Microbial synthesis of Flower-shaped gold nanoparticles.
Singh, Priyanka; Kim, Yeon Ju; Wang, Chao; Mathiyalagan, Ramya; Yang, Deok Chun
2016-09-01
The shape of nanoparticles has been recognized as an important attribute that determines their applicability in various fields. The flower shape (F-shape) has been considered and is being focused on, because of its enhanced properties when compared to the properties of the spherical shape. The present study proposed the microbial synthesis of F-shaped gold nanoparticles within 48 h using the Bhargavaea indica DC1 strain. The F-shaped gold nanoparticles were synthesized extracellularly by the reduction of auric acid in the culture supernatant of B. indica DC1. The shape, size, purity, and crystalline nature of F-shaped gold nanoparticles were revealed by various instrumental techniques including UV-Vis, FE-TEM, EDX, elemental mapping, XRD, and DLS. The UV-Vis absorbance showed a maximum peak at 536 nm. FE-TEM revealed the F-shaped structure of nanoparticles. The EDX peak obtained at 2.3 keV indicated the purity. The peaks obtained on XRD analysis corresponded to the crystalline nature of the gold nanoparticles. In addition, the results of elemental mapping indicated the maximum distribution of gold elements in the nanoproduct obtained. Particle size analysis revealed that the average diameter of the F-shaped gold nanoparticles was 106 nm, with a polydispersity index (PDI) of 0.178. Thus, the methodology developed for the synthesis of F-shaped gold nanoparticles is completely green and economical.
Sanfilippo, P.G.; Grimm, J.L.; Flanagan, J.G.; Lathrop, K.L.; Sigal, I.A.
2014-01-01
The lamina cribrosa (LC) plays an important biomechanical role in the optic nerve head (ONH). We developed a statistical shape model of the LC and tested if the shape varies with age or IOP. The ONHs of 18 donor eyes (47 to 91 years, mean 76 years) fixed at either 5 or 50 mm Hg of IOP were sectioned, stained, and imaged under a microscope. A 3D model of each ONH was reconstructed and the outline of the vertical sagittal section closest to the geometric centre of the LC extracted. The outline shape was described using elliptic Fourier analysis, and principal components analysis (PCA) employed to identify the primary modes of LC shape variation. Linear mixed effect models were used to determine if the shape measurements were associated with age or IOP. The analysis revealed several modes of shape variation: thickness and depth directly (PC1), or inversely (PC2) related, and superior-inferior asymmetry (PC3). Only PC3 was associated with IOP, with higher IOP correlating with greater curvature of the LC superiorly compared to inferiorly. Our analysis enabled a concise and complete characterization of LC shape, revealing variations without defining them a priori. No association between LC shape and age was found for the relatively old population studied. Superior-inferior asymmetry of LC shape was associated with IOP, with more asymmetry at higher IOP. Increased IOP was not associated with LC thickness or depth. PMID:25193035
Sanfilippo, P G; Grimm, J L; Flanagan, J G; Lathrop, K L; Sigal, I A
2014-11-01
The lamina cribrosa (LC) plays an important biomechanical role in the optic nerve head (ONH). We developed a statistical shape model of the LC and tested if the shape varies with age or IOP. The ONHs of 18 donor eyes (47-91 years, mean 76 years) fixed at either 5 or 50 mmHg of IOP were sectioned, stained, and imaged under a microscope. A 3D model of each ONH was reconstructed and the outline of the vertical sagittal section closest to the geometric center of the LC extracted. The outline shape was described using Elliptic Fourier analysis, and principal components analysis (PCA) employed to identify the primary modes of LC shape variation. Linear mixed effect models were used to determine if the shape measurements were associated with age or IOP. The analysis revealed several modes of shape variation: thickness and depth directly (PC 1), or inversely (PC 2) related, and superior-inferior asymmetry (PC 3). Only PC 3 was associated with IOP, with higher IOP correlating with greater curvature of the LC superiorly compared to inferiorly. Our analysis enabled a concise and complete characterization of LC shape, revealing variations without defining them a priori. No association between LC shape and age was found for the relatively old population studied. Superior-inferior asymmetry of LC shape was associated with IOP, with more asymmetry at higher IOP. Increased IOP was not associated with LC thickness or depth. Copyright © 2014 Elsevier Ltd. All rights reserved.
Instrumentation and Metrology for Nanotechnology
2004-01-29
dimension measurements of 3D structures, overlay, defect detection, and analysis . Critical dimension ( CD ) measurement must account for sidewall shape and...critical dimension measurements of 3D structures, overlay, defect detection, and analysis . CD measurement must account for sidewall shape and line...energy dispersive X-ray (EDX) analysis on films containing as-prepared FePt nanoparticles revealed a distribution of particle compositions. Although
Statistical 3D shape analysis of gender differences in lateral ventricles
NASA Astrophysics Data System (ADS)
He, Qing; Karpman, Dmitriy; Duan, Ye
2010-03-01
This paper aims at analyzing gender differences in the 3D shapes of lateral ventricles, which will provide reference for the analysis of brain abnormalities related to neurological disorders. Previous studies mostly focused on volume analysis, and the main challenge in shape analysis is the required step of establishing shape correspondence among individual shapes. We developed a simple and efficient method based on anatomical landmarks. 14 females and 10 males with matching ages participated in this study. 3D ventricle models were segmented from MR images by a semiautomatic method. Six anatomically meaningful landmarks were identified by detecting the maximum curvature point in a small neighborhood of a manually clicked point on the 3D model. Thin-plate spline was used to transform a randomly selected template shape to each of the rest shape instances, and the point correspondence was established according to Euclidean distance and surface normal. All shapes were spatially aligned by Generalized Procrustes Analysis. Hotelling T2 twosample metric was used to compare the ventricle shapes between males and females, and False Discovery Rate estimation was used to correct for the multiple comparison. The results revealed significant differences in the anterior horn of the right ventricle.
Galactic shape and age go hand in hand
NASA Astrophysics Data System (ADS)
Weijmans, Anne-Marie
2018-04-01
Recently, large integral-field spectroscopic studies of galaxies have greatly increased our knowledge of their structure and evolution. A new analysis of such data reveals a relationship between the age and the intrinsic — three-dimensional — shape of galaxies.
Galactic shape and age go hand in hand
NASA Astrophysics Data System (ADS)
Weijmans, Anne-Marie
2018-06-01
Recently, large integral-field spectroscopic studies of galaxies have greatly increased our knowledge of their structure and evolution. A new analysis of such data reveals a relationship between the age and the intrinsic — three-dimensional — shape of galaxies.
Abnormal subcortical nuclei shapes in patients with type 2 diabetes mellitus.
Chen, Ji; Zhang, Junxiang; Liu, Xuebing; Wang, Xiaoyang; Xu, Xiangjin; Li, Hui; Cao, Bo; Yang, Yanqiu; Lu, Jingjing; Chen, Ziqian
2017-10-01
Type 2 diabetes mellitus (T2DM) increases the risk of brain atrophy and dementia. We aimed to elucidate deep grey matter (GM) structural abnormalities and their relationships with T2DM cognitive deficits by combining region of interest (ROI)-based volumetry, voxel-based morphometry (VBM) and shape analysis. We recruited 23 T2DM patients and 24 age-matched healthy controls to undergo T1-weighted structural MRI scanning. Images were analysed using the three aforementioned methods to obtain deep GM structural shapes and volumes. Biochemical and cognitive assessments were made and were correlated with the resulting metrics. Shape analysis revealed that T2DM is associated with focal atrophy in the bilateral caudate head and dorso-medial part of the thalamus. ROI-based volumetry only detected thalamic volume reduction in T2DM when compared to the controls. No significant between-group differences were found by VBM. Furthermore, a worse performance of cognitive processing speed correlated with more severe GM atrophy in the bilateral dorso-medial part of the thalamus. Also, the GM volume in the bilateral dorso-medial part of the thalamus changed negatively with HbA 1c . Shape analysis is sensitive in identifying T2DM deep GM structural abnormalities and their relationships with cognitive impairments, which may greatly assist in clarifying the neural substrate of T2DM cognitive dysfunction. • Type 2 diabetes mellitus is accompanied with brain atrophy and cognitive dysfunction • Deep grey matter structures are essential for multiple cognitive processes • Shape analysis revealed local atrophy in the dorso-medial thalamus and caudatum in patients • Dorso-medial thalamic atrophy correlated to cognitive processing speed slowing and high HbA1c. • Shape analysis has advantages in unraveling neural substrates of diabetic cognitive deficits.
The Extraction of 3D Shape from Texture and Shading in the Human Brain
Georgieva, Svetlana S.; Todd, James T.; Peeters, Ronald
2008-01-01
We used functional magnetic resonance imaging to investigate the human cortical areas involved in processing 3-dimensional (3D) shape from texture (SfT) and shading. The stimuli included monocular images of randomly shaped 3D surfaces and a wide variety of 2-dimensional (2D) controls. The results of both passive and active experiments reveal that the extraction of 3D SfT involves the bilateral caudal inferior temporal gyrus (caudal ITG), lateral occipital sulcus (LOS) and several bilateral sites along the intraparietal sulcus. These areas are largely consistent with those involved in the processing of 3D shape from motion and stereo. The experiments also demonstrate, however, that the analysis of 3D shape from shading is primarily restricted to the caudal ITG areas. Additional results from psychophysical experiments reveal that this difference in neuronal substrate cannot be explained by a difference in strength between the 2 cues. These results underscore the importance of the posterior part of the lateral occipital complex for the extraction of visual 3D shape information from all depth cues, and they suggest strongly that the importance of shading is diminished relative to other cues for the analysis of 3D shape in parietal regions. PMID:18281304
Miyake, Masahiro; Yamashiro, Kenji; Akagi-Kurashige, Yumiko; Oishi, Akio; Tsujikawa, Akitaka; Hangai, Masanori; Yoshimura, Nagahisa
2014-01-01
Purpose To evaluate fundus shape in highly myopic eyes using color maps created through optical coherence tomography (OCT) image analysis. Methods We retrospectively evaluated 182 highly myopic eyes from 113 patients. After obtaining 12 lines of 9-mm radial OCT scans with the fovea at the center, the Bruch’s membrane line was plotted and its curvature was measured at 1-µm intervals in each image, which was reflected as a color topography map. For the quantitative analysis of the eye shape, mean absolute curvature and variance of curvature were calculated. Results The color maps allowed staphyloma visualization as a ring of green color at the edge and as that of orange-red color at the bottom. Analyses of mean and variance of curvature revealed that eyes with myopic choroidal neovascularization tended to have relatively flat posterior poles with smooth surfaces, while eyes with chorioretinal atrophy exhibited a steep, curved shape with an undulated surface (P<0.001). Furthermore, eyes with staphylomas and those without clearly differed in terms of mean curvature and the variance of curvature: 98.4% of eyes with staphylomas had mean curvature ≥7.8×10−5 [1/µm] and variance of curvature ≥0.26×10−8 [1/µm]. Conclusions We established a novel method to analyze posterior pole shape by using OCT images to construct curvature maps. Our quantitative analysis revealed that fundus shape is associated with myopic complications. These values were also effective in distinguishing eyes with staphylomas from those without. This tool for the quantitative evaluation of eye shape should facilitate future research of myopic complications. PMID:25259853
Miao, Shida; Zhu, Wei; Castro, Nathan J; Leng, Jinsong; Zhang, Lijie Grace
2016-10-01
The objective of this study was to four-dimensional (4D) print novel biomimetic gradient tissue scaffolds with highly biocompatible naturally derived smart polymers. The term "4D printing" refers to the inherent smart shape transformation of fabricated constructs when implanted minimally invasively for seamless and dynamic integration. For this purpose, a series of novel shape memory polymers with excellent biocompatibility and tunable shape changing effects were synthesized and cured in the presence of three-dimensional printed sacrificial molds, which were subsequently dissolved to create controllable and graded porosity within the scaffold. Surface morphology, thermal, mechanical, and biocompatible properties as well as shape memory effects of the synthesized smart polymers and resultant porous scaffolds were characterized. Fourier transform infrared spectroscopy and gel content analysis confirmed the formation of chemical crosslinking by reacting polycaprolactone triol and castor oil with multi-isocyanate groups. Differential scanning calorimetry revealed an adjustable glass transition temperature in a range from -8°C to 35°C. Uniaxial compression testing indicated that the obtained polymers, possessing a highly crosslinked interpenetrating polymeric networks, have similar compressive modulus to polycaprolactone. Shape memory tests revealed that the smart polymers display finely tunable recovery speed and exhibit greater than 92% shape fixing at -18°C or 0°C and full shape recovery at physiological temperature. Scanning electron microscopy analysis of fabricated scaffolds revealed a graded microporous structure, which mimics the nonuniform distribution of porosity found within natural tissues. With polycaprolactone serving as a control, human bone marrow-derived mesenchymal stem cell adhesion, proliferation, and differentiation greatly increased on our novel smart polymers. The current work will significantly advance the future design and development of novel and functional biomedical scaffolds with advanced 4D printing technology and highly biocompatible smart biomaterials.
Miao, Shida; Zhu, Wei; Castro, Nathan J.; Leng, Jinsong
2016-01-01
The objective of this study was to four-dimensional (4D) print novel biomimetic gradient tissue scaffolds with highly biocompatible naturally derived smart polymers. The term “4D printing” refers to the inherent smart shape transformation of fabricated constructs when implanted minimally invasively for seamless and dynamic integration. For this purpose, a series of novel shape memory polymers with excellent biocompatibility and tunable shape changing effects were synthesized and cured in the presence of three-dimensional printed sacrificial molds, which were subsequently dissolved to create controllable and graded porosity within the scaffold. Surface morphology, thermal, mechanical, and biocompatible properties as well as shape memory effects of the synthesized smart polymers and resultant porous scaffolds were characterized. Fourier transform infrared spectroscopy and gel content analysis confirmed the formation of chemical crosslinking by reacting polycaprolactone triol and castor oil with multi-isocyanate groups. Differential scanning calorimetry revealed an adjustable glass transition temperature in a range from −8°C to 35°C. Uniaxial compression testing indicated that the obtained polymers, possessing a highly crosslinked interpenetrating polymeric networks, have similar compressive modulus to polycaprolactone. Shape memory tests revealed that the smart polymers display finely tunable recovery speed and exhibit greater than 92% shape fixing at −18°C or 0°C and full shape recovery at physiological temperature. Scanning electron microscopy analysis of fabricated scaffolds revealed a graded microporous structure, which mimics the nonuniform distribution of porosity found within natural tissues. With polycaprolactone serving as a control, human bone marrow-derived mesenchymal stem cell adhesion, proliferation, and differentiation greatly increased on our novel smart polymers. The current work will significantly advance the future design and development of novel and functional biomedical scaffolds with advanced 4D printing technology and highly biocompatible smart biomaterials. PMID:28195832
NASA Astrophysics Data System (ADS)
Tian, W. H.; Hu, S. L.; Fan, A. L.; Wang, Z.
2002-01-01
Transmission electron microscopy (TEM) observations were carried out for examining the as-formed and post-deformed microstructures in a variety of electroformed copper liners of shaped charges. The deformation was carried out at an ultra-high strain rate. Specifically, the electron backscattering Kikuchi pattern (EBSP) technique was utilized to examine the micro-texture of these materials. TEM observations revealed that these electroformed copper liners of shaped charges have a grain size of about 1-3 mum, EBSP analysis demonstrated that the as-grown copper liners of shaped charges exhibit a l 10) fiber micro-texture which is parallel to the normal direction of the surface of the liners of shaped charges. Having undergone plastic deformation at ultra-high strain rate (10(7) s(-1)), the specimens which were recovered from the copper slugs were found to have grain size of the same order as that before deformation. EBSP analysis revealed that the (110) fiber texture existed in the as-formed copper liners disappears in the course of deformation. TEM examination results indicate that dynamic recovery and recrystallization play a significant role in this deformation process.
Genetical genomics of Populus leaf shape variation
Drost, Derek R.; Puranik, Swati; Novaes, Evandro; ...
2015-06-30
Leaf morphology varies extensively among plant species and is under strong genetic control. Mutagenic screens in model systems have identified genes and established molecular mechanisms regulating leaf initiation, development, and shape. However, it is not known whether this diversity across plant species is related to naturally occurring variation at these genes. Quantitative trait locus (QTL) analysis has revealed a polygenic control for leaf shape variation in different species suggesting that loci discovered by mutagenesis may only explain part of the naturally occurring variation in leaf shape. Here we undertook a genetical genomics study in a poplar intersectional pseudo-backcross pedigree tomore » identify genetic factors controlling leaf shape. Here, the approach combined QTL discovery in a genetic linkage map anchored to the Populus trichocarpa reference genome sequence and transcriptome analysis.« less
NASA Astrophysics Data System (ADS)
Teng, Zhaojie; Zhang, Wenyan; Chen, Yiran; Pan, Hongmiao; Xiao, Tian; Wu, Long-Fei
2017-08-01
Magnetotactic bacteria are a group of Gram-negative bacteria that synthesize magnetic crystals, enabling them to navigate in relation to magnetic field lines. Morphologies of magnetotactic bacteria include spirillum, coccoid, rod, vibrio, and multicellular morphotypes. The coccid shape is generally the most abundant morphotype among magnetotactic bacteria. Here we describe a species of giant rod-shaped magnetotactic bacteria (designated QR-1) collected from sediment in the low tide zone of Huiquan Bay (Yellow Sea, China). This morphotype accounted for 90% of the magnetotactic bacteria collected, and the only taxonomic group which was detected in the sampling site. Microscopy analysis revealed that QR-1 cells averaged (6.71±1.03)×(1.54±0.20) μm in size, and contained in each cell 42-146 magnetosomes that are arranged in a bundle formed one to four chains along the long axis of the cell. The QR-1 cells displayed axial magnetotaxis with an average velocity of 70±28 μm/s. Transmission electron microscopy based analysis showed that QR-1 cells had two tufts of flagella at each end. Phylogenetic analysis of the 16S rRNA genes revealed that QR-1 together with three other rod-shaped uncultivated magnetotactic bacteria are clustered into a deep branch of Alphaproteobacteria.
Omoto, Kenichiro; Hosono, Nobuhiko; Gochomori, Mika; Albrecht, Ken; Yamamoto, Kimihisa; Kitagawa, Susumu
2018-05-17
Anisotropic dendrimers with bipolar shapes were systematically obtained using a heteroleptic metal-organic polyhedron (MOP) as a robust core scaffold. The structure of one of these polyhedral shapes was unambiguously determined by single-crystal X-ray analysis, which revealed that the bulky dendrons converge to both axial positions of the heteroleptic MOP core.
Stange, Madlen; Aguirre-Fernández, Gabriel; Salzburger, Walter; Sánchez-Villagra, Marcelo R
2018-03-27
Morphological convergence triggered by trophic adaptations is a common pattern in adaptive radiations. The study of shape variation in an evolutionary context is usually restricted to well-studied fish models. We take advantage of the recently revised systematics of New World Ariidae and investigate skull shape evolution in six genera of northern Neotropical Ariidae. They constitute a lineage that diversified in the marine habitat but repeatedly adapted to freshwater habitats. 3D geometric morphometrics was applied for the first time in catfish skulls and phylogenetically informed statistical analyses were performed to test for the impact of habitat on skull diversification after habitat transition in this lineage. We found that skull shape is conserved throughout phylogeny. A morphospace analysis revealed that freshwater and marine species occupy extreme ends of the first principal component axis and that they exhibit similar Procrustes variances. Yet freshwater species occupy the smallest shape space compared to marine and brackish species (based on partial disparity), and marine and freshwater species have the largest Procrustes distance to each other. We observed a single case of shape convergence as derived from 'C-metrics', which cannot be explained by the occupation of the same habitat. Although Ariidae occupy such a broad spectrum of different habitats from sea to freshwater, the morphospace analysis and analyses of shape and co-variation with habitat in a phylogenetic context shows that conservatism dominates skull shape evolution among ariid genera.
Three-dimensional analysis of facial shape and symmetry in twins using laser surface scanning.
Djordjevic, J; Jadallah, M; Zhurov, A I; Toma, A M; Richmond, S
2013-08-01
Three-dimensional analysis of facial shape and symmetry in twins. Faces of 37 twin pairs [19 monozygotic (MZ) and 18 dizygotic (DZ)] were laser scanned at the age of 15 during a follow-up of the Avon Longitudinal Study of Parents and Children (ALSPAC), South West of England. Facial shape was analysed using two methods: 1) Procrustes analysis of landmark configurations (63 x, y and z coordinates of 21 facial landmarks) and 2) three-dimensional comparisons of facial surfaces within each twin pair. Monozygotic and DZ twins were compared using ellipsoids representing 95% of the variation in landmark configurations and surface-based average faces. Facial symmetry was analysed by superimposing the original and mirror facial images. Both analyses showed greater similarity of facial shape in MZ twins, with lower third being the least similar. Procrustes analysis did not reveal any significant difference in facial landmark configurations of MZ and DZ twins. The average faces of MZ and DZ males were coincident in the forehead, supraorbital and infraorbital ridges, the bridge of the nose and lower lip. In MZ and DZ females, the eyes, supraorbital and infraorbital ridges, philtrum and lower part of the cheeks were coincident. Zygosity did not seem to influence the amount of facial symmetry. Lower facial third was the most asymmetrical. Three-dimensional analyses revealed differences in facial shapes of MZ and DZ twins. The relative contribution of genetic and environmental factors is different for the upper, middle and lower facial thirds. © 2012 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
Structural, optical and field emission properties of urchin-shaped ZnO nanostructures.
Al-Heniti, Saleh; Umar, Ahmad
2013-01-01
In this work, well-crystallized urchin-shaped ZnO structures were synthesized on silicon substrate by simple non-catalytic thermal evaporation process by using metallic zinc powder in the presence of oxygen as source materials for zinc and oxygen, respectively. The synthesized ZnO structures were characterized in detail in terms of their morphological, structural, optical and field emission properties. The detailed morphological investigations revealed that the synthesized structures possess urchin-shape and grown in high-density over the substrate surface. The detailed structural and optical characterizations revealed that the synthesized urchin-shaped ZnO structures are well-crystallized and exhibiting good optical properties. The field emission analysis for urchin-shaped ZnO structures exhibits a turn-on field of 4.6 V/microm. The emission current density reached to 0.056 mA/cm2 at an applied electrical field of 6.4 V/microm and shows no saturation. The calculated field enhancement factor 'beta', from the F-N plot, was found to be approximately 2.2 x 10(3).
3D shape decomposition and comparison for gallbladder modeling
NASA Astrophysics Data System (ADS)
Huang, Weimin; Zhou, Jiayin; Liu, Jiang; Zhang, Jing; Yang, Tao; Su, Yi; Law, Gim Han; Chui, Chee Kong; Chang, Stephen
2011-03-01
This paper presents an approach to gallbladder shape comparison by using 3D shape modeling and decomposition. The gallbladder models can be used for shape anomaly analysis and model comparison and selection in image guided robotic surgical training, especially for laparoscopic cholecystectomy simulation. The 3D shape of a gallbladder is first represented as a surface model, reconstructed from the contours segmented in CT data by a scheme of propagation based voxel learning and classification. To better extract the shape feature, the surface mesh is further down-sampled by a decimation filter and smoothed by a Taubin algorithm, followed by applying an advancing front algorithm to further enhance the regularity of the mesh. Multi-scale curvatures are then computed on the regularized mesh for the robust saliency landmark localization on the surface. The shape decomposition is proposed based on the saliency landmarks and the concavity, measured by the distance from the surface point to the convex hull. With a given tolerance the 3D shape can be decomposed and represented as 3D ellipsoids, which reveal the shape topology and anomaly of a gallbladder. The features based on the decomposed shape model are proposed for gallbladder shape comparison, which can be used for new model selection. We have collected 19 sets of abdominal CT scan data with gallbladders, some shown in normal shape and some in abnormal shapes. The experiments have shown that the decomposed shapes reveal important topology features.
Echinocyte shapes: bending, stretching, and shear determine spicule shape and spacing.
Mukhopadhyay, Ranjan; Lim H W, Gerald; Wortis, Michael
2002-01-01
We study the shapes of human red blood cells using continuum mechanics. In particular, we model the crenated, echinocytic shapes and show how they may arise from a competition between the bending energy of the plasma membrane and the stretching/shear elastic energies of the membrane skeleton. In contrast to earlier work, we calculate spicule shapes exactly by solving the equations of continuum mechanics subject to appropriate boundary conditions. A simple scaling analysis of this competition reveals an elastic length Lambda(el), which sets the length scale for the spicules and is, thus, related to the number of spicules experimentally observed on the fully developed echinocyte. PMID:11916836
Malaria vaccine development and how external forces shape it: an overview.
Lorenz, Veronique; Karanis, Gabriele; Karanis, Panagiotis
2014-06-30
The aim of this paper is to analyse the current status and scientific value of malaria vaccine approaches and to provide a realistic prognosis for future developments. We systematically review previous approaches to malaria vaccination, address how vaccine efforts have developed, how this issue may be fixed, and how external forces shape vaccine development. Our analysis provides significant information on the various aspects and on the external factors that shape malaria vaccine development and reveal the importance of vaccine development in our society.
Solar granulation and statistical crystallography: A modeling approach using size-shape relations
NASA Technical Reports Server (NTRS)
Noever, D. A.
1994-01-01
The irregular polygonal pattern of solar granulation is analyzed for size-shape relations using statistical crystallography. In contrast to previous work which has assumed perfectly hexagonal patterns for granulation, more realistic accounting of cell (granule) shapes reveals a broader basis for quantitative analysis. Several features emerge as noteworthy: (1) a linear correlation between number of cell-sides and neighboring shapes (called Aboav-Weaire's law); (2) a linear correlation between both average cell area and perimeter and the number of cell-sides (called Lewis's law and a perimeter law, respectively) and (3) a linear correlation between cell area and squared perimeter (called convolution index). This statistical picture of granulation is consistent with a finding of no correlation in cell shapes beyond nearest neighbors. A comparative calculation between existing model predictions taken from luminosity data and the present analysis shows substantial agreements for cell-size distributions. A model for understanding grain lifetimes is proposed which links convective times to cell shape using crystallographic results.
Geometric morphometric analysis reveals age-related differences in the distal femur of Europeans.
Cavaignac, Etienne; Savall, Frederic; Chantalat, Elodie; Faruch, Marie; Reina, Nicolas; Chiron, Philippe; Telmon, Norbert
2017-12-01
Few studies have looked into age-related variations in femur shape. We hypothesized that three-dimensional (3D) geometric morphometric analysis of the distal femur would reveal age-related differences. The purpose of this study was to show that differences in distal femur shape related to age could be identified, visualized, and quantified using three-dimensional (3D) geometric morphometric analysis. Geometric morphometric analysis was carried out on CT scans of the distal femur of 256 subjects living in the south of France. Ten landmarks were defined on 3D reconstructions of the distal femur. Both traditional metric and geometric morphometric analyses were carried out on these bone reconstructions. These analyses were used to identify trends in bone shape in various age-based subgroups (<40, 40-60, >60). Only the average bone shape of the < 40-year subgroup was statistically different from that of the other two groups. When the population was divided into two subgroups using 40 years of age as a threshold, the subject's age was correctly assigned 80% of the time. Age-related differences are present in this bone segment. This reliable, accurate method could be used for virtual autopsy and to perform diachronic and interethnic comparisons. Moreover, this study provides updated morphometric data for a modern population in the south of France. Manufacturers of knee replacement implants will have to adapt their prosthesis models as the population evolves over time.
Effect of pore architecture on oxygen diffusion in 3D scaffolds for tissue engineering.
Ahn, Geunseon; Park, Jeong Hun; Kang, Taeyun; Lee, Jin Woo; Kang, Hyun-Wook; Cho, Dong-Woo
2010-10-01
The aim of this study was to maximize oxygen diffusion within a three-dimensional scaffold in order to improve cell viability and proliferation. To evaluate the effect of pore architecture on oxygen diffusion, we designed a regular channel shape with uniform diameter, referred to as cylinder shaped, and a new channel shape with a channel diameter gradient, referred to as cone shaped. A numerical analysis predicted higher oxygen concentration in the cone-shaped channels than in the cylinder-shaped channels, throughout the scaffold. To confirm these numerical results, we examined cell proliferation and viability in 2D constructs and 3D scaffolds. Cell culture experiments revealed that cell proliferation and viability were superior in the constructs and scaffolds with cone-shaped channels.
NASA Astrophysics Data System (ADS)
Fang, Zenong; Li, Min; Wang, Shaokai; Li, Yanxia; Wang, Xiaolei; Gu, Yizhuo; Liu, Qianli; Tian, Jie; Zhang, Zuoguang
2017-11-01
This paper focuses on the anisotropic characteristics of the in-plane thermal conductivity of fiber-reinforced polymer composite based on experiment and simulation. Thermal conductivity along different in-plane orientations was measured by laser flash analysis (LFA) and steady-state heat flow method. Their heat transfer processes were simulated to reveal the geometrical effect on thermal conduction. The results show that the in-plane thermal conduction of unidirectional carbon-fiber-reinforced polymer composite is greatly influenced by the sample geometry at an in-plane orientation angle between 0° to 90°. By defining radius-to-thickness as a dimensionless shape factor for the LFA sample, the apparent thermal conductivity shows a dramatic change when the shape factor is close to the tangent of the orientation angle (tanθ). Based on finite element analysis, this phenomenon was revealed to correlate with the change of the heat transfer process. When the shape factor is larger than tanθ, the apparent thermal conductivity is consistent with the estimated value according to the theoretical model. For a sample with a shape factor smaller than tanθ, the apparent thermal conductivity shows a slow growth around a low value, which seriously deviates from the theory estimation. This phenomenon was revealed to correlate with the change of the heat transfer process from a continuous path to a zigzag path. These results will be helpful in optimizing the ply scheme of composite laminates for thermal management applications.
Shape analysis of corpus callosum in autism subtype using planar conformal mapping
NASA Astrophysics Data System (ADS)
He, Qing; Duan, Ye; Yin, Xiaotian; Gu, Xianfeng; Karsch, Kevin; Miles, Judith
2009-02-01
A number of studies have documented that autism has a neurobiological basis, but the anatomical extent of these neurobiological abnormalities is largely unknown. In this study, we aimed at analyzing highly localized shape abnormalities of the corpus callosum in a homogeneous group of autism children. Thirty patients with essential autism and twenty-four controls participated in this study. 2D contours of the corpus callosum were extracted from MR images by a semiautomatic segmentation method, and the 3D model was constructed by stacking the contours. The resulting 3D model had two openings at the ends, thus a new conformal parameterization for high genus surfaces was applied in our shape analysis work, which mapped each surface onto a planar domain. Surface matching among different individual meshes was achieved by re-triangulating each mesh according to a template surface. Statistical shape analysis was used to compare the 3D shapes point by point between patients with autism and their controls. The results revealed significant abnormalities in the anterior most and anterior body in essential autism group.
Gómez Yepes, Milena Elizabeth; Cremades, Lázaro V
2011-01-01
Study characterized and analyzed form factor, elementary composition and particle size of wood dust, in order to understand its harmful health effects on carpenters in Quindío (Colombia). Once particle characteristics (size distributions, aerodynamic equivalent diameter (D(α)), elemental composition and shape factors) were analyzed, particles were then characterized via scanning electron microscopy (SEM) in conjunction with energy dispersive X-ray analysis (EDXRA). SEM analysis of particulate matter showed: 1) cone-shaped particle ranged from 2.09 to 48.79 µm D(α); 2) rectangular prism-shaped particle from 2.47 to 72.9 µm D(α); 3) cylindrically-shaped particle from 2.5 to 48.79 µm D(α); and 4) spherically-shaped particle from 2.61 to 51.93 µm D(α). EDXRA reveals presence of chemical elements from paints and varnishes such as Ca, K, Na and Cr. SEM/EDXRA contributes in a significant manner to the morphological characterization of wood dust. It is obvious that the type of particles sampled is a complex function of shapes and sizes of particles. Thus, it is important to investigate the influence of particles characteristics, morphology, shapes and D(α) that may affect the health of carpenters in Quindío.
The confining baryonic Y-strings on the lattice
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bakry, Ahmed S.; Chen, Xurong; Zhang, Peng-Ming
2016-01-22
In a string picture, the nucleon is conjectured as consisting of a Y-shaped gluonic string ended by constituent quarks. In this proceeding, we summarize our results on revealing the signature of the confining Y-bosonic string in the gluonic profile due to a system of three static quarks on the lattice at finite temperature. The analysis of the action density unveils a background of a filled-Δ distribution. However, we found that these Δ-shaped profiles are comprised of three Y-shaped Gaussian-like flux tubes. The length of the revealed Y-string-like distribution is maximum near the deconfinement point and approaches the geometrical minimal nearmore » the end of the QCD plateau. The action density width profile returns good fits to a baryonic string model for the junction fluctuations at large quark source separation.« less
A serine protease homologue Bombyx mori scarface induces a short and fat body shape in silkworm.
Wang, R-X; Tong, X-L; Gai, T-T; Li, C-L; Qiao, L; Hu, H; Han, M-J; Xiang, Z-H; Lu, C; Dai, F-Y
2018-06-01
Body shape is one of the most prominent and basic characteristics of any organism. In insects, abundant variations in body shape can be observed both within and amongst species. However, the molecular mechanism underlying body shape fine-tuning is very complex and has been largely unknown until now. In the silkworm Bombyx mori, the tubby (tub) mutant has an abnormal short fat body shape and the abdomen of tub larvae expands to form a fusiform body shape. Morphological investigation revealed that the body length was shorter and the body width was wider than that of the Dazao strain. Thus, this mutant is a good model for studying the molecular mechanisms of body shape fine-tuning. Using positional cloning, we identified a gene encoding the serine protease homologue, B. mori scarface (Bmscarface), which is associated with the tub phenotype. Sequence analysis revealed a specific 312-bp deletion from an exon of Bmscarface in the tub strain. In addition, recombination was not observed between the tub and Bmscarface loci. Moreover, RNA interference of Bmscarface resulted in the tub-like phenotype. These results indicate that Bmscarface is responsible for the tub mutant phenotype. This is the first study to report that mutation of a serine protease homologue can induce an abnormal body shape in insects. © 2018 The Royal Entomological Society.
Li, Ke; Cavaignac, Etienne; Xu, Wei; Cheng, Qiang; Telmon, Nobert; Huang, Wei
2018-02-20
Morphologic data of the knee is very important in the design of total knee prostheses. Generally, the designs of the total knee prostheses are based on the knee anatomy of Caucasian population. Moreover, in forensic medicine, a person's age and sex might be estimated by the shape of their knees. The aim of this study is to utilize three-dimensional morphometric analysis of the knee in Chinese population to reveal sexual dimorphism and age-related differences. Sexually dimorphic differences and age-related differences of the distal femur were studied by using geometric morphometric analysis of ten osteometric landmarks on three-dimensional reconstructions of 259 knees in Chinese population. General Procrustes analysis, PCA, and other discriminant analysis such as Mahalanobis and Goodall's F test were conducted for the knee to identify sexually dimorphism and age-related differences of the knee. The shape of distal femur between the male and female is significantly different. A difference between males and females in distal femur shape was identified by PCA; PC1 and PC2 accounted for 61.63% of the variance measured. The correct sex was assigned in 84.9% of cases by CVA, and the cross-validation revealed a 81.1% rate of correct sex estimation. The osteometric analysis also showed significant differences between the three age-related subgroups (< 40, 40-60, > 60 years, p < 0.005). This study showed both sex-related difference and age-related difference in the distal femur in Chinese population by 3D geometric morphometric analysis. Our bone measurements and geometric morphometric analysis suggest that population characteristics should be taken into account and may provide references for design of total knee prostheses in a Chinese population. Moreover, this reliable, accurate method could be used to perform diachronic and interethnic comparisons.
Size and shape in Melipona quadrifasciata anthidioides Lepeletier, 1836 (Hymenoptera; Meliponini).
Nunes, L A; Passos, G B; Carvalho, C A L; Araújo, E D
2013-11-01
This study aimed to identify differences in wing shape among populations of Melipona quadrifasciata anthidioides obtained in 23 locations in the semi-arid region of Bahia state (Brazil). Analysis of the Procrustes distances among mean wing shapes indicated that population structure did not determine shape variation. Instead, populations were structured geographically according to wing size. The Partial Mantel Test between morphometric (shape and size) distance matrices and altitude, taking geographic distances into account, was used for a more detailed understanding of size and shape determinants. A partial Mantel test between morphometris (shape and size) variation and altitude, taking geographic distances into account, revealed that size (but not shape) is largely influenced by altitude (r = 0.54 p < 0.01). These results indicate greater evolutionary constraints for the shape variation, which must be directly associated with aerodynamic issues in this structure. The size, however, indicates that the bees tend to have larger wings in populations located at higher altitudes.
Gutman, Boris A.; Jahanshad, Neda; Ching, Christopher R.K.; Wang, Yalin; Kochunov, Peter V.; Nichols, Thomas E.; Thompson, Paul M.
2015-01-01
We present a multi-cohort shape heritability study, extending the fast spherical demons registration to subcortical shapes via medial modeling. A multi-channel demons registration based on vector spherical harmonics is applied to medial and curvature features, while controlling for metric distortion. We registered and compared seven subcortical structures of 1480 twins and siblings from the Queensland Twin Imaging Study and Human Connectome Project: Thalamus, Caudate, Putamen, Pallidum, Hippocampus, Amygdala, and Nucleus Accumbens. Radial distance and tensor-based morphometry (TBM) features were found to be highly heritable throughout the entire basal ganglia and limbic system. Surface maps reveal subtle variation in heritability across functionally distinct parts of each structure. Medial Demons reveals more significantly heritable regions than two previously described surface registration methods. This approach may help to prioritize features and measures for genome-wide association studies. PMID:26413211
Gutman, Boris A; Jahanshad, Neda; Ching, Christopher R K; Wang, Yalin; Kochunov, Peter V; Nichols, Thomas E; Thompson, Paul M
2015-04-01
We present a multi-cohort shape heritability study, extending the fast spherical demons registration to subcortical shapes via medial modeling. A multi-channel demons registration based on vector spherical harmonics is applied to medial and curvature features, while controlling for metric distortion. We registered and compared seven subcortical structures of 1480 twins and siblings from the Queensland Twin Imaging Study and Human Connectome Project: Thalamus, Caudate, Putamen, Pallidum, Hippocampus, Amygdala, and Nucleus Accumbens . Radial distance and tensor-based morphometry (TBM) features were found to be highly heritable throughout the entire basal ganglia and limbic system. Surface maps reveal subtle variation in heritability across functionally distinct parts of each structure. Medial Demons reveals more significantly heritable regions than two previously described surface registration methods. This approach may help to prioritize features and measures for genome-wide association studies.
Chen, Rubing; Holmes, Edward C
2009-01-05
Revealing the factors that shape the genetic structure of avian influenza viruses (AIVs) in wild bird populations is essential to understanding their evolution. However, the relationship between epidemiological dynamics and patterns of genetic diversity in AIV is not well understood, especially at the continental scale. To address this question, we undertook a phylogeographic analysis of complete genome sequences of AIV sampled from wild birds in North America. In particular, we asked whether host species, geographic location or sampling time played the major role in shaping patterns of viral genetic diversity. Strikingly, our analysis revealed no strong species effect, yet a significant viral clustering by time and place of sampling, as well as the circulation of multiple viral lineages in single locations. These results suggest that AIVs can readily infect many of the bird species that share breeding/feeding areas.
ERIC Educational Resources Information Center
Bullough, Robert V., Jr.
2014-01-01
Drawing on insights from literary critic and theorist Kenneth Burke, this rhetorical analysis of "Preparing Teachers" (2010), a publication of the National Research Council, reveals then critiques' key assumptions that are shaping policies and current reform efforts in teacher education, including changes in U.S. teacher…
Interactive lesion segmentation with shape priors from offline and online learning.
Shepherd, Tony; Prince, Simon J D; Alexander, Daniel C
2012-09-01
In medical image segmentation, tumors and other lesions demand the highest levels of accuracy but still call for the highest levels of manual delineation. One factor holding back automatic segmentation is the exemption of pathological regions from shape modelling techniques that rely on high-level shape information not offered by lesions. This paper introduces two new statistical shape models (SSMs) that combine radial shape parameterization with machine learning techniques from the field of nonlinear time series analysis. We then develop two dynamic contour models (DCMs) using the new SSMs as shape priors for tumor and lesion segmentation. From training data, the SSMs learn the lower level shape information of boundary fluctuations, which we prove to be nevertheless highly discriminant. One of the new DCMs also uses online learning to refine the shape prior for the lesion of interest based on user interactions. Classification experiments reveal superior sensitivity and specificity of the new shape priors over those previously used to constrain DCMs. User trials with the new interactive algorithms show that the shape priors are directly responsible for improvements in accuracy and reductions in user demand.
Morphologic changes in the mesolimbic pathway in Parkinson's disease motor subtypes.
Nyberg, Eric M; Tanabe, Jody; Honce, Justin M; Krmpotich, Theodore; Shelton, Erika; Hedeman, Jessica; Berman, Brian D
2015-05-01
Parkinson's disease (PD) is a common neurodegenerative disorder associated with gray matter atrophy. Cortical atrophy patterns may further help distinguish between PD motor subtypes. Comparable differences in subcortical volumes have not been found. Twenty-one cognitively intact and treated PD patients, including 12 tremor dominant (TD) subtype, Nine postural instability gait dominant (PIGD) subtype, and 20 matched healthy control subjects underwent 3.0 T high-resolution structural MRI scanning. Subcortical volumetric analysis was performed using FreeSurfer and shape analysis was performed with FIRST to assess for differences between PD patients and controls and between PD subtypes. No significant differences in subcortical volumes were found between motor PD subtypes, but comparing grouped PD patients with controls revealed a significant increase in hippocampal volume in PD patients (p = 0.03). A significant shape difference was detected in the right nucleus accumbens (NAcc) between PD and controls and between motor subtypes. Shape differences were driven by positive deviations in the TD subtype. Correlation analysis revealed a trend between hippocampal volume and decreasing MDS-UPDRS (p = 0.06). While no significant differences in subcortical volumes between PD motor subtypes were found, increased hippocampal volumes were observed in PD patients compared to controls. Right NAcc shape differences in PD patients were driven by changes in the TD subtype. These unexpected findings may be related to the effects of chronic dopaminergic replacement on the mesolimbic pathway. Further studies are needed to replicate and determine the clinical significance of such morphologic changes. Copyright © 2015 Elsevier Ltd. All rights reserved.
Segmentation and Morphometric Analysis of Cells from Fluorescence Microscopy Images of Cytoskeletons
Ujihara, Yoshihiro; Nakamura, Masanori; Miyazaki, Hiroshi; Wada, Shigeo
2013-01-01
We developed a method to reconstruct cell geometry from confocal fluorescence microscopy images of the cytoskeleton. In the method, region growing was implemented twice. First, it was applied to the extracellular regions to differentiate them from intracellular noncytoskeletal regions, which both appear black in fluorescence microscopy imagery, and then to cell regions for cell identification. Analysis of morphological parameters revealed significant changes in cell shape associated with cytoskeleton disruption, which offered insight into the mechanical role of the cytoskeleton in maintaining cell shape. The proposed segmentation method is promising for investigations on cell morphological changes with respect to internal cytoskeletal structures. PMID:23762186
Ujihara, Yoshihiro; Nakamura, Masanori; Miyazaki, Hiroshi; Wada, Shigeo
2013-01-01
We developed a method to reconstruct cell geometry from confocal fluorescence microscopy images of the cytoskeleton. In the method, region growing was implemented twice. First, it was applied to the extracellular regions to differentiate them from intracellular noncytoskeletal regions, which both appear black in fluorescence microscopy imagery, and then to cell regions for cell identification. Analysis of morphological parameters revealed significant changes in cell shape associated with cytoskeleton disruption, which offered insight into the mechanical role of the cytoskeleton in maintaining cell shape. The proposed segmentation method is promising for investigations on cell morphological changes with respect to internal cytoskeletal structures.
Quantifying grain shape with MorpheoLV: A case study using Holocene glacial marine sediments
NASA Astrophysics Data System (ADS)
Charpentier, Isabelle; Staszyc, Alicia B.; Wellner, Julia S.; Alejandro, Vanessa
2017-06-01
As demonstrated in earlier works, quantitative grain shape analysis has revealed to be a strong proxy for determining sediment transport history and depositional environments. MorpheoLV, devoted to the calculation of roughness coefficients from pictures of unique clastic sediment grains using Fourier analysis, drives computations for a collection of samples of grain images. This process may be applied to sedimentary deposits assuming core/interval/image archives for the storage of samples collected along depth. This study uses a 25.8 m jumbo piston core, NBP1203 JPC36, taken from a 100 m thick sedimentary drift deposit from Perseverance Drift on the northern Antarctic Peninsula continental shelf. Changes in ocean and ice conditions throughout the Holocene recorded in this sedimentary archive can be assessed by studying grain shape, grain texture, and other proxies. Ninety six intervals were sampled and a total of 2319 individual particle images were used. Microtextures of individual grains observed by SEM show a very high abundance of authigenically precipitated silica that obscures the original grain shape. Grain roughness, computed along depth with MorpheoLV, only shows small variation confirming the qualitative observation deduced from the SEM. Despite this, trends can be seen confirming the reliability of MorpheoLV as a tool for quantitative grain shape analysis.
Söhn, Matthias; Alber, Markus; Yan, Di
2007-09-01
The variability of dose-volume histogram (DVH) shapes in a patient population can be quantified using principal component analysis (PCA). We applied this to rectal DVHs of prostate cancer patients and investigated the correlation of the PCA parameters with late bleeding. PCA was applied to the rectal wall DVHs of 262 patients, who had been treated with a four-field box, conformal adaptive radiotherapy technique. The correlated changes in the DVH pattern were revealed as "eigenmodes," which were ordered by their importance to represent data set variability. Each DVH is uniquely characterized by its principal components (PCs). The correlation of the first three PCs and chronic rectal bleeding of Grade 2 or greater was investigated with uni- and multivariate logistic regression analyses. Rectal wall DVHs in four-field conformal RT can primarily be represented by the first two or three PCs, which describe approximately 94% or 96% of the DVH shape variability, respectively. The first eigenmode models the total irradiated rectal volume; thus, PC1 correlates to the mean dose. Mode 2 describes the interpatient differences of the relative rectal volume in the two- or four-field overlap region. Mode 3 reveals correlations of volumes with intermediate doses ( approximately 40-45 Gy) and volumes with doses >70 Gy; thus, PC3 is associated with the maximal dose. According to univariate logistic regression analysis, only PC2 correlated significantly with toxicity. However, multivariate logistic regression analysis with the first two or three PCs revealed an increased probability of bleeding for DVHs with more than one large PC. PCA can reveal the correlation structure of DVHs for a patient population as imposed by the treatment technique and provide information about its relationship to toxicity. It proves useful for augmenting normal tissue complication probability modeling approaches.
AES and SIMS analysis of non-metallic inclusions in a low-carbon chromium-steel.
Gammer, Katharina; Rosner, M; Poeckl, G; Hutter, H
2003-05-01
In the final step of secondary metallurgical steel processing, calcium is added. Besides Mg, Ca is the most powerful deoxidiser and desulfurisation agent. It reacts with dissolved oxygen and sulfur and reduces oxides and sulfides thereby forming non-metallic inclusions. Within this paper we present the analysis of such inclusions in a low-carbon chromium-steel. Depending on the time of quenching of the steel sample, different structures were revealed by REM, Auger and SIMS: If the steel was quenched immediately after Ca-addition, non-metallic inclusions that appeared to have "cavities" could be detected with SEM. SIMS investigations of these particles showed ring-shaped structures and revealed that the ring is made up of Al, Ca, Mg, O and S. No secondary ions however could be retrieved from the core inside the ring, thus leaving the nature of the "cavities" unclear. If the steel sample was quenched 3 min after Ca addition, inclusions did not have a ring-shaped structure but a compact one.
What factors mediate the relationship between global self-worth and weight and shape concerns?
Murphy, Edel; Dooley, Barbara; Menton, Aoife; Dolphin, Louise
2016-04-01
The primary aim of this study was to investigate whether the relationship between global self-worth and weight concerns and global self-worth and shape concerns was mediated by pertinent body image factors, while controlling for gender and estimated BMI. Participants were 775 adolescents (56% male) aged 12-18years (M=14.6; SD=1.50). Mediation analysis revealed a direct and a mediated effect between global self-worth and two body image models: 1) weight concerns and 2) shape concerns. The strongest mediators in both models were physical appearance, restrained eating, and depression. Partial mediation was observed for both models, indicating that body image factors which span cognitive, affective, and behavioral constructs, explain the association between global self-worth and weight and shape concerns. Implications for future research, weight and shape concern prevention and global self-worth enhancement programs are discussed. Copyright © 2016 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Usui, Yoichi; Yamazaki, Toshitsugu; Saitoh, Masafumi
2017-12-01
Recent investigations have discovered an unexpected abundance of magnetofossils in oxic pelagic red clays. These have potential to serve as paleoenvironmental tracers in otherwise nonfossiliferous sediments. Here, we report on variations in the abundance and morphology of magnetofossils in red clay from the western North Pacific. Magnetic measurements revealed that magnetofossils dominate the magnetic mineral assemblage of the sediments. An endmember analysis of isothermal remanent magnetization acquisition curves, supplemented by an analysis of S ratios, indicates that the magnetic assemblage can be unmixed into three endmembers, two corresponding to magnetofossils and one to terrigenous magnetic minerals. Direct counting of magnetofossil morphologies under a transmission electron microscope shows that the two magnetofossil endmembers differentiate equant magnetofossils and bullet-shaped magnetofossils, respectively. The stratigraphic variation of the endmember contributions revealed that the equant magnetofossils are dominant for the most part, while an interval at around 7 m in core depth shows higher abundance of the bullet-shaped magnetofossils. This may reflect enhanced organic carbon flux to the sediments. The organic carbon content is low throughout the sediments, and it does not show any change corresponding to the increase of bullet-shaped magnetofossils, pointing at extensive remineralization of the organic carbon. On the basis of lithostratigraphic correlation to nearby drilling sites, we tentatively estimate the age of the bullet-shaped magnetofossil increase as sometime between ˜75 and 25 Ma. These results suggest that environmental information can be obtained from magnetofossils in pelagic red clay.
Revealing the glass transition in shape memory polymers using Brillouin spectroscopy.
Steelman, Zachary A; Weems, Andrew C; Traverso, Andrew J; Szafron, Jason M; Maitland, Duncan J; Yakovlev, Vladislav V
2017-12-11
Emerging medical devices which employ shape memory polymers (SMPs) require precise measurements of the glass transition temperature (T g ) to ensure highly controlled shape recovery kinetics. Conventional techniques like differential scanning calorimetry (DSC) and dynamic mechanical analysis (DMA) have limitations that prevent utilization for certain devices, including limited accuracy and the need for sacrificial samples. In this report, we employ an approach based on Brillouin spectroscopy to probe the glass transition of SMPs rapidly, remotely, and nondestructively. Further, we compare the T g obtained from Brillouin scattering with DMA- and DSC-measured T g to demonstrate the accuracy of Brillouin scattering for this application. We conclude that Brillouin spectroscopy is an accurate technique for obtaining the glass transition temperature of SMPs, aligning closely with the most common laboratory standards while providing a rapid, remote, and nondestructive method for the analysis of unique polymeric medical devices.
Revealing the glass transition in shape memory polymers using Brillouin spectroscopy
NASA Astrophysics Data System (ADS)
Steelman, Zachary A.; Weems, Andrew C.; Traverso, Andrew J.; Szafron, Jason M.; Maitland, Duncan J.; Yakovlev, Vladislav V.
2017-12-01
Emerging medical devices which employ shape memory polymers (SMPs) require precise measurements of the glass transition temperature (Tg) to ensure highly controlled shape recovery kinetics. Conventional techniques like differential scanning calorimetry (DSC) and dynamic mechanical analysis (DMA) have limitations that prevent utilization for certain devices, including limited accuracy and the need for sacrificial samples. In this report, we employ an approach based on Brillouin spectroscopy to probe the glass transition of SMPs rapidly, remotely, and nondestructively. Further, we compare the Tg obtained from Brillouin scattering with DMA- and DSC-measured Tg to demonstrate the accuracy of Brillouin scattering for this application. We conclude that Brillouin spectroscopy is an accurate technique for obtaining the glass transition temperature of SMPs, aligning closely with the most common laboratory standards while providing a rapid, remote, and nondestructive method for the analysis of unique polymeric medical devices.
Scaling analysis and SE simulation of the tilted cylinder-interface capillary interaction
NASA Astrophysics Data System (ADS)
Gao, S. Q.; Zhang, X. Y.; Zhou, Y. H.
2018-06-01
The capillary interaction induced by a tilted cylinder and interface is the basic configuration of many complex systems, such as micro-pillar arrays clustering, super-hydrophobicity of hairy surface, water-walking insects, and fiber aggregation. We systematically analyzed the scaling laws of tilt angle, contact angle, and cylinder radius on the contact line shape by SE simulation and experiment. The following in-depth analysis of the characteristic parameters (shift, stretch and distortion) of the deformed contact lines reveals the self-similar shape of contact line. Then a general capillary force scaling law is proposed to incredibly grasp all the simulated and experimental data by a quite straightforward ellipse approximation approach.
Vandenberg, Laura N.; Adams, Dany S.; Levin, Michael
2012-01-01
Background Embryonic development can often adjust its morphogenetic processes to counteract external perturbation. The existence of self-monitoring responses during pattern formation is of considerable importance to the biomedicine of birth defects, but has not been quantitatively addressed. To understand the computational capabilities of biological tissues in a molecularly-tractable model system, we induced craniofacial defects in Xenopus embryos, then tracked tadpoles with craniofacial deformities and used geometric morphometric techniques to characterize changes in the shape and position of the craniofacial structures. Results Canonical variate analysis revealed that the shapes and relative positions of perturbed jaws and branchial arches were corrected during the first few months of tadpole development. Analysis of the relative movements of the anterior-most structures indicates that misplaced structures move along the anterior-posterior and left-right axes in ways that are significantly different from their normal movements. Conclusions Our data suggest a model in which craniofacial structures utilize a measuring mechanism to assess and adjust their location relative to other local organs. Understanding the correction mechanisms at work in this system could lead to the better understanding of the adaptive decision-making capabilities of living tissues and suggest new approaches to correct birth defects in humans. PMID:22411736
Lee, Chang-Hyun; Han, In Seok; Lee, Ji Yeoun; Phi, Ji Hoon; Kim, Seung-Ki; Kim, Young-Eun; Wang, Kyu-Chang
2017-01-01
Although arachnoid cysts (ACs) are observed in various locations, only sylvian ACs are mainly regarded to be associated with bleeding. The reason for this selective association of sylvian ACs with bleeding is not understood well. This study is to investigate the effect of the location and shape of ACs on the risk of bleeding. A developed finite element model of the head/brain was modified for models of sylvian, suprasellar, and posterior fossa ACs. A spherical AC was placed at each location to compare the effect of AC location. Bowl-shaped and oval-shaped AC models were developed to compare the effect by shape. The shear force on the spot-weld elements (SFSW) was measured between the dura and the outer wall of the ACs or the comparable arachnoid membrane in the normal model. All AC models revealed higher SFSW than comparable normal models. By location, sylvian AC displayed the highest SFSW for frontal and lateral impacts. By shape, small outer wall AC models showed higher SFSW than large wall models in sylvian area and lower SFSW than large ones in posterior fossa. In regression analysis, the presence of AC was the only independent risk of bleeding. The bleeding mechanism of ACs is very complex, and the risk quantification failed to show a significant role of location and shape of ACs. The presence of AC increases shear force on impact condition and may be a risk factor of bleeding, and sylvian location of AC may not have additive risks of AC bleeding.
Gould, Francois D. H.
2014-01-01
Improvements in three-dimensional imaging technologies have renewed interest in the study of functional and ecological morphology. Quantitative approaches to shape analysis are used increasingly to study form-function relationships. These methods are computationally intensive, technically demanding, and time-consuming, which may limit sampling potential. There have been few side-by-side comparisons of the effectiveness of such approaches relative to more traditional analyses using linear measurements and ratios. Morphological variation in the distal femur of mammals has been shown to reflect differences in locomotor modes across clades. Thus I tested whether a geometric morphometric analysis of surface shape was superior to a multivariate analysis of ratios for describing ecomorphological patterns in distal femoral variation. A sample of 164 mammalian specimens from 44 genera was assembled. Each genus was assigned to one of six locomotor categories. The same hypotheses were tested using two methods. Six linear measurements of the distal femur were taken with calipers, from which four ratios were calculated. A 3D model was generated with a laser scanner, and analyzed using three dimensional geometric morphometrics. Locomotor category significantly predicted variation in distal femoral morphology in both analyses. Effect size was larger in the geometric morphometric analysis than in the analysis of ratios. Ordination reveals a similar pattern with arboreal and cursorial taxa as extremes on a continuum of morphologies in both analyses. Discriminant functions calculated from the geometric morphometric analysis were more accurate than those calculated from ratios. Both analysis of ratios and geometric morphometric surface analysis reveal similar, biologically meaningful relationships between distal femoral shape and locomotor mode. The functional signal from the morphology is slightly higher in the geometric morphometric analysis. The practical costs of conducting these sorts of analyses should be weighed against potentially slight increases in power when designing protocols for ecomorphological studies. PMID:24633081
The influence of the compression interface on the failure behavior and size effect of concrete
NASA Astrophysics Data System (ADS)
Kampmann, Raphael
The failure behavior of concrete materials is not completely understood because conventional test methods fail to assess the material response independent of the sample size and shape. To study the influence of strength and strain affecting test conditions, four typical concrete sample types were experimentally evaluated in uniaxial compression and analyzed for strength, deformational behavior, crack initiation/propagation, and fracture patterns under varying boundary conditions. Both low friction and conventional compression interfaces were assessed. High-speed video technology was used to monitor macrocracking. Inferential data analysis proved reliably lower strength results for reduced surface friction at the compression interfaces, regardless of sample shape. Reciprocal comparisons revealed statistically significant strength differences between most sample shapes. Crack initiation and propagation was found to differ for dissimilar compression interfaces. The principal stress and strain distributions were analyzed, and the strain domain was found to resemble the experimental results, whereas the stress analysis failed to explain failure for reduced end confinement. Neither stresses nor strains indicated strength reductions due to reduced friction, and therefore, buckling effects were considered. The high-speed video analysis revealed localize buckling phenomena, regardless of end confinement. Slender elements were the result of low friction, and stocky fragments developed under conventional confinement. The critical buckling load increased accordingly. The research showed that current test methods do not reflect the "true'' compressive strength and that concrete failure is strain driven. Ultimate collapse results from buckling preceded by unstable cracking.
Disentangling representations of shape and action components in the tool network.
Wang, Xiaoying; Zhuang, Tonghe; Shen, Jiasi; Bi, Yanchao
2018-05-30
Shape and how they should be used are two key components of our knowledge about tools. Viewing tools preferentially activated a frontoparietal and occipitotemporal network, with dorsal regions implicated in computation of tool-related actions and ventral areas in shape representation. As shape and manners of manipulation are highly correlated for daily tools, whether they are independently represented in different regions remains inconclusive. In the current study, we collected fMRI data when participants viewed blocks of pictures of four daily tools (i.e., paintbrush, corkscrew, screwdriver, razor) where shape and action (manner of manipulation for functional use) were orthogonally manipulated, to tease apart these two dimensions. Behavioral similarity judgments tapping on object shape and finer aspects of actions (i.e., manners of motion, magnitude of arm movement, configuration of hand) were also collected to further disentangle the representation of object shape and different action components. Information analysis and representational similarity analysis were conducted on regional neural activation patterns of the tool-preferring network. In both analyses, the bilateral lateral occipitotemporal cortex showed robust shape representations but could not effectively distinguish between tool-use actions. The frontal and precentral regions represented kinematic action components, whereas the left parietal region (in information analyses) exhibited coding of both shape and tool-use action. By teasing apart shape and action components, we found both dissociation and association of them within the tool network. Taken together, our study disentangles representations for object shape from finer tool-use action components in the tool network, revealing the potential dissociable roles different tool-preferring regions play in tool processing. Copyright © 2018 Elsevier Ltd. All rights reserved.
Influence of urban shapes on environmental noise: a case study in Aracaju-Brazil.
Guedes, Italo C Montalvão; Bertoli, Stelamaris R; Zannin, Paulo H T
2011-12-15
This paper discusses the results of a study about the influence of urban shapes on environmental noise in the city of Aracaju (Brazil). The study, which involved in situ measurements and acoustic simulations using SoundPLAN software, began with an analysis of the current acoustic scenario, followed by the creation and simulation of hypothetical scenarios in as yet unoccupied sectors of the region under study. The acoustic modeling and simulations were based on measurements of equivalent-continuous sound pressure level, LAeq, and vehicle flow data, and on the region's geometrics. The results reveal that the physical characteristics of the urban shape, such as construction density, the existence of open spaces, and the shape and physical position of buildings exert a significant influence on environmental noise. Copyright © 2011 Elsevier B.V. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Q.; Malliakas, C. D.; Kanatzidis, M. G.
2009-11-11
The reaction of the Zintl compound K{sub 4}Ge{sub 9} with Te and Ga{sub 2}Te{sub 3} in ethylenediamine (en) at 190 C gave the germanium polytelluride {l_brace}[Ga(en){sub 3}]{sub 2}[(GeTe){sub 2}(Te{sub 5}){sup 6-}(Te{sub 8}){sup 4-}]{r_brace}n (1). The single-crystal structure analysis revealed that 1 has two different polytelluride fragments: cross-shaped 36-e- TeTe{sub 4}{sup 6-} anions and boat-shaped 52-e- Te{sup 8}{sup 4-} rings. The new material is a p-type semiconductor at room temperature and switches to n-type at 380 K.
Intertwined Cultural and Relational Environments of Organizations
ERIC Educational Resources Information Center
Granados, Francisco J.
2005-01-01
I examine fundamental elements of the cultural and relational environments of the organizations that produce electoral forecasts in the Spanish parliamentary elections. The analysis reveals how these elements shape the interests and decisions in a collectivity of organizations that share a common technology. I investigate the reasons for the…
Rubtsova, Nataliya Y; Balbuena, Juan A; Sarabeev, Volodimir L
2007-08-01
Comparative morphology and multivariate morphometric analysis of monogeneans collected on flathead mullets Mugil cephalus from 2 Russian localities of the Japan Sea revealed the presence of 3 new species of Ligophorus, namely, L. domnichi n. sp., L. pacificus n. sp., and L. cheleus n. sp., which are described herein. So far, only 1 species of dactylogyrid monogenean identified as Ligophorus chabaudi was known on flathead mullets in this sea, but after comparison with the present material, we propose that this form actually represents L. domnichi n. sp. Results support previous zoogeographical evidence, suggesting that flathead mullets from different seas harbor different species complexes of Ligophorus. One interesting finding is that the 3 new species have a U-shaped ovary, whereas ovate ovaries have been reported in previous descriptions of species of the genus, e.g., L. vanbenedenii, L. parvicirrus, L. imitans, and L. chongmingensis. The U-shaped ovary was revealed only when the worms were observed in lateral view. The additional examination of L. vanbenedenii, L. parvicirrus, L. imitans, and L. pilengas specimens from our collections also revealed a U-shaped ovary in these forms as well. Further studies should establish whether or not this character is shared by all members of the genus.
Genome-wide analysis of codon usage bias in four sequenced cotton species.
Wang, Liyuan; Xing, Huixian; Yuan, Yanchao; Wang, Xianlin; Saeed, Muhammad; Tao, Jincai; Feng, Wei; Zhang, Guihua; Song, Xianliang; Sun, Xuezhen
2018-01-01
Codon usage bias (CUB) is an important evolutionary feature in a genome which provides important information for studying organism evolution, gene function and exogenous gene expression. The CUB and its shaping factors in the nuclear genomes of four sequenced cotton species, G. arboreum (A2), G. raimondii (D5), G. hirsutum (AD1) and G. barbadense (AD2) were analyzed in the present study. The effective number of codons (ENC) analysis showed the CUB was weak in these four species and the four subgenomes of the two tetraploids. Codon composition analysis revealed these four species preferred to use pyrimidine-rich codons more frequently than purine-rich codons. Correlation analysis indicated that the base content at the third position of codons affect the degree of codon preference. PR2-bias plot and ENC-plot analyses revealed that the CUB patterns in these genomes and subgenomes were influenced by combined effects of translational selection, directional mutation and other factors. The translational selection (P2) analysis results, together with the non-significant correlation between GC12 and GC3, further revealed that translational selection played the dominant role over mutation pressure in the codon usage bias. Through relative synonymous codon usage (RSCU) analysis, we detected 25 high frequency codons preferred to end with T or A, and 31 low frequency codons inclined to end with C or G in these four species and four subgenomes. Finally, 19 to 26 optimal codons with 19 common ones were determined for each species and subgenomes, which preferred to end with A or T. We concluded that the codon usage bias was weak and the translation selection was the main shaping factor in nuclear genes of these four cotton genomes and four subgenomes.
Brian J. Burke; Meredith Welch-Devine; Seth Gustafson
2015-01-01
As the people of Southern Appalachia confront the challenges of climate change and exurban development, their foundational beliefs about the environment and human-environment relations will significantly shape the types of individual and collective action that they imagine and pursue. In this paper, we use critical discourse analysis of an influential small-town...
Jastorff, Jan; Orban, Guy A
2009-06-03
In a series of human functional magnetic resonance imaging experiments, we systematically manipulated point-light stimuli to identify the contributions of the various areas implicated in biological motion processing (for review, see Giese and Poggio, 2003). The first experiment consisted of a 2 x 2 factorial design with global shape and kinematics as factors. In two additional experiments, we investigated the contributions of local opponent motion, the complexity of the portrayed movement and a one-back task to the activation pattern. Experiment 1 revealed a clear separation between shape and motion processing, resulting in two branches of activation. A ventral region, extending from the lateral occipital sulcus to the posterior inferior temporal gyrus, showed a main effect of shape and its extension into the fusiform gyrus also an interaction. The dorsal region, including the posterior inferior temporal sulcus and the posterior superior temporal sulcus (pSTS), showed a main effect of kinematics together with an interaction. Region of interest analysis identified these interaction sites as the extrastriate and fusiform body areas (EBA and FBA). The local opponent motion cue yielded only little activation, limited to the ventral region (experiment 3). Our results suggest that the EBA and the FBA correspond to the initial stages in visual action analysis, in which the performed action is linked to the body of the actor. Moreover, experiment 2 indicates that the body areas are activated automatically even in the absence of a task, whereas other cortical areas like pSTS or frontal regions depend on the complexity of movements or task instructions for their activation.
Tamazawa, Satoshi; Yamamoto, Kyosuke; Takasaki, Kazuto; Mitani, Yasuo; Hanada, Satoshi; Kamagata, Yoichi; Tamaki, Hideyuki
2016-01-01
We investigated the in situ gene expression profile of sulfur-turf microbial mats dominated by an uncultured large sausage-shaped Aquificae bacterium, a key metabolic player in sulfur-turfs in sulfidic hot springs. A reverse transcription-PCR analysis revealed that the genes responsible for sulfide, sulfite, and thiosulfate oxidation and carbon fixation via the reductive TCA cycle were continuously expressed in sulfur-turf mats taken at different sampling points, seasons, and years. These results suggest that the uncultured large sausage-shaped bacterium has the ability to grow chemolithoautotrophically and plays key roles as a primary producer in the sulfidic hot spring ecosystem in situ. PMID:27297893
NASA Astrophysics Data System (ADS)
Nagai, Hiroshi; Nakano, Masayoshi; Yoneda, Kyohei; Fukui, Hitoshi; Minami, Takuya; Bonness, Sean; Kishi, Ryohei; Takahashi, Hideaki; Kubo, Takashi; Kamada, Kenji; Ohta, Koji; Champagne, Benoît; Botek, Edith
2009-08-01
Using hybrid density functional theory methods, we investigate the second hyperpolarizabilities ( γ) of hexagonal shaped finite graphene fragments, which are referred to as hexagonal graphene nanoflakes (HGNFs), with two types of edge shapes: zigzag (Z) and armchair (A) edges. It is found that Z-HGNF, which gives intermediate diradical characters ( y), exhibits about 3.3 times larger orthogonal components of γ ( γ xxxx = γ yyyy in this case) than A-HGNF, which gives zero y value (closed-shell system). The γ density analysis reveals that this enhancement originates in the significant contribution of γ densities on edge regions in Z-HGNF. These observations strongly indicate that Z-HGNF is a promising candidate of open-shell singlet NLO systems.
Tamazawa, Satoshi; Yamamoto, Kyosuke; Takasaki, Kazuto; Mitani, Yasuo; Hanada, Satoshi; Kamagata, Yoichi; Tamaki, Hideyuki
2016-06-25
We investigated the in situ gene expression profile of sulfur-turf microbial mats dominated by an uncultured large sausage-shaped Aquificae bacterium, a key metabolic player in sulfur-turfs in sulfidic hot springs. A reverse transcription-PCR analysis revealed that the genes responsible for sulfide, sulfite, and thiosulfate oxidation and carbon fixation via the reductive TCA cycle were continuously expressed in sulfur-turf mats taken at different sampling points, seasons, and years. These results suggest that the uncultured large sausage-shaped bacterium has the ability to grow chemolithoautotrophically and plays key roles as a primary producer in the sulfidic hot spring ecosystem in situ.
Liu, Taoyan; Huang, Chengwu; Li, Hongxia; Wu, Fujian; Luo, Jianwen; Lu, Wenjing
2018-01-01
The use of human-induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) is limited in drug discovery and cardiac disease mechanism studies due to cell immaturity. Although many approaches have been reported to improve the maturation of hiPSC-CMs, the elucidation of the process of maturation is crucial. We applied a small-molecule-based differentiation method to generate cardiomyocytes (CMs) with multiple aggregation forms. The motion analysis revealed significant physical differences in the differently shaped CMs, and the net-shaped CMs had larger motion amplitudes and faster velocities than the sheet-shaped CMs. The net-shaped CMs displayed accelerated maturation at the transcriptional level and were more similar to CMs with a prolonged culture time (30 days) than to sheet-d15. Ion channel genes and gap junction proteins were up-regulated in net-shaped CMs, indicating that robust contraction was coupled with enhanced ion channel and connexin expression. The net-shaped CMs also displayed improved myofibril ultrastructure under transmission electron microscopy. In conclusion, different multicellular hPSC-CM structures, such as the net-shaped pattern, are formed using the conditioned induction method, providing a useful tool to improve cardiac maturation. PMID:29661985
NASA Astrophysics Data System (ADS)
Müller, Christian L.; Sbalzarini, Ivo F.; van Gunsteren, Wilfred F.; Žagrović, Bojan; Hünenberger, Philippe H.
2009-06-01
The concept of high-resolution shapes (also referred to as folds or states, depending on the context) of a polymer chain plays a central role in polymer science, structural biology, bioinformatics, and biopolymer dynamics. However, although the idea of shape is intuitively very useful, there is no unambiguous mathematical definition for this concept. In the present work, the distributions of high-resolution shapes within the ideal random-walk ensembles with N =3,…,6 beads (or up to N =10 for some properties) are investigated using a systematic (grid-based) approach based on a simple working definition of shapes relying on the root-mean-square atomic positional deviation as a metric (i.e., to define the distance between pairs of structures) and a single cutoff criterion for the shape assignment. Although the random-walk ensemble appears to represent the paramount of homogeneity and randomness, this analysis reveals that the distribution of shapes within this ensemble, i.e., in the total absence of interatomic interactions characteristic of a specific polymer (beyond the generic connectivity constraint), is significantly inhomogeneous. In particular, a specific (densest) shape occurs with a local probability that is 1.28, 1.79, 2.94, and 10.05 times (N =3,…,6) higher than the corresponding average over all possible shapes (these results can tentatively be extrapolated to a factor as large as about 1028 for N =100). The qualitative results of this analysis lead to a few rather counterintuitive suggestions, namely, that, e.g., (i) a fold classification analysis applied to the random-walk ensemble would lead to the identification of random-walk "folds;" (ii) a clustering analysis applied to the random-walk ensemble would also lead to the identification random-walk "states" and associated relative free energies; and (iii) a random-walk ensemble of polymer chains could lead to well-defined diffraction patterns in hypothetical fiber or crystal diffraction experiments. The inhomogeneous nature of the shape probability distribution identified here for random walks may represent a significant underlying baseline effect in the analysis of real polymer chain ensembles (i.e., in the presence of specific interatomic interactions). As a consequence, a part of what is called a polymer shape may actually reside just "in the eye of the beholder" rather than in the nature of the interactions between the constituting atoms, and the corresponding observation-related bias should be taken into account when drawing conclusions from shape analyses as applied to real structural ensembles.
Müller, Christian L; Sbalzarini, Ivo F; van Gunsteren, Wilfred F; Zagrović, Bojan; Hünenberger, Philippe H
2009-06-07
The concept of high-resolution shapes (also referred to as folds or states, depending on the context) of a polymer chain plays a central role in polymer science, structural biology, bioinformatics, and biopolymer dynamics. However, although the idea of shape is intuitively very useful, there is no unambiguous mathematical definition for this concept. In the present work, the distributions of high-resolution shapes within the ideal random-walk ensembles with N=3,...,6 beads (or up to N=10 for some properties) are investigated using a systematic (grid-based) approach based on a simple working definition of shapes relying on the root-mean-square atomic positional deviation as a metric (i.e., to define the distance between pairs of structures) and a single cutoff criterion for the shape assignment. Although the random-walk ensemble appears to represent the paramount of homogeneity and randomness, this analysis reveals that the distribution of shapes within this ensemble, i.e., in the total absence of interatomic interactions characteristic of a specific polymer (beyond the generic connectivity constraint), is significantly inhomogeneous. In particular, a specific (densest) shape occurs with a local probability that is 1.28, 1.79, 2.94, and 10.05 times (N=3,...,6) higher than the corresponding average over all possible shapes (these results can tentatively be extrapolated to a factor as large as about 10(28) for N=100). The qualitative results of this analysis lead to a few rather counterintuitive suggestions, namely, that, e.g., (i) a fold classification analysis applied to the random-walk ensemble would lead to the identification of random-walk "folds;" (ii) a clustering analysis applied to the random-walk ensemble would also lead to the identification random-walk "states" and associated relative free energies; and (iii) a random-walk ensemble of polymer chains could lead to well-defined diffraction patterns in hypothetical fiber or crystal diffraction experiments. The inhomogeneous nature of the shape probability distribution identified here for random walks may represent a significant underlying baseline effect in the analysis of real polymer chain ensembles (i.e., in the presence of specific interatomic interactions). As a consequence, a part of what is called a polymer shape may actually reside just "in the eye of the beholder" rather than in the nature of the interactions between the constituting atoms, and the corresponding observation-related bias should be taken into account when drawing conclusions from shape analyses as applied to real structural ensembles.
Šatkauskienė, Ingrida; Jarusevičiūtė, Simona; Baublys, Vykintas; Maheta, Mansi; Tubelytė, Vaida
2017-01-01
A new hoop shaped three dimensional chitin was obtained successfully from the body segment of a diplopod species (Ommatoiulus sabulosus) by following the procedure decolorization, demineralization and deproteinization. Purity of the hoop shaped three-dimensional chitin was proved by FT-IR analysis and chitinase digestive test. The important bands for α-chitin such as 1654.2, 1619.7 and 1552cm -1 were found after FT-IR analysis. And the chitinase digestive test revealed the purity of chitin (with digestion rate of 94.7%). SEM analysis showed that the chitin surface consisted of highly porous structure with nanofibers. Thermal stability of the hoop shaped chitin was recorded quite high (DTG max =383°C). The nitrogen, carbon and hydrogen contents of the hoop shaped chitin were determined as 6.81%, 46.23% and 6.43% respectively. And also degree of acetylation (DA) of the chitin indicated the purity with 95.85%. Chitin hoops-BSA interaction was conducted at different pH, protein concentration and contact time. This new type of three-dimensional chitin obtained from the diplopod body segments can find more effective applications in further studies comparing to the conventional dust forms. Copyright © 2016 Elsevier B.V. All rights reserved.
A new method for shape and texture classification of orthopedic wear nanoparticles.
Zhang, Dongning; Page, Janet R; Kavanaugh, Aaron E; Billi, Fabrizio
2012-09-27
Detailed morphologic analysis of particles produced during wear of orthopedic implants is important in determining a correlation among material, wear, and biological effects. However, the use of simple shape descriptors is insufficient to categorize the data and to compare the nature of wear particles generated by different implants. An approach based on Discrete Fourier Transform (DFT) is presented for describing particle shape and surface texture. Four metal-on-metal bearing couples were tested in an orbital wear simulator under standard and adverse (steep-angled cups) wear simulator conditions. Digitized Scanning Electron Microscope (SEM) images of the wear particles were imported into MATLAB to carry out Fourier descriptor calculations via a specifically developed algorithm. The descriptors were then used for studying particle characteristics (shape and texture) as well as for cluster classification. Analysis of the particles demonstrated the validity of the proposed model by showing that steep-angle Co-Cr wear particles were more asymmetric, compressed, extended, triangular, square, and roughened at 3 Mc than after 0.25 Mc. In contrast, particles from standard angle samples were only more compressed and extended after 3 Mc compared to 0.25 Mc. Cluster analysis revealed that the 0.25 Mc steep-angle particle distribution was a subset of the 3 Mc distribution.
Tension and Elasticity Contribute to Fibroblast Cell Shape in Three Dimensions.
