van der Leij, Christiaan; Lavini, Cristina; van de Sande, Marleen G H; de Hair, Marjolein J H; Wijffels, Christophe; Maas, Mario
2015-12-01
To compare the between-session reproducibility of dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) combined with time-intensity curve (TIC)-shape analysis in arthritis patients, within one scanner and between two different scanners, and to compare this method with qualitative analysis and pharmacokinetic modeling (PKM). Fifteen knee joint arthritis patients were included and scanned twice on a closed-bore 1.5T scanner (n = 9, group 1), or on a closed-bore 1.5T and on an open-bore 1.0T scanner (n = 6, group 2). DCE-MRI data were postprocessed using in-house developed software ("Dynamo"). Disease activity was assessed. Disease activity was comparable between the two visits. In group 1 qualitative analysis showed the highest reproducibility with intraclass correlation coefficients (ICCs) between 0.78 and 0.98 and root mean square-coefficients of variation (RMS-CoV) of 8.0%-14.9%. TIC-shape analysis showed a slightly lower reproducibility with similar ICCs (0.78-0.97) but higher RMS-CoV (18.3%-42.9%). The PKM analysis showed the lowest reproducibility with ICCs between 0.39 and 0.64 (RMS-CoV 21.5%-51.9%). In group 2 TIC-shape analysis of the two most important TIC-shape types showed the highest reproducibility with ICCs of 0.78 and 0.71 (RMS-CoV 29.8% and 59.4%) and outperformed the reproducibility of the most important qualitative parameter (ICC 0.31, RMS-CoV 45.1%) and the within-scanner reproducibility of PKM analysis. TIC-shape analysis is a robust postprocessing method within one scanner, almost as reproducible as the qualitative analysis. Between scanners, the reproducibility of the most important TIC-shapes outperform that of the most important qualitative parameter and the within-scanner reproducibility of PKM analysis. © 2015 Wiley Periodicals, Inc.
Groupwise shape analysis of the hippocampus using spectral matching
NASA Astrophysics Data System (ADS)
Shakeri, Mahsa; Lombaert, Hervé; Lippé, Sarah; Kadoury, Samuel
2014-03-01
The hippocampus is a prominent subcortical feature of interest in many neuroscience studies. Its subtle morphological changes often predicate illnesses, including Alzheimer's, schizophrenia or epilepsy. The precise location of structural differences requires a reliable correspondence between shapes across a population. In this paper, we propose an automated method for groupwise hippocampal shape analysis based on a spectral decomposition of a group of shapes to solve the correspondence problem between sets of meshes. The framework generates diffeomorphic correspondence maps across a population, which enables us to create a mean shape. Morphological changes are then located between two groups of subjects. The performance of the proposed method was evaluated on a dataset of 42 hippocampus shapes and compared with a state-of-the-art structural shape analysis approach, using spherical harmonics. Difference maps between mean shapes of two test groups demonstrates that the two approaches showed results with insignificant differences, while Gaussian curvature measures calculated between matched vertices showed a better fit and reduced variability with spectral matching.
Multi-Scale Surface Descriptors
Cipriano, Gregory; Phillips, George N.; Gleicher, Michael
2010-01-01
Local shape descriptors compactly characterize regions of a surface, and have been applied to tasks in visualization, shape matching, and analysis. Classically, curvature has be used as a shape descriptor; however, this differential property characterizes only an infinitesimal neighborhood. In this paper, we provide shape descriptors for surface meshes designed to be multi-scale, that is, capable of characterizing regions of varying size. These descriptors capture statistically the shape of a neighborhood around a central point by fitting a quadratic surface. They therefore mimic differential curvature, are efficient to compute, and encode anisotropy. We show how simple variants of mesh operations can be used to compute the descriptors without resorting to expensive parameterizations, and additionally provide a statistical approximation for reduced computational cost. We show how these descriptors apply to a number of uses in visualization, analysis, and matching of surfaces, particularly to tasks in protein surface analysis. PMID:19834190
Key Parameters Evaluation for Hip Prosthesis with Finite Element Analysis
NASA Astrophysics Data System (ADS)
Guo, Hongqiang; Li, Dichen; Lian, Qin; Li, Xiang; Jin, Zhongmin
2007-09-01
Stem length and cross section are two key parameters that influence the stability and longevity of metallic hip prosthesis in the total hip arthroplasty (THA). In order to assess their influence to the stress and fatigue behavior of hip prosthesis, a series model of hip prosthesis with round-shaped or drum-shaped cross section, and with different stem lengths were created. These models were analyzed under both static and dynamic loading conditions with finite element analysis, and dynamic loading represents normal walking was used in the dynamic analysis. The stress on the metallic stem, cement, and adjacent bone were got, micromotion on the cement-metal interface were got too. Safety factors for fatigue life of the hip prothesis were calculated based on data obtained from dynamic analysis. Static analysis shows that drum-shaped cross section can decrease the displacement of the stem, that stress on drum-shaped stem focus on the corner of the femoral neck and the distal part of hip prosthesis, whereas the stress on the round-shaped stem distributes evenly over most part of the stem, and maximum stress on stem prosthesis fluctuates with stem length bottoming out at stem length range from 80 mm to 110 mm, that drum-shaped stems with drum height 8 mm generate more stress at the distal part of stem than drum-shaped stems with drum height 10 mm and round stems do. Dynamic and fatigue analysis shows that drum-shaped stem with drum height 10 mm and stem length 90 mm has the greatest safety factor therefore long fatigue life.
Reconstruction method for running shape of rotor blade considering nonlinear stiffness and loads
NASA Astrophysics Data System (ADS)
Wang, Yongliang; Kang, Da; Zhong, Jingjun
2017-10-01
The aerodynamic and centrifugal loads acting on the rotating blade make the blade configuration deformed comparing to its shape at rest. Accurate prediction of the running blade configuration plays a significant role in examining and analyzing turbomachinery performance. Considering nonlinear stiffness and loads, a reconstruction method is presented to address transformation of a rotating blade from cold to hot state. When calculating blade deformations, the blade stiffness and load conditions are updated simultaneously as blade shape varies. The reconstruction procedure is iterated till a converged hot blade shape is obtained. This method has been employed to determine the operating blade shapes of a test rotor blade and the Stage 37 rotor blade. The calculated results are compared with the experiments. The results show that the proposed method used for blade operating shape prediction is effective. The studies also show that this method can improve precision of finite element analysis and aerodynamic performance analysis.
Hippocampus shape analysis and late-life depression.
Zhao, Zheen; Taylor, Warren D; Styner, Martin; Steffens, David C; Krishnan, K Ranga R; MacFall, James R
2008-03-19
Major depression in the elderly is associated with brain structural changes and vascular lesions. Changes in the subcortical regions of the limbic system have also been noted. Studies examining hippocampus volumetric differences in depression have shown variable results, possibly due to any volume differences being secondary to local shape changes rather than differences in the overall volume. Shape analysis offers the potential to detect such changes. The present study applied spherical harmonic (SPHARM) shape analysis to the left and right hippocampi of 61 elderly subjects with major depression and 43 non-depressed elderly subjects. Statistical models controlling for age, sex, and total cerebral volume showed a significant reduction in depressed compared with control subjects in the left hippocampus (F(1,103) = 5.26; p = 0.0240) but not right hippocampus volume (F(1,103) = 0.41; p = 0.5213). Shape analysis showed significant differences in the mid-body of the left (but not the right) hippocampus between depressed and controls. When the depressed group was dichotomized into those whose depression was remitted at time of imaging and those who were unremitted, the shape comparison showed remitted subjects to be indistinguishable from controls (both sides) while the unremitted subjects differed in the midbody and the lateral side near the head. Hippocampal volume showed no difference between controls and remitted subjects but nonremitted subjects had significantly smaller left hippocampal volumes with no significant group differences in the right hippocampus. These findings may provide support to other reports of neurogenic effects of antidepressants and their relation to successful treatment for depressive symptoms.
A morphospace for reef fishes: elongation is the dominant axis of body shape evolution.
Claverie, Thomas; Wainwright, Peter C
2014-01-01
Tropical reef fishes are widely regarded as being perhaps the most morphologically diverse vertebrate assemblage on earth, yet much remains to be discovered about the scope and patterns of this diversity. We created a morphospace of 2,939 species spanning 56 families of tropical Indo-Pacific reef fishes and established the primary axes of body shape variation, the phylogenetic consistency of these patterns, and whether dominant patterns of shape change can be accomplished by diverse underlying changes. Principal component analysis showed a major axis of shape variation that contrasts deep-bodied species with slender, elongate forms. Furthermore, using custom methods to compare the elongation vector (axis that maximizes elongation deformation) and the main vector of shape variation (first principal component) for each family in the morphospace, we showed that two thirds of the families diversify along an axis of body elongation. Finally, a comparative analysis using a principal coordinate analysis based on the angles among first principal component vectors of each family shape showed that families accomplish changes in elongation with a wide range of underlying modifications. Some groups such as Pomacentridae and Lethrinidae undergo decreases in body depth with proportional increases in all body regions, while other families show disproportionate changes in the length of the head (e.g., Labridae), the trunk or caudal region in all combinations (e.g., Pempheridae and Pinguipedidae). In conclusion, we found that evolutionary changes in body shape along an axis of elongation dominates diversification in reef fishes. Changes in shape on this axis are thought to have immediate implications for swimming performance, defense from gape limited predators, suction feeding performance and access to some highly specialized habitats. The morphological modifications that underlie changes in elongation are highly diverse, suggesting a role for a range of developmental processes and functional consequences.
Wang, Lei; Beg, Faisal; Ratnanather, Tilak; Ceritoglu, Can; Younes, Laurent; Morris, John C.; Csernansky, John G.; Miller, Michael I.
2010-01-01
In large-deformation diffeomorphic metric mapping (LDDMM), the diffeomorphic matching of images are modeled as evolution in time, or a flow, of an associated smooth velocity vector field v controlling the evolution. The initial momentum parameterizes the whole geodesic and encodes the shape and form of the target image. Thus, methods such as principal component analysis (PCA) of the initial momentum leads to analysis of anatomical shape and form in target images without being restricted to small-deformation assumption in the analysis of linear displacements. We apply this approach to a study of dementia of the Alzheimer type (DAT). The left hippocampus in the DAT group shows significant shape abnormality while the right hippocampus shows similar pattern of abnormality. Further, PCA of the initial momentum leads to correct classification of 12 out of 18 DAT subjects and 22 out of 26 control subjects. PMID:17427733
Fluid-structure interaction analysis of deformation of sail of 30-foot yacht
NASA Astrophysics Data System (ADS)
Bak, Sera; Yoo, Jaehoon; Song, Chang Yong
2013-06-01
Most yacht sails are made of thin fabric, and they have a cambered shape to generate lift force; however, their shape can be easily deformed by wind pressure. Deformation of the sail shape changes the flow characteristics over the sail, which in turn further deforms the sail shape. Therefore, fluid-structure interaction (FSI) analysis is applied for the precise evaluation or optimization of the sail design. In this study, fluid flow analyses are performed for the main sail of a 30-foot yacht, and the results are applied to loading conditions for structural analyses. By applying the supporting forces from the rig, such as the mast and boom-end outhaul, as boundary conditions for structural analysis, the deformed sail shape is identified. Both the flow analyses and the structural analyses are iteratively carried out for the deformed sail shape. A comparison of the flow characteristics and surface pressures over the deformed sail shape with those over the initial shape shows that a considerable difference exists between the two and that FSI analysis is suitable for application to sail design.
Bayesian Covariate Selection in Mixed-Effects Models For Longitudinal Shape Analysis
Muralidharan, Prasanna; Fishbaugh, James; Kim, Eun Young; Johnson, Hans J.; Paulsen, Jane S.; Gerig, Guido; Fletcher, P. Thomas
2016-01-01
The goal of longitudinal shape analysis is to understand how anatomical shape changes over time, in response to biological processes, including growth, aging, or disease. In many imaging studies, it is also critical to understand how these shape changes are affected by other factors, such as sex, disease diagnosis, IQ, etc. Current approaches to longitudinal shape analysis have focused on modeling age-related shape changes, but have not included the ability to handle covariates. In this paper, we present a novel Bayesian mixed-effects shape model that incorporates simultaneous relationships between longitudinal shape data and multiple predictors or covariates to the model. Moreover, we place an Automatic Relevance Determination (ARD) prior on the parameters, that lets us automatically select which covariates are most relevant to the model based on observed data. We evaluate our proposed model and inference procedure on a longitudinal study of Huntington's disease from PREDICT-HD. We first show the utility of the ARD prior for model selection in a univariate modeling of striatal volume, and next we apply the full high-dimensional longitudinal shape model to putamen shapes. PMID:28090246
Reiss, Katie L; Bonnan, Matthew F
2010-07-01
The shark heterocercal caudal fin and its contribution to locomotion are of interest to biologists and paleontologists. Current hydrodynamic data show that the stiff dorsal lobe leads the ventral lobe, both lobes of the tail are synchronized during propulsion, and tail shape reflects its overall locomotor function. Given the difficulties surrounding the analysis of shark caudal fins in vivo, little is known about changes in tail shape related to ontogeny and sex in sharks. A quantifiable analysis of caudal fin shape may provide an acceptable proxy for inferring gross functional morphology where direct testing is difficult or impossible. We examined ontogenetic and sex-related shape changes in the caudal fins of 115 Squalus acanthias museum specimens, to test the hypothesis that significant shape changes in the caudal fin shape occur with increasing size and between the sexes. Using linear and geometric morphometrics, we examined caudal shape changes within the context of current hydrodynamic models. We found no statistically significant linear or shape difference between sexes, and near-isometric scaling trends for caudal dimensions. These results suggest that lift and thrust increase linearly with size and caudal span. Thin-plate splines results showed a significant allometric shape change associated with size and caudal span: the dorsal lobe elongates and narrows, whereas the ventral lobe broadens and expands ventrally. Our data suggest a combination of caudal fin morphology with other body morphology aspects, would refine, and better elucidate the hydrodynamic factors (if any) that underlie the significant shape changes we report here for S. acanthias.
Multiscale 3-D shape representation and segmentation using spherical wavelets.
Nain, Delphine; Haker, Steven; Bobick, Aaron; Tannenbaum, Allen
2007-04-01
This paper presents a novel multiscale shape representation and segmentation algorithm based on the spherical wavelet transform. This work is motivated by the need to compactly and accurately encode variations at multiple scales in the shape representation in order to drive the segmentation and shape analysis of deep brain structures, such as the caudate nucleus or the hippocampus. Our proposed shape representation can be optimized to compactly encode shape variations in a population at the needed scale and spatial locations, enabling the construction of more descriptive, nonglobal, nonuniform shape probability priors to be included in the segmentation and shape analysis framework. In particular, this representation addresses the shortcomings of techniques that learn a global shape prior at a single scale of analysis and cannot represent fine, local variations in a population of shapes in the presence of a limited dataset. Specifically, our technique defines a multiscale parametric model of surfaces belonging to the same population using a compact set of spherical wavelets targeted to that population. We further refine the shape representation by separating into groups wavelet coefficients that describe independent global and/or local biological variations in the population, using spectral graph partitioning. We then learn a prior probability distribution induced over each group to explicitly encode these variations at different scales and spatial locations. Based on this representation, we derive a parametric active surface evolution using the multiscale prior coefficients as parameters for our optimization procedure to naturally include the prior for segmentation. Additionally, the optimization method can be applied in a coarse-to-fine manner. We apply our algorithm to two different brain structures, the caudate nucleus and the hippocampus, of interest in the study of schizophrenia. We show: 1) a reconstruction task of a test set to validate the expressiveness of our multiscale prior and 2) a segmentation task. In the reconstruction task, our results show that for a given training set size, our algorithm significantly improves the approximation of shapes in a testing set over the Point Distribution Model, which tends to oversmooth data. In the segmentation task, our validation shows our algorithm is computationally efficient and outperforms the Active Shape Model algorithm, by capturing finer shape details.
Multiscale 3-D Shape Representation and Segmentation Using Spherical Wavelets
Nain, Delphine; Haker, Steven; Bobick, Aaron
2013-01-01
This paper presents a novel multiscale shape representation and segmentation algorithm based on the spherical wavelet transform. This work is motivated by the need to compactly and accurately encode variations at multiple scales in the shape representation in order to drive the segmentation and shape analysis of deep brain structures, such as the caudate nucleus or the hippocampus. Our proposed shape representation can be optimized to compactly encode shape variations in a population at the needed scale and spatial locations, enabling the construction of more descriptive, nonglobal, nonuniform shape probability priors to be included in the segmentation and shape analysis framework. In particular, this representation addresses the shortcomings of techniques that learn a global shape prior at a single scale of analysis and cannot represent fine, local variations in a population of shapes in the presence of a limited dataset. Specifically, our technique defines a multiscale parametric model of surfaces belonging to the same population using a compact set of spherical wavelets targeted to that population. We further refine the shape representation by separating into groups wavelet coefficients that describe independent global and/or local biological variations in the population, using spectral graph partitioning. We then learn a prior probability distribution induced over each group to explicitly encode these variations at different scales and spatial locations. Based on this representation, we derive a parametric active surface evolution using the multiscale prior coefficients as parameters for our optimization procedure to naturally include the prior for segmentation. Additionally, the optimization method can be applied in a coarse-to-fine manner. We apply our algorithm to two different brain structures, the caudate nucleus and the hippocampus, of interest in the study of schizophrenia. We show: 1) a reconstruction task of a test set to validate the expressiveness of our multiscale prior and 2) a segmentation task. In the reconstruction task, our results show that for a given training set size, our algorithm significantly improves the approximation of shapes in a testing set over the Point Distribution Model, which tends to oversmooth data. In the segmentation task, our validation shows our algorithm is computationally efficient and outperforms the Active Shape Model algorithm, by capturing finer shape details. PMID:17427745
Quantitative Understanding of SHAPE Mechanism from RNA Structure and Dynamics Analysis.
Hurst, Travis; Xu, Xiaojun; Zhao, Peinan; Chen, Shi-Jie
2018-05-10
The selective 2'-hydroxyl acylation analyzed by primer extension (SHAPE) method probes RNA local structural and dynamic information at single nucleotide resolution. To gain quantitative insights into the relationship between nucleotide flexibility, RNA 3D structure, and SHAPE reactivity, we develop a 3D Structure-SHAPE Relationship model (3DSSR) to rebuild SHAPE profiles from 3D structures. The model starts from RNA structures and combines nucleotide interaction strength and conformational propensity, ligand (SHAPE reagent) accessibility, and base-pairing pattern through a composite function to quantify the correlation between SHAPE reactivity and nucleotide conformational stability. The 3DSSR model shows the relationship between SHAPE reactivity and RNA structure and energetics. Comparisons between the 3DSSR-predicted SHAPE profile and the experimental SHAPE data show correlation, suggesting that the extracted analytical function may have captured the key factors that determine the SHAPE reactivity profile. Furthermore, the theory offers an effective method to sieve RNA 3D models and exclude models that are incompatible with experimental SHAPE data.
A Morphospace for Reef Fishes: Elongation Is the Dominant Axis of Body Shape Evolution
Claverie, Thomas; Wainwright, Peter C.
2014-01-01
Tropical reef fishes are widely regarded as being perhaps the most morphologically diverse vertebrate assemblage on earth, yet much remains to be discovered about the scope and patterns of this diversity. We created a morphospace of 2,939 species spanning 56 families of tropical Indo-Pacific reef fishes and established the primary axes of body shape variation, the phylogenetic consistency of these patterns, and whether dominant patterns of shape change can be accomplished by diverse underlying changes. Principal component analysis showed a major axis of shape variation that contrasts deep-bodied species with slender, elongate forms. Furthermore, using custom methods to compare the elongation vector (axis that maximizes elongation deformation) and the main vector of shape variation (first principal component) for each family in the morphospace, we showed that two thirds of the families diversify along an axis of body elongation. Finally, a comparative analysis using a principal coordinate analysis based on the angles among first principal component vectors of each family shape showed that families accomplish changes in elongation with a wide range of underlying modifications. Some groups such as Pomacentridae and Lethrinidae undergo decreases in body depth with proportional increases in all body regions, while other families show disproportionate changes in the length of the head (e.g., Labridae), the trunk or caudal region in all combinations (e.g., Pempheridae and Pinguipedidae). In conclusion, we found that evolutionary changes in body shape along an axis of elongation dominates diversification in reef fishes. Changes in shape on this axis are thought to have immediate implications for swimming performance, defense from gape limited predators, suction feeding performance and access to some highly specialized habitats. The morphological modifications that underlie changes in elongation are highly diverse, suggesting a role for a range of developmental processes and functional consequences. PMID:25409027
Preservice Teachers' Identity Development during the Teaching Internship
ERIC Educational Resources Information Center
Nghia, Tran Le Huu; Tai, Huynh Ngoc
2017-01-01
This article reports the analysis of two preservice teachers' narratives to highlight the process of teacher identity development during their teaching internship. The analysis showed that their teacher identities had been shaped before they entered the teacher education program where it continued to be shaped by educational experts. In that way,…
Using fractal analysis of thermal signatures for thyroid disease evaluation
NASA Astrophysics Data System (ADS)
Gavriloaia, Gheorghe; Sofron, Emil; Gavriloaia, Mariuca-Roxana; Ghemigean, Adina-Mariana
2010-11-01
The skin is the largest organ of the body and it protects against heat, light, injury and infection. Skin temperature is an important parameter for diagnosing diseases. Thermal analysis is non-invasive, painless, and relatively inexpensive, showing a great potential research. Since the thyroid regulates metabolic rate it is intimately connected to body temperature, more than, any modification of its function generates a specific thermal image on the neck skin. The shapes of thermal signatures are often irregular in size and shape. Euclidean geometry is not able to evaluate their shape for different thyroid diseases, and fractal geometry is used in this paper. Different thyroid diseases generate different shapes, and their complexity are evaluated by specific mathematical approaches, fractal analysis, in order to the evaluate selfsimilarity and lacunarity. Two kinds of thyroid diseases, hyperthyroidism and papillary cancer are analyzed in this paper. The results are encouraging and show the ability to continue research for thermal signature to be used in early diagnosis of thyroid diseases.
Wadhwani, Shefali; Singh, Mahesh Pratap; Agarwal, Manish; Somasundaram, Pavithra; Rawtiya, Manjusha; Wadhwani, P K
2017-01-01
To evaluate the prevalence of C-shaped root canals in mandibular molars using cone beam computed tomography (CBCT) in a subpopulation of Central India. CBCT scans of patients from diagnostic imaging center were selected in accordance with the criteria given by Fan et al . (2004) for C-shaped canals. A total of 238 CBCT scans fulfilled the inclusion criteria and thereby divided into two groups: Group 1: Images showing C-shaped canal configuration in mandibular second molars. Group 2: Images showing C-shaped canal configuration in mandibular third molars. The frequency and distribution of canals and their configuration along with the position of lingual/buccal grooves in the images were evaluated, and the data was analyzed. CBCT evaluation showed that 9.7% of second molars and 8% of third molars had C-shaped canals. A prominent buccal groove was seen in these teeth. The data showed a significant difference ( P = 0.038) for the presence of such anatomy on the right side for mandibular third molars. The study showed a significant prevalence of C-shaped canal configuration in the subpopulation studied.
Wadhwani, Shefali; Singh, Mahesh Pratap; Agarwal, Manish; Somasundaram, Pavithra; Rawtiya, Manjusha; Wadhwani, P. K.
2017-01-01
Introduction: To evaluate the prevalence of C-shaped root canals in mandibular molars using cone beam computed tomography (CBCT) in a subpopulation of Central India. Materials and Methods: CBCT scans of patients from diagnostic imaging center were selected in accordance with the criteria given by Fan et al. (2004) for C-shaped canals. A total of 238 CBCT scans fulfilled the inclusion criteria and thereby divided into two groups: Group 1: Images showing C-shaped canal configuration in mandibular second molars. Group 2: Images showing C-shaped canal configuration in mandibular third molars. The frequency and distribution of canals and their configuration along with the position of lingual/buccal grooves in the images were evaluated, and the data was analyzed. Results: CBCT evaluation showed that 9.7% of second molars and 8% of third molars had C-shaped canals. A prominent buccal groove was seen in these teeth. The data showed a significant difference (P = 0.038) for the presence of such anatomy on the right side for mandibular third molars. Conclusion: The study showed a significant prevalence of C-shaped canal configuration in the subpopulation studied. PMID:29386785
Lateral ventricle morphology analysis via mean latitude axis.
Paniagua, Beatriz; Lyall, Amanda; Berger, Jean-Baptiste; Vachet, Clement; Hamer, Robert M; Woolson, Sandra; Lin, Weili; Gilmore, John; Styner, Martin
2013-03-29
Statistical shape analysis has emerged as an insightful method for evaluating brain structures in neuroimaging studies, however most shape frameworks are surface based and thus directly depend on the quality of surface alignment. In contrast, medial descriptions employ thickness information as alignment-independent shape metric. We propose a joint framework that computes local medial thickness information via a mean latitude axis from the well-known spherical harmonic (SPHARM-PDM) shape framework. In this work, we applied SPHARM derived medial representations to the morphological analysis of lateral ventricles in neonates. Mild ventriculomegaly (MVM) subjects are compared to healthy controls to highlight the potential of the methodology. Lateral ventricles were obtained from MRI scans of neonates (9-144 days of age) from 30 MVM subjects as well as age- and sex-matched normal controls (60 total). SPHARM-PDM shape analysis was extended to compute a mean latitude axis directly from the spherical parameterization. Local thickness and area was straightforwardly determined. MVM and healthy controls were compared using local MANOVA and compared with the traditional SPHARM-PDM analysis. Both surface and mean latitude axis findings differentiate successfully MVM and healthy lateral ventricle morphology. Lateral ventricles in MVM neonates show enlarged shapes in tail and head. Mean latitude axis is able to find significant differences all along the lateral ventricle shape, demonstrating that local thickness analysis provides significant insight over traditional SPHARM-PDM. This study is the first to precisely quantify 3D lateral ventricle morphology in MVM neonates using shape analysis.
Tooth shape optimization of brushless permanent magnet motors for reducing torque ripples
NASA Astrophysics Data System (ADS)
Hsu, Liang-Yi; Tsai, Mi-Ching
2004-11-01
This paper presents a tooth shape optimization method based on a generic algorithm to reduce the torque ripple of brushless permanent magnet motors under two different magnetization directions. The analysis of this design method mainly focuses on magnetic saturation and cogging torque and the computation of the optimization process is based on an equivalent magnetic network circuit. The simulation results, obtained from the finite element analysis, are used to confirm the accuracy and performance. Finite element analysis results from different tooth shapes are compared to show the effectiveness of the proposed method.
Dalton, Hillary A; Wood, Benjamin J; Widowski, Tina M; Guerin, Michele T; Torrey, Stephanie
2017-01-01
The objective of this study was to assess beak shape variation in domestic turkeys (Meleagris gallopavo) and determine the effects of age, sex, and beak size on beak shape variation using geometric morphometrics. Dorsal and right lateral images were taken of 2442 turkeys at 6 and 18.5 weeks of age. Landmarks were digitized in tpsDig in three analyses of the dorsal upper mandible, lateral upper mandible, and lateral lower mandible shape of each turkey at both ages. The coordinate data were then subjected to a principal components analysis (PCA), multivariate regression, and a canonical variates analysis (CVA) with a Procrustes ANOVA in MorphoJ. For the dorsal images, three principal components (PCs) showed beak shape variation ranged from long, narrow, and pointed to short, wide, and blunt upper mandibles at both ages (6 weeks: 95.36%, 18.5 weeks: 92.21%). Three PCs showed the lateral upper mandible shape variation ranged from long, wide beaks with long, curved beak tips to short, narrow beaks with short, pointed beak tips at both ages (6 weeks: 94.91%, 18.5 weeks: 94.33%). Three PCs also explained 97.80% (6 weeks) and 97.11% (18.5 weeks) of the lateral lower mandible shape variation ranging from wide and round to narrow and thin lower mandibles with superior/inferior beak tip shifts. Beak size accounted for varying proportions of the beak shape variation (0.96-54.76%; P < 0.0001) in the three analyses of each age group. For all the analyses, the CVA showed sexual dimorphism in beak shape (P < 0.0001) with female upper mandibles appearing wider and blunter dorsally with long, curved beak tips laterally. Whereas male turkey upper mandibles had a narrow, pointed dorsal appearance and short, pointed beak tips laterally. Future applications of beak shape variability could have a genetic and welfare value by incorporating beak shape variation to select for specific turkey beak phenotypes as an alternative to beak treatment.
Widowski, Tina M.; Guerin, Michele T.
2017-01-01
The objective of this study was to assess beak shape variation in domestic turkeys (Meleagris gallopavo) and determine the effects of age, sex, and beak size on beak shape variation using geometric morphometrics. Dorsal and right lateral images were taken of 2442 turkeys at 6 and 18.5 weeks of age. Landmarks were digitized in tpsDig in three analyses of the dorsal upper mandible, lateral upper mandible, and lateral lower mandible shape of each turkey at both ages. The coordinate data were then subjected to a principal components analysis (PCA), multivariate regression, and a canonical variates analysis (CVA) with a Procrustes ANOVA in MorphoJ. For the dorsal images, three principal components (PCs) showed beak shape variation ranged from long, narrow, and pointed to short, wide, and blunt upper mandibles at both ages (6 weeks: 95.36%, 18.5 weeks: 92.21%). Three PCs showed the lateral upper mandible shape variation ranged from long, wide beaks with long, curved beak tips to short, narrow beaks with short, pointed beak tips at both ages (6 weeks: 94.91%, 18.5 weeks: 94.33%). Three PCs also explained 97.80% (6 weeks) and 97.11% (18.5 weeks) of the lateral lower mandible shape variation ranging from wide and round to narrow and thin lower mandibles with superior/inferior beak tip shifts. Beak size accounted for varying proportions of the beak shape variation (0.96–54.76%; P < 0.0001) in the three analyses of each age group. For all the analyses, the CVA showed sexual dimorphism in beak shape (P < 0.0001) with female upper mandibles appearing wider and blunter dorsally with long, curved beak tips laterally. Whereas male turkey upper mandibles had a narrow, pointed dorsal appearance and short, pointed beak tips laterally. Future applications of beak shape variability could have a genetic and welfare value by incorporating beak shape variation to select for specific turkey beak phenotypes as an alternative to beak treatment. PMID:28934330
Multiscale 3D Shape Analysis using Spherical Wavelets
Nain, Delphine; Haker, Steven; Bobick, Aaron; Tannenbaum, Allen
2013-01-01
Shape priors attempt to represent biological variations within a population. When variations are global, Principal Component Analysis (PCA) can be used to learn major modes of variation, even from a limited training set. However, when significant local variations exist, PCA typically cannot represent such variations from a small training set. To address this issue, we present a novel algorithm that learns shape variations from data at multiple scales and locations using spherical wavelets and spectral graph partitioning. Our results show that when the training set is small, our algorithm significantly improves the approximation of shapes in a testing set over PCA, which tends to oversmooth data. PMID:16685992
Multiscale 3D shape analysis using spherical wavelets.
Nain, Delphine; Haker, Steven; Bobick, Aaron; Tannenbaum, Allen R
2005-01-01
Shape priors attempt to represent biological variations within a population. When variations are global, Principal Component Analysis (PCA) can be used to learn major modes of variation, even from a limited training set. However, when significant local variations exist, PCA typically cannot represent such variations from a small training set. To address this issue, we present a novel algorithm that learns shape variations from data at multiple scales and locations using spherical wavelets and spectral graph partitioning. Our results show that when the training set is small, our algorithm significantly improves the approximation of shapes in a testing set over PCA, which tends to oversmooth data.
Static analysis of C-shape SMA middle ear prosthesis
NASA Astrophysics Data System (ADS)
Latalski, Jarosław; Rusinek, Rafał
2017-08-01
Shape memory alloys are a family of metals with the ability to change specimen shape depending on their temperature. This unique property is useful in many areas of mechanical and biomechanical engineering. A new half-ring middle ear prosthesis design made of a shape memory alloy, that is undergoing initial clinical tests, is investigated in this research paper. The analytical model of the studied structure made of nonlinear constitutive material is solved to identify the temperature-dependent stiffness characteristics of the proposed design on the basis of the Crotti-Engesser theorem. The final integral expression for the element deflection is highly complex, thus the solution has to be computed numerically. The final results show the proposed shape memory C-shape element to behave linearly in the analysed range of loadings and temperatures. This is an important observation that significantly simplifies the analysis of the prototype structure and opens wide perspectives for further possible applications of shape memory alloys.
Ishii, Kotaro; Iwata, Hiroyoshi; Oshika, Tetsuro
2011-11-04
To evaluate changes in eyeball shape in emmetropization and myopic changes using magnetic resonance imaging (MRI) and elliptic Fourier descriptors (EFDs). The subjects were 105 patients (age range, 1 month-19 years) who underwent head MRI. The refractive error was determined in 30 patients, and eyeball shape was expressed numerically by principal components analysis of standardized EFDs. In the first principal component (PC1; the oblate-to-prolate change), the proportion of variance/total variance in the development of the eyeball shape was 76%. In all subjects, PC1 showed a significant correlation with age (Pearson r = -0.314; P = 0.001), axial length (AL, r = -0.378; P < 0.001), width (r = -0.200, P = 0.0401), oblateness (r = 0.657, P < 0.001), and spherical equivalent refraction (SER, r = 0.438; P = 0.0146; n = 30). In the group containing patients aged 1 month to 6 years (n = 49), PC1 showed a significant correlation with age (r = -0.366; P = 0.0093). In the group containing patients aged 7 to 19 years (n = 56), PC1 showed a significant correlation with SER (r = 0.640; P = 0.0063). The main deformation pattern in the development of the eyeball shape from oblate to prolate was clarified by quantitative analysis based on EFDs. The results showed clear differences between age groups with regard to changes in the shape of the eyeball, the correlation between these changes, and refractive status changes.
Simple Parametric Model for Airfoil Shape Description
NASA Astrophysics Data System (ADS)
Ziemkiewicz, David
2017-12-01
We show a simple, analytic equation describing a class of two-dimensional shapes well suited for representation of aircraft airfoil profiles. Our goal was to create a description characterized by a small number of parameters with easily understandable meaning, providing a tool to alter the shape with optimization procedures as well as manual tweaks by the designer. The generated shapes are well suited for numerical analysis with 2D flow solving software such as XFOIL.
Dunn-Walters, Deborah K.; Belelovsky, Alex; Edelman, Hanna; Banerjee, Monica; Mehr, Ramit
2002-01-01
We have developed a rigorous graph-theoretical algorithm for quantifying the shape properties of mutational lineage trees. We show that information about the dynamics of hypermutation and antigen-driven clonal selection during the humoral immune response is contained in the shape of mutational lineage trees deduced from the responding clones. Age and tissue related differences in the selection process can be studied using this method. Thus, tree shape analysis can be used as a means of elucidating humoral immune response dynamics in various situations. PMID:15144020
Grain shape of basaltic ash populations: implications for fragmentation
NASA Astrophysics Data System (ADS)
Schmith, Johanne; Höskuldsson, Ármann; Holm, Paul Martin
2017-02-01
Here, we introduce a new quantitative method to produce grain shape data of bulk samples of volcanic ash, and we correlate the bulk average grain shape with magma fragmentation mechanisms. The method is based on automatic shape analysis of 2D projection ash grains in the size range 125-63 μm. Loose bulk samples from the deposits of six different basaltic eruptions were analyzed, and 20,000 shape measurements for each were obtained within 45 min using the Particle Insight™ dynamic shape analyzer (PIdsa). We used principal component analysis on a reference grain dataset to show that circularity, rectangularity, form factor, and elongation best discriminate between the grain shapes when combined. The grain population data show that the studied eruptive environments produce nearly the same range of grain shapes, although to different extents. Our new shape index (the regularity index (RI)) places an eruption on a spectrum between phreatomagmatic and dry magmatic fragmentation. Almost vesicle-free Surtseyan ash has an RI of 0.207 ± 0.002 (2σ), whereas vesiculated Hawaiian ash has an RI of 0.134 ± 0.001 (2σ). These two samples define the end-member RI, while two subglacial, one lacustrine, and another submarine ash sample show intermediate RIs of 0.168 ± 0.002 (2σ), 0.175 ± 0.002 (2σ), 0.187 ± 0.002 (2σ), and 0.191 ± 0.002 (2σ), respectively. The systematic change in RI between wet and dry eruptions suggests that the RI can be used to assess the relative roles of magmatic vs. phreatomagmatic fragmentation. We infer that both magmatic and phreatomagmatic fragmentation processes played a role in the subglacial eruptions.
Lee, Ga-Young; Kim, Jeonghun; Kim, Ju Han; Kim, Kiwoong; Seong, Joon-Kyung
2014-01-01
Mobile healthcare applications are becoming a growing trend. Also, the prevalence of dementia in modern society is showing a steady growing trend. Among degenerative brain diseases that cause dementia, Alzheimer disease (AD) is the most common. The purpose of this study was to identify AD patients using magnetic resonance imaging in the mobile environment. We propose an incremental classification for mobile healthcare systems. Our classification method is based on incremental learning for AD diagnosis and AD prediction using the cortical thickness data and hippocampus shape. We constructed a classifier based on principal component analysis and linear discriminant analysis. We performed initial learning and mobile subject classification. Initial learning is the group learning part in our server. Our smartphone agent implements the mobile classification and shows various results. With use of cortical thickness data analysis alone, the discrimination accuracy was 87.33% (sensitivity 96.49% and specificity 64.33%). When cortical thickness data and hippocampal shape were analyzed together, the achieved accuracy was 87.52% (sensitivity 96.79% and specificity 63.24%). In this paper, we presented a classification method based on online learning for AD diagnosis by employing both cortical thickness data and hippocampal shape analysis data. Our method was implemented on smartphone devices and discriminated AD patients for normal group.
Global spectral graph wavelet signature for surface analysis of carpal bones
NASA Astrophysics Data System (ADS)
Masoumi, Majid; Rezaei, Mahsa; Ben Hamza, A.
2018-02-01
Quantitative shape comparison is a fundamental problem in computer vision, geometry processing and medical imaging. In this paper, we present a spectral graph wavelet approach for shape analysis of carpal bones of the human wrist. We employ spectral graph wavelets to represent the cortical surface of a carpal bone via the spectral geometric analysis of the Laplace-Beltrami operator in the discrete domain. We propose global spectral graph wavelet (GSGW) descriptor that is isometric invariant, efficient to compute, and combines the advantages of both low-pass and band-pass filters. We perform experiments on shapes of the carpal bones of ten women and ten men from a publicly-available database of wrist bones. Using one-way multivariate analysis of variance (MANOVA) and permutation testing, we show through extensive experiments that the proposed GSGW framework gives a much better performance compared to the global point signature embedding approach for comparing shapes of the carpal bones across populations.
Global spectral graph wavelet signature for surface analysis of carpal bones.
Masoumi, Majid; Rezaei, Mahsa; Ben Hamza, A
2018-02-05
Quantitative shape comparison is a fundamental problem in computer vision, geometry processing and medical imaging. In this paper, we present a spectral graph wavelet approach for shape analysis of carpal bones of the human wrist. We employ spectral graph wavelets to represent the cortical surface of a carpal bone via the spectral geometric analysis of the Laplace-Beltrami operator in the discrete domain. We propose global spectral graph wavelet (GSGW) descriptor that is isometric invariant, efficient to compute, and combines the advantages of both low-pass and band-pass filters. We perform experiments on shapes of the carpal bones of ten women and ten men from a publicly-available database of wrist bones. Using one-way multivariate analysis of variance (MANOVA) and permutation testing, we show through extensive experiments that the proposed GSGW framework gives a much better performance compared to the global point signature embedding approach for comparing shapes of the carpal bones across populations.
Dog sperm head morphometry: its diversity and evolution.
Soler, Carles; Alambiaga, Ana; Martí, Maria A; García-Molina, Almudena; Valverde, Anthony; Contell, Jesús; Campos, Marcos
2017-01-01
Dogs have been under strong artificial selection as a consequence of their relationship with man. Differences between breeds are evident that could be reflected in seminal characteristics. The present study was to evaluate differences in sperm head morphometry between seven well-defined breeds of dog: the British Bulldog, Chihuahua, German Shepherd, Labrador Retriever, Spanish Mastiff, Staffordshire Terrier, and Valencian Rat Hunting dog. Semen samples were obtained by masturbation and smears stained with Diff-Quik. Morphometric analysis (CASA-Morph) produced four size and four shape parameters. Length, Ellipticity, and Elongation showed higher differences between breeds. MANOVA revealed differences among all breeds. Considering the whole dataset, principal component analysis (PCA) showed that PC1 was related to head shape and PC2 to size. Procluster analysis showed the British Bulldog to be the most isolated breed, followed by the German Shepherd. The PCA breed by breed showed the Chihuahua, Labrador Retriever, Spanish Mastiff, and Staffordshire Terrier to have PC1 related to shape and PC2 to size, whereas the British Bulldog, Valencia Rat Hunting dog, and German Shepherd had PC1 related to size and PC2 to shape. The dendrogram for cluster groupings and the distance between them showed the British Bulldog to be separated from the rest of the breeds. Future work on dog semen must take into account the large differences in the breeds' sperm characteristics. The results provide a base for future work on phylogenetic and evolutionary studies of dogs, based on their seminal characteristics.
Dog sperm head morphometry: its diversity and evolution
Soler, Carles; Alambiaga, Ana; Martí, Maria A; García-Molina, Almudena; Valverde, Anthony; Contell, Jesús; Campos, Marcos
2017-01-01
Dogs have been under strong artificial selection as a consequence of their relationship with man. Differences between breeds are evident that could be reflected in seminal characteristics. The present study was to evaluate differences in sperm head morphometry between seven well-defined breeds of dog: the British Bulldog, Chihuahua, German Shepherd, Labrador Retriever, Spanish Mastiff, Staffordshire Terrier, and Valencian Rat Hunting dog. Semen samples were obtained by masturbation and smears stained with Diff-Quik. Morphometric analysis (CASA-Morph) produced four size and four shape parameters. Length, Ellipticity, and Elongation showed higher differences between breeds. MANOVA revealed differences among all breeds. Considering the whole dataset, principal component analysis (PCA) showed that PC1 was related to head shape and PC2 to size. Procluster analysis showed the British Bulldog to be the most isolated breed, followed by the German Shepherd. The PCA breed by breed showed the Chihuahua, Labrador Retriever, Spanish Mastiff, and Staffordshire Terrier to have PC1 related to shape and PC2 to size, whereas the British Bulldog, Valencia Rat Hunting dog, and German Shepherd had PC1 related to size and PC2 to shape. The dendrogram for cluster groupings and the distance between them showed the British Bulldog to be separated from the rest of the breeds. Future work on dog semen must take into account the large differences in the breeds’ sperm characteristics. The results provide a base for future work on phylogenetic and evolutionary studies of dogs, based on their seminal characteristics. PMID:27751991
Shape optimization for aerodynamic efficiency and low observability
NASA Technical Reports Server (NTRS)
Vinh, Hoang; Van Dam, C. P.; Dwyer, Harry A.
1993-01-01
Field methods based on the finite-difference approximations of the time-domain Maxwell's equations and the potential-flow equation have been developed to solve the multidisciplinary problem of airfoil shaping for aerodynamic efficiency and low radar cross section (RCS). A parametric study and an optimization study employing the two analysis methods are presented to illustrate their combined capabilities. The parametric study shows that for frontal radar illumination, the RCS of an airfoil is independent of the chordwise location of maximum thickness but depends strongly on the maximum thickness, leading-edge radius, and leadingedge shape. In addition, this study shows that the RCS of an airfoil can be reduced without significant effects on its transonic aerodynamic efficiency by reducing the leading-edge radius and/or modifying the shape of the leading edge. The optimization study involves the minimization of wave drag for a non-lifting, symmetrical airfoil with constraints on the airfoil maximum thickness and monostatic RCS. This optimization study shows that the two analysis methods can be used effectively to design aerodynamically efficient airfoils with certain desired RCS characteristics.
When things go pear shaped: contour variations of contacts
NASA Astrophysics Data System (ADS)
Utzny, Clemens
2013-04-01
Traditional control of critical dimensions (CD) on photolithographic masks considers the CD average and a measure for the CD variation such as the CD range or the standard deviation. Also systematic CD deviations from the mean such as CD signatures are subject to the control. These measures are valid for mask quality verification as long as patterns across a mask exhibit only size variations and no shape variation. The issue of shape variations becomes especially important in the context of contact holes on EUV masks. For EUV masks the CD error budget is much smaller than for standard optical masks. This means that small deviations from the contact shape can impact EUV waver prints in the sense that contact shape deformations induce asymmetric bridging phenomena. In this paper we present a detailed study of contact shape variations based on regular product data. Two data sets are analyzed: 1) contacts of varying target size and 2) a regularly spaced field of contacts. Here, the methods of statistical shape analysis are used to analyze CD SEM generated contour data. We demonstrate that contacts on photolithographic masks do not only show size variations but exhibit also pronounced nontrivial shape variations. In our data sets we find pronounced shape variations which can be interpreted as asymmetrical shape squeezing and contact rounding. Thus we demonstrate the limitations of classic CD measures for describing the feature variations on masks. Furthermore we show how the methods of statistical shape analysis can be used for quantifying the contour variations thus paving the way to a new understanding of mask linearity and its specification.
NASA Astrophysics Data System (ADS)
Xu, Sichen; Yin, Jianfeng; Tang, Rujun; Zhang, Wenxu; Peng, Bin; Zhang, Wanli
2017-11-01
The effects of the planar shape anisotropy and biasing field on the magnetization reversal process (MRP) of the diamond-shaped NiFe nano films have been investigated by micromagnetic simulations. Results show that when the length to width ratio (LWR) of the diamond-shaped film is small, the MRP of the diamond-shaped films are sensitive to LWR. But when LWR is larger than 2, a stable domain switching mode is observed which nucleates from the center of the diamond and then expands to the edges. At a fixed LWR, the magnitude of the switching fields decrease with the increase of the biasing field, but the domain switching mode is not affected by the biasing field. Further analysis shows that demagnetization energy dominates over the MRP of the diamond-shaped films. The above LWR dependence of MRP can be well explained by a variation of the shape anisotropic factor with LWR.
Survival of Verwey transition in gadolinium-doped ultrasmall magnetite nanoparticles.
Yeo, Sunmog; Choi, Hyunkyung; Kim, Chul Sung; Lee, Gyeong Tae; Seo, Jeong Hyun; Cha, Hyung Joon; Park, Jeong Chan
2017-09-28
We have demonstrated that the Verwey transition, which is highly sensitive to impurities, survives in anisotropic Gd-doped magnetite nanoparticles. Transmission electron microscopy analysis shows that the nanoparticles are uniformly distributed. X-ray photoelectron spectroscopy and EDS mapping analysis confirm Gd-doping on the nanoparticles. The Verwey transition of the Gd-doped magnetite nanoparticles is robust and the temperature dependence of the magnetic moment (zero field cooling and field cooling) shows the same behaviour as that of the Verwey transition in bulk magnetite, at a lower transition temperature (∼110 K). In addition, irregularly shaped nanoparticles do not show the Verwey transition whereas square-shaped nanoparticles show the transition. Mössbauer spectral analysis shows that the slope of the magnetic hyperfine field and the electric quadrupole splitting change at the same temperature, meaning that the Verwey transition occurs at ∼110 K. These results would provide new insights into understanding the Verwey transition in nano-sized materials.
Kim, Won Hwa; Chung, Moo K; Singh, Vikas
2013-01-01
The analysis of 3-D shape meshes is a fundamental problem in computer vision, graphics, and medical imaging. Frequently, the needs of the application require that our analysis take a multi-resolution view of the shape's local and global topology, and that the solution is consistent across multiple scales. Unfortunately, the preferred mathematical construct which offers this behavior in classical image/signal processing, Wavelets, is no longer applicable in this general setting (data with non-uniform topology). In particular, the traditional definition does not allow writing out an expansion for graphs that do not correspond to the uniformly sampled lattice (e.g., images). In this paper, we adapt recent results in harmonic analysis, to derive Non-Euclidean Wavelets based algorithms for a range of shape analysis problems in vision and medical imaging. We show how descriptors derived from the dual domain representation offer native multi-resolution behavior for characterizing local/global topology around vertices. With only minor modifications, the framework yields a method for extracting interest/key points from shapes, a surprisingly simple algorithm for 3-D shape segmentation (competitive with state of the art), and a method for surface alignment (without landmarks). We give an extensive set of comparison results on a large shape segmentation benchmark and derive a uniqueness theorem for the surface alignment problem.
Quantifying grain shape with MorpheoLV: A case study using Holocene glacial marine sediments
NASA Astrophysics Data System (ADS)
Charpentier, Isabelle; Staszyc, Alicia B.; Wellner, Julia S.; Alejandro, Vanessa
2017-06-01
As demonstrated in earlier works, quantitative grain shape analysis has revealed to be a strong proxy for determining sediment transport history and depositional environments. MorpheoLV, devoted to the calculation of roughness coefficients from pictures of unique clastic sediment grains using Fourier analysis, drives computations for a collection of samples of grain images. This process may be applied to sedimentary deposits assuming core/interval/image archives for the storage of samples collected along depth. This study uses a 25.8 m jumbo piston core, NBP1203 JPC36, taken from a 100 m thick sedimentary drift deposit from Perseverance Drift on the northern Antarctic Peninsula continental shelf. Changes in ocean and ice conditions throughout the Holocene recorded in this sedimentary archive can be assessed by studying grain shape, grain texture, and other proxies. Ninety six intervals were sampled and a total of 2319 individual particle images were used. Microtextures of individual grains observed by SEM show a very high abundance of authigenically precipitated silica that obscures the original grain shape. Grain roughness, computed along depth with MorpheoLV, only shows small variation confirming the qualitative observation deduced from the SEM. Despite this, trends can be seen confirming the reliability of MorpheoLV as a tool for quantitative grain shape analysis.
The triangle of the urinary bladder in American mink (Mustela vision (Brisson, 1756)).
Gościcka, D; Krakowiak, E; Kepczyńska, M
1994-01-01
60 bladders of American minks were dissected according to conventional method. Biometrical analysis with the use of digital image analysis system was applied to the triangles of the bladders. It was found that these triangles differ both in shape (narrow, broad) and symmetry (considerable asymmetry). The ureteral orifices also showed a variety in shape (five types) and number (double orifices).
Evaluation Of Back Shape Using The ISIS Scanner
NASA Astrophysics Data System (ADS)
Turner-Smith, Alan R.; Thomas, David C.
1989-04-01
The Integrated Shape Investigation System (ISIS) is a structured light scanner and shape analysis system, developed as a safe alternative to follow-up radiographs for the clinical assessment of deformities of the human back. The system is described and results presented of several clinic studies. These show a significant correlation between ISIS measures and conventional radiographic measures of spinal curvature, such as the Cobb angle. The development of a predictor for deterioration in adolescent idiopathic scoliosis, based on surface shape weasures, is discussed.
Lee, Chang-Hyun; Han, In Seok; Lee, Ji Yeoun; Phi, Ji Hoon; Kim, Seung-Ki; Kim, Young-Eun; Wang, Kyu-Chang
2017-01-01
Although arachnoid cysts (ACs) are observed in various locations, only sylvian ACs are mainly regarded to be associated with bleeding. The reason for this selective association of sylvian ACs with bleeding is not understood well. This study is to investigate the effect of the location and shape of ACs on the risk of bleeding. A developed finite element model of the head/brain was modified for models of sylvian, suprasellar, and posterior fossa ACs. A spherical AC was placed at each location to compare the effect of AC location. Bowl-shaped and oval-shaped AC models were developed to compare the effect by shape. The shear force on the spot-weld elements (SFSW) was measured between the dura and the outer wall of the ACs or the comparable arachnoid membrane in the normal model. All AC models revealed higher SFSW than comparable normal models. By location, sylvian AC displayed the highest SFSW for frontal and lateral impacts. By shape, small outer wall AC models showed higher SFSW than large wall models in sylvian area and lower SFSW than large ones in posterior fossa. In regression analysis, the presence of AC was the only independent risk of bleeding. The bleeding mechanism of ACs is very complex, and the risk quantification failed to show a significant role of location and shape of ACs. The presence of AC increases shear force on impact condition and may be a risk factor of bleeding, and sylvian location of AC may not have additive risks of AC bleeding.
Bonnan, Matthew F; Sandrik, Jennifer L; Nishiwaki, Takahiko; Wilhite, D Ray; Elsey, Ruth M; Vittore, Christopher
2010-12-01
In nonavian dinosaur long bones, the once-living chondroepiphysis (joint surface) overlay a now-fossilized calcified cartilage zone. Although the shape of this zone is used to infer nonavian dinosaur locomotion, it remains unclear how much it reflects chondroepiphysis shape. We tested the hypothesis that calcified cartilage shape reflects the overlying chondroepiphysis in extant archosaurs. Long bones with intact epiphyses from American alligators (Alligator mississippiensis), helmeted guinea fowl (Numida meleagris), and juvenile ostriches (Struthio camelus) were measured and digitized for geometric morphometric (GM) analyses before and after chondroepiphysis removal. Removal of the chondroepiphysis resulted in significant element truncation in all examined taxa, but the amount of truncation decreased with increasing size. GM analyses revealed that Alligator show significant differences between chondroepiphysis shape and the calcified cartilage zone in the humerus, but display nonsignificant differences in femora of large individuals. In Numida, GM analysis shows significant shape differences in juvenile humeri, but humeri of adults and the femora of all guinea fowl show no significant shape difference. The juvenile Struthio sample showed significant differences in both long bones, which diminish with increasing size, a pattern confirmed with magnetic resonance imaging scans in an adult. Our data suggest that differences in extant archosaur long bone shape are greater in elements not utilized in locomotion and related stress-inducing activities. Based on our data, we propose tentative ranges of error for nonavian dinosaur long bone dimensional measurements. We also predict that calcified cartilage shape in adult, stress-bearing nonavian dinosaur long bones grossly reflects chondroepiphysis shape.
Size- and shape-dependent clinical and mycological efficacy of silver nanoparticles on dandruff.
Anwar, Mohammad F; Yadav, Deepak; Jain, Swati; Kapoor, Sumeet; Rastogi, Shweta; Arora, Indu; Samim, Mohammed
2016-01-01
Dandruff is a prominent scalp problem caused by the growth of fungus Malassezia furfur, potentially cascading into dermal inflammation, itching, and tissue damage. The present work outlines a detailed analysis of the treatment of scalp infection using silver nanomaterials (Ag NMs), and focuses on biocidal activity owing to manipulation of size, shape, and structure. Monodisperse silver spherical nanoparticles (NPs) and nanorods (NRs) were synthesized by chemical routes that were characterized using analytical and spectroscopic techniques. Ag NMs demonstrated enhanced biocidal tendencies compared to market available drugs, itracanozole and ketoconazole, showing greater zones of inhibition. The obtained 20 nm and 50 nm spherical-shaped NPs and 50 nm NRs showed concentration-, size-, and shape-dependent antifungal activity, with 20 nm spherical-shaped NPs exhibiting excellent potency. Minimum inhibitory concentration for 20 nm was lowest at 0.2 mg/mL in comparison to 0.3 mg/mL for NRs. Primary irritation index was 0.33 and 0.16 for 20 nm and 50 nm spherical-shaped NPs, respectively, while 50 nm rod-shaped NMs exhibited negligible redness. An in vivo model for M. furfur infection was generated by passing fungi subcutaneously in rats' skin. Again, 20 nm particles showed best normalization of skin after 10 days on regular dosing, in comparison with bigger and rod-shaped particles. The statistical clinical score was highest for Ag nanorods, followed by 50 nm Ag NPs-treated animals. It was observed that 20 nm spherical particles exhibited the lowest score (0) compared with others as well as with antifungal drugs. Biochemical analysis performed by checking antioxidant enzymatic activities indicated tissue repair and normalization of enzymes and protein concentration by Ag NPs.
Size- and shape-dependent clinical and mycological efficacy of silver nanoparticles on dandruff
Anwar, Mohammad F; Yadav, Deepak; Jain, Swati; Kapoor, Sumeet; Rastogi, Shweta; Arora, Indu; Samim, Mohammed
2016-01-01
Dandruff is a prominent scalp problem caused by the growth of fungus Malassezia furfur, potentially cascading into dermal inflammation, itching, and tissue damage. The present work outlines a detailed analysis of the treatment of scalp infection using silver nanomaterials (Ag NMs), and focuses on biocidal activity owing to manipulation of size, shape, and structure. Monodisperse silver spherical nanoparticles (NPs) and nanorods (NRs) were synthesized by chemical routes that were characterized using analytical and spectroscopic techniques. Ag NMs demonstrated enhanced biocidal tendencies compared to market available drugs, itracanozole and ketoconazole, showing greater zones of inhibition. The obtained 20 nm and 50 nm spherical-shaped NPs and 50 nm NRs showed concentration-, size-, and shape-dependent antifungal activity, with 20 nm spherical-shaped NPs exhibiting excellent potency. Minimum inhibitory concentration for 20 nm was lowest at 0.2 mg/mL in comparison to 0.3 mg/mL for NRs. Primary irritation index was 0.33 and 0.16 for 20 nm and 50 nm spherical-shaped NPs, respectively, while 50 nm rod-shaped NMs exhibited negligible redness. An in vivo model for M. furfur infection was generated by passing fungi subcutaneously in rats’ skin. Again, 20 nm particles showed best normalization of skin after 10 days on regular dosing, in comparison with bigger and rod-shaped particles. The statistical clinical score was highest for Ag nanorods, followed by 50 nm Ag NPs-treated animals. It was observed that 20 nm spherical particles exhibited the lowest score (0) compared with others as well as with antifungal drugs. Biochemical analysis performed by checking antioxidant enzymatic activities indicated tissue repair and normalization of enzymes and protein concentration by Ag NPs. PMID:26792991
Reuter, Martin; Wolter, Franz-Erich; Shenton, Martha; Niethammer, Marc
2009-01-01
This paper proposes the use of the surface based Laplace-Beltrami and the volumetric Laplace eigenvalues and -functions as shape descriptors for the comparison and analysis of shapes. These spectral measures are isometry invariant and therefore allow for shape comparisons with minimal shape pre-processing. In particular, no registration, mapping, or remeshing is necessary. The discriminatory power of the 2D surface and 3D solid methods is demonstrated on a population of female caudate nuclei (a subcortical gray matter structure of the brain, involved in memory function, emotion processing, and learning) of normal control subjects and of subjects with schizotypal personality disorder. The behavior and properties of the Laplace-Beltrami eigenvalues and -functions are discussed extensively for both the Dirichlet and Neumann boundary condition showing advantages of the Neumann vs. the Dirichlet spectra in 3D. Furthermore, topological analyses employing the Morse-Smale complex (on the surfaces) and the Reeb graph (in the solids) are performed on selected eigenfunctions, yielding shape descriptors, that are capable of localizing geometric properties and detecting shape differences by indirectly registering topological features such as critical points, level sets and integral lines of the gradient field across subjects. The use of these topological features of the Laplace-Beltrami eigenfunctions in 2D and 3D for statistical shape analysis is novel. PMID:20161035
Meng, Jie; Zhu, Lijing; Zhu, Li; Wang, Huanhuan; Liu, Song; Yan, Jing; Liu, Baorui; Guan, Yue; Ge, Yun; He, Jian; Zhou, Zhengyang; Yang, Xiaofeng
2016-10-22
To explore the role of apparent diffusion coefficient (ADC) histogram shape related parameters in early assessment of treatment response during the concurrent chemo-radiotherapy (CCRT) course of advanced cervical cancers. This prospective study was approved by the local ethics committee and informed consent was obtained from all patients. Thirty-two patients with advanced cervical squamous cell carcinomas underwent diffusion weighted magnetic resonance imaging (b values, 0 and 800 s/mm 2 ) before CCRT, at the end of 2nd and 4th week during CCRT and immediately after CCRT completion. Whole lesion ADC histogram analysis generated several histogram shape related parameters including skewness, kurtosis, s-sD av , width, standard deviation, as well as first-order entropy and second-order entropies. The averaged ADC histograms of 32 patients were generated to visually observe dynamic changes of the histogram shape following CCRT. All parameters except width and standard deviation showed significant changes during CCRT (all P < 0.05), and their variation trends fell into four different patterns. Skewness and kurtosis both showed high early decline rate (43.10 %, 48.29 %) at the end of 2nd week of CCRT. All entropies kept decreasing significantly since 2 weeks after CCRT initiated. The shape of averaged ADC histogram also changed obviously following CCRT. ADC histogram shape analysis held the potential in monitoring early tumor response in patients with advanced cervical cancers undergoing CCRT.
Meshless methods in shape optimization of linear elastic and thermoelastic solids
NASA Astrophysics Data System (ADS)
Bobaru, Florin
This dissertation proposes a meshless approach to problems in shape optimization of elastic and thermoelastic solids. The Element-free Galerkin (EFG) method is used for this purpose. The ability of the EFG to avoid remeshing, that is normally done in a Finite Element approach to correct highly distorted meshes, is clearly demonstrated by several examples. The shape optimization example of a thermal cooling fin shows a dramatic improvement in the objective compared to a previous FEM analysis. More importantly, the new solution, displaying large shape changes contrasted to the initial design, was completely missed by the FEM analysis. The EFG formulation given here for shape optimization "uncovers" new solutions that are, apparently, unobtainable via a FEM approach. This is one of the main achievements of our work. The variational formulations for the analysis problem and for the sensitivity problems are obtained with a penalty method for imposing the displacement boundary conditions. The continuum formulation is general and this facilitates 2D and 3D with minor differences from one another. Also, transient thermoelastic problems can use the present development at each time step to solve shape optimization problems for time-dependent thermal problems. For the elasticity framework, displacement sensitivity is obtained in the EFG context. Excellent agreements with analytical solutions for some test problems are obtained. The shape optimization of a fillet is carried out in great detail, and results show significant improvement of the EFG solution over the FEM or the Boundary Element Method solutions. In our approach we avoid differentiating the complicated EFG shape functions, with respect to the shape design parameters, by using a particular discretization for sensitivity calculations. Displacement and temperature sensitivities are formulated for the shape optimization of a linear thermoelastic solid. Two important examples considered in this work, the optimization of a thermal fin and of a uniformly loaded thermoelastic beam, reveal new characteristics of the EFG method in shape optimization applications. Among other advantages of the EFG method over traditional FEM treatments of shape optimization problems, some of the most important ones are shown to be: elimination of post-processing for stress and strain recovery that directly gives more accurate results in critical positions (near the boundaries, for example) for shape optimization problems; nodes movement flexibility that permits new, better shapes (previously missed by an FEM analysis) to be discovered. Several new research directions that need further consideration are exposed.
Prolate-Spheroid (``Rugby-Shaped'') Hohlraum for Inertial Confinement Fusion
NASA Astrophysics Data System (ADS)
Vandenboomgaerde, M.; Bastian, J.; Casner, A.; Galmiche, D.; Jadaud, J.-P.; Laffite, S.; Liberatore, S.; Malinie, G.; Philippe, F.
2007-08-01
A novel rugby-ball shaped hohlraum is designed in the context of the indirect-drive scheme of inertial-confinement fusion (ICF). Experiments were performed on the OMEGA laser and are the first use of rugby hohlraums for ICF studies. Analysis of experimental data shows that the hohlraum energetics is well understood. We show that the rugby-ball shape exhibits advantages over cylinder, in terms of temperature and of symmetry control of the capsule implosion. Simulations indicate that rugby hohlraum driven targets may be candidates for ignition in a context of early Laser MegaJoule experiments with reduced laser energy.
Hippocampal shape deformation in female patients with unremitting major depressive disorder.
Tae, W S; Kim, S S; Lee, K U; Nam, E C; Choi, J W; Park, J I
2011-04-01
The hippocampal atrophy of MDD has been known, but the region shape contractions of the hippocampus in MDD were inconsistent. Spheric harmonic shape analysis was applied to the hippocampus in female patients with unremitting MDD to evaluate morphometric changes of the hippocampus. Shape analysis was performed by using T1-weighted MR imaging in 21 female patients with MDD and 21 age- and sex-matched healthy controls. Manually segmented hippocampi were parameterized, and the point-to-point-based group difference was compared by using the Hotelling T-squared test. The partial correlation analyses were tested between clinical variables and shape changes. Both hippocampal volumes were small in patients with MDD compared with healthy controls, and the right hippocampal volume was negatively correlated with the number of episodes at marginal significance. Regional shape contractions were found in the ambient gyrus, basal hippocampal head, posterior subiculum, and dorsal hippocampus of the left hemisphere. The right hippocampus showed a similar pattern but was less atrophic compared with the left hippocampus. A negative correlation was found between the HDRS and shape deformation in the CA3, ambient gyrus, posterior subiculum, and gyrus fasciolaris of the left hippocampus. We showed atrophy and regional shape contractions in the hippocampi of patients with MDD, which were more dominant on the left side. The causes of hippocampal damage could be the hypersecretion of glucocorticoids contributing to neuronal death or the failing of adult neurogenesis in the dentate gyrus.
Design and simulation of the surface shape control system for membrane mirror
NASA Astrophysics Data System (ADS)
Zhang, Gengsheng; Tang, Minxue
2009-11-01
The surface shape control is one of the key technologies for the manufacture of membrane mirror. This paper presents a design of membrane mirror's surface shape control system on the basis of fuzzy logic control. The system contains such function modules as surface shape design, surface shape control, surface shape analysis, and etc. The system functions are realized by using hybrid programming technology of Visual C# and MATLAB. The finite element method is adopted to simulate the surface shape control of membrane mirror. The finite element analysis model is established through ANSYS Parametric Design Language (APDL). ANSYS software kernel is called by the system in background running mode when doing the simulation. The controller is designed by means of controlling the sag of the mirror's central crosssection. The surface shape of the membrane mirror and its optical aberration are obtained by applying Zernike polynomial fitting. The analysis of surface shape control and the simulation of disturbance response are performed for a membrane mirror with 300mm aperture and F/2.7. The result of the simulation shows that by using the designed control system, the RMS wavefront error of the mirror can reach to 142λ (λ=632.8nm), which is consistent to the surface accuracy of the membrane mirror obtained by the large deformation theory of membrane under the same condition.
Fabrication de couches minces a memoire de forme et effets de l'irradiation ionique
NASA Astrophysics Data System (ADS)
Goldberg, Florent
1998-09-01
Nickel and titanium when combined in the right stoichiometric proportion (1:1) can form alloys showing the shape memory effect. Within the scope of this thesis, thin films of such alloys have been successfully produced by sputtering. Precise control of composition is crucial in order to obtain the shape memory effect. A combination of analytical tools which can accurately determine the behavior of such materials is also required (calorimetric analysis, crystallography, composition analysis, etc.). Rutherford backscattering spectrometry has been used for quantitative composition analysis. Thereafter irradiation of films with light ions (He+) of few MeV was shown to allow lowering of the characteristic premartensitic transformation temperatures while preserving the shape memory effect. Those results open the door to a new field of research, particularly for ion irradiation and its potential use as a tool to modify the thermomechanical behavior of shape memory thin film actuators.
Joint source based analysis of multiple brain structures in studying major depressive disorder
NASA Astrophysics Data System (ADS)
Ramezani, Mahdi; Rasoulian, Abtin; Hollenstein, Tom; Harkness, Kate; Johnsrude, Ingrid; Abolmaesumi, Purang
2014-03-01
We propose a joint Source-Based Analysis (jSBA) framework to identify brain structural variations in patients with Major Depressive Disorder (MDD). In this framework, features representing position, orientation and size (i.e. pose), shape, and local tissue composition are extracted. Subsequently, simultaneous analysis of these features within a joint analysis method is performed to generate the basis sources that show signi cant di erences between subjects with MDD and those in healthy control. Moreover, in a cross-validation leave- one-out experiment, we use a Fisher Linear Discriminant (FLD) classi er to identify individuals within the MDD group. Results show that we can classify the MDD subjects with an accuracy of 76% solely based on the information gathered from the joint analysis of pose, shape, and tissue composition in multiple brain structures.
SmartGrain: high-throughput phenotyping software for measuring seed shape through image analysis.
Tanabata, Takanari; Shibaya, Taeko; Hori, Kiyosumi; Ebana, Kaworu; Yano, Masahiro
2012-12-01
Seed shape and size are among the most important agronomic traits because they affect yield and market price. To obtain accurate seed size data, a large number of measurements are needed because there is little difference in size among seeds from one plant. To promote genetic analysis and selection for seed shape in plant breeding, efficient, reliable, high-throughput seed phenotyping methods are required. We developed SmartGrain software for high-throughput measurement of seed shape. This software uses a new image analysis method to reduce the time taken in the preparation of seeds and in image capture. Outlines of seeds are automatically recognized from digital images, and several shape parameters, such as seed length, width, area, and perimeter length, are calculated. To validate the software, we performed a quantitative trait locus (QTL) analysis for rice (Oryza sativa) seed shape using backcrossed inbred lines derived from a cross between japonica cultivars Koshihikari and Nipponbare, which showed small differences in seed shape. SmartGrain removed areas of awns and pedicels automatically, and several QTLs were detected for six shape parameters. The allelic effect of a QTL for seed length detected on chromosome 11 was confirmed in advanced backcross progeny; the cv Nipponbare allele increased seed length and, thus, seed weight. High-throughput measurement with SmartGrain reduced sampling error and made it possible to distinguish between lines with small differences in seed shape. SmartGrain could accurately recognize seed not only of rice but also of several other species, including Arabidopsis (Arabidopsis thaliana). The software is free to researchers.
BY HOW MUCH DO SHAPES OF TOXICOLOGICAL DOSE-RESPONSE RELATIONSHIPS VARY? (SOT)
A re-analysis of a large number of historical dose-response data for continuous endpoints showed that the shapes of the dose-response relationships were surprisingly homogenous. The datasets were selected on the sole criterion that they were expected to provide relatively good in...
How Positioning Shapes Opportunities for Student Agency in Schools
ERIC Educational Resources Information Center
York, Adam; Kirshner, Ben
2015-01-01
This chapter shows how student positioning by adults shapes opportunities for students to learn collective systemic agency including practices such as organizing others, developing a systemic analysis, and taking action in complex institutions, such as schools. We argue that these learning opportunities are expanded when education professionals…
A framework for longitudinal data analysis via shape regression
NASA Astrophysics Data System (ADS)
Fishbaugh, James; Durrleman, Stanley; Piven, Joseph; Gerig, Guido
2012-02-01
Traditional longitudinal analysis begins by extracting desired clinical measurements, such as volume or head circumference, from discrete imaging data. Typically, the continuous evolution of a scalar measurement is estimated by choosing a 1D regression model, such as kernel regression or fitting a polynomial of fixed degree. This type of analysis not only leads to separate models for each measurement, but there is no clear anatomical or biological interpretation to aid in the selection of the appropriate paradigm. In this paper, we propose a consistent framework for the analysis of longitudinal data by estimating the continuous evolution of shape over time as twice differentiable flows of deformations. In contrast to 1D regression models, one model is chosen to realistically capture the growth of anatomical structures. From the continuous evolution of shape, we can simply extract any clinical measurements of interest. We demonstrate on real anatomical surfaces that volume extracted from a continuous shape evolution is consistent with a 1D regression performed on the discrete measurements. We further show how the visualization of shape progression can aid in the search for significant measurements. Finally, we present an example on a shape complex of the brain (left hemisphere, right hemisphere, cerebellum) that demonstrates a potential clinical application for our framework.
An analysis of polygenes affecting wing shape on chromosome 2 in Drosophila melanogaster.
Weber, K; Eisman, R; Higgins, S; Morey, L; Patty, A; Tausek, M; Zeng, Z B
2001-01-01
Genetic effects on an index of wing shape on chromosome 2 of Drosophila melanogaster were mapped using isogenic recombinants with transposable element markers. At least 10 genes with small additive effects are dispersed evenly along the chromosome. Many interactions exist, with only small net effects in homozygous recombinants and little effect on phenotypic variance. Heterozygous chromosome segments show almost no dominance. Pleiotropic effects on leg shape are only minor. At first view, wing shape genes form a rather homogeneous class, but certain complexities remain unresolved. PMID:11729152
Solar granulation and statistical crystallography: A modeling approach using size-shape relations
NASA Technical Reports Server (NTRS)
Noever, D. A.
1994-01-01
The irregular polygonal pattern of solar granulation is analyzed for size-shape relations using statistical crystallography. In contrast to previous work which has assumed perfectly hexagonal patterns for granulation, more realistic accounting of cell (granule) shapes reveals a broader basis for quantitative analysis. Several features emerge as noteworthy: (1) a linear correlation between number of cell-sides and neighboring shapes (called Aboav-Weaire's law); (2) a linear correlation between both average cell area and perimeter and the number of cell-sides (called Lewis's law and a perimeter law, respectively) and (3) a linear correlation between cell area and squared perimeter (called convolution index). This statistical picture of granulation is consistent with a finding of no correlation in cell shapes beyond nearest neighbors. A comparative calculation between existing model predictions taken from luminosity data and the present analysis shows substantial agreements for cell-size distributions. A model for understanding grain lifetimes is proposed which links convective times to cell shape using crystallographic results.
Characterization of shredded television scrap and implications for materials recovery.
Cui, Jirang; Forssberg, Eric
2007-01-01
Characterization of TV scrap was carried out by using a variety of methods, such as chemical analysis, particle size and shape analysis, liberation degree analysis, thermogravimetric analysis, sink-float test, and IR spectrometry. A comparison of TV scrap, personal computer scrap, and printed circuit board scrap shows that the content of non-ferrous metals and precious metals in TV scrap is much lower than that in personal computer scrap or printed circuit board scrap. It is expected that recycling of TV scrap will not be cost-effective by utilizing conventional manual disassembly. The result of particle shape analysis indicates that the non-ferrous metal particles in TV scrap formed as a variety of shapes; it is much more heterogeneous than that of plastics and printed circuit boards. Furthermore, the separability of TV scrap using density-based techniques was evaluated by the sink-float test. The result demonstrates that a high recovery of copper could be obtained by using an effective gravity separation process. Identification of plastics shows that the major plastic in TV scrap is high impact polystyrene. Gravity separation of plastics may encounter some challenges in separation of plastics from TV scrap because of specific density variations.
Gómez Yepes, Milena Elizabeth; Cremades, Lázaro V
2011-01-01
Study characterized and analyzed form factor, elementary composition and particle size of wood dust, in order to understand its harmful health effects on carpenters in Quindío (Colombia). Once particle characteristics (size distributions, aerodynamic equivalent diameter (D(α)), elemental composition and shape factors) were analyzed, particles were then characterized via scanning electron microscopy (SEM) in conjunction with energy dispersive X-ray analysis (EDXRA). SEM analysis of particulate matter showed: 1) cone-shaped particle ranged from 2.09 to 48.79 µm D(α); 2) rectangular prism-shaped particle from 2.47 to 72.9 µm D(α); 3) cylindrically-shaped particle from 2.5 to 48.79 µm D(α); and 4) spherically-shaped particle from 2.61 to 51.93 µm D(α). EDXRA reveals presence of chemical elements from paints and varnishes such as Ca, K, Na and Cr. SEM/EDXRA contributes in a significant manner to the morphological characterization of wood dust. It is obvious that the type of particles sampled is a complex function of shapes and sizes of particles. Thus, it is important to investigate the influence of particles characteristics, morphology, shapes and D(α) that may affect the health of carpenters in Quindío.
