extent of highly permeable deposits containing freshwater in the Yorktown-Eastover aquifer precludes the installation of highly productive freshwater wells over most of the city. Some deposits of biofragmental sand or shell hashes in the Yorktown-Eastover aquifer can support high-capacity wells.A water sample was collected from each of 10 wells installed at 5 of the 7 core sites to determine the basic chemistry of the aquifer system. One shallow well and one deep well was installed at each site. Concentrations of chloride were higher in the water from the deeper well at each site. Concentrations of dissolved iron in all of the water samples were higher than the U.S. Environmental Protection Agency Secondary Drinking Water Regulations. Concentrations of manganese and chloride were higher than the Secondary Drinking Water Regulations in samples from some wells.In the humid climate of Virginia Beach, the periodic recharge of freshwater through the sand units of the shallow aquifer system occurs often enough to create a dynamic equilibrium whereby freshwater flows continually down and away from the center of the ridges to mix with and sweep brackish water and saltwater back toward the tidal rivers, bays, salt marshes, and the Atlantic Ocean.The aquifers and confining units of the shallow aquifer system at Virginia Beach are heterogeneous, discontinuous, and without exact marker beds, which makes correlations in the study area difficult. Investigations using well cuttings, spot cores, or split-spoon samples with geophysical logs are not as definitive as continuous cores for determining or correlating hydrogeologic units. Future investigations of the shallow aquifer system would benefit by collecting continuous cores.
1988-01-01
total of 20 wells will be sampled for this study; 7 wells in Haywood County, 6 wells in Lake County near Reelfoot Lake and one in Obion County, and 6...1985, May 1984-April 1985 water budget of Reelfoot Lake with estimates of sediment inflow and concentrations of pesticides in bottom material in...i i . QUALITY OJ? GROUND WATER IN SHALLOW WELLS IN AGRICULTURAL AREAS OF HAYWOOD, SHELBY, LAKE , AND OBION COUNTIES, TENNESSEE, JANUARY
Zhang, Xiaoshi; Lytle, Amy L.; Cohen, Oren; Kapteyn, Henry C.; Murnane, Margaret M.
2010-11-09
All-optical quasi-phase matching (QPM) uses a train of counterpropagating pulses to enhance high-order harmonic generation (HHG) in a hollow waveguide. A pump pulse enters one end of the waveguide, and causes HHG in the waveguide. The counterpropagation pulses enter the other end of the waveguide and interact with the pump pulses to cause QPM within the waveguide, enhancing the HHG.
From top to bottom: Do Lake Trout diversify along a depth gradient in Great Bear Lake, NT, Canada?
Chavarie, Louise; Howland, Kimberly L.; Harris, Les N.; Hansen, Michael J.; Harford, William J.; Gallagher, Colin P.; Baillie, Shauna M.; Malley, Brendan; Tonn, William M.; Muir, Andrew M.; Krueger, Charles C.
2018-01-01
Depth is usually considered the main driver of Lake Trout intraspecific diversity across lakes in North America. Given that Great Bear Lake is one of the largest and deepest freshwater systems in North America, we predicted that Lake Trout intraspecific diversity to be organized along a depth axis within this system. Thus, we investigated whether a deep-water morph of Lake Trout co-existed with four shallow-water morphs previously described in Great Bear Lake. Morphology, neutral genetic variation, isotopic niches, and life-history traits of Lake Trout across depths (0–150 m) were compared among morphs. Due to the propensity of Lake Trout with high levels of morphological diversity to occupy multiple habitat niches, a novel multivariate grouping method using a suite of composite variables was applied in addition to two other commonly used grouping methods to classify individuals. Depth alone did not explain Lake Trout diversity in Great Bear Lake; a distinct fifth deep-water morph was not found. Rather, Lake Trout diversity followed an ecological continuum, with some evidence for adaptation to local conditions in deep-water habitat. Overall, trout caught from deep-water showed low levels of genetic and phenotypic differentiation from shallow-water trout, and displayed higher lipid content (C:N ratio) and occupied a higher trophic level that suggested an potential increase of piscivory (including cannibalism) than the previously described four morphs. Why phenotypic divergence between shallow- and deep-water Lake Trout was low is unknown, especially when the potential for phenotypic variation should be high in deep and large Great Bear Lake. Given that variation in complexity of freshwater environments has dramatic consequences for divergence, variation in the complexity in Great Bear Lake (i.e., shallow being more complex than deep), may explain the observed dichotomy in the expression of intraspecific phenotypic diversity between shallow- vs. deep-water habitats. The ambiguity surrounding mechanisms driving divergence of Lake Trout in Great Bear Lake should be seen as reflective of the highly variable nature of ecological opportunity and divergent natural selection itself.
From top to bottom: Do Lake Trout diversify along a depth gradient in Great Bear Lake, NT, Canada?