Brand, Christoph A; Linke, Marco; Weißenbruch, Kai; Richter, Benjamin; Bastmeyer, Martin; Schwarz, Ulrich S
2017-08-22
The shape of animal cells is an important regulator for many essential processes such as cell migration or division. It is strongly determined by the organization of the actin cytoskeleton, which is also the main regulator of cell forces. Quantitative analysis of cell shape helps to reveal the physical processes underlying cell shape and forces, but it is notoriously difficult to conduct it in three dimensions. Here we use direct laser writing to create 3D open scaffolds for adhesion of connective tissue cells through well-defined adhesion platforms. Due to actomyosin contractility in the cell contour, characteristic invaginations lined by actin bundles form between adjacent adhesion sites. Using quantitative image processing and mathematical modeling, we demonstrate that the resulting shapes are determined not only by contractility, but also by elastic stress in the peripheral actin bundles. In this way, cells can generate higher forces than through contractility alone. Copyright © 2017 Biophysical Society. Published by Elsevier Inc. All rights reserved.
Geng, Chong; Zheng, Lu; Fang, Huajing; Yan, Qingfeng; Wei, Tongbo; Hao, Zhibiao; Wang, Xiaoqing; Shen, Dezhong
2013-08-23
Patterned sapphire substrates (PSS) have been widely used to enhance the light output power in GaN-based light emitting diodes. The shape and feature size of the pattern in a PSS affect its enhancement efficiency to a great degree. In this work we demonstrate the nanoscale fabrication of volcano-shaped PSS using a wet chemical etching approach in combination with a colloidal monolayer templating strategy. Detailed analysis by scanning electron microscopy reveals that the unique pattern shape is a result of the different corrosion-resistant abilities of silica masks of different effective heights during wet chemical etching. The formation of silica etching masks of different effective heights has been ascribed to the silica precursor solution in the interstice of the colloidal monolayer template being distributed unevenly after infiltration. In the subsequent wet chemical etching process, the active reaction sites altered as etching duration was prolonged, resulting in the formation of volcano-shaped nano-patterned sapphire substrates.
Meshless methods in shape optimization of linear elastic and thermoelastic solids
NASA Astrophysics Data System (ADS)
Bobaru, Florin
This dissertation proposes a meshless approach to problems in shape optimization of elastic and thermoelastic solids. The Element-free Galerkin (EFG) method is used for this purpose. The ability of the EFG to avoid remeshing, that is normally done in a Finite Element approach to correct highly distorted meshes, is clearly demonstrated by several examples. The shape optimization example of a thermal cooling fin shows a dramatic improvement in the objective compared to a previous FEM analysis. More importantly, the new solution, displaying large shape changes contrasted to the initial design, was completely missed by the FEM analysis. The EFG formulation given here for shape optimization "uncovers" new solutions that are, apparently, unobtainable via a FEM approach. This is one of the main achievements of our work. The variational formulations for the analysis problem and for the sensitivity problems are obtained with a penalty method for imposing the displacement boundary conditions. The continuum formulation is general and this facilitates 2D and 3D with minor differences from one another. Also, transient thermoelastic problems can use the present development at each time step to solve shape optimization problems for time-dependent thermal problems. For the elasticity framework, displacement sensitivity is obtained in the EFG context. Excellent agreements with analytical solutions for some test problems are obtained. The shape optimization of a fillet is carried out in great detail, and results show significant improvement of the EFG solution over the FEM or the Boundary Element Method solutions. In our approach we avoid differentiating the complicated EFG shape functions, with respect to the shape design parameters, by using a particular discretization for sensitivity calculations. Displacement and temperature sensitivities are formulated for the shape optimization of a linear thermoelastic solid. Two important examples considered in this work, the optimization of a thermal fin and of a uniformly loaded thermoelastic beam, reveal new characteristics of the EFG method in shape optimization applications. Among other advantages of the EFG method over traditional FEM treatments of shape optimization problems, some of the most important ones are shown to be: elimination of post-processing for stress and strain recovery that directly gives more accurate results in critical positions (near the boundaries, for example) for shape optimization problems; nodes movement flexibility that permits new, better shapes (previously missed by an FEM analysis) to be discovered. Several new research directions that need further consideration are exposed.
Electric load shape benchmarking for small- and medium-sized commercial buildings
DOE Office of Scientific and Technical Information (OSTI.GOV)
Luo, Xuan; Hong, Tianzhen; Chen, Yixing
Small- and medium-sized commercial buildings owners and utility managers often look for opportunities for energy cost savings through energy efficiency and energy waste minimization. However, they currently lack easy access to low-cost tools that help interpret the massive amount of data needed to improve understanding of their energy use behaviors. Benchmarking is one of the techniques used in energy audits to identify which buildings are priorities for an energy analysis. Traditional energy performance indicators, such as the energy use intensity (annual energy per unit of floor area), consider only the total annual energy consumption, lacking consideration of the fluctuation ofmore » energy use behavior over time, which reveals the time of use information and represents distinct energy use behaviors during different time spans. To fill the gap, this study developed a general statistical method using 24-hour electric load shape benchmarking to compare a building or business/tenant space against peers. Specifically, the study developed new forms of benchmarking metrics and data analysis methods to infer the energy performance of a building based on its load shape. We first performed a data experiment with collected smart meter data using over 2,000 small- and medium-sized businesses in California. We then conducted a cluster analysis of the source data, and determined and interpreted the load shape features and parameters with peer group analysis. Finally, we implemented the load shape benchmarking feature in an open-access web-based toolkit (the Commercial Building Energy Saver) to provide straightforward and practical recommendations to users. The analysis techniques were generic and flexible for future datasets of other building types and in other utility territories.« less
Electric load shape benchmarking for small- and medium-sized commercial buildings
Luo, Xuan; Hong, Tianzhen; Chen, Yixing; ...
2017-07-28
Small- and medium-sized commercial buildings owners and utility managers often look for opportunities for energy cost savings through energy efficiency and energy waste minimization. However, they currently lack easy access to low-cost tools that help interpret the massive amount of data needed to improve understanding of their energy use behaviors. Benchmarking is one of the techniques used in energy audits to identify which buildings are priorities for an energy analysis. Traditional energy performance indicators, such as the energy use intensity (annual energy per unit of floor area), consider only the total annual energy consumption, lacking consideration of the fluctuation ofmore » energy use behavior over time, which reveals the time of use information and represents distinct energy use behaviors during different time spans. To fill the gap, this study developed a general statistical method using 24-hour electric load shape benchmarking to compare a building or business/tenant space against peers. Specifically, the study developed new forms of benchmarking metrics and data analysis methods to infer the energy performance of a building based on its load shape. We first performed a data experiment with collected smart meter data using over 2,000 small- and medium-sized businesses in California. We then conducted a cluster analysis of the source data, and determined and interpreted the load shape features and parameters with peer group analysis. Finally, we implemented the load shape benchmarking feature in an open-access web-based toolkit (the Commercial Building Energy Saver) to provide straightforward and practical recommendations to users. The analysis techniques were generic and flexible for future datasets of other building types and in other utility territories.« less
The History of the Democratic Adult Education Movement in Spain
ERIC Educational Resources Information Center
Oliver, Esther; Tellado, Itxaso; Yuste, Montserrat; Larena-Fernández, Rosa
2016-01-01
Background/Context: Traditional adult education in Spain treated the learner as a mere object that could be shaped by the educator. Although current practices of the democratic adult education movement in Spain reveals a completely opposite standpoint on adult education, there has been little analysis of the several influences converging and…
ERIC Educational Resources Information Center
Jayakumar, Uma M.
2015-01-01
In this article, Uma M. Jayakumar investigates the cumulative impact of experiences with segregation or racial diversity prior to and during college on colorblind ideological orientation among white adults. An analysis of longitudinal data spanning ten years reveals that, for whites from segregated and diverse childhood neighborhoods, some…
Anterior Chamber Angle Shape Analysis and Classification of Glaucoma in SS-OCT Images.
Ni Ni, Soe; Tian, J; Marziliano, Pina; Wong, Hong-Tym
2014-01-01
Optical coherence tomography is a high resolution, rapid, and noninvasive diagnostic tool for angle closure glaucoma. In this paper, we present a new strategy for the classification of the angle closure glaucoma using morphological shape analysis of the iridocorneal angle. The angle structure configuration is quantified by the following six features: (1) mean of the continuous measurement of the angle opening distance; (2) area of the trapezoidal profile of the iridocorneal angle centered at Schwalbe's line; (3) mean of the iris curvature from the extracted iris image; (4) complex shape descriptor, fractal dimension, to quantify the complexity, or changes of iridocorneal angle; (5) ellipticity moment shape descriptor; and (6) triangularity moment shape descriptor. Then, the fuzzy k nearest neighbor (fkNN) classifier is utilized for classification of angle closure glaucoma. Two hundred and sixty-four swept source optical coherence tomography (SS-OCT) images from 148 patients were analyzed in this study. From the experimental results, the fkNN reveals the best classification accuracy (99.11 ± 0.76%) and AUC (0.98 ± 0.012) with the combination of fractal dimension and biometric parameters. It showed that the proposed approach has promising potential to become a computer aided diagnostic tool for angle closure glaucoma (ACG) disease.
Certain bright soliton interactions of the Sasa-Satsuma equation in a monomode optical fiber
NASA Astrophysics Data System (ADS)
Liu, Lei; Tian, Bo; Chai, Han-Peng; Yuan, Yu-Qiang
2017-03-01
Under investigation in this paper is the Sasa-Satsuma equation, which describes the propagation of ultrashort pulses in a monomode fiber with the third-order dispersion, self-steepening, and stimulated Raman scattering effects. Based on the known bilinear forms, through the modified expanded formulas and symbolic computation, we construct the bright two-soliton solutions. Through classifying the interactions under different parameter conditions, we reveal six cases of interactions between the two solitons via an asymptotic analysis. With the help of the analytic and graphic analysis, we find that such interactions are different from those of the nonlinear Schrödinger equation and Hirota equation. When those solitons interact with each other, the singular-I soliton is shape-preserving, while the singular-II and nonsingular solitons may be shape preserving or shape changing. Such elastic and inelastic interaction phenomena in a scalar equation might enrich the knowledge of soliton behavior, which could be expected to be experimentally observed.
Certain bright soliton interactions of the Sasa-Satsuma equation in a monomode optical fiber.
Liu, Lei; Tian, Bo; Chai, Han-Peng; Yuan, Yu-Qiang
2017-03-01
Under investigation in this paper is the Sasa-Satsuma equation, which describes the propagation of ultrashort pulses in a monomode fiber with the third-order dispersion, self-steepening, and stimulated Raman scattering effects. Based on the known bilinear forms, through the modified expanded formulas and symbolic computation, we construct the bright two-soliton solutions. Through classifying the interactions under different parameter conditions, we reveal six cases of interactions between the two solitons via an asymptotic analysis. With the help of the analytic and graphic analysis, we find that such interactions are different from those of the nonlinear Schrödinger equation and Hirota equation. When those solitons interact with each other, the singular-I soliton is shape-preserving, while the singular-II and nonsingular solitons may be shape preserving or shape changing. Such elastic and inelastic interaction phenomena in a scalar equation might enrich the knowledge of soliton behavior, which could be expected to be experimentally observed.
Whole-organ cell shape analysis reveals the developmental basis of ascidian notochord taper.
Veeman, Michael T; Smith, William C
2013-01-15
Here we use in toto imaging together with computational segmentation and analysis methods to quantify the shape of every cell at multiple stages in the development of a simple organ: the notochord of the ascidian Ciona savignyi. We find that cell shape in the intercalated notochord depends strongly on anterior-posterior (AP) position, with cells in the middle of the notochord consistently wider than cells at the anterior or posterior. This morphological feature of having a tapered notochord is present in many chordates. We find that ascidian notochord taper involves three main mechanisms: Planar Cell Polarity (PCP) pathway-independent sibling cell volume asymmetries that precede notochord cell intercalation; the developmental timing of intercalation, which proceeds from the anterior and posterior towards the middle; and the differential rates of notochord cell narrowing after intercalation. A quantitative model shows how the morphology of an entire developing organ can be controlled by this small set of cellular mechanisms. Copyright © 2012 Elsevier Inc. All rights reserved.
Whole-organ cell shape analysis reveals the developmental basis of ascidian notochord taper
Veeman, Michael T.; Smith, William C.
2012-01-01
Here we use in toto imaging together with computational segmentation and analysis methods to quantify the shape of every cell at multiple stages in the development of a simple organ: the notochord of the ascidian Ciona savignyi. We find that cell shape in the intercalated notochord depends strongly on anterior-posterior (AP) position, with cells in the middle of the notochord consistently wider than cells at the anterior or posterior. This morphological feature of having a tapered notochord is present in many chordates. We find that ascidian notochord taper involves three main mechanisms: Planar Cell Polarity (PCP) pathway-independent sibling cell volume asymmetries that precede notochord cell intercalation; the developmental timing of intercalation, which proceeds from the anterior and posterior towards the middle; and the differential rates of notochord cell narrowing after intercalation. A quantitative model shows how the morphology of an entire developing organ can be controlled by this small set of cellular mechanisms. PMID:23165294
Narr, Anja; Nawaz, Ali; Wick, Lukas Y.; Harms, Hauke; Chatzinotas, Antonis
2017-01-01
Environmental surveys on soil viruses are still rare and mostly anecdotal, i. e., they mostly report on viruses at one location or for only a few sampling dates. Detailed time-series analysis with multiple samples can reveal the spatio-temporal dynamics of viral communities and provide important input as to how viruses interact with their potential hosts and the environment. Such surveys, however, require fast, easy-to-apply and reliable methods. In the present study we surveyed monthly across 13 months the abundance of virus-like particles (VLP) and the structure of the viral communities in soils along a land use transect (i.e., forest, pasture, and cropland). We evaluated 32 procedures to extract VLP from soil using different buffers and mechanical methods. The most efficient extraction was achieved with 1× saline magnesium buffer in combination with 20 min vortexing. For community structure analysis we developed an optimized fingerprinting approach (fluorescent RAPD-PCR; fRAPD) by combining RAPD-PCR with fluorescently labeled primers in order to size the obtained fragments on a capillary sequencing machine. With the concomitantly collected data of soil specific factors and weather data, we were able to find correlations of viral abundance and community structure with environmental variables and sampling site. More specifically, we found that soil specific factors such as pH and total nitrogen content played a significant role in shaping both soil viral abundance and community structure. The fRAPD analysis revealed high temporal changes and clustered the viral communities according to sampling sites. In particular we observed that temperature and rainfall shaped soil viral communities in non-forest sites. In summary our findings suggest that sampling site was a key factor for shaping the abundance and community structure of soil viruses, and when site vegetation was reduced, temperature and rainfall were also important factors. PMID:29067022
Spike shape analysis of electromyography for parkinsonian tremor evaluation.
Marusiak, Jarosław; Andrzejewska, Renata; Świercz, Dominika; Kisiel-Sajewicz, Katarzyna; Jaskólska, Anna; Jaskólski, Artur
2015-12-01
Standard electromyography (EMG) parameters have limited utility for evaluation of Parkinson disease (PD) tremor. Spike shape analysis (SSA) EMG parameters are more sensitive than standard EMG parameters for studying motor control mechanisms in healthy subjects. SSA of EMG has not been used to assess parkinsonian tremor. This study assessed the utility of SSA and standard time and frequency analysis for electromyographic evaluation of PD-related resting tremor. We analyzed 1-s periods of EMG recordings to detect nontremor and tremor signals in relaxed biceps brachii muscle of seven mild to moderate PD patients. SSA revealed higher mean spike amplitude, duration, and slope and lower mean spike frequency in tremor signals than in nontremor signals. Standard EMG parameters (root mean square, median, and mean frequency) did not show differences between the tremor and nontremor signals. SSA of EMG data is a sensitive method for parkinsonian tremor evaluation. © 2015 Wiley Periodicals, Inc.
Karyotypic analysis of the cotton boll weevil, Anthonomus grandis Boheman.
McNally, L R; Beck, M L; Biggers, C J
2000-01-01
The diploid chromosome number of the cotton boll weevil, Anthonomus grandis Boheman, is 44. Both C- and N-banding techniques of mitotic cells demonstrated constitutive heterochromatin in the p arm of the eight largest chromosomes, the p arm of the X chromosome, and the centromeric region of autosomal groups A-D. Neither the y nor the group E autosomes appeared to contain constitutive heterochromatin. Supernumerary chromosomes were not found in the boll weevil. Restriction endonuclease banding of primary spermatocytes revealed a rod-shaped Xy tetrad in which the X and y were terminally associated. The p arm of the large, submetacentric X was C-band positive. While two of the autosomal tetrads were typically ring-shaped in primary spermatocytes, the remaining 19 autosomal tetrads were rod-shaped.
Dielectric inspection of erythrocyte morphology.
Hayashi, Yoshihito; Oshige, Ikuya; Katsumoto, Yoichi; Omori, Shinji; Yasuda, Akio; Asami, Koji
2008-05-21
We performed a systematic study of the sensitivity of dielectric spectroscopy to erythrocyte morphology. Namely, rabbit erythrocytes of four different shapes were prepared by precisely controlling the pH of the suspending medium, and their complex permittivities over the frequency range from 0.1 to 110 MHz were measured and analyzed. Their quantitative analysis shows that the characteristic frequency and the broadening parameter of the dielectric relaxation of interfacial polarization are highly specific to the erythrocyte shape, while they are insensitive to the cell volume fraction. Therefore, these two dielectric parameters can be used to differentiate erythrocytes of different shapes, if dielectric spectroscopy is applied to flow-cytometric inspection of single blood cells. In addition, we revealed the applicability and limitations of the analytical theory of interfacial polarization to explain the experimental permittivities of non-spherical erythrocytes.
NASA Astrophysics Data System (ADS)
Agilandeswari, K.; Ruban Kumar, A.
2014-04-01
Sr2Co2O5 ceramic synthesized by the coprecipitation of strontium cobalt carbonate method. XRD analysis shows the single phase strontianite precursor and decomposed oxide product as orthorhombic structure of Sr2Co2O5. Thermal analysis proves the Sr2Co2O5 phase formation temperature of 800 °C. SEM image indicates crystalline rod shaped carbonate precursor transformed to oxide as porous diffused sphere shape particles. Optical band gap it reveals the strontium cobalt carbonate precursor as insulating material and the Sr2Co2O5 as semiconducting nature. The room temperature magnetic study indicates the carbonate precursor as paramagnetic but its oxide Sr2Co2O5 as superparamagnetic behavior.
NASA Astrophysics Data System (ADS)
Lazutkin, G. V.; Davydov, D. P.; Boyarov, K. V.; Volkova, T. V.
2018-01-01
The results of the mechanical characteristic experimental studies are presented for the shock absorbers of DKU type with the elastic elements of the bell shape made of MR material and obtained by the cold pressing of mutually crossing wire spirals with their inclusion in the array of reinforcing wire harnesses. The design analysis and the technology of MR production based on the methods of similarity theory and dimensional analysis revealed the dimensionless determined and determining parameters of elastic frictional, dynamic and strength characteristics under the static and dynamic loading of vibration isolators. The main similarity criteria of mechanical characteristics for vibration isolators and their graphical and analytical representation are determined, taking into account the coefficients of these (affine) transformations of the hysteresis loop family field.
Kubicka, Anna Maria; Lubiatowski, Przemysław; Długosz, Jan Dawid; Romanowski, Leszek; Piontek, Janusz
2016-11-01
Degrees of upper-limb bilateral asymmetry reflect habitual behavior and activity levels throughout life in human populations. The shoulder joint facilitates a wide range of combined motions due to the simultaneous motion of all three bones: clavicle, scapula, and humerus. Accordingly, we used three-dimensional geometric morphometrics to analyze shape differences in the glenoid cavity and linear morphometrics to obtain the degree of directional asymmetry in a medieval population. To calculate directional asymmetry, clavicles, humeri, and scapulae from 100 individuals (50 females, 50 males) were measured. Landmarks and semilandmarks were placed within a three-dimensional reconstruction of the glenoid cavity for analysis of shape differences between sides of the body within sexes. Linear morphometrics showed significant directional asymmetry in both sexes in all bones. Geometric morphometrics revealed significant shape differences of the glenoid cavity between sides of the body in females but not in males. Both indicators of directional asymmetry (%DA and %AA) did not show significant differences between sexes. PLS analysis revealed a significant correlation between glenoid shape and two humeral head diameters only in females on the left side of the body. The studied population, perhaps due to a high level of activity, exhibited slightly greater upper-limb bone bilateral asymmetry than other agricultural populations. Results suggest that the upper limbs were involved in similar activity patterns in both sexes but were characterized by different habitual behaviors. To obtain comprehensive results, studies should be based on sophisticated methods such as geometric morphometrics as well as standard measurements. Am. J. Hum. Biol. 28:817-824, 2016. © 2016Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.
The Evolution of Morphospace in Phytophagous Scarab Chafers: No Competition - No Divergence?
Eberle, Jonas; Myburgh, Renier; Ahrens, Dirk
2014-01-01
Body shape reflects species' evolution and mediates its role in the environment as it integrates gene expression, life style, and structural morphology. Its comparative analysis may reveal insight on what shapes shape, being a useful approach when other evidence is lacking. Here we investigated evolutionary patterns of body shape in the highly diverse phytophagous chafers (Scarabaeidae: Pleurosticti), a polyphagous group utilizing different parts of angiosperms. Because the reasons of their successful diversification are largely unknown, we used a phylogenetic tree and multivariate analysis on twenty linear measurements of body morphology including all major Pleurosticti lineages to infer patterns of morphospace covariation and divergence. The chafer's different feeding types resulted to be not distinguishable in the described morphospace which was largely attributed to large occupancy of the morphospace of some feeding types and to multiple convergences of feeding behavior (particularly of anthophagy). Low correlation between molecular and morphological rates of evolution, including significant rate shifts for some lineages, indicated directed selection within feeding types. This is supported by morphospace divergence within feeding types and convergent evolution in Australian Melolonthinae. Traits driving morphospace divergence were extremities and traits linked with locomotion behavior, but also body size. Being highly adaptive for burrowing and locomotion these traits showed major changes in the evolution of pleurostict scarabs. These activities also affected another trait, the metacoxal length, which is highly influenced by key innovations of the metacoxa (extended mesal process, secondary closure) particularly in one lineage, the Sericini. Significant shape divergence between major lineages and a lack of strong differentiation among closely related lineages indicated that the question about the presence or absence of competition-derived directed selection needs to be addressed for different time scales. Striking divergence between some sister lineages at their origin revealed strong driven selection towards morphospace divergence, possibly linked with resource partitioning. PMID:24875856
Bryce A. Richardson; Susan E. Meyer
2012-01-01
Coleogyne ramosissima Torr. (blackbrush) is a dominant xerophytic shrub species in the ecotone between the warm and cold deserts of interior western North America. Amplified fragment length polymorphisms (AFLPs) were used to survey genetic diversity and population genetic structure at 14 collection sites across the species range. Analysis revealed significant...
"Are You a Computer?" Opening Exchanges in Virtual Reference Shape the Potential for Teaching
ERIC Educational Resources Information Center
Dempsey, Paula R.
2016-01-01
Academic reference librarians frequently work with students who are not aware of their professional roles. In online interactions, a student might not even realize that the librarian is a person. The ways students initiate conversations reveal their understanding of the mutual roles involved in reference encounters. Conversation analysis of live…
ERIC Educational Resources Information Center
Barry, Nancy H.; Durham, Sean
2017-01-01
This qualitative study employed grounded theory to explore how a university-based summer practicum experience with community children (N = 55) revealed and shaped pre-service teachers' (N = 24) understanding of young children and their musical skills and dispositions; how early childhood music curriculum is designed; and supports and barriers to…
Zhou, Wenwu; Brockmöller, Thomas; Ling, Zhihao; Omdahl, Ashton; Baldwin, Ian T; Xu, Shuqing
2016-01-01
Herbivore-induced defenses are widespread, rapidly evolving and relevant for plant fitness. Such induced defenses are often mediated by early defense signaling (EDS) rapidly activated by the perception of herbivore associated elicitors (HAE) that includes transient accumulations of jasmonic acid (JA). Analyzing 60 HAE-induced leaf transcriptomes from closely-related Nicotiana species revealed a key gene co-expression network (M4 module) which is co-activated with the HAE-induced JA accumulations but is elicited independently of JA, as revealed in plants silenced in JA signaling. Functional annotations of the M4 module were consistent with roles in EDS and a newly identified hub gene of the M4 module (NaLRRK1) mediates a negative feedback loop with JA signaling. Phylogenomic analysis revealed preferential gene retention after genome-wide duplications shaped the evolution of HAE-induced EDS in Nicotiana. These results highlight the importance of genome-wide duplications in the evolution of adaptive traits in plants. DOI: http://dx.doi.org/10.7554/eLife.19531.001 PMID:27813478
Estimation of surface curvature from full-field shape data using principal component analysis
NASA Astrophysics Data System (ADS)
Sharma, Sameer; Vinuchakravarthy, S.; Subramanian, S. J.
2017-01-01
Three-dimensional digital image correlation (3D-DIC) is a popular image-based experimental technique for estimating surface shape, displacements and strains of deforming objects. In this technique, a calibrated stereo rig is used to obtain and stereo-match pairs of images of the object of interest from which the shapes of the imaged surface are then computed using the calibration parameters of the rig. Displacements are obtained by performing an additional temporal correlation of the shapes obtained at various stages of deformation and strains by smoothing and numerically differentiating the displacement data. Since strains are of primary importance in solid mechanics, significant efforts have been put into computation of strains from the measured displacement fields; however, much less attention has been paid to date to computation of curvature from the measured 3D surfaces. In this work, we address this gap by proposing a new method of computing curvature from full-field shape measurements using principal component analysis (PCA) along the lines of a similar work recently proposed to measure strains (Grama and Subramanian 2014 Exp. Mech. 54 913-33). PCA is a multivariate analysis tool that is widely used to reveal relationships between a large number of variables, reduce dimensionality and achieve significant denoising. This technique is applied here to identify dominant principal components in the shape fields measured by 3D-DIC and these principal components are then differentiated systematically to obtain the first and second fundamental forms used in the curvature calculation. The proposed method is first verified using synthetically generated noisy surfaces and then validated experimentally on some real world objects with known ground-truth curvatures.
Decoding of top-down cognitive processing for SSVEP-controlled BMI
Min, Byoung-Kyong; Dähne, Sven; Ahn, Min-Hee; Noh, Yung-Kyun; Müller, Klaus-Robert
2016-01-01
We present a fast and accurate non-invasive brain-machine interface (BMI) based on demodulating steady-state visual evoked potentials (SSVEPs) in electroencephalography (EEG). Our study reports an SSVEP-BMI that, for the first time, decodes primarily based on top-down and not bottom-up visual information processing. The experimental setup presents a grid-shaped flickering line array that the participants observe while intentionally attending to a subset of flickering lines representing the shape of a letter. While the flickering pixels stimulate the participant’s visual cortex uniformly with equal probability, the participant’s intention groups the strokes and thus perceives a ‘letter Gestalt’. We observed decoding accuracy of 35.81% (up to 65.83%) with a regularized linear discriminant analysis; on average 2.05-fold, and up to 3.77-fold greater than chance levels in multi-class classification. Compared to the EEG signals, an electrooculogram (EOG) did not significantly contribute to decoding accuracies. Further analysis reveals that the top-down SSVEP paradigm shows the most focalised activation pattern around occipital visual areas; Granger causality analysis consistently revealed prefrontal top-down control over early visual processing. Taken together, the present paradigm provides the first neurophysiological evidence for the top-down SSVEP BMI paradigm, which potentially enables multi-class intentional control of EEG-BMIs without using gaze-shifting. PMID:27808125
Decoding of top-down cognitive processing for SSVEP-controlled BMI
NASA Astrophysics Data System (ADS)
Min, Byoung-Kyong; Dähne, Sven; Ahn, Min-Hee; Noh, Yung-Kyun; Müller, Klaus-Robert
2016-11-01
We present a fast and accurate non-invasive brain-machine interface (BMI) based on demodulating steady-state visual evoked potentials (SSVEPs) in electroencephalography (EEG). Our study reports an SSVEP-BMI that, for the first time, decodes primarily based on top-down and not bottom-up visual information processing. The experimental setup presents a grid-shaped flickering line array that the participants observe while intentionally attending to a subset of flickering lines representing the shape of a letter. While the flickering pixels stimulate the participant’s visual cortex uniformly with equal probability, the participant’s intention groups the strokes and thus perceives a ‘letter Gestalt’. We observed decoding accuracy of 35.81% (up to 65.83%) with a regularized linear discriminant analysis; on average 2.05-fold, and up to 3.77-fold greater than chance levels in multi-class classification. Compared to the EEG signals, an electrooculogram (EOG) did not significantly contribute to decoding accuracies. Further analysis reveals that the top-down SSVEP paradigm shows the most focalised activation pattern around occipital visual areas; Granger causality analysis consistently revealed prefrontal top-down control over early visual processing. Taken together, the present paradigm provides the first neurophysiological evidence for the top-down SSVEP BMI paradigm, which potentially enables multi-class intentional control of EEG-BMIs without using gaze-shifting.
Arthroscopic modified Mason-Allen technique for large U- or L-shaped rotator cuff tears.
Jung, Sung-Weon; Kim, Dong-Hee; Kang, Seung-Hoon; Lee, Ji-Heon
2017-07-01
While a conventional single- or double-row repair technique could be applied for repair of C-shaped tears, a different surgical strategy should be considered for repair of U- or L-shaped tears because they typically have complex patterns with anterior, posterior, or both mobile leaves. This study was performed to examine the outcomes of the modified Mason-Allen technique for footprint restoration in the treatment of large U- or L-shaped rotator cuff tears. Thirty-two patients who underwent an arthroscopic modified Mason-Allen technique for large U- or L-shaped rotator cuff tears between January 2012 and December 2013 were included in this study. Margin convergence was first performed to reduce the tear gap and tension, and then, an arthroscopic Mason-Allen technique was performed to restore the rotator cuff footprint in a side-to-end repair fashion. All patients were evaluated preoperatively and for a minimum of 2 years of follow-up with a visual analog scale (VAS) for pain, Constant score, and ultrasonography. There was significant improvement in all VAS and Constant scores compared with the preoperative values (P < 0.001). Functional results by Constant scores included 9 cases that were classified as excellent, 11 cases as good, 8 cases as fair, and 2 cases as poor. Binary logistic regression analysis revealed that heavy work, pseudoparalysis, joint space narrowing, fatty degeneration of the SST and IST, and a positive tangent sign were found to significantly correlate with functional outcomes. Multivariable logistic regression analysis revealed that only fatty degeneration of the SST was a risk factor for fair/poor clinical outcomes. Complications occurred in 5 of the 32 patients (15.6 %), and the reoperation rate due to complications was 6.3 % (2 of 32 patients). An arthroscopic modified Mason-Allen technique was sufficient to restore the footprint of the rotator cuff in our data. Overall satisfactory results were achieved in most patients, with the exception of those with severe fatty degeneration. An arthroscopic modified Mason-Allen technique could be an effective and reliable alternative for patients with large U- or L-shaped rotator cuff tears. Case Series, Therapeutic Level IV.
NASA Astrophysics Data System (ADS)
Durairajan, A.; Thangaraju, D.; Moorthy Babu, S.
2013-02-01
Mixed alkali double tungstates K1-xNaxGd(WO4)2 (KNGW) (0 ⩽ x ⩽ 1) were synthesized by solid state reaction using sodium doped monoclinic KGd(WO4)2 (KGW). Synthesized KNGW powders were characterized using powder X-ray diffraction (XRD), differential thermal analysis (DTA), scanning electron microscopy (SEM) and Raman analysis. DTA analysis confirms that the melting point of the KGW matrix increases from 1063 °C to 1255 °C with increasing sodium content. The Powder XRD analyses reveal that mixed phases were observed up to 40 wt.% of Na in the KGW matrix above that percentage there is domination of scheelite structure in the synthesized powder. Polyhedral type, bi-pyramidal shape and spheroid shape morphology was observed for KGW, NKGW and NGW powders respectively. The Raman analysis was carried out to understand the vibrational characteristic changes with mixing of sodium ions in the KGW matrix.
A thin-plate spline analysis of the face and tongue in obstructive sleep apnea patients.
Pae, E K; Lowe, A A; Fleetham, J A
1997-12-01
The shape characteristics of the face and tongue in obstructive sleep apnea (OSA) patients were investigated using thin-plate (TP) splines. A relatively new analytic tool, the TP spline method, provides a means of size normalization and image analysis. When shape is one's main concern, various sizes of a biologic structure may be a source of statistical noise. More seriously, the strong size effect could mask underlying, actual attributes of the disease. A set of size normalized data in the form of coordinates was generated from cephalograms of 80 male subjects. The TP spline method envisioned the differences in the shape of the face and tongue between OSA patients and nonapneic subjects and those between the upright and supine body positions. In accordance with OSA severity, the hyoid bone and the submental region positioned inferiorly and the fourth vertebra relocated posteriorly with respect to the mandible. This caused a fanlike configuration of the lower part of the face and neck in the sagittal plane in both upright and supine body positions. TP splines revealed tongue deformations caused by a body position change. Overall, the new morphometric tool adopted here was found to be viable in the analysis of morphologic changes.
GDP-L-fucose is required for boundary definition in plants.
Gonçalves, Beatriz; Maugarny-Calès, Aude; Adroher, Bernard; Cortizo, Millán; Borrega, Nero; Blein, Thomas; Hasson, Alice; Gineau, Emilie; Mouille, Grégory; Laufs, Patrick; Arnaud, Nicolas
2017-12-16
The CUP-SHAPED COTYLEDON (CUC) transcription factors control plant boundary formation, thus allowing the emergence of novel growth axes. While the developmental roles of the CUC genes in different organs and across species are well characterized, upstream and downstream events that contribute to their function are still poorly understood. To identify new players in this network, we performed a suppressor screen of CUC2g-m4, a line overexpressing CUC2 that has highly serrated leaves. We identified a mutation that simplifies leaf shape and affects MURUS1 (MUR1), which is responsible for GDP-L-fucose production. Using detailed morphometric analysis, we show that GDP-L-fucose has an essential role in leaf shape acquisition by sustaining differential growth at the leaf margins. Accordingly, reduced CUC2 expression levels are observed in mur1 leaves. Furthermore, genetic analyses reveal a conserved role for GDP-L-fucose in different developmental contexts where it contributes to organ separation in the same pathway as CUC2. Taken together, our results reveal that GDP-L-fucose is necessary for proper establishment of boundary domains in various developmental contexts. © The Author 2017. Published by Oxford University Press on behalf of the Society for Experimental Biology.
Wei, Chunhua; Chen, Xiner; Wang, Zhongyuan; Liu, Qiyan; Li, Hao; Zhang, Yong; Ma, Jianxiang; Yang, Jianqiang
2017-01-01
The lobed leaf character is a unique morphologic trait in crops, featuring many potential advantages for agricultural productivity. Although the majority of watermelon varieties feature lobed leaves, the genetic factors responsible for lobed leaf formation remain elusive. The F2:3 leaf shape segregating population offers the opportunity to study the underlying mechanism of lobed leaf formation in watermelon. Genetic analysis revealed that a single dominant allele (designated ClLL1) controlled the lobed leaf trait. A large-sized F3:4 population derived from F2:3 individuals was used to map ClLL1. A total of 5,966 reliable SNPs and indels were identified genome-wide via a combination of BSA and RNA-seq. Using the validated SNP and indel markers, the location of ClLL1 was narrowed down to a 127.6-kb region between markers W08314 and W07061, containing 23 putative ORFs. Expression analysis via qRT-PCR revealed differential expression patterns (fold-changes above 2-fold or below 0.5-fold) of three ORFs (ORF3, ORF11, and ORF18) between lobed and non-lobed leaf plants. Based on gene annotation and expression analysis, ORF18 (encoding an uncharacterized protein) and ORF22 (encoding a homeobox-leucine zipper-like protein) were considered as most likely candidate genes. Furthermore, sequence analysis revealed no polymorphisms in cDNA sequences of ORF18; however, two notable deletions were identified in ORF22. This study is the first report to map a leaf shape gene in watermelon and will facilitate cloning and functional characterization of ClLL1 in future studies. PMID:28704497
Wei, Chunhua; Chen, Xiner; Wang, Zhongyuan; Liu, Qiyan; Li, Hao; Zhang, Yong; Ma, Jianxiang; Yang, Jianqiang; Zhang, Xian
2017-01-01
The lobed leaf character is a unique morphologic trait in crops, featuring many potential advantages for agricultural productivity. Although the majority of watermelon varieties feature lobed leaves, the genetic factors responsible for lobed leaf formation remain elusive. The F2:3 leaf shape segregating population offers the opportunity to study the underlying mechanism of lobed leaf formation in watermelon. Genetic analysis revealed that a single dominant allele (designated ClLL1) controlled the lobed leaf trait. A large-sized F3:4 population derived from F2:3 individuals was used to map ClLL1. A total of 5,966 reliable SNPs and indels were identified genome-wide via a combination of BSA and RNA-seq. Using the validated SNP and indel markers, the location of ClLL1 was narrowed down to a 127.6-kb region between markers W08314 and W07061, containing 23 putative ORFs. Expression analysis via qRT-PCR revealed differential expression patterns (fold-changes above 2-fold or below 0.5-fold) of three ORFs (ORF3, ORF11, and ORF18) between lobed and non-lobed leaf plants. Based on gene annotation and expression analysis, ORF18 (encoding an uncharacterized protein) and ORF22 (encoding a homeobox-leucine zipper-like protein) were considered as most likely candidate genes. Furthermore, sequence analysis revealed no polymorphisms in cDNA sequences of ORF18; however, two notable deletions were identified in ORF22. This study is the first report to map a leaf shape gene in watermelon and will facilitate cloning and functional characterization of ClLL1 in future studies.
Space for action: How practitioners influence environmental assessment
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kågström, Mari, E-mail: mari.kagstrom@slu.se; Richardson, Tim, E-mail: tim.richardson@nmbu.no
2015-09-15
Highlights: • The concept of ‘space for action’ offers an important new lens on EA practice. • Focuses on the relation between practitioner's understanding and their actions • Environmental assessment practice is decisively shaped by practitioners. • Practitioners may underestimate their potential to make a difference. • Contributes to understanding change in the environmental assessment field. This article contributes to understanding of how change occurs in the field of environmental assessment (EA). It argues that the integration of new issues in EA, such as human health, is significantly influenced by how practitioners' understandings shape their actions, and by what happensmore » when those, possibly different, interpretations of appropriate action are acted out. The concept of space for action is developed as a means of investigating this relation between understanding and action. Frame theory is also used, to develop a sharper focus on how ‘potential spaces for action’ are created, what these imply for (individuals') preferred choices and actions in certain situations, and what happens in practice when these are acted out and ‘actual spaces for action’ are created. This novel approach is then applied in a Swedish case study of transport planning. The analysis reveals the important work done by practitioners, revealing just how EA practice is decisively shaped by practitioners. Analysis of practice using the lens of spaces for action offers an important new perspective in understanding how the field adapts to new challenges.« less
NASA Technical Reports Server (NTRS)
Casper, Paul W.; Bent, Rodney B.
1991-01-01
The algorithm used in previous technology time-of-arrival lightning mapping systems was based on the assumption that the earth is a perfect spheroid. These systems yield highly-accurate lightning locations, which is their major strength. However, extensive analysis of tower strike data has revealed occasionally significant (one to two kilometer) systematic offset errors which are not explained by the usual error sources. It was determined that these systematic errors reduce dramatically (in some cases) when the oblate shape of the earth is taken into account. The oblate spheroid correction algorithm and a case example is presented.
NASA Astrophysics Data System (ADS)
Endreny, Theodore A.; Pashiardis, Stelios
2007-02-01
SummaryRobust and accurate estimates of rainfall frequencies are difficult to make with short, and arid-climate, rainfall records, however new regional and global methods were used to supplement such a constrained 15-34 yr record in Cyprus. The impact of supplementing rainfall frequency analysis with the regional and global approaches was measured with relative bias and root mean square error (RMSE) values. Analysis considered 42 stations with 8 time intervals (5-360 min) in four regions delineated by proximity to sea and elevation. Regional statistical algorithms found the sites passed discordancy tests of coefficient of variation, skewness and kurtosis, while heterogeneity tests revealed the regions were homogeneous to mildly heterogeneous. Rainfall depths were simulated in the regional analysis method 500 times, and then goodness of fit tests identified the best candidate distribution as the general extreme value (GEV) Type II. In the regional analysis, the method of L-moments was used to estimate location, shape, and scale parameters. In the global based analysis, the distribution was a priori prescribed as GEV Type II, a shape parameter was a priori set to 0.15, and a time interval term was constructed to use one set of parameters for all time intervals. Relative RMSE values were approximately equal at 10% for the regional and global method when regions were compared, but when time intervals were compared the global method RMSE had a parabolic-shaped time interval trend. Relative bias values were also approximately equal for both methods when regions were compared, but again a parabolic-shaped time interval trend was found for the global method. The global method relative RMSE and bias trended with time interval, which may be caused by fitting a single scale value for all time intervals.
Xue, Zhaoguo; Sun, Mei; Dong, Taige; Tang, Zhiqiang; Zhao, Yaolong; Wang, Junzhuan; Wei, Xianlong; Yu, Linwei; Chen, Qing; Xu, Jun; Shi, Yi; Chen, Kunji; Roca I Cabarrocas, Pere
2017-12-13
Line-shape engineering is a key strategy to endow extra stretchability to 1D silicon nanowires (SiNWs) grown with self-assembly processes. We here demonstrate a deterministic line-shape programming of in-plane SiNWs into extremely stretchable springs or arbitrary 2D patterns with the aid of indium droplets that absorb amorphous Si precursor thin film to produce ultralong c-Si NWs along programmed step edges. A reliable and faithful single run growth of c-SiNWs over turning tracks with different local curvatures has been established, while high resolution transmission electron microscopy analysis reveals a high quality monolike crystallinity in the line-shaped engineered SiNW springs. Excitingly, in situ scanning electron microscopy stretching and current-voltage characterizations also demonstrate a superelastic and robust electric transport carried by the SiNW springs even under large stretching of more than 200%. We suggest that this highly reliable line-shape programming approach holds a strong promise to extend the mature c-Si technology into the development of a new generation of high performance biofriendly and stretchable electronics.
Mahalwar, Prateek; Singh, Ajeet Pratap; Fadeev, Andrey; Nüsslein-Volhard, Christiane; Irion, Uwe
2016-11-15
The conspicuous striped coloration of zebrafish is produced by cell-cell interactions among three different types of chromatophores: black melanophores, orange/yellow xanthophores and silvery/blue iridophores. During color pattern formation xanthophores undergo dramatic cell shape transitions and acquire different densities, leading to compact and orange xanthophores at high density in the light stripes, and stellate, faintly pigmented xanthophores at low density in the dark stripes. Here, we investigate the mechanistic basis of these cell behaviors in vivo, and show that local, heterotypic interactions with dense iridophores regulate xanthophore cell shape transition and density. Genetic analysis reveals a cell-autonomous requirement of gap junctions composed of Cx41.8 and Cx39.4 in xanthophores for their iridophore-dependent cell shape transition and increase in density in light-stripe regions. Initial melanophore-xanthophore interactions are independent of these gap junctions; however, subsequently they are also required to induce the acquisition of stellate shapes in xanthophores of the dark stripes. In summary, we conclude that, whereas homotypic interactions regulate xanthophore coverage in the skin, their cell shape transitions and density is regulated by gap junction-mediated, heterotypic interactions with iridophores and melanophores. © 2016. Published by The Company of Biologists Ltd.
Wang, Chun-Neng; Hsu, Hao-Chun; Wang, Cheng-Chun; Lee, Tzu-Kuei; Kuo, Yan-Fu
2015-01-01
The quantification of floral shape variations is difficult because flower structures are both diverse and complex. Traditionally, floral shape variations are quantified using the qualitative and linear measurements of two-dimensional (2D) images. The 2D images cannot adequately describe flower structures, and thus lead to unsatisfactory discrimination of the flower shape. This study aimed to acquire three-dimensional (3D) images by using microcomputed tomography (μCT) and to examine the floral shape variations by using geometric morphometrics (GM). To demonstrate the advantages of the 3D-μCT-GM approach, we applied the approach to a second-generation population of florist's gloxinia (Sinningia speciosa) crossed from parents of zygomorphic and actinomorphic flowers. The flowers in the population considerably vary in size and shape, thereby served as good materials to test the applicability of the proposed phenotyping approach. Procedures were developed to acquire 3D volumetric flower images using a μCT scanner, to segment the flower regions from the background, and to select homologous characteristic points (i.e., landmarks) from the flower images for the subsequent GM analysis. The procedures identified 95 landmarks for each flower and thus improved the capability of describing and illustrating the flower shapes, compared with typically lower number of landmarks in 2D analyses. The GM analysis demonstrated that flower opening and dorsoventral symmetry were the principal shape variations of the flowers. The degrees of flower opening and corolla asymmetry were then subsequently quantified directly from the 3D flower images. The 3D-μCT-GM approach revealed shape variations that could not be identified using typical 2D approaches and accurately quantified the flower traits that presented a challenge in 2D images. The approach opens new avenues to investigate floral shape variations.
The reaction of Lupinus angustifolius L. root meristematic cell nucleoli to lead.
Balcerzak, Lucja; Glińska, Sława; Godlewski, Mirosław
2011-04-01
The effect of 2-48 h treatment of Lupinus angustifolius L. roots with lead nitrate at the concentration of 10(-4) M on the nucleoli in meristematic cells was investigated. In the lead presence the number of ring-shaped as well as segregated nucleoli increased especially after 12-48 h of treatment, while spindle-shaped nucleoli appeared after 24 h and 48 h. Lead presence also increased the frequency of cells with silver-stained particles in the nucleus and the number of these particles especially from the 12th hour of treatment. It was accompanied by significant decline of nucleolar area. Analysis of these cells in transmission electron microscope confirmed the presence of ring-shaped and segregated nucleoli. Moreover, electron microscopy revealed compact structure nucleoli without granular component. Additionally, one to three oval-shaped fibrillar structures attached to nucleolus or lying free in the nucleoplasm were visible. The possible mechanism of lead toxicity to the nucleolus is briefly discussed.
NASA Astrophysics Data System (ADS)
Ranjan Choudhury, Rajul; Chitra, R.; Jayakrishnan, V. B.
2016-03-01
Quenching of dynamic disorder in glassy systems is termed as the glass transition. Ferroic glasses belong to the class of paracrystalline materials having crystallographic order in-between that of a perfect crystal and amorphous material, a classic example of ferroic glass is the solid solution of ferroelectric deuterated potassium dihydrogen phosphate and antiferroelectric deuterated ammonium dihydrogen phosphate. Lowering temperature of this ferroic glass can lead to a glass transition to a quenched disordered state. The subtle atomic rearrangement that takes place at such a glass transition can be revealed by careful examination of the temperature induced changes occurring in the x-ray powder diffraction (XRD) patterns of these materials. Hence we report here results of a complete diffraction line shape analysis of the XRD patterns recorded at different temperatures from deuterated mixed crystals DK x A1-x DP with mixing concentration x ranging as 0 < x < 1. Changes observed in diffraction peak shapes have been explained on the basis of structural rearrangements induced by changing O-D-O hydrogen bond dynamics in these paracrystals.
Size and shape variations of the bony components of sperm whale cochleae.
Schnitzler, Joseph G; Frédérich, Bruno; Früchtnicht, Sven; Schaffeld, Tobias; Baltzer, Johannes; Ruser, Andreas; Siebert, Ursula
2017-04-25
Several mass strandings of sperm whales occurred in the North Sea during January and February 2016. Twelve animals were necropsied and sampled around 48 h after their discovery on German coasts of Schleswig Holstein. The present study aims to explore the morphological variation of the primary sensory organ of sperm whales, the left and right auditory system, using high-resolution computerised tomography imaging. We performed a quantitative analysis of size and shape of cochleae using landmark-based geometric morphometrics to reveal inter-individual anatomical variations. A hierarchical cluster analysis based on thirty-one external morphometric characters classified these 12 individuals in two stranding clusters. A relative amount of shape variation could be attributable to geographical differences among stranding locations and clusters. Our geometric data allowed the discrimination of distinct bachelor schools among sperm whales that stranded on German coasts. We argue that the cochleae are individually shaped, varying greatly in dimensions and that the intra-specific variation observed in the morphology of the cochleae may partially reflect their affiliation to their bachelor school. There are increasing concerns about the impact of noise on cetaceans and describing the auditory periphery of odontocetes is a key conservation issue to further assess the effect of noise pollution.
Ding, Yuan; Zhang, Xiaojun; Tham, Kenneth W.; Qin, Peter Z.
2014-01-01
Sequence-dependent variation in structure and dynamics of a DNA duplex, collectively referred to as ‘DNA shape’, critically impacts interactions between DNA and proteins. Here, a method based on the technique of site-directed spin labeling was developed to experimentally map shapes of two DNA duplexes that contain response elements of the p53 tumor suppressor. An R5a nitroxide spin label, which was covalently attached at a specific phosphate group, was scanned consecutively through the DNA duplex. X-band continuous-wave electron paramagnetic resonance spectroscopy was used to monitor rotational motions of R5a, which report on DNA structure and dynamics at the labeling site. An approach based on Pearson's coefficient analysis was developed to collectively examine the degree of similarity among the ensemble of R5a spectra. The resulting Pearson's coefficients were used to generate maps representing variation of R5a mobility along the DNA duplex. The R5a mobility maps were found to correlate with maps of certain DNA helical parameters, and were capable of revealing similarity and deviation in the shape of the two closely related DNA duplexes. Collectively, the R5a probe and the Pearson's coefficient-based lineshape analysis scheme yielded a generalizable method for examining sequence-dependent DNA shapes. PMID:25092920
Cabral, Adrian L; Jordan, Mark C; Larson, Gary; Somers, Daryl J; Humphreys, D Gavin; McCartney, Curt A
2018-01-01
Kernel morphology characteristics of wheat are complex and quantitatively inherited. A doubled haploid (DH) population of the cross RL4452/'AC Domain' was used to study the genetic basis of seed shape. Quantitative trait loci (QTL) analyses were conducted on a total of 18 traits: 14 grain shape traits, flour yield (Fyd), and three agronomic traits (Plant height [Plht], 1000 Grain weight [Gwt], Test weight [Twt]), using data from trial locations at Glenlea, Brandon, and Morden in Manitoba, Canada, between 1999 and 2004. Kernel shape was studied through digital image analysis with an Acurum® grain analyzer. Plht, Gwt, Twt, Fyd, and grain shape QTL were correlated with each other and QTL analysis revealed that QTL for these traits often mapped to the same genetic locations. The most significant QTL for the grain shape traits were located on chromosomes 4B and 4D, each accounting for up to 24.4% and 53.3% of the total phenotypic variation, respectively. In addition, the most significant QTL for Plht, Gwt, and Twt were all detected on chromosome 4D at the Rht-D1 locus. Rht-D1b decreased Plht, Gwt, Twt, and kernel width relative to the Rht-D1a allele. A narrow genetic interval on chromosome 4B contained significant QTL for grain shape, Gwt, and Plht. The 'AC Domain' allele reduced Plht, Gwt, kernel length and width traits, but had no detectable effect on Twt. The data indicated that this variation was inconsistent with segregation at Rht-B1. Numerous QTL were identified that control these traits in this population.
Cabral, Adrian L.; Jordan, Mark C.; Larson, Gary; Somers, Daryl J.; Humphreys, D. Gavin
2018-01-01
Kernel morphology characteristics of wheat are complex and quantitatively inherited. A doubled haploid (DH) population of the cross RL4452/‘AC Domain’ was used to study the genetic basis of seed shape. Quantitative trait loci (QTL) analyses were conducted on a total of 18 traits: 14 grain shape traits, flour yield (Fyd), and three agronomic traits (Plant height [Plht], 1000 Grain weight [Gwt], Test weight [Twt]), using data from trial locations at Glenlea, Brandon, and Morden in Manitoba, Canada, between 1999 and 2004. Kernel shape was studied through digital image analysis with an Acurum® grain analyzer. Plht, Gwt, Twt, Fyd, and grain shape QTL were correlated with each other and QTL analysis revealed that QTL for these traits often mapped to the same genetic locations. The most significant QTL for the grain shape traits were located on chromosomes 4B and 4D, each accounting for up to 24.4% and 53.3% of the total phenotypic variation, respectively. In addition, the most significant QTL for Plht, Gwt, and Twt were all detected on chromosome 4D at the Rht-D1 locus. Rht-D1b decreased Plht, Gwt, Twt, and kernel width relative to the Rht-D1a allele. A narrow genetic interval on chromosome 4B contained significant QTL for grain shape, Gwt, and Plht. The ‘AC Domain’ allele reduced Plht, Gwt, kernel length and width traits, but had no detectable effect on Twt. The data indicated that this variation was inconsistent with segregation at Rht-B1. Numerous QTL were identified that control these traits in this population. PMID:29357369
Deciphering the shape and deformation of secondary structures through local conformation analysis
2011-01-01
Background Protein deformation has been extensively analysed through global methods based on RMSD, torsion angles and Principal Components Analysis calculations. Here we use a local approach, able to distinguish among the different backbone conformations within loops, α-helices and β-strands, to address the question of secondary structures' shape variation within proteins and deformation at interface upon complexation. Results Using a structural alphabet, we translated the 3 D structures of large sets of protein-protein complexes into sequences of structural letters. The shape of the secondary structures can be assessed by the structural letters that modeled them in the structural sequences. The distribution analysis of the structural letters in the three protein compartments (surface, core and interface) reveals that secondary structures tend to adopt preferential conformations that differ among the compartments. The local description of secondary structures highlights that curved conformations are preferred on the surface while straight ones are preferred in the core. Interfaces display a mixture of local conformations either preferred in core or surface. The analysis of the structural letters transition occurring between protein-bound and unbound conformations shows that the deformation of secondary structure is tightly linked to the compartment preference of the local conformations. Conclusion The conformation of secondary structures can be further analysed and detailed thanks to a structural alphabet which allows a better description of protein surface, core and interface in terms of secondary structures' shape and deformation. Induced-fit modification tendencies described here should be valuable information to identify and characterize regions under strong structural constraints for functional reasons. PMID:21284872
Deciphering the shape and deformation of secondary structures through local conformation analysis.
Baussand, Julie; Camproux, Anne-Claude
2011-02-01
Protein deformation has been extensively analysed through global methods based on RMSD, torsion angles and Principal Components Analysis calculations. Here we use a local approach, able to distinguish among the different backbone conformations within loops, α-helices and β-strands, to address the question of secondary structures' shape variation within proteins and deformation at interface upon complexation. Using a structural alphabet, we translated the 3 D structures of large sets of protein-protein complexes into sequences of structural letters. The shape of the secondary structures can be assessed by the structural letters that modeled them in the structural sequences. The distribution analysis of the structural letters in the three protein compartments (surface, core and interface) reveals that secondary structures tend to adopt preferential conformations that differ among the compartments. The local description of secondary structures highlights that curved conformations are preferred on the surface while straight ones are preferred in the core. Interfaces display a mixture of local conformations either preferred in core or surface. The analysis of the structural letters transition occurring between protein-bound and unbound conformations shows that the deformation of secondary structure is tightly linked to the compartment preference of the local conformations. The conformation of secondary structures can be further analysed and detailed thanks to a structural alphabet which allows a better description of protein surface, core and interface in terms of secondary structures' shape and deformation. Induced-fit modification tendencies described here should be valuable information to identify and characterize regions under strong structural constraints for functional reasons.
Bonnan, Matthew F; Sandrik, Jennifer L; Nishiwaki, Takahiko; Wilhite, D Ray; Elsey, Ruth M; Vittore, Christopher
2010-12-01
In nonavian dinosaur long bones, the once-living chondroepiphysis (joint surface) overlay a now-fossilized calcified cartilage zone. Although the shape of this zone is used to infer nonavian dinosaur locomotion, it remains unclear how much it reflects chondroepiphysis shape. We tested the hypothesis that calcified cartilage shape reflects the overlying chondroepiphysis in extant archosaurs. Long bones with intact epiphyses from American alligators (Alligator mississippiensis), helmeted guinea fowl (Numida meleagris), and juvenile ostriches (Struthio camelus) were measured and digitized for geometric morphometric (GM) analyses before and after chondroepiphysis removal. Removal of the chondroepiphysis resulted in significant element truncation in all examined taxa, but the amount of truncation decreased with increasing size. GM analyses revealed that Alligator show significant differences between chondroepiphysis shape and the calcified cartilage zone in the humerus, but display nonsignificant differences in femora of large individuals. In Numida, GM analysis shows significant shape differences in juvenile humeri, but humeri of adults and the femora of all guinea fowl show no significant shape difference. The juvenile Struthio sample showed significant differences in both long bones, which diminish with increasing size, a pattern confirmed with magnetic resonance imaging scans in an adult. Our data suggest that differences in extant archosaur long bone shape are greater in elements not utilized in locomotion and related stress-inducing activities. Based on our data, we propose tentative ranges of error for nonavian dinosaur long bone dimensional measurements. We also predict that calcified cartilage shape in adult, stress-bearing nonavian dinosaur long bones grossly reflects chondroepiphysis shape.
Lasan Trcić, Ruzica; Hitrec, Vlasta; Letica, Ljiljana; Cuk, Mario; Begović, Davor
2003-08-01
Conventional cytogenetics detected an interstitial deletion of proximal region of p-arm of chromosome 2 in a 6-month-old boy with a phenotype slightly resembling Down's syndrome. The deletion was inherited from the father, whose karyotype revealed a small ring-shaped marker chromosome, in addition to interstitial deletion. Fluorescence in situ hybridization identified the marker, which consisted of the proximal region of the p-arm of chromosome 2, including a part of its centromere. This case shows that molecular cytogenetic analysis can reveal the mechanism of the formation of the marker chromosome.
Dog sperm head morphometry: its diversity and evolution.
Soler, Carles; Alambiaga, Ana; Martí, Maria A; García-Molina, Almudena; Valverde, Anthony; Contell, Jesús; Campos, Marcos
2017-01-01
Dogs have been under strong artificial selection as a consequence of their relationship with man. Differences between breeds are evident that could be reflected in seminal characteristics. The present study was to evaluate differences in sperm head morphometry between seven well-defined breeds of dog: the British Bulldog, Chihuahua, German Shepherd, Labrador Retriever, Spanish Mastiff, Staffordshire Terrier, and Valencian Rat Hunting dog. Semen samples were obtained by masturbation and smears stained with Diff-Quik. Morphometric analysis (CASA-Morph) produced four size and four shape parameters. Length, Ellipticity, and Elongation showed higher differences between breeds. MANOVA revealed differences among all breeds. Considering the whole dataset, principal component analysis (PCA) showed that PC1 was related to head shape and PC2 to size. Procluster analysis showed the British Bulldog to be the most isolated breed, followed by the German Shepherd. The PCA breed by breed showed the Chihuahua, Labrador Retriever, Spanish Mastiff, and Staffordshire Terrier to have PC1 related to shape and PC2 to size, whereas the British Bulldog, Valencia Rat Hunting dog, and German Shepherd had PC1 related to size and PC2 to shape. The dendrogram for cluster groupings and the distance between them showed the British Bulldog to be separated from the rest of the breeds. Future work on dog semen must take into account the large differences in the breeds' sperm characteristics. The results provide a base for future work on phylogenetic and evolutionary studies of dogs, based on their seminal characteristics.
Dog sperm head morphometry: its diversity and evolution
Soler, Carles; Alambiaga, Ana; Martí, Maria A; García-Molina, Almudena; Valverde, Anthony; Contell, Jesús; Campos, Marcos
2017-01-01
Dogs have been under strong artificial selection as a consequence of their relationship with man. Differences between breeds are evident that could be reflected in seminal characteristics. The present study was to evaluate differences in sperm head morphometry between seven well-defined breeds of dog: the British Bulldog, Chihuahua, German Shepherd, Labrador Retriever, Spanish Mastiff, Staffordshire Terrier, and Valencian Rat Hunting dog. Semen samples were obtained by masturbation and smears stained with Diff-Quik. Morphometric analysis (CASA-Morph) produced four size and four shape parameters. Length, Ellipticity, and Elongation showed higher differences between breeds. MANOVA revealed differences among all breeds. Considering the whole dataset, principal component analysis (PCA) showed that PC1 was related to head shape and PC2 to size. Procluster analysis showed the British Bulldog to be the most isolated breed, followed by the German Shepherd. The PCA breed by breed showed the Chihuahua, Labrador Retriever, Spanish Mastiff, and Staffordshire Terrier to have PC1 related to shape and PC2 to size, whereas the British Bulldog, Valencia Rat Hunting dog, and German Shepherd had PC1 related to size and PC2 to shape. The dendrogram for cluster groupings and the distance between them showed the British Bulldog to be separated from the rest of the breeds. Future work on dog semen must take into account the large differences in the breeds’ sperm characteristics. The results provide a base for future work on phylogenetic and evolutionary studies of dogs, based on their seminal characteristics. PMID:27751991
Numerical study on 3D composite morphing actuators
NASA Astrophysics Data System (ADS)
Oishi, Kazuma; Saito, Makoto; Anandan, Nishita; Kadooka, Kevin; Taya, Minoru
2015-04-01
There are a number of actuators using the deformation of electroactive polymer (EAP), where fewer papers seem to have focused on the performance of 3D morphing actuators based on the analytical approach, due mainly to their complexity. The present paper introduces a numerical analysis approach on the large scale deformation and motion of a 3D half dome shaped actuator composed of thin soft membrane (passive material) and EAP strip actuators (EAP active coupon with electrodes on both surfaces), where the locations of the active EAP strips is a key parameter. Simulia/Abaqus Static and Implicit analysis code, whose main feature is the high precision contact analysis capability among structures, are used focusing on the whole process of the membrane to touch and wrap around the object. The unidirectional properties of the EAP coupon actuator are used as input data set for the material properties for the simulation and the verification of our numerical model, where the verification is made as compared to the existing 2D solution. The numerical results can demonstrate the whole deformation process of the membrane to wrap around not only smooth shaped objects like a sphere or an egg, but also irregularly shaped objects. A parametric study reveals the proper placement of the EAP coupon actuators, with the modification of the dome shape to induce the relevant large scale deformation. The numerical simulation for the 3D soft actuators shown in this paper could be applied to a wider range of soft 3D morphing actuators.
The effect of boundary shape and minima selection on single limb stance postural stability.
Cobb, Stephen C; Joshi, Mukta N; Bazett-Jones, David M; Earl-Boehm, Jennifer E
2012-11-01
The effect of time-to-boundary minima selection and stability limit definition was investigated during eyes open and eyes closed condition single-limb stance postural stability. Anteroposterior and mediolateral time-to-boundary were computed using the mean and standard deviation (SD) of all time-to-boundary minima during a trial, and the mean and SD of only the 10 absolute time-to-boundary minima. Time-to-boundary with rectangular, trapezoidal, and multisegmented polygon defined stability limits were also calculated. Spearman's rank correlation coefficient test results revealed significant medium-large correlations between anteroposterior and mediolateral time-to-boundary scores calculated using both the mean and SD of the 10 absolute time-to-boundary minima and of all the time-to-boundary minima. Friedman test results revealed significant mediolateral time-to-boundary differences between boundary shape definitions. Follow-up Wilcoxon signed rank test results revealed significant differences between the rectangular boundary shape and both the trapezoidal and multisegmented polygon shapes during the eyes open and eyes closed conditions when both the mean and the SD of the time-to-boundary minima were used to represent postural stability. Significant differences were also revealed between the trapezoidal and multisegmented polygon definitions during the eyes open condition when the SD of the time-to-boundary minima was used to represent postural stability. Based on these findings, the overall results (i.e., stable versus unstable participants or groups) of studies computing postural stability using different minima selection can be compared. With respect to boundary shape, the trapezoid or multisegmented polygon shapes may be more appropriate than the rectangular shape as they more closely represent the anatomical shape of the stance foot.
Brown, André E X; Yemini, Eviatar I; Grundy, Laura J; Jucikas, Tadas; Schafer, William R
2013-01-08
Visible phenotypes based on locomotion and posture have played a critical role in understanding the molecular basis of behavior and development in Caenorhabditis elegans and other model organisms. However, it is not known whether these human-defined features capture the most important aspects of behavior for phenotypic comparison or whether they are sufficient to discover new behaviors. Here we show that four basic shapes, or eigenworms, previously described for wild-type worms, also capture mutant shapes, and that this representation can be used to build a dictionary of repetitive behavioral motifs in an unbiased way. By measuring the distance between each individual's behavior and the elements in the motif dictionary, we create a fingerprint that can be used to compare mutants to wild type and to each other. This analysis has revealed phenotypes not previously detected by real-time observation and has allowed clustering of mutants into related groups. Behavioral motifs provide a compact and intuitive representation of behavioral phenotypes.
Nuclear pore assembly proceeds by an inside-out extrusion of the nuclear envelope
Otsuka, Shotaro; Bui, Khanh Huy; Schorb, Martin; Hossain, M Julius; Politi, Antonio Z; Koch, Birgit; Eltsov, Mikhail; Beck, Martin; Ellenberg, Jan
2016-01-01
The nuclear pore complex (NPC) mediates nucleocytoplasmic transport through the nuclear envelope. How the NPC assembles into this double membrane boundary has remained enigmatic. Here, we captured temporally staged assembly intermediates by correlating live cell imaging with high-resolution electron tomography and super-resolution microscopy. Intermediates were dome-shaped evaginations of the inner nuclear membrane (INM), that grew in diameter and depth until they fused with the flat outer nuclear membrane. Live and super-resolved fluorescence microscopy revealed the molecular maturation of the intermediates, which initially contained the nuclear and cytoplasmic ring component Nup107, and only later the cytoplasmic filament component Nup358. EM particle averaging showed that the evagination base was surrounded by an 8-fold rotationally symmetric ring structure from the beginning and that a growing mushroom-shaped density was continuously associated with the deforming membrane. Quantitative structural analysis revealed that interphase NPC assembly proceeds by an asymmetric inside-out extrusion of the INM. DOI: http://dx.doi.org/10.7554/eLife.19071.001 PMID:27630123
NASA Technical Reports Server (NTRS)
Eng, R. D.; Evans, D. J.
1979-01-01
The performance of a hot isotatic pressed disk installed in an experimental engine and exposed to realistic operating conditions in a 150-hour engine test and a 1000 cycle endurance test is documented. Post test analysis, based on visual, fluorescent penetrant and dimensional inspection, revealed no defects in the disk and indicated that the disk performed satisfactorily.
Griffiths, K R; Lagopoulos, J; Hermens, D F; Hickie, I B; Balleine, B W
2015-01-01
Cognitive impairment is a functionally disabling feature of depression contributing to maladaptive decision-making, a loss of behavioral control and an increased disease burden. The ability to calculate the causal efficacy of ones actions in achieving specific goals is critical to normal decision-making and, in this study, we combined voxel-based morphometry (VBM), shape analysis and diffusion tensor tractography to investigate the relationship between cortical–basal ganglia structural integrity and such causal awareness in 43 young subjects with depression and 21 demographically similar healthy controls. Volumetric analysis determined a relationship between right pallidal size and sensitivity to the causal status of specific actions. More specifically, shape analysis identified dorsolateral surface vertices where an inward location was correlated with reduced levels of causal awareness. Probabilistic tractography revealed that affected parts of the pallidum were primarily connected with the striatum, dorsal thalamus and hippocampus. VBM did not reveal any whole-brain gray matter regions that correlated with causal awareness. We conclude that volumetric reduction within the indirect pathway involving the right dorsolateral pallidum is associated with reduced awareness of the causal efficacy of goal-directed actions in young depressed individuals. This causal awareness task allows for the identification of a functionally and biologically relevant subgroup to which more targeted cognitive interventions could be applied, potentially enhancing the long-term outcomes for these individuals. PMID:26440541
Deformation of HyFlex CM instruments and their shape recovery following heat sterilization.
Alfoqom Alazemi, M; Bryant, S T; Dummer, P M H
2015-06-01
To assess the deformation of HyFlex CM instruments (Coltene Whaledent) when used in two instrumentation sequences and to assess their shape recovery after heat sterilization. Simulated root canals with four different shapes were prepared with HyFlex CM instruments using a single-length technique (n = 40) or a crown down technique (n = 40). Pre-preparation, post-preparation and post-sterilization standardized images of each instrument were recorded. Assessment of instrument deformation and their subsequent shape recovery was carried out visually and by comparing the digitised images. Data analysis was carried out using chi-square tests. None of the 400 instruments fractured. Visual assessment of instruments post-preparation revealed that 30.5% had unwound and 0.5% had reverse winding. Following sterilization 8.5% remained unwound and 0.5% remained with reverse winding. When assessing instrument shape using digital images, 35.25% were unwound post-preparation, which reduced to 11% post-sterilization. Nine size 25, 0.08 instruments deformed, but none fully regained their original shape after sterilization; however, other sizes of deformed instruments did regain their shape (P < 0.001). Approximately one third of instruments became deformed as a result of use. However, two thirds of these fully recovered their shape following sterilization. The number of deformed instruments was underestimated when no magnification was used for assessment. Instrument size was related to incidence of deformation and shape recovery. © 2014 International Endodontic Journal. Published by John Wiley & Sons Ltd.
Macher, Hada C; Martinez-Broca, Maria A; Rubio-Calvo, Amalia; Leon-Garcia, Cristina; Conde-Sanchez, Manuel; Costa, Alzenira; Navarro, Elena; Guerrero, Juan M
2012-01-01
The multiple endocrine neoplasia type 2A (MEN2A) is a monogenic disorder characterized by an autosomal dominant pattern of inheritance which is characterized by high risk of medullary thyroid carcinoma in all mutation carriers. Although this disorder is classified as a rare disease, the patients affected have a low life quality and a very expensive and continuous treatment. At present, MEN2A is diagnosed by gene sequencing after birth, thus trying to start an early treatment and by reduction of morbidity and mortality. We first evaluated the presence of MEN2A mutation (C634Y) in serum of 25 patients, previously diagnosed by sequencing in peripheral blood leucocytes, using HRM genotyping analysis. In a second step, we used a COLD-PCR approach followed by HRM genotyping analysis for non-invasive prenatal diagnosis of a pregnant woman carrying a fetus with a C634Y mutation. HRM analysis revealed differences in melting curve shapes that correlated with patients diagnosed for MEN2A by gene sequencing analysis with 100% accuracy. Moreover, the pregnant woman carrying the fetus with the C634Y mutation revealed a melting curve shape in agreement with the positive controls in the COLD-PCR study. The mutation was confirmed by sequencing of the COLD-PCR amplification product. In conclusion, we have established a HRM analysis in serum samples as a new primary diagnosis method suitable for the detection of C634Y mutations in MEN2A patients. Simultaneously, we have applied the increase of sensitivity of COLD-PCR assay approach combined with HRM analysis for the non-invasive prenatal diagnosis of C634Y fetal mutations using pregnant women serum.
NASA Astrophysics Data System (ADS)
Jansen, Daniela; Weikusat, Ilka; Kleiner, Thomas; Wilhelms, Frank; Dahl-Jensen, Dorthe; Frenzel, Andreas; Binder, Tobias; Eichler, Jan; Faria, Sergio H.; Sheldon, Simon; Panton, Christian; Kipfstuhl, Sepp; Miller, Heinrich
2017-04-01
The European Project for Ice Coring in Antarctica (EPICA) ice core was drilled between 2001 and 2006 at the Kohnen Station, Antarctica. During the drilling process the borehole was logged repeatedly. Repeated logging of the borehole shape is a means of directly measuring the deformation of the ice sheet not only on the surface but also with depth, and to derive shear strain rates for the lower part, which control the volume of ice transported from the inner continent towards the ocean. The logging system continuously recorded the tilt of the borehole with respect to the vertical (inclination) as well as the heading of the borehole with respect to magnetic north (azimuth) by means of a compass. This dataset provides the basis for a 3-D reconstruction of the borehole shape, which is changing over time according to the predominant deformation modes with depth. The information gained from this analysis can then be evaluated in combination with lattice preferred orientation, grain size and grain shape derived by microstructural analysis of samples from the deep ice core. Additionally, the diameter of the borehole, which was originally circular with a diameter of 10 cm, was measured. As the ice flow velocity at the position of the EDML core is relatively slow (about 0.75 m/a), the changes of borehole shape between the logs during the drilling period were very small and thus difficult to interpret. Thus, the site has been revisited in the Antarctic summer season 2016 and logged again using the same measurement system. The change of the borehole inclination during the time period of 10 years clearly reveals the transition from a pure shear dominated deformation in the upper part of the ice sheet to shear deformation at the base. We will present a detailed analysis of the borehole parameters and the deduced shear strain rates in the lower part of the ice sheet. The results are discussed with respect to ice microstructural data derived from the EDML ice core. Microstructural data directly reflect the deformation conditions, as the ice polycrystal performs the deformation which leads e.g. to characteristic lattice orientation distributions and grain size and shape appearance. Though overprinted by recrystallization (due to the hot environment for the ice) and the slow deformation, analysis of statistically significant grain numbers reveals indications typical for the changing deformation regimes with depth. Additionally we compare our results with strain rates derived from a simulation with a model for large scale ice deformation, the Parallel Ice Sheet Model (PISM).
Transmission beam characteristics of a Risso's dolphin (Grampus griseus).
Smith, Adam B; Kloepper, Laura N; Yang, Wei-Cheng; Huang, Wan-Hsiu; Jen, I-Fan; Rideout, Brendan P; Nachtigall, Paul E
2016-01-01
The echolocation system of the Risso's dolphin (Grampus griseus) remains poorly studied compared to other odontocete species. In this study, echolocation signals were recorded from a stationary Risso's dolphin with an array of 16 hydrophones and the two-dimensional beam shape was explored using frequency-dependent amplitude plots. Click source parameters were similar to those already described for this species. Centroid frequency of click signals increased with increasing sound pressure level, while the beamwidth decreased with increasing center frequency. Analysis revealed primarily single-lobed, and occasionally vertically dual-lobed, beam shapes. Overall beam directivity was found to be greater than that of the harbor porpoise, bottlenose dolphin, and a false killer whale. The relationship between frequency content, beam directivity, and head size for this Risso's dolphin deviated from the trend described for other species. These are the first reported measurements of echolocation beam shape and directivity in G. griseus.
NASA Astrophysics Data System (ADS)
Devaprakasam, D.; Hatton, P. V.; Möbus, G.; Inkson, B. J.
2008-08-01
In this work we have investigated the influence of nanoscale and microscale structure on the tribo-mechanical performance and failure mechanisms of two biocompatible dental polymer composites, with different reinforcing particulates, using advanced microscopy techniques. Nano- and micro structural analysis reveals the shape, size and distribution of the particles in the composites. In the microparticle filled polymer composite (microcomposite), the particles are of irregular shape with sharp edges with non-uniform distribution in the matrix. However, in the nanoparticle filled composites (nanocomposite), filler particles are spherical in shape with uniform distribution in the matrix. From nanoindentation measurements, hardness and reduced modulus of the microcomposite were found to be heterogeneous. However, the hardness and reduced modulus of the nanocomposite were found to be homogeneous. The nanocomposite shows better tribo-mechanical performance compared to that of the microcomposite.
Tricho-rhino-phalangeal syndrome type I in a Belgian family.
Verbruggen, L A; Van Laere, C; Lamoureux, J; Van Tiggelen, R
1987-06-01
We report three cases of tricho-rhino-phalangeal syndrome (TRPS) type I in a Belgian family. They presented typical characteristics such as a pear-shaped nose, and short, deformed fingers with cone-shaped epiphyses of some middle phalanges of the hands. Hair growth was practically normal in our patients, except for some narrowing of the lateral part of the eyebrows. Perthes-like hip dysplasia was documented in two of our cases. The proband presented at the age of 31 with Kienböch's disease of the right wrist. Blood and urine analysis showed no clear anomalies. In this patient, echography revealed a renal cyst containing a stone. The relationship of these findings to TRPS is discussed.
Experimental visualization of rapid maneuvering fish
NASA Astrophysics Data System (ADS)
Daigh, S.; Techet, A. H.
2003-11-01
A freshwater tropical fish, Danio aequippinatus, is studied undergoing rapid turning and fast starting maneuvers. This agile species of fish is ideal for this study as it is capable of quick turning and darting motions up to 5g's. The fgish studied are 4-5 cm in length. The speed and kinematics of the maneuvering is determined by video analysis. Planar and stereo Particle Image Velocimetry (PIV) is used to map the vortical patterns in the wake of the maneuvering fish. PIV visualizations reveal that during C-shaped maneuvers a ring shaped jet vortex is formed. Fast starting behavior is also presented. PIV data is used to approixmate the thrust vectoring force produced during each maneuver.
Stets, Jan E; Trettevik, Ryan
2016-07-01
Previous sociological research has focused on macro forces that are associated with overall happiness with one's life, but it has neglected an analysis of happiness in immediate situations and the micro forces that may shape it. In this study, we examine social structural as well as individual factors that may influence happiness in situations that are morally challenging. Data are examined from an experiment in which satisfying self-interests may involve cheating to get ahead. The results reveal that while distal, structural factors influence happiness for those who do not cheat, proximal, individual factors influence happiness for those who cheat. We discuss how both macro and micro forces may shape happiness in situations. Copyright © 2016 Elsevier Inc. All rights reserved.
Anisotropic light scattering of individual sickle red blood cells.
Kim, Youngchan; Higgins, John M; Dasari, Ramachandra R; Suresh, Subra; Park, YongKeun
2012-04-01
We present the anisotropic light scattering of individual red blood cells (RBCs) from a patient with sickle cell disease (SCD). To measure light scattering spectra along two independent axes of elongated-shaped sickle RBCs with arbitrary orientation, we introduce the anisotropic Fourier transform light scattering (aFTLS) technique and measured both the static and dynamic anisotropic light scattering. We observed strong anisotropy in light scattering patterns of elongated-shaped sickle RBCs along its major axes using static aFTLS. Dynamic aFTLS analysis reveals the significantly altered biophysical properties in individual sickle RBCs. These results provide evidence that effective viscosity and elasticity of sickle RBCs are significantly different from those of the healthy RBCs.