Libungan, Lísa Anne; Slotte, Aril; Husebø, Åse; Godiksen, Jane A.; Pálsson, Snæbjörn
2015-01-01
Otolith shape analysis of Atlantic herring (Clupea harengus) in Norwegian waters shows significant differentiation among fjords and a latitudinal gradient along the coast where neighbouring populations are more similar to each other than to those sampled at larger distances. The otolith shape was obtained using quantitative shape analysis, the outlines were transformed with Wavelet and analysed with multivariate methods. The observed morphological differences are likely to reflect environmental differences but indicate low dispersal among the local herring populations. Otolith shape variation suggests also limited exchange between the local populations and their oceanic counterparts, which could be due to differences in spawning behaviour. Herring from the most northerly location (69°N) in Balsfjord, which is genetically more similar to Pacific herring (Clupea pallasii), differed in otolith shape from all the other populations. Our results suggest that the semi-enclosed systems, where the local populations live and breed, are efficient barriers for dispersal. Otolith shape can thus serve as a marker to identify the origin of herring along the coast of Norway. PMID:26101885
Gushki, Roghayeh Shamsi; Lashkari, Mohammadreza; Mirzaei, Saeid
2018-01-01
Abstract Jumping plant lice (Hemiptera: Psylloidea) are considered important vectors of plant diseases and also economically important pests in agriculture and forest ecosystems. Three psyllid species Psyllopsis repens Loginova, 1963, Psyllopsis securicola Loginova, 1963, and Psyllopsis machinosus Loginova, 1963 associated with the ash tree Fraxinus are morphologically very similar. So far, their distinction has been possible only by comparing their male and female genitalia. In this research, forewing shape and size characteristics, sexual dimorphism and their allometric effects, using geometric morphometric analysis, were examined for identification purposes. The results showed significant differences in wing shape and size between the species studied. Based on the results, two species P. machinosus and P. securicola can be differentiated with the vein M1+2, as in P. securicola the vein M1+2 is located between Rs and M3+4 veins, but the vein M1+2 is closer to the vein M3+4 in P. machinosus; also, P. repens can be differentiated from the two species P. machinosus and P. securicola by vein M. Hence, the veins M1+2, M3+4, Rs and M were the most important wing characters for discrimination of the three species, especially in the field. The analysis also showed significant differences in wing shape and size between male and female of the three species, and the allometric analysis showed that significant shape differences still remain in constant size in P. machinosus and P. repens. Geometric changes in the forewings of both sexes for the three species are illustrated. PMID:29674872
Echinocyte shapes: bending, stretching, and shear determine spicule shape and spacing.
Mukhopadhyay, Ranjan; Lim H W, Gerald; Wortis, Michael
2002-01-01
We study the shapes of human red blood cells using continuum mechanics. In particular, we model the crenated, echinocytic shapes and show how they may arise from a competition between the bending energy of the plasma membrane and the stretching/shear elastic energies of the membrane skeleton. In contrast to earlier work, we calculate spicule shapes exactly by solving the equations of continuum mechanics subject to appropriate boundary conditions. A simple scaling analysis of this competition reveals an elastic length Lambda(el), which sets the length scale for the spicules and is, thus, related to the number of spicules experimentally observed on the fully developed echinocyte. PMID:11916836
Microbial synthesis of Flower-shaped gold nanoparticles.
Singh, Priyanka; Kim, Yeon Ju; Wang, Chao; Mathiyalagan, Ramya; Yang, Deok Chun
2016-09-01
The shape of nanoparticles has been recognized as an important attribute that determines their applicability in various fields. The flower shape (F-shape) has been considered and is being focused on, because of its enhanced properties when compared to the properties of the spherical shape. The present study proposed the microbial synthesis of F-shaped gold nanoparticles within 48 h using the Bhargavaea indica DC1 strain. The F-shaped gold nanoparticles were synthesized extracellularly by the reduction of auric acid in the culture supernatant of B. indica DC1. The shape, size, purity, and crystalline nature of F-shaped gold nanoparticles were revealed by various instrumental techniques including UV-Vis, FE-TEM, EDX, elemental mapping, XRD, and DLS. The UV-Vis absorbance showed a maximum peak at 536 nm. FE-TEM revealed the F-shaped structure of nanoparticles. The EDX peak obtained at 2.3 keV indicated the purity. The peaks obtained on XRD analysis corresponded to the crystalline nature of the gold nanoparticles. In addition, the results of elemental mapping indicated the maximum distribution of gold elements in the nanoproduct obtained. Particle size analysis revealed that the average diameter of the F-shaped gold nanoparticles was 106 nm, with a polydispersity index (PDI) of 0.178. Thus, the methodology developed for the synthesis of F-shaped gold nanoparticles is completely green and economical.
Determination of Extrapolation Distance with Measured Pressure Signatures from Two Low-Boom Models
NASA Technical Reports Server (NTRS)
Mack, Robert J.; Kuhn, Neil
2004-01-01
A study to determine a limiting distance to span ratio for the extrapolation of near-field pressure signatures is described and discussed. This study was to be done in two wind-tunnel facilities with two wind-tunnel models. At this time, only the first half had been completed, so the scope of this report is limited to the design of the models, and to an analysis of the first set of measured pressure signatures. The results from this analysis showed that the pressure signatures measured at separation distances of 2 to 5 span lengths did not show the desired low-boom shapes. However, there were indications that the pressure signature shapes were becoming 'flat-topped'. This trend toward a 'flat-top' pressure signatures shape was seen to be a gradual one at the distance ratios employed in this first series of wind-tunnel tests.
Shape Analysis of the Peripapillary RPE Layer in Papilledema and Ischemic Optic Neuropathy
Kupersmith, Mark J.; Rohlf, F. James
2011-01-01
Purpose. Geometric morphometrics (GM) was used to analyze the shape of the peripapillary retinal pigment epithelium–Bruch's membrane (RPE/BM) layer imaged on the SD-OCT 5-line raster in normal subjects and in patients with papilledema and ischemic optic neuropathy. Methods. Three groups of subjects were compared: 30 normals, 20 with anterior ischemic optic neuropathy (AION), and 25 with papilledema and intracranial hypertension. Twenty equidistant semilandmarks were digitized on OCT images of the RPE/BM layer spanning 2500 μm on each side of the neural canal opening (NCO). The data were analyzed using standard GM techniques, including a generalized least-squares Procrustes superimposition, principal component analysis, thin-plate spline (to visualize deformations), and permutation statistical analysis to evaluate differences in shape variables. Results. The RPE/BM layer in normals and AION have a characteristic V shape pointing away from the vitreous; the RPE/BM layer in papilledema has an inverted U shape, skewed nasally inward toward the vitreous. The differences were statistically significant. There was no significant difference in shapes between normals and AION. Pre- and posttreatment OCTs, in select cases of papilledema, showed that the inverted U-shaped RPE/BM moved posteriorly into a normal V shape as the papilledema resolved with weight loss or shunting. Conclusions. The shape difference in papilledema, absent in AION, cannot be explained by disc edema alone. The difference is a consequence of both the translaminar pressure gradient and the material properties of the peripapillary sclera. GM offers a novel way of statistically assessing shape differences of the peripapillary optic nerve head. PMID:21896851
Desrosiers, Christian; Hassan, Lama; Tanougast, Camel
2016-01-01
Objective: Predicting the survival outcome of patients with glioblastoma multiforme (GBM) is of key importance to clinicians for selecting the optimal course of treatment. The goal of this study was to evaluate the usefulness of geometric shape features, extracted from MR images, as a potential non-invasive way to characterize GBM tumours and predict the overall survival times of patients with GBM. Methods: The data of 40 patients with GBM were obtained from the Cancer Genome Atlas and Cancer Imaging Archive. The T1 weighted post-contrast and fluid-attenuated inversion-recovery volumes of patients were co-registered and segmented into delineate regions corresponding to three GBM phenotypes: necrosis, active tumour and oedema/invasion. A set of two-dimensional shape features were then extracted slicewise from each phenotype region and combined over slices to describe the three-dimensional shape of these phenotypes. Thereafter, a Kruskal–Wallis test was employed to identify shape features with significantly different distributions across phenotypes. Moreover, a Kaplan–Meier analysis was performed to find features strongly associated with GBM survival. Finally, a multivariate analysis based on the random forest model was used for predicting the survival group of patients with GBM. Results: Our analysis using the Kruskal–Wallis test showed that all but one shape feature had statistically significant differences across phenotypes, with p-value < 0.05, following Holm–Bonferroni correction, justifying the analysis of GBM tumour shapes on a per-phenotype basis. Furthermore, the survival analysis based on the Kaplan–Meier estimator identified three features derived from necrotic regions (i.e. Eccentricity, Extent and Solidity) that were significantly correlated with overall survival (corrected p-value < 0.05; hazard ratios between 1.68 and 1.87). In the multivariate analysis, features from necrotic regions gave the highest accuracy in predicting the survival group of patients, with a mean area under the receiver-operating characteristic curve (AUC) of 63.85%. Combining the features of all three phenotypes increased the mean AUC to 66.99%, suggesting that shape features from different phenotypes can be used in a synergic manner to predict GBM survival. Conclusion: Results show that shape features, in particular those extracted from necrotic regions, can be used effectively to characterize GBM tumours and predict the overall survival of patients with GBM. Advances in knowledge: Simple volumetric features have been largely used to characterize the different phenotypes of a GBM tumour (i.e. active tumour, oedema and necrosis). This study extends previous work by considering a wide range of shape features, extracted in different phenotypes, for the prediction of survival in patients with GBM. PMID:27781499
DOE Office of Scientific and Technical Information (OSTI.GOV)
Larcher, G.; Tran, H., E-mail: ha.tran@lisa.u-pec.fr; Schwell, M.
2014-02-28
Room temperature absorption spectra of various transitions of pure CO{sub 2} have been measured in a broad pressure range using a tunable diode-laser and a cavity ring-down spectrometer, respectively, in the 1.6 μm and 0.8 μm regions. Their spectral shapes have been calculated by requantized classical molecular dynamics simulations. From the time-dependent auto-correlation function of the molecular dipole, including Doppler and collisional effects, spectral shapes are directly computed without the use of any adjusted parameter. Analysis of the spectra calculated using three different anisotropic intermolecular potentials shows that the shapes of pure CO{sub 2} lines, in terms of both themore » Lorentz widths and non-Voigt effects, slightly depend on the used potential. Comparisons between these ab initio calculations and the measured spectra show satisfactory agreement for all considered transitions (from J = 6 to J = 46). They also show that non-Voigt effects on the shape of CO{sub 2} transitions are almost independent of the rotational quantum number of the considered lines.« less
A new concept for active bistable twisting structures
NASA Astrophysics Data System (ADS)
Schultz, Marc R.
2005-05-01
A novel type of morphing structure capable of a large change in shape with a small energy input is discussed in this paper. The considered structures consist of two curved shells that are joined in a specific manner to form a bistable airfoil-like structure. The two stable shapes have a difference in axial twist, and the structure may be transformed between the stable shapes by a simple snap-through action. The benefit of a bistable structure of this type is that, if the stable shapes are operational shapes, power is needed only to transform the structure from one shape to another. The discussed structures could be used in aerodynamic applications such as morphing wings, or as aerodynamic control surfaces. The investigation discussed in this paper considers both experiment and finite-element analysis. Several graphite-epoxy composite and one steel device were created as proof-of-concept models. To demonstrate active control of these structures, piezocomposite actuators were applied to one of the composite structures and used to transform the structure between stable shapes. The analysis was used to compare the predicted shapes with the experimental shapes, and to study how changes to the geometric input values affected the shape and operational characteristics of the structures. The predicted shapes showed excellent agreement with the experimental shapes, and the results of the parametric study suggest that the shapes and the snap-through characteristics can be easily tailored to meet specific needs.
Banala, Rajkiran Reddy; Nagati, Veera Babu; Karnati, Pratap Reddy
2015-01-01
The evolution of nanotechnology and the production of nanomedicine from various sources had proven to be of intense value in the field of biomedicine. The smaller size of nanoparticles is gaining importance in research for the treatment of various diseases. Moreover the production of nanoparticles is eco-friendly and cost effective. In the present study silver nanoparticles were synthesized from Carica papaya leaf extract (CPL) and characterized for their size and shape using scanning electron microscopy and transmission electron microscopy, respectively. Fourier transform infrared spectroscopy (FTIR), Energy dispersive X-ray spectroscopy (EDS/EDX) and X-ray diffraction spectroscopy (XRD) were conducted to determine the concentration of metal ions, the shape of molecules. The bactericidal activity was evaluated using Luria Bertani broth cultures and the minimum inhibition concentration (MIC) and minimum bactericidal concentration (MBC) were estimated using turbidimetry. The data analysis showed size of 50–250 nm spherical shaped nanoparticles. The turbidimetry analysis showed MIC and MBC was >25 μg/mL against both Gram positive and Gram negative bacteria in Luria Bertani broth cultures. In summary the synthesized silver nanoparticles from CPL showed acceptable size and shape of nanoparticles and effective bactericidal activity. PMID:26288570
Banala, Rajkiran Reddy; Nagati, Veera Babu; Karnati, Pratap Reddy
2015-09-01
The evolution of nanotechnology and the production of nanomedicine from various sources had proven to be of intense value in the field of biomedicine. The smaller size of nanoparticles is gaining importance in research for the treatment of various diseases. Moreover the production of nanoparticles is eco-friendly and cost effective. In the present study silver nanoparticles were synthesized from Carica papaya leaf extract (CPL) and characterized for their size and shape using scanning electron microscopy and transmission electron microscopy, respectively. Fourier transform infrared spectroscopy (FTIR), Energy dispersive X-ray spectroscopy (EDS/EDX) and X-ray diffraction spectroscopy (XRD) were conducted to determine the concentration of metal ions, the shape of molecules. The bactericidal activity was evaluated using Luria Bertani broth cultures and the minimum inhibition concentration (MIC) and minimum bactericidal concentration (MBC) were estimated using turbidimetry. The data analysis showed size of 50-250 nm spherical shaped nanoparticles. The turbidimetry analysis showed MIC and MBC was >25 μg/mL against both Gram positive and Gram negative bacteria in Luria Bertani broth cultures. In summary the synthesized silver nanoparticles from CPL showed acceptable size and shape of nanoparticles and effective bactericidal activity.
Otoconial formation in the fetal rat
NASA Technical Reports Server (NTRS)
Salamat, M. S.; Ross, M. D.; Peacor, D. R.
1980-01-01
Otoconial formation in the fetal rat is examined by scanning and transmission electron microscopy, and by X-ray elemental analysis. The primitive otoconia appear highly organic, but are trigonal in cross section, indicating that they already possess a three-fold axis of symmetry and a complement of calcite. These otoconia develop into spindle-shaped and, subsequently, dumbbell-shaped units. Transmission electron microscopy of dumbbell-shaped otoconia not exposed to fluids during embedment showed that calcite deposits mimicked the arrangement of the organic material. X-ray elemental analysis demonstrated that calcium was present in lower quantities in the central core than peripherally. It is concluded that organic material is essential to otoconial seeding and directs otoconial growth.
NASA Astrophysics Data System (ADS)
Wang, Lei; Zhang, Xun; Wang, Lu Min; Huang, Hong Liang; Zhang, Yu; Liu, Yong Li; Feng, Wei Dong; Zhang, Rong Jun
2018-06-01
The effect of panel shape on hydrodynamic performances of a vertical v-shaped double-slotted cambered otter-board was investigated using engineering models in a wind tunnel. Three different shape panels (rhomboid, left trapezoid and isosceles trapezoid) were evaluated at a wind speed of 28 m/s. Parameters measured included: drag coefficient Cx, lift coefficient Cy, pitch moment coefficient Cm, center of pressure coefficient Cp , over a range of angle of attack (0° to 70°). These coefficients were used in analyzing the differences in the performance among the three otter-board models. Results showed that the maximum lift coefficient Cy of the otter-board model with the isosceles trapezoid shape panels was highest (2.103 at α=45°). The maximum Cy/Cx of the otter-board with the rhomboid shape panels was highest (3.976 at α=15°). A comparative analysis of Cm and Cp showed that the stability of otter-board model with the isosceles trapezoid shape panels is better in pitch, and the stability of otter-board model with the left trapezoid shape panels is better in roll. The findings of this study can offer useful reference data for the structural optimization of otter-boards for trawling.
Dynamic Substrate for the Physical Encoding of Sensory Information in Bat Biosonar
NASA Astrophysics Data System (ADS)
Müller, Rolf; Gupta, Anupam K.; Zhu, Hongxiao; Pannala, Mittu; Gillani, Uzair S.; Fu, Yanqing; Caspers, Philip; Buck, John R.
2017-04-01
Horseshoe bats have dynamic biosonar systems with interfaces for ultrasonic emission (reception) that change shape while diffracting the outgoing (incoming) sound waves. An information-theoretic analysis based on numerical and physical prototypes shows that these shape changes add sensory information (mutual information between distant shape conformations <20 %), increase the number of resolvable directions of sound incidence, and improve the accuracy of direction finding. These results demonstrate that horseshoe bats have a highly effective substrate for dynamic encoding of sensory information.
Dynamic Substrate for the Physical Encoding of Sensory Information in Bat Biosonar.
Müller, Rolf; Gupta, Anupam K; Zhu, Hongxiao; Pannala, Mittu; Gillani, Uzair S; Fu, Yanqing; Caspers, Philip; Buck, John R
2017-04-14
Horseshoe bats have dynamic biosonar systems with interfaces for ultrasonic emission (reception) that change shape while diffracting the outgoing (incoming) sound waves. An information-theoretic analysis based on numerical and physical prototypes shows that these shape changes add sensory information (mutual information between distant shape conformations <20%), increase the number of resolvable directions of sound incidence, and improve the accuracy of direction finding. These results demonstrate that horseshoe bats have a highly effective substrate for dynamic encoding of sensory information.
The analysis of morphometric data on rocky mountain wolves and artic wolves using statistical method
NASA Astrophysics Data System (ADS)
Ammar Shafi, Muhammad; Saifullah Rusiman, Mohd; Hamzah, Nor Shamsidah Amir; Nor, Maria Elena; Ahmad, Noor’ani; Azia Hazida Mohamad Azmi, Nur; Latip, Muhammad Faez Ab; Hilmi Azman, Ahmad
2018-04-01
Morphometrics is a quantitative analysis depending on the shape and size of several specimens. Morphometric quantitative analyses are commonly used to analyse fossil record, shape and size of specimens and others. The aim of the study is to find the differences between rocky mountain wolves and arctic wolves based on gender. The sample utilised secondary data which included seven variables as independent variables and two dependent variables. Statistical modelling was used in the analysis such was the analysis of variance (ANOVA) and multivariate analysis of variance (MANOVA). The results showed there exist differentiating results between arctic wolves and rocky mountain wolves based on independent factors and gender.
Estévez Campo, Enrique José; López-Lázaro, Sandra; López-Morago Rodríguez, Claudia; Alemán Aguilera, Inmaculada; Botella López, Miguel Cecilio
2018-05-01
Sex determination of unknown individuals is one of the primary goals of Physical and Forensic Anthropology. The adult skeleton can be sexed using both morphological and metric traits on a large number of bones. The human pelvis is often used as an important element of adult sex determination. However, studies carried out about the pelvic bone in subadult individuals present several limitations due the absence of sexually dimorphic characteristics. In this study, we analyse the sexual dimorphism of the immature pubis and ischium bones, attending to their shape (Procrustes residuals) and size (centroid size), using an identified sample of subadult individuals composed of 58 individuals for the pubis and 83 for the ischium, aged between birth and 1year of life, from the Granada osteological collection of identified infants (Granada, Spain). Geometric morphometric methods and discriminant analysis were applied to this study. The results of intra- and inter-observer error showed good and excellent agreement in the location of coordinates of landmarks and semilandmarks, respectively. Principal component analysis performed on shape and size variables showed superposition of the two sexes, suggesting a low degree of sexual dimorphism. Canonical variable analysis did not show significant changes between the male and female shapes. As a consequence, discriminant analysis with leave-one-out cross validation provided low classification accuracy. The results suggested a low degree of sexual dimorphism supported by significant sexual dimorphism in the subadult sample and poor cross-validated classification accuracy. The inclusion of centroid size as a discriminant variable does not imply a significant improvement in the results of the analysis. The similarities found between the sexes prevent consideration of pubic and ischial morphology as a sex estimator in early stages of development. The authors suggest extending this study by analysing the different trajectories of shape and size in later ontogeny between males and females. Copyright © 2018 Elsevier B.V. All rights reserved.
Mindboggling morphometry of human brains
Bao, Forrest S.; Giard, Joachim; Stavsky, Eliezer; Lee, Noah; Rossa, Brian; Reuter, Martin; Chaibub Neto, Elias
2017-01-01
Mindboggle (http://mindboggle.info) is an open source brain morphometry platform that takes in preprocessed T1-weighted MRI data and outputs volume, surface, and tabular data containing label, feature, and shape information for further analysis. In this article, we document the software and demonstrate its use in studies of shape variation in healthy and diseased humans. The number of different shape measures and the size of the populations make this the largest and most detailed shape analysis of human brains ever conducted. Brain image morphometry shows great potential for providing much-needed biological markers for diagnosing, tracking, and predicting progression of mental health disorders. Very few software algorithms provide more than measures of volume and cortical thickness, while more subtle shape measures may provide more sensitive and specific biomarkers. Mindboggle computes a variety of (primarily surface-based) shapes: area, volume, thickness, curvature, depth, Laplace-Beltrami spectra, Zernike moments, etc. We evaluate Mindboggle’s algorithms using the largest set of manually labeled, publicly available brain images in the world and compare them against state-of-the-art algorithms where they exist. All data, code, and results of these evaluations are publicly available. PMID:28231282
The decomposition of deformation: New metrics to enhance shape analysis in medical imaging.
Varano, Valerio; Piras, Paolo; Gabriele, Stefano; Teresi, Luciano; Nardinocchi, Paola; Dryden, Ian L; Torromeo, Concetta; Puddu, Paolo E
2018-05-01
In landmarks-based Shape Analysis size is measured, in most cases, with Centroid Size. Changes in shape are decomposed in affine and non affine components. Furthermore the non affine component can be in turn decomposed in a series of local deformations (partial warps). If the extent of deformation between two shapes is small, the difference between Centroid Size and m-Volume increment is barely appreciable. In medical imaging applied to soft tissues bodies can undergo very large deformations, involving large changes in size. The cardiac example, analyzed in the present paper, shows changes in m-Volume that can reach the 60%. We show here that standard Geometric Morphometrics tools (landmarks, Thin Plate Spline, and related decomposition of the deformation) can be generalized to better describe the very large deformations of biological tissues, without losing a synthetic description. In particular, the classical decomposition of the space tangent to the shape space in affine and non affine components is enriched to include also the change in size, in order to give a complete description of the tangent space to the size-and-shape space. The proposed generalization is formulated by means of a new Riemannian metric describing the change in size as change in m-Volume rather than change in Centroid Size. This leads to a redefinition of some aspects of the Kendall's size-and-shape space without losing Kendall's original formulation. This new formulation is discussed by means of simulated examples using 2D and 3D platonic shapes as well as a real example from clinical 3D echocardiographic data. We demonstrate that our decomposition based approaches discriminate very effectively healthy subjects from patients affected by Hypertrophic Cardiomyopathy. Copyright © 2018 Elsevier B.V. All rights reserved.
NASA Technical Reports Server (NTRS)
Pandya, Mohagna J.; Baysal, Oktay
1997-01-01
A gradient-based shape optimization based on quasi-analytical sensitivities has been extended for practical three-dimensional aerodynamic applications. The flow analysis has been rendered by a fully implicit, finite-volume formulation of the Euler and Thin-Layer Navier-Stokes (TLNS) equations. Initially, the viscous laminar flow analysis for a wing has been compared with an independent computational fluid dynamics (CFD) code which has been extensively validated. The new procedure has been demonstrated in the design of a cranked arrow wing at Mach 2.4 with coarse- and fine-grid based computations performed with Euler and TLNS equations. The influence of the initial constraints on the geometry and aerodynamics of the optimized shape has been explored. Various final shapes generated for an identical initial problem formulation but with different optimization path options (coarse or fine grid, Euler or TLNS), have been aerodynamically evaluated via a common fine-grid TLNS-based analysis. The initial constraint conditions show significant bearing on the optimization results. Also, the results demonstrate that to produce an aerodynamically efficient design, it is imperative to include the viscous physics in the optimization procedure with the proper resolution. Based upon the present results, to better utilize the scarce computational resources, it is recommended that, a number of viscous coarse grid cases using either a preconditioned bi-conjugate gradient (PbCG) or an alternating-direction-implicit (ADI) method, should initially be employed to improve the optimization problem definition, the design space and initial shape. Optimized shapes should subsequently be analyzed using a high fidelity (viscous with fine-grid resolution) flow analysis to evaluate their true performance potential. Finally, a viscous fine-grid-based shape optimization should be conducted, using an ADI method, to accurately obtain the final optimized shape.
Framework for shape analysis of white matter fiber bundles.
Glozman, Tanya; Bruckert, Lisa; Pestilli, Franco; Yecies, Derek W; Guibas, Leonidas J; Yeom, Kristen W
2018-02-15
Diffusion imaging coupled with tractography algorithms allows researchers to image human white matter fiber bundles in-vivo. These bundles are three-dimensional structures with shapes that change over time during the course of development as well as in pathologic states. While most studies on white matter variability focus on analysis of tissue properties estimated from the diffusion data, e.g. fractional anisotropy, the shape variability of white matter fiber bundle is much less explored. In this paper, we present a set of tools for shape analysis of white matter fiber bundles, namely: (1) a concise geometric model of bundle shapes; (2) a method for bundle registration between subjects; (3) a method for deformation estimation. Our framework is useful for analysis of shape variability in white matter fiber bundles. We demonstrate our framework by applying our methods on two datasets: one consisting of data for 6 normal adults and another consisting of data for 38 normal children of age 11 days to 8.5 years. We suggest a robust and reproducible method to measure changes in the shape of white matter fiber bundles. We demonstrate how this method can be used to create a model to assess age-dependent changes in the shape of specific fiber bundles. We derive such models for an ensemble of white matter fiber bundles on our pediatric dataset and show that our results agree with normative human head and brain growth data. Creating these models for a large pediatric longitudinal dataset may improve understanding of both normal development and pathologic states and propose novel parameters for the examination of the pediatric brain. Copyright © 2017 Elsevier Inc. All rights reserved.
Light scattering Q-space analysis of irregularly shaped particles
NASA Astrophysics Data System (ADS)
Heinson, Yuli W.; Maughan, Justin B.; Heinson, William R.; Chakrabarti, Amitabha; Sorensen, Christopher M.
2016-01-01
We report Q-space analysis of light scattering phase function data for irregularly shaped dust particles and of theoretical model output to describe them. This analysis involves plotting the scattered intensity versus the magnitude of the scattering wave vector q = (4π/λ)sin(θ/2), where λ is the optical wavelength and θ is the scattering angle, on a double-logarithmic plot. In q-space all the particle shapes studied display a scattering pattern which includes a q-independent forward scattering regime; a crossover, Guinier regime when q is near the inverse size; a power law regime; and an enhanced backscattering regime. Power law exponents show a quasi-universal functionality with the internal coupling parameter ρ'. The absolute value of the exponents start from 4 when ρ' < 1, the diffraction limit, and decreases as ρ' increases until a constant 1.75 ± 0.25 when ρ' ≳ 10. The diffraction limit exponent implies that despite their irregular structures, all the particles studied have mass and surface scaling dimensions of Dm = 3 and Ds = 2, respectively. This is different from fractal aggregates that have a power law equal to the fractal dimension Df because Df = Dm = Ds < 3. Spheres have Dm = 3 and Ds = 2 but do not show a single power law nor the same functionality with ρ'. The results presented here imply that Q-space analysis can differentiate between spheres and these two types of irregularly shaped particles. Furthermore, they are applicable to analysis of the contribution of aerosol radiative forcing to climate change and of aerosol remote sensing data.
A virtual reconstruction and comparative analysis of the KNM-ER 42700 cranium.
Bauer, Catherine C; Harvati, Katerina
2015-01-01
The taxonomic attribution of the 1.55 million year old young adult fossil calvaria KNM-ER 42700 from Ileret, Kenya, is subject to ongoing controversy. It has been attributed to H. erectus based on comparative description and linear measurements. However, 3-D geometric morphometric analysis found that this specimen fell outside the range of variation of H. erectus in its cranial shape, which was intermediate between H. erectus and modern humans. One problem is that analyses so far were conducted on the original specimen, which shows slight post-mortem distortion. Here we use a surface scan of a high resolution cast of KNM-ER 42700 to virtually reconstruct the calvaria and conduct a new 3D geometric morphometric analysis of both its original and its reconstructed shape. Our comparative sample included several specimens of H. erectus (s.l., including the subadult KNM-WT 15000), H. habilis, H. heidelbergenis (s.l.) and H. neanderthalensis, as well as early and Upper Paleolithic H. sapiens. Our principal component analysis results showed that, like the original specimen, our virtual reconstruction of KNM-ER 42700 is also intermediate in shape between fossil Homo and modern humans. Taphonomic distortion, therefore, appears to not have been a major factor affecting previous 3-D geometric morphometric analyses. The intermediate shape of KNM-ER 42700 might instead be related to the young developmental age of the specimen. Further work on reconstructing the original specimen or based on computed tomorgraphic scans is needed to confirm these results.
NASA Astrophysics Data System (ADS)
Luo, Bo; Zhang, Jinsuo
2018-02-01
This paper investigates the relationship between economic development and environmental pollution in natural resource abundant regions via testing the Environmental Kuznets Curve (EKC) hypothesis by regression analysis, based on the statistical data of per capita GDP growth and environmental pollution indicators in Shaanxi Province from 1989 to 2015. The results show that the per capita GDP and environmental pollution in Shaanxi Province do not always accord with the “inverted U” Environmental Kuznets Curve, which mainly show “N” shapes; only SO2 show the “Inverted U” shapes.
YORP effect on real objects. I. Statistical properties
NASA Astrophysics Data System (ADS)
Micheli, M.; Paolicchi, P.
2008-10-01
Context: The intensity of the YORP (Yarkovsky, O'Keefe, Radzievskii, and Paddack) effect and its ability to affect the rotational properties of asteroids depend mainly on the size of the body and on its shape. At present, we have a database of about 30 well-defined shapes of real minor bodies (most of them asteroids, but also planetary satellites and cometary nuclei). Aims: In this paper we perform a statistical analysis of how the YORP effect depends on the shape. Methods: We used the Rubincam approximation (i.e. neglecting the effects of a finite thermal conductivity). Results: We show that, among real bodies, the distribution of the YORP types, according to the classification of Vokrouhlický and Čapek, is significantly different from the one obtained in the same paper from theoretical modeling of shapes. A new “type” also comes out. Moreover, we show that the types are strongly correlated with the intensity of the YORP effect (when normalized to eliminate the dependence on the size, and thus only related to the shape).
NASA Astrophysics Data System (ADS)
Newman, Peter; Galenano-Niño, Jorge Luis; Graney, Pamela; Razal, Joselito M.; Minett, Andrew I.; Ribas, João; Ovalle-Robles, Raquel; Biro, Maté; Zreiqat, Hala
2016-12-01
The topography of a biomaterial regulates cellular interactions and determine stem cell fate. A complete understanding of how topographical properties affect cell behavior will allow the rational design of material surfaces that elicit specified biological functions once placed in the body. To this end, we fabricate substrates with aligned or randomly organized fibrous nanostructured topographies. Culturing adipose-derived stem cells (ASCs), we explore the dynamic relationship between the alignment of topography, cell shape and cell differentiation to osteogenic and myogenic lineages. We show aligned topographies differentiate cells towards a satellite cell muscle progenitor state - a distinct cell myogenic lineage responsible for postnatal growth and repair of muscle. We analyze cell shape between the different topographies, using fluorescent time-lapse imaging over 21 days. In contrast to previous work, this allows the direct measurement of cell shape at a given time rather than defining the morphology of the underlying topography and neglecting cell shape. We report quantitative metrics of the time-based morphological behaviors of cell shape in response to differing topographies. This analysis offers insights into the relationship between topography, cell shape and cell differentiation. Cells differentiating towards a myogenic fate on aligned topographies adopt a characteristic elongated shape as well as the alignment of cells.
Effect of void shape in Czochralski-Si wafers on the intensity of laser-scattering
NASA Astrophysics Data System (ADS)
Takahashi, J.; Kawakami, K.; Nakai, K.
2001-06-01
The shape effect of anisotropic-shaped microvoid defects in Czochralski-grown silicon wafers on the intensity of laser scattering has been investigated. The size and shape of the defects were examined by means of transmission electron microscopy. Octahedral voids in conventional (nitrogen-undoped) wafers showed an almost isotropic scattering property under the incident condition of a p-polarization beam. On the other hand, parallelepiped-plate-shaped voids in nitrogen-doped wafers showed an anisotropic scattering property on both p- and s-polarized components of scattered light, depending strongly on the incident laser direction. The measured results were explained not by scattering calculation using Born approximation but by calculation based on Rayleigh scattering. It was found that the s component is explained by an inclination of a dipole moment induced on a defect from the scattering plane. Furthermore, using numerical electromagnetic analysis it was shown that the asymmetric behavior of the s component on the parallelepiped-plate voids is ascribed to the parallelepiped shape effect. These results suggest that correction of the scattering intensity is necessary to evaluate the size and volume of anisotropic-shaped defects from the scattered intensity.
Thermal-capillary analysis of small-scale floating zones Steady-state calculations
NASA Technical Reports Server (NTRS)
Duranceau, J. L.; Brown, R. A.
1986-01-01
Galerkin finite element analysis of a thermal-capillary model of the floating zone crystal growth process is used to predict the dependence of molten zone shape on operating conditions for the growth of small silicon boules. The model accounts for conduction-dominated heat transport in the melt, feed rod and growing crystal and for radiation between these phases, the ambient and a heater. Surface tension acting on the shape of the melt/gas meniscus counteracts gravity to set the shape of the molten zone. The maximum diameter of the growing crystal is set by the dewetting of the melt from the feed rod when the crystal radius is large. Calculations with small Bond number show the increased zone lengths possible for growth in a microgravity environment. The sensitivity of the method to the shape and intensity of the applied heating distribution is demonstrated. The calculations are compared with experimental observations.
Factors Affecting the Changes of Ice Crystal Form in Ice Cream
NASA Astrophysics Data System (ADS)
Wang, Xin; Watanabe, Manabu; Suzuki, Toru
In this study, the shape of ice crystals in ice cream was quantitatively evaluated by introducing fractal analysis. A small droplet of commercial ice cream mix was quickly cooled to about -30°C on the cold stage of microscope. Subsequently, it was heated to -5°C or -10°C and then held for various holding time. Based on the captured images at each holding time, the cross-sectional area and the length of circumference for each ice crystal were measured to calculate fractal dimension using image analysis software. The results showed that the ice crystals were categorized into two groups, e.g. simple-shape and complicated-shape, according to their fractal dimensions. The fractal dimension of ice crystals became lower with increasing holding time and holding temperature. It was also indicated that the growing rate of complicated-shape ice crystals was relatively higher because of aggregation.
Controlled Shape Memory Behavior of a Smectic Main-Chain Liquid Crystalline Elastomer
Li, Yuzhan; Pruitt, Cole; Rios, Orlando; ...
2015-04-10
Here, we describe how a smectic main-chain liquid crystalline elastomer (LCE), with controlled shape memory behavior, is synthesized by polymerizing a biphenyl-based epoxy monomer with an aliphatic carboxylic acid curing agent. Microstructures of the LCEs, including their liquid crystallinity and cross-linking density, are modified by adjusting the stoichiometric ratio of the reactants to tailor the thermomechanical properties and shape memory behavior of the material. Thermal and liquid crystalline properties of the LCEs, characterized using differential scanning calorimetry and dynamic mechanical analysis, and structural analysis, performed using small-angle and wide-angle X-ray scattering, show that liquid crystallinity, cross-linking density, and network rigiditymore » are strongly affected by the stoichiometry of the curing reaction. With appropriate structural modifications it is possible to tune the thermal, dynamic mechanical, and thermomechanical properties as well as the shape memory and thermal degradation behavior of LCEs.« less
Controlled Shape Memory Behavior of a Smectic Main-Chain Liquid Crystalline Elastomer
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Yuzhan; Pruitt, Cole; Rios, Orlando
Here, we describe how a smectic main-chain liquid crystalline elastomer (LCE), with controlled shape memory behavior, is synthesized by polymerizing a biphenyl-based epoxy monomer with an aliphatic carboxylic acid curing agent. Microstructures of the LCEs, including their liquid crystallinity and cross-linking density, are modified by adjusting the stoichiometric ratio of the reactants to tailor the thermomechanical properties and shape memory behavior of the material. Thermal and liquid crystalline properties of the LCEs, characterized using differential scanning calorimetry and dynamic mechanical analysis, and structural analysis, performed using small-angle and wide-angle X-ray scattering, show that liquid crystallinity, cross-linking density, and network rigiditymore » are strongly affected by the stoichiometry of the curing reaction. With appropriate structural modifications it is possible to tune the thermal, dynamic mechanical, and thermomechanical properties as well as the shape memory and thermal degradation behavior of LCEs.« less
Otolith patterns of rockfishes from the northeastern Pacific.
Tuset, Victor M; Imondi, Ralph; Aguado, Guillermo; Otero-Ferrer, José L; Santschi, Linda; Lombarte, Antoni; Love, Milton
2015-04-01
Sagitta otolith shape was analysed in twenty sympatric rockfishes off the southern California coast (Northeastern Pacific). The variation in shape was quantified using canonical variate analysis based on fifth wavelet function decomposition of otolith contour. We selected wavelets because this representation allow the identifications of zones or single morphological points along the contour. The entire otoliths along with four subsections (anterior, ventral, posterodorsal, and anterodorsal) with morphological meaning were examined. Multivariate analyses (MANOVA) showed significant differences in the contours of whole otolith morphology and corresponding subsection among rockfishes. Four patterns were found: fusiform, oblong, and two types of elliptic. A redundancy analysis indicated that anterior and anterodorsal subsections contribute most to define the entire otolith shape. Complementarily, the eco-morphological study indicated that the depth distribution and strategies for capture prey were correlated to otolith shape, especially with the anterodorsal zone. © 2014 Wiley Periodicals, Inc.
Design of the Cross Section Shape of AN Aluminum Crash Box for Crashworthiness Enhancement of a CAR
NASA Astrophysics Data System (ADS)
Kim, S. B.; Huh, H.; Lee, G. H.; Yoo, J. S.; Lee, M. Y.
This paper deals with the crashworthiness of an aluminum crash box for an auto-body with the various shapes of cross section such as a rectangle, a hexagon and an octagon. First, crash boxes with various cross sections were tested with numerical simulation to obtain the energy absorption capacity and the mean load. In case of the simple axial crush, the octagon shape shows higher mean load and energy absorption than the other two shapes. Secondly, the crash boxes were assembled to a simplified auto-body model for the overall crashworthiness. The model consists of a bumper, crash boxes, front side members and a sub-frame representing the behavior of a full car at the low speed impact. The analysis result shows that the rectangular cross section shows the best performance as a crash box which deforms prior to the front side member. The hexagonal and octagonal cross sections undergo torsion and local buckling as the width of cross section decreases while the rectangular cross section does not. The simulation result of the rectangular crash box was verified with the experimental result. The simulation result shows close tendency in the deformed shape and the load-displacement curve to the experimental result.
NASA Astrophysics Data System (ADS)
Xiong, Yujie; Xie, Yi; Li, Zhengquan; Li, Xiaoxu; Zhang, Rong
2003-11-01
The fabrication of necklace-shaped assembly of inorganic fullerene-like molybdenum disulfide nanospheres via a micelle-assisted route is reported, in which necklace-shaped assembly of amorphous MoS 3 nanospheres is driven by the aggregation transformation of surfactants at low temperatures and then is transformed to the assembly of target fullerene-like MoS 2 by annealing. This nanostructure is a type of oriented assembly of inorganic fullerene-like structures, which is confirmed by the transmission electron microscopy and high-resolution transmission electron microscopy analysis. The optical absorption property is investigated to show their inorganic fullerene-like structure and uniform shape.
Crack-shape effects for indentation fracture toughness measurements
DOE Office of Scientific and Technical Information (OSTI.GOV)
Smith, S.M.; Scattergood, R.O.
1992-02-01
Various methods to measure fracture toughness using indentation precracks were compared using soda-lime glass as a test material. In situ measurements of crack size as a function of applied stress allow both the toughness K[sub c] and the residual-stress factor [chi] to be independently determined. Analysis of the data showed that stress intensity factors based on classical half-penny crack shapes overestimate toughness values and produce an apparent R-curve effect. This is due to a constraint on crack shape imposed by primary lateral cracks in soda-lime glass. Models based on elliptical cracks were developed to account for the crack-shape effects.
Does the Rotator Cuff Tear Pattern Influence Clinical Outcomes After Surgical Repair?
Watson, Scott; Allen, Benjamin; Robbins, Chris; Bedi, Asheesh; Gagnier, Joel J.; Miller, Bruce
2018-01-01
Background: Limited literature exists regarding the influence of rotator cuff tear morphology on patient outcomes. Purpose: To determine the effect of rotator cuff tear pattern (crescent, U-shape, L-shape) on patient-reported outcomes after rotator cuff repair. Study Design: Cohort study; Level of evidence, 3. Methods: Patients undergoing arthroscopic repair of known full-thickness rotator cuff tears were observed prospectively at regular intervals from baseline to 1 year. The tear pattern was classified at the time of surgery as crescent, U-shaped, or L-shaped. Primary outcome measures were the Western Ontario Rotator Cuff Index (WORC), the American Shoulder and Elbow Surgeons (ASES), and a visual analog scale (VAS) for pain. The tear pattern was evaluated as the primary predictor while controlling for variables known to affect rotator cuff outcomes. Mixed-methods regression and analysis of variance (ANOVA) were used to examine the effects of tear morphology on patient-reported outcomes after surgical repair from baseline to 1 year. Results: A total of 82 patients were included in the study (53 male, 29 female; mean age, 58 years [range, 41-75 years]). A crescent shape was the most common tear pattern (54%), followed by U-shaped (25%) and L-shaped tears (21%). There were no significant differences in outcome scores between the 3 groups at baseline. All 3 groups showed statistically significant improvement from baseline to 1 year, but analysis failed to show any predictive effect in the change in outcome scores from baseline to 1 year for the WORC, ASES, or VAS when tear pattern was the primary predictor. Further ANOVA also failed to show any significant difference in the change in outcome scores from baseline to 1 year for the WORC (P = .96), ASES (P = .71), or VAS (P = .86). Conclusion: Rotator cuff tear pattern is not a predictor of functional outcomes after arthroscopic rotator cuff repair. PMID:29623283
Does the Rotator Cuff Tear Pattern Influence Clinical Outcomes After Surgical Repair?
Watson, Scott; Allen, Benjamin; Robbins, Chris; Bedi, Asheesh; Gagnier, Joel J; Miller, Bruce
2018-03-01
Limited literature exists regarding the influence of rotator cuff tear morphology on patient outcomes. To determine the effect of rotator cuff tear pattern (crescent, U-shape, L-shape) on patient-reported outcomes after rotator cuff repair. Cohort study; Level of evidence, 3. Patients undergoing arthroscopic repair of known full-thickness rotator cuff tears were observed prospectively at regular intervals from baseline to 1 year. The tear pattern was classified at the time of surgery as crescent, U-shaped, or L-shaped. Primary outcome measures were the Western Ontario Rotator Cuff Index (WORC), the American Shoulder and Elbow Surgeons (ASES), and a visual analog scale (VAS) for pain. The tear pattern was evaluated as the primary predictor while controlling for variables known to affect rotator cuff outcomes. Mixed-methods regression and analysis of variance (ANOVA) were used to examine the effects of tear morphology on patient-reported outcomes after surgical repair from baseline to 1 year. A total of 82 patients were included in the study (53 male, 29 female; mean age, 58 years [range, 41-75 years]). A crescent shape was the most common tear pattern (54%), followed by U-shaped (25%) and L-shaped tears (21%). There were no significant differences in outcome scores between the 3 groups at baseline. All 3 groups showed statistically significant improvement from baseline to 1 year, but analysis failed to show any predictive effect in the change in outcome scores from baseline to 1 year for the WORC, ASES, or VAS when tear pattern was the primary predictor. Further ANOVA also failed to show any significant difference in the change in outcome scores from baseline to 1 year for the WORC ( P = .96), ASES ( P = .71), or VAS ( P = .86). Rotator cuff tear pattern is not a predictor of functional outcomes after arthroscopic rotator cuff repair.
Packing a pinch: functional implications of chela shapes in scorpions using finite element analysis
van der Meijden, Arie; Kleinteich, Thomas; Coelho, Pedro
2012-01-01
Scorpions depend on their pedipalps for prey capture, defense, mating and sensing their environment. Some species additionally use their pedipalps for burrowing or climbing. Because the pincers or chelae at the end of the pedipalps vary widely in shape, they have been used as part of a suite of characters to delimit ecomorphotypes. We here evaluate the influence of the different chela cuticular shapes on their performance under natural loading conditions. Chelae of 20 species, representing seven families and spanning most of the range of chela morphologies, were assigned to clusters based on chela shape parameters using hierarchical cluster analysis. Several clusters were identified corresponding approximately to described scorpion ecomorphotypes. Finite element models of the chela cuticulae were constructed from CT scans and loaded with estimated pinch forces based on in vivo force measurements. Chela shape clusters differed significantly in mean Von Mises stress and strain energy. Normalized FEA showed that chela shape significantly influenced Von Mises stress and strain energy in the chela cuticula, with Von Mises stress varying up to an order of magnitude and strain energy up to two orders of magnitude. More elongate, high-aspect ratio chela forms showed significantly higher mean stress compared with more robust low-aspect ratio forms. This suggests that elongate chelae are at a higher risk of failure when operating near the maximum pinch force. Phylogenetic independent contrasts (PIC) were calculated based on a partly resolved phylogram with branch lengths based on an alignment of the 12S, 16S and CO1 mitochondrial genes. PIC showed that cuticular stress and strain in the chela were correlated with several shape parameters, such as aspect ratio, movable finger length, and chela height, independently of phylogenetic history. Our results indicate that slender chela morphologies may be less suitable for high-force functions such as burrowing and defense. Further implications of these findings for the ecology and evolution of the different chela morphologies are discussed. PMID:22360433
Nodal domains of a non-separable problem—the right-angled isosceles triangle
NASA Astrophysics Data System (ADS)
Aronovitch, Amit; Band, Ram; Fajman, David; Gnutzmann, Sven
2012-03-01
We study the nodal set of eigenfunctions of the Laplace operator on the right-angled isosceles triangle. A local analysis of the nodal pattern provides an algorithm for computing the number νn of nodal domains for any eigenfunction. In addition, an exact recursive formula for the number of nodal domains is found to reproduce all existing data. Eventually, we use the recursion formula to analyse a large sequence of nodal counts statistically. Our analysis shows that the distribution of nodal counts for this triangular shape has a much richer structure than the known cases of regular separable shapes or completely irregular shapes. Furthermore, we demonstrate that the nodal count sequence contains information about the periodic orbits of the corresponding classical ray dynamics.
Shape-based diffeomorphic registration on hippocampal surfaces using Beltrami holomorphic flow.
Lui, Lok Ming; Wong, Tsz Wai; Thompson, Paul; Chan, Tony; Gu, Xianfeng; Yau, Shing-Tung
2010-01-01
We develop a new algorithm to automatically register hippocampal (HP) surfaces with complete geometric matching, avoiding the need to manually label landmark features. A good registration depends on a reasonable choice of shape energy that measures the dissimilarity between surfaces. In our work, we first propose a complete shape index using the Beltrami coefficient and curvatures, which measures subtle local differences. The proposed shape energy is zero if and only if two shapes are identical up to a rigid motion. We then seek the best surface registration by minimizing the shape energy. We propose a simple representation of surface diffeomorphisms using Beltrami coefficients, which simplifies the optimization process. We then iteratively minimize the shape energy using the proposed Beltrami Holomorphic flow (BHF) method. Experimental results on 212 HP of normal and diseased (Alzheimer's disease) subjects show our proposed algorithm is effective in registering HP surfaces with complete geometric matching. The proposed shape energy can also capture local shape differences between HP for disease analysis.
SVBRDF-Invariant Shape and Reflectance Estimation from a Light-Field Camera.
Wang, Ting-Chun; Chandraker, Manmohan; Efros, Alexei A; Ramamoorthi, Ravi
2018-03-01
Light-field cameras have recently emerged as a powerful tool for one-shot passive 3D shape capture. However, obtaining the shape of glossy objects like metals or plastics remains challenging, since standard Lambertian cues like photo-consistency cannot be easily applied. In this paper, we derive a spatially-varying (SV)BRDF-invariant theory for recovering 3D shape and reflectance from light-field cameras. Our key theoretical insight is a novel analysis of diffuse plus single-lobe SVBRDFs under a light-field setup. We show that, although direct shape recovery is not possible, an equation relating depths and normals can still be derived. Using this equation, we then propose using a polynomial (quadratic) shape prior to resolve the shape ambiguity. Once shape is estimated, we also recover the reflectance. We present extensive synthetic data on the entire MERL BRDF dataset, as well as a number of real examples to validate the theory, where we simultaneously recover shape and BRDFs from a single image taken with a Lytro Illum camera.
Brewer, Amandaa K; Striegel, André M
2011-04-15
The string-of-pearls-type morphology is ubiquitous, manifesting itself variously in proteins, vesicles, bacteria, synthetic polymers, and biopolymers. Characterizing the size and shape of analytes with such morphology, however, presents a challenge, due chiefly to the ease with which the "strings" can be broken during chromatographic analysis or to the paucity of information obtained from the benchmark microscopy and off-line light scattering methods. Here, we address this challenge with multidetector hydrodynamic chromatography (HDC), which has the ability to determine, simultaneously, the size, shape, and compactness and their distributions of string-of-pearls samples. We present the quadruple-detector HDC analysis of colloidal string-of-pearls silica, employing static multiangle and quasielastic light scattering, differential viscometry, and differential refractometry as detection methods. The multidetector approach shows a sample that is broadly polydisperse in both molar mass and size, with strings ranging from two to five particles, but which also contains a high concentration of single, unattached "pearls". Synergistic combination of the various size parameters obtained from the multiplicity of detectors employed shows that the strings with higher degrees of polymerization have a shape similar to the theory-predicted shape of a Gaussian random coil chain of nonoverlapping beads, while the strings with lower degrees of polymerization have a prolate ellipsoidal shape. The HDC technique is contrasted experimentally with multidetector size-exclusion chromatography, where, even under extremely gentle conditions, the strings still degraded during analysis. Such degradation is shown to be absent in HDC, as evidenced by the fact that the molar mass and radius of gyration obtained by HDC with multiangle static light scattering detection (HDC/MALS) compare quite favorably to those determined by off-line MALS analysis under otherwise identical conditions. The multidetector HDC results were also comparable to those obtained by transmission electron microscopy (TEM). Unlike off-line MALS or TEM, however, multidetector HDC is able to provide complete particle analysis based on the molar mass, size, shape, and compactness and their distributions for the entire sample population in less than 20 min. © 2011 American Chemical Society
Comparison of Aircraft Icing Growth Assessment Software
NASA Technical Reports Server (NTRS)
Wright, William; Potapczuk, Mark G.; Levinson, Laurie H.
2011-01-01
A research project is underway to produce computer software that can accurately predict ice growth under any meteorological conditions for any aircraft surface. An extensive comparison of the results in a quantifiable manner against the database of ice shapes that have been generated in the NASA Glenn Icing Research Tunnel (IRT) has been performed, including additional data taken to extend the database in the Super-cooled Large Drop (SLD) regime. The project shows the differences in ice shape between LEWICE 3.2.2, GlennICE, and experimental data. The project addresses the validation of the software against a recent set of ice-shape data in the SLD regime. This validation effort mirrors a similar effort undertaken for previous validations of LEWICE. Those reports quantified the ice accretion prediction capabilities of the LEWICE software. Several ice geometry features were proposed for comparing ice shapes in a quantitative manner. The resulting analysis showed that LEWICE compared well to the available experimental data.
Analysis of intelligent hinged shell structures: deployable deformation and shape memory effect
NASA Astrophysics Data System (ADS)
Shi, Guang-Hui; Yang, Qing-Sheng; He, X. Q.
2013-12-01
Shape memory polymers (SMPs) are a class of intelligent materials with the ability to recover their initial shape from a temporarily fixable state when subjected to external stimuli. In this work, the thermo-mechanical behavior of a deployable SMP-based hinged structure is modeled by the finite element method using a 3D constitutive model with shape memory effect. The influences of hinge structure parameters on the nonlinear loading process are investigated. The total shape memory of the processes the hinged structure goes through, including loading at high temperature, decreasing temperature with load carrying, unloading at low temperature and recovering the initial shape with increasing temperature, are illustrated. Numerical results show that the present constitutive theory and the finite element method can effectively predict the complicated thermo-mechanical deformation behavior and shape memory effect of SMP-based hinged shell structures.
Vibration of middle ear with shape memory prosthesis - Experimental and numerical study
NASA Astrophysics Data System (ADS)
Rafal, Rusinek; Szymanski, Marcin; Lajmert, Pawel
2018-01-01
The paper presents experimental investigations of ossicular chain vibrations using a Laser Doppler Vibrometer (LDV) for the intact middle ear and a reconstructed one by means of the new designed shape memory prosthesis. Vibrations of the round window are measured with the Laser Doppler vibrometer and studied classically by the transfer function analysis. Moreover, the recurrence plot technique and the Hilbert vibration decomposition method are used to extend the classical analysis. The new methods show additional vibrations components and provide more information about middle ear behaviour.
Tree-shaped fractal meta-surface with left-handed characteristics for absorption application
NASA Astrophysics Data System (ADS)
Faruque, M. R. I.; Hasan, M. M.; Islam, M. T.
2018-02-01
A tri-band fractal meta-surface absorber composed of metallic branches of a tree connected with a straight metal strip has been presented in this paper for high absorption application. The proposed tree-shaped structure shows resonance in C-, X-, and Ku-bands and left-handed characteristics in 14.15 GHz. The dimension of the tree-shaped meta-surface single unit cell structure is 9 × 9 mm2 and the effective medium ratio is 5.50. In addition, the designed absorber structure shows absorption above 84%, whereas the absorber structure printed on epoxy resin fiber substrate material. The FIT-based CST-MWS has been utilized for the design, simulation, and analysis purposes. Fabrication is also done for the experimental validation.
Schmidt, Ricarda; Vogel, Mandy; Hiemisch, Andreas; Kiess, Wieland; Hilbert, Anja
2018-08-01
Although restrictive eating behaviors are very common during early childhood, their precise nature and clinical correlates remain unclear. Especially, there is little evidence on restrictive eating behaviors in older children and their associations with children's shape concern. The present population-based study sought to delineate subgroups of restrictive eating patterns in N = 799 7-14 year old children. Using Latent Class Analysis, children were classified based on six restrictive eating behaviors (for example, picky eating, food neophobia, and eating-related anxiety) and shape concern, separately in three age groups. For cluster validation, sociodemographic and objective anthropometric data, parental feeding practices, and general and eating disorder psychopathology were used. The results showed a 3-cluster solution across all age groups: an asymptomatic class (Cluster 1), a class with restrictive eating behaviors without shape concern (Cluster 2), and a class showing restrictive eating behaviors with prominent shape concern (Cluster 3). The clusters differed in all variables used for validation. Particularly, the proportion of children with symptoms of avoidant/restrictive food intake disorder was greater in Cluster 2 than Clusters 1 and 3. The study underlined the importance of considering shape concern to distinguish between different phenotypes of children's restrictive eating patterns. Longitudinal data are needed to evaluate the clusters' predictive effects on children's growth and development of clinical eating disorders. Copyright © 2018 Elsevier Ltd. All rights reserved.
Kim, Taehyun; Kim, Jung Jun; Kim, Mi Yeon; Kim, Shin Kyoung; Roh, Sungwon; Seo, Jeong Seok
2015-06-01
Objective personality tests, such as the Minnesota Multiphasic Personality Inventory (MMPI), might be more sensitive to reflect subclinical personality and be more state-dependent in an individual's lifetime, so they are good scales to predict the psychological distress regarding certain states. The aim of this study was to identify the specific pattern between body mass index (BMI) and psychological distress using the objective personality test. For this study, we investigated BMI and the Korean Military Multiphasic Personality Inventory (MPI). A retrospective cross-sectional study was conducted with 19-yr-old examinees who were admitted to the Military Manpower Administration in Korea from February 2007 to January 2010. Of 1,088,107 examinees, we enrolled 771,408 subjects who were psychologically apparent healthy possible-military-service groups. Afterwards, we reviewed and analyzed directly measured BMI and MPI results. In terms of the validity scales, the faking-good subscale showed an inverted U-shaped association, and faking-bad and infrequency subscales showed a U-shaped association with BMI groups. In terms of the neurosis scales, all clinical subscales (anxiety, depression, somatization, and personality disorder) also showed a U-shaped association with BMI groups. For the psychopath scales, the schizophrenia subscale showed a U-shaped association, and the paranoia subscale showed a near-positive correlation with BMI. In conclusion, a specific U-shaped pattern was observed between BMI and the MPI in 19-yr-old men in Korea. Underweight and obesity are related to psychological distress, so supportive advice and education are needed to them.
On the orbits that generate the X-shape in the Milky Way bulge
NASA Astrophysics Data System (ADS)
Abbott, Caleb G.; Valluri, Monica; Shen, Juntai; Debattista, Victor P.
2017-09-01
The Milky Way (MW) bulge shows a boxy/peanut or X-shaped bulge (hereafter BP/X) when viewed in infrared or microwave bands. We examine orbits in an N-body model of a barred disc galaxy that is scaled to match the kinematics of the MW bulge. We generate maps of projected stellar surface density, unsharp masked images, 3D excess-mass distributions (showing mass outside ellipsoids), line-of-sight number count distributions, and 2D line-of-sight kinematics for the simulation as well as co-added orbit families, in order to identify the orbits primarily responsible for the BP/X shape. We estimate that between 19 and 23 per cent of the mass of the bar in this model is associated with the BP/X shape and that the majority of bar orbits contribute to this shape that is clearly seen in projected surface density maps and 3D excess mass for non-resonant box orbits, 'banana' orbits, 'fish/pretzel' orbits and 'brezel' orbits. Although only the latter two families (comprising 7.5 per cent of the total mass) show a distinct X-shape in unsharp masked images, we find that nearly all bar orbit families contribute some mass to the 3D BP/X-shape. All co-added orbit families show a bifurcation in stellar number count distribution with distance that resembles the bifurcation observed in red clump stars in the MW. However, only the box orbit family shows an increasing separation of peaks with increasing galactic latitude |b|, similar to that observed. Our analysis suggests that no single orbit family fully explains all the observed features associated with the MW's BP/X-shaped bulge, but collectively the non-resonant boxes and various resonant boxlet orbits contribute at different distances from the centre to produce this feature. We propose that since box orbits (which are the dominant population in bars) have three incommensurable orbital fundamental frequencies, their 3D shapes are highly flexible and, like Lissajous figures, this family of orbits is most easily able to adapt to evolution in the shape of the underlying potential.
NASA Astrophysics Data System (ADS)
Mendoza, Carlos S.; Safdar, Nabile; Myers, Emmarie; Kittisarapong, Tanakorn; Rogers, Gary F.; Linguraru, Marius George
2013-02-01
Craniosynostosis (premature fusion of skull sutures) is a severe condition present in one of every 2000 newborns. Metopic craniosynostosis, accounting for 20-27% of cases, is diagnosed qualitatively in terms of skull shape abnormality, a subjective call of the surgeon. In this paper we introduce a new quantitative diagnostic feature for metopic craniosynostosis derived optimally from shape analysis of CT scans of the skull. We built a robust shape analysis pipeline that is capable of obtaining local shape differences in comparison to normal anatomy. Spatial normalization using 7-degree-of-freedom registration of the base of the skull is followed by a novel bone labeling strategy based on graph-cuts according to labeling priors. The statistical shape model built from 94 normal subjects allows matching a patient's anatomy to its most similar normal subject. Subsequently, the computation of local malformations from a normal subject allows characterization of the points of maximum malformation on each of the frontal bones adjacent to the metopic suture, and on the suture itself. Our results show that the malformations at these locations vary significantly (p<0.001) between abnormal/normal subjects and that an accurate diagnosis can be achieved using linear regression from these automatic measurements with an area under the curve for the receiver operating characteristic of 0.97.
Quantitative characterisation of sedimentary grains
NASA Astrophysics Data System (ADS)
Tunwal, Mohit; Mulchrone, Kieran F.; Meere, Patrick A.
2016-04-01
Analysis of sedimentary texture helps in determining the formation, transportation and deposition processes of sedimentary rocks. Grain size analysis is traditionally quantitative, whereas grain shape analysis is largely qualitative. A semi-automated approach to quantitatively analyse shape and size of sand sized sedimentary grains is presented. Grain boundaries are manually traced from thin section microphotographs in the case of lithified samples and are automatically identified in the case of loose sediments. Shape and size paramters can then be estimated using a software package written on the Mathematica platform. While automated methodology already exists for loose sediment analysis, the available techniques for the case of lithified samples are limited to cases of high definition thin section microphotographs showing clear contrast between framework grains and matrix. Along with the size of grain, shape parameters such as roundness, angularity, circularity, irregularity and fractal dimension are measured. A new grain shape parameter developed using Fourier descriptors has also been developed. To test this new approach theoretical examples were analysed and produce high quality results supporting the accuracy of the algorithm. Furthermore sandstone samples from known aeolian and fluvial environments from the Dingle Basin, County Kerry, Ireland were collected and analysed. Modern loose sediments from glacial till from County Cork, Ireland and aeolian sediments from Rajasthan, India have also been collected and analysed. A graphical summary of the data is presented and allows for quantitative distinction between samples extracted from different sedimentary environments.
Information Geometry for Landmark Shape Analysis: Unifying Shape Representation and Deformation
Peter, Adrian M.; Rangarajan, Anand
2010-01-01
Shape matching plays a prominent role in the comparison of similar structures. We present a unifying framework for shape matching that uses mixture models to couple both the shape representation and deformation. The theoretical foundation is drawn from information geometry wherein information matrices are used to establish intrinsic distances between parametric densities. When a parameterized probability density function is used to represent a landmark-based shape, the modes of deformation are automatically established through the information matrix of the density. We first show that given two shapes parameterized by Gaussian mixture models (GMMs), the well-known Fisher information matrix of the mixture model is also a Riemannian metric (actually, the Fisher-Rao Riemannian metric) and can therefore be used for computing shape geodesics. The Fisher-Rao metric has the advantage of being an intrinsic metric and invariant to reparameterization. The geodesic—computed using this metric—establishes an intrinsic deformation between the shapes, thus unifying both shape representation and deformation. A fundamental drawback of the Fisher-Rao metric is that it is not available in closed form for the GMM. Consequently, shape comparisons are computationally very expensive. To address this, we develop a new Riemannian metric based on generalized ϕ-entropy measures. In sharp contrast to the Fisher-Rao metric, the new metric is available in closed form. Geodesic computations using the new metric are considerably more efficient. We validate the performance and discriminative capabilities of these new information geometry-based metrics by pairwise matching of corpus callosum shapes. We also study the deformations of fish shapes that have various topological properties. A comprehensive comparative analysis is also provided using other landmark-based distances, including the Hausdorff distance, the Procrustes metric, landmark-based diffeomorphisms, and the bending energies of the thin-plate (TPS) and Wendland splines. PMID:19110497
Characterizing Effects of Nitric Oxide Sterilization on tert-Butyl Acrylate Shape Memory Polymers
NASA Astrophysics Data System (ADS)
Phillippi, Ben
As research into the potential uses of shape memory polymers (SMPs) as implantable medical devices continues to grow and expand, so does the need for an accurate and reliable sterilization mechanism. The ability of an SMP to precisely undergo a programmed shape change will define its ability to accomplish a therapeutic task. To ensure proper execution of the in vivo shape change, the sterilization process must not negatively affect the shape memory behavior of the material. To address this need, this thesis investigates the effectiveness of a benchtop nitric oxide (NOx) sterilization process and the extent to which the process affects the shape memory behavior of a well-studied tert-Butyl Acrylate (tBA) SMP. Quantifying the effects on shape memory behavior was performed using a two-tiered analysis. A two-tiered study design was used to determine if the sterilization process induced any premature shape recovery and to identify any effects that NOx has on the overall shape memory behavior of the foams. Determining the effectiveness of the NOx system--specially, whether the treated samples are more sterile/less contaminated than untreated--was also performed with a two-tiered analysis. In this case, the two-tiered analysis was employed to have a secondary check for contamination. To elaborate, all of the samples that were deemed not contaminated from the initial test were put through a second sterility test to check for contamination a second time. The results of these tests indicated the NOx system is an effective sterilization mechanism and the current protocol does not negatively impact the shape memory behavior of the tBA SMP. The samples held their compressed shape throughout the entirety of the sterilization process. Additionally, there were no observable impacts on the shape memory behavior induced by NOx. Lastly, the treated samples demonstrated lower contamination than the untreated. This thesis demonstrates the effectiveness of NOx as a laboratory scale sterilization mechanism for heat triggered shape memory polymers. The shape memory analysis indicated that the magnitude of the length changes induced by NOx is small enough that it does not make a statistically significant impact on the shape memory behavior of the foams. Additionally, there were no observable effects on the shape memory behavior induced by NOx. The results further indicated the NOx system is effective at sterilizing porous scaffolds, as none of the sterilized samples showed contamination. Testing methods proved to be effective because the initial sterility test was able to identify all of the contaminated samples and preliminary results indicated that NOx sterilization improves the sterility of the foams.
Gap Shape Classification using Landscape Indices and Multivariate Statistics
Wu, Chih-Da; Cheng, Chi-Chuan; Chang, Che-Chang; Lin, Chinsu; Chang, Kun-Cheng; Chuang, Yung-Chung
2016-01-01
This study proposed a novel methodology to classify the shape of gaps using landscape indices and multivariate statistics. Patch-level indices were used to collect the qualified shape and spatial configuration characteristics for canopy gaps in the Lienhuachih Experimental Forest in Taiwan in 1998 and 2002. Non-hierarchical cluster analysis was used to assess the optimal number of gap clusters and canonical discriminant analysis was used to generate the discriminant functions for canopy gap classification. The gaps for the two periods were optimally classified into three categories. In general, gap type 1 had a more complex shape, gap type 2 was more elongated and gap type 3 had the largest gaps that were more regular in shape. The results were evaluated using Wilks’ lambda as satisfactory (p < 0.001). The agreement rate of confusion matrices exceeded 96%. Differences in gap characteristics between the classified gap types that were determined using a one-way ANOVA showed a statistical significance in all patch indices (p = 0.00), except for the Euclidean nearest neighbor distance (ENN) in 2002. Taken together, these results demonstrated the feasibility and applicability of the proposed methodology to classify the shape of a gap. PMID:27901127
Gap Shape Classification using Landscape Indices and Multivariate Statistics.
Wu, Chih-Da; Cheng, Chi-Chuan; Chang, Che-Chang; Lin, Chinsu; Chang, Kun-Cheng; Chuang, Yung-Chung
2016-11-30
This study proposed a novel methodology to classify the shape of gaps using landscape indices and multivariate statistics. Patch-level indices were used to collect the qualified shape and spatial configuration characteristics for canopy gaps in the Lienhuachih Experimental Forest in Taiwan in 1998 and 2002. Non-hierarchical cluster analysis was used to assess the optimal number of gap clusters and canonical discriminant analysis was used to generate the discriminant functions for canopy gap classification. The gaps for the two periods were optimally classified into three categories. In general, gap type 1 had a more complex shape, gap type 2 was more elongated and gap type 3 had the largest gaps that were more regular in shape. The results were evaluated using Wilks' lambda as satisfactory (p < 0.001). The agreement rate of confusion matrices exceeded 96%. Differences in gap characteristics between the classified gap types that were determined using a one-way ANOVA showed a statistical significance in all patch indices (p = 0.00), except for the Euclidean nearest neighbor distance (ENN) in 2002. Taken together, these results demonstrated the feasibility and applicability of the proposed methodology to classify the shape of a gap.
Characterizing the Shape of Anatomical Structures With Poisson’s Equation
Haidar, Haissam; Levitt, James J.; McCarley, Robert W.; Shenton, Martha E.; Soul, Janet S.
2009-01-01
Poisson’s equation, a fundamental partial differential equation in classical physics, has a number of properties that are interesting for shape analysis. In particular, the equipotential sets of the solution graph become smoother as the potential increases. We use the displacement map, the length of the streamlines formed by the gradient field of the solution, to measure the “complexity” (or smoothness) of the equipotential sets, and study its behavior as the potential increases. We believe that this function complexity = f (potential), which we call the shape characteristic, is a very natural way to express shape. Robust algorithms are presented to compute the solution to Poisson’s equation, the displacement map, and the shape characteristic. We first illustrate our technique on two-dimensional synthetic examples and natural silhouettes. We then perform two shape analysis studies on three-dimensional neuroanatomical data extracted from magnetic resonance (MR) images of the brain. In the first study, we investigate changes in the caudate nucleus in Schizotypal Personality Disorder (SPD) and confirm previously published results on this structure [1]. In the second study, we present a data set of caudate nuclei of premature infants with asymmetric white matter injury. Our method shows structural shape differences that volumetric measurements were unable to detect. PMID:17024829
Particle Shape and Composition of NU-LHT-2M
NASA Technical Reports Server (NTRS)
Rickman, D. L.; Lowers, H.
2012-01-01
Particle shapes of the lunar regolith simulant NU-LHT-2M were analyzed by scanning electron microscope of polished sections. These data provide shape, size, and composition information on a particle by particle basis. 5,193 particles were measured, divided into four sized fractions: less than 200 mesh, 200-100 mesh, 100-35 mesh, and greater than 35 mesh. 99.2% of all particles were monominerallic. Minor size versus composition effects were noted in minor and trace mineralogy. The two metrics used are aspect ratio and Heywood factor, plotted as normalized frequency distributions. Shape versus composition effects were noted for glass and possibly chlorite. To aid in analysis, the measured shape distributions are compared to data for ellipses and rectangles. Several other simple geometric shapes are also investigated as to how they plot in aspect ratio versus Heywood factor space. The bulk of the data previously reported, which were acquired in a plane of projection, are between the ellipse and rectangle lines. In contrast, these data, which were acquired in a plane of section, clearly show that a significant number of particles have concave hulls in this view. Appendices cover details of measurement error, use of geometric shapes for comparative analysis, and a logic for comparing data from plane of projection and plane of section measurements.
Detecting corpus callosum abnormalities in autism based on anatomical landmarks
He, Qing; Duan, Ye; Karsch, Kevin; Miles, Judith
2010-01-01
Autism is a severe developmental disorder whose neurological basis is largely unknown. Autism is a subtype of autism that displays more homogeneous features within group. The aim of this study was to identify the shape differences of the corpus callosum between patients with autism and the controls. Anatomical landmarks were collected from mid-sagittal MRI of 25 patients and 18 controls. Euclidean distance matrix analysis and thin-plate spline were used to analyze the landmark forms. Point-by-point shape comparison was performed both globally and locally. A new local shape comparison scheme was proposed which compared each part of the shape in its local coordinate system. Point correspondence was established among individual shapes based on the inherent landmark correspondence. No significant difference was found in the landmark form between patients and controls, but the distance between interior genu and posterior most was found significantly shorter in patients. Thin-plate spline analysis showed significant group difference between the landmark configurations in terms of the deformation from the overall mean configuration. Significant global shape differences were found in the anterior lower body and posterior bottom, and local shape difference existed in the anterior bottom. This study can serve as both clinical reference and a detailed procedure guideline for similar studies in the future. PMID:20620032
Stability of a family of uniform vortices related to vortex configurations before merging
NASA Astrophysics Data System (ADS)
Luzzatto-Fegiz, P.; Williamson, C. H. K.
2006-11-01
Motivated by the merger of two corotating vortices, Cerretelli & Williamson (JFM 2003) discovered a family of uniform vorticity patches representing the continuation of two corotating vortices into a single ``dumbbell'' shape. This branch of solutions passes through a bifurcation from the Kirchhoff ellipses (discovered by Kamm 1987 and Saffman 1988) and ends into a cat's eye shape. By using a more accurate method for equilibrium shape calculation, we find some differences in the equilibrium shapes to those discovered by Cerretelli & Williamson, particularly near the topological change (from a two-vortex to a single vortex shape). We implement the approach of Dritschel (1985), and show that all the simply connected shapes are unstable to a three-fold perturbation, while a regime of the two-vortex shapes nearing the topological change is unstable to a two-fold antisymmetric perturbation. The stability of two patches has been source of debate in the literature. Saffman & Szeto (1980) predicted exchange of stability at an extremum in energy and angular momentum; on the other hand, Dritschel (1985) found that conditions for instability from linear analysis did not match those coming from the energy criterion. In the present work, we find precise agreement between results from linear analysis and energy criterion, in accordance with the more recent work of Kamm (1987) and Dritschel (1995).
NASA Astrophysics Data System (ADS)
Ortiz-Montalvo, D. L.; Conny, J. M.
2017-12-01
We study the scattering properties of irregularly shaped ambient dust particles. The way in which they scatter and absorb light has implications for aerosol optical remote sensing and aerosol radiative forcing applications. However, understanding light scattering and absorption by non-spherical particles can be very challenging. We used focused ion-beam scanning electron microscopy and energy-dispersive x-ray spectroscopy (FIB-SEM-EDS) to reconstruct three-dimensional (3-D) configurations of dust particles collected from urban and Asian sources. The 3-D reconstructions were then used in a discrete dipole approximation method (DDA) to determine their scattering properties for a range of shapes, sizes, and refractive indices. Scattering properties where obtained using actual-shapes of the particles, as well as, (theoretical) equivalently-sized geometrical shapes like spheres, ellipsoids, cubes, rectangular prisms, and tetrahedrons. We use Q-space analysis to interpret the angular distribution of the scattered light obtained for each particle. Q-space analysis has been recently used to distinguish scattering by particles of different shapes, and it involves plotting the scattered intensity versus the scattering wave vector (q or qR) on a log-log scale, where q = 2ksin(θ/2), k = 2π/λ, and R = particle effective radius. Results from a limited number of particles show that when Q-space analysis is applied, common patterns appear that agree with previous Q-space studies done on ice crystals and other irregularly shaped particles. More specifically, we found similar Q-space regimes including a forward scattering regime of constant intensity when qR < 1, followed by the Guinier regime when qR ≈ 1, which is then followed by a complex power law regime with a -3 slope regime, a transition regime, and then a -4 slope regime. Currently, Q-space comparisons between actual- and geometric shapes are underway with the objective of determining which geometric shape best represents the angular distribution and magnitude of the scattered light. Current work also focuses on the effects of the imaginary part of the refractive index on the light scattering of our dust particles.
Jung, Brian C.; Choi, Soo I.; Du, Annie X.; Cuzzocreo, Jennifer L.; Geng, Zhuo Z.; Ying, Howard S.; Perlman, Susan L.; Toga, Arthur W.; Prince, Jerry L.
2014-01-01
Although “cerebellar ataxia” is often used in reference to a disease process, presumably there are different underlying pathogenetic mechanisms for different subtypes. Indeed, spinocerebellar ataxia (SCA) types 2 and 6 demonstrate complementary phenotypes, thus predicting a different anatomic pattern of degeneration. Here, we show that an unsupervised classification method, based on principal component analysis (PCA) of cerebellar shape characteristics, can be used to separate SCA2 and SCA6 into two classes, which may represent disease-specific archetypes. Patients with SCA2 (n=11) and SCA6 (n=7) were compared against controls (n=15) using PCA to classify cerebellar anatomic shape characteristics. Within the first three principal components, SCA2 and SCA6 differed from controls and from each other. In a secondary analysis, we studied five additional subjects and found that these patients were consistent with the previously defined archetypal clusters of clinical and anatomical characteristics. Secondary analysis of five subjects with related diagnoses showed that disease groups that were clinically and pathophysiologically similar also shared similar anatomic characteristics. Specifically, Archetype #1 consisted of SCA3 (n=1) and SCA2, suggesting that cerebellar syndromes accompanied by atrophy of the pons may be associated with a characteristic pattern of cerebellar neurodegeneration. In comparison, Archetype #2 was comprised of disease groups with pure cerebellar atrophy (episodic ataxia type 2 (n=1), idiopathic late-onset cerebellar ataxias (n=3), and SCA6). This suggests that cerebellar shape analysis could aid in discriminating between different pathologies. Our findings further suggest that magnetic resonance imaging is a promising imaging biomarker that could aid in the diagnosis and therapeutic management in patients with cerebellar syndromes. PMID:22258915
Patch-Based Generative Shape Model and MDL Model Selection for Statistical Analysis of Archipelagos
NASA Astrophysics Data System (ADS)
Ganz, Melanie; Nielsen, Mads; Brandt, Sami
We propose a statistical generative shape model for archipelago-like structures. These kind of structures occur, for instance, in medical images, where our intention is to model the appearance and shapes of calcifications in x-ray radio graphs. The generative model is constructed by (1) learning a patch-based dictionary for possible shapes, (2) building up a time-homogeneous Markov model to model the neighbourhood correlations between the patches, and (3) automatic selection of the model complexity by the minimum description length principle. The generative shape model is proposed as a probability distribution of a binary image where the model is intended to facilitate sequential simulation. Our results show that a relatively simple model is able to generate structures visually similar to calcifications. Furthermore, we used the shape model as a shape prior in the statistical segmentation of calcifications, where the area overlap with the ground truth shapes improved significantly compared to the case where the prior was not used.