Chavarie, Louise; Howland, Kimberly L; Harris, Les N; Hansen, Michael J; Harford, William J; Gallagher, Colin P; Baillie, Shauna M; Malley, Brendan; Tonn, William M; Muir, Andrew M; Krueger, Charles C
2018-01-01
Depth is usually considered the main driver of Lake Trout intraspecific diversity across lakes in North America. Given that Great Bear Lake is one of the largest and deepest freshwater systems in North America, we predicted that Lake Trout intraspecific diversity to be organized along a depth axis within this system. Thus, we investigated whether a deep-water morph of Lake Trout co-existed with four shallow-water morphs previously described in Great Bear Lake. Morphology, neutral genetic variation, isotopic niches, and life-history traits of Lake Trout across depths (0-150 m) were compared among morphs. Due to the propensity of Lake Trout with high levels of morphological diversity to occupy multiple habitat niches, a novel multivariate grouping method using a suite of composite variables was applied in addition to two other commonly used grouping methods to classify individuals. Depth alone did not explain Lake Trout diversity in Great Bear Lake; a distinct fifth deep-water morph was not found. Rather, Lake Trout diversity followed an ecological continuum, with some evidence for adaptation to local conditions in deep-water habitat. Overall, trout caught from deep-water showed low levels of genetic and phenotypic differentiation from shallow-water trout, and displayed higher lipid content (C:N ratio) and occupied a higher trophic level that suggested an potential increase of piscivory (including cannibalism) than the previously described four morphs. Why phenotypic divergence between shallow- and deep-water Lake Trout was low is unknown, especially when the potential for phenotypic variation should be high in deep and large Great Bear Lake. Given that variation in complexity of freshwater environments has dramatic consequences for divergence, variation in the complexity in Great Bear Lake (i.e., shallow being more complex than deep), may explain the observed dichotomy in the expression of intraspecific phenotypic diversity between shallow- vs. deep-water habitats. The ambiguity surrounding mechanisms driving divergence of Lake Trout in Great Bear Lake should be seen as reflective of the highly variable nature of ecological opportunity and divergent natural selection itself.
Seasonal plant water uptake patterns in the saline southeast Everglades ecotone.
Ewe, Sharon M L; Sternberg, Leonel da S L; Childers, Daniel L
2007-07-01
The purpose of this study was to determine the seasonal water use patterns of dominant macrophytes coexisting in the coastal Everglades ecotone. We measured the stable isotope signatures in plant xylem water of Rhizophora mangle, Cladium jamaicense, and Sesuvium portulacastrum during the dry (DS) and wet (WS) seasons in the estuarine ecotone along Taylor River in Everglades National Park, FL, USA. Shallow soilwater and deeper groundwater salinity was also measured to extrapolate the salinity encountered by plants at their rooting zone. Average soil water oxygen isotope ratios (delta(18)O) was enriched (4.8 +/- 0.2 per thousand) in the DS relative to the WS (0.0 +/- 0.1 per thousand), but groundwater delta(18)O remained constant between seasons (DS: 2.2 +/- 0.4 per thousand; WS: 2.1 +/- 0.1 per thousand). There was an inversion in interstitial salinity patterns across the soil profile between seasons. In the DS, shallow water was euhaline [i.e., 43 practical salinity units (PSU)] while groundwater was less saline (18 PSU). In the WS, however, shallow water was fresh (i.e., 0 PSU) but groundwater remained brackish (14 PSU). All plants utilized 100% (shallow) freshwater during the WS, but in the DS R. mangle switched to a soil-groundwater mix (delta 55% groundwater) while C. jamaicense and S. portulacastrum continued to use euhaline shallow water. In the DS, based on delta(18)O data, the roots of R. mangle roots were exposed to salinities of 25.4 +/- 1.4 PSU, less saline than either C. jamaicense (39.1 +/- 2.2 PSU) or S. portulacastrum (38.6 +/- 2.5 PSU). Although the salinity tolerance of C. jamaicense is not known, it is unlikely that long-term exposure to high salinity is conducive to the persistence of this freshwater marsh sedge. This study increases our ecological understanding of how water uptake patterns of individual plants can contribute to ecosystem levels changes, not only in the southeast saline Everglades, but also in estuaries in general in response to global sea level rise and human-induced changes in freshwater flows.
Quality of groundwater in the Denver Basin aquifer system, Colorado, 2003-5
Musgrove, MaryLynn; Beck, Jennifer A.; Paschke, Suzanne; Bauch, Nancy J.; Mashburn, Shana L.