Variation of BMP3 Contributes to Dog Breed Skull Diversity
Schoenebeck, Jeffrey J.; Hutchinson, Sarah A.; Byers, Alexandra; Beale, Holly C.; Carrington, Blake; Faden, Daniel L.; Rimbault, Maud; Decker, Brennan; Kidd, Jeffrey M.; Sood, Raman; Boyko, Adam R.; Fondon, John W.; Wayne, Robert K.; Bustamante, Carlos D.; Ciruna, Brian; Ostrander, Elaine A.
2012-01-01
Since the beginnings of domestication, the craniofacial architecture of the domestic dog has morphed and radiated to human whims. By beginning to define the genetic underpinnings of breed skull shapes, we can elucidate mechanisms of morphological diversification while presenting a framework for understanding human cephalic disorders. Using intrabreed association mapping with museum specimen measurements, we show that skull shape is regulated by at least five quantitative trait loci (QTLs). Our detailed analysis using whole-genome sequencing uncovers a missense mutation in BMP3. Validation studies in zebrafish show that Bmp3 function in cranial development is ancient. Our study reveals the causal variant for a canine QTL contributing to a major morphologic trait. PMID:22876193
Thin-plate spline analysis of the short- and long-term effects of rapid maxillary expansion.
Franchi, Lorenzo; Baccetti, Tiziano; Cameron, Christopher G; Kutcipal, Elizabeth A; McNamara, James A
2002-04-01
The aim of this study was to investigate the short- and long-term effects induced by rapid maxillary expansion (RME) on the shape of the maxillary and circummaxillary structures by means of thin-plate spline (TPS) analysis. The sample consisted of 42 patients who were compared with a control sample of 20 subjects. The treated subjects underwent Haas-type RME, followed by fixed appliance therapy. Postero-anterior (PA) cephalograms were analysed for each treated subject at T1 (pre-treatment), T2 (immediate post-expansion), and T3 (long-term observation), and were available at T1 and T3 for the control group (CG). The mean age at T1 was 11 years and 10 months for both groups. The mean chronological ages at T3 were 20 years, 6 months for the treated group (TG) and 17 years, 8 months for the control group. The study focused on shape changes in the maxillary, nasal, zygomatic, and orbital regions. TPS analysis revealed significant shape changes in the TG. They consisted of an upward and lateral displacement of the two halves of the naso-maxillary complex as a result of active expansion in the short-term, and normalization of maxillary shape in the transverse dimension in the long-term (the initial transverse deficiency of the maxilla in the treated group was eliminated by RME therapy both in the short- and long-term). At the end of the observation period, the nasal cavities were larger when compared with both their pre-expansion configuration and the final configuration in the controls. RME with the Haas appliance appears to be an efficient therapeutic means to induce permanent favourable changes in the shape of the naso-maxillary complex.
Lao, Yi; Wang, Yalin; Shi, Jie; Ceschin, Rafael; Nelson, Marvin D.; Panigrahy, Ashok; Leporé, Natasha
2015-01-01
Finding the neuroanatomical correlates of prematurity is vital to understanding which structures are affected, and design efficient prevention andtreatment strategy. Converging results reveal that thalamic abnormalities are important indicators of prematurity. However, little is known about the localization of the disturbance within the subnuclei of the thalamus, or on the association of altered thalamic development with other deep gray matter disturbances. Here, using brain structural magnetic resonance imaging (MRI), we perform a novel combined shape and pose analysis of the thalamus and ventral striatum between 17 preterm and 19 term-born neonates. We detect statistically significant surface deformations and pose changes on the thalamus andventral striatum, successfully locating the alterations on specific regions such as the anterior and ventral-anterior thalamic nuclei, and for the first time, demonstrating the feasibility of using relative pose parameters as indicators for prematurity in neonates. We also perform a set of correlation analyses between the thalamus and the ventral striatum, based on the surface and pose results. Our methods show that regional abnormalities of the thalamus are associated with alterations of the ventral striatum, possibly due to disturbed development of sharedpre-frontal connectivity. More specifically, the significantly correlated regions in these two structures point to frontal-subcortical pathways including the dorsolateral prefrontal-subcortical circuit, the lateral orbitofrontal-subcortical circuit, the motor circuit, and the oculomotor circuit. These findings reveal new insight into potential subcortical structural covariatesfor poor neurodevelopmental outcomes in the preterm population. PMID:25366970
Analysis of junior high school students' difficulty in resolving rectangular conceptual problems
NASA Astrophysics Data System (ADS)
Utami, Aliksia Kristiana Dwi; Mardiyana, Pramudya, Ikrar
2017-08-01
Geometry is one part of the mathematics that must be learned in school and it has important effects on the development of creative thinking skills of learners, but in fact, there are some difficulties experienced by the students. This research focuses on analysis difficulty in resolving rectangular conceptual problems among junior high school students in every creative thinking skills level. This research used a descriptive method aimed to identify the difficulties and cause of the difficulties experienced by five students. The difficulties are associated with rectangular shapes and related problems. Data collection was done based on students' work through test, interview, and observations. The result revealed that student' difficulties in understanding the rectangular concept can be found at every creative thinking skills level. The difficulties are identifying the objects rectangular in the daily life except for a rectangle and square, analyzing the properties of rectangular shapes, and seeing the interrelationships between figures.
Jurczyszyn, Kamil; Osiecka, Beata J; Ziółkowski, Piotr
2012-01-01
Fractal dimension analysis (FDA) is modern mathematical method widely used to describing of complex and chaotic shapes when classic methods fail. The main aim of this study was evaluating the influence of photodynamic therapy (PDT) with cystein proteases inhibitors (CPI) on the number and morphology of blood vessels inside tumor and on increase of effectiveness of combined therapy in contrast to PDT and CPI used separately. Animals were divided into four groups: control, treated using only PDT, treated using only CPI and treated using combined therapy, PDT and CPI. Results showed that time of animal survival and depth of necrosis inside tumor were significantly higher in CPI+PDT group in contrast to other groups. The higher value of fractal dimension (FD) was observed in control group, while the lowest value was found in the group which was treated by cystein protease inhibitors. The differences between FD were observed in CPI group and PDT+CPI group in comparison to control group. Our results revealed that fractal dimension analysis is a very useful tool in estimating differences between irregular shapes like blood vessels in PDT treated tumors. Thus, the implementation of FDA algorithms could be useful method in evaluating the efficacy of PDT.
Jurczyszyn, Kamil; Osiecka, Beata J.; Ziółkowski, Piotr
2012-01-01
Fractal dimension analysis (FDA) is modern mathematical method widely used to describing of complex and chaotic shapes when classic methods fail. The main aim of this study was evaluating the influence of photodynamic therapy (PDT) with cystein proteases inhibitors (CPI) on the number and morphology of blood vessels inside tumor and on increase of effectiveness of combined therapy in contrast to PDT and CPI used separately. Animals were divided into four groups: control, treated using only PDT, treated using only CPI and treated using combined therapy, PDT and CPI. Results showed that time of animal survival and depth of necrosis inside tumor were significantly higher in CPI+PDT group in contrast to other groups. The higher value of fractal dimension (FD) was observed in control group, while the lowest value was found in the group which was treated by cystein protease inhibitors. The differences between FD were observed in CPI group and PDT+CPI group in comparison to control group. Our results revealed that fractal dimension analysis is a very useful tool in estimating differences between irregular shapes like blood vessels in PDT treated tumors. Thus, the implementation of FDA algorithms could be useful method in evaluating the efficacy of PDT. PMID:22991578
NASA Astrophysics Data System (ADS)
Lopes, Marta; Murta, Alberto G.; Cabral, Henrique N.
2006-03-01
The existence of two species of the genus Macroramphosus Lacepède 1803, has been discussed based on morphometric characters, diet composition and depth distribution. Another species, the boarfish Capros aper (Linnaeus 1758), caugth along the Portuguese coast, shows two different morphotypes, one type with smaller eyes and a deeper body than the other, occurring with intermediate forms. In both snipefish and boarfish no sexual dimorphism was found with respect to shape and length relationships. However, females in both genera were on average bigger than males. A multidimensional scaling analysis was performed using Procrustes distances, in order to check if shape geometry was effective in distinguishing the species of snipefish as well as the morphotypes of boarfish. A multivariate discriminant analysis using morphometric characters of snipefish and boarfish was carried out to validate the visual criteria for a distinction of species and morphotypes, respectively. Morphometric characters revealed a great discriminatory power to distinguish morphotypes. Both snipefish and boarfish are very abundant in Portuguese waters, showing two well-defined morphologies and intermediate forms. This study suggests that there may be two different species in each genus and that further studies on these fish should be carried out to investigate if there is reproductive isolation between the morphotypes of boarfish and to validate the species of snipefish.
Thin-plate spline analysis of allometry and sexual dimorphism in the human craniofacial complex.
Rosas, Antonio; Bastir, Markus
2002-03-01
The relationship between allometry and sexual dimorphism in the human craniofacial complex was analyzed using geometric morphometric methods. Thin-plate splines (TPS) analysis has been applied to investigate the lateral profile of complete adult skulls of known sex. Twenty-nine three-dimensional (3D) craniofacial and mandibular landmark coordinates were recorded from a sample of 52 adult females and 52 adult males of known age and sex. No difference in the influence of size on shape was detected between sexes. Both size and sex had significant influences on shape. As expected, the influence of centroid size on shape (allometry) revealed a shift in the proportions of the neurocranium and the viscerocranium, with a marked allometric variation of the lower face. Adjusted for centroid size, males presented a relatively larger size of the nasopharyngeal space than females. A mean-male TPS transformation revealed a larger piriform aperture, achieved by an increase of the angulation of the nasal bones and a downward rotation of the anterior nasal floor. Male pharynx expansion was also reflected by larger choanae and a more posteriorly inclined basilar part of the occipital clivus. Male muscle attachment sites appeared more pronounced. In contrast, the mean-female TPS transformation was characterized by a relatively small nasal aperture. The occipital clivus inclined anteriorly, and muscle insertion areas became smoothed. Besides these variations, both maxillary and mandibular alveolar regions became prognathic. The sex-specific TPS deformation patterns are hypothesized to be associated with sexual differences in body composition and energetic requirements. Copyright 2002 Wiley-Liss, Inc.
Mokodongan, Daniel F; Montenegro, Javier; Mochida, Koji; Fujimoto, Shingo; Ishikawa, Asano; Kakioka, Ryo; Yong, Lengxob; Mulis; Hadiaty, Renny K; Mandagi, Ixchel F; Masengi, Kawilarang W A; Wachi, Nakatada; Hashiguchi, Yasuyuki; Kitano, Jun; Yamahira, Kazunori
2018-01-01
The Oryzias woworae species group, composed of O. asinua, O. wolasi, and O. woworae, is widely distributed in southeastern Sulawesi, an island in the Indo-Australian Archipelago. Deep-elongated body shape divergence is evident among these three species to the extent that it is used as a species-diagnostic character. These fishes inhabit a variety of habitats, ranging from upper streams to ponds, suggesting that the body shape divergence among the three species may reflect adaptation to local environments. First, our geometric morphometrics among eight local populations of this species group revealed that the three species cannot be separated by body shape and that riverine populations had more elongated bodies and longer caudal parts than lacustrine populations. Second, their phylogenetic relationships did not support the presence of three species; phylogenies using mitochondrial DNA and genomic data obtained from RNA-Seq revealed that the eight populations could not be sorted into three different clades representing three described species. Third, phylogenetic corrections of body shape variations and ancestral state reconstruction of body shapes demonstrated that body shape divergence between riverine and lacustrine populations persisted even if the phylogenies were considered and that body shape evolved rapidly irrespective of phylogeny. Sexual dimorphism in body shape was also evident, but the degree of dimorphism did not significantly differ between riverine and lacustrine populations after phylogenetic corrections, suggesting that sexual selection may not substantially contribute to geographical variations in body shape. Overall, these results indicate that the deep-elongated body shape divergence of the O. woworae species group evolved locally in response to habitat environments, such as water currents, and that a thorough taxonomic reexamination of the O. woworae species group may be necessary. Copyright © 2017 Elsevier Inc. All rights reserved.
Alnazawi, Mohamed; Altaher, Abdallah; Kandeel, Mahmoud
2017-01-01
Middle East Respiratory Syndrome Coronavirus (MERS CoV) is a new emerging viral disease characterized by high fatality rate. Understanding MERS CoV genetic aspects and codon usage pattern is important to understand MERS CoV survival, adaptation, evolution, resistance to innate immunity, and help in finding the unique aspects of the virus for future drug discovery experiments. In this work, we provide comprehensive analysis of 238 MERS CoV full genomes comprised of human (hMERS) and camel (cMERS) isolates of the virus. MERS CoV genome shaping seems to be under compositional and mutational bias, as revealed by preference of A/T over G/C nucleotides, preferred codons, nucleotides at the third position of codons (NT3s), relative synonymous codon usage, hydropathicity (Gravy), and aromaticity (Aromo) indices. Effective number of codons (ENc) analysis reveals a general slight codon usage bias. Codon adaptation index reveals incomplete adaptation to host environment. MERS CoV showed high ability to resist the innate immune response by showing lower CpG frequencies. Neutrality evolution analysis revealed a more significant role of mutation pressure in cMERS over hMERS. Correspondence analysis revealed that MERS CoV genomes have three genetic clusters, which were distinct in their codon usage, host, and geographic distribution. Additionally, virtual screening and binding experiments were able to identify three new virus-encoded helicase binding compounds. These compounds can be used for further optimization of inhibitors.
[POPULATION MONITORING OF THE HEALTH SHAPING ENVIRONMENT OF THE STUDENTS OF NAGORNO KARABAKH].
Galstyan, H
2016-10-01
The study of the health shaping environment of students is one of the actual biomedical tasks, it is also the scientific founding for conducting health-preventive and health-preserving measures. Despite the importance of the proposed problem, this study is a pioneering attempt in Nagorno Karabakh. The objective of the work is the scientific grounding of regional peculiarities and the contemporary level of health shaping environment of students on the basis of population monitoring system. The results of the study prove that the studied health criteria are within limits of physiological norm. The most wide-spead risk factors are lack of physical activity, in the group of young boys - also tobacco use and alcohol consumption. The analysis of daily diet of examinees attests ''fat'' nutrition model. The data on the impact of physical effort reveal high tension in the cardiac activity in the group of physically untrained students. The study of the impact of educational and mental strain on the functional state of the organism of the students revealed that daily academic leads to fatigue. The examination session is characterized by strongly expressed sympatotonia sympathicotonia, mental strain - by parasympatotonia. The obtained results point to the necessity of the enhanced control in preserving and strengthening the health of the younger generation considering the above-brought regional peculiarities.
Chemical information obtained from Auger depth profiles by means of advanced factor analysis (MLCFA)
NASA Astrophysics Data System (ADS)
De Volder, P.; Hoogewijs, R.; De Gryse, R.; Fiermans, L.; Vennik, J.
1993-01-01
The advanced multivariate statistical technique "maximum likelihood common factor analysis (MLCFA)" is shown to be superior to "principal component analysis (PCA)" for decomposing overlapping peaks into their individual component spectra of which neither the number of components nor the peak shape of the component spectra is known. An examination of the maximum resolving power of both techniques, MLCFA and PCA, by means of artificially created series of multicomponent spectra confirms this finding unambiguously. Substantial progress in the use of AES as a chemical-analysis technique is accomplished through the implementation of MLCFA. Chemical information from Auger depth profiles is extracted by investigating the variation of the line shape of the Auger signal as a function of the changing chemical state of the element. In particular, MLCFA combined with Auger depth profiling has been applied to problems related to steelcord-rubber tyre adhesion. MLCFA allows one to elucidate the precise nature of the interfacial layer of reaction products between natural rubber vulcanized on a thin brass layer. This study reveals many interesting chemical aspects of the oxi-sulfidation of brass undetectable with classical AES.
Nikolaisen, Julie; Nilsson, Linn I. H.; Pettersen, Ina K. N.; Willems, Peter H. G. M.; Lorens, James B.; Koopman, Werner J. H.; Tronstad, Karl J.
2014-01-01
Mitochondrial morphology and function are coupled in healthy cells, during pathological conditions and (adaptation to) endogenous and exogenous stress. In this sense mitochondrial shape can range from small globular compartments to complex filamentous networks, even within the same cell. Understanding how mitochondrial morphological changes (i.e. “mitochondrial dynamics”) are linked to cellular (patho) physiology is currently the subject of intense study and requires detailed quantitative information. During the last decade, various computational approaches have been developed for automated 2-dimensional (2D) analysis of mitochondrial morphology and number in microscopy images. Although these strategies are well suited for analysis of adhering cells with a flat morphology they are not applicable for thicker cells, which require a three-dimensional (3D) image acquisition and analysis procedure. Here we developed and validated an automated image analysis algorithm allowing simultaneous 3D quantification of mitochondrial morphology and network properties in human endothelial cells (HUVECs). Cells expressing a mitochondria-targeted green fluorescence protein (mitoGFP) were visualized by 3D confocal microscopy and mitochondrial morphology was quantified using both the established 2D method and the new 3D strategy. We demonstrate that both analyses can be used to characterize and discriminate between various mitochondrial morphologies and network properties. However, the results from 2D and 3D analysis were not equivalent when filamentous mitochondria in normal HUVECs were compared with circular/spherical mitochondria in metabolically stressed HUVECs treated with rotenone (ROT). 2D quantification suggested that metabolic stress induced mitochondrial fragmentation and loss of biomass. In contrast, 3D analysis revealed that the mitochondrial network structure was dissolved without affecting the amount and size of the organelles. Thus, our results demonstrate that 3D imaging and quantification are crucial for proper understanding of mitochondrial shape and topology in non-flat cells. In summary, we here present an integrative method for unbiased 3D quantification of mitochondrial shape and network properties in mammalian cells. PMID:24988307
Body shape convergence driven by small size optimum in marine angelfishes.
Frédérich, Bruno; Santini, Francesco; Konow, Nicolai; Schnitzler, Joseph; Lecchini, David; Alfaro, Michael E
2017-06-01
Convergent evolution of small body size occurs across many vertebrate clades and may reflect an evolutionary response to shared selective pressures. However it remains unclear if other aspects of phenotype undergo convergent evolution in miniaturized lineages. Here we present a comparative analysis of body size and shape evolution in marine angelfishes (Pomacanthidae), a reef fish family characterized by repeated transitions to small body size. We ask if lineages that evolve small sizes show convergent evolution in body shape. Our results reveal that angelfish lineages evolved three different stable size optima with one corresponding to the group of pygmy angelfishes ( Centropyge ). Then, we test if the observed shifts in body size are associated with changes to new adaptive peaks in shape. Our data suggest that independent evolution to small size optima have induced repeated convergence upon deeper body and steeper head profile in Centropyge These traits may favour manoeuvrability and visual awareness in these cryptic species living among corals, illustrating that functional demands on small size may be related to habitat specialization and predator avoidance. The absence of shape convergence in large marine angelfishes also suggests that more severe requirements exist for small than for large size optima. © 2017 The Author(s).
Analysis of Synonymous Codon Usage Bias of Zika Virus and Its Adaption to the Hosts
Wang, Hongju; Liu, Siqing; Zhang, Bo
2016-01-01
Zika virus (ZIKV) is a mosquito-borne virus (arbovirus) in the family Flaviviridae, and the symptoms caused by ZIKV infection in humans include rash, fever, arthralgia, myalgia, asthenia and conjunctivitis. Codon usage bias analysis can reveal much about the molecular evolution and host adaption of ZIKV. To gain insight into the evolutionary characteristics of ZIKV, we performed a comprehensive analysis on the codon usage pattern in 46 ZIKV strains by calculating the effective number of codons (ENc), codon adaptation index (CAI), relative synonymous codon usage (RSCU), and other indicators. The results indicate that the codon usage bias of ZIKV is relatively low. Several lines of evidence support the hypothesis that translational selection plays a role in shaping the codon usage pattern of ZIKV. The results from a correspondence analysis (CA) indicate that other factors, such as base composition, aromaticity, and hydrophobicity may also be involved in shaping the codon usage pattern of ZIKV. Additionally, the results from a comparative analysis of RSCU between ZIKV and its hosts suggest that ZIKV tends to evolve codon usage patterns that are comparable to those of its hosts. Moreover, selection pressure from Homo sapiens on the ZIKV RSCU patterns was found to be dominant compared with that from Aedes aegypti and Aedes albopictus. Taken together, both natural translational selection and mutation pressure are important for shaping the codon usage pattern of ZIKV. Our findings contribute to understanding the evolution of ZIKV and its adaption to its hosts. PMID:27893824
Bussolati, Gianni; Maletta, Francesca; Asioli, Sofia; Annaratone, Laura; Sapino, Anna; Marchiò, Caterina
2014-01-01
Variation in both nuclear shape and size ("pleomorphism"), coupled with changes in chromatin amount and distribution, remains the basic criteria for microscopy in a cytologic diagnosis of cancer. The biological determinants of nuclear shape irregularities are not clarified, so, rather than on the genesis of nuclear irregularities, we here focus our attention on a descriptive analysis of nuclear pleomorphism. We keep in mind that evaluation of nuclear shape as currently practiced in routine preparations is improper because it is indirectly based on the distribution of DNA as revealed by the affinity for basic dyes. Therefore, over the last years we have been using as criteria morphological features of nuclei of thyroid and breast carcinomas as determined by immunofluorescence, in situ hybridization, and 3D reconstruction. We have translated this approach to routine diagnostic pathology on tissue sections by employing immunoperoxidase staining for emerin. Direct detection of nuclear envelope irregularities by tagging nuclear membrane proteins such as lamin B and emerin has resulted in a more objective definition of the shape of the nucleus. In this review we discuss in detail methodological issues as well as diagnostic and prognostic implications provided by decoration/staining of the nuclear envelope in both thyroid and breast cancer, thus demonstrating how much it matters "to be in the right shape" when dealing with pathological diagnosis of cancer.
Mikac, K M; Douglas, J; Spencer, J L
2013-08-01
The western corn rootworm, Diabrotica virgifera virgifera LeConte, is a major pest of maize in the United States and more recently, Europe. Understanding the dispersal dynamics of this species will provide crucial information for its management. This study used geometric morphometric analysis of hind wing venation based on 13 landmarks in 223 specimens from nine locations in Illinois, Nebraska, Iowa, and Missouri, to assess whether wing shape and size differed between rotated and continuously grown maize where crop rotation-resistant and susceptible individuals are found, respectively. Before assessing differences between rotation-resistant and susceptible individuals, sexual dimorphism was investigated. No significant difference in wing (centroid) size was found between males and females; however, females had significantly different shaped (more elongated) wings compared with males. Wing shape and (centroid) size were significantly larger among individuals from rotated maize where crop-rotation resistance was reported; however, cross-validation of these results revealed that collection site resistance status was an only better than average predictor of shape in males and females. This study provides preliminary evidence of wing shape and size differences in D. v. virgifera from rotated versus continuous maize. Further study is needed to confirm whether wing shape and size can be used to track the movement of rotation-resistant individuals and populations as a means to better inform management strategies.
Chemical phase analysis of seed mediated synthesized anisotropic silver nanoparticles
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bharti, Amardeep, E-mail: abharti@pu.ac.in; Goyal, Navdeep; Singh, Suman
Noble-metal nanoparticles are of great interest because of its broad applications almost in every stream (i.e. biology, chemistry and engineering) due to their unique size/shape dependant properties. In this paper, chemical phase of seed mediated synthesized anisotropic silver nanoparticle (AgNPs) has been investigated via fourier transform infrared spectroscopy (FTIR) and thermogravimetric analysis (TGA). These nanaoparticles were synthesized by seed-growth method controlled by urea and dextrose results to highly stable 12-20 nm particle size revealed by zeta potential and transmission electron microscopy (TEM)
Khuu, Sieu K; Cham, Joey; Hayes, Anthony
2016-01-01
In the present study, we investigated the detection of contours defined by constant curvature and the statistics of curved contours in natural scenes. In Experiment 1, we examined the degree to which human sensitivity to contours is affected by changing the curvature angle and disrupting contour curvature continuity by varying the orientation of end elements. We find that (1) changing the angle of contour curvature decreased detection performance, while (2) end elements oriented in the direction (i.e., clockwise) of curvature facilitated contour detection regardless of the curvature angle of the contour. In Experiment 2 we further established that the relative effect of end-element orientation on contour detection was not only dependent on their orientation (collinear or cocircular), but also their spatial separation from the contour, and whether the contour shape was curved or not (i.e., C-shaped or S-shaped). Increasing the spatial separation of end-elements reduced contour detection performance regardless of their orientation or the contour shape. However, at small separations, cocircular end-elements facilitated the detection of C-shaped contours, but not S-shaped contours. The opposite result was observed for collinear end-elements, which improved the detection of S- shaped, but not C-shaped contours. These dissociative results confirmed that the visual system specifically codes contour curvature, but the association of contour elements occurs locally. Finally, we undertook an analysis of natural images that mapped contours with a constant angular change and determined the frequency of occurrence of end elements with different orientations. Analogous to our behavioral data, this image analysis revealed that the mapped end elements of constantly curved contours are likely to be oriented clockwise to the angle of curvature. Our findings indicate that the visual system is selectively sensitive to contours defined by constant curvature and that this might reflect the properties of curved contours in natural images.
Developmental changes in hippocampal shape among preadolescent children.
Lin, Muqing; Fwu, Peter T; Buss, Claudia; Davis, Elysia P; Head, Kevin; Muftuler, L Tugan; Sandman, Curt A; Su, Min-Ying
2013-11-01
It is known that the largest developmental changes in the hippocampus take place during the prenatal period and during the first two years of postnatal life. Few studies have been conducted to address the normal developmental trajectory of the hippocampus during childhood. In this study shape analysis was applied to study the normal developing hippocampus in a group of 103 typically developing 6- to 10-year-old preadolescent children. The individual brain was normalized to a template, and then the hippocampus was manually segmented and further divided into the head, body, and tail sub-regions. Three different methods were applied for hippocampal shape analysis: radial distance mapping, surface-based template registration using the robust point matching (RPM) algorithm, and volume-based template registration using the Demons algorithm. All three methods show that the older children have bilateral expanded head segments compared to the younger children. The results analyzed based on radial distance to the centerline were consistent with those analyzed using template-based registration methods. In analyses stratified by sex, it was found that the age-associated anatomical changes were similar in boys and girls, but the age-association was strongest in girls. Total hippocampal volume and sub-regional volumes analyzed using manual segmentation did not show a significant age-association. Our results suggest that shape analysis is sensitive to detect sub-regional differences that are not revealed in volumetric analysis. The three methods presented in this study may be applied in future studies to investigate the normal developmental trajectory of the hippocampus in children. They may be further applied to detect early deviations from the normal developmental trajectory in young children for evaluating susceptibility for psychopathological disorders involving hippocampus. Copyright © 2013 ISDN. Published by Elsevier Ltd. All rights reserved.
Solar-assisted synthesis of ZnO nanoparticles using lime juice: a green approach
NASA Astrophysics Data System (ADS)
Hinge, Shruti P.; Pandit, Aniruddha B.
2017-12-01
Zinc oxide (ZnO) nanoparticles are those nanoparticles which have been synthesized in various morphologies and shapes. Their size and shape dependent properties and their applications in vivid sectors of science and technology make them interesting to synthesize. Present work reports a green method for ZnO nanoparticle synthesis using lime juice and sunlight. ZnO nanoparticles were also synthesized by conventionally used methods like heating, stirring or no heating and/or stirring. The nanoparticles were characterized using different techniques like UV-vis spectroscopy, scanning electron microscopy (SEM), x-ray diffraction (XRD) and dynamic light scattering (DLS). Thermo gravimetric analysis (TGA) was also carried out for the intermediate product to select the calcination temperature. Stoichiometric study reveals that the intermediate product formed is zinc citrate dihydrate. The synthesized calcined nanoparticles have good crystallinity, uniform shape, and high purity and were in the size range of 20-30 nm. These nanoparticles formed agglomerates of various shapes in the size range of 200-750 nm. This process is ecofriendly and is amiable for easy scale up.
Pavement cells and the topology puzzle.
Carter, Ross; Sánchez-Corrales, Yara E; Hartley, Matthew; Grieneisen, Verônica A; Marée, Athanasius F M
2017-12-01
D'Arcy Thompson emphasised the importance of surface tension as a potential driving force in establishing cell shape and topology within tissues. Leaf epidermal pavement cells grow into jigsaw-piece shapes, highly deviating from such classical forms. We investigate the topology of developing Arabidopsis leaves composed solely of pavement cells. Image analysis of around 50,000 cells reveals a clear and unique topological signature, deviating from previously studied epidermal tissues. This topological distribution is established early during leaf development, already before the typical pavement cell shapes emerge, with topological homeostasis maintained throughout growth and unaltered between division and maturation zones. Simulating graph models, we identify a heuristic cellular division rule that reproduces the observed topology. Our parsimonious model predicts how and when cells effectively place their division plane with respect to their neighbours. We verify the predicted dynamics through in vivo tracking of 800 mitotic events, and conclude that the distinct topology is not a direct consequence of the jigsaw piece-like shape of the cells, but rather owes itself to a strongly life history-driven process, with limited impact from cell-surface mechanics. © 2017. Published by The Company of Biologists Ltd.
Ried, Janina S.; Jeff M., Janina; Chu, Audrey Y.; Bragg-Gresham, Jennifer L.; van Dongen, Jenny; Huffman, Jennifer E.; Ahluwalia, Tarunveer S.; Cadby, Gemma; Eklund, Niina; Eriksson, Joel; Esko, Tõnu; Feitosa, Mary F.; Goel, Anuj; Gorski, Mathias; Hayward, Caroline; Heard-Costa, Nancy L.; Jackson, Anne U.; Jokinen, Eero; Kanoni, Stavroula; Kristiansson, Kati; Kutalik, Zoltán; Lahti, Jari; Luan, Jian'an; Mägi, Reedik; Mahajan, Anubha; Mangino, Massimo; Medina-Gomez, Carolina; Monda, Keri L.; Nolte, Ilja M.; Pérusse, Louis; Prokopenko, Inga; Qi, Lu; Rose, Lynda M.; Salvi, Erika; Smith, Megan T.; Snieder, Harold; Stančáková, Alena; Ju Sung, Yun; Tachmazidou, Ioanna; Teumer, Alexander; Thorleifsson, Gudmar; van der Harst, Pim; Walker, Ryan W.; Wang, Sophie R.; Wild, Sarah H.; Willems, Sara M.; Wong, Andrew; Zhang, Weihua; Albrecht, Eva; Couto Alves, Alexessander; Bakker, Stephan J. L.; Barlassina, Cristina; Bartz, Traci M.; Beilby, John; Bellis, Claire; Bergman, Richard N.; Bergmann, Sven; Blangero, John; Blüher, Matthias; Boerwinkle, Eric; Bonnycastle, Lori L.; Bornstein, Stefan R.; Bruinenberg, Marcel; Campbell, Harry; Chen, Yii-Der Ida; Chiang, Charleston W. K.; Chines, Peter S.; Collins, Francis S; Cucca, Fracensco; Cupples, L Adrienne; D'Avila, Francesca; de Geus, Eco J .C.; Dedoussis, George; Dimitriou, Maria; Döring, Angela; Eriksson, Johan G.; Farmaki, Aliki-Eleni; Farrall, Martin; Ferreira, Teresa; Fischer, Krista; Forouhi, Nita G.; Friedrich, Nele; Gjesing, Anette Prior; Glorioso, Nicola; Graff, Mariaelisa; Grallert, Harald; Grarup, Niels; Gräßler, Jürgen; Grewal, Jagvir; Hamsten, Anders; Harder, Marie Neergaard; Hartman, Catharina A.; Hassinen, Maija; Hastie, Nicholas; Hattersley, Andrew Tym; Havulinna, Aki S.; Heliövaara, Markku; Hillege, Hans; Hofman, Albert; Holmen, Oddgeir; Homuth, Georg; Hottenga, Jouke-Jan; Hui, Jennie; Husemoen, Lise Lotte; Hysi, Pirro G.; Isaacs, Aaron; Ittermann, Till; Jalilzadeh, Shapour; James, Alan L.; Jørgensen, Torben; Jousilahti, Pekka; Jula, Antti; Marie Justesen, Johanne; Justice, Anne E.; Kähönen, Mika; Karaleftheri, Maria; Tee Khaw, Kay; Keinanen-Kiukaanniemi, Sirkka M.; Kinnunen, Leena; Knekt, Paul B.; Koistinen, Heikki A.; Kolcic, Ivana; Kooner, Ishminder K.; Koskinen, Seppo; Kovacs, Peter; Kyriakou, Theodosios; Laitinen, Tomi; Langenberg, Claudia; Lewin, Alexandra M.; Lichtner, Peter; Lindgren, Cecilia M.; Lindström, Jaana; Linneberg, Allan; Lorbeer, Roberto; Lorentzon, Mattias; Luben, Robert; Lyssenko, Valeriya; Männistö, Satu; Manunta, Paolo; Leach, Irene Mateo; McArdle, Wendy L.; Mcknight, Barbara; Mohlke, Karen L.; Mihailov, Evelin; Milani, Lili; Mills, Rebecca; Montasser, May E.; Morris, Andrew P.; Müller, Gabriele; Musk, Arthur W.; Narisu, Narisu; Ong, Ken K.; Oostra, Ben A.; Osmond, Clive; Palotie, Aarno; Pankow, James S.; Paternoster, Lavinia; Penninx, Brenda W.; Pichler, Irene; Pilia, Maria G.; Polašek, Ozren; Pramstaller, Peter P.; Raitakari, Olli T; Rankinen, Tuomo; Rao, D. C.; Rayner, Nigel W.; Ribel-Madsen, Rasmus; Rice, Treva K.; Richards, Marcus; Ridker, Paul M.; Rivadeneira, Fernando; Ryan, Kathy A.; Sanna, Serena; Sarzynski, Mark A.; Scholtens, Salome; Scott, Robert A.; Sebert, Sylvain; Southam, Lorraine; Sparsø, Thomas Hempel; Steinthorsdottir, Valgerdur; Stirrups, Kathleen; Stolk, Ronald P.; Strauch, Konstantin; Stringham, Heather M.; Swertz, Morris A.; Swift, Amy J.; Tönjes, Anke; Tsafantakis, Emmanouil; van der Most, Peter J.; Van Vliet-Ostaptchouk, Jana V.; Vandenput, Liesbeth; Vartiainen, Erkki; Venturini, Cristina; Verweij, Niek; Viikari, Jorma S.; Vitart, Veronique; Vohl, Marie-Claude; Vonk, Judith M.; Waeber, Gérard; Widén, Elisabeth; Willemsen, Gonneke; Wilsgaard, Tom; Winkler, Thomas W.; Wright, Alan F.; Yerges-Armstrong, Laura M.; Hua Zhao, Jing; Carola Zillikens, M.; Boomsma, Dorret I.; Bouchard, Claude; Chambers, John C.; Chasman, Daniel I.; Cusi, Daniele; Gansevoort, Ron T.; Gieger, Christian; Hansen, Torben; Hicks, Andrew A.; Hu, Frank; Hveem, Kristian; Jarvelin, Marjo-Riitta; Kajantie, Eero; Kooner, Jaspal S.; Kuh, Diana; Kuusisto, Johanna; Laakso, Markku; Lakka, Timo A.; Lehtimäki, Terho; Metspalu, Andres; Njølstad, Inger; Ohlsson, Claes; Oldehinkel, Albertine J.; Palmer, Lyle J.; Pedersen, Oluf; Perola, Markus; Peters, Annette; Psaty, Bruce M.; Puolijoki, Hannu; Rauramaa, Rainer; Rudan, Igor; Salomaa, Veikko; Schwarz, Peter E. H.; Shudiner, Alan R.; Smit, Jan H.; Sørensen, Thorkild I. A.; Spector, Timothy D.; Stefansson, Kari; Stumvoll, Michael; Tremblay, Angelo; Tuomilehto, Jaakko; Uitterlinden, André G.; Uusitupa, Matti; Völker, Uwe; Vollenweider, Peter; Wareham, Nicholas J.; Watkins, Hugh; Wilson, James F.; Zeggini, Eleftheria; Abecasis, Goncalo R.; Boehnke, Michael; Borecki, Ingrid B.; Deloukas, Panos; van Duijn, Cornelia M.; Fox, Caroline; Groop, Leif C.; Heid, Iris M.; Hunter, David J.; Kaplan, Robert C.; McCarthy, Mark I.; North, Kari E.; O'Connell, Jeffrey R.; Schlessinger, David; Thorsteinsdottir, Unnur; Strachan, David P.; Frayling, Timothy; Hirschhorn, Joel N.; Müller-Nurasyid, Martina; Loos, Ruth J. F.
2016-01-01
Large consortia have revealed hundreds of genetic loci associated with anthropometric traits, one trait at a time. We examined whether genetic variants affect body shape as a composite phenotype that is represented by a combination of anthropometric traits. We developed an approach that calculates averaged PCs (AvPCs) representing body shape derived from six anthropometric traits (body mass index, height, weight, waist and hip circumference, waist-to-hip ratio). The first four AvPCs explain >99% of the variability, are heritable, and associate with cardiometabolic outcomes. We performed genome-wide association analyses for each body shape composite phenotype across 65 studies and meta-analysed summary statistics. We identify six novel loci: LEMD2 and CD47 for AvPC1, RPS6KA5/C14orf159 and GANAB for AvPC3, and ARL15 and ANP32 for AvPC4. Our findings highlight the value of using multiple traits to define complex phenotypes for discovery, which are not captured by single-trait analyses, and may shed light onto new pathways. PMID:27876822
Pavement cells and the topology puzzle
2017-01-01
D'Arcy Thompson emphasised the importance of surface tension as a potential driving force in establishing cell shape and topology within tissues. Leaf epidermal pavement cells grow into jigsaw-piece shapes, highly deviating from such classical forms. We investigate the topology of developing Arabidopsis leaves composed solely of pavement cells. Image analysis of around 50,000 cells reveals a clear and unique topological signature, deviating from previously studied epidermal tissues. This topological distribution is established early during leaf development, already before the typical pavement cell shapes emerge, with topological homeostasis maintained throughout growth and unaltered between division and maturation zones. Simulating graph models, we identify a heuristic cellular division rule that reproduces the observed topology. Our parsimonious model predicts how and when cells effectively place their division plane with respect to their neighbours. We verify the predicted dynamics through in vivo tracking of 800 mitotic events, and conclude that the distinct topology is not a direct consequence of the jigsaw piece-like shape of the cells, but rather owes itself to a strongly life history-driven process, with limited impact from cell-surface mechanics. PMID:29084800
Foo, Guo Shiou; Hood, Zachary D.; Wu, Zili
2017-12-05
For this research, to gain an in-depth understanding of the surface properties relevant for catalysis using ternary oxides, we report the acid–base pair reactivity of shape-controlled SrTiO 3 (STO) nanocrystals for the dehydrogenation of ethanol. Cubes, truncated cubes, dodecahedra, and etched cubes of STO with varying ratios of (001) and (110) crystal facets were synthesized using a hydrothermal method. Low-energy ion scattering (LEIS) analysis revealed that the (001) surface on cubes of STO is enriched with SrO due to surface reconstruction, resulting in a high ratio of strong base sites. Chemical treatment with dilute nitric acid to form etched cubesmore » of STO resulted in a surface enriched with Ti cations and strong acidity. Furthermore, the strength and distribution of surface acidic sites increase with the ratio of (110) facet from cubes to truncated cubes to dodecahedra for STO. Kinetic, isotopic, and spectroscopy methods show that the dehydrogenation of ethanol proceeds through the facile dissociation of the alcohol group, followed by the cleavage of the C α–H bond, which is the rate-determining step. Co-feeding of various probe molecules during catalysis, such as NH 3, 2,6-di-tert-butylpyridine, CO 2, and SO 2, reveals that a pair of Lewis acid site and basic surface oxygen atom is involved in the dehydrogenation reaction. The surface density of acid–base site pairs was measured using acetic acid as a probe molecule, allowing initial acetaldehyde formation turnover rates to be obtained. Comparison among various catalysts reveals no simple correlation between ethanol turnover rate and the percentage of either surface facet ((001) or (110)) of the STO nanocrystals. Instead, the reaction rate is found to increase with the strength of acid sites but reversely with the strength of base sites. The acid–base property is directly related to the surface composition as a result from different surface reconstruction behaviors of the shaped STO nanocrystals. Lastly, the finding in this work underscores the importance of characterizing the top surface compositions and sites properties when assessing the catalytic performance of shape-controlled complex oxides such as perovskites.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Foo, Guo Shiou; Hood, Zachary D.; Wu, Zili
For this research, to gain an in-depth understanding of the surface properties relevant for catalysis using ternary oxides, we report the acid–base pair reactivity of shape-controlled SrTiO 3 (STO) nanocrystals for the dehydrogenation of ethanol. Cubes, truncated cubes, dodecahedra, and etched cubes of STO with varying ratios of (001) and (110) crystal facets were synthesized using a hydrothermal method. Low-energy ion scattering (LEIS) analysis revealed that the (001) surface on cubes of STO is enriched with SrO due to surface reconstruction, resulting in a high ratio of strong base sites. Chemical treatment with dilute nitric acid to form etched cubesmore » of STO resulted in a surface enriched with Ti cations and strong acidity. Furthermore, the strength and distribution of surface acidic sites increase with the ratio of (110) facet from cubes to truncated cubes to dodecahedra for STO. Kinetic, isotopic, and spectroscopy methods show that the dehydrogenation of ethanol proceeds through the facile dissociation of the alcohol group, followed by the cleavage of the C α–H bond, which is the rate-determining step. Co-feeding of various probe molecules during catalysis, such as NH 3, 2,6-di-tert-butylpyridine, CO 2, and SO 2, reveals that a pair of Lewis acid site and basic surface oxygen atom is involved in the dehydrogenation reaction. The surface density of acid–base site pairs was measured using acetic acid as a probe molecule, allowing initial acetaldehyde formation turnover rates to be obtained. Comparison among various catalysts reveals no simple correlation between ethanol turnover rate and the percentage of either surface facet ((001) or (110)) of the STO nanocrystals. Instead, the reaction rate is found to increase with the strength of acid sites but reversely with the strength of base sites. The acid–base property is directly related to the surface composition as a result from different surface reconstruction behaviors of the shaped STO nanocrystals. Lastly, the finding in this work underscores the importance of characterizing the top surface compositions and sites properties when assessing the catalytic performance of shape-controlled complex oxides such as perovskites.« less
Desforges, Jean-Pierre W; Ross, Peter S; Loseto, Lisa L
2013-04-01
While the accumulation of persistent contaminants in marine mammals can be attributed directly to their prey, the role of metabolism in shaping patterns is often overlooked. In the present study, the authors investigated the role of metabolic transformation in influencing polychlorinated biphenyl (PCB) and polybrominated diphenyl ether (PBDE) patterns in offshore and nearshore groups of beluga whales (Delphinapterus leucas) and their prey. Congener profiles and principal components analysis (PCA) revealed similar PCB and PBDE patterns in beluga whales feeding either offshore or nearshore, despite divergent contaminant patterns in the putative prey of these two feeding groups. The clustering of PCBs into metabolically derived structure-activity groups (SAGs) and the separation of metabolizable and recalcitrant groups along principal component 1 of the PCA revealed the important role of metabolic transformation in shaping PCB patterns in beluga. Lack of metabolism for congeners with high ortho-chlorine content was revealed by metabolic slopes equal to or greater than 1.0. Metabolic slopes for all other SAGs were less than 1.0 (p<0.001), suggesting metabolism of congeners with ortho-meta and meta-para vicinal hydrogens via induction of cytochrome P450 enzymes (CYP1A/2B/3A). Metabolic indices less than 1.0 for PBDEs (p<0.001) suggested that beluga metabolized these poorly understood flame retardants. The strikingly similar PCB patterns in a captive beluga and free-ranging beluga from the Beaufort Sea provide additional evidence that metabolic transformation is a dominant driver of contaminant patterns in beluga. Copyright © 2013 SETAC.
Structural, Functional, and Genetic Analysis of Sorangicin Inhibition of Bacterial RNA Polymerase
DOE Office of Scientific and Technical Information (OSTI.GOV)
Campbell,E.; Pavlova, O.; Zenkin, N.
2005-01-01
A combined structural, functional, and genetic approach was used to investigate inhibition of bacterial RNA polymerase (RNAP) by sorangicin (Sor), a macrolide polyether antibiotic. Sor lacks chemical and structural similarity to the ansamycin rifampicin (Rif), an RNAP inhibitor widely used to treat tuberculosis. Nevertheless, structural analysis revealed Sor binds in the same RNAP {beta} subunit pocket as Rif, with almost complete overlap of RNAP binding determinants, and functional analysis revealed that both antibiotics inhibit transcription by directly blocking the path of the elongating transcript at a length of 2-3 nucleotides. Genetic analysis indicates that Rif binding is extremely sensitive tomore » mutations expected to change the shape of the antibiotic binding pocket, while Sor is not. We suggest that conformational flexibility of Sor, in contrast to the rigid conformation of Rif, allows Sor to adapt to changes in the binding pocket. This has important implications for drug design against rapidly mutating targets.« less
Sreelekha, Kanapadinchareveetil; Chandrasekhar, Leena; Kartha, Harikumar S; Ravindran, Reghu; Juliet, Sanis; Ajithkumar, Karapparambu G; Nair, Suresh N; Ghosh, Srikanta
2017-11-30
The present study utilizes the ultrastructural analysis of the fully engorged female Rhipicephalus (Boophilus) annulatus ticks, as a tool to evaluate the cytotoxic potential of deltamethrin and amitraz on the germinative cells. The ultrastructural analysis of the ovary of the normal (untreated) R (B.) annulatus revealed, oocytes in different stages of development, attached to the ovary wall by pedicel cells. The attachment site of oocyte to the pedicel cell was characterized by indentations of the plasma membrane. The oocyte was bound by three cell membranes viz., plasma membrane, chorion and basal lamina. The stages of oocytes were differentiated ultrastructurally based on the features of their outer membrane and the number and size of lipid and yolk droplets. Detailed day wise analysis of ultrastructural changes in the ovary during the post-engorgement period revealed the occurrence of the degenerative changes from day five onwards. These appeared first in the oocytes followed by the germinal epithelium. The ovary of ticks treated with methanol (control), revealed similar topographies as that of a normal ovary except for the presence of very few oocytes with ring shaped nucleoli. Ultrastructurally, treatment with deltamethrin produced more prominent and extensive morphological alterations when compared to amitraz. In the case of ticks treated with amitraz, the oocytes of stage IV and V showed wavy and disrupted outer boundaries along with the loss of integrity of the yolk droplets. Uneven nuclear membranes of stage II oocytes and cristolysis of mitochondria of mature oocytes were the other changes noticed. Ticks treated with deltamethrin revealed prominent modifications such as, detachment of the basal lamina, wrinkled boundary, inconsistent nuclear membrane, ring shaped nucleoli and chromatin clumping in the case of the early stage oocytes (I and II), whereas swelling and cristolysis of mitochondria were seen in mature oocytes. The study further indicated that, in addition to the previous proven neurotoxic effects, these compounds act directly on the ovary of tick. Copyright © 2017 Elsevier B.V. All rights reserved.
Singu, Bal Sydulu; Hong, Sang Eun; Yoon, Kuk Ro
2016-06-01
Sea-urchin shaped α-MnO2 hierarchical nano structures have been synthesized by facile thermal method without using any hard or soft template under the mild conditions. The structural and morphology of the 3D-MnO2 was characterized by X-ray diffraction (XRD) and field emission scanning electron microscopy (FE-SEM). From the XRD analysis indicates that MnO2 present in the α form. Morphology analysis shows that α-MnO2 sea-urchins are made by stacked nanorods, the diameter and length of the stacked nanorods present in the range of 50-120 nm and 200-400 nm respectively. The electrochemical behaviour of α-MnO2 has been investigated by cyclic voltammetry (CV) and charge-discharge (CD). The specific capacitance, energy density and power density are 212.0 F g(-1), 21.2 Wh kg(-1) and 1200 W kg(-1) respectively at the current density of 2 A g(-1). The retention of the specific capacitance after completion of 1000 charge-discharge cycles is around 97%. The results reveal that the prepared Sea-urchin shaped α-MnO2 has high specific capacitance and exhibit excellent cycle life.
Alterations in mineral properties of zebrafish skeletal bone induced by liliput dtc232 gene mutation
NASA Astrophysics Data System (ADS)
Wang, Xiu-Mei; Cui, Fu-Zhai; Ge, Jun; Ma, Chen
2003-11-01
The alterations of mineral properties of bone by gene mutation in the zebrafish, which is associated with abnormal bone mineralization and bone diseases, were reported for the first time in this paper. Transmission electron microscope (TEM), Fourier transform infrared microspectroscopy (FTIRM) and thermogravimetric analysis (TGA) were used to investigate the changes in the mineral. Significant variations of the morphologies of the minerals and the mineral/matrix ratio after liliputdtc232(lil) gene mutation have been observed. The morphologies of the minerals, examined by TEM, revealed that the mutated mineral was in bigger size and the shape was block shaped but not plate shaped. The results of FTIRM indicated that the lil mutant zebrafish skeleton exhibited a greater mineral/matrix ratio (phosphate/matrix=4.86±0.28) than that of wild-type zebrafish bone (phosphate/matrix=4.17±0.67), which was confirmed by TGA analysis. Furthermore, the mineral of lil bone became less mature and crystalline with more ion substitutions. And the selected areas electron diffraction (SAED) patterns showed that the main crystal phases of the two type fishes were both hydroxyapatite. In addition, we have discussed the relationship among the mineral properties, nanomechanical properties and biomineralization process.
[Sectional structure of a tree. Model analysis of the vertical biomass distribution].
Galitskiĭ, V V
2010-01-01
A model has been proposed for the architecture of a tree in which virtual trees appear rhythmically on the treetop. Each consecutive virtual tree is a part of the previous tree. The difference between two adjacent virtual trees is a section--an element of the real tree structure. In case of a spruce, the section represents a verticil of a stem with the corresponding internode. Dynamics of a photosynthesizing part of the physiologically active biomass of each section differ from the corresponding dynamics of the virtual trees and the whole real tree. If the tree biomass dynamics has a sigma-shaped form, then the section dynamics have to be bell-shaped. It means that the lower stem should accordingly become bare, which is typically observed in nature. Model analysis reveals the limiting, in the age, form of trees to be an "umbrella". It can be observed in nature and is an outcome of physical limitation of the tree height combined with the sigma-shaped form of the tree biomass dynamics. Variation of model parameters provides for various forms of the tree biomass distribution along the height, which can be associated with certain biological species of trees.
Electrical properties of palladium-doped CaCu3Ti4O12 ceramics
NASA Astrophysics Data System (ADS)
Singh, Arashdeep; Md Mursalin, Sk.; Rana, P.; Sen, Shrabanee
2015-09-01
The effect of doping palladium (Pd) at the Cu site of CaCu3Ti4O12 powders (CCPTO) synthesized by sol-gel technique on electrical properties was studied. XRD analysis revealed the formation of CCTO and CCPTO ceramics with some minor quantities of impurities. SEM micrographs revealed that the grain size decreased with Pd doping. TEM micrographs of CCPTO powder showed the formation of irregular-shaped particles of ~40 nm. The dielectric constant and dielectric loss showed a significant enhancement with Pd doping. A significant decrease in grain-boundary resistance with Pd doping was ascertained by impedance spectroscopy study.
Elliot, Michelle L
2016-09-01
Taking inspiration from the film Wit (2001), adapted from Margaret Edson's (1999) Pulitzer Prize-winning play, this article explores the particularities of witnessing a cinematic cancer narrative juxtaposed with the author's own cancer narrative. The analysis reveals the tenuous line between death and dying, illness and wellness, life and living and the resulting identities shaped in the process of understanding both from a personal and professional lens. By framing these representations of illness experience within the narrative constructions of drama, time, metaphor and morality, the personal stories of intellectual knowledge converging with intimate and embodied knowing are revealed.
Effect of Micro Porous Shape on Mechanical Properties in Polypropylene Syntactic Foams
NASA Astrophysics Data System (ADS)
Mae, Hiroyuki; Omiya, Masaki; Kishimoto, Kikuo
The objective is to characterize the effect of the microstructure of the micro pores inside the matrix on the mechanical properties of the thermoplastic syntactic polypropylene (PP) foams at the intermediate and high strain rates. Tensile tests are conducted at the nominal strain rates from 3 x 10-1 to 102 s-1. In addition, the dart impact tests are conducted at the impact velocities of 0.1, 1 and 10 m/s. Then, the constitutive law with craze evolution is modified by introducing the relative density, the stress concentration coefficient and the volume fraction of cell edge, and then applied to the dart impact test mode for simulating the macroscopic load displacement history of the dart impact process. Moreover, the microstructural finite element analysis is conducted to characterize the local stress states in the microstructure. In the tensile loading, the elastic modulus is not influenced by the shape of the micro pores in the PP matrix while the yield stress and the strain energy up to failure are relatively influenced by the shape of micro pores. The microstructural finite element analysis shows that the magnitudes of the localized stresses at the edges and the ligaments of the elliptical-shape micro pores are larger than those at the spherical micro pores, leading to the early yielding and the small material ductility. In the case of the dart impact loading, the microstructure of pores has strong effect on the absorbed energy. This is because the elliptical-shape micro pores are very sensitive to the shear deformation, which is revealed by the microstructural finite element analysis. The modified constitutive law with the stress concentration coefficient and the volume fraction of the cell edges successfully predicts the load-displacement curve of the dart impact loading in the spherical micro-porous PP foam. It is concluded that the micro porous shape has strong effect on the material ductility especially in the dart impact test, leading to the possibility to control the material ductility by the shape of the micro pores in the polymeric foams.
Beaton, E. D.; Stevenson, Bradley S.; King-Sharp, Karen J.; Stamps, Blake W.; Nunn, Heather S.; Stuart, Marilyne
2016-01-01
Microorganisms found in terrestrial subsurface environments make up a large proportion of the Earth’s biomass. Biogeochemical cycles catalyzed by subsurface microbes have the potential to influence the speciation and transport of radionuclides managed in geological repositories. To gain insight on factors that constrain microbial processes within a formation with restricted groundwater flow we performed a meta-community analysis on groundwater collected from multiple discrete fractures underlying the Chalk River Laboratories site (located in Ontario, Canada). Bacterial taxa were numerically dominant in the groundwater. Although these were mainly uncultured, the closest cultivated representatives were from the phenotypically diverse Betaproteobacteria, Deltaproteobacteria, Bacteroidetes, Actinobacteria, Nitrospirae, and Firmicutes. Hundreds of taxa were identified but only a few were found in abundance (>1%) across all assemblages. The remainder of the taxa were low abundance. Within an ecological framework of selection, dispersal and drift, the local and regional diversity revealed fewer taxa within each assemblage relative to the meta-community, but the taxa that were present were more related than predicted by chance. The combination of dispersion at one phylogenetic depth and clustering at another phylogenetic depth suggest both niche (dispersion) and filtering (clustering) as drivers of local assembly. Distance decay of similarity reveals apparent biogeography of 1.5 km. Beta diversity revealed greater influence of selection at shallow sampling locations while the influences of dispersal limitation and randomness were greater at deeper sampling locations. Although selection has shaped each assemblage, the spatial scale of groundwater sampling favored detection of neutral processes over selective processes. Dispersal limitation between assemblages combined with local selection means the meta-community is subject to drift, and therefore, likely reflects the differential historical events that have influenced the current bacterial composition. Categorizing the study site into smaller regions of interest of more closely spaced fractures, or of potentially hydraulically connected fractures, might improve the resolution of an analysis to reveal environmental influences that have shaped these bacterial communities. PMID:27999569
Beaton, E D; Stevenson, Bradley S; King-Sharp, Karen J; Stamps, Blake W; Nunn, Heather S; Stuart, Marilyne
2016-01-01
Microorganisms found in terrestrial subsurface environments make up a large proportion of the Earth's biomass. Biogeochemical cycles catalyzed by subsurface microbes have the potential to influence the speciation and transport of radionuclides managed in geological repositories. To gain insight on factors that constrain microbial processes within a formation with restricted groundwater flow we performed a meta-community analysis on groundwater collected from multiple discrete fractures underlying the Chalk River Laboratories site (located in Ontario, Canada). Bacterial taxa were numerically dominant in the groundwater. Although these were mainly uncultured, the closest cultivated representatives were from the phenotypically diverse Betaproteobacteria, Deltaproteobacteria, Bacteroidetes, Actinobacteria, Nitrospirae, and Firmicutes. Hundreds of taxa were identified but only a few were found in abundance (>1%) across all assemblages. The remainder of the taxa were low abundance. Within an ecological framework of selection, dispersal and drift, the local and regional diversity revealed fewer taxa within each assemblage relative to the meta-community, but the taxa that were present were more related than predicted by chance. The combination of dispersion at one phylogenetic depth and clustering at another phylogenetic depth suggest both niche (dispersion) and filtering (clustering) as drivers of local assembly. Distance decay of similarity reveals apparent biogeography of 1.5 km. Beta diversity revealed greater influence of selection at shallow sampling locations while the influences of dispersal limitation and randomness were greater at deeper sampling locations. Although selection has shaped each assemblage, the spatial scale of groundwater sampling favored detection of neutral processes over selective processes. Dispersal limitation between assemblages combined with local selection means the meta-community is subject to drift, and therefore, likely reflects the differential historical events that have influenced the current bacterial composition. Categorizing the study site into smaller regions of interest of more closely spaced fractures, or of potentially hydraulically connected fractures, might improve the resolution of an analysis to reveal environmental influences that have shaped these bacterial communities.
Ghosh, Ramesh; Giri, P K; Imakita, Kenji; Fujii, Minoru
2014-01-31
Arrays of vertically aligned single crystalline Si nanowires (NWs) decorated with arbitrarily shaped Si nanocrystals (NCs) have been fabricated by a silver assisted wet chemical etching method. Scanning electron microscopy and transmission electron microscopy are performed to measure the dimensions of the Si NWs as well as the Si NCs. A strong broad band and tunable visible (2.2 eV) to near-infrared (1.5 eV) photoluminescence (PL) is observed from these Si NWs at room temperature (RT). Our studies reveal that the Si NCs are primarily responsible for the 1.5-2.2 eV emission depending on the cross-sectional area of the Si NCs, while the large diameter Si/SiOx NWs yield distinct NIR PL consisting of peaks at 1.07, 1.10 and 1.12 eV. The latter NIR peaks are attributed to TO/LO phonon assisted radiative recombination of free carriers condensed in the electron-hole plasma in etched Si NWs observed at RT for the first time. Since the shape of the Si NCs is arbitrary, an analytical model is proposed to correlate the measured PL peak position with the cross-sectional area (A) of the Si NCs, and the bandgap (E(g)) of nanostructured Si varies as E(g) = E(g) (bulk) + 3.58 A(-0.52). Low temperature PL studies reveal the contribution of non-radiative defects in the evolution of PL spectra at different temperatures. The enhancement of PL intensity and red-shift of the PL peak at low temperatures are explained based on the interplay of radiative and non-radiative recombinations at the Si NCs and Si/SiO(x) interface. Time resolved PL studies reveal bi-exponential decay with size correlated lifetimes in the range of a few microseconds. Our results help to resolve a long standing debate on the origin of visible-NIR PL from Si NWs and allow quantitative analysis of PL from arbitrarily shaped Si NCs.
Yoo, Jejoong; Jackson, Meyer B.; Cui, Qiang
2013-01-01
To establish the validity of continuum mechanics models quantitatively for the analysis of membrane remodeling processes, we compare the shape and energies of the membrane fusion pore predicted by coarse-grained (MARTINI) and continuum mechanics models. The results at these distinct levels of resolution give surprisingly consistent descriptions for the shape of the fusion pore, and the deviation between the continuum and coarse-grained models becomes notable only when the radius of curvature approaches the thickness of a monolayer. Although slow relaxation beyond microseconds is observed in different perturbative simulations, the key structural features (e.g., dimension and shape of the fusion pore near the pore center) are consistent among independent simulations. These observations provide solid support for the use of coarse-grained and continuum models in the analysis of membrane remodeling. The combined coarse-grained and continuum analysis confirms the recent prediction of continuum models that the fusion pore is a metastable structure and that its optimal shape is neither toroidal nor catenoidal. Moreover, our results help reveal a new, to our knowledge, bowing feature in which the bilayers close to the pore axis separate more from one another than those at greater distances from the pore axis; bowing helps reduce the curvature and therefore stabilizes the fusion pore structure. The spread of the bilayer deformations over distances of hundreds of nanometers and the substantial reduction in energy of fusion pore formation provided by this spread indicate that membrane fusion can be enhanced by allowing a larger area of membrane to participate and be deformed. PMID:23442963
Heat losses and thermal imaging of ferroic components
NASA Astrophysics Data System (ADS)
Ilyashenko, S. E.; Ivanova, A. I.; Gasanov, O. V.; Grechishkin, R. M.; Tretiakov, S. A.; Yushkov, K. B.; Linde, B. B. J.
2015-03-01
A study is made of spatial and temporal temperature variations in working devices based on ferroic functional materials. The measurement of the sample's temperature is complemented with direct observation of its distribution over the sample surface. For the latter purpose a thermovision infrared videocamera technique was employed. Specific features of the temperature distribution and its evolution during heating and cooling of a number of piezoelectric, acoustooptic and shape memory components are revealed. Examples of hot spot observations indicative of structural defects in the samples under study are given thus suggesting the use of thermal vision for nondestructive testing. A proposal is made to combine the thermovision method with that of thermomagnetic analysis for the study of ferromagnetic shape memory alloys.
Microstructural characterization and simulation of damage for geared sheet components
NASA Astrophysics Data System (ADS)
Gerstein, G.; Isik, K.; Gutknecht, F.; Sieczkarek, P.; Ewert, J.; Tekkaya, A. E.; Clausmeyer, T.; Nürnberger, F.
2017-09-01
The evolution of damage in geared components manufactured from steel sheets was investigated, to analyse the influence of damage caused by the sheet-bulk-metal forming. Due to the inhomogeneous and multi-axial deformation in the investigated parts, different aspects such as the location-dependent shape and size of voids are analysed by means of various microscopic methods. In particular, a method to characterize the state of damage evolution, i. e. void nucleation, growth and coalescence using scanning electron microscopy (SEM) is applied. The investigations reveal a strong dependence of the void area fraction, shape of voids and thus damage evolution on the loading mode. The microstructural analysis is complemented with FEM simulations using material models which consider the characteristics of the void evolution.
NASA Astrophysics Data System (ADS)
Hong, Sungmin; Fishbaugh, James; Rezanejad, Morteza; Siddiqi, Kaleem; Johnson, Hans; Paulsen, Jane; Kim, Eun Young; Gerig, Guido
2017-02-01
Modeling subject-specific shape change is one of the most important challenges in longitudinal shape analysis of disease progression. Whereas anatomical change over time can be a function of normal aging, anatomy can also be impacted by disease related degeneration. Anatomical shape change may also be affected by structural changes from neighboring shapes, which may cause non-linear variations in pose. In this paper, we propose a framework to analyze disease related shape changes by coupling extrinsic modeling of the ambient anatomical space via spatiotemporal deformations with intrinsic shape properties from medial surface analysis. We compare intrinsic shape properties of a subject-specific shape trajectory to a normative 4D shape atlas representing normal aging to isolate shape changes related to disease. The spatiotemporal shape modeling establishes inter/intra subject anatomical correspondence, which in turn enables comparisons between subjects and the 4D shape atlas, and also quantitative analysis of disease related shape change. The medial surface analysis captures intrinsic shape properties related to local patterns of deformation. The proposed framework jointly models extrinsic longitudinal shape changes in the ambient anatomical space, as well as intrinsic shape properties to give localized measurements of degeneration. Six high risk subjects and six controls are randomly sampled from a Huntington's disease image database for qualitative and quantitative comparison.
Isolation and characterization of Scophthalmus maximus rhabdovirus.
Zhang, Qi-Ya; Tao, Jian-Jun; Gui, Lang; Zhou, Guang-Zhou; Ruan, Hong-Mei; Li, Zhen-Qiu; Gui, Jian-Fang
2007-02-28
A rhabdovirus associated with a lethal hemorrhagic disease in cultured turbot Scophthalmus maximus Linnaeus was isolated. The virus induced typical cytopathogenic effects (CPE) in 9 of 15 fish cell lines examined and was then propagated and isolated from infected carp leucocyte cells (CLC). Electron microscopy observations revealed that the negatively stained virions had a typical bullet-shaped morphology with one rounded end and one flat base end. The bullet-shaped morphology was more obvious and clear in ultrathin sections of infected cells. Experimental infections also indicated that the S. maximus rhabdovirus (SMRV) was not only a viral pathogen for cultured turbot, but also had the ability to infect other fish species, such as freshwater grass carp. A partial nucleotide sequence of the SMRV polymerase gene was determined by RT-PCR using 2 pairs of degenerate primers designed according to the conserved sequences of rhabdovirus polymerase genes. Homology analysis, amino acid sequence alignment, and phylogenetic relationship analysis of the partial SMRV polymerase sequence indicated that SMRV was genetically distinct from other rhabdoviruses. Sodium dodecyl sulphate polyacrylamide gel electrophoresis (SDS-PAGE) analysis of the purified SMRV revealed 5 major structural proteins, and their molecular masses were estimated to be about 250, 58, 47, 42, and 28 kDa. Significant serological reactivity differences were also observed between SMRV and its nearest neighbor, spring viremia of carp virus (SVCV). The data suggest that SMRV is likely a novel fish rhabdovirus, although it is closely related to rhabdoviruses in the genus Vesiculovirus.
Shape memory behavior of single and polycrystalline nickel rich nickel titanium alloys
NASA Astrophysics Data System (ADS)
Kaya, Irfan
NiTi is the most commonly used shape memory alloy (SMA) and has been widely used for bio-medical, electrical and mechanical applications. Nickel rich NiTi shape memory alloys are coming into prominence due to their distinct superelasticity and shape memory properties as compared to near equi-atomic NiTi shape memory alloys. Besides, their lower density and higher work output than steels makes these alloys an excellent candidate for aerospace and automotive industry. Shape memory properties and phase transformation behavior of high Ni-rich Ni54Ti46 (at.%) polycrystals and Ni-rich Ni 51Ti49 (at.%) single-crystals are determined. Their properties are sensitive to heat treatments that affect the phase transformation behavior of these alloys. Phase transformation properties and microstructure were investigated in aged Ni54Ti46 alloys with differential scanning calorimetry (DSC) and transmission electron microscopy (TEM) to reveal the precipitation characteristics and R-phase formation. It was found that Ni54Ti46 has the ability to exhibit perfect superelasticity under high stress levels (~2 GPa) with 4% total strain after 550°C-3h aging. Stress independent R-phase transformation was found to be responsible for the change in shape memory behavior with stress. The shape memory responses of [001], [011] and [111] oriented Ni 51Ti49 single-crystals alloy were reported under compression to reveal the orientation dependence of their shape memory behavior. It has been found that transformation strain, temperatures and hysteresis, Classius-Clapeyron slopes, critical stress for plastic deformation are highly orientation dependent. The effects of precipitation formation and compressive loading at selected temperatures on the two-way shape memory effect (TWSME) properties of a [111]- oriented Ni51Ti49 shape memory alloy were revealed. Additionally, aligned Ni4Ti3 precipitates were formed in a single crystal of Ni51Ti49 alloy by aging under applied compression stress along the [111] direction. Formation of a single family of Ni4Ti3 precipitates were exhibited significant TWSME without any training or deformation. When the homogenized and aged specimens were loaded in martensite, positive TWSME was observed. After loading at high temperature in austenite, the homogenized specimen did not show TWSME while the aged specimen revealed negative TWSME.
NASA Astrophysics Data System (ADS)
Yao, Xiao-Qiang; Li, Dan-Yang; Xiao, Guo-Bin; Ma, Heng-Chang; Lei, Zi-Qiang; Liu, Jia-Cheng
2018-04-01
A new compound, {[Co(BPFI)(NDC)]H2O·0.5DMF}n (1) has been synthesized under hydrothermal condition by the self-assembly of V-shaped N-containing rigid ligand BPFI with Co(II) ions in the presence of H2NDC acid, where BPFI = 2,8-di(1H-imidazole-1-yl)dibenzo[b,d]furan, H2NDC = naphthalene-1,4-dicarboxylic acid. Compound 1 was characterized by elemental analysis, single crystal X-ray diffraction, FT-IR spectroscopy and UV-visible spectra. Structural analysis reveals that compound 1 is a unique dinuclear Co-based 2D (4,4) layer structure decorated with parallel double chains. In addition, magnetic study reveals the existence of antiferromagnetic coupling interactions between the Co(II) ions within the dinuclear unit of 1.
NASA Astrophysics Data System (ADS)
Yang, K.; Park, H.; Baik, H.; Kim, J.; Park, K. R.; Yoon, J.; Kim, J. W.
2016-12-01
Understanding the biogeochemical process in the Fe-Mn crust layer is important to reconstruct the paleo-environment when the Fe-Mn crust layer forms. Scanning Electron Microscopy (SEM), Transmission Electron Microscopy (TEM), Electron Energy Loss Spectroscopy (EELS), and Polymerase Chain Reaction (PCR) were utilized to determine the redox states of Fe/Mn and microbial diversity at each layer. Samples were dredged from the western Pacific Magellan Seamount (OSM11) that consists of five well-defined layers from the rim (L1) to the core (L5). Some microbial like structures of sheath-like with filaments (L1 - L3), capsule-shaped (L2), fossilized coccolith mounds with phosphatized globules (L4), and bean-shaped (L4) were detected in entire layers. The cross sectional observation of bean-shaped microbe like structures encrusted with Fe-vernadite (L3) by Scanning Transmission Electron Microscopy (STEM) and Focused Ion Beam (FIB) technique revealed 1-μm diameter cavity in the center and porous structures of encrusting Fe-vernadite in periphery. Moreover, the organic carbon in the center cavity compared with inorganic C (from carbonate) in periphery was differentiated by C-K edge EELS spectra, suggesting that the microbe used to occupy. Indeed, the PCR analysis indicated the presence of functional gene (cumA; 1056bp & coxC; 810bp) association with Mn & Fe oxidizer that promote the formation of the crust. The cloning and sequencing of DNA PCR fragments revealed the appearance of geobacter species in L3 (G. sulfurreducens and G. lovleyi). The DNA molecular biological analysis and SEM direct observations suggest the evidence of biotic process in the formation of Fe-Mn crust.
NASA Astrophysics Data System (ADS)
Cheng, Tian-Le; Ma, Fengde D.; Zhou, Jie E.; Jennings, Guy; Ren, Yang; Jin, Yongmei M.; Wang, Yu U.
2012-01-01
Diffuse scattering contains rich information on various structural disorders, thus providing a useful means to study the nanoscale structural deviations from the average crystal structures determined by Bragg peak analysis. Extraction of maximal information from diffuse scattering requires concerted efforts in high-quality three-dimensional (3D) data measurement, quantitative data analysis and visualization, theoretical interpretation, and computer simulations. Such an endeavor is undertaken to study the correlated dynamic atomic position fluctuations caused by thermal vibrations (phonons) in precursor state of shape-memory alloys. High-quality 3D diffuse scattering intensity data around representative Bragg peaks are collected by using in situ high-energy synchrotron x-ray diffraction and two-dimensional digital x-ray detector (image plate). Computational algorithms and codes are developed to construct the 3D reciprocal-space map of diffuse scattering intensity distribution from the measured data, which are further visualized and quantitatively analyzed to reveal in situ physical behaviors. Diffuse scattering intensity distribution is explicitly formulated in terms of atomic position fluctuations to interpret the experimental observations and identify the most relevant physical mechanisms, which help set up reduced structural models with minimal parameters to be efficiently determined by computer simulations. Such combined procedures are demonstrated by a study of phonon softening phenomenon in precursor state and premartensitic transformation of Ni-Mn-Ga shape-memory alloy.
Computed Tomography Angiography Evaluation of Risk Factors for Unstable Intracranial Aneurysms.
Wang, Guang-Xian; Gong, Ming-Fu; Wen, Li; Liu, Lan-Lan; Yin, Jin-Bo; Duan, Chun-Mei; Zhang, Dong
2018-03-19
To evaluate risk factors for instability in intracranial aneurysms (IAs) using computed tomography angiography (CTA). A total of 614 consecutive patients diagnosed with 661 IAs between August 2011 and February 2016 were reviewed. Patients and IAs were divided into stable and unstable groups. Along with clinical characteristics, IA characteristics were evaluated by CTA. Multiple logistic regression analysis was used to identify the independent risk factors associated with unstable IAs. Receiver operating characteristic (ROC) curve analysis was performed on the final model, and optimal thresholds were obtained. Patient age (odds ratio [OR], 0.946), cerebral atherosclerosis (CA; OR, 0.525), and IAs located at the middle cerebral artery (OR, 0.473) or internal carotid artery (OR, 0.512) were negatively correlated with instability, whereas IAs with irregular shape (OR, 2.157), deep depth (OR, 1.557), or large flow angle (FA; OR, 1.015) were more likely to be unstable. ROC analysis revealed threshold values of age, depth, and FA of 59.5 years, 4.25 mm, and 87.8°, respectively. The stability of IAs is significantly affected by several factors, including patient age and the presence of CA. IA shape and location also have an impact on the stability of IAs. Growth into an irregular shape, with a deep depth, and a large FA are risk factors for a change in IAs from stable to unstable. Copyright © 2018 Elsevier Inc. All rights reserved.
Geometric morphometrics reveals sex-differential shape allometry in a spider.
Fernández-Montraveta, Carmen; Marugán-Lobón, Jesús
2017-01-01
Common scientific wisdom assumes that spider sexual dimorphism (SD) mostly results from sexual selection operating on males. However, testing predictions from this hypothesis, particularly male size hyperallometry, has been restricted by methodological constraints. Here, using geometric morphometrics (GMM) we studied for the first time sex-differential shape allometry in a spider ( Donacosa merlini , Araneae: Lycosidae) known to exhibit the reverse pattern (i.e., male-biased) of spider sexual size dimorphism. GMM reveals previously undetected sex-differential shape allometry and sex-related shape differences that are size independent (i.e., associated to the y-intercept, and not to size scaling). Sexual shape dimorphism affects both the relative carapace-to-opisthosoma size and the carapace geometry, arguably resulting from sex differences in both reproductive roles (female egg load and male competition) and life styles (wandering males and burrowing females). Our results demonstrate that body portions may vary modularly in response to different selection pressures, giving rise to sex differences in shape, which reconciles previously considered mutually exclusive interpretations about the origins of spider SD.
How many landmarks are enough to characterize shape and size variation?
Watanabe, Akinobu
2018-01-01
Accurate characterization of morphological variation is crucial for generating reliable results and conclusions concerning changes and differences in form. Despite the prevalence of landmark-based geometric morphometric (GM) data in the scientific literature, a formal treatment of whether sampled landmarks adequately capture shape variation has remained elusive. Here, I introduce LaSEC (Landmark Sampling Evaluation Curve), a computational tool to assess the fidelity of morphological characterization by landmarks. This task is achieved by calculating how subsampled data converge to the pattern of shape variation in the full dataset as landmark sampling is increased incrementally. While the number of landmarks needed for adequate shape variation is dependent on individual datasets, LaSEC helps the user (1) identify under- and oversampling of landmarks; (2) assess robustness of morphological characterization; and (3) determine the number of landmarks that can be removed without compromising shape information. In practice, this knowledge could reduce time and cost associated with data collection, maintain statistical power in certain analyses, and enable the incorporation of incomplete, but important, specimens to the dataset. Results based on simulated shape data also reveal general properties of landmark data, including statistical consistency where sampling additional landmarks has the tendency to asymptotically improve the accuracy of morphological characterization. As landmark-based GM data become more widely adopted, LaSEC provides a systematic approach to evaluate and refine the collection of shape data--a goal paramount for accumulation and analysis of accurate morphological information.
In-cell RNA structure probing with SHAPE-MaP.
Smola, Matthew J; Weeks, Kevin M
2018-06-01
This protocol is an extension to: Nat. Protoc. 10, 1643-1669 (2015); doi:10.1038/nprot.2015.103; published online 01 October 2015RNAs play key roles in many cellular processes. The underlying structure of RNA is an important determinant of how transcripts function, are processed, and interact with RNA-binding proteins and ligands. RNA structure analysis by selective 2'-hydroxyl acylation analyzed by primer extension (SHAPE) takes advantage of the reactivity of small electrophilic chemical probes that react with the 2'-hydroxyl group to assess RNA structure at nucleotide resolution. When coupled with mutational profiling (MaP), in which modified nucleotides are detected as internal miscodings during reverse transcription and then read out by massively parallel sequencing, SHAPE yields quantitative per-nucleotide measurements of RNA structure. Here, we provide an extension to our previous in vitro SHAPE-MaP protocol with detailed guidance for undertaking and analyzing SHAPE-MaP probing experiments in live cells. The MaP strategy works for both abundant-transcriptome experiments and for cellular RNAs of low to moderate abundance, which are not well examined by whole-transcriptome methods. In-cell SHAPE-MaP, performed in roughly 3 d, can be applied in cell types ranging from bacteria to cultured mammalian cells and is compatible with a variety of structure-probing reagents. We detail several strategies by which in-cell SHAPE-MaP can inform new biological hypotheses and emphasize downstream analyses that reveal sequence or structure motifs important for RNA interactions in cells.
Shuttle structural dynamics characteristics: The analysis and verification
NASA Technical Reports Server (NTRS)
Modlin, C. T., Jr.; Zupp, G. A., Jr.
1985-01-01
The space shuttle introduced a new dimension in the complexity of the structural dynamics of a space vehicle. The four-body configuration exhibited structural frequencies as low as 2 hertz with a model density on the order of 10 modes per hertz. In the verification process, certain mode shapes and frequencies were identified by the users as more important than others and, as such, the test objectives were oriented toward experimentally extracting those modes and frequencies for analysis and test correlation purposes. To provide the necessary experimental data, a series of ground vibration tests (GVT's) was conducted using test articles ranging from the 1/4-scale structural replica of the space shuttle to the full-scale vehicle. The vibration test and analysis program revealed that the mode shapes and frequency correlations below 10 hertz were good. The quality of correlation of modes between 10 and 20 hertz ranged from good to fair and that of modes above 20 hertz ranged from poor to good. Since the most important modes, based on user preference, were below 10 hertz, it was judged that the shuttle structural dynamic models were adequate for flight certifications.