NASA Astrophysics Data System (ADS)
Silva, Guilherme Augusto Lopes da; Nicoletti, Rodrigo
2017-06-01
This work focuses on the placement of natural frequencies of beams to desired frequency regions. More specifically, we investigate the effects of combining mode shapes to shape a beam to change its natural frequencies, both numerically and experimentally. First, we present a parametric analysis of a shaped beam and we analyze the resultant effects for different boundary conditions and mode shapes. Second, we present an optimization procedure to find the optimum shape of the beam for desired natural frequencies. In this case, we adopt the Nelder-Mead simplex search method, which allows a broad search of the optimum shape in the solution domain. Finally, the obtained results are verified experimentally for a clamped-clamped beam in three different optimization runs. Results show that the method is effective in placing natural frequencies at desired values (experimental results lie within a 10% error to the expected theoretical ones). However, the beam must be axially constrained to have the natural frequencies changed.
Interactive lesion segmentation with shape priors from offline and online learning.
Shepherd, Tony; Prince, Simon J D; Alexander, Daniel C
2012-09-01
In medical image segmentation, tumors and other lesions demand the highest levels of accuracy but still call for the highest levels of manual delineation. One factor holding back automatic segmentation is the exemption of pathological regions from shape modelling techniques that rely on high-level shape information not offered by lesions. This paper introduces two new statistical shape models (SSMs) that combine radial shape parameterization with machine learning techniques from the field of nonlinear time series analysis. We then develop two dynamic contour models (DCMs) using the new SSMs as shape priors for tumor and lesion segmentation. From training data, the SSMs learn the lower level shape information of boundary fluctuations, which we prove to be nevertheless highly discriminant. One of the new DCMs also uses online learning to refine the shape prior for the lesion of interest based on user interactions. Classification experiments reveal superior sensitivity and specificity of the new shape priors over those previously used to constrain DCMs. User trials with the new interactive algorithms show that the shape priors are directly responsible for improvements in accuracy and reductions in user demand.
NASA Astrophysics Data System (ADS)
Hong, Sungmin; Fishbaugh, James; Rezanejad, Morteza; Siddiqi, Kaleem; Johnson, Hans; Paulsen, Jane; Kim, Eun Young; Gerig, Guido
2017-02-01
Modeling subject-specific shape change is one of the most important challenges in longitudinal shape analysis of disease progression. Whereas anatomical change over time can be a function of normal aging, anatomy can also be impacted by disease related degeneration. Anatomical shape change may also be affected by structural changes from neighboring shapes, which may cause non-linear variations in pose. In this paper, we propose a framework to analyze disease related shape changes by coupling extrinsic modeling of the ambient anatomical space via spatiotemporal deformations with intrinsic shape properties from medial surface analysis. We compare intrinsic shape properties of a subject-specific shape trajectory to a normative 4D shape atlas representing normal aging to isolate shape changes related to disease. The spatiotemporal shape modeling establishes inter/intra subject anatomical correspondence, which in turn enables comparisons between subjects and the 4D shape atlas, and also quantitative analysis of disease related shape change. The medial surface analysis captures intrinsic shape properties related to local patterns of deformation. The proposed framework jointly models extrinsic longitudinal shape changes in the ambient anatomical space, as well as intrinsic shape properties to give localized measurements of degeneration. Six high risk subjects and six controls are randomly sampled from a Huntington's disease image database for qualitative and quantitative comparison.
Does Helicobacter pylori exhibit corkscrew motion while swimming?
NASA Astrophysics Data System (ADS)
Constantino, Maira; Hardcastle, Joseph; Bansil, Rama
2015-03-01
Helicobacter pylori is a spiral shaped bacterium associated with ulcers, gastric cancer, gastritis among other diseases. In order to colonize the harsh acidic environment of the stomach H. pylori has to go across the viscoelastic mucus layer of the stomach. Many studies have been conducted on the swimming of H. pylori in viscous media however none have taken into account the influence of cell-body shape on the trajectory. We present an experimental study of the effects of body shape in the swimming trajectory of H. pylori in viscous media by a quantitative analysis of the bacterium rotation and translation in gels using phase contrast microscopy and particle tracking techniques. Preliminary microscopic tracking measurements show very well defined helical trajectories in the spiral-shaped wild type H. pylori. These helical trajectories are not seen in rod-shaped mutants which sometimes display whirling motion about one end acting as a hinge. We will present an analysis of the different trajectories for bacteria swimming in media with different viscoelastic parameters. Supported by the National Science Foundation PHY PoLS.
Allometric shape change and heterochrony in the freeliving coral Trachyphyllia bilobata (Duncan)
NASA Astrophysics Data System (ADS)
Foster, Ann Budd; Johnson, Kenneth G.; Schultz, Lori L.
1988-05-01
Regression analysis has been used to study the relationship between age, size, shape, and surface area in two ancestral-descendant populations of the Neogene Caribbean coral Trachyphyllia bilobata. Analyses of the relationship between size and age show that the relationship is isometric and that little difference occurs between populations in mean corallite length or height and in their rates of growth. Onset of columella growth is significantly earlier, however, in the descendant population. Studies of the relationship between size and shape show that growth is allometric, with shape change occurring in both corallum elongation and pinching of the corallite wall during ontogeny. In the descendant population, pinching and elongation initiate earlier in the ontogeny of the coral. These results suggest that the evolutionary development of the meandroid form in freeliving corals has been accomplished by heterochrony, involving a complex set of disassociated peramorphic changes in ontogeny accompanied by paedomorphic changes in astogeny. Further analyses show that the observed heterochronic changes serve to decrease corallum surface area which may in turn enhance sediment removal and nutrition in unstable habitats.
Almécija, Sergio; Orr, Caley M; Tocheri, Matthew W; Patel, Biren A; Jungers, William L
2015-01-01
Three-dimensional geometric morphometrics (3DGM) is a powerful tool for capturing and visualizing the "pure" shape of complex structures. However, these shape differences are sometimes difficult to interpret from a functional viewpoint, unless specific approaches (mostly based on biomechanical modeling) are employed. Here, we use 3DGM to explore the complex shape variation of the hamate, the disto-ulnar wrist bone, in anthropoid primates. Major trends of shape variation are explored using principal components analysis along with analyses of shape and size covariation. We also evaluate the phylogenetic patterning of hamate shape by plotting an anthropoid phylogenetic tree onto the shape space (i.e., phylomorphospace) and test against complete absence of phylogenetic signal using posterior permutation. Finally, the covariation of hamate shape and locomotor categories is explored by means of 2-block partial least squares (PLS) using shape coordinates and a matrix of data on arboreal locomotor behavior. Our results show that 3DGM is a valuable and versatile tool for characterizing the shape of complex structures such as wrist bones in anthropoids. For the hamate, a significant phylogenetic pattern is found in both hamate shape and size, indicating that closely related taxa are typically the most similar in hamate form. Our allometric analyses show that major differences in hamate shape among taxa are not a direct consequence of differences in hamate size. Finally, our PLS indicates a significant covariation of hamate shape and different types of arboreal locomotion, highlighting the relevance of this approach in future 3DGM studies seeking to capture a functional signal from complex biological structures. © 2014 Wiley Periodicals, Inc.
Garzón, Maximiliano J; Schweigmann, Nicolás
2018-06-23
Shape variability among individuals is important to understand some ecological relationships, since it provides the nexus between the genotype and the environment. Geometric morphometrics based on generalized procrustes analysis was applied on 17 landmarks of the wings of Aedes albifasciatus (Macquart 1838) (Diptera: Culicidae) females collected from three ecoregions of Argentina (Delta and islands of the Paraná River, Pampa, and Patagonian steppe). This methodology was used to discriminate the shapes of individuals belonging to different regions. The population of the Patagonian steppe, which was the most geographically distant, showed the most dissimilar shape. Different local variations in wing shape could have been selected according to the environmental characteristics and maintained by geographic isolation. The individuals of the two ecoregions closest to each other (Delta and islands of the Paraná River and Pampa) showed differences in shape that can be explained by a lower gene flow due to the effect of geographic isolation (by the Paraná River) and the limited dispersive capacity of Ae. albifasciatus. The results allow concluding that both environmental diversity and geographic barriers could contribute to local variations in wing shape.
NASA Astrophysics Data System (ADS)
Venter, M.; Bolli, P.
2018-03-01
This paper presents results from the electromagnetic analysis of the African VLBI Network shaped Ghana radio telescope at the operating frequencies of 5 and 6.7 GHz. The geometry implemented in commercial electromagnetic software provides insight into the effects of the slanted beam-waveguide, shaped reflector illumination and mechanical tolerances, which are known to be more stringent compared to a perfect paraboloid. It is shown that the theoretical maximum gain and aperture efficiency at 5 GHz are 63.80 dBi and 85.45%, respectively. The corresponding values at 6.7 GHz are 66.47 dBi and 88.00%, respectively. Comparisons to sidelobe maps produced from astronomical observations are also discussed, showing possible misalignment in the structure when utilised outside its originally intended purpose.
Relationship between changes in crystalline lens shape and axial elongation in young children.
Ishii, Kotaro; Yamanari, Masahiro; Iwata, Hiroyoshi; Yasuno, Yoshiaki; Oshika, Tetsuro
2013-01-28
To evaluate the relationship between changes in crystalline lens shape and axial elongation during growth in young children. Twenty-five patients (age: 1 month to 6 years) who underwent head magnetic resonance imaging (MRI) were included in the analysis. Refractive error was measured with an autorefractor in 22 patients. Crystalline lens dimensions and axial length (AL) were obtained from the MR images. The radius of curvature and asphericity of the crystalline lens were measured using reconstructed MR images. Crystalline lens shape and eyeball shape were numerically expressed by elliptic Fourier descriptors (EFDs) on the basis of MR images. The contours of the crystalline lens and eyeball were evaluated by principal component analysis of the EFDs. The average anterior and posterior radii of curvature were 6.21 mm (range across ages from 3.89-7.26 mm) and -4.81 mm (range across ages from -2.93 to -5.67 mm). These were closely correlated with age by logarithmic analysis. The first principal component (PC1) of the crystalline lens explained 89.15% of the total variance in lens shape, and it was also significantly correlated with age (Pearson's r = 0.648, P < 0.001) and AL (r = 0.847, P < 0.001). In the multiple linear regression analysis in which AL was a dependent variable, only the PC1 of the crystalline lens was associated with AL. Axial elongation is related to the entire contour of the crystalline lens. This result shows that axial elongation progresses in parallel to change in the crystalline lens shape.
Lux, C J; Rübel, J; Starke, J; Conradt, C; Stellzig, P A; Komposch, P G
2001-04-01
The aim of the present longitudinal cephalometric study was to evaluate the dentofacial shape changes induced by activator treatment between 9.5 and 11.5 years in male Class II patients. For a rigorous morphometric analysis, a thin-plate spline analysis was performed to assess and visualize dental and skeletal craniofacial changes. Twenty male patients with a skeletal Class II malrelationship and increased overjet who had been treated at the University of Heidelberg with a modified Andresen-Häupl-type activator were compared with a control group of 15 untreated male subjects of the Belfast Growth Study. The shape changes for each group were visualized on thin-plate splines with one spline comprising all 13 landmarks to show all the craniofacial shape changes, including skeletal and dento-alveolar reactions, and a second spline based on 7 landmarks to visualize only the skeletal changes. In the activator group, the grid deformation of the total spline pointed to a strong activator-induced reduction of the overjet that was caused both by a tipping of the incisors and by a moderation of sagittal discrepancies, particularly a slight advancement of the mandible. In contrast with this, in the control group, only slight localized shape changes could be detected. Both in the 7- and 13-landmark configurations, the shape changes between the groups differed significantly at P < .001. In the present study, the morphometric approach of thin-plate spline analysis turned out to be a useful morphometric supplement to conventional cephalometrics because the complex patterns of shape change could be suggestively visualized.
NASA Astrophysics Data System (ADS)
Enneti, Ravi Kumar
2005-07-01
Powder metallurgy technology involves manufacturing of net shape or near net shape components starting from metal powders. Polymers are used to provide lubrication during shaping and handling strength to the shaped component. After shaping, the polymers are removed from the shaped components by providing thermal energy to burnout the polymers. Polymer burnout is one of the most critical step in powder metal processing. Improper design of the polymer burnout cycle will result in formation of defects, shape loss, or carbon contamination of the components. The effect of metal particles on polymer burnout and shape loss were addressed in the present research. The study addressing the effect of metal powders on polymer burnout was based on the hypothesis that metal powders act to catalyze polymer burnout. Thermogravimetric analysis (TGA) on pure polymer, ethylene vinyl acetate (EVA), and on admixed powders of 316L stainless steel and 1 wt. % EVA were carried out to verify the hypothesis. The effect of metal powders additions was studied by monitoring the onset temperature for polymer degradation and the temperature at which maximum rate of weight loss occurred from the TGA data. The catalytic behavior of the powders was verified by varying the particle size and shape of the 316L stainless powder. The addition of metal particles lowered the polymer burnout temperatures. The onset temperature for burnout was found to be sensitive to the surface area of the metal particle as well as the polymer distribution. Powders with low surface area and uniform distribution of polymer showed a lower burnout temperature. The evolution of shape loss during polymer burnout was based on the hypothesis that shape loss occurs during the softening of the polymer and depends on the sequence of chemical bonding in the polymer during burnout. In situ observation of shape loss was carried out on thin beams compacted from admixed powders of 316L stainless steel and 1 wt. % ethylene vinyl acetate (EVA). The results showed that shape loss primarily occurs by viscous creep during the softening of the polymer. At the onset of burnout of EVA, a recovery in shape loss was observed. The recovery occurred primarily during the first stage burnout of EVA and was attributed to the formation of polyethylene co-polyacetylene which forms with a carbon double bond. The in situ strength was also found to increase during the formation of polyethylene co-polyacetylene. No recovery of shape loss was observed during burnout of polymers (polyethylene and polypropylene) which convert to yield hydrocarbons without forming carbon double bonds. (Abstract shortened by UMI.)
3D relativistic MHD numerical simulations of X-shaped radio sources
NASA Astrophysics Data System (ADS)
Rossi, P.; Bodo, G.; Capetti, A.; Massaglia, S.
2017-10-01
Context. A significant fraction of extended radio sources presents a peculiar X-shaped radio morphology: in addition to the classical double lobed structure, radio emission is also observed along a second axis of symmetry in the form of diffuse wings or tails. In a previous investigation we showed the existence of a connection between the radio morphology and the properties of the host galaxies. Motivated by this connection we performed two-dimensional numerical simulations showing that X-shaped radio sources may naturally form as a jet propagates along the major axis a highly elliptical density distribution, because of the fast expansion of the cocoon along the minor axis of the distribution. Aims: We intend to extend our analysis by performing three-dimensional numerical simulations and investigating the role of different parameters in determining the formation of the X-shaped morphology. Methods: The problem is addressed by numerical means, carrying out three-dimensional relativistic magnetohydrodynamic simulations of bidirectional jets propagating in a triaxial density distribution. Results: We show that only jets with power ≲ 1044 erg s-1 can give origin to an X-shaped morphology and that a misalignment of 30° between the jet axis and the major axis of the density distribution is still favourable to the formation of this kind of morphology. In addition we compute synthetic radio emission maps and polarization maps. Conclusions: In our scenario for the formation of X-shaped radio sources only low power FRII can give origin to such kind of morphology. Our synthetic emission maps show that the different observed morphologies of X-shaped sources can be the result of similar structures viewed under different perspectives.
Optical properties study of nano-composite filled D shape photonic crystal fibre
NASA Astrophysics Data System (ADS)
Udaiyakumar, R.; Mohamed Junaid, K. A.; Janani, T.; Maheswar, R.; Yupapin, P.; Amiri, I. S.
2018-06-01
With the nano-composite materials gaining momentum in the optical field, a new nano-composite filled D shape Photonic Crystal Fiber (PCF) is designed and the various optical properties are investigated with help of Finite Element Method. In the proposed structure the D-shape PCF is made up of silica with embedded silver nanoparticles and air holes are distributed along the fibre. The designed fibre shows various optical properties such as dispersion, birefringence, beat length and loss with respect to wavelength and compared with different filling factor like 0.1, 0.3 and 0.5. From our estimation and comparative analysis, it has been proved that the fibre loss has been decreased with increasing filling factor. Further this also showed flat dispersion at maximum filling factor.
NASA Technical Reports Server (NTRS)
Chwalowski, Pawel; Samareh, Jamshid A.; Horta, Lucas G.; Piatak, David J.; McGowan, Anna-Maria R.
2009-01-01
The conceptual and preliminary design processes for aircraft with large shape changes are generally difficult and time-consuming, and the processes are often customized for a specific shape change concept to streamline the vehicle design effort. Accordingly, several existing reports show excellent results of assessing a particular shape change concept or perturbations of a concept. The goal of the current effort was to develop a multidisciplinary analysis tool and process that would enable an aircraft designer to assess several very different morphing concepts early in the design phase and yet obtain second-order performance results so that design decisions can be made with better confidence. The approach uses an efficient parametric model formulation that allows automatic model generation for systems undergoing radical shape changes as a function of aerodynamic parameters, geometry parameters, and shape change parameters. In contrast to other more self-contained approaches, the approach utilizes off-the-shelf analysis modules to reduce development time and to make it accessible to many users. Because the analysis is loosely coupled, discipline modules like a multibody code can be easily swapped for other modules with similar capabilities. One of the advantages of this loosely coupled system is the ability to use the medium- to high-fidelity tools early in the design stages when the information can significantly influence and improve overall vehicle design. Data transfer among the analysis modules are based on an accurate and automated general purpose data transfer tool. In general, setup time for the integrated system presented in this paper is 2-4 days for simple shape change concepts and 1-2 weeks for more mechanically complicated concepts. Some of the key elements briefly described in the paper include parametric model development, aerodynamic database generation, multibody analysis, and the required software modules as well as examples for a telescoping wing, a folding wing, and a bat-like wing. The paper also includes the verification of a medium-fidelity aerodynamic tool used for the aerodynamic database generation with a steady and unsteady high-fidelity CFD analysis tool for a folding wing example.
Integrated Aerodynamic/Structural/Dynamic Analyses of Aircraft with Large Shape Changes
NASA Technical Reports Server (NTRS)
Samareh, Jamshid A.; Chwalowski, Pawel; Horta, Lucas G.; Piatak, David J.; McGowan, Anna-Maria R.
2007-01-01
The conceptual and preliminary design processes for aircraft with large shape changes are generally difficult and time-consuming, and the processes are often customized for a specific shape change concept to streamline the vehicle design effort. Accordingly, several existing reports show excellent results of assessing a particular shape change concept or perturbations of a concept. The goal of the current effort was to develop a multidisciplinary analysis tool and process that would enable an aircraft designer to assess several very different morphing concepts early in the design phase and yet obtain second-order performance results so that design decisions can be made with better confidence. The approach uses an efficient parametric model formulation that allows automatic model generation for systems undergoing radical shape changes as a function of aerodynamic parameters, geometry parameters, and shape change parameters. In contrast to other more self-contained approaches, the approach utilizes off-the-shelf analysis modules to reduce development time and to make it accessible to many users. Because the analysis is loosely coupled, discipline modules like a multibody code can be easily swapped for other modules with similar capabilities. One of the advantages of this loosely coupled system is the ability to use the medium-to high-fidelity tools early in the design stages when the information can significantly influence and improve overall vehicle design. Data transfer among the analysis modules are based on an accurate and automated general purpose data transfer tool. In general, setup time for the integrated system presented in this paper is 2-4 days for simple shape change concepts and 1-2 weeks for more mechanically complicated concepts. Some of the key elements briefly described in the paper include parametric model development, aerodynamic database generation, multibody analysis, and the required software modules as well as examples for a telescoping wing, a folding wing, and a bat-like wing.
Miller, Nicola A; Gregory, Jennifer S; Aspden, Richard M; Stollery, Peter J; Gilbert, Fiona J
2014-09-01
The shape of the vocal tract and associated structures (eg, tongue and velum) is complicated and varies according to development and function. This variability challenges interpretation of voice experiments. Quantifying differences between shapes and understanding how vocal structures move in relation to each other is difficult using traditional linear and angle measurements. With statistical shape models, shape can be characterized in terms of independent modes of variation. Here, we build an active shape model (ASM) to assess morphologic and pitch-related functional changes affecting vocal structures and the airway. Using a cross-sectional study design, we obtained six midsagittal magnetic resonance images from 10 healthy adults (five men and five women) at rest, while breathing out, and while listening to, and humming low and high notes. Eighty landmark points were chosen to define the shape of interest and an ASM was built using these (60) images. Principal component analysis was used to identify independent modes of variation, and statistical analysis was performed using one-way repeated-measures analysis of variance. Twenty modes of variation were identified with modes 1 and 2 accounting for half the total variance. Modes 1 and 9 were significantly associated with humming low and high notes (P < 0.001) and showed coordinated changes affecting the cervical spine, vocal structures, and airway. Mode 2 highlighted wide structural variations between subjects. This study highlights the potential of active shape modeling to advance understanding of factors underlying morphologic and pitch-related functional variations affecting vocal structures and the airway in health and disease. Copyright © 2014 The Voice Foundation. Published by Elsevier Inc. All rights reserved.
Metamorphosis of Magnetospirillum magneticum AMB-1 cells
NASA Astrophysics Data System (ADS)
Zhang, Fengli; Yu-Zhang, Kui; Zhao, Sanjun; Xiao, Tian; Denis, Michel; Wu, Longfei
2010-03-01
Magnetospirillum magneticum strain AMB-1 belongs to the family of magnetotactic bacteria. It possesses a magnetosome chain aligning, with the assistance of cytoskeleton filaments MamK, along the long axis of the spiral cells. Most fresh M. magneticum AMB-1 cells exhibit spiral morphology. In addition, other cell shapes such as curved and spherical were also observed in this organism. Interestingly, the spherical cell shape increased steadily with prolonged incubation time. As the actin-like cytoskeleton protein MreB is involved in maintenance of cell shapes in rod-shaped bacteria such as Escherichia coli and Bacillus subtilis, the correlation between MreB protein levels and cell shape was investigated in this study. Immunoblotting analysis showed that the quantity of MreB decreased when the cell shape changed along with incubation time. As an internal control, the quantity of MamA was not obviously changed under the same conditions. Cell shape directs cell-wall synthesis during growth and division. MreB is required for maintaining the cell shape. Thus, MreB might play an essential role in maintaining the spiral shape of M. magneticum AMB-1 cells.
Zhou, Xiangrong; Xu, Rui; Hara, Takeshi; Hirano, Yasushi; Yokoyama, Ryujiro; Kanematsu, Masayuki; Hoshi, Hiroaki; Kido, Shoji; Fujita, Hiroshi
2014-07-01
The shapes of the inner organs are important information for medical image analysis. Statistical shape modeling provides a way of quantifying and measuring shape variations of the inner organs in different patients. In this study, we developed a universal scheme that can be used for building the statistical shape models for different inner organs efficiently. This scheme combines the traditional point distribution modeling with a group-wise optimization method based on a measure called minimum description length to provide a practical means for 3D organ shape modeling. In experiments, the proposed scheme was applied to the building of five statistical shape models for hearts, livers, spleens, and right and left kidneys by use of 50 cases of 3D torso CT images. The performance of these models was evaluated by three measures: model compactness, model generalization, and model specificity. The experimental results showed that the constructed shape models have good "compactness" and satisfied the "generalization" performance for different organ shape representations; however, the "specificity" of these models should be improved in the future.
Focus characterization at an X-ray free-electron laser by coherent scattering and speckle analysis
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sikorski, Marcin; Song, Sanghoon; Schropp, Andreas
2015-04-14
X-ray focus optimization and characterization based on coherent scattering and quantitative speckle size measurements was demonstrated at the Linac Coherent Light Source. Its performance as a single-pulse free-electron laser beam diagnostic was tested for two typical focusing configurations. The results derived from the speckle size/shape analysis show the effectiveness of this technique in finding the focus' location, size and shape. In addition, its single-pulse compatibility enables users to capture pulse-to-pulse fluctuations in focus properties compared with other techniques that require scanning and averaging.
NASA Astrophysics Data System (ADS)
Usui, Yoichi; Yamazaki, Toshitsugu; Saitoh, Masafumi
2017-12-01
Recent investigations have discovered an unexpected abundance of magnetofossils in oxic pelagic red clays. These have potential to serve as paleoenvironmental tracers in otherwise nonfossiliferous sediments. Here, we report on variations in the abundance and morphology of magnetofossils in red clay from the western North Pacific. Magnetic measurements revealed that magnetofossils dominate the magnetic mineral assemblage of the sediments. An endmember analysis of isothermal remanent magnetization acquisition curves, supplemented by an analysis of S ratios, indicates that the magnetic assemblage can be unmixed into three endmembers, two corresponding to magnetofossils and one to terrigenous magnetic minerals. Direct counting of magnetofossil morphologies under a transmission electron microscope shows that the two magnetofossil endmembers differentiate equant magnetofossils and bullet-shaped magnetofossils, respectively. The stratigraphic variation of the endmember contributions revealed that the equant magnetofossils are dominant for the most part, while an interval at around 7 m in core depth shows higher abundance of the bullet-shaped magnetofossils. This may reflect enhanced organic carbon flux to the sediments. The organic carbon content is low throughout the sediments, and it does not show any change corresponding to the increase of bullet-shaped magnetofossils, pointing at extensive remineralization of the organic carbon. On the basis of lithostratigraphic correlation to nearby drilling sites, we tentatively estimate the age of the bullet-shaped magnetofossil increase as sometime between ˜75 and 25 Ma. These results suggest that environmental information can be obtained from magnetofossils in pelagic red clay.
NASA Astrophysics Data System (ADS)
Fang, Zenong; Li, Min; Wang, Shaokai; Li, Yanxia; Wang, Xiaolei; Gu, Yizhuo; Liu, Qianli; Tian, Jie; Zhang, Zuoguang
2017-11-01
This paper focuses on the anisotropic characteristics of the in-plane thermal conductivity of fiber-reinforced polymer composite based on experiment and simulation. Thermal conductivity along different in-plane orientations was measured by laser flash analysis (LFA) and steady-state heat flow method. Their heat transfer processes were simulated to reveal the geometrical effect on thermal conduction. The results show that the in-plane thermal conduction of unidirectional carbon-fiber-reinforced polymer composite is greatly influenced by the sample geometry at an in-plane orientation angle between 0° to 90°. By defining radius-to-thickness as a dimensionless shape factor for the LFA sample, the apparent thermal conductivity shows a dramatic change when the shape factor is close to the tangent of the orientation angle (tanθ). Based on finite element analysis, this phenomenon was revealed to correlate with the change of the heat transfer process. When the shape factor is larger than tanθ, the apparent thermal conductivity is consistent with the estimated value according to the theoretical model. For a sample with a shape factor smaller than tanθ, the apparent thermal conductivity shows a slow growth around a low value, which seriously deviates from the theory estimation. This phenomenon was revealed to correlate with the change of the heat transfer process from a continuous path to a zigzag path. These results will be helpful in optimizing the ply scheme of composite laminates for thermal management applications.
A volumetric conformal mapping approach for clustering white matter fibers in the brain
Gupta, Vikash; Prasad, Gautam; Thompson, Paul
2017-01-01
The human brain may be considered as a genus-0 shape, topologically equivalent to a sphere. Various methods have been used in the past to transform the brain surface to that of a sphere using harmonic energy minimization methods used for cortical surface matching. However, very few methods have studied volumetric parameterization of the brain using a spherical embedding. Volumetric parameterization is typically used for complicated geometric problems like shape matching, morphing and isogeometric analysis. Using conformal mapping techniques, we can establish a bijective mapping between the brain and the topologically equivalent sphere. Our hypothesis is that shape analysis problems are simplified when the shape is defined in an intrinsic coordinate system. Our goal is to establish such a coordinate system for the brain. The efficacy of the method is demonstrated with a white matter clustering problem. Initial results show promise for future investigation in these parameterization technique and its application to other problems related to computational anatomy like registration and segmentation. PMID:29177252
Macroecological factors shape local-scale spatial patterns in agriculturalist settlements.
Tao, Tingting; Abades, Sebastián; Teng, Shuqing; Huang, Zheng Y X; Reino, Luís; Chen, Bin J W; Zhang, Yong; Xu, Chi; Svenning, Jens-Christian
2017-11-15
Macro-scale patterns of human systems ranging from population distribution to linguistic diversity have attracted recent attention, giving rise to the suggestion that macroecological rules shape the assembly of human societies. However, in which aspects the geography of our own species is shaped by macroecological factors remains poorly understood. Here, we provide a first demonstration that macroecological factors shape strong local-scale spatial patterns in human settlement systems, through an analysis of spatial patterns in agriculturalist settlements in eastern mainland China based on high-resolution Google Earth images. We used spatial point pattern analysis to show that settlement spatial patterns are characterized by over-dispersion at fine spatial scales (0.05-1.4 km), consistent with territory segregation, and clumping at coarser spatial scales beyond the over-dispersion signals, indicating territorial clustering. Statistical modelling shows that, at macroscales, potential evapotranspiration and topographic heterogeneity have negative effects on territory size, but positive effects on territorial clustering. These relationships are in line with predictions from territory theory for hunter-gatherers as well as for many animal species. Our results help to disentangle the complex interactions between intrinsic spatial processes in agriculturalist societies and external forcing by macroecological factors. While one may speculate that humans can escape ecological constraints because of unique abilities for environmental modification and globalized resource transportation, our work highlights that universal macroecological principles still shape the geography of current human agricultural societies. © 2017 The Author(s).
Parametric analysis and temperature effect of deployable hinged shells using shape memory polymers
NASA Astrophysics Data System (ADS)
Tao, Ran; Yang, Qing-Sheng; He, Xiao-Qiao; Liew, Kim-Meow
2016-11-01
Shape memory polymers (SMPs) are a class of intelligent materials, which are defined by their capacity to store a temporary shape and recover an original shape. In this work, the shape memory effect of SMP deployable hinged shell is simulated by using compiled user defined material subroutine (UMAT) subroutine of ABAQUS. Variations of bending moment and strain energy of the hinged shells with different temperatures and structural parameters in the loading process are given. The effects of the parameters and temperature on the nonlinear deformation process are emphasized. The entire thermodynamic cycle of SMP deployable hinged shell includes loading at high temperature, load carrying with cooling, unloading at low temperature and recovering the original shape with heating. The results show that the complicated thermo-mechanical deformation and shape memory effect of SMP deployable hinge are influenced by the structural parameters and temperature. The design ability of SMP smart hinged structures in practical application is prospected.
Global performance enhancements via pedestal optimisation on ASDEX Upgrade
NASA Astrophysics Data System (ADS)
Dunne, M. G.; Frassinetti, L.; Beurskens, M. N. A.; Cavedon, M.; Fietz, S.; Fischer, R.; Giannone, L.; Huijsmans, G. T. A.; Kurzan, B.; Laggner, F.; McCarthy, P. J.; McDermott, R. M.; Tardini, G.; Viezzer, E.; Willensdorfer, M.; Wolfrum, E.; The EUROfusion MST1 Team; The ASDEX Upgrade Team
2017-02-01
Results of experimental scans of heating power, plasma shape, and nitrogen content are presented, with a focus on global performance and pedestal alteration. In detailed scans at low triangularity, it is shown that the increase in stored energy due to nitrogen seeding stems from the pedestal. It is also shown that the confinement increase is driven through the temperature pedestal at the three heating power levels studied. In a triangularity scan, an orthogonal effect of shaping and seeding is observed, where increased plasma triangularity increases the pedestal density, while impurity seeding (carbon and nitrogen) increases the pedestal temperature in addition to this effect. Modelling of these effects was also undertaken, with interpretive and predictive models being employed. The interpretive analysis shows a general agreement of the experimental pedestals in separate power, shaping, and seeding scans with peeling-ballooning theory. Predictive analysis was used to isolate the individual effects, showing that the trends of additional heating power and increased triangularity can be recoverd. However, a simple change of the effective charge in the plasma cannot explain the observed levels of confinement improvement in the present models.
Luo, Gang; Fotidis, Ioannis A; Angelidaki, Irini
2016-01-01
Biogas production is a very complex process due to the high complexity in diversity and interactions of the microorganisms mediating it, and only limited and diffuse knowledge exists about the variation of taxonomic and functional patterns of microbiomes across different biogas reactors, and their relationships with the metabolic patterns. The present study used metagenomic sequencing and radioisotopic analysis to assess the taxonomic, functional, and metabolic patterns of microbiomes from 14 full-scale biogas reactors operated under various conditions treating either sludge or manure. The results from metagenomic analysis showed that the dominant methanogenic pathway revealed by radioisotopic analysis was not always correlated with the taxonomic and functional compositions. It was found by radioisotopic experiments that the aceticlastic methanogenic pathway was dominant, while metagenomics analysis showed higher relative abundance of hydrogenotrophic methanogens. Principal coordinates analysis showed the sludge-based samples were clearly distinct from the manure-based samples for both taxonomic and functional patterns, and canonical correspondence analysis showed that the both temperature and free ammonia were crucial environmental variables shaping the taxonomic and functional patterns. The study further the overall patterns of functional genes were strongly correlated with overall patterns of taxonomic composition across different biogas reactors. The discrepancy between the metabolic patterns determined by metagenomic analysis and metabolic pathways determined by radioisotopic analysis was found. Besides, a clear correlation between taxonomic and functional patterns was demonstrated for biogas reactors, and also the environmental factors that shaping both taxonomic and functional genes patterns were identified.
Disentangling representations of shape and action components in the tool network.
Wang, Xiaoying; Zhuang, Tonghe; Shen, Jiasi; Bi, Yanchao
2018-05-30
Shape and how they should be used are two key components of our knowledge about tools. Viewing tools preferentially activated a frontoparietal and occipitotemporal network, with dorsal regions implicated in computation of tool-related actions and ventral areas in shape representation. As shape and manners of manipulation are highly correlated for daily tools, whether they are independently represented in different regions remains inconclusive. In the current study, we collected fMRI data when participants viewed blocks of pictures of four daily tools (i.e., paintbrush, corkscrew, screwdriver, razor) where shape and action (manner of manipulation for functional use) were orthogonally manipulated, to tease apart these two dimensions. Behavioral similarity judgments tapping on object shape and finer aspects of actions (i.e., manners of motion, magnitude of arm movement, configuration of hand) were also collected to further disentangle the representation of object shape and different action components. Information analysis and representational similarity analysis were conducted on regional neural activation patterns of the tool-preferring network. In both analyses, the bilateral lateral occipitotemporal cortex showed robust shape representations but could not effectively distinguish between tool-use actions. The frontal and precentral regions represented kinematic action components, whereas the left parietal region (in information analyses) exhibited coding of both shape and tool-use action. By teasing apart shape and action components, we found both dissociation and association of them within the tool network. Taken together, our study disentangles representations for object shape from finer tool-use action components in the tool network, revealing the potential dissociable roles different tool-preferring regions play in tool processing. Copyright © 2018 Elsevier Ltd. All rights reserved.
Damping of High-temperature Shape Memory Alloys
NASA Technical Reports Server (NTRS)
Duffy, Kirsten P.; Padula, Santo A., II; Scheiman, Daniel A.
2008-01-01
Researchers at NASA Glenn Research Center have been investigating high temperature shape memory alloys as potential damping materials for turbomachinery rotor blades. Analysis shows that a thin layer of SMA with a loss factor of 0.04 or more would be effective at reducing the resonant response of a titanium alloy beam. Two NiTiHf shape memory alloy compositions were tested to determine their loss factors at frequencies from 0.1 to 100 Hz, at temperatures from room temperature to 300 C, and at alternating strain levels of 34-35x10(exp -6). Elevated damping was demonstrated between the M(sub s) and M(sub f) phase transformation temperatures and between the A(sub s) and A(sub f) temperatures. The highest damping occurred at the lowest frequencies, with a loss factor of 0.2-0.26 at 0.1 Hz. However, the peak damping decreased with increasing frequency, and showed significant temperature hysteresis in heating and cooling. Keywords: High-temperature, shape memory alloy, damping, aircraft engine blades, NiTiHf
Verification and extension of the MBL technique for photo resist pattern shape measurement
NASA Astrophysics Data System (ADS)
Isawa, Miki; Tanaka, Maki; Kazumi, Hideyuki; Shishido, Chie; Hamamatsu, Akira; Hasegawa, Norio; De Bisschop, Peter; Laidler, David; Leray, Philippe; Cheng, Shaunee
2011-03-01
In order to achieve pattern shape measurement with CD-SEM, the Model Based Library (MBL) technique is in the process of development. In this study, several libraries which consisted by double trapezoid model placed in optimum layout, were used to measure the various layout patterns. In order to verify the accuracy of the MBL photoresist pattern shape measurement, CDAFM measurements were carried out as a reference metrology. Both results were compared to each other, and we confirmed that there is a linear correlation between them. After that, to expand the application field of the MBL technique, it was applied to end-of-line (EOL) shape measurement to show the capability. Finally, we confirmed the possibility that the MBL could be applied to more local area shape measurement like hot-spot analysis.
NASA Technical Reports Server (NTRS)
Yao, Tse-Min; Choi, Kyung K.
1987-01-01
An automatic regridding method and a three dimensional shape design parameterization technique were constructed and integrated into a unified theory of shape design sensitivity analysis. An algorithm was developed for general shape design sensitivity analysis of three dimensional eleastic solids. Numerical implementation of this shape design sensitivity analysis method was carried out using the finite element code ANSYS. The unified theory of shape design sensitivity analysis uses the material derivative of continuum mechanics with a design velocity field that represents shape change effects over the structural design. Automatic regridding methods were developed by generating a domain velocity field with boundary displacement method. Shape design parameterization for three dimensional surface design problems was illustrated using a Bezier surface with boundary perturbations that depend linearly on the perturbation of design parameters. A linearization method of optimization, LINRM, was used to obtain optimum shapes. Three examples from different engineering disciplines were investigated to demonstrate the accuracy and versatility of this shape design sensitivity analysis method.
Human eyeball model reconstruction and quantitative analysis.
Xing, Qi; Wei, Qi
2014-01-01
Determining shape of the eyeball is important to diagnose eyeball disease like myopia. In this paper, we present an automatic approach to precisely reconstruct three dimensional geometric shape of eyeball from MR Images. The model development pipeline involved image segmentation, registration, B-Spline surface fitting and subdivision surface fitting, neither of which required manual interaction. From the high resolution resultant models, geometric characteristics of the eyeball can be accurately quantified and analyzed. In addition to the eight metrics commonly used by existing studies, we proposed two novel metrics, Gaussian Curvature Analysis and Sphere Distance Deviation, to quantify the cornea shape and the whole eyeball surface respectively. The experiment results showed that the reconstructed eyeball models accurately represent the complex morphology of the eye. The ten metrics parameterize the eyeball among different subjects, which can potentially be used for eye disease diagnosis.
Developmental changes in hippocampal shape among preadolescent children.
Lin, Muqing; Fwu, Peter T; Buss, Claudia; Davis, Elysia P; Head, Kevin; Muftuler, L Tugan; Sandman, Curt A; Su, Min-Ying
2013-11-01
It is known that the largest developmental changes in the hippocampus take place during the prenatal period and during the first two years of postnatal life. Few studies have been conducted to address the normal developmental trajectory of the hippocampus during childhood. In this study shape analysis was applied to study the normal developing hippocampus in a group of 103 typically developing 6- to 10-year-old preadolescent children. The individual brain was normalized to a template, and then the hippocampus was manually segmented and further divided into the head, body, and tail sub-regions. Three different methods were applied for hippocampal shape analysis: radial distance mapping, surface-based template registration using the robust point matching (RPM) algorithm, and volume-based template registration using the Demons algorithm. All three methods show that the older children have bilateral expanded head segments compared to the younger children. The results analyzed based on radial distance to the centerline were consistent with those analyzed using template-based registration methods. In analyses stratified by sex, it was found that the age-associated anatomical changes were similar in boys and girls, but the age-association was strongest in girls. Total hippocampal volume and sub-regional volumes analyzed using manual segmentation did not show a significant age-association. Our results suggest that shape analysis is sensitive to detect sub-regional differences that are not revealed in volumetric analysis. The three methods presented in this study may be applied in future studies to investigate the normal developmental trajectory of the hippocampus in children. They may be further applied to detect early deviations from the normal developmental trajectory in young children for evaluating susceptibility for psychopathological disorders involving hippocampus. Copyright © 2013 ISDN. Published by Elsevier Ltd. All rights reserved.
Eck, Simon; Wörz, Stefan; Müller-Ott, Katharina; Hahn, Matthias; Biesdorf, Andreas; Schotta, Gunnar; Rippe, Karsten; Rohr, Karl
2016-08-01
The genome is partitioned into regions of euchromatin and heterochromatin. The organization of heterochromatin is important for the regulation of cellular processes such as chromosome segregation and gene silencing, and their misregulation is linked to cancer and other diseases. We present a model-based approach for automatic 3D segmentation and 3D shape analysis of heterochromatin foci from 3D confocal light microscopy images. Our approach employs a novel 3D intensity model based on spherical harmonics, which analytically describes the shape and intensities of the foci. The model parameters are determined by fitting the model to the image intensities using least-squares minimization. To characterize the 3D shape of the foci, we exploit the computed spherical harmonics coefficients and determine a shape descriptor. We applied our approach to 3D synthetic image data as well as real 3D static and real 3D time-lapse microscopy images, and compared the performance with that of previous approaches. It turned out that our approach yields accurate 3D segmentation results and performs better than previous approaches. We also show that our approach can be used for quantifying 3D shape differences of heterochromatin foci. Copyright © 2016 Elsevier B.V. All rights reserved.
Vibration mode shape recognition using image processing
NASA Astrophysics Data System (ADS)
Wang, Weizhuo; Mottershead, John E.; Mares, Cristinel
2009-10-01
Currently the most widely used method for comparing mode shapes from finite elements and experimental measurements is the modal assurance criterion (MAC), which can be interpreted as the cosine of the angle between the numerical and measured eigenvectors. However, the eigenvectors only contain the displacement of discrete coordinates, so that the MAC index carries no explicit information on shape features. New techniques, based upon the well-developed philosophies of image processing (IP) and pattern recognition (PR) are considered in this paper. The Zernike moment descriptor (ZMD), Fourier descriptor (FD), and wavelet descriptor (WD) are the most popular shape descriptors due to their outstanding properties in IP and PR. These include (1) for the ZMD-rotational invariance, expression and computing efficiency, ease of reconstruction and robustness to noise; (2) for the FD—separation of the global shape and shape-details by low and high frequency components, respectively, invariance under geometric transformation; (3) for the WD—multi-scale representation and local feature detection. Once a shape descriptor has been adopted, the comparison of mode shapes is transformed to a comparison of multidimensional shape feature vectors. Deterministic and statistical methods are presented. The deterministic problem of measuring the degree of similarity between two mode shapes (possibly one from a vibration test and the other from a finite element model) may be carried out using Pearson's correlation. Similar shape feature vectors may be arranged in clusters separated by Euclidian distances in the feature space. In the statistical analysis we are typically concerned with the classification of a test mode shape according to clusters of shape feature vectors obtained from a randomised finite element model. The dimension of the statistical problem may often be reduced by principal component analysis. Then, in addition to the Euclidian distance, the Mahalanobis distance, defining the separation of the test point from the cluster in terms of its standard deviation, becomes an important measure. Bayesian decision theory may be applied to formally minimise the risk of misclassification of the test shape feature vector. In this paper the ZMD is applied to the problem of mode shape recognition for a circular plate. Results show that the ZMD has considerable advantages over the traditional MAC index when identifying the cyclically symmetric mode shapes that occur in axisymmetric structures at identical frequencies. Mode shape recognition of rectangular plates is carried out by the FD. Also, the WD is applied to the problem of recognising the mode shapes in the thin and thick regions of a plate with different thicknesses. It shows the benefit of using the WD to identify mode-shapes having both local and global components. The comparison and classification of mode shapes using IP and PR provides a 'toolkit' to complement the conventional MAC approach. The selection of a particular shape descriptor and classification method will depend upon the problem in hand and the experience of the analyst.
Penetration analysis of projectile with inclined concrete target
NASA Astrophysics Data System (ADS)
Kim, S. B.; Kim, H. W.; Yoo, Y. H.
2015-09-01
This paper presents numerical analysis result of projectile penetration with concrete target. We applied dynamic material properties of 4340 steels, aluminium and explosive for projectile body. Dynamic material properties were measured with static tensile testing machine and Hopkinson pressure bar tests. Moreover, we used three concrete damage models included in LS-DYNA 3D, such as SOIL_CONCRETE, CSCM (cap model with smooth interaction) and CONCRETE_DAMAGE (K&C concrete) models. Strain rate effect for concrete material is important to predict the fracture deformation and shape of concrete, and penetration depth for projectiles. CONCRETE_DAMAGE model with strain rate effect also applied to penetration analysis. Analysis result with CSCM model shows good agreement with penetration experimental data. The projectile trace and fracture shapes of concrete target were compared with experimental data.
NASA Astrophysics Data System (ADS)
Lopes, Marta; Murta, Alberto G.; Cabral, Henrique N.
2006-03-01
The existence of two species of the genus Macroramphosus Lacepède 1803, has been discussed based on morphometric characters, diet composition and depth distribution. Another species, the boarfish Capros aper (Linnaeus 1758), caugth along the Portuguese coast, shows two different morphotypes, one type with smaller eyes and a deeper body than the other, occurring with intermediate forms. In both snipefish and boarfish no sexual dimorphism was found with respect to shape and length relationships. However, females in both genera were on average bigger than males. A multidimensional scaling analysis was performed using Procrustes distances, in order to check if shape geometry was effective in distinguishing the species of snipefish as well as the morphotypes of boarfish. A multivariate discriminant analysis using morphometric characters of snipefish and boarfish was carried out to validate the visual criteria for a distinction of species and morphotypes, respectively. Morphometric characters revealed a great discriminatory power to distinguish morphotypes. Both snipefish and boarfish are very abundant in Portuguese waters, showing two well-defined morphologies and intermediate forms. This study suggests that there may be two different species in each genus and that further studies on these fish should be carried out to investigate if there is reproductive isolation between the morphotypes of boarfish and to validate the species of snipefish.
Shape-memory effect by specific biodegradable polymer blending for biomedical applications.
Cha, Kook Jin; Lih, Eugene; Choi, Jiyeon; Joung, Yoon Ki; Ahn, Dong Jun; Han, Dong Keun
2014-05-01
Specific biodegradable polymers having shape-memory properties through "polymer-blend" method are investigated and their shape-switching in body temperature (37 °C) is characterized. Poly(L-lactide-co-caprolactone) (PLCL) and poly(L-lactide-co-glycolide) (PLGA) are dissolved in chloroform and the films of several blending ratios of PLCL/PLGA are prepared by solvent casting. The shape-memory properties of films are also examined using dynamic mechanical analysis (DMA). Among the blending ratios, the PLCL50/PLGA50 film shows good performance of shape-fixity and shape-recovery based on glass transition temperature. It displays that the degree of shape recovery is 100% at 37 °C and the shape recovery proceeds within only 15 s. In vitro biocompatibility studies are shown to have good blood compatibility and cytocompatibility for the PLCL50/PLGA50 films. It is expected that this blended biodegradable polymer can be potentially used as a material for blood-contacting medical devices such as a self-expended vascular polymer stents and vascular closure devices in biomedical applications. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Mode shape analysis using a commercially available peak store video frame buffer
NASA Technical Reports Server (NTRS)
Snow, Walter L.; Childers, Brooks A.
1994-01-01
Time exposure photography, sometimes coupled with strobe illumination, is an accepted method for motion analysis that bypasses frame by frame analysis and resynthesis of data. Garden variety video cameras can now exploit this technique using a unique frame buffer that is a non-integrating memory that compares incoming data with that already stored. The device continuously outputs an analog video signal of the stored contents which can then be redigitized and analyzed using conventional equipment. Historically, photographic time exposures have been used to record the displacement envelope of harmonically oscillating structures to show mode shape. Mode shape analysis is crucial, for example, in aeroelastic testing of wind tunnel models. Aerodynamic, inertial, and elastic forces can couple together leading to catastrophic failure of a poorly designed aircraft. This paper will explore the usefulness of the peak store device as a videometric tool and in particular discuss methods for analyzing a targeted vibrating plate using the 'peak store' in conjunction with calibration methods familiar to the close-range videometry community. Results for the first three normal modes will be presented.
Mode shape analysis using a commercially available "peak-store" video frame buffer
NASA Astrophysics Data System (ADS)
Snow, Walter L.; Childers, Brooks A.
1994-10-01
Time exposure photography, sometimes coupled with strobe illumination, is an accepted method for motion analysis that bypasses frame by frame analysis and re synthesis of data. Garden variety video cameras can now exploit this technique using a unique frame buffer that is a non integrating memory that compares incoming data with that already stored. The device continuously outputs an analog video signal of the stored contents which can then be redigitized and analyzed using conventional equipment. Historically, photographic time exposures have been used to record the displacement envelope of harmonically oscillating structures to show mode shape. Mode shape analysis is crucial, for example, in aeroelastic testing of wind tunnel models. Aerodynamic, inertial, and elastic forces can couple together leading to catastrophic failure of a poorly designed aircraft. This paper will explore the usefulness of the peak store device as a videometric tool and in particular discuss methods for analyzing a targeted vibrating plate using the `peak store' in conjunction with calibration methods familiar to the close-range videometry community. Results for the first three normal modes will be presented.
Evolution of Skull and Mandible Shape in Cats (Carnivora: Felidae)
Christiansen, Per
2008-01-01
The felid family consists of two major subgroups, the sabretoothed and the feline cats, to which all extant species belong, and are the most anatomically derived of all carnivores for predation on large prey with a precision killing bite. There has been much controversy and uncertainty about why the skulls and mandibles of sabretoothed and feline cats evolved to become so anatomically divergent, but previous models have focused on single characters and no unifying hypothesis of evolutionary shape changes has been formulated. Here I show that the shape of the skull and mandible in derived sabrecats occupy entirely different positions within overall morphospace from feline cats, and that the evolution of skull and mandible shape has followed very different paths in the two subgroups. When normalised for body-size differences, evolution of bite forces differ markedly in the two groups, and are much lower in derived sabrecats, and they show a significant relationship with size and cranial shape, whereas no such relationship is present in feline cats. Evolution of skull and mandible shape in modern cats has been governed by the need for uniform powerful biting irrespective of body size, whereas in sabrecats, shape evolution was governed by selective pressures for efficient predation with hypertrophied upper canines at high gape angles, and bite forces were secondary and became progressively weaker during sabrecat evolution. The current study emphasises combinations of new techniques for morphological shape analysis and biomechanical studies to formulate evolutionary hypotheses for difficult groups. PMID:18665225
NASA Astrophysics Data System (ADS)
Chung, Moo K.; Kim, Seung-Goo; Schaefer, Stacey M.; van Reekum, Carien M.; Peschke-Schmitz, Lara; Sutterer, Matthew J.; Davidson, Richard J.
2014-03-01
The sparse regression framework has been widely used in medical image processing and analysis. However, it has been rarely used in anatomical studies. We present a sparse shape modeling framework using the Laplace- Beltrami (LB) eigenfunctions of the underlying shape and show its improvement of statistical power. Tradition- ally, the LB-eigenfunctions are used as a basis for intrinsically representing surface shapes as a form of Fourier descriptors. To reduce high frequency noise, only the first few terms are used in the expansion and higher frequency terms are simply thrown away. However, some lower frequency terms may not necessarily contribute significantly in reconstructing the surfaces. Motivated by this idea, we present a LB-based method to filter out only the significant eigenfunctions by imposing a sparse penalty. For dense anatomical data such as deformation fields on a surface mesh, the sparse regression behaves like a smoothing process, which will reduce the error of incorrectly detecting false negatives. Hence the statistical power improves. The sparse shape model is then applied in investigating the influence of age on amygdala and hippocampus shapes in the normal population. The advantage of the LB sparse framework is demonstrated by showing the increased statistical power.
NASA Technical Reports Server (NTRS)
Haering, Edward A., Jr.; Murray, James E.; Purifoy, Dana D.; Graham, David H.; Meredith, Keith B.; Ashburn, Christopher E.; Stucky, Mark
2005-01-01
The Shaped Sonic Boom Demonstration project showed for the first time that by careful design of aircraft contour the resultant sonic boom can maintain a tailored shape, propagating through a real atmosphere down to ground level. In order to assess the propagation characteristics of the shaped sonic boom and to validate computational fluid dynamics codes, airborne measurements were taken of the pressure signatures in the near field by probing with an instrumented F-15B aircraft, and in the far field by overflying an instrumented L-23 sailplane. This paper describes each aircraft and their instrumentation systems, the airdata calibration, analysis of the near- and far-field airborne data, and shows the good to excellent agreement between computational fluid dynamics solutions and flight data. The flights of the Shaped Sonic Boom Demonstration aircraft occurred in two phases. Instrumentation problems were encountered during the first phase, and corrections and improvements were made to the instrumentation system for the second phase, which are documented in the paper. Piloting technique and observations are also given. These airborne measurements of the Shaped Sonic Boom Demonstration aircraft are a unique and important database that will be used to validate design tools for a new generation of quiet supersonic aircraft.
Stacking and T-shape competition in aromatic-aromatic amino acid interactions.
Chelli, Riccardo; Gervasio, Francesco Luigi; Procacci, Piero; Schettino, Vincenzo
2002-05-29
The potential of mean force of interacting aromatic amino acids is calculated using molecular dynamics simulations. The free energy surface is determined in order to study stacking and T-shape competition for phenylalanine-phenylalanine (Phe-Phe), phenylalanine-tyrosine (Phe-Tyr), and tyrosine-tyrosine (Tyr-Tyr) complexes in vacuo, water, carbon tetrachloride, and methanol. Stacked structures are favored in all solvents with the exception of the Tyr-Tyr complex in carbon tetrachloride, where T-shaped structures are also important. The effect of anchoring the two alpha-carbons (C(alpha)) at selected distances is investigated. We find that short and large C(alpha)-C(alpha) distances favor stacked and T-shaped structures, respectively. We analyze a set of 2396 protein structures resolved experimentally. Comparison of theoretical free energies for the complexes to the experimental analogue shows that Tyr-Tyr interaction occurs mainly at the protein surface, while Phe-Tyr and Phe-Phe interactions are more frequent in the hydrophobic protein core. This is confirmed by the Voronoi polyhedron analysis on the database protein structures. As found from the free energy calculation, analysis of the protein database has shown that proximal and distal interacting aromatic residues are predominantly stacked and T-shaped, respectively.
View subspaces for indexing and retrieval of 3D models
NASA Astrophysics Data System (ADS)
Dutagaci, Helin; Godil, Afzal; Sankur, Bülent; Yemez, Yücel
2010-02-01
View-based indexing schemes for 3D object retrieval are gaining popularity since they provide good retrieval results. These schemes are coherent with the theory that humans recognize objects based on their 2D appearances. The viewbased techniques also allow users to search with various queries such as binary images, range images and even 2D sketches. The previous view-based techniques use classical 2D shape descriptors such as Fourier invariants, Zernike moments, Scale Invariant Feature Transform-based local features and 2D Digital Fourier Transform coefficients. These methods describe each object independent of others. In this work, we explore data driven subspace models, such as Principal Component Analysis, Independent Component Analysis and Nonnegative Matrix Factorization to describe the shape information of the views. We treat the depth images obtained from various points of the view sphere as 2D intensity images and train a subspace to extract the inherent structure of the views within a database. We also show the benefit of categorizing shapes according to their eigenvalue spread. Both the shape categorization and data-driven feature set conjectures are tested on the PSB database and compared with the competitor view-based 3D shape retrieval algorithms.
Blade design and analysis using a modified Euler solver
NASA Technical Reports Server (NTRS)
Leonard, O.; Vandenbraembussche, R. A.
1991-01-01
An iterative method for blade design based on Euler solver and described in an earlier paper is used to design compressor and turbine blades providing shock free transonic flows. The method shows a rapid convergence, and indicates how much the flow is sensitive to small modifications of the blade geometry, that the classical iterative use of analysis methods might not be able to define. The relationship between the required Mach number distribution and the resulting geometry is discussed. Examples show how geometrical constraints imposed upon the blade shape can be respected by using free geometrical parameters or by relaxing the required Mach number distribution. The same code is used both for the design of the required geometry and for the off-design calculations. Examples illustrate the difficulty of designing blade shapes with optimal performance also outside of the design point.
Viscosity-dependent variations in the cell shape and swimming manner of Leptospira.
Takabe, Kyosuke; Tahara, Hajime; Islam, Md Shafiqul; Affroze, Samia; Kudo, Seishi; Nakamura, Shuichi
2017-02-01
Spirochaetes are spiral or flat-wave-shaped Gram-negative bacteria that have periplasmic flagella between the peptidoglycan layer and outer membrane. Rotation of the periplasmic flagella transforms the cell body shape periodically, allowing the cell to swim in aqueous environments. Because the virulence of motility-deficient mutants of pathogenic species is drastically attenuated, motility is thought to be an essential virulence factor in spirochaetes. However, it remains unknown how motility practically contributes to the infection process. We show here that the cell body configuration and motility of the zoonotic spirochaete Leptospira changes depending on the viscosity of the medium. Leptospira swim and reverse the swimming direction by transforming the cell body. Motility analysis showed that the frequency of cell shape transformation was increased by increasing the viscosity of the medium. The increased cell body transformation induced highly frequent reversal of the swimming direction. A simple kinetic model based on the experimental results shows that the viscosity-induced increase in reversal limits cell migration, resulting in the accumulation of cells in high-viscosity regions. This behaviour could facilitate the colonization of the spirochaete on host tissues covered with mucosa.
[Scanning electron microscope observation and image quantitative analysis of Hippocampi].
Zhang, Z; Pu, Z; Xu, L; Xu, G; Wang, Q; Xu, G; Wu, L; Chen, J
1998-12-01
The "scale-like projects" on the derma of 3 species of Hippocampi, H. kuda Bleerer, H. trimaculatus Leach and H. japonicus Kaup were observed by scanning electron microscope (SEM). Results showed that some characteristics such us size, shape and type of arrangement of the "scale-like projects" can be considered as the evidence for microanalysis. Image quantitative analysis of the "scale-like project" was carried out on 45 pieces of photograph using area, long diameter, short diameter and shape factor as parameters. No difference among the different parts of the same species was observed, but significant differences were found among the above 3 species.
The SAMI Galaxy Survey: the intrinsic shape of kinematically selected galaxies
NASA Astrophysics Data System (ADS)
Foster, C.; van de Sande, J.; D'Eugenio, F.; Cortese, L.; McDermid, R. M.; Bland-Hawthorn, J.; Brough, S.; Bryant, J.; Croom, S. M.; Goodwin, M.; Konstantopoulos, I. S.; Lawrence, J.; López-Sánchez, Á. R.; Medling, A. M.; Owers, M. S.; Richards, S. N.; Scott, N.; Taranu, D. S.; Tonini, C.; Zafar, T.
2017-11-01
Using the stellar kinematic maps and ancillary imaging data from the Sydney AAO Multi Integral field (SAMI) Galaxy Survey, the intrinsic shape of kinematically selected samples of galaxies is inferred. We implement an efficient and optimized algorithm to fit the intrinsic shape of galaxies using an established method to simultaneously invert the distributions of apparent ellipticities and kinematic misalignments. The algorithm output compares favourably with previous studies of the intrinsic shape of galaxies based on imaging alone and our re-analysis of the ATLAS3D data. Our results indicate that most galaxies are oblate axisymmetric. We show empirically that the intrinsic shape of galaxies varies as a function of their rotational support as measured by the 'spin' parameter proxy λ _{R_e}. In particular, low-spin systems have a higher occurrence of triaxiality, while high-spin systems are more intrinsically flattened and axisymmetric. The intrinsic shape of galaxies is linked to their formation and merger histories. Galaxies with high-spin values have intrinsic shapes consistent with dissipational minor mergers, while the intrinsic shape of low-spin systems is consistent with dissipationless multimerger assembly histories. This range in assembly histories inferred from intrinsic shapes is broadly consistent with expectations from cosmological simulations.
Probabilistic Modeling and Visualization of the Flexibility in Morphable Models
NASA Astrophysics Data System (ADS)
Lüthi, M.; Albrecht, T.; Vetter, T.
Statistical shape models, and in particular morphable models, have gained widespread use in computer vision, computer graphics and medical imaging. Researchers have started to build models of almost any anatomical structure in the human body. While these models provide a useful prior for many image analysis task, relatively little information about the shape represented by the morphable model is exploited. We propose a method for computing and visualizing the remaining flexibility, when a part of the shape is fixed. Our method, which is based on Probabilistic PCA, not only leads to an approach for reconstructing the full shape from partial information, but also allows us to investigate and visualize the uncertainty of a reconstruction. To show the feasibility of our approach we performed experiments on a statistical model of the human face and the femur bone. The visualization of the remaining flexibility allows for greater insight into the statistical properties of the shape.
Effect of acoustic radiation on the stability of spherical bubble oscillations
NASA Astrophysics Data System (ADS)
Gumerov, Nail A.
1998-07-01
A recent analysis of the stability of spherical bubble oscillations shows that the high order shape modes are parametrically unstable with respect to small but finite perturbations [Z. C. Feng and L. G. Leal, J. Fluid Mech. 266, 209 (1994)]. Using a heuristic approach it is shown here that the acoustic radiation due to the liquid compressibility plays an important role in stabilization of the high frequency modes and overall stability of the bubble spherical shape.
Laser beam-profile impression and target thickness impact on laser-accelerated protons
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schollmeier, M.; Harres, K.; Nuernberg, F.
Experimental results on the influence of the laser focal spot shape onto the beam profile of laser-accelerated protons from gold foils are reported. The targets' microgrooved rear side, together with a stack of radiochromic films, allowed us to deduce the energy-dependent proton source-shape and size, respectively. The experiments show, that shape and size of the proton source depend only weakly on target thickness as well as shape of the laser focus, although they strongly influence the proton's intensity distribution. It was shown that the laser creates an electron beam that closely follows the laser beam topology, which is maintained duringmore » the propagation through the target. Protons are then accelerated from the rear side with an electron created electric field of a similar shape. Simulations with the Sheath-Accelerated Beam Ray-tracing for IoN Analysis code SABRINA, which calculates the proton distribution in the detector for a given laser-beam profile, show that the electron distribution during the transport through a thick target (50 {mu}m Au) is only modified due to multiple small angle scattering. Thin targets (10 {mu}m) show large source sizes of over 100 {mu}m diameter for 5 MeV protons, which cannot be explained by multiple scattering only and are most likely the result of refluxing electrons.« less
A new convexity measure for polygons.
Zunic, Jovisa; Rosin, Paul L
2004-07-01
Abstract-Convexity estimators are commonly used in the analysis of shape. In this paper, we define and evaluate a new convexity measure for planar regions bounded by polygons. The new convexity measure can be understood as a "boundary-based" measure and in accordance with this it is more sensitive to measured boundary defects than the so called "area-based" convexity measures. When compared with the convexity measure defined as the ratio between the Euclidean perimeter of the convex hull of the measured shape and the Euclidean perimeter of the measured shape then the new convexity measure also shows some advantages-particularly for shapes with holes. The new convexity measure has the following desirable properties: 1) the estimated convexity is always a number from (0, 1], 2) the estimated convexity is 1 if and only if the measured shape is convex, 3) there are shapes whose estimated convexity is arbitrarily close to 0, 4) the new convexity measure is invariant under similarity transformations, and 5) there is a simple and fast procedure for computing the new convexity measure.
Jennane, Rachid; Aufort, Gabriel; Benhamou, Claude Laurent; Ceylan, Murat; Ozbay, Yüksel; Ucan, Osman Nuri
2012-04-01
Curve and surface thinning are widely-used skeletonization techniques for modeling objects in three dimensions. In the case of disordered porous media analysis, however, neither is really efficient since the internal geometry of the object is usually composed of both rod and plate shapes. This paper presents an alternative to compute a hybrid shape-dependent skeleton and its application to porous media. The resulting skeleton combines 2D surfaces and 1D curves to represent respectively the plate-shaped and rod-shaped parts of the object. For this purpose, a new technique based on neural networks is proposed: cascade combinations of complex wavelet transform (CWT) and complex-valued artificial neural network (CVANN). The ability of the skeleton to characterize hybrid shaped porous media is demonstrated on a trabecular bone sample. Results show that the proposed method achieves high accuracy rates about 99.78%-99.97%. Especially, CWT (2nd level)-CVANN structure converges to optimum results as high accuracy rate-minimum time consumption.
Estimating the settling velocity of bioclastic sediment using common grain-size analysis techniques
Cuttler, Michael V. W.; Lowe, Ryan J.; Falter, James L.; Buscombe, Daniel D.
2017-01-01
Most techniques for estimating settling velocities of natural particles have been developed for siliciclastic sediments. Therefore, to understand how these techniques apply to bioclastic environments, measured settling velocities of bioclastic sedimentary deposits sampled from a nearshore fringing reef in Western Australia were compared with settling velocities calculated using results from several common grain-size analysis techniques (sieve, laser diffraction and image analysis) and established models. The effects of sediment density and shape were also examined using a range of density values and three different models of settling velocity. Sediment density was found to have a significant effect on calculated settling velocity, causing a range in normalized root-mean-square error of up to 28%, depending upon settling velocity model and grain-size method. Accounting for particle shape reduced errors in predicted settling velocity by 3% to 6% and removed any velocity-dependent bias, which is particularly important for the fastest settling fractions. When shape was accounted for and measured density was used, normalized root-mean-square errors were 4%, 10% and 18% for laser diffraction, sieve and image analysis, respectively. The results of this study show that established models of settling velocity that account for particle shape can be used to estimate settling velocity of irregularly shaped, sand-sized bioclastic sediments from sieve, laser diffraction, or image analysis-derived measures of grain size with a limited amount of error. Collectively, these findings will allow for grain-size data measured with different methods to be accurately converted to settling velocity for comparison. This will facilitate greater understanding of the hydraulic properties of bioclastic sediment which can help to increase our general knowledge of sediment dynamics in these environments.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Bing; Tian, Xuedong; Wang, Qian
Purpose: Accurate detection of pulmonary nodules remains a technical challenge in computer-aided diagnosis systems because some nodules may adhere to the blood vessels or the lung wall, which have low contrast compared to the surrounding tissues. In this paper, the analysis of typical shape features of candidate nodules based on a shape constraint Chan–Vese (CV) model combined with calculation of the number of blood branches adhered to nodule candidates is proposed to reduce false positive (FP) nodules from candidate nodules. Methods: The proposed scheme consists of three major stages: (1) Segmentation of lung parenchyma from computed tomography images. (2) Extractionmore » of candidate nodules. (3) Reduction of FP nodules. A gray level enhancement combined with a spherical shape enhancement filter is introduced to extract the candidate nodules and their sphere-like contour regions. FPs are removed by analysis of the typical shape features of nodule candidates based on the CV model using spherical constraint and by investigating the number of blood branches adhered to the candidate nodules. The constrained shapes of CV model are automatically achieved from the extracted candidate nodules. Results: The detection performance was evaluated on 127 nodules of 103 cases including three types of challenging nodules, which are juxta-pleural nodules, juxta-vascular nodules, and ground glass opacity nodules. The free-receiver operating characteristic (FROC) curve shows that the proposed method is able to detect 88% of all the nodules in the data set with 4 FPs per case. Conclusions: Evaluation shows that the authors’ method is feasible and effective for detection of three types of nodules in this study.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Attota, Ravikiran, E-mail: Ravikiran.attota@nist.gov; Dixson, Ronald G.
We experimentally demonstrate that the three-dimensional (3-D) shape variations of nanometer-scale objects can be resolved and measured with sub-nanometer scale sensitivity using conventional optical microscopes by analyzing 4-D optical data using the through-focus scanning optical microscopy (TSOM) method. These initial results show that TSOM-determined cross-sectional (3-D) shape differences of 30 nm–40 nm wide lines agree well with critical-dimension atomic force microscope measurements. The TSOM method showed a linewidth uncertainty of 1.22 nm (k = 2). Complex optical simulations are not needed for analysis using the TSOM method, making the process simple, economical, fast, and ideally suited for high volume nanomanufacturing process monitoring.
Synthesis and Characterization of Aqueous Lead Selenide Quantum Dots for Solar Cell Application
NASA Astrophysics Data System (ADS)
Albert, Ancy; Sreekala, C. O.; Prabhakaran, Malini
2018-02-01
High quality, colloidal lead selenide (PbSe) nanoparticles possessing cube shaped morphology have been successfully synthesized by organometallic synthesis method, using oleic acid (OA) as capping agent. The use of non-coordinating solvent, 1-Octadecene (ODE), during the synthesis results in good quality nanocrystals. Morphology analysis by transmission electron microscopy reveals that cube-shaped nanocrystals with a size range of 10 nm have been produced during the synthesis. The absorption and PL spectra analysis showed an emission peak at 675 nm when excited to a wavelength of 610 nm, further confirmed the formation of PbSe nanocrystals. The surface modification of this colloidal quantum dots was then carried out using L- cysteine ligand, to make them water soluble, for solar cell application. The J-V characteristics study of this PbSe quantum dots solar cell (PbSe QDSC) showed a little power conversion efficiency which intern it shows significant advance toward effective utilization of PbSe nanocrystals sensitized in solar cells.
Mesial temporal lobe epilepsy lateralization using SPHARM-based features of hippocampus and SVM
NASA Astrophysics Data System (ADS)
Esmaeilzadeh, Mohammad; Soltanian-Zadeh, Hamid; Jafari-Khouzani, Kourosh
2012-02-01
This paper improves the Lateralization (identification of the epileptogenic hippocampus) accuracy in Mesial Temporal Lobe Epilepsy (mTLE). In patients with this kind of epilepsy, usually one of the brain's hippocampi is the focus of the epileptic seizures, and resection of the seizure focus is the ultimate treatment to control or reduce the seizures. Moreover, the epileptogenic hippocampus is prone to shrinkage and deformation; therefore, shape analysis of the hippocampus is advantageous in the preoperative assessment for the Lateralization. The method utilized for shape analysis is the Spherical Harmonics (SPHARM). In this method, the shape of interest is decomposed using a set of bases functions and the obtained coefficients of expansion are the features describing the shape. To perform shape comparison and analysis, some pre- and post-processing steps such as "alignment of different subjects' hippocampi" and the "reduction of feature-space dimension" are required. To this end, first order ellipsoid is used for alignment. For dimension reduction, we propose to keep only the SPHARM coefficients with maximum conformity to the hippocampus shape. Then, using these coefficients of normal and epileptic subjects along with 3D invariants, specific lateralization indices are proposed. Consequently, the 1536 SPHARM coefficients of each subject are summarized into 3 indices, where for each index the negative (positive) value shows that the left (right) hippocampus is deformed (diseased). Employing these indices, the best achieved lateralization accuracy for clustering and classification algorithms are 85% and 92%, respectively. This is a significant improvement compared to the conventional volumetric method.
Broadband, high-resolution investigation of advanced absorption line shapes at high temperature
NASA Astrophysics Data System (ADS)
Schroeder, Paul J.; Cich, Matthew J.; Yang, Jinyu; Swann, William C.; Coddington, Ian; Newbury, Nathan R.; Drouin, Brian J.; Rieker, Gregory B.
2017-08-01
Spectroscopic studies of planetary atmospheres and high-temperature processes (e.g., combustion) require absorption line-shape models that are accurate over extended temperature ranges. To date, advanced line shapes, like the speed-dependent Voigt and Rautian profiles, have not been tested above room temperature with broadband spectrometers. We investigate pure water vapor spectra from 296 to 1305 K acquired with a dual-frequency comb spectrometer spanning from 6800 to 7200 c m-1 at a point spacing of 0.0033 c m-1 and absolute frequency accuracy of <3.3 ×10-6c m-1 . Using a multispectral fitting analysis, we show that only the speed-dependent Voigt accurately models this temperature range with a single power-law temperature-scaling exponent for the broadening coefficients. Only the data from the analysis using this profile fall within theoretical predictions, suggesting that this mechanism captures the dominant narrowing physics for these high-temperature conditions.
Shehla, Romana; Khan, Athar Ali
2016-01-01
Models with bathtub-shaped hazard function have been widely accepted in the field of reliability and medicine and are particularly useful in reliability related decision making and cost analysis. In this paper, the exponential power model capable of assuming increasing as well as bathtub-shape, is studied. This article makes a Bayesian study of the same model and simultaneously shows how posterior simulations based on Markov chain Monte Carlo algorithms can be straightforward and routine in R. The study is carried out for complete as well as censored data, under the assumption of weakly-informative priors for the parameters. In addition to this, inference interest focuses on the posterior distribution of non-linear functions of the parameters. Also, the model has been extended to include continuous explanatory variables and R-codes are well illustrated. Two real data sets are considered for illustrative purposes.
Shen, Qinghua; Liang, Xiaohui; Shen, Xuemin; Lin, Xiaodong; Luo, Henry Y
2014-03-01
In this paper, we propose an e-health monitoring system with minimum service delay and privacy preservation by exploiting geo-distributed clouds. In the system, the resource allocation scheme enables the distributed cloud servers to cooperatively assign the servers to the requested users under the load balance condition. Thus, the service delay for users is minimized. In addition, a traffic-shaping algorithm is proposed. The traffic-shaping algorithm converts the user health data traffic to the nonhealth data traffic such that the capability of traffic analysis attacks is largely reduced. Through the numerical analysis, we show the efficiency of the proposed traffic-shaping algorithm in terms of service delay and privacy preservation. Furthermore, through the simulations, we demonstrate that the proposed resource allocation scheme significantly reduces the service delay compared to two other alternatives using jointly the short queue and distributed control law.
NASA Technical Reports Server (NTRS)
Douglas, F. C.; Galasso, F. S.
1974-01-01
Experimental work is reported which was directed toward obtaining interface shape control while a numerical thermal analysis program was being made operational. An experimental system was developed in which the solid-liquid interface in a directionally solidified aluminum-nickel eutectic could be made either concave to the melt or convex to the melt. This experimental system provides control over the solid-liquid interface shape and can be used to study the effect of such control on the microstructure. The SINDA thermal analysis program, obtained from Marshall Space Flight Center, was used to evaluate experimental directional solidification systems for the aluminum-nickel and the aluminum-copper eutectics. This program was applied to a three-dimensional ingot, and was used to calculate the thermal profiles in axisymmetric heat flow. The results show that solid-liquid interface shape control can be attained with physically realizable thermal configurations and the magnitudes of the required thermal inputs were indicated.
Three-dimensional analysis of facial shape and symmetry in twins using laser surface scanning.