2014-01-01
Water-quality data were synthesized to evaluate factors that affect spatial and depth variability in water quality and to assess aquifer vulnerability to contaminants from geologic materials and those of human origin. The quality of shallow groundwater in the alluvial aquifer and shallow bedrock aquifer system has been adversely affected by development of agricultural and urban areas. Land use has altered the pattern and composition of recharge. Increased recharge from irrigation water has mobilized dissolved constituents and increased concentrations in the shallow groundwater. Concentrations of most constituents associated with poor or degraded water quality in shallow groundwater decreased with depth; many of these constituents are not geochemically conservative and are affected by geochemical reactions such as oxidation-reduction reactions. Groundwater age tracers provide additional insight into aquifer vulnerability and help determine if young groundwater of potentially poor quality has migrated to deeper parts of the bedrock aquifers used for drinking-water supply. Age-tracer results were used to group samples into categories of young, mixed, and old groundwater. Groundwater ages transitioned from mostly young in the water-table wells to mostly mixed in the shallowest bedrock aquifer, the Dawson aquifer, to mostly old in the deeper bedrock aquifers. Although the bedrock aquifers are mostly old groundwater of good water quality, several lines of evidence indicate that young, contaminant-bearing recharge has reached shallow to moderate depths in some areas of the bedrock aquifers. The Dawson aquifer is the most vulnerable of the bedrock aquifers to contamination, but results indicate that the older (deeper) bedrock aquifers are also vulnerable to groundwater contamination and that mixing with young recharge has occurred in some areas. Heavy pumping has caused water-level declines in the bedrock aquifers in some parts of the Denver Basin, which has the potential to enhance the transport of contaminants from overlying units. Results of this study are consistent with the existing conceptual understanding of aquifer processes and groundwater issues in the Denver Basin and add new insight into the vulnerability of the bedrock aquifers to groundwater contamination.
From top to bottom: Do Lake Trout diversify along a depth gradient in Great Bear Lake, NT, Canada?
Howland, Kimberly L.; Harris, Les N.; Hansen, Michael J.; Harford, William J.; Gallagher, Colin P.; Baillie, Shauna M.; Malley, Brendan; Tonn, William M.; Muir, Andrew M.; Krueger, Charles C.
2018-01-01
Depth is usually considered the main driver of Lake Trout intraspecific diversity across lakes in North America. Given that Great Bear Lake is one of the largest and deepest freshwater systems in North America, we predicted that Lake Trout intraspecific diversity to be organized along a depth axis within this system. Thus, we investigated whether a deep-water morph of Lake Trout co-existed with four shallow-water morphs previously described in Great Bear Lake. Morphology, neutral genetic variation, isotopic niches, and life-history traits of Lake Trout across depths (0–150 m) were compared among morphs. Due to the propensity of Lake Trout with high levels of morphological diversity to occupy multiple habitat niches, a novel multivariate grouping method using a suite of composite variables was applied in addition to two other commonly used grouping methods to classify individuals. Depth alone did not explain Lake Trout diversity in Great Bear Lake; a distinct fifth deep-water morph was not found. Rather, Lake Trout diversity followed an ecological continuum, with some evidence for adaptation to local conditions in deep-water habitat. Overall, trout caught from deep-water showed low levels of genetic and phenotypic differentiation from shallow-water trout, and displayed higher lipid content (C:N ratio) and occupied a higher trophic level that suggested an potential increase of piscivory (including cannibalism) than the previously described four morphs. Why phenotypic divergence between shallow- and deep-water Lake Trout was low is unknown, especially when the potential for phenotypic variation should be high in deep and large Great Bear Lake. Given that variation in complexity of freshwater environments has dramatic consequences for divergence, variation in the complexity in Great Bear Lake (i.e., shallow being more complex than deep), may explain the observed dichotomy in the expression of intraspecific phenotypic diversity between shallow- vs. deep-water habitats. The ambiguity surrounding mechanisms driving divergence of Lake Trout in Great Bear Lake should be seen as reflective of the highly variable nature of ecological opportunity and divergent natural selection itself. PMID:29566015
Determination of Trophic State Changes with Diel Dissolved Oxygen: A Case Study in a Shallow Lake.
Xu, Zhen; Xu, Y Jun
2015-11-01
Current trophic state indices (TSI) have been reported to have limitations in assessing changes in eutrophication status of shallow waters. This study aimed to use intensive measurements on dissolved oxygen (DO) to improve the determination of tropic state changes. The authors deployed an environment monitoring buoy in a eutrophic shallow lake and recorded water temperature, DO, and chlorophyll-a concentrations at 15-minute intervals for two 1-year periods: from August 2008 to July 2009 and from August 2013 to July 2014. In addition, they recorded water levels over the same periods and collected water samples for nutrient analysis. The authors analyzed the high-time resolution DO records, compared the diel DO trends between the two 1-year periods, and proposed a new TSI using DO. They found that analyzing the change in diel DO ranges can improve commonly used methods for classifying trophic states and assessing the change of eutrophication status of waterbodies.
Mechanical Balance Laws for Boussinesq Models of Surface Water Waves
NASA Astrophysics Data System (ADS)
Ali, Alfatih; Kalisch, Henrik
2012-06-01
Depth-integrated long-wave models, such as the shallow-water and Boussinesq equations, are standard fare in the study of small amplitude surface waves in shallow water. While the shallow-water theory features conservation of mass, momentum and energy for smooth solutions, mechanical balance equations are not widely used in Boussinesq scaling, and it appears that the expressions for many of these quantities are not known. This work presents a systematic derivation of mass, momentum and energy densities and fluxes associated with a general family of Boussinesq systems. The derivation is based on a reconstruction of the velocity field and the pressure in the fluid column below the free surface, and the derivation of differential balance equations which are of the same asymptotic validity as the evolution equations. It is shown that all these mechanical quantities can be expressed in terms of the principal dependent variables of the Boussinesq system: the surface excursion η and the horizontal velocity w at a given level in the fluid.