NASA Astrophysics Data System (ADS)
Nazari, Esmaeil; Löbbe, Christian; Gallus, Stefan; Izadyar, S. Ahmad; Tekkaya, A. Erman
2018-05-01
The incremental tube forming (ITF) is a process combination of the kinematic tube bending and spinning to shape high strength and tailored tubes with variable diameters and thicknesses. In contrast to conventional bending methods, the compressive stress superposition by the spinning process facilitates low bending stresses, so that geometrical errors are avoided and the shape accuracy is improved. The study reveals the interaction of plastic strains of the rolling and bending process through an explicit FEM investigation. For this purpose, the three-dimensional machine set-up is discretized and modeled in terms of the fully disclosed spinning process during the gradual deflection of the tube end for bending. The analysis shows that, depending on the forming tool shape, the stress superposition is accompanied by high plastic strains. Furthermore, this phenomenon is explained by the three dimensional normal and shear strains during the incremental spinning. Analyzing the strains history also shows a nonlinearity between the strains by bending and spinning. It is also shown that process parameters like rotational velocity of the spinning rolls have a huge influence on the deformation pattern. Finally, the method is used for the manufacturing of an example product, which reveals the high process flexibility. In one clamp a component with a graded wall thickness and outside diameter along the longitudinal axis is produced.
Genome-wide uniformity of human ‘open’ pre-initiation complexes
Lai, William K.M.; Pugh, B. Franklin
2017-01-01
Transcription of protein-coding and noncoding DNA occurs pervasively throughout the mammalian genome. Their sites of initiation are generally inferred from transcript 5′ ends and are thought to be either locally dispersed or focused. How these two modes of initiation relate is unclear. Here, we apply permanganate treatment and chromatin immunoprecipitation (PIP-seq) of initiation factors to identify the precise location of melted DNA separately associated with the preinitiation complex (PIC) and the adjacent paused complex (PC). This approach revealed the two known modes of transcription initiation. However, in contrast to prevailing views, they co-occurred within the same promoter region: initiation originating from a focused PIC, and broad nucleosome-linked initiation. PIP-seq allowed transcriptional orientation of Pol II to be determined, which may be useful near promoters where sufficient sense/anti-sense transcript mapping information is lacking. PIP-seq detected divergently oriented Pol II at both coding and noncoding promoters, as well as at enhancers. Their occupancy levels were not necessarily coupled in the two orientations. DNA sequence and shape analysis of initiation complex sites suggest that both sequence and shape contribute to specificity, but in a context-restricted manner. That is, initiation sites have the locally “best” initiator (INR) sequence and/or shape. These findings reveal a common core to pervasive Pol II initiation throughout the human genome. PMID:27927716
Microstructure–property relationships in a high-strength 51Ni–29Ti–20Hf shape memory alloy
Coughlin, D. R.; Casalena, L.; Yang, F.; ...
2015-09-18
NiTiHf alloys exhibit remarkable shape memory and pseudoelastic properties that are of fundamental interest to a growing number of industries. In this study, differential scanning calorimetry and isothermal compression tests have revealed that the 51Ni–29Ti–20Hf alloy has useful shape memory properties that include a wide range of transformation temperatures as well as highly stable pseudoelastic behavior. These properties are governed by short-term aging conditions, which may be tailored to control transformation temperatures while giving rise to exceptionally high austenite yield strengths which aid transformation stability. The yield strength of the austenite phase can reach 2.1 GPa by aging for 3hrsmore » at 500°C, while aging for 3hrs at 700°C produced an alloy with an austenite finish temperature (A f ) of 146°C. High-resolution scanning transmission electron microscopy has revealed a new precipitate phase, H-phase, under the homogenized and extruded condition and the aged 3 hrs at 500°C condition, but only the previously identified H-phase precipitate was observed after aging at temperatures of 600°C and 700°C for 3 hrs. Finally, dislocation analysis indicated that plastic deformation of the austenite phase occurred by <100> type slip, similar to that observed in binary NiTi.« less
Berger, Brent A; Ricigliano, Vincent A; Savriama, Yoland; Lim, Aedric; Thompson, Veronica; Howarth, Dianella G
2017-11-17
While floral symmetry has traditionally been assessed qualitatively, recent advances in geometric morphometrics have opened up new avenues to specifically quantify flower shape and size using robust multivariate statistical methods. In this study, we examine, for the first time, the ability of geometric morphometrics to detect morphological differences in floral dorsoventral asymmetry following virus-induced gene silencing (VIGS). Using Fedia graciliflora Fisch. & Meyer (Valerianaceae) as a model, corolla shape of untreated flowers was compared using canonical variate analysis to knockdown phenotypes of CYCLOIDEA2A (FgCYC2A), ANTHOCYANIDIN SYNTHASE (FgANS), and empty vector controls. Untreated flowers and all VIGS treatments were morphologically distinct from each other, suggesting that VIGS may cause subtle shifts in floral shape. Knockdowns of FgCYC2A were the most dramatic, affecting the position of dorsal petals in relation to lateral petals, thereby resulting in more actinomorphic-like flowers. Additionally, FgANS knockdowns developed larger flowers with wider corolla tube openings. These results provide a method to quantify the role that specific genes play in the developmental pathway affecting the dorsoventral axis of symmetry in zygomorphic flowers. Additionally, they suggest that ANS may have an unintended effect on floral size and shape.
A novel flux-switching permanent magnet machine with v-shaped magnets
NASA Astrophysics Data System (ADS)
Zhao, Guishu; Hua, Wei
2017-05-01
In this paper, firstly a novel 6-stator-coil/17-rotor-pole (6/17) flux-switching permanent magnet (FSPM) machine with V-shaped magnets, deduced from conventional 12/17 FSPM machines is proposed to achieve more symmetrical phase back-electromotive force (back-EMF), and smaller torque ripple by comparing with an existing 6/10 V-shaped FSPM machine. Then, to obtain larger electromagnetic torque, less torque ripple, and easier mechanical processing, two improved variants based on the original 6/17 V-shaped topology are proposed. For the first variant, the separate stator-core segments located on the stator yoke are connected into a united stator yoke, while for the second variant the stator core is a whole entity by adding magnetic bridges at the ends of permanent magnets (PMs). Consequently, the performances of the three 6/17 V-shaped FSPM machines, namely, the original one and the two variants, are conducted by finite element analysis (FEA). The results reveal that the first variant exhibits significantly larger torque and considerably improved torque per magnet volume, i.e., the magnet utilization ratio than the original one, and the second variant exhibits the smallest torque ripple, least total harmonic distribution (THD) of phase back-EMF, and easiest mechanical processing for manufacturing.
Aerodynamically-Actuated Radical Shape-Change Concept
NASA Technical Reports Server (NTRS)
Ivanco, Thomas G.; Ivanco, Marie L.; Ancel, Ersin; Grubb, Amanda L.; Prasad, Supranamaaya
2017-01-01
Aerodynamically-actuated radical shape change (AARSC) is a novel concept that enables flight vehicles to conduct a mission profile containing radically different flight regimes while possibly mitigating the typical penalties incurred by radical geometric change. Weight penalties are mitigated by utilizing a primary flight control to generate aerodynamic loads that then drive a shape-change actuation. The flight mission profile used to analyze the AARSC concept is that of a transport aircraft that cruises at a lower altitude than typical transports. Based upon a preliminary analysis, substantial fuel savings are realized for mission ranges below 2000 NM by comparison to a state-of-the-art baseline, with an increasing impact as mission range is reduced. The predicted savings are so significant at short-haul ranges that the shape-change concept rivals the fuel-burn performance of turboprop aircraft while completing missions in less time than typical jet aircraft. Lower-altitude cruise has also been sought after in recent years for environmental benefits, however, the performance penalty to conventional aircraft was prohibitive. AARSC may enable the opportunity to realize the environmental benefits of lower-altitude emissions coupled with mission fuel savings. The findings of this study also reveal that the AARSC concept appears to be controllable, turbulence susceptibility is likely not an issue, and the shape change concept appears to be mechanically and aerodynamically feasible.
NASA Astrophysics Data System (ADS)
Nasir, Ahmad Fakhri Ab; Suhaila Sabarudin, Siti; Majeed, Anwar P. P. Abdul; Ghani, Ahmad Shahrizan Abdul
2018-04-01
Chicken egg is a source of food of high demand by humans. Human operators cannot work perfectly and continuously when conducting egg grading. Instead of an egg grading system using weight measure, an automatic system for egg grading using computer vision (using egg shape parameter) can be used to improve the productivity of egg grading. However, early hypothesis has indicated that more number of egg classes will change when using egg shape parameter compared with using weight measure. This paper presents the comparison of egg classification by the two above-mentioned methods. Firstly, 120 images of chicken eggs of various grades (A–D) produced in Malaysia are captured. Then, the egg images are processed using image pre-processing techniques, such as image cropping, smoothing and segmentation. Thereafter, eight egg shape features, including area, major axis length, minor axis length, volume, diameter and perimeter, are extracted. Lastly, feature selection (information gain ratio) and feature extraction (principal component analysis) are performed using k-nearest neighbour classifier in the classification process. Two methods, namely, supervised learning (using weight measure as graded by egg supplier) and unsupervised learning (using egg shape parameters as graded by ourselves), are conducted to execute the experiment. Clustering results reveal many changes in egg classes after performing shape-based grading. On average, the best recognition results using shape-based grading label is 94.16% while using weight-based label is 44.17%. As conclusion, automated egg grading system using computer vision is better by implementing shape-based features since it uses image meanwhile the weight parameter is more suitable by using weight grading system.
Distinct regions of the hippocampus are associated with memory for different spatial locations.
Jeye, Brittany M; MacEvoy, Sean P; Karanian, Jessica M; Slotnick, Scott D
2018-05-15
In the present functional magnetic resonance imaging (fMRI) study, we aimed to evaluate whether distinct regions of the hippocampus were associated with spatial memory for items presented in different locations of the visual field. In Experiment 1, during the study phase, participants viewed abstract shapes in the left or right visual field while maintaining central fixation. At test, old shapes were presented at fixation and participants classified each shape as previously in the "left" or "right" visual field followed by an "unsure"-"sure"-"very sure" confidence rating. Accurate spatial memory for shapes in the left visual field was isolated by contrasting accurate versus inaccurate spatial location responses. This contrast produced one hippocampal activation in which the interaction between item type and accuracy was significant. The analogous contrast for right visual field shapes did not produce activity in the hippocampus; however, the contrast of high confidence versus low confidence right-hits produced one hippocampal activation in which the interaction between item type and confidence was significant. In Experiment 2, the same paradigm was used but shapes were presented in each quadrant of the visual field during the study phase. Accurate memory for shapes in each quadrant, exclusively masked by accurate memory for shapes in the other quadrants, produced a distinct activation in the hippocampus. A multi-voxel pattern analysis (MVPA) of hippocampal activity revealed a significant correlation between behavioral spatial location accuracy and hippocampal MVPA accuracy across participants. The findings of both experiments indicate that distinct hippocampal regions are associated with memory for different visual field locations. Copyright © 2018 Elsevier B.V. All rights reserved.
The “shape” and “meaning” of the roof arts in Chinese classical architecture
NASA Astrophysics Data System (ADS)
Li, Xianda; liu, Yu
2017-04-01
This paper takes the “roof” in Chinese classical architecture as the research object. The breakthrough point of this paper would be the perspective of design aesthetics. Through the rational and perceptual analysis of the roof art, this paper would reveal that the roof shape has the double artistic features: “beauty of shape” and “beauty of idea”. This paper would have a comprehensive analysis for the following aspects: the rational method of roof construction, the emotional feeling of the roof construction and the implied meaning of beauty in the roof construction.
Evidence for two attentional components in visual working memory.
Allen, Richard J; Baddeley, Alan D; Hitch, Graham J
2014-11-01
How does executive attentional control contribute to memory for sequences of visual objects, and what does this reveal about storage and processing in working memory? Three experiments examined the impact of a concurrent executive load (backward counting) on memory for sequences of individually presented visual objects. Experiments 1 and 2 found disruptive concurrent load effects of equivalent magnitude on memory for shapes, colors, and colored shape conjunctions (as measured by single-probe recognition). These effects were present only for Items 1 and 2 in a 3-item sequence; the final item was always impervious to this disruption. This pattern of findings was precisely replicated in Experiment 3 when using a cued verbal recall measure of shape-color binding, with error analysis providing additional insights concerning attention-related loss of early-sequence items. These findings indicate an important role for executive processes in maintaining representations of earlier encountered stimuli in an active form alongside privileged storage of the most recent stimulus. PsycINFO Database Record (c) 2014 APA, all rights reserved.
Orpheovirus IHUMI-LCC2: A New Virus among the Giant Viruses
Andreani, Julien; Khalil, Jacques Y. B.; Baptiste, Emeline; Hasni, Issam; Michelle, Caroline; Raoult, Didier; Levasseur, Anthony; La Scola, Bernard
2018-01-01
Giant viruses continue to invade the world of virology, in gigantic genome sizes and various particles shapes. Strains discoveries and metagenomic studies make it possible to reveal the complexity of these microorganisms, their origins, ecosystems and putative roles. We isolated from a rat stool sample a new giant virus “Orpheovirus IHUMI-LCC2,” using Vermamoeba vermiformis as host cell. In this paper, we describe the main genomic features and replicative cycle of Orpheovirus IHUMI-LCC2. It possesses a circular genome exceeding 1.4 Megabases with 25% G+C content and ovoidal-shaped particles ranging from 900 to 1300 nm. Particles are closed by at least one thick membrane in a single ostiole-like shape in their apex. Phylogenetic analysis and the reciprocal best hit for Orpheovirus show a connection to the proposed Pithoviridae family. However, some genomic characteristics bear witness to a completely divergent evolution for Orpheovirus IHUMI-LCC2 when compared to Cedratviruses or Pithoviruses. PMID:29403444
Brazhe, Nadezda A.; Treiman, Marek; Brazhe, Alexey R.; Find, Ninett L.; Maksimov, Georgy V.; Sosnovtseva, Olga V.
2012-01-01
This paper presents a nonivasive approach to study redox state of reduced cytochromes , and of complexes II and III in mitochondria of live cardiomyocytes by means of Raman microspectroscopy. For the first time with the proposed approach we perform studies of rod- and round-shaped cardiomyocytes, representing different morphological and functional states. Raman mapping and cluster analysis reveal that these cardiomyocytes differ in the amounts of reduced cytochromes , and . The rod-shaped cardiomyocytes possess uneven distribution of reduced cytochromes , and in cell center and periphery. Moreover, by means of Raman spectroscopy we demonstrated the decrease in the relative amounts of reduced cytochromes , and in the rod-shaped cardiomyocytes caused by H2O2-induced oxidative stress before any visible changes. Results of Raman mapping and time-dependent study of reduced cytochromes of complexes II and III and cytochrome in cardiomyocytes are in a good agreement with our fluorescence indicator studies and other published data. PMID:22957018
NASA Astrophysics Data System (ADS)
Ko, Won-Seok; Grabowski, Blazej; Neugebauer, Jörg
2018-03-01
Martensitic transformations in nanoscaled shape-memory alloys exhibit characteristic features absent for the bulk counterparts. Detailed understanding is required for applications in micro- and nanoelectromechanical systems, and experimental limitations render atomistic simulation an important complementary approach. Using a recently developed, accurate potential we investigate the phase transformation in freestanding Ni-Ti shape-memory nanoparticles with molecular-dynamics simulations. The results confirm that the decrease in the transformation temperature with decreasing particle size is correlated with an overstabilization of the austenitic surface energy over the martensitic surface energy. However, a detailed atomistic analysis of the nucleation and growth behavior reveals an unexpected difference in the mechanisms determining the austenite finish and martensite start temperature. While the austenite finish temperature is directly affected by a contribution of the surface energy difference, the martensite start temperature is mostly affected by the transformation strain, contrary to general expectations. This insight not only explains the reduced transformation temperature but also the reduced thermal hysteresis in freestanding nanoparticles.
Chen, Hsi-Nien; Høeg, Jens T; Chan, Benny K K
2013-01-01
The present study used DNA barcodes to identify individual cyprids to species. This enables accurate quantification of larvae of potential fouling species in the plankton. In addition, it explains the settlement patterns of barnacles and serves as an early warning system of unwanted immigrant species. Sequences from a total of 540 individual cypris larvae from Taiwanese waters formed 36 monophyletic clades (species) in a phylogenetic tree. Of these clades, 26 were identified to species, but 10 unknown monophyletic clades represented non-native species. Cyprids of the invasive barnacle, Megabalanus cocopoma, were identified. Multivariate analysis of antennular morphometric characters revealed three significant clusters in a nMDS plot, viz. a bell-shaped attachment organ (most species), a shoe-shaped attachment organ (some species), and a spear-shaped attachment organ (coral barnacles only). These differences in attachment organ structure indicate that antennular structures interact directly with the diverse substrata involved in cirripede settlement.
NASA Astrophysics Data System (ADS)
Deborah, M.; Jawahar, A.; Mathavan, T.; Dhas, M. Kumara; Benial, A. Milton Franklin
2015-03-01
The valine functionalized multi-walled carbon nanotubes (MWCNTS) were prepared and characterized by using XRD, UV-Vis, FT-IR, EPR, SEM, and EDX, spectroscopic techniques. The enhanced XRD peak (0 0 2) intensity was observed for valine functionalized MWCNTs compared with oxidized MWCNTs, which is likely due to sample purification by acid washing. UV-Vis study shows the formation of valine functionalized MWCNTs. FT-IR study confirms the presence of functional groups of oxidized MWCNTs and valine functionalized MWCNTs. The ESR line shape analysis indicates that the observed EPR line shape is a Gaussian line shape. The g-values indicate that the systems are isotropic in nature. The morphology study was carried out for oxidized MWCNTs and valine functionalized MWCNTs by using SEM. The EDX spectra revealed that the high purity of oxidized MWCNTs and valine functionalized MWCNTs. The functionalization has been chosen because, functionalization of CNTs with amino acids makes them soluble and biocompatible. Thus, they have potential applications in the field of biosensors and targeted drug delivery.
THE X-SHAPED BULGE OF THE MILKY WAY REVEALED BY WISE
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ness, Melissa; Lang, Dustin, E-mail: ness@mpia-hd.mpg.de
2016-07-01
The Milky Way bulge has a boxy/peanut morphology and an X-shaped structure. This X-shape has been revealed by the “split in the red clump” from star counts along the line of sight toward the bulge, measured from photometric surveys. This boxy, X-shaped bulge morphology is not unique to the Milky Way and such bulges are observed in other barred spiral galaxies. N -body simulations show that boxy and X-shaped bulges are formed from the disk via dynamical instabilities. It has also been proposed that the Milky Way bulge is not X-shaped, but rather, the apparent split in the red clumpmore » stars is a consequence of different stellar populations, in an old classical spheroidal bulge. We present a Wide-Field Infrared Survey Explorer ( WISE ) image of the Milky Way bulge, produced by downsampling the publicly available “unWISE” coadds. The WISE image of the Milky Way bulge shows that the X-shaped nature of the Milky Way bulge is self-evident and irrefutable. The X-shape morphology of the bulge in itself and the fraction of bulge stars that comprise orbits within this structure has important implications for the formation history of the Milky Way, and, given the ubiquity of boxy X-shaped bulges, spiral galaxies in general.« less
Gobbato, Luca; Paniz, Gianluca; Mazzocco, Fabio; Chierico, Andrea; Tsukiyama, Teppei; Levi, Paul A; Weisgold, Arnold S
2013-05-01
When utilizing a single implant-supported crown to replace a central incisor, understanding the final shape of the implant restoration is an important factor to help achieve a successful esthetic outcome. In today's dentistry, tooth shape is a critical factor when dental implant prostheses are considered in the esthetic zone. The major esthetic goal for this type of restoration is to achieve the closest possible symmetry with the adjacent tooth, both at the soft and at the hard tissue levels. The goal of this study was to objectively analyze the significance of natural crown shape when replacing a central incisor with a single implant-supported crown. In this study, we investigated the shape of the crowns of maxillary central incisors in 60 individuals who presented to our clinics with an untreatable central incisor. The presence of a dental diastema, "black triangle," presence or absence of gingival symmetry, and the presence or absence of dental symmetry were recorded in the pre- and postoperative photographs. Out of 60 patients, 33.3% had triangular-shaped crowns, 16.6% square/tapered, and 50% square-shaped crown form. After treatment was rendered, 65% of the triangular group, 40% of the square/tapered group, and 13.3% of the square group required an additional restoration on the adjacent central incisor in order to fulfill the esthetic needs of the patients. Data analysis revealed that if there is a "black triangle," a diastema, or presence of dental or gingival asymmetry, an additional restoration on the adjacent central incisor is often required in order to fulfill esthetic goals. The additional restoration is highly recommended in situations with a triangular crown shape, while it is suggested in cases of square/tapered and square tooth shapes in the presence of a dental diastema.
Synthesis and Characterization of Aqueous Lead Selenide Quantum Dots for Solar Cell Application
NASA Astrophysics Data System (ADS)
Albert, Ancy; Sreekala, C. O.; Prabhakaran, Malini
2018-02-01
High quality, colloidal lead selenide (PbSe) nanoparticles possessing cube shaped morphology have been successfully synthesized by organometallic synthesis method, using oleic acid (OA) as capping agent. The use of non-coordinating solvent, 1-Octadecene (ODE), during the synthesis results in good quality nanocrystals. Morphology analysis by transmission electron microscopy reveals that cube-shaped nanocrystals with a size range of 10 nm have been produced during the synthesis. The absorption and PL spectra analysis showed an emission peak at 675 nm when excited to a wavelength of 610 nm, further confirmed the formation of PbSe nanocrystals. The surface modification of this colloidal quantum dots was then carried out using L- cysteine ligand, to make them water soluble, for solar cell application. The J-V characteristics study of this PbSe quantum dots solar cell (PbSe QDSC) showed a little power conversion efficiency which intern it shows significant advance toward effective utilization of PbSe nanocrystals sensitized in solar cells.
NASA Astrophysics Data System (ADS)
Joung, Tae-Hwan; Sammut, Karl; He, Fangpo; Lee, Seung-Keon
2012-03-01
Autonomous Underwater Vehicles (AUVs) provide a useful means of collecting detailed oceano-graphic information. The hull resistance of an AUV is an important factor in determining the power requirements and range of the vehicle. This paper describes a procedure using Computational Fluid Dynamics (CFD) for determining the hull resistance of an AUV under development, for a given propeller rotation speed and within a given range of AUV velocities. The CFD analysis results reveal the distribution of the hydrodynamic values (velocity, pressure, etc.) around the AUV hull and its ducted propeller. The paper then proceeds to present a methodology for optimizing the AUV profile in order to reduce the total resistance. This paper demonstrates that shape optimization of conceptual designs is possible using the commercial CFD package contained in Ansys™. The optimum design to minimize the drag force of the AUV was identified for a given object function and a set of constrained design parameters
Lautenschlager, Stephan
2014-06-22
Therizinosaurs are a group of herbivorous theropod dinosaurs from the Cretaceous of North America and Asia, best known for their iconically large and elongate manual claws. However, among Therizinosauria, ungual morphology is highly variable, reflecting a general trend found in derived theropod dinosaurs (Maniraptoriformes). A combined approach of shape analysis to characterize changes in manual ungual morphology across theropods and finite-element analysis to assess the biomechanical properties of different ungual shapes in therizinosaurs reveals a functional diversity related to ungual morphology. While some therizinosaur taxa used their claws in a generalist fashion, other taxa were functionally adapted to use the claws as grasping hooks during foraging. Results further indicate that maniraptoriform dinosaurs deviated from the plesiomorphic theropod ungual morphology resulting in increased functional diversity. This trend parallels modifications of the cranial skeleton in derived theropods in response to dietary adaptation, suggesting that dietary diversification was a major driver for morphological and functional disparity in theropod evolution.
NASA Astrophysics Data System (ADS)
Livorati, André L. P.; Palmero, Matheus S.; Díaz-I, Gabriel; Dettmann, Carl P.; Caldas, Iberê L.; Leonel, Edson D.
2018-02-01
We study the dynamics of an ensemble of non interacting particles constrained by two infinitely heavy walls, where one of them is moving periodically in time, while the other is fixed. The system presents mixed dynamics, where the accessible region for the particle to diffuse chaotically is bordered by an invariant spanning curve. Statistical analysis for the root mean square velocity, considering high and low velocity ensembles, leads the dynamics to the same steady state plateau for long times. A transport investigation of the dynamics via escape basins reveals that depending of the initial velocity ensemble, the decay rates of the survival probability present different shapes and bumps, in a mix of exponential, power law and stretched exponential decays. After an analysis of step-size averages, we found that the stable manifolds play the role of a preferential path for faster escape, being responsible for the bumps and different shapes of the survival probability.
NASA Technical Reports Server (NTRS)
Yao, Tse-Min; Choi, Kyung K.
1987-01-01
An automatic regridding method and a three dimensional shape design parameterization technique were constructed and integrated into a unified theory of shape design sensitivity analysis. An algorithm was developed for general shape design sensitivity analysis of three dimensional eleastic solids. Numerical implementation of this shape design sensitivity analysis method was carried out using the finite element code ANSYS. The unified theory of shape design sensitivity analysis uses the material derivative of continuum mechanics with a design velocity field that represents shape change effects over the structural design. Automatic regridding methods were developed by generating a domain velocity field with boundary displacement method. Shape design parameterization for three dimensional surface design problems was illustrated using a Bezier surface with boundary perturbations that depend linearly on the perturbation of design parameters. A linearization method of optimization, LINRM, was used to obtain optimum shapes. Three examples from different engineering disciplines were investigated to demonstrate the accuracy and versatility of this shape design sensitivity analysis method.
Oval Window Size and Shape: a Micro-CT Anatomical Study With Considerations for Stapes Surgery.
Zdilla, Matthew J; Skrzat, Janusz; Kozerska, Magdalena; Leszczyński, Bartosz; Tarasiuk, Jacek; Wroński, Sebastian
2018-06-01
The oval window is an important structure with regard to stapes surgeries, including stapedotomy for the treatment of otosclerosis. Recent study of perioperative imaging of the oval window has revealed that oval window niche height can indicate both operative difficulty and subjective discomfort during otosclerosis surgery. With regard to shape, structures incorporated into the oval window niche, such as cartilage grafts, must be compatible with the shape of the oval window. Despite the clinical importance of the oval window, there is little information regarding its size and shape. This study assessed oval window size and shape via micro-computed tomography paired with modern morphometric methodology in the fetal, infant, child, and adult populations. Additionally, the study compared oval window size and shape between sexes and between left- and right-sided ears. No significant differences were found among traditional morphometric parameters among age groups, sides, or sexes. However, geometric morphometric methods revealed shape differences between age groups. Further, geometric morphometric methods provided the average oval window shape and most-likely shape variance. Beyond demonstrating oval window size and shape variation, the results of this report will aid in identifying patients among whom anatomical variation may contribute to surgical difficulty and surgeon discomfort, or otherwise warrant preoperative adaptations for the incorporation of materials into and around the oval window.
NASA Astrophysics Data System (ADS)
Noik, V. James; Mohd Tuah, P.
2015-04-01
Plastic fragments and particles as an emerging environmental contaminant and pollutant are gaining scientific attention in the recent decades due to the potential threats on biota. This study aims to elucidate the presence, abundance and temporal change of plastic fragments and particles from two selected beaches, namely Santubong and Trombol in Kuching on two sampling times. Morphological and polymer identification assessment on the recovered plastics was also conducted. Overall comparison statistical analysis revealed that the abundance of plastic fragments/debris on both of sampling stations were insignificantly different (p>0.05). Likewise, statistical analysis on the temporal changes on the abundance yielded no significant difference for most of the sampling sites on each respective station, except STB-S2. Morphological studies revealed physical features of plastic fragments and debris were diverse in shapes, sizes, colors and surface fatigues. FTIR fingerprinting analysis shows that polypropylene and polyethylene were the dominant plastic polymers debris on both beaches.
Drake, Abby Grace
2011-01-01
Heterochrony is an evolutionary mechanism that generates diversity via perturbations of the rate or timing of development that requires very little genetic innovation. As such, heterochrony is thought to be a common evolutionary mechanism in the generation of diversity. Previous research has suggested that dogs evolved via heterochrony and are paedomorphic wolves. This study uses three-dimensional landmark-based coordinate data to investigate heterochronic patterns within the skull morphology of the domestic dog. A total of 677 adult dogs representing 106 different breeds were measured and compared with an ontogenetic series of 401 wolves. Geometric morphometric analysis reveals that the cranial shape of none of the modern breeds of dogs resembles the cranial shapes of adult or juvenile wolves. In addition, investigations of regional heterochrony in the face and neurocranium also reject the hypothesis of heterochrony. Throughout wolf cranial development the position of the face and the neurocranium remain in the same plane. Dogs, however, have a de novo cranial flexion in which the palate is tilted dorsally in brachycephalic and mesaticephalic breeds or tilted ventrally in dolichocephalic and down-face breeds. Dogs have evolved very rapidly into an incredibly morphologically diverse species with very little genetic variation. However, the genetic alterations to dog cranial development that have produced this vast range of phylogenetically novel skull shapes do not coincide with the expectations of the heterochronic model. Dogs are not paedomorphic wolves. © 2011 Wiley Periodicals, Inc.
Diaz-Toledano, Rosa; Lozano, Gloria; Martinez-Salas, Encarnacion
2017-02-17
The genome of RNA viruses folds into 3D structures that include long-range RNA–RNA interactions relevant to control critical steps of the viral cycle. In particular, initiation of translation driven by the IRES element of foot-and-mouth disease virus is stimulated by the 3΄UTR. Here we sought to investigate the RNA local flexibility of the IRES element and the 3΄UTR in living cells. The SHAPE reactivity observed in vivo showed statistically significant differences compared to the free RNA, revealing protected or exposed positions within the IRES and the 3΄UTR. Importantly, the IRES local flexibility was modified in the presence of the 3΄UTR, showing significant protections at residues upstream from the functional start codon. Conversely, presence of the IRES element in cis altered the 3΄UTR local flexibility leading to an overall enhanced reactivity. Unlike the reactivity changes observed in the IRES element, the SHAPE differences of the 3΄UTR were large but not statistically significant, suggesting multiple dynamic RNA interactions. These results were supported by covariation analysis, which predicted IRES-3΄UTR conserved helices in agreement with the protections observed by SHAPE probing. Mutational analysis suggested that disruption of one of these interactions could be compensated by alternative base pairings, providing direct evidences for dynamic long-range interactions between these distant elements of the viral genome.
Sharma, Prashant P; Santiago, Marc A; Kriebel, Ricardo; Lipps, Savana M; Buenavente, Perry A C; Diesmos, Arvin C; Janda, Milan; Boyer, Sarah L; Clouse, Ronald M; Wheeler, Ward C
2017-01-01
The taxonomy and systematics of the armored harvestmen (suborder Laniatores) are based on various sets of morphological characters pertaining to shape, armature, pedipalpal setation, and the number of articles of the walking leg tarsi. Few studies have tested the validity of these historical character systems in a comprehensive way, with reference to an independent data class, i.e., molecular sequence data. We examined as a test case the systematics of Podoctidae, a family distributed throughout the Indo-Pacific. We tested the validity of the three subfamilies of Podoctidae using a five-locus phylogeny, and examined the evolution of dorsal shape as a proxy for taxonomic utility, using parametric shape analysis. Here we show that two of the three subfamilies, Ibaloniinae and Podoctinae, are non-monophyletic, with the third subfamily, Erecananinae, recovered as non-monophyletic in a subset of analyses. Various genera were also recovered as non-monophyletic. As first steps toward revision of Podoctidae, the subfamilies Erecananinae Roewer, 1912 and Ibaloniinae Roewer, 1912 are synonymized with Podoctinae Roewer, 1912 new synonymies, thereby abolishing unsubstantiated subfamilial divisions within Podoctidae. We once again synonymize the genus Paralomanius Goodnight & Goodnight, 1948 with Lomanius Roewer, 1923 revalidated. We additionally show that eggs carried on the legs of male Podoctidae are not conspecific to the males, falsifying the hypothesis of paternal care in this group. Copyright © 2016 Elsevier Inc. All rights reserved.
Evaluation of morphological changes in the adult skull with age and sex.
Urban, Jillian E; Weaver, Ashley A; Lillie, Elizabeth M; Maldjian, Joseph A; Whitlow, Christopher T; Stitzel, Joel D
2016-12-01
The morphology of the brain and skull are important in the evaluation of the aging human; however, little is known about how the skull may change with age. The objective of this study was to evaluate the morphological changes of the adult skull using three-dimensional geometric morphometric analysis of thousands of landmarks with the focus on anatomic regions that may be correlated with brain atrophy and head injury. Computed tomography data were collected between ages 20 and 100. Each scan was segmented using thresholding techniques. An atlas image of a 50th percentile skull was registered to each subject scan by computing a series of rigid, affine, and non-linear transformations between atlas space and subject space. Landmarks on the atlas skull were transformed to each subject and partitioned into the inner and outer cranial vault and the cranial fossae. A generalized Procrustes analysis was completed for the landmark sets. The coordinate locations describing the shape of each region were regressed with age to generate a model predicting the landmark location with age. Permutation testing was performed to assess significant changes with age. For the males, all anatomic regions reveal significant changes in shape with age except for the posterior cranial fossa. For the females, only the middle cranial fossa and anterior cranial fossa were found to change significantly in shape. Results of this study are important for understanding the adult skull and how shape changes may pertain to brain atrophy, aging, and injury. © 2014 Anatomical Society.
Pulsed field probe of real time magnetization dynamics in magnetic nanoparticle systems
NASA Astrophysics Data System (ADS)
Foulkes, T.; Syed, M.; Taplin, T.
2015-05-01
Magnetic nanoparticles (MNPs) are extensively used in biotechnology. These applications rely on magnetic properties that are a keen function of MNP size, distribution, and shape. Various magneto-optical techniques, including Faraday Rotation (FR), Cotton-Mouton Effect, etc., have been employed to characterize magnetic properties of MNPs. Generally, these measurements employ AC or DC fields. In this work, we describe the results from a FR setup that uses pulsed magnetic fields and an analysis technique that makes use of the entire pulse shape to investigate size distribution and shape anisotropy. The setup employs a light source, polarizing components, and a detector that are used to measure the rotation of light from a sample that is subjected to a pulsed magnetic field. This magnetic field "snapshot" is recorded alongside the intensity pulse of the sample's response. This side by side comparison yields useful information about the real time magnetization dynamics of the system being probed. The setup is highly flexible with variable control of pulse length and peak magnitude. Examining the raw data for the response of bare Fe3O4 and hybrid Au and Fe3O4 nanorods reveals interesting information about Brownian relaxation and the hydrodynamic size of these nanorods. This analysis exploits the self-referencing nature of this measurement to highlight the impact of an applied field on creating a field induced transparency for a longitudinal measurement. Possible sources for this behavior include shape anisotropy and field assisted aggregate formation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chuang, Chihpin; Singh, Dileep; Kenesei, Peter
The size and morphology of the graphite particles play a crucial role in determining various mechanical and thermal properties of cast iron. In the present study, we utilized high-energy synchrotron X-ray tomography to perform quantitative 3D-characterization of the distribution of graphite particles in high-strength compacted graphite iron (CGI). The size, shape, and spatial connectivity of graphite were examined. The analysis reveals that the compacted graphite can grow with a coral-tree-like morphology and span several hundred microns in the iron matrix.
1991-11-01
CSIC. Universidad Sevilla A. Conde (Chairman) C.F. Conde A. Criado J. Leal M. Miln H. Miranda SPONSORS MINISTERIO DE EDUCACION Y CIENCIA JUNTA DE...DMS experiments leads to physical understanding of the different aspects of the observed phenomena : more especially shape, amplitude and displacement... especially light transmittance were also established. The analysis of Raman spectra of the examined glasses has revealed the presence of metaphosphate
The Falklands War: Understanding the Power of Context in Shaping Argentine Strategic Decisions
2007-09-01
junta was beholden. A detailed analysis of the forces engaged, the geography of the battle space, and the conduct of operations reveals that the...parity with the British in many aspects and advantages in others. The geography of the battle space gave the Argentines a superior position relative to...9 Max Hastings and Simon Jenkins, The Battle for the Falklands, 1st American ed., (New York: Norton, 1983), 1. 10 Central Intelligence Agency
Kumar Varma, Chekuri Ashok; Jayaram Kumar, K
2017-11-01
Plant polysaccharides, generally regarded as safe (GRAS), are gaining importance as excipients in drug delivery. Therefore, the current paper presents the studies on structural, functional and drug release study of water soluble polysaccharide (ALPS) from seeds of Albizia lebbeck L. High swelling, water holding capacity, foam stability and lower moisture content suggests its use as additive in food preparations. The apparent molecular weight of polysaccharide was found to be 1.98×10 2 kDa. Monosaccharide composition analysis indicated that ALPS consists of mannose (4.06%), rhamnose (22.79%), glucose (38.9%), galactose (17.84%) and xylose (16.42%). Micromeritic properties revealed that the polysaccharide possess potential for pharmaceutical applications. From the surface charge analysis, ALPS was found to be non-ionic polysaccharide. Morphological study reveals the polysaccharide with irregular particle shape and rough surface. Fourier transformed infrared spectroscopy (FTIR) study confirms the carbohydrate nature of polysaccharide. From the thermogravimetric analysis (TGA) data, the second mass loss (243-340°C) attributed to polysaccharide degradation. The drug release profile reveals the use of polysaccharide for the preparation of pH sensitive pharmaceutical dosage forms. Copyright © 2017 Elsevier Ltd. All rights reserved.
Senthilkumar, R P; Bhuvaneshwari, V; Ranjithkumar, R; Sathiyavimal, S; Malayaman, V; Chandarshekar, B
2017-11-01
The hybrid chitosan cerium oxide nanoparticles were prepared for the first time by green chemistry approach using plant leaf extract. The intense peak observed around 292nm in the UV-vis spectrum indicate the formation of cerium oxide nanoparticles. The XRD pattern revealed that the hybrid chitosan-cerium oxide nanoparticles have a polycrystalline structure with cubic fluorite phase. The FTIR spectrum of prepared samples showed the formation of Ce-O bonds and chitosan main chains COC and CO. The FESEM image of hybrid chitosan cerium oxide nanoparticles revealed that the particles are spherical in shape with grains size varying from 23.12nm to 89.91nm. EDAX analysis confirmed the presence of Ce, O, C and N elements in the prepared sample. TEM images showed that the prepared hybrid chitosan-cerium oxide nanoparticles are predominantly uniform in size and most of the particles are spherical in shape with less agglomeration and the particles size varies from 3.61nm to 24.40nm. The prepared chitosan cerium oxide nanoparticles of 50μL concentration showed good antibacterial properties against test pathogens, which was confirmed by the FESEM analysis. The prepared small particle size facilitate that these hybrid ChiCO 2 NPs could effectively be used in biomedical applications. Copyright © 2017 Elsevier B.V. All rights reserved.
Effect of Reduced Tube Voltage on Diagnostic Accuracy of CT Colonography.
Futamata, Yoshihiro; Koide, Tomoaki; Ihara, Riku
2017-01-01
The normal tube voltage in computed tomography colonography (CTC) is 120 kV. Some reports indicate that the use of a low tube voltage (lower than 120 kV) technique plays a significant role in reduction of radiation dose. However, to determine whether a lower tube voltage can reduce radiation dose without compromising diagnostic accuracy, an evaluation of images that are obtained while maintaining the volume CT dose index (CTDI vol ) is required. This study investigated the effect of reduced tube voltage in CTC, without modifying radiation dose (i.e. constant CTDI vol ), on image quality. Evaluation of image quality involved the shape of the noise power spectrum, surface profiling with volume rendering (VR), and receiver operating characteristic (ROC) analysis. The shape of the noise power spectrum obtained with a tube voltage of 80 kV and 100 kV was not similar to the one produced with a tube voltage of 120 kV. Moreover, a higher standard deviation was observed on volume-rendered images that were generated using the reduced tube voltages. In addition, ROC analysis revealed a statistically significant drop in diagnostic accuracy with reduced tube voltage, revealing that the modification of tube voltage affects volume-rendered images. The results of this study suggest that reduction of tube voltage in CTC, so as to reduce radiation dose, affects image quality and diagnostic accuracy.
Abnormal primary and permanent dentitions with ectodermal symptoms predict WNT10A deficiency.
Bergendal, Birgitta; Norderyd, Johanna; Zhou, Xiaolei; Klar, Joakim; Dahl, Niklas
2016-11-24
The WNT10A protein is critical for the development of ectodermal appendages. Variants in the WNT10A gene may be associated with a spectrum of ectodermal abnormalities including extensive tooth agenesis. In seven patients with severe tooth agenesis we identified anomalies in primary dentition and additional ectodermal symptoms, and assessed WNT10A mutations by genetic analysis. Investigation of primary dentition revealed peg-shaped crowns of primary mandibular incisors and three individuals had agenesis of at least two primary teeth. The permanent dentition was severely affected in all individuals with a mean of 21 missing teeth. Primary teeth were most often present in positions were succedaneous teeth were missing. Furthermore, most existing molars had taurodontism. Light, brittle or coarse hair was reported in all seven individuals, hyperhidrosis of palms and soles in six individuals and nail anomalies in two individuals. The anomalies in primary dentition preceded most of the additional ectodermal symptoms. Genetic analysis revealed that all seven individuals were homozygous or compound heterozygous for WNT10A mutations resulting in C107X, E222X and F228I. We conclude that tooth agenesis and/or peg-shaped crowns of primary mandibular incisors, severe oligodontia of permanent dentition as well as ectodermal symptoms of varying severity may be predictors of bi-allelic WNT10A mutations of importance for diagnosis, counselling and follow-up.
NASA Astrophysics Data System (ADS)
Dixit, Saurabh; Shukla, A. K.
2018-06-01
In this article, single-walled carbon nanotubes (SWCNTs) are synthesized at room temperature using pulsed laser ablation of ferrocene mixed graphitic target. Radial breathing mode (RBM) reveals the presence of semiconducting SWCNTs of multiple diameters. Quantum confinement model is developed for Raman line-shape of G - feature. It is invoked here that G-feature is the manifestation of TO phonons in the semiconducting SWCNTs. Disorder in the SWCNTs is studied here as a function of the concentration of ferrocene in the graphitic target using X-ray diffraction analysis, oscillator strength of G - feature and D mode and Raman line-shape model of G - feature. Furthermore, phonon softening of G - feature of semiconducting SWCNTs is observed as a function of the diameter of nanotube.
An Allometric Analysis of Sex and Sex Chromosome Dosage Effects on Subcortical Anatomy in Humans.
Reardon, Paul Kirkpatrick; Clasen, Liv; Giedd, Jay N; Blumenthal, Jonathan; Lerch, Jason P; Chakravarty, M Mallar; Raznahan, Armin
2016-02-24
Structural neuroimaging of humans with typical and atypical sex-chromosome complements has established the marked influence of both Yand X-/Y-chromosome dosage on total brain volume (TBV) and identified potential cortical substrates for the psychiatric phenotypes associated with sex-chromosome aneuploidy (SCA). Here, in a cohort of 354 humans with varying karyotypes (XX, XY, XXX, XXY, XYY, XXYY, XXXXY), we investigate sex and SCA effects on subcortical size and shape; focusing on the striatum, pallidum and thalamus. We find large effect-size differences in the volume and shape of all three structures as a function of sex and SCA. We correct for TBV effects with a novel allometric method harnessing normative scaling rules for subcortical size and shape in humans, which we derive here for the first time. We show that all three subcortical volumes scale sublinearly with TBV among healthy humans, mirroring known relationships between subcortical volume and TBV among species. Traditional TBV correction methods assume linear scaling and can therefore invert or exaggerate sex and SCA effects on subcortical anatomy. Allometric analysis restricts sex-differences to: (1) greater pallidal volume (PV) in males, and (2) relative caudate head expansion and ventral striatum contraction in females. Allometric analysis of SCA reveals that supernumerary X- and Y-chromosomes both cause disproportionate reductions in PV, and coordinated deformations of striatopallidal shape. Our study provides a novel understanding of sex and sex-chromosome dosage effects on subcortical organization, using an allometric approach that can be generalized to other basic and clinical structural neuroimaging settings. Copyright © 2016 the authors 0270-6474/16/362438-11$15.00/0.
Danilova, Olga V; Suzina, Natalia E; Van De Kamp, Jodie; Svenning, Mette M; Bodrossy, Levente; Dedysh, Svetlana N
2016-11-01
Although representatives with spiral-shaped cells are described for many functional groups of bacteria, this cell morphotype has never been observed among methanotrophs. Here, we show that spiral-shaped methanotrophic bacteria do exist in nature but elude isolation by conventional approaches due to the preference for growth under micro-oxic conditions. The helical cell shape may enable rapid motility of these bacteria in water-saturated, heterogeneous environments with high microbial biofilm content, therefore offering an advantage of fast cell positioning under desired high methane/low oxygen conditions. The pmoA genes encoding a subunit of particulate methane monooxygenase from these methanotrophs form a new genus-level lineage within the family Methylococcaceae, type Ib methanotrophs. Application of a pmoA-based microarray detected these bacteria in a variety of high-latitude freshwater environments including wetlands and lake sediments. As revealed by the environmental pmoA distribution analysis, type Ib methanotrophs tend to live very near the methane source, where oxygen is scarce. The former perception of type Ib methanotrophs as being typical for thermal habitats appears to be incorrect because only a minor proportion of pmoA sequences from these bacteria originated from environments with elevated temperatures.
A 6DOF passive vibration isolator using X-shape supporting structures
NASA Astrophysics Data System (ADS)
Wu, Zhijing; Jing, Xingjian; Sun, Bo; Li, Fengming
2016-10-01
A novel 6 degree of freedom (6-DOF) passive vibration isolator is studied theoretically and validated with experiments. Based on the Stewart platform configuration, the 6-DOF isolator is constructed by 6 X-shape structures as legs, which can realize very good and tunable vibration isolation performance in all 6 directions with a passive manner. The mechanic model is established for static analysis of the working range, static stiffness and loading capacity. Thereafter, the equation of motion of the isolator is derived with the Hamilton principle. The equivalent stiffness and the displacement transmissibility in the six decoupled DOFs direction are then discussed with experimental results for validation. The results reveal that (a) by designing the structure parameters, the system can possess flexible stiffness such as negative, quasi-zero and positive stiffness, (b) due to the combination of the Stewart platform and the X-shape structure, the system can have very good vibration isolation performance in all the 6 directions and in a passive manner, and (c) compared with the simplified linear-stiffness legs, the nonlinearity of the X-shape structures enhance the passive isolator to have much better vibration isolation performance.
Rieti, S; Manni, V; Lisi, A; Giuliani, L; Sacco, D; D'Emilia, E; Cricenti, A; Generosi, R; Luce, M; Grimaldi, S
2004-01-01
In this study we have employed atomic force microscopy (AFM) and scanning near-field optical microscopy (SNOM) techniques to study the effect of the interaction between human keratinocytes (HaCaT) and electromagnetic fields at low frequency. HaCaT cells were exposed to a sinusoidal magnetic field at a density of 50 Hz, 1 mT. AFM analysis revealed modification in shape and morphology in exposed cells with an increase in the areas of adhesion between cells. This latter finding was confirmed by SNOM indirect immunofluorescence analysis performed with a fluorescent antibody against the adhesion marker beta4 integrin, which revealed an increase of beta4 integrin segregation in the cell membrane of 50-Hz exposed cells, suggesting that a higher percentage of these cells shows a modified pattern of this adhesion marker.
Balzeau, Antoine; Gilissen, Emmanuel
2010-07-01
Brain shape asymmetries or petalias consist of the extension of one cerebral hemisphere beyond the other. A larger frontal or caudal projection is usually coupled with a larger lateral extent of the more projecting hemisphere relative to the other. The concurrence of these petalial components is characteristic of hominins. Studies aimed at quantifying petalial asymmetries in human and great ape endocasts rely on the definition of the midline of the endocranial surface. Studies of brain material show that, at least in humans, most of the medial surface of the left occipital lobe distorts along the midline and protrudes on to the right side, making it difficult for midline and corresponding left and right reference point identification. In order to accurately quantify and compare brain shape asymmetries in extant hominid species, we propose here a new protocol based on the objective definition of cranial landmarks. We describe and quantify for the first time in three dimensions the positions of frontal and occipital protrusions in large samples of Pan paniscus, Pan troglodytes and Gorilla gorilla. This study confirms the existence of frontal and occipital petalias in African apes. Moreover, the detailed analysis of the 3D structure of these petalias reveals shared features, as well as features that are unique to the different great ape species.
Computer based imaging and analysis of root gravitropism
NASA Technical Reports Server (NTRS)
Evans, M. L.; Ishikawa, H.
1997-01-01
Two key issues in studies of the nature of the gravitropic response in roots have been the determination of the precise pattern of differential elongation responsible for downward bending and the identification of the cells that show the initial motor response. The main approach for examining patterns of differential growth during root gravitropic curvature has been to apply markers to the root surface and photograph the root at regular intervals during gravitropic curvature. Although these studies have provided valuable information on the characteristics of the gravitropic motor response in roots, their labor intensive nature limits sample size and discourages both high frequency of sampling and depth of analysis of surface expansion data. In this brief review we describe the development of computer-based video analysis systems for automated measurement of root growth and shape change and discuss some key features of the root gravitropic response that have been revealed using this methodology. We summarize the capabilities of several new pieces of software designed to measure growth and shape changes in graviresponding roots and describe recent progress in developing analysis systems for studying the small, but experimentally popular, primary roots of Arabidopsis. A key finding revealed by such studies is that the initial gravitropic response of roots of maize and Arabidopsis occurs in the distal elongation zone (DEZ) near the root apical meristem, not in the main elongation zone. Another finding is that the initiation of rapid elongation in the DEZ following gravistimulation appears to be related to rapid membrane potential changes in this region of the root. These observations have provided the incentive for ongoing studies examining possible links between potential growth modifying factors (auxin, calcium, protons) and gravistimulated changes in membrane potential and growth patterns in the DEZ.
Surface displacement based shape analysis of central brain structures in preterm-born children
NASA Astrophysics Data System (ADS)
Garg, Amanmeet; Grunau, Ruth E.; Popuri, Karteek; Miller, Steven; Bjornson, Bruce; Poskitt, Kenneth J.; Beg, Mirza Faisal
2016-03-01
Many studies using T1 magnetic resonance imaging (MRI) data have found associations between changes in global metrics (e.g. volume) of brain structures and preterm birth. In this work, we use the surface displacement feature extracted from the deformations of the surface models of the third ventricle, fourth ventricle and brainstem to capture the variation in shape in these structures at 8 years of age that may be due to differences in the trajectory of brain development as a result of very preterm birth (24-32 weeks gestation). Understanding the spatial patterns of shape alterations in these structures in children who were born very preterm as compared to those who were born at full term may lead to better insights into mechanisms of differing brain development between these two groups. The T1 MRI data for the brain was acquired from children born full term (FT, n=14, 8 males) and preterm (PT, n=51, 22 males) at age 8-years. Accurate segmentation labels for these structures were obtained via a multi-template fusion based segmentation method. A high dimensional non-rigid registration algorithm was utilized to register the target segmentation labels to a set of segmentation labels defined on an average-template. The surface displacement data for the brainstem and the third ventricle were found to be significantly different (p < 0.05) between the PT and FT groups. Further, spatially localized clusters with inward and outward deformation were found to be associated with lower gestational age. The results from this study present a shape analysis method for pediatric MRI data and reveal shape changes that may be due to preterm birth.
Micro-computed Tomographic Analysis of Mandibular Second Molars with C-shaped Root Canals.
Amoroso-Silva, Pablo Andrés; Ordinola-Zapata, Ronald; Duarte, Marco Antonio Hungaro; Gutmann, James L; del Carpio-Perochena, Aldo; Bramante, Clovis Monteiro; de Moraes, Ivaldo Gomes
2015-06-01
The goal of the present study was to evaluate the morphometric aspects of the internal anatomy of the root canal system of mandibular second molars with C-shaped canals. Fifty-two extracted second mandibular molars with C-shaped canals, fused roots, and radicular grooves were selected from a Brazilian population. The samples were scanned with a micro-computed tomographic scanner at a voxel size of 19.6 μm. The root canal cross sections were recorded as C1, C2, C3, and C4 root canal configurations according to the modified Melton classification. Morphometric parameters, including the major and minor diameters of the root canals, the aspect ratio, the roundness, and the tridimensional configuration (merging, symmetric, and asymmetric), were evaluated. The 3-dimensional reconstruction images of the teeth indicated an even distribution within the sample. The analysis of the prevalence of the different cross-sectional configurations of the C-shaped molars revealed that these were predominantly of the C4 and C3 configurations (1 mm from the apex) and the C1 and C2 configurations in the cervical third. According to the morphometric parameters, the C1 and the distal aspect of the C2 configurations exhibited the lowest roundness values and higher values for the area, major diameter, and aspect ratio in the apical third. Mandibular molars with C-shaped root canals exhibited similar distributions of symmetric, asymmetric, and merging type canals. The C1 configuration and the distal aspect of the C2 configuration exhibited the highest area values, low roundness values, and large apical diameters. Copyright © 2015 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.
Fu, Amy L; Hammerschlag, Neil; Lauder, George V; Wilga, Cheryl D; Kuo, Chi-Yun; Irschick, Duncan J
2016-05-01
How morphology changes with size can have profound effects on the life history and ecology of an animal. For apex predators that can impact higher level ecosystem processes, such changes may have consequences for other species. Tiger sharks (Galeocerdo cuvier) are an apex predator in tropical seas, and, as adults, are highly migratory. However, little is known about ontogenetic changes in their body form, especially in relation to two aspects of shape that influence locomotion (caudal fin) and feeding (head shape). We captured digital images of the heads and caudal fins of live tiger sharks from Southern Florida and the Bahamas ranging in body size (hence age), and quantified shape of each using elliptical Fourier analysis. This revealed changes in the shape of the head and caudal fin of tiger sharks across ontogeny. Smaller juvenile tiger sharks show an asymmetrical tail with the dorsal (upper) lobe being substantially larger than the ventral (lower) lobe, and transition to more symmetrical tail in larger adults, although the upper lobe remains relatively larger in adults. The heads of juvenile tiger sharks are more conical, which transition to relatively broader heads over ontogeny. We interpret these changes as a result of two ecological transitions. First, adult tiger sharks can undertake extensive migrations and a more symmetrical tail could be more efficient for swimming longer distances, although we did not test this possibility. Second, adult tiger sharks expand their diet to consume larger and more diverse prey with age (turtles, mammals, and elasmobranchs), which requires substantially greater bite area and force to process. In contrast, juvenile tiger sharks consume smaller prey, such as fishes, crustaceans, and invertebrates. Our data reveal significant morphological shifts in an apex predator, which could have effects for other species that tiger sharks consume and interact with. © 2016 Wiley Periodicals, Inc.
NASA Astrophysics Data System (ADS)
Farrand, William H.; Glotch, Timothy D.; Rice, James W.; Hurowitz, Joel A.; Swayze, Gregg A.
2009-12-01
Analysis of visible to near infrared reflectance data from the MRO CRISM hyperspectral imager has revealed the presence of an ovoid-shaped landform, approximately 3 by 5 km in size, within the layered terrains surrounding the Mawrth Vallis outflow channel. This feature has spectral absorption features consistent with the presence of the ferric sulfate mineral jarosite, specifically a K-bearing jarosite (KFe 3(SO 4) 2(OH) 6). Terrestrial jarosite is formed through the oxidation of iron sulfides in acidic environments or from basaltic precursor minerals with the addition of sulfur. Previously identified phyllosilicates in the Mawrth Vallis layered terrains include a basal sequence of layers containing Fe-Mg smectites and an upper set of layers of hydrated silica and aluminous phyllosilicates. In terms of its fine scale morphology revealed by MRO HiRISE imagery, the jarosite-bearing unit has fracture patterns very similar to that observed in Fe-Mg smectite-bearing layers, but unlike that observed in the Al-bearing phyllosilicate unit. The ovoid-shaped landform is situated in an east-west bowl-shaped depression superposed on a north sloping surface. Spectra of the ovoid-shaped jarosite-bearing landform also display an anomalously high 600 nm shoulder, which may be consistent with the presence of goethite and a 1.92 μm absorption which could indicate the presence of ferrihydrite. Goethite, jarosite, and ferrihydrite can be co-precipitated and/or form through transformation of schwertmannite, both processes generally occurring under low pH conditions (pH 2-4). To date, this location appears to be unique in the Mawrth Vallis region and could represent precipitation of jarosite in acidic, sulfur-rich ponded water during the waning stages of drying.
Farrand, W. H.; Glotch, T.D.; Rice, J. W.; Hurowitz, J.A.; Swayze, G.A.
2009-01-01
Analysis of visible to near infrared reflectance data from the MRO CRISM hyperspectral imager has revealed the presence of an ovoid-shaped landform, approximately 3 by 5 km in size, within the layered terrains surrounding the Mawrth Vallis outflow channel. This feature has spectral absorption features consistent with the presence of the ferric sulfate mineral jarosite, specifically a K-bearing jarosite (KFe3(SO4)2(OH)6). Terrestrial jarosite is formed through the oxidation of iron sulfides in acidic environments or from basaltic precursor minerals with the addition of sulfur. Previously identified phyllosilicates in the Mawrth Vallis layered terrains include a basal sequence of layers containing Fe-Mg smectites and an upper set of layers of hydrated silica and aluminous phyllosilicates. In terms of its fine scale morphology revealed by MRO HiRISE imagery, the jarosite-bearing unit has fracture patterns very similar to that observed in Fe-Mg smectite-bearing layers, but unlike that observed in the Al-bearing phyllosilicate unit. The ovoid-shaped landform is situated in an east-west bowl-shaped depression superposed on a north sloping surface. Spectra of the ovoid-shaped jarosite-bearing landform also display an anomalously high 600 nm shoulder, which may be consistent with the presence of goethite and a 1.92 ??m absorption which could indicate the presence of ferrihydrite. Goethite, jarosite, and ferrihydrite can be co-precipitated and/or form through transformation of schwertmannite, both processes generally occurring under low pH conditions (pH 2-4). To date, this location appears to be unique in the Mawrth Vallis region and could represent precipitation of jarosite in acidic, sulfur-rich ponded water during the waning stages of drying. ?? 2009 Elsevier Inc. All rights reserved.
Body shape helps legged robots climb and turn in complex 3-D terrains
NASA Astrophysics Data System (ADS)
Han, Yuanfeng; Wang, Zheliang; Li, Chen
Analogous to streamlined shapes that reduce drag in fluids, insects' ellipsoid-like rounded body shapes were recently discovered to be ``terradynamically streamlined'' and enhance locomotion in cluttered terrain by facilitating body rolling. Here, we hypothesize that there exist more terradynamic shapes that facilitate other modes of locomotion like climbing and turning in complex 3-D terrains by facilitating body pitching and yawing. To test our hypothesis, we modified the body shape of a legged robot by adding an elliptical and a rectangular shell and tested how it negotiated with circular and square vertical pillars. With a rectangular shell the robot always pitched against square pillars in an attempt to climb, whereas with an elliptical shell it always yawed and turned away from circular pillars given a small initial lateral displacement. Square / circular pillars facilitated pitching / yawing, respectively. To begin to reveal the contact physics, we developed a locomotion energy landscape model. Our model revealed that potential energy barriers to transition from pitching to yawing are high for angular locomotor and obstacle shapes (rectangular / square) but vanish for rounded shapes (elliptical / circular). Our study supports the plausibility of locomotion energy landscapes for understanding the rich locomotor transitions in complex 3-D terrains.
Improving of Mechanical and Shape-Memory Properties in Hyperbranched Epoxy Shape-Memory Polymers
NASA Astrophysics Data System (ADS)
Santiago, David; Fabregat-Sanjuan, Albert; Ferrando, Francesc; De la Flor, Silvia
2016-09-01
A series of shape-memory epoxy polymers were synthesized using an aliphatic amine and two different commercial hyperbranched poly(ethyleneimine)s with different molecular weights as crosslinking agents. Thermal, mechanical, and shape-memory properties in materials modified with different hyperbranched polymers were analyzed and compared in order to establish the effect of the structure and the molecular weight of the hyperbranched polymers used. The presence of hyperbranched polymers led to more heterogeneous networks, and the crosslinking densities of which increase as the hyperbranched polymer content increases. The transition temperatures can be tailored from 56 to 117 °C depending on the molecular weight and content of the hyperbranched polymer. The mechanical properties showed excellent values in all formulations at room temperature and, specially, at T_{{g}}^{{E^' with stress at break as high as 15 MPa and strain at break as high as 60 %. The shape-memory performances revealed recovery ratios around 95 %, fixity ratios around 97 %, and shape-recovery velocities as high as 22 %/min. The results obtained in this study reveal that hyperbranched polymers with different molecular weights can be used to enhance the thermal and mechanical properties of epoxy-based SMPs while keeping excellent shape-memory properties.
Investigation of the degradation mechanism of catalytic wires during oxidation of ammonia process
NASA Astrophysics Data System (ADS)
Pura, Jarosław; Wieciński, Piotr; Kwaśniak, Piotr; Zwolińska, Marta; Garbacz, Halina; Zdunek, Joanna; Laskowski, Zbigniew; Gierej, Maciej
2016-12-01
The most common catalysts for the ammonia oxidation process are 80 μm diameter platinum-rhodium wires knitted or woven into the form of a gauze. In an aggressive environment and under extreme conditions (temperature 800-900 °C, intensive gas flow, high pressure) precious elements are drained from the surface of the wires. Part of this separated material quickly decomposes on the surface in the form of characteristic "cauliflower-shape protrusions". The rest of the platinum is captured by palladium-nickel catalytic-capture gauzes located beneath. In our investigation we focused on the effects of the degradation of gauzes from one industrial catalytic system. The aim of the study was to compare the degree and the mechanism of degradation of gauzes from a different part of the reactor. The study covered PtRh7 catalytic and PdNi5 catalytic-capture gauzes. X-ray computer microtomography investigation revealed that despite strong differences in morphology, each Pt-Rh wire has a similar specific surface area. This indicates that the oxidation process and morphological changes of the wires occur in a self-regulating balance, resulting in the value of the specific surface area of the catalyst. Microtomography analysis of Pd-Ni wires revealed strong redevelopment of the wires' surface, which is related to the platinum capture phenomenon. Scanning electron microscope observations also revealed the nanostructure in the cauliflower-shape protrusions and large grains in the wires' preserved cores. The high temperature in the reactor and the long-term nature of the process do not favor the occurrence of the nanostructure in this type of material. Further and detailed analysis of this phenomena will provide a better understanding of the precious metals etching and deposition processes during oxidation.
Human Nek6 is a monomeric mostly globular kinase with an unfolded short N-terminal domain
2011-01-01
Background The NIMA-related kinases (Neks) are widespread among eukaryotes. In mammalians they represent an evolutionarily conserved family of 11 serine/threonine kinases, with 40-45% amino acid sequence identity to the Aspergillus nidulans mitotic regulator NIMA within their catalytic domains. Neks have cell cycle-related functions and were recently described as related to pathologies, particularly cancer, consisting in potential chemotherapeutic targets. Human Nek6, -7 and -9 are involved in the control of mitotic spindle formation, acting together in a mitotic kinase cascade, but their mechanism of regulation remain elusive. Results In this study we performed a biophysical and structural characterization of human Nek6 with the aim of obtaining its low resolution and homology models. SAXS experiments showed that hNek6 is a monomer of a mostly globular, though slightly elongated shape. Comparative molecular modeling together with disorder prediction analysis also revealed a flexible disordered N-terminal domain for hNek6, which we found to be important to mediate interactions with diverse partners. SEC-MALS experiments showed that hNek6 conformation is dependent on its activation/phosphorylation status, a higher phosphorylation degree corresponding to a bigger Stokes radius. Circular dichroism spectroscopy confirmed our in silico predictions of secondary structure content and thermal stability shift assays revealed a slightly higher stability of wild-type hNek6 compared to the activation loop mutant hNek6(S206A). Conclusions Our data present the first low resolution 3D structure of hNek6 protein in solution. SAXS, comparative modeling and SEC-MALS analysis revealed that hNek6 is a monomeric kinase of slightly elongated shape and a short unfolded N-terminal domain. PMID:21320329
Tully, Damien C.; Ogilvie, Colin B.; Batorsky, Rebecca E.; Bean, David J.; Power, Karen A.; Ghebremichael, Musie; Bedard, Hunter E.; Gladden, Adrianne D.; Seese, Aaron M.; Amero, Molly A.; Lane, Kimberly; McGrath, Graham; Bazner, Suzane B.; Tinsley, Jake; Lennon, Niall J.; Henn, Matthew R.; Brumme, Zabrina L.; Norris, Philip J.; Rosenberg, Eric S.; Mayer, Kenneth H.; Jessen, Heiko; Kosakovsky Pond, Sergei L.; Walker, Bruce D.; Altfeld, Marcus; Carlson, Jonathan M.; Allen, Todd M.
2016-01-01
Due to the stringent population bottleneck that occurs during sexual HIV-1 transmission, systemic infection is typically established by a limited number of founder viruses. Elucidation of the precise forces influencing the selection of founder viruses may reveal key vulnerabilities that could aid in the development of a vaccine or other clinical interventions. Here, we utilize deep sequencing data and apply a genetic distance-based method to investigate whether the mode of sexual transmission shapes the nascent founder viral genome. Analysis of 74 acute and early HIV-1 infected subjects revealed that 83% of men who have sex with men (MSM) exhibit a single founder virus, levels similar to those previously observed in heterosexual (HSX) transmission. In a metadata analysis of a total of 354 subjects, including HSX, MSM and injecting drug users (IDU), we also observed no significant differences in the frequency of single founder virus infections between HSX and MSM transmissions. However, comparison of HIV-1 envelope sequences revealed that HSX founder viruses exhibited a greater number of codon sites under positive selection, as well as stronger transmission indices possibly reflective of higher fitness variants. Moreover, specific genetic “signatures” within MSM and HSX founder viruses were identified, with single polymorphisms within gp41 enriched among HSX viruses while more complex patterns, including clustered polymorphisms surrounding the CD4 binding site, were enriched in MSM viruses. While our findings do not support an influence of the mode of sexual transmission on the number of founder viruses, they do demonstrate that there are marked differences in the selection bottleneck that can significantly shape their genetic composition. This study illustrates the complex dynamics of the transmission bottleneck and reveals that distinct genetic bottleneck processes exist dependent upon the mode of HIV-1 transmission. PMID:27163788
Tully, Damien C; Ogilvie, Colin B; Batorsky, Rebecca E; Bean, David J; Power, Karen A; Ghebremichael, Musie; Bedard, Hunter E; Gladden, Adrianne D; Seese, Aaron M; Amero, Molly A; Lane, Kimberly; McGrath, Graham; Bazner, Suzane B; Tinsley, Jake; Lennon, Niall J; Henn, Matthew R; Brumme, Zabrina L; Norris, Philip J; Rosenberg, Eric S; Mayer, Kenneth H; Jessen, Heiko; Kosakovsky Pond, Sergei L; Walker, Bruce D; Altfeld, Marcus; Carlson, Jonathan M; Allen, Todd M
2016-05-01
Due to the stringent population bottleneck that occurs during sexual HIV-1 transmission, systemic infection is typically established by a limited number of founder viruses. Elucidation of the precise forces influencing the selection of founder viruses may reveal key vulnerabilities that could aid in the development of a vaccine or other clinical interventions. Here, we utilize deep sequencing data and apply a genetic distance-based method to investigate whether the mode of sexual transmission shapes the nascent founder viral genome. Analysis of 74 acute and early HIV-1 infected subjects revealed that 83% of men who have sex with men (MSM) exhibit a single founder virus, levels similar to those previously observed in heterosexual (HSX) transmission. In a metadata analysis of a total of 354 subjects, including HSX, MSM and injecting drug users (IDU), we also observed no significant differences in the frequency of single founder virus infections between HSX and MSM transmissions. However, comparison of HIV-1 envelope sequences revealed that HSX founder viruses exhibited a greater number of codon sites under positive selection, as well as stronger transmission indices possibly reflective of higher fitness variants. Moreover, specific genetic "signatures" within MSM and HSX founder viruses were identified, with single polymorphisms within gp41 enriched among HSX viruses while more complex patterns, including clustered polymorphisms surrounding the CD4 binding site, were enriched in MSM viruses. While our findings do not support an influence of the mode of sexual transmission on the number of founder viruses, they do demonstrate that there are marked differences in the selection bottleneck that can significantly shape their genetic composition. This study illustrates the complex dynamics of the transmission bottleneck and reveals that distinct genetic bottleneck processes exist dependent upon the mode of HIV-1 transmission.
Eom, Youngsub; Kim, Dae Wook; Ryu, Dongok; Kim, Jun-Heon; Yang, Seul Ki; Song, Jong Suk; Kim, Sug-Whan; Kim, Hyo Myung
2017-05-01
To evaluate the incidence of central hole-induced ring-shaped dysphotopsia after posterior chamber phakic implantable collamer lens (ICL) with central hole (hole ICL) implantation and to investigate the causes of central hole-induced dysphotopsia. The clinical study enrolled 29 eyes of 15 consecutive myopic patients implanted with hole ICL. The incidence of ring-shaped dysphotopsia after hole ICL implantation was evaluated. In the experimental simulation study, non-sequential ray tracing was used to construct myopic human eye models with hole ICL and ICL without a central hole (conventional ICL). Simulated retinal images measured in log-scale irradiance were compared between the two ICLs for an extended Lambertian light-emitting disc object 20 cm in diameter placed 2 m from the corneal vertex. To investigate the causes of hole-induced dysphotopsia, a series of retinal images were simulated using point sources at infinity with well-defined field angles (0 to -20°) and multiple ICL models. Of 29 eyes, 15 experienced ring-shaped dysphotopsia after hole ICL implantation. The simulation study using an extended Lambertian source showed that hole ICL-evoked ring-shaped dysphotopsia was formed at a retinal field angle of ±40°. Component-level analysis using a well-defined off-axis point source from infinity revealed that ring-shaped dysphotopsia was generated by stray light refraction from the inner wall of the hole and the posterior ICL surface. Hole ICL-evoked ring-shaped dysphotopsia was related to light refraction at the central hole structure. Surgeons are advised to explain to patients the possibility of ring-shaped dysphotopsia after hole ICL implantation. © 2016 Acta Ophthalmologica Scandinavica Foundation. Published by John Wiley & Sons Ltd.
Kong, Dali; Lin, Wei; Pan, Yongxin; Zhang, Keke
2014-01-01
We investigate the swimming motion of rod-shaped magnetotactic bacteria affiliated with the Nitrospirae phylum in a viscous liquid under the influence of an externally imposed, time-dependent magnetic field. By assuming that fluid motion driven by the translation and rotation of a swimming bacterium is of the Stokes type and that inertial effects of the motion are negligible, we derive a new system of the twelve coupled equations that govern both the motion and orientation of a swimming rod-shaped magnetotactic bacterium with a growing magnetic moment in the laboratory frame of reference. It is revealed that the initial pattern of swimming motion can be strongly affected by the rate of the growing magnetic moment. It is also revealed, through comparing mathematical solutions of the twelve coupled equations to the swimming motion observed in our laboratory experiments with rod-shaped magnetotactic bacteria, that the laboratory trajectories of the swimming motion can be approximately reproduced using an appropriate set of the parameters in our theoretical model. PMID:24523716
NASA Astrophysics Data System (ADS)
Litwin, K. L.; Jerolmack, D. J.
2011-12-01
Selective sorting and abrasion are the two major fluvial processes that are attributed to the downstream fining of sediments in rivers and alluvial fans. Selective transport is the process by which smaller grains are preferentially transported downstream while larger grains are deposited closer to the source. Abrasion is defined by the production of fine sediments and sand that occurs by saltation of gravel, where particle-to-particle collisions supply the energy required to break apart grains. We hypothesize that abrasion results in the gradual fining of large grains and the production of fine sands and silts, while sorting accounts for the differences in transport of these two grain-size fractions produced from abrasion, thereby creating the abrupt gravel-sand transition observed in many channel systems. In this research, we explore both selective transport and abrasion processes on the Dog Canyon alluvial fan near Alamogordo, New Mexico. We complete an extensive grain size analysis down the main channel of the fan employing an image-based technique that utilizes an autocorrelation process. We also characterize changes in grain shape using standard shape parameters, as well as Fourier analysis, which allows the study of contributions of grain roughness on a variety of length scales. Sorting appears to dominate the upper portion of the fan; the grain-size distribution narrows moving downstream until reaching a point of equal mobility, at which point sorting ceases. Abrasion exerts a subtle but persistent effect on grains during transport down the fan. Shape analysis reveals that particles become more rounded by the removal of small-scale textural features, a process that is expected to only modestly influence grain size of gravel, but should produce significant quantities of sand. This study provides a better understanding of the importance of grain abrasion and sorting on the downstream fining of channel grains in an alluvial fan, as well as an improved knowledge about the abrupt gravel-sand transition observed in a majority of alluvial fans.
Liu, Fan; Chen, Yan; Zhu, Gu; Hysi, Pirro G; Wu, Sijie; Adhikari, Kaustubh; Breslin, Krystal; Pospiech, Ewelina; Hamer, Merel A; Peng, Fuduan; Muralidharan, Charanya; Acuna-Alonzo, Victor; Canizales-Quinteros, Samuel; Bedoya, Gabriel; Gallo, Carla; Poletti, Giovanni; Rothhammer, Francisco; Bortolini, Maria Catira; Gonzalez-Jose, Rolando; Zeng, Changqing; Xu, Shuhua; Jin, Li; Uitterlinden, André G; Ikram, M Arfan; van Duijn, Cornelia M; Nijsten, Tamar; Walsh, Susan; Branicki, Wojciech; Wang, Sijia; Ruiz-Linares, Andrés; Spector, Timothy D; Martin, Nicholas G; Medland, Sarah E; Kayser, Manfred
2018-02-01
Shape variation of human head hair shows striking variation within and between human populations, while its genetic basis is far from being understood. We performed a series of genome-wide association studies (GWASs) and replication studies in a total of 28 964 subjects from 9 cohorts from multiple geographic origins. A meta-analysis of three European GWASs identified 8 novel loci (1p36.23 ERRFI1/SLC45A1, 1p36.22 PEX14, 1p36.13 PADI3, 2p13.3 TGFA, 11p14.1 LGR4, 12q13.13 HOXC13, 17q21.2 KRTAP, and 20q13.33 PTK6), and confirmed 4 previously known ones (1q21.3 TCHH/TCHHL1/LCE3E, 2q35 WNT10A, 4q21.21 FRAS1, and 10p14 LINC00708/GATA3), all showing genome-wide significant association with hair shape (P < 5e-8). All except one (1p36.22 PEX14) were replicated with nominal significance in at least one of the 6 additional cohorts of European, Native American and East Asian origins. Three additional previously known genes (EDAR, OFCC1, and PRSS53) were confirmed at the nominal significance level. A multivariable regression model revealed that 14 SNPs from different genes significantly and independently contribute to hair shape variation, reaching a cross-validated AUC value of 0.66 (95% CI: 0.62-0.70) and an AUC value of 0.64 in an independent validation cohort, providing an improved accuracy compared with a previous model. Prediction outcomes of 2504 individuals from a multiethnic sample were largely consistent with general knowledge on the global distribution of hair shape variation. Our study thus delivers target genes and DNA variants for future functional studies to further evaluate the molecular basis of hair shape in humans. © The Author(s) 2017. Published by Oxford University Press.
Mayall, Peter; Pilbrow, Varsha
2018-05-01
The arrival of the Huns into Europe in the fourth century AD increased the occurrence of intentional cranial modification among European nomads. It has been postulated that the Huns used a two-bandage cranial binding technique to differentiate themselves from surrounding nomadic groups, including those from Georgia. This study examines this hypothesis by comparing Migration Period (4th to 7th century AD) juvenile crania, which retain strong impressions of bindings, with adult modified crania from Hungary and Georgia. Twelve surface landmarks and 251 semi-landmarks were used to study ontogenetic trajectories in 9 juvenile and 16 adult modified skulls from 8 Hungarian sites and 21 adult skulls from two Georgian sites. Generalized Procrustes analysis, linear regression of Procrutes distance on dental age and log centroid size, and warping the principal components (PCs) in shape space helped to identify cranial shape changes. The PCs provide significant separation of the juvenile and adult groups from Georgia and Hungary. Variation in modified cranial shape was limited in Hungary compared to Georgia. There was stronger correlation between juvenile and adult modified cranial shape in Hungary than in Georgia. Warping along the first axis reveals the trajectory from marked flattening of the frontal and occipital regions in juveniles to diminished flattening in the same regions in adult crania, corresponding with one binding. Another depression extending from the post-bregmatic region to the temporal region, similarly strong in juveniles but diminishing in adults, marks the second binding. Hungarian crania were modified with two bindings with limited shape variation, whereas the Georgian crania had greater variation in shape being also modified with antero-posterior bindings. The findings from this study alongside contemporary historical sources help to understand the role of intentional cranial modification as a mark of social identity among nomads in the Migration Period of Europe. © 2018 Wiley Periodicals, Inc.