Djordjevic, J; Jadallah, M; Zhurov, A I; Toma, A M; Richmond, S
2013-08-01
Three-dimensional analysis of facial shape and symmetry in twins. Faces of 37 twin pairs [19 monozygotic (MZ) and 18 dizygotic (DZ)] were laser scanned at the age of 15 during a follow-up of the Avon Longitudinal Study of Parents and Children (ALSPAC), South West of England. Facial shape was analysed using two methods: 1) Procrustes analysis of landmark configurations (63 x, y and z coordinates of 21 facial landmarks) and 2) three-dimensional comparisons of facial surfaces within each twin pair. Monozygotic and DZ twins were compared using ellipsoids representing 95% of the variation in landmark configurations and surface-based average faces. Facial symmetry was analysed by superimposing the original and mirror facial images. Both analyses showed greater similarity of facial shape in MZ twins, with lower third being the least similar. Procrustes analysis did not reveal any significant difference in facial landmark configurations of MZ and DZ twins. The average faces of MZ and DZ males were coincident in the forehead, supraorbital and infraorbital ridges, the bridge of the nose and lower lip. In MZ and DZ females, the eyes, supraorbital and infraorbital ridges, philtrum and lower part of the cheeks were coincident. Zygosity did not seem to influence the amount of facial symmetry. Lower facial third was the most asymmetrical. Three-dimensional analyses revealed differences in facial shapes of MZ and DZ twins. The relative contribution of genetic and environmental factors is different for the upper, middle and lower facial thirds. © 2012 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
Thermomechanical Analysis of Shape-Memory Composite Tape Spring
NASA Astrophysics Data System (ADS)
Yang, H.; Wang, L. Y.
2013-06-01
Intelligent materials and structures have been extensively applied for satellite designs in order to minimize the mass and reduce the cost in the launch of the spacecraft. Elastic memory composites (EMCs) have the ability of high-strain packaging and shape-memory effect, but increase the parts and total weight due to the additional heating system. Shape-memory sandwich structures Li and Wang (J. Intell. Mater. Syst. Struct. 22(14), 1605-1612, 2011) can overcome such disadvantage by using the metal skin acting as the heating element. However, the high strain in the micro-buckled metal skin decreases the deployment efficiency. This paper aims to present an insight into the folding and deployment behaviors of shape-memory composite (SMC) tape springs. A thermomechanical process was analyzed, including the packaging deformation at an elevated temperature, shape frozen at the low temperature and shape recovery after reheating. The result shows that SMC tape springs can significantly decrease the strain concentration in the metal skin, as well as exhibiting excellent shape frozen and recovery behaviors. Additionally, possible failure modes of SMC tape springs were also analyzed.
Henseler, Helga; Smith, Joanna; Bowman, Adrian; Khambay, Balvinder S; Ju, Xiangyang; Ayoub, Ashraf; Ray, Arup K
2012-09-01
The latissimus dorsi muscle flap is a common method for the reconstruction of the breast following mastectomy. The study aimed to assess the quality of this reconstruction using a three-dimensional (3D) imaging method. The null hypothesis was that there was no difference in volume between the reconstructed breast and the opposite side. This study was conducted in forty-four patients who had had immediate unilateral breast reconstruction by latissimus dorsi muscle flap. The breast was captured using the 3D imaging system. Ten landmarks were digitised on the 3D images. The volume of each breast was measured by the application of Breast Analysis Tool software. The symmetry of the breast was measured using Procrustes analysis. The impact of breast position, orientation, size and intrinsic shape on the overall breast asymmetry was investigated. The null hypothesis was rejected. The reconstructed breast showed a significantly smaller volume when compared to the opposite side, p < 0.0001, a mean difference of 176.8 cc and 95% CI (103.5, 250.0). The shape and the position of the reconstructed breast were the main contributing factors to the measured asymmetry score. 3D imaging was efficient in evaluating the outcome of breast surgery. The latissimus dorsi muscle flap on its own for breast reconstruction did not restore the volume and shape of the breast fully lost due to complete mastectomy. The modification of this method and the selection of other or additional surgical techniques for breast reconstruction should be considered. The asymmetry analysis through reflection and Procrustes matching was a useful method for the objective shape analysis of the female breast and presented a new approach for breast shape assessment. The intrinsic breast shape and the positioning of the breast were major components of postoperative breast asymmetry. The reconstructed breast was smaller overall than the un-operated breast at a significant level when assessing the breast volume using the surface area. 3D imaging by multiple stereophotogrammetry was a useful tool for volume measurements, shape analysis and the evaluation of symmetry. Copyright © 2012 British Association of Plastic, Reconstructive and Aesthetic Surgeons. Published by Elsevier Ltd. All rights reserved.
A toolbox to visually explore cerebellar shape changes in cerebellar disease and dysfunction.
Abulnaga, S Mazdak; Yang, Zhen; Carass, Aaron; Kansal, Kalyani; Jedynak, Bruno M; Onyike, Chiadi U; Ying, Sarah H; Prince, Jerry L
2016-02-27
The cerebellum plays an important role in motor control and is also involved in cognitive processes. Cerebellar function is specialized by location, although the exact topographic functional relationship is not fully understood. The spinocerebellar ataxias are a group of neurodegenerative diseases that cause regional atrophy in the cerebellum, yielding distinct motor and cognitive problems. The ability to study the region-specific atrophy patterns can provide insight into the problem of relating cerebellar function to location. In an effort to study these structural change patterns, we developed a toolbox in MATLAB to provide researchers a unique way to visually explore the correlation between cerebellar lobule shape changes and function loss, with a rich set of visualization and analysis modules. In this paper, we outline the functions and highlight the utility of the toolbox. The toolbox takes as input landmark shape representations of subjects' cerebellar substructures. A principal component analysis is used for dimension reduction. Following this, a linear discriminant analysis and a regression analysis can be performed to find the discriminant direction associated with a specific disease type, or the regression line of a specific functional measure can be generated. The characteristic structural change pattern of a disease type or of a functional score is visualized by sampling points on the discriminant or regression line. The sampled points are used to reconstruct synthetic cerebellar lobule shapes. We showed a few case studies highlighting the utility of the toolbox and we compare the analysis results with the literature.
A toolbox to visually explore cerebellar shape changes in cerebellar disease and dysfunction
NASA Astrophysics Data System (ADS)
Abulnaga, S. Mazdak; Yang, Zhen; Carass, Aaron; Kansal, Kalyani; Jedynak, Bruno M.; Onyike, Chiadi U.; Ying, Sarah H.; Prince, Jerry L.
2016-03-01
The cerebellum plays an important role in motor control and is also involved in cognitive processes. Cerebellar function is specialized by location, although the exact topographic functional relationship is not fully understood. The spinocerebellar ataxias are a group of neurodegenerative diseases that cause regional atrophy in the cerebellum, yielding distinct motor and cognitive problems. The ability to study the region-specific atrophy patterns can provide insight into the problem of relating cerebellar function to location. In an effort to study these structural change patterns, we developed a toolbox in MATLAB to provide researchers a unique way to visually explore the correlation between cerebellar lobule shape changes and function loss, with a rich set of visualization and analysis modules. In this paper, we outline the functions and highlight the utility of the toolbox. The toolbox takes as input landmark shape representations of subjects' cerebellar substructures. A principal component analysis is used for dimension reduction. Following this, a linear discriminant analysis and a regression analysis can be performed to find the discriminant direction associated with a specific disease type, or the regression line of a specific functional measure can be generated. The characteristic structural change pattern of a disease type or of a functional score is visualized by sampling points on the discriminant or regression line. The sampled points are used to reconstruct synthetic cerebellar lobule shapes. We showed a few case studies highlighting the utility of the toolbox and we compare the analysis results with the literature.
Stange, Madlen; Aguirre-Fernández, Gabriel; Salzburger, Walter; Sánchez-Villagra, Marcelo R
2018-03-27
Morphological convergence triggered by trophic adaptations is a common pattern in adaptive radiations. The study of shape variation in an evolutionary context is usually restricted to well-studied fish models. We take advantage of the recently revised systematics of New World Ariidae and investigate skull shape evolution in six genera of northern Neotropical Ariidae. They constitute a lineage that diversified in the marine habitat but repeatedly adapted to freshwater habitats. 3D geometric morphometrics was applied for the first time in catfish skulls and phylogenetically informed statistical analyses were performed to test for the impact of habitat on skull diversification after habitat transition in this lineage. We found that skull shape is conserved throughout phylogeny. A morphospace analysis revealed that freshwater and marine species occupy extreme ends of the first principal component axis and that they exhibit similar Procrustes variances. Yet freshwater species occupy the smallest shape space compared to marine and brackish species (based on partial disparity), and marine and freshwater species have the largest Procrustes distance to each other. We observed a single case of shape convergence as derived from 'C-metrics', which cannot be explained by the occupation of the same habitat. Although Ariidae occupy such a broad spectrum of different habitats from sea to freshwater, the morphospace analysis and analyses of shape and co-variation with habitat in a phylogenetic context shows that conservatism dominates skull shape evolution among ariid genera.
Liu, Ruimei; Feng, Feng; Chen, Guolin; Liu, Zhimin; Xu, Zhigang
2016-07-01
This study reports the development of a novel dummy template molecularly imprinted polymer (MIP)-coated barbell-shaped stir bar. The MIP stir bar coatings were prepared by using 2,2-bis(4-hydroxyphenyl)butane (BPB), 4,4'-dihydroxydiphenylmethane (BPF), 4-tert-butylphenol (PTBP), and tetrabromobisphenol A (TBBA) as dummy templates using a capillary in situ polymerization method. Uniform coatings can be prepared controllably. The method is simple, easy, and reproducible. The barbell-shaped stir bar was developed by using medical silicone tubes as wheels. The wheels could be removed and reinstalled when necessary; therefore, the barbell-shaped stir bar was easy to disassemble and reassemble. The novel MIP-coated stir bar showed good selectivity for the target analyte, bisphenol A (BPA). The established method is selective and sensitive with a lower detection limit for BPA of 0.003 μg/L. The dummy template MIP-coated stir bar is suitable for trace BPA analysis in real environmental water samples without template leakage. The novel stir bar can be used at least 100 times.
Non-lambertian reflectance modeling and shape recovery of faces using tensor splines.
Kumar, Ritwik; Barmpoutis, Angelos; Banerjee, Arunava; Vemuri, Baba C
2011-03-01
Modeling illumination effects and pose variations of a face is of fundamental importance in the field of facial image analysis. Most of the conventional techniques that simultaneously address both of these problems work with the Lambertian assumption and thus fall short of accurately capturing the complex intensity variation that the facial images exhibit or recovering their 3D shape in the presence of specularities and cast shadows. In this paper, we present a novel Tensor-Spline-based framework for facial image analysis. We show that, using this framework, the facial apparent BRDF field can be accurately estimated while seamlessly accounting for cast shadows and specularities. Further, using local neighborhood information, the same framework can be exploited to recover the 3D shape of the face (to handle pose variation). We quantitatively validate the accuracy of the Tensor Spline model using a more general model based on the mixture of single-lobed spherical functions. We demonstrate the effectiveness of our technique by presenting extensive experimental results for face relighting, 3D shape recovery, and face recognition using the Extended Yale B and CMU PIE benchmark data sets.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ahmad, Rabia; Faisal, Qamer; Hussain, Sajjad
Grevillea robusta (Silver-oak tree) tree is a medicinal tree. Conventional UV-visible spectrophotometric and transmission electron microscopic technique were used to determine the morphology of silver nanoplates (AgNP) using Grevillea robusta (Silver-oak tree) aqueous leaves extract for the first time. The visible spectra showed the presence of three well defined surface plasmon absorption (SPR) bands at 500, 550 and 675 nm which was attributed to the anisotropic growth of Ag-nanoplates. Transmission electron microscopic (TEM) analysis of AgNP showed formation of truncated triangular, polyhedral with some irregular shapes nanoplates in the size range 8-20 nm. Cetyltrimethylammonium bromide (CTAB) has no significant effect on themore » shape of the spectra, position of SPR bands, size and size distribution of AgNP.« less
Yoshioka, Yosuke; Ohashi, Kazuharu; Konuma, Akihiro; Iwata, Hiroyoshi; Ohsawa, Ryo; Ninomiya, Seishi
2007-01-01
Background and Aims Flower shapes are important visual cues for pollinators. However, the ability of pollinators to discriminate between flower shapes under natural conditions is poorly understood. This study focused on the diversity of flower shape in Primula sieboldii and investigated the ability of bumblebees to discriminate between flowers by combining computer graphics with a traditional behavioural experiment. Methods Elliptic Fourier descriptors described shapes by transforming coordinate information for the contours into coefficients, and principal components analysis summarized these coefficients. Using these methods, artificial flowers were created based on the natural diversity of petal shape in P. sieboldii. Dual-choice tests were then performed to investigate the ability of the bumblebees to detect differences in the aspect ratio of petals and the depth of their head notch. Key Results The insects showed no significant ability to detect differences in the aspect ratio of the petals under natural conditions unless the morphological distance increased to an unrealistic level. These results suggest the existence of a perception threshold for distances in this parameter. The bumblebees showed a significant preference for narrow petals even after training using flowers with wide petals. The bumblebees showed a significant ability to discriminate based on the depth of the petal head notch after training using artificial flowers with a deep head notch. However, they showed no discrimination in tests with training using extreme distances between flowers in this parameter. Conclusions A new type of behavioural experiment was demonstrated using real variation in flower corolla shape in P. sieboldii. If the range in aspect ratios of petals expands much further, bumblebees may learn to exhibit selective behaviour. However, because discrimination by bumblebees under natural conditions was low, there may be no strong selective behaviour based on innate or learned preferences under natural conditions. PMID:17553825
Simulation Study on Jet Formability and Damage Characteristics of a Low-Density Material Liner
Tang, Wenhui; Ran, Xianwen
2018-01-01
The shaped charge tandem warhead is an effective weapon against the ERA (explosive reactive armor). Whether the pre-warhead can reliably initiate the ERA directly determines the entire performance of the tandem warhead. The existing shaped charge pre-warhead mostly adopts a metal shaped jet, which effectively initiates the ERA, but interferes the main shaped jet. This article, on the other hand, explores the possibility of producing a pre-warhead using a low-density material as the liner. The nonlinear dynamic analysis software Autodyn-2D is used to simulate and compare three kinds of low-density shaped jets, including floatglass, Lucite, and Plexiglas, to the copper shaped jet in the effectiveness of impacting ERA. Based on the integrative criteria (including u-d initiation criterion, explosive reactive degree, explosive pressure, and particle velocity of the panels), it can be determined whether the low-density shaped jet can reliably initiate the sandwich charge. The results show that the three kinds of low-density shaped jets can not only initiate the reaction armor, but are also superior to the existing copper shaped jet in ductility, jet tip velocity, jet tip diameter, and the mass; namely, it is feasible to use the low-density material shaped jet to destroy the ERA. PMID:29300351
Morphometric analysis of long-term dentoskeletal effects induced by treatment with Balters bionator.
Bigliazzi, Renato; Franchi, Lorenzo; Bertoz, André Pinheiro de Magalhães; McNamara, James A; Faltin, Kurt; Bertoz, Francisco Antonio
2015-09-01
To evaluate the long-term effects of the standard (Class II) Balters bionator in growing patients with Class II malocclusion with mandibular retrusion by using morphometrics (thin-plate spline [TPS] analysis). Twenty-three Class II patients (8 male, 15 female) were treated consecutively with the Balters bionator (bionator group). The sample was evaluated at T0, start of treatment; T1, end of bionator therapy; and T2, long-term observation (including fixed appliances). Mean age at the start of treatment was 10 years 2 months (T0); at posttreatment, 12 years 3 months (T1); and at long-term follow-up, 18 years 2 months (T2). The control group consisted of 22 subjects (11 male, 11 female) with untreated Class II malocclusion. Lateral cephalograms were analyzed at the three time points for all groups. TPS analysis evaluated statistical differences (permutation tests) in the craniofacial shape and size between the bionator and control groups. TPS analysis showed that treatment with the bionator is able to produce favorable mandibular shape changes (forward and downward displacement) that contribute significantly to the correction of the Class II dentoskeletal imbalance. These results are maintained at a long-term observation after completion of growth. The control group showed no statistically significant differences in the correction of Class II malocclusion. This study suggests that bionator treatment of Class II malocclusion produces favorable results over the long term with a combination of skeletal and dentoalveolar shape changes.
Systematic description of the effect of particle shape on the strength properties of granular media
NASA Astrophysics Data System (ADS)
Azéma, Emilien; Estrada, Nicolas; Preechawuttipong, Itthichai; Delenne, Jean-Yves; Radjai, Farhang
2017-06-01
In this paper, we explore numerically the effect of particle shape on the mechanical behavior of sheared granular packings. In the framework of the Contact Dynamic (CD)Method, we model angular shape as irregular polyhedral particles, non-convex shape as regular aggregates of four overlapping spheres, elongated shape as rounded cap rectangles and platy shape as square-plates. Binary granular mixture consisting of disks and elongated particles are also considered. For each above situations, the number of face of polyhedral particles, the overlap of spheres, the aspect ratio of elongated and platy particles, are systematically varied from spheres to very angular, non-convex, elongated and platy shapes. The level of homogeneity of binary mixture varies from homogenous packing to fully segregated packings. Our numerical results suggest that the effects of shape parameters are nonlinear and counterintuitive. We show that the shear strength increases as shape deviate from spherical shape. But, for angular shapes it first increases up to a maximum value and then saturates to a constant value as the particles become more angular. For mixture of two shapes, the strength increases with respect of the increase of the proportion of elongated particles, but surprisingly it is independent with the level of homogeneity of the mixture. A detailed analysis of the contact network topology, evidence that various contact types contribute differently to stress transmission at the micro-scale.
Metatarsal Shape and Foot Type: A Geometric Morphometric Analysis.
Telfer, Scott; Kindig, Matthew W; Sangeorzan, Bruce J; Ledoux, William R
2017-03-01
Planus and cavus foot types have been associated with an increased risk of pain and disability. Improving our understanding of the geometric differences between bones in different foot types may provide insights into injury risk profiles and have implications for the design of musculoskeletal and finite-element models. In this study, we performed a geometric morphometric analysis on the geometry of metatarsal bones from 65 feet, segmented from computed tomography (CT) scans. These were categorized into four foot types: pes cavus, neutrally aligned, asymptomatic pes planus, and symptomatic pes planus. Generalized procrustes analysis (GPA) followed by permutation tests was used to determine significant shape differences associated with foot type and sex, and principal component analysis was used to find the modes of variation for each metatarsal. Significant shape differences were found between foot types for all the metatarsals (p < 0.01), most notably in the case of the second metatarsal which showed significant pairwise differences across all the foot types. Analysis of the principal components of variation showed pes cavus bones to have reduced cross-sectional areas in the sagittal and frontal planes. The first (p = 0.02) and fourth metatarsals (p = 0.003) were found to have significant sex-based differences, with first metatarsals from females shown to have reduced width, and fourth metatarsals from females shown to have reduced frontal and sagittal plane cross-sectional areas. Overall, these findings suggest that metatarsal bones have distinct morphological characteristics that are associated with foot type and sex, with implications for our understanding of anatomy and numerical modeling of the foot.
Hippocampus shape analysis for temporal lobe epilepsy detection in magnetic resonance imaging
NASA Astrophysics Data System (ADS)
Kohan, Zohreh; Azmi, Reza
2016-03-01
There are evidences in the literature that Temporal Lobe Epilepsy (TLE) causes some lateralized atrophy and deformation on hippocampus and other substructures of the brain. Magnetic Resonance Imaging (MRI), due to high-contrast soft tissue imaging, is one of the most popular imaging modalities being used in TLE diagnosis and treatment procedures. Using an algorithm to help clinicians for better and more effective shape deformations analysis could improve the diagnosis and treatment of the disease. In this project our purpose is to design, implement and test a classification algorithm for MRIs based on hippocampal asymmetry detection using shape and size-based features. Our method consisted of two main parts; (1) shape feature extraction, and (2) image classification. We tested 11 different shape and size features and selected four of them that detect the asymmetry in hippocampus significantly in a randomly selected subset of the dataset. Then, we employed a support vector machine (SVM) classifier to classify the remaining images of the dataset to normal and epileptic images using our selected features. The dataset contains 25 patient images in which 12 cases were used as a training set and the rest 13 cases for testing the performance of classifier. We measured accuracy, specificity and sensitivity of, respectively, 76%, 100%, and 70% for our algorithm. The preliminary results show that using shape and size features for detecting hippocampal asymmetry could be helpful in TLE diagnosis in MRI.
NASA Astrophysics Data System (ADS)
Slezak, Thomas Joseph; Radebaugh, Jani; Christiansen, Eric
2017-10-01
The shapes of craterform morphology on planetary surfaces provides rich information about their origins and evolution. While morphologic information provides rich visual clues to geologic processes and properties, the ability to quantitatively communicate this information is less easily accomplished. This study examines the morphology of craterforms using the quantitative outline-based shape methods of geometric morphometrics, commonly used in biology and paleontology. We examine and compare landforms on planetary surfaces using shape, a property of morphology that is invariant to translation, rotation, and size. We quantify the shapes of paterae on Io, martian calderas, terrestrial basaltic shield calderas, terrestrial ash-flow calderas, and lunar impact craters using elliptic Fourier analysis (EFA) and the Zahn and Roskies (Z-R) shape function, or tangent angle approach to produce multivariate shape descriptors. These shape descriptors are subjected to multivariate statistical analysis including canonical variate analysis (CVA), a multiple-comparison variant of discriminant analysis, to investigate the link between craterform shape and classification. Paterae on Io are most similar in shape to terrestrial ash-flow calderas and the shapes of terrestrial basaltic shield volcanoes are most similar to martian calderas. The shapes of lunar impact craters, including simple, transitional, and complex morphology, are classified with a 100% rate of success in all models. Multiple CVA models effectively predict and classify different craterforms using shape-based identification and demonstrate significant potential for use in the analysis of planetary surfaces.
A wave superposition method formulated in digital acoustic space
NASA Astrophysics Data System (ADS)
Hwang, Yong-Sin
In this thesis, a new formulation of the Wave Superposition method is proposed wherein the conventional mesh approach is replaced by a simple 3-D digital work space that easily accommodates shape optimization for minimizing or maximizing radiation efficiency. As sound quality is in demand in almost all product designs and also because of fierce competition between product manufacturers, faster and accurate computational method for shape optimization is always desired. Because the conventional Wave Superposition method relies solely on mesh geometry, it cannot accommodate fast shape changes in the design stage of a consumer product or machinery, where many iterations of shape changes are required. Since the use of a mesh hinders easy shape changes, a new approach for representing geometry is introduced by constructing a uniform lattice in a 3-D digital work space. A voxel (a portmanteau, a new word made from combining the sound and meaning, of the words, volumetric and pixel) is essentially a volume element defined by the uniform lattice, and does not require separate connectivity information as a mesh element does. In the presented method, geometry is represented with voxels that can easily adapt to shape changes, therefore it is more suitable for shape optimization. The new method was validated by computing radiated sound power of structures of simple and complex geometries and complex mode shapes. It was shown that matching volume velocity is a key component to an accurate analysis. A sensitivity study showed that it required at least 6 elements per acoustic wavelength, and a complexity study showed a minimal reduction in computational time.
Torsion and bending properties of shape memory and superelastic nickel-titanium rotary instruments.
Ninan, Elizabeth; Berzins, David W
2013-01-01
Recently introduced into the market are shape memory nickel-titanium (NiTi) rotary files. The objective of this study was to investigate the torsion and bending properties of shape memory files (CM Wire, HyFlex CM, and Phoenix Flex) and compare them with conventional (ProFile ISO and K3) and M-Wire (GT Series X and ProFile Vortex) NiTi files. Sizes 20, 30, and 40 (n = 12/size/taper) of 0.02 taper CM Wire, Phoenix Flex, K3, and ProFile ISO and 0.04 taper HyFlex CM, ProFile ISO, GT Series X, and Vortex were tested in torsion and bending per ISO 3630-1 guidelines by using a torsiometer. All data were statistically analyzed by analysis of variance and the Tukey-Kramer test (P = .05) to determine any significant differences between the files. Significant interactions were present among factors of size and file. Variability in maximum torque values was noted among the shape memory files brands, sometimes exhibiting the greatest or least torque depending on brand, size, and taper. In general, the shape memory files showed a high angle of rotation before fracture but were not statistically different from some of the other files. However, the shape memory files were more flexible, as evidenced by significantly lower bending moments (P < .008). Shape memory files show greater flexibility compared with several other NiTi rotary file brands. Copyright © 2013 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.
Détroit, Florent; Coudenneau, Aude; Moncel, Marie-Hélène
2016-01-01
There appears to be little doubt as to the existence of an intentional technological resolve to produce convergent tools during the Middle Palaeolithic. However, the use of these pieces as pointed tools is still subject to debate: i.e., handheld tool vs. hafted tool. Present-day technological analysis has begun to apply new methodologies in order to quantify shape variability and to decipher the role of the morphology of these pieces in relation to function; for instance, geometric morphometric analyses have recently been applied with successful results. This paper presents a study of this type of analysis on 37 convergent tools from level Ga of Payre site (France), dated to MIS 8–7. These pieces are non-standardized knapping products produced by discoidal and orthogonal core technologies. Moreover, macro-wear studies attest to various activities on diverse materials with no evidence of hafting or projectile use. The aim of this paper is to test the geometric morphometric approach on non-standardized artefacts applying the Elliptical Fourier analysis (EFA) to 3D contours and to assess the potential relationship between size and shape, technology and function. This study is innovative in that it is the first time that this method, considered to be a valuable complement for describing technological and functional attributes, is applied to 3D contours of lithic products. Our results show that this methodology ensures a very good degree of accuracy in describing shape variations of the sharp edges of technologically non-standardized convergent tools. EFA on 3D contours indicates variations in deviations of the outline along the third dimension (i.e., dorso-ventrally) and yields quantitative and insightful information on the actual shape variations of tools. Several statistically significant relationships are found between shape variation and use-wear attributes, though the results emphasize the large variability of the shape of the convergent tools, which, in general, does not show a strong direct association with technological features and function. This is in good agreement with the technological context of this chronological period, characterized by a wide diversity of non-standardized tools adapted to multipurpose functions for varied subsistence activities. PMID:27191164
Chacón, M Gema; Détroit, Florent; Coudenneau, Aude; Moncel, Marie-Hélène
2016-01-01
There appears to be little doubt as to the existence of an intentional technological resolve to produce convergent tools during the Middle Palaeolithic. However, the use of these pieces as pointed tools is still subject to debate: i.e., handheld tool vs. hafted tool. Present-day technological analysis has begun to apply new methodologies in order to quantify shape variability and to decipher the role of the morphology of these pieces in relation to function; for instance, geometric morphometric analyses have recently been applied with successful results. This paper presents a study of this type of analysis on 37 convergent tools from level Ga of Payre site (France), dated to MIS 8-7. These pieces are non-standardized knapping products produced by discoidal and orthogonal core technologies. Moreover, macro-wear studies attest to various activities on diverse materials with no evidence of hafting or projectile use. The aim of this paper is to test the geometric morphometric approach on non-standardized artefacts applying the Elliptical Fourier analysis (EFA) to 3D contours and to assess the potential relationship between size and shape, technology and function. This study is innovative in that it is the first time that this method, considered to be a valuable complement for describing technological and functional attributes, is applied to 3D contours of lithic products. Our results show that this methodology ensures a very good degree of accuracy in describing shape variations of the sharp edges of technologically non-standardized convergent tools. EFA on 3D contours indicates variations in deviations of the outline along the third dimension (i.e., dorso-ventrally) and yields quantitative and insightful information on the actual shape variations of tools. Several statistically significant relationships are found between shape variation and use-wear attributes, though the results emphasize the large variability of the shape of the convergent tools, which, in general, does not show a strong direct association with technological features and function. This is in good agreement with the technological context of this chronological period, characterized by a wide diversity of non-standardized tools adapted to multipurpose functions for varied subsistence activities.
Optomechanical integrated simulation of Mars medium resolution lens with large field of view
NASA Astrophysics Data System (ADS)
Yang, Wenqiang; Xu, Guangzhou; Yang, Jianfeng; Sun, Yi
2017-10-01
The lens of Mars detector is exposed to solar radiation and space temperature for long periods of time during orbit, so that the ambient temperature of the optical system is in a dynamic state. The optical and mechanical change caused by heat will lead to camera's visual axis drift and the wavefront distortion. The surface distortion of the optical lens includes the displacement of the rigid body and the distortion of the surface shape. This paper used the calculation method based on the integrated optomechanical analysis, to explore the impact of thermodynamic load on image quality. Through the analysis software, established a simulation model of the lens structure. The shape distribution and the surface characterization parameters of the lens in some temperature ranges were analyzed and compared. the PV / RMS value, deformation cloud of the lens surface and quality evaluation of imaging was achieved. This simulation has been successfully measured the lens surface shape and shape distribution under the load which is difficult to measure on the experimental conditions. The integrated simulation method of the optical machine can obtain the change of the optical parameters brought by the temperature load. It shows that the application of Integrated analysis has play an important role in guiding the designing the lens.
Šatkauskienė, Ingrida; Jarusevičiūtė, Simona; Baublys, Vykintas; Maheta, Mansi; Tubelytė, Vaida
2017-01-01
A new hoop shaped three dimensional chitin was obtained successfully from the body segment of a diplopod species (Ommatoiulus sabulosus) by following the procedure decolorization, demineralization and deproteinization. Purity of the hoop shaped three-dimensional chitin was proved by FT-IR analysis and chitinase digestive test. The important bands for α-chitin such as 1654.2, 1619.7 and 1552cm -1 were found after FT-IR analysis. And the chitinase digestive test revealed the purity of chitin (with digestion rate of 94.7%). SEM analysis showed that the chitin surface consisted of highly porous structure with nanofibers. Thermal stability of the hoop shaped chitin was recorded quite high (DTG max =383°C). The nitrogen, carbon and hydrogen contents of the hoop shaped chitin were determined as 6.81%, 46.23% and 6.43% respectively. And also degree of acetylation (DA) of the chitin indicated the purity with 95.85%. Chitin hoops-BSA interaction was conducted at different pH, protein concentration and contact time. This new type of three-dimensional chitin obtained from the diplopod body segments can find more effective applications in further studies comparing to the conventional dust forms. Copyright © 2016 Elsevier B.V. All rights reserved.
A new method for shape and texture classification of orthopedic wear nanoparticles.
Zhang, Dongning; Page, Janet R; Kavanaugh, Aaron E; Billi, Fabrizio
2012-09-27
Detailed morphologic analysis of particles produced during wear of orthopedic implants is important in determining a correlation among material, wear, and biological effects. However, the use of simple shape descriptors is insufficient to categorize the data and to compare the nature of wear particles generated by different implants. An approach based on Discrete Fourier Transform (DFT) is presented for describing particle shape and surface texture. Four metal-on-metal bearing couples were tested in an orbital wear simulator under standard and adverse (steep-angled cups) wear simulator conditions. Digitized Scanning Electron Microscope (SEM) images of the wear particles were imported into MATLAB to carry out Fourier descriptor calculations via a specifically developed algorithm. The descriptors were then used for studying particle characteristics (shape and texture) as well as for cluster classification. Analysis of the particles demonstrated the validity of the proposed model by showing that steep-angle Co-Cr wear particles were more asymmetric, compressed, extended, triangular, square, and roughened at 3 Mc than after 0.25 Mc. In contrast, particles from standard angle samples were only more compressed and extended after 3 Mc compared to 0.25 Mc. Cluster analysis revealed that the 0.25 Mc steep-angle particle distribution was a subset of the 3 Mc distribution.
NASA Astrophysics Data System (ADS)
Teng, Zhaojie; Zhang, Wenyan; Chen, Yiran; Pan, Hongmiao; Xiao, Tian; Wu, Long-Fei
2017-08-01
Magnetotactic bacteria are a group of Gram-negative bacteria that synthesize magnetic crystals, enabling them to navigate in relation to magnetic field lines. Morphologies of magnetotactic bacteria include spirillum, coccoid, rod, vibrio, and multicellular morphotypes. The coccid shape is generally the most abundant morphotype among magnetotactic bacteria. Here we describe a species of giant rod-shaped magnetotactic bacteria (designated QR-1) collected from sediment in the low tide zone of Huiquan Bay (Yellow Sea, China). This morphotype accounted for 90% of the magnetotactic bacteria collected, and the only taxonomic group which was detected in the sampling site. Microscopy analysis revealed that QR-1 cells averaged (6.71±1.03)×(1.54±0.20) μm in size, and contained in each cell 42-146 magnetosomes that are arranged in a bundle formed one to four chains along the long axis of the cell. The QR-1 cells displayed axial magnetotaxis with an average velocity of 70±28 μm/s. Transmission electron microscopy based analysis showed that QR-1 cells had two tufts of flagella at each end. Phylogenetic analysis of the 16S rRNA genes revealed that QR-1 together with three other rod-shaped uncultivated magnetotactic bacteria are clustered into a deep branch of Alphaproteobacteria.
Ueda, T; Kobatake, Y
1983-09-01
A new parameter expressing the complexity of cell shape defined as (periphery)2/(area) in 2D projection was found useful for a quantitative analysis of changes in the cell shape of Amoeba proteus and potentially of any amoeboid cells. During locomotion the complexity and the motive force of the protoplasmic streaming in amoeba varied periodically, and the Fourier analysis of the two showed a similar pattern in the power spectrum, giving a rather broad peak at about 2.5 X 10(-3) Hz. The complexity increased mainly due to elongation of the cell as external Ca2+ increased. This effect was blocked by La3+, half the inhibition being attained at 1/200 amount of the coexisting Ca2+. On the other hand, the complexity decreased due to rounding up of the cell as the concentration of other cations, such as Sr2+, Mg2+, Co2+, Ni2+, Na+, K+ etc., increased. Irrespective of the opposite effects of Ca2+ and other cations on the cell shape, the ATP concentration in amoeba decreased in both cases with increase of all these cations. The irregularity in amoeboid motility is discussed in terms of a dynamic system theory.
Difference between even and odd 11-year cycles in cosmic ray intensity
NASA Technical Reports Server (NTRS)
Otaola, J. A.; Perez-Enriquez, R.; Valdes-Galicia, J. F.
1985-01-01
Cosmic ray data for the period 1946-1984 are used to determine the run of the cosmic ray intensity over three complete solar cycles. The analysis shows a tendency towards a regular alternation of cosmic ray intensity cycles with double and single maxima. Whereas a saddle-like shape is characteristic of even cycles, odd cycles are characterized by a peak-like shape. The importance of this behavior is discussed in terms of different processes influencing cosmic ray transport in the heliosphere.
Effect of Graphene Addition on Shape Memory Behavior of Epoxy Resins
NASA Technical Reports Server (NTRS)
Williams, Tiffany; Meador, Michael; Miller, Sandi; Scheiman, Daniel
2011-01-01
Shape memory polymers (SMPs) and composites are a special class of smart materials known for their ability to change size and shape upon exposure to an external stimulus (e.g. light, heat, pH, or magnetic field). These materials are commonly used for biomedical applications; however, recent attempts have been made towards developing SMPs and composites for use in aircraft and space applications. Implementing SMPs and composites to create a shape change effect in some aircraft structures could potentially reduce drag, decrease fuel consumption, and improve engine performance. This paper discusses the development of suitable materials to use in morphing aircraft structures. Thermally responsive epoxy SMPs and nanocomposites were developed and the shape memory behavior and thermo-mechanical properties were studied. Overall, preliminary results from dynamic mechanical analysis (DMA) showed that thermally actuated shape memory epoxies and nanocomposites possessed Tgs near approximately 168 C. When graphene nanofiller was added, the storage modulus and crosslinking density decreased. On the other hand, the addition of graphene enhanced the recovery behavior of the shape memory nanocomposites. It was assumed that the addition of graphene improved shape memory recovery by reducing the crosslinking density and increasing the elasticity of the nanocomposites.
[Application of the elliptic fourier functions to the description of avian egg shape].
Ávila, Dennis Denis
2014-12-01
Egg shape is difficult to quantify due to the lack of an exact formula to describe its geometry. Here I described a simple algorithm to characterize and compare egg shapes using Fourier functions. These functions can delineate any closed contour and had been previously applied to describe several biological objects. I described, step by step, the process of data acquisition, processing and the use of the SHAPE software to extract function coefficients in a study case. I compared egg shapes in three birds' species representing different reproductive strategies: Cuban Parakeet (Aratinga euops), Royal Tern (Thalasseus maximus) and Cuban Blackbird (Dives atroviolaceus). Using 73 digital pictures of eggs kept in Cuban scientific collections, I calculated Fourier descriptors with 4, 6, 8, 16 and 20 harmonics. Descriptors were reduced by a Principal Component Analysis and the scores of the eigen-values that account for 90% of variance were used in a Lineal Discriminant Function to analyze the possibility to differentiate eggs according to its shapes. Using four harmonics, the first five component accounted for 97% of shape variances; more harmonics diluted the variance increasing to eight the number of components needed to explain most of the variation. Convex polygons in the discriminant space showed a clear separation between species, allowing trustful discrimination (classification errors between 7-15%). Misclassifications were related to specific egg shape variability between species. In the study case, A. euops eggs were perfectly classified, but for the other species, errors ranged from 5 to 29% of misclassifications, in relation to the numbers or harmonics and components used. The proposed algorithm, despite its apparent mathematical complexity, showed many advantages to describe eggs shape allowing a deeper understanding of factors related to this variable.
Prabhakar, Attiguppe R; Yavagal, Chandrashekar; Dixit, Kratika; Naik, Saraswathi V
2016-01-01
Primary root canals are considered to be most challenging due to their complex anatomy. "Wave one" and "one shape" are single-file systems with reciprocating and rotary motion respectively. The aim of this study was to evaluate and compare dentin thickness, centering ability, canal transportation, and instrumentation time of wave one and one shape files in primary root canals using a cone beam computed tomographic (CBCT) analysis. This is an experimental, in vitro study comparing the two groups. A total of 24 extracted human primary teeth with minimum 7 mm root length were included in the study. Cone beam computed tomographic images were taken before and after the instrumentation for each group. Dentin thickness, centering ability, canal transportation, and instrumentation times were evaluated for each group. A significant difference was found in instrumentation time and canal transportation measures between the two groups. Wave one showed less canal transportation as compared with one shape, and the mean instrumentation time of wave one was significantly less than one shape. Reciprocating single-file systems was found to be faster with much less procedural errors and can hence be recommended for shaping the root canals of primary teeth. How to cite this article: Prabhakar AR, Yavagal C, Dixit K, Naik SV. Reciprocating vs Rotary Instrumentation in Pediatric Endodontics: Cone Beam Computed Tomographic Analysis of Deciduous Root Canals using Two Single-File Systems. Int J Clin Pediatr Dent 2016;9(1):45-49.
NASA Astrophysics Data System (ADS)
Thomas, R. Q.; Canham, C. D.; Weathers, K. C.; Goodale, C. L.
2008-12-01
Assessments of regional forest carbon (C) balance have long speculated a role for atmospheric nitrogen (N) deposition. To date, however, evidence for an N effect has been restricted to plot-level fertilization and 15N experiments, biogeochemical modeling studies, and recent and controversial correlations between nitrogen deposition and C balance across 20 intensive C monitoring sites. These studies have yielded widely varying conclusions on the magnitude and even the direction of response (positive or negative effects on C storage). We assessed the effects of N deposition on forest growth and survival using forest inventory data from > 160,000 trees, spanning a 19-state region of the northeastern United States, and estimates of total (wet and plot-specific dry) inorganic N inputs (N deposition to the plots ranged from 3.2 to 11 kg N ha-1 y-1). The growth rates of 14 of the region's 24 most common tree species responded to N deposition. Nine species showed a monotonic increase in aboveground growth rates across the range of N deposition and some of these species experienced a doubling of growth rates. Four species showed humped-shaped responses. A single species, Pinus resinosa (red pine), showed a monotonic decline in growth across the range of deposition. Species responsiveness to N deposition increased with mean growth rate of the species. In the analysis of survival, 13 of the 24 species responded to N: eight species showed a monotonic decrease, 3 showed a monotonic increase and 1 showed a humped-shape response in survival. The stand-level analysis showed a distinctly humped-shaped relationship between N deposition and aboveground C increment, peaking at 6 kg N ha-1 yr-1, which can likely be explained by the distribution of species and their individual growth and mortality responses. Overall, our data suggest that moderate levels of N deposition have enhanced aboveground C accumulation in temperate forests of the northeastern U.S., but the shape and trajectory of the response is species-specific.
A novel frequency tuned wireless actuator with snake-like motion
NASA Astrophysics Data System (ADS)
Zhang, Kewei; Zhu, Qianke; Chai, Yuesheng
2016-07-01
In this work, we propose a novel wireless actuator which is composed of magnetostrictive material/copper bi-layer film. The actuator can be controlled to move like a snake bi-directionally along a pipe by tuning the frequency of external magnetic field near its first order resonant frequency. The governing equation for the actuator is established and the vibration mode shape function is derived. Theoretical analysis shows that motion of the actuator is achieved by asymmetric vibration mode shape, specific vibration bending deformation, and effective net total impacting force. The simulation and experimental results well confirm the theoretical analysis. This work provides contribution to the development of wireless micro robots and autonomous magnetostrictive sensors.
Comparison of different photoresist buffer layers in SPR sensors based on D-shaped POF and gold film
NASA Astrophysics Data System (ADS)
Cennamo, Nunzio; Pesavento, Maria; De Maria, Letizia; Galatus, Ramona; Mattiello, Francesco; Zeni, Luigi
2017-04-01
A comparative analysis of two optical fiber sensing platforms is presented. The sensors are based on surface plasmon resonance (SPR) in a D-shaped plastic optical fiber (POF) with a photoresist buffer layer between the exposed POF core and the thin gold film. We show how the sensor's performances change when the photoresist layer changes. The photoresist layers proposed in this analysis are SU-8 3005 and S1813. The experimental results are congruent with the numerical studies and it is instrumental for chemical and bio-chemical applications. Usually, the photoresist layer is required in order to increase the performance of the SPR-POF sensor.
Regional atrophy of the basal ganglia and thalamus in idiopathic generalized epilepsy.
Du, Hanjian; Zhang, Yuanchao; Xie, Bing; Wu, Nan; Wu, Guocai; Wang, Jian; Jiang, Tianzi; Feng, Hua
2011-04-01
To determine the regional changes in the shapes of subcortical structures in idiopathic generalized epilepsy using a vertex-based analysis method. Earlier studies found that gray matter volume in the frontal, parietal, and temporal lobes is significantly altered in idiopathic generalized epilepsy (IGE). Research has indicated that a relationship exists between the brain's subcortical structures and epilepsy. However, little is known about possible changes in the subcortical structures in IGE. This study aims to determine the changes in the shape of subcortical structures in IGE using vertex analysis. Fourteen male patients with IGE and 28 age- and sex-matched healthy controls were included in this study, which used high-resolution magnetic resonance imaging. We performed a vertex-based shape analysis, in which we compared patients with IGE with the controls, on the subcortical structures that we had obtained from the MRI data. Statistical analysis showed significant regional atrophy in the left thalamus, left putamen and bilateral globus pallidus in patients with IGE. These results indicate that regional atrophy of the basal ganglia and the thalamus may be related to seizure disorder. In the future, these findings may prove useful for choosing new therapeutic regimens. Copyright © 2011 Wiley-Liss, Inc.
NASA Astrophysics Data System (ADS)
Ventura, Daniele; Bonhomme, Vincent; Colangelo, Paolo; Bonifazi, Andrea; Jona Lasinio, Giovanna; Ardizzone, Giandomenico
2017-05-01
Feeding habits, diet overlap and morphological correlates of four juvenile species of the genus Diplodus were investigated during their settlement periods, along the Tyrrhenian coast. Stomach content analysis showed that the diets of D. sargus and D. puntazzo mainly comprised benthic prey such as harpacticoid copepods, amphipods and polychaetes. On the other hand, D. vulgaris and D. annularis fed mainly on planktonic prey such as ciclopoids, calanoids copepods and fish larvae. A biologically significant diet overlap, calculated using the Schoener index, was recorded between D. sargus and D. puntazzo and between D. vulgaris and D. annularis. Morphological characters related to feeding such as gape height and gut length with their relative growth patterns suggested that different trophic preferences have led to a morphological diversification of feeding structures. Therefore, a geometric morphometric outline method, namely Elliptic Fourier Analysis (EFA) was used to examine shape modification of the head and body regions. The multivariate analyses performed on shape descriptors demonstrated that the four species were morphologically distinct due to different feeding habits: the two species which feed mainly on benthic prey presented a discoidal shape, with broad profiles and rounded head; by contrast, the other two species which relied mostly on planktonic prey, presented a streamlined and more elongated body shape.
NASA Technical Reports Server (NTRS)
Nguyen, Nhan; Kaul, Upender; Lebofsky, Sonia; Ting, Eric; Chaparro, Daniel; Urnes, James
2015-01-01
This paper summarizes the recent development of an adaptive aeroelastic wing shaping control technology called variable camber continuous trailing edge flap (VCCTEF). As wing flexibility increases, aeroelastic interactions with aerodynamic forces and moments become an increasingly important consideration in aircraft design and aerodynamic performance. Furthermore, aeroelastic interactions with flight dynamics can result in issues with vehicle stability and control. The initial VCCTEF concept was developed in 2010 by NASA under a NASA Innovation Fund study entitled "Elastically Shaped Future Air Vehicle Concept," which showed that highly flexible wing aerodynamic surfaces can be elastically shaped in-flight by active control of wing twist and bending deflection in order to optimize the spanwise lift distribution for drag reduction. A collaboration between NASA and Boeing Research & Technology was subsequently funded by NASA from 2012 to 2014 to further develop the VCCTEF concept. This paper summarizes some of the key research areas conducted by NASA during the collaboration with Boeing Research and Technology. These research areas include VCCTEF design concepts, aerodynamic analysis of VCCTEF camber shapes, aerodynamic optimization of lift distribution for drag minimization, wind tunnel test results for cruise and high-lift configurations, flutter analysis and suppression control of flexible wing aircraft, and multi-objective flight control for adaptive aeroelastic wing shaping control.
Anterior Chamber Angle Shape Analysis and Classification of Glaucoma in SS-OCT Images.
Ni Ni, Soe; Tian, J; Marziliano, Pina; Wong, Hong-Tym
2014-01-01
Optical coherence tomography is a high resolution, rapid, and noninvasive diagnostic tool for angle closure glaucoma. In this paper, we present a new strategy for the classification of the angle closure glaucoma using morphological shape analysis of the iridocorneal angle. The angle structure configuration is quantified by the following six features: (1) mean of the continuous measurement of the angle opening distance; (2) area of the trapezoidal profile of the iridocorneal angle centered at Schwalbe's line; (3) mean of the iris curvature from the extracted iris image; (4) complex shape descriptor, fractal dimension, to quantify the complexity, or changes of iridocorneal angle; (5) ellipticity moment shape descriptor; and (6) triangularity moment shape descriptor. Then, the fuzzy k nearest neighbor (fkNN) classifier is utilized for classification of angle closure glaucoma. Two hundred and sixty-four swept source optical coherence tomography (SS-OCT) images from 148 patients were analyzed in this study. From the experimental results, the fkNN reveals the best classification accuracy (99.11 ± 0.76%) and AUC (0.98 ± 0.012) with the combination of fractal dimension and biometric parameters. It showed that the proposed approach has promising potential to become a computer aided diagnostic tool for angle closure glaucoma (ACG) disease.
Face shape differs in phylogenetically related populations.
Hopman, Saskia M J; Merks, Johannes H M; Suttie, Michael; Hennekam, Raoul C M; Hammond, Peter
2014-11-01
3D analysis of facial morphology has delineated facial phenotypes in many medical conditions and detected fine grained differences between typical and atypical patients to inform genotype-phenotype studies. Next-generation sequencing techniques have enabled extremely detailed genotype-phenotype correlative analysis. Such comparisons typically employ control groups matched for age, sex and ethnicity and the distinction between ethnic categories in genotype-phenotype studies has been widely debated. The phylogenetic tree based on genetic polymorphism studies divides the world population into nine subpopulations. Here we show statistically significant face shape differences between two European Caucasian populations of close phylogenetic and geographic proximity from the UK and The Netherlands. The average face shape differences between the Dutch and UK cohorts were visualised in dynamic morphs and signature heat maps, and quantified for their statistical significance using both conventional anthropometry and state of the art dense surface modelling techniques. Our results demonstrate significant differences between Dutch and UK face shape. Other studies have shown that genetic variants influence normal facial variation. Thus, face shape difference between populations could reflect underlying genetic difference. This should be taken into account in genotype-phenotype studies and we recommend that in those studies reference groups be established in the same population as the individuals who form the subject of the study.
Hatadani, Luciane Mendes; Klaczko, Louis Bernard
2008-07-01
The second chromosome of Drosophila mediopunctata is highly polymorphic for inversions. Previous work reported a significant interaction between these inversions and collecting date on wing size, suggesting the presence of genotype-environment interaction. We performed experiments in the laboratory to test for the joint effects of temperature and chromosome inversions on size and shape of the wing in D. mediopunctata. Size was measured as the centroid size, and shape was analyzed using the generalized least squares Procrustes superimposition followed by discriminant analysis and canonical variates analysis of partial warps and uniform components scores. Our findings show that wing size and shape are influenced by temperature, sex, and karyotype. We also found evidence suggestive of an interaction between the effects of karyotype and temperature on wing shape, indicating the existence of genotype-environment interaction for this trait in D. mediopunctata. In addition, the association between wing size and chromosome inversions is in agreement with previous results indicating that these inversions might be accumulating alleles adapted to different temperatures. However, no significant interaction between temperature and karyotype for size was found--in spite of the significant presence of temperature-genotype (cross) interaction. We suggest that other ecological factors--such as larval crowding--or seasonal variation of genetic content within inversions may explain the previous results.
Shape analysis of cylindrical micromirrors for angular focusing
NASA Astrophysics Data System (ADS)
Hou, Max Ti-Kuang; Hong, Pei-Yuan; Chen, Rongshun
2001-11-01
In this paper, we analyze the shape of the cylindrical micromirror, which directly defines the profile of the reflecting surface, and is very important for the function on focusing. A cylindrical micromirror can converge incident rays to a real focal line after reflection, namely angular focusing. Therefore, under specific design two cylindrical micromirrors, the primary and secondary, can converge incident rays into a real focal point after twice reflection. The curved shape of micromirror, formed due to the stress-induced bending of the bilayer microstructure upon release, has been theoretically analyzed and numerically simulated. The results show that the reflecting surface, especially at boundaries, is not perfectly cylindrical, while adding longitudinal frames can make some improvement.
Hydroxyapatite moldable formulation using natural rubber latex as binder.
Sailaja, G S; Ramesh, P; Varma, H K
2007-07-01
A simple but efficient processing method for shaping intricate bioceramic green bodies has been developed by using natural rubber latex as binder. Different shapes of hydroxyapatite Ca10(PO4)6(OH)2 (HAP) were molded from a composite formulation containing wet precipitated HAP, natural rubber latex (NRL), and a stabilizer. On controlled heat treatment followed by sintering, dense shapes of HAP contours were obtained. The thermal degradation profile of HAP-NRL composites shows that NRL degrades slowly without any abrupt exotherm. The results of energy dispersive X-ray analysis together with inductively coupled plasma (ICP) analysis indicate that the inorganic residue of NRL does not contain any heavy element. The sintered density of the samples increased with increased HAP content in the formulation and percentage shrinkage reduced accordingly. On varying the HAP content in the formulation from 35 to 95 wt %, the compositions with 85, 90, 92, and 95 wt % HAP showed better flexural strength in the range 40-54 MPa and a flexural modulus value in the range 36-50 GPa. The fracture morphology, as observed by the scanning electron microscope confirms that with increased HAP content in the formulation the sample microstructure attains higher uniformity. The Vickers microhardness for the samples sintered at two different temperatures (1150 and 1250 degrees C) showed that hardness increases with increase in the sintering temperature with a maximum for the highest HAP loaded formulation. Copyright 2006 Wiley Periodicals, Inc.
WormSizer: high-throughput analysis of nematode size and shape.
Moore, Brad T; Jordan, James M; Baugh, L Ryan
2013-01-01
The fundamental phenotypes of growth rate, size and morphology are the result of complex interactions between genotype and environment. We developed a high-throughput software application, WormSizer, which computes size and shape of nematodes from brightfield images. Existing methods for estimating volume either coarsely model the nematode as a cylinder or assume the worm shape or opacity is invariant. Our estimate is more robust to changes in morphology or optical density as it only assumes radial symmetry. This open source software is written as a plugin for the well-known image-processing framework Fiji/ImageJ. It may therefore be extended easily. We evaluated the technical performance of this framework, and we used it to analyze growth and shape of several canonical Caenorhabditis elegans mutants in a developmental time series. We confirm quantitatively that a Dumpy (Dpy) mutant is short and fat and that a Long (Lon) mutant is long and thin. We show that daf-2 insulin-like receptor mutants are larger than wild-type upon hatching but grow slow, and WormSizer can distinguish dauer larvae from normal larvae. We also show that a Small (Sma) mutant is actually smaller than wild-type at all stages of larval development. WormSizer works with Uncoordinated (Unc) and Roller (Rol) mutants as well, indicating that it can be used with mutants despite behavioral phenotypes. We used our complete data set to perform a power analysis, giving users a sense of how many images are needed to detect different effect sizes. Our analysis confirms and extends on existing phenotypic characterization of well-characterized mutants, demonstrating the utility and robustness of WormSizer.
3D shape analysis of the brain's third ventricle using a midplane encoded symmetric template model
Kim, Jaeil; Valdés Hernández, Maria del C.; Royle, Natalie A.; Maniega, Susana Muñoz; Aribisala, Benjamin S.; Gow, Alan J.; Bastin, Mark E.; Deary, Ian J.; Wardlaw, Joanna M.; Park, Jinah
2016-01-01
Background Structural changes of the brain's third ventricle have been acknowledged as an indicative measure of the brain atrophy progression in neurodegenerative and endocrinal diseases. To investigate the ventricular enlargement in relation to the atrophy of the surrounding structures, shape analysis is a promising approach. However, there are hurdles in modeling the third ventricle shape. First, it has topological variations across individuals due to the inter-thalamic adhesion. In addition, as an interhemispheric structure, it needs to be aligned to the midsagittal plane to assess its asymmetric and regional deformation. Method To address these issues, we propose a model-based shape assessment. Our template model of the third ventricle consists of a midplane and a symmetric mesh of generic shape. By mapping the template's midplane to the individuals’ brain midsagittal plane, we align the symmetric mesh on the midline of the brain before quantifying the third ventricle shape. To build the vertex-wise correspondence between the individual third ventricle and the template mesh, we employ a minimal-distortion surface deformation framework. In addition, to account for topological variations, we implement geometric constraints guiding the template mesh to have zero width where the inter-thalamic adhesion passes through, preventing vertices crossing between left and right walls of the third ventricle. The individual shapes are compared using a vertex-wise deformity from the symmetric template. Results Experiments on imaging and demographic data from a study of aging showed that our model was sensitive in assessing morphological differences between individuals in relation to brain volume (i.e. proxy for general brain atrophy), gender and the fluid intelligence at age 72. It also revealed that the proposed method can detect the regional and asymmetrical deformation unlike the conventional measures: volume (median 1.95 ml, IQR 0.96 ml) and width of the third ventricle. Similarity measures between binary masks and the shape model showed that the latter reconstructed shape details with high accuracy (Dice coefficient ≥0.9, mean distance 0.5 mm and Hausdorff distance 2.7 mm). Conclusions We have demonstrated that our approach is suitable to morphometrical analyses of the third ventricle, providing high accuracy and inter-subject consistency in the shape quantification. This shape modeling method with geometric constraints based on anatomical landmarks could be extended to other brain structures which require a consistent measurement basis in the morphometry. PMID:27084320
Ward's area location, physical activity, and body composition in 8- and 9-year-old boys and girls.
Cardadeiro, Graça; Baptista, Fátima; Zymbal, Vera; Rodrigues, Luís A; Sardinha, Luís B
2010-11-01
Bone strength is the result of its material composition and structural design, particularly bone mass distribution. The purpose of this study was to analyze femoral neck bone mass distribution by Ward's area location and its relationship with physical activity (PA) and body composition in children 8 and 9 years of age. The proximal femur shape was defined by geometric morphometric analysis in 88 participants (48 boys and 40 girls). Using dual-energy X-ray absorptiometry (DXA) images, 18 landmarks were digitized to define the proximal femur shape and to identify Ward's area position. Body weight, lean and fat mass, and bone mineral were assessed by DXA, PA by accelerometry, and bone age by the Tanner-Whitehouse III method. Warps analysis with Thin-Plate Spline software showed that the first axis explained 63% of proximal femur shape variation in boys and 58% in girls. Most of this variation was associated with differences in Ward's area location, from the central zone to the superior aspect of the femoral neck in both genders. Regression analysis demonstrated that body composition explained 4% to 7% of the proximal femur shape variation in girls. In boys, body composition variables explained a similar amount of variance, but moderate plus vigorous PA (MVPA) also accounted for 6% of proximal femur shape variation. In conclusion, proximal femur shape variation in children ages 8 and 9 was due mainly to differences in Ward's area position determined, in part, by body composition in both genders and by MVPA in boys. These variables were positively associated with a central Ward's area and thus with a more balanced femoral neck bone mass distribution. © 2010 American Society for Bone and Mineral Research.
Analysis of asymmetric property with DC bias current on thin-film magnetoimpedance element
NASA Astrophysics Data System (ADS)
Kikuchi, Hiroaki; Sumida, Chihiro
2018-05-01
We theoretically analyzed the magnetoimpedance profile of a thin-film element with a DC bias current using the bias susceptibility theory and Maxwell's equations. Although the analysis model predicts that an element with a rectangular cross section shows symmetric impedance property with respect to the Z-axis with DC bias current, the experimental results showed asymmetric properties. Taking the shape imbalance and trapezoidal cross section of the element into account, we explained the asymmetric impedance properties qualitatively.
Variation of BMP3 Contributes to Dog Breed Skull Diversity
Schoenebeck, Jeffrey J.; Hutchinson, Sarah A.; Byers, Alexandra; Beale, Holly C.; Carrington, Blake; Faden, Daniel L.; Rimbault, Maud; Decker, Brennan; Kidd, Jeffrey M.; Sood, Raman; Boyko, Adam R.; Fondon, John W.; Wayne, Robert K.; Bustamante, Carlos D.; Ciruna, Brian; Ostrander, Elaine A.
2012-01-01
Since the beginnings of domestication, the craniofacial architecture of the domestic dog has morphed and radiated to human whims. By beginning to define the genetic underpinnings of breed skull shapes, we can elucidate mechanisms of morphological diversification while presenting a framework for understanding human cephalic disorders. Using intrabreed association mapping with museum specimen measurements, we show that skull shape is regulated by at least five quantitative trait loci (QTLs). Our detailed analysis using whole-genome sequencing uncovers a missense mutation in BMP3. Validation studies in zebrafish show that Bmp3 function in cranial development is ancient. Our study reveals the causal variant for a canine QTL contributing to a major morphologic trait. PMID:22876193
Shape Distributions of Nonlinear Dynamical Systems for Video-Based Inference.
Venkataraman, Vinay; Turaga, Pavan
2016-12-01
This paper presents a shape-theoretic framework for dynamical analysis of nonlinear dynamical systems which appear frequently in several video-based inference tasks. Traditional approaches to dynamical modeling have included linear and nonlinear methods with their respective drawbacks. A novel approach we propose is the use of descriptors of the shape of the dynamical attractor as a feature representation of nature of dynamics. The proposed framework has two main advantages over traditional approaches: a) representation of the dynamical system is derived directly from the observational data, without any inherent assumptions, and b) the proposed features show stability under different time-series lengths where traditional dynamical invariants fail. We illustrate our idea using nonlinear dynamical models such as Lorenz and Rossler systems, where our feature representations (shape distribution) support our hypothesis that the local shape of the reconstructed phase space can be used as a discriminative feature. Our experimental analyses on these models also indicate that the proposed framework show stability for different time-series lengths, which is useful when the available number of samples are small/variable. The specific applications of interest in this paper are: 1) activity recognition using motion capture and RGBD sensors, 2) activity quality assessment for applications in stroke rehabilitation, and 3) dynamical scene classification. We provide experimental validation through action and gesture recognition experiments on motion capture and Kinect datasets. In all these scenarios, we show experimental evidence of the favorable properties of the proposed representation.
Effect of laser pulse shaping parameters on the fidelity of quantum logic gates.
Zaari, Ryan R; Brown, Alex
2012-09-14
The effect of varying parameters specific to laser pulse shaping instruments on resulting fidelities for the ACNOT(1), NOT(2), and Hadamard(2) quantum logic gates are studied for the diatomic molecule (12)C(16)O. These parameters include varying the frequency resolution, adjusting the number of frequency components and also varying the amplitude and phase at each frequency component. A time domain analytic form of the original discretized frequency domain laser pulse function is derived, providing a useful means to infer the resulting pulse shape through variations to the aforementioned parameters. We show that amplitude variation at each frequency component is a crucial requirement for optimal laser pulse shaping, whereas phase variation provides minimal contribution. We also show that high fidelity laser pulses are dependent upon the frequency resolution and increasing the number of frequency components provides only a small incremental improvement to quantum gate fidelity. Analysis through use of the pulse area theorem confirms the resulting population dynamics for one or two frequency high fidelity laser pulses and implies similar dynamics for more complex laser pulse shapes. The ability to produce high fidelity laser pulses that provide both population control and global phase alignment is attributed greatly to the natural evolution phase alignment of the qubits involved within the quantum logic gate operation.
A framework for joint image-and-shape analysis
NASA Astrophysics Data System (ADS)
Gao, Yi; Tannenbaum, Allen; Bouix, Sylvain
2014-03-01
Techniques in medical image analysis are many times used for the comparison or regression on the intensities of images. In general, the domain of the image is a given Cartesian grids. Shape analysis, on the other hand, studies the similarities and differences among spatial objects of arbitrary geometry and topology. Usually, there is no function defined on the domain of shapes. Recently, there has been a growing needs for defining and analyzing functions defined on the shape space, and a coupled analysis on both the shapes and the functions defined on them. Following this direction, in this work we present a coupled analysis for both images and shapes. As a result, the statistically significant discrepancies in both the image intensities as well as on the underlying shapes are detected. The method is applied on both brain images for the schizophrenia and heart images for atrial fibrillation patients.
Kim, Won Hwa; Singh, Vikas; Chung, Moo K.; Hinrichs, Chris; Pachauri, Deepti; Okonkwo, Ozioma C.; Johnson, Sterling C.
2014-01-01
Statistical analysis on arbitrary surface meshes such as the cortical surface is an important approach to understanding brain diseases such as Alzheimer’s disease (AD). Surface analysis may be able to identify specific cortical patterns that relate to certain disease characteristics or exhibit differences between groups. Our goal in this paper is to make group analysis of signals on surfaces more sensitive. To do this, we derive multi-scale shape descriptors that characterize the signal around each mesh vertex, i.e., its local context, at varying levels of resolution. In order to define such a shape descriptor, we make use of recent results from harmonic analysis that extend traditional continuous wavelet theory from the Euclidean to a non-Euclidean setting (i.e., a graph, mesh or network). Using this descriptor, we conduct experiments on two different datasets, the Alzheimer’s Disease NeuroImaging Initiative (ADNI) data and images acquired at the Wisconsin Alzheimer’s Disease Research Center (W-ADRC), focusing on individuals labeled as having Alzheimer’s disease (AD), mild cognitive impairment (MCI) and healthy controls. In particular, we contrast traditional univariate methods with our multi-resolution approach which show increased sensitivity and improved statistical power to detect a group-level effects. We also provide an open source implementation. PMID:24614060
Shape of intrinsic alpha pulse height spectra in lanthanide halide scintillators
NASA Astrophysics Data System (ADS)
Wolszczak, W.; Dorenbos, P.
2017-06-01
Internal contamination with actinium-227 and its daughters is a serious drawback in low-background applications of lanthanide-based scintillators. In this work we showed the important role of nuclear γ de-excitations on the shape of the internal alpha spectrum measured in scintillators. We calculated with Bateman equations the activities of contamination isotopes and the time evolution of actinium-227 and its progenies. Next, we measured the intrinsic background spectra of LaBr3(Ce), LaBr3(Ce,Sr) and CeBr3 with a digital spectroscopy technique, and we analyzed them with a pulse shape discrimination method (PSD) and a time-amplitude analysis. Finally, we simulated the α background spectrum with Geant4 tool-kit, consequently taking into account complex α-γ-electron events, the α / β ratio dependence on the α energy, and the electron/γ nonproportionality. We found that α-γ mixed events have higher light yield than expected for alpha particles alone, which leads to overestimation of the α / β ratio when it is measured with internal 227Th and 223Ra isotopes. The time-amplitude analysis showed that the α peaks of 219Rn and 215Po in LaBr3(Ce) and LaBr3(Ce,Sr) are not symmetric. We compared the simulation results with the measured data and provided further evidence of the important role of mixed α-γ-electron events for understanding the shape of the internal α spectrum in scintillators.
Diaz-Toledano, Rosa; Lozano, Gloria; Martinez-Salas, Encarnacion
2017-02-17
The genome of RNA viruses folds into 3D structures that include long-range RNA–RNA interactions relevant to control critical steps of the viral cycle. In particular, initiation of translation driven by the IRES element of foot-and-mouth disease virus is stimulated by the 3΄UTR. Here we sought to investigate the RNA local flexibility of the IRES element and the 3΄UTR in living cells. The SHAPE reactivity observed in vivo showed statistically significant differences compared to the free RNA, revealing protected or exposed positions within the IRES and the 3΄UTR. Importantly, the IRES local flexibility was modified in the presence of the 3΄UTR, showing significant protections at residues upstream from the functional start codon. Conversely, presence of the IRES element in cis altered the 3΄UTR local flexibility leading to an overall enhanced reactivity. Unlike the reactivity changes observed in the IRES element, the SHAPE differences of the 3΄UTR were large but not statistically significant, suggesting multiple dynamic RNA interactions. These results were supported by covariation analysis, which predicted IRES-3΄UTR conserved helices in agreement with the protections observed by SHAPE probing. Mutational analysis suggested that disruption of one of these interactions could be compensated by alternative base pairings, providing direct evidences for dynamic long-range interactions between these distant elements of the viral genome.
Sharma, Prashant P; Santiago, Marc A; Kriebel, Ricardo; Lipps, Savana M; Buenavente, Perry A C; Diesmos, Arvin C; Janda, Milan; Boyer, Sarah L; Clouse, Ronald M; Wheeler, Ward C
2017-01-01
The taxonomy and systematics of the armored harvestmen (suborder Laniatores) are based on various sets of morphological characters pertaining to shape, armature, pedipalpal setation, and the number of articles of the walking leg tarsi. Few studies have tested the validity of these historical character systems in a comprehensive way, with reference to an independent data class, i.e., molecular sequence data. We examined as a test case the systematics of Podoctidae, a family distributed throughout the Indo-Pacific. We tested the validity of the three subfamilies of Podoctidae using a five-locus phylogeny, and examined the evolution of dorsal shape as a proxy for taxonomic utility, using parametric shape analysis. Here we show that two of the three subfamilies, Ibaloniinae and Podoctinae, are non-monophyletic, with the third subfamily, Erecananinae, recovered as non-monophyletic in a subset of analyses. Various genera were also recovered as non-monophyletic. As first steps toward revision of Podoctidae, the subfamilies Erecananinae Roewer, 1912 and Ibaloniinae Roewer, 1912 are synonymized with Podoctinae Roewer, 1912 new synonymies, thereby abolishing unsubstantiated subfamilial divisions within Podoctidae. We once again synonymize the genus Paralomanius Goodnight & Goodnight, 1948 with Lomanius Roewer, 1923 revalidated. We additionally show that eggs carried on the legs of male Podoctidae are not conspecific to the males, falsifying the hypothesis of paternal care in this group. Copyright © 2016 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Mansur, Nuzhat; Raziul Hasan, Mohammad; Kim, Young-tae; Iqbal, Samir M.
2017-09-01
Metastasis is the major cause of low survival rates among cancer patients. Once cancer cells metastasize, it is extremely difficult to contain the disease. We report on a nanotextured platform for enhanced detection of metastatic cells. We captured metastatic (MDA-MDB-231) and non-metastatic (MCF-7) breast cancer cells on anti-EGFR aptamer modified plane and nanotextured substrates. Metastatic cells were seen to change their morphology at higher rates when captured on nanotextured substrates than on plane substrates. Analysis showed statistically different morphological behaviors of metastatic cells that were very pronounced on the nanotextured substrates. Several distance matrices were calculated to quantify the dissimilarity of cell shape change. Nanotexturing increased the dissimilarity of the metastatic cells and as a result the contrast between metastatic and non-metastatic cells increased. Jaccard distance measurements found that the shape change ratio of the non-metastatic and metastatic cells was enhanced from 1:1.01 to 1:1.81, going from plane to nanotextured substrates. The shape change ratio of the non-metastatic to metastatic cells improved from 1:1.48 to 1:2.19 for the Hausdorff distance and from 1:1.87 to 1:4.69 for the Mahalanobis distance after introducing nanotexture. Distance matrix analysis showed that nanotexture increased the shape change ratios of non-metastatic and metastatic cells. Hence, the detectability of metastatic cells increased. These calculated matrices provided clear and explicit measures to discriminate single cells for their metastatic state on functional nanotextured substrates.
Three-dimensional Procrustes analysis of modern human craniofacial form.
Badawi-Fayad, Jackie; Cabanis, Emmanuel-Alain
2007-03-01
The objective of this study was to analyze modern human craniofacial form using 3D Procrustes superimposition in order to establish a reference model and validate it on computed tomography (CT). The sample consists of 136 specimens from five modern human regional groups. Thirty-three craniofacial landmark coordinates have been recorded using a Microscribe and calculated on CT scans for five crania from the sample. Procrustes superimposition has been performed to calculate the mean shape, and a discriminant analysis has also been carried out to estimate the variability of shape. The results show that the repeatability of measurements made on CT and on Microscribe is excellent (R = 0.99). There is no major distinctiveness in the craniofacial shape; however, discriminant function 1 separates out the European crania from the others, especially African and American. It includes the width and the length of the face, the flatness of the upper face, the prognathism of the maxilla, as well as the length and the inclination of the palate. The width of the maxilla and the palate do not show a great variability. This may be the common invariant feature responsible for the alignment of the teeth in all specimens. It may correspond to functional patterns related to masticatory constraints manifested by the important interproximal and occlusal dental wear in all specimens. This study confirms the high accuracy of measurements made on CT scan and the importance of geometric morphometrics, which provides an accurate characterization of the overall craniofacial shape and its variation within the entire population.
From Curves to Trees: A Tree-like Shapes Distance Using the Elastic Shape Analysis Framework.
Mottini, A; Descombes, X; Besse, F
2015-04-01
Trees are a special type of graph that can be found in various disciplines. In the field of biomedical imaging, trees have been widely studied as they can be used to describe structures such as neurons, blood vessels and lung airways. It has been shown that the morphological characteristics of these structures can provide information on their function aiding the characterization of pathological states. Therefore, it is important to develop methods that analyze their shape and quantify differences between their structures. In this paper, we present a method for the comparison of tree-like shapes that takes into account both topological and geometrical information. This method, which is based on the Elastic Shape Analysis Framework, also computes the mean shape of a population of trees. As a first application, we have considered the comparison of axon morphology. The performance of our method has been evaluated on two sets of images. For the first set of images, we considered four different populations of neurons from different animals and brain sections from the NeuroMorpho.org open database. The second set was composed of a database of 3D confocal microscopy images of three populations of axonal trees (normal and two types of mutations) of the same type of neurons. We have calculated the inter and intra class distances between the populations and embedded the distance in a classification scheme. We have compared the performance of our method against three other state of the art algorithms, and results showed that the proposed method better distinguishes between the populations. Furthermore, we present the mean shape of each population. These shapes present a more complete picture of the morphological characteristics of each population, compared to the average value of certain predefined features.
Shape Analysis of Planar Multiply-Connected Objects Using Conformal Welding.
Lok Ming Lui; Wei Zeng; Shing-Tung Yau; Xianfeng Gu
2014-07-01
Shape analysis is a central problem in the field of computer vision. In 2D shape analysis, classification and recognition of objects from their observed silhouettes are extremely crucial but difficult. It usually involves an efficient representation of 2D shape space with a metric, so that its mathematical structure can be used for further analysis. Although the study of 2D simply-connected shapes has been subject to a corpus of literatures, the analysis of multiply-connected shapes is comparatively less studied. In this work, we propose a representation for general 2D multiply-connected domains with arbitrary topologies using conformal welding. A metric can be defined on the proposed representation space, which gives a metric to measure dissimilarities between objects. The main idea is to map the exterior and interior of the domain conformally to unit disks and circle domains (unit disk with several inner disks removed), using holomorphic 1-forms. A set of diffeomorphisms of the unit circle S(1) can be obtained, which together with the conformal modules are used to define the shape signature. A shape distance between shape signatures can be defined to measure dissimilarities between shapes. We prove theoretically that the proposed shape signature uniquely determines the multiply-connected objects under suitable normalization. We also introduce a reconstruction algorithm to obtain shapes from their signatures. This completes our framework and allows us to move back and forth between shapes and signatures. With that, a morphing algorithm between shapes can be developed through the interpolation of the Beltrami coefficients associated with the signatures. Experiments have been carried out on shapes extracted from real images. Results demonstrate the efficacy of our proposed algorithm as a stable shape representation scheme.
Shape Mode Analysis Exposes Movement Patterns in Biology: Flagella and Flatworms as Case Studies
Werner, Steffen; Rink, Jochen C.; Riedel-Kruse, Ingmar H.; Friedrich, Benjamin M.
2014-01-01
We illustrate shape mode analysis as a simple, yet powerful technique to concisely describe complex biological shapes and their dynamics. We characterize undulatory bending waves of beating flagella and reconstruct a limit cycle of flagellar oscillations, paying particular attention to the periodicity of angular data. As a second example, we analyze non-convex boundary outlines of gliding flatworms, which allows us to expose stereotypic body postures that can be related to two different locomotion mechanisms. Further, shape mode analysis based on principal component analysis allows to discriminate different flatworm species, despite large motion-associated shape variability. Thus, complex shape dynamics is characterized by a small number of shape scores that change in time. We present this method using descriptive examples, explaining abstract mathematics in a graphic way. PMID:25426857
Giacchino, Mariela; Inserra, Pablo I F; Lange, Fernando D; Gariboldi, María C; Ferraris, Sergio R; Vitullo, Alfredo D
2018-06-01
The South American hystricognathe Lagostomus maximus is a fossorial rodent whose females show unique reproductive characteristics. They have a 155-day long gestation, show massive polyovulation and a selective process of embryonic resorption in the first half of gestation. In order to explore and perform an in-situ characterization of the reproductive tract, we visualized internal structures through ultrasonography and video-endoscopy in pregnant and non-pregnant females. We describe the finding of protruding structures that lie on the yolk sac and their histological and ultrastructural characterization. The placenta was covered with whitish, small pearl-shaped structures. These structures were also seen on the extra-embryonic space, being the amnion and the umbilical cord free of them. Pearl-shaped structures were composed with loose connective tissue, lacked blood vessels, and showed collagen fibers organized in a spiral form. They were anchored by pedicles to the villous surface of the extraembryonic membrane. We discuss the biological and evolutionary meaning of the pearl-shaped structures that relate L. maximus to the African origin of the South American hystricognathe fauna.
Lu, Yuan-Chiao; Untaroiu, Costin D
2013-09-01
During car collisions, the shoulder belt exposes the occupant's clavicle to large loading conditions which often leads to a bone fracture. To better understand the geometric variability of clavicular cortical bone which may influence its injury tolerance, twenty human clavicles were evaluated using statistical shape analysis. The interior and exterior clavicular cortical bone surfaces were reconstructed from CT-scan images. Registration between one selected template and the remaining 19 clavicle models was conducted to remove translation and rotation differences. The correspondences of landmarks between the models were then established using coordinates and surface normals. Three registration methods were compared: the LM-ICP method; the global method; and the SHREC method. The LM-ICP registration method showed better performance than the global and SHREC registration methods, in terms of compactness, generalization, and specificity. The first four principal components obtained by using the LM-ICP registration method account for 61% and 67% of the overall anatomical variation for the exterior and interior cortical bone shapes, respectively. The length was found to be the most significant variation mode of the human clavicle. The mean and two boundary shape models were created using the four most significant principal components to investigate the size and shape variation of clavicular cortical bone. In the future, boundary shape models could be used to develop probabilistic finite element models which may help to better understand the variability in biomechanical responses and injuries to the clavicle. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.