Liu, Fan; Chen, Yan; Zhu, Gu; Hysi, Pirro G; Wu, Sijie; Adhikari, Kaustubh; Breslin, Krystal; Pośpiech, Ewelina; Hamer, Merel A; Peng, Fuduan; Muralidharan, Charanya; Acuna-Alonzo, Victor; Canizales-Quinteros, Samuel; Bedoya, Gabriel; Gallo, Carla; Poletti, Giovanni; Rothhammer, Francisco; Bortolini, Maria Catira; Gonzalez-Jose, Rolando; Zeng, Changqing; Xu, Shuhua; Jin, Li; Uitterlinden, André G; Ikram, M Arfan; van Duijn, Cornelia M; Nijsten, Tamar; Walsh, Susan; Branicki, Wojciech; Wang, Sijia; Ruiz-Linares, Andrés; Spector, Timothy D; Martin, Nicholas G; Medland, Sarah E; Kayser, Manfred
2018-01-01
Abstract Shape variation of human head hair shows striking variation within and between human populations, while its genetic basis is far from being understood. We performed a series of genome-wide association studies (GWASs) and replication studies in a total of 28 964 subjects from 9 cohorts from multiple geographic origins. A meta-analysis of three European GWASs identified 8 novel loci (1p36.23 ERRFI1/SLC45A1, 1p36.22 PEX14, 1p36.13 PADI3, 2p13.3 TGFA, 11p14.1 LGR4, 12q13.13 HOXC13, 17q21.2 KRTAP, and 20q13.33 PTK6), and confirmed 4 previously known ones (1q21.3 TCHH/TCHHL1/LCE3E, 2q35 WNT10A, 4q21.21 FRAS1, and 10p14 LINC00708/GATA3), all showing genome-wide significant association with hair shape (P < 5e-8). All except one (1p36.22 PEX14) were replicated with nominal significance in at least one of the 6 additional cohorts of European, Native American and East Asian origins. Three additional previously known genes (EDAR, OFCC1, and PRSS53) were confirmed at the nominal significance level. A multivariable regression model revealed that 14 SNPs from different genes significantly and independently contribute to hair shape variation, reaching a cross-validated AUC value of 0.66 (95% CI: 0.62–0.70) and an AUC value of 0.64 in an independent validation cohort, providing an improved accuracy compared with a previous model. Prediction outcomes of 2504 individuals from a multiethnic sample were largely consistent with general knowledge on the global distribution of hair shape variation. Our study thus delivers target genes and DNA variants for future functional studies to further evaluate the molecular basis of hair shape in humans. PMID:29220522
Investigating Some Technical Issues on Cohesive Zone Modeling of Fracture
NASA Technical Reports Server (NTRS)
Wang, John T.
2011-01-01
This study investigates some technical issues related to the use of cohesive zone models (CZMs) in modeling fracture processes. These issues include: why cohesive laws of different shapes can produce similar fracture predictions; under what conditions CZM predictions have a high degree of agreement with linear elastic fracture mechanics (LEFM) analysis results; when the shape of cohesive laws becomes important in the fracture predictions; and why the opening profile along the cohesive zone length needs to be accurately predicted. Two cohesive models were used in this study to address these technical issues. They are the linear softening cohesive model and the Dugdale perfectly plastic cohesive model. Each cohesive model constitutes five cohesive laws of different maximum tractions. All cohesive laws have the same cohesive work rate (CWR) which is defined by the area under the traction-separation curve. The effects of the maximum traction on the cohesive zone length and the critical remote applied stress are investigated for both models. For a CZM to predict a fracture load similar to that obtained by an LEFM analysis, the cohesive zone length needs to be much smaller than the crack length, which reflects the small scale yielding condition requirement for LEFM analysis to be valid. For large-scale cohesive zone cases, the predicted critical remote applied stresses depend on the shape of cohesive models used and can significantly deviate from LEFM results. Furthermore, this study also reveals the importance of accurately predicting the cohesive zone profile in determining the critical remote applied load.
Baró, Jordi; Martín-Olalla, José-María; Romero, Francisco Javier; Gallardo, María Carmen; Salje, Ekhard K H; Vives, Eduard; Planes, Antoni
2014-03-26
The existence of temporal correlations during the intermittent dynamics of a thermally driven structural phase transition is studied in a Cu-Zn-Al alloy. The sequence of avalanches is observed by means of two techniques: acoustic emission and high sensitivity calorimetry. Both methods reveal the existence of event clustering in a way that is equivalent to the Omori correlations between aftershocks in earthquakes as are commonly used in seismology.
Solving the nurse faculty shortage: exploring retention issues.
Berent, Georgine R; Anderko, Laura
2011-01-01
Researchers have explored reasons why nurse faculty leave academia, but few have focused on factors that encourage them to stay. Using Herzberg's Motivation-Hygiene Theory, an online cross-sectional survey was completed by 1,171 tenured nurse faculty nationwide. Factor analysis revealed that the most significant factor influencing retention was professional satisfaction with faculty identity, including the ability to shape nursing practice. Academia may benefit by considering these factors to promote nurse faculty retention. Copyright © 2011 Wolters Kluwer Health | Lippincott Williams & Wilkins
Analytical and experimental vibration studies of a 1/8-scale shuttle orbiter
NASA Technical Reports Server (NTRS)
Pinson, L. D.
1975-01-01
Natural frequencies and mode shapes for four symmetric vibration modes and four antisymmetric modes are compared with predictions based on NASTRAN finite-element analyses. Initial predictions gave poor agreement with test data; an extensive investigation revealed that the major factors influencing agreement were out-of-plane imperfections in fuselage panels and a soft fin-fuselage connection. Computations with a more refined analysis indicated satisfactory frequency predictions for all modes studied, within 11 percent of experimental values.
Pedunculated, well differentiated liposarcoma of the oesophagus mimicking giant fibrovascular polyp.
Mehdorn, A S; Schmidt, F; Steinestel, K; Wardelmann, E; Greulich, B; Palmes, D; Senninger, N
2017-09-01
We present a rare case of a big oesophageal liposarcoma causing dysphagia and weight loss in a 75-year-old patient. Endoscopically, a pedunculated lesion with subtotal obstruction of the oesophageal lumen had been detected and thoracoabdominal oesophageal resection with gastric sleeve reconstruction was performed. Surprisingly, a liposarcoma of the oesophagus was revealed on histopathological analysis, showing MDM2 overexpression. Oncological follow-up has been uneventful and the patient remains in good clinical shape at 15 months after surgery.
NASA Astrophysics Data System (ADS)
Passarino, Giampiero
2014-05-01
Higgs Computed Axial Tomography, an excerpt. The Higgs boson lineshape ( and the devil hath power to assume a pleasing shape, Hamlet, Act II, scene 2) is analyzed for the process, with special emphasis on the off-shell tail which shows up for large values of the Higgs virtuality. The effect of including background and interference is also discussed. The main focus of this work is on residual theoretical uncertainties, discussing how much-improved constraint on the Higgs intrinsic width can be revealed by an improved approach to analysis.
Lu, Changrui; Smith, Angela M; Ding, Fang; Chowdhury, Anirban; Henkin, Tina M; Ke, Ailong
2012-01-01
The SMK box (SAM-III) translational riboswitches were identified in S-adenosyl-L-methionine (SAM) synthetase metK genes in members of the Lactobacillales. This riboswitch switches between two alternative conformations in response to the intracellular SAM concentration and controls metK expression at the level of translation initiation. We previously reported the crystal structure of the SAM-bound SMK box riboswitch. In this study we combined SHAPE chemical probing with mutagenesis to probe the ligand-induced conformational switching mechanism. We revealed that while the majority of the apo SMK box RNA molecules exist in an alternatively base paired (ON) conformation, a subset of them pre-organize into a SAM-bound-like (READY) conformation, which upon SAM exposure is selectively stabilized into the SAM-bound (OFF) conformation through an induced-fit mechanism. Mutagenesis showed that the ON state is only slightly more stable than the READY state, as several single-nucleotide substitutions in a hypervariable region outside the SAM-binding core can alter the folding landscape to favor the READY state. Such SMK variants display a “constitutively-OFF” behavior both in vitro and in vivo. Time-resolved and temperature-dependent SHAPE analyses revealed adaptation of the SMK box RNA to its mesothermal working environment. The latter analysis revealed that the SAM-bound SMK box RNA follows a two-step folding/unfolding process. PMID:21549712
Customized shaping of vibration modes by acoustic metamaterial synthesis
NASA Astrophysics Data System (ADS)
Xu, Jiawen; Li, Shilong; Tang, J.
2018-04-01
Acoustic metamaterials have attractive potential in elastic wave guiding and attenuation over specific frequency ranges. The vast majority of related investigations are on transient waves. In this research we focus on stationary wave manipulation, i.e., shaping of vibration modes. Periodically arranged piezoelectric transducers shunted with inductive circuits are integrated to a beam structure to form a finite-length metamaterial beam. We demonstrate for the first time that, under a given operating frequency of interest, we can facilitate a metamaterial design such that this frequency becomes a natural frequency of the integrated system. Moreover, the vibration mode corresponding to this natural frequency can be customized and shaped to realize tailored/localized response distribution. This is fundamentally different from previous practices of utilizing geometry modification and/or feedback control to achieve mode tailoring. The metamaterial design is built upon the combinatorial effects of the bandgap feature and the effective resonant cavity feature, both attributed to the dynamic characteristics of the metamaterial beam. Analytical investigations based on unit-cell dynamics and modal analysis of the metamaterial beam are presented to reveal the underlying mechanism. Case illustrations are validated by finite element analyses. Owing to the online tunability of circuitry integrated, the proposed mode shaping technique can be online adjusted to fit specific requirements. The customized shaping of vibration modes by acoustic metamaterial synthesis has potential applications in vibration suppression, sensing enhancement and energy harvesting.
Ikeda, Tohru; Kasai, Michiyuki; Tatsukawa, Eri; Kamitakahara, Masanobu; Shibata, Yasuaki; Yokoi, Taishi; Nemoto, Takayuki K; Ioku, Koji
2014-01-01
The biological activity of osteoblasts and osteoclasts is regulated not only by hormones but also by local growth factors, which are expressed in neighbouring cells or included in bone matrix. Previously, we developed hydroxyapatite (HA) composed of rod-shaped particles using applied hydrothermal methods (HHA), and it revealed mild biodegradability and potent osteoclast homing activity. Here, we compared serum proteins adsorbed to HHA with those adsorbed to conventional HA composed of globular-shaped particles (CHA). The two ceramics adsorbed serum albumin and γ-globulin to similar extents, but affinity for γ-globulin was much greater than that to serum albumin. The chemotactic activity for macrophages of serum proteins adsorbed to HHA was significantly higher than that of serum proteins adsorbed to CHA. Quantitative proteomic analysis of adsorbed serum proteins revealed preferential binding of vitamin D-binding protein (DBP) and complements C3 and C4B with HHA. When implanted with the femur of 8-week-old rats, HHA contained significantly larger amount of DBP than CHA. The biological activity of DBP was analysed and it was found that the chemotactic activity for macrophages was weak. However, DBP-macrophage activating factor, which is generated by the digestion of sugar chains of DBP, stimulated osteoclastogenesis. These results confirm that the microstructure of hydroxyapatite largely affects the affinity for serum proteins, and suggest that DBP preferentially adsorbed to HA composed of rod-shaped particles influences its potent osteoclast homing activity and local bone metabolism. PMID:24286277
Simonidze, V; Samushia, O
2014-01-01
The paper deals with the study of the changes in the formed elements of blood during the Alzheimer's and Parkinson's diseases. While studying the structure of thrombocytes, a number of identical structural changes were identified in case of both diseases. The study has revealed various shapes of thrombocytes, the production of pseudopodia on their surface, high level of body outline, specific distribution of glycogen granules and their concentration on the periphery, glycogen eruption, dissociation of Alpha-granules towards the edge, and effective outline and density of the granules. There are frequent cases of the granule eruption from the body (exocytosis), the existence of vacuoles on the matrix, the rise in the number of gigantic thrombocytes and, consequently, considerable enhancement of the ability of absorption. Besides, there is a rise in the number of degenerated cells. The shape of thrombocytes is often changed and stretched on one side. The produced pseudopodia make the impression of participation in phagocytosis. As for the difference between changes, during Parkinson disease the amount of thrombocytes is low, more gigantic and distorted shape, less invagination of plasma membrane, low amount of granules and less intensity of alpha-granule eruption from the body. The changes revealed by the research show the activity of thrombocytes, which should be connected to their participation in protective functions of the body towards existing agent. And the diseases - although with similar but with different pathogenic mechanisms - are being developed with participation of non-specific agents.
A conserved chemical dialog of mutualism: lessons from squid and vibrio
Schwartzman, Julia A.; Ruby, Edward G.
2015-01-01
Microorganisms shape, and are shaped by, their environment. In host-microbe associations, this environment is defined by tissue chemistry, which reflects local and organism-wide physiology, as well as inflammatory status. We review how, in the squid-vibrio mutualism, both partners shape tissue chemistry, revealing common themes governing tissue homeostasis in animal-microbe associations. PMID:26384815
3D shape analysis of the brain's third ventricle using a midplane encoded symmetric template model
Kim, Jaeil; Valdés Hernández, Maria del C.; Royle, Natalie A.; Maniega, Susana Muñoz; Aribisala, Benjamin S.; Gow, Alan J.; Bastin, Mark E.; Deary, Ian J.; Wardlaw, Joanna M.; Park, Jinah
2016-01-01
Background Structural changes of the brain's third ventricle have been acknowledged as an indicative measure of the brain atrophy progression in neurodegenerative and endocrinal diseases. To investigate the ventricular enlargement in relation to the atrophy of the surrounding structures, shape analysis is a promising approach. However, there are hurdles in modeling the third ventricle shape. First, it has topological variations across individuals due to the inter-thalamic adhesion. In addition, as an interhemispheric structure, it needs to be aligned to the midsagittal plane to assess its asymmetric and regional deformation. Method To address these issues, we propose a model-based shape assessment. Our template model of the third ventricle consists of a midplane and a symmetric mesh of generic shape. By mapping the template's midplane to the individuals’ brain midsagittal plane, we align the symmetric mesh on the midline of the brain before quantifying the third ventricle shape. To build the vertex-wise correspondence between the individual third ventricle and the template mesh, we employ a minimal-distortion surface deformation framework. In addition, to account for topological variations, we implement geometric constraints guiding the template mesh to have zero width where the inter-thalamic adhesion passes through, preventing vertices crossing between left and right walls of the third ventricle. The individual shapes are compared using a vertex-wise deformity from the symmetric template. Results Experiments on imaging and demographic data from a study of aging showed that our model was sensitive in assessing morphological differences between individuals in relation to brain volume (i.e. proxy for general brain atrophy), gender and the fluid intelligence at age 72. It also revealed that the proposed method can detect the regional and asymmetrical deformation unlike the conventional measures: volume (median 1.95 ml, IQR 0.96 ml) and width of the third ventricle. Similarity measures between binary masks and the shape model showed that the latter reconstructed shape details with high accuracy (Dice coefficient ≥0.9, mean distance 0.5 mm and Hausdorff distance 2.7 mm). Conclusions We have demonstrated that our approach is suitable to morphometrical analyses of the third ventricle, providing high accuracy and inter-subject consistency in the shape quantification. This shape modeling method with geometric constraints based on anatomical landmarks could be extended to other brain structures which require a consistent measurement basis in the morphometry. PMID:27084320
NASA Astrophysics Data System (ADS)
Jamali-Sheini, Farid; Cheraghizade, Mohsen; Yousefi, Ramin
2018-06-01
In this study, electrodeposition technique was applied to deposit un-, lead (Pb), and zinc (Zn)-doped SnSe films. X-ray diffraction (XRD) patterns of the films showed a polycrystalline SnSe phase with orthorhombic crystalline lattice. SEM images revealed ball-shaped, rod-shaped, and wire-shaped morphologies for SnSe films. Moreover, optical measurements indicated incorporation of dopant in the crystalline lattice of films by varying the optical energy band gap. Electrical characterization of Pb- and Zn-doped SnSe films showed their p-type nature. Finally, the solar cell device fabricated using the Zn-doped SnSe films reveal a higher efficiency because of their higher carrier concentration.
NASA Technical Reports Server (NTRS)
Cervantes, Emilio; Tocino, Angel
2005-01-01
Structurally, ethylene is the simplest phytohormone and regulates multiple aspects of plant growth and development. Its effects are mediated by a signal transduction cascade involving receptors, MAP kinases and transcription factors. Many morphological effects of ethylene in plant development, including root size, have been previously described. In this article a combined geometric and algebraic approach has been used to analyse the shape and the curvature in the root apex of Arabidopsis seedlings. The process requires the fitting of Bezier curves that reproduce the root apex shape, and the calculation of the corresponding curvatures. The application of the method has allowed us to identify significant differences in the root curvatures of ethylene insensitive mutants (ein2-1 and etr1-1) with respect to the wild-type Columbia.
Spherical loudspeaker array for local active control of sound.
Rafaely, Boaz
2009-05-01
Active control of sound has been employed to reduce noise levels around listeners' head using destructive interference from noise-canceling sound sources. Recently, spherical loudspeaker arrays have been studied as multiple-channel sound sources, capable of generating sound fields with high complexity. In this paper, the potential use of a spherical loudspeaker array for local active control of sound is investigated. A theoretical analysis of the primary and secondary sound fields around a spherical sound source reveals that the natural quiet zones for the spherical source have a shell-shape. Using numerical optimization, quiet zones with other shapes are designed, showing potential for quiet zones with extents that are significantly larger than the well-known limit of a tenth of a wavelength for monopole sources. The paper presents several simulation examples showing quiet zones in various configurations.
Numerical performance analysis of quartz tuning fork-based force sensors
NASA Astrophysics Data System (ADS)
Dagdeviren, Omur E.; Schwarz, Udo D.
2017-01-01
Quartz tuning fork-based force sensors where one prong is immobilized onto a holder while the other one is allowed to oscillate freely (‘qPlus’ configuration) are in widespread use for high-resolution scanning probe microscopy applications. Due to the small size of the tuning forks (≈3 mm) and the complexity of the sensor assemblies, the reliable and repeatable manufacturing of the sensors has been challenging. In this paper, we investigate the contribution of the amount and location of the epoxy glue used to attach the tuning fork to its holder on the sensor’s performance. Towards this end, we use finite element analysis to model the entire sensor assembly and to perform static and dynamic numerical simulations. Our analysis reveals that increasing the thickness of the epoxy layer between prong and holder results in a decrease of the sensor’s spring constant, eigenfrequency, and quality factor while showing an increasing deviation from oscillation in its primary modal shape. Adding epoxy at the sides of the tuning fork also leads to a degradation of the quality factor even though in this case, spring constant and eigenfrequency rise in tandem with a lessening of the deviation from its ideal modal shape.
Delineation of sympatric morphotypes of lake trout in Lake Superior
Moore, Seth A.; Bronte, Charles R.
2001-01-01
Three morphotypes of lake trout Salvelinus namaycush are recognized in Lake Superior: lean, siscowet, and humper. Absolute morphotype assignment can be difficult. We used a size-free, whole-body morphometric analysis (truss protocol) to determine whether differences in body shape existed among lake trout morphotypes. Our results showed discrimination where traditional morphometric characters and meristic measurements failed to detect differences. Principal components analysis revealed some separation of all three morphotypes based on head and caudal peduncle shape, but it also indicated considerable overlap in score values. Humper lake trout have smaller caudal peduncle widths to head length and depth characters than do lean or siscowet lake trout. Lean lake trout had larger head measures to caudal widths, whereas siscowet had higher caudal peduncle to head measures. Backward stepwise discriminant function analysis retained two head measures, three midbody measures, and four caudal peduncle measures; correct classification rates when using these variables were 83% for leans, 80% for siscowets, and 83% for humpers, which suggests the measures we used for initial classification were consistent. Although clear ecological reasons for these differences are not readily apparent, patterns in misclassification rates may be consistent with evolutionary hypotheses for lake trout within the Laurentian Great Lakes.
NASA Astrophysics Data System (ADS)
Slezak, Thomas Joseph; Radebaugh, Jani; Christiansen, Eric
2017-10-01
The shapes of craterform morphology on planetary surfaces provides rich information about their origins and evolution. While morphologic information provides rich visual clues to geologic processes and properties, the ability to quantitatively communicate this information is less easily accomplished. This study examines the morphology of craterforms using the quantitative outline-based shape methods of geometric morphometrics, commonly used in biology and paleontology. We examine and compare landforms on planetary surfaces using shape, a property of morphology that is invariant to translation, rotation, and size. We quantify the shapes of paterae on Io, martian calderas, terrestrial basaltic shield calderas, terrestrial ash-flow calderas, and lunar impact craters using elliptic Fourier analysis (EFA) and the Zahn and Roskies (Z-R) shape function, or tangent angle approach to produce multivariate shape descriptors. These shape descriptors are subjected to multivariate statistical analysis including canonical variate analysis (CVA), a multiple-comparison variant of discriminant analysis, to investigate the link between craterform shape and classification. Paterae on Io are most similar in shape to terrestrial ash-flow calderas and the shapes of terrestrial basaltic shield volcanoes are most similar to martian calderas. The shapes of lunar impact craters, including simple, transitional, and complex morphology, are classified with a 100% rate of success in all models. Multiple CVA models effectively predict and classify different craterforms using shape-based identification and demonstrate significant potential for use in the analysis of planetary surfaces.
Mechanical characterization of an additively manufactured Inconel 718 theta-shaped specimen
Cakmak, Ercan; Watkins, Thomas R.; Bunn, Jeffrey R.; ...
2015-11-20
Two sets of “theta”-shaped specimens were additively manufactured with Inconel 718 powders using an electron beam melting technique with two distinct scan strategies. Light optical microscopy, mechanical testing coupled with a digital image correlation (DIC) technique, finite element modeling, and neutron diffraction with in situ loading characterizations were conducted. The cross-members of the specimens were the focus. Light optical micrographs revealed that different microstructures were formed with different scan strategies. Ex situ mechanical testing revealed each build to be stable under load until ductility was observed on the cross-members before failure. The elastic moduli were determined by forming a correlationmore » between the elastic tensile stresses determined from FEM, and the elastic strains obtained from DIC. The lattice strains were mapped with neutron diffraction during in situ elastic loading; and a good correlation between the average axial lattice strains on the cross-member and those determined from the DIC analysis was found. Lastly, the spatially resolved stresses in the elastic deformation regime are derived from the lattice strains and increased with applied load, showing a consistent distribution along the cross-member.« less
Nonlinear amplitude dynamics in flagellar beating
NASA Astrophysics Data System (ADS)
Oriola, David; Gadêlha, Hermes; Casademunt, Jaume
2017-03-01
The physical basis of flagellar and ciliary beating is a major problem in biology which is still far from completely understood. The fundamental cytoskeleton structure of cilia and flagella is the axoneme, a cylindrical array of microtubule doublets connected by passive cross-linkers and dynein motor proteins. The complex interplay of these elements leads to the generation of self-organized bending waves. Although many mathematical models have been proposed to understand this process, few attempts have been made to assess the role of dyneins on the nonlinear nature of the axoneme. Here, we investigate the nonlinear dynamics of flagella by considering an axonemal sliding control mechanism for dynein activity. This approach unveils the nonlinear selection of the oscillation amplitudes, which are typically either missed or prescribed in mathematical models. The explicit set of nonlinear equations are derived and solved numerically. Our analysis reveals the spatio-temporal dynamics of dynein populations and flagellum shape for different regimes of motor activity, medium viscosity and flagellum elasticity. Unstable modes saturate via the coupling of dynein kinetics and flagellum shape without the need of invoking a nonlinear axonemal response. Hence, our work reveals a novel mechanism for the saturation of unstable modes in axonemal beating.
Nonlinear amplitude dynamics in flagellar beating.
Oriola, David; Gadêlha, Hermes; Casademunt, Jaume
2017-03-01
The physical basis of flagellar and ciliary beating is a major problem in biology which is still far from completely understood. The fundamental cytoskeleton structure of cilia and flagella is the axoneme, a cylindrical array of microtubule doublets connected by passive cross-linkers and dynein motor proteins. The complex interplay of these elements leads to the generation of self-organized bending waves. Although many mathematical models have been proposed to understand this process, few attempts have been made to assess the role of dyneins on the nonlinear nature of the axoneme. Here, we investigate the nonlinear dynamics of flagella by considering an axonemal sliding control mechanism for dynein activity. This approach unveils the nonlinear selection of the oscillation amplitudes, which are typically either missed or prescribed in mathematical models. The explicit set of nonlinear equations are derived and solved numerically. Our analysis reveals the spatio-temporal dynamics of dynein populations and flagellum shape for different regimes of motor activity, medium viscosity and flagellum elasticity. Unstable modes saturate via the coupling of dynein kinetics and flagellum shape without the need of invoking a nonlinear axonemal response. Hence, our work reveals a novel mechanism for the saturation of unstable modes in axonemal beating.
Nonlinear amplitude dynamics in flagellar beating
Casademunt, Jaume
2017-01-01
The physical basis of flagellar and ciliary beating is a major problem in biology which is still far from completely understood. The fundamental cytoskeleton structure of cilia and flagella is the axoneme, a cylindrical array of microtubule doublets connected by passive cross-linkers and dynein motor proteins. The complex interplay of these elements leads to the generation of self-organized bending waves. Although many mathematical models have been proposed to understand this process, few attempts have been made to assess the role of dyneins on the nonlinear nature of the axoneme. Here, we investigate the nonlinear dynamics of flagella by considering an axonemal sliding control mechanism for dynein activity. This approach unveils the nonlinear selection of the oscillation amplitudes, which are typically either missed or prescribed in mathematical models. The explicit set of nonlinear equations are derived and solved numerically. Our analysis reveals the spatio-temporal dynamics of dynein populations and flagellum shape for different regimes of motor activity, medium viscosity and flagellum elasticity. Unstable modes saturate via the coupling of dynein kinetics and flagellum shape without the need of invoking a nonlinear axonemal response. Hence, our work reveals a novel mechanism for the saturation of unstable modes in axonemal beating. PMID:28405357
The posture of adolescent male handball players: A two-year study.
Grabara, Małgorzata
2018-02-06
Young athletes at the stage of growth acceleration tend to exhibit increased susceptibility to postural abnormalities, especially in the trunk region. The aim of this study was to assess and compare the posture in male adolescent handball players over two years of regular training sessions. The study group comprised 21 handball players. At the start of the study 15 participants were aged 14 and 6 participants were aged 15 (mean 14.25 ± 0.58). The measurements were repeated three times. Posture was assessed with a photogrammetric method based on the moiré phenomenon. The analysis of posture relative to symmetry in the frontal and transverse planes did not reveal any significant differences between posture indicators obtained during the successive measurements. Sagittal plane posture indicators revealed significant changes in torso forward inclination angle and the shape of anteroposterior spinal curvatures. The latter consisted of significant deepening of the upper thoracic curve (angle α) and flattening of the lumbosacral curve (angle γ). A two-year period of handball training did not result in posture asymmetries in young male handball players. The observed changes in the shape of anteroposterior spinal curvatures might be related both to sports training and somatic parameters.
Mechanical characterization of an additively manufactured Inconel 718 theta-shaped specimen
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cakmak, Ercan; Watkins, Thomas R.; Bunn, Jeffrey R.
Two sets of “theta”-shaped specimens were additively manufactured with Inconel 718 powders using an electron beam melting technique with two distinct scan strategies. Light optical microscopy, mechanical testing coupled with a digital image correlation (DIC) technique, finite element modeling, and neutron diffraction with in situ loading characterizations were conducted. The cross-members of the specimens were the focus. Light optical micrographs revealed that different microstructures were formed with different scan strategies. Ex situ mechanical testing revealed each build to be stable under load until ductility was observed on the cross-members before failure. The elastic moduli were determined by forming a correlationmore » between the elastic tensile stresses determined from FEM, and the elastic strains obtained from DIC. The lattice strains were mapped with neutron diffraction during in situ elastic loading; and a good correlation between the average axial lattice strains on the cross-member and those determined from the DIC analysis was found. Lastly, the spatially resolved stresses in the elastic deformation regime are derived from the lattice strains and increased with applied load, showing a consistent distribution along the cross-member.« less
Numerical simulation on zonal disintegration in deep surrounding rock mass.
Chen, Xuguang; Wang, Yuan; Mei, Yu; Zhang, Xin
2014-01-01
Zonal disintegration have been discovered in many underground tunnels with the increasing of embedded depth. The formation mechanism of such phenomenon is difficult to explain under the framework of traditional rock mechanics, and the fractured shape and forming conditions are unclear. The numerical simulation was carried out to research the generating condition and forming process of zonal disintegration. Via comparing the results with the geomechanical model test, the zonal disintegration phenomenon was confirmed and its mechanism is revealed. It is found to be the result of circular fracture which develops within surrounding rock mass under the high geostress. The fractured shape of zonal disintegration was determined, and the radii of the fractured zones were found to fulfill the relationship of geometric progression. The numerical results were in accordance with the model test findings. The mechanism of the zonal disintegration was revealed by theoretical analysis based on fracture mechanics. The fractured zones are reportedly circular and concentric to the cavern. Each fracture zone ruptured at the elastic-plastic boundary of the surrounding rocks and then coalesced into the circular form. The geometric progression ratio was found to be related to the mechanical parameters and the ground stress of the surrounding rocks.
Numerical Simulation on Zonal Disintegration in Deep Surrounding Rock Mass
Chen, Xuguang; Wang, Yuan; Mei, Yu; Zhang, Xin
2014-01-01
Zonal disintegration have been discovered in many underground tunnels with the increasing of embedded depth. The formation mechanism of such phenomenon is difficult to explain under the framework of traditional rock mechanics, and the fractured shape and forming conditions are unclear. The numerical simulation was carried out to research the generating condition and forming process of zonal disintegration. Via comparing the results with the geomechanical model test, the zonal disintegration phenomenon was confirmed and its mechanism is revealed. It is found to be the result of circular fracture which develops within surrounding rock mass under the high geostress. The fractured shape of zonal disintegration was determined, and the radii of the fractured zones were found to fulfill the relationship of geometric progression. The numerical results were in accordance with the model test findings. The mechanism of the zonal disintegration was revealed by theoretical analysis based on fracture mechanics. The fractured zones are reportedly circular and concentric to the cavern. Each fracture zone ruptured at the elastic-plastic boundary of the surrounding rocks and then coalesced into the circular form. The geometric progression ratio was found to be related to the mechanical parameters and the ground stress of the surrounding rocks. PMID:24592166
Ambrosio, Leonardo A.; Hernández-Figueroa, Hugo E.
2010-01-01
Based on the generalized Lorenz-Mie theory (GLMT), this paper reveals, for the first time in the literature, the principal characteristics of the optical forces and radiation pressure cross-sections exerted on homogeneous, linear, isotropic and spherical hypothetical negative refractive index (NRI) particles under the influence of focused Gaussian beams in the Mie regime. Starting with ray optics considerations, the analysis is then extended through calculating the Mie coefficients and the beam-shape coefficients for incident focused Gaussian beams. Results reveal new and interesting trapping properties which are not observed for commonly positive refractive index particles and, in this way, new potential applications in biomedical optics can be devised. PMID:21258549
Ambrosio, Leonardo A; Hernández-Figueroa, Hugo E
2010-11-04
Based on the generalized Lorenz-Mie theory (GLMT), this paper reveals, for the first time in the literature, the principal characteristics of the optical forces and radiation pressure cross-sections exerted on homogeneous, linear, isotropic and spherical hypothetical negative refractive index (NRI) particles under the influence of focused Gaussian beams in the Mie regime. Starting with ray optics considerations, the analysis is then extended through calculating the Mie coefficients and the beam-shape coefficients for incident focused Gaussian beams. Results reveal new and interesting trapping properties which are not observed for commonly positive refractive index particles and, in this way, new potential applications in biomedical optics can be devised.
NASA Astrophysics Data System (ADS)
Shruthi, C.; Ravindrachary, V.; Guruswamy, B.; Lokanath, N. K.; Kumara, Karthik; Goveas, Janet
2018-05-01
Needle shaped single crystal of the title compound was grown by slow evaporation solution growth technique using ethanol as solvent. The grown single crystal was characterized using FT-IR, Single crystal XRD and Thermal analysis. The FT-IR spectrum confirms the molecular structure and identifies the different functional groups present in the compound. Single crystal XRD study reveals that the crystallized compound belongs to the monoclinic crystal system with P21/c space group and the corresponding cell parameters were identified. The thermal stability of the material was determined using both TGA and DTA analysis. The intermolecular interaction of each individual atom in the crystal lattice was estimated using Hirshfeld surface and finger print analysis.
Penin, Xavier; Berge, Christine; Baylac, Michel
2002-05-01
Heterochronic studies compare ontogenetic trajectories of an organ in different species: here, the skulls of common chimpanzees and modern humans. A growth trajectory requires three parameters: size, shape, and ontogenetic age. One of the great advantages of the Procrustes method is the precise definition of size and shape for whole organs such as the skull. The estimated ontogenetic age (dental stages) is added to the plot to give a graphical representation to compare growth trajectories. We used the skulls of 41 Homo sapiens and 50 Pan troglodytes at various stages of growth. The Procrustes superimposition of all specimens was completed by statistical procedures (principal component analysis, multivariate regression, and discriminant function) to calculate separately size-related shape changes (allometry common to chimpanzees and humans), and interspecific shape differences (discriminant function). The results confirm the neotenic theory of the human skull (sensu Gould [1977] Ontogeny and Phylogeny, Cambridge: Harvard University Press; Alberch et al. [1979] Paleobiology 5:296-317), but modify it slightly. Human growth is clearly retarded in terms of both the magnitude of changes (size-shape covariation) and shape alone (size-shape dissociation) with respect to the chimpanzees. At the end of growth, the adult skull in humans reaches an allometric shape (size-related shape) which is equivalent to that of juvenile chimpanzees with no permanent teeth, and a size which is equivalent to that of adult chimpanzees. Our results show that human neoteny involves not only shape retardation (paedomorphosis), but also changes in relative growth velocity. Before the eruption of the first molar, human growth is accelerated, and then strongly decelerated, relative to the growth of the chimpanzee as a reference. This entails a complex process, which explains why these species reach the same overall (i.e., brain + face) size in adult stage. The neotenic traits seem to concern primarily the function of encephalization, but less so other parts of the skull. Our results, based on the discriminant function, reveal that additional structural traits (corresponding to the nonallometric part of the shape which is specific to humans) are rather situated in the other part of the skull. They mainly concern the equilibrium of the head related to bipedalism, and the respiratory and masticatory functions. Thus, the reduced prognathism, the flexed cranial base (forward position of the foramen magnum which is brought closer to the palate), the reduced anterior portion of the face, the reduced glabella, and the prominent nose mainly correspond to functional innovations which have nothing to do with a neotenic process in human evolution. The statistical analysis used here gives us the possibility to point out that some traits, which have been classically described as paedomorphic because they superficially resemble juvenile traits, are in reality independent of growth. Copyright 2002 Wiley-Liss, Inc.
Syed, Baker; M N, Nagendra Prasad; B L, Dhananjaya; K, Mohan Kumar; S, Yallappa; S, Satish
2016-12-01
The present study emphasizes on biogenic synthesis of silver nanoparticles and their bactericidal activity against human and phytopathogens. Nanoparticle synthesis was performed using endosymbiont Pseudomonas fluorescens CA 417 inhabiting Coffea arabica L. Synthesized nanoparticles were characterized using hyphenated spectroscopic techniques such as UV-vis spectroscopy which revealed maximum absorption 425nm. Fourier transform infrared spectroscopy (FTIR) analysis revealed the possible functional groups mediating and stabilizing silver nanoparticles with predominant peaks occurring at 3346 corresponding to hydroxyl group, 1635 corresponding carbonyl group and 680 to aromatic group. X-ray diffraction (XRD) analysis revealed the Bragg's diffraction pattern with distinct peaks at 38° 44°, 64° and 78° revealing the face-centered cubic (fcc) metallic crystal corresponding to the (111), (200), (220) and (311) facets of the crystal planes at 2θ angle. The energy dispersive X-ray spectroscopy (EDS) analysis revealed presence of high intense absorption peak at 3keV is a typical characteristic of nano-crystalline silver which confirmed the presence of elemental silver. TEM analysis revealed the size of the nanoparticles to be in the range 5-50nm with polydisperse nature of synthesized nanoparticles bearing myriad shapes. The particle size determined by Dynamic light scattering (DLS) method revealed average size to be 20.66nm. The synthesized silver nanoparticles exhibited significant antibacterial activity against panel of test pathogens. The results showed Klebsiella pneumoniae (MTCC 7407) and Xanthomonas campestris to be more sensitive among the test human pathogen and phyto-pathogen respectively. The study also reports synergistic effect of silver nanoparticles in combination with kanamycin which displayed increased fold activity up to 58.3% against Klebsiella pneumoniae (MTCC 7407). The results of the present investigation are promising enough and attribute towards growing scientific knowledge on development of new antimicrobial agents to combat drug resistant microorganisms. The study provides insight on emerging role of endophytes towards reduction of metal salts to synthesize nanoparticles. Copyright © 2016 Elsevier Inc. All rights reserved.
Giacchino, Mariela; Inserra, Pablo I F; Lange, Fernando D; Gariboldi, María C; Ferraris, Sergio R; Vitullo, Alfredo D
2018-06-01
The South American hystricognathe Lagostomus maximus is a fossorial rodent whose females show unique reproductive characteristics. They have a 155-day long gestation, show massive polyovulation and a selective process of embryonic resorption in the first half of gestation. In order to explore and perform an in-situ characterization of the reproductive tract, we visualized internal structures through ultrasonography and video-endoscopy in pregnant and non-pregnant females. We describe the finding of protruding structures that lie on the yolk sac and their histological and ultrastructural characterization. The placenta was covered with whitish, small pearl-shaped structures. These structures were also seen on the extra-embryonic space, being the amnion and the umbilical cord free of them. Pearl-shaped structures were composed with loose connective tissue, lacked blood vessels, and showed collagen fibers organized in a spiral form. They were anchored by pedicles to the villous surface of the extraembryonic membrane. We discuss the biological and evolutionary meaning of the pearl-shaped structures that relate L. maximus to the African origin of the South American hystricognathe fauna.
Deborah, M; Jawahar, A; Mathavan, T; Dhas, M Kumara; Benial, A Milton Franklin
2015-03-15
The valine functionalized multi-walled carbon nanotubes (MWCNTS) were prepared and characterized by using XRD, UV-Vis, FT-IR, EPR, SEM, and EDX, spectroscopic techniques. The enhanced XRD peak (002) intensity was observed for valine functionalized MWCNTs compared with oxidized MWCNTs, which is likely due to sample purification by acid washing. UV-Vis study shows the formation of valine functionalized MWCNTs. FT-IR study confirms the presence of functional groups of oxidized MWCNTs and valine functionalized MWCNTs. The ESR line shape analysis indicates that the observed EPR line shape is a Gaussian line shape. The g-values indicate that the systems are isotropic in nature. The morphology study was carried out for oxidized MWCNTs and valine functionalized MWCNTs by using SEM. The EDX spectra revealed that the high purity of oxidized MWCNTs and valine functionalized MWCNTs. The functionalization has been chosen because, functionalization of CNTs with amino acids makes them soluble and biocompatible. Thus, they have potential applications in the field of biosensors and targeted drug delivery. Copyright © 2014 Elsevier B.V. All rights reserved.
Electron microscopic analysis of rotavirus assembly-replication intermediates
Boudreaux, Crystal E.; Kelly, Deborah F.; McDonald, Sarah M.
2015-01-01
Rotaviruses (RVs) replicate their segmented, double-stranded RNA genomes in tandem with early virion assembly. In this study, we sought to gain insight into the ultrastructure of RV assembly-replication intermediates (RIs) using transmission electron microscopy (EM). Specifically, we examined a replicase-competent, subcellular fraction that contains all known RV RIs. Three never-before-seen complexes were visualized in this fraction. Using in vitro reconstitution, we showed that ~15-nm doughnut-shaped proteins in strings were nonstructural protein 2 (NSP2) bound to viral RNA transcripts. Moreover, using immunoaffinity-capture EM, we revealed that ~20-nm pebble-shaped complexes contain the viral RNA polymerase (VP1) and RNA capping enzyme (VP3). Finally, using a gel purification method, we demonstrated that ~30–70-nm electron-dense, particle-shaped complexes represent replicase-competent core RIs, containing VP1, VP3, and NSP2 as well as capsid proteins VP2 and VP6. The results of this study raise new questions about the interactions among viral proteins and RNA during the concerted assembly-replicase process. PMID:25635339
The Microphysical Structure of Extreme Precipitation as Inferred from Ground-Based Raindrop Spectra.
NASA Astrophysics Data System (ADS)
Uijlenhoet, Remko; Smith, James A.; Steiner, Matthias
2003-05-01
The controls on the variability of raindrop size distributions in extreme rainfall and the associated radar reflectivity-rain rate relationships are studied using a scaling-law formalism for the description of raindrop size distributions and their properties. This scaling-law formalism enables a separation of the effects of changes in the scale of the raindrop size distribution from those in its shape. Parameters controlling the scale and shape of the scaled raindrop size distribution may be related to the microphysical processes generating extreme rainfall. A global scaling analysis of raindrop size distributions corresponding to rain rates exceeding 100 mm h1, collected during the 1950s with the Illinois State Water Survey raindrop camera in Miami, Florida, reveals that extreme rain rates tend to be associated with conditions in which the variability of the raindrop size distribution is strongly number controlled (i.e., characteristic drop sizes are roughly constant). This means that changes in properties of raindrop size distributions in extreme rainfall are largely produced by varying raindrop concentrations. As a result, rainfall integral variables (such as radar reflectivity and rain rate) are roughly proportional to each other, which is consistent with the concept of the so-called equilibrium raindrop size distribution and has profound implications for radar measurement of extreme rainfall. A time series analysis for two contrasting extreme rainfall events supports the hypothesis that the variability of raindrop size distributions for extreme rain rates is strongly number controlled. However, this analysis also reveals that the actual shapes of the (measured and scaled) spectra may differ significantly from storm to storm. This implies that the exponents of power-law radar reflectivity-rain rate relationships may be similar, and close to unity, for different extreme rainfall events, but their prefactors may differ substantially. Consequently, there is no unique radar reflectivity-rain rate relationship for extreme rain rates, but the variability is essentially reduced to one free parameter (i.e., the prefactor). It is suggested that this free parameter may be estimated on the basis of differential reflectivity measurements in extreme rainfall.
NASA Astrophysics Data System (ADS)
Wu, Xuelian; Zhang, Wuyi; Liu, Yanju; Leng, Jinsong
2007-07-01
Thermally activated shape memory polymers (SMPs) receive increasing attention in recent years. Different from those reported in the literature, in this paper we propose a new approach, i.e., using infrared light, for heating SMPs for shape recovery. We compare this approach with the traditional water bath method in terms of shape recovery speed in bending at both vacuum and no vacuum conditions. The results reveal that the shape recovery speed in infrared heating at vacuum condition is about eight times slower than that by hot water. However, the recovery time is more than doubled if without vacuum.
Mazza, Paola; Noens, Elke E; Schirner, Kathrin; Grantcharova, Nina; Mommaas, A Mieke; Koerten, Henk K; Muth, Günther; Flärdh, Klas; van Wezel, Gilles P; Wohlleben, Wolfgang
2006-05-01
MreB forms a cytoskeleton in many rod-shaped bacteria which is involved in cell shape determination and chromosome segregation. PCR-based and Southern analysis of various actinomycetes, supported by analysis of genome sequences, revealed mreB homologues only in genera that form an aerial mycelium and sporulate. We analysed MreB in one such organism, Streptomyces coelicolor. Ectopic overexpression of mreB impaired growth, and caused swellings and lysis of hyphae. A null mutant with apparently normal vegetative growth was generated. However, aerial hyphae of this mutant were swelling and lysing; spores doubled their volume and lost their characteristic resistance to stress conditions. Loss of cell wall consistency was observed in MreB-depleted spores by transmission electron microscopy. An MreB-EGFP fusion was constructed to localize MreB in the mycelium. No clearly localized signal was seen in vegetative mycelium. However, strong fluorescence was observed at the septa of sporulating aerial hyphae, then as bipolar foci in young spores, and finally in a ring- or shell-like pattern inside the spores. Immunogold electron microscopy using MreB-specific antibodies revealed that MreB is located immediately underneath the internal spore wall. Thus, MreB is not essential for vegetative growth of S. coelicolor, but exerts its function in the formation of environmentally stable spores, and appears to primarily influence the assembly of the spore cell wall.
Antioxidant properties of biohybrids based on liposomes and sage silver nanoparticles.
Barbinta-Patrascu, Marcela Elisabeta; Bunghez, Ioana-Raluca; Iordache, Stefan Marian; Badea, Nicoleta; Fierascu, Radu-Claudiu; Ion, Rodica Mariana
2013-03-01
This paper is aimed to describe a simple and rapid eco-friendly bottom-up approach for the preparation of antioxidant silver bionanostructures using a leaf extract from sage (Salvia officinalis L.). The bioreduction property of sage in the synthesis of silver nanoparticles was investigated by UV-VIS and Attenuated Total Reflectance Fourier Transform Infrared spectroscopy. During their preparation, the particle size analysis was performed by using Dynamic Light Scattering technique. Ultrasonic irradiation was used to obtain sage silver nanoparticles. The morphology (size and shape) of the herbal silver nanoparticles was evaluated by Scanning Electron Microscopy that revealed the formation of spherical phytonanoparticles with size less than 80 nm. In order to increase their stability and their biocompatibility, the sage silver nanoparticles were introduced in two types of liposomes: soybean lecithin- and Chla-DPPC-lipid vesicles which were prepared by thin film hydration method. X-Ray Fluorescence analysis confirmed the silver presence in liposomes/sage-AgNPs biohybrids. The stability of liposomes/herbal AgNPs bioconstructs was checked by zeta potential measurements. The most stable biohybrids: Chla-DPPC/sage-AgNPs with zeta potential value of -34.2 mV, were characterized by Atomic Force Microscopy revealing the spherical and quasi-spherical shaped profiles of these nanobiohybrids with size less than 96 nm. The antioxidant activity of the silver bionanostructures was evaluated using chemiluminescence assay. The developed eco-friendly silver phytonanostructures based on lipid membranes, nanosilver and sage extract, manifest strong antioxidant properties (between 86.5% and 98.6%).
Pilgrim, Brettney L; Perry, Robert C; Keefe, Donald G; Perry, Elizabeth A; Dawn Marshall, H
2012-01-01
In conservation genetics and management, it is important to understand the contribution of historical and contemporary processes to geographic patterns of genetic structure in order to characterize and preserve diversity. As part of a 10-year monitoring program by the Government of Newfoundland and Labrador, Canada, we measured the population genetic structure of the world's most northern native populations of brook trout (Salvelinus fontinalis) in Labrador to gather baseline data to facilitate monitoring of future impacts of the recently opened Trans-Labrador Highway. Six-locus microsatellite profiles were obtained from 1130 fish representing 32 populations from six local regions. Genetic diversity in brook trout populations in Labrador (average HE= 0.620) is within the spectrum of variability found in other brook trout across their northeastern range, with limited ongoing gene flow occurring between populations (average pairwise FST= 0.139). Evidence for some contribution of historical processes shaping genetic structure was inferred from an isolation-by-distance analysis, while dual routes of post-Wisconsinan recolonization were indicated by STRUCTURE analysis: K= 2 was the most likely number of genetic groups, revealing a separation between northern and west-central Labrador from all remaining populations. Our results represent the first data from the nuclear genome of brook trout in Labrador and emphasize the usefulness of microsatellite data for revealing the extent to which genetic structure is shaped by both historical and contemporary processes. PMID:22837834
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yuvaraj, Subramanian; Layek, Samar; Vidyavathy, S. Manisha
2015-12-15
Highlights: • SmFeO{sub 3} is synthesized by simple combustion method using aspartic acid as the fuel. • The particles are spherical in shape with the size ranges between 150 and 300 nm. • Cole–Cole plot infers the bulk conduction mechanism. • Room temperature VSM analysis reveal the weak ferromagnetic behaviour of SmFeO{sub 3}. • Mössbauer analysis elucidates the +3 oxidation state of Fe atoms. - Abstract: Samarium orthoferrite (SmFeO{sub 3}) is synthesized by a simple combustion method using aspartic acid as fuel. Phase purity and functional groups are analyzed via X-ray diffraction (XRD) and Fourier transform infrared (FT-IR) analysis, whichmore » confirms the single phase formation of orthorhombic SmFeO{sub 3}. Approximately spherical particles with size range 150–300 nm is revealed by scanning electron microscope (SEM). The conductivity of the material is identified by the single semicircle obtained in the solid state impedance spectra at elevated temperatures. The calculated electrical conductivity increases with increasing temperature, inferring the semiconducting nature of SmFeO{sub 3}. A magnetic study at room temperature revealed weak ferromagnetic behaviour in SmFeO{sub 3} due to Dzyaloshinsky–Moriya antisymmetric exchange interaction mechanism. Mössbauer analysis confirmed the +3 oxidation state of iron and magnetic ordering of the sample at room temperature.« less
Proteome profiling of early seed development in Cunninghamia lanceolata (Lamb.) Hook
Shi, Jisen; Zhen, Yan; Zheng, Ren-Hua
2010-01-01
Knowledge of the proteome of the early gymnosperm embryo could provide important information for optimizing plant cloning procedures and for establishing platforms for research into plant development/regulation and in vitro transgenic studies. Compared with angiosperms, it is more difficult to induce somatic embryogenesis in gymnosperms; success in this endeavour could be increased, however, if proteomic information was available on the complex, dynamic, and multistage processes of gymnosperm embryogenesis in vivo. A proteomic analysis of Chinese fir seeds in six developmental stages was carried out during early embryogenesis. Proteins were extracted from seeds dissected from immature cones and separated by two-dimensional difference gel electrophoresis. Analysis with DeCyder 6.5 software revealed 136 spots that differed in kinetics of appearance. Analysis by liquid chromatography coupled to tandem mass spectrometry and MALDI-TOF mass spectrometry identified proteins represented by 71 of the spots. Functional annotation of these seed proteins revealed their involvement in programmed cell death and chromatin modification, indicating that the proteins may play a central role in determining the number of zygotic embryos generated and controlling embryo patterning and shape remodelling. The analysis also revealed other proteins involved in carbon metabolism, methionine metabolism, energy production, protein storage, synthesis and stabilization, disease/defence, the cytoskeleton, and embryo development. The comprehensive protein expression profiles generated by our study provide new insights into the complex developmental processes in the seeds of the Chinese fir. PMID:20363864
Correlated evolution of body and fin morphology in the cichlid fishes.
Feilich, Kara L
2016-10-01
Body and fin shapes are chief determinants of swimming performance in fishes. Different configurations of body and fin shapes can suit different locomotor specializations. The success of any configuration is dependent upon the hydrodynamic interactions between body and fins. Despite the importance of body-fin interactions for swimming, there are few data indicating whether body and fin configurations evolve in concert, or whether these structures vary independently. The cichlid fishes are a diverse family whose well-studied phylogenetic relationships make them ideal for the study of macroevolution of ecomorphology. This study measured body, and caudal and median fin morphology from radiographs of 131 cichlid genera, using morphometrics and phylogenetic comparative methods to determine whether these traits exhibit correlated evolution. Partial least squares canonical analysis revealed that body, caudal fin, dorsal fin, and anal fin shapes all exhibited strong correlated evolution consistent with locomotor ecomorphology. Major patterns included the evolution of deep body profiles with long fins, suggestive of maneuvering specialization; and the evolution of narrow, elongate caudal peduncles with concave tails, a combination that characterizes economical cruisers. These results demonstrate that body shape evolution does not occur independently of other traits, but among a suite of other morphological changes that augment locomotor specialization. © 2016 The Author(s). Evolution © 2016 The Society for the Study of Evolution.
Crocetti, Deana; Mostofsky, Stewart H.; Miller, Michael I.; Rosch, Keri S.
2017-01-01
There has been limited investigation of volume and shape difference in subcortical structures in children with ADHD and a paucity of examination of the influence of sex on these findings. The objective of this study was to examine morphology (volume and shape) of subcortical structures and their association with emotion dysregulation (ED) in girls and boys with ADHD as compared to their typically-developing (TD) counterparts. Participants included 218 children ages 8-12 years old with and without DSM-IV ADHD. Structural magnetic resonance images were obtained, and shape analyses were conducted using large deformation diffeomorphic metric mapping (LDDMM). Compared to TD boys, boys with ADHD showed reduced volumes in the bilateral globus pallidus and amygdala. There were no volumetric differences in any structure between ADHD and TD girls. Shape analysis revealed localized compressions within the globus pallidus, putamen and amygdala in ADHD boys relative to TD boys, as well as significant correlations between increased ED and unique subregion expansion in right globus pallidus, putamen, and right amygdala. Our findings suggest a sexually dimorphic pattern of differences in subcortical structures in children with ADHD compared to TD children, and a possible neurobiological mechanism by which boys with ADHD demonstrate increased difficulties with ED. PMID:28104573
Body shape indices are predictors for estimating fat-free mass in male athletes
Aoki, Toru; Komori, Daisuke; Oyamada, Kazuyuki; Murata, Kensuke; Fujita, Eiji; Akamine, Takuya; Urita, Yoshihisa; Yamamoto, Masayoshi
2018-01-01
It is unknown whether body size and body shape parameters can be predictors for estimating whole body fat-free mass (FFM) in male athletes. This study aimed to investigate whether body size and shape variables can be predictors for FFM in male athletes. Using a whole-body dual-energy X-ray absorptiometry scanner, whole body fat mass (FM) and FFM were determined in 132 male athletes and 14 sedentary males. The sample was divided into two groups: validation (N = 98) and cross-validation (N = 48) groups. Body height (BH), body mass (BM), and waist circumference at immediately above the iliac crest (W) were measured. BM-to-W and W-to-BH ratios were calculated as indices of body shapes. Stepwise multiple regression analysis revealed that BM/W and W/BH were selected as explainable variables for predicting FFM. The equation developed in the validation group was FFM (kg) = 0.883 × BM/W (kg/m) + 43.674 × W/BH (cm/cm)– 41.480 [R2 = 0.900, SEE (%SEE) = 2.3 kg (3.8%)], which was validated in the cross-validation group. Thus, the current results demonstrate that an equation using BM/W and W/BH as independent variables is applicable for predicting FFM in male athletes. PMID:29346452
High-speed knots in the hourglass-shaped planetary nebula Hubble 12
NASA Astrophysics Data System (ADS)
Vaytet, N.; Rushton, A. P.; Lloyd, M.; Lopez, J. A.; Meaburn, J.; O'Brien, T. J.; Mitchell, D. L.; Pollacco, D.
We present a detailed kinematical analysis of the young compact hourglass-shaped planetary nebula Hb 12. We performed optical imaging and longslit spectroscopy of Hb 12 using the Manchester echelle spectrometer with the 2.1-m San Pedro Martir telescope. We reveal, for the first time, the presence of end caps (or knots) aligned with the bipolar lobes of the planetary nebula shell in a deep [N ii] 6584 image of Hb 12. We measured from our spectroscopy radial velocities of about 120 km s-1 for these knots. We have derived the inclination angle of the hourglass shaped nebular shell to be 65° to the line of sight. It has been suggested that Hb 12's central star system is an eclipsing binary which would imply a binary inclination of at least 80°. However, if the central binary has been the major shaping influence on the nebula then both nebula and binary would be expected to share a common inclination angle. Finally, we report the discovery of high-velocity knots with Hubble-type velocities, close to the core of Hb 12, observed in HA and oriented in the same direction as the end caps. Very different velocities and kinematical ages were calculated for the outer and inner knots showing that they may originate from different outburst events.
NASA Technical Reports Server (NTRS)
Jutte, Christine V.; Ko, William L.; Stephens, Craig A.; Bakalyar, John A.; Richards, W. Lance
2011-01-01
A ground loads test of a full-scale wing (175-ft span) was conducted using a fiber optic strain-sensing system to obtain distributed surface strain data. These data were input into previously developed deformed shape equations to calculate the wing s bending and twist deformation. A photogrammetry system measured actual shape deformation. The wing deflections reached 100 percent of the positive design limit load (equivalent to 3 g) and 97 percent of the negative design limit load (equivalent to -1 g). The calculated wing bending results were in excellent agreement with the actual bending; tip deflections were within +/- 2.7 in. (out of 155-in. max deflection) for 91 percent of the load steps. Experimental testing revealed valuable opportunities for improving the deformed shape equations robustness to real world (not perfect) strain data, which previous analytical testing did not detect. These improvements, which include filtering methods developed in this work, minimize errors due to numerical anomalies discovered in the remaining 9 percent of the load steps. As a result, all load steps attained +/- 2.7 in. accuracy. Wing twist results were very sensitive to errors in bending and require further development. A sensitivity analysis and recommendations for fiber implementation practices, along with, effective filtering methods are included
Growth of Au nanoparticle films and the effect of nanoparticle shape on plasmon peak wavelength
NASA Astrophysics Data System (ADS)
Horikoshi, S.; Matsumoto, N.; Omata, Y.; Kato, T.
2014-05-01
Metal nanoparticles (NPs) exhibit localized surface plasmon resonance (LSPR) and thus have potential for use in a wide range of applications. A facile technique for the preparation of NP films using an electron-cyclotron-resonance plasma sputtering method without a dewetting process is described. Field emission scanning electron microscopy (FE-SEM) observations revealed that the Au NPs grew independently as island-like particles during the first stage of sputtering and then coalesced with one another as sputtering time increased to ultimately form a continuous film. A plasmon absorption peak was observed via optical measurement of absorption efficiency. The LSPR peak shifted toward longer wavelengths (red shift) with an increase in sputtering time. The cause of this plasmon peak shift was theoretically investigated using the finite-difference time-domain calculation method. A realistic statistical distribution of the particle shapes based on FE-SEM observations was applied for the analysis, which has not been previously reported. It was determined that the change in the shape of the NPs from spheroidal to oval or slender due to coalescence with neighbouring NPs caused the LSPR peak shift. These results may enable the design of LSPR devices by controlling the characteristics of the nanoparticles, such as their size, shape, number density, and coverage.
Functional aspects of metatarsal head shape in humans, apes, and Old World monkeys.
Fernández, Peter J; Almécija, Sergio; Patel, Biren A; Orr, Caley M; Tocheri, Matthew W; Jungers, William L
2015-09-01
Modern human metatarsal heads are typically described as "dorsally domed," mediolaterally wide, and dorsally flat. Despite the apparent functional importance of these features in forefoot stability during bipedalism, the distinctiveness of this morphology has not been quantitatively evaluated within a broad comparative framework. In order to use these features to reconstruct fossil hominin locomotor behaviors with any confidence, their connection to human bipedalism should be validated through a comparative analysis of other primates with different locomotor behaviors and foot postures, including species with biomechanical demands potentially similar to those of bipedalism (e.g., terrestrial digitigrady). This study explores shape variation in the distal metatarsus among humans and other extant catarrhines using three-dimensional geometric morphometrics (3 DGM). Shape differences among species in metatarsal head morphology are well captured by the first two principal components of Procrustes shape coordinates, and these two components summarize most of the variance related to "dorsal doming" and "dorsal expansion." Multivariate statistical tests reveal significant differences among clades in overall shape, and humans are reliably distinguishable from other species by aspects of shape related to a greater degree of dorsal doming. Within quadrupeds, terrestrial species also trend toward more domed metatarsal heads, but not to the extent seen in humans. Certain aspects of distal metatarsus shape are likely related to habitual dorsiflexion of the metatarsophalangeal joints, but the total morphological pattern seen in humans is distinct. These comparative results indicate that this geometric morphometric approach is useful to characterize the complexity of metatarsal head morphology and will help clarify its relationship with function in fossil primates, including early hominins. Published by Elsevier Ltd.
Macagno, Anna L. M.; Pizzo, Astrid; Parzer, Harald F.; Palestrini, Claudia; Rolando, Antonio; Moczek, Armin P.
2011-01-01
Genitalia are among the fastest evolving morphological traits in arthropods. Among the many hypotheses aimed at explaining this observation, some explicitly or implicitly predict concomitant male and female changes of genital traits that interact during copulation (i.e., lock and key, sexual conflict, cryptic female choice and pleiotropy). Testing these hypotheses requires insights into whether male and female copulatory structures that physically interact during mating also affect each other's evolution and patterns of diversification. Here we compare and contrast size and shape evolution of male and female structures that are known to interact tightly during copulation using two model systems: (a) the sister species O. taurus (1 native, 3 recently established populations) and O. illyricus, and (b) the species-complex O. fracticornis-similis-opacicollis. Partial Least Squares analyses indicated very little to no correlation between size and shape of copulatory structures, both in males and females. Accordingly, comparing shape and size diversification patterns of genitalia within each sex showed that the two components diversify readily - though largely independently of each other - within and between species. Similarly, comparing patterns of divergence across sexes showed that relative sizes of male and female copulatory organs diversify largely independent of each other. However, performing this analysis for genital shape revealed a signature of parallel divergence. Our results therefore suggest that male and female copulatory structures that are linked mechanically during copulation may diverge in concert with respect to their shapes. Furthermore, our results suggest that genital divergence in general, and co-divergence of male and female genital shape in particular, can evolve over an extraordinarily short time frame. Results are discussed in the framework of the hypotheses that assume or predict concomitant evolutionary changes in male and female copulatory organs. PMID:22194942
Mandibular ramus shape variation and ontogeny in Homo sapiens and Homo neanderthalensis.
Terhune, Claire E; Ritzman, Terrence B; Robinson, Chris A
2018-04-27
As the interface between the mandible and cranium, the mandibular ramus is functionally significant and its morphology has been suggested to be informative for taxonomic and phylogenetic analyses. In primates, and particularly in great apes and humans, ramus morphology is highly variable, especially in the shape of the coronoid process and the relationship of the ramus to the alveolar margin. Here we compare ramus shape variation through ontogeny in Homo neanderthalensis to that of modern and fossil Homo sapiens using geometric morphometric analyses of two-dimensional semilandmarks and univariate measurements of ramus angulation and relative coronoid and condyle height. Results suggest that ramus, especially coronoid, morphology varies within and among subadult and adult modern human populations, with the Alaskan Inuit being particularly distinct. We also identify significant differences in overall anterosuperior ramus and coronoid shapes between H. sapiens and H. neanderthalensis, both in adults and throughout ontogeny. These shape differences are subtle, however, and we therefore suggest caution when using ramus morphology to diagnose group membership for individual specimens of these taxa. Furthermore, we argue that these morphologies are unlikely to be representative of differences in masticatory biomechanics and/or paramasticatory behaviors between Neanderthals and modern humans, as has been suggested by previous authors. Assessments of ontogenetic patterns of shape change reveal that the typical Neanderthal ramus morphology is established early in ontogeny, and there is little evidence for divergent postnatal ontogenetic allometric trajectories between Neanderthals and modern humans as a whole. This analysis informs our understanding of intraspecific patterns of mandibular shape variation and ontogeny in H. sapiens and can shed further light on overall developmental and life history differences between H. sapiens and H. neanderthalensis. Copyright © 2018 Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, Ninning; Chistol, Gheorghe; Cui, Yuanbo
Multi-subunit ring-shaped ATPases are molecular motors that harness chemical free energy to perform vital mechanical tasks such as polypeptide translocation, DNA unwinding, and chromosome segregation. Previously we reported the intersubunit coordination and stepping behavior of the hexameric ring-shaped ATPase SpoIIIE (Liu et al., 2015). Here we use optical tweezers to characterize the motor’s mechanochemistry. Analysis of the motor response to external force at various nucleotide concentrations identifies phosphate release as the likely force-generating step. Analysis of SpoIIIE pausing indicates that pauses are off-pathway events. Characterization of SpoIIIE slipping behavior reveals that individual motor subunits engage DNA upon ATP binding. Furthermore,more » we find that SpoIIIE’s velocity exhibits an intriguing bi-phasic dependence on force. We hypothesize that this behavior is an adaptation of ultra-fast motors tasked with translocating DNA from which they must also remove DNA-bound protein roadblocks. Based on these results, we formulate a comprehensive mechanochemical model for SpoIIIE.« less
Effect of Bottoming on Material Property during Sheet Forming Process through Finite Element Method
NASA Astrophysics Data System (ADS)
Akinlabi, Stephen A.; Fatoba, Olawale S.; Mashinini, Peter M.; Akinlabi, Esther T.
2018-03-01
Metal forming is one of the conventional manufacturing processes of immense relevance till date even though modern manufacturing processes have evolved over the years. It is a known fact that material tends to return or spring back to its original form during forming or bending. The phenomena have been well managed through its application in various manufacturing processes by compensating for the spring back through overbending and bottoming. Overbending is bending the material beyond the desired shape to allow the material to spring back to the expected shape. Bottoming, on the other hand, is a process of undergoing plastic deformation at the point of bending. This study reports on the finite element analysis of the effect of bottoming on the material property during the sheet forming process with the aim of optimising the process. The result of the analysis revealed that the generated plastic strains are in the order between 1.750e00-1 at the peak of the bending and 3.604e00-2, which was at the early stage of the bending.
Liu, Ninning; Chistol, Gheorghe; Cui, Yuanbo; ...
2018-03-05
Multi-subunit ring-shaped ATPases are molecular motors that harness chemical free energy to perform vital mechanical tasks such as polypeptide translocation, DNA unwinding, and chromosome segregation. Previously we reported the intersubunit coordination and stepping behavior of the hexameric ring-shaped ATPase SpoIIIE (Liu et al., 2015). Here we use optical tweezers to characterize the motor’s mechanochemistry. Analysis of the motor response to external force at various nucleotide concentrations identifies phosphate release as the likely force-generating step. Analysis of SpoIIIE pausing indicates that pauses are off-pathway events. Characterization of SpoIIIE slipping behavior reveals that individual motor subunits engage DNA upon ATP binding. Furthermore,more » we find that SpoIIIE’s velocity exhibits an intriguing bi-phasic dependence on force. We hypothesize that this behavior is an adaptation of ultra-fast motors tasked with translocating DNA from which they must also remove DNA-bound protein roadblocks. Based on these results, we formulate a comprehensive mechanochemical model for SpoIIIE.« less
Fagman, Henrik; Amendola, Elena; Parrillo, Luca; Zoppoli, Pietro; Marotta, Pina; Scarfò, Marzia; De Luca, Pasquale; de Carvalho, Denise Pires; Ceccarelli, Michele; De Felice, Mario; Di Lauro, Roberto
2011-01-01
The thyroid and lungs originate as neighboring bud shaped outgrowths from the midline of the embryonic foregut. When and how organ specific programs regulate development into structures of distinct shapes, positions and functions is incompletely understood. To characterize, at least in part, the genetic basis of these events, we have employed laser capture microdissection and microarray analysis to define gene expression in the mouse thyroid and lung primordia at E10.5. By comparing the transcriptome of each bud to that of the whole embryo as well as to each other, we broadly describe the genes that are preferentially expressed in each developing organ as well as those with an enriched expression common to both. The results thus obtained provide a valuable resource for further analysis of genes previously unrecognized to participate in thyroid and lung morphogenesis and to discover organ specific as well as common developmental mechanisms. As an initial step in this direction we describe a regulatory pathway involving the anti-apoptotic gene Bcl2 that controls cell survival in early thyroid development. PMID:21924257
Impact of physical confinement on nuclei geometry and cell division dynamics in 3D spheroids.
Desmaison, Annaïck; Guillaume, Ludivine; Triclin, Sarah; Weiss, Pierre; Ducommun, Bernard; Lobjois, Valérie
2018-06-08
Multicellular tumour spheroids are used as a culture model to reproduce the 3D architecture, proliferation gradient and cell interactions of a tumour micro-domain. However, their 3D characterization at the cell scale remains challenging due to size and cell density issues. In this study, we developed a methodology based on 3D light sheet fluorescence microscopy (LSFM) image analysis and convex hull calculation that allows characterizing the 3D shape and orientation of cell nuclei relative to the spheroid surface. By using this technique and optically cleared spheroids, we found that in freely growing spheroids, nuclei display an elongated shape and are preferentially oriented parallel to the spheroid surface. This geometry is lost when spheroids are grown in conditions of physical confinement. Live 3D LSFM analysis of cell division revealed that confined growth also altered the preferential cell division axis orientation parallel to the spheroid surface and induced prometaphase delay. These results provide key information and parameters that help understanding the impact of physical confinement on cell proliferation within tumour micro-domains.
Influence of Flow Regulation on Summer Water Temperature: Sauce Grande River, Argentina
NASA Astrophysics Data System (ADS)
Casado, A.; Hannah, D. M.; Peiry, J.; Campo, A. M.
2012-12-01
This study quantifies the effects of the Paso de las Piedras Dam on the thermal behaviour of the Sauce Grande River, Argentina, during a summer season. A 30-day data set of continuous hourly data was assembled for eight stream temperature gauging sites deployed above and below the impoundment. Time series span the hottest period recorded during summer 2009 to evaluate variations in river water temperature under strong meteorological influence. The methods include: (i) analysis of the time series by inspecting the absolute differences in daily data (magnitude, timing, frequency, duration and rate of change), (ii) classification of diurnal regimes by using a novel regime 'shape' and 'magnitude' classifying method (RSMC), and (ii) quantification of the sensitivity of water temperature regimes to air temperature by computation of a novel sensitivity index (SI). Results showed that fluctuations in daily water temperatures were linked to meteorological drivers; however, spatial variability in the shape and the magnitude of the thermographs revealed the effects of the impoundment in regulating the thermal behaviour of the river downstream. An immediate cooling effect below the dam was evident. Mean daily temperatures were reduced in up to 4 °C, and described a warming trend in the downstream direction over a distance of at least 15 km (up to +2.3 °C). Diurnal cycles were reduced in amplitude and delayed in timing, and revealed a dominance of regime magnitude stability and regime shape climatic insensitivity over a distance of 8 km downstream. These findings provide new information about the water quality of the Sauce Grande River and inform management of flows to maintain the ecological integrity of the river system. Also, they motivate further analysis of potential correlates under varying hydrological and meteorological conditions. The methods presented herein have wider applicability for quantifying river thermal regimes and their sensitivity to climate and other drivers of change over a range of temporal and spatial scales.
Emmons-Bell, Maya; Durant, Fallon; Hammelman, Jennifer; Bessonov, Nicholas; Volpert, Vitaly; Morokuma, Junji; Pinet, Kaylinnette; Adams, Dany S.; Pietak, Alexis; Lobo, Daniel; Levin, Michael
2015-01-01
The shape of an animal body plan is constructed from protein components encoded by the genome. However, bioelectric networks composed of many cell types have their own intrinsic dynamics, and can drive distinct morphological outcomes during embryogenesis and regeneration. Planarian flatworms are a popular system for exploring body plan patterning due to their regenerative capacity, but despite considerable molecular information regarding stem cell differentiation and basic axial patterning, very little is known about how distinct head shapes are produced. Here, we show that after decapitation in G. dorotocephala, a transient perturbation of physiological connectivity among cells (using the gap junction blocker octanol) can result in regenerated heads with quite different shapes, stochastically matching other known species of planaria (S. mediterranea, D. japonica, and P. felina). We use morphometric analysis to quantify the ability of physiological network perturbations to induce different species-specific head shapes from the same genome. Moreover, we present a computational agent-based model of cell and physical dynamics during regeneration that quantitatively reproduces the observed shape changes. Morphological alterations induced in a genomically wild-type G. dorotocephala during regeneration include not only the shape of the head but also the morphology of the brain, the characteristic distribution of adult stem cells (neoblasts), and the bioelectric gradients of resting potential within the anterior tissues. Interestingly, the shape change is not permanent; after regeneration is complete, intact animals remodel back to G. dorotocephala-appropriate head shape within several weeks in a secondary phase of remodeling following initial complete regeneration. We present a conceptual model to guide future work to delineate the molecular mechanisms by which bioelectric networks stochastically select among a small set of discrete head morphologies. Taken together, these data and analyses shed light on important physiological modifiers of morphological information in dictating species-specific shape, and reveal them to be a novel instructive input into head patterning in regenerating planaria. PMID:26610482
Scaling and Accommodation of Jaw Adductor Muscles in Canidae
Kemp, Graham J.; Jeffery, Nathan
2016-01-01
ABSTRACT The masticatory apparatus amongst closely related carnivoran species raises intriguing questions about the interplay between allometry, function, and phylogeny in defining interspecific variations of cranial morphology. Here we describe the gross structure of the jaw adductor muscles of several species of canid, and then examine how the muscles are scaled across the range of body sizes, phylogenies, and trophic groups. We also consider how the muscles are accommodated on the skull, and how this is influenced by differences of endocranial size. Data were collected for a suite of morphological metrics, including body mass, endocranial volume, and muscle masses and we used geometric morphometric shape analysis to reveal associated form changes. We find that all jaw adductor muscles scale isometrically against body mass, regardless of phylogeny or trophic group, but that endocranial volume scales with negative allometry against body mass. These findings suggest that head shape is partly influenced by the need to house isometrically scaling muscles on a neurocranium scaling with negative allometry. Principal component analysis suggests that skull shape changes, such as the relatively wide zygomatic arches and large sagittal crests seen in species with higher body masses, allow the skull to accommodate a relative enlargement of the jaw adductors compared with the endocranium. Anat Rec, 299:951–966, 2016. © 2016 The Authors The Anatomical Record: Advances in Integrative Anatomy and Evolutionary Biology Published by Wiley Periodicals, Inc. PMID:27103346
A framework for joint image-and-shape analysis
NASA Astrophysics Data System (ADS)
Gao, Yi; Tannenbaum, Allen; Bouix, Sylvain
2014-03-01
Techniques in medical image analysis are many times used for the comparison or regression on the intensities of images. In general, the domain of the image is a given Cartesian grids. Shape analysis, on the other hand, studies the similarities and differences among spatial objects of arbitrary geometry and topology. Usually, there is no function defined on the domain of shapes. Recently, there has been a growing needs for defining and analyzing functions defined on the shape space, and a coupled analysis on both the shapes and the functions defined on them. Following this direction, in this work we present a coupled analysis for both images and shapes. As a result, the statistically significant discrepancies in both the image intensities as well as on the underlying shapes are detected. The method is applied on both brain images for the schizophrenia and heart images for atrial fibrillation patients.
Keleş, A; Keskin, C
2018-02-01
To conduct a quantitative and qualitative analysis of the band-shaped isthmus area, the floor of which was in the apical third in the mesial roots of mandibular first molars using micro-computed tomography (micro-CT). Micro-CT images of 269 mesial roots of mandibular first molars were evaluated, and 40 specimens with a band-shaped isthmus, with a floor in the apical third, were selected. The major diameter, minor diameter, roundness, area and perimeter values for the most coronal and apical slices where the isthmus was visible were measured. The distances between these slices were measured as the isthmus length, and the total volume, structure model index and surface area of the isthmus were measured. The distances between the isthmus floor and two apical foramina and the number of root canal orifices were calculated. The dimensions of the isthmus roof and the floor were compared, and the data were analysed using descriptive statistics and Student's t-tests with a significance threshold set at 5%. A total of 15% of the specimens had band-shaped isthmuses with a floor in the apical third. The isthmus roof exhibited significantly greater major and minor diameter values compared to the isthmus floor (P < 0.05). No significant difference was detected between the isthmus roof and the floor with regard to roundness (P > 0.05). Three- and two-dimensional analyses of the mesial roots of mandibular molars revealed that band-shaped isthmuses had complex shapes. © 2017 International Endodontic Journal. Published by John Wiley & Sons Ltd.
Shape Analysis of Planar Multiply-Connected Objects Using Conformal Welding.
Lok Ming Lui; Wei Zeng; Shing-Tung Yau; Xianfeng Gu
2014-07-01
Shape analysis is a central problem in the field of computer vision. In 2D shape analysis, classification and recognition of objects from their observed silhouettes are extremely crucial but difficult. It usually involves an efficient representation of 2D shape space with a metric, so that its mathematical structure can be used for further analysis. Although the study of 2D simply-connected shapes has been subject to a corpus of literatures, the analysis of multiply-connected shapes is comparatively less studied. In this work, we propose a representation for general 2D multiply-connected domains with arbitrary topologies using conformal welding. A metric can be defined on the proposed representation space, which gives a metric to measure dissimilarities between objects. The main idea is to map the exterior and interior of the domain conformally to unit disks and circle domains (unit disk with several inner disks removed), using holomorphic 1-forms. A set of diffeomorphisms of the unit circle S(1) can be obtained, which together with the conformal modules are used to define the shape signature. A shape distance between shape signatures can be defined to measure dissimilarities between shapes. We prove theoretically that the proposed shape signature uniquely determines the multiply-connected objects under suitable normalization. We also introduce a reconstruction algorithm to obtain shapes from their signatures. This completes our framework and allows us to move back and forth between shapes and signatures. With that, a morphing algorithm between shapes can be developed through the interpolation of the Beltrami coefficients associated with the signatures. Experiments have been carried out on shapes extracted from real images. Results demonstrate the efficacy of our proposed algorithm as a stable shape representation scheme.
High Strength and Ductility of Additively Manufactured 316L Stainless Steel Explained
NASA Astrophysics Data System (ADS)
Shamsujjoha, Md.; Agnew, Sean R.; Fitz-Gerald, James M.; Moore, William R.; Newman, Tabitha A.
2018-04-01
Structure-property relationships of an additively manufactured 316L stainless steel were explored. A scanning electron microscope and electron backscattered diffraction (EBSD) analysis revealed a fine cellular-dendritic (0.5 to 2 μm) substructure inside large irregularly shaped grains ( 100 μm). The cellular structure grows along the <100> crystallographic directions. However, texture analysis revealed that the main <100> texture component is inclined by 15 deg from the building direction. X-ray diffraction line profile analysis indicated a high dislocation density of 1 × 1015 m-2 in the as-built material, which correlates well with the observed EBSD microstructure and high-yield strength, via the traditional Taylor hardening equation. Significant variations in strain hardening behavior and ductility were observed for the horizontal (HB) and vertical (VB) built samples. Ductility of HB and VB samples measured 49 and 77 pct, respectively. The initial growth texture and subsequent texture evolution during tensile deformation are held responsible for the observed anisotropy. Notably, EBSD analysis of deformed samples showed deformation twins, which predominately form in the grains with <111> aligned parallel to the loading direction. The VB samples showed higher twinning activity, higher strain hardening rates at high strain, and therefore, higher ductility. Analysis of annealed samples revealed that the observed microstructures and properties are thermally stable, with only a moderate decrease in strength and very similar levels of ductility and anisotropy, compared with the as-built condition.