Jakupović, Selma; Anić, Ivica; Ajanović, Muhamed; Korać, Samra; Konjhodžić, Alma; Džanković, Aida; Vuković, Amra
2016-01-01
The present study aims to investigate the influence of presence and shape of cervical lesions on biomechanical behavior of mandibular first premolar, subjected to two types of occlusal loading using three-dimensional (3D) finite element method (FEM). 3D models of the mandibular premolar are created from a micro computed tomography X-ray image: model of sound mandibular premolar, model with the wedge-shaped cervical lesion (V lesion), and model with saucer-shaped cervical lesion (U lesion). By FEM, straining of the tooth tissues under functional and nonfunctional occlusal loading of 200 (N) is analyzed. For the analysis, the following software was used: CTAn program 1.10 and ANSYS Workbench (version 14.0). The results are presented in von Mises stress. Values of calculated stress in all tooth structures are higher under nonfunctional occlusal loading, while the functional loading is resulted in homogeneous stress distribution. Nonfunctional load in the cervical area of sound tooth model as well as in the sub-superficial layer of the enamel resulted with a significant stress (over 50 [MPa]). The highest stress concentration on models with lesions is noticed on the apex of the V-shaped lesion, while stress in saucer U lesion is significantly lower and distributed over wider area. The type of the occlusal teeth loading has the biggest influence on cervical stress intensity. Geometric shape of the existing lesion is very important in the distribution of internal stress. Compared to the U-shaped lesions, V-shaped lesions show significantly higher stress concentrations under load. Exposure to stress would lead to its progression.
Stephens, C. R.; Juliano, S. A.
2012-01-01
Estimating a mosquito’s vector competence, or likelihood of transmitting disease, if it takes an infectious blood meal, is an important aspect of predicting when and where outbreaks of infectious diseases will occur. Vector competence can be affected by rearing temperature and inter- and intraspecific competition experienced by the individual mosquito during its larval development. This research investigates whether a new morphological indicator of larval rearing conditions, wing shape, can be used to distinguish reliably temperature and competitive conditions experienced during larval stages. Aedes albopictus and Aedes aegypti larvae were reared in low intra-specific, high intra-specific, or high inter-specific competition treatments at either 22°C or 32°C. The right wing of each dried female was removed and photographed. Nineteen landmarks and twenty semilandmarks were digitized on each wing. Shape variables were calculated using geometric morphometric software. Canonical variate analysis, randomization multivariate analysis of variance, and visualization of landmark movement using deformation grids provided evidence that although semilandmark position was significantly affected by larval competition and temperature for both species, the differences in position did not translate into differences in wing shape, as shown in deformation grids. Two classification procedures yielded success rates of 26–49%. Accounting for wing size produced no increase in classification success. There appeared to be a significant relationship between shape and size. These results, particularly the low success rate of classification based on wing shape, show that shape is unlikely to be a reliable indicator of larval rearing competition and temperature conditions for Aedes albopictus and Aedes aegypti. PMID:22897054
He, Feng; Zhao, Lin; Li, Ershuai
2017-01-01
Ethernet-AVB/TSN (Audio Video Bridging/Time-Sensitive Networking) and AFDX (Avionics Full DupleX switched Ethernet) are switched Ethernet technologies, which are both candidates for real-time communication in the context of transportation systems. AFDX implements a fixed priority scheduling strategy with two priority levels. Ethernet-AVB/TSN supports a similar fixed priority scheduling with an additional Credit-Based Shaper (CBS) mechanism. Besides, TSN can support time-triggered scheduling strategy. One direct effect of CBS mechanism is to increase the delay of its flows while decreasing the delay of other priority ones. The former effect can be seen as the shaping restriction and the latter effect can be seen as the shaping benefit from CBS. The goal of this paper is to investigate the impact of CBS on different priority flows, especially on the intermediate priority ones, as well as the effect of CBS bandwidth allocation. It is based on a performance comparison of AVB/TSN and AFDX by simulation in an automotive case study. Furthermore, the shaping benefit is modeled based on integral operation from network calculus perspective. Combing with the analysis of shaping restriction and shaping benefit, some configuration suggestions on the setting of CBS bandwidth are given. Results show that the effect of CBS depends on flow loads and CBS configurations. A larger load of high priority flows in AVB tends to a better performance for the intermediate priority flows when compared with AFDX. Shaping benefit can be explained and calculated according to the changing from the permitted maximum burst. PMID:28531158
NASA Astrophysics Data System (ADS)
Yu, Xin; Cao, Liang; Liu, Jinhu; Zhao, Bo; Shan, Xiujuan; Dou, Shuozeng
2014-09-01
We tested the use of otolith shape analysis to discriminate between species and stocks of five goby species ( Ctenotrypauchen chinensis, Odontamblyopus lacepedii, Amblychaeturichthys hexanema, Chaeturichthys stigmatias, and Acanthogobius hasta) found in northern Chinese coastal waters. The five species were well differentiated with high overall classification success using shape indices (83.7%), elliptic Fourier coefficients (98.6%), or the combination of both methods (94.9%). However, shape analysis alone was only moderately successful at discriminating among the four stocks (Liaodong Bay, LD; Bohai Bay, BH; Huanghe (Yellow) River estuary HRE, and Jiaozhou Bay, JZ stocks) of A. hasta (50%-54%) and C. stigmatias (65.7%-75.8%). For these two species, shape analysis was moderately successful at discriminating the HRE or JZ stocks from other stocks, but failed to effectively identify the LD and BH stocks. A large number of otoliths were misclassified between the HRE and JZ stocks, which are geographically well separated. The classification success for stock discrimination was higher using elliptic Fourier coefficients alone (70.2%) or in combination with shape indices (75.8%) than using only shape indices (65.7%) in C. stigmatias whereas there was little difference among the three methods for A. hasta. Our results supported the common belief that otolith shape analysis is generally more effective for interspecific identification than intraspecific discrimination. Moreover, compared with shape indices analysis, Fourier analysis improves classification success during inter- and intra-species discrimination by otolith shape analysis, although this did not necessarily always occur in all fish species.
Analysis of the DFP/AFCS Systems for Compensating Gravity Distortions on the 70-Meter Antenna
NASA Technical Reports Server (NTRS)
Imbriale, William A.; Hoppe, Daniel J.; Rochblatt, David
2000-01-01
This paper presents the theoretical computations showing the expected performances for both systems. The basic analysis tool is a Physical Optics reflector analysis code that was ported to a parallel computer for faster execution times. There are several steps involved in computing the RF performance of the various systems. 1 . A model of the RF distortions of the main reflector is required. This model is based upon measured holography maps of the 70-meter antenna obtained at 3 elevation angles. The holography maps are then processed (using an appropriate gravity mechanical model of the dish) to provide surface distortion maps at all elevation angles. 2. From the surface distortion maps, ray optics is used to determine the theoretical shape of the DFP that will exactly phase compensate the distortions. 3. From the theoretical shape and a NASTRAN mechanical model of the plate, the actuator positions that generate a surface that provides the best RMS fit to the theoretical model are selected. Using the actuator positions and the NASTRAN model provides an accurate description of the actual mirror shape. 4. Starting from the mechanical drawings of the feed, a computed RF feed pattern is generated. This pattern is expanded into a set of spherical wave modes so that a complete near field analysis of the reflector system can be obtained. 5. For the array feed, the excitation coefficients that provide the maximum gain are computed using a phase conjugate technique. The basic experimental geometry consisted of a dual shaped 70-meter antenna system; a refocusing ellipse, a DFP and an array feed system. To provide physical insight to the systems performance, focal plane field plots are presented at several elevations. Curves of predicted performance are shown for the DFP system, monopulse tracking system, AFCS and combined DFP/AFCS system. The calculated results show that the combined DFP/AFCS system is capable of recovering the majority of the gain lost due to gravity distortion.
Liu, Fan; Chen, Yan; Zhu, Gu; Hysi, Pirro G; Wu, Sijie; Adhikari, Kaustubh; Breslin, Krystal; Pospiech, Ewelina; Hamer, Merel A; Peng, Fuduan; Muralidharan, Charanya; Acuna-Alonzo, Victor; Canizales-Quinteros, Samuel; Bedoya, Gabriel; Gallo, Carla; Poletti, Giovanni; Rothhammer, Francisco; Bortolini, Maria Catira; Gonzalez-Jose, Rolando; Zeng, Changqing; Xu, Shuhua; Jin, Li; Uitterlinden, André G; Ikram, M Arfan; van Duijn, Cornelia M; Nijsten, Tamar; Walsh, Susan; Branicki, Wojciech; Wang, Sijia; Ruiz-Linares, Andrés; Spector, Timothy D; Martin, Nicholas G; Medland, Sarah E; Kayser, Manfred
2018-02-01
Shape variation of human head hair shows striking variation within and between human populations, while its genetic basis is far from being understood. We performed a series of genome-wide association studies (GWASs) and replication studies in a total of 28 964 subjects from 9 cohorts from multiple geographic origins. A meta-analysis of three European GWASs identified 8 novel loci (1p36.23 ERRFI1/SLC45A1, 1p36.22 PEX14, 1p36.13 PADI3, 2p13.3 TGFA, 11p14.1 LGR4, 12q13.13 HOXC13, 17q21.2 KRTAP, and 20q13.33 PTK6), and confirmed 4 previously known ones (1q21.3 TCHH/TCHHL1/LCE3E, 2q35 WNT10A, 4q21.21 FRAS1, and 10p14 LINC00708/GATA3), all showing genome-wide significant association with hair shape (P < 5e-8). All except one (1p36.22 PEX14) were replicated with nominal significance in at least one of the 6 additional cohorts of European, Native American and East Asian origins. Three additional previously known genes (EDAR, OFCC1, and PRSS53) were confirmed at the nominal significance level. A multivariable regression model revealed that 14 SNPs from different genes significantly and independently contribute to hair shape variation, reaching a cross-validated AUC value of 0.66 (95% CI: 0.62-0.70) and an AUC value of 0.64 in an independent validation cohort, providing an improved accuracy compared with a previous model. Prediction outcomes of 2504 individuals from a multiethnic sample were largely consistent with general knowledge on the global distribution of hair shape variation. Our study thus delivers target genes and DNA variants for future functional studies to further evaluate the molecular basis of hair shape in humans. © The Author(s) 2017. Published by Oxford University Press.
Liu, Fan; Chen, Yan; Zhu, Gu; Hysi, Pirro G; Wu, Sijie; Adhikari, Kaustubh; Breslin, Krystal; Pośpiech, Ewelina; Hamer, Merel A; Peng, Fuduan; Muralidharan, Charanya; Acuna-Alonzo, Victor; Canizales-Quinteros, Samuel; Bedoya, Gabriel; Gallo, Carla; Poletti, Giovanni; Rothhammer, Francisco; Bortolini, Maria Catira; Gonzalez-Jose, Rolando; Zeng, Changqing; Xu, Shuhua; Jin, Li; Uitterlinden, André G; Ikram, M Arfan; van Duijn, Cornelia M; Nijsten, Tamar; Walsh, Susan; Branicki, Wojciech; Wang, Sijia; Ruiz-Linares, Andrés; Spector, Timothy D; Martin, Nicholas G; Medland, Sarah E; Kayser, Manfred
2018-01-01
Abstract Shape variation of human head hair shows striking variation within and between human populations, while its genetic basis is far from being understood. We performed a series of genome-wide association studies (GWASs) and replication studies in a total of 28 964 subjects from 9 cohorts from multiple geographic origins. A meta-analysis of three European GWASs identified 8 novel loci (1p36.23 ERRFI1/SLC45A1, 1p36.22 PEX14, 1p36.13 PADI3, 2p13.3 TGFA, 11p14.1 LGR4, 12q13.13 HOXC13, 17q21.2 KRTAP, and 20q13.33 PTK6), and confirmed 4 previously known ones (1q21.3 TCHH/TCHHL1/LCE3E, 2q35 WNT10A, 4q21.21 FRAS1, and 10p14 LINC00708/GATA3), all showing genome-wide significant association with hair shape (P < 5e-8). All except one (1p36.22 PEX14) were replicated with nominal significance in at least one of the 6 additional cohorts of European, Native American and East Asian origins. Three additional previously known genes (EDAR, OFCC1, and PRSS53) were confirmed at the nominal significance level. A multivariable regression model revealed that 14 SNPs from different genes significantly and independently contribute to hair shape variation, reaching a cross-validated AUC value of 0.66 (95% CI: 0.62–0.70) and an AUC value of 0.64 in an independent validation cohort, providing an improved accuracy compared with a previous model. Prediction outcomes of 2504 individuals from a multiethnic sample were largely consistent with general knowledge on the global distribution of hair shape variation. Our study thus delivers target genes and DNA variants for future functional studies to further evaluate the molecular basis of hair shape in humans. PMID:29220522
Gregory, J S; Testi, D; Stewart, A; Undrill, P E; Reid, D M; Aspden, R M
2004-01-01
The shape of the proximal femur has been demonstrated to be important in the occurrence of fractures of the femoral neck. Unfortunately, multiple geometric measurements frequently used to describe this shape are highly correlated. A new method, active shape modeling (ASM) has been developed to quantify the morphology of the femur. This describes the shape in terms of orthogonal modes of variation that, consequently, are all independent. To test this method, digitized standard pelvic radiographs were obtained from 26 women who had suffered a hip fracture and compared with images from 24 age-matched controls with no fracture. All subjects also had their bone mineral density (BMD) measured at five sites using dual-energy X-ray absorptiometry. An ASM was developed and principal components analysis used to identify the modes which best described the shape. Discriminant analysis was used to determine which variable, or combination of variables, was best able to discriminate between the groups. ASM alone correctly identified 74% of the individuals and placed them in the appropriate group. Only one of the BMD values (Ward's triangle) achieved a higher value (82%). A combination of Ward's triangle BMD and ASM improved the accuracy to 90%. Geometric variables used in this study were weaker, correctly classifying less than 60% of the study group. Logistic regression showed that after adjustment for age, body mass index, and BMD, the ASM data was still independently associated with hip fracture (odds ratio (OR)=1.83, 95% confidence interval 1.08 to 3.11). The odds ratio was calculated relative to a 10% increase in the probability of belonging to the fracture group. Though these initial results were obtained from a limited data set, this study shows that ASM may be a powerful method to help identify individuals at risk of a hip fracture in the future.
NASA Astrophysics Data System (ADS)
Campbell, Norah; Deane, Cormac; Murphy, Padraig
2017-07-01
Public perceptions of nanotechnology are shaped by sound in surprising ways. Our analysis of the audiovisual techniques employed by nanotechnology stakeholders shows that well-chosen sounds can help to win public trust, create value and convey the weird reality of objects on the nanoscale.
Forming three-dimensional closed shapes from two-dimensional soft ribbons by controlled buckling
Aoki, Michio
2018-01-01
Conventional manufacturing techniques—moulding, machining and casting—exist to produce three-dimensional (3D) shapes. However, these industrial processes are typically geared for mass production and are not directly applicable to residential settings, where inexpensive and versatile tools are desirable. Moreover, those techniques are, in general, not adequate to process soft elastic materials. Here, we introduce a new concept of forming 3D closed hollow shapes from two-dimensional (2D) elastic ribbons by controlled buckling. We numerically and experimentally characterize how the profile and thickness of the ribbon determine its buckled shape. We find a 2D master profile with which various elliptical 3D shapes can be formed. More complex natural and artificial hollow shapes, such as strawberry, hourglass and wheel, can also be achieved via strategic design and pattern engraving on the ribbons. The nonlinear response of the post-buckling regime is rationalized through finite-element analysis, which shows good quantitative agreement with experiments. This robust fabrication should complement conventional techniques and provide a rich arena for future studies on the mechanics and new applications of elastic hollow structures. PMID:29515894
2016-01-01
This study was performed to quantitatively analyze medical knowledge of, and experience with, decision-making in preoperative virtual planning of mandibular reconstruction. Three shape descriptors were designed to evaluate local differences between reconstructed mandibles and patients’ original mandibles. We targeted an asymmetrical, wide range of cutting areas including the mandibular sidepiece, and defined a unique three-dimensional coordinate system for each mandibular image. The generalized algorithms for computing the shape descriptors were integrated into interactive planning software, where the user can refine the preoperative plan using the spatial map of the local shape distance as a visual guide. A retrospective study was conducted with two oral surgeons and two dental technicians using the developed software. The obtained 120 reconstruction plans show that the participants preferred a moderate shape distance rather than optimization to the smallest. We observed that a visually plausible shape could be obtained when considering specific anatomical features (e.g., mental foramen. mandibular midline). The proposed descriptors can be used to multilaterally evaluate reconstruction plans and systematically learn surgical procedures. PMID:27583465
Liang, Haiyi; Mahadevan, L.
2009-01-01
Long leaves in terrestrial plants and their submarine counterparts, algal blades, have a typical, saddle-like midsurface and rippled edges. To understand the origin of these morphologies, we dissect leaves and differentially stretch foam ribbons to show that these shapes arise from a simple cause, the elastic relaxation via bending that follows either differential growth (in leaves) or differential stretching past the yield point (in ribbons). We quantify these different modalities in terms of a mathematical model for the shape of an initially flat elastic sheet with lateral gradients in longitudinal growth. By using a combination of scaling concepts, stability analysis, and numerical simulations, we map out the shape space for these growing ribbons and find that as the relative growth strain is increased, a long flat lamina deforms to a saddle shape and/or develops undulations that may lead to strongly localized ripples as the growth strain is localized to the edge of the leaf. Our theory delineates the geometric and growth control parameters that determine the shape space of finite laminae and thus allows for a comparative study of elongated leaf morphology. PMID:19966215
Forming three-dimensional closed shapes from two-dimensional soft ribbons by controlled buckling
NASA Astrophysics Data System (ADS)
Aoki, Michio; Juang, Jia-Yang
2018-02-01
Conventional manufacturing techniques-moulding, machining and casting-exist to produce three-dimensional (3D) shapes. However, these industrial processes are typically geared for mass production and are not directly applicable to residential settings, where inexpensive and versatile tools are desirable. Moreover, those techniques are, in general, not adequate to process soft elastic materials. Here, we introduce a new concept of forming 3D closed hollow shapes from two-dimensional (2D) elastic ribbons by controlled buckling. We numerically and experimentally characterize how the profile and thickness of the ribbon determine its buckled shape. We find a 2D master profile with which various elliptical 3D shapes can be formed. More complex natural and artificial hollow shapes, such as strawberry, hourglass and wheel, can also be achieved via strategic design and pattern engraving on the ribbons. The nonlinear response of the post-buckling regime is rationalized through finite-element analysis, which shows good quantitative agreement with experiments. This robust fabrication should complement conventional techniques and provide a rich arena for future studies on the mechanics and new applications of elastic hollow structures.
Bookstein, Fred L; Domjanić, Jacqueline
2014-09-01
The relationship of geometric morphometrics (GMM) to functional analysis of the same morphological resources is currently a topic of active interest among functional morphologists. Although GMM is typically advertised as free of prior assumptions about shape features or morphological theories, it is common for GMM findings to be concordant with findings from studies based on a-priori lists of shape features whenever prior insights or theories have been properly accounted for in the study design. The present paper demonstrates this happy possibility by revisiting a previously published GMM analysis of footprint outlines for which there is also functionally relevant information in the form of a-pri-ori foot measurements. We show how to convert the conventional measurements into the language of shape, thereby affording two parallel statistical analyses. One is the classic multivariate analysis of "shape features", the other the equally classic GMM of semilandmark coordinates. In this example, the two data sets, analyzed by protocols that are remarkably different in both their geometry and their algebra, nevertheless result in one common biometrical summary: wearing high heels is bad for women inasmuch as it leads to the need for orthotic devices to treat the consequently flattened arch. This concordance bears implications for other branches of applied anthropology. To carry out a good biomedical analysis of applied anthropometric data it may not matter whether one uses GMM or instead an adequate assortment of conventional measurements. What matters is whether the conventional measurements have been selected in order to match the natural spectrum of functional variation.
Siqueira, José F; Alves, Flávio R F; Versiani, Marco A; Rôças, Isabela N; Almeida, Bernardo M; Neves, Mônica A S; Sousa-Neto, Manoel D
2013-08-01
This ex vivo study evaluated the disinfecting and shaping ability of 3 protocols used in the preparation of mesial root canals of mandibular molars by means of correlative bacteriologic and micro-computed tomographic (μμCT) analysis. The mesial canals of extracted mandibular molars were contaminated with Enterococcus faecalis for 30 days and assigned to 3 groups based on their anatomic configuration as determined by μCT analysis according to the preparation technique (Self-Adjusting File [ReDent-Nova, Ra'anana, Israel], Reciproc [VDW, Munich, Germany], and Twisted File [SybronEndo, Orange, CA]). In all groups, 2.5% NaOCl was the irrigant. Canal samples were taken before (S1) and after instrumentation (S2), and bacterial quantification was performed using culture. Next, mesial roots were subjected to additional μCT analysis in order to evaluate shaping of the canals. All instrumentation protocols promoted a highly significant intracanal bacterial reduction (P < .001). Intergroup quantitative and qualitative comparisons disclosed no significant differences between groups (P > .05). As for shaping, no statistical difference was observed between the techniques regarding the mean percentage of volume increase, the surface area increase, the unprepared surface area, and the relative unprepared surface area (P > .05). Correlative analysis showed no statistically significant relationship between bacterial reduction and the mean percentage increase of the analyzed parameters (P > .05). The 3 instrumentation systems have similar disinfecting and shaping performance in the preparation of mesial canals of mandibular molars. Copyright © 2013 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.
Geometric morphometric analysis reveals age-related differences in the distal femur of Europeans.
Cavaignac, Etienne; Savall, Frederic; Chantalat, Elodie; Faruch, Marie; Reina, Nicolas; Chiron, Philippe; Telmon, Norbert
2017-12-01
Few studies have looked into age-related variations in femur shape. We hypothesized that three-dimensional (3D) geometric morphometric analysis of the distal femur would reveal age-related differences. The purpose of this study was to show that differences in distal femur shape related to age could be identified, visualized, and quantified using three-dimensional (3D) geometric morphometric analysis. Geometric morphometric analysis was carried out on CT scans of the distal femur of 256 subjects living in the south of France. Ten landmarks were defined on 3D reconstructions of the distal femur. Both traditional metric and geometric morphometric analyses were carried out on these bone reconstructions. These analyses were used to identify trends in bone shape in various age-based subgroups (<40, 40-60, >60). Only the average bone shape of the < 40-year subgroup was statistically different from that of the other two groups. When the population was divided into two subgroups using 40 years of age as a threshold, the subject's age was correctly assigned 80% of the time. Age-related differences are present in this bone segment. This reliable, accurate method could be used for virtual autopsy and to perform diachronic and interethnic comparisons. Moreover, this study provides updated morphometric data for a modern population in the south of France. Manufacturers of knee replacement implants will have to adapt their prosthesis models as the population evolves over time.
Stress analyses for the glass joints of contemporary sodium sulfur batteries
NASA Astrophysics Data System (ADS)
Jung, Keeyoung; Lee, Solki; Kim, Goun; Kim, Chang-Soo
2014-12-01
During the manufacturing and thermal cycles of advanced contemporary large sized sodium sulfur (NaS) batteries, thermally driven stresses can be applied to the glass sealing joints, which may result in catastrophic cell failure. To minimize the thermal stresses at the joints, there is a need to develop a method to properly estimate the maximum thermal stresses by varying the materials properties and shapes of the sealing area, and thereby determine the properties and shapes of sealing material at the joints. In the present study, the optimum coefficient of thermal expansion (CTE) of the glass sealant and end shape of the glass sealing area (i.e., concave, flat, and convex shapes) have been determined using the finite-element analysis (FEA) computation technique. The results showed that the CTE value of 7.8 × 10-6 K-1 with a convex end shape would have the lowest stress concentration in the vicinity of glass sealing joints for the prototype tubular NaS cell design adopted in this work.
Structural, optical and field emission properties of urchin-shaped ZnO nanostructures.
Al-Heniti, Saleh; Umar, Ahmad
2013-01-01
In this work, well-crystallized urchin-shaped ZnO structures were synthesized on silicon substrate by simple non-catalytic thermal evaporation process by using metallic zinc powder in the presence of oxygen as source materials for zinc and oxygen, respectively. The synthesized ZnO structures were characterized in detail in terms of their morphological, structural, optical and field emission properties. The detailed morphological investigations revealed that the synthesized structures possess urchin-shape and grown in high-density over the substrate surface. The detailed structural and optical characterizations revealed that the synthesized urchin-shaped ZnO structures are well-crystallized and exhibiting good optical properties. The field emission analysis for urchin-shaped ZnO structures exhibits a turn-on field of 4.6 V/microm. The emission current density reached to 0.056 mA/cm2 at an applied electrical field of 6.4 V/microm and shows no saturation. The calculated field enhancement factor 'beta', from the F-N plot, was found to be approximately 2.2 x 10(3).
Generation of shape complexity through tissue conflict resolution
Rebocho, Alexandra B; Southam, Paul; Kennaway, J Richard; Coen, Enrico
2017-01-01
Out-of-plane tissue deformations are key morphogenetic events during plant and animal development that generate 3D shapes, such as flowers or limbs. However, the mechanisms by which spatiotemporal patterns of gene expression modify cellular behaviours to generate such deformations remain to be established. We use the Snapdragon flower as a model system to address this problem. Combining cellular analysis with tissue-level modelling, we show that an orthogonal pattern of growth orientations plays a key role in generating out-of-plane deformations. This growth pattern is most likely oriented by a polarity field, highlighted by PIN1 protein localisation, and is modulated by dorsoventral gene activity. The orthogonal growth pattern interacts with other patterns of differential growth to create tissue conflicts that shape the flower. Similar shape changes can be generated by contraction as well as growth, suggesting tissue conflict resolution provides a flexible morphogenetic mechanism for generating shape diversity in plants and animals. DOI: http://dx.doi.org/10.7554/eLife.20156.001 PMID:28166865
Effect of tumor shape, size, and tissue transport properties on drug delivery to solid tumors
2014-01-01
Background The computational methods provide condition for investigation related to the process of drug delivery, such as convection and diffusion of drug in extracellular matrices, drug extravasation from microvessels or to lymphatic vessels. The information of this process clarifies the mechanisms of drug delivery from the injection site to absorption by a solid tumor. In this study, an advanced numerical method is used to solve fluid flow and solute transport equations simultaneously to investigate the effect of tumor shape and size on drug delivery to solid tumor. Methods The advanced mathematical model used in our previous work is further developed by adding solute transport equation to the governing equations. After applying appropriate boundary and initial conditions on tumor and surrounding tissue geometry, the element-based finite volume method is used for solving governing equations of drug delivery in solid tumor. Also, the effects of size and shape of tumor and some of tissue transport parameters such as effective pressure and hydraulic conductivity on interstitial fluid flow and drug delivery are investigated. Results Sensitivity analysis shows that drug delivery in prolate shape is significantly better than other tumor shapes. Considering size effect, increasing tumor size decreases drug concentration in interstitial fluid. This study shows that dependency of drug concentration in interstitial fluid to osmotic and intravascular pressure is negligible. Conclusions This study shows that among diffusion and convection mechanisms of drug transport, diffusion is dominant in most different tumor shapes and sizes. In tumors in which the convection has considerable effect, the drug concentration is larger than that of other tumors at the same time post injection. PMID:24987457
Kwon, Chang-Il; Kim, Gwangil; Jeong, Seok; Lee, Don Haeng; Kim, Kyoung Ah; Ko, Kwang Hyun; Cho, Joo Young; Hong, Sung Pyo
2017-05-01
In research and development of biliary plastic stents (PS), continuous efforts have been made to overcome short patency time and high rate of migration. The aim of this study was to evaluate the patency and migration rate of different PS shapes for a given period of time. Using an in vitro bile phantom model, we compared the patency among different shapes of PS (three straight PS, four double-pigtail PS, and a new screw-shaped PS). We performed an analysis of the degree of luminal narrowing by light microscopic examination. Using an in vivo swine model, we compared the patency and migration rate among the three different types of PS. Eight weeks after the bile exposure in the bile flow phantom model, 80 PS were retrieved and analyzed. The straight PS showed less biofilm formation and luminal narrowing than other types of PS (p < 0.05). Forty-nine PS were inserted into the dilated bile ducts of 10 swine models, and 39 PS were successfully retrieved 8 weeks later. The stent migration occurred less frequently in the double-pigtail PS and the screw-shaped PS than it did in the straight PS (11.1, 10, and 27.3%, respectively). However, there was no statistical difference in stent patency among the different shapes. Stent patency may not be significantly different depending on the shape of PS for 8 weeks. The screw-shaped PS showed similar patency and migration rate to the double-pigtail PS. These results may help guiding future PS development and clinical decisions.
Atypical face shape and genomic structural variants in epilepsy
Chinthapalli, Krishna; Bartolini, Emanuele; Novy, Jan; Suttie, Michael; Marini, Carla; Falchi, Melania; Fox, Zoe; Clayton, Lisa M. S.; Sander, Josemir W.; Guerrini, Renzo; Depondt, Chantal; Hennekam, Raoul; Hammond, Peter
2012-01-01
Many pathogenic structural variants of the human genome are known to cause facial dysmorphism. During the past decade, pathogenic structural variants have also been found to be an important class of genetic risk factor for epilepsy. In other fields, face shape has been assessed objectively using 3D stereophotogrammetry and dense surface models. We hypothesized that computer-based analysis of 3D face images would detect subtle facial abnormality in people with epilepsy who carry pathogenic structural variants as determined by chromosome microarray. In 118 children and adults attending three European epilepsy clinics, we used an objective measure called Face Shape Difference to show that those with pathogenic structural variants have a significantly more atypical face shape than those without such variants. This is true when analysing the whole face, or the periorbital region or the perinasal region alone. We then tested the predictive accuracy of our measure in a second group of 63 patients. Using a minimum threshold to detect face shape abnormalities with pathogenic structural variants, we found high sensitivity (4/5, 80% for whole face; 3/5, 60% for periorbital and perinasal regions) and specificity (45/58, 78% for whole face and perinasal regions; 40/58, 69% for periorbital region). We show that the results do not seem to be affected by facial injury, facial expression, intellectual disability, drug history or demographic differences. Finally, we use bioinformatics tools to explore relationships between facial shape and gene expression within the developing forebrain. Stereophotogrammetry and dense surface models are powerful, objective, non-contact methods of detecting relevant face shape abnormalities. We demonstrate that they are useful in identifying atypical face shape in adults or children with structural variants, and they may give insights into the molecular genetics of facial development. PMID:22975390
Derbidge, Renatus; Feiten, Linus; Conradt, Oliver; Heusser, Peter; Baumgartner, Stephan
2013-01-01
Photographs of mistletoe (Viscum album L.) berries taken by a permanently fixed camera during their development in autumn were subjected to an outline shape analysis by fitting path curves using a mathematical algorithm from projective geometry. During growth and maturation processes the shape of mistletoe berries can be described by a set of such path curves, making it possible to extract changes of shape using one parameter called Lambda. Lambda describes the outline shape of a path curve. Here we present methods and software to capture and measure these changes of form over time. The present paper describes the software used to automatize a number of tasks including contour recognition, optimization of fitting the contour via hill-climbing, derivation of the path curves, computation of Lambda and blinding the pictures for the operator. The validity of the program is demonstrated by results from three independent measurements showing circadian rhythm in mistletoe berries. The program is available as open source and will be applied in a project to analyze the chronobiology of shape in mistletoe berries and the buds of their host trees. PMID:23565255
Nonlinear Analysis of Surface EMG Time Series of Back Muscles
NASA Astrophysics Data System (ADS)
Dolton, Donald C.; Zurcher, Ulrich; Kaufman, Miron; Sung, Paul
2004-10-01
A nonlinear analysis of surface electromyography time series of subjects with and without low back pain is presented. The mean-square displacement and entropy shows anomalous diffusive behavior on intermediate time range 10 ms < t < 1 s. This behavior implies the presence of correlations in the signal. We discuss the shape of the power spectrum of the signal.
Guo, Yanyong; Liu, Pan; Liang, Qiyu; Wang, Wei
2016-10-01
The primary objective of this study was to evaluate the effects of parallelogram-shaped pavement markings on vehicle speed and crashes in the vicinity of urban pedestrian crosswalks. The research team measured speed data at twelve sites, and crash data at eleven sites. Observational cross-sectional studies were conducted to identify if the effects of parallelogram-shaped pavement markings on vehicle speeds and speed violations were statistically significant. The results showed that parallelogram-shaped pavement markings significantly reduced vehicle speeds and speed violations in the vicinity of pedestrian crosswalks. More specifically, the speed reduction effects varied from 1.89km/h to 4.41km/h with an average of 3.79km/h. The reduction in the 85th percentile speed varied from 0.81km/h to 5.34km/h with an average of 4.19km/h. Odds ratios (OR) showed that the parallelogram-shaped pavement markings had effects of a 7.1% reduction in the mean speed and a 6.9% reduction in the 85th percentile speed at the pedestrian crosswalks. The reduction of proportion of drivers exceeding the speed limit varied from 8.64% to 14.15% with an average of 11.03%. The results of the crash data analysis suggested that the use of parallelogram-shaped pavement markings reduced both the frequency and severity of crashes at pedestrian crosswalks. The parallelogram-shaped pavement markings had a significant effect on reducing the vehicle-pedestrian crashes. Two crash prediction models were developed for vehicle-pedestrian crashes and rear-end crashes. According to the crash models, the presence of parallelogram-shaped pavement markings reduced vehicle-pedestrian crashes at pedestrian crosswalks by 24.87% with a 95% confidence interval of [10.06-30.78%]. However, the model results also showed that the presence of parallelogram-shaped pavement markings increased rear-end crashes at pedestrian crosswalks by 5.4% with a 95% confidence interval of [0-11.2%]. Copyright © 2015 Elsevier Ltd. All rights reserved.
Have pedestrian subsystem tests improved passenger car front shape?
Li, Guibing; Wang, Fang; Otte, Dietmar; Cai, Zhihua; Simms, Ciaran
2018-06-01
Subsystem impactor tests are the main approaches for evaluation of safety performance of vehicle front design for pedestrian protection in legislative regulations. However, the main aspects of vehicle safety for pedestrians are shape and stiffness, and though it is clear that subsystem impact tests encourage lower vehicle front stiffness, it is unclear whether they promote improved vehicle front shapes for pedestrian protection. The purpose of this paper is therefore to investigate the effects of European pedestrian safety regulations on passenger car front shape and pedestrian injury risk using recent German In-Depth Accident Study (GIDAS) pedestrian collision data and numerical simulations. Firstly, a sample of 579 pedestrian collision cases involving 190 different car models between 2000-2015 extracted from the GIDAS was used to compare front-end shapes of passenger cars manufactured before and after the legislative pedestrian safety regulations were introduced in Europe. The focus was on changes in passenger car front shape and differences in pedestrian AIS2+ (Abbreviated Injury Scale at least level 2) leg, pelvis/femur and head injury risk observed in collisions. Multi-body simulations were also used to assess changes in vehicle aggressivity due to the observed changes in vehicle shape. The results show that newer passenger cars tend to have a flatter and wider bumper, higher bonnet leading edge, shorter and steeper bonnet and a shallower windscreen. Both the collision data and the numerical simulations indicate that newer passenger car front bumper designs are significantly safer for pedestrians' legs. However, the results also show that the higher bonnet leading edge in newer passenger cars is poor for pedestrian pelvis/femur protection, even though newer cars show an obviously lower AIS2+ injury risk to younger pedestrians in collisions. Newer cars have a lower AIS2+ head injury risk for pedestrians in collisions, but the numerical analysis indicate that this is not likely due to shape changes in passenger car fronts. Overall, the introduction of pedestrian safety regulations has resulted in reductions in pedestrian injury risk, but further benefits would accrue from tests which promote a lower bonnet leading edge. The influence of vehicle shape on pedestrian head injury risk remains unclear. Copyright © 2018 Elsevier Ltd. All rights reserved.
Statistical 3D shape analysis of gender differences in lateral ventricles
NASA Astrophysics Data System (ADS)
He, Qing; Karpman, Dmitriy; Duan, Ye
2010-03-01
This paper aims at analyzing gender differences in the 3D shapes of lateral ventricles, which will provide reference for the analysis of brain abnormalities related to neurological disorders. Previous studies mostly focused on volume analysis, and the main challenge in shape analysis is the required step of establishing shape correspondence among individual shapes. We developed a simple and efficient method based on anatomical landmarks. 14 females and 10 males with matching ages participated in this study. 3D ventricle models were segmented from MR images by a semiautomatic method. Six anatomically meaningful landmarks were identified by detecting the maximum curvature point in a small neighborhood of a manually clicked point on the 3D model. Thin-plate spline was used to transform a randomly selected template shape to each of the rest shape instances, and the point correspondence was established according to Euclidean distance and surface normal. All shapes were spatially aligned by Generalized Procrustes Analysis. Hotelling T2 twosample metric was used to compare the ventricle shapes between males and females, and False Discovery Rate estimation was used to correct for the multiple comparison. The results revealed significant differences in the anterior horn of the right ventricle.
3D morphometry of red blood cells by digital holography.
Memmolo, Pasquale; Miccio, Lisa; Merola, Francesco; Gennari, Oriella; Netti, Paolo Antonio; Ferraro, Pietro
2014-12-01
Three dimensional (3D) morphometric analysis of flowing and not-adherent cells is an important aspect for diagnostic purposes. However, diagnostics tools need to be quantitative, label-free and, as much as possible, accurate. Recently, a simple holographic approach, based on shape from silhouette algorithm, has been demonstrated for accurate calculation of cells biovolume and displaying their 3D shapes. Such approach has been adopted in combination with holographic optical tweezers and successfully applied to cells with convex shape. Nevertheless, unfortunately, the method fails in case of specimen with concave surfaces. Here, we propose an effective approach to achieve correct 3D shape measurement that can be extended in case of cells having concave surfaces, thus overcoming the limit of the previous technique. We prove the new procedure for healthy red blood cells (RBCs) (i.e., discocytes) having a concave surface in their central region. Comparative analysis of experimental results with a theoretical 3D geometrical model of RBC is discussed in order to evaluate accuracy of the proposed approach. Finally, we show that the method can be also useful to classify, in terms of morphology, different varieties of RBCs. © 2014 International Society for Advancement of Cytometry.
Püschel, Thomas A; Sellers, William I
2016-02-01
The aim was to analyze the relationship between scapular form and function in hominoids by using geometric morphometrics (GM) and finite element analysis (FEA). FEA was used to analyze the biomechanical performance of different hominoid scapulae by simulating static postural scenarios. GM was used to quantify scapular shape differences and the relationship between form and function was analyzed by applying both multivariate-multiple regressions and phylogenetic generalized least-squares regressions (PGLS). Although it has been suggested that primate scapular morphology is mainly a product of function rather than phylogeny, our results showed that shape has a significant phylogenetic signal. There was a significant relationship between scapular shape and its biomechanical performance; hence at least part of the scapular shape variation is due to non-phylogenetic factors, probably related to functional demands. This study has shown that a combined approach using GM and FEA was able to cast some light regarding the functional and phylogenetic contributions in hominoid scapular morphology, thus contributing to a better insight of the association between scapular form and function. © 2015 Wiley Periodicals, Inc.
Finite element analysis on preferable I-bar clasp shape.
Sato, Y; Tsuga, K; Abe, Y; Asahara, S; Akagawa, Y
2001-05-01
An I-bar clasp is one of the most popular direct retainers for distal-extension removable partial dentures. However, no adequate information is available on preferable shape as determined by biomechanics. This study aimed (1) to investigate, by finite element analysis (FEA), the dimensions and stress of I-bar clasps having the same stiffness, and (2) to estimate a mechanically preferable clasp design. Three-dimensional FEA models of I-bar clasps were created with vertical and horizontal straight sections connected by a curved section characterized by six parameters: thickness of the clasp tip, width of the clasp tip, radius of the curvature, horizontal distance between the base and the vertical axis, vertical dimension between the tip and the horizontal axis, and taper (change of width per unit length along the axis). Stress was calculated with a concentrated load of 5 N applied 2 mm from the tip of the clasp in the buccal direction. A thinner and wider clasp having an taper of 0.020-0.023 and radius of curvature of 2.75-3.00 showed less stress. The results suggest that such a shape might be the preferable I-bar clasp shape as biomechanical viewpoint.
Analysis of Drop Oscillations Excited by an Electrical Point Force in AC EWOD
NASA Astrophysics Data System (ADS)
Oh, Jung Min; Ko, Sung Hee; Kang, Kwan Hyoung
2008-03-01
Recently, a few researchers have reported the oscillation of a sessile drop in AC EWOD (electrowetting on dielectrics), and some of its consequences. The drop oscillation problem in AC EWOD is associated with various applications based on electrowetting such as LOC (lab-on-a-chip), liquid lens, and electronic display. However, no theoretical analysis of the problem has been attempted yet. In the present paper, we propose a theoretical model to analyze the oscillation by applying the conventional method to analyze the drop oscillation. The domain perturbation method is used to derive the shape mode equations under the assumptions of weak viscous flow and small deformation. The Maxwell stress is exerted on the three-phase contact line of the droplet like a point force. The force is regarded as a delta function, and is decomposed into the driving forces of each shape mode. The theoretical results on the shape and the frequency responses are compared with experiments, which shows a qualitative agreement.
Whole-organ cell shape analysis reveals the developmental basis of ascidian notochord taper.
Veeman, Michael T; Smith, William C
2013-01-15
Here we use in toto imaging together with computational segmentation and analysis methods to quantify the shape of every cell at multiple stages in the development of a simple organ: the notochord of the ascidian Ciona savignyi. We find that cell shape in the intercalated notochord depends strongly on anterior-posterior (AP) position, with cells in the middle of the notochord consistently wider than cells at the anterior or posterior. This morphological feature of having a tapered notochord is present in many chordates. We find that ascidian notochord taper involves three main mechanisms: Planar Cell Polarity (PCP) pathway-independent sibling cell volume asymmetries that precede notochord cell intercalation; the developmental timing of intercalation, which proceeds from the anterior and posterior towards the middle; and the differential rates of notochord cell narrowing after intercalation. A quantitative model shows how the morphology of an entire developing organ can be controlled by this small set of cellular mechanisms. Copyright © 2012 Elsevier Inc. All rights reserved.
[The application of Doppler broadening and Doppler shift to spectral analysis].
Xu, Wei; Fang, Zi-shen
2002-08-01
The distinction between Doppler broadening and Doppler shift has analyzed, Doppler broadening locally results from the distribution of velocities of the emitting particles, the line width gives the information on temperature of emitting particles. Doppler shift results when the emitting particles have a bulk non random flow velocity in a particular direction, the drift of central wavelength gives the information on flow velocity of emitting particles, and the Doppler shift only drifts the profile of line without changing the width. The difference between Gaussian fitting and the distribution of chord-integral line shape have also been discussed. The distribution of H alpha spectral line shape has been derived from the surface of limiter in HT-6M Tokamak with optical spectroscope multichannel analysis (OSMA), the result by double Gaussian fitting shows that the line shape make up of two port, the emitting of reflect particles with higher energy and the release particle from the limiter surface. Ion temperature and recycling particle flow velocity have been obtained from Doppler broadening and Doppler shift.
Creating Shape Templates for Patient Specific Biventricular Modeling in Congenital Heart Disease
Gilbert, Kathleen; Farrar, Genevieve; Cowan, Brett R.; Suinesiaputra, Avan; Occleshaw, Christopher; Pontré, Beau; Perry, James; Hegde, Sanjeet; Marsden, Alison; Omens, Jeff; McCulloch, Andrew; Young, Alistair A.
2018-01-01
Survival rates for infants with congenital heart disease (CHD) are improving, resulting in a growing population of adults with CHD. However, the analysis of left and right ventricular function is very time-consuming owing to the variety of congenital morphologies. Efficient customization of patient geometry and function depends on high quality shape templates specifically designed for the application. In this paper, we combine a method for creating finite element shape templates with an interactive template customization to patient MRI examinations. This enables different templates to be chosen depending on patient morphology. To demonstrate this pipeline, a new biventricular template with 162 elements was created and tested in place of an existing 82-element template. The method was able to provide fast interactive biventricular analysis with 0.31 sec per edit response time. The new template was customized to 13 CHD patients with similar biventricular topology, showing improved performance over the previous template and good agreement with clinical indices. PMID:26736353
Whole-organ cell shape analysis reveals the developmental basis of ascidian notochord taper
Veeman, Michael T.; Smith, William C.
2012-01-01
Here we use in toto imaging together with computational segmentation and analysis methods to quantify the shape of every cell at multiple stages in the development of a simple organ: the notochord of the ascidian Ciona savignyi. We find that cell shape in the intercalated notochord depends strongly on anterior-posterior (AP) position, with cells in the middle of the notochord consistently wider than cells at the anterior or posterior. This morphological feature of having a tapered notochord is present in many chordates. We find that ascidian notochord taper involves three main mechanisms: Planar Cell Polarity (PCP) pathway-independent sibling cell volume asymmetries that precede notochord cell intercalation; the developmental timing of intercalation, which proceeds from the anterior and posterior towards the middle; and the differential rates of notochord cell narrowing after intercalation. A quantitative model shows how the morphology of an entire developing organ can be controlled by this small set of cellular mechanisms. PMID:23165294
NASA Astrophysics Data System (ADS)
Suzuki, Masahiro; Nakade, Koji; Ido, Atsushi
As the maximum speed of high-speed trains increases, flow-induced vibration of trains in tunnels has become a subject of discussion in Japan. In this paper, we report the result of a study on use of modifications of train shapes as a countermeasure for reducing an unsteady aerodynamic force by on-track tests and a wind tunnel test. First, we conduct a statistical analysis of on-track test data to identify exterior parts of a train which cause the unsteady aerodynamic force. Next, we carry out a wind tunnel test to measure the unsteady aerodynamic force acting on a train in a tunnel and examined train shapes with a particular emphasis on the exterior parts identified by the statistical analysis. The wind tunnel test shows that fins under the car body are effective in reducing the unsteady aerodynamic force. Finally, we test the fins by an on-track test and confirmed its effectiveness.
NASA Technical Reports Server (NTRS)
Shantaram, S. Pai; Gyekenyesi, John P.
1989-01-01
The calculation of shape and scale parametes of the two-parameter Weibull distribution is described using the least-squares analysis and maximum likelihood methods for volume- and surface-flaw-induced fracture in ceramics with complete and censored samples. Detailed procedures are given for evaluating 90 percent confidence intervals for maximum likelihood estimates of shape and scale parameters, the unbiased estimates of the shape parameters, and the Weibull mean values and corresponding standard deviations. Furthermore, the necessary steps are described for detecting outliers and for calculating the Kolmogorov-Smirnov and the Anderson-Darling goodness-of-fit statistics and 90 percent confidence bands about the Weibull distribution. It also shows how to calculate the Batdorf flaw-density constants by using the Weibull distribution statistical parameters. The techniques described were verified with several example problems, from the open literature, and were coded in the Structural Ceramics Analysis and Reliability Evaluation (SCARE) design program.
Thermal-stress-free fasteners for joining orthotropic materials
NASA Technical Reports Server (NTRS)
Blosser, M. L.
1987-01-01
Hot structures fabricated from orthotropic materials are an attractive design option for future high speed vehicles. Joining subassemblies of these materials with standard cylindrical fasteners can lead to loose joints or highly stressed joints due to thermal stress. A method has been developed to eliminate thermal stresses and maintain a tight joint by shaping the fastener and mating hole. This method allows both materials (fastener and structure), with different coefficients of thermal expansion (CTEs) in each of the three material directions, to expand freely with temperature yet remain in contact. For the assumptions made in the analysis, the joint will remain snug, yet free of thermal stress at any temperature. Finite element analysis was used to verify several thermal-stress-free fasteners and to show that conical fasteners, which are thermal-stress-free for isotropic materials, can reduce thermal stresses for transversely isotropic materials compared to a cylindrical fastener. Equations for thermal-stress-free shapes are presented and typical fastener shapes are shown.
Shapes of rotating superfluid helium nanodroplets
Bernando, Charles; Tanyag, Rico Mayro P.; Jones, Curtis; ...
2017-02-16
Rotating superfluid He droplets of approximately 1 μm in diameter were obtained in a free nozzle beam expansion of liquid He in vacuum and were studied by single-shot coherent diffractive imaging using an x-ray free electron laser. The formation of strongly deformed droplets is evidenced by large anisotropies and intensity anomalies (streaks) in the obtained diffraction images. The analysis of the images shows that in addition to previously described axially symmetric oblate shapes, some droplets exhibit prolate shapes. Forward modeling of the diffraction images indicates that the shapes of rotating superfluid droplets are very similar to their classical counterparts, givingmore » direct access to the droplet angular momenta and angular velocities. Here, the analyses of the radial intensity distribution and appearance statistics of the anisotropic images confirm the existence of oblate metastable superfluid droplets with large angular momenta beyond the classical bifurcation threshold.« less
First observation of the Λ(1405) line shape in electroproduction
NASA Astrophysics Data System (ADS)
Lu, H. Y.; Schumacher, R. A.; Adhikari, K. P.; Adikaram, D.; Aghasyan, M.; Amaryan, M. J.; Pereira, S. Anefalos; Ball, J.; Battaglieri, M.; Batourine, V.; Bedlinskiy, I.; Biselli, A. S.; Boiarinov, S.; Briscoe, W. J.; Brooks, W. K.; Burkert, V. D.; Carman, D. S.; Celentano, A.; Chandavar, S.; Cole, P. L.; Collins, P.; Contalbrigo, M.; Cortes, O.; Crede, V.; D'Angelo, A.; Dashyan, N.; De Vita, R.; De Sanctis, E.; Deur, A.; Djalali, C.; Doughty, D.; Dupre, R.; Egiyan, H.; Alaoui, A. El; Fassi, L. El; Eugenio, P.; Fedotov, G.; Fegan, S.; Fleming, J. A.; Gabrielyan, M.; Gevorgyan, N.; Gilfoyle, G. P.; Giovanetti, K. L.; Girod, F. X.; Goetz, J. T.; Gohn, W.; Golovatch, E.; Gothe, R. W.; Griffioen, K. A.; Guidal, M.; Guo, L.; Hafidi, K.; Hakobyan, H.; Harrison, N.; Heddle, D.; Hicks, K.; Ho, D.; Holtrop, M.; Hyde, C. E.; Ilieva, Y.; Ireland, D. G.; Ishkhanov, B. S.; Isupov, E. L.; Jo, H. S.; Joo, K.; Keller, D.; Khandaker, M.; Kim, W.; Klein, A.; Klein, F. J.; Koirala, S.; Kubarovsky, A.; Kubarovsky, V.; Kuleshov, S. V.; Lewis, S.; Livingston, K.; MacGregor, I. J. D.; Martinez, D.; Mayer, M.; McKinnon, B.; Meyer, C. A.; Mineeva, T.; Mirazita, M.; Mokeev, V.; Montgomery, R. A.; Moriya, K.; Moutarde, H.; Munevar, E.; Camacho, C. Munoz; Nadel-Turonski, P.; Nepali, C. S.; Niccolai, S.; Niculescu, G.; Niculescu, I.; Osipenko, M.; Ostrovidov, A. I.; Pappalardo, L. L.; Paremuzyan, R.; Park, K.; Park, S.; Pasyuk, E.; Peng, P.; Phelps, E.; Phillips, J. J.; Pisano, S.; Pogorelko, O.; Pozdniakov, S.; Price, J. W.; Procureur, S.; Prok, Y.; Protopopescu, D.; Puckett, A. J. R.; Raue, B. A.; Rimal, D.; Ripani, M.; Rosner, G.; Rossi, P.; Sabatié, F.; Saini, M. S.; Salgado, C.; Schott, D.; Seder, E.; Seraydaryan, H.; Sharabian, Y. G.; Smith, G. D.; Sober, D. I.; Sokhan, D.; Stepanyan, S. S.; Stoler, P.; Strauch, S.; Taiuti, M.; Tang, W.; Tian, Ye; Tkachenko, S.; Torayev, B.; Vernarsky, B.; Voskanyan, H.; Voutier, E.; Walford, N. K.; Weygand, D. P.; Wood, M. H.; Zachariou, N.; Zana, L.; Zhang, J.; Zhao, Z. W.
2013-10-01
We report the first observation of the line shape of the Λ(1405) from electroproduction, and show that it is not a simple Breit-Wigner resonance. Electroproduction of K+Λ(1405) off the proton was studied by using data from CLAS at Jefferson Lab in the range 1.0
Shapes of rotating superfluid helium nanodroplets
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bernando, Charles; Tanyag, Rico Mayro P.; Jones, Curtis
Rotating superfluid He droplets of approximately 1 μm in diameter were obtained in a free nozzle beam expansion of liquid He in vacuum and were studied by single-shot coherent diffractive imaging using an x-ray free electron laser. The formation of strongly deformed droplets is evidenced by large anisotropies and intensity anomalies (streaks) in the obtained diffraction images. The analysis of the images shows that in addition to previously described axially symmetric oblate shapes, some droplets exhibit prolate shapes. Forward modeling of the diffraction images indicates that the shapes of rotating superfluid droplets are very similar to their classical counterparts, givingmore » direct access to the droplet angular momenta and angular velocities. Here, the analyses of the radial intensity distribution and appearance statistics of the anisotropic images confirm the existence of oblate metastable superfluid droplets with large angular momenta beyond the classical bifurcation threshold.« less
Shape transition in nano-pits after solid-phase etching of SiO{sub 2} by Si islands
DOE Office of Scientific and Technical Information (OSTI.GOV)
Leroy, F.; Curiotto, S.; Cheynis, F.
2015-05-11
We study the nano-pits formed during the etching of a SiO{sub 2} film by reactive Si islands at T≈1000 °C. Combining low energy electron microscopy, atomic force microscopy, kinetic Monte Carlo simulations, and an analytic model based on reaction and diffusion at the solid interface, we show that the shape of the nanopits depend on the ratio R/x{sub s} with R the Si island radius and x{sub s} the oxygen diffusion-length at the Si/SiO{sub 2} interface. For small R/x{sub s}, nanopits exhibit a single-well V-shape, while a double-well W-shape is found for larger R/x{sub s}. The analysis of the transition revealsmore » that x{sub s}∼60 nm at T≈1000 °C.« less
Analysis of Cutmarks on Bone: Can Light Microscopy Be of Any Help?
Cerutti, Elisa; Spagnoli, Laura; Araujo, Nadezhda; Gibelli, Daniele; Mazzarelli, Debora; Cattaneo, Cristina
2016-12-01
One of the main issues in forensic anthropology consists of the identification of signs of trauma in skeletal remains, including sharp-force injuries. So far, several studies have been performed to assess differences between injuries caused by different instruments, not, however, through light microscopy.In this study, 152 sharp-force injuries were performed by 5 different tools through 2 different orientations on 2 humeral diaphyses and were analyzed by stereo and light microscopy to assess possible morphological differences.This study showed that although W-shaped injuries are frequently reported in cases of wood-cutting saws, other shapes are often observed; lesions due to metal-cutting saws are almost always U shaped, whereas injuries caused by knives are V shaped. Although cut marks may represent a variable range of features, the present study was able to highlight typical profiles that may be of some help for the diagnosis of weapon and the intentionality of the action.
Object Tracking and Target Reacquisition Based on 3-D Range Data for Moving Vehicles
Lee, Jehoon; Lankton, Shawn; Tannenbaum, Allen
2013-01-01
In this paper, we propose an approach for tracking an object of interest based on 3-D range data. We employ particle filtering and active contours to simultaneously estimate the global motion of the object and its local deformations. The proposed algorithm takes advantage of range information to deal with the challenging (but common) situation in which the tracked object disappears from the image domain entirely and reappears later. To cope with this problem, a method based on principle component analysis (PCA) of shape information is proposed. In the proposed method, if the target disappears out of frame, shape similarity energy is used to detect target candidates that match a template shape learned online from previously observed frames. Thus, we require no a priori knowledge of the target’s shape. Experimental results show the practical applicability and robustness of the proposed algorithm in realistic tracking scenarios. PMID:21486717
Krishnan, Gopi; de Graaf, Sytze; Ten Brink, Gert H; Verheijen, Marcel A; Kooi, Bart J; Palasantzas, George
2018-01-18
In this work we report the influence of methane/hydrogen on the nucleation and formation of MgTi bimetallic nanoparticles (NPs) prepared by gas phase synthesis. We show that a diverse variety of structural motifs can be obtained from MgTi alloy, TiC x /Mg/MgO, TiC x /MgO and TiH x /MgO core/shell NPs via synthesis using CH 4 /H 2 as a trace gas, and with good control of the final NP morphology and size distribution. Moreover, depending on the concentration of Ti and type of employed trace gas, the as prepared MgTi NPs can be tuned from truncated hexagonal pyramid to triangular and hexagonal platelet shapes. The shape of MgTi NPs is identified using detailed analysis from selected area electron diffraction (SAED) patterns and tomography (3D reconstruction based on a tilt series of Bright-Field transmission electron microscopy (TEM) micrographs). We observe the truncated hexagonal pyramid as a shape of MgTi alloy NPs in contrast to Mg NPs that show a hexagonal prismatic shape. Moreover, based on our experimental observations and generic geometrical model analysis, we also prove that the formation of the various structural motifs is based on a sequential growth mechanism instead of phase separation. One of the prime reasons for such mechanism is based on the inadequacy of Mg to nucleate without template in the synthesis condition. In addition, the shape of the TiC x /TiH x core, and the concentration of Mg have strong influence on the shape evolution of TiC x /MgO and TiH x /MgO NPs compared to TiC x /Mg/MgO NPs, where the thermodynamics and growth rates of the Mg crystal planes dominate the final shape. Finally, it is demonstrated that the core shape of TiC x and TiH x is affected by the Mg/Ti target ratio (affecting the composition in the plasma), and the type of the trace gas employed. In the case of CH 4 the TiC x core forms a triangular platelet, while in the case of H 2 the TiH x core transforms into a hexagonal platelet. We elucidate the reason for the TiC x /TiH x core shape based on the presence of (i) defects, and (ii) hydrogen and carbon adsorption on {111} planes that alter the growth rates and surface facet stabilization.
Analysis of structural dynamic data from Skylab. Volume 2: Skylab analytical and test model data
NASA Technical Reports Server (NTRS)
Demchak, L.; Harcrow, H.
1976-01-01
The orbital configuration test modal data, analytical test correlation modal data, and analytical flight configuration modal data are presented. Tables showing the generalized mass contributions (GMCs) for each of the thirty tests modes are given along with the two dimensional mode shape plots and tables of GMCs for the test correlated analytical modes. The two dimensional mode shape plots for the analytical modes and uncoupled and coupled modes of the orbital flight configuration at three development phases of the model are included.
The role of vision on hand preshaping during reach to grasp.
Winges, Sara A; Weber, Douglas J; Santello, Marco
2003-10-01
During reaching to grasp objects with different shapes hand posture is molded gradually to the object's contours. The present study examined the extent to which the temporal evolution of hand posture depends on continuous visual feedback. We asked subjects to reach and grasp objects with different shapes under five vision conditions (VCs). Subjects wore liquid crystal spectacles that occluded vision at four different latencies from onset of the reach. As a control, full-vision trials (VC5) were interspersed among the blocked vision trials. Object shapes and all VCs were presented to the subjects in random order. Hand posture was measured by 15 sensors embedded in a glove. Linear regression analysis, discriminant analysis, and information theory were used to assess the effect of removing vision on the temporal evolution of hand shape. We found that reach duration increased when vision was occluded early in the reach. This was caused primarily by a slower approach of the hand toward the object near the end of the reach. However, vision condition did not have a significant effect on the covariation patterns of joint rotations, indicating that the gradual evolution of hand posture occurs in a similar fashion regardless of vision. Discriminant analysis further supported this interpretation, as the extent to which hand posture resembled object shape and the rate at which hand posture discrimination occurred throughout the movement were similar across vision conditions. These results extend previous observations on memory-guided reaches by showing that continuous visual feedback of the hand and/or object is not necessary to allow the hand to gradually conform to object contours.
Prabhakar, Attiguppe R; Yavagal, Chandrashekar; Naik, Saraswathi V
2016-01-01
ABSTRACT Background: Primary root canals are considered to be most challenging due to their complex anatomy. "Wave one" and "one shape" are single-file systems with reciprocating and rotary motion respectively. The aim of this study was to evaluate and compare dentin thickness, centering ability, canal transportation, and instrumentation time of wave one and one shape files in primary root canals using a cone beam computed tomographic (CBCT) analysis. Study design: This is an experimental, in vitro study comparing the two groups. Materials and methods: A total of 24 extracted human primary teeth with minimum 7 mm root length were included in the study. Cone beam computed tomographic images were taken before and after the instrumentation for each group. Dentin thickness, centering ability, canal transportation, and instrumentation times were evaluated for each group. Results: A significant difference was found in instrumentation time and canal transportation measures between the two groups. Wave one showed less canal transportation as compared with one shape, and the mean instrumentation time of wave one was significantly less than one shape. Conclusion: Reciprocating single-file systems was found to be faster with much less procedural errors and can hence be recommended for shaping the root canals of primary teeth. How to cite this article: Prabhakar AR, Yavagal C, Dixit K, Naik SV. Reciprocating vs Rotary Instrumentation in Pediatric Endodontics: Cone Beam Computed Tomographic Analysis of Deciduous Root Canals using Two Single-File Systems. Int J Clin Pediatr Dent 2016;9(1):45-49. PMID:27274155
Numerical results for axial flow compressor instability
NASA Technical Reports Server (NTRS)
Mccaughan, F. E.
1988-01-01
Using Cornell's supercomputing facilities, an extensive study of the Moore-Greitzer model was carried out, which gives accurate and reliable information about compressor instability. The bifurcation analysis in the companion paper shows the dependence of the mode of compressor response on the shape of the rotating stall characteristic. The numerical results verify and extend this with a more accurate representation of the characteristic. The effect of the parameters on the shape of the rotating stall characteristic is investigated, and it is found that the parameters with the strongest effects are the inlet length, and the shape of the compressor pressure rise vs. mass flow diagram (i.e. tall diagrams vs. shallow diagrams). The effects of inlet guide vane loss on the characteristic are discussed.
NASA Astrophysics Data System (ADS)
Pastore, G.; Gruyer, D.; Ottanelli, P.; Le Neindre, N.; Pasquali, G.; Alba, R.; Barlini, S.; Bini, M.; Bonnet, E.; Borderie, B.; Bougault, R.; Bruno, M.; Casini, G.; Chbihi, A.; Dell'Aquila, D.; Dueñas, J. A.; Fabris, D.; Francalanza, L.; Frankland, J. D.; Gramegna, F.; Henri, M.; Kordyasz, A.; Kozik, T.; Lombardo, I.; Lopez, O.; Morelli, L.; Olmi, A.; Pârlog, M.; Piantelli, S.; Poggi, G.; Santonocito, D.; Stefanini, A. A.; Valdré, S.; Verde, G.; Vient, E.; Vigilante, M.; FAZIA Collaboration
2017-07-01
The FAZIA apparatus exploits Pulse Shape Analysis (PSA) to identify nuclear fragments stopped in the first layer of a Silicon-Silicon-CsI(Tl) detector telescope. In this work, for the first time, we show that the isotopes of fragments having atomic number as high as Z∼20 can be identified. Such a remarkable result has been obtained thanks to a careful construction of the Si detectors and to the use of low noise and high performance digitizing electronics. Moreover, optimized PSA algorithms are needed. This work deals with the choice of the best algorithm for PSA of current signals. A smoothing spline algorithm is demonstrated to give optimal results without requiring too much computational resources.
Finite element simulation of the T-shaped ECAP processing of round samples
NASA Astrophysics Data System (ADS)
Shaban Ghazani, Mehdi; Fardi-Ilkhchy, Ali; Binesh, Behzad
2018-05-01
Grain refinement is the only mechanism that increases the yield strength and toughness of the materials simultaneously. Severe plastic deformation is one of the promising methods to refine the microstructure of materials. Among different severe plastic deformation processes, the T-shaped equal channel angular pressing (T-ECAP) is a relatively new technique. In the present study, finite element analysis was conducted to evaluate the deformation behavior of metals during T-ECAP process. The study was focused mainly on flow characteristics, plastic strain distribution and its homogeneity, damage development, and pressing force which are among the most important factors governing the sound and successful processing of nanostructured materials by severe plastic deformation techniques. The results showed that plastic strain is localized in the bottom side of sample and uniform deformation cannot be possible using T-ECAP processing. Friction coefficient between sample and die channel wall has a little effect on strain distributions in mirror plane and transverse plane of deformed sample. Also, damage analysis showed that superficial cracks may be initiated from bottom side of sample and their propagation will be limited due to the compressive state of stress. It was demonstrated that the V shaped deformation zone are existed in T-ECAP process and the pressing load needed for execution of deformation process is increased with friction.
Jorquera, Mercedes; Baños, Rosa María; Cebolla, Ausiàs; Rasal, Paloma; Etchemendy, Ernestina
2012-05-01
The purpose of the present study was to analyse the psychometric properties of the 'Questionnaire of Sociocultural Influences on the Aesthetic Body Shape Model' (CIMEC-26) in a Spanish adolescent population. This questionnaire measures the influence of agents and situations that transmit the current aesthetic model, and assesses environmental influences favouring thinness. The CIMEC-26 was administered to a sample of 4031 female primary and secondary school students ranging in age from 10 to 17 years (M = 14, SD = 1.34). Results suggested that the CIMEC-26 has acceptable internal consistency (α = .93). The oldest group (15-17 years) had the highest scores on all factors and the highest total scores, suggesting greater influence of the aesthetic body shape model and higher vulnerability to social pressure to achieve it. Factor analysis suggested three moderately interrelated components of the scale. Confirmatory factor analysis showed that both the three-factor solution and the original five-factor structure had good fit indices, although the latter showed the best fit. The CIMEC-26 proved to be an effective instrument for research on the social influence on the aesthetic body model in female adolescents. Copyright © 2012 John Wiley & Sons, Ltd and Eating Disorders Association.
Equilibrium electrodeformation of a spheroidal vesicle in an ac electric field
NASA Astrophysics Data System (ADS)
Nganguia, H.; Young, Y.-N.
2013-11-01
In this work, we develop a theoretical model to explain the equilibrium spheroidal deformation of a giant unilamellar vesicle (GUV) under an alternating (ac) electric field. Suspended in a leaky dielectric fluid, the vesicle membrane is modeled as a thin capacitive spheroidal shell. The equilibrium vesicle shape results from the balance between mechanical forces from the viscous fluid, the restoring elastic membrane forces, and the externally imposed electric forces. Our spheroidal model predicts a deformation-dependent transmembrane potential, and is able to capture large deformation of a vesicle under an electric field. A detailed comparison against both experiments and small-deformation (quasispherical) theory showed that the spheroidal model gives better agreement with experiments in terms of the dependence on fluid conductivity ratio, permittivity ratio, vesicle size, electric field strength, and frequency. The spheroidal model also allows for an asymptotic analysis on the crossover frequency where the equilibrium vesicle shape crosses over between prolate and oblate shapes. Comparisons show that the spheroidal model gives better agreement with experimental observations.
An adaptive explanation for the horse-like shape of seahorses.
Van Wassenbergh, Sam; Roos, Gert; Ferry, Lara
2011-01-25
The body shape of seahorses resembles the head and neck of horses because of their curved trunk, their ventrally bent head and their long snout. Seahorses evolved from ancestral, pipefish-like species, which have a straight body. Here, we use a biomechanical analysis and show that the seahorse's peculiar head, neck and trunk posture allows for the capture of small shrimps at larger distances from the eyes compared with pipefish. The results from the mathematical modelling were confirmed by kinematic data of prey-capturing syngnathids: compared with straight-bodied pipefish, all seahorse species studied consistently show an additional forward-reaching component in the path travelled by the mouth during their strikes at prey. This increased strike distance enlarges the volume of water they can probe for food, which is especially useful for tail-attached, sit-and-wait predators like seahorses. The biomechanics of prey capture thus provides a putative selective advantage that may explain the bending of the trunk into a horse-like shape.
Are Diet Preferences Associated to Skulls Shape Diversification in Xenodontine Snakes?
Klaczko, Julia; Sherratt, Emma; Setz, Eleonore Z. F.
2016-01-01
Snakes are a highly successful group of vertebrates, within great diversity in habitat, diet, and morphology. The unique adaptations for the snake skull for ingesting large prey in more primitive macrostomatan snakes have been well documented. However, subsequent diversification in snake cranial shape in relation to dietary specializations has rarely been studied (e.g. piscivory in natricine snakes). Here we examine a large clade of snakes with a broad spectrum of diet preferences to test if diet preferences are correlated to shape variation in snake skulls. Specifically, we studied the Xenodontinae snakes, a speciose clade of South American snakes, which show a broad range of diets including invertebrates, amphibians, snakes, lizards, and small mammals. We characterized the skull morphology of 19 species of xenodontine snakes using geometric morphometric techniques, and used phylogenetic comparative methods to test the association between diet and skull morphology. Using phylogenetic partial least squares analysis (PPLS) we show that skull morphology is highly associated with diet preferences in xenodontine snakes. PMID:26886549
Symmetry analysis of talus bone: A Geometric morphometric approach.
Islam, K; Dobbe, A; Komeili, A; Duke, K; El-Rich, M; Dhillon, S; Adeeb, S; Jomha, N M
2014-01-01
The main object of this study was to use a geometric morphometric approach to quantify the left-right symmetry of talus bones. Analysis was carried out using CT scan images of 11 pairs of intact tali. Two important geometric parameters, volume and surface area, were quantified for left and right talus bones. The geometric shape variations between the right and left talus bones were also measured using deviation analysis. Furthermore, location of asymmetry in the geometric shapes were identified. Numerical results showed that talus bones are bilaterally symmetrical in nature, and the difference between the surface area of the left and right talus bones was less than 7.5%. Similarly, the difference in the volume of both bones was less than 7.5%. Results of the three-dimensional (3D) deviation analyses demonstrated the mean deviation between left and right talus bones were in the range of -0.74 mm to 0.62 mm. It was observed that in eight of 11 subjects, the deviation in symmetry occurred in regions that are clinically less important during talus surgery. We conclude that left and right talus bones of intact human ankle joints show a strong degree of symmetry. The results of this study may have significance with respect to talus surgery, and in investigating traumatic talus injury where the geometric shape of the contralateral talus can be used as control. Cite this article: Bone Joint Res 2014;3:139-45.
Symmetry analysis of talus bone
Islam, K.; Dobbe, A.; Komeili, A.; Duke, K.; El-Rich, M.; Dhillon, S.; Adeeb, S.; Jomha, N. M.
2014-01-01
Objective The main object of this study was to use a geometric morphometric approach to quantify the left-right symmetry of talus bones. Methods Analysis was carried out using CT scan images of 11 pairs of intact tali. Two important geometric parameters, volume and surface area, were quantified for left and right talus bones. The geometric shape variations between the right and left talus bones were also measured using deviation analysis. Furthermore, location of asymmetry in the geometric shapes were identified. Results Numerical results showed that talus bones are bilaterally symmetrical in nature, and the difference between the surface area of the left and right talus bones was less than 7.5%. Similarly, the difference in the volume of both bones was less than 7.5%. Results of the three-dimensional (3D) deviation analyses demonstrated the mean deviation between left and right talus bones were in the range of -0.74 mm to 0.62 mm. It was observed that in eight of 11 subjects, the deviation in symmetry occurred in regions that are clinically less important during talus surgery. Conclusions We conclude that left and right talus bones of intact human ankle joints show a strong degree of symmetry. The results of this study may have significance with respect to talus surgery, and in investigating traumatic talus injury where the geometric shape of the contralateral talus can be used as control. Cite this article: Bone Joint Res 2014;3:139–45. PMID:24802391
Statistical shape analysis using 3D Poisson equation--A quantitatively validated approach.
Gao, Yi; Bouix, Sylvain
2016-05-01
Statistical shape analysis has been an important area of research with applications in biology, anatomy, neuroscience, agriculture, paleontology, etc. Unfortunately, the proposed methods are rarely quantitatively evaluated, and as shown in recent studies, when they are evaluated, significant discrepancies exist in their outputs. In this work, we concentrate on the problem of finding the consistent location of deformation between two population of shapes. We propose a new shape analysis algorithm along with a framework to perform a quantitative evaluation of its performance. Specifically, the algorithm constructs a Signed Poisson Map (SPoM) by solving two Poisson equations on the volumetric shapes of arbitrary topology, and statistical analysis is then carried out on the SPoMs. The method is quantitatively evaluated on synthetic shapes and applied on real shape data sets in brain structures. Copyright © 2016 Elsevier B.V. All rights reserved.
Left-right asymmetry is formed in individual cells by intrinsic cell chirality.
Hatori, Ryo; Ando, Tadashi; Sasamura, Takeshi; Nakazawa, Naotaka; Nakamura, Mitsutoshi; Taniguchi, Kiichiro; Hozumi, Shunya; Kikuta, Junichi; Ishii, Masaru; Matsuno, Kenji
2014-08-01
Many animals show left-right (LR) asymmetric morphology. The mechanisms of LR asymmetric development are evolutionarily divergent, and they remain elusive in invertebrates. Various organs in Drosophila melanogaster show stereotypic LR asymmetry, including the embryonic gut. The Drosophila embryonic hindgut twists 90° left-handedly, thereby generating directional LR asymmetry. We recently revealed that the hindgut epithelial cell is chiral in shape and other properties; this is termed planar cell chirality (PCC). We previously showed by computer modeling that PCC is sufficient to induce the hindgut rotation. In addition, both the PCC and the direction of hindgut twisting are reversed in Myosin31DF (Myo31DF) mutants. Myo31DF encodes Drosophila MyosinID, an actin-based motor protein, whose molecular functions in LR asymmetric development are largely unknown. Here, to understand how PCC directs the asymmetric cell-shape, we analyzed PCC in genetic mosaics composed of cells homozygous for mutant Myo31DF, some of which also overexpressed wild-type Myo31DF. Wild-type cell-shape chirality only formed in the Myo31DF-overexpressing cells, suggesting that cell-shape chirality was established in each cell and reflects intrinsic PCC. A computer model recapitulating the development of this genetic mosaic suggested that mechanical interactions between cells are required for the cell-shape behavior seen in vivo. Our mosaic analysis also suggested that during hindgut rotation in vivo, wild-type Myo31DF suppresses the elongation of cell boundaries, supporting the idea that cell-shape chirality is an intrinsic property determined in each cell. However, the amount and distribution of F-actin and Myosin II, which are known to help generate the contraction force on cell boundaries, did not show differences between Myo31DF mutant cells and wild-type cells, suggesting that the static amount and distribution of these proteins are not involved in the suppression of cell-boundary elongation. Taken together, our results suggest that cell-shape chirality is intrinsically formed in each cell, and that mechanical force from intercellular interactions contributes to its formation and/or maintenance. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.
Shape component analysis: structure-preserving dimension reduction on biological shape spaces.
Lee, Hao-Chih; Liao, Tao; Zhang, Yongjie Jessica; Yang, Ge
2016-03-01
Quantitative shape analysis is required by a wide range of biological studies across diverse scales, ranging from molecules to cells and organisms. In particular, high-throughput and systems-level studies of biological structures and functions have started to produce large volumes of complex high-dimensional shape data. Analysis and understanding of high-dimensional biological shape data require dimension-reduction techniques. We have developed a technique for non-linear dimension reduction of 2D and 3D biological shape representations on their Riemannian spaces. A key feature of this technique is that it preserves distances between different shapes in an embedded low-dimensional shape space. We demonstrate an application of this technique by combining it with non-linear mean-shift clustering on the Riemannian spaces for unsupervised clustering of shapes of cellular organelles and proteins. Source code and data for reproducing results of this article are freely available at https://github.com/ccdlcmu/shape_component_analysis_Matlab The implementation was made in MATLAB and supported on MS Windows, Linux and Mac OS. geyang@andrew.cmu.edu. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.
Li, Ke; Cavaignac, Etienne; Xu, Wei; Cheng, Qiang; Telmon, Nobert; Huang, Wei
2018-02-20
Morphologic data of the knee is very important in the design of total knee prostheses. Generally, the designs of the total knee prostheses are based on the knee anatomy of Caucasian population. Moreover, in forensic medicine, a person's age and sex might be estimated by the shape of their knees. The aim of this study is to utilize three-dimensional morphometric analysis of the knee in Chinese population to reveal sexual dimorphism and age-related differences. Sexually dimorphic differences and age-related differences of the distal femur were studied by using geometric morphometric analysis of ten osteometric landmarks on three-dimensional reconstructions of 259 knees in Chinese population. General Procrustes analysis, PCA, and other discriminant analysis such as Mahalanobis and Goodall's F test were conducted for the knee to identify sexually dimorphism and age-related differences of the knee. The shape of distal femur between the male and female is significantly different. A difference between males and females in distal femur shape was identified by PCA; PC1 and PC2 accounted for 61.63% of the variance measured. The correct sex was assigned in 84.9% of cases by CVA, and the cross-validation revealed a 81.1% rate of correct sex estimation. The osteometric analysis also showed significant differences between the three age-related subgroups (< 40, 40-60, > 60 years, p < 0.005). This study showed both sex-related difference and age-related difference in the distal femur in Chinese population by 3D geometric morphometric analysis. Our bone measurements and geometric morphometric analysis suggest that population characteristics should be taken into account and may provide references for design of total knee prostheses in a Chinese population. Moreover, this reliable, accurate method could be used to perform diachronic and interethnic comparisons.
U-shaped relationship between current and pitch in helicene molecules
NASA Astrophysics Data System (ADS)
Guo, Yan-Dong; Yan, Xiao-Hong; Xiao, Yang; Liu, Chun-Sheng
2015-11-01
The helicene is constructed by twisted benzene or other aromatic rings, exhibiting a helical structure. Using first-principles calculations, we investigate the electronic transport of helicenes under stretching or compressing. Interestingly, a U-shaped curve of the current against d (the pitch of a helicene) is observed. Further analysis shows that, it is the result of the nonmonotonic change of HOMO-LUMO gap with d. The change of overlap between orbitals induced by conformational deformation is found to be the underlying mechanism. Moreover, the U-curve phenomenon is an intrinsic feature of the helicene molecules, being robust to the electrode materials or doping. This U-curve behavior is expected to be extended to helical graphene or other related structures, showing great application potential.
U-shaped relationship between current and pitch in helicene molecules.
Guo, Yan-Dong; Yan, Xiao-Hong; Xiao, Yang; Liu, Chun-Sheng
2015-11-19
The helicene is constructed by twisted benzene or other aromatic rings, exhibiting a helical structure. Using first-principles calculations, we investigate the electronic transport of helicenes under stretching or compressing. Interestingly, a U-shaped curve of the current against d (the pitch of a helicene) is observed. Further analysis shows that, it is the result of the nonmonotonic change of HOMO-LUMO gap with d. The change of overlap between orbitals induced by conformational deformation is found to be the underlying mechanism. Moreover, the U-curve phenomenon is an intrinsic feature of the helicene molecules, being robust to the electrode materials or doping. This U-curve behavior is expected to be extended to helical graphene or other related structures, showing great application potential.
The Illustrated Topology of Liquid Drops during Formation
ERIC Educational Resources Information Center
Libii, Josue Njock
2004-01-01
High-speed photography can show that the shape often used for a newly forming drop is wrong. Knowledge of drop behaviour is important for inkjet printers, and a close look at the formation of drops as given here can enhance critical observation, thinking and analysis.
The A and m coefficients in the Bruun/Dean equilibrium profile equation seen from the Arctic
Are, F.; Reimnitz, E.
2008-01-01
The Bruun/Dean relation between water depth and distance from the shore with a constant profile shape factor is widely used to describe shoreface profiles in temperate environments. However, it has been shown that the sediment scale parameter (A) and the profile shape factor (m) are interrelated variables. An analysis of 63 Arctic erosional shoreface profiles shows that both coefficients are highly variable. Relative frequency of the average m value is only 16% by the class width 0.1. No other m value frequency exceeds 21%. Therefore, there is insufficient reason to use average m to characterize Arctic shoreface profile shape. The shape of each profile has a definite combination of A and m values. Coefficients A and m show a distinct inverse relationship, as in temperate climate. A dependence of m values on coastal sediment grain size is seen, and m decreases with increasing grain size. With constant m = 0.67, parameter A obtains a dimension unit m1/3. But A equals the water depth in meters 1 m from the water edge. This fact and the variability of parameter m testify that the Bruun/Dean equation is essentially an empirical formula. There is no need to give any measurement unit to parameter A. But the International System of Units (SI) has to be used in applying the Bruun/Dean equation for shoreface profiles. A comparison of the shape of Arctic shoreface profiles with those of temperate environments shows surprising similarity. Therefore, the conclusions reached in this Arctic paper seem to apply also to temperate environments.
Kang, Chang-kwon; Shyy, Wei
2014-01-01
In the analysis of flexible flapping wings of insects, the aerodynamic outcome depends on the combined structural dynamics and unsteady fluid physics. Because the wing shape and hence the resulting effective angle of attack are a priori unknown, predicting aerodynamic performance is challenging. Here, we show that a coupled aerodynamics/structural dynamics model can be established for hovering, based on a linear beam equation with the Morison equation to account for both added mass and aerodynamic damping effects. Lift strongly depends on the instantaneous angle of attack, resulting from passive pitch associated with wing deformation. We show that both instantaneous wing deformation and lift can be predicted in a much simplified framework. Moreover, our analysis suggests that resulting wing kinematics can be explained by the interplay between acceleration-related and aerodynamic damping forces. Interestingly, while both forces combine to create a high angle of attack resulting in high lift around the midstroke, they offset each other for phase control at the end of the stroke. PMID:25297319
The Age Specific Incidence Anomaly Suggests that Cancers Originate During Development
NASA Astrophysics Data System (ADS)
Brody, James P.
The accumulation of genetic alterations causes cancers. Since this accumulation takes time, the incidence of most cancers is thought to increase exponentially with age. However, careful measurements of the age-specific incidence show that the specific incidence for many forms of cancer rises with age to a maximum, and then decreases. This decrease in the age-specific incidence with age is an anomaly. Understanding this anomaly should lead to a better understanding of how tumors develop and grow. Here we derive the shape of the age-specific incidence, showing that it should follow the shape of a Weibull distribution. Measurements indicate that the age-specific incidence for colon cancer does indeed follow a Weibull distribution. This analysis leads to the interpretation that for colon cancer two subpopulations exist in the general population: a susceptible population and an immune population. Colon tumors will only occur in the susceptible population. This analysis is consistent with the developmental origins of disease hypothesis and generalizable to many other common forms of cancer.
NASA Astrophysics Data System (ADS)
Zhao, Bo; Liu, Jinhu; Song, Junjie; Cao, Liang; Dou, Shuozeng
2017-11-01
Removal of the length effect in otolith shape analysis for stock identification using length scaling is an important issue; however, few studies have attempted to investigate the effectiveness or weakness of this methodology in application. The aim of this study was to evaluate whether commonly used size scaling methods and normalized elliptic Fourier descriptors (NEFDs) could effectively remove the size effect of fish in stock discrimination. To achieve this goal, length groups from two known geographical stocks of yellow croaker, Larimichthys polyactis, along the Chinese coast (five groups from the Changjiang River estuary of the East China Sea and three groups from the Bohai Sea) were subjected to otolith shape analysis. The results indicated that the variation of otolith shape caused by intra-stock fish length might exceed that due to inter-stock geographical separation, even when otolith shape variables are standardized with length scaling methods. This variation could easily result in misleading stock discrimination through otolith shape analysis. Therefore, conclusions about fish stock structure should be carefully drawn from otolith shape analysis because the observed discrimination may primarily be due to length effects, rather than differences among stocks. The application of multiple methods, such as otoliths shape analysis combined with elemental fingering, tagging or genetic analysis, is recommended for sock identification.
Jakupović, Selma; Anić, Ivica; Ajanović, Muhamed; Korać, Samra; Konjhodžić, Alma; Džanković, Aida; Vuković, Amra
2016-01-01
Objective: The present study aims to investigate the influence of presence and shape of cervical lesions on biomechanical behavior of mandibular first premolar, subjected to two types of occlusal loading using three-dimensional (3D) finite element method (FEM). Materials and Methods: 3D models of the mandibular premolar are created from a micro computed tomography X-ray image: model of sound mandibular premolar, model with the wedge-shaped cervical lesion (V lesion), and model with saucer-shaped cervical lesion (U lesion). By FEM, straining of the tooth tissues under functional and nonfunctional occlusal loading of 200 (N) is analyzed. For the analysis, the following software was used: CTAn program 1.10 and ANSYS Workbench (version 14.0). The results are presented in von Mises stress. Results: Values of calculated stress in all tooth structures are higher under nonfunctional occlusal loading, while the functional loading is resulted in homogeneous stress distribution. Nonfunctional load in the cervical area of sound tooth model as well as in the sub-superficial layer of the enamel resulted with a significant stress (over 50 [MPa]). The highest stress concentration on models with lesions is noticed on the apex of the V-shaped lesion, while stress in saucer U lesion is significantly lower and distributed over wider area. Conclusion: The type of the occlusal teeth loading has the biggest influence on cervical stress intensity. Geometric shape of the existing lesion is very important in the distribution of internal stress. Compared to the U-shaped lesions, V-shaped lesions show significantly higher stress concentrations under load. Exposure to stress would lead to its progression. PMID:27403064
Cohesive zone finite element analysis of crack initiation from a butt joint’s interface corner
Reedy, E. D.
2014-09-06
The Cohesive zone (CZ) fracture analysis techniques are used to predict the initiation of crack growth from the interface corner of an adhesively bonded butt joint. In this plane strain analysis, a thin linear elastic adhesive layer is sandwiched between rigid adherends. There is no preexisting crack in the problem analyzed, and the focus is on how the shape of the traction–separation (T–U) relationship affects the predicted joint strength. Unlike the case of a preexisting interfacial crack, the calculated results clearly indicate that the predicted joint strength depends on the shape of the T–U relationship. Most of the calculations usedmore » a rectangular T–U relationship whose shape (aspect ratio) is defined by two parameters: the interfacial strength σ* and the work of separation/unit area Γ. The principal finding of this study is that for a specified adhesive layer thickness, there is any number of σ*, Γ combinations that generate the same predicted joint strength. For each combination there is a corresponding CZ length. We developed an approximate CZ-like elasticity solution to show how such combinations arise and their connection with the CZ length.« less
The effect of time synchronization of wireless sensors on the modal analysis of structures
NASA Astrophysics Data System (ADS)
Krishnamurthy, V.; Fowler, K.; Sazonov, E.
2008-10-01
Driven by the need to reduce the installation cost and maintenance cost of structural health monitoring (SHM) systems, wireless sensor networks (WSNs) are becoming increasingly popular. Perfect time synchronization amongst the wireless sensors is a key factor enabling the use of low-cost, low-power WSNs for structural health monitoring applications based on output-only modal analysis of structures. In this paper we present a theoretical framework for analysis of the impact created by time delays in the measured system response on the reconstruction of mode shapes using the popular frequency domain decomposition (FDD) technique. This methodology directly estimates the change in mode shape values based on sensor synchronicity. We confirm the proposed theoretical model by experimental validation in modal identification experiments performed on an aluminum beam. The experimental validation was performed using a wireless intelligent sensor and actuator network (WISAN) which allows for close time synchronization between sensors (0.6-10 µs in the tested configuration) and guarantees lossless data delivery under normal conditions. The experimental results closely match theoretical predictions and show that even very small delays in output response impact the mode shapes.
NASA Astrophysics Data System (ADS)
Lian-Huang, Lu; Wen-Meng, Tong; Zhi-Jun, Zhang; Gui-Huan, He; Su-Hui, Huan
1989-04-01
The abnormity of the quality and quantity for erythrocytes is one of the important changes of blood disease. It shows the abnormal blood-making function of human body. Therefore, the study of the change of shape of erythrocytes is the indispensible and important basis of reference in the clinic, diagnose and research of blood disease. In this paper, a preliminary discussion is made on the acquisition of scanning stereographs for erythrocytes, the application of the theory of photographic measurement on the three dimensional space quantitative analysis of erythrocytes, drawings of isoline map and section map of various erythrocytes for normal persons, paroxysmal nocturanal hemoglobinuria (PNH) patients and aplastic anemia patients, study of the shape characteristics of normal erythrocytes and various abnormal erytnrocytes and the applications in clinic, diagnose and research. This research is a combination of microphotogrammetry and erythrocyte morphology. It is polssible to push fotward the study of erythrocyte morphology from LM, SEM to a higher stage of scanning electron micrographic photogrammetry(SEMP) for stereograpic observationand three diamensional quantitative analysis to explore a new path for the further study of the shape of erthrocytes.
Subcortical grey matter changes in untreated, early stage Parkinson's disease without dementia.
Lee, Hye Mi; Kwon, Kyum-Yil; Kim, Min-Jik; Jang, Ji-Wan; Suh, Sang-Il; Koh, Seong-Beom; Kim, Ji Hyun
2014-06-01
Previous MRI studies have investigated cortical or subcortical grey matter changes in patients with Parkinson's disease (PD), yielding inconsistent findings between the studies. We therefore sought to determine whether focal cortical or subcortical grey matter changes may be present from the early disease stage. We recruited 49 untreated, early stage PD patients without dementia and 53 control subjects. Voxel-based morphometry was used to evaluate cortical grey matter changes, and automated volumetry and shape analysis were used to assess volume changes and shape deformation of the subcortical grey matter structures, respectively. Voxel-based morphometry showed neither reductions nor increases in grey matter volume in patients compared to controls. Compared to controls, PD patients had significant reductions in adjusted volumes of putamen, nucleus accumbens, and hippocampus (corrected p < 0.05). Vertex-based shape analysis showed regionally contracted area on the posterolateral and ventromedial putamen bilaterally in PD patients (corrected p < 0.05). No correlations were found between cortical and subcortical grey matter and clinical variables representing disease duration and severity. Our results suggest that untreated, early stage PD without dementia is associated with volume reduction and shape deformation of subcortical grey matter, but not with cortical grey matter reduction. Our findings of structural changes in the posterolateral putamen and ventromedial putamen/nucleus accumbens could provide neuroanatomical basis for the involvement of motor and limbic striatum, further implicating motor and non-motor symptoms in PD, respectively. Early hippocampal involvement might be related to the risk for developing dementia in PD patients. Copyright © 2014 Elsevier Ltd. All rights reserved.
Mitev, Krasimir K
2016-04-01
This work demonstrates that common plastic scintillators like BC-400, EJ-200 and SCSF-81 absorb radon and their scintillation pulse decay times are different for alpha- and beta-particles. This allows the application of pulse shape analysis for separation of the pulses of alpha- and beta-particles emitted by the absorbed radon and its progeny. It is shown that after pulse shape discrimination of beta-particles' pulses, the energy resolution of BC-400 and EJ-200 alpha spectra is sufficient to separate the peaks of (222)Rn, (218)Po and (214)Po and allows (222)Rn measurements that are unaffected by the presence of thoron ((220)Rn) in the environment. The alpha energy resolution of SCSF-81 in the experiments degrades due to imperfect collection of the light emitted inside the scintillating fibers. The experiments with plastic scintillation microspheres (PSM) confirm previous findings of other researchers that PSM have alpha-/beta-discrimination properties and show suitability for radon measurements. The diffusion length of radon in BC-400 and EJ-200 is determined. The pilot experiments show that the plastic scintillators are suitable for radon-in-soil-gas measurements. Overall, the results of this work suggest that it is possible to develop a new type of radon measurement instruments which employ absorption in plastic scintillators, pulse-shape discrimination and analysis of the alpha spectra. Such instruments can be very compact and can perform continuous, real-time radon measurements and thoron detection. They can find applications in various fields from radiation protection to earth sciences. Copyright © 2016 Elsevier Ltd. All rights reserved.
Jastorff, Jan; Orban, Guy A
2009-06-03
In a series of human functional magnetic resonance imaging experiments, we systematically manipulated point-light stimuli to identify the contributions of the various areas implicated in biological motion processing (for review, see Giese and Poggio, 2003). The first experiment consisted of a 2 x 2 factorial design with global shape and kinematics as factors. In two additional experiments, we investigated the contributions of local opponent motion, the complexity of the portrayed movement and a one-back task to the activation pattern. Experiment 1 revealed a clear separation between shape and motion processing, resulting in two branches of activation. A ventral region, extending from the lateral occipital sulcus to the posterior inferior temporal gyrus, showed a main effect of shape and its extension into the fusiform gyrus also an interaction. The dorsal region, including the posterior inferior temporal sulcus and the posterior superior temporal sulcus (pSTS), showed a main effect of kinematics together with an interaction. Region of interest analysis identified these interaction sites as the extrastriate and fusiform body areas (EBA and FBA). The local opponent motion cue yielded only little activation, limited to the ventral region (experiment 3). Our results suggest that the EBA and the FBA correspond to the initial stages in visual action analysis, in which the performed action is linked to the body of the actor. Moreover, experiment 2 indicates that the body areas are activated automatically even in the absence of a task, whereas other cortical areas like pSTS or frontal regions depend on the complexity of movements or task instructions for their activation.
Anconina, Reut; Zur, Dinah; Kesler, Anat; Lublinsky, Svetlana; Toledano, Ronen; Novack, Victor; Benkobich, Elya; Novoa, Rosa; Novic, Evelyne Farkash; Shelef, Ilan
2017-06-01
Dural sinuses vary in size and shape in many pathological conditions with abnormal intracranial pressure. Size and shape normograms of dural brain sinuses are not available. The creation of such normograms may enable computer-assisted comparison to pathologic exams and facilitate diagnoses. The purpose of this study was to quantitatively evaluate normal magnetic resonance venography (MRV) studies in order to create normograms of dural sinuses using a computerized algorithm for vessel cross-sectional analysis. This was a retrospective analysis of MRV studies of 30 healthy persons. Data were analyzed using a specially developed Matlab algorithm for vessel cross-sectional analysis. The cross-sectional area and shape measurements were evaluated to create normograms. Mean cross-sectional size was 53.27±13.31 for the right transverse sinus (TS), 46.87+12.57 for the left TS (p=0.089) and 36.65+12.38 for the superior sagittal sinus. Normograms were created. The distribution of cross-sectional areas along the vessels showed distinct patterns and a parallel course for the median, 25th, 50th and 75th percentiles. In conclusion, using a novel computerized method for vessel cross-sectional analysis we were able to quantitatively characterize dural sinuses of healthy persons and create normograms. Copyright © 2017 Elsevier Ltd. All rights reserved.
Evaluation of Elevation, Slope and Stream Network Quality of SPOT Dems
NASA Astrophysics Data System (ADS)
El Hage, M.; Simonetto, E.; Faour, G.; Polidori, L.
2012-07-01
Digital elevation models are considered the most useful data for dealing with geomorphology. The quality of these models is an important issue for users. This quality concerns position and shape. Vertical accuracy is the most assessed in many studies and shape quality is often neglected. However, both of them have an impact on the quality of the final results for a particular application. For instance, the elevation accuracy is required for orthorectification and the shape quality for geomorphology and hydrology. In this study, we deal with photogrammetric DEMs and show the importance of the quality assessment of both elevation and shape. For this purpose, we produce several SPOT HRV DEMs with the same dataset but with different template size, that is one of the production parameters from optical images. Then, we evaluate both elevation and shape quality. The shape quality is assessed with in situ measurements and analysis of slopes as an elementary shape and stream networks as a complex shape. We use the fractal dimension and sinuosity to evaluate the stream network shape. The results show that the elevation accuracy as well as the slope accuracy are affected by the template size. Indeed, an improvement of 1 m in the elevation accuracy and of 5 degrees in the slope accuracy has been obtained while changing this parameter. The elevation RMSE ranges from 7.6 to 8.6 m, which is smaller than the pixel size (10 m). For slope, the RMSE depends on the sampling distance. With a distance of 10 m, the minimum slope RMSE is 11.4 degrees. The stream networks extracted from these DEMs present a higher fractal dimension than the reference river. Moreover, the fractal dimension of the extracted networks has a negligible change according to the template size. Finally, the sinuosity of the stream networks is slightly affected by the change of the template size.
Imbibition of wheat seeds: Application of image analysis
NASA Astrophysics Data System (ADS)
Lev, Jakub; Blahovec, Jiří
2017-10-01
Image analysis is widely used for monitoring seeds during germination, and it is often the final phase of germination that is subjected to the greatest attention. However, the initial phase of germination (the so-called imbibition) also exhibits interesting behaviour. This work shows that image analysis has significant potential in the imbibition. Herein, a total of 120 seeds were analysed during germination tests, and information about seed size and shape was stored and analysed. It was found that the imbibition can be divided into two newly defined parts. The first one (`abrupt imbibition') consists mainly of the swelling of the seed embryo part and lasts approximately one hour. The second one, referred to as `main imbibition', consists mainly of spatial expansion caused by imbibition in the other parts of the seed. The results presented are supported by the development of seed cross area and shape parameters, and by direct observation.
Spike shape analysis of electromyography for parkinsonian tremor evaluation.
Marusiak, Jarosław; Andrzejewska, Renata; Świercz, Dominika; Kisiel-Sajewicz, Katarzyna; Jaskólska, Anna; Jaskólski, Artur
2015-12-01
Standard electromyography (EMG) parameters have limited utility for evaluation of Parkinson disease (PD) tremor. Spike shape analysis (SSA) EMG parameters are more sensitive than standard EMG parameters for studying motor control mechanisms in healthy subjects. SSA of EMG has not been used to assess parkinsonian tremor. This study assessed the utility of SSA and standard time and frequency analysis for electromyographic evaluation of PD-related resting tremor. We analyzed 1-s periods of EMG recordings to detect nontremor and tremor signals in relaxed biceps brachii muscle of seven mild to moderate PD patients. SSA revealed higher mean spike amplitude, duration, and slope and lower mean spike frequency in tremor signals than in nontremor signals. Standard EMG parameters (root mean square, median, and mean frequency) did not show differences between the tremor and nontremor signals. SSA of EMG data is a sensitive method for parkinsonian tremor evaluation. © 2015 Wiley Periodicals, Inc.
Deciphering the shape and deformation of secondary structures through local conformation analysis
2011-01-01
Background Protein deformation has been extensively analysed through global methods based on RMSD, torsion angles and Principal Components Analysis calculations. Here we use a local approach, able to distinguish among the different backbone conformations within loops, α-helices and β-strands, to address the question of secondary structures' shape variation within proteins and deformation at interface upon complexation. Results Using a structural alphabet, we translated the 3 D structures of large sets of protein-protein complexes into sequences of structural letters. The shape of the secondary structures can be assessed by the structural letters that modeled them in the structural sequences. The distribution analysis of the structural letters in the three protein compartments (surface, core and interface) reveals that secondary structures tend to adopt preferential conformations that differ among the compartments. The local description of secondary structures highlights that curved conformations are preferred on the surface while straight ones are preferred in the core. Interfaces display a mixture of local conformations either preferred in core or surface. The analysis of the structural letters transition occurring between protein-bound and unbound conformations shows that the deformation of secondary structure is tightly linked to the compartment preference of the local conformations. Conclusion The conformation of secondary structures can be further analysed and detailed thanks to a structural alphabet which allows a better description of protein surface, core and interface in terms of secondary structures' shape and deformation. Induced-fit modification tendencies described here should be valuable information to identify and characterize regions under strong structural constraints for functional reasons. PMID:21284872
Deciphering the shape and deformation of secondary structures through local conformation analysis.
Baussand, Julie; Camproux, Anne-Claude
2011-02-01
Protein deformation has been extensively analysed through global methods based on RMSD, torsion angles and Principal Components Analysis calculations. Here we use a local approach, able to distinguish among the different backbone conformations within loops, α-helices and β-strands, to address the question of secondary structures' shape variation within proteins and deformation at interface upon complexation. Using a structural alphabet, we translated the 3 D structures of large sets of protein-protein complexes into sequences of structural letters. The shape of the secondary structures can be assessed by the structural letters that modeled them in the structural sequences. The distribution analysis of the structural letters in the three protein compartments (surface, core and interface) reveals that secondary structures tend to adopt preferential conformations that differ among the compartments. The local description of secondary structures highlights that curved conformations are preferred on the surface while straight ones are preferred in the core. Interfaces display a mixture of local conformations either preferred in core or surface. The analysis of the structural letters transition occurring between protein-bound and unbound conformations shows that the deformation of secondary structure is tightly linked to the compartment preference of the local conformations. The conformation of secondary structures can be further analysed and detailed thanks to a structural alphabet which allows a better description of protein surface, core and interface in terms of secondary structures' shape and deformation. Induced-fit modification tendencies described here should be valuable information to identify and characterize regions under strong structural constraints for functional reasons.
Shin, S M; Kim, Y-I; Choi, Y-S; Yamaguchi, T; Maki, K; Cho, B-H; Park, S-B
2015-01-01
To evaluate axial cervical vertebral (ACV) shape quantitatively and to build a prediction model for skeletal maturation level using statistical shape analysis for Japanese individuals. The sample included 24 female and 19 male patients with hand-wrist radiographs and CBCT images. Through generalized Procrustes analysis and principal components (PCs) analysis, the meaningful PCs were extracted from each ACV shape and analysed for the estimation regression model. Each ACV shape had meaningful PCs, except for the second axial cervical vertebra. Based on these models, the smallest prediction intervals (PIs) were from the combination of the shape space PCs, age and gender. Overall, the PIs of the male group were smaller than those of the female group. There was no significant correlation between centroid size as a size factor and skeletal maturation level. Our findings suggest that the ACV maturation method, which was applied by statistical shape analysis, could confirm information about skeletal maturation in Japanese individuals as an available quantifier of skeletal maturation and could be as useful a quantitative method as the skeletal maturation index.
Shin, S M; Choi, Y-S; Yamaguchi, T; Maki, K; Cho, B-H; Park, S-B
2015-01-01
Objectives: To evaluate axial cervical vertebral (ACV) shape quantitatively and to build a prediction model for skeletal maturation level using statistical shape analysis for Japanese individuals. Methods: The sample included 24 female and 19 male patients with hand–wrist radiographs and CBCT images. Through generalized Procrustes analysis and principal components (PCs) analysis, the meaningful PCs were extracted from each ACV shape and analysed for the estimation regression model. Results: Each ACV shape had meaningful PCs, except for the second axial cervical vertebra. Based on these models, the smallest prediction intervals (PIs) were from the combination of the shape space PCs, age and gender. Overall, the PIs of the male group were smaller than those of the female group. There was no significant correlation between centroid size as a size factor and skeletal maturation level. Conclusions: Our findings suggest that the ACV maturation method, which was applied by statistical shape analysis, could confirm information about skeletal maturation in Japanese individuals as an available quantifier of skeletal maturation and could be as useful a quantitative method as the skeletal maturation index. PMID:25411713
Fabre, Anne-Claire; Cornette, Raphäel; Huyghe, Katleen; Andrade, Denis V; Herrel, Anthony
2014-09-01
Differences between the sexes may arise because of differences in reproductive strategy, with females investing more in traits related to reproductive output and males investing more in traits related to resource holding capacity and territory defence. Sexual dimorphism is widespread in lizards and in many species males and females also differ in head shape. Males typically have bigger heads than females resulting in intersexual differences in bite force. Whereas most studies documenting differences in head dimensions between sexes use linear dimensions, the use of geometric morphometrics has been advocated as more appropriate to characterize such differences. This method may allow the characterization of local shape differences that may have functional consequences, and provides unbiased indicators of shape. Here, we explore whether the two approaches provide similar results in an analyses of head shape in Tupinambis merianae. The Argentine black and white tegu differs dramatically in body size, head size, and bite force between the sexes. However, whether the intersexual differences in bite force are simply the result of differences in head size or whether more subtle modifications (e.g., in muscle insertion areas) are involved remains currently unknown. Based on the crania and mandibles of 19 lizards with known bite force, we show intersexual differences in the shape of the cranium and mandible using both linear and geometric morphometric approaches. Although both types of analyses showed generally similar results for the mandible, this was not the case for the cranium. Geometric morphometric approaches provided better insights into the underlying functional relationships between the cranium and the jaw musculature, as illustrated by shape differences in muscle insertion areas not detected using linear morphometric data. © 2014 Wiley Periodicals, Inc.
Macagno, Anna L. M.; Pizzo, Astrid; Parzer, Harald F.; Palestrini, Claudia; Rolando, Antonio; Moczek, Armin P.
2011-01-01
Genitalia are among the fastest evolving morphological traits in arthropods. Among the many hypotheses aimed at explaining this observation, some explicitly or implicitly predict concomitant male and female changes of genital traits that interact during copulation (i.e., lock and key, sexual conflict, cryptic female choice and pleiotropy). Testing these hypotheses requires insights into whether male and female copulatory structures that physically interact during mating also affect each other's evolution and patterns of diversification. Here we compare and contrast size and shape evolution of male and female structures that are known to interact tightly during copulation using two model systems: (a) the sister species O. taurus (1 native, 3 recently established populations) and O. illyricus, and (b) the species-complex O. fracticornis-similis-opacicollis. Partial Least Squares analyses indicated very little to no correlation between size and shape of copulatory structures, both in males and females. Accordingly, comparing shape and size diversification patterns of genitalia within each sex showed that the two components diversify readily - though largely independently of each other - within and between species. Similarly, comparing patterns of divergence across sexes showed that relative sizes of male and female copulatory organs diversify largely independent of each other. However, performing this analysis for genital shape revealed a signature of parallel divergence. Our results therefore suggest that male and female copulatory structures that are linked mechanically during copulation may diverge in concert with respect to their shapes. Furthermore, our results suggest that genital divergence in general, and co-divergence of male and female genital shape in particular, can evolve over an extraordinarily short time frame. Results are discussed in the framework of the hypotheses that assume or predict concomitant evolutionary changes in male and female copulatory organs. PMID:22194942
Hybrid least squares multivariate spectral analysis methods
Haaland, David M.
2002-01-01
A set of hybrid least squares multivariate spectral analysis methods in which spectral shapes of components or effects not present in the original calibration step are added in a following estimation or calibration step to improve the accuracy of the estimation of the amount of the original components in the sampled mixture. The "hybrid" method herein means a combination of an initial classical least squares analysis calibration step with subsequent analysis by an inverse multivariate analysis method. A "spectral shape" herein means normally the spectral shape of a non-calibrated chemical component in the sample mixture but can also mean the spectral shapes of other sources of spectral variation, including temperature drift, shifts between spectrometers, spectrometer drift, etc. The "shape" can be continuous, discontinuous, or even discrete points illustrative of the particular effect.
NASA Astrophysics Data System (ADS)
He, Shiyuan; Wang, Lifan; Huang, Jianhua Z.
2018-04-01
With growing data from ongoing and future supernova surveys, it is possible to empirically quantify the shapes of SNIa light curves in more detail, and to quantitatively relate the shape parameters with the intrinsic properties of SNIa. Building such relationships is critical in controlling systematic errors associated with supernova cosmology. Based on a collection of well-observed SNIa samples accumulated in the past years, we construct an empirical SNIa light curve model using a statistical method called the functional principal component analysis (FPCA) for sparse and irregularly sampled functional data. Using this method, the entire light curve of an SNIa is represented by a linear combination of principal component functions, and the SNIa is represented by a few numbers called “principal component scores.” These scores are used to establish relations between light curve shapes and physical quantities such as intrinsic color, interstellar dust reddening, spectral line strength, and spectral classes. These relations allow for descriptions of some critical physical quantities based purely on light curve shape parameters. Our study shows that some important spectral feature information is being encoded in the broad band light curves; for instance, we find that the light curve shapes are correlated with the velocity and velocity gradient of the Si II λ6355 line. This is important for supernova surveys (e.g., LSST and WFIRST). Moreover, the FPCA light curve model is used to construct the entire light curve shape, which in turn is used in a functional linear form to adjust intrinsic luminosity when fitting distance models.
Mahalwar, Prateek; Singh, Ajeet Pratap; Fadeev, Andrey; Nüsslein-Volhard, Christiane; Irion, Uwe
2016-11-15
The conspicuous striped coloration of zebrafish is produced by cell-cell interactions among three different types of chromatophores: black melanophores, orange/yellow xanthophores and silvery/blue iridophores. During color pattern formation xanthophores undergo dramatic cell shape transitions and acquire different densities, leading to compact and orange xanthophores at high density in the light stripes, and stellate, faintly pigmented xanthophores at low density in the dark stripes. Here, we investigate the mechanistic basis of these cell behaviors in vivo, and show that local, heterotypic interactions with dense iridophores regulate xanthophore cell shape transition and density. Genetic analysis reveals a cell-autonomous requirement of gap junctions composed of Cx41.8 and Cx39.4 in xanthophores for their iridophore-dependent cell shape transition and increase in density in light-stripe regions. Initial melanophore-xanthophore interactions are independent of these gap junctions; however, subsequently they are also required to induce the acquisition of stellate shapes in xanthophores of the dark stripes. In summary, we conclude that, whereas homotypic interactions regulate xanthophore coverage in the skin, their cell shape transitions and density is regulated by gap junction-mediated, heterotypic interactions with iridophores and melanophores. © 2016. Published by The Company of Biologists Ltd.
D-Shaped Polarization Maintaining Fiber Sensor for Strain and Temperature Monitoring.
Qazi, Hummad Habib; Mohammad, Abu Bakar; Ahmad, Harith; Zulkifli, Mohd Zamani
2016-09-15
A D-shaped polarization-maintaining fiber (PMF) as fiber optic sensor for the simultaneous monitoring of strain and the surrounding temperature is presented. A mechanical end and edge polishing system with aluminum oxide polishing film is utilized to perform sequential polishing on one side (lengthwise) of the PMF in order to fabricate a D-shaped cross-section. Experimental results show that the proposed sensor has high sensitivity of 46 pm/µε and 130 pm/°C for strain and temperature, respectively, which is significantly higher than other recently reported work (mainly from 2013) related to fiber optic sensors. The easy fabrication method, high sensitivity, and good linearity make this sensing device applicable in various applications such as health monitoring and spatial analysis of engineering structures.
Dielectric inspection of erythrocyte morphology.
Hayashi, Yoshihito; Oshige, Ikuya; Katsumoto, Yoichi; Omori, Shinji; Yasuda, Akio; Asami, Koji
2008-05-21
We performed a systematic study of the sensitivity of dielectric spectroscopy to erythrocyte morphology. Namely, rabbit erythrocytes of four different shapes were prepared by precisely controlling the pH of the suspending medium, and their complex permittivities over the frequency range from 0.1 to 110 MHz were measured and analyzed. Their quantitative analysis shows that the characteristic frequency and the broadening parameter of the dielectric relaxation of interfacial polarization are highly specific to the erythrocyte shape, while they are insensitive to the cell volume fraction. Therefore, these two dielectric parameters can be used to differentiate erythrocytes of different shapes, if dielectric spectroscopy is applied to flow-cytometric inspection of single blood cells. In addition, we revealed the applicability and limitations of the analytical theory of interfacial polarization to explain the experimental permittivities of non-spherical erythrocytes.
D-Shaped Polarization Maintaining Fiber Sensor for Strain and Temperature Monitoring
Qazi, Hummad Habib; Mohammad, Abu Bakar; Ahmad, Harith; Zulkifli, Mohd Zamani
2016-01-01
A D-shaped polarization-maintaining fiber (PMF) as fiber optic sensor for the simultaneous monitoring of strain and the surrounding temperature is presented. A mechanical end and edge polishing system with aluminum oxide polishing film is utilized to perform sequential polishing on one side (lengthwise) of the PMF in order to fabricate a D-shaped cross-section. Experimental results show that the proposed sensor has high sensitivity of 46 pm/µε and 130 pm/°C for strain and temperature, respectively, which is significantly higher than other recently reported work (mainly from 2013) related to fiber optic sensors. The easy fabrication method, high sensitivity, and good linearity make this sensing device applicable in various applications such as health monitoring and spatial analysis of engineering structures. PMID:27649195
NASA Technical Reports Server (NTRS)
Sih, G. C.; Chen, E. P.
1980-01-01
A method is developed for the dynamic stress analysis of a layered composite containing an embedded penny-shaped crack and subjected to normal and radial impact. Quantitatively, the time-dependent stresses near the crack border can be described by the dynamic stress intensity factors. Their magnitude depends on time, on the material properties of the composite and on the relative size of the crack compared to the composite local geometry. Results obtained show that, for the same material properties and geometry of the composite, the dynamic stress intensity factors for an embedded (penny-shaped) crack reach their peak values within a shorter period of time and with a lower magnitude than the corresponding dynamic stress factors for a through-crack.
Sanfilippo, P.G.; Grimm, J.L.; Flanagan, J.G.; Lathrop, K.L.; Sigal, I.A.
2014-01-01
The lamina cribrosa (LC) plays an important biomechanical role in the optic nerve head (ONH). We developed a statistical shape model of the LC and tested if the shape varies with age or IOP. The ONHs of 18 donor eyes (47 to 91 years, mean 76 years) fixed at either 5 or 50 mm Hg of IOP were sectioned, stained, and imaged under a microscope. A 3D model of each ONH was reconstructed and the outline of the vertical sagittal section closest to the geometric centre of the LC extracted. The outline shape was described using elliptic Fourier analysis, and principal components analysis (PCA) employed to identify the primary modes of LC shape variation. Linear mixed effect models were used to determine if the shape measurements were associated with age or IOP. The analysis revealed several modes of shape variation: thickness and depth directly (PC1), or inversely (PC2) related, and superior-inferior asymmetry (PC3). Only PC3 was associated with IOP, with higher IOP correlating with greater curvature of the LC superiorly compared to inferiorly. Our analysis enabled a concise and complete characterization of LC shape, revealing variations without defining them a priori. No association between LC shape and age was found for the relatively old population studied. Superior-inferior asymmetry of LC shape was associated with IOP, with more asymmetry at higher IOP. Increased IOP was not associated with LC thickness or depth. PMID:25193035
Sanfilippo, P G; Grimm, J L; Flanagan, J G; Lathrop, K L; Sigal, I A
2014-11-01
The lamina cribrosa (LC) plays an important biomechanical role in the optic nerve head (ONH). We developed a statistical shape model of the LC and tested if the shape varies with age or IOP. The ONHs of 18 donor eyes (47-91 years, mean 76 years) fixed at either 5 or 50 mmHg of IOP were sectioned, stained, and imaged under a microscope. A 3D model of each ONH was reconstructed and the outline of the vertical sagittal section closest to the geometric center of the LC extracted. The outline shape was described using Elliptic Fourier analysis, and principal components analysis (PCA) employed to identify the primary modes of LC shape variation. Linear mixed effect models were used to determine if the shape measurements were associated with age or IOP. The analysis revealed several modes of shape variation: thickness and depth directly (PC 1), or inversely (PC 2) related, and superior-inferior asymmetry (PC 3). Only PC 3 was associated with IOP, with higher IOP correlating with greater curvature of the LC superiorly compared to inferiorly. Our analysis enabled a concise and complete characterization of LC shape, revealing variations without defining them a priori. No association between LC shape and age was found for the relatively old population studied. Superior-inferior asymmetry of LC shape was associated with IOP, with more asymmetry at higher IOP. Increased IOP was not associated with LC thickness or depth. Copyright © 2014 Elsevier Ltd. All rights reserved.
Analysis and Recognition of Curve Type as The Basis of Object Recognition in Image
NASA Astrophysics Data System (ADS)
Nugraha, Nurma; Madenda, Sarifuddin; Indarti, Dina; Dewi Agushinta, R.; Ernastuti
2016-06-01
An object in an image when analyzed further will show the characteristics that distinguish one object with another object in an image. Characteristics that are used in object recognition in an image can be a color, shape, pattern, texture and spatial information that can be used to represent objects in the digital image. The method has recently been developed for image feature extraction on objects that share characteristics curve analysis (simple curve) and use the search feature of chain code object. This study will develop an algorithm analysis and the recognition of the type of curve as the basis for object recognition in images, with proposing addition of complex curve characteristics with maximum four branches that will be used for the process of object recognition in images. Definition of complex curve is the curve that has a point of intersection. By using some of the image of the edge detection, the algorithm was able to do the analysis and recognition of complex curve shape well.
An investigation into NVC characteristics of vehicle behaviour using modal analysis
NASA Astrophysics Data System (ADS)
Hanouf, Zahir; Faris, Waleed F.; Ahmad, Kartini
2017-03-01
NVC characterizations of vehicle behavior is one essential part of the development targets in automotive industries. Therefore understanding dynamic behavior of each structural part of the vehicle is a major requirement in improving the NVC characteristics of a vehicle. The main focus of this research is to investigate structural dynamic behavior of a passenger car using modal analysis part by part technique and apply this method to derive the interior noise sources. In the first part of this work computational modal analysis part by part tests were carried out to identify the dynamic parameters of the passenger car. Finite elements models of the different parts of the car are constructed using VPG 3.2 software. Ls-Dyna pre and post processing was used to identify and analyze the dynamic behavior of each car components panels. These tests had successfully produced natural frequencies and their associated mode shapes of such panels like trunk, hood, roof and door panels. In the second part of this research, experimental modal analysis part by part is performed on the selected car panels to extract modal parameters namely frequencies and mode shapes. The study establishes the step-by-step procedures to carry out experimental modal analysis on the car structures, using single input excitation and multi-output responses (SIMO) technique. To ensure the validity of the results obtained by the previous method an inverse method was done by fixing the response and moving the excitation and the results found were absolutely the same. Finally, comparison between results obtained from both analyses showed good similarity in both frequencies and mode shapes. Conclusion drawn from this part of study was that modal analysis part-by-part can be strongly used to establish the dynamic characteristics of the whole car. Furthermore, the developed method is also can be used to show the relationship between structural vibration of the car panels and the passengers’ noise comfort inside the cabin.
Studies and applications of NiTi shape memory alloys in the medical field in China.
Dai, K; Chu, Y
1996-01-01
The biomedical study of NiTi shape memory alloys has been undertaken in China since 1978. A series of stimulating corrosion tests, histological observations, toxicity tests, carcinogenicity tests, trace nickel elements analysis and a number of clinical trials have been conducted. The results showed that the NiTi shape memory alloy is a good biomaterial with good biocompatibility and no obvious local tissue reaction, carcinogenesis or erosion of implants were found experimentally or clinically. In 1981, on the basis of fundamental studies, a shape memory staple was used for the first time inside the human body. Subsequently, various shape memory devices were designed and applied clinically for internal fixation of fractures, spine surgery, endoprostheses, gynaecological and craniofacial surgery. Since 1990, a series of internal stents have been developed for the management of biliary, tracheal and esophageal strictures and urethrostenosis as well as vascular obturator for tumour management. Several thousand cases have been treated and had a 1-10 year follow-up and good clinical results with a rather low complication rate were obtained.
Xue, Chang; Zhang, Shu-Xin; Ouyang, Chang-He; Chang, Dingran; Salena, Bruno J; Li, Yingfu; Wu, Zai-Sheng
2018-06-14
DNA is a highly programmable material that can be configured into unique high-order structures, such as DNA branched junctions containing multiple helical arms converging at a center. Herein we show that DNA programmability can deliver in situ growth of a 3-way junction-based DNA structure (denoted Y-shaped DNA) with the use of three hairpin-shaped DNA molecules as precursors, a specific microRNA target as a recyclable trigger, and a DNA polymerase as a driver. We demonstrate that the Y-shaped configuration comes with the benefit of restricted freedom of movement in confined cellular environment, which makes the approach ideally suited for in situ imaging of small RNA targets, such as microRNAs. Comparative analysis illustrates that the proposed imaging technique is superior to both the classic fluorescence in situ hybridization (FISH) method and an analogous amplified imaging method via programmed growth of a double-stranded DNA (rather than Y-shaped DNA) product. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Shape accuracy optimization for cable-rib tension deployable antenna structure with tensioned cables
NASA Astrophysics Data System (ADS)
Liu, Ruiwei; Guo, Hongwei; Liu, Rongqiang; Wang, Hongxiang; Tang, Dewei; Song, Xiaoke
2017-11-01
Shape accuracy is of substantial importance in deployable structures as the demand for large-scale deployable structures in various fields, especially in aerospace engineering, increases. The main purpose of this paper is to present a shape accuracy optimization method to find the optimal pretensions for the desired shape of cable-rib tension deployable antenna structure with tensioned cables. First, an analysis model of the deployable structure is established by using finite element method. In this model, geometrical nonlinearity is considered for the cable element and beam element. Flexible deformations of the deployable structure under the action of cable network and tensioned cables are subsequently analyzed separately. Moreover, the influence of pretension of tensioned cables on natural frequencies is studied. Based on the results, a genetic algorithm is used to find a set of reasonable pretension and thus minimize structural deformation under the first natural frequency constraint. Finally, numerical simulations are presented to analyze the deployable structure under two kinds of constraints. Results show that the shape accuracy and natural frequencies of deployable structure can be effectively improved by pretension optimization.
Shape of boulders ejected from small lunar impact craters
NASA Astrophysics Data System (ADS)
Li, Yuan; Basilevsky, A. T.; Xie, Minggang; Ip, Wing-Huen
2017-10-01
The shape of ejecta boulders from 7 lunar impact craters <1 km in diameter of known absolute age was measured to explore whether it correlates with the crater age and the boulder size. The boulders were mapped and then measured by rectangular fitting and the shape was represented by the axial ratio or aspect ratio (A) of the rectangle. The main conclusions from the analysis of our measurement results are: 1) the percentages of the number of boulders of studied craters decrease with the increase of the axial ratio. Most (∼90%) of the boulders have the axial ratio in the range of 1-2; no boulder with axial ratio larger than 4 was found. 2) the axial ratios of mare ejecta boulders decrease with their exposure time, whereas that for highland ones show unchanged trend. This difference may be probably due to target properties. 3) The shape of ejecta boulders are influenced by mechanical strength of bedrocks and space erosion. 4) surface peak stresses caused by thermal fatigue maybe play a significant erosion role in the shape of boulders of various diameter.
NASA Astrophysics Data System (ADS)
Agilandeswari, K.; Ruban Kumar, A.
2014-04-01
Sr2Co2O5 ceramic synthesized by the coprecipitation of strontium cobalt carbonate method. XRD analysis shows the single phase strontianite precursor and decomposed oxide product as orthorhombic structure of Sr2Co2O5. Thermal analysis proves the Sr2Co2O5 phase formation temperature of 800 °C. SEM image indicates crystalline rod shaped carbonate precursor transformed to oxide as porous diffused sphere shape particles. Optical band gap it reveals the strontium cobalt carbonate precursor as insulating material and the Sr2Co2O5 as semiconducting nature. The room temperature magnetic study indicates the carbonate precursor as paramagnetic but its oxide Sr2Co2O5 as superparamagnetic behavior.
Flutter Analysis of a Transonic Fan
NASA Technical Reports Server (NTRS)
Srivastava, R.; Bakhle, M. A.; Keith, T. G., Jr.; Stefko, G. L.
2002-01-01
This paper describes the calculation of flutter stability characteristics for a transonic forward swept fan configuration using a viscous aeroelastic analysis program. Unsteady Navier-Stokes equations are solved on a dynamically deforming, body fitted, grid to obtain the aeroelastic characteristics using the energy exchange method. The non-zero inter-blade phase angle is modeled using phase-lagged boundary conditions. Results obtained show good correlation with measurements. It is found that the location of shock and variation of shock strength strongly influenced stability. Also, outboard stations primarily contributed to stability characteristics. Results demonstrate that changes in blade shape impact the calculated aerodynamic damping, indicating importance of using accurate blade operating shape under centrifugal and steady aerodynamic loading for flutter prediction. It was found that the calculated aerodynamic damping was relatively insensitive to variation in natural frequency.
Compaction and sedimentary basin analysis on Mars
NASA Astrophysics Data System (ADS)
Gabasova, Leila R.; Kite, Edwin S.
2018-03-01
Many of the sedimentary basins of Mars show patterns of faults and off-horizontal layers that, if correctly understood, could serve as a key to basin history. Sediment compaction is a possible cause of these patterns. We quantified the possible role of differential sediment compaction for two Martian sedimentary basins: the sediment fill of Gunjur crater (which shows concentric graben), and the sediment fill of Gale crater (which shows outward-dipping layers). We assume that basement topography for these craters is similar to the present-day topography of complex craters that lack sediment infill. For Gunjur, we find that differential compaction produces maximum strains consistent with the locations of observed graben. For Gale, we were able to approximately reproduce the observed layer orientations measured from orbiter image-based digital terrain models, but only with a >3 km-thick donut-shaped past overburden. It is not immediately obvious what geologic processes could produce this shape.
Integration of actomyosin contractility with cell-cell adhesion during dorsal closure.
Duque, Julia; Gorfinkiel, Nicole
2016-12-15
In this work, we combine genetic perturbation, time-lapse imaging and quantitative image analysis to investigate how pulsatile actomyosin contractility drives cell oscillations, apical cell contraction and tissue closure during morphogenesis of the amnioserosa, the main force-generating tissue during the dorsal closure in Drosophila We show that Myosin activity determines the oscillatory and contractile behaviour of amnioserosa cells. Reducing Myosin activity prevents cell shape oscillations and reduces cell contractility. By contrast, increasing Myosin activity increases the amplitude of cell shape oscillations and the time cells spend in the contracted phase relative to the expanded phase during an oscillatory cycle, promoting cell contractility and tissue closure. Furthermore, we show that in AS cells, Rok controls Myosin foci formation and Mbs regulates not only Myosin phosphorylation but also adhesion dynamics through control of Moesin phosphorylation, showing that Mbs coordinates actomyosin contractility with cell-cell adhesion during amnioserosa morphogenesis. © 2016. Published by The Company of Biologists Ltd.
Fano resonance in anodic aluminum oxide based photonic crystals.
Shang, Guo Liang; Fei, Guang Tao; Zhang, Yao; Yan, Peng; Xu, Shao Hui; Ouyang, Hao Miao; Zhang, Li De
2014-01-08
Anodic aluminum oxide based photonic crystals with periodic porous structure have been prepared using voltage compensation method. The as-prepared sample showed an ultra-narrow photonic bandgap. Asymmetric line-shape profiles of the photonic bandgaps have been observed, which is attributed to Fano resonance between the photonic bandgap state of photonic crystal and continuum scattering state of porous structure. And the exhibited Fano resonance shows more clearly when the sample is saturated ethanol gas than air-filled. Further theoretical analysis by transfer matrix method verified these results. These findings provide a better understanding on the nature of photonic bandgaps of photonic crystals made up of porous materials, in which the porous structures not only exist as layers of effective-refractive-index material providing Bragg scattering, but also provide a continuum light scattering state to interact with Bragg scattering state to show an asymmetric line-shape profile.
Shape design sensitivity analysis and optimal design of structural systems
NASA Technical Reports Server (NTRS)
Choi, Kyung K.
1987-01-01
The material derivative concept of continuum mechanics and an adjoint variable method of design sensitivity analysis are used to relate variations in structural shape to measures of structural performance. A domain method of shape design sensitivity analysis is used to best utilize the basic character of the finite element method that gives accurate information not on the boundary but in the domain. Implementation of shape design sensitivty analysis using finite element computer codes is discussed. Recent numerical results are used to demonstrate the accuracy obtainable using the method. Result of design sensitivity analysis is used to carry out design optimization of a built-up structure.
Nasrullah, Izza; Butt, Azeem M; Tahir, Shifa; Idrees, Muhammad; Tong, Yigang
2015-08-26
The Marburg virus (MARV) has a negative-sense single-stranded RNA genome, belongs to the family Filoviridae, and is responsible for several outbreaks of highly fatal hemorrhagic fever. Codon usage patterns of viruses reflect a series of evolutionary changes that enable viruses to shape their survival rates and fitness toward the external environment and, most importantly, their hosts. To understand the evolution of MARV at the codon level, we report a comprehensive analysis of synonymous codon usage patterns in MARV genomes. Multiple codon analysis approaches and statistical methods were performed to determine overall codon usage patterns, biases in codon usage, and influence of various factors, including mutation pressure, natural selection, and its two hosts, Homo sapiens and Rousettus aegyptiacus. Nucleotide composition and relative synonymous codon usage (RSCU) analysis revealed that MARV shows mutation bias and prefers U- and A-ended codons to code amino acids. Effective number of codons analysis indicated that overall codon usage among MARV genomes is slightly biased. The Parity Rule 2 plot analysis showed that GC and AU nucleotides were not used proportionally which accounts for the presence of natural selection. Codon usage patterns of MARV were also found to be influenced by its hosts. This indicates that MARV have evolved codon usage patterns that are specific to both of its hosts. Moreover, selection pressure from R. aegyptiacus on the MARV RSCU patterns was found to be dominant compared with that from H. sapiens. Overall, mutation pressure was found to be the most important and dominant force that shapes codon usage patterns in MARV. To our knowledge, this is the first detailed codon usage analysis of MARV and extends our understanding of the mechanisms that contribute to codon usage and evolution of MARV.
NASA Astrophysics Data System (ADS)
Wang, Jing; Ma, Hong-Man; Liu, Ying
2016-06-01
An exceptionally stable hollow cage containing 20 scandium atoms and 60 carbon atoms has been identified. This Sc20C60 molecular cluster has a Th point group symmetry and a volleyball-like shape that we refer to below as ``Volleyballene''. Electronic structure analysis shows that the formation of delocalized π bonds between Sc atoms and the neighboring pentagonal rings made of carbon atoms is crucial for stabilizing the cage structure. A relatively large HOMO-LUMO gap (~1.4 eV) was found. The results of vibrational frequency analysis and molecular dynamics simulations both demonstrate that this Volleyballene molecule is exceptionally stable.An exceptionally stable hollow cage containing 20 scandium atoms and 60 carbon atoms has been identified. This Sc20C60 molecular cluster has a Th point group symmetry and a volleyball-like shape that we refer to below as ``Volleyballene''. Electronic structure analysis shows that the formation of delocalized π bonds between Sc atoms and the neighboring pentagonal rings made of carbon atoms is crucial for stabilizing the cage structure. A relatively large HOMO-LUMO gap (~1.4 eV) was found. The results of vibrational frequency analysis and molecular dynamics simulations both demonstrate that this Volleyballene molecule is exceptionally stable. Electronic supplementary information (ESI) available: Sc20C60: a Volleyballene_SI. See DOI: 10.1039/c5nr07784b
Reflow dynamics of thin patterned viscous films
NASA Astrophysics Data System (ADS)
Leveder, T.; Landis, S.; Davoust, L.
2008-01-01
This letter presents a study of viscous smoothening dynamics of a nanopatterned thin film. Ultrathin film manufacturing processes appearing to be a key point of nanotechnology engineering and numerous studies have been recently led in order to exhibit driving parameters of this transient surface motion, focusing on time scale accuracy method. Based on nanomechanical analysis, this letter shows that controlled shape measurements provided much more detailed information about reflow mechanism. Control of reflow process of any complex surface shape, or measurement of material parameter as thin film viscosity, free surface energy, or even Hamaker constant are therefore possible.
Ejaculate fractioning effect on llama sperm head morphometry as assessed by the ISAS(®) CASA system.
Soler, C; Sancho, M; García, A; Fuentes, Mc; Núñez, J; Cucho, H
2014-02-01
South American camelid sperm characteristics are poorly known compared with those of other domestic animals. The long-term duration of ejaculation makes difficult to gather all the seminal fluid, implying possible ejaculation portion losses. Thus, the aim of this research was to evaluate the characteristics of the morphology and morphometry of the spermatozoa change during ejaculation. The morphometric characterization was tested on nine specimens of the Lanuda breed, using a special artificial vagina. In five of the animals, a fractioning of the ejaculate was performed by taking samples every 5 min. for a total of 20 min. Air-dried seminal smears were stained with Hemacolor and mounted permanently with Eukitt. Morphometric analysis was carried out with the morphometry module of the ISAS(®) CASA system. Almost 350 cells were analysed per sample, with a total number of 3207 spermatozoa. Mean values were given as follows: length: 5.51 μm; width: 3.38 μm; area: 17.75 μm(2) ; perimeter: 14.8 μm; ellipticity: 0.24; elongation: 0.56; rugosity: 0.87; regularity: 1.07; and shape factor: 1.41. Different animals showed differences in their morphometric values. When we compared the values from different fractions, only two samples showed differences in morphometric parameter values and four samples showed differences in shape parameters. Multivariate analysis allowed the size classification of the cells into three classes and five classes of shapes. The distribution of classes among fractions showed no differences. Despite the individual morphometric differences observed in some fractions, the characteristics of the sperm head morphometry can be considered constant along the ejaculatory period in the llama. © 2013 Blackwell Verlag GmbH.
Rocha-Olivares, Axayácatl; Morteo, Rodrigo; Weller, David W.
2017-01-01
Geographic variation in external morphology is thought to reflect an interplay between genotype and the environment. Morphological variation has been well-described for a number of cetacean species, including the bottlenose dolphin (Tursiops truncatus). In this study we analyzed dorsal fin morphometric variation in coastal bottlenose dolphins to search for geographic patterns at different spatial scales. A total of 533 dorsal fin images from 19 available photo-identification catalogs across the three Mexican oceanic regions (Pacific Ocean n = 6, Gulf of California n = 6 and, Gulf of Mexico n = 7) were used in the analysis. Eleven fin shape measurements were analyzed to evaluate fin polymorphism through multivariate tests. Principal Component Analysis on log-transformed standardized ratios explained 94% of the variance. Canonical Discriminant Function Analysis on factor scores showed separation among most study areas (p < 0.05) with exception of the Gulf of Mexico where a strong morphometric cline was found. Possible explanations for the observed differences are related to environmental, biological and evolutionary processes. Shape distinction between dorsal fins from the Pacific and those from the Gulf of California were consistent with previously reported differences in skull morphometrics and genetics. Although the functional advantages of dorsal fin shape remains to be assessed, it is not unlikely that over a wide range of environments, fin shape may represent a trade-off among thermoregulatory capacity, hydrodynamic performance and the swimming/hunting behavior of the species. PMID:28626607
Buser, Thaddaeus J; Sidlauskas, Brian L; Summers, Adam P
2018-05-01
We contrast 2D vs. 3D landmark-based geometric morphometrics in the fish subfamily Oligocottinae by using 3D landmarks from CT-generated models and comparing the morphospace of the 3D landmarks to one based on 2D landmarks from images. The 2D and 3D shape variables capture common patterns across taxa, such that the pairwise Procrustes distances among taxa correspond and the trends captured by principal component analysis are similar in the xy plane. We use the two sets of landmarks to test several ecomorphological hypotheses from the literature. Both 2D and 3D data reject the hypothesis that head shape correlates significantly with the depth at which a species is commonly found. However, in taxa where shape variation in the z-axis is high, the 2D shape variables show sufficiently strong distortion to influence the outcome of the hypothesis tests regarding the relationship between mouth size and feeding ecology. Only the 3D data support previous studies which showed that large mouth sizes correlate positively with high percentages of elusive prey in the diet. When used to test for morphological divergence, 3D data show no evidence of divergence, while 2D data show that one clade of oligocottines has diverged from all others. This clade shows the greatest degree of z-axis body depth within Oligocottinae, and we conclude that the inability of the 2D approach to capture this lateral body depth causes the incongruence between 2D and 3D analyses. Anat Rec, 301:806-818, 2018. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.
NASA Astrophysics Data System (ADS)
Gong, Xiaobo; Liu, Liwu; Scarpa, Fabrizio; Leng, Jinsong; Liu, Yanju
2017-03-01
This work presents a variable stiffness corrugated structure based on a shape memory polymer (SMP) composite with corrugated laminates as reinforcement that shows smooth aerodynamic surface, extreme mechanical anisotropy and variable stiffness for potential morphing skin applications. The smart composite corrugated structure shows a low in-plane stiffness to minimize the actuation energy, but also possess high out-of-plane stiffness to transfer the aerodynamic pressure load. The skin provides an external smooth aerodynamic surface because of the one-sided filling with the SMP. Due to variable stiffness of the shape memory polymer the morphing skin exhibits a variable stiffness with a change of temperature, which can help the skin adjust its stiffness according different service environments and also lock the temporary shape without external force. Analytical models related to the transverse and bending stiffness are derived and validated using finite element techniques. The stiffness of the morphing skin is further investigated by performing a parametric analysis against the geometry of the corrugation and various sets of SMP fillers. The theoretical and numerical models show a good agreement and demonstrate the potential of this morphing skin concept for morphing aircraft applications. We also perform a feasibility study of the use of this morphing skin in a variable camber morphing wing baseline. The results show that the morphing skin concept exhibits sufficient bending stiffness to withstand the aerodynamic load at low speed (less than 0.3 Ma), while demonstrating a large transverse stiffness variation (up to 191 times) that helps to create a maximum mechanical efficiency of the structure under varying external conditions.
Piezoelectric Lead Zirconate Titanate (PZT) Ring Shaped Contour-Mode MEMS Resonators
NASA Astrophysics Data System (ADS)
Kasambe, P. V.; Asgaonkar, V. V.; Bangera, A. D.; Lokre, A. S.; Rathod, S. S.; Bhoir, D. V.
2018-02-01
Flexibility in setting fundamental frequency of resonator independent of its motional resistance is one of the desired criteria in micro-electromechanical (MEMS) resonator design. It is observed that ring-shaped piezoelectric contour-mode MEMS resonators satisfy this design criterion than in case of rectangular plate MEMS resonators. Also ring-shaped contour-mode piezoelectric MEMS resonator has an advantage that its fundamental frequency is defined by in-plane dimensions, but they show variation of fundamental frequency with different Platinum (Pt) thickness referred as change in ratio of fNEW /fO . This paper presents the effects of variation in geometrical parameters and change in piezoelectric material on the resonant frequencies of Platinum piezoelectric-Aluminium ring-shaped contour-mode MEMS resonators and its electrical parameters. The proposed structure with Lead Zirconate Titanate (PZT) as the piezoelectric material was observed to be a piezoelectric material with minimal change in fundamental resonant frequency due to Platinum thickness variation. This structure was also found to exhibit extremely low motional resistance of 0.03 Ω as compared to the 31-35 Ω range obtained when using AlN as the piezoelectric material. CoventorWare 10 is used for the design, simulation and corresponding analysis of resonators which is Finite Element Method (FEM) analysis and design tool for MEMS devices.
D Scanning of Live Pigs System and its Application in Body Measurements
NASA Astrophysics Data System (ADS)
Guo, H.; Wang, K.; Su, W.; Zhu, D. H.; Liu, W. L.; Xing, Ch.; Chen, Z. R.
2017-09-01
The shape of a live pig is an important indicator of its health and value, whether for breeding or for carcass quality. This paper implements a prototype system for live single pig body surface 3d scanning based on two consumer depth cameras, utilizing the 3d point clouds data. These cameras are calibrated in advance to have a common coordinate system. The live 3D point clouds stream of moving single pig is obtained by two Xtion Pro Live sensors from different viewpoints simultaneously. A novel detection method is proposed and applied to automatically detect the frames containing pigs with the correct posture from the point clouds stream, according to the geometric characteristics of pig's shape. The proposed method is incorporated in a hybrid scheme, that serves as the preprocessing step in a body measurements framework for pigs. Experimental results show the portability of our scanning system and effectiveness of our detection method. Furthermore, an updated this point cloud preprocessing software for livestock body measurements can be downloaded freely from https://github.com/LiveStockShapeAnalysis to livestock industry, research community and can be used for monitoring livestock growth status.
Schwiedrzik, J J; Zysset, P K
2015-01-21
Microindentation in bone is a micromechanical testing technique routinely used to extract material properties related to bone quality. As the analysis of microindentation data is based on assumptions about the contact between sample and surface, the aim of this study was to quantify the topological variability of indentations in bone and examine its relationship with mechanical properties. Indentations were performed in dry human and ovine bone in axial and transverse directions and their topology was measured by atomic force microscopy. Statistical shape modeling of the residual imprint allowed to define a mean shape and to describe the variability in terms of 21 principal components related to imprint depth, surface curvature and roughness. The indentation profile of bone was found to be highly consistent and free of any pile up while differing mostly by depth between species and direction. A few of the topological parameters, in particular depth, showed significant but rather weak and inconsistent correlations to variations in mechanical properties. The mechanical response of bone as well as the residual imprint shape was highly consistent within each category. We could thus verify that bone is rather homogeneous in its micromechanical properties and that indentation results are not strongly influenced by small deviations from an ideally flat surface. Copyright © 2014 Elsevier Ltd. All rights reserved.
Lüthy, Monique; Wheldon, Mary C; Haji-Cheteh, Chehasnah; Atobe, Masakazu; Bond, Paul S; O'Brien, Peter; Hubbard, Roderick E; Fairlamb, Ian J S
2015-06-01
Synthetic routes to six 3-D scaffolds containing piperazine, pyrrolidine and piperidine cores have been developed. The synthetic methodology focused on the use of N-Boc α-lithiation-trapping chemistry. Notably, suitably protected and/or functionalised medicinal chemistry building blocks were synthesised via concise, connective methodology. This represents a rare example of lead-oriented synthesis. A virtual library of 190 compounds was then enumerated from the six scaffolds. Of these, 92 compounds (48%) fit the lead-like criteria of: (i) -1⩽AlogP⩽3; (ii) 14⩽number of heavy atoms⩽26; (iii) total polar surface area⩾50Å(2). The 3-D shapes of the 190 compounds were analysed using a triangular plot of normalised principal moments of inertia (PMI). From this, 46 compounds were identified which had lead-like properties and possessed 3-D shapes in under-represented areas of pharmaceutical space. Thus, the PMI analysis of the 190 member virtual library showed that whilst scaffolds which may appear on paper to be 3-D in shape, only 24% of the compounds actually had 3-D structures in the more interesting areas of 3-D drug space. Copyright © 2015 Elsevier Ltd. All rights reserved.
van der Voort, Paul; Pijls, Bart G; Nieuwenhuijse, Marc J; Jasper, Jorrit; Fiocco, Marta; Plevier, Josepha W M; Middeldorp, Saskia; Valstar, Edward R; Nelissen, Rob G H H
2015-01-01
Few studies have addressed the association between early migration of femoral stems and late aseptic revision in total hip arthroplasty. We performed a meta-regression analysis on 2 parallel systematic reviews and meta-analyses to determine the association between early migration and late aseptic revision of femoral stems. Of the 2 reviews, one covered early migration data obtained from radiostereometric analysis (RSA) studies and the other covered long-term aseptic revision rates obtained from survival studies with endpoint revision for aseptic loosening. Stems were stratified according to the design concept: cemented shape-closed, cemented force-closed, and uncemented. A weighted regression model was used to assess the association between early migration and late aseptic revision, and to correct for confounders. Thresholds for acceptable and unacceptable migration were determined in accordance with the national joint registries (≤ 5% revision at 10 years) and the NICE criteria (≤ 10% revision at 10 years). 24 studies (731 stems) were included in the RSA review and 56 studies (20,599 stems) were included in the survival analysis review. Combining both reviews for the 3 design concepts showed that for every 0.1-mm increase in 2-year subsidence, as measured with RSA, there was a 4% increase in revision rate for the shape-closed stem designs. This association remained after correction for age, sex, diagnosis, hospital type, continent, and study quality. The threshold for acceptable migration of shape-closed designs was defined at 0.15 mm; stems subsiding less than 0.15 mm in 2 years had revision rates of less than 5% at 10 years, while stems exceeding 0.15 mm subsidence had revision rates of more than 5%. There was a clinically relevant association between early subsidence of shape-closed femoral stems and late revision for aseptic loosening. This association can be used to assess the safety of shape-closed stem designs. The published research is not sufficient to allow us to make any conclusions regarding such an association for the force-closed and uncemented stems.
Lumpy Demand and the Diagrammatics of Aggregation.
ERIC Educational Resources Information Center
Shmanske, Stephen; Packey, Daniel
1999-01-01
Illustrates how a simple discontinuity in an individual's demand curve, or inverse-demand curve, affects the shape of market aggregate curves. Shows, for private goods, that an infinitesimal change in quantity can lead to large changes in consumption patterns; for collective goods, the analysis suggests a theory of coalition building. (DSK)
Hippocampal atrophy in people with memory deficits: results from the population-based IPREA study.
Ferrarini, Luca; van Lew, Baldur; Reiber, Johan H C; Gandin, Claudia; Galluzzo, Lucia; Scafato, Emanuele; Frisoni, Giovanni B; Milles, Julien; Pievani, Michela
2014-07-01
Clinical studies have shown that hippocampal atrophy is present before dementia in people with memory deficits and can predict dementia development. The question remains whether this association holds in the general population. This is of interest for the possible use of hippocampal atrophy to screen population for preventive interventions. The aim of this study was to assess hippocampal volume and shape abnormalities in elderly adults with memory deficits in a cross-sectional population-based study. We included individuals participating in the Italian Project on the Epidemiology of Alzheimer Disease (IPREA) study: 75 cognitively normal individuals (HC), 31 individuals with memory deficits (MEM), and 31 individuals with memory deficits not otherwise specified (MEMnos). Hippocampal volumes and shape were extracted through manual tracing and the growing and adaptive meshes (GAMEs) shape-modeling algorithm. We investigated between-group differences in hippocampal volume and shape, and correlations with memory deficits. In MEM participants, hippocampal volumes were significantly smaller than in HC and were mildly associated with worse memory scores. Memory-associated shape changes mapped to the anterior hippocampus. Shape-based analysis detected no significant difference between MEM and HC, while MEMnos showed shape changes in the posterior hippocampus compared with HC and MEM groups. These findings support the discriminant validity of hippocampal volumetry as a biomarker of memory impairment in the general population. The detection of shape changes in MEMnos but not in MEM participants suggests that shape-based biomarkers might lack sensitivity to detect Alzheimer's-like pathology in the general population.
Nonapplicability of linear finite element programs to the stress analysis of tires
NASA Technical Reports Server (NTRS)
Durand, M.; Jankovich, E.
1972-01-01
A static finite element stress analysis of an inflated radial car tire was carried out. The deformed shape of the sidewall presents outward bulging. The analysis of a homogeneous isotropic toroidal shell shows that the problem is common to all solids of this type. The study suggests that the geometric stiffness due to the inflation pressure has to be taken into account. Also, the resulting large displacements make it necessary for the geometry to be updated at each load step.
Eye shape using partial coherence interferometry, autorefraction, and SD-OCT.
Clark, Christopher A; Elsner, Ann E; Konynenbelt, Benjamin J
2015-01-01
Peripheral refraction and retinal shape may influence refractive development. Peripheral refraction has been shown to have a high degree of variability and can take considerable time to perform. Spectral domain optical coherence tomography (SD-OCT) and peripheral axial length measures may be more reliable, assuming that the retinal position is more important than the peripheral optics of the lens/cornea. Seventy-nine subjects' right eyes were imaged for this study (age range, 22 to 34 years; refractive error, -10 to +5.00). Thirty-degree SD-OCT (Spectralis, Heidelberg Engineering, Heidelberg, Germany) images were collected in a radial pattern along with peripheral refraction with an autorefractor (Shin-Nippon Autorefractor) and peripheral axial length measurements with partial coherence interferometry (IOLMaster, Zeiss). Statistics were performed using repeated-measures analysis of variance in SPSS (IBM, Armonk, NY), Bland-Altman analyses, and regression. All measures were converted to diopters to allow direct comparison. Spectral domain OCT showed a retinal shape with an increased curvature for myopes compared with emmetropes/hyperopes. This retinal shape change became significant around 5 degrees. The SD-OCT analysis for retinal shape provides a resolution of 0.026 diopters, which is about 10 times more accurate than using autorefraction (AR) or clinical refractive techniques. Bland-Altman analyses suggest that retinal shape measured by SD-OCT and the partial coherence interferometry method were more consistent with one another than either was with AR. With more accurate measures of retinal shape using SD-OCT, consistent differences between emmetropes/hyperopes and myopes were found nearer to the fovea than previously reported. Retinal shape may be influenced by central refractive error, and not merely peripheral optics. Partial coherence interferometry and SD-OCT appear to be more accurate than AR, which may be influenced by other factors such as fixation and accommodation. Autorefraction does measure the optics directly, which may be a strength of that method.
Application of CAD/CAE class systems to aerodynamic analysis of electric race cars
NASA Astrophysics Data System (ADS)
Grabowski, L.; Baier, A.; Buchacz, A.; Majzner, M.; Sobek, M.
2015-11-01
Aerodynamics is one of the most important factors which influence on every aspect of a design of a car and car driving parameters. The biggest influence aerodynamics has on design of a shape of a race car body, especially when the main objective of the race is the longest distance driven in period of time, which can not be achieved without low energy consumption and low drag of a car. Designing shape of the vehicle body that must generate the lowest possible drag force, without compromising the other parameters of the drive. In the article entitled „Application of CAD/CAE class systems to aerodynamic analysis of electric race cars” are being presented problems solved by computer analysis of cars aerodynamics and free form modelling. Analysis have been subjected to existing race car of a Silesian Greenpower Race Team. On a basis of results of analysis of existence of Kammback aerodynamic effect innovative car body were modeled. Afterwards aerodynamic analysis were performed to verify existence of aerodynamic effect for innovative shape and to recognize aerodynamics parameters of the shape. Analysis results in the values of coefficients and aerodynamic drag forces. The resulting drag forces Fx, drag coefficients Cx(Cd) and aerodynamic factors Cx*A allowed to compare all of the shapes to each other. Pressure distribution, air velocities and streams courses were useful in determining aerodynamic features of analyzed shape. For aerodynamic tests was used Ansys Fluent CFD software. In a paper the ways of surface modeling with usage of Realize Shape module and classic surface modeling were presented. For shapes modeling Siemens NX 9.0 software was used. Obtained results were used to estimation of existing shapes and to make appropriate conclusions.
Atlan, Michael; Bigerelle, Maxence; Larreta-garde, Véronique; Hindié, Mathilde; Hedén, Per
2016-02-01
Several companies offer anatomically shaped breast implants but differences among manufacturers are often misunderstood. The shell texture is a crucial parameter for anatomically shaped implants to prevent rotation and to decrease the risk of capsular contracture, even though concerns have recently been raised concerning the complications associated with textured breast implants. The aim of this study was to characterize differences in terms of texture, cell adhesion, shape, and stiffness between some commonly used anatomically shaped implants from three different manufacturers. Five commercially available anatomically shaped breast implants from 3 different manufacturers (Allergan, Mentor, and Sebbin) were used. Scanning electron microscopy, X-ray microtomography, and scanning mechanical microscopy were used to characterize the shell texture. Human fibroblast adhesion onto the shells was evaluated. 3D models of the implants were obtained using CT-scan acquisitions to analyze their shape. Implant stiffness was evaluated using a tractiometer. Major differences were observed in the topography of the textures of the shells, but this was not conveyed by a statistically significant fibroblast adhesion difference. However, fibroblasts adhered better on anatomically shaped textured implants than on smooth implants (p < 0.01). Our work pointed out differences in the Biocell® texture in comparison with older studies. The 3D analysis showed significant shape differences between the anatomically shaped implants of the 3 companies, despite similar dimensions. Implant stiffness was comparable among the 3 brands. Each texture had its specific topography, and this work is the first description of Sebbin anatomic breast implant texturation. Moreover, major discrepancies were found in the analysis of the Biocell® texture when comparing our results with previous reports. These differences may have clinical implications and are discussed. This study also highlighted major shape differences among breast implants from different manufacturers, which is quite counterintuitive. The clinical impact of these differences however needs further investigation. This journal requires that authors assign a level of evidence to each submission to which Evidence-Based Medicine rankings are applicable. This excludes Review Articles, Book Reviews, and manuscripts that concern Basic Science, Animal Studies, Cadaver Studies, and Experimental Studies. For a full description of these Evidence-Based Medicine ratings, please refer to the Table of Contents or the online Instructions to Authors www.springer.com/00266.