High Strength and Ductility of Additively Manufactured 316L Stainless Steel Explained
NASA Astrophysics Data System (ADS)
Shamsujjoha, Md.; Agnew, Sean R.; Fitz-Gerald, James M.; Moore, William R.; Newman, Tabitha A.
2018-07-01
Structure-property relationships of an additively manufactured 316L stainless steel were explored. A scanning electron microscope and electron backscattered diffraction (EBSD) analysis revealed a fine cellular-dendritic (0.5 to 2 μm) substructure inside large irregularly shaped grains ( 100 μm). The cellular structure grows along the <100> crystallographic directions. However, texture analysis revealed that the main <100> texture component is inclined by 15 deg from the building direction. X-ray diffraction line profile analysis indicated a high dislocation density of 1 × 1015 m-2 in the as-built material, which correlates well with the observed EBSD microstructure and high-yield strength, via the traditional Taylor hardening equation. Significant variations in strain hardening behavior and ductility were observed for the horizontal (HB) and vertical (VB) built samples. Ductility of HB and VB samples measured 49 and 77 pct, respectively. The initial growth texture and subsequent texture evolution during tensile deformation are held responsible for the observed anisotropy. Notably, EBSD analysis of deformed samples showed deformation twins, which predominately form in the grains with <111> aligned parallel to the loading direction. The VB samples showed higher twinning activity, higher strain hardening rates at high strain, and therefore, higher ductility. Analysis of annealed samples revealed that the observed microstructures and properties are thermally stable, with only a moderate decrease in strength and very similar levels of ductility and anisotropy, compared with the as-built condition.
Luo, Gang; Fotidis, Ioannis A; Angelidaki, Irini
2016-01-01
Biogas production is a very complex process due to the high complexity in diversity and interactions of the microorganisms mediating it, and only limited and diffuse knowledge exists about the variation of taxonomic and functional patterns of microbiomes across different biogas reactors, and their relationships with the metabolic patterns. The present study used metagenomic sequencing and radioisotopic analysis to assess the taxonomic, functional, and metabolic patterns of microbiomes from 14 full-scale biogas reactors operated under various conditions treating either sludge or manure. The results from metagenomic analysis showed that the dominant methanogenic pathway revealed by radioisotopic analysis was not always correlated with the taxonomic and functional compositions. It was found by radioisotopic experiments that the aceticlastic methanogenic pathway was dominant, while metagenomics analysis showed higher relative abundance of hydrogenotrophic methanogens. Principal coordinates analysis showed the sludge-based samples were clearly distinct from the manure-based samples for both taxonomic and functional patterns, and canonical correspondence analysis showed that the both temperature and free ammonia were crucial environmental variables shaping the taxonomic and functional patterns. The study further the overall patterns of functional genes were strongly correlated with overall patterns of taxonomic composition across different biogas reactors. The discrepancy between the metabolic patterns determined by metagenomic analysis and metabolic pathways determined by radioisotopic analysis was found. Besides, a clear correlation between taxonomic and functional patterns was demonstrated for biogas reactors, and also the environmental factors that shaping both taxonomic and functional genes patterns were identified.
Shape Mode Analysis Exposes Movement Patterns in Biology: Flagella and Flatworms as Case Studies
Werner, Steffen; Rink, Jochen C.; Riedel-Kruse, Ingmar H.; Friedrich, Benjamin M.
2014-01-01
We illustrate shape mode analysis as a simple, yet powerful technique to concisely describe complex biological shapes and their dynamics. We characterize undulatory bending waves of beating flagella and reconstruct a limit cycle of flagellar oscillations, paying particular attention to the periodicity of angular data. As a second example, we analyze non-convex boundary outlines of gliding flatworms, which allows us to expose stereotypic body postures that can be related to two different locomotion mechanisms. Further, shape mode analysis based on principal component analysis allows to discriminate different flatworm species, despite large motion-associated shape variability. Thus, complex shape dynamics is characterized by a small number of shape scores that change in time. We present this method using descriptive examples, explaining abstract mathematics in a graphic way. PMID:25426857
Li, Yanfeng; Lv, Yuan; Lu, Yongjin; Zeng, Pan; Zeng, Xianglong; Guo, Xiaoqian; Han, Weili
2015-01-01
Tooth distalization is an effective approach for mandibular prognathism. Current distalization devices are bulky and clinically complicated. Here, we designed a novel molar distalization device by using a sliding rod and a microscrew and performed a mechanical analysis and finite element model (FEM) analysis of force distribution and displacement of the upper canine, first and second premolar and first molar. A 2D FEM was constructed using the Beam3 element and a 3D FEM was constructed of the mandibular teeth, the periodontal membrane, and the alveolar bones using the UG software. The upper first molar was divided into 12 points on the dental surface to facilitate stress analysis. Force analysis using the ANSYS WORKBECNH revealed that, both horizontally and vertically, the traction force causing distalization of the first molar decreased when the spring coil moved down the L shaped sliding rod. The 3D FEM force analysis revealed distomedial displacement of the upper first molar when the sliding rod microscrew implantation device caused distalization of the molar. These findings support further exploration for the use of the sliding rod microscrew implants as an anchorage for group distal movement of the teeth of patients with mandibular prognathism. PMID:26379860
NASA Astrophysics Data System (ADS)
Yu, Xin; Cao, Liang; Liu, Jinhu; Zhao, Bo; Shan, Xiujuan; Dou, Shuozeng
2014-09-01
We tested the use of otolith shape analysis to discriminate between species and stocks of five goby species ( Ctenotrypauchen chinensis, Odontamblyopus lacepedii, Amblychaeturichthys hexanema, Chaeturichthys stigmatias, and Acanthogobius hasta) found in northern Chinese coastal waters. The five species were well differentiated with high overall classification success using shape indices (83.7%), elliptic Fourier coefficients (98.6%), or the combination of both methods (94.9%). However, shape analysis alone was only moderately successful at discriminating among the four stocks (Liaodong Bay, LD; Bohai Bay, BH; Huanghe (Yellow) River estuary HRE, and Jiaozhou Bay, JZ stocks) of A. hasta (50%-54%) and C. stigmatias (65.7%-75.8%). For these two species, shape analysis was moderately successful at discriminating the HRE or JZ stocks from other stocks, but failed to effectively identify the LD and BH stocks. A large number of otoliths were misclassified between the HRE and JZ stocks, which are geographically well separated. The classification success for stock discrimination was higher using elliptic Fourier coefficients alone (70.2%) or in combination with shape indices (75.8%) than using only shape indices (65.7%) in C. stigmatias whereas there was little difference among the three methods for A. hasta. Our results supported the common belief that otolith shape analysis is generally more effective for interspecific identification than intraspecific discrimination. Moreover, compared with shape indices analysis, Fourier analysis improves classification success during inter- and intra-species discrimination by otolith shape analysis, although this did not necessarily always occur in all fish species.
Hess, C P; Christine, C W; Apple, A C; Dillon, W P; Aminoff, M J
2014-05-01
The thalamus is interconnected with the nigrostriatal system and cerebral cortex and has a major role in cognitive function and sensorimotor integration. The purpose of this study was to determine how regional involvement of the thalamus differs among Parkinson disease, progressive supranuclear palsy, and corticobasal syndrome. Nine patients with Parkinson disease, 5 with progressive supranuclear palsy, and 6 with corticobasal syndrome underwent 3T MR imaging along with 12 matched, asymptomatic volunteers by using a protocol that included volumetric T1 and diffusion tensor imaging. Acquired data were automatically processed to delineate the margins of the motor and nonmotor thalamic nuclear groups, and measurements of ADC were calculated from the DTI data within these regions. Thalamic volume, shape, and ADC were compared across groups. Thalamic volume was smaller in the progressive supranuclear palsy and corticobasal syndrome groups compared with the Parkinson disease and control groups. Shape analysis revealed that this was mainly due to the diminished size of the lateral thalamus. Overall, ADC measurements were higher in the progressive supranuclear palsy group compared with both the Parkinson disease and control groups, and anatomic subgroup analysis demonstrated that these changes were greater within the motor regions of the thalamus in progressive supranuclear palsy and corticobasal degeneration. Reduced size and increased ADC disproportionately involve the lateral thalamus in progressive supranuclear palsy and corticobasal syndrome, consistent with selective neurodegeneration and atrophy in this region. Because these findings were not observed in Parkinson disease, they may be more specific markers of tau-related neurodegeneration. © 2014 by American Journal of Neuroradiology.
Palmer, Allison; Painter, Joseph; Hassler, Hayley; Richards, Vincent P; Bruce, Terri; Morrison, Shatavia; Brown, Ellen; Kozak-Muiznieks, Natalia A; Lucas, Claressa; McNealy, Tamara L
2016-10-01
A novel Legionella species was identified based on sequencing, cellular fatty acid analysis, biochemical reactions, and biofilm characterization. Strain D5610 was originally isolated from the bronchial wash of a patient in Ohio, USA. The bacteria were gram-negative, rod-shaped, and exhibited green fluorescence under long wave UV light. Phylogenetic analysis and fatty acid composition revealed a distinct separation within the genus. The strain grows between 26-45°C and forms biofilms equivalent to L. pneumophila Philadelphia 1. These characteristics suggest that this isolate is a novel Legionella species, for which the name Legionella clemsonensis sp nov. is proposed. © 2016 The Societies and John Wiley & Sons Australia, Ltd.
Seeding Cracks Using a Fatigue Tester for Accelerated Gear Tooth Breaking
NASA Technical Reports Server (NTRS)
Nenadic, Nenad G.; Wodenscheck, Joseph A.; Thurston, Michael G.; Lewicki, David G.
2011-01-01
This report describes fatigue-induced seeded cracks in spur gears and compares them to cracks created using a more traditional seeding method, notching. Finite element analysis (FEA) compares the effective compliance of a cracked tooth to the effective compliance of a notched tooth where the crack and the notch are of the same depth. In this analysis, cracks are propagated to the desired depth using FRANC2D and effective compliances are computed in ANSYS. A compliance-based feature for detecting cracks on the fatigue tester is described. The initiated cracks are examined using both nondestructive and destructive methods. The destructive examination reveals variability in the shape of crack surfaces.
Body image after mastectomy: A thematic analysis of younger women's written accounts.
Grogan, Sarah; Mechan, Jayne
2017-09-01
This study investigated younger women's body image after mastectomy. In all, 49 women, aged 29-53 years (mean age: 39 years) who had had bilateral ( n = 8) or unilateral ( n = 41) mastectomy responded to open-ended questions online. Inductive thematic analysis revealed that aesthetics were less important than survival between diagnosis and mastectomy. Following mastectomy, women negotiated new body identities. Treatment effects such as weight gain were significant concerns. However, impacts on body confidence varied, and some participants rejected mainstream body shape ideals and reported feeling proud of their scars. Implications for supporting younger women post-mastectomy, including promotion of body acceptance, are discussed.
Unethical conduct by the nurse: a critical discourse analysis of Nurses Tribunal inquiries.
Dixon, Kathleen A
2013-08-01
The aim of this study was to uncover and critically examine hidden assumptions that underpin the findings of nurses' unethical conduct arising from inquiries conducted by the Nurses Tribunal in New South Wales. This was a qualitative study located within a post-structural theoretical framework. Transcripts of five inquiries conducted between 1998 and 2003 were analysed using critical discourse analysis. The findings revealed two dominant discourses that were drawn upon in the inquiries to construct nurses' conduct as unethical. These were discourses of trust and accountability. The way the nurses were spoken about during the inquiries was shaped by normalising judgements that were used to discursively position the nurse through narrative.
Characterization of V-shaped defects in 4H-SiC homoepitaxial layers
Zhang, Lihua; Su, Dong; Kisslinger, Kim; ...
2014-12-04
Synchrotron white beam x-ray topography images show that faint needle-like surface morphological features observed on the Si-face of 4H-SiC homoepitaxial layers using Nomarski optical microscopy are associated with V shaped stacking faults in the epilayer. KOH etching of the V shaped defect reveals small oval pits connected by a shallow line which corresponding to the surface intersections of two partial dislocations and the stacking fault connecting them. Transmission electron microscopy (TEM) specimens from regions containing the V shaped defects were prepared using focused ion beam milling, and stacking sequences of (85), (50) and (63) are observed at the faulted regionmore » with high resolution TEM. In order to study the formation mechanism of V shaped defect, low dislocation density 4H-SiC substrates were chosen for epitaxial growth, and the corresponding regions before and after epitaxy growth are compared in SWBXT images. It is found that no defects in the substrate are directly associated with the formation of the V shaped defect. Simulation results of the contrast from the two partial dislocations associated with V shaped defect in synchrotron monochromatic beam x-ray topography reveals the opposite sign nature of their Burgers vectors. Therefore, a mechanism of 2D nucleation during epitaxy growth is postulated for the formation of the V shaped defect, which requires elimination of non-sequential 1/4[0001] bilayers from the original structure to create the observed faulted stacking sequence.« less
Characterization of V-shaped defects in 4H-SiC homoepitaxial layers
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Lihua; Su, Dong; Kisslinger, Kim
Synchrotron white beam x-ray topography images show that faint needle-like surface morphological features observed on the Si-face of 4H-SiC homoepitaxial layers using Nomarski optical microscopy are associated with V shaped stacking faults in the epilayer. KOH etching of the V shaped defect reveals small oval pits connected by a shallow line which corresponding to the surface intersections of two partial dislocations and the stacking fault connecting them. Transmission electron microscopy (TEM) specimens from regions containing the V shaped defects were prepared using focused ion beam milling, and stacking sequences of (85), (50) and (63) are observed at the faulted regionmore » with high resolution TEM. In order to study the formation mechanism of V shaped defect, low dislocation density 4H-SiC substrates were chosen for epitaxial growth, and the corresponding regions before and after epitaxy growth are compared in SWBXT images. It is found that no defects in the substrate are directly associated with the formation of the V shaped defect. Simulation results of the contrast from the two partial dislocations associated with V shaped defect in synchrotron monochromatic beam x-ray topography reveals the opposite sign nature of their Burgers vectors. Therefore, a mechanism of 2D nucleation during epitaxy growth is postulated for the formation of the V shaped defect, which requires elimination of non-sequential 1/4[0001] bilayers from the original structure to create the observed faulted stacking sequence.« less
Saccharomyces cerevisiae metabolism in ecological context.
Jouhten, Paula; Ponomarova, Olga; Gonzalez, Ramon; Patil, Kiran R
2016-11-01
The architecture and regulation of Saccharomyces cerevisiae metabolic network are among the best studied owing to its widespread use in both basic research and industry. Yet, several recent studies have revealed notable limitations in explaining genotype-metabolic phenotype relations in this yeast, especially when concerning multiple genetic/environmental perturbations. Apparently unexpected genotype-phenotype relations may originate in the evolutionarily shaped cellular operating principles being hidden in common laboratory conditions. Predecessors of laboratory S. cerevisiae strains, the wild and the domesticated yeasts, have been evolutionarily shaped by highly variable environments, very distinct from laboratory conditions, and most interestingly by social life within microbial communities. Here we present a brief review of the genotypic and phenotypic peculiarities of S. cerevisiae in the context of its social lifestyle beyond laboratory environments. Accounting for this ecological context and the origin of the laboratory strains in experimental design and data analysis would be essential in improving the understanding of genotype-environment-phenotype relationships. © FEMS 2016.
Merchan-Merchan, Wilson; Saveliev, Alexei V; Taylor, Aaron M
2009-12-01
The growth and morphological evolution of molybdenum-oxide microstructures formed in the high temperature environment of a counter-flow oxy-fuel flame using molybdenum probes is studied. Experiments conducted using various probe retention times show the sequence of the morphological changes. The morphological row begins with micron size objects exhibiting polygonal cubic shape, develops into elongated channels, changes to large structures with leaf-like shape, and ends in dendritic structures. Time of probe-flame interaction is found to be a governing parameter controlling the wide variety of morphological patterns; a molecular level growth mechanism is attributed to their development. This study reveals that the structures are grown in several consecutive stages: material "evaporation and transportation", "transformation", "nucleation", "initial growth", "intermediate growth", and "final growth". XRD analysis shows that the chemical compositions of all structures correspond to MoO(2).
De Coen, An; Forrier, Anneleen; Sels, Luc
2015-04-01
This study explores the relationship between age and reservation wage. The authors investigate whether individuals' attitudes toward employment, that is, their "employment efficacy" and "work intention," mediate this relationship. The authors examine this in the Belgian labor market, where substantial differences exist between blue-collar workers, white-collar workers, and civil servants regarding payment systems, employment protection, and pension benefits. Path analysis on a sample of 22,796 Belgian workers aged 18 to 60 years reveals a reverse U-shaped relationship between age and the reservation wage via employment efficacy and a U-shaped relationship via work intention. In addition, study analyses also show a direct relationship between age and the reservation wage. The effects vary with employment status. The authors discuss implications for theory, practice, and future research. © The Author(s) 2012.
Saccharomyces cerevisiae metabolism in ecological context
Jouhten, Paula; Ponomarova, Olga; Gonzalez, Ramon
2016-01-01
The architecture and regulation of Saccharomyces cerevisiae metabolic network are among the best studied owing to its widespread use in both basic research and industry. Yet, several recent studies have revealed notable limitations in explaining genotype–metabolic phenotype relations in this yeast, especially when concerning multiple genetic/environmental perturbations. Apparently unexpected genotype–phenotype relations may originate in the evolutionarily shaped cellular operating principles being hidden in common laboratory conditions. Predecessors of laboratory S. cerevisiae strains, the wild and the domesticated yeasts, have been evolutionarily shaped by highly variable environments, very distinct from laboratory conditions, and most interestingly by social life within microbial communities. Here we present a brief review of the genotypic and phenotypic peculiarities of S. cerevisiae in the context of its social lifestyle beyond laboratory environments. Accounting for this ecological context and the origin of the laboratory strains in experimental design and data analysis would be essential in improving the understanding of genotype–environment–phenotype relationships. PMID:27634775
Crystal growth and upconversion luminescent properties of KLu2F7:Yb,Er nanocrystals
NASA Astrophysics Data System (ADS)
Xu, Dekang; Yao, Lu; Lin, Hao; Yang, Shenghong; Zhang, Yueli
2018-05-01
Crystal growth of KLu2F7 nanocrystals is investigated by dosage- and time-dependent analysis. XRD patterns reveal the phase transition along with the dosage of fluorine source and reaction times, where the cubic-phase KLu3F10 turns into orthorhombic KLu2F7. TEM images show that the dimensions of as-prepared samples are below a hundred nanometers, with different shapes from hexagonal plate to hexagonal rod. The upconversion properties of the as-prepared samples are investigated. It is found that the upconversion emission is lowered as the shape of the samples varies. Moreover, the orthorhombic KLu2F7:Yb,Er nanocrystals present more enormous upconversion luminescence than the cubic counterparts. In a word, the orthorhombic nanocrystals are found to be good candidate for upconversion luminescence and of great importance for potential applications in solar cells, multicolor display and bioimaging.
Tsai, Jenny; Bruck, Annie
2009-02-01
More immigrants are seeking employment in restaurants. Drawing data from an ethnographic study, this article discusses what and how sociocultural contexts shape the safety and health of immigrant restaurant workers. Eighteen Chinese immigrants from China, Hong Kong, and Taiwan participated in the study. Data generation methods included a questionnaire, individual and focus group interviews, and participant observations. Ethnographic analysis revealed that immigration mechanisms, demands of English proficiency for employment, and existence of networks and ethnic communities shaped the participants' employment choices. Working hours and schedules, interpersonal relationships at work, job design and training, occupational safety and health training, and national events and economy further influenced the participants' occupational experiences and well-being. Issues were noted with job security, mental health, family relationships, and risks for occupational injuries and illnesses. Implications for occupational health nursing research and practice to reduce immigrant workers' vulnerability to poor safety and health outcomes conclude this article.
Microscopic insight into the bilateral formation of carbon spirals from a symmetric iron core
Shiozawa, Hidetsugu; Bachmatiuk, Alicja; Stangl, Andreas; Cox, David C.; Silva, S. Ravi P.; Rümmeli, Mark H.; Pichler, Thomas
2013-01-01
Mirrored carbon-spirals have been produced from pressured ferrocene via the bilateral extrusion of the spiral pairs from an iron core. A parametric plot of the surface geometry displays the fractal growth of the conical helix made with the logarithmic spiral. Electron microscopy studies show the core is a crystalline cementite which grows and transforms its shape from spherical to biconical as it extrudes two spiralling carbon arms. In a cross section along the arms we observe graphitic flakes arranged in a herringbone structure, normal to which defects propagate. Local-wave-pattern analysis reveals nanoscale defect patterns of two-fold symmetry around the core. The data suggest that the bilateral growth originates from a globular cementite crystal with molten surfaces and the nano-defects shape emerging hexagonal carbon into a fractal structure. Understanding and knowledge obtained provide a basis for the controlled production of advanced carbon materials with designed geometries. PMID:23670649
Scene perception and the visual control of travel direction in navigating wood ants
Collett, Thomas S.; Lent, David D.; Graham, Paul
2014-01-01
This review reflects a few of Mike Land's many and varied contributions to visual science. In it, we show for wood ants, as Mike has done for a variety of animals, including readers of this piece, what can be learnt from a detailed analysis of an animal's visually guided eye, head or body movements. In the case of wood ants, close examination of their body movements, as they follow visually guided routes, is starting to reveal how they perceive and respond to their visual world and negotiate a path within it. We describe first some of the mechanisms that underlie the visual control of their paths, emphasizing that vision is not the ant's only sense. In the second part, we discuss how remembered local shape-dependent and global shape-independent features of a visual scene may interact in guiding the ant's path. PMID:24395962
Correlates of Body Dissatisfaction in Children.
Dion, Jacinthe; Hains, Jennifer; Vachon, Patrick; Plouffe, Jacques; Laberge, Luc; Perron, Michel; McDuff, Pierre; Kalinova, Emilia; Leone, Mario
2016-04-01
To assess body dissatisfaction among children between 9 and 14 years of age and to examine factors (age, sex, body mass index, perceived shape, and self-esteem) associated with wanting a thinner or a larger shape. Through at-school questionnaires, 1515 preadolescent children (51.2% girls) were asked to fill out the Culture Free Self-Esteem Inventory and the Contour Drawing Rating Scale (body dissatisfaction). Trained assessors then weighed and measured the students individually. Overall, 50.5% of girls wanted a thinner shape compared with 35.9% of boys. More boys wanted a larger shape compared with girls (21.1% vs 7.2%). Most of the preadolescents who were overweight or obese were unsatisfied whereas 58.0% of girls and 41.6% of boys who were underweight were satisfied with their body. Results of a multinomial logistic regression revealed that age, sex, body mass index, perceived shape, and self-esteem were significant correlates of the 4 body dissatisfaction contrasts (wanting a slightly thinner, much thinner, slightly larger, and much larger shape) and explained 50% of the variance. An interaction between sex and perceived shape was found, revealing that girls who perceived themselves as having a larger shape were more likely to desire a thinner shape than boys. The high prevalence rate of body dissatisfaction among children suggests that current approaches in our society to prevent problems related to body image must be improved. The different results between girls and boys highlight the need to take into account sex differences when designing prevention programs that aim to decrease body dissatisfaction. Copyright © 2016 Elsevier Inc. All rights reserved.
Effect of catalyst on deposition of vanadium oxide in plasma ambient
NASA Astrophysics Data System (ADS)
Singh, Megha; Kumar, Prabhat; Saini, Sujit K.; Reddy, G. B.
2018-05-01
In this paper, we have studied effect of catalyst (buffer layer) on structure, morphology, crystallinity, uniformity of nanostructured thin films deposited in nitrogen plasma ambient keeping all other process parameters constant. The process used for deposition is novel known as Plasma Assisted Sublimation Process (PASP). Samples were then studied using SEM, TEM, HRTEM, Raman spectroscopy. By structural analysis it was found out that samples deposited on Ni layer composed chiefly of α-V2O5 but minor amount of other phases were present in the sample. Samples deposited on Al catalyst layer revealed different phase of V2O5, where sample deposited on Ag was composed chiefly of VO2±x phase. Further analysis revealed that morphology of samples is also affected by catalyst. While samples deposited in Al and Ag layer tend to have reasonably defined geometry, sample deposited on Ni layer were irregular in shape and size. All the results well corroborate with each other.
Derecho-like event in Bulgaria on 20 July 2011
NASA Astrophysics Data System (ADS)
Gospodinov, Ilian; Dimitrova, Tsvetelina; Bocheva, Lilia; Simeonov, Petio; Dimitrov, Rumen
2015-05-01
In this work we analyze the development of a severe-convective-storm system in northwestern Bulgaria on 20 July 2011 which exhibited derecho-like characteristics. Prior to this event, a derecho had never been documented in Bulgaria. The convective system was associated with a cold front. We present a synoptic-scale analysis of the evolution of the cold front and an overview of the wind and the damage that has occurred in the region with the strongest impact. The convective system consisted of two multi-cell thunderstorms that are analyzed in some detail, based on radar data. The two storms merged and the convective system evolved into a bow-shape reflectivity structure with two rear inflow notches. The analysis of the radar data revealed cloud top heights of 17 km, with the formation of а bounded weak echo region, a maximum radar reflectivity factor of 63 dBZ, and wind speeds above 30 m/s. The field investigation revealed patterns in the damaged crops typical of strong wind gusts.
Matzen, Laura E.; Taylor, Eric G.; Benjamin, Aaron S.
2010-01-01
It has been suggested that both familiarity and recollection contribute to the recognition decision process. In this paper, we leverage the form of false alarm rate functions—in which false-alarm rates describe an inverted U-shaped function as the time between study and test increases—to assess how these processes support retention of semantic and surface form information from previously studied words. We directly compare the maxima of these functions for lures that are semantically related and lures that are related by surface form to previously studied material. This analysis reveals a more rapid loss of access to surface form than to semantic information. To separate the contributions of item familiarity and reminding-induced recollection rejection to this effect, we use a simple multinomial process model; this analysis reveals that this loss of access reflects both a more rapid loss of familiarity and lower rates of recollection for surface form information. PMID:21240745
Locally applied simvastatin improves fracture healing at late period in osteoporotic rat
NASA Astrophysics Data System (ADS)
Tian, Faming; Zhang, Liu; Kang, Yuchuan; Zhang, Junshan; Ao, Jiao; Yang, Fang
effect of simvastatin locally applied from a bioactive polymer coating of implants on osteoporotic fracture healing at late period. Methods:Femur fracture model was established on normal or osteotoporotic mature female SD rats, intramedullary stabilization was achieved with uncoated titanium Kirschnerwires in normal rats(group A),with polymer-only coated vs. polymer plus simvastatin coated titanium Kirschner wires in osteoporotic rats(group B and C, respectively).Femurs were harvested after 12 weeks, and underwent radiographic and histologic analysis, as well as immunohistochemical evaluation for BMP-2 expression. Results:Radiographic results demonstrated progressed callus in the simvastatin-treated groups compared to the uncoated group.The histologic analysis revealed a significantly processed callus with irregular-shaped newly formed bone trabeculae in simvastatin-treated group. Immunohistochemical evaluation showed markedly higher expression levels of B:MP-2 in simvastatin-treated group.Conclusions: The present study revealed a improved fracture healing under local application of simvastatin in osteoporotic rat,which might partially from upregulation of the B:MP-2 expression at fractured site.
Mattiazzi, M.; Jambhekar, A.; Kaferle, P.; DeRisi, J. L.; Križaj, I.
2010-01-01
Modulating composition and shape of biological membranes is an emerging mode of regulation of cellular processes. We investigated the global effects that such perturbations have on a model eukaryotic cell. Phospholipases A2 (PLA2s), enzymes that cleave one fatty acid molecule from membrane phospholipids, exert their biological activities through affecting both membrane composition and shape. We have conducted a genome-wide analysis of cellular effects of a PLA2 in the yeast Saccharomyces cerevisiae as a model system. We demonstrate functional genetic and biochemical interactions between PLA2 activity and the Rim101 signaling pathway in S. cerevisiae. Our results suggest that the composition and/or the shape of the endosomal membrane affect the Rim101 pathway. We describe a genetically and functionally related network, consisting of components of the Rim101 pathway and the prefoldin, retromer and SWR1 complexes, and predict its functional relation to PLA2 activity in a model eukaryotic cell. This study provides a list of the players involved in the global response to changes in membrane composition and shape in a model eukaryotic cell, and further studies are needed to understand the precise molecular mechanisms connecting them. Electronic supplementary material The online version of this article (doi:10.1007/s00438-010-0533-8) contains supplementary material, which is available to authorized users. PMID:20379744
Taxonomic revision of genus Ablattaria Reitter (Coleoptera, Silphidae) using geometric morphometrics
Qubaiová, Jarin; Růžička, Jan; Šípková, Hana
2015-01-01
Abstract The genus Ablattaria Reitter, 1884 (Coleoptera: Silphidae: Silphinae) is revised. Four taxa are recognized as valid species: Ablattaria arenaria (Kraatz, 1876), Ablattaria cribrata (Ménétries, 1832), Ablattaria laevigata (Fabricius, 1775) and Ablattaria subtriangula Reitter, 1905. Ablattaria laevigata var. meridionalis Ganglbauer, 1899 is newly treated as a junior subjective synonym of Ablattaria laevigata. Lectotypes are designated for Phosphuga arenaria Kraatz, 1876, Ablattaria arenaria var. punctigera Reitter, 1884, Ablattaria arenaria var. alleoni Portevin, 1926, Silpha cribrata Ménétries, 1832, Silpha laevigata Fabricius, 1775, Silpha gibba Brullé, 1832, Ablattaria gibba var. costulata Portevin, 1926, Ablattaria gibba var. distinguenda Portevin, 1926, Ablattaria gibba var. punctata Portevin, 1926 and Ablattaria subtriangula Reitter, 1905. The distribution of all taxa is mapped, based on material examined. Geometric morphometric methods were used to evaluate shape variability in Ablattaria. Results indicated sexual dimorphism in all species. Shape inconsistency was found between the sexes of all taxa when tested independently. The first two relative warp axes indicated 65.17% shape variation in males and 65.72% in females. Canonical variate analysis separated the taxa studied. There was minimal overlap between some groups in both sexes. Differences in body shape between populations of Ablattaria laevigata from Central Europe, Italy and Greece + Turkey were also examined. Relative warps implied 58.01% shape variability on both axes in males and 64.78% in females. CVA revealed noticeable overlaps between the groups, although the Italian population demonstrated a higher separation in both sexes. PMID:25685005
Makuuchi, Michiru; Someya, Yoshiaki; Ogawa, Seiji; Takayama, Yoshihiro
2011-01-01
In visually guided grasping, possible hand shapes are computed from the geometrical features of the object, while prior knowledge about the object and the goal of the action influence both the computation and the selection of the hand shape. We investigated the system dynamics of the human brain for the pantomiming of grasping with two aspects accentuated. One is object recognition, with the use of objects for daily use. The subjects mimed grasping movements appropriate for an object presented in a photograph either by precision or power grip. The other is the selection of grip hand shape. We manipulated the selection demands for the grip hand shape by having the subjects use the same or different grip type in the second presentation of the identical object. Effective connectivity analysis revealed that the increased selection demands enhance the interaction between the anterior intraparietal sulcus (AIP) and posterior inferior temporal gyrus (pITG), and drive the converging causal influences from the AIP, pITG, and dorsolateral prefrontal cortex to the ventral premotor area (PMv). These results suggest that the dorsal and ventral visual areas interact in the pantomiming of grasping, while the PMv integrates the neural information of different regions to select the hand posture. The present study proposes system dynamics in visually guided movement toward meaningful objects, but further research is needed to examine if the same dynamics is found also in real grasping. PMID:21739528
Xing, Juan; Ma, Yufei; Lin, Manping; Wang, Yuanliang; Pan, Haobo; Ruan, Changshun; Luo, Yanfeng
2016-10-01
Programming such as stretching, compression and bending is indispensible to endow polyurethanes with shape memory effects. Despite extensive investigations on the contributions of programming processes to the shape memory effects of polyurethane, less attention has been paid to the nanostructures of shape memory polyurethanes surface during the programming process. Here we found that stretching could induce the reassembly of hard domains and thereby change the nanostructures on the film surfaces with dependence on the stretching ratios (0%, 50%, 100%, and 200%). In as-cast polyurethane films, hard segments sequentially assembled into nano-scale hard domains, round or fibrillar islands, and fibrillar apophyses. Upon stretching, the islands packed along the stretching axis to form reoriented fibrillar apophyses along the stretching direction. Stretching only changed the chemical patterns on polyurethane films without significantly altering surface roughness, with the primary composition of fibrillar apophyses being hydrophilic hard domains. Further analysis of osteoblasts morphology revealed that the focal adhesion formation and osteoblasts orientation were in accordance with the chemical patterns of the underlying stretched films, which corroborates the vital roles of stretching-induced nanostructures in regulating osteoblasts morphology. These novel findings suggest that programming might hold great potential for patterning polyurethane surfaces so as to direct cellular behavior. In addition, this work lays groundwork for guiding the programming of shape memory polyurethanes to produce appropriate nanostructures for predetermined medical applications. Copyright © 2016 Elsevier B.V. All rights reserved.
Solvothermal synthesis of Au@Fe3O4 nanoparticles for antibacterial applications
NASA Astrophysics Data System (ADS)
Kelgenbaeva, Zhazgul; Abdullaeva, Zhypargul; Murzubraimov, Bektemir
2018-04-01
We present Au@Fe3O4 nanoparticles obtained from Fe nanoparticles and HAuCl4 using a simple solvothermal method. Trisodium citrate (C6H5Na3O7*2H2O) served as a reducing agent for Au. X-ray diffraction analysis, electronic microscopes and energy-dispersive X-ray spectroscopy revealed cubic structure, elemental composition (Au, Fe and O) and spherical shape of nanoparticles. Antibacterial activity of the sample was tested against E. coli bacteria and obtained results were discussed.
Inference of Time-Evolving Coupled Dynamical Systems in the Presence of Noise
NASA Astrophysics Data System (ADS)
Stankovski, Tomislav; Duggento, Andrea; McClintock, Peter V. E.; Stefanovska, Aneta
2012-07-01
A new method is introduced for analysis of interactions between time-dependent coupled oscillators, based on the signals they generate. It distinguishes unsynchronized dynamics from noise-induced phase slips and enables the evolution of the coupling functions and other parameters to be followed. It is based on phase dynamics, with Bayesian inference of the time-evolving parameters achieved by shaping the prior densities to incorporate knowledge of previous samples. The method is tested numerically and applied to reveal and quantify the time-varying nature of cardiorespiratory interactions.
Synthesis and characterization of nano-hydroxyapatite using Sapindus Mukorossi extract
NASA Astrophysics Data System (ADS)
Subha, B.; Prasath, P. Varun; Abinaya, R.; Kavitha, R. J.; Ravichandran, K.
2015-06-01
Nano-Hydroxyapatite (HAP) powders were successfully synthesised by hydrothermal method using Sapindus Mukorossi extract as an additive. The structural and morphological analyses of thus synthesised powders were carried out using FT-IR, XRD and FESEM/EDX. The FT-IR spectra confirm the presence of phosphate and hydroxyl groups corresponding to HAP. The XRD analysis reveals the formation of HAP phase and found to reduce the crystallite size with addition of Sapindus Mukorossi extract. The morphology changes from sphere to flake shape by the influence of extract.
Benafan, O.; Garg, A.; Noebe, R. D.; ...
2015-04-20
We investigated the effect of thermomechanical cycling on a slightly Ni(Pd)-rich Ni 24.3Ti 49.7Pd 26 (near stochiometric Ni–Ti basis with Pd replacing Ni) high temperature shape memory alloy. Furthermore, aged tensile specimens (400 °C/24 h/furnace cooled) were subjected to constant-stress thermal cycling in conjunction with microstructural assessment via in situ neutron diffraction and transmission electron microscopy (TEM), before and after testing. It was shown that in spite of the slightly Ni(Pd)-rich composition and heat treatment used to precipitation harden the alloy, the material exhibited dimensional instabilities with residual strain accumulation reaching 1.5% over 10 thermomechanical cycles. This was attributed tomore » insufficient strengthening of the material (insufficient volume fraction of precipitate phase) to prevent plasticity from occurring concomitant with the martensitic transformation. In situ neutron diffraction revealed the presence of retained martensite while cycling under 300 MPa stress, which was also confirmed by transmission electron microscopy of post-cycled samples. Neutron diffraction analysis of the post-thermally-cycled samples under no-load revealed residual lattice strains in the martensite and austenite phases, remnant texture in the martensite phase, and peak broadening of the austenite phase. The texture we developed in the martensite phase was composed mainly of those martensitic tensile variants observed during thermomechanical cycling. Presence of a high density of dislocations, deformation twins, and retained martensite was revealed in the austenite state via in-situ TEM in the post-cycled material, providing an explanation for the observed peak broadening in the neutron diffraction spectra. Despite the dimensional instabilities, this alloy exhibited a biased transformation strain on the order of 3% and a two-way shape memory effect (TWSME) strain of ~2%, at relatively high actuation temperatures.« less
Scorolli, Claudia; Borghi, Anna M.
2015-01-01
The present study investigates the role that shape and color play in the representation of animate (i.e., animals) and inanimate manipulable entities (i.e., fruits), and how the importance of these features is modulated by different tasks. Across three experiments participants were shown either images of entities (e.g., a sheep or a pineapple) or images of the same entities modified in color (e.g., a blue pineapple) or in shape (e.g., an elongated pineapple). In Experiment 1 we asked participants to categorize the entities as fruit or animal. Results showed that with animals color does not matter, while shape modifications determined a deterioration of the performance – stronger for fruit than for animals. To better understand our findings, in Experiments 2 we asked participants to judge if entities were graspable (manipulation evaluation task). Participants were faster with manipulable entities (fruit) than with animals; moreover alterations in shape affected the response latencies more for animals than for fruit. In Experiment 3 (motion evaluation task), we replicated the disadvantage for shape-altered animals, while with fruits shape and color modifications produced no effect. By contrasting shape- and color- alterations the present findings provide information on shape/color relative weight, suggesting that the action based property of shape is more crucial than color for fruit categorization, while with animals it is critical for both manipulation and motion tasks. This contextual dependency is further revealed by explicit judgments on similarity – between the altered entities and the prototypical ones – provided after the different tasks. These results extend current literature on affordances and biofunctionally embodied understanding, revealing the relative robustness of biofunctional activity compared to intellectual one. PMID:26500593
Controlling Cell Function with Geometry
NASA Astrophysics Data System (ADS)
Mrksich, Milan
2012-02-01
This presentation will describe the use of patterned substrates to control cell shape with examples that illustrate the ways in which cell shape can regulate cell function. Most cells are adherent and must attach to and spread on a surface in order to survive, proliferate and function. In tissue, this surface is the extracellular matrix (ECM), an insoluble scaffold formed by the assembly of several large proteins---including fibronectin, the laminins and collagens and others---but in the laboratory, the surface is prepared by adsorbing protein to glass slides. To pattern cells, gold-coated slides are patterned with microcontact printing to create geometric features that promote cell attachment and that are surrounded by inert regions. Cells attach to these substrates and spread to adopt the shape defined by the underlying pattern and remain stable in culture for several days. Examples will be described that used a series of shapes to reveal the relationship between the shape of the cell and the structure of its cytoskeleton. These geometric cues were used to control cell polarity and the tension, or contractility, present in the cytoskeleton. These rules were further used to control the shapes of mesenchymal stem cells and in turn to control the differentiation of these cells into specialized cell types. For example, stem cells that were patterned into a ``star'' shape preferentially differentiated into bone cells whereas those that were patterned into a ``flower'' shape preferred a fat cell fate. These influences of shape on differentiation depend on the mechanical properties of the cytoskeleton. These examples, and others, reveal that shape is an important cue that informs cell function and that can be combined with the more common soluble cues to direct and study cell function.
Johnson, Jeffrey S.; Sutterer, David W.; Acheson, Daniel J.; Lewis-Peacock, Jarrod A.; Postle, Bradley R.
2011-01-01
Studies exploring the role of neural oscillations in cognition have revealed sustained increases in alpha-band (~8–14 Hz) power during the delay period of delayed-recognition short-term memory tasks. These increases have been proposed to reflect the inhibition, for example, of cortical areas representing task-irrelevant information, or of potentially interfering representations from previous trials. Another possibility, however, is that elevated delay-period alpha-band power (DPABP) reflects the selection and maintenance of information, rather than, or in addition to, the inhibition of task-irrelevant information. In the present study, we explored these possibilities using a delayed-recognition paradigm in which the presence and task relevance of shape information was systematically manipulated across trial blocks and electroencephalographic was used to measure alpha-band power. In the first trial block, participants remembered locations marked by identical black circles. The second block featured the same instructions, but locations were marked by unique shapes. The third block featured the same stimulus presentation as the second, but with pretrial instructions indicating, on a trial-by-trial basis, whether memory for shape or location was required, the other dimension being irrelevant. In the final block, participants remembered the unique pairing of shape and location for each stimulus. Results revealed minimal DPABP in each of the location-memory conditions, whether locations were marked with identical circles or with unique task-irrelevant shapes. In contrast, alpha-band power increases were observed in both the shape-memory condition, in which location was task irrelevant, and in the critical final condition, in which both shape and location were task relevant. These results provide support for the proposal that alpha-band oscillations reflect the retention of shape information and/or shape–location associations in short-term memory. PMID:21713012
Feature diagnosticity and task context shape activity in human scene-selective cortex.
Lowe, Matthew X; Gallivan, Jason P; Ferber, Susanne; Cant, Jonathan S
2016-01-15
Scenes are constructed from multiple visual features, yet previous research investigating scene processing has often focused on the contributions of single features in isolation. In the real world, features rarely exist independently of one another and likely converge to inform scene identity in unique ways. Here, we utilize fMRI and pattern classification techniques to examine the interactions between task context (i.e., attend to diagnostic global scene features; texture or layout) and high-level scene attributes (content and spatial boundary) to test the novel hypothesis that scene-selective cortex represents multiple visual features, the importance of which varies according to their diagnostic relevance across scene categories and task demands. Our results show for the first time that scene representations are driven by interactions between multiple visual features and high-level scene attributes. Specifically, univariate analysis of scene-selective cortex revealed that task context and feature diagnosticity shape activity differentially across scene categories. Examination using multivariate decoding methods revealed results consistent with univariate findings, but also evidence for an interaction between high-level scene attributes and diagnostic visual features within scene categories. Critically, these findings suggest visual feature representations are not distributed uniformly across scene categories but are shaped by task context and feature diagnosticity. Thus, we propose that scene-selective cortex constructs a flexible representation of the environment by integrating multiple diagnostically relevant visual features, the nature of which varies according to the particular scene being perceived and the goals of the observer. Copyright © 2015 Elsevier Inc. All rights reserved.
Frequency dependent dielectric properties of Sr doped NiO nanostructures
NASA Astrophysics Data System (ADS)
Siddique, M. Naseem; Ahmed, Ateeq; Ali, T.; Tripathi, P.
2018-05-01
Ni1-xSrxO (x=0.0, 0.02) nanoparticles have been synthesized using sol-gel method calcined at temperature 600 °C. The XRD analysis result revealed that the calcined sample has a cubic structure with single phase structure. We have calculated crystallite size of samples using both Debye-Sherrer and William Hall (W-H) method which are found to be 19.69 nm, 22.39 nm and 28.50 nm, 33.27 nm, respectively. TEM image reveals the formation of spherical shaped particles. In addition, dielectric properties have been studied using LCR measurement and found that ɛ', ɛ″ and tan δ are decreases with increase in frequency whereas ac conductivity increases with increase in frequency. This behavior may be explained using Maxwell-Wagner and Koop theory.
Growth and characterization of V2O5 nanorods deposited by spray pyrolysis at low temperatures
NASA Astrophysics Data System (ADS)
Abd-Alghafour, N. M.; Ahmed, Naser M.; Hassan, Zai.; Mohammad, Sabah M.; Bououdina, M.
2016-07-01
Vanadium pentoxide (V2O5) nanorods were deposited by spray pyrolysis on preheated glass substrates at low temperatures. The influence of substrate temperature on the crystallization of V2O5 has been investigated. X-ray diffraction analysis (XRD) revealed that the films deposited at Tsub = 300°C were orthorhombic structures with preferential along (001) direction. Formation of nanorods from substrate surface which led to the formation of films with small-sized and rod-shaped nanostructure is observed by field scanning electron microscopy. Optical transmittance in the visible range increases to reach a maximum value of about 80% for a substrate temperature of 350°C. PL spectra reveal one main broad peak centered around 540 nm with high intensity.
Galactic neutral hydrogen and the magnetic ISM foreground
NASA Astrophysics Data System (ADS)
Clark, S. E.
2018-05-01
The interstellar medium is suffused with magnetic fields, which inform the shape of structures in the diffuse gas. Recent high-dynamic range observations of Galactic neutral hydrogen, combined with novel data analysis techniques, have revealed a deep link between the morphology of neutral gas and the ambient magnetic field. At the same time, an observational revolution is underway in low-frequency radio polarimetry, driven in part by the need to characterize foregrounds to the cosmological 21-cm signal. A new generation of experiments, capable of high angular and Faraday depth resolution, are revealing complex filamentary structures in diffuse polarization. The relationship between filamentary structures observed in radio-polarimetric data and those observed in atomic hydrogen is not yet well understood. Multiwavelength observations will enable new insights into the magnetic interstellar medium across phases.
How Seismology can help to know the origin of gases at Lastarria Volcano, Chile-Argentina?
NASA Astrophysics Data System (ADS)
Legrand, Denis; Spica, Zack; Iglesias, Arturo; Walter, Thomas; Heimann, Sebastian; Dahm, Torsten; Froger, Jean-Luc; Remy, Dominique; Bonvalot, Sylvain; West, Michael; Pardo, Mario
2015-04-01
Gases at Lastarria volcano have a double origin: hydrothermal and magmatic, as revealed by geochemistry analysis. Nevertheless, the exact location (especially the depth) of degassing is not well known. We show here how seismology may help to answer this question. Hydrothermal and magmatic reservoirs have been revealed by a 3-D high-resolution S-wave velocity tomography deduced from a ambient seismic noise technique at Lazufre (an acronym for Lastarria and Cordón del Azufre), one of the largest worldwide volcanic uplift, both in space and amplitude, located in the Altiplano-Puna Plateau in the central Andes (Chile, Argentine). Past deformation data (InSAR and GPS) and geochemical gas analysis showed a double-wide uplift region and a double-hydrothermal/magmatic source respectively. Nevertheless the location and shape of these sources were not well defined. In this study, we defined them better using seismological data. Three very low S-wave velocity zones are identified. Two of them (with S-wave velocity of about 1.2-1.3 km/s) are located below the Lastarria volcano. One is located between 0 and 1 km below its base. It has a funnel-like shape, and suggests a hydrothermal reservoir. The other one is located between 3 and 6 km depth. Its dyke-shape and depth suggest a magma reservoir that is supposed to feed the shallow hydrothermal system. This double hydrothermal and magmatic source is in agreement with the double-origin found by previous geochemical and magneto-telluric studies. Both anomalies can explain the small uplift deformation of about 1 cm/yr deduced from InSAR data at Lastarria volcano. The third low-velocity zone (with S-wave velocity of about 2.7 km/s) located below 6 km depth, is located beneath the center of the main uplift deformation of about 3 cm/yr at Lazufre zone. We suggest it is the top of a large magma chamber that has been previously modeled by InSAR/GPS data to explain this uplift. We show here for the first time the exact geometry and location of the hydrothermal and magmatic reservoirs at Lazufre volcanic area, helping understanding the origin of one of the largest worldwide uplift, revealed by past InSAR/GPS, magneto-telluric and geochemical data.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vega, Sebastián L.; Liu, Er; Arvind, Varun
Stem and progenitor cells that exhibit significant regenerative potential and critical roles in cancer initiation and progression remain difficult to characterize. Cell fates are determined by reciprocal signaling between the cell microenvironment and the nucleus; hence parameters derived from nuclear remodeling are ideal candidates for stem/progenitor cell characterization. Here we applied high-content, single cell analysis of nuclear shape and organization to examine stem and progenitor cells destined to distinct differentiation endpoints, yet undistinguishable by conventional methods. Nuclear descriptors defined through image informatics classified mesenchymal stem cells poised to either adipogenic or osteogenic differentiation, and oligodendrocyte precursors isolated from different regionsmore » of the brain and destined to distinct astrocyte subtypes. Nuclear descriptors also revealed early changes in stem cells after chemical oncogenesis, allowing the identification of a class of cancer-mitigating biomaterials. To capture the metrology of nuclear changes, we developed a simple and quantitative “imaging-derived” parsing index, which reflects the dynamic evolution of the high-dimensional space of nuclear organizational features. A comparative analysis of parsing outcomes via either nuclear shape or textural metrics of the nuclear structural protein NuMA indicates the nuclear shape alone is a weak phenotypic predictor. In contrast, variations in the NuMA organization parsed emergent cell phenotypes and discerned emergent stages of stem cell transformation, supporting a prognosticating role for this protein in the outcomes of nuclear functions. - Highlights: • High-content analysis of nuclear shape and organization classify stem and progenitor cells poised for distinct lineages. • Early oncogenic changes in mesenchymal stem cells (MSCs) are also detected with nuclear descriptors. • A new class of cancer-mitigating biomaterials was identified based on image informatics. • Textural metrics of the nuclear structural protein NuMA are sufficient to parse emergent cell phenotypes.« less
Elliptic-type soliton combs in optical ring microresonators
NASA Astrophysics Data System (ADS)
Dikandé Bitha, Rodrigues D.; Dikandé, Alain M.
2018-03-01
Soliton crystals are periodic patterns of multispot optical fields formed from either time or space entanglements of equally separated identical high-intensity pulses. These specific nonlinear optical structures have gained interest in recent years with the advent and progress in nonlinear optical fibers and fiber lasers, photonic crystals, wave-guided wave systems, and most recently optical ring microresonator devices. In this work an extensive analysis of characteristic features of soliton crystals is carried out, with an emphasis on their one-to-one correspondence with elliptic solitons. With this purpose in mind, we examine their formation, their stability, and their dynamics in ring-shaped nonlinear optical media within the framework of the Lugiato-Lefever equation. The stability analysis deals with internal modes of the system via a 2 ×2 -matrix Lamé-type eigenvalue problem, the spectrum of which is shown to possess a rich set of bound states consisting of stable zero-fequency modes and unstable decaying as well as growing modes. Turning towards the dynamics of elliptic solitons in ring-shaped fiber resonators with Kerr nonlinearity, we first propose a collective-coordinate approach, based on a Lagrangian formalism suitable for elliptic-soliton solutions to the nonlinear Schrödinger equation with an arbitrary perturbation. Next we derive time evolutions of elliptic-soliton parameters in the specific context of ring-shaped optical fiber resonators, where the optical field evolution is thought to be governed by the Lugiato-Lefever equation. By solving numerically the collective-coordinate equations an analysis of the amplitude, the position, the phase of internal oscillations, the phase velocity, the energy, and phase portraits of the amplitude is carried out and reveals a complex dynamics of the elliptic soliton in ring-shaped optical microresonators. Direct numerical simulations of the Lugiato-Lefever equation are also carried out seeking for stationary-wave solutions, and the numerical results are in very good agreement with the collective-coordinate approach.
A κ-generalized statistical mechanics approach to income analysis
NASA Astrophysics Data System (ADS)
Clementi, F.; Gallegati, M.; Kaniadakis, G.
2009-02-01
This paper proposes a statistical mechanics approach to the analysis of income distribution and inequality. A new distribution function, having its roots in the framework of κ-generalized statistics, is derived that is particularly suitable for describing the whole spectrum of incomes, from the low-middle income region up to the high income Pareto power-law regime. Analytical expressions for the shape, moments and some other basic statistical properties are given. Furthermore, several well-known econometric tools for measuring inequality, which all exist in a closed form, are considered. A method for parameter estimation is also discussed. The model is shown to fit remarkably well the data on personal income for the United States, and the analysis of inequality performed in terms of its parameters is revealed as very powerful.
Fabrication of micro T-shaped tubular components by hydroforming process
NASA Astrophysics Data System (ADS)
Manabe, Ken-ichi; Itai, Kenta; Tada, Kazuo
2017-10-01
This paper deals with a T-shape micro tube hydroforming (MTHF) process for 500 µm outer diameter copper microtube. The MTHF experiments were carried out using a MTHF system utilizing ultrahigh pressure. The fundamental micro hydroforming characteristics as well as forming limits are examined experimentally and numerically. From the results, a process window diagram for micro T-shape hydroforming process is created, and a suitable "success" region is revealed.
Baker, Robert L; Leong, Wen Fung; Brock, Marcus T; Markelz, R J Cody; Covington, Michael F; Devisetty, Upendra K; Edwards, Christine E; Maloof, Julin; Welch, Stephen; Weinig, Cynthia
2015-10-01
Improved predictions of fitness and yield may be obtained by characterizing the genetic controls and environmental dependencies of organismal ontogeny. Elucidating the shape of growth curves may reveal novel genetic controls that single-time-point (STP) analyses do not because, in theory, infinite numbers of growth curves can result in the same final measurement. We measured leaf lengths and widths in Brassica rapa recombinant inbred lines (RILs) throughout ontogeny. We modeled leaf growth and allometry as function valued traits (FVT), and examined genetic correlations between these traits and aspects of phenology, physiology, circadian rhythms and fitness. We used RNA-seq to construct a SNP linkage map and mapped trait quantitative trait loci (QTL). We found genetic trade-offs between leaf size and growth rate FVT and uncovered differences in genotypic and QTL correlations involving FVT vs STPs. We identified leaf shape (allometry) as a genetic module independent of length and width and identified selection on FVT parameters of development. Leaf shape is associated with venation features that affect desiccation resistance. The genetic independence of leaf shape from other leaf traits may therefore enable crop optimization in leaf shape without negative effects on traits such as size, growth rate, duration or gas exchange. © 2015 The Authors. New Phytologist © 2015 New Phytologist Trust.
Martínez-Abadías, Neus; Mateu, Roger; Niksic, Martina; Russo, Lucia; Sharpe, James
2016-01-01
How the genotype translates into the phenotype through development is critical to fully understand the evolution of phenotypes. We propose a novel approach to directly assess how changes in gene expression patterns are associated with changes in morphology using the limb as a case example. Our method combines molecular biology techniques, such as whole-mount in situ hybridization, with image and shape analysis, extending the use of Geometric Morphometrics to the analysis of nonanatomical shapes, such as gene expression domains. Elliptical Fourier and Procrustes-based semilandmark analyses were used to analyze the variation and covariation patterns of the limb bud shape with the expression patterns of two relevant genes for limb morphogenesis, Hoxa11 and Hoxa13. We devised a multiple thresholding method to semiautomatically segment gene domains at several expression levels in large samples of limb buds from C57Bl6 mouse embryos between 10 and 12 postfertilization days. Besides providing an accurate phenotyping tool to quantify the spatiotemporal dynamics of gene expression patterns within developing structures, our morphometric analyses revealed high, non-random, and gene-specific variation undergoing canalization during limb development. Our results demonstrate that Hoxa11 and Hoxa13, despite being paralogs with analogous functions in limb patterning, show clearly distinct dynamic patterns, both in shape and size, and are associated differently with the limb bud shape. The correspondence between our results and already well-established molecular processes underlying limb development confirms that this morphometric approach is a powerful tool to extract features of development regulating morphogenesis. Such multilevel analyses are promising in systems where not so much molecular information is available and will advance our understanding of the genotype–phenotype map. In systematics, this knowledge will increase our ability to infer how evolution modified a common developmental pattern to generate a wide diversity of morphologies, as in the vertebrate limb. PMID:26377442
Leaf Morphology, Taxonomy and Geometric Morphometrics: A Simplified Protocol for Beginners
Viscosi, Vincenzo; Cardini, Andrea
2011-01-01
Taxonomy relies greatly on morphology to discriminate groups. Computerized geometric morphometric methods for quantitative shape analysis measure, test and visualize differences in form in a highly effective, reproducible, accurate and statistically powerful way. Plant leaves are commonly used in taxonomic analyses and are particularly suitable to landmark based geometric morphometrics. However, botanists do not yet seem to have taken advantage of this set of methods in their studies as much as zoologists have done. Using free software and an example dataset from two geographical populations of sessile oak leaves, we describe in detailed but simple terms how to: a) compute size and shape variables using Procrustes methods; b) test measurement error and the main levels of variation (population and trees) using a hierachical design; c) estimate the accuracy of group discrimination; d) repeat this estimate after controlling for the effect of size differences on shape (i.e., allometry). Measurement error was completely negligible; individual variation in leaf morphology was large and differences between trees were generally bigger than within trees; differences between the two geographic populations were small in both size and shape; despite a weak allometric trend, controlling for the effect of size on shape slighly increased discrimination accuracy. Procrustes based methods for the analysis of landmarks were highly efficient in measuring the hierarchical structure of differences in leaves and in revealing very small-scale variation. In taxonomy and many other fields of botany and biology, the application of geometric morphometrics contributes to increase scientific rigour in the description of important aspects of the phenotypic dimension of biodiversity. Easy to follow but detailed step by step example studies can promote a more extensive use of these numerical methods, as they provide an introduction to the discipline which, for many biologists, is less intimidating than the often inaccessible specialistic literature. PMID:21991324
Roles of Shape and Internal Structure in Rotational Disruption of Asteroids
NASA Astrophysics Data System (ADS)
Hirabayashi, Masatoshi; Scheeres, Daniel Jay
2015-08-01
An active research area over the last decade has been to explore configuration changes of rubble pile asteroids due to rotationally induced disruption, initially driven by the remarkable fact that there is a spin period threshold of 2 hr for asteroids larger than a few hundred meters in size. Several different disruption modes due to rapid rotation can be identified, as surface shedding, fission and failure of the internal structure. Relevant to these discussions are many observations of asteroid shapes that have revealed a diversity of forms such as oblate spheroids with equatorial ridges, strongly elongated shapes and contact binaries, to say nothing of multi-body systems. With consideration that rotationally induced deformation is one of the primary drivers of asteroid evolution, we have been developing two techniques for investigating the structure of asteroids, while accounting for their internal mechanical properties through plastic theory. The first technique developed is an analytical model based on limit analysis, which provides rigorous bounds on the asteroid mechanical properties for their shapes to remain stable. The second technique applies finite element model analysis that accounts for plastic deformation. Combining these models, we have explored the correlation between unique shape features and failure modes. First, we have been able to show that contact binary asteroids preferentially fail at their narrow necks at a relatively slow spin period, due to stress concentration. Second, applying these techniques to the breakup event of active asteroid P/2013 R3, we have been able to develop explicit constraints on the cohesion within rubble pile asteroids. Third, by probing the effect of inhomogeneous material properties, we have been able to develop conditions for whether an oblate body will fail internally or through surface shedding. These different failure modes can be tested by measuring the density distribution within a rubble pile body through determination of its gravity field. This talk will explore these different modes of failure and motivate divergent theories of failure that depend on properties of rubble piles.
Dynamic representation of partially occluded objects in primate prefrontal and visual cortex
Choi, Hannah; Shea-Brown, Eric
2017-01-01
Successful recognition of partially occluded objects is presumed to involve dynamic interactions between brain areas responsible for vision and cognition, but neurophysiological evidence for the involvement of feedback signals is lacking. Here, we demonstrate that neurons in the ventrolateral prefrontal cortex (vlPFC) of monkeys performing a shape discrimination task respond more strongly to occluded than unoccluded stimuli. In contrast, neurons in visual area V4 respond more strongly to unoccluded stimuli. Analyses of V4 response dynamics reveal that many neurons exhibit two transient response peaks, the second of which emerges after vlPFC response onset and displays stronger selectivity for occluded shapes. We replicate these findings using a model of V4/vlPFC interactions in which occlusion-sensitive vlPFC neurons feed back to shape-selective V4 neurons, thereby enhancing V4 responses and selectivity to occluded shapes. These results reveal how signals from frontal and visual cortex could interact to facilitate object recognition under occlusion. PMID:28925354
Six new mechanics corresponding to further shape theories
NASA Astrophysics Data System (ADS)
Anderson, Edward
2016-02-01
In this paper, suite of relational notions of shape are presented at the level of configuration space geometry, with corresponding new theories of shape mechanics and shape statistics. These further generalize two quite well known examples: (i) Kendall’s (metric) shape space with his shape statistics and Barbour’s mechanics thereupon. (ii) Leibnizian relational space alias metric scale-and-shape space to which corresponds Barbour-Bertotti mechanics. This paper’s new theories include, using the invariant and group namings, (iii) Angle alias conformal shape mechanics. (iv) Area ratio alias e shape mechanics. (v) Area alias e scale-and-shape mechanics. (iii)-(v) rest respectively on angle space, area-ratio space, and area space configuration spaces. Probability and statistics applications are also pointed to in outline. (vi) Various supersymmetric counterparts of (i)-(v) are considered. Since supergravity differs considerably from GR-based conceptions of background independence, some of the new supersymmetric shape mechanics are compared with both. These reveal compatibility between supersymmetry and GR-based conceptions of background independence, at least within these simpler model arenas.
Boz, Cavit; Ozmenoglu, Mehmet; Altunayoglu, Vildan; Velioglu, Sibel; Alioglu, Zekeriya
2004-09-01
In this study we aimed to identify the role of the body mass index (BMI), wrist index and hand anthropometric measures as risk factors for carpal tunnel syndrome (CTS) in both genders. Based on clinical and electrophysiologic diagnostic criteria, 154 female and 44 male CTS patients, as well as 150 female and 44 male age-matched control subjects, were selected. BMI, wrist index, hand shape index, digit index and hand length/height ratio were compared between the CTS patients and the control subjects for each gender separately. Mean BMI was found to be a significant risk factor for CTS in both genders. The wrist index was found to be higher in female (P < 0.001) and in male (P = 0.034) CTS groups than in the respective control groups. Logistic regression analysis revealed the wrist index to be an independent risk factor in females, but not in males. Shape and digit indices were significantly higher in female CTS patients than in corresponding control subjects, and regression analysis showed the shape and digit indices to be independent risk factors for CTS. In the male CTS group, the shape and digit indices did not significantly differ from their controls. Differences in the hand length/height ratio were not statistically significant in female and male CTS patients compared to their controls and it was not found to be an independent risk factor for CTS. Our study confirmed BMI as an independent risk factor for CTS in both genders. Hand and wrist anthropometrics were found to be independent risk factors for CTS in females, but not in males.
The life of a meander bend: Connecting shape and dynamics via analysis of a numerical model
NASA Astrophysics Data System (ADS)
Schwenk, Jon; Lanzoni, Stefano; Foufoula-Georgiou, Efi
2015-04-01
Analysis of bend-scale meandering river dynamics is a problem of theoretical and practical interest. This work introduces a method for extracting and analyzing the history of individual meander bends from inception until cutoff (called "atoms") by tracking backward through time the set of two cutoff nodes in numerical meander migration models. Application of this method to a simplified yet physically based model provides access to previously unavailable bend-scale meander dynamics over long times and at high temporal resolutions. We find that before cutoffs, the intrinsic model dynamics invariably simulate a prototypical cutoff atom shape we dub simple. Once perturbations from cutoffs occur, two other archetypal cutoff planform shapes emerge called long and round that are distinguished by a stretching along their long and perpendicular axes, respectively. Three measures of meander migration—growth rate, average migration rate, and centroid migration rate—are introduced to capture the dynamic lives of individual bends and reveal that similar cutoff atom geometries share similar dynamic histories. Specifically, through the lens of the three shape types, simples are seen to have the highest growth and average migration rates, followed by rounds, and finally longs. Using the maximum average migration rate as a metric describing an atom's dynamic past, we show a strong connection between it and two metrics of cutoff geometry. This result suggests both that early formative dynamics may be inferred from static cutoff planforms and that there exists a critical period early in a meander bend's life when its dynamic trajectory is most sensitive to cutoff perturbations. An example of how these results could be applied to Mississippi River oxbow lakes with unknown historic dynamics is shown. The results characterize the underlying model and provide a framework for comparisons against more complex models and observed dynamics.
Tabei, Yosuke; Sugino, Sakiko; Eguchi, Kenichiro; Tajika, Masahiko; Abe, Hiroko; Nakajima, Yoshihiro; Horie, Masanori
2017-08-19
Phagocytosis is a physiological process used by immune cells such as macrophages to actively ingest and destroy foreign pathogens and particles. It is the cellular process that leads to the failure of drug delivery carriers because the drug carriers are cleared by immune cells before reaching their target. Therefore, clarifying the mechanism of particle phagocytosis would have a significant implication for both fundamental understanding and biomedical engineering. As far as we know, the effect of particle shape on biological response has not been fully investigated. In the present study, we investigated the particle shape-dependent cellular uptake and biological response of differentiated THP-1 macrophages by using calcium carbonate (CaCO 3 )-based particles as a model. Transmission electron microscopy analysis revealed that the high uptake of needle-shaped CaCO 3 particles by THP-1 macrophages because of their high phagocytic activity. In addition, the THP-1 macrophages exposed to needle-shaped CaCO 3 accumulated a large amount of calcium in the intracellular matrix. The enhanced release of interleukin-8 (IL-8) and tumor necrosis factor-alpha (TNF-α) by the THP-1 macrophages suggested that the needle-shaped CaCO 3 particles trigger a pro-inflammatory response. In contrast, no pro-inflammatory response was induced in undifferentiated THP-1 monocytes exposed to either needle- or cuboidal-shaped CaCO 3 particles, probably because of their low phagocytic activity. We also found that phosphate-coated particles efficiently repressed cellular uptake and the resulting pro-inflammatory response in both THP-1 macrophages and primary peritoneal macrophages. Our results indicate that the pro-inflammatory response of macrophages upon exposure to CaCO 3 particles is shape- and surface property-dependent, and is mediated by the intracellular accumulation of calcium ions released from phagocytosed CaCO 3 particles. Copyright © 2017 Elsevier Inc. All rights reserved.
Statistical shape analysis using 3D Poisson equation--A quantitatively validated approach.
Gao, Yi; Bouix, Sylvain
2016-05-01
Statistical shape analysis has been an important area of research with applications in biology, anatomy, neuroscience, agriculture, paleontology, etc. Unfortunately, the proposed methods are rarely quantitatively evaluated, and as shown in recent studies, when they are evaluated, significant discrepancies exist in their outputs. In this work, we concentrate on the problem of finding the consistent location of deformation between two population of shapes. We propose a new shape analysis algorithm along with a framework to perform a quantitative evaluation of its performance. Specifically, the algorithm constructs a Signed Poisson Map (SPoM) by solving two Poisson equations on the volumetric shapes of arbitrary topology, and statistical analysis is then carried out on the SPoMs. The method is quantitatively evaluated on synthetic shapes and applied on real shape data sets in brain structures. Copyright © 2016 Elsevier B.V. All rights reserved.
Shape component analysis: structure-preserving dimension reduction on biological shape spaces.
Lee, Hao-Chih; Liao, Tao; Zhang, Yongjie Jessica; Yang, Ge
2016-03-01
Quantitative shape analysis is required by a wide range of biological studies across diverse scales, ranging from molecules to cells and organisms. In particular, high-throughput and systems-level studies of biological structures and functions have started to produce large volumes of complex high-dimensional shape data. Analysis and understanding of high-dimensional biological shape data require dimension-reduction techniques. We have developed a technique for non-linear dimension reduction of 2D and 3D biological shape representations on their Riemannian spaces. A key feature of this technique is that it preserves distances between different shapes in an embedded low-dimensional shape space. We demonstrate an application of this technique by combining it with non-linear mean-shift clustering on the Riemannian spaces for unsupervised clustering of shapes of cellular organelles and proteins. Source code and data for reproducing results of this article are freely available at https://github.com/ccdlcmu/shape_component_analysis_Matlab The implementation was made in MATLAB and supported on MS Windows, Linux and Mac OS. geyang@andrew.cmu.edu. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.
Livingston, David P.; Henson, Cynthia A.; Tuong, Tan D.; Wise, Mitchell L.; Tallury, Shyamalrau P.; Duke, Stanley H.
2013-01-01
The crown is the below ground portion of the stem of a grass which contains meristematic cells that give rise to new shoots and roots following winter. To better understand mechanisms of survival from freezing, a histological analysis was performed on rye, wheat, barley and oat plants that had been frozen, thawed and allowed to resume growth under controlled conditions. Extensive tissue disruption and abnormal cell structure was noticed in the center of the crown of all 4 species with relatively normal cells on the outside edge of the crown. A unique visual response was found in oat in the shape of a ring of cells that stained red with Safranin. A tetrazolium analysis indicated that tissues immediately inside this ring were dead and those outside were alive. Fluorescence microscopy revealed that the barrier fluoresced with excitation between 405 and 445 nm. Three dimensional reconstruction of a cross sectional series of images indicated that the red staining cells took on a somewhat spherical shape with regions of no staining where roots entered the crown. Characterizing changes in plants recovering from freezing will help determine the genetic basis for mechanisms involved in this important aspect of winter hardiness. PMID:23341944
Analysis of moving surface structures at a laser-induced boiling front
NASA Astrophysics Data System (ADS)
Matti, R. S.; Kaplan, A. F. H.
2014-10-01
Recently ultra-high speed imaging enabled to observe moving wave patterns on metal melts that experience laser-induced boiling. In laser materials processing a vertical laser-induced boiling front governs processes like keyhole laser welding, laser remote fusion cutting, laser drilling or laser ablation. The observed waves originate from temperature variations that are closely related to the melt topology. For improved understanding of the essential front mechanisms and of the front topology, for the first time a deeper systematic analysis of the wave patterns was carried out. Seven geometrical shapes of bright or dark domains were distinguished and categorized, in particular bright peaks of three kinds and dark valleys, often inclined. Two categories describe special flow patterns at the top and bottom of the front. Dynamic and statistical analysis has revealed that the shapes often combine or separate from one category to another when streaming down the front. The brightness of wave peaks typically fluctuates during 20-50 μs. This variety of thermal wave observations is interpreted with respect to the accompanying surface topology of the melt and in turn for governing local mechanisms like absorption, shadowing, boiling, ablation pressure and melt acceleration. The findings can be of importance for understanding the key process mechanisms and for optimizing laser materials processing.
A Tale of Tails: Dissecting the Enhancing Effect of Tailed Primers in Real-Time PCR
Vandenbussche, Frank; Mathijs, Elisabeth; Lefebvre, David; De Clercq, Kris; Van Borm, Steven
2016-01-01
Non-specific tail sequences are often added to the 5’-terminus of primers to improve the robustness and overall performance of diagnostic assays. Despite the widespread use of tailed primers, the underlying working mechanism is not well understood. To address this problem, we conducted a detailed in vitro and in silico analysis of the enhancing effect of primer tailing on 2 well-established foot-and-mouth disease virus (FMDV) RT-qPCR assays using an FMDV reference panel. Tailing of the panFMDV-5UTR primers mainly affected the shape of the amplification curves. Modelling of the raw fluorescence data suggested a reduction of the amplification efficiency due to the accumulation of inhibitors. In depth analysis of PCR products indeed revealed the rapid accumulation of forward-primer derived artefacts. More importantly, tailing of the forward primer delayed artefacts formation and concomitantly restored the sigmoidal shape of the amplification curves. Our analysis also showed that primer tailing can alter utilisation patterns of degenerate primers and increase the number of primer variants that are able to participate in the reaction. The impact of tailed primers was less pronounced in the panFMDV-3D assay with only 5 out of 50 isolates showing a clear shift in Cq values. Sequence analysis of the target region of these 5 isolates revealed several mutations in the inter-primer region that extend an existing hairpin structure immediately downstream of the forward primer binding site. Stabilisation of the forward primer with either a tail sequence or cationic spermine units restored the sensitivity of the assay, which suggests that the enhancing effect in the panFMDV-3D assay is due to a more efficient extension of the forward primer. ur results show that primer tailing can alter amplification through various mechanisms that are determined by both the assay and target region. These findings expand our understanding of primer tailing and should enable a more targeted and efficient use of tailed primers. PMID:27723800
NASA Technical Reports Server (NTRS)
Kojima, Jun; Nguyen, Quang-Viet
2004-01-01
We present a theoretical study of the spectral interferences in the spontaneous Raman scattering spectra of major combustion products in 30-atm fuel-rich hydrogen-air flames. An effective methodology is introduced to choose an appropriate line-shape model for simulating Raman spectra in high-pressure combustion environments. The Voigt profile with the additive approximation assumption was found to provide a reasonable model of the spectral line shape for the present analysis. The rotational/vibrational Raman spectra of H2, N2, and H2O were calculated using an anharmonic-oscillator model using the latest collisional broadening coefficients. The calculated spectra were validated with data obtained in a 10-atm fuel-rich H2-air flame and showed excellent agreement. Our quantitative spectral analysis for equivalence ratios ranging from 1.5 to 5.0 revealed substantial amounts of spectral cross-talk between the rotational H2 lines and the N2 O-/Q-branch; and between the vibrational H2O(0,3) line and the vibrational H2O spectrum. We also address the temperature dependence of the spectral cross-talk and extend our analysis to include a cross-talk compensation technique that removes the nterference arising from the H2 Raman spectra onto the N2, or H2O spectra.
NASA Astrophysics Data System (ADS)
Zhao, Bo; Liu, Jinhu; Song, Junjie; Cao, Liang; Dou, Shuozeng
2017-11-01
Removal of the length effect in otolith shape analysis for stock identification using length scaling is an important issue; however, few studies have attempted to investigate the effectiveness or weakness of this methodology in application. The aim of this study was to evaluate whether commonly used size scaling methods and normalized elliptic Fourier descriptors (NEFDs) could effectively remove the size effect of fish in stock discrimination. To achieve this goal, length groups from two known geographical stocks of yellow croaker, Larimichthys polyactis, along the Chinese coast (five groups from the Changjiang River estuary of the East China Sea and three groups from the Bohai Sea) were subjected to otolith shape analysis. The results indicated that the variation of otolith shape caused by intra-stock fish length might exceed that due to inter-stock geographical separation, even when otolith shape variables are standardized with length scaling methods. This variation could easily result in misleading stock discrimination through otolith shape analysis. Therefore, conclusions about fish stock structure should be carefully drawn from otolith shape analysis because the observed discrimination may primarily be due to length effects, rather than differences among stocks. The application of multiple methods, such as otoliths shape analysis combined with elemental fingering, tagging or genetic analysis, is recommended for sock identification.
Churchill, Mair E.A.; Klass, Janet; Zoetewey, David L.
2010-01-01
The ubiquitous eukaryotic High-Mobility-Group-Box (HMGB) chromosomal proteins promote many chromatin-mediated cellular activities through their non-sequence-specific binding and bending of DNA. Minor groove DNA binding by the HMG box results in substantial DNA bending toward the major groove owing to electrostatic interactions, shape complementarity and DNA intercalation that occurs at two sites. Here, the structures of the complexes formed with DNA by a partially DNA intercalation-deficient mutant of Drosophila melanogaster HMGD have been determined by X-ray crystallography at a resolution of 2.85 Å. The six proteins and fifty base pairs of DNA in the crystal structure revealed a variety of bound conformations. All of the proteins bound in the minor groove, bridging DNA molecules, presumably because these DNA regions are easily deformed. The loss of the primary site of DNA intercalation decreased overall DNA bending and shape complementarity. However, DNA bending at the secondary site of intercalation was retained and most protein-DNA contacts were preserved. The mode of binding resembles the HMGB1-boxA-cisplatin-DNA complex, which also lacks a primary intercalating residue. This study provides new insights into the binding mechanisms used by HMG boxes to recognize varied DNA structures and sequences as well as modulate DNA structure and DNA bending. PMID:20800069
NASA Astrophysics Data System (ADS)
Murali, M.; Mahendra, C.; Nagabhushan; Rajashekar, N.; Sudarshana, M. S.; Raveesha, K. A.; Amruthesh, K. N.
2017-05-01
Zinc oxide nanoparticles (ZnO-NPs) were synthesized for the first time from any of the species of Ceropegia. Presently, ZnO-NPs were synthesized from the leaf extract of Ceropegia candelabrum with zinc nitrate using a simple hydrothermal process. The synthesized ZnO-NPs showed an absorption peak at 320 nm which is one of the characteristic features of ZnO-NPs. The FT-IR characterization revealed a spectrum band at 551.93 cm- 1 corresponding to the functional group metal oxide. SEM images showed agglomeration of nanoparticles with a hexagonal shape. XRD results are in corroboration with SEM images as the synthesized particles were of hexagonal wurtzite shape and the size of the particles was in the range of 12-35 nm calculated using Scherrer's formula. The elemental analysis using EDS confirmed high zinc content of 70.48% stating that the process of biosynthesis of nanoparticles was carried out in accordance. The biosynthesized ZnO-NPs offered significant antibacterial potential against S. aureus, B. subtilis, E. coli and S. typhi. The antioxidant results revealed significant (p ≤ 0.05) RSA from 0% to 55.43% (IC50 = 95.09 μg mL- 1). The results affirm that biosynthesized ZnO-NPs can be used as an alternative to present-day chemical compounds.