Shape design sensitivity analysis using domain information
NASA Technical Reports Server (NTRS)
Seong, Hwal-Gyeong; Choi, Kyung K.
1985-01-01
A numerical method for obtaining accurate shape design sensitivity information for built-up structures is developed and demonstrated through analysis of examples. The basic character of the finite element method, which gives more accurate domain information than boundary information, is utilized for shape design sensitivity improvement. A domain approach for shape design sensitivity analysis of built-up structures is derived using the material derivative idea of structural mechanics and the adjoint variable method of design sensitivity analysis. Velocity elements and B-spline curves are introduced to alleviate difficulties in generating domain velocity fields. The regularity requirements of the design velocity field are studied.
Natural descriptions of motor behavior: examples from E. coli and C. elegans.
NASA Astrophysics Data System (ADS)
Ryu, William
2007-03-01
E. coli has a natural behavioral variable - the direction of rotation of its flagellar rotorary motor. Monitoring this one-dimensional behavioral response in reaction to chemical perturbation has been instrumental in the understanding of how E. coli performs chemotaxis at the genetic, physiological, and computational level. Here we apply this experimental strategy to the study of bacterial thermotaxis - a sensory mode that is less well understood. We investigate bacterial thermosensation by studying the motor response of single cells subjected to impulses of heat produced by an IR laser. A simple temperature dependent modification to an existing chemotaxis model can explain the observed temperature response. Higher organisms may have a more complicated behavioral response due to the simple fact that their motions have more degrees of freedom. Here we provide a principled analysis of motor behavior of such an organism -- the roundworm C. elegans. Using tracking video-microscopy we capture a worm's image and extract the skeleton of the shape as a head-to-tail ordered collection of tangent angles sampled along the curve. Applying principal components analysis we show that the space of shapes is remarkably low dimensional, with four dimensions accounting for > 95% of the shape variance. We also show that these dimensions align with behaviorally relevant states. As an application of this analysis we study the thermal response of worms stimulated by laser heating. Our quantitative description of C. elegans movement should prove useful in a wide variety of contexts, from the linking of motor output with neural circuitry to the genetic basis of adaptive behavior.
Mozaffarian, Fariba; Sarafrazi, Alimorad; Ganbalani, Gadir Nouri
2007-01-01
The carob moth, Ectomyelois ceratoniae (Zeller, 1839) (Lepidoptera: Pyralidae), is the most important pest of pomegranate in Iran. As it has been rarely recorded on other host plants, control methods have mostly been focused on its populations on pomegranate. In this study, shapes and sizes of wings were compared in populations on 4 host plants (pomegranate, fig, pistachio and walnut) using a landmark-based geometric morphometric method, and analysis of partial warp scores and centroid sizes. The results showed significantly smaller wing size in populations on pomegranate and a significant host plant-associated shape difference among populations as a consequence of allometric growth. This suggests that the wing size and shape differences among test populations may not have a genetic basis and could happen because of differences in the nutritional content of host plants. The results of the analysis suggest that the female carob moth lays her eggs on host plants that provide suitable conditions for hatching. The larger size of moths on hosts other than pomegranate showed that some host plants such as fig, pistachio and walnut can provide for increased stored nutritional reserves by larvae that may result in more successful over-wintering and higher fecundity in adults. This suggests that in spite of the more extensive activity of carob moth on pomegranate in Iran, populations on other host plants can have an important effect on expanding pest population sizes in following years which should be considered in control methods. PMID:20337550
Broer, Tineke; Pickersgill, Martyn; Deary, Ian J
Media reporting of science has consequences for public debates on the ethics of research. Accordingly, it is crucial to understand how the sciences of the brain and the mind are covered in the media, and how coverage is received and negotiated. The authors report here their sociological findings from a case study of media coverage and associated reader comments of an article ('Does bilingualism influence cognitive aging?') from Annals of Neurology. The media attention attracted by the article was high for cognitive science; further, as associates/members of the Centre where it was produced, the authors of the research reported here had rare insight into how the scientists responsible for the Annals of Neurology article interacted with the media. The data corpus included 37 news items and 228 readers' comments, examined via qualitative thematic analysis. Media coverage of the article was largely accurate, without merely copying the press release. Analysis of reader comments showed these to be an important resource for considering issues of import to neuroethics scholars, as well as to scientists themselves (including how science communication shapes and is shaped by ethical, epistemic, and popular discourse). In particular, the findings demonstrate how personal experiences were vital in shaping readers' accounts of their (dis)agreements with the scientific article. Furthermore, the data show how scientific research can catalyse political discussions in ways likely unanticipated by scientists. The analysis indicates the importance of dialogue between journalists, laboratory scientists and social scientists in order to support the communication of the messages researchers intend.
Kesterke, Matthew J; Judd, Margaret A; Mooney, Mark P; Siegel, Michael I; Elsalanty, Mohammed; Howie, R Nicole; Weinberg, Seth M; Cray, James J
2018-07-01
An estimated 3% of US pregnancies are affected by maternal thyroid dysfunction, with between one and three of every 1000 pregnancies being complicated by overactive maternal thyroid levels. Excess thyroid hormones are linked to neurological impairment and excessive craniofacial variation, affecting both endochondral and intramembranous bone. Using a geometric morphometric approach, this study evaluates the role of in utero thyroxine overexposure on the growth of offspring mandibles in a sample of 241 mice. Canonical variate analysis utilized 16 unilateral mandibular landmarks obtained from 3D micro-computed tomography to assess shape changes between unexposed controls (n = 63) and exposed mice (n = 178). By evaluating shape changes in the mandible among three age groups (15, 20 and 25 days postnatal) and different dosage levels (low, medium and high), this study found that excess maternal thyroxine alters offspring mandibular shape in both age- and dosage-dependent manners. Group differences in overall shape were significant (P < 0.001), and showed major changes in regions of the mandible associated with muscle attachment (coronoid process, gonial angle) and regions of growth largely governed by articulation with the cranial base (condyle) and occlusion (alveolus). These results compliment recent studies demonstrating that maternal thyroxine levels can alter the cranial base and cranial vault of offspring, contributing to a better understanding of both normal and abnormal mandibular development, as well as the medical implications of craniofacial growth and development. © 2018 Anatomical Society.
Atlas-Based Ventricular Shape Analysis for Understanding Congenital Heart Disease.
Farrar, Genevieve; Suinesiaputra, Avan; Gilbert, Kathleen; Perry, James C; Hegde, Sanjeet; Marsden, Alison; Young, Alistair A; Omens, Jeffrey H; McCulloch, Andrew D
2016-12-01
Congenital heart disease is associated with abnormal ventricular shape that can affect wall mechanics and may be predictive of long-term adverse outcomes. Atlas-based parametric shape analysis was used to analyze ventricular geometries of eight adolescent or adult single-ventricle CHD patients with tricuspid atresia and Fontans. These patients were compared with an "atlas" of non-congenital asymptomatic volunteers, resulting in a set of z-scores which quantify deviations from the control population distribution on a patient-by-patient basis. We examined the potential of these scores to: (1) quantify abnormalities of ventricular geometry in single ventricle physiologies relative to the normal population; (2) comprehensively quantify wall motion in CHD patients; and (3) identify possible relationships between ventricular shape and wall motion that may reflect underlying functional defects or remodeling in CHD patients. CHD ventricular geometries at end-diastole and end-systole were individually compared with statistical shape properties of an asymptomatic population from the Cardiac Atlas Project. Shape analysis-derived model properties, and myocardial wall motions between end-diastole and end-systole, were compared with physician observations of clinical functional parameters. Relationships between altered shape and altered function were evaluated via correlations between atlas-based shape and wall motion scores. Atlas-based shape analysis identified a diverse set of specific quantifiable abnormalities in ventricular geometry or myocardial wall motion in all subjects. Moreover, this initial cohort displayed significant relationships between specific shape abnormalities such as increased ventricular sphericity and functional defects in myocardial deformation, such as decreased long-axis wall motion. These findings suggest that atlas-based ventricular shape analysis may be a useful new tool in the management of patients with CHD who are at risk of impaired ventricular wall mechanics and chamber remodeling.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Okura, Yuki; Futamase, Toshifumi, E-mail: yuki.okura@riken.jp
We improve the ellipticity of re-smeared artificial image (ERA) method of point-spread function (PSF) correction in a weak lensing shear analysis in order to treat the realistic shape of galaxies and the PSF. This is done by re-smearing the PSF and the observed galaxy image using a re-smearing function (RSF) and allows us to use a new PSF with a simple shape and to correct the PSF effect without any approximations or assumptions. We perform a numerical test to show that the method applied for galaxies and PSF with some complicated shapes can correct the PSF effect with a systematicmore » error of less than 0.1%. We also apply the ERA method for real data of the Abell 1689 cluster to confirm that it is able to detect the systematic weak lensing shear pattern. The ERA method requires less than 0.1 or 1 s to correct the PSF for each object in a numerical test and a real data analysis, respectively.« less
Quantifying Three-Dimensional Morphology and RNA from Individual Embryos
Green, Rebecca M.; Leach, Courtney L.; Hoehn, Natasha; Marcucio, Ralph S.; Hallgrímsson, Benedikt
2017-01-01
Quantitative analysis of morphogenesis aids our understanding of developmental processes by providing a method to link changes in shape with cellular and molecular processes. Over the last decade many methods have been developed for 3D imaging of embryos using microCT scanning to quantify the shape of embryos during development. These methods generally involve a powerful, cross-linking fixative such as paraformaldehyde to limit shrinkage during the CT scan. However, the extended time frames that these embryos are incubated in such fixatives prevent use of the tissues for molecular analysis after microCT scanning. This is a significant problem because it limits the ability to correlate variation in molecular data with morphology at the level of individual embryos. Here, we outline a novel method that allows RNA, DNA or protein isolation following CT scan while also allowing imaging of different tissue layers within the developing embryo. We show shape differences early in craniofacial development (E11.5) between common mouse genetic backgrounds, and demonstrate that we are able to generate RNA from these embryos after CT scanning that is suitable for downstream RT-PCR and RNAseq analyses. PMID:28152580
Recent progress in the analysis of iced airfoils and wings
NASA Technical Reports Server (NTRS)
Cebeci, Tuncer; Chen, Hsun H.; Kaups, Kalle; Schimke, Sue
1992-01-01
Recent work on the analysis of iced airfoils and wings is described. Ice shapes for multielement airfoils and wings are computed using an extension of the LEWICE code that was developed for single airfoils. The aerodynamic properties of the iced wing are determined with an interactive scheme in which the solutions of the inviscid flow equations are obtained from a panel method and the solutions of the viscous flow equations are obtained from an inverse three-dimensional finite-difference boundary-layer method. A new interaction law is used to couple the inviscid and viscous flow solutions. The newly developed LEWICE multielement code is amplified to a high-lift configuration to calculate the ice shapes on the slat and on the main airfoil and on a four-element airfoil. The application of the LEWICE wing code to the calculation of ice shapes on a MS-317 swept wing shows good agreement with measurements. The interactive boundary-layer method is applied to a tapered iced wing in order to study the effect of icing on the aerodynamic properties of the wing at several angles of attack.
NASA Technical Reports Server (NTRS)
Pai, Shantaram S.; Gyekenyesi, John P.
1988-01-01
The calculation of shape and scale parameters of the two-parameter Weibull distribution is described using the least-squares analysis and maximum likelihood methods for volume- and surface-flaw-induced fracture in ceramics with complete and censored samples. Detailed procedures are given for evaluating 90 percent confidence intervals for maximum likelihood estimates of shape and scale parameters, the unbiased estimates of the shape parameters, and the Weibull mean values and corresponding standard deviations. Furthermore, the necessary steps are described for detecting outliers and for calculating the Kolmogorov-Smirnov and the Anderson-Darling goodness-of-fit statistics and 90 percent confidence bands about the Weibull distribution. It also shows how to calculate the Batdorf flaw-density constants by uing the Weibull distribution statistical parameters. The techniques described were verified with several example problems, from the open literature, and were coded. The techniques described were verified with several example problems from the open literature, and were coded in the Structural Ceramics Analysis and Reliability Evaluation (SCARE) design program.
Ullah, Sami; Daud, Hanita; Dass, Sarat C; Khan, Habib Nawaz; Khalil, Alamgir
2017-11-06
Ability to detect potential space-time clusters in spatio-temporal data on disease occurrences is necessary for conducting surveillance and implementing disease prevention policies. Most existing techniques use geometrically shaped (circular, elliptical or square) scanning windows to discover disease clusters. In certain situations, where the disease occurrences tend to cluster in very irregularly shaped areas, these algorithms are not feasible in practise for the detection of space-time clusters. To address this problem, a new algorithm is proposed, which uses a co-clustering strategy to detect prospective and retrospective space-time disease clusters with no restriction on shape and size. The proposed method detects space-time disease clusters by tracking the changes in space-time occurrence structure instead of an in-depth search over space. This method was utilised to detect potential clusters in the annual and monthly malaria data in Khyber Pakhtunkhwa Province, Pakistan from 2012 to 2016 visualising the results on a heat map. The results of the annual data analysis showed that the most likely hotspot emerged in three sub-regions in the years 2013-2014. The most likely hotspots in monthly data appeared in the month of July to October in each year and showed a strong periodic trend.
Assessment of Foot Shape in Children and Adolescents with Intellectual Disability: A Pilot Study.
Wolan-Nieroda, Andżelina; Guzik, Agnieszka; Bazarnik-Mucha, Katarzyna; Rachwał, Maciej; Drzał-Grabiec, Justyna; Szeliga, Ewa; Walicka-Cupryś, Katarzyna
2018-04-11
BACKGROUND Available publications provide little evidence pertaining to assessment of foot shape in children with intellectual disability. The aim of this study was to assess the parameters of foot shape in children and adolescents with intellectual disability and to evaluate the relationship between the degree of disability and these parameters. MATERIAL AND METHODS The study involved 90 individuals aged 7-15 years, including 45 subjects with mild and moderate levels of intellectual disability (study group) and 45 peers with normal intellectual development (control group). Each participant was subjected to photogrammetric assessment of foot shape based on the projection moire effect. RESULTS Analysis of the relationship between the disability level and the assessed parameters showed that the length of the right (p=0.006) and left (p=0.004) foot, as well as Wejsflog's rate for the right (p<0.001) and left (p<0.001) foot, were significantly higher among children with mild disability, whereas GAMMA angle of the right (p=0.028) and left (p=0.006) foot was significantly higher among children with moderate disability. CONCLUSIONS The findings show a significant relationship between the degree of disability and the assessed foot parameters. Significant differences between the subjects with intellectual disability and the control group were identified in the basic parameters defining foot structure.
Wilson, Andrew D.; Zhu, Qin; Barham, Lawrence; Stanistreet, Ian; Bingham, Geoffrey P.
2016-01-01
Spheroids are ball-shaped stone objects found in African archaeological sites dating from 1.8 million years ago (Early Stone Age) to at least 70,000 years ago (Middle Stone Age). Spheroids are either fabricated or naturally shaped stones selected and transported to places of use making them one of the longest-used technologies on record. Most hypotheses about their use suggest they were percussive tools for shaping or grinding other materials. However, their size and spherical shape make them potentially useful as projectile weapons, a property that, uniquely, humans have been specialised to exploit for millions of years. Here we show (using simulations of projectile motions resulting from human throwing) that 81% of a sample of spheroids from the late Acheulean (Bed 3) at the Cave of Hearths, South Africa afford being thrown so as to inflict worthwhile damage to a medium-sized animal over distances up to 25 m. Most of the objects have weights that produce optimal levels of damage from throwing, rather than simply being as heavy as possible (as would suit other functions). Our results show that these objects were eminently suitable for throwing, and demonstrate how empirical research on behavioural tasks can inform and constrain our theories about prehistoric artefacts. PMID:27506611
Round versus rectangular: Does the plot shape matter?
NASA Astrophysics Data System (ADS)
Iserloh, Thomas; Bäthke, Lars; Ries, Johannes B.
2016-04-01
Field rainfall simulators are designed to study soil erosion processes and provide urgently needed data for various geomorphological, hydrological and pedological issues. Due to the different conditions and technologies applied, there are several methodological aspects under review of the scientific community, particularly concerning design, procedures and conditions of measurement for infiltration, runoff and soil erosion. Extensive discussions at the Rainfall Simulator Workshop 2011 in Trier and the Splinter Meeting at EGU 2013 "Rainfall simulation: Big steps forward!" lead to the opinion that the rectangular shape is the more suitable plot shape compared to the round plot. A horizontally edging Gerlach trough is installed for sample collection without forming unnatural necks as is found at round or triangle plots. Since most research groups did and currently do work with round plots at the point scale (<1m²), a precise analysis of the differences between the output of round and square plots are necessary. Our hypotheses are: - Round plot shapes disturb surface runoff, unnatural fluvial dynamics for the given plot size such as pool development especially directly at the plot's outlet occur. - A square plot shape prevent these problems. A first comparison between round and rectangular plots (Iserloh et al., 2015) indicates that the rectangular plot could indeed be the more suitable, but the rather ambiguous results make a more elaborate test setup necessary. The laboratory test setup includes the two plot shapes (round, square), a standardised silty substrate and three inclinations (2°, 6°, 12°). The analysis of the laboratory test provide results on the best performance concerning undisturbed surface runoff and soil/water sampling at the plot's outlet. The analysis of the plot shape concerning its influence on runoff and erosion shows that clear methodological standards are necessary in order to make rainfall simulation experiments comparable. Reference: Iserloh, T., Pegoraro, D., Schlösser, A., Thesing, H., Seeger, M., Ries, J.B. (2015): Rainfall simulation experiments: Influence of water temperature, water quality and plot design on soil erosion and runoff. Geophysical Research Abstracts, Vol. 17, EGU2015-5817.
Effect of Micro Porous Shape on Mechanical Properties in Polypropylene Syntactic Foams
NASA Astrophysics Data System (ADS)
Mae, Hiroyuki; Omiya, Masaki; Kishimoto, Kikuo
The objective is to characterize the effect of the microstructure of the micro pores inside the matrix on the mechanical properties of the thermoplastic syntactic polypropylene (PP) foams at the intermediate and high strain rates. Tensile tests are conducted at the nominal strain rates from 3 x 10-1 to 102 s-1. In addition, the dart impact tests are conducted at the impact velocities of 0.1, 1 and 10 m/s. Then, the constitutive law with craze evolution is modified by introducing the relative density, the stress concentration coefficient and the volume fraction of cell edge, and then applied to the dart impact test mode for simulating the macroscopic load displacement history of the dart impact process. Moreover, the microstructural finite element analysis is conducted to characterize the local stress states in the microstructure. In the tensile loading, the elastic modulus is not influenced by the shape of the micro pores in the PP matrix while the yield stress and the strain energy up to failure are relatively influenced by the shape of micro pores. The microstructural finite element analysis shows that the magnitudes of the localized stresses at the edges and the ligaments of the elliptical-shape micro pores are larger than those at the spherical micro pores, leading to the early yielding and the small material ductility. In the case of the dart impact loading, the microstructure of pores has strong effect on the absorbed energy. This is because the elliptical-shape micro pores are very sensitive to the shear deformation, which is revealed by the microstructural finite element analysis. The modified constitutive law with the stress concentration coefficient and the volume fraction of the cell edges successfully predicts the load-displacement curve of the dart impact loading in the spherical micro-porous PP foam. It is concluded that the micro porous shape has strong effect on the material ductility especially in the dart impact test, leading to the possibility to control the material ductility by the shape of the micro pores in the polymeric foams.
Tyagi, Neelam; Sutton, Elizabeth; Hunt, Margie; Zhang, Jing; Oh, Jung Hun; Apte, Aditya; Mechalakos, James; Wilgucki, Molly; Gelb, Emily; Mehrara, Babak; Matros, Evan; Ho, Alice
2017-02-01
Capsular contracture (CC) is a serious complication in patients receiving implant-based reconstruction for breast cancer. Currently, no objective methods are available for assessing CC. The goal of the present study was to identify image-based surrogates of CC using magnetic resonance imaging (MRI). We analyzed a retrospective data set of 50 patients who had undergone both a diagnostic MRI scan and a plastic surgeon's evaluation of the CC score (Baker's score) within a 6-month period after mastectomy and reconstructive surgery. The MRI scans were assessed for morphologic shape features of the implant and histogram features of the pectoralis muscle. The shape features, such as roundness, eccentricity, solidity, extent, and ratio length for the implant, were compared with the Baker score. For the pectoralis muscle, the muscle width and median, skewness, and kurtosis of the intensity were compared with the Baker score. Univariate analysis (UVA) using a Wilcoxon rank-sum test and multivariate analysis with the least absolute shrinkage and selection operator logistic regression was performed to determine significant differences in these features between the patient groups categorized according to their Baker's scores. UVA showed statistically significant differences between grade 1 and grade ≥2 for morphologic shape features and histogram features, except for volume and skewness. Only eccentricity, ratio length, and volume were borderline significant in differentiating grade ≤2 and grade ≥3. Features with P<.1 on UVA were used in the multivariate least absolute shrinkage and selection operator logistic regression analysis. Multivariate analysis showed a good level of predictive power for grade 1 versus grade ≥2 CC (area under the receiver operating characteristic curve 0.78, sensitivity 0.78, and specificity 0.82) and for grade ≤2 versus grade ≥3 CC (area under the receiver operating characteristic curve 0.75, sensitivity 0.75, and specificity 0.79). The morphologic shape features described on MR images were associated with the severity of CC. MRI has the potential to further improve the diagnostic ability of the Baker score in breast cancer patients who undergo implant reconstruction. Copyright © 2016 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Xu, Wenjun; Tang, Chen; Zheng, Tingyue; Qiu, Yue
2018-07-01
Oriented partial differential equations (OPDEs) have been demonstrated to be a powerful tool for preserving the integrity of fringes while filtering electronic speckle pattern interferometry (ESPI) fringe patterns. However, the main drawback of OPDEs-based methods is that many iterations are often needed, which causes the change in the shape of fringes. Change in the shape of fringes will affect the accuracy of subsequent fringe analysis. In this paper, we focus on preserving the shape of fringes while filtering, suggested here for the first time. We propose a shape-preserving OPDE for ESPI fringe patterns denoising by introducing a new fidelity term to the previous second-order single oriented PDE (SOOPDE). In our proposed fidelity term, the evolution image is subtracted from the shrinkage result of original noisy image by shearlet transform. Our proposed shape-preserving OPDE is capable of eliminating noise effectively, keeping the integrity of fringes, and more importantly, preserving the shape of fringes. We test the proposed shape-preserving OPDE on three computer-simulated and three experimentally obtained ESPI fringe patterns with poor quality. Furthermore, we compare our model with three representative filtering methods, including the widely used SOOPDE, shearlet transform and coherence-enhancing diffusion (CED). We also compare our proposed fidelity term with the traditional fidelity term. Experimental results show that the proposed shape-preserving OPDE not only yields filtered images with visual quality on par with those by CED which is the state-of-the-art method for ESPI fringe patterns denoising, but also keeps the shape of ESPI fringe patterns.
Constantino, Maira A.; Jabbarzadeh, Mehdi; Fu, Henry C.; Bansil, Rama
2016-01-01
It has frequently been hypothesized that the helical body shapes of flagellated bacteria may yield some advantage in swimming ability. In particular, the helical-shaped pathogen Helicobacter pylori is often claimed to swim like a corkscrew through its harsh gastric habitat, but there has been no direct confirmation or quantification of such claims. Using fast time-resolution and high-magnification two-dimensional (2D) phase-contrast microscopy to simultaneously image and track individual bacteria in bacterial broth as well as mucin solutions, we show that both helical and rod-shaped H. pylori rotated as they swam, producing a helical trajectory. Cell shape analysis enabled us to determine shape as well as the rotational and translational speed for both forward and reverse motions, thereby inferring flagellar kinematics. Using the method of regularized Stokeslets, we directly compare observed speeds and trajectories to numerical calculations for both helical and rod-shaped bacteria in mucin and broth to validate the numerical model. Although experimental observations are limited to select cases, the model allows quantification of the effects of body helicity, length, and diameter. We find that due to relatively slow body rotation rates, the helical shape makes at most a 15% contribution to propulsive thrust. The effect of body shape on swimming speeds is instead dominated by variations in translational drag required to move the cell body. Because helical cells are one of the strongest candidates for propulsion arising from the cell body, our results imply that quite generally, swimming speeds of flagellated bacteria can only be increased a little by body propulsion. PMID:28138539
First Observation of the {Lambda}(1405) Line Shape in Electroproduction
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lu, Haiyun; Schumacher, Reinhard A.
2013-10-01
We report the first observation of the line shape of the {Lambda}(1405) from electroproduction, and show that it is not a simple Breit-Wigner resonance. Electroproduction of K{sup +}{Lambda}(1405) off the proton was studied by using data from CLAS at Jefferson Lab in the range 1.0
Simultaneous Aerodynamic Analysis and Design Optimization (SAADO) for a 3-D Flexible Wing
NASA Technical Reports Server (NTRS)
Gumbert, Clyde R.; Hou, Gene J.-W.
2001-01-01
The formulation and implementation of an optimization method called Simultaneous Aerodynamic Analysis and Design Optimization (SAADO) are extended from single discipline analysis (aerodynamics only) to multidisciplinary analysis - in this case, static aero-structural analysis - and applied to a simple 3-D wing problem. The method aims to reduce the computational expense incurred in performing shape optimization using state-of-the-art Computational Fluid Dynamics (CFD) flow analysis, Finite Element Method (FEM) structural analysis and sensitivity analysis tools. Results for this small problem show that the method reaches the same local optimum as conventional optimization. However, unlike its application to the win,, (single discipline analysis), the method. as I implemented here, may not show significant reduction in the computational cost. Similar reductions were seen in the two-design-variable (DV) problem results but not in the 8-DV results given here.
Hybrid least squares multivariate spectral analysis methods
Haaland, David M.
2004-03-23
A set of hybrid least squares multivariate spectral analysis methods in which spectral shapes of components or effects not present in the original calibration step are added in a following prediction or calibration step to improve the accuracy of the estimation of the amount of the original components in the sampled mixture. The hybrid method herein means a combination of an initial calibration step with subsequent analysis by an inverse multivariate analysis method. A spectral shape herein means normally the spectral shape of a non-calibrated chemical component in the sample mixture but can also mean the spectral shapes of other sources of spectral variation, including temperature drift, shifts between spectrometers, spectrometer drift, etc. The shape can be continuous, discontinuous, or even discrete points illustrative of the particular effect.
Analysis of the shapes of hemocytes of Callista brevisiphonata in vitro (Bivalvia, Veneridae).
Karetin, Yu A; Pushchin, I I
2015-08-01
Fractal formalism in conjunction with linear methods of image analysis is suitable for the comparative analysis of such "irregular" shapes (from the point of view of classical Euclidean geometry) as flattened amoeboid cells of invertebrates in vitro. Cell morphology of in vitro spreading hemocytes from the bivalve mollusc Callista brevisiphonata was analyzed using correlation, factor and cluster analysis. Four significantly different cell types were identified on the basis of 36 linear and nonlinear parameters. The analysis confirmed the adequacy of the selected methodology for numerical description of the shape and the adequacy of classification of nonlinear shapes of spread hemocytes belonging to the same species. Investigation has practical significance for the description of the morphology of cultured cells, since cell shape is a result of summation of a number of extracellular and intracellular factors. © 2015 International Society for Advancement of Cytometry.
Cañas-Hoyos, N; Márquez, E J; Saldamando-Benjumea, C I
2016-08-01
Spodoptera frugiperda (J.E. Smith) (Lepidoptera: Noctuidae) represents a pest of economic importance in all Western Hemisphere. This polyphagous species has diverged into two populations that have been mainly recognized with various mitochondrial and nuclear molecular markers and named "the rice" and "the corn" strains. In Colombia, both strains have evolved prezygotic and postzygotic isolation. They differ in tolerance to Bacillus thuringiensis (Cry1Ac and Cry1Ab endotoxins) and the insecticides lambda-cyhalothrin and methomyl. In 2014, a wing morphometric analysis made in 159 individuals from a colony showed that both strains significantly differ in wing shape. The species also exhibits sexual dimorphism in the rice strain as in females wing size is larger than in males. Here, we continued this work with another wing morphometric approach in laboratory-reared strains to calculate wing size and shape heritabilities using a full-sib design and in wild populations to determine if this method distinguishes these strains. Our results show that male heritabilities of both traits were higher than female ones. Wild populations were significantly different in wing shape and size. These results suggest that wing morphometrics can be used as an alternative method to molecular markers to differentiate adults from laboratory-reared populations and wild populations of this pest, particularly in males of this species. Finally, Q ST values obtained for wing size and shape further demonstrated that both strains are genetically differentiated in nature.
Baroni, Michela; Ballanti, Fabiana; Polimeni, Antonella; Franchi, Lorenzo; Cozza, Paola
2011-04-01
To compare the skeletal features of subjects with adenoid hypertrophy with those of children with tonsillar hypertrophy using thin-plate spline (TPS) analysis. A group of 20 subjects (9 girls and 11 boys; mean age 8.4 ± 0.9 years) with adenoid hypertrophy (AG) was compared with a group of 20 subjects (10 girls and 10 boys; mean age 8.2 ± 1.1 years) with tonsillar hypertrophy (TG). Craniofacial morphology was analyzed on the lateral cephalograms of the subjects in both groups by means of TPS analysis. A cross-sectional comparison was performed on both size and shape differences between the two groups. AG exhibited statistically significant shape and size differences in craniofacial configuration with respect to TG. Subjects with adenoid hypertrophy showed an upward dislocation of the anterior region of the maxilla, a more downward/backward position of the anterior region of the mandibular body and an upward/backward displacement of the condylar region. Conversely, subjects with tonsillar hypertrophy showed a downward dislocation of the anterior region of the maxilla, a more upward/forward position of the anterior region of the mandibular body and a downward/forward displacement of the condylar region. Subjects with adenoid hypertrophy exhibited features suggesting a more retrognathic mandible while subjects with tonsillar hypertrophy showed features suggesting a more prognathic mandible. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.
Kubicka, Anna Maria; Lubiatowski, Przemysław; Długosz, Jan Dawid; Romanowski, Leszek; Piontek, Janusz
2016-11-01
Degrees of upper-limb bilateral asymmetry reflect habitual behavior and activity levels throughout life in human populations. The shoulder joint facilitates a wide range of combined motions due to the simultaneous motion of all three bones: clavicle, scapula, and humerus. Accordingly, we used three-dimensional geometric morphometrics to analyze shape differences in the glenoid cavity and linear morphometrics to obtain the degree of directional asymmetry in a medieval population. To calculate directional asymmetry, clavicles, humeri, and scapulae from 100 individuals (50 females, 50 males) were measured. Landmarks and semilandmarks were placed within a three-dimensional reconstruction of the glenoid cavity for analysis of shape differences between sides of the body within sexes. Linear morphometrics showed significant directional asymmetry in both sexes in all bones. Geometric morphometrics revealed significant shape differences of the glenoid cavity between sides of the body in females but not in males. Both indicators of directional asymmetry (%DA and %AA) did not show significant differences between sexes. PLS analysis revealed a significant correlation between glenoid shape and two humeral head diameters only in females on the left side of the body. The studied population, perhaps due to a high level of activity, exhibited slightly greater upper-limb bone bilateral asymmetry than other agricultural populations. Results suggest that the upper limbs were involved in similar activity patterns in both sexes but were characterized by different habitual behaviors. To obtain comprehensive results, studies should be based on sophisticated methods such as geometric morphometrics as well as standard measurements. Am. J. Hum. Biol. 28:817-824, 2016. © 2016Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.
Analysis of mode-locked and intracavity frequency-doubled Nd:YAG laser
NASA Technical Reports Server (NTRS)
Siegman, A. E.; Heritier, J.-M.
1980-01-01
The paper presents analytical and computer studies of the CW mode-locked and intracavity frequency-doubled Nd:YAG laser which provide new insight into the operation, including the detuning behavior, of this type of laser. Computer solutions show that the steady-state pulse shape for this laser is much closer to a truncated cosine than to a Gaussian; there is little spectral broadening for on-resonance operation; and the chirp is negligible. This leads to a simplified analytical model carried out entirely in the time domain, with atomic linewidth effects ignored. Simple analytical results for on-resonance pulse shape, pulse width, signal intensity, and harmonic conversion efficiency in terms of basic laser parameters are derived from this model. A simplified physical description of the detuning behavior is also developed. Agreement is found with experimental studies showing that the pulsewidth decreases as the modulation frequency is detuned off resonance; the harmonic power output initially increases and then decreases; and the pulse shape develops a sharp-edged asymmetry of opposite sense for opposite signs of detuning.
Wear of the Primary WaveOne single file when shaping vestibular root canals of first maxillary molar
Borie, Eduardo; Betancourt, Pablo; Aracena, Angella; Guzmán, Mario
2017-01-01
Background It is very important for a clinician to know the increased wear of mechanized files when establishing endodontic therapy. The aim of this study was to check the wear of the Primary WaveOne file upon shaping two, four and six maxillary molar vestibular canals. Material and Methods The deterioration of 40 files, divided into four groups, was evaluated microscopically: group 1, control (unused); group 2, two canals; group 3, four canals; and group 4, six canals. After instrumentation, the files were embedded in resin and sectioned at their apical third into three equal parts. To analyze the wear of edges in the different sections, AutoCAD software was used and analysis of variance (ANOVA) was then performed to compare the mean rake angles. Results The files with two and four uses showed slight wear, whereas those with six applications showed significant wear (p<0.05). Conclusions Primary WaveOne files can be used in up to four root canals without their edges losing effectiveness. Key words:Files wear, reciprocating motion, shaping capacity, WaveOne. PMID:28298976
Smart Kirigami open honeycombs in shape changing actuation and dynamics
NASA Astrophysics Data System (ADS)
Neville, R. M.; Scarpa, F.; Leng, J.
2017-04-01
Kirigami is the ancient Japanese art of cutting and folding paper, widespread in Asia since the 17th century. Kirigami offers a broader set of geometries and topologies than classical fold/valleys Origami, because of the presence of cuts. Moreover, Kirigami can be readily applied to a large set of composite and smart 2D materials, and can be used to up-scaled productions with modular molding. We describe the manufacturing and testing of a topology of Kirigami cellular structures defined as Open Honeycombs. Open Honeycombs (OHs) can assume fully closed shape and be alike classical hexagonal centresymmetric honeycombs, or can vary their morphology by tuning the opening angle and rotational stiffness of the folds. We show the performance of experimental PEEK OHs with cable actuation and morphing shape characteristics, and the analogous morphing behavior of styrene SMPs under combined mechanical and thermal loading. We also show the dynamic (modal analysis) behavior of OHs configurations parameterized against their geometry characteristics, and the controllable modal density characteristics that one could obtain by tuning the topology and folding properties.
Siddiqui, Muhammad Usama; Arif, Abul Fazal Muhammad; Bashmal, Salem
2016-08-06
We present a modeling approach to determine the permeability-selectivity tradeoff for microfiltration and ultrafiltration membranes with a distribution of pore sizes and pore shapes. Using the formulated permeability-selectivity model, the effect of pore aspect ratio and pore size distribution on the permeability-selectivity tradeoff of the membrane is analyzed. A finite element model is developed to study the effect of membrane stretching on the distribution of pore sizes and shapes in the stretched membrane. The effect of membrane stretching on the permeability-selectivity tradeoff of membranes is also analyzed. The results show that increasing pore aspect ratio improves membrane performance while increasing the width of pore size distribution deteriorates the performance. It was also found that the effect of membrane stretching on the permeability-selectivity tradeoff is greatly affected by the uniformity of pore distribution in the membrane. Stretching showed a positive shift in the permeability-selectivity tradeoff curve of membranes with well-dispersed pores while in the case of pore clustering, a negative shift in the permeability-selectivity tradeoff curve was observed.
Morphometric variation of extant platyrrhine molars: taxonomic implications for fossil platyrrhines
Nova Delgado, Mónica; Galbany, Jordi
2016-01-01
The phylogenetic position of many fossil platyrrhines with respect to extant ones is not yet clear. Two main hypotheses have been proposed: the layered or successive radiations hypothesis suggests that Patagonian fossils are Middle Miocene stem platyrrhines lacking modern descendants, whereas the long lineage hypothesis argues for an evolutionary continuity of all fossil platyrrhines with the extant ones. Our geometric morphometric analysis of a 15 landmark-based configuration of platyrrhines’ first and second lower molars suggest that morphological stasis may explain the reduced molar shape variation observed. Platyrrhine lower molar shape might be a primitive retention of the ancestral state affected by strong ecological constraints throughout the radiation of the main platyrrhine families. The Patagonian fossil specimens showed two distinct morphological patterns of lower molars, Callicebus—like and Saguinus—like, which might be the precursors of the extant forms, whereas the Middle Miocene specimens, though showing morphological resemblances with the Patagonian fossils, also displayed new, derived molar patterns, Alouatta—like and Pitheciinae—like, thereby suggesting that despite the overall morphological stasis of molars, phenotypic diversification of molar shape was already settled during the Middle Miocene. PMID:27190704
Aracena, Daniel; Borie, Eduardo; Betancourt, Pablo; Aracena, Angella; Guzmán, Mario
2017-03-01
It is very important for a clinician to know the increased wear of mechanized files when establishing endodontic therapy. The aim of this study was to check the wear of the Primary WaveOne file upon shaping two, four and six maxillary molar vestibular canals. The deterioration of 40 files, divided into four groups, was evaluated microscopically: group 1, control (unused); group 2, two canals; group 3, four canals; and group 4, six canals. After instrumentation, the files were embedded in resin and sectioned at their apical third into three equal parts. To analyze the wear of edges in the different sections, AutoCAD software was used and analysis of variance (ANOVA) was then performed to compare the mean rake angles. The files with two and four uses showed slight wear, whereas those with six applications showed significant wear ( p <0.05). Primary WaveOne files can be used in up to four root canals without their edges losing effectiveness. Key words: Files wear, reciprocating motion, shaping capacity, WaveOne.
Single step synthesis of nanostructured boron nitride for boron neutron capture therapy
NASA Astrophysics Data System (ADS)
Singh, Bikramjeet; Singh, Paviter; Kumar, Manjeet; Thakur, Anup; Kumar, Akshay
2015-05-01
Nanostructured Boron Nitride (BN) has been successfully synthesized by carbo-thermic reduction of Boric Acid (H3BO3). This method is a relatively low temperature synthesis route and it can be used for large scale production of nanostructured BN. The synthesized nanoparticles have been characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM) and differential thermal analyzer (DTA). XRD analysis confirmed the formation of single phase nanostructured Boron Nitride. SEM analysis showed that the particles are spherical in shape. DTA analysis showed that the phase is stable upto 900 °C and the material can be used for high temperature applications as well boron neutron capture therapy (BNCT).
Chatzigianni, Athina; Halazonetis, Demetrios J
2009-10-01
Cervical vertebrae shape has been proposed as a diagnostic factor for assessing skeletal maturation in orthodontic patients. However, evaluation of vertebral shape is mainly based on qualitative criteria. Comprehensive quantitative measurements of shape and assessments of its predictive power have not been reported. Our aims were to measure vertebral shape by using the tools of geometric morphometrics and to evaluate the correlation and predictive power of vertebral shape on skeletal maturation. Pretreatment lateral cephalograms and corresponding hand-wrist radiographs of 98 patients (40 boys, 58 girls; ages, 8.1-17.7 years) were used. Skeletal age was estimated from the hand-wrist radiographs. The first 4 vertebrae were traced, and 187 landmarks (34 fixed and 153 sliding semilandmarks) were used. Sliding semilandmarks were adjusted to minimize bending energy against the average of the sample. Principal components analysis in shape and form spaces was used for evaluating shape patterns. Shape measures, alone and combined with centroid size and age, were assessed as predictors of skeletal maturation. Shape alone could not predict skeletal maturation better than chronologic age. The best prediction was achieved with the combination of form space principal components and age, giving 90% prediction intervals of approximately 200 maturation units in the girls and 300 units in the boys. Similar predictive power could be obtained by using centroid size and age. Vertebrae C2, C3, and C4 gave similar results when examined individually or combined. C1 showed lower correlations, signifying lower integration with hand-wrist maturation. Vertebral shape is strongly correlated to skeletal age but does not offer better predictive value than chronologic age.
Digital analysis of changes by Plasmodium vivax malaria in erythrocytes.
Edison, Maombi; Jeeva, J B; Singh, Megha
2011-01-01
Blood samples of malaria patients (n = 30), selected based on the severity of parasitemia, were divided into low (LP), medium (MP) and high (HP) parasitemia, which represent increasing levels of the disease severity. Healthy subjects (n = 10) without any history of disease were selected as a control group. By processing of erythrocytes images their contours were obtained and from these the shape parameters area, perimeter and form factor were obtained. The gray level intensity was determined by scanning of erythrocyte along its largest diameter. A comparison of these with that of normal cells showed a significant change in shape parameters. The gray level intensity decreases with the increase of severity of the disease. The changes in shape parameters directly and gray level intensity variation inversely are correlated with the increase in parasite density due to the disease.
Finite Element Analysis of Adaptive-Stiffening and Shape-Control SMA Hybrid Composites
NASA Technical Reports Server (NTRS)
Gao, Xiu-Jie; Turner, Travis L.; Burton, Deborah; Brinson, L. Catherine
2005-01-01
The usage of shape memory materials has extended rapidly to many fields, including medical devices, actuators, composites, structures and MEMS devices. For these various applications, shape memory alloys (SMAs) are available in various forms: bulk, wire, ribbon, thin film, and porous. In this work, the focus is on SMA hybrid composites with adaptive-stiffening or morphing functions. These composites are created by using SMA ribbons or wires embedded in a polymeric based composite panel/beam. Adaptive stiffening or morphing is activated via selective resistance heating or uniform thermal loads. To simulate the thermomechanical behavior of these composites, a SMA model was implemented using ABAQUS user element interface and finite element simulations of the systems were studied. Several examples are presented which show that the implemented model can be a very useful design and simulation tool for SMA hybrid composites.
González, Maraelys Morales; Aguilar, Claudia Hernández; Pacheco, Flavio Arturo Domínguez; Cabrales, Luis Enrique Bergues; Reyes, Juan Bory; Nava, Juan José Godina; Ambrosio, Paulo Eduardo; Domiguez, Dany Sanchez; Sierra González, Victoriano Gustavo; Pupo, Ana Elisa Bergues; Ciria, Héctor Manuel Camué; Alemán, Elizabeth Issac; García, Francisco Monier; Rivas, Clara Berenguer; Reina, Evelyn Chacón
2018-01-01
One of the most challenging problems of electrochemical therapy is the design and selection of suitable electrode array for cancer. The aim is to determine how two-dimensional spatial patterns of tissue damage, temperature, and pH induced in pieces of potato ( Solanum tuberosum L., var. Mondial) depend on electrode array with circular, elliptical, parabolic, and hyperbolic shape. The results show the similarity between the shapes of spatial patterns of tissue damage and electric field intensity, which, like temperature and pH take the same shape of electrode array. The adequate selection of suitable electrodes array requires an integrated analysis that involves, in a unified way, relevant information about the electrochemical process, which is essential to perform more efficiently way the therapeutic planning and the personalized therapy for patients with a cancerous tumor.
NASA Technical Reports Server (NTRS)
Ko, William L.; Richards, W. Lance; Fleischer, Van Tran
2009-01-01
The Ko displacement theory, formulated for weak nonuniform (slowly changing cross sections) cantilever beams, was applied to the deformed shape analysis of the doubly-tapered wings of the Ikhana unmanned aircraft. The two-line strain-sensing system (along the wingspan) was used for sensing the bending strains needed for the wing-deformed shapes (deflections and cross-sectional twist) analysis. The deflection equation for each strain-sensing line was expressed in terms of the bending strains evaluated at multiple numbers of strain-sensing stations equally spaced along the strain-sensing line. For the preflight shape analysis of the Ikhana wing, the strain data needed for input to the displacement equations for the shape analysis were obtained from the nodal-stress output of the finite-element analysis. The wing deflections and cross-sectional twist angles calculated from the displacement equations were then compared with those computed from the finite-element computer program. The Ko displacement theory formulated for weak nonlinear cantilever beams was found to be highly accurate in the deformed shape predictions of the doubly-tapered Ikhana wing.
Facial patterns in a tropical social wasp correlate with colony membership
NASA Astrophysics Data System (ADS)
Baracchi, David; Turillazzi, Stefano; Chittka, Lars
2016-10-01
Social insects excel in discriminating nestmates from intruders, typically relying on colony odours. Remarkably, some wasp species achieve such discrimination using visual information. However, while it is universally accepted that odours mediate a group level recognition, the ability to recognise colony members visually has been considered possible only via individual recognition by which wasps discriminate `friends' and `foes'. Using geometric morphometric analysis, which is a technique based on a rigorous statistical theory of shape allowing quantitative multivariate analyses on structure shapes, we first quantified facial marking variation of Liostenogaster flavolineata wasps. We then compared this facial variation with that of chemical profiles (generated by cuticular hydrocarbons) within and between colonies. Principal component analysis and discriminant analysis applied to sets of variables containing pure shape information showed that despite appreciable intra-colony variation, the faces of females belonging to the same colony resemble one another more than those of outsiders. This colony-specific variation in facial patterns was on a par with that observed for odours. While the occurrence of face discrimination at the colony level remains to be tested by behavioural experiments, overall our results suggest that, in this species, wasp faces display adequate information that might be potentially perceived and used by wasps for colony level recognition.
Jurczyszyn, Kamil; Osiecka, Beata J; Ziółkowski, Piotr
2012-01-01
Fractal dimension analysis (FDA) is modern mathematical method widely used to describing of complex and chaotic shapes when classic methods fail. The main aim of this study was evaluating the influence of photodynamic therapy (PDT) with cystein proteases inhibitors (CPI) on the number and morphology of blood vessels inside tumor and on increase of effectiveness of combined therapy in contrast to PDT and CPI used separately. Animals were divided into four groups: control, treated using only PDT, treated using only CPI and treated using combined therapy, PDT and CPI. Results showed that time of animal survival and depth of necrosis inside tumor were significantly higher in CPI+PDT group in contrast to other groups. The higher value of fractal dimension (FD) was observed in control group, while the lowest value was found in the group which was treated by cystein protease inhibitors. The differences between FD were observed in CPI group and PDT+CPI group in comparison to control group. Our results revealed that fractal dimension analysis is a very useful tool in estimating differences between irregular shapes like blood vessels in PDT treated tumors. Thus, the implementation of FDA algorithms could be useful method in evaluating the efficacy of PDT.
Jurczyszyn, Kamil; Osiecka, Beata J.; Ziółkowski, Piotr
2012-01-01
Fractal dimension analysis (FDA) is modern mathematical method widely used to describing of complex and chaotic shapes when classic methods fail. The main aim of this study was evaluating the influence of photodynamic therapy (PDT) with cystein proteases inhibitors (CPI) on the number and morphology of blood vessels inside tumor and on increase of effectiveness of combined therapy in contrast to PDT and CPI used separately. Animals were divided into four groups: control, treated using only PDT, treated using only CPI and treated using combined therapy, PDT and CPI. Results showed that time of animal survival and depth of necrosis inside tumor were significantly higher in CPI+PDT group in contrast to other groups. The higher value of fractal dimension (FD) was observed in control group, while the lowest value was found in the group which was treated by cystein protease inhibitors. The differences between FD were observed in CPI group and PDT+CPI group in comparison to control group. Our results revealed that fractal dimension analysis is a very useful tool in estimating differences between irregular shapes like blood vessels in PDT treated tumors. Thus, the implementation of FDA algorithms could be useful method in evaluating the efficacy of PDT. PMID:22991578
Glaciated valleys in Europe and western Asia
Prasicek, Günther; Otto, Jan-Christoph; Montgomery, David R.; Schrott, Lothar
2015-01-01
In recent years, remote sensing, morphometric analysis, and other computational concepts and tools have invigorated the field of geomorphological mapping. Automated interpretation of digital terrain data based on impartial rules holds substantial promise for large dataset processing and objective landscape classification. However, the geomorphological realm presents tremendous complexity and challenges in the translation of qualitative descriptions into geomorphometric semantics. Here, the simple, conventional distinction of V-shaped fluvial and U-shaped glacial valleys was analyzed quantitatively using multi-scale curvature and a novel morphometric variable termed Difference of Minimum Curvature (DMC). We used this automated terrain analysis approach to produce a raster map at a scale of 1:6,000,000 showing the distribution of glaciated valleys across Europe and western Asia. The data set has a cell size of 3 arc seconds and consists of more than 40 billion grid cells. Glaciated U-shaped valleys commonly associated with erosion by warm-based glaciers are abundant in the alpine regions of mid Europe and western Asia but also occur at the margins of mountain ice sheets in Scandinavia. The high-level correspondence with field mapping and the fully transferable semantics validate this approach for automated analysis of yet unexplored terrain around the globe and qualify for potential applications on other planetary bodies like Mars. PMID:27019665
The Skeletal Site-Specific Role of Connective Tissue Growth Factor in Prenatal Osteogenesis
Lambi, Alex G.; Pankratz, Talia L.; Mundy, Christina; Gannon, Maureen; Barbe, Mary F.; Richtsmeier, Joan T.; Popoff, Steven N.
2013-01-01
Background Connective tissue growth factor (CTGF/CCN2) is a matricellular protein that is highly expressed during bone development. Mice with global CTGF ablation (knockout, KO) have multiple skeletal dysmorphisms and perinatal lethality. A quantitative analysis of the bone phenotype has not been conducted. Results We demonstrated skeletal site-specific changes in growth plate organization, bone microarchitecture, and shape and gene expression levels in CTGF KO compared with wild-type mice. Growth plate malformations included reduced proliferation zone and increased hypertrophic zone lengths. Appendicular skeletal sites demonstrated decreased metaphyseal trabecular bone, while having increased mid-diaphyseal bone and osteogenic expression markers. Axial skeletal analysis showed decreased bone in caudal vertebral bodies, mandibles, and parietal bones in CTGF KO mice, with decreased expression of osteogenic markers. Analysis of skull phenotypes demonstrated global and regional differences in CTGF KO skull shape resulting from allometric (size-based) and nonallometric shape changes. Localized differences in skull morphology included increased skull width and decreased skull length. Dysregulation of the transforming growth factor-β-CTGF axis coupled with unique morphologic traits provides a potential mechanistic explanation for the skull phenotype. Conclusions We present novel data on a skeletal phenotype in CTGF KO mice, in which ablation of CTGF causes site-specific aberrations in bone formation. PMID:23073844
NASA Astrophysics Data System (ADS)
Malekinejad, Mohsen; Rahgozar, Reza; Malekinejad, Ali; Rahgozar, Peyman
2016-09-01
In this paper, a continuous-discrete approach based on the concept of lumped mass and equivalent continuous approach is proposed for free vibration analysis of combined system of framed tube, shear core and outrigger-belt truss in high-rise buildings. This system is treated as a continuous system (i.e., discrete beams and columns are replaced with equivalent continuous membranes) and a discrete system (or lumped mass system) at different stages of dynamic analysis. The structure is discretized at each floor of the building as a series of lumped masses placed at the center of shear core. Each mass has two transitional degrees of freedom (lateral and axial( and one rotational. The effect of shear core and outrigger-belt truss on framed tube system is modeled as a rotational spring placed at the location of outrigger-belt truss system along structure's height. By solving the resulting eigen problem, natural frequencies and mode-shapes are obtained. Numerical examples are presented to show acceptable accuracy of the procedure in estimating the fundamental frequencies and corresponding mode shapes of the combined system as compared to finite element analysis of the complete structure. The simplified proposed method is much faster and should be more suitable for rapid interactive design.
Analysis Of Scoliosis By Back Shape Topography
NASA Astrophysics Data System (ADS)
Turner-Smith, Alan R.; Harris, John D.
1983-07-01
The use of surface topography for the assessment of scoliotic deformity in the clinic depends firstly on the quality of measures which reliably characterise deformity of the back, and secondly on the ease and speed with which these measures can be applied. A method of analysis of back shape measurements is presented which can be applied to any topographic measurement system. Measures presented are substantially independent of minor changes in the patient's posture in rotation and flexion from one clinic to the next, and yet sensitive enough to indicate significant improvement or degeneration of the disease. The presentation shows (1) horizontal cross-sections at ten levels up the back from sacrum to vertebra prominens, (2) angles of rotation of the surface over a small region about the spine, (3) three vertical profiles following the line of the spine, and (4) measures of maximum kyphosis and lordosis. Dependence on the operator has been reduced to a minimum. Extreme care in positioning the patient is unnecessary and those spinous processes which are easily palpable, the vertebra prominens and the two dimples over the posterior superior iliac spines are marked. Analysis proceeds entirely automatically once the basic shape data have been supplied. Applications of the technique to indirect moire topography and a television topographic measurement system are described.
Comparison of organs' shapes with geometric and Zernike 3D moments.
Broggio, D; Moignier, A; Ben Brahim, K; Gardumi, A; Grandgirard, N; Pierrat, N; Chea, M; Derreumaux, S; Desbrée, A; Boisserie, G; Aubert, B; Mazeron, J-J; Franck, D
2013-09-01
The morphological similarity of organs is studied with feature vectors based on geometric and Zernike 3D moments. It is particularly investigated if outliers and average models can be identified. For this purpose, the relative proximity to the mean feature vector is defined, principal coordinate and clustering analyses are also performed. To study the consistency and usefulness of this approach, 17 livers and 76 hearts voxel models from several sources are considered. In the liver case, models with similar morphological feature are identified. For the limited amount of studied cases, the liver of the ICRP male voxel model is identified as a better surrogate than the female one. For hearts, the clustering analysis shows that three heart shapes represent about 80% of the morphological variations. The relative proximity and clustering analysis rather consistently identify outliers and average models. For the two cases, identification of outliers and surrogate of average models is rather robust. However, deeper classification of morphological feature is subject to caution and can only be performed after cross analysis of at least two kinds of feature vectors. Finally, the Zernike moments contain all the information needed to re-construct the studied objects and thus appear as a promising tool to derive statistical organ shapes. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.
Characterization of the acoustic field generated by a horn shaped ultrasonic transducer
Hu, B.; Lerch, J. E.; Chavan, A. H.; ...
2017-09-04
A horn shaped Langevin ultrasonic transducer used in a single axis levitator was characterized to better understand the role of the acoustic profile in establishing stable traps. The method of characterization included acoustic beam profiling performed by raster scanning an ultrasonic microphone as well as finite element analysis of the horn and its interface with the surrounding air volume. The results of the model are in good agreement with measurements and demonstrate the validity of the approach for both near and far field analysis. Our results show that this style of transducer produces a strong acoustic beam with a totalmore » divergence angle of 10 degrees, a nearfield point close to the transducer surface and a virtual sound source. These are desirable characteristics for a sound source used for acoustic trapping experiments.« less
Characterization of the acoustic field generated by a horn shaped ultrasonic transducer
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hu, B.; Lerch, J. E.; Chavan, A. H.
A horn shaped Langevin ultrasonic transducer used in a single axis levitator was characterized to better understand the role of the acoustic profile in establishing stable traps. The method of characterization included acoustic beam profiling performed by raster scanning an ultrasonic microphone as well as finite element analysis of the horn and its interface with the surrounding air volume. The results of the model are in good agreement with measurements and demonstrate the validity of the approach for both near and far field analysis. Our results show that this style of transducer produces a strong acoustic beam with a totalmore » divergence angle of 10 degrees, a nearfield point close to the transducer surface and a virtual sound source. These are desirable characteristics for a sound source used for acoustic trapping experiments.« less
NASA Astrophysics Data System (ADS)
Li, Y.; Seymour, M.; Chen, G.; Su, C.
2013-12-01
Mechanistic understanding of the transport and retention of nanoparticles in porous media is essential both for environmental applications of nanotechnology and assessing the potential environmental impacts of engineered nanomaterials. Engineered and naturally occurring nanoparticles can be found in various shapes including rod-shape carbon nanotubes that have high aspect ratios. Although it is expected that nonspherical shape could play an important role on their transport and retention behaviors, current theoretical models for particle transport in porous media, however, are mostly based on spherical particle shape. In this work, the effect of particle shape on its transport and retention in porous media was evaluated by stretching carboxylate-modified fluorescent polystyrene spheres into rod shapes with aspect ratios of 2:1 and 4:1. Quartz crystal microbalance with dissipation experiments (QCM-D) were conducted to measure the deposition rates of spherical and rod-shaped nanoparticles to the collector (poly-L-lysine coated silica sensor) surface under favorable conditions. Under unfavorable conditions, the retention of nanoparticles in a microfluidic flow cell packed with glass beads was studied with the use of laser scanning cytometry (LSC). Under favorable conditions, the spherical particles displayed a significantly higher deposition rate compared with that of the rod-shaped particles. Theoretical analysis based on Smoluchowski-Levich approximation indicated that the rod-shaped particles largely counterbalance the attractive energies due to higher hydrodynamic forces and torques experienced during their transport and rotation. Under unfavorable conditions, significantly more attachment was observed for rod-shaped particles than spherical particles, and the attachment rate of the rod-shaped particles showed an increasing trend with the increase in injection volume. Rod-shaped particles were found to be less sensitive to the surface charge heterogeneity change than spherical particles. Increased attachment rate of rod-shaped particles was attributed to surface heterogeneity and possibly enhanced hydrophobicity during the stretching process.
Picturing Service-Learning: Defining the Field, Setting Expectations, Shaping Learning
ERIC Educational Resources Information Center
Donahue, David M.; Fenner, Derek; Mitchell, Tania D.
2015-01-01
This study used content analysis and audiencing to understand how service-learning is presented visually by institutions of higher education and interpreted by college students. Data included 834 photographs from the service-learning web pages of 63 four-year institutions in California. The majority showed a narrow range of direct service…
Time Ordering in Frontal Lobe Patients: A Stochastic Model Approach
ERIC Educational Resources Information Center
Magherini, Anna; Saetti, Maria Cristina; Berta, Emilia; Botti, Claudio; Faglioni, Pietro
2005-01-01
Frontal lobe patients reproduced a sequence of capital letters or abstract shapes. Immediate and delayed reproduction trials allowed the analysis of short- and long-term memory for time order by means of suitable Markov chain stochastic models. Patients were as proficient as healthy subjects on the immediate reproduction trial, thus showing spared…
NASA Astrophysics Data System (ADS)
Kirschner, Matthias; Wesarg, Stefan
2011-03-01
Active Shape Models (ASMs) are a popular family of segmentation algorithms which combine local appearance models for boundary detection with a statistical shape model (SSM). They are especially popular in medical imaging due to their ability for fast and accurate segmentation of anatomical structures even in large and noisy 3D images. A well-known limitation of ASMs is that the shape constraints are over-restrictive, because the segmentations are bounded by the Principal Component Analysis (PCA) subspace learned from the training data. To overcome this limitation, we propose a new energy minimization approach which combines an external image energy with an internal shape model energy. Our shape energy uses the Distance From Feature Space (DFFS) concept to allow deviations from the PCA subspace in a theoretically sound and computationally fast way. In contrast to previous approaches, our model does not rely on post-processing with constrained free-form deformation or additional complex local energy models. In addition to the energy minimization approach, we propose a new method for liver detection, a new method for initializing an SSM and an improved k-Nearest Neighbour (kNN)-classifier for boundary detection. Our ASM is evaluated with leave-one-out tests on a data set with 34 tomographic CT scans of the liver and is compared to an ASM with standard shape constraints. The quantitative results of our experiments show that we achieve higher segmentation accuracy with our energy minimization approach than with standard shape constraints.nym
Jo, Hyoung-Hoon; Min, Jeong-Bum
2016-01-01
Objectives The purpose of this study was to investigate the incidence of root fusion and C-shaped root canals in maxillary molars, and to classify the types of C-shaped canal by analyzing cone-beam computed tomography (CBCT) in a Korean population. Materials and Methods Digitized CBCT images from 911 subjects were obtained in Chosun University Dental Hospital between February 2010 and July 2012 for orthodontic treatment. Among them, a total of selected 3,553 data of maxillary molars were analyzed retrospectively. Tomography sections in the axial, coronal, and sagittal planes were displayed by PiViewstar and Rapidia MPR software (Infinitt Co.). The incidence and types of root fusion and C-shaped root canals were evaluated and the incidence between the first and the second molar was compared using Chi-square test. Results Root fusion was present in 3.2% of the first molars and 19.5% of the second molars, and fusion of mesiobuccal and palatal root was dominant. C-shaped root canals were present in 0.8% of the first molars and 2.7% of the second molars. The frequency of root fusion and C-shaped canal was significantly higher in the second molar than the first molar (p < 0.001). Conclusions In a Korean population, maxillary molars showed total 11.3% of root fusion and 1.8% of C-shaped root canals. Furthermore, root fusion and C-shaped root canals were seen more frequently in the maxillary second molars. PMID:26877991
Silk sericin loaded alginate nanoparticles: Preparation and anti-inflammatory efficacy.
Khampieng, Thitikan; Aramwit, Pornanong; Supaphol, Pitt
2015-09-01
In this study, silk sericin loaded alginate nanoparticles were prepared by the emulsification method followed by internal crosslinking. The effects of various silk sericin loading concentration on particle size, shape, thermal properties, and release characteristics were investigated. The initial silk sericin loadings of 20, 40, and 80% w/w to polymer were incorporated into these alginate nanoparticles. SEM images showed a spherical shape and small particles of about 71.30-89.50 nm. TGA analysis showed that thermal stability slightly increased with increasing silk sericin loadings. FTIR analysis suggested interactions between alginate and silk sericin in the nanoparticles. The release study was performed in acetate buffer at normal skin conditions (pH 5.5; 32 °C). The release profiles of silk sericin exhibited initial rapid release, consequently with sustained release. These silk sericin loaded alginate nanoparticles were further incorporated into topical hydrogel and their anti-inflammatory properties were studied using carrageenan-induced paw edema assay. The current study confirms the hypothesis that the application of silk sericin loaded alginate nanoparticle gel can inhibit inflammation induced by carrageenan. Copyright © 2015 Elsevier B.V. All rights reserved.
Kang, Chang-kwon; Shyy, Wei
2014-12-06
In the analysis of flexible flapping wings of insects, the aerodynamic outcome depends on the combined structural dynamics and unsteady fluid physics. Because the wing shape and hence the resulting effective angle of attack are a priori unknown, predicting aerodynamic performance is challenging. Here, we show that a coupled aerodynamics/structural dynamics model can be established for hovering, based on a linear beam equation with the Morison equation to account for both added mass and aerodynamic damping effects. Lift strongly depends on the instantaneous angle of attack, resulting from passive pitch associated with wing deformation. We show that both instantaneous wing deformation and lift can be predicted in a much simplified framework. Moreover, our analysis suggests that resulting wing kinematics can be explained by the interplay between acceleration-related and aerodynamic damping forces. Interestingly, while both forces combine to create a high angle of attack resulting in high lift around the midstroke, they offset each other for phase control at the end of the stroke. © 2014 The Author(s) Published by the Royal Society. All rights reserved.
Geometrical characterization of perlite-metal syntactic foam
DOE Office of Scientific and Technical Information (OSTI.GOV)
Borovinšek, Matej, E-mail: matej.borovinsek@um.si
This paper introduces an improved method for the detailed geometrical characterization of perlite-metal syntactic foam. This novel metallic foam is created by infiltrating a packed bed of expanded perlite particles with liquid aluminium alloy. The geometry of the solidified metal is thus defined by the perlite particle shape, size and morphology. The method is based on a segmented micro-computed tomography data and allows for automated determination of the distributions of pore size, sphericity, orientation and location. The pore (i.e. particle) size distribution and pore orientation is determined by a multi-criteria k-nearest neighbour algorithm for pore identification. The results indicate amore » weak density gradient parallel to the casting direction and a slight preference of particle orientation perpendicular to the casting direction. - Highlights: •A new method for identification of pores in porous materials was developed. •It was applied on perlite-metal syntactic foam samples. •A porosity decrease in the axial direction of the samples was determined. •Pore shape analysis showed a high percentage of spherical pores. •Orientation analysis showed that more pores are oriented in the radial direction.« less
Effect of Geometrical Imperfection on Buckling Failure of ITER VVPSS Tank
NASA Astrophysics Data System (ADS)
Jha, Saroj Kumar; Gupta, Girish Kumar; Pandey, Manish Kumar; Bhattacharya, Avik; Jogi, Gaurav; Bhardwaj, Anil Kumar
2017-04-01
The ‘Vacuum Vessel Pressure Suppression System’ (VVPSS) is part of ITER machine, which is designed to protect the ITER Vacuum Vessel and its connected systems, from an over-pressure situation. It is comprised of a partially evacuated tank of stainless steel approximately 46 m long and 6 m in diameter and thickness 30 mm. It is to hold approximately 675 tonnes of water at room temperature to condense the steam resulting from the adverse water leakage into the Vacuum Vessel chamber. For any vacuum vessel, geometrical imperfection has significant effect on buckling failure and structural integrity. Major geometrical imperfection in VVPSS tank depends on form tolerances. To study the effect of geometrical imperfection on buckling failure of VVPSS tank, finite element analysis (FEA) has been performed in line with ASME section VIII division 2 part 5 [1], ‘design by analysis method’. Linear buckling analysis has been performed to get the buckled shape and displacement. Geometrical imperfection due to form tolerance is incorporated in FEA model of VVPSS tank by scaling the resulted buckled shape by a factor ‘60’. This buckled shape model is used as input geometry for plastic collapse and buckling failure assessment. Plastic collapse and buckling failure of VVPSS tank has been assessed by using the elastic-plastic analysis method. This analysis has been performed for different values of form tolerance. The results of analysis show that displacement and load proportionality factor (LPF) vary inversely with form tolerance. For higher values of form tolerance LPF reduces significantly with high values of displacement.
NASA Astrophysics Data System (ADS)
Zonno, Irene; Martinez-Otero, Alberto; Hebig, Jan-Christoph; Kirchartz, Thomas
2017-03-01
The Mott-Schottky analysis in the dark is a frequently used method to determine the doping concentration of semiconductors from capacitance-voltage measurements, even for such complex systems as polymer:fullerene blends used for organic solar cells. While the analysis of capacitance-voltage measurements in the dark is relatively well established, the analysis of data taken under illumination is currently not fully understood. Here, we present experiments and simulations to show which physical mechanisms affect the Mott-Schottky analysis under illumination. We show that the mobility of the blend has a major influence on the shape of the capacitance-voltage curve and can be obtained from data taken under reverse bias. In addition, we show that the apparent shift of the built-in voltage observed previously can be explained by a shift of the onset of space-charge-limited collection with illumination intensity.
Karakostis, Fotios Alexandros; Hotz, Gerhard; Scherf, Heike; Wahl, Joachim; Harvati, Katerina
2018-05-01
The purpose of this study was to put forth a precise landmark-based technique for reconstructing the three-dimensional shape of human entheseal surfaces, to investigate whether the shape of human entheses is related to their size. The effects of age-at-death and bone length on entheseal shapes were also assessed. The sample comprised high-definition three-dimensional models of three right hand entheseal surfaces, which correspond to 45 male adult individuals of known age. For each enthesis, a particular landmark configuration was introduced, whose precision was tested both within and between observers. The effect of three-dimensional size, age-at-death, and bone length on shape was investigated through shape regression. The method presented high intra-observer and inter-observer repeatability. All entheses showed significant allometry, with the area of opponens pollicis demonstrating the most substantial relationship. This was particularly due to variation related to its proximal elongated ridge. The effect of age-at-death and bone length on entheses was limited. The introduced methodology can set a reliable basis for further research on the factors affecting entheseal shape. Using both size and shape, variables can provide further information on entheseal variation and its biomechanical implications. The low entheseal variation by age verifies that specimens under 50 years of age are not substantially affected by age-related changes. The lack of correlation between entheseal shape and bone length or age implies that other factors may regulate entheseal surfaces. Future research should focus on multivariate shape patterns among entheses and their association with occupation. © 2018 Wiley Periodicals, Inc.
Non-input analysis for incomplete trapping irreversible tracer with PET.
Ohya, Tomoyuki; Kikuchi, Tatsuya; Fukumura, Toshimitsu; Zhang, Ming-Rong; Irie, Toshiaki
2013-07-01
When using metabolic trapping type tracers, the tracers are not always trapped in the target tissue; i.e., some are completely trapped in the target, but others can be eliminated from the target tissue at a measurable rate. The tracers that can be eliminated are termed 'incomplete trapping irreversible tracers'. These incomplete trapping irreversible tracers may be clinically useful when the tracer β-value, the ratio of the tracer (metabolite) elimination rate to the tracer efflux rate, is under approximately 0.1. In this study, we propose a non-input analysis for incomplete trapping irreversible tracers based on the shape analysis (Shape), a non-input analysis used for irreversible tracers. A Monte Carlo simulation study based on experimental monkey data with two actual PET tracers (a complete trapping irreversible tracer [(11)C]MP4A and an incomplete trapping irreversible tracer [(18)F]FEP-4MA) was performed to examine the effects of the environmental error and the tracer elimination rate on the estimation of the k3-parameter (corresponds to metabolic rate) using Shape (original) and modified Shape (M-Shape) analysis. The simulation results were also compared with the experimental results obtained with the two PET tracers. When the tracer β-value was over 0.03, the M-Shape method was superior to the Shape method for the estimation of the k3-parameter. The simulation results were also in reasonable agreement with the experimental ones. M-Shape can be used as the non-input analysis of incomplete trapping irreversible tracers for PET study. Copyright © 2013 Elsevier Inc. All rights reserved.
Textural Maturity Analysis and Sedimentary Environment Discrimination Based on Grain Shape Data
NASA Astrophysics Data System (ADS)
Tunwal, M.; Mulchrone, K. F.; Meere, P. A.
2017-12-01
Morphological analysis of clastic sedimentary grains is an important source of information regarding the processes involved in their formation, transportation and deposition. However, a standardised approach for quantitative grain shape analysis is generally lacking. In this contribution we report on a study where fully automated image analysis techniques were applied to loose sediment samples collected from glacial, aeolian, beach and fluvial environments. A range of shape parameters are evaluated for their usefulness in textural characterisation of populations of grains. The utility of grain shape data in ranking textural maturity of samples within a given sedimentary environment is evaluated. Furthermore, discrimination of sedimentary environment on the basis of grain shape information is explored. The data gathered demonstrates a clear progression in textural maturity in terms of roundness, angularity, irregularity, fractal dimension, convexity, solidity and rectangularity. Textural maturity can be readily categorised using automated grain shape parameter analysis. However, absolute discrimination between different depositional environments on the basis of shape parameters alone is less certain. For example, the aeolian environment is quite distinct whereas fluvial, glacial and beach samples are inherently variable and tend to overlap each other in terms of textural maturity. This is most likely due to a collection of similar processes and sources operating within these environments. This study strongly demonstrates the merit of quantitative population-based shape parameter analysis of texture and indicates that it can play a key role in characterising both loose and consolidated sediments. This project is funded by the Irish Petroleum Infrastructure Programme (www.pip.ie)
Kobayashi, Yuto; Kamishima, Tamotsu; Sugimori, Hiroyuki; Ichikawa, Shota; Noguchi, Atsushi; Kono, Michihito; Iiyama, Toshitake; Sutherland, Kenneth; Atsumi, Tatsuya
2018-03-01
Synovitis, which is a hallmark of rheumatoid arthritis (RA), needs to be precisely quantified to determine the treatment plan. Time-intensity curve (TIC) shape analysis is an objective assessment method for characterizing the pixels as artery, inflamed synovium, or other tissues using dynamic contrast-enhanced MRI (DCE-MRI). To assess the feasibility of our original arterial mask subtraction method (AMSM) with mutual information (MI) for quantification of synovitis in RA. Prospective study. Ten RA patients (nine women and one man; mean age, 56.8 years; range, 38-67 years). 3T/DCE-MRI. After optimization of TIC shape analysis to the hand region, a combination of TIC shape analysis and AMSM was applied to synovial quantification. The MI between pre- and postcontrast images was utilized to determine the arterial mask phase objectively, which was compared with human subjective selection. The volume of objectively measured synovitis by software was compared with that of manual outlining by an experienced radiologist. Simple TIC shape analysis and TIC shape analysis combined with AMSM were compared in slices without synovitis according to subjective evaluation. Pearson's correlation coefficient, paired t-test and intraclass correlation coefficient (ICC). TIC shape analysis was successfully optimized in the hand region with a correlation coefficient of 0.725 (P < 0.01) with the results of manual assessment regarded as ground truth. Objective selection utilizing MI had substantial agreement (ICC = 0.734) with subjective selection. Correlation of synovial volumetry in combination with TIC shape analysis and AMSM with manual assessment was excellent (r = 0.922, P < 0.01). In addition, negative predictive ability in slices without synovitis pixels was significantly increased (P < 0.01). The combination of TIC shape analysis and image subtraction reinforced with MI can accurately quantify synovitis of RA in the hand by eliminating arterial pixels. 2 Technical Efficacy: Stage 2 J. Magn. Reson. Imaging 2018. © 2018 International Society for Magnetic Resonance in Medicine.
Analysis of structure of hyperfine poly(3-hydroxybutyrate) fibers (PHB) for controlled drug delivery
NASA Astrophysics Data System (ADS)
Olkhov, A. A.; Kosenko, R. Yu; Markin, V. S.; Zykova, A. K.; Pantyukhov, P. V.; Karpova, S. G.; Iordanskii, A. L.
2017-12-01
Hyperfine fibers based on biodegradable poly (3-hydroxybutyrate) with encapsulated drug substance (dipyridamol) were obtained by using electrospinning method. Addition of dipyridamol has a significant effect on geometrical shape and structure of microfibers as well as total porosity of fibrous material. Observation of fibers using scanning electron microscopy (SEM) method showed that without or at lower dipyridamol content (<3%) fibers consisted of interleaved ellipsoid and cylindrical fragments. At higher dipyridamol content (3-5%) anomalous ellipsoid structures did not practically form, and fiber’s shape became cylindrical. The totality of morphological and structural characteristics determined the rate of dipyridamol diffusive transports. The simplified model of drug desorption from fibrous matrix was presented. In current work it was showed that the rate-limiting stage of transport was the diffusion of dipyridamol in the bulk of cylindrical fibers.
Jaferzadeh, Keyvan; Moon, Inkyu
2015-11-01
Quantitative phase information obtained by digital holographic microscopy (DHM) can provide new insight into the functions and morphology of single red blood cells (RBCs). Since the functionality of a RBC is related to its three-dimensional (3-D) shape, quantitative 3-D geometric changes induced by storage time can help hematologists realize its optimal functionality period. We quantitatively investigate RBC 3-D geometric changes in the storage lesion using DHM. Our experimental results show that the substantial geometric transformation of the biconcave-shaped RBCs to the spherocyte occurs due to RBC storage lesion. This transformation leads to progressive loss of cell surface area, surface-to-volume ratio, and functionality of RBCs. Furthermore, our quantitative analysis shows that there are significant correlations between chemical and morphological properties of RBCs.
Dynamic contact guidance of migrating cells
NASA Astrophysics Data System (ADS)
Losert, Wolfgang; Sun, Xiaoyu; Guven, Can; Driscoll, Meghan; Fourkas, John
2014-03-01
We investigate the effects of nanotopographical surfaces on the cell migration and cell shape dynamics of the amoeba Dictyostelium discoideum. Amoeboid motion exhibits significant contact guidance along surfaces with nanoscale ridges or grooves. We show quantitatively that nanoridges spaced 1.5 μm apart exhibit the greatest contact guidance efficiency. Using principal component analysis, we characterize the dynamics of the cell shape modulated by the coupling between the cell membrane and ridges. We show that motion parallel to the ridges is enhanced, while the turning, at the largest spatial scales, is suppressed. Since protrusion dynamics are principally governed by actin dynamics, we imaged the actin polymerization of cells on ridges. We found that actin polymerization occurs preferentially along nanoridges in a ``monorail'' like fashion. The ridges then provide us with a tool to study actin dynamics in an effectively reduced dimensional system.
Spherical loudspeaker array for local active control of sound.
Rafaely, Boaz
2009-05-01
Active control of sound has been employed to reduce noise levels around listeners' head using destructive interference from noise-canceling sound sources. Recently, spherical loudspeaker arrays have been studied as multiple-channel sound sources, capable of generating sound fields with high complexity. In this paper, the potential use of a spherical loudspeaker array for local active control of sound is investigated. A theoretical analysis of the primary and secondary sound fields around a spherical sound source reveals that the natural quiet zones for the spherical source have a shell-shape. Using numerical optimization, quiet zones with other shapes are designed, showing potential for quiet zones with extents that are significantly larger than the well-known limit of a tenth of a wavelength for monopole sources. The paper presents several simulation examples showing quiet zones in various configurations.
Gallina, G; Cumbo, E; Gallo, P; Pizzo, G; D'Angelo, M
2002-01-01
A fundamental requirement to obtain a correct endodontic preparation depends on the respect, during cleaning and shaping, of the original morphology of the apical foramen, (AF), so that the filling material will form a complete seal. In our previous studies, in order to verify if this presumption was respected using rotary NiTi instruments with cutting tip, we instrumented extracted teeth characterised by a different degree of root curvatures. Using a standardized system to replace the sample, the original shape of the apical foramen of each tooth was recorded using a computerised technique and then compared to the shape after instrumentation. The data showed differences on AF shapes depending on the degree of root canal curvatures. In fact, the teeth with straight canals showed the least alterations on the original AF shape; on the contrary, the teeth with curved canals showed apical foramen enlargement or transportation. Therefore, in the current study we aimed to compare the in vitro effects of stainless steel, (Flexofile, Dentsply Maillefer, Baillaigues, Switzerland), vs NiTi safe cutting tip (Quantec SC, (Tycom Dental, Irvine CA, U:S.A.), vs NiTi non cutting tip, (Quantec LX, Tycom Dental, Irvine CA, U:S.A.), instrumentation on original apical foramen shape. We used NiTi instruments according to standard technique suggested by Tycom, and hand steel files, to instrument the apical third, according to the Crown-Down technique. Working length was fixed at -0.5 from AF. Our results suggested that in the presence of accentuated canal curves rotary Niti, with cutting tip, cause significantly more enlargement of the AF area. At the same time, we also observed that NiTi rotary files, with both cutting and non-cutting tip, cause eccentric enlargement of AF in curved canals. Therefore, NiTi engine-driven instruments should be used carefully in the presence of accentuated canal curves to avoid enlargement or transportation of AF, probably because rotary NiTi files may slip out of operative control, leaving a mark on the foramen shape. In the presence of severe curves, we suggest modifying the operative sequences by alternating rotary NiTi with hand NiTi or stainless steel instruments, especially in the preparation of apical third.
Modal response of a computational vocal fold model with a substrate layer of adipose tissue.
Jones, Cameron L; Achuthan, Ajit; Erath, Byron D
2015-02-01
This study demonstrates the effect of a substrate layer of adipose tissue on the modal response of the vocal folds, and hence, on the mechanics of voice production. Modal analysis is performed on the vocal fold structure with a lateral layer of adipose tissue. A finite element model is employed, and the first six mode shapes and modal frequencies are studied. The results show significant changes in modal frequencies and substantial variation in mode shapes depending on the strain rate of the adipose tissue. These findings highlight the importance of considering adipose tissue in computational vocal fold modeling.
Robust boundary detection of left ventricles on ultrasound images using ASM-level set method.
Zhang, Yaonan; Gao, Yuan; Li, Hong; Teng, Yueyang; Kang, Yan
2015-01-01
Level set method has been widely used in medical image analysis, but it has difficulties when being used in the segmentation of left ventricular (LV) boundaries on echocardiography images because the boundaries are not very distinguish, and the signal-to-noise ratio of echocardiography images is not very high. In this paper, we introduce the Active Shape Model (ASM) into the traditional level set method to enforce shape constraints. It improves the accuracy of boundary detection and makes the evolution more efficient. The experiments conducted on the real cardiac ultrasound image sequences show a positive and promising result.
Water pollution and income relationships: A seemingly unrelated partially linear analysis
NASA Astrophysics Data System (ADS)
Pandit, Mahesh; Paudel, Krishna P.
2016-10-01
We used a seemingly unrelated partially linear model (SUPLM) to address a potential correlation between pollutants (nitrogen, phosphorous, dissolved oxygen and mercury) in an environmental Kuznets curve study. Simulation studies show that the SUPLM performs well to address potential correlation among pollutants. We find that the relationship between income and pollution follows an inverted U-shaped curve for nitrogen and dissolved oxygen and a cubic shaped curve for mercury. Model specification tests suggest that a SUPLM is better specified compared to a parametric model to study the income-pollution relationship. Results suggest a need to continually assess policy effectiveness of pollution reduction as income increases.
NASA Astrophysics Data System (ADS)
Afify, T. A.; Ghazy, O. A.; Saleh, H. H.; Ali, Z. I.
2018-02-01
Gamma radiation was used to prepare nanocomposites based on polyaniline/titanium dioxide (PANI/TiO2) or polyaniline/poly (vinyl alcohol)/titanium dioxide (PANI/PVA/TiO2). It was found that PANI/TiO2 in the form of nanocomposite as shown by the UV/vis spectroscopy. This was through the appearance and shift of two absorption peaks at 340 and 598 nm. The SEM micrographs of the PANI/TiO2 nanocomposites showed a fibrous morphology before the treatment with HCl. The TiO2 nanoparticles are clearly seen to be precipitated on the PANI fibers and the morphology changed towards the sheets shape with highly distribution on PANI surface. The transmission electron microscopy (TEM) image confirms the fibrous shape of the PANI and spherical shape of TiO2 nanoparticles. The XRD study showed a several diffraction patterns of TiO2 nanoparticles confirming the PANI/TiO2 and PANI/PVA/TiO2 nanocomposites. The FT-IR analysis indicated that there is an interfacial interaction existed between the PANI and its inorganic counterpart of TiO2 nanoparticles. The dielectric constant of the PANI/PVA showed the lowest values and was increased by either doping with TiO2 or increasing irradiation dose.
Study on Effects of The Shape of Cavitator on Supercavitation Flow Field Characteristics
NASA Astrophysics Data System (ADS)
Wang, Rui; Dang, Jianjun; Yao, Zhong
2018-03-01
The cavitator is the key part of the nose of the vehicle to induce the formation of supercavity, which has an important influence in the cavity formation rate, cavity shape and cavity stability. To study the influence of the shape on the supercavitation flew field characteristics, the cavity characteristics and the resistance characteristics of different shapes of cavitator under different working conditions are obtained by combining technical methods of numerical simulation and experimental research in water tunnel. The simulation results are contrast and analyzed with the test results. The analysis results show that : in terms of the cavity size, the inverted-conic cavitator can form the biggest cavity size, followed by the disk cavitator, and the truncated-conic cavitator is the least; in terms of the cavity formation speed, the inverted-conic cavitator has the fastest cavity formation speed, then is the truncated-conic cavitator, and the disk cavitator is the least; in terms of the drag characteristic, the truncated-conic cavitator has the maximum coefficient, disk cavitator is the next, the inverted-conic cavitator is the minimal. The research conclusion can provide reference and basis for the head shape design of supercavitating underwater ordnance and the design of hydrodynamic layout.
Body shape convergence driven by small size optimum in marine angelfishes.
Frédérich, Bruno; Santini, Francesco; Konow, Nicolai; Schnitzler, Joseph; Lecchini, David; Alfaro, Michael E
2017-06-01
Convergent evolution of small body size occurs across many vertebrate clades and may reflect an evolutionary response to shared selective pressures. However it remains unclear if other aspects of phenotype undergo convergent evolution in miniaturized lineages. Here we present a comparative analysis of body size and shape evolution in marine angelfishes (Pomacanthidae), a reef fish family characterized by repeated transitions to small body size. We ask if lineages that evolve small sizes show convergent evolution in body shape. Our results reveal that angelfish lineages evolved three different stable size optima with one corresponding to the group of pygmy angelfishes ( Centropyge ). Then, we test if the observed shifts in body size are associated with changes to new adaptive peaks in shape. Our data suggest that independent evolution to small size optima have induced repeated convergence upon deeper body and steeper head profile in Centropyge These traits may favour manoeuvrability and visual awareness in these cryptic species living among corals, illustrating that functional demands on small size may be related to habitat specialization and predator avoidance. The absence of shape convergence in large marine angelfishes also suggests that more severe requirements exist for small than for large size optima. © 2017 The Author(s).
Random Matrix Theory in molecular dynamics analysis.
Palese, Luigi Leonardo
2015-01-01
It is well known that, in some situations, principal component analysis (PCA) carried out on molecular dynamics data results in the appearance of cosine-shaped low index projections. Because this is reminiscent of the results obtained by performing PCA on a multidimensional Brownian dynamics, it has been suggested that short-time protein dynamics is essentially nothing more than a noisy signal. Here we use Random Matrix Theory to analyze a series of short-time molecular dynamics experiments which are specifically designed to be simulations with high cosine content. We use as a model system the protein apoCox17, a mitochondrial copper chaperone. Spectral analysis on correlation matrices allows to easily differentiate random correlations, simply deriving from the finite length of the process, from non-random signals reflecting the intrinsic system properties. Our results clearly show that protein dynamics is not really Brownian also in presence of the cosine-shaped low index projections on principal axes. Copyright © 2014 Elsevier B.V. All rights reserved.
Effect analysis of design variables on the disc in a double-eccentric butterfly valve.
Kang, Sangmo; Kim, Da-Eun; Kim, Kuk-Kyeom; Kim, Jun-Oh
2014-01-01
We have performed a shape optimization of the disc in an industrial double-eccentric butterfly valve using the effect analysis of design variables to enhance the valve performance. For the optimization, we select three performance quantities such as pressure drop, maximum stress, and mass (weight) as the responses and three dimensions regarding the disc shape as the design variables. Subsequently, we compose a layout of orthogonal array (L16) by performing numerical simulations on the flow and structure using a commercial package, ANSYS v13.0, and then make an effect analysis of the design variables on the responses using the design of experiments. Finally, we formulate a multiobjective function consisting of the three responses and then propose an optimal combination of the design variables to maximize the valve performance. Simulation results show that the disc thickness makes the most significant effect on the performance and the optimal design provides better performance than the initial design.
Khalil, Mohamed H.; Shebl, Mostafa K.; Kosba, Mohamed A.; El-Sabrout, Karim; Zaki, Nesma
2016-01-01
Aim: This research was conducted to determine the most affecting parameters on hatchability of indigenous and improved local chickens’ eggs. Materials and Methods: Five parameters were studied (fertility, early and late embryonic mortalities, shape index, egg weight, and egg weight loss) on four strains, namely Fayoumi, Alexandria, Matrouh, and Montazah. Multiple linear regression was performed on the studied parameters to determine the most influencing one on hatchability. Results: The results showed significant differences in commercial and scientific hatchability among strains. Alexandria strain has the highest significant commercial hatchability (80.70%). Regarding the studied strains, highly significant differences in hatching chick weight among strains were observed. Using multiple linear regression analysis, fertility made the greatest percent contribution (71.31%) to hatchability, and the lowest percent contributions were made by shape index and egg weight loss. Conclusion: A prediction of hatchability using multiple regression analysis could be a good tool to improve hatchability percentage in chickens. PMID:27651666
NASA Astrophysics Data System (ADS)
Zong, Yali; Hu, Naigang; Duan, Baoyan; Yang, Guigeng; Cao, Hongjun; Xu, Wanye
2016-03-01
Inevitable manufacturing errors and inconsistency between assumed and actual boundary conditions can affect the shape precision and cable tensions of a cable-network antenna, and even result in failure of the structure in service. In this paper, an analytical sensitivity analysis method of the shape precision and cable tensions with respect to the parameters carrying uncertainty was studied. Based on the sensitivity analysis, an optimal design procedure was proposed to alleviate the effects of the parameters that carry uncertainty. The validity of the calculated sensitivities is examined by those computed by a finite difference method. Comparison with a traditional design method shows that the presented design procedure can remarkably reduce the influence of the uncertainties on the antenna performance. Moreover, the results suggest that especially slender front net cables, thick tension ties, relatively slender boundary cables and high tension level can improve the ability of cable-network antenna structures to resist the effects of the uncertainties on the antenna performance.
Silva, Ivair R
2018-01-15
Type I error probability spending functions are commonly used for designing sequential analysis of binomial data in clinical trials, but it is also quickly emerging for near-continuous sequential analysis of post-market drug and vaccine safety surveillance. It is well known that, for clinical trials, when the null hypothesis is not rejected, it is still important to minimize the sample size. Unlike in post-market drug and vaccine safety surveillance, that is not important. In post-market safety surveillance, specially when the surveillance involves identification of potential signals, the meaningful statistical performance measure to be minimized is the expected sample size when the null hypothesis is rejected. The present paper shows that, instead of the convex Type I error spending shape conventionally used in clinical trials, a concave shape is more indicated for post-market drug and vaccine safety surveillance. This is shown for both, continuous and group sequential analysis. Copyright © 2017 John Wiley & Sons, Ltd.
NASA Astrophysics Data System (ADS)
Song, Chang; Du, Liqun; Zhao, Wenjun; Zhu, Heqing; Zhao, Wen; Wang, Weitai
2018-04-01
Micro electroforming, as a mature micromachining technology, is widely used to fabricate metal microdevices in micro electro mechanical systems (MEMS). However, large residual stress in the local positions of the micro electroforming layer often leads to non-uniform residual stress distributions, dimension accuracy defects and reliability issues during fabrication of the metal microdevice. To solve this problem, a novel design method of presetting stress release geometries in the topological structure of the metal microstructure is proposed in this paper. First, the effect of stress release geometries (circular shape, annular groove shape and rivet shape) on the residual stress in the metal microstructure was investigated by finite element modeling (FEM) analysis. Two evaluation parameters, stress concentration factor K T and stress non-uniformity factor δ were calculated. The simulation results show that presetting stress release geometries can effectively reduce and homogenize the residual stress in the metal microstructures were measured metal microstructure. By combined use with stress release geometries of annular groove shape and rivet shape, the stress concentration factor K T and the stress non-uniformity factor δ both decreased at a maximum of 49% and 53%, respectively. Meanwhile, the average residual stress σ avg decreased at a maximum of 20% from -292.4 MPa to -232.6 MPa. Then, micro electroforming experiments were carried out corresponding to the simulation models. The residual stresses in the metal microstructures were measured by micro Raman spectroscopy (MRS) method. The results of the experiment proved that the stress non-uniformity factor δ and the average residual stress σ avg also decreased at a maximum with the combination use of annular groove shape and rivet shape stress release geometries, which is in agreement with the results of FEM analysis. The stress non-uniformity factor δ has a maximum decrease of 49% and the average residual stress σ avg has a maximum decrease of 37% from -257.0 MPa to -162.0 MPa.
Ordinola-Zapata, R; Bramante, C M; de Moraes, I G; Bernardineli, N; Garcia, R B; Gutmann, J L
2009-03-01
To analyse the gutta-percha filled area of C-shaped molar teeth root filled with the modified MicroSeal technique with reference to the radiographic features and the C-shaped canal configuration. Twenty-three mandibular second molar teeth with C-shaped roots were classified according to their radiographic features as: type I--merging, type II--symmetrical and type III--asymmetrical. The canals were root filled using a modified technique of the MicroSeal system. Horizontal sections at intervals of 600 mum were made 1 mm from the apex to the subpulpal floor level. The percentage of gutta-percha area from the apical, middle and coronal levels of the radiographic types was analysed using the Kruskal-Wallis test. Complementary analysis of the C-shaped canal configurations (C1, C2 and C3) determined from cross-sections from the apical third was performed in a similar way. No significant differences were found between the radiographic types in terms of the percentage of gutta-percha area at any level (P > 0.05): apical third, type I: 77.04%, II: 70.48% and III: 77.13%, middle third, type I: 95.72%, II: 93.17%, III: 91.13% and coronal level, type I: 98.30%, II: 98.25%, III: 97.14%. Overall, the percentage of the filling material was lower in the apical third (P < 0.05). No significant differences were found between the C-shaped canal configurations apically; C1: 72.64%, C2: 79.62%, C3: 73.51% (P > 0.05). The percentage of area filled with gutta-percha was similar in the three radiographic types and canal configuration categories of C-shaped molars. These results show the difficulty of achieving predictable filling of the root canal system when this anatomical variation exists. In general, the apical third was less completely filled.
NASA Astrophysics Data System (ADS)
Asztalos, Stephen J.; Hennig, Wolfgang; Warburton, William K.
2016-01-01
Pulse shape discrimination applied to certain fast scintillators is usually performed offline. In sufficiently high-event rate environments data transfer and storage become problematic, which suggests a different analysis approach. In response, we have implemented a general purpose pulse shape analysis algorithm in the XIA Pixie-500 and Pixie-500 Express digital spectrometers. In this implementation waveforms are processed in real time, reducing the pulse characteristics to a few pulse shape analysis parameters and eliminating time-consuming waveform transfer and storage. We discuss implementation of these features, their advantages, necessary trade-offs and performance. Measurements from bench top and experimental setups using fast scintillators and XIA processors are presented.
Kurosumi, M; Mizukoshi, K
2018-05-01
The types of shape feature that constitutes a face have not been comprehensively established, and most previous studies of age-related changes in facial shape have focused on individual characteristics, such as wrinkle, sagging skin, etc. In this study, we quantitatively measured differences in face shape between individuals and investigated how shape features changed with age. We analyzed three-dimensionally the faces of 280 Japanese women aged 20-69 years and used principal component analysis to establish the shape features that characterized individual differences. We also evaluated the relationships between each feature and age, clarifying the shape features characteristic of different age groups. Changes in facial shape in middle age were a decreased volume of the upper face and increased volume of the whole cheeks and around the chin. Changes in older people were an increased volume of the lower cheeks and around the chin, sagging skin, and jaw distortion. Principal component analysis was effective for identifying facial shape features that represent individual and age-related differences. This method allowed straightforward measurements, such as the increase or decrease in cheeks caused by soft tissue changes or skeletal-based changes to the forehead or jaw, simply by acquiring three-dimensional facial images. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
Prevalence of shovel-shaped incisors in Saudi Arabian dental patients.
Saini, T S; Kharat, D U; Mokeem, S
1990-10-01
The prevalence of maxillary incisor shoveling was studied radiographically in 990 Saudi patients. According to the radiomorphologic characteristics, a new classification was developed and shovel teeth were categorized. The findings of this study showed 9% shovel-shaped incisors; among those, 4% were central incisors and 5% were lateral incisors. Frequency of dens invaginatus occurrence with the shovel-shaped incisors was also investigated. Eight percent of shovel-shaped incisors showed presence of dens invaginatus. Prevalence was found to be 4% in central shovel-shaped incisors, whereas that in lateral shovel-shaped incisors was 11%.
A Multilevel Shape Fit Analysis of Neutron Transmission Data
NASA Astrophysics Data System (ADS)
Naguib, K.; Sallam, O. H.; Adib, M.; Ashry, A.
A multilevel shape fit analysis of neutron transmission data is presented. A multilevel computer code SHAPE is used to analyse clean transmission data obtained from time-of-flight (TOF) measurements. The shape analysis deduces the parameters of the observed resonances in the energy region considered in the measurements. The shape code is based upon a least square fit of a multilevel Briet-Wigner formula and includes both instrumental resolution and Doppler broadenings. Operating the SHAPE code on a test example of a measured transmission data of 151Eu, 153Eu and natural Eu in the energy range 0.025-1 eV accquired a good result for the used technique of analysis.Translated AbstractAnalyse von Neutronentransmissionsdaten mittels einer VielniveauformanpassungNeutronentransmissionsdaten werden in einer Vielniveauformanpassung analysiert. Dazu werden bereinigte Daten aus Flugzeitmessungen mit dem Rechnerprogramm SHAPE bearbeitet. Man erhält die Parameter der beobachteten Resonanzen im gemessenen Energiebereich. Die Formanpassung benutzt eine Briet-Wignerformel und berücksichtigt Linienverbreiterungen infolge sowohl der Meßeinrichtung als auch des Dopplereffekts. Als praktisches Beispiel werden 151Eu, 153Eu und natürliches Eu im Energiebereich 0.025 bis 1 eV mit guter Übereinstimmung theoretischer und experimenteller Werte behandelt.
Orlov, Tanya; Zohary, Ehud
2018-01-17
We typically recognize visual objects using the spatial layout of their parts, which are present simultaneously on the retina. Therefore, shape extraction is based on integration of the relevant retinal information over space. The lateral occipital complex (LOC) can represent shape faithfully in such conditions. However, integration over time is sometimes required to determine object shape. To study shape extraction through temporal integration of successive partial shape views, we presented human participants (both men and women) with artificial shapes that moved behind a narrow vertical or horizontal slit. Only a tiny fraction of the shape was visible at any instant at the same retinal location. However, observers perceived a coherent whole shape instead of a jumbled pattern. Using fMRI and multivoxel pattern analysis, we searched for brain regions that encode temporally integrated shape identity. We further required that the representation of shape should be invariant to changes in the slit orientation. We show that slit-invariant shape information is most accurate in the LOC. Importantly, the slit-invariant shape representations matched the conventional whole-shape representations assessed during full-image runs. Moreover, when the same slit-dependent shape slivers were shuffled, thereby preventing their spatiotemporal integration, slit-invariant shape information was reduced dramatically. The slit-invariant representation of the various shapes also mirrored the structure of shape perceptual space as assessed by perceptual similarity judgment tests. Therefore, the LOC is likely to mediate temporal integration of slit-dependent shape views, generating a slit-invariant whole-shape percept. These findings provide strong evidence for a global encoding of shape in the LOC regardless of integration processes required to generate the shape percept. SIGNIFICANCE STATEMENT Visual objects are recognized through spatial integration of features available simultaneously on the retina. The lateral occipital complex (LOC) represents shape faithfully in such conditions even if the object is partially occluded. However, shape must sometimes be reconstructed over both space and time. Such is the case in anorthoscopic perception, when an object is moving behind a narrow slit. In this scenario, spatial information is limited at any moment so the whole-shape percept can only be inferred by integration of successive shape views over time. We find that LOC carries shape-specific information recovered using such temporal integration processes. The shape representation is invariant to slit orientation and is similar to that evoked by a fully viewed image. Existing models of object recognition lack such capabilities. Copyright © 2018 the authors 0270-6474/18/380659-20$15.00/0.
Accuracy Assessment of the GLOBELAND30 Dataset in Jiangxi Province
NASA Astrophysics Data System (ADS)
Ren, H.; Cai, G.; Zhao, G.; Li, Z.
2018-04-01
The Globeland30 dataset is the most highly spatial resolution global land cover mapping product, which developed by the National Geomatics Center of China (NGCC) in 2015. It plays a significant role in environmental monitoring, climate change, and ecosystem assessment, etc. In this study, Jiangxi province was selected as our study area, the 1 : 100000 land use data in 2010 was employed as the reference data. We aim to examine the accuracy of the Globeland30 from three methods, including area error analysis, shape consistency analysis and confusion matrix. The results show as follows: The land cover types in the study area are primarily occupied by the cultivated land and forest, and secondarily by grassland, water bodies and artificial surfaces. The area error of cultivated land, forest and water bodies are all less than 13 %; The general conformance of the shape consistency reaches to 67 %, but the shape consistency of every land type differs to a large degree, the best shape consistency of forests is up to 75 %; The confusion matrix is obtained in two cases of different class boundary with buffer and no buffer area. It is found that the overall accuracy and kappa coefficient of GlobeLand30 are improved with buffer area. The value of overall accuracy is higher than 78 %, the value of kappa coefficient is higher than 0.52.
Sampling considerations for modal analysis with damping
NASA Astrophysics Data System (ADS)
Park, Jae Young; Wakin, Michael B.; Gilbert, Anna C.
2015-03-01
Structural health monitoring (SHM) systems are critical for monitoring aging infrastructure (such as buildings or bridges) in a cost-effective manner. Wireless sensor networks that sample vibration data over time are particularly appealing for SHM applications due to their flexibility and low cost. However, in order to extend the battery life of wireless sensor nodes, it is essential to minimize the amount of vibration data these sensors must collect and transmit. In recent work, we have studied the performance of the Singular Value Decomposition (SVD) applied to the collection of data and provided new finite sample analysis characterizing conditions under which this simple technique{also known as the Proper Orthogonal Decomposition (POD){can correctly estimate the mode shapes of the structure. Specifically, we provided theoretical guarantees on the number and duration of samples required in order to estimate a structure's mode shapes to a desired level of accuracy. In that previous work, however, we considered simplified Multiple-Degree-Of-Freedom (MDOF) systems with no damping. In this paper we consider MDOF systems with proportional damping and show that, with sufficiently light damping, the POD can continue to provide accurate estimates of a structure's mode shapes. We support our discussion with new analytical insight and experimental demonstrations. In particular, we study the tradeoffs between the level of damping, the sampling rate and duration, and the accuracy to which the structure's mode shapes can be estimated.
Driscoll, Meghan K.; Losert, Wolfgang; Jacobson, Ken
2015-01-01
We investigate the dynamics of cell shape and analyze the actin and myosin distributions of cells exhibiting cortical density traveling waves. These waves propagate by repeated cycles of cortical compression (folding) and dilation (unfolding) that lead to periodic protrusions (oscillations) of the cell boundary. The focus of our detailed analysis is the remarkable periodicity of this phenotype, in which both the overall shape transformation and distribution of actomyosin density are repeated from cycle to cycle even though the characteristics of the shape transformation vary significantly for different regions of the cell. We show, using correlation analysis, that during traveling wave propagation cortical actin and plasma membrane densities are tightly coupled at each point along the cell periphery. We also demonstrate that the major protrusion appears at the wave trailing edge just after the actin cortex density has reached a maximum. Making use of the extraordinary periodicity, we employ latrunculin to demonstrate that sequestering actin monomers can have two distinct effects: low latrunculin concentrations can trigger and enhance traveling waves but higher concentrations of this drug retard the waves. The fundamental mechanism underlying this periodically protruding phenotype, involving folding and unfolding of the cortex‐membrane couple, is likely to hold important clues for diverse phenomena including cell division and amoeboid‐type migration. © 2015 The Authors. Cytoskeleton Published by Wiley Periodicals, Inc. PMID:26147497
Ahn, Jae-Jun; Akram, Kashif; Lee, Jeongeun; Kim, Kyong-Su; Kwon, Joong-Ho
2012-04-01
Thermoluminescence (TL) analysis was applied to identify gamma-irradiated garlic powder in Korean barbeque sauce before and after pasteurization (85 °C, 30 min), when blended in different ratios (1%, 3%, and 5%). The sauce sample with nonirradiated garlic powder gave a background glow curve. However, the sample blended with irradiated ingredient (1 and 10 kGy) showed typical TL glow curves at temperatures of 150 to 200 °C. The identification properties of sauce samples were more influenced by blending ratios than by irradiation doses, showing that 3% and 5% added samples produced glow curves at 150 to 250 °C. After pasteurization of the samples containing the irradiated ingredient, TL glow intensity decreased but did not change its shape or temperature range. As a result, the pasteurization of Barbeque sauces containing irradiated ingredients had reduced TL glow intensity, but the shape and temperature range of glow curve were still able to provide information required for confirming irradiation treatment. To monitor the irradiated food in international market, thermoluminescence (TL) analysis is considered most promising identification technique because of its sensitivity and long-term stability. In this study the applicability of TL analysis to detect an irradiated ingredient (garlic powder) added in low quantity to a food matrix (sauce) was investigated. The effect of processing (pasteurization) on TL results was also evaluated. © 2012 Institute of Food Technologists®
Lin, Jie; Zheng, Zhiqiang; Shinya, Akikazu; Matinlinna, Jukka Pekka; Botelho, Michael George; Shinya, Akiyoshi
2015-09-01
The purpose of this in vitro study was to compare the stress distribution and natural frequency of different shape and thickness retainer designs for maxillary posterior resin-bonded prostheses using finite element (FE) method. A 3D FE model of a three unit posterior resin-bonded prosthesis analysis model was generated. Three different shaped retainer designs, viz. C-shaped (three axial surface wraparounds), D-shaped (three axial surface wraparounds with central groove) and O-shaped (360° wraparounds), and three different thicknesses, viz., 0.4, 0.8, and 1.2 mm, resin-bonded prostheses were used in this study. The resin-bonded prosthesis analysis model was imported into an FE analysis software (ANSYS 10.0, ANSYS, USA) and attribution of material properties. The nodes at the bottom surface of the roots were assigned fixed zero displacement in the three spatial dimensions. A simulated angle of 45° loading of a 100 N force was applied to the node of the pontic lingual cusp surface. The stress distributions and corresponding natural frequencies were analyzed and resolved. The C-shaped retainer for 0.4 mm thickness recorded the greatest von Mises stresses of 71.4 MPa for all three groups. C-shaped, D-shaped and O-shaped retainer presented natural frequencies 3,988, 7,754, and 10,494 Hz, respectively. D-shaped retainer and O-shaped retainer increased natural frequencies and structural rigidity over the traditional C-shaped retainer. The maximum von Mises stresses values of the remaining tooth and prosthesis decreased with greater retainer thickness. D-shaped retainer and O-shaped retainer increased natural frequencies and structural rigidity over the traditional C-shaped retainer.
Mayall, Peter; Bitadze, Liana
2017-01-01
An intentionally modified head is a visually distinctive sign of group identity. In the Migration Period of Europe (4th– 7th century AD) the practice of intentional cranial modification was common among several nomadic groups, but was strongly associated with the Huns from the Carpathian Basin in Hungary, where modified crania are abundant in archaeological sites. The frequency of modified crania increased substantially in the Mtskheta region of Georgia in this time period, but there are no records that Huns settled here. We compare the Migration Period modified skulls from Georgia with those from Hungary to test the hypothesis that the Huns were responsible for cranial modification in Georgia. We use extended eigenshape analysis to quantify cranial outlines, enabling a discriminant analysis to assess group separation and identify morphological differences. Twenty-one intentionally modified skulls from Georgia are compared with sixteen from Hungary, using nineteen unmodified crania from a modern population as a comparative baseline. Results indicate that modified crania can be differentiated from modern unmodified crania with 100% accuracy. The Hungarian and Georgian crania show some overlap in shape, but can be classified with 81% accuracy. Shape gradations along the main eigenvectors indicate that the Hungarian crania show little variation in cranial shape, in accordance with a two-bandage binding technique, whereas the Georgian crania had a wider range of variation, fitting with a diversity of binding styles. As modification style is a strong signifier of social identity, our results indicate weak Hunnic influence on cranial modification in Georgia and are equivocal about the presence of Huns in Georgia. We suggest instead that other nomadic groups such as Alans and Sarmatians living in this region were responsible for modified crania in Georgia. PMID:28152046
A space imaging concept based on a 4m structured spun-cast borosilicate monolithic primary mirror
NASA Astrophysics Data System (ADS)
West, S. C.; Bailey, S. H.; Bauman, S.; Cuerden, B.; Granger, Z.; Olbert, B. H.
2010-07-01
Lockheed Martin Corporation (LMC) tasked The University of Arizona Steward Observatory (UASO) to conduct an engineering study to examine the feasibility of creating a 4m space telescope based on mature borosilicate technology developed at the UASO for ground-based telescopes. UASO has completed this study and concluded that existing launch vehicles can deliver a 4m monolithic telescope system to a 500 km circular orbit and provide reliable imagery at NIIRS 7-8. An analysis of such an imager based on a lightweight, high-performance, structured 4m primary mirror cast from borosilicate glass is described. The relatively high CTE of this glass is used to advantage by maintaining mirror shape quality with a thermal figuring method. Placed in a 290 K thermal shroud (similar to the Hubble Space Telescope), the orbit averaged figure surface error is 6nm rms when earth-looking. Space-looking optical performance shows that a similar thermal conditioning scheme combined with a 270 K shroud achieves primary mirror distortion of 10 nm rms surface. Analysis shows that a 3-point bipod mount will provide launch survivability with ample margin. The primary mirror naturally maintains its shape at 1g allowing excellent end-to-end pre-launch testing with e.g. the LOTIS 6.5m Collimator. The telescope includes simple systems to measure and correct mirror shape and alignment errors incorporating technologies already proven on the LOTIS Collimator. We have sketched a notional earth-looking 4m telescope concept combined with a wide field TMA concept into a DELTA IV or ATLAS 552 EELV fairing. We have combined an initial analysis of launch and space performance of a special light-weighted honeycomb borosilicate mirror (areal density 95 kg/m2) with public domain information on the existing launch vehicles.
Muthu Rama Krishnan, M; Pal, Mousumi; Paul, Ranjan Rashmi; Chakraborty, Chandan; Chatterjee, Jyotirmoy; Ray, Ajoy K
2012-06-01
This research work presents a quantitative approach for analysis of histomorphometric features of the basal cell nuclei in respect to their size, shape and intensity of staining, from surface epithelium of Oral Submucous Fibrosis showing dysplasia (OSFD) to that of the Normal Oral Mucosa (NOM). For all biological activity, the basal cells of the surface epithelium form the proliferative compartment and therefore their morphometric changes will spell the intricate biological behavior pertaining to normal cellular functions as well as in premalignant and malignant status. In view of this, the changes in shape, size and intensity of staining of the nuclei in the basal cell layer of the NOM and OSFD have been studied. Geometric, Zernike moments and Fourier descriptor (FD) based as well as intensity based features are extracted for histomorphometric pattern analysis of the nuclei. All these features are statistically analyzed along with 3D visualization in order to discriminate the groups. Results showed increase in the dimensions (area and perimeter), shape parameters and decreasing mean nuclei intensity of the nuclei in OSFD in respect to NOM. Further, the selected features are fed to the Bayesian classifier to discriminate normal and OSFD. The morphometric and intensity features provide a good sensitivity of 100%, specificity of 98.53% and positive predicative accuracy of 97.35%. This comparative quantitative characterization of basal cell nuclei will be of immense help for oral onco-pathologists, researchers and clinicians to assess the biological behavior of OSFD, specially relating to their premalignant and malignant potentiality. As a future direction more extensive study involving more number of disease subjects is observed.
Li, Hai-juan; Zhao, Xin; Jia, Qing-fei; Li, Tian-lai; Ning, Wei
2012-08-01
The achenes morphological and micro-morphological characteristics of six species of genus Taraxacum from northeastern China as well as SRAP cluster analysis were observed for their classification evidences. The achenes were observed by microscope and EPMA. Cluster analysis was given on the basis of the size, shape, cone proportion, color and surface sculpture of achenes. The Taraxacum inter-species achene shape characteristic difference is obvious, particularly spinulose distribution and size, achene color and achene size; with the Taraxacum plant achene shape the cluster method T. antungense Kitag. and the T. urbanum Kitag. should combine for the identical kind; the achene morphology cluster analysis and the SRAP tagged molecule systematics's cluster result retrieves in the table with "the Chinese flora". The class group to divide the result is consistent. Taraxacum plant achene shape characteristic stable conservative, may carry on the inter-species division and the sibship analysis according to the achene shape characteristic combination difference; the achene morphology cluster analysis as well as the SRAP tagged molecule systematics confirmation support dandelion classification result of "the Chinese flora".
NASA Astrophysics Data System (ADS)
Ben-Zvi, Yehonatan; Reznikov, Natalie; Shahar, Ron; Weiner, Steve
2017-09-01
Cancellous bone is an intricate network of interconnected trabeculae, to which analysis of network topology can be applied. The inter-trabecular angle (ITA) analysis - an analysis of network topological parameters and regularity of network-forming nodes, was previously carried out on human proximal femora and showed that trabecular bone follows two main principles: sparsity of the network connectedness (prevalence of nodes with low connectivity in the network) and maximal space spanning (angular offset of connected elements is maximal for their number and approximates the values of geometrically symmetric shapes). These observations suggest that 3D organization of trabecular bone, irrespective of size and shape of individual elements, reflects a tradeoff between minimal metabolic cost of maintenance and maximal network stability under conditions of multidirectional loading. In this study we validate the ITA application using additional 3D structures (cork and 3D-printed metal lattices), analyze the ITA parameters in porcine proximal femora and mandibles and carry out a spatial analysis of the most common node type in the porcine mandibular condyle. The validation shows that the ITA application reliably detects designed or evolved topological parameters. The ITA parameters of porcine trabecular bones are similar to those of human bones. We demonstrate functional adaptation in the pig mandibular condyle by showing that the planar nodes with 3 edges are preferentially aligned in relation to the muscle forces that are applied to the condyle. We conclude that the ITA topological parameters are remarkable conserved, but locally do adapt to applied stresses.
Kopanja, Lazar; Kovacevic, Zorana; Tadic, Marin; Žužek, Monika Cecilija; Vrecl, Milka; Frangež, Robert
2018-04-23
Detailed shape analysis of cells is important to better understand the physiological mechanisms of toxins and determine their effects on cell morphology. This study aimed to develop a procedure for accurate morphological analysis of cell shape and use it as a tool to estimate toxin activity. With the aim of optimizing the method of cell morphology analysis, we determined the influence of ostreolysin A and pleurotolysin B complex (OlyA/PlyB) on the morphology of murine neuronal NG108-15 cells. A computational method was introduced and successfully applied to quantify morphological attributes of the NG108-15 cell line before and after 30 and 60 min exposure to OlyA/PlyB using confocal microscopy. The modified circularity measure [Formula: see text] for shape analysis was applied, which defines the degree to which the shape of the neuron differs from a perfect circle. It enables better detection of small changes in the shape of cells, making the outcome easily detectable numerically. Additionally, we analyzed the influence of OlyA/PlyB on the cell area, allowing us to detect the cells with blebs. This is important because the formation of plasma membrane protrusions such as blebs often reflects cell injury that leads to necrotic cell death. In summary, we offer a novel analytical method of neuronal cell shape analysis and its correlation with the toxic effects of the pore-forming OlyA/PlyB toxin in situ.
NASA Astrophysics Data System (ADS)
Hong, Seok Bin; Ahn, Yong San; Jang, Joon Hyeok; Kim, Jin-Gyun; Goo, Nam Seo; Yu, Woong-Ryeol
2016-04-01
Shape memory polymer (SMP) is one of smart polymers which exhibit shape memory effect upon external stimuli. Reinforcements as carbon fiber had been used for making shape memory polymer composite (CF-SMPC). This study investigated a possibility of designing self-deployable structures in harsh space condition using CF-SMPCs and analyzed their shape memory behaviors with constitutive equation model.CF-SMPCs were prepared using woven carbon fabrics and a thermoset epoxy based SMP to obtain their basic mechanical properties including actuation in harsh environment. The mechanical and shape memory properties of SMP and CF-SMPCs were characterized using dynamic mechanical analysis (DMA) and universal tensile machine (UTM) with an environmental chamber. The mechanical properties such as flexural strength and tensile strength of SMP and CF-SMPC were measured with simple tensile/bending test and time dependent shape memory behavior was characterized with designed shape memory bending test. For mechanical analysis of CF-SMPCs, a 3D constitutive equation of SMP, which had been developed using multiplicative decomposition of the deformation gradient and shape memory strains, was used with material parameters determined from CF-SMPCs. Carbon fibers in composites reinforced tensile and flexural strength of SMP and acted as strong elastic springs in rheology based equation models. The actuation behavior of SMP matrix and CF-SMPCs was then simulated as 3D shape memory bending cases. Fiber bundle property was imbued with shell model for more precise analysis and it would be used for prediction of deploying behavior in self-deployable hinge structure.
Leysen, Heleen; Roos, Gert; Adriaens, Dominique
2011-10-01
The feeding apparatus of Syngnathidae, with its elongate tubular snout and tiny, toothless jaws, is highly specialized for performing fast and powerful pivot feeding. In addition, the prolonged syngnathid parental care probably enables the juveniles to be provided with a feeding apparatus that resembles the one in adults, both in morphology and function. In this study, a landmark-based geometric morphometric analysis was carried out on the head of syngnathid representatives in order to (1) examine to what degree pipefish shape variation is different from that of seahorses; (2) determine whether the high level of specialization reduces the amount of intraspecific morphological variation found within the family; and (3) elucidate whether or not important shape changes occur in the seahorse head during postrelease ontogeny. We found that (1) there is a significant shape difference between head shape of pipefish and seahorse: the main differences concern snout length and height, position and orientation of the pectoral fin base, and height of the head and opercular bone. We hypothesize that this might be related to different prey capture kinematics (long snout with little head rotation versus short snout with large head rotation) and to different body postures (in line with the head versus vertical with a tilted head) in pipefishes and seahorses; (2) both pipefishes and seahorses showed an inverse relation between relative snout length and intraspecific variation and although pipefishes show a large diversity in relative snout elongation, they are more constrained in terms of head shape; and (3) the head of juvenile Hippocampus reidi specimens still undergoes gradual shape changes after being expelled from the brood pouch. Ontogenetic changes include lowering of the snout and head but also differences in orientation of the preopercular bone and lowering of the snout tip. Copyright © 2011 Wiley-Liss, Inc.
Di Cecco, V; Di Musciano, M; D'Archivio, A A; Frattaroli, A R; Di Martino, L
2018-05-20
This work aims to study seeds of the endemic species Astragalus aquilanus from four different populations of central Italy. We investigated seed morpho-colorimetric features (shape and size) and chemical differences (through infrared spectroscopy) among populations and between dark and light seeds. Seed morpho-colorimetric quantitative variables, describing shape, size and colour traits, were measured using image analysis techniques. Fourier transform infrared (FT-IR) spectroscopy was used to attempt seed chemical characterisation. The measured data were analysed by step-wise linear discriminant analysis (LDA). Moreover, we analysed the correlation between the four most important traits and six climatic variables extracted from WorldClim 2.0. The LDA on seeds traits shows clear differentiation of the four populations, which can be attributed to different chemical composition, as confirmed by Wilk's lambda test (P < 0.001). A strong correlation between morphometric traits and temperature (annual mean temperature, mean temperature of the warmest and coolest quarter), colorimetric traits and precipitation (annual precipitation, precipitation of wettest and driest quarter) was observed. The characterisation of A. aquilanus seeds shows large intraspecific plasticity both in morpho-colorimetric and chemical composition. These results confirm the strong relationship between the type of seed produced and the climatic variables. © 2018 German Society for Plant Sciences and The Royal Botanical Society of the Netherlands.
NASA Astrophysics Data System (ADS)
Lertwiram, Namzilp; Tran, Gia Khanh; Mizutani, Keiichi; Sakaguchi, Kei; Araki, Kiyomichi
Setting relays can address the shadowing problem between a transmitter (Tx) and a receiver (Rx). Moreover, the Multiple-Input Multiple-Output (MIMO) technique has been introduced to improve wireless link capacity. The MIMO technique can be applied in relay network to enhance system performance. However, the efficiency of relaying schemes and relay placement have not been well investigated with experiment-based study. This paper provides a propagation measurement campaign of a MIMO two-hop relay network in 5GHz band in an L-shaped corridor environment with various relay locations. Furthermore, this paper proposes a Relay Placement Estimation (RPE) scheme to identify the optimum relay location, i.e. the point at which the network performance is highest. Analysis results of channel capacity show that relaying technique is beneficial over direct transmission in strong shadowing environment while it is ineffective in non-shadowing environment. In addition, the optimum relay location estimated with the RPE scheme also agrees with the location where the network achieves the highest performance as identified by network capacity. Finally, the capacity analysis shows that two-way MIMO relay employing network coding has the best performance while cooperative relaying scheme is not effective due to shadowing effect weakening the signal strength of the direct link.
D'Amore, Domenic C
2015-05-01
Many recent attempts have been made to quantify heterodonty in non-mammalian vertebrates, but the majority of these are limited to Euclidian measurements. One taxon frequently investigated is Varanus niloticus, the Nile monitor. Juveniles possess elongate, pointed teeth (caniniform) along the entirety of the dental arcade, whereas adults develop large, bulbous distal teeth (molariform). The purpose of this study was to present a geometric morphometric method to quantify V. niloticus heterodonty through ontogeny that may be applied to other non-mammalian taxa. Data were collected from the entire tooth row of 19 dry skull specimens. A semilandmark analysis was conducted on the outline of the photographed teeth, and size and shape were derived. Width was also measured with calipers. From these measures, sample ranges and allometric functions were created using multivariate statistical analyses for each tooth position separately, as well as overall measures of heterodonty for each specimen based on morphological disparity. The results confirm and expand upon previous studies, showing measurable shape-size heterodonty in the species with significant differences at each tooth position. Tooth size increases with body size at most positions, and the allometric coefficient increases at more distal positions. Width shows a dramatic increase at the distal positions with ontogeny, often displaying pronounced positive allometry. Dental shape varied in two noticeable ways, with the first composing the vast majority of shape variance: (i) caniniformy vs. molariformy and (ii) mesially leaning, 'rounded' apices vs. distally leaning, 'pointed' apices. The latter was twice as influential in the mandible, a consequence of host bone shape. Mesial teeth show no significant shape change with growth, whereas distal teeth change significantly due primarily to an increase in molariformy. Overall, heterodonty increases with body size concerning both tooth size and shape, but shape heterodonty changes in the mandible are much less pronounced. Although it is unclear to what degree V. niloticus specializes in hard prey items (durophagy), previous studies of varanid feeding behavior, along with research on analogous durophagous vertebrates, indicate a division of labor along the tooth row in adults, due to a possible transition to at least a partial durophagous niche. The geometric morphometric method proposed here, although not without its own limitations, may be ideal for use with a number of dental morphotypes in the future. © 2015 Anatomical Society.
Holland, E
2008-03-01
Stephen Marquardt has derived a mask from the golden ratio that he claims represents the "ideal" facial archetype. Many have found his mask convincing, including cosmetic surgeons. However, Marquardt's mask is associated with numerous problems. The method used to examine goodness of fit with the proportions in the mask is faulty. The mask is ill-suited for non-European populations, especially sub-Saharan Africans and East Asians. The mask also appears to approximate the face shape of masculinized European women. Given that the general public strongly and overwhelmingly prefers above average facial femininity in women, white women seeking aesthetic facial surgery would be ill-advised to aim toward a better fit with Marquardt's mask. This article aims to show the proper way of assessing goodness of fit with Marquardt's mask, to address the shape of the mask as it pertains to masculinity-femininity, and to discuss the broader issue of an objective assessment of facial attractiveness. Generalized Procrustes analysis is used to show how goodness of fit with Marquardt's mask can be assessed. Thin-plate spline analysis is used to illustrate visually how sample faces, including northwestern European averages, differ from Marquardt's mask. Marquardt's mask best describes the facial proportions of masculinized white women as seen in fashion models. Marquardt's mask does not appear to describe "ideal" face shape even for white women because its proportions are inconsistent with the optimal preferences of most people, especially with regard to femininity.
Electron microscopy study of microbial mat in the North Fiji basin hydrothermal vent
NASA Astrophysics Data System (ADS)
Park, H.; Kim, J. W.; Lee, J. W.
2017-12-01
Hydrothermal vent systems consisting of hydrothermal vent, hydrothermal sediment and microbial mat are widely spread around the ocean, particularly spreading axis, continental margin and back-arc basin. Scientists have perceived that the hydrothermal systems, which reflect the primeval earth environment, are one of the best places to reveal the origin of life and extensive biogeochemical process of microbe-mineral interaction. In the present study multiline of analytical methods (X-Ray Diffraction (XRD), Scanning Electron Microscopy (SEM) and Transmission Electron Microscopy (TEM)) were utilized to investigate the mineralogy/chemistry of microbe-mineral interaction in hydrothermal microbial mat. Microbial mat samples were recovered by Canadian scientific submersible ROPOS on South Pacific North Fiji basin KIOST hydrothermal vent expedition 1602. XRD analysis showed that red-colored microbial mat contains Fe-oxides and Fe-oxyhydroxides. Various morphologies of minerals in the red-colored microbial mat observed by SEM are mainly showed sheath shaped, resembled with Leptothrix microbial structure, stalks shaped, similar with Marioprofundus microbial structure and globule shaped microbial structures. They are also detected with DNA analysis. The cross sectional observation of microbial structures encrusted with Fe-oxide and Fe-oxyhydroxide at a nano scale by Transmission Electron Microscopy (TEM) and Focused Ion Beam (FIB) technique was developed to verify the structural/biogeochemical properties in the microbe-mineral interaction. Systematic nano-scale measurements on the biomineralization in the microbial mat leads the understandings of biogeochemical environments around the hydrothermal vent.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ma, C; Yin, Y
2014-06-01
Purpose: The aim of this study was to explore the characteristics derived from 18F-fluorodeoxyglucose (18F-FDG) PET image and assess its capacity in staging of esophageal squamous cell carcinoma (ESCC). Methods: 26 patients with newly diagnosed ESCC who underwent 18F-FDG PET scan were included in this study. Different image-derived indices including the standardized uptake value (SUV), gross tumor length, texture features and shape feature were considered. Taken the histopathologic examination as the gold standard, the extracted capacities of indices in staging of ESCC were assessed by Kruskal-Wallis test and Mann-Whitney test. Specificity and sensitivity for each of the studied parameters weremore » derived using receiver-operating characteristic curves. Results: 18F-FDG SUVmax and SUVmean showed statistically significant capability in AJCC and TNM stages. Texture features such as ENT and CORR were significant factors for N stages(p=0.040, p=0.029). Both FDG PET Longitudinal length and shape feature Eccentricity (EC) (p≤0.010) provided powerful stratification in the primary ESCC AJCC and TNM stages than SUV and texture features. Receiver-operating-characteristic curve analysis showed that tumor textural analysis can capability M stages with higher sensitivity than SUV measurement but lower in T and N stages. Conclusion: The 18F-FDG image-derived characteristics of SUV, textural features and shape feature allow for good stratification AJCC and TNM stage in ESCC patients.« less
NASA Technical Reports Server (NTRS)
Bown, R. L.; Winans, L. C.
1975-01-01
Results are presented of a study to show the effect of selecting a constant inertial attitude during the fuel dissipation phase of a return-to-launch-site abort. Results are also presented which show that the selection of the constant inertial attitude will affect the arrival point on the range-velocity target line. An alternate selection of the inertial attitude will provide control over the trajectory shape.
van Ooijen, Iris; Fransen, Marieke L; Verlegh, Peeter W J; Smit, Edith G
2017-02-01
Three studies show that product packaging shape serves as a cue that communicates healthiness of food products. Inspired by embodiment accounts, we show that packaging that simulates a slim body shape acts as a symbolic cue for product healthiness (e.g., low in calories), as opposed to packaging that simulates a wide body shape. Furthermore, we show that the effect of slim package shape on consumer behaviour is goal dependent. Whereas simulation of a slim (vs. wide) body shape increases choice likelihood and product attitude when consumers have a health-relevant shopping goal, packaging shape does not affect these outcomes when consumers have a hedonic shopping goal. In Study 3, we adopt a realistic shopping paradigm using a shelf with authentic products, and find that a slim (as opposed to wide) package shape increases on-shelf product recognition and increases product attitude for healthy products. We discuss results and implications regarding product positioning and the packaging design process. Copyright © 2016 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Wintoft, Peter; Viljanen, Ari; Wik, Magnus
2016-05-01
High-frequency ( ≈ minutes) variability of ground magnetic fields is caused by ionospheric and magnetospheric processes driven by the changing solar wind. The varying magnetic fields induce electrical fields that cause currents to flow in man-made conductors like power grids and pipelines. Under extreme conditions the geomagnetically induced currents (GIC) may be harmful to the power grids. Increasing our understanding of the extreme events is thus important for solar-terrestrial science and space weather. In this work 1-min resolution of the time derivative of measured local magnetic fields (|dBh/dt|) and computed electrical fields (Eh), for locations in Europe, have been analysed with extreme value analysis (EVA). The EVA results in an estimate of the generalized extreme value probability distribution that is described by three parameters: location, width, and shape. The shape parameter controls the extreme behaviour. The stations cover geomagnetic latitudes from 40 to 70° N. All stations included in the study have contiguous coverage of 18 years or more with 1-min resolution data. As expected, the EVA shows that the higher latitude stations have higher probability of large |dBh/dt| and |Eh| compared to stations further south. However, the EVA also shows that the shape of the distribution changes with magnetic latitude. The high latitudes have distributions that fall off faster to zero than the low latitudes, and upward bounded distributions can not be ruled out. The transition occurs around 59-61° N magnetic latitudes. Thus, the EVA shows that the observed series north of ≈ 60° N have already measured values that are close to the expected maxima values, while stations south of ≈ ° N will measure larger values in the future.
González, Maraelys Morales; Aguilar, Claudia Hernández; Pacheco, Flavio Arturo Domínguez; Cabrales, Luis Enrique Bergues; Reyes, Juan Bory; Nava, Juan José Godina; Ambrosio, Paulo Eduardo; Domiguez, Dany Sanchez; Sierra González, Victoriano Gustavo; Pupo, Ana Elisa Bergues; Ciria, Héctor Manuel Camué; Alemán, Elizabeth Issac; García, Francisco Monier; Rivas, Clara Berenguer; Reina, Evelyn Chacón
2018-01-01
One of the most challenging problems of electrochemical therapy is the design and selection of suitable electrode array for cancer. The aim is to determine how two-dimensional spatial patterns of tissue damage, temperature, and pH induced in pieces of potato (Solanum tuberosum L., var. Mondial) depend on electrode array with circular, elliptical, parabolic, and hyperbolic shape. The results show the similarity between the shapes of spatial patterns of tissue damage and electric field intensity, which, like temperature and pH take the same shape of electrode array. The adequate selection of suitable electrodes array requires an integrated analysis that involves, in a unified way, relevant information about the electrochemical process, which is essential to perform more efficiently way the therapeutic planning and the personalized therapy for patients with a cancerous tumor. PMID:29725584
Nanowire growth from the viewpoint of the thin film polylayer growth theory
NASA Astrophysics Data System (ADS)
Kashchiev, Dimo
2018-03-01
The theory of polylayer growth of thin solid films is employed for description of the growth kinetics of single-crystal nanowires. Expressions are derived for the dependences of the height h and radius r of a given nanowire on time t, as well as for the h(r) dependence. These dependences are applicable immediately after the nanowire nucleation on the substrate and thus include the period during which the nucleated nanowire changes its shape from that of cap to that of column. The analysis shows that the nanowire cap-to-column shape transition is continuous and makes it possible to kinetically define the nanowire shape-transition radius by means of the nanowire radial and axial growth rates. The obtained h(t), r(t) and h(r) dependences are found to provide a good description of available experimental data for growth of self-nucleated GaN nanowires by the vapor-solid mechanism.
Does Height to Width Ratio Correlate with Mean Volume in Gastropods?
NASA Astrophysics Data System (ADS)
Barriga, R.; Seixas, G.; Payne, J.
2012-12-01
Marine organisms' shell shape and size show important biological information. For example, shape and size can dictate how the organism ranges for food and escapes predation. Due to lack of data and analysis, the evolution of shell size in marine gastropods (snails) remains poorly known. In this study, I attempt to find the relationship between height to width ratio and mean volume. I collected height and width measurements from primary literature sources and calculated volume from these measurements. My results indicate that there was no correlation between height to width ratio and mean volume between 500 to 200 Ma, but there was a correlation between 200 Ma to present where there is a steady increase in both height to width ratio and mean volume. This means that shell shape was not an important factor at the beginning of gastropod evolution but after 200 Ma body size evolution was increasingly driven by the height to width ratio.
Shi, Shuo; Gu, Lin; Yang, Yihu; Yu, Haibin; Chen, Rui; Xiao, Xianglian; Qiu, Jun
2016-06-25
A series of bio-based thermosetting polyurethanes (Bio-PUs) were synthesized by the crosslinking reaction of polylactide and its copolymers diols with hexamethylene diisocyanate (HDI) trimer. The obtained Bio-PUs were characterized by Fourier Transform Infrared Spectroscopy (FTIR), Differential Scanning Calorimetry (DSC), Thermal Gravimetric Analysis (TGA), universal tensile testing machine and cytotoxicity test. Results indicate that the PLA copolymer (P(LA-co-CL)) diols reduced the glass transition temperature (Tg) of Bio-PUs and improved their thermal stability, compared with PLA diols. The Bio-PUs synthesized from P (LA-co-CL) diols exhibit better mechanical performance and shape memory properties. Especially, Young modulus and elongation at break of the obtained Bio-PUs were 277.7 MPa and 230% respectively; the shape recovery time of the obtained Bio-PUs at body temperature was only 93 s. Furthermore, alamar blue assay results showed that the obtained Bio-PUs had no cell toxicity.
Moving mode shape function approach for spinning disk and asymmetric disc brake squeal
NASA Astrophysics Data System (ADS)
Kang, Jaeyoung
2018-06-01
The solution approach of an asymmetric spinning disk under stationary friction loads requires the mode shape function fixed in the disk in the assumed mode method when the equations of motion is described in the space-fixed frame. This model description will be termed the 'moving mode shape function approach' and it allows us to formulate the stationary contact load problem in both the axisymmetric and asymmetric disk cases. Numerical results show that the eigenvalues of the time-periodic axisymmetric disk system are time-invariant. When the axisymmetry of the disk is broken, the positive real parts of the eigenvalues highly vary with the rotation of the disk in the slow speeds in such application as disc brake squeal. By using the Floquet stability analysis, it is also shown that breaking the axisymmetry of the disc alters the stability boundaries of the system.
NASA Technical Reports Server (NTRS)
Cebeci, T.; Chen, H. H.; Kaups, K.; Schimke, S.; Shin, J.
1992-01-01
A method for computing ice shapes along the leading edge of a wing and a method for predicting its aerodynamic performance degradation due to icing is described. Ice shapes are computed using an extension of the LEWICE code which was developed for airfoils. The aerodynamic properties of the iced wing are determined with an interactive scheme in which the solutions of the inviscid flow equations are obtained from a panel method and the solutions of the viscous flow equations are obtained from an inverse three-dimensional finite-difference boundary-layer method. A new interaction law is used to couple the inviscid and viscous flow solutions. The application of the LEWICE wing code to the calculation of ice shapes on a MS-317 swept wing shows good agreement with measurements. The interactive boundary-layer method is applied to a tapered ice wing in order to study the effect of icing on the aerodynamic properties of the wing at several angles of attack.
NASA Astrophysics Data System (ADS)
Xu, Zhong; Li, Zhi-Pan
2017-12-01
Quadrupole and octupole deformation energy surfaces, low-energy excitation spectra, and electric transition rates in eight neutron-rich isotopic chains - Ra, Th, U, Pu, Cm, Cf, Fm, and No - are systematically analyzed using a quadrupole-octupole collective Hamiltonian model, with parameters determined by constrained reflection-asymmetric and axially-symmetric relativistic mean-field calculations based on the PC-PK1 energy density functional. The theoretical results of low-lying negative-parity bands, odd-even staggering, average octupole deformations ⟨β 3⟩, and show evidence of a shape transition from nearly spherical to stable octupole-deformed, and finally octupole-soft equilibrium shapes in the neutron-rich actinides. A microscopic mechanism for the onset of stable octupole deformation is also discussed in terms of the evolution of single-nucleon orbitals with deformation. Supported by National Natural Science Foundation of China (11475140, 11575148)
NASA Astrophysics Data System (ADS)
Xiang, Longhao; Pan, Juyi; Chen, Songying
2018-06-01
The influence of pit shape and size on local stress concentration in the tensile specimen and the stress corrosion cracks inception was studied by employing the element remove technique. The maximum stress located in the bottom of pit on FV520B tensile specimen. The location of maximum strain was near the mouth of the pit or the shoulder and plastic strain existed in this region. Stress concentration factor and plastic deformation on four different geometrical shape pits of hemisphere, semi-ellipsoid, bullet and butterfly were numerically investigated, respectively. The simulation results showed that butterfly pit got the biggest stress concentration factor. The plastic strain rate during pit growth was in the sensitivity range of stress corrosion cracks inception, indicating that stress corrosion cracks were more likely to nucleate near the pit tip or the shoulder.
NASA Astrophysics Data System (ADS)
Devaprakasam, D.; Hatton, P. V.; Möbus, G.; Inkson, B. J.
2008-08-01
In this work we have investigated the influence of nanoscale and microscale structure on the tribo-mechanical performance and failure mechanisms of two biocompatible dental polymer composites, with different reinforcing particulates, using advanced microscopy techniques. Nano- and micro structural analysis reveals the shape, size and distribution of the particles in the composites. In the microparticle filled polymer composite (microcomposite), the particles are of irregular shape with sharp edges with non-uniform distribution in the matrix. However, in the nanoparticle filled composites (nanocomposite), filler particles are spherical in shape with uniform distribution in the matrix. From nanoindentation measurements, hardness and reduced modulus of the microcomposite were found to be heterogeneous. However, the hardness and reduced modulus of the nanocomposite were found to be homogeneous. The nanocomposite shows better tribo-mechanical performance compared to that of the microcomposite.
Synthesis and Characterization of Hydroxyapatite Powder by Wet Precipitation Method
NASA Astrophysics Data System (ADS)
Cahyaningrum, S. E.; Herdyastuty, N.; Devina, B.; Supangat, D.
2018-01-01
Hydroxyapatite is main inorganic component of the bone with formula Ca10(PO4)6(OH)2. Hydroxyapatite can be used as substituted bone biomaterial because biocompatible, non toxic, and osteoconductive. In this study, hydroxyapatite is synthesized using wet precipitation method from egg shell. The product was sintered at different temperatures of 800°C to 1000°C to improve its crystallinity. The hydroxyapatite was characterized by X-ray analysis, Scanning Electron Microscopy (SEM) and Fourier Transform Infrared Spectroscopy (FTIR) to reveal its phase content, morphology and types of bond present within it. The analytical results showed hydroxyapatite had range in crystallinity from 85.527 to 98.753%. The analytical functional groups showed that presence of functional groups such as OH, (PO4)3 2-, and CO3 2- that indicated as hydroxyapatite. The result of characterization SEM indicated that hydroxyapatite without sintering and HAp sintering at 800 °C were irregular shape without pore. The best hydroxyapatite with temperature sintering at 900 °C showed oval shaped with pores without agglomerated.
The Lateral Occipital Complex shows no net response to object familiarity.
Margalit, Eshed; Shah, Manan P; Tjan, Bosco S; Biederman, Irving; Keller, Brenton; Brenner, Rorry
2016-09-01
In 1995, Malach et al. discovered an area whose fMRI BOLD response was greater when viewing intact, familiar objects than when viewing their scrambled versions (resembling texture). Since then hundreds of studies have explored this late visual region termed the Lateral Occipital Complex (LOC), which is now known to be critical for shape perception (James, Culham, Humphrey, Milner, & Goodale, 2003). Malach et al. (1995) discounted a role of familiarity by showing that "abstract" Henry Moore sculptures, unfamiliar to the subjects, also activated this region. This characterization of LOC as a region that responds to shape independently of familiarity has been accepted but never tested with control of the same low-level features. We assessed LOC's response to objects that had identical parts in two different arrangements, one familiar and the other novel. Malach was correct: There is no net effect of familiarity in LOC. However, a multivoxel correlation analysis showed that LOC does distinguish familiar from novel objects.
Assessment of Foot Shape in Children and Adolescents with Intellectual Disability: A Pilot Study
Wolan-Nieroda, Andżelina; Bazarnik-Mucha, Katarzyna; Rachwał, Maciej; Drzał-Grabiec, Justyna; Szeliga, Ewa; Walicka-Cupryś, Katarzyna
2018-01-01
Background Available publications provide little evidence pertaining to assessment of foot shape in children with intellectual disability. The aim of this study was to assess the parameters of foot shape in children and adolescents with intellectual disability and to evaluate the relationship between the degree of disability and these parameters. Material/Methods The study involved 90 individuals aged 7–15 years, including 45 subjects with mild and moderate levels of intellectual disability (study group) and 45 peers with normal intellectual development (control group). Each participant was subjected to photogrammetric assessment of foot shape based on the projection moire effect. Results Analysis of the relationship between the disability level and the assessed parameters showed that the length of the right (p=0.006) and left (p=0.004) foot, as well as Wejsflog’s rate for the right (p<0.001) and left (p<0.001) foot, were significantly higher among children with mild disability, whereas GAMMA angle of the right (p=0.028) and left (p=0.006) foot was significantly higher among children with moderate disability. Conclusions The findings show a significant relationship between the degree of disability and the assessed foot parameters. Significant differences between the subjects with intellectual disability and the control group were identified in the basic parameters defining foot structure. PMID:29636442
Thomson, Cynthia A; Garcia, David O; Wertheim, Betsy C; Hingle, Melanie D; Bea, Jennifer W; Zaslavsky, Oleg; Caire-Juvera, Graciela; Rohan, Thomas; Vitolins, Mara Z; Thompson, Patricia A; Lewis, Cora E
2016-05-01
Studies evaluating the relationship between body mass index (BMI) and mortality demonstrate a U-shaped association. To expand, this study evaluated the relationship between adiposity indices, a body shape index (ABSI) and body adiposity index (BAI), and mortality in 77,505 postmenopausal women. A prospective cohort analysis was conducted in the Women's Health Initiative to ascertain the independent relationships between adiposity indices and mortality in order to inform on the clinical usefulness of alternate measures of mortality risk. ABSI (waist circumference (cm)/[BMI(2/3) × height (cm)(1/2) ]), BAI (hip circumference (cm)/[height (m)(1.5) ] - 18), weight, BMI, and waist circumference (WC) were evaluated in relation to mortality risk using adjusted Cox proportional hazards regression models. ABSI showed a linear association with mortality (HR, 1.37; 95% CI, 1.28-1.47 for quintile 5 vs. 1) while BMI and BAI had U-shaped relationships with HR of 1.30; 95% CI, 1.20-1.40 for obesity II/III BMI and 1.06, 95% CI, 0.99-1.13 for BAI. Higher WC (HR, 1.21; 95% CI, 1.13-1.29 for quintile 5 vs. 1) showed relationships similar to BMI. ABSI appears to be a clinically useful measure for estimating mortality risk, perhaps more so than BAI and BMI in postmenopausal women. © 2016 The Obesity Society.
Single step synthesis of nanostructured boron nitride for boron neutron capture therapy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Singh, Bikramjeet; Singh, Paviter; Kumar, Akshay, E-mail: akshaykumar.tiet@gmail.com
2015-05-15
Nanostructured Boron Nitride (BN) has been successfully synthesized by carbo-thermic reduction of Boric Acid (H{sub 3}BO{sub 3}). This method is a relatively low temperature synthesis route and it can be used for large scale production of nanostructured BN. The synthesized nanoparticles have been characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM) and differential thermal analyzer (DTA). XRD analysis confirmed the formation of single phase nanostructured Boron Nitride. SEM analysis showed that the particles are spherical in shape. DTA analysis showed that the phase is stable upto 900 °C and the material can be used for high temperature applications asmore » well boron neutron capture therapy (BNCT)« less
Extracellular mycosynthesis of gold nanoparticles using Fusarium solani
NASA Astrophysics Data System (ADS)
Gopinath, K.; Arumugam, A.
2014-08-01
The development of eco-friendly methods for the synthesis of nanomaterial shape and size is an important area of research in the field of nanotechnology. The present investigation deals with the extracellular rapid biosynthesis of gold nanoparticles using Fusarium solani culture filtrate. The UV-vis spectra of the fungal culture filtrate medium containing gold ion showed peak at 527 nm corresponding to the plasmon absorbance of gold nanoparticles. FTIR spectra provide an evidence for the presence of heterocyclic compound in the culture filtrate, which increases the stability of the synthesized gold nanoparticles. The X-ray analysis respects the Bragg's law and confirmed the crystalline nature of the gold nanoparticles. AFM analysis showed the results of particle sizes (41 nm). Transmission electron microscopy (TEM) showed that the gold nanoparticles are spherical in shape with the size range from 20 to 50 nm. The use of F. solani will offer several advantages since it is considered as a non-human pathogenic organism. The fungus F. solani has a fast growth rate, rapid capacity of metallic ions reduction, NPs stabilization and facile and economical biomass handling. Extracellular biosynthesis of gold nanoparticles could be highly advantageous from the point of view of synthesis in large quantities, time consumption, eco-friendly, non-toxic and easy downstream processing.
Silicone gel breast implants: science and testing.
Kinney, Brian M; Jeffers, Lynn L C; Ratliff, Gregory E; Carlisle, Dan A
2014-07-01
Since the first generation of breast implants, major design innovations, including consistency of the gel, palpability and thickness of the shell, and barrier materials in the shell, have been introduced. Surgeons have not had metrics to assess and compare available implants. Research at independent laboratories included 4 tests: gel elasticity (the gel's ability to retain its shape), gel compression fracture (the resistance to permanent gel deformation), gel-shell peel (the integration of the gel with shell as a cohesive unit), and morphological analysis. Sientra's round High-Strength Cohesive (HSC) experienced the least gel elasticity (5.805 mm), whereas Allergan's round implants experienced the most (7.465 mm). Among shaped implants, Allergan 410 experienced the least gel elasticity (3.242 mm), whereas the Sientra HSC+ implant experienced the most (4.270 mm). Sientra's round (36.32 lbf) and shaped (44.16 lbf) implants demonstrated the highest resistance to gel fracture, with Allergan's implants demonstrating the least among round (23.06 lbf) implants and Mentor Contour Profile Gel (CPG) among shaped (30.45 lbf) implants. For the gel-shell peel test, Sientra's implant required over 26% greater force than Allergan's implant and over 35% greater force than Mentor's implant. Sientra's shaped implants required more than double the peel force than Allergan 410 (119% greater) and Mentor CPG (130% greater). Morphological results showed Sientra's implants preserved structural integrity (-1.10% change). The initial findings show that these implant characteristics are individual factors to be considered separately and are not necessarily correlative. Further study of implants using these and other testing techniques will help clinicians choose between implants.
Burgio, Gaétan; Baylac, Michel; Heyer, Evelyne; Montagutelli, Xavier
2012-01-01
Background Genetic determinism of cranial morphology in the mouse is still largely unknown, despite the localization of putative QTLs and the identification of genes associated with Mendelian skull malformations. To approach the dissection of this multigenic control, we have used a set of interspecific recombinant congenic strains (IRCS) produced between C57BL/6 and mice of the distant species Mus spretus (SEG/Pas). Each strain has inherited 1.3% of its genome from SEG/Pas under the form of few, small-sized, chromosomal segments. Results The shape of the nasal bone was studied using outline analysis combined with Fourier descriptors, and differential features were identified between IRCS BcG-66H and C57BL/6. An F2 cross between BcG-66H and C57BL/6 revealed that, out of the three SEG/Pas-derived chromosomal regions present in BcG-66H, two were involved. Segments on chromosomes 1 (∼32 Mb) and 18 (∼13 Mb) showed additive effect on nasal bone shape. The three chromosomal regions present in BcG-66H were isolated in congenic strains to study their individual effect. Epistatic interactions were assessed in bicongenic strains. Conclusions Our results show that, besides a strong individual effect, the QTL on chromosome 1 interacts with genes on chromosomes 13 and 18. This study demonstrates that nasal bone shape is under complex genetic control but can be efficiently dissected in the mouse using appropriate genetic tools and shape descriptors. PMID:22662199
NASA Astrophysics Data System (ADS)
Fu, Yubin; Liu, Jia; Su, Jia; Zhao, Zhongkai; Liu, Yang; Xu, Qian
2012-03-01
Microbial fuel cell (MFC) on the ocean floor is a kind of novel energy- harvesting device that can be developed to drive small instruments to work continuously. The shape of electrode has a great effect on the performance of the MFC. In this paper, several shapes of electrode and cell structure were designed, and their performance in MFC were compared in pairs: Mesh (cell-1) vs. flat plate (cell-2), branch (cell-3) vs. cylinder (cell-4), and forest (cell-5) vs. disk (cell-6) FC. Our results showed that the maximum power densities were 16.50, 14.20, 19.30, 15.00, 14.64, and 9.95 mWm-2 for cell-1, 2, 3, 4, 5 and 6 respectively. And the corresponding diffusion-limited currents were 7.16, 2.80, 18.86, 10.50, 18.00, and 6.900 mA. The mesh and branch anodes showed higher power densities and much higher diffusion-limited currents than the flat plate and the cylinder anodes respectively due to the low diffusion hindrance with the former anodes. The forest cathode improved by 47% of the power density and by 161% of diffusion-limited current than the disk cathode due to the former's extended solid/liquid/gas three-phase boundary. These results indicated that the shape of electrode is a major parameter that determining the diffusion-limited current of an MFC, and the differences in the electrode shape lead to the differences in cell performance. These results would be useful for MFC structure design in practical applications.
An Analysis of Air Photo and Radar Imagery of Barro Colorado Island, Panama
1989-07-01
changes (flats, hills, mountains , etc.), they cannot provide the shape information that can be obtained from stereo imagery. Referring to figure 14, one...field patterns. These are shown in figure 20. Figure 21 shows a portion of a 1979 Landsat MSS color composite scene of this alea . It has a continuous red
Where's the Other "C"? Year 9 Examine Continuity in the Treatment of Mental Health through Time
ERIC Educational Resources Information Center
Murray, Helen; Burney, Rachel; Stacey-Chapman, Andrew
2013-01-01
Helen Murray, Rachel Burney and Andrew Stacey-Chapman show how they strengthened three goals of their practice--secure knowledge, narrative shapes and conceptual analysis--by securing strong connection between them. The curricular focus that drew all this together was "historical continuity", a property crucial to narrative, but often…
ERIC Educational Resources Information Center
Marckel, Julie M.; Neef, Nancy A.; Ferreri, Summer J.
2006-01-01
Two young boys with autism who used the picture exchange communication system were taught to solve problems (improvise) by using descriptors (functions, colors, and shapes) to request desired items for which specific pictures were unavailable. The results of a multiple baseline across descriptors showed that training increased the number of…
From Witnessing to Recording--Material Objects and the Epistemic Configuration of Science Classes
ERIC Educational Resources Information Center
Roehl, Tobias
2012-01-01
Drawing on concepts developed in actor-network theory and postphenomenology this article shows how material objects in the science classroom become part of epistemic configurations and thus co-shape science education. An ethnographic study on epistemic objects in science education is the basis for the analysis of two of these objects: experimental…
Thermo-elastic behaviour of liquid crystal elastomer
NASA Astrophysics Data System (ADS)
J, Jessy P.; Mani, Santosh A.; Amare, Jyoti R.; Gharde, Rita A.
2015-06-01
The effect of temperature on Liquid Crystal Elastomer was studied to understand thermo-elastic behaviour of these fantastic soft materials. The investigations were performed using Polarizing Microscopy Studies (PMS) and Differential Thermal Analysis (DTA). The relative length shows hysteresis as function of temperature. As temperature increases, the length shrinks, while it returns to original shape on cooling.
NASA Astrophysics Data System (ADS)
Firdaus, M. Y. Nur; Osman, H.; Metselaar, H. S. C.; Rozyanty, A. R.
2017-07-01
Silica is widely used as sources for adsorption materials, medical additives and fillers in composite and rubber industries. The manufacturing process of commercial silica use in various industries is very expensive and energy extensive. Therefore, agricultural waste material such as lemon grass is seen as a potential alternative silica sources for replacement of commercial silica which is currently available in the industry. In this research, a simple method based on the acid leaching treatment with hydrochloric acid (HCl) was developed to produce purified silica from lemon grass, followed by thermal combustion at 600°C. Acid leaching temperatures of 33, 50, 80 and 110°C were used. The silica content, shape and texture of the lemon grass ash was characterized using scanning electron microcopy -energy-dispersive X-ray (SEM-EDX) analysis. The SEM analysis indicated the presence of tubular-shaped porous aggregates, spherical and fibrous shapes of untreated and treated lemon grass at 33°C to 110 °C. The highest silica content recorded was 73.46% for lemon grass treated at the highest leaching temperature of 110°C. The thermal stability of lemon grass ash was examined by using a thermogravimetric analysis (TGA) instrument. The TGA analysis shows that the untreated and treated lemon grass ash start to decompose at lower temperature (90 to 100°C). Lemon grass treated at the highest leaching temperature 110°C exhibit the highest thermal stability.