Weng, Neng-Chiao; Wu, Chih-Fu; Tsen, Wen-Chin; Wu, Cheng-Lung; Suen, Maw-Cherng
2018-01-01
Abstract In this study, 4,4′-diphenylmethane diisocyanate and polytetramethylene glycol were used to prepare a prepolymer; N,N′-bis(4-hydroxybenzylidene)-2,6-diaminopyridine (BHBP) was used as a chain extender; and these elements were combined to prepare a novel polyurethane, BHBP/PU. Gel permeation chromatography revealed that the molecular weight of the BHBP/PU samples increased as the BHBP content was increased. Fourier transform infrared spectroscopy demonstrated that high BHBP content facilitated strong hydrogen bonding in the samples. Differential thermogravimetry indicated that the initial decomposition temperature of BHBP/PU-3 was approximately 10 °C higher than that of BHBP/PU-1. Differential scanning calorimetry and dynamic mechanical analysis revealed that increasing the BHBP content substantially increased both the glass transition and dynamic glass transition temperatures of the BHBP/PU samples. The tensile strengths of BHBP/PU-1, BHBP/PU-2, and BHBP/PU-3 were 7.7, 10.9, and 21.6 MPa, respectively, with corresponding Young’s moduli of 0.7, 1.9, and 3.3 MPa. These results demonstrated that both the tensile strength and Young’s modulus of the BHBP/PU samples increased as the BHBP content was increased. Moreover, the BHBP/PU samples exhibited excellent shape recovery of >90%. PMID:29706848
de Kock, Lauren; Wills, Jane
2007-11-01
This study explores the social representations of HIV and AIDS that circulate among white women teachers in South Africa, a group whose personal risk of the disease is low but who have a major role to play in shaping attitudes to HIV/AIDS among children and young people. The study examines how white women talk about the origin and causes of the spread of HIV in South Africa and their personal and community risk. This was explored through 25 semi-structured interviews and two focus groups with white female teachers in Johannesburg. A thematic analysis of the in-depth interviews revealed a shared private understanding of the disease, wherein the women distanced themselves by anchoring it in the context of racist cultural stereotypes of black sexuality and vulnerability. In contrast, the focus group discussions revealed a type of public talk in which HIV/AIDS is anchored in the contemporary cultural images of the new South Africa and the spirit of ubuntu or togetherness. These contradictory views reflect the racial tensions and social contexts of South Africa and which shape HIV/AIDS discourses. The findings suggest that more needs to be done to create a genuine understanding of HIV and AIDS within contemporary South African contexts.
Sullam, Karen E.; Essinger, Steven D.; Lozupone, Catherine A.; O’Connor, Michael P.; Rosen, Gail L.; Knight, Rob; Kilham, Susan S.; Russell, Jacob A.
2013-01-01
Symbiotic bacteria often help their hosts acquire nutrients from their diet, showing trends of co-evolution and independent acquisition by hosts from the same trophic levels. While these trends hint at important roles for biotic factors, the effects of the abiotic environment on symbiotic community composition remain comparably understudied. In this investigation, we examined the influence of abiotic and biotic factors on the gut bacterial communities of fish from different taxa, trophic levels and habitats. Phylogenetic and statistical analyses of 25 16S rRNA libraries revealed that salinity, trophic level and possibly host phylogeny shape the composition of fish gut bacteria. When analysed alongside bacterial communities from other environments, fish gut communities typically clustered with gut communities from mammals and insects. Similar consideration of individual phylotypes (vs. communities) revealed evolutionary ties between fish gut microbes and symbionts of animals, as many of the bacteria from the guts of herbivorous fish were closely related to those from mammals. Our results indicate that fish harbour more specialized gut communities than previously recognized. They also highlight a trend of convergent acquisition of similar bacterial communities by fish and mammals, raising the possibility that fish were the first to evolve symbioses resembling those found among extant gut fermenting mammals. PMID:22486918
Ag implantation-induced modification of Ni-Ti shape memory alloy thin films
NASA Astrophysics Data System (ADS)
Kumar, V.; Singhal, R.; Vishnoi, R.; Banerjee, M. K.; Sharma, M. C.; Asokan, K.; Kumar, M.
2017-08-01
Nanocrystalline thin films of Ni-Ti shape memory alloy are deposited on an Si substrate by the DC-magnetron co-sputtering technique and 120 keV Ag ions are implanted at different fluences. The thickness and composition of the pristine films are determined by Rutherford Backscattering Spectrometry (RBS). X-Ray diffraction (XRD), atomic force microscopy (AFM) and four-point probe resistivity methods have been used to study the structural, morphological and electrical transport properties. XRD analysis has revealed the existence of martensitic and austenite phases in the pristine film and also evidenced the structural changes in Ag-implanted Ni-Ti films at different fluences. AFM studies have revealed that surface roughness and grain size of Ni-Ti films have decreased with an increase in ion fluence. The modifications in the mechanical behaviour of implanted Ni-Ti films w.r.t pristine film is determined by using a Nano-indentation tester at room temperature. Higher hardness and the ratio of higher hardness (H) to elastic modulus (Er) are observed for the film implanted at an optimized fluence of 9 × 1015 ions/cm2. This improvement in mechanical behaviour could be understood in terms of grain refinement and dislocation induced by the Ag ion implantation in the Ni-Ti thin films.
Frequency maps as a probe of secular evolution in the Milky Way
NASA Astrophysics Data System (ADS)
Valluri, Monica
2015-03-01
The frequency analysis of the orbits of halo stars and dark matter particles from a cosmological hydrodynamical simulation of a disk galaxy from the MUGS collaboration (Stinson et al. 2010) shows that even if the shape of the dark matter halo is nearly oblate, only about 50% of its orbits are on short-axis tubes, confirming a previous result: under baryonic condensation all orbit families can deform their shapes without changing orbital type (Valluri et al. 2010). Orbits of dark matter particles and halo stars are very similar reflecting their common accretion origin and the influence of baryons. Frequency maps provide a compact representation of the 6-D phase space distribution that also reveals the history of the halo (Valluri et al. 2012). The 6-D phase space coordinates for a large population of halo stars in the Milky Way that will be obtained from future surveys can be used to reconstruct the phase-space distribution function of the stellar halo. The similarity between the frequency maps of halo stars and dark matter particles (Fig. 1) implies that reconstruction of the stellar halo distribution function can reveal the phase space distribution of the unseen dark matter particles and provide evidence for secular evolution. MV is supported by NSF grant AST-0908346 and the Elizabeth Crosby grant.
Monaco, Lauren A; DeWitte-Orr, Stephanie J; Gregory, Diane E
2016-02-01
This project aimed to compare gross anatomical measures and biomechanical properties of single lamellae from the annulus fibrosus of ovine and porcine lumbar vertebrae, and bovine tail vertebrae. The morphology of the vertebrae of these species differ significantly both from each other and from human, yet how these differences alter biomechanical properties is unknown. Geometric parameters measured in this study included: 1) absolute and relative intervertebral (IVD) and vertebral body height and 2) absolute and relative intervertebral disc (IVD) anterior-posterior (AP) and medial-lateral (ML) widths. Single lamella tensile properties included toe-region stress and stretch ratio, stiffness, and tensile strength. As expected, the bovine tail IVD revealed a more circular shape compared with both the ovine and porcine lumbar IVD. The bovine tail also had the largest IVD to vertebral body height ratio (due to having the highest absolute IVD height). Bovine tail lamellae were also found to be strongest and stiffest (in tension) while ovine lumbar lamellae were weakest and most compliant. Histological analysis revealed the greatest proportion of collagen in the bovine corroborating findings of increased strength and stiffness. The observed differences in anatomical shape, connective tissue composition, and tensile properties need to be considered when choosing an appropriate model for IVD research. © 2015 Wiley Periodicals, Inc.
Effect of polymer molecular weight on chitosan-protein interaction.
Bekale, L; Agudelo, D; Tajmir-Riahi, H A
2015-01-01
We present a comprehensive study of the interactions between chitosan nanoparticles (15, 100 and 200 kDa with the same degree of deacetylation 90%) and two model proteins, i.e., bovine (BSA) and human serum albumins (HSA), with the aim of correlating chitosan molecular weight (Mw) and the binding affinity of these naturally occurring polymers to protein. The effect of chitosan on the protein secondary structure and the influence of protein complexation on the shape of chitosan nanoparticles are discussed. A combination of multiple spectroscopic methods, transmission electron microscopy (TEM) and thermodynamic analysis were used to assess the polymer-protein complex formation. Results revealed that the three chitosan nanoparticles interact with BSA to form chitosan-BSA complexes, mainly through hydrophobic contacts with the affinity order: 200>100>15 kDa. However, HSA-chitosan complexation is mainly via electrostatic interactions with the stability order: 100>200>15 kDa. Furthermore, the association between polymer and protein causes a partial protein conformational change by a major reduction of α-helix from 63% (free BSA) to 57% (chitosan-BSA) and 57% (free HSA) to 51% (chitosan-HSA). Finally, TEM micrographs clearly revealed that the binding of serum albumins with chitosan nanoparticles induces a significant change in protein morphology and the shape of the polymer. Copyright © 2014 Elsevier B.V. All rights reserved.
Visualization of newt aragonitic otoconial matrices using transmission electron microscopy
NASA Technical Reports Server (NTRS)
Steyger, P. S.; Wiederhold, M. L.
1995-01-01
Otoconia are calcified protein matrices within the gravity-sensing organs of the vertebrate vestibular system. These protein matrices are thought to originate from the supporting or hair cells in the macula during development. Previous studies of mammalian calcitic, barrel-shaped otoconia revealed an organized protein matrix consisting of a thin peripheral layer, a well-defined organic core and a flocculent matrix inbetween. No studies have reported the microscopic organization of the aragonitic otoconial matrix, despite its protein characterization. Pote et al. (1993b) used densitometric methods and inferred that prismatic (aragonitic) otoconia have a peripheral protein distribution, compared to that described for the barrel-shaped, calcitic otoconia of birds, mammals, and the amphibian utricle. By using tannic acid as a negative stain, we observed three kinds of organic matrices in preparations of fixed, decalcified saccular otoconia from the adult newt: (1) fusiform shapes with a homogenous electron-dense matrix; (2) singular and multiple strands of matrix; and (3) more significantly, prismatic shapes outlined by a peripheral organic matrix. These prismatic shapes remain following removal of the gelatinous matrix, revealing an internal array of organic matter. We conclude that prismatic otoconia have a largely peripheral otoconial matrix, as inferred by densitometry.
Effects of X-shaped reduction-sensitive amphiphilic block copolymer on drug delivery.
Xiao, Haijun; Wang, Lu
2015-01-01
To study the effects of X-shaped amphiphilic block copolymers on delivery of docetaxel (DTX) and the reduction-sensitive property on drug release, a novel reduction-sensitive amphiphilic copolymer, (PLGA)2-SS-4-arm-PEG2000 with a Gemini-like X-shape, was successfully synthesized. The formation of nanomicelles was proved with respect to the blue shift of the emission fluorescence as well as the fluorescent intensity increase of coumarin 6-loaded particles. The X-shaped polymers exhibited a smaller critical micelle concentration value and possessed higher micellar stability in comparison with those of linear ones. The size of X-shaped (PLGA)2-SS-4-arm-PEG2000 polymer nanomicelles (XNMs) was much smaller than that of nanomicelles prepared with linear polymers. The reduction sensitivity of polymers was confirmed by the increase of micellar sizes as well as the in vitro drug release profile of DTX-loaded XNMs (DTX/XNMs). Cytotoxicity assays in vitro revealed that the blank XNMs were nontoxic against A2780 cells up to a concentration of 50 µg/mL, displaying good biocompatibility. DTX/XNMs were more toxic against A2780 cells than other formulations in both dose- and time-dependent manners. Cellular uptake assay displayed a higher intracellular drug delivery efficiency of XNMs than that of nanomicelles prepared with linear polymers. Besides, the promotion of tubulin polymerization induced by DTX was visualized by immunofluorescence analysis, and the acceleration of apoptotic process against A2780 cells was also imaged using a fluorescent staining method. Therefore, this X-shaped reduction-sensitive (PLGA)2-SS-4-arm-PEG2000 copolymer could effectively improve the micellar stability and significantly enhance the therapeutic efficacy of DTX by increasing the cellular uptake and selectively accelerating the drug release inside cancer cells.
NASA Astrophysics Data System (ADS)
Ahmad, Shahbaz; Bashir, Shazia; Rafique, M. Shahid; Yousaf, Daniel
2017-04-01
Laser-produced Si plasma is employed as an ion source for implantation on the brass substrate for its surface, structural, and mechanical modifications. Thomson parabola technique is employed for the measurement of energy and flux of Si ions using CR-39. In response to stepwise increase in number of laser pulses from 3000 to 12000, four brass substrates were implanted by laser-induced Si plasma ions of energy 290 keV at different fluxes ranging from 45 × 1012 to 75 × 1015 ions/cm2. SEM analysis reveals the formation of nano/micro-sized irregular shaped cavities and pores for the various ion fluxes for varying numbers of laser pulses from 3000 to 9000. At the maximum ion flux for 12,000 pulses, distinct and organized grains with hexagonal and irregular shaped morphology are revealed. X-ray diffractometer (XRD) analysis exhibits that a new phase of CuSi (311) is identified which confirms the implantation of Si ions in brass substrate. A significant decrease in mechanical properties of implanted brass, such as Yield Stress (YS), Ultimate Tensile Strength (UTS), and hardness, with increasing laser pulses from 3000 to 6000 is observed. However, with increasing laser pulses from 9000 to a maximum value of 12,000, an increase in mechanical properties like hardness, YS, and UTS is observed. The generation as well as annihilation of defects, recrystallization, and intermixing of Si precipitates with brass matrix is considered to be responsible for variations in surface, structural, and mechanical modifications of brass.
Broughton, Mary C.; Davidson, Jane W.
2016-01-01
Musicians' expressive bodily movements can influence observers' perception of performance. Furthermore, individual differences in observers' music and motor expertise can shape how they perceive and respond to music performance. However, few studies have investigated the bodily movements that different observers of music performance perceive as expressive, in order to understand how they might relate to the music being produced, and the particular instrument type. In this paper, we focus on marimba performance through two case studies—one solo and one collaborative context. This study aims to investigate the existence of a core repertoire of marimba performance expressive bodily movements, identify key music-related features associated with the core repertoire, and explore how observers' perception of expressive bodily movements might vary according to individual differences in their music and motor expertise. Of the six professional musicians who observed and analyzed the marimba performances, three were percussionists and experienced marimba players. Following training, observers implemented the Laban effort-shape movement analysis system to analyze marimba players' bodily movements that they perceived as expressive in audio-visual recordings of performance. Observations that were agreed by all participants as being the same type of action at the same location in the performance recording were examined in each case study, then across the two studies. A small repertoire of bodily movements emerged that the observers perceived as being expressive. Movements were primarily allied to elements of the music structure, technique, and expressive interpretation, however, these elements appeared to be interactive. A type of body sway movement and more localized sound generating actions were perceived as expressive. These movements co-occurred and also appeared separately. Individual participant data revealed slightly more variety in the types and locations of actions observed, with judges revealing preferences for observing particular types of expressive bodily movements. The particular expressive bodily movements that are produced and perceived in marimba performance appear to be shaped by music-related and sound generating features, musical context, and observer music and motor expertise. With an understanding of bodily movements that are generated and perceived as expressive, embodied music performance training programs might be developed to enhance expressive performer-audience communication. PMID:27630585
Differing Roles of Functional Movement Variability as Experience Increases in Gymnastics
Busquets, Albert; Marina, Michel; Davids, Keith; Angulo-Barroso, Rosa
2016-01-01
Current theories, like Ecological Dynamics, propose that inter-trial movement variability is functional when acquiring or refining movement coordination. Here, we examined how age-based experience levels of gymnasts constrained differences in emergent movement pattern variability during task performance. Specifically, we investigated different roles of movement pattern variability when gymnasts in different age groups performed longswings on a high bar, capturing the range of experience from beginner to advanced status. We also investigated the functionality of the relationships between levels of inter-trial variability and longswing amplitude during performance. One-hundred and thirteen male gymnasts in five age groups were observed performing longswings (with three different experience levels: beginners, intermediates and advanced performers). Performance was evaluated by analysis of key events in coordination of longswing focused on the arm-trunk and trunk-thigh segmental relations. Results revealed that 10 of 18 inter-trial variability measures changed significantly as a function of increasing task experience. Four of ten variability measures conformed to a U-shaped function with age implying exploratory strategies amongst beginners and functional adaptive variability amongst advanced performers. Inter-trial variability of arm-trunk coordination variables (6 of 10) conformed to a \\-shaped curve, as values were reduced to complete the longswings. Changes in coordination variability from beginner to intermediate status were largely restrictive, with only one variability measure related to exploration. Data revealed how inter-trial movement variability in gymnastics, relative to performance outcomes, needs careful interpretation, implying different roles as task experience changes. Key points Inter-trial variability while performing longswings on a high bar was assessed in a large sample (113 participants) divided into five age groups (form beginners to advanced gymnasts). Longswing assessment allowed us to evaluate inter-trial variability in representative performance context. Coordination variability presented two different configurations across experience levels depending on the variable of interest: either a U-shaped or a L- or \\-shaped graph. Increased inter-trial variability of the functional phase events offered flexibility to adapt the longswing performance in the advanced gymnasts, while decreasing variability in arm-trunk coordination modes was critical to improve longswing and to achieve the most advanced level. In addition, the relationship between variability measures and the global performance outcome (i.e. the swing amplitude) revealed different functional roles of movement variability (exploratory or restrictive) as a function of changes in experience levels. PMID:27274664
Broughton, Mary C; Davidson, Jane W
2016-01-01
Musicians' expressive bodily movements can influence observers' perception of performance. Furthermore, individual differences in observers' music and motor expertise can shape how they perceive and respond to music performance. However, few studies have investigated the bodily movements that different observers of music performance perceive as expressive, in order to understand how they might relate to the music being produced, and the particular instrument type. In this paper, we focus on marimba performance through two case studies-one solo and one collaborative context. This study aims to investigate the existence of a core repertoire of marimba performance expressive bodily movements, identify key music-related features associated with the core repertoire, and explore how observers' perception of expressive bodily movements might vary according to individual differences in their music and motor expertise. Of the six professional musicians who observed and analyzed the marimba performances, three were percussionists and experienced marimba players. Following training, observers implemented the Laban effort-shape movement analysis system to analyze marimba players' bodily movements that they perceived as expressive in audio-visual recordings of performance. Observations that were agreed by all participants as being the same type of action at the same location in the performance recording were examined in each case study, then across the two studies. A small repertoire of bodily movements emerged that the observers perceived as being expressive. Movements were primarily allied to elements of the music structure, technique, and expressive interpretation, however, these elements appeared to be interactive. A type of body sway movement and more localized sound generating actions were perceived as expressive. These movements co-occurred and also appeared separately. Individual participant data revealed slightly more variety in the types and locations of actions observed, with judges revealing preferences for observing particular types of expressive bodily movements. The particular expressive bodily movements that are produced and perceived in marimba performance appear to be shaped by music-related and sound generating features, musical context, and observer music and motor expertise. With an understanding of bodily movements that are generated and perceived as expressive, embodied music performance training programs might be developed to enhance expressive performer-audience communication.
NASA Astrophysics Data System (ADS)
Zhang, Binquan; Mille, Matthew; Xu, X. George
2008-07-01
In vivo radiobioassay is integral to many health physics and radiological protection programs dealing with internal exposures. The Bottle Manikin Absorber (BOMAB) physical phantom has been widely used for whole-body counting calibrations. However, the shape of BOMAB phantoms—a collection of plastic, cylindrical shells which contain no bones or internal organs—does not represent realistic human anatomy. Furthermore, workers who come in contact with radioactive materials have rather different body shape and size. To date, there is a lack of understanding about how the counting efficiency would change when the calibrated counter is applied to a worker with complicated internal organs or tissues. This paper presents a study on various in vivo counting efficiencies obtained from Monte Carlo simulations of two BOMAB phantoms and three tomographic image-based models (VIP-Man, NORMAN and CNMAN) for a scenario involving homogeneous whole-body radioactivity contamination. The results reveal that a phantom's counting efficiency is strongly dependent on the shape and size of a phantom. Contrary to what was expected, it was found that only small differences in efficiency were observed when the density and material composition of all internal organs and tissues of the tomographic phantoms were changed to water. The results of this study indicate that BOMAB phantoms with appropriately adjusted size and shape can be sufficient for whole-body counting calibrations when the internal contamination is homogeneous.
Freud, Erez; Ganel, Tzvi; Avidan, Galia; Gilaie-Dotan, Sharon
2016-03-01
According to the two visual systems model, the cortical visual system is segregated into a ventral pathway mediating object recognition, and a dorsal pathway mediating visuomotor control. In the present study we examined whether the visual control of action could develop normally even when visual perceptual abilities are compromised from early childhood onward. Using his fingers, LG, an individual with a rare developmental visual object agnosia, manually estimated (perceptual condition) the width of blocks that varied in width and length (but not in overall size), or simply picked them up across their width (grasping condition). LG's perceptual sensitivity to target width was profoundly impaired in the manual estimation task compared to matched controls. In contrast, the sensitivity to object shape during grasping, as measured by maximum grip aperture (MGA), the time to reach the MGA, the reaction time and the total movement time were all normal in LG. Further analysis, however, revealed that LG's sensitivity to object shape during grasping emerged at a later time stage during the movement compared to controls. Taken together, these results demonstrate a dissociation between action and perception of object shape, and also point to a distinction between different stages of the grasping movement, namely planning versus online control. Moreover, the present study implies that visuomotor abilities can develop normally even when perceptual abilities developed in a profoundly impaired fashion. Copyright © 2016 Elsevier Ltd. All rights reserved.
NASA Technical Reports Server (NTRS)
Poe, Clarence C., Jr.
1991-01-01
A study was made to determine the relevance of impacter shape to nonvisible damage and tensile residual strength of a 36 mm thick graphite/epoxy motor case. The shapes of the impacters were as follows: 12.7 mm and 25.4 mm diameter hemispheres, a sharp corner, and a 6.3 mm diameter bolt-like rod. The investigation revealed that damage initiated when the contact pressure exceeded a critical level. However, the damage was not visible on the surface until an even higher pressure was exceeded. The impact energy to initiate damage or cause visible damage on the surface increased approximately with impacter diameter to the third power. The reduction in strength for nonvisible damage increased with increasing diameter, 9 and 30 percent for the 12.7 mm and 25.4 mm diameter hemispheres, respectively. The corner impacter made visible damage on the surface for even the smallest impact energy. The rod impacter acted like a punch and sliced through the composite. Even so, the critical level of pressure to initiate damage was the same for the rod and hemispherical impacters. Factors of safety for nonvisible damage increased with increasing kinetic energy of impact. The effects of impacter shape on impact force, damage size, damage visibility, and residual tensile strength were predicted quite well assuming Hertzian contact and using maximum stress criteria and a surface crack analysis.
Effects of kinetics of light-induced stomatal responses on photosynthesis and water-use efficiency.
McAusland, Lorna; Vialet-Chabrand, Silvère; Davey, Philip; Baker, Neil R; Brendel, Oliver; Lawson, Tracy
2016-09-01
Both photosynthesis (A) and stomatal conductance (gs ) respond to changing irradiance, yet stomatal responses are an order of magnitude slower than photosynthesis, resulting in noncoordination between A and gs in dynamic light environments. Infrared gas exchange analysis was used to examine the temporal responses and coordination of A and gs to a step increase and decrease in light in a range of different species, and the impact on intrinsic water use efficiency was evaluated. The temporal responses revealed a large range of strategies to save water or maximize photosynthesis in the different species used in this study but also displayed an uncoupling of A and gs in most of the species. The shape of the guard cells influenced the rapidity of response and the overall gs values achieved, with different impacts on A and Wi . The rapidity of gs in dumbbell-shaped guard cells could be attributed to size, whilst in elliptical-shaped guard cells features other than anatomy were more important for kinetics. Our findings suggest significant variation in the rapidity of stomatal responses amongst species, providing a novel target for improving photosynthesis and water use. © 2016 The Authors. New Phytologist © 2016 New Phytologist Trust.
NASA Astrophysics Data System (ADS)
Öncan, Mehmet; Koç, Fatih; Şahin, Mehmet; Köksal, Koray
2017-05-01
This work introduces an analysis of the relationship of first-principles calculations based on DFT method with the results of free particle model for ring-shaped aromatic molecules. However, the main aim of the study is to reveal the angular electronic band structure of the ring-shaped molecules. As in the case of spherical molecules such as fullerene, it is possible to observe a parabolic dispersion of electronic states with the variation of angular quantum number in the planar ring-shaped molecules. This work also discusses the transition probabilities between the occupied and virtual states by analyzing the angular electronic band structure and the possibility of ring currents in the case of spin angular momentum (SAM) or orbital angular momentum (OAM) carrying light. Current study focuses on the benzene molecule to obtain its angular electronic band structure. The obtained electronic band structure can be considered as a useful tool to see the transition probabilities between the electronic states and possible contribution of the states to the ring currents. The photoinduced current due to the transfer of SAM into the benzene molecule has been investigated by using analytical calculations within the frame of time-dependent perturbation theory.
NASA Astrophysics Data System (ADS)
Asanuma, H.; Okubo, H.; Komatsuzaki, T.; Iwata, Y.
2016-11-01
To downsize the clamp area and increase the output power of the harvester, we developed a miniature piezoelectric vibration energy harvester with combining a Z-shaped folded spring and a mechanically-switching SSHI (synchronized switch harvesting on inductor). The overall harvester size is 4×2×3 cm3. The FEM analysis revealed that the output power increases and the value of the 1st and 2nd resonance frequencies move closer as the angle of the Z-shaped spring decreases, therefore, the smaller angle would be more promising. The experimental results showed that the maximum output power of our harvester for the 1st (20.2 Hz) and 2nd (53.0 Hz) resonance frequencies at the applied acceleration of 4.9 m/s2 are 088 and 0.98 mW, respectively. The reason for a marked enhancement of the output power for the 2nd resonance frequency is attributed to the vertical movement of the 2nd vibrational mode which applies larger mechanical stress to the piezo ceramic and achieves better electrical contact between the tip of the Z-shaped spring and the spring plunger.
Basal ganglia structure in Tourette's disorder and/or attention-deficit/hyperactivity disorder.
Forde, Natalie J; Zwiers, Marcel P; Naaijen, Jilly; Akkermans, Sophie E A; Openneer, Thaira J C; Visscher, Frank; Dietrich, Andrea; Buitelaar, Jan K; Hoekstra, Pieter J
2017-04-01
Tourette's disorder and attention-deficit/hyperactivity disorder often co-occur and have both been associated with structural variation of the basal ganglia. However, findings are inconsistent and comorbidity is often neglected. T1-weighted magnetic resonance images from children (n = 141, 8 to 12 years) with Tourette's disorder and/or attention-deficit/hyperactivity disorder and controls were processed with the Oxford Centre for Functional MRI [Magnetic resonance imaging] of the Brain (FMRIB) integrated registration and segmentation tool to determine basal ganglia nuclei volume and shape. Across all participants, basal ganglia nuclei volume and shape were estimated in relation to Tourette's disorder (categorical), attention-deficit/hyperactivity disorder severity (continuous across all participants), and their interaction. The analysis revealed no differences in basal ganglia nuclei volumes or shape between children with and without Tourette's disorder, no association with attention-deficit/hyperactivity disorder severity, and no interaction between the two. We found no evidence that Tourette's disorder, attention-deficit/hyperactivity disorder severity, or a combination thereof are associated with structural variation of the basal ganglia in 8- to 12-year-old patients. © 2016 International Parkinson and Movement Disorder Society. © 2016 International Parkinson and Movement Disorder Society.
NASA Astrophysics Data System (ADS)
Takeno, Hiroyuki; Mochizuki, Tomomitsu; Yoshiba, Kazuto; Kondo, Shingo; Dobashi, Toshiaki
Self-assembling structures and sol-gel transition in solution of optically active and racemic 12-Hydroxystearic acids (HSA) have been investigated by means of small-angle X-ray scattering (SAXS), differential scanning calorimetry and rheological measurements. Apparently two kinds of gel, transparent gel and turbid gel were obtained in different solvents or by changing concentrations in the same solvent. The melting temperature of the turbid gel is higher than that of the transparent gel. The difference can be qualitatively explained by the dissolution of the crystals (melting point depression) in non-ideal solutions. The SAXS profiles of the transparent gel composed of fibrillar structures have a similar shape at different concentrations, although the intensity is larger for the gels with higher concentrations of 12-HSA. The SAXS analysis reveals that the cross-section of fibrils have square or circular shape (no anisotropic shape) with the radius of gyration 83 Å. On the other hand, for the turbid gel structural inhomnogeneity becomes significant with concentration. The gelation properties and the structures are found to be similar in the racemic HSA gel and the optically active (D-HSA) gel.
Spherical images and inextensible curved folding
NASA Astrophysics Data System (ADS)
Seffen, Keith A.
2018-02-01
In their study, Duncan and Duncan [Proc. R. Soc. London A 383, 191 (1982), 10.1098/rspa.1982.0126] calculate the shape of an inextensible surface folded in two about a general curve. They find the analytical relationships between pairs of generators linked across the fold curve, the shape of the original path, and the fold angle variation along it. They present two special cases of generator layouts for which the fold angle is uniform or the folded curve remains planar, for simplifying practical folding in sheet-metal processes. We verify their special cases by a graphical treatment according to a method of Gauss. We replace the fold curve by a piecewise linear path, which connects vertices of intersecting pairs of hinge lines. Inspired by the d-cone analysis by Farmer and Calladine [Int. J. Mech. Sci. 47, 509 (2005), 10.1016/j.ijmecsci.2005.02.013], we construct the spherical images for developable folding of successive vertices: the operating conditions of the special cases in Duncan and Duncan are then revealed straightforwardly by the geometric relationships between the images. Our approach may be used to synthesize folding patterns for novel deployable and shape-changing surfaces without need of complex calculation.
Human preferences for colorful birds: Vivid colors or pattern?
Lišková, Silvie; Landová, Eva; Frynta, Daniel
2015-04-29
In a previous study, we found that the shape of a bird, rather than its color, plays a major role in the determination of human preferences. Thus, in the present study, we asked whether the preferences of human respondents towards uniformly shaped, colorful birds are determined by pattern rather than color. The experimental stimuli were pictures of small passerine birds of the family Pittidae possessing uniform shape but vivid coloration. We asked 200 participants to rank 43 colored and 43 identical, but grayscaled, pictures of birds. To find the traits determining human preferences, we performed GLM analysis in which we tried to explain the mean preference ranks and PC axes by the following explanatory variables: the overall lightness and saturation, edges (pattern), and the portion of each of the basic color hues. The results showed that the mean preference ranks of the grayscale set is explained mostly by the birds' pattern, whereas the colored set ranking is mostly determined by the overall lightness. The effect of colors was weaker, but still significant, and revealed that people liked blue and green birds. We found no significant role of the color red, the perception of which was acquired relatively recently in evolution.
A Middle Palaeolithic wooden digging stick from Aranbaltza III, Spain.
Rios-Garaizar, Joseba; López-Bultó, Oriol; Iriarte, Eneko; Pérez-Garrido, Carlos; Piqué, Raquel; Aranburu, Arantza; Iriarte-Chiapusso, María José; Ortega-Cordellat, Illuminada; Bourguignon, Laurence; Garate, Diego; Libano, Iñaki
2018-01-01
Aranbaltza is an archaeological complex formed by at least three open-air sites. Between 2014 and 2015 a test excavation carried out in Aranbaltza III revealed the presence of a sand and clay sedimentary sequence formed in floodplain environments, within which six sedimentary units have been identified. This sequence was formed between 137-50 ka, and includes several archaeological horizons, attesting to the long-term presence of Neanderthal communities in this area. One of these horizons, corresponding with Unit 4, yielded two wooden tools. One of these tools is a beveled pointed tool that was shaped through a complex operational sequence involving branch shaping, bark peeling, twig removal, shaping, polishing, thermal exposition and chopping. A use-wear analysis of the tool shows it to have traces related with digging soil so it has been interpreted as representing a digging stick. This is the first time such a tool has been identified in a European Late Middle Palaeolithic context; it also represents one of the first well-preserved Middle Palaeolithic wooden tool found in southern Europe. This artefact represents one of the few examples available of wooden tool preservation for the European Palaeolithic, allowing us to further explore the role wooden technologies played in Neanderthal communities.
Shin, S M; Kim, Y-I; Choi, Y-S; Yamaguchi, T; Maki, K; Cho, B-H; Park, S-B
2015-01-01
To evaluate axial cervical vertebral (ACV) shape quantitatively and to build a prediction model for skeletal maturation level using statistical shape analysis for Japanese individuals. The sample included 24 female and 19 male patients with hand-wrist radiographs and CBCT images. Through generalized Procrustes analysis and principal components (PCs) analysis, the meaningful PCs were extracted from each ACV shape and analysed for the estimation regression model. Each ACV shape had meaningful PCs, except for the second axial cervical vertebra. Based on these models, the smallest prediction intervals (PIs) were from the combination of the shape space PCs, age and gender. Overall, the PIs of the male group were smaller than those of the female group. There was no significant correlation between centroid size as a size factor and skeletal maturation level. Our findings suggest that the ACV maturation method, which was applied by statistical shape analysis, could confirm information about skeletal maturation in Japanese individuals as an available quantifier of skeletal maturation and could be as useful a quantitative method as the skeletal maturation index.
Shin, S M; Choi, Y-S; Yamaguchi, T; Maki, K; Cho, B-H; Park, S-B
2015-01-01
Objectives: To evaluate axial cervical vertebral (ACV) shape quantitatively and to build a prediction model for skeletal maturation level using statistical shape analysis for Japanese individuals. Methods: The sample included 24 female and 19 male patients with hand–wrist radiographs and CBCT images. Through generalized Procrustes analysis and principal components (PCs) analysis, the meaningful PCs were extracted from each ACV shape and analysed for the estimation regression model. Results: Each ACV shape had meaningful PCs, except for the second axial cervical vertebra. Based on these models, the smallest prediction intervals (PIs) were from the combination of the shape space PCs, age and gender. Overall, the PIs of the male group were smaller than those of the female group. There was no significant correlation between centroid size as a size factor and skeletal maturation level. Conclusions: Our findings suggest that the ACV maturation method, which was applied by statistical shape analysis, could confirm information about skeletal maturation in Japanese individuals as an available quantifier of skeletal maturation and could be as useful a quantitative method as the skeletal maturation index. PMID:25411713
Craniofacial morphometric analysis of mandibular prognathism.
Chang, H P; Liu, P H; Yang, Y H; Lin, H C; Chang, C H
2006-03-01
The purpose of this study was to provide more information about the morphological characteristics of the craniofacial complex in mandibular prognathism. Forty young adult males having mandibular prognathism were compared with 40 having normal occlusion. This was conducted to carry out geometric morphometric assessments to localize alterations, using Procrustes analysis and thin-plate spline analysis, in addition to conventional cephalometric techniques. Procrustes analysis indicated that the mean craniofacial, midfacial and mandibular morphology was significantly different in prognathic subjects compared with normal controls. This finding was corroborated by the multivariate Hotelling T(2)-test of cephalometric variables. Mandibular prognathism demonstrated a shorter and slightly retropositioned maxilla, a greater total length and anterior positioning of the mandible. Thin-plate spline analysis revealed a developmental diminution of the palatomaxillary region anteroposteriorly and a developmental elongation of the mandible anteroposteriorly, leading to the appearance of a prognathic mandibular profile. In conclusion, thin-plate spline analysis seems to provide a valuable supplement for conventional cephalometric analysis because the complex patterns of craniofacial shape change are visualized suggestive by means of grid deformations.
Hybrid least squares multivariate spectral analysis methods
Haaland, David M.
2002-01-01
A set of hybrid least squares multivariate spectral analysis methods in which spectral shapes of components or effects not present in the original calibration step are added in a following estimation or calibration step to improve the accuracy of the estimation of the amount of the original components in the sampled mixture. The "hybrid" method herein means a combination of an initial classical least squares analysis calibration step with subsequent analysis by an inverse multivariate analysis method. A "spectral shape" herein means normally the spectral shape of a non-calibrated chemical component in the sample mixture but can also mean the spectral shapes of other sources of spectral variation, including temperature drift, shifts between spectrometers, spectrometer drift, etc. The "shape" can be continuous, discontinuous, or even discrete points illustrative of the particular effect.
Mechanical properties of zirconia reinforced lithium silicate glass-ceramic.
Elsaka, Shaymaa E; Elnaghy, Amr M
2016-07-01
The aim of this study was to assess the mechanical properties of recently introduced zirconia reinforced lithium silicate glass-ceramic. Two types of CAD/CAM glass-ceramics (Vita Suprinity (VS); zirconia reinforced lithium silicate and IPS e.max CAD (IC); lithium disilicate) were used. Fracture toughness, flexural strength, elastic modulus, hardness, brittleness index, and microstructures were evaluated. Data were analyzed using independent t tests. Weibull analysis of flexural strength data was also performed. VS had significantly higher fracture toughness (2.31±0.17MPam(0.5)), flexural strength (443.63±38.90MPa), elastic modulus (70.44±1.97GPa), and hardness (6.53±0.49GPa) than IC (P<0.001). On the other hand, VS glass-ceramic revealed significantly a higher brittleness index (2.84±0.26μm(-1/2)) (lower machinability) than IC glass-ceramic (P<0.05). VS demonstrated a homogeneous fine crystalline structure while, IC revealed a structure with needle-shaped fine-grained crystals embedded in a glassy matrix. The VS glass-ceramic revealed a lower probability of failure and a higher strength than IC glass-ceramic according to Weibull analysis. The VS zirconia reinforced lithium silicate glass-ceramic revealed higher mechanical properties compared with IC lithium disilicate glass-ceramic. Copyright © 2016 The Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.
Study of diffusion and local structure of sodium-silicate liquid: the molecular dynamic simulation
NASA Astrophysics Data System (ADS)
Hung, Pham Khac; Noritake, Fumiya; San, Luyen Thi; Van, To Ba; Vinh, Le The
2017-10-01
A systematic analysis on sodium-silicate melt with various silica contents was carried out. The simulation revealed two diffusion mechanisms occurred in the melt: the bond-breaking and hopping between sites. The local structure was analyzed through T-simplexes. It was revealed that T-clusters have a non-spherical shape and represent the diffusion channel, in which Na atoms are dominant, but no any O atoms are located. The SiO2-poor melt acquires a long channel. In contrast, the SiO2-rich melt consists of unconnected short channels. The simulation also revealed the immobile and mobile regions which differ in local structure and constituent composition. We propose a new CL-function to characterizing the spatial distribution of different atom component. The spatial distribution of mobile and immobile atoms is found quite different. In particular, the immobile atoms are concentrated in high-density regions possessing very large density of immobile atoms. The spatial distribution of mobile atoms in contrast is more homogeneous.
Vega, Sebastián L; Liu, Er; Arvind, Varun; Bushman, Jared; Sung, Hak-Joon; Becker, Matthew L; Lelièvre, Sophie; Kohn, Joachim; Vidi, Pierre-Alexandre; Moghe, Prabhas V
2017-02-01
Stem and progenitor cells that exhibit significant regenerative potential and critical roles in cancer initiation and progression remain difficult to characterize. Cell fates are determined by reciprocal signaling between the cell microenvironment and the nucleus; hence parameters derived from nuclear remodeling are ideal candidates for stem/progenitor cell characterization. Here we applied high-content, single cell analysis of nuclear shape and organization to examine stem and progenitor cells destined to distinct differentiation endpoints, yet undistinguishable by conventional methods. Nuclear descriptors defined through image informatics classified mesenchymal stem cells poised to either adipogenic or osteogenic differentiation, and oligodendrocyte precursors isolated from different regions of the brain and destined to distinct astrocyte subtypes. Nuclear descriptors also revealed early changes in stem cells after chemical oncogenesis, allowing the identification of a class of cancer-mitigating biomaterials. To capture the metrology of nuclear changes, we developed a simple and quantitative "imaging-derived" parsing index, which reflects the dynamic evolution of the high-dimensional space of nuclear organizational features. A comparative analysis of parsing outcomes via either nuclear shape or textural metrics of the nuclear structural protein NuMA indicates the nuclear shape alone is a weak phenotypic predictor. In contrast, variations in the NuMA organization parsed emergent cell phenotypes and discerned emergent stages of stem cell transformation, supporting a prognosticating role for this protein in the outcomes of nuclear functions. Copyright © 2017 Elsevier Inc. All rights reserved.
Electron microscopy study of microbial mat in the North Fiji basin hydrothermal vent
NASA Astrophysics Data System (ADS)
Park, H.; Kim, J. W.; Lee, J. W.
2017-12-01
Hydrothermal vent systems consisting of hydrothermal vent, hydrothermal sediment and microbial mat are widely spread around the ocean, particularly spreading axis, continental margin and back-arc basin. Scientists have perceived that the hydrothermal systems, which reflect the primeval earth environment, are one of the best places to reveal the origin of life and extensive biogeochemical process of microbe-mineral interaction. In the present study multiline of analytical methods (X-Ray Diffraction (XRD), Scanning Electron Microscopy (SEM) and Transmission Electron Microscopy (TEM)) were utilized to investigate the mineralogy/chemistry of microbe-mineral interaction in hydrothermal microbial mat. Microbial mat samples were recovered by Canadian scientific submersible ROPOS on South Pacific North Fiji basin KIOST hydrothermal vent expedition 1602. XRD analysis showed that red-colored microbial mat contains Fe-oxides and Fe-oxyhydroxides. Various morphologies of minerals in the red-colored microbial mat observed by SEM are mainly showed sheath shaped, resembled with Leptothrix microbial structure, stalks shaped, similar with Marioprofundus microbial structure and globule shaped microbial structures. They are also detected with DNA analysis. The cross sectional observation of microbial structures encrusted with Fe-oxide and Fe-oxyhydroxide at a nano scale by Transmission Electron Microscopy (TEM) and Focused Ion Beam (FIB) technique was developed to verify the structural/biogeochemical properties in the microbe-mineral interaction. Systematic nano-scale measurements on the biomineralization in the microbial mat leads the understandings of biogeochemical environments around the hydrothermal vent.
Fluid-structure interaction analysis of deformation of sail of 30-foot yacht
NASA Astrophysics Data System (ADS)
Bak, Sera; Yoo, Jaehoon; Song, Chang Yong
2013-06-01
Most yacht sails are made of thin fabric, and they have a cambered shape to generate lift force; however, their shape can be easily deformed by wind pressure. Deformation of the sail shape changes the flow characteristics over the sail, which in turn further deforms the sail shape. Therefore, fluid-structure interaction (FSI) analysis is applied for the precise evaluation or optimization of the sail design. In this study, fluid flow analyses are performed for the main sail of a 30-foot yacht, and the results are applied to loading conditions for structural analyses. By applying the supporting forces from the rig, such as the mast and boom-end outhaul, as boundary conditions for structural analysis, the deformed sail shape is identified. Both the flow analyses and the structural analyses are iteratively carried out for the deformed sail shape. A comparison of the flow characteristics and surface pressures over the deformed sail shape with those over the initial shape shows that a considerable difference exists between the two and that FSI analysis is suitable for application to sail design.
Galileo spacecraft modal test and evaluation of testing techniques
NASA Technical Reports Server (NTRS)
Chen, J.-C.
1984-01-01
The structural configuration, modal test requirements and pre-test activities involved in modeling the expected dynamic environment and responses of the Galileo spacecraft are discussed. The probe will be Shuttle-launched in 1986 and will gather data on the Jupiter system. Loads analysis for the 5300 lb spacecraft were performed with the NASTRAN code, and covered 10,000 static degrees of freedom and 1600 mass degrees of freedom. A modal analysis will be used to verify the predictions for natural frequencies, mode shapes, orthogonality checks, residual mass, modal damping and forces, and generalized forces. Verification of the validity of considering only 70 natural modes in the numerical simulation is being performed by examining the forcing functions of the analysis. The analysis led to requirements that 162 channels of accelerometer data and 118 channels of strain gage data be recorded during shaker tests to reveal areas where design changes will be needed to eliminate vibration peaks.
Taralova, Ekaterina; Dupre, Christophe; Yuste, Rafael
2018-01-01
Animal behavior has been studied for centuries, but few efficient methods are available to automatically identify and classify it. Quantitative behavioral studies have been hindered by the subjective and imprecise nature of human observation, and the slow speed of annotating behavioral data. Here, we developed an automatic behavior analysis pipeline for the cnidarian Hydra vulgaris using machine learning. We imaged freely behaving Hydra, extracted motion and shape features from the videos, and constructed a dictionary of visual features to classify pre-defined behaviors. We also identified unannotated behaviors with unsupervised methods. Using this analysis pipeline, we quantified 6 basic behaviors and found surprisingly similar behavior statistics across animals within the same species, regardless of experimental conditions. Our analysis indicates that the fundamental behavioral repertoire of Hydra is stable. This robustness could reflect a homeostatic neural control of "housekeeping" behaviors which could have been already present in the earliest nervous systems. PMID:29589829
Characteristics of calls to the Israeli hotline during the Intifada.
Gilat, Itzhak; Latzer, Yael
2007-08-01
The present study examined the help-seeking characteristics of callers to the ten Israeli hotline centers during the Intifada - the Palestinian uprising in the Israeli administered territories. The research method combined quantitative and qualitative analyses of the volunteers' written reports. The quantitative analysis was conducted on a sample of 21,315 structured forms, and the qualitative content analysis was carried out on a sample of 498 verbal descriptions of calls. The quantitative analysis revealed a U-shaped curve illustrating the frequency of Intifada-related calls in relation to the time of the study. The qualitative analysis showed that the main complaints of the callers were focused on direct and masked manifestations of anxiety and feelings of helplessness. The implications of the findings are discussed in terms of understanding the unique psychological response to a new kind of stress, as seen from the perspective of calls to a hotline.
Macrocyclic molecular rotors with bridged steroidal frameworks.
Czajkowska-Szczykowska, Dorota; Rodríguez-Molina, Braulio; Magaña-Vergara, Nancy E; Santillan, Rosa; Morzycki, Jacek W; Garcia-Garibay, Miguel A
2012-11-16
In this work, we describe the synthesis and solid-state dynamics of isomeric molecular rotors 7E and 7Z, consisting of two androstane steroidal frameworks linked by the D rings by triple bonds at their C17 positions to a 1,4-phenylene rotator. They are also linked by the A rings by an alkenyl diester bridge to restrict the conformational flexibility of the molecules and reduce the number of potential crystalline arrays. The analysis of the resulting molecular structures and packing motifs offered insights of the internal dynamics that were later elucidated by means of line shape analyses of the spectral features obtained through variable-temperature solid-state (13)C NMR; such analysis revealed rotations in the solid state occurring at kilohertz frequency at room temperature.
Video fluoroscopic techniques for the study of Oral Food Processing
Matsuo, Koichiro; Palmer, Jeffrey B.
2016-01-01
Food oral processing and pharyngeal food passage cannot be observed directly from the outside of the body without instrumental methods. Videofluoroscopy (x-ray video recording) reveals the movement of oropharyngeal anatomical structures in two dimensions. By adding a radiopaque contrast medium, the motion and shape of the food bolus can be also visualized, providing critical information about the mechanisms of eating, drinking, and swallowing. For quantitative analysis of the kinematics of oral food processing, radiopaque markers are attached to the teeth, tongue or soft palate. This approach permits kinematic analysis with a variety of textures and consistencies, both solid and liquid. Fundamental mechanisms of food oral processing are clearly observed with videofluoroscopy in lateral and anteroposterior projections. PMID:27213138
Spinal sensory circuits in motion.
Böhm, Urs Lucas; Wyart, Claire
2016-12-01
The role of sensory feedback in shaping locomotion has been long debated. Recent advances in genetics and behavior analysis revealed the importance of proprioceptive pathways in spinal circuits. The mechanisms underlying peripheral mechanosensation enabled to unravel the networks that feedback to spinal circuits in order to modulate locomotion. Sensory inputs to the vertebrate spinal cord were long thought to originate from the periphery. Recent studies challenge this view: GABAergic sensory neurons located within the spinal cord have been shown to relay mechanical and chemical information from the cerebrospinal fluid to motor circuits. Innovative approaches combining genetics, quantitative analysis of behavior and optogenetics now allow probing the contribution of these sensory feedback pathways to locomotion and recovery following spinal cord injury. Copyright © 2016 Elsevier Ltd. All rights reserved.
Corrosion Behaviour of Sn-based Lead-Free Solders in Acidic Solution
NASA Astrophysics Data System (ADS)
Nordarina, J.; Mohd, H. Z.; Ahmad, A. M.; Muhammad, F. M. N.
2018-03-01
The corrosion properties of Sn-9(5Al-Zn), Sn-Cu and SAC305 were studied via potentiodynamic polarization method in an acidic solution of 1 M hydrochloric acid (HCl). Sn-9(5Al-Zn) produced different polarization profile compared with Sn-Cu and SAC305. The morphological analysis showed that small, deep grooves shaped of corrosion product formed on top of Sn-9(5Al-Zn) solder while two distinctive structures of closely packed and loosely packed corrosion product formed on top of Sn-Cu and SAC305 solder alloys. Phase analysis revealed the formations of various corrosion products such as SnO and SnO2 mainly dominant on surface of solder alloys after potentiodynamic polarization in 1 M hydrochloric acid (HCl).
Diet, bite force and skull morphology in the generalist rodent morphotype.
Maestri, R; Patterson, B D; Fornel, R; Monteiro, L R; de Freitas, T R O
2016-11-01
For many vertebrate species, bite force plays an important functional role. Ecological characteristics of a species' niche, such as diet, are often associated with bite force. Previous evidence suggests a biomechanical trade-off between rodents specialized for gnawing, which feed mainly on seeds, and those specialized for chewing, which feed mainly on green vegetation. We tested the hypothesis that gnawers are stronger biters than chewers. We estimated bite force and measured skull and mandible shape and size in 63 genera of a major rodent radiation (the myomorph sigmodontines). Analysis of the influence of diet on bite force and morphology was made in a comparative framework. We then used phylogenetic path analysis to uncover the most probable causal relationships linking diet and bite force. Both granivores (gnawers) and herbivores (chewers) have a similar high bite force, leading us to reject the initial hypothesis. Path analysis reveals that bite force is more likely influenced by diet than the reverse causality. The absence of a trade-off between herbivores and granivores may be associated with the generalist nature of the myomorph condition seen in sigmodontine rodents. Both gnawing and chewing sigmodontines exhibit similar, intermediate phenotypes, at least compared to extreme gnawers (squirrels) and chewers (chinchillas). Only insectivorous rodents appear to be moving towards a different direction in the shape space, through some notable changes in morphology. In terms of diet, natural selection alters bite force through changes in size and shape, indicating that organisms adjust their bite force in tandem with changes in food items. © 2016 European Society For Evolutionary Biology. Journal of Evolutionary Biology © 2016 European Society For Evolutionary Biology.
Lateral ventricle morphology analysis via mean latitude axis.
Paniagua, Beatriz; Lyall, Amanda; Berger, Jean-Baptiste; Vachet, Clement; Hamer, Robert M; Woolson, Sandra; Lin, Weili; Gilmore, John; Styner, Martin
2013-03-29
Statistical shape analysis has emerged as an insightful method for evaluating brain structures in neuroimaging studies, however most shape frameworks are surface based and thus directly depend on the quality of surface alignment. In contrast, medial descriptions employ thickness information as alignment-independent shape metric. We propose a joint framework that computes local medial thickness information via a mean latitude axis from the well-known spherical harmonic (SPHARM-PDM) shape framework. In this work, we applied SPHARM derived medial representations to the morphological analysis of lateral ventricles in neonates. Mild ventriculomegaly (MVM) subjects are compared to healthy controls to highlight the potential of the methodology. Lateral ventricles were obtained from MRI scans of neonates (9-144 days of age) from 30 MVM subjects as well as age- and sex-matched normal controls (60 total). SPHARM-PDM shape analysis was extended to compute a mean latitude axis directly from the spherical parameterization. Local thickness and area was straightforwardly determined. MVM and healthy controls were compared using local MANOVA and compared with the traditional SPHARM-PDM analysis. Both surface and mean latitude axis findings differentiate successfully MVM and healthy lateral ventricle morphology. Lateral ventricles in MVM neonates show enlarged shapes in tail and head. Mean latitude axis is able to find significant differences all along the lateral ventricle shape, demonstrating that local thickness analysis provides significant insight over traditional SPHARM-PDM. This study is the first to precisely quantify 3D lateral ventricle morphology in MVM neonates using shape analysis.
Stimulus-evoked outer segment changes in rod photoreceptors
NASA Astrophysics Data System (ADS)
Zhao, Xiaohui; Thapa, Damber; Wang, Benquan; Lu, Yiming; Gai, Shaoyan; Yao, Xincheng
2016-06-01
Rod-dominated transient retinal phototropism (TRP) has been recently observed in freshly isolated mouse and frog retinas. Comparative confocal microscopy and optical coherence tomography revealed that the TRP was predominantly elicited from the rod outer segment (OS). However, the biophysical mechanism of rod OS dynamics is still unknown. Mouse and frog retinal slices, which displayed a cross-section of retinal photoreceptors and other functional layers, were used to test the effect of light stimulation on rod OSs. Time-lapse microscopy revealed stimulus-evoked conformational changes of rod OSs. In the center of the stimulated region, the length of the rod OS shrunk, while in the peripheral region, the rod OS swung toward the center region. Our experimental observation and theoretical analysis suggest that the TRP may reflect unbalanced rod disc-shape changes due to localized visible light stimulation.
Stimulus-evoked outer segment changes in rod photoreceptors
Zhao, Xiaohui; Thapa, Damber; Wang, Benquan; Lu, Yiming; Gai, Shaoyan; Yao, Xincheng
2016-01-01
Abstract. Rod-dominated transient retinal phototropism (TRP) has been recently observed in freshly isolated mouse and frog retinas. Comparative confocal microscopy and optical coherence tomography revealed that the TRP was predominantly elicited from the rod outer segment (OS). However, the biophysical mechanism of rod OS dynamics is still unknown. Mouse and frog retinal slices, which displayed a cross-section of retinal photoreceptors and other functional layers, were used to test the effect of light stimulation on rod OSs. Time-lapse microscopy revealed stimulus-evoked conformational changes of rod OSs. In the center of the stimulated region, the length of the rod OS shrunk, while in the peripheral region, the rod OS swung toward the center region. Our experimental observation and theoretical analysis suggest that the TRP may reflect unbalanced rod disc-shape changes due to localized visible light stimulation. PMID:27334933
Bayesian Covariate Selection in Mixed-Effects Models For Longitudinal Shape Analysis
Muralidharan, Prasanna; Fishbaugh, James; Kim, Eun Young; Johnson, Hans J.; Paulsen, Jane S.; Gerig, Guido; Fletcher, P. Thomas
2016-01-01
The goal of longitudinal shape analysis is to understand how anatomical shape changes over time, in response to biological processes, including growth, aging, or disease. In many imaging studies, it is also critical to understand how these shape changes are affected by other factors, such as sex, disease diagnosis, IQ, etc. Current approaches to longitudinal shape analysis have focused on modeling age-related shape changes, but have not included the ability to handle covariates. In this paper, we present a novel Bayesian mixed-effects shape model that incorporates simultaneous relationships between longitudinal shape data and multiple predictors or covariates to the model. Moreover, we place an Automatic Relevance Determination (ARD) prior on the parameters, that lets us automatically select which covariates are most relevant to the model based on observed data. We evaluate our proposed model and inference procedure on a longitudinal study of Huntington's disease from PREDICT-HD. We first show the utility of the ARD prior for model selection in a univariate modeling of striatal volume, and next we apply the full high-dimensional longitudinal shape model to putamen shapes. PMID:28090246
Shape design sensitivity analysis and optimal design of structural systems
NASA Technical Reports Server (NTRS)
Choi, Kyung K.
1987-01-01
The material derivative concept of continuum mechanics and an adjoint variable method of design sensitivity analysis are used to relate variations in structural shape to measures of structural performance. A domain method of shape design sensitivity analysis is used to best utilize the basic character of the finite element method that gives accurate information not on the boundary but in the domain. Implementation of shape design sensitivty analysis using finite element computer codes is discussed. Recent numerical results are used to demonstrate the accuracy obtainable using the method. Result of design sensitivity analysis is used to carry out design optimization of a built-up structure.
DiCarlo, James J.; Zecchina, Riccardo; Zoccolan, Davide
2013-01-01
The anterior inferotemporal cortex (IT) is the highest stage along the hierarchy of visual areas that, in primates, processes visual objects. Although several lines of evidence suggest that IT primarily represents visual shape information, some recent studies have argued that neuronal ensembles in IT code the semantic membership of visual objects (i.e., represent conceptual classes such as animate and inanimate objects). In this study, we investigated to what extent semantic, rather than purely visual information, is represented in IT by performing a multivariate analysis of IT responses to a set of visual objects. By relying on a variety of machine-learning approaches (including a cutting-edge clustering algorithm that has been recently developed in the domain of statistical physics), we found that, in most instances, IT representation of visual objects is accounted for by their similarity at the level of shape or, more surprisingly, low-level visual properties. Only in a few cases we observed IT representations of semantic classes that were not explainable by the visual similarity of their members. Overall, these findings reassert the primary function of IT as a conveyor of explicit visual shape information, and reveal that low-level visual properties are represented in IT to a greater extent than previously appreciated. In addition, our work demonstrates how combining a variety of state-of-the-art multivariate approaches, and carefully estimating the contribution of shape similarity to the representation of object categories, can substantially advance our understanding of neuronal coding of visual objects in cortex. PMID:23950700
The impact of injector-based contrast agent administration in time-resolved MRA.
Budjan, Johannes; Attenberger, Ulrike I; Schoenberg, Stefan O; Pietsch, Hubertus; Jost, Gregor
2018-05-01
Time-resolved contrast-enhanced MR angiography (4D-MRA), which allows the simultaneous visualization of the vasculature and blood-flow dynamics, is widely used in clinical routine. In this study, the impact of two different contrast agent injection methods on 4D-MRA was examined in a controlled, standardized setting in an animal model. Six anesthetized Goettingen minipigs underwent two identical 4D-MRA examinations at 1.5 T in a single session. The contrast agent (0.1 mmol/kg body weight gadobutrol, followed by 20 ml saline) was injected using either manual injection or an automated injection system. A quantitative comparison of vascular signal enhancement and quantitative renal perfusion analyses were performed. Analysis of signal enhancement revealed higher peak enhancements and shorter time to peak intervals for the automated injection. Significantly different bolus shapes were found: automated injection resulted in a compact first-pass bolus shape clearly separated from the recirculation while manual injection resulted in a disrupted first-pass bolus with two peaks. In the quantitative perfusion analyses, statistically significant differences in plasma flow values were found between the injection methods. The results of both qualitative and quantitative 4D-MRA depend on the contrast agent injection method, with automated injection providing more defined bolus shapes and more standardized examination protocols. • Automated and manual contrast agent injection result in different bolus shapes in 4D-MRA. • Manual injection results in an undefined and interrupted bolus with two peaks. • Automated injection provides more defined bolus shapes. • Automated injection can lead to more standardized examination protocols.
Evolution of skull shape in the family Salamandridae (Amphibia: Caudata).
Ivanović, Ana; Arntzen, Jan W
2018-03-01
We carried out a comparative morphometric analysis of 56 species of salamandrid salamanders, representing 19 out of 21 extant genera, with the aim of uncovering the major patterns of skull shape diversification, and revealing possible trends and directions of evolutionary change. To do this we used micro-computed tomography scanning and three-dimensional geometric morphometrics, along with a well-resolved molecular phylogeny. We found that allometry explains a relatively small amount of shape variation across taxa. Congeneric species of salamandrid salamanders are more similar to each other and cluster together producing distinct groups in morphospace. We detected a strong phylogenetic signal and little homoplasy. The most pronounced changes in the skull shape are related to the changes of the frontosquamosal arch, a unique feature of the cranial skeleton for the family Salamandridae, which is formed by processes arising from the frontal and squamosal bones that arch over the orbits. By mapping character states over the phylogeny, we found that a reduction of the frontosquamosal arch occurs independently in three lineages of the subfamily Pleurodelinae. This reduction can probably be attributed to changes in the development and ossification rates of the frontosquamosal arch. In general, our results are similar to those obtained for caecilian amphibians, with an early expansion into the available morphospace and a complex history characterizing evolution of skull shape in both groups. To evaluate the specificity of the inferred evolutionary trajectories and Caudata-wide trends in the diversity of skull morphology, information from additional groups of tailed amphibians is needed. © 2017 Anatomical Society.
Burgio, Gaétan; Baylac, Michel; Heyer, Evelyne; Montagutelli, Xavier
2012-01-01
Background Genetic determinism of cranial morphology in the mouse is still largely unknown, despite the localization of putative QTLs and the identification of genes associated with Mendelian skull malformations. To approach the dissection of this multigenic control, we have used a set of interspecific recombinant congenic strains (IRCS) produced between C57BL/6 and mice of the distant species Mus spretus (SEG/Pas). Each strain has inherited 1.3% of its genome from SEG/Pas under the form of few, small-sized, chromosomal segments. Results The shape of the nasal bone was studied using outline analysis combined with Fourier descriptors, and differential features were identified between IRCS BcG-66H and C57BL/6. An F2 cross between BcG-66H and C57BL/6 revealed that, out of the three SEG/Pas-derived chromosomal regions present in BcG-66H, two were involved. Segments on chromosomes 1 (∼32 Mb) and 18 (∼13 Mb) showed additive effect on nasal bone shape. The three chromosomal regions present in BcG-66H were isolated in congenic strains to study their individual effect. Epistatic interactions were assessed in bicongenic strains. Conclusions Our results show that, besides a strong individual effect, the QTL on chromosome 1 interacts with genes on chromosomes 13 and 18. This study demonstrates that nasal bone shape is under complex genetic control but can be efficiently dissected in the mouse using appropriate genetic tools and shape descriptors. PMID:22662199
Chusreeaeom, Katarut; Ariizumi, Tohru; Asamizu, Erika; Okabe, Yoshihiro; Shirasawa, Kenta; Ezura, Hiroshi
2014-06-01
Genes controlling fruit morphology offer important insights into patterns and mechanisms determining organ shape and size. In cultivated tomato (Solanum lycopersicum L.), a variety of fruit shapes are displayed, including round-, bell pepper-, pear-, and elongate-shaped forms. In this study, we characterized a tomato mutant possessing elongated fruit morphology by histologically analyzing its fruit structure and genetically analyzing and mapping the genetic locus. The mutant line, Solanum lycopersicum elongated fruit 1 (Slelf1), was selected in a previous study from an ethylmethane sulfonate-mutagenized population generated in the background of Micro-Tom, a dwarf and rapid-growth variety. Histological analysis of the Slelf1 mutant revealed dramatically increased elongation of ovary and fruit. Until 6 days before flowering, ovaries were round and they began to elongate afterward. We also determined pericarp thickness and the number of cell layers in three designated fruit regions. We found that mesocarp thickness, as well as the number of cell layers, was increased in the proximal region of immature green fruits, making this the key sector of fruit elongation. Using 262 F2 individuals derived from a cross between Slelf1 and the cultivar Ailsa Craig, we constructed a genetic map, simple sequence repeat (SSR), cleaved amplified polymorphism sequence (CAPS), and derived CAPS (dCAPS) markers and mapped to the 12 tomato chromosomes. Genetic mapping placed the candidate gene locus within a 0.2 Mbp interval on the long arm of chromosome 8 and was likely different from previously known loci affecting fruit shape.
Koike, Narihiko; Ii, Satoshi; Yoshinaga, Tsukasa; Nozaki, Kazunori; Wada, Shigeo
2017-11-07
This paper presents a novel inverse estimation approach for the active contraction stresses of tongue muscles during speech. The proposed method is based on variational data assimilation using a mechanical tongue model and 3D tongue surface shapes for speech production. The mechanical tongue model considers nonlinear hyperelasticity, finite deformation, actual geometry from computed tomography (CT) images, and anisotropic active contraction by muscle fibers, the orientations of which are ideally determined using anatomical drawings. The tongue deformation is obtained by solving a stationary force-equilibrium equation using a finite element method. An inverse problem is established to find the combination of muscle contraction stresses that minimizes the Euclidean distance of the tongue surfaces between the mechanical analysis and CT results of speech production, where a signed-distance function represents the tongue surface. Our approach is validated through an ideal numerical example and extended to the real-world case of two Japanese vowels, /ʉ/ and /ɯ/. The results capture the target shape completely and provide an excellent estimation of the active contraction stresses in the ideal case, and exhibit similar tendencies as in previous observations and simulations for the actual vowel cases. The present approach can reveal the relative relationship among the muscle contraction stresses in similar utterances with different tongue shapes, and enables the investigation of the coordination of tongue muscles during speech using only the deformed tongue shape obtained from medical images. This will enhance our understanding of speech motor control. Copyright © 2017 Elsevier Ltd. All rights reserved.
Understanding amyloid aggregation by statistical analysis of atomic force microscopy images
NASA Astrophysics Data System (ADS)
Adamcik, Jozef; Jung, Jin-Mi; Flakowski, Jérôme; de Los Rios, Paolo; Dietler, Giovanni; Mezzenga, Raffaele
2010-06-01
The aggregation of proteins is central to many aspects of daily life, including food processing, blood coagulation, eye cataract formation disease and prion-related neurodegenerative infections. However, the physical mechanisms responsible for amyloidosis-the irreversible fibril formation of various proteins that is linked to disorders such as Alzheimer's, Creutzfeldt-Jakob and Huntington's diseases-have not yet been fully elucidated. Here, we show that different stages of amyloid aggregation can be examined by performing a statistical polymer physics analysis of single-molecule atomic force microscopy images of heat-denatured β-lactoglobulin fibrils. The atomic force microscopy analysis, supported by theoretical arguments, reveals that the fibrils have a multistranded helical shape with twisted ribbon-like structures. Our results also indicate a possible general model for amyloid fibril assembly and illustrate the potential of this approach for investigating fibrillar systems.
The Genetic Architecture of Interspecific Variation in Mimulus
Macnair, M. R.; Cumbes, Q. J.
1989-01-01
The genetic architecture of various floral and morphological differences between Mimulus cupriphilus and Mimulus guttatus is investigated. M. cupriphilus is believed to have speciated from M. guttatus in the recent past. The two parent species, the F(1) and F(2), and two backcrosses were grown and scored for 23 different characters. The analysis of means revealed significant epistasis for a number of the floral characters, particularly those involving the length of parts. Dominance was generally toward M. guttatus, except for the characters related to flowering time. Analysis of the genetic correlations between characters revealed that there were at least four different polygenic genetic systems, governing flowering time, size of flower, number of spots on the corolla, and general size. An analysis of minimum gene number suggested that there were at least 3-7 genes controlling floral size, and a different three controlling floral spot number. Two other characters, corolla lobe shape and stem color, were produced by independent major gene differences. Annuality was also shown to be heritable. The two species appear to utilize the same gene for copper tolerance. The results are discussed in the light of current theories of speciation. PMID:17246497
Complex codon usage pattern and compositional features of retroviruses.
RoyChoudhury, Sourav; Mukherjee, Debaprasad
2013-01-01
Retroviruses infect a wide range of organisms including humans. Among them, HIV-1, which causes AIDS, has now become a major threat for world health. Some of these viruses are also potential gene transfer vectors. In this study, the patterns of synonymous codon usage in retroviruses have been studied through multivariate statistical methods on ORFs sequences from the available 56 retroviruses. The principal determinant for evolution of the codon usage pattern in retroviruses seemed to be the compositional constraints, while selection for translation of the viral genes plays a secondary role. This was further supported by multivariate analysis on relative synonymous codon usage. Thus, it seems that mutational bias might have dominated role over translational selection in shaping the codon usage of retroviruses. Codon adaptation index was used to identify translationally optimal codons among genes from retroviruses. The comparative analysis of the preferred and optimal codons among different retroviral groups revealed that four codons GAA, AAA, AGA, and GGA were significantly more frequent in most of the retroviral genes inspite of some differences. Cluster analysis also revealed that phylogenetically related groups of retroviruses have probably evolved their codon usage in a concerted manner under the influence of their nucleotide composition.
Growth characteristics of Lactobacillus brevis KB290 in the presence of bile.
Kimoto-Nira, Hiromi; Suzuki, Shigenori; Suganuma, Hiroyuki; Moriya, Naoko; Suzuki, Chise
2015-10-01
Live Lactobacillus brevis KB290 have several probiotic activities, including immune stimulation and modulation of intestinal microbial balance. We investigated the adaptation of L. brevis KB290 to bile as a mechanism of intestinal survival. Strain KB290 was grown for 5 days at 37 °C in tryptone-yeast extract-glucose (TYG) broth supplemented with 0.5% sodium acetate (TYGA) containing 0.15%, 0.3%, or 0.5% bile. Growth was determined by absorbance at 620 nm or by dry weight. Growth was enhanced as the broth's bile concentration increased. Bile-enhanced growth was not observed in TYG broth or with xylose or fructose as the carbon source, although strain KB290 could assimilate these sugars. Compared with cells grown without bile, cells grown with bile had twice the cell yield (dry weight) and higher hydrophobicity, which may improve epithelial adhesion. Metabolite analysis revealed that bile induced more lactate production by glycolysis, thus enhancing growth efficiency. Scanning electron microscopy revealed that cells cultured without bile for 5 days in TYGA broth had a shortened rod shape and showed lysis and aggregation, unlike cells cultured for 1 day; cells grown with bile for 5 days had an intact rod shape and rarely appeared damaged. Cellular material leakage through autolysis was lower in the presence of bile than in its absence. Thus lysis of strain KB290 cells cultured for extended periods was suppressed in the presence of bile. This study provides new role of bile and sodium acetate for retaining an intact cell shape and enhancing cell yield, which are beneficial for intestinal survival. Copyright © 2015 Elsevier Ltd. All rights reserved.
Chhabra, Sanjay; Yadav, Seema; Talwar, Sangeeta
2014-05-01
The study was aimed to acquire better understanding of C-shaped canal systems in mandibular second molar teeth through a clinical approach using sophisticated techniques such as surgical operating microscope and cone beam computed tomography (CBCT). A total of 42 extracted mandibular second molar teeth with fused roots and longitudinal grooves were collected randomly from native Indian population. Pulp chamber floors of all specimens were examined under surgical operating microscope and classified into four types (Min's method). Subsequently, samples were subjected to CBCT scan after insertion of K-files size #10 or 15 into each canal orifice and evaluated using the cross-sectional and 3-dimensional images in consultation with dental radiologist so as to obtain more accurate results. Minimum distance between the external root surface on the groove and initial file placed in the canal was also measured at different levels and statistically analyzed. Out of 42 teeth, maximum number of samples (15) belonged to Type-II category. A total of 100 files were inserted in 86 orifices of various types of specimens. Evaluation of the CBCT scan images of the teeth revealed that a total of 21 canals were missing completely or partially at different levels. The mean values for the minimum thickness were highest at coronal followed by middle and apical third levels in all the categories. Lowest values were obtained for teeth with Type-III category at all three levels. The present study revealed anatomical variations of C-shaped canal system in mandibular second molars. The prognosis of such complex canal anatomies can be improved by simultaneous employment of modern techniques such as surgical operating microscope and CBCT.
Ibrová, Alexandra; Dupej, Ján; Stránská, Petra; Velemínský, Petr; Poláček, Lumír; Velemínská, Jana
2017-12-01
The aim of this study was to analyse the relationship of mastication and directional asymmetry (DA) of upper facial skeleton in Early Medieval sample from the Mikulčice settlement (Czech Republic). The settlement is divided into two burial areas of presumably different socioeconomic status: the castle and the sub-castle. The material consisted of 193 individuals (125 castle, 68 sub-castle). The relationship of facial skeleton DA and mastication was analysed by examining tooth wear and mandibular shape by means of 3D geometric morphometrics. Tooth wear of premolars and molars was evaluated using appropriate scoring systems. 3D coordinates of 35 mandibular landmarks were scanned using MicroScribe G2X digitizing system. The results did not reveal any significant differences in tooth wear DA or mandible DA values between burial areas or sexes. Mandibular shape, however, differed significantly between burial areas and sexes. Directional changes of mandibular landmarks supported a right chewing side preference in the sample. Significant relationship between upper facial skeleton DA and mandible DA was recorded. Differences in subsistence between burial areas and sexes did not translate into differences in mandible DA and dental wear. However, mandibular shape analysis revealed prominence of areas affected by masticatory muscles in individuals from the castle. Higher consumption of tough material, such as meat, has been proposed as possible explanation. The right side was found to be preferential for chewing. The relationship between upper facial skeleton DA and mandible DA was concluded to be the result of the compensatory and adaptive function of mandible. Copyright © 2017 Elsevier Ltd. All rights reserved.
The inner ear of Diacodexis, the oldest artiodactyl mammal
Orliac, M J; Benoit, J; O'Leary, M A
2012-01-01
We provide the first detailed description of the inner ear of the oldest artiodactyl, Diacodexis, based on a three-dimensional reconstruction extracted from computed tomography imagery of a skull of Diacodexis ilicis of earliest Wasatchian age (ca. 55 Ma). This description provides new anatomical data for the earliest artiodactyls, and reveals that the bony labyrinth of Diacodexis differs greatly from that of modern artiodactyls described so far. The bony labyrinth of Diacodexis presents a weakly coiled cochlea (720 °), a secondary common crus, a dorsal extension of the anterior semicircular canal more pronounced than that of the posterior one, and a small angle between the basal turn of the bony cochlear canal and the lateral semicircular canal. This suite of characters also occurs in basal eutherian mammals. Diacodexis strongly resembles small living tragulid ruminants in its overall body shape and hindlimb proportions. Comparison of the bony labyrinth of Diacodexis to that of the tragulid Moschiola meminna (Indian mouse deer) reveals great morphological difference in cochlear shape and semicircular canal disposition. The shape of the cochlea suggests that Diacodexis was a high-frequency hearing specialist, with a high low-frequency hearing limit (543 Hz at 60 dB). By comparison, the estimated low-frequency limit of Moschiola meminna is much lower (186.0 Hz at 60 dB). We also assess the locomotor agility of Diacodexis based on measurements of the semicircular canals. Locomotor agility estimates for Diacodexis range between 3.62 and 3.93, and suggest a degree of agility compatible with a nimble, fast running to jumping animal. These results are congruent with the postcranial functional analysis for this extinct taxon. PMID:22938073
Application of CAD/CAE class systems to aerodynamic analysis of electric race cars
NASA Astrophysics Data System (ADS)
Grabowski, L.; Baier, A.; Buchacz, A.; Majzner, M.; Sobek, M.
2015-11-01
Aerodynamics is one of the most important factors which influence on every aspect of a design of a car and car driving parameters. The biggest influence aerodynamics has on design of a shape of a race car body, especially when the main objective of the race is the longest distance driven in period of time, which can not be achieved without low energy consumption and low drag of a car. Designing shape of the vehicle body that must generate the lowest possible drag force, without compromising the other parameters of the drive. In the article entitled „Application of CAD/CAE class systems to aerodynamic analysis of electric race cars” are being presented problems solved by computer analysis of cars aerodynamics and free form modelling. Analysis have been subjected to existing race car of a Silesian Greenpower Race Team. On a basis of results of analysis of existence of Kammback aerodynamic effect innovative car body were modeled. Afterwards aerodynamic analysis were performed to verify existence of aerodynamic effect for innovative shape and to recognize aerodynamics parameters of the shape. Analysis results in the values of coefficients and aerodynamic drag forces. The resulting drag forces Fx, drag coefficients Cx(Cd) and aerodynamic factors Cx*A allowed to compare all of the shapes to each other. Pressure distribution, air velocities and streams courses were useful in determining aerodynamic features of analyzed shape. For aerodynamic tests was used Ansys Fluent CFD software. In a paper the ways of surface modeling with usage of Realize Shape module and classic surface modeling were presented. For shapes modeling Siemens NX 9.0 software was used. Obtained results were used to estimation of existing shapes and to make appropriate conclusions.
Ve, Thomas; Williams, Simon J; Catanzariti, Ann-Maree; Rafiqi, Maryam; Rahman, Motiur; Ellis, Jeffrey G; Hardham, Adrienne R; Jones, David A; Anderson, Peter A; Dodds, Peter N; Kobe, Bostjan
2013-10-22
Fungal and oomycete pathogens cause some of the most devastating diseases in crop plants, and facilitate infection by delivering a large number of effector molecules into the plant cell. AvrM is a secreted effector protein from flax rust (Melampsora lini) that can internalize into plant cells in the absence of the pathogen, binds to phosphoinositides (PIPs), and is recognized directly by the resistance protein M in flax (Linum usitatissimum), resulting in effector-triggered immunity. We determined the crystal structures of two naturally occurring variants of AvrM, AvrM-A and avrM, and both reveal an L-shaped fold consisting of a tandem duplicated four-helix motif, which displays similarity to the WY domain core in oomycete effectors. In the crystals, both AvrM variants form a dimer with an unusual nonglobular shape. Our functional analysis of AvrM reveals that a hydrophobic surface patch conserved between both variants is required for internalization into plant cells, whereas the C-terminal coiled-coil domain mediates interaction with M. AvrM binding to PIPs is dependent on positive surface charges, and mutations that abrogate PIP binding have no significant effect on internalization, suggesting that AvrM binding to PIPs is not essential for transport of AvrM across the plant membrane. The structure of AvrM and the identification of functionally important surface regions advance our understanding of the molecular mechanisms underlying how effectors enter plant cells and how they are detected by the plant immune system.
NASA Astrophysics Data System (ADS)
Fujimoto, Kazuhiro J.; Balashov, Sergei P.
2017-03-01
The role of vibronic coupling of antenna carotenoid and retinal in xanthorhodopsin (XR) in its circular dichroism (CD) spectrum is examined computationally. A vibronic exciton model combined with a transition-density-fragment interaction (TDFI) method is developed, and applied to absorption and CD spectral calculations of XR. The TDFI method is based on the electronic Coulomb and exchange interactions between transition densities for individual chromophores [K. J. Fujimoto, J. Chem. Phys. 137, 034101 (2012)], which provides a quantitative description of electronic coupling energy. The TDFI calculation reveals a dominant contribution of the Coulomb interaction to the electronic coupling energy and a negligible contribution of the exchange interaction, indicating that the antenna function of carotenoid results from the Förster type of excitation-energy transfer, not from the Dexter one. The calculated absorption and CD spectra successfully reproduce the main features of the experimental results, which allow us to investigate the mechanism of biphasic CD spectrum observed in XR. The results indicate that vibronic coupling between carotenoid and retinal plays a significant role in the shape of the CD spectrum. Further analysis reveals that the negative value of electronic coupling directly contributes to the biphasic shape of CD spectrum. This study also reveals that the C6—C7 bond rotation of salinixanthin is not the main factor for the biphasic CD spectrum although it gives a non-negligible contribution to the spectral shift. The present method is useful for analyzing the molecular mechanisms underlying the chromophore-chromophore interactions in biological systems.
Petrographic studies of refractory inclusions from the Murchison meteorite
NASA Technical Reports Server (NTRS)
Macpherson, G. J.; Grossman, L.; Hashimoto, A.; Bar-Matthews, M.; Tanaka, T.
1984-01-01
Textural and mineral-chemical data on freeze-thaw disaggregated refractory inclusions from the Murchison meteorite are reported. The data were obtained with neutron activation analysis, SEM, and spectroscopy, the study revealed corundum-bearing inclusions, spinel-hibonite aggregates and spherules, and spinel-pyroxene and elivine-pyroxene inclusions. One of the three spinel-, pyroxene-, forsterite-rich inclusions had an amoeba-shaped spinel-pyroxene core, implying vapor-to-solid condensation and therefore crystallization from a melt. It is concluded that the meteorite formation encompassed diverse nebular materials, and that further studies of the meteorite will enhance the data base on the planetary nebular processes.
Chow, Colin M; Ross, Aaron M; Kim, Danny; Gammon, Daniel; Bracker, Allan S; Sham, L J; Steel, Duncan G
2016-08-12
We demonstrate the extension of coherence between all four two-electron spin ground states of an InAs quantum dot molecule (QDM) via nonlocal suppression of nuclear spin fluctuations in two vertically stacked quantum dots (QDs), while optically addressing only the top QD transitions. Long coherence times are revealed through dark-state spectroscopy as resulting from nuclear spin locking mediated by the exchange interaction between the QDs. Line shape analysis provides the first measurement of the quieting of the Overhauser field distribution correlating with reduced nuclear spin fluctuations.
NASA Astrophysics Data System (ADS)
Chow, Colin M.; Ross, Aaron M.; Kim, Danny; Gammon, Daniel; Bracker, Allan S.; Sham, L. J.; Steel, Duncan G.
2016-08-01
We demonstrate the extension of coherence between all four two-electron spin ground states of an InAs quantum dot molecule (QDM) via nonlocal suppression of nuclear spin fluctuations in two vertically stacked quantum dots (QDs), while optically addressing only the top QD transitions. Long coherence times are revealed through dark-state spectroscopy as resulting from nuclear spin locking mediated by the exchange interaction between the QDs. Line shape analysis provides the first measurement of the quieting of the Overhauser field distribution correlating with reduced nuclear spin fluctuations.
Shape design sensitivity analysis using domain information
NASA Technical Reports Server (NTRS)
Seong, Hwal-Gyeong; Choi, Kyung K.
1985-01-01
A numerical method for obtaining accurate shape design sensitivity information for built-up structures is developed and demonstrated through analysis of examples. The basic character of the finite element method, which gives more accurate domain information than boundary information, is utilized for shape design sensitivity improvement. A domain approach for shape design sensitivity analysis of built-up structures is derived using the material derivative idea of structural mechanics and the adjoint variable method of design sensitivity analysis. Velocity elements and B-spline curves are introduced to alleviate difficulties in generating domain velocity fields. The regularity requirements of the design velocity field are studied.
Life history dependent morphometric variation in stream-dwelling Atlantic salmon
Letcher, B.H.
2003-01-01
The time course of morphometric variation among life histories for stream-dwelling Atlantic salmon (Salmo salar L.) parr (age-0+ to age-2+) was analyzed. Possible life histories were combinations of parr maturity status in the autumn (mature or immature) and age at outmigration (smolt at age-2+ or later age). Actual life histories expressed with enough fish for analysis in the 1997 cohort were immature/age-2+ smolt, mature/age-2 +smolt, and mature/age-2+ non-smolt. Tagged fish were assigned to one of the three life histories and digital pictures from the field were analyzed using landmark-based geometric morphometrics. Results indicated that successful grouping of fish according to life history varied with fish age, but that fish could be grouped before the actual expression of the life histories. By March (age-1+), fish were successfully grouped using a descriptive discriminant function and successful assignment ranged from 84 to 97% for the remainder of stream residence. A jackknife of the discriminant function revealed an average life history prediction success of 67% from age-1+ summer to smolting. Low sample numbers for one of the life histories may have limited prediction success. A MANOVA on the shape descriptors (relative warps) also indicated significant differences in shape among life histories from age-1+ summer through to smolting. Across all samples, shape varied significantly with size. Within samples, shape did not vary significantly with size for samples from December (age-0+) to May (age-1+). During the age-1+ summer however, shape varied significantly with size, but the relationship between shape and size was not different among life histories. In the autumn (age-1+) and winter (age-2+), life history differences explained a significant portion of the change in shape with size. Life history dependent morphometric variation may be useful to indicate the timing of early expressions of life history variation and as a tool to explore temporal and spatial variation in life history expression.
Connecting the Strength of the Research to the Strength of the Team Partnership
ERIC Educational Resources Information Center
Gardner, Morgan; McCann, Ann; Young, Elizabeth; Young, Allie; Brown, Linda; Myles, Carol
2017-01-01
This paper explores how a youth-adult team's partnership shaped their participatory action research (PAR) on youth engagement in educational change. Findings revealed that their experiences of partnership shaped their research by: 1) enhancing their relations with participants; 2) improving their capacity to navigate research complexities; 3)…
Metaphors Reveal Preservice Elementary Teachers' Views of Mathematics and Science Teaching
ERIC Educational Resources Information Center
Cassel, Darlinda; Vincent, Daniel
2011-01-01
Typically, experiences shape one's attitudes toward the "thing" that is being experienced, whether it is a person, pet, movie, etc. Classroom experiences also shape one's attitudes toward a subject, teacher, learning, and so forth. Studies have shown that attitudes become more negative as students move from elementary to secondary schools.…
The Role of Shape Complementarity in the Protein-Protein Interactions
Li, Ye; Zhang, Xianren; Cao, Dapeng
2013-01-01
We use a dissipative particle dynamic simulation to investigate the effects of shape complementarity on the protein-protein interactions. By monitoring different kinds of protein shape-complementarity modes, we gave a clear mechanism to reveal the role of the shape complementarity in the protein-protein interactions, i.e., when the two proteins with shape complementarity approach each other, the conformation of lipid chains between two proteins would be restricted significantly. The lipid molecules tend to leave the gap formed by two proteins to maximize the configuration entropy, and therefore yield an effective entropy-induced protein-protein attraction, which enhances the protein aggregation. In short, this work provides an insight into understanding the importance of the shape complementarity in the protein-protein interactions especially for protein aggregation and antibody–antigen complexes. Definitely, the shape complementarity is the third key factor affecting protein aggregation and complex, besides the electrostatic-complementarity and hydrophobic complementarity. PMID:24253561
The Role of Shape Complementarity in the Protein-Protein Interactions
NASA Astrophysics Data System (ADS)
Li, Ye; Zhang, Xianren; Cao, Dapeng
2013-11-01
We use a dissipative particle dynamic simulation to investigate the effects of shape complementarity on the protein-protein interactions. By monitoring different kinds of protein shape-complementarity modes, we gave a clear mechanism to reveal the role of the shape complementarity in the protein-protein interactions, i.e., when the two proteins with shape complementarity approach each other, the conformation of lipid chains between two proteins would be restricted significantly. The lipid molecules tend to leave the gap formed by two proteins to maximize the configuration entropy, and therefore yield an effective entropy-induced protein-protein attraction, which enhances the protein aggregation. In short, this work provides an insight into understanding the importance of the shape complementarity in the protein-protein interactions especially for protein aggregation and antibody-antigen complexes. Definitely, the shape complementarity is the third key factor affecting protein aggregation and complex, besides the electrostatic-complementarity and hydrophobic complementarity.
Atlas-Based Ventricular Shape Analysis for Understanding Congenital Heart Disease.
Farrar, Genevieve; Suinesiaputra, Avan; Gilbert, Kathleen; Perry, James C; Hegde, Sanjeet; Marsden, Alison; Young, Alistair A; Omens, Jeffrey H; McCulloch, Andrew D
2016-12-01
Congenital heart disease is associated with abnormal ventricular shape that can affect wall mechanics and may be predictive of long-term adverse outcomes. Atlas-based parametric shape analysis was used to analyze ventricular geometries of eight adolescent or adult single-ventricle CHD patients with tricuspid atresia and Fontans. These patients were compared with an "atlas" of non-congenital asymptomatic volunteers, resulting in a set of z-scores which quantify deviations from the control population distribution on a patient-by-patient basis. We examined the potential of these scores to: (1) quantify abnormalities of ventricular geometry in single ventricle physiologies relative to the normal population; (2) comprehensively quantify wall motion in CHD patients; and (3) identify possible relationships between ventricular shape and wall motion that may reflect underlying functional defects or remodeling in CHD patients. CHD ventricular geometries at end-diastole and end-systole were individually compared with statistical shape properties of an asymptomatic population from the Cardiac Atlas Project. Shape analysis-derived model properties, and myocardial wall motions between end-diastole and end-systole, were compared with physician observations of clinical functional parameters. Relationships between altered shape and altered function were evaluated via correlations between atlas-based shape and wall motion scores. Atlas-based shape analysis identified a diverse set of specific quantifiable abnormalities in ventricular geometry or myocardial wall motion in all subjects. Moreover, this initial cohort displayed significant relationships between specific shape abnormalities such as increased ventricular sphericity and functional defects in myocardial deformation, such as decreased long-axis wall motion. These findings suggest that atlas-based ventricular shape analysis may be a useful new tool in the management of patients with CHD who are at risk of impaired ventricular wall mechanics and chamber remodeling.
Groupwise shape analysis of the hippocampus using spectral matching
NASA Astrophysics Data System (ADS)
Shakeri, Mahsa; Lombaert, Hervé; Lippé, Sarah; Kadoury, Samuel
2014-03-01
The hippocampus is a prominent subcortical feature of interest in many neuroscience studies. Its subtle morphological changes often predicate illnesses, including Alzheimer's, schizophrenia or epilepsy. The precise location of structural differences requires a reliable correspondence between shapes across a population. In this paper, we propose an automated method for groupwise hippocampal shape analysis based on a spectral decomposition of a group of shapes to solve the correspondence problem between sets of meshes. The framework generates diffeomorphic correspondence maps across a population, which enables us to create a mean shape. Morphological changes are then located between two groups of subjects. The performance of the proposed method was evaluated on a dataset of 42 hippocampus shapes and compared with a state-of-the-art structural shape analysis approach, using spherical harmonics. Difference maps between mean shapes of two test groups demonstrates that the two approaches showed results with insignificant differences, while Gaussian curvature measures calculated between matched vertices showed a better fit and reduced variability with spectral matching.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lemasson, Quentin; Kotula, Paul; Pichon, Laurent
2015-09-01
In the field of archaeometry, it is not uncommon to be presented with art objects that contain inscriptions, signatures and other writings that are nearly impossible to read. Scanned microbeam PIXE offers an attractive approach to attack this problem, but even then the distribution of characteristic X-rays of the element(s) used in these writings can remain illegible. We show in this paper that two methods were used to reveal the inscription: first the use of a GUPIXWin, TRAUPIXE and AGLAEMap software suite enables to make quantitative analysis of each pixel, to visualize the results and to select X-ray peaks thatmore » could enable to distinguish letters. Then, the Automated eXpert Spectral Image Analysis (AXSIA) program developed at Sandia, which analyzes the x-ray intensity vs. Energy and (X, Y) position “datacubes”, was used to factor the datacube into 1) principle component spectral shapes and 2) the weighting images of these components. The specimen selected for this study was a silver plaque representing a scroll from the so-called “MerkelscheTafelaufsatz,” a centrepiece made by the Nuremberg goldsmith Wenzel Jamnitzer in 1549. X-ray radiography of the plaque shows lines of different silver thicknesses, meaning that a text has been removed. The PIXE analysis used a 3-MeV proton beam focused to 50μm and scanned across the sample on different areas of interest of several cm². This analysis showed major elements of Cu and Ag, and minor elements such as Pb, Au, Hg. X-ray intensity maps were then made by setting windows on the various x-ray peaks but the writing on the centrepiece was not revealed even if the map of Cu after data treatment at AGLAE enabled to distinguish some letters. The AXSIA program enabled to factor two main spectral shapes from the datacube that were quite similar and involved virtually all of the X-rays being generated. Nevertheless, small differences between these factors were observed for the Cu K X-rays, Pb, Bi and Au L X-rays. The plot of the factor with the highest Au signal gave also information on the shape of some letters. The comparison of the results obtained by the two methods shows that they both drastically improve the resolution and contrast of such writings and that each of the method can also bring different information on the composition and thus the techniques used for the writing.« less
The origin and phylogeography of dog rabies virus
Bourhy, Hervé; Reynes, Jean-Marc; Dunham, Eleca J.; Dacheux, Laurent; Larrous, Florence; Huong, Vu Thi Que; Xu, Gelin; Yan, Jiaxin; Miranda, Mary Elizabeth G.; Holmes, Edward C.
2012-01-01
Rabies is a progressively fatal and incurable viral encephalitis caused by a lyssavirus infection. Almost all of the 55 000 annual rabies deaths in humans result from infection with dog rabies viruses (RABV). Despite the importance of rabies for human health, little is known about the spread of RABV in dog populations, and patterns of biodiversity have only been studied in limited geographical space. To address these questions on a global scale, we sequenced 62 new isolates and performed an extensive comparative analysis of RABV gene sequence data, representing 192 isolates sampled from 55 countries. From this, we identified six clades of RABV in non-flying mammals, each of which has a distinct geographical distribution, most likely reflecting major physical barriers to gene flow. Indeed, a detailed analysis of phylogeographic structure revealed only limited viral movement among geographical localities. Using Bayesian coalescent methods we also reveal that the sampled lineages of canid RABV derive from a common ancestor that originated within the past 1500 years. Additionally, we found no evidence for either positive selection or widespread population bottlenecks during the global expansion of canid RABV. Overall, our study reveals that the stochastic processes of genetic drift and population subdivision are the most important factors shaping the global phylogeography of canid RABV. PMID:18931062
Liu, Dan; Li, Song; Islam, Ejazul; Chen, Jun-ren; Wu, Jia-sen; Ye, Zheng-qian; Peng, Dan-li; Yan, Wen-bo; Lu, Kou-ping
2015-01-01
A hydroponics experiment was aimed at identifying the lead (Pb) tolerance and phytoremediation potential of Moso bamboo (Phyllostachys pubescens) seedlings grown under different Pb treatments. Experimental results indicated that at the highest Pb concentration (400 μmol/L), the growth of bamboo seedlings was inhibited and Pb concentrations in leaves, stems, and roots reached the maximum of 148.8, 482.2, and 4282.8 mg/kg, respectively. Scanning electron microscopy revealed that the excessive Pb caused decreased stomatal opening, formation of abundant inclusions in roots, and just a few inclusions in stems. The ultrastructural analysis using transmission electron microscopy revealed that the addition of excessive Pb caused abnormally shaped chloroplasts, disappearance of endoplasmic reticulum, shrinkage of nucleus and nucleolus, and loss of thylakoid membranes. Although ultrastructural analysis revealed some internal damage, even the plants exposed to 400 μmol/L Pb survived and no visual Pb toxicity symptoms such as necrosis and chlorosis were observed in these plants. Even at the highest Pb treatment, no significant difference was observed for the dry weight of stem compared with controls. It is suggested that use of Moso bamboo as an experimental material provides a new perspective for remediation of heavy metal contaminated soil owing to its high metal tolerance and greater biomass. PMID:25644467
Linkage and Segregation Analysis of Black and Brindle Coat Color in Domestic Dogs
Kerns, Julie A.; Cargill, Edward J.; Clark, Leigh Anne; Candille, Sophie I.; Berryere, Tom G.; Olivier, Michael; Lust, George; Todhunter, Rory J.; Schmutz, Sheila M.; Murphy, Keith E.; Barsh, Gregory S.
2007-01-01
Mutations of pigment type switching have provided basic insight into melanocortin physiology and evolutionary adaptation. In all vertebrates that have been studied to date, two key genes, Agouti and Melanocortin 1 receptor (Mc1r), encode a ligand-receptor system that controls the switch between synthesis of red–yellow pheomelanin vs. black–brown eumelanin. However, in domestic dogs, historical studies based on pedigree and segregation analysis have suggested that the pigment type-switching system is more complicated and fundamentally different from other mammals. Using a genomewide linkage scan on a Labrador × greyhound cross segregating for black, yellow, and brindle coat colors, we demonstrate that pigment type switching is controlled by an additional gene, the K locus. Our results reveal three alleles with a dominance order of black (KB) > brindle (kbr) > yellow (ky), whose genetic map position on dog chromosome 16 is distinct from the predicted location of other pigmentation genes. Interaction studies reveal that Mc1r is epistatic to variation at Agouti or K and that the epistatic relationship between Agouti and K depends on the alleles being tested. These findings suggest a molecular model for a new component of the melanocortin signaling pathway and reveal how coat-color patterns and pigmentary diversity have been shaped by recent selection. PMID:17483404
Analysis of self-overlap reveals trade-offs in plankton swimming trajectories
Bianco, Giuseppe; Mariani, Patrizio; Visser, Andre W.; Mazzocchi, Maria Grazia; Pigolotti, Simone
2014-01-01
Movement is a fundamental behaviour of organisms that not only brings about beneficial encounters with resources and mates, but also at the same time exposes the organism to dangerous encounters with predators. The movement patterns adopted by organisms should reflect a balance between these contrasting processes. This trade-off can be hypothesized as being evident in the behaviour of plankton, which inhabit a dilute three-dimensional environment with few refuges or orienting landmarks. We present an analysis of the swimming path geometries based on a volumetric Monte Carlo sampling approach, which is particularly adept at revealing such trade-offs by measuring the self-overlap of the trajectories. Application of this method to experimentally measured trajectories reveals that swimming patterns in copepods are shaped to efficiently explore volumes at small scales, while achieving a large overlap at larger scales. Regularities in the observed trajectories make the transition between these two regimes always sharper than in randomized trajectories or as predicted by random walk theory. Thus, real trajectories present a stronger separation between exploration for food and exposure to predators. The specific scale and features of this transition depend on species, gender and local environmental conditions, pointing at adaptation to state and stage-dependent evolutionary trade-offs. PMID:24789560
The Neurobiological Grounding of Persistent Stuttering: from Structure to Function.
Neef, Nicole E; Anwander, Alfred; Friederici, Angela D
2015-09-01
Neuroimaging and transcranial magnetic stimulation provide insights into the neuronal mechanisms underlying speech disfluencies in chronic persistent stuttering. In the present paper, the goal is not to provide an exhaustive review of existing literature, but rather to highlight robust findings. We, therefore, conducted a meta-analysis of diffusion tensor imaging studies which have recently implicated disrupted white matter connectivity in stuttering. A reduction of fractional anisotropy in persistent stuttering has been reported at several different loci. Our meta-analysis revealed consistent deficits in the left dorsal stream and in the interhemispheric connections between the sensorimotor cortices. In addition, recent fMRI meta-analyses link stuttering to reduced left fronto-parieto-temporal activation while greater fluency is associated with boosted co-activations of right fronto-parieto-temporal areas. However, the physiological foundation of these irregularities is not accessible with MRI. Complementary, transcranial magnetic stimulation (TMS) reveals local excitatory and inhibitory regulation of cortical dynamics. Applied to a speech motor area, TMS revealed reduced speech-planning-related neuronal dynamics at the level of the primary motor cortex in stuttering. Together, this review provides a focused view of the neurobiology of stuttering to date and may guide the rational design of future research. This future needs to account for the perpetual dynamic interactions between auditory, somatosensory, and speech motor circuits that shape fluent speech.
Learning to perceive differences in solid shape through vision and touch.
Norman, J Farley; Clayton, Anna Marie; Norman, Hideko F; Crabtree, Charles E
2008-01-01
A single experiment was designed to investigate perceptual learning and the discrimination of 3-D object shape. Ninety-six observers were presented with naturally shaped solid objects either visually, haptically, or across the modalities of vision and touch. The observers' task was to judge whether the two sequentially presented objects on any given trial possessed the same or different 3-D shapes. The results of the experiment revealed that significant perceptual learning occurred in all modality conditions, both unimodal and cross-modal. The amount of the observers' perceptual learning, as indexed by increases in hit rate and d', was similar for all of the modality conditions. The observers' hit rates were highest for the unimodal conditions and lowest in the cross-modal conditions. Lengthening the inter-stimulus interval from 3 to 15 s led to increases in hit rates and decreases in response bias. The results also revealed the existence of an asymmetry between two otherwise equivalent cross-modal conditions: in particular, the observers' perceptual sensitivity was higher for the vision-haptic condition and lower for the haptic-vision condition. In general, the results indicate that effective cross-modal shape comparisons can be made between the modalities of vision and active touch, but that complete information transfer does not occur.
Ghostly Specter Haunts the ‘Coldest Place in the Universe’
2013-10-28
The Boomerang nebula, called the "coldest place in the universe," reveals its true shape to the Atacama Large Millimeter/submillimeter Array (ALMA) telescope. The background blue structure, as seen in visible light by NASA's Hubble Space Telescope, shows a classic double-lobe shape with a very narrow central region. ALMA’s resolution and ability to see the cold gas molecules reveals the nebula’s more elongated shape, as seen in red. Image credit: NRAO/AUI/NSF/NASA/STScI/JPL-Caltech Read more about this image from NASA's Jet Propulsion Laboratory (JPL) here: 1.usa.gov/17o22Rz NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram
Late electrophysiological modulations of feature-based attention to object shapes.
Stojanoski, Bobby Boge; Niemeier, Matthias
2014-03-01
Feature-based attention has been shown to aid object perception. Our previous ERP effects revealed temporally late feature-based modulation in response to objects relative to motion. The aim of the current study was to confirm the timing of feature-based influences on object perception while cueing within the feature dimension of shape. Participants were told to expect either "pillow" or "flower" objects embedded among random white and black lines. Participants more accurately reported the object's main color for valid compared to invalid shapes. ERPs revealed modulation from 252-502 ms, from occipital to frontal electrodes. Our results are consistent with previous findings examining the time course for processing similar stimuli (illusory contours). Our results provide novel insights into how attending to features of higher complexity aids object perception presumably via feed-forward and feedback mechanisms along the visual hierarchy. Copyright © 2014 Society for Psychophysiological Research.
Hybrid least squares multivariate spectral analysis methods
Haaland, David M.
2004-03-23
A set of hybrid least squares multivariate spectral analysis methods in which spectral shapes of components or effects not present in the original calibration step are added in a following prediction or calibration step to improve the accuracy of the estimation of the amount of the original components in the sampled mixture. The hybrid method herein means a combination of an initial calibration step with subsequent analysis by an inverse multivariate analysis method. A spectral shape herein means normally the spectral shape of a non-calibrated chemical component in the sample mixture but can also mean the spectral shapes of other sources of spectral variation, including temperature drift, shifts between spectrometers, spectrometer drift, etc. The shape can be continuous, discontinuous, or even discrete points illustrative of the particular effect.
Analysis of the shapes of hemocytes of Callista brevisiphonata in vitro (Bivalvia, Veneridae).
Karetin, Yu A; Pushchin, I I
2015-08-01
Fractal formalism in conjunction with linear methods of image analysis is suitable for the comparative analysis of such "irregular" shapes (from the point of view of classical Euclidean geometry) as flattened amoeboid cells of invertebrates in vitro. Cell morphology of in vitro spreading hemocytes from the bivalve mollusc Callista brevisiphonata was analyzed using correlation, factor and cluster analysis. Four significantly different cell types were identified on the basis of 36 linear and nonlinear parameters. The analysis confirmed the adequacy of the selected methodology for numerical description of the shape and the adequacy of classification of nonlinear shapes of spread hemocytes belonging to the same species. Investigation has practical significance for the description of the morphology of cultured cells, since cell shape is a result of summation of a number of extracellular and intracellular factors. © 2015 International Society for Advancement of Cytometry.
NASA Astrophysics Data System (ADS)
Chung, Hayoung; Choi, Joonmyung; Yun, Jung-Hoon; Cho, Maenghyo
2016-02-01
A liquid crystal network whose chromophores are functionalized by photochromic dye exhibits light-induced mechanical behaviour. As a result, the micro-scaled thermotropic traits of the network and the macroscopic phase behaviour are both influenced as light alternates the shape of the dyes. In this paper, we present an analysis of this photomechanical behaviour based on the proposed multiscale framework, which incorporates the molecular details of microstate evolution into a continuum-based understanding. The effects of trans-to-cis photoisomerization driven by actinic light irradiation are first examined using molecular dynamics simulations, and are compared against the predictions of the classical dilution model; this reveals certain characteristics of mesogenic interaction upon isomerization, followed by changes in the polymeric structure. We then upscale the thermotropic phase-related information with the aid of a nonlinear finite element analysis; macroscopic deflection with respect to the wide ranges of temperature and actinic light intensity are thereby examined, which reveals that the classical model underestimates the true deformation. This work therefore provides measures for analysing photomechanics in general by bridging the gap between the micro- and macro-scales.
Sullivan, Erin C.; Mendoza, Sally P.; Capitanio, John P.
2011-01-01
Temperament is usually considered biologically based and largely inherited, however the environment can shape the development of temperament. Allelic variation may confer differential sensitivity to early environment resulting in variations in temperament. Here we explore the relationship between measures of temperament in mothers and their first-born offspring and the role of genetic sensitivity in establishing the strength of these associations. Temperament ratings were conducted on 3-4 month old rhesus monkeys after a 25-hour biobehavioral assessment. Factor analysis revealed a four factor structure of temperament. Females assessed as infants have reproduced and their offspring have also been evaluated through the standardized testing paradigm. Canonical correlation analysis revealed statistically significant associations between factor scores of mothers and sons, but not mothers and daughters. Further, offspring possessing the high activity, “low risk”, alleles of the rhMAOA-LPR or rh5-HTTLPR showed statistically significant canonical correlations, whereas those possessing other alleles did not, suggesting differential genetic sensitivity to the normative early experience of maternal temperament. PMID:21866539
Phenotypic factor analysis of psychopathology reveals a new body-related transdiagnostic factor.
Pezzoli, Patrizia; Antfolk, Jan; Santtila, Pekka
2017-01-01
Comorbidity challenges the notion of mental disorders as discrete categories. An increasing body of literature shows that symptoms cut across traditional diagnostic boundaries and interact in shaping the latent structure of psychopathology. Using exploratory and confirmatory factor analysis, we reveal the latent sources of covariation among nine measures of psychopathological functioning in a population-based sample of 13024 Finnish twins and their siblings. By implementing unidimensional, multidimensional, second-order, and bifactor models, we illustrate the relationships between observed variables, specific, and general latent factors. We also provide the first investigation to date of measurement invariance of the bifactor model of psychopathology across gender and age groups. Our main result is the identification of a distinct "Body" factor, alongside the previously identified Internalizing and Externalizing factors. We also report relevant cross-disorder associations, especially between body-related psychopathology and trait anger, as well as substantial sex and age differences in observed and latent means. The findings expand the meta-structure of psychopathology, with implications for empirical and clinical practice, and demonstrate shared mechanisms underlying attitudes towards nutrition, self-image, sexuality and anger, with gender- and age-specific features.
NASA Astrophysics Data System (ADS)
Yang, Lei; Li, Zhiwei; Sun, Tao; Wu, Zhanjun
2017-10-01
This paper aims to study the effect of fibre cross-section shape on the mechanical properties of unidirectional fibre reinforced composites. First, the specific surface area of different cross-section shape is compared, and the gear-shape fibre is selected for further study, which has the largest specific surface area. The effect of gear-shape fibre with various tooth number on the transverse mechanical properties of unidirectional composites is investigated by computational micromechanics, comparing with the traditional round fibre. It is found that all the gear-shape fibre reinforced composites have higher transverse stiffness and strength than the round fibre reinforced composite, and the gear-shape fibre with fewer tooth number has greater reinforcing effect on the mechanical properties of the composite. The mechanism of this phenomenon is revealed by examine the damage initiation and evolution process of the composite, and suggestion is made on the optimal cross-section shape of the reinforcing fibre for the composites.
How to Build a Bacterial Cell: MreB as the Foreman of E. coli Construction.
Shi, Handuo; Bratton, Benjamin P; Gitai, Zemer; Huang, Kerwyn Casey
2018-03-08
Cell shape matters across the kingdoms of life, and cells have the remarkable capacity to define and maintain specific shapes and sizes. But how are the shapes of micron-sized cells determined from the coordinated activities of nanometer-sized proteins? Here, we review general principles that have surfaced through the study of rod-shaped bacterial growth. Imaging approaches have revealed that polymers of the actin homolog MreB play a central role. MreB both senses and changes cell shape, thereby generating a self-organizing feedback system for shape maintenance. At the molecular level, structural and computational studies indicate that MreB filaments exhibit tunable mechanical properties that explain their preference for certain geometries and orientations along the cylindrical cell body. We illustrate the regulatory landscape of rod-shape formation and the connectivity between cell shape, cell growth, and other aspects of cell physiology. These discoveries provide a framework for future investigations into the architecture and construction of microbes. Copyright © 2018 Elsevier Inc. All rights reserved.
Aging and the visual, haptic, and cross-modal perception of natural object shape.
Norman, J Farley; Crabtree, Charles E; Norman, Hideko F; Moncrief, Brandon K; Herrmann, Molly; Kapley, Noah
2006-01-01
One hundred observers participated in two experiments designed to investigate aging and the perception of natural object shape. In the experiments, younger and older observers performed either a same/different shape discrimination task (experiment 1) or a cross-modal matching task (experiment 2). Quantitative effects of age were found in both experiments. The effect of age in experiment 1 was limited to cross-modal shape discrimination: there was no effect of age upon unimodal (ie within a single perceptual modality) shape discrimination. The effect of age in experiment 2 was eliminated when the older observers were either given an unlimited amount of time to perform the task or when the number of response alternatives was decreased. Overall, the results of the experiments reveal that older observers can effectively perceive 3-D shape from both vision and haptics.
Thomas, Anchu Rachel; Velmurugan, Natanasabapathy; Smita, Surendran; Jothilatha, Sundaramurthy
2014-10-01
The purpose of this study was to evaluate the canal isthmus debridement efficacy of a new modified EndoVac (Discus Dental, Culver City, CA) irrigation protocol in comparison with EndoVac, passive ultrasonic irrigation (PUI), and conventional needle irrigation in mesial roots of mandibular molars. The mesial roots of 64 extracted mandibular molars mounted in resin using Kuttler's endodontic cube, sectioned at 2 and 4 mm from the working length, were randomly divided into 4 groups (n = 16): group 1: Max-I-Probe (Dentsply Tulsa Dental, York, PA), group 2: EndoVac (EVI), group 3: modified EndoVac, and group 4: PUI. The specimens were reassembled and instrumented. A standard irrigation protocol was used during cleaning and shaping and final irrigation with the 4 irrigation/agitation techniques. Images of the isthmus region were taken before and after cleaning and shaping and after final irrigation. The percentage reduction of debris in the isthmus region was calculated by using the software program Image J (v1.43; National Institutes of Health, Bethesda, MD). Intergroup analysis was performed using the Kruskal Wallis and Mann-Whitney U tests. Intragroup analysis was performed using Friedman and Wilcoxon signed rank tests. The level of significance was set at P < .05. Intragroup analysis revealed a statistically significant difference in the percentage reduction of debris after cleaning and shaping and after final irrigation protocol in all the groups (P < .001). The final irrigation protocol produced significantly cleaner canal isthmuses in all the groups (P < .001). On intergroup analysis, the modified EVI group performed significantly better than the other groups. The EVI and PUI groups performed better than the Max-I-Probe group. There was no statistical significance between the EVI and PUI groups. Canal isthmuses were significantly cleaner with the modified EndoVac irrigation technique when compared with the cleanliness seen with the other irrigation systems. Copyright © 2014 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Mondal, Tridib Kumar
2018-01-01
In this paper, the fabric in massive granite ( 2.6 Ga) from the Chitradurga region (Western Dharwar Craton, south India) is analyzed using microstructure, anisotropy of magnetic susceptibility (AMS) study and kinematic vorticity analysis. The microstructural investigation on the granite shows a progressive textural overprint from magmatic, through high-T to low-T solid-state deformation textures. The mean magnetic foliation in the rocks of the region is dominantly NW-SE striking which have developed during regional D1/D2 deformation on account of NE-SW shortening. The plunge of the magnetic lineation varies from NW to vertical to SE, and interpreted to be a consequence of regional D3 deformation on account of NW-SE to E-W shortening. The vorticity analysis from magnetic fabric in the region reveals that the NW-SE oriented fabric formed under pure shear condition during D1/D2 regional deformation. However, some parts of the region particularly close to the adjacent Chitradurga Shear Zone show that the magnetic fabrics are oblique to the foliation as well as shear zone orientation and inferred to be controlled by simple shearing during D3 regional deformation. The shape preferred orientation (SPO) analysis from oriented thin sections suggest that the shape of the recrystallized quartz grains define the magnetic fabric in Chitradurga granite and the degree of the SPO reduces away from the Chitradurga Shear Zone. It is interpreted that the change in magnetic fabrics in some parts of the granite in the region are dominantly controlled by the late stage sinistral shearing which occurred during the development of Chitradurga Shear Zone. Anisotropy of magnetic susceptibility (AMS) data of granite from the Chitradurga region (West Dharwar Craton, southern India). Km = Mean susceptibility; Pj = corrected degree of magnetic anisotropy; T = shape parameter. K1 and K3 are the maximum and minimum principal axes of the AMS ellipsoid, respectively. dec = Declination; inc = Inclination.
Wavelet-based polarimetry analysis
NASA Astrophysics Data System (ADS)
Ezekiel, Soundararajan; Harrity, Kyle; Farag, Waleed; Alford, Mark; Ferris, David; Blasch, Erik
2014-06-01
Wavelet transformation has become a cutting edge and promising approach in the field of image and signal processing. A wavelet is a waveform of effectively limited duration that has an average value of zero. Wavelet analysis is done by breaking up the signal into shifted and scaled versions of the original signal. The key advantage of a wavelet is that it is capable of revealing smaller changes, trends, and breakdown points that are not revealed by other techniques such as Fourier analysis. The phenomenon of polarization has been studied for quite some time and is a very useful tool for target detection and tracking. Long Wave Infrared (LWIR) polarization is beneficial for detecting camouflaged objects and is a useful approach when identifying and distinguishing manmade objects from natural clutter. In addition, the Stokes Polarization Parameters, which are calculated from 0°, 45°, 90°, 135° right circular, and left circular intensity measurements, provide spatial orientations of target features and suppress natural features. In this paper, we propose a wavelet-based polarimetry analysis (WPA) method to analyze Long Wave Infrared Polarimetry Imagery to discriminate targets such as dismounts and vehicles from background clutter. These parameters can be used for image thresholding and segmentation. Experimental results show the wavelet-based polarimetry analysis is efficient and can be used in a wide range of applications such as change detection, shape extraction, target recognition, and feature-aided tracking.
NASA Astrophysics Data System (ADS)
Deng, J.; Ding, X.; Suzuki, T.; Otsuka, K.; Lookman, T.; Saxena, A.; Sun, J.; Ren, X.
2011-03-01
Most shape-memory alloys (SMAs) subject to the aging effects not only in the martensite phase but also in the parent phase. These aging effects have been attracted much attention as they strongly affect the practical applications of SMAs. So far, the intrinsic mechanism of them has remained controversial due to the difficulty in visualization of what happens in atomic scale. In the present study, by using a combination of molecular dynamics method and Monte-Carlo method [1], we investigate the aging effects in both martensite and parent phase. We successfully reproduced the thermal behaviors of aging effects for SMAs, i.e., the Af temperature increase with aging time in martensite and the Ms temperature decrease with aging time in parent phase, which keep good agreement with the experimental observations [2]. In addition, quantitative analysis of the atomic configurations during aging reveals that the aging effects are not associated with a change in the average structure.
Looking Like a Leader–Facial Shape Predicts Perceived Height and Leadership Ability
Re, Daniel E.; Hunter, David W.; Coetzee, Vinet; Tiddeman, Bernard P.; Xiao, Dengke; DeBruine, Lisa M.; Jones, Benedict C.; Perrett, David I.
2013-01-01
Judgments of leadership ability from face images predict the outcomes of actual political elections and are correlated with leadership success in the corporate world. The specific facial cues that people use to judge leadership remain unclear, however. Physical height is also associated with political and organizational success, raising the possibility that facial cues of height contribute to leadership perceptions. Consequently, we assessed whether cues to height exist in the face and, if so, whether they are associated with perception of leadership ability. We found that facial cues to perceived height had a strong relationship with perceived leadership ability. Furthermore, when allowed to manually manipulate faces, participants increased facial cues associated with perceived height in order to maximize leadership perception. A morphometric analysis of face shape revealed that structural facial masculinity was not responsible for the relationship between perceived height and perceived leadership ability. Given the prominence of facial appearance in making social judgments, facial cues to perceived height may have a significant influence on leadership selection. PMID:24324651
Colihueque, Nelson; Araneda, Cristian
2014-01-01
Appearance traits in fish, those external body characteristics that influence consumer acceptance at point of sale, have come to the forefront of commercial fish farming, as culture profitability is closely linked to management of these traits. Appearance traits comprise mainly body shape and skin pigmentation. Analysis of the genetic basis of these traits in different fish reveals significant genetic variation within populations, indicating potential for their genetic improvement. Work into ascertaining the minor or major genes underlying appearance traits for commercial fish is emerging, with substantial progress in model fish in terms of identifying genes that control body shape and skin colors. In this review, we describe research progress to date, especially with regard to commercial fish, and discuss genomic findings in model fish in order to better address the genetic basis of the traits. Given that appearance traits are important in commercial fish, the genomic information related to this issue promises to accelerate the selection process in coming years. PMID:25140172
Bearman, J.A.; Friedrichs, Carl T.; Jaffe, B.E.; Foxgrover, A.C.
2010-01-01
Spatial trends in the shape of profiles of South San Francisco Bay (SSFB) tidal flats are examined using bathymetric and lidar data collected in 2004 and 2005. Eigenfunction analysis reveals a dominant mode of morphologic variability related to the degree of convexity or concavity in the cross-shore profileindicative of (i) depositional, tidally dominant or (ii) erosional, wave impacted conditions. Two contrasting areas of characteristic shapenorth or south of a constriction in estuary width located near the Dumbarton Bridgeare recognized. This pattern of increasing or decreasing convexity in the inner or outer estuary is correlated to spatial variability in external and internal environmental parameters, and observational results are found to be largely consistent with theoretical expectations. Tidal flat convexity in SSFB is observed to increase (in decreasing order of significance) in response to increased deposition, increased tidal range, decreased fetch length, decreased sediment grain size, and decreased tidal flat width. ?? 2010 Coastal Education and Research Foundation.
NASA Astrophysics Data System (ADS)
Rabor, Janice B.; Kawamura, Koki; Muko, Daiki; Kurawaki, Junichi; Niidome, Yasuro
2017-07-01
Fabrication of surface-immobilized silver nanostructures with reproducible plasmonic properties by dip-coating technique is difficult due to shape alteration. To address this challenge, we used a polyelectrolyte multilayer to promote immobilization of as-received triangular silver nanoplates (TSNP) on a glass substrate through electrostatic interaction. The substrate-immobilized TSNP were characterized by absorption spectrophotometry and scanning electron microscopy. The bandwidth and peak position of localized surface plasmon resonance (LSPR) bands can be tuned by simply varying the concentration of the colloidal solution and immersion time. TSNP immobilized from a higher concentration of colloidal solution with longer immersion time produced broadened LSPR bands in the near-IR region, while a lower concentration with shorter immersion time produced narrower bands in the visible region. The shape of the nanoplates was retained even at long immersion time. Analysis of peak positions and bandwidths also revealed the point at which the main species of the immobilization had been changed from isolates to aggregates.
NASA Astrophysics Data System (ADS)
Ramadan, Ramadan M.; Abu Al-Nasr, Ahmad K.; Noureldeen, Amani F. H.
2014-11-01
Reaction of 4-aminoacetophenone and 4-bromobenzaldehyde in ethanol resulted in the formation of the monodentate V-shaped Schiff base (E)-1-(4-((4-bromo-benzylidene)amino)phenyl)ethanone (L). Interaction of L with different di- and trivalent metal ions revealed disubstituted derivatives. The ligand and its complexes were characterized by elemental analysis, mass, IR and NMR spectrometry. Biological activities of the ligand and complexes against the Escherchia coli and Staphylococcus aureus bacterias, and the two fungus Aspergillus flavus and Candida albicans were screened. The cytotoxicity of the compounds were checked as antitumor agents on liver carcinoma cell line (HepG2). They exhibited in vitro broad range of antitumor activities towards the cell line; the [ZnL2(H2O)2](NO3)2 complex was stronger antitumor towards HepG2 cell line as well as two breast cancer cell lines (MCF7 and T47D) relative to cis-platin.
Polarization-operator approach to optical signatures of axion-like particles in strong laser pulses
NASA Astrophysics Data System (ADS)
Villalba-Chávez, S.; Podszus, T.; Müller, C.
2017-06-01
Hypothetical oscillations of probe photons into axion-like particles might be revealed by exploiting the strong fields of high-intensity laser pulses. Considering an arbitrary plane-wave background, we determine the polarization tensor induced by the quantum fluctuations of the axion field and use it to calculate how the polarimetric properties of an initially linear-polarized probe beam are modified. We find that various experimental setups based on contemporary facilities and instrumentation might lead to new exclusion bounds on the parameter space of these particle candidates. The impact of the pulse shape on the discovery potential is studied via a comparison between the cases in which the wave is modulated by a Gaussian envelope and a sin2 profile. This analysis shows that the upper limits resulting from the ellipticity are relatively insensitive to this change, whereas those arising from the rotation of the polarization plane turn out to be more dependent on the field shape.
Morphometric abnormalities of the lateral ventricles in methamphetamine-dependent subjects☆
Jeong, Hyeonseok S.; Lee, Sunho; Yoon, Sujung; Jung, Jiyoung J.; Cho, Han Byul; Kim, Binna N.; Ma, Jiyoung; Ko, Eun; Im, Jooyeon Jamie; Ban, Soonhyun; Renshaw, Perry F.; Lyoo, In Kyoon
2017-01-01
Background The presence of morphometric abnormalities of the lateral ventricles, which can reflect focal or diffuse atrophic changes of nearby brain structures, is not well characterized in methamphetamine dependence. The current study was aimed to examine the size and shape alterations of the lateral ventricles in methamphetamine-dependent subjects. Methods High-resolution brain structural images were obtained from 37 methamphetamine-dependent subjects and 25 demographically matched healthy individuals. Using a combined volumetric and surface-based morphometric approach, the structural variability of the lateral ventricles, with respect to extent and location, was examined. Results Methamphetamine-dependent subjects had an enlarged right lateral ventricle compared with healthy individuals. Morphometric analysis revealed a region-specific pattern of lateral ventricular expansion associated with methamphetamine dependence, which was mainly distributed in the areas adjacent to the ventral striatum, medial prefrontal cortex, and thalamus. Conclusions Patterns of shape decomposition in the lateral ventricles may have relevance to the structural vulnerability of the prefrontal-ventral striatal-thalamic circuit to methamphetamine-induced neurotoxicity. PMID:23769159
Ramadan, Ramadan M; Abu Al-Nasr, Ahmad K; Noureldeen, Amani F H
2014-11-11
Reaction of 4-aminoacetophenone and 4-bromobenzaldehyde in ethanol resulted in the formation of the monodentate V-shaped Schiff base (E)-1-(4-((4-bromo-benzylidene)amino)phenyl)ethanone (L). Interaction of L with different di- and trivalent metal ions revealed disubstituted derivatives. The ligand and its complexes were characterized by elemental analysis, mass, IR and NMR spectrometry. Biological activities of the ligand and complexes against the Escherchia coli and Staphylococcus aureus bacterias, and the two fungus Aspergillus flavus and Candida albicans were screened. The cytotoxicity of the compounds were checked as antitumor agents on liver carcinoma cell line (HepG2). They exhibited in vitro broad range of antitumor activities towards the cell line; the [ZnL2(H2O)2](NO3)2 complex was stronger antitumor towards HepG2 cell line as well as two breast cancer cell lines (MCF7 and T47D) relative to cis-platin. Copyright © 2014 Elsevier B.V. All rights reserved.
Experiments in clustered neuronal networks: A paradigm for complex modular dynamics
NASA Astrophysics Data System (ADS)
Teller, Sara; Soriano, Jordi
2016-06-01
Uncovering the interplay activity-connectivity is one of the major challenges in neuroscience. To deepen in the understanding of how a neuronal circuit shapes network dynamics, neuronal cultures have emerged as remarkable systems given their accessibility and easy manipulation. An attractive configuration of these in vitro systems consists in an ensemble of interconnected clusters of neurons. Using calcium fluorescence imaging to monitor spontaneous activity in these clustered neuronal networks, we were able to draw functional maps and reveal their topological features. We also observed that these networks exhibit a hierarchical modular dynamics, in which clusters fire in small groups that shape characteristic communities in the network. The structure and stability of these communities is sensitive to chemical or physical action, and therefore their analysis may serve as a proxy for network health. Indeed, the combination of all these approaches is helping to develop models to quantify damage upon network degradation, with promising applications for the study of neurological disorders in vitro.
Friendship 2.0: adolescents' experiences of belonging and self-disclosure online.
Davis, Katie
2012-12-01
This study explores the role that digital media technologies play in adolescents' experiences of friendship and identity. The author draws on findings from in-depth interviews with 32 adolescents (15 girls, 17 boys) ages 13-18 (M = 15.5 years) attending one of seven secondary schools in Bermuda. The adolescents were asked to describe the nature of their online exchanges with friends and the value they ascribe to these conversations. A thematic analysis of their responses revealed that online peer communications promote adolescents' sense of belonging and self-disclosure, two important peer processes that support identity development during adolescence. At the same time, the unique features of computer-mediated communication shape adolescents' experiences of these processes in distinct ways. Gender and age differences show that adolescents' online peer communications are not uniform; the characteristics that distinguish adolescents offline also shape their online activities. Copyright © 2012 The Foundation for Professionals in Services for Adolescents. Published by Elsevier Ltd. All rights reserved.
Franklin, Marika; Lewis, Sophie; Willis, Karen; Rogers, Anne; Venville, Annie; Smith, Lorraine
2018-06-01
A person-centered approach to goal-setting, involving collaboration between patients and health professionals, is advocated in policy to support self-management. However, this is difficult to achieve in practice, reducing the potential effectiveness of self-management support. Drawing on observations of consultations between patients and health professionals, we examined how goal-setting is shaped in patient-provider interactions. Analysis revealed three distinct interactional styles. In controlled interactions, health professionals determine patients' goals based on biomedical reference points and present these goals as something patients should do. In constrained interactions, patients are invited to present goals, yet health professionals' language and questions orientate goals toward biomedical issues. In flexible interactions, patients and professionals both contribute to goal-setting, as health professionals use less directive language, create openings, and allow patients to decide on their goals. Findings suggest that interactional style of health professionals could be the focus of interventions when aiming to increase the effectiveness of goal-setting.
Wheeler, Richard; Mesnage, Stéphane; Boneca, Ivo G; Hobbs, Jamie K; Foster, Simon J
2011-12-01
Cell morphology and viability in Eubacteria is dictated by the architecture of peptidoglycan, the major and essential structural component of the cell wall. Although the biochemical composition of peptidoglycan is well understood, how the peptidoglycan architecture can accommodate the dynamics of growth and division while maintaining cell shape remains largely unknown. Here, we elucidate the peptidoglycan architecture and dynamics of bacteria with ovoid cell shape (ovococci), which includes a number of important pathogens, by combining biochemical analyses with atomic force and super-resolution microscopies. Atomic force microscopy analysis showed preferential orientation of the peptidoglycan network parallel to the short axis of the cell, with distinct architectural features associated with septal and peripheral wall synthesis. Super-resolution three-dimensional structured illumination fluorescence microscopy was applied for the first time in bacteria to unravel the dynamics of peptidoglycan assembly in ovococci. The ovococci have a unique peptidoglycan architecture and growth mode not observed in other model organisms. © 2011 Blackwell Publishing Ltd.
Chang, Y. Paul; Xu, Meng; Machado, Ana Carolina Dantas; Yu, Xian Jessica; Rohs, Remo; Chen, Xiaojiang S.
2013-01-01
SUMMARY The DNA tumor virus Simian virus 40 (SV40) is a model system for studying eukaryotic replication. SV40 large tumor antigen (LTag) is the initiator/helicase that is essential for genome replication. LTag recognizes and assembles at the viral replication origin. We determined the structure of two multidomain LTag subunits bound to origin DNA. The structure reveals that the origin binding domains (OBDs) and Zn and AAA+ domains are involved in origin recognition and assembly. Notably, the OBDs recognize the origin in an unexpected manner. The histidine residues of the AAA+ domains insert into a narrow minor groove region with enhanced negative electrostatic potential. Computational analysis indicates that this region is intrinsically narrow, demonstrating the role of DNA shape readout in origin recognition. Our results provide important insights into the assembly of the LTag initiator/ helicase at the replication origin and suggest that histidine contacts with the minor groove serve as a mechanism of DNA shape readout. PMID:23545501
Synthesis and Characterization of Hydroxyapatite Powder by Wet Precipitation Method
NASA Astrophysics Data System (ADS)
Cahyaningrum, S. E.; Herdyastuty, N.; Devina, B.; Supangat, D.
2018-01-01
Hydroxyapatite is main inorganic component of the bone with formula Ca10(PO4)6(OH)2. Hydroxyapatite can be used as substituted bone biomaterial because biocompatible, non toxic, and osteoconductive. In this study, hydroxyapatite is synthesized using wet precipitation method from egg shell. The product was sintered at different temperatures of 800°C to 1000°C to improve its crystallinity. The hydroxyapatite was characterized by X-ray analysis, Scanning Electron Microscopy (SEM) and Fourier Transform Infrared Spectroscopy (FTIR) to reveal its phase content, morphology and types of bond present within it. The analytical results showed hydroxyapatite had range in crystallinity from 85.527 to 98.753%. The analytical functional groups showed that presence of functional groups such as OH, (PO4)3 2-, and CO3 2- that indicated as hydroxyapatite. The result of characterization SEM indicated that hydroxyapatite without sintering and HAp sintering at 800 °C were irregular shape without pore. The best hydroxyapatite with temperature sintering at 900 °C showed oval shaped with pores without agglomerated.
Stability analysis of confined V-shaped flames in high-velocity streams.
El-Rabii, Hazem; Joulin, Guy; Kazakov, Kirill A
2010-06-01
The problem of linear stability of confined V-shaped flames with arbitrary gas expansion is addressed. Using the on-shell description of flame dynamics, a general equation governing propagation of disturbances of an anchored flame is obtained. This equation is solved analytically for V-flames anchored in high-velocity channel streams. It is demonstrated that dynamics of the flame disturbances in this case is controlled by the memory effects associated with vorticity generated by the perturbed flame. The perturbation growth rate spectrum is determined, and explicit analytical expressions for the eigenfunctions are given. It is found that the piecewise linear V structure is unstable for all values of the gas expansion coefficient. Despite the linearity of the basic pattern, however, evolutions of the V-flame disturbances are completely different from those found for freely propagating planar flames or open anchored flames. The obtained results reveal strong influence of the basic flow and the channel walls on the stability properties of confined V-flames.
Curvature by design and on demand in liquid crystal elastomers
NASA Astrophysics Data System (ADS)
Kowalski, B. A.; Mostajeran, C.; Godman, N. P.; Warner, M.; White, T. J.
2018-01-01
The shape of liquid crystalline elastomers (LCEs) with spatial variation in the director orientation can be transformed by exposure to a stimulus. Here, informed by previously reported analytical treatments, we prepare complex spiral patterns imprinted into LCEs and quantify the resulting shape transformation. Quantification of the stimuli-induced shapes reveals good agreement between predicted and experimentally observed curvatures. We conclude this communication by reporting a design strategy to allow LCE films to be anchored at their external boundaries onto rigid substrates without incurring internal, mechanical-mismatch stresses upon actuation, a critical advance to the realization of shape transformation of LCEs in practical device applications.
NASA Astrophysics Data System (ADS)
Yu, Hyeonseung; Lee, Peter; Jo, YoungJu; Lee, KyeoReh; Tuchin, Valery V.; Jeong, Yong; Park, YongKeun
2016-12-01
We demonstrate that simultaneous application of optical clearing agents (OCAs) and complex wavefront shaping in optical coherence tomography (OCT) can provide significant enhancement of penetration depth and imaging quality. OCA reduces optical inhomogeneity of a highly scattering sample, and the wavefront shaping of illumination light controls multiple scattering, resulting in an enhancement of the penetration depth and signal-to-noise ratio. A tissue phantom study shows that concurrent applications of OCA and wavefront shaping successfully operate in OCT imaging. The penetration depth enhancement is further demonstrated for ex vivo mouse ears, revealing hidden structures inaccessible with conventional OCT imaging.
Equilibrium Shapes of Large Trans-Neptunian Objects
NASA Astrophysics Data System (ADS)
Rambaux, Nicolas; Baguet, Daniel; Chambat, Frederic; Castillo-Rogez, Julie C.
2017-11-01
The large trans-Neptunian objects (TNO) with radii larger than 400 km are thought to be in hydrostatic equilibrium. Their shapes can provide clues regarding their internal structures that would reveal information on their formation and evolution. In this paper, we explore the equilibrium figures of five TNOs, and we show that the difference between the equilibrium figures of homogeneous and heterogeneous interior models can reach several kilometers for fast rotating and low density bodies. Such a difference could be measurable by ground-based techniques. This demonstrates the importance of developing the shape up to second and third order when modeling the shapes of large and rapid rotators.
NASA Technical Reports Server (NTRS)
Ko, William L.; Richards, W. Lance; Fleischer, Van Tran
2009-01-01
The Ko displacement theory, formulated for weak nonuniform (slowly changing cross sections) cantilever beams, was applied to the deformed shape analysis of the doubly-tapered wings of the Ikhana unmanned aircraft. The two-line strain-sensing system (along the wingspan) was used for sensing the bending strains needed for the wing-deformed shapes (deflections and cross-sectional twist) analysis. The deflection equation for each strain-sensing line was expressed in terms of the bending strains evaluated at multiple numbers of strain-sensing stations equally spaced along the strain-sensing line. For the preflight shape analysis of the Ikhana wing, the strain data needed for input to the displacement equations for the shape analysis were obtained from the nodal-stress output of the finite-element analysis. The wing deflections and cross-sectional twist angles calculated from the displacement equations were then compared with those computed from the finite-element computer program. The Ko displacement theory formulated for weak nonlinear cantilever beams was found to be highly accurate in the deformed shape predictions of the doubly-tapered Ikhana wing.
An expert protocol for immunofluorescent detection of calcium channels in tsA-201 cells.
Koch, Peter; Herzig, Stefan; Matthes, Jan
Pore-forming subunits of voltage gated calcium channels (VGCC) are large membrane proteins (260kDa) containing 24 transmembrane domains. Despite transfection with viral promoter driven vectors, biochemical analysis of VGCC is often hampered by rather low expression levels in heterologous systems rendering VGCC challenging targets. Especially in immunofluorescent detection, calcium channels are demanding proteins. We provide an expert step-by-step protocol with adapted conditions for handling procedures (tsA-201 cell culture, transient transfection, incubation time and temperature at 28°C or 37°C and immunostaining) to address the L-type calcium-channel pore Ca v 1.2 in an immunofluorescent approach. We performed immunocytochemical analysis of Ca v 1.2 expression at single-cell level in combination with detection of different markers for cellular organelles. We show confluency levels and shapes of tsA-201 cells at different time points during an experiment. Our experiments reveal sufficient levels of Ca v 1.2 protein and a correct Ca v 1.2 expression pattern in polygonal shaped cells already 12h after transfection. A sequence of elaborated protocol modifications allows subcellular localization analysis of Ca v 1.2 in an immunocytochemical approach. We provide a protocol that may be used to achieve insights into physiological and pathophysiological processes involving voltage gated calcium channels. Our protocol may be used for expression analysis of other challenging proteins and efficient overexpression may be exploited in related biochemical techniques requiring immunolabels. Copyright © 2016 Elsevier Inc. All rights reserved.
Derkus, Burak; Arslan, Yavuz Emre; Emregul, Kaan C; Emregul, Emel
2016-09-01
In the present study, we describe the sonochemical isolation of nano-sized spherical hydroxyapatite (nHA) from egg shell and application towards thrombin aptasensing. In addition to the sonochemical method, two conventional methods present in literature were carried out to perform a comparative study. Various analysis methods including Transmission Electron Microscopy (TEM), Scanning Electron Microscopy (SEM), Fourier Transform Infrared Spectroscopy (FTIR), X-Ray Diffraction (XRD), Energy-Dispersive Analysis of X-Rays (EDAX), and Thermal Gravimetric Analysis (TGA) have been applied for the characterization of nHA and its nanocomposite with marine-derived collagen isolated from Rhizostoma pulmo jellyfish. TEM micrographs revealed the sonochemically synthesized nHA nanoparticles to have a unique porous spherical shape with a diameter of approximately 60-80nm when compared to hydroxyapatite nanoparticles synthesized using the other two methods which had a typical needle shaped morphology. EDAX, XRD and FTIR results demonstrated that the obtained patterns belonged to hydroxyapatite. Electrochemical impedance spectroscopy (EIS) is the main analyzing technique of the developed thrombin aptasensor. The proposed aptasensor has a detection limit of 0.25nM thrombin. For clinical application of the developed aptasensor, thrombin levels in blood and cerebrospinal fluid (CSF) samples obtained from patients with Multiple Sclerosis, Myastenia Gravis, Epilepsy, Parkinson, polyneuropathy and healthy donors were analyzed using both the aptasensor and commercial ELISA kit. The results showed that the proposed system is a promising candidate for clinical analysis of thrombin. Copyright © 2016 Elsevier B.V. All rights reserved.
Extracellular synthesis of silver nanoparticles using the leaf extract of Coleus amboinicus Lour
DOE Office of Scientific and Technical Information (OSTI.GOV)
Narayanan, Kannan Badri; Sakthivel, Natarajan, E-mail: puns2005@gmail.com
2011-10-15
Highlights: {yields} Synthesis of AgNPs using the leaf extract of Coleus amboinicus L. was described. {yields} UV-vis absorption spectra showed the formation of isotrophic AgNPs at 437 nm in 6 h. {yields} XRD analysis showed intense peaks corresponding to fcc structure of AgNPs. {yields} HR-TEM analysis revealed the formation of stable anisotrophic and isotrophic AgNPs. -- Abstract: In the present investigation, Coleus amboinicus Lour. leaf extract-mediated green chemistry approach for the synthesis of silver nanoparticles was described. The nanoparticles were characterized by ultraviolet-visible (UV-Vis) spectroscopy, X-ray diffraction (XRD), energy dispersive X-ray analysis (EDAX), Fourier transform infrared spectroscopy (FTIR) and transmissionmore » electron microscopy (TEM). The influence of leaf extract on the control of size and shape of silver nanoparticles is reported. Upon an increase in the concentration of leaf extract, there was a shift in the shape of nanoparticles from anisotrophic nanostructures like triangle, decahedral and hexagonal to isotrophic spherical nanoparticles. Crystalline nature of fcc structured nanoparticles was confirmed by XRD spectrum with peaks corresponding to (1 1 1), (2 0 0), (2 2 0) and (3 1 1) planes and bright circular spots in the selected-area electron diffraction (SAED). Such environment friendly and sustainable methods are non-toxic, cheap and alternative to hazardous chemical procedures.« less
Morales-Navarrete, Hernán; Segovia-Miranda, Fabián; Klukowski, Piotr; Meyer, Kirstin; Nonaka, Hidenori; Marsico, Giovanni; Chernykh, Mikhail; Kalaidzidis, Alexander; Zerial, Marino; Kalaidzidis, Yannis
2015-01-01
A prerequisite for the systems biology analysis of tissues is an accurate digital three-dimensional reconstruction of tissue structure based on images of markers covering multiple scales. Here, we designed a flexible pipeline for the multi-scale reconstruction and quantitative morphological analysis of tissue architecture from microscopy images. Our pipeline includes newly developed algorithms that address specific challenges of thick dense tissue reconstruction. Our implementation allows for a flexible workflow, scalable to high-throughput analysis and applicable to various mammalian tissues. We applied it to the analysis of liver tissue and extracted quantitative parameters of sinusoids, bile canaliculi and cell shapes, recognizing different liver cell types with high accuracy. Using our platform, we uncovered an unexpected zonation pattern of hepatocytes with different size, nuclei and DNA content, thus revealing new features of liver tissue organization. The pipeline also proved effective to analyse lung and kidney tissue, demonstrating its generality and robustness. DOI: http://dx.doi.org/10.7554/eLife.11214.001 PMID:26673893
Nasrullah, Izza; Butt, Azeem M; Tahir, Shifa; Idrees, Muhammad; Tong, Yigang
2015-08-26
The Marburg virus (MARV) has a negative-sense single-stranded RNA genome, belongs to the family Filoviridae, and is responsible for several outbreaks of highly fatal hemorrhagic fever. Codon usage patterns of viruses reflect a series of evolutionary changes that enable viruses to shape their survival rates and fitness toward the external environment and, most importantly, their hosts. To understand the evolution of MARV at the codon level, we report a comprehensive analysis of synonymous codon usage patterns in MARV genomes. Multiple codon analysis approaches and statistical methods were performed to determine overall codon usage patterns, biases in codon usage, and influence of various factors, including mutation pressure, natural selection, and its two hosts, Homo sapiens and Rousettus aegyptiacus. Nucleotide composition and relative synonymous codon usage (RSCU) analysis revealed that MARV shows mutation bias and prefers U- and A-ended codons to code amino acids. Effective number of codons analysis indicated that overall codon usage among MARV genomes is slightly biased. The Parity Rule 2 plot analysis showed that GC and AU nucleotides were not used proportionally which accounts for the presence of natural selection. Codon usage patterns of MARV were also found to be influenced by its hosts. This indicates that MARV have evolved codon usage patterns that are specific to both of its hosts. Moreover, selection pressure from R. aegyptiacus on the MARV RSCU patterns was found to be dominant compared with that from H. sapiens. Overall, mutation pressure was found to be the most important and dominant force that shapes codon usage patterns in MARV. To our knowledge, this is the first detailed codon usage analysis of MARV and extends our understanding of the mechanisms that contribute to codon usage and evolution of MARV.
ERIC Educational Resources Information Center
Pan, Yufeng; Zhou, Yanqiong; Guo, Chao; Gong, Haiyun; Gong, Zhefeng; Liu, Li
2009-01-01
The central complex is a prominent structure in the "Drosophila" brain. Visual learning experiments in the flight simulator, with flies with genetically altered brains, revealed that two groups of horizontal neurons in one of its substructures, the fan-shaped body, were required for "Drosophila" visual pattern memory. However,…
In situ ultrasound imaging of silk hydrogel degradation and neovascularization.
Leng, Xiaoping; Liu, Bin; Su, Bo; Liang, Min; Shi, Liangchen; Li, Shouqiang; Qu, Shaohui; Fu, Xin; Liu, Yue; Yao, Meng; Kaplan, David L; Wang, Yansong; Wang, Xiaoqin
2017-03-01
Ultrasound (US) is a useful technique to monitor morphological and functional changes of biomaterial implants without sacrificing the animal. Contrast-enhanced ultrasound (CEUS) along with two-dimensional (2D) US were used to characterize the biodegradation and neovascularization of silk protein (8 wt%) hydrogel implants in rats. Cylinder-shaped silk hydrogel plugs were implanted into the space between the hind limb thigh muscles in Wistar rats (n = 6). The increase of echogenicity in 2D US revealed tissue-ingrowth-accompanied gel degradation over 18 weeks. The shape and size of the implanted gels remained qualitatively unchanged until week 15, as confirmed by Bland and Altman analysis and visualization of retrieved samples. Using CEUS, neovascularization was monitored by the presence of microbubbles in the gel area, and the dynamic vascularization process was indicated by the contrast enhancement values, which showed a relatively low level (< 5 dB) during weeks 1-8 and significantly increased levels (around 20 dB at week 15 and > 35 dB at week 18), suggesting that major vascularization had occurred in the gel implants by this time point. Histological and scanning electron microscopic analysis of explants revealed time-dependent increases in the pore size of the gel matrix, the presence of endothelial and red blood cells and the number of blood vessels in the gel implants, indicating that degradation and vascularization did occur in silk gel implants during the time period. The present study demonstrates the use of US imaging for monitoring of in vivo degradation and vascularization of silk implants in a non-destructive way. Copyright © 2015 John Wiley & Sons, Ltd. Copyright © 2015 John Wiley & Sons, Ltd.
Yamanishi, Yasufumi; Yamaguchi, Satoshi; Imazato, Satoshi; Nakano, Tamaki; Yatani, Hirofumi
2014-09-01
Occlusal overloading causes peri-implant bone resorption. Previous studies examined stress distribution in alveolar bone around commercial implants using three-dimensional (3D) finite element analysis. However, the commercial implants contained some different designs. The purpose of this study is to reveal the effect of the target design on peri-implant bone stress and abutment micromovement. Six 3D implant models were created for different implant-abutment joints: 1) internal joint model (IM); 2) external joint model (EM); 3) straight abutment (SA) shape; 4) tapered abutment (TA) shapes; 5) platform switching (PS) in the IM; and 6) modified TA neck design (reverse conical neck [RN]). A static load of 100 N was applied to the basal ridge surface of the abutment at a 45-degree oblique angle to the long axis of the implant. Both stress distribution in peri-implant bone and abutment micromovement in the SA and TA models were analyzed. Compressive stress concentrated on labial cortical bone and tensile stress on the palatal side in the EM and on the labial side in the IM. There was no difference in maximum principal stress distribution for SA and TA models. Tensile stress concentration was not apparent on labial cortical bone in the PS model (versus IM). Maximum principal stress concentrated more on peri-implant bone in the RN than in the TA model. The TA model exhibited less abutment micromovement than the SA model. This study reveals the effects of the design of specific components on peri-implant bone stress and abutment displacement after implant-supported single restoration in the anterior maxilla.
Human action classification using procrustes shape theory
NASA Astrophysics Data System (ADS)
Cho, Wanhyun; Kim, Sangkyoon; Park, Soonyoung; Lee, Myungeun
2015-02-01
In this paper, we propose new method that can classify a human action using Procrustes shape theory. First, we extract a pre-shape configuration vector of landmarks from each frame of an image sequence representing an arbitrary human action, and then we have derived the Procrustes fit vector for pre-shape configuration vector. Second, we extract a set of pre-shape vectors from tanning sample stored at database, and we compute a Procrustes mean shape vector for these preshape vectors. Third, we extract a sequence of the pre-shape vectors from input video, and we project this sequence of pre-shape vectors on the tangent space with respect to the pole taking as a sequence of mean shape vectors corresponding with a target video. And we calculate the Procrustes distance between two sequences of the projection pre-shape vectors on the tangent space and the mean shape vectors. Finally, we classify the input video into the human action class with minimum Procrustes distance. We assess a performance of the proposed method using one public dataset, namely Weizmann human action dataset. Experimental results reveal that the proposed method performs very good on this dataset.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, Chong; Yang, Zhan-Ying, E-mail: zyyang@nwu.edu.cn; Zhao, Li-Chen, E-mail: zhaolichen3@163.com
We study vector localized waves on continuous wave background with higher-order effects in a two-mode optical fiber. The striking properties of transition, coexistence, and interaction of these localized waves arising from higher-order effects are revealed in combination with corresponding modulation instability (MI) characteristics. It shows that these vector localized wave properties have no analogues in the case without higher-order effects. Specifically, compared to the scalar case, an intriguing transition between bright–dark rogue waves and w-shaped–anti-w-shaped solitons, which occurs as a result of the attenuation of MI growth rate to vanishing in the zero-frequency perturbation region, is exhibited with the relativemore » background frequency. In particular, our results show that the w-shaped–anti-w-shaped solitons can coexist with breathers, coinciding with the MI analysis where the coexistence condition is a mixture of a modulation stability and MI region. It is interesting that their interaction is inelastic and describes a fusion process. In addition, we demonstrate an annihilation phenomenon for the interaction of two w-shaped solitons which is identified essentially as an inelastic collision in this system. -- Highlights: •Vector rogue wave properties induced by higher-order effects are studied. •A transition between vector rogue waves and solitons is obtained. •The link between the transition and modulation instability (MI) is demonstrated. •The coexistence of vector solitons and breathers coincides with the MI features. •An annihilation phenomenon for the vector two w-shaped solitons is presented.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Yaping; Jiang, Longtao, E-mail: longtaojiang@163.com; Chen, Guoqin
2016-03-15
In the present work, carbon fiber reinforced magnesium-gadolinium composite was fabricated by pressure infiltration method. The phase composition, micro-morphology, and crystal structure of reaction products and precipitates at the interface of the composite were investigated. Scanning electron microscopy and energy dispersive spectroscopy analysis revealed the segregation of gadolinium element at the interface between carbon fiber and matrix alloy. It was shown that block-shaped Gd4C5, GdC2 and nano-sized Gd2O3 were formed at the interface during the fabrication process due to the interfacial reaction. Furthermore, magnesium-gadolinium precipitates including needle-like Mg5Gd (or Mg24Gd5) and thin plate-shaped long period stacking-ordered phase, were also observedmore » at the interface and in the matrix near the interface. The interfacial microstructure and bonding mode were influenced by these interfacial products, which were beneficial for the improvement of the interfacial bonding strength. - Highlights: • Gadolinium element segregated on the surface of carbon fibers. • Block-shaped Gd{sub 4}C{sub 5} and GdC{sub 2} were formed at the interface via chemical reaction. • Gadolinium and oxygen reacted at the interface and formed nano-scaled Gd{sub 2}O{sub 3}. • The precipitates formed in the interface were identified to be Mg{sub 5}Gd (or Mg{sub 24}Gd{sub 5}) and plate-shaped long period stacking-ordered phase.« less
Gómez, Giovan F.; Márquez, Edna J.; Gutiérrez, Lina A.; Conn, Jan E.; Correa, Margarita M.
2015-01-01
Anopheles albimanus is a major malaria mosquito vector in Colombia. In the present study, wing variability (size and shape) in An. albimanus populations from Colombian Maracaibo and Chocó bio-geographical eco-regions and the relationship of these phenotypic traits with environmental factors were evaluated. Microsatellite and morphometric data facilitated a comparison of the genetic and phenetic structure of this species. Wing size was influenced by elevation and relative humidity, whereas wing shape was affected by these two variables and also by rainfall, latitude, temperature and eco-region. Significant differences in mean shape between populations and eco-regions were detected, but they were smaller than those at the intra-population level. Correct assignment based on wing shape was low at the population level (<58%) and only slightly higher (>70%) at the eco-regional level, supporting the low population structure inferred from microsatellite data. Wing size was similar among populations with no significant differences between eco-regions. Population relationships in the genetic tree did not agree with those from the morphometric data; however, both datasets consistently reinforced a panmictic population of An. albimanus. Overall, site-specific population differentiation is not strongly supported by wing traits or genotypic data. We hypothesize that the metapopulation structure of An. albimanus throughout these Colombian eco-regions is favoring plasticity in wing traits, a relevant characteristic of species living under variable environmental conditions and colonizing new habitats. PMID:24704285
Mdladla, K; Dzomba, E F; Muchadeyi, F C
2018-04-01
In Africa, extensively raised livestock populations in most smallholder farming communities are exposed to harsh and heterogeneous climatic conditions and disease pathogens that they adapt to in order to survive. Majority of these livestock species, including goats, are of non-descript and uncharacterized breeds and their response to natural selection presented by heterogeneous environments is still unresolved. This study investigated genetic diversity and its association with environmental and geographic conditions in 194 South African indigenous goats from different geographic locations genotyped on the Illumina goat SNP50K panel. Population structure analysis revealed a homogeneous genetic cluster of the Tankwa goats, restricted to the Northern Cape province. Overall, the Boer, Kalahari Red, and Savanna showed a wide geographic spread of shared genetic components, whereas the village ecotypes revealed a longitudinal distribution. The relative importance of environmental factors on genetic variation of goat populations was assessed using redundancy analysis (RDA). Climatic and geographic variables explained 22% of the total variation while climatic variables alone accounted for 17% of the diversity. Geographic variables solitarily explained 1% of the total variation. The first axis (Model I) of the RDA analysis revealed 329 outlier SNPs. Landscape genomic approaches of spatial analysis method (SAM) identified a total of 843 (1.75%) SNPs, while latent factor mixed models (LFMM) identified 714 (1.48%) SNPs significantly associated with environmental variables. Significant markers were within genes involved in biological functions potentially important for environmental adaptation. Overall, the study suggested environmental factors to have some effect in shaping the genetic variation of South African indigenous goat populations. Loci observed to be significant and under selection may be responsible for the adaption of the goat populations to local production systems.
Identifying asteroid families >2 Gyrs-old
NASA Astrophysics Data System (ADS)
Bolin, Bryce T.; Morbidelli, Alessandro; Delbo, Marco; Walsh, Kevin J.
2017-10-01
There are only a few known Main Belt (MB) asteroid families with ages >2 Gyr. The lack of ancient families may be due to a bias in current techniques used to identify families. Ancient asteroid family fragments disperse in their orbital elements (a,e,i), due to secular resonances and the Yarkovsky effect (YE) making them difficult to identify. We have developed a new technique that is insensitive to the resonant spreading of fragments in e and i by searching for V-shaped correlations between family members in a vs 1/Diameter space. Our V-shape technique is demonstrated on known families and used to discover a 4 Gyr-old family linking most dark asteroids in the inner MB previously not included in any known family. In addition, the 4 Gyr-old family reveals asteroids with D >35 km that are do not belong to any asteroid family implying that they originally accreted from the protoplanetary disk.The V-shape detection tool is also a powerful analysis tool by finding the boundary of an asteroid family and fitting for its shape. Following the proposed relationship between thermal inertia (TI) with D, we find that asteroids YE drift rate might have a more complex size dependence than previous thought, leading to a curved family boundary in a vs 1/D space. The V-shape tool is capable of detecting this on synthetic families and was deployed on >30 families located throughout the MB to find this effect and quantify the YE size-dependent drift rate. We find that there is no correlation between family age and V-shape curvature. In addition, the V-shape curvature decreases for asteroid families with larger a suggesting that the relationship between TI and D is weaker in the outer MB.By examining families <20 Myrs-old, we can use this tool to separate family shape that is due to the initial ejection velocity and that which is due to the YE drift rate. V-shapes which do not contain any spreading due to YE preserve their initial ejection velocity. We constrain the initial initial velocity of young families by measuring the curvature of their fragments' V-shape in a vs 1/D space. We find that the majority of <20 Myr-old asteroid families have initial velocity fields scaling with 1/D supporting impact experiments.
A deletion affecting an LRR-RLK gene co-segregates with the fruit flat shape trait in peach.
López-Girona, Elena; Zhang, Yu; Eduardo, Iban; Mora, José Ramón Hernández; Alexiou, Konstantinos G; Arús, Pere; Aranzana, María José
2017-07-27
In peach, the flat phenotype is caused by a partially dominant allele in heterozygosis (Ss), fruits from homozygous trees (SS) abort a few weeks after fruit setting. Previous research has identified a SSR marker (UDP98-412) highly associated with the trait, found suitable for marker assisted selection (MAS). Here we report a ∼10 Kb deletion affecting the gene PRUPE.6G281100, 400 Kb upstream of UDP98-412, co-segregating with the trait. This gene is a leucine-rich repeat receptor-like kinase (LRR-RLK) orthologous to the Brassinosteroid insensitive 1-associated receptor kinase 1 (BAK1) group. PCR markers suitable for MAS confirmed its strong association with the trait in a collection of 246 cultivars. They were used to evaluate the DNA from a round fruit derived from a somatic mutation of the flat variety 'UFO-4', revealing that the mutation affected the flat associated allele (S). Protein BLAST alignment identified significant hits with genes involved in different biological processes. Best protein hit occurred with AtRLP12, which may functionally complement CLAVATA2, a key regulator that controls the stem cell population size. RT-PCR analysis revealed the absence of transcription of the partially deleted allele. The data support PRUPE.6G281100 as a candidate gene for flat shape in peach.
2017-01-01
Abstract Background: Leaf shape among Passiflora species is spectacularly diverse. Underlying this diversity in leaf shape are profound changes in the patterning of the primary vasculature and laminar outgrowth. Each of these aspects of leaf morphology—vasculature and blade—provides different insights into leaf patterning. Results: Here, we morphometrically analyze >3300 leaves from 40 different Passiflora species collected sequentially across the vine. Each leaf is measured in two different ways: using 1) 15 homologous Procrustes-adjusted landmarks of the vasculature, sinuses, and lobes; and 2) Elliptical Fourier Descriptors (EFDs), which quantify the outline of the leaf. The ability of landmarks, EFDs, and both datasets together are compared to determine their relative ability to predict species and node position within the vine. Pairwise correlation of x and y landmark coordinates and EFD harmonic coefficients reveals close associations between traits and insights into the relationship between vasculature and blade patterning. Conclusions: Landmarks, more reflective of the vasculature, and EFDs, more reflective of the blade contour, describe both similar and distinct features of leaf morphology. Landmarks and EFDs vary in ability to predict species identity and node position in the vine and exhibit a correlational structure (both within landmark or EFD traits and between the two data types) revealing constraints between vascular and blade patterning underlying natural variation in leaf morphology among Passiflora species. PMID:28